
this print for content only—size & color not accurate spine = 0.584" 248 page count

Books for professionals By professionals®

Accelerated DOM Scripting with Ajax,
APIs, and Libraries
Dear Reader,

This book is about JavaScript and using the document object model—the con-
duit to the HTML document. This book is not about learning how to program
JavaScript from scratch. We start with the assumption that you have done some
JavaScript development before and understand the JavaScript syntax. This book
builds on top of that knowledge to give you a deeper understanding of the language
and how to apply that to your projects. I’ll use this new understanding to describe
what JavaScript libraries are and show you how they can be applied to your project.
The book will also explain Ajax and how best to plan and apply it to your projects. I’ll
explain how to build simple animation objects for adding movement to elements
on the page. Dan, Stuart, and Aaron will also provide straightforward examples that
demonstrate the techniques used throughout the book.

JavaScript has seen a resurgence in popularity over the past few years, and
with it has come an exploration of the power of the language as well as what it
can do within the browser. We wrote this book to explain techniques new and
old—such as closures, encapsulation, and inheritance—that many are using
and how you can best apply them to your own projects.

By reading this book, you should have a greater understanding of how
JavaScript works and be able to use advanced concepts such as closures and
event delegation to build more flexible applications for the Web. We also hope
that you’ll walk away with a greater appreciation for JavaScript libraries and
how they can simplify and speed up your development. You’ll also be able to
implement Ajax effectively into your site, create special effects, use JavaScript
libraries, and know how best to apply these libraries to your projects.

Jonathan Snook

Jonathan Snook, author of

Art & Science of CSS

US $39.99

Shelve in
Web Development

User level:
Beginner–Intermediate

Snook
Accelerated DOM

 Scripting w
ith Ajax

The eXperT’s Voice® in WeB DeVelopmenT

Accelerated

DOM Scripting
with Ajax, APIs,
and Libraries

 cyan
 maGenTa

 yelloW
 Black
 panTone 123 c

Jonathan Snook
with Aaron Gustafson, Stuart Langridge, and Dan Webb

Companion
eBook

Available

THE APRESS ROADMAP

Pro JavaScript
Techniques

Pro JavaScript
Design Patterns

Practical JavaScript, DOM
Scripting and Ajax Projects

Pro Web 2.0
Mashups: Remixing

Data and Web Services

Practical Prototype
and script.aculo.us

Beginning JavaScript with
DOM Scripting and Ajax:

From Novice to Professional

Accelerated
DOM Scripting with

Ajax, APIs, and Libraries

Beginning XML with
DOM and Ajax:

From Novice to Professional

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-764-4
ISBN-10: 1-59059-764-8

9 781590 597644

53999
www.apress.com

Jonathan Snook
with Aaron Gustafson,
Stuart Langridge, and Dan Webb

Accelerated DOM
Scripting with Ajax,
APIs, and Libraries

7648FMfinal.qxd 9/6/07 7:44 PM Page i

Accelerated DOM Scripting with Ajax, APIs, and Libraries

Copyright © 2007 by Jonathan Snook, Aaron Gustafson, Stuart Langridge, and Dan Webb

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-764-4

ISBN-10 (pbk): 1-59059-764-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Chris Mills, Matthew Moodie
Technical Reviewer: Cameron Adams
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,

Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Nancy Sixsmith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: April Eddy
Indexer: Beth Palmer
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

7648FMfinal.qxd 9/6/07 7:44 PM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

This book is dedicated to my wife, Michelle,
for her endless support and encouragement.

7648FMfinal.qxd 9/6/07 7:44 PM Page iii

7648FMfinal.qxd 9/6/07 7:44 PM Page iv

Contents at a Glance

About the Authors . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 The State of JavaScript . 1

■CHAPTER 2 HTML, CSS, and JavaScript . 13

■CHAPTER 3 Object-Oriented Programming . 57

■CHAPTER 4 Libraries . 81

■CHAPTER 5 Ajax and Data Exchange . 99

■CHAPTER 6 Visual Effects . 129

■CHAPTER 7 Form Validation and JavaScript . 147

■CHAPTER 8 Case Study: FAQ Facelift . 167

■CHAPTER 9 A Dynamic Help System. 189

■INDEX . 215

v

7648FMfinal.qxd 9/6/07 7:44 PM Page v

7648FMfinal.qxd 9/6/07 7:44 PM Page vi

Contents

About the Authors . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 The State of JavaScript . 1

JavaScript Is One of the Good Guys Again, but Why Now? 1

JavaScript Meets HTML with the DOM . 3

The Rise of Ajax . 3

Managing JavaScript . 4

Code Loading . 4

Code Evaluation . 5

Embedding Code Properly into an XHTML Page. 5

Debugging Your Code . 6

Alert . 6

Page Logging . 6

Browser Plug-ins . 7

HTTP Debugging . 10

Summary. 12

■CHAPTER 2 HTML, CSS, and JavaScript . 13

Getting into the Basics . 13

Web Standards. 13

HTML Best Practices. 16

HTML vs. XHTML . 16

Best of Both Worlds. 16

CSS Basics . 17

Say It with Meaning. 17

Element Identifiers. 18

Applying CSS . 19

vii

7648FMfinal.qxd 9/6/07 7:44 PM Page vii

JavaScript Basics . 21

Functions. 21

Objects, Properties, and Methods. 22

Dot Notation and Bracket Notation . 23

Prototypes . 24

Passing by Value or by Reference. 24

JavaScript and the DOM. 25

What Is the DOM? . 25

DOM Tree Structures. 26

The document Object . 28

Obtaining Elements by Class Name . 29

Moving Around the DOM . 31

Working Around Text Nodes . 31

Handling Attributes . 32

The style Property . 33

The class Attribute. 33

Inserting Content into the DOM. 34

Attaching Properties and Methods to Existing DOM Elements. 35

Browser Sniffing vs. Object Detection . 36

Regular Expressions . 37

Code Formatting Practices. 39

Event Handling . 39

Inline Event Handling. 39

The this Keyword . 40

Unobtrusive JavaScript . 40

Accessing Elements Before the Page Loads . 41

Attaching Events Using DOM Methods. 44

Event Capturing vs. Event Bubbling . 44

Attaching Events in IE . 45

Examining Context. 46

Cancelling Behavior. 48

Tying It All Together . 49

Event Delegation . 50

Halfway Between Here and There. 54

When Event Delegation Won’t Work . 55

Summary . 56

■CONTENTSviii

7648FMfinal.qxd 9/6/07 7:44 PM Page viii

■CHAPTER 3 Object-Oriented Programming . 57

What Is Object-Oriented Programming? . 57

Functions . 58

Adding Methods and Properties . 59

The Mechanics of Object Instantiation . 60

Returning an Object in the Constructor . 60

Prototype . 62

Object Literals . 63

The for..in Loop . 65

Named Parameters . 67

Namespaces. 68

Closures . 69

Encapsulation. 71

Functional Programming . 74

Callbacks. 74

The Functions call and apply . 76

Applying a Function to a Collection. 77

Chainable Methods . 78

Internal Iterators. 78

Summary . 79

■CHAPTER 4 Libraries . 81

Working with the DOM . 81

Animation . 82

Application Conveniences . 82

Language Extensions and Bridges . 82

Event Handling . 83

Ajax. 83

Strings and Templating. 83

Working with Collections . 84

Handling JSON and XML. 84

Widgets . 85

■CONTENTS ix

7648FMfinal.qxd 9/6/07 7:44 PM Page ix

Popular Libraries . 86

Dojo . 86

Prototype . 87

jQuery. 89

Yahoo! UI Library (YUI). 90

Mootools . 92

Script.aculo.us . 93

ExtJS . 94

New Libraries . 96

Base2.DOM. 96

DED|Chain . 97

How to Choose a Library . 97

The Community . 97

The Documentation . 97

Summary. 98

■CHAPTER 5 Ajax and Data Exchange. 99

Examining an Ajax Application . 99

Deconstructing the Ajax Process . 100

Ajax Request/Response Process . 102

Failure . 104

Storyboarding . 104

Data Formats in Ajax. 106

XML . 106

Alternatives to XML . 114

Building a Reusable Ajax Object . 117

What Do All the Different ActiveX Objects Mean? 119

Planning for Failure . 119

Handling Timeouts. 120

HTTP Status Codes . 122

Multiple Requests . 122

Unexpected Data . 123

Using Libraries to Handle Ajax Calls. 124

Prototype . 124

YUI . 126

jQuery. 126

Summary . 127

■CONTENTSx

7648FMfinal.qxd 9/6/07 7:44 PM Page x

■CHAPTER 6 Visual Effects. 129

Why Use Visual Effects? . 129

Building a Simple Animation Object . 130

Callbacks. 136

Queuing Animations . 137

Extending the Animation Class . 139

Using Libraries for Animation . 142

Script.aculo.us . 143

jQuery . 145

Mootools . 146

Summary. 146

■CHAPTER 7 Form Validation and JavaScript. 147

Doing It on the Server . 147

The Client Side. 150

Adding the Error Span from JavaScript . 156

Preventing the Form Being Submitted . 157

Form Validation with Ajax. 160

Doing It on the Server . 160

The Client Side . 162

Summary. 165

■CHAPTER 8 Case Study: FAQ Facelift . 167

Layer 1: Target Practice . 168

Layer 2: JavaScript Boogaloo . 173

Summary. 187

■CHAPTER 9 A Dynamic Help System . 189

The Job at Hand. 189

Planning and Preparation. 190

The Master Plan . 190

Preparing the Project. 191

Writing the Markup . 191

Using Layouts for Common Markup . 192

Adding an Example Application Page . 193

Styling with CSS . 194

■CONTENTS xi

7648FMfinal.qxd 9/6/07 7:44 PM Page xi

Enter Prototype and Low Pro . 196

Using the Libraries in Your Project . 196

Bringing Help to Life . 197

Building the Help Controller . 197

Adding Behaviors . 198

Implementing a Loader . 200

Finishing Touches . 202

Adding Animation with Moo.fx. 202

Implementing Anchors Within the Sidebar . 204

Looking Back . 205

Begin with a Solid Base of Semantic HTML 205

Using HTML, CSS, and JavaScript Appropriately 205

Using CSS Selectors As Application Glue . 206

When It Comes to Ajax, Simple Is Best . 206

Summary. 207

Source Code . 207

■INDEX . 215

■CONTENTSxii

7648FMfinal.qxd 9/6/07 7:44 PM Page xii

About the Authors

■JONATHAN SNOOK is currently a freelance web developer based in Ottawa,
Canada. A Renaissance man of the Web, he has programmed in a variety
of languages, both server-side and client-side. He also does web site and
web application design. Jonathan worked for more than seven years with
web agencies, with clients such as Red Bull, Apple, and FedEx. He made
the leap to freelancing back in January 2006. Jonathan likes to share what
he knows through speaking, writing books, writing for online magazines
such as Digital Web and Sitepoint, and writing for his own popular blog at
http://snook.ca.

■AARON GUSTAFSON founded his own web consultancy (after getting
hooked on the Web in 1996 and spending several years pushing pixels
and bits for the likes of IBM and Konica Minolta): Easy! Designs LLC.
He is a member of the Web Standards Project (WaSP) and the Guild of
Accessible Web Designers (GAWDS). He also serves as Technical Editor
for A List Apart, is a contributing writer for Digital Web Magazine and
MSDN, and has built a small library of writing and editing credits in the
print world. Aaron has graced the stage at numerous conferences

(including An Event Apart, COMDEX, SXSW, The Ajax Experience, and Web Directions) and is
frequently called on to provide web standards training in both the public and private sectors.
Aaron blogs at http://easy-reader.net.

■STUART LANGRIDGE is a freelance hacker, published author, and noted
conference speaker on DOM scripting and web technologies across
Europe and the US. He’s also part of LugRadio, the world’s best free and
open source software radio show. Aaron writes about open-source soft-
ware, JavaScript, the Web, philosophy, and whatever else takes his fancy
at http://kryogenix.org.

■DAN WEBB is a freelance web application developer whose recent work
includes developing Event Wax, a web-based event management system,
and Fridaycities, a thriving community site for Londoners. He maintains
several open-source projects, including Low Pro and its predecessor the
Unobtrusive JavaScript Plugin for Rails, and is also a member of the
Prototype core team. Dan is a JavaScript expert who has spoken at previ-
ous @media conferences, RailsConf, and The Ajax Experience and has
written for A List Apart, HTML Dog, Sitepoint, and .NET magazine. He

blogs regularly about Ruby, Rails, and JavaScript at his site, www.danwebb.net, and wastes all
his cash on hip hop records and rare sneakers. xiii

7648FMfinal.qxd 9/6/07 7:44 PM Page xiii

http://snook.ca
http://easy-reader.net
http://kryogenix.org
http://www.danwebb.net

7648FMfinal.qxd 9/6/07 7:44 PM Page xiv

About the Technical Reviewer

■CAMERON ADAMS (The Man in Blue) melds a background in computer science with more than
eight years of experience in graphic design to create a unique approach to interface design.
Using the latest technologies, he likes to play in the intersection between design and code to
produce innovative but usable sites and applications. In addition to the projects he’s currently
tinkering with, Cameron writes about the Internet and design in general on his well-respected
blog (www.themaninblue.com), and has written several books on topics ranging from JavaScript,
to CSS, to design.

xv

7648FMfinal.qxd 9/6/07 7:44 PM Page xv

http://www.themaninblue.com

7648FMfinal.qxd 9/6/07 7:44 PM Page xvi

Acknowledgments

I’d like to take the time to acknowledge the many people who helped and inspired me
to write this book. Thanks to the entire Apress team, especially Chris Mills and Richard
Dal Porto, for being so incredibly patient. I’m also honored to have such great and knowl-
edgeable coauthors: Dan Webb, Aaron Gustafson, and Stuart Langridge. Thanks much to
Cameron Adams for doing the tech review. I’ll be sure to buy you all a drink the next time
we meet in person.

A big thanks to the many people within the JavaScript community who continue to share
their knowledge with everybody, including Douglas Crockford, Andrew Dupont, Dustin Diaz,
Dean Edwards, Christian Heilmann, Peter-Paul Koch (PPK), Stuart Colville, Joe Hewitt, John
Resig, and many more I’m sure I’ve forgotten because I have a memory like a sieve.

Finally, this book wouldn’t be possible without the support of my family. Thanks to my
mom, Mel, Pat, and Trish for watching Hayden when I needed a weekend to write. Thanks to
my wife, Michelle, for pushing me to get this finished and giving me the support to do it.

Jonathan Snook

xvii

7648FMfinal.qxd 9/6/07 7:44 PM Page xvii

7648FMfinal.qxd 9/6/07 7:44 PM Page xviii

Introduction

Accelerated DOM Scripting with Ajax, APIs, and Libraries will give you a better understand-
ing of JavaScript. You can then take that new knowledge and apply it to various facets of web
development such as Ajax, animation, and other DOM scripting tasks. Having this deeper
understanding is an important step to improving your own code as well as accelerating your
development by using popular JavaScript libraries. With the popularity of DOM scripting these
days, I wrote this book to shed some additional light on current techniques and hopefully add
some clarity to it all.

Who This Book Is For
This book is intended for those of you who have done some JavaScript before. You understand
the syntax and have put together some basic scripts such as rollovers or pop-up windows.
Having experience with server-side programming is not necessary, but is always an asset.

How This Book Is Structured
This book is intended to build on introductory knowledge of JavaScript and the document
object model (DOM). From there, the book delves into common topics with DOM scripting
such as working with the DOM, Ajax, and visual effects.

• Chapter 1, “The State of JavaScript”: This chapter brings you up to speed on the state
of JavaScript within the industry. It then covers how JavaScript gets evaluated with the
browser and what that means to the way you code. Finally, the chapter looks at debug-
ging your scripts, providing tools that will help you as you test your own scripts.

• Chapter 2, “HTML, CSS, and JavaScript”: This chapter runs through some important
techniques with HTML and CSS that provide a solid base on which to add JavaScript.
It then covers some JavaScript basics before moving on to the DOM—how to move
around and manipulate it.

• Chapter 3, “Object-Oriented Programming”: Object-oriented programming
approaches within JavaScript are explained. The chapter also looks at features of
JavaScript such as closures and functional programming that make it a powerful
language, especially when doing DOM scripting.

• Chapter 4, “Libraries”: JavaScript libraries have become quite pervasive, and this chap-
ter dissects a few of the popular libraries and shows you how they can be applied easily
to your projects. The chapter also breaks down what to look for in a library.

xix

7648FMfinal.qxd 9/6/07 7:44 PM Page xix

• Chapter 5, “Ajax and Data Exchange”: Ajax is everywhere. This chapter explains what
Ajax is and what goes into an Ajax request. It describes the pitfalls of Ajax and how to
plan for them. You also look at data exchange formats, learning which are most appro-
priate for you and when to use them.

• Chapter 6, “Visual Effects”: Visual effects might seem superfluous, but this chapter
sheds some light on the effective use of animation within your pages to enhance usa-
bility. You see how to build your own animation object and how to use JavaScript
libraries to do animation.

• Chapter 7, “Form Validation and JavaScript”: Form validation is one of the most com-
mon tasks given to JavaScript, and DOM scripting is incredibly useful when attempting
it. This chapter tackles form validation on the client side with techniques such as pre-
venting the form from being submitted, using JavaScript, and using the DOM to display
error messages.

• Chapter 8, “Case Study: FAQ Facelift”: This case study demonstrates how to show and
hide elements in a page smoothly and elegantly. The application is built with progres-
sive enhancement in mind and uses CSS, HTML, and DOM scripting to create a
modern FAQ page.

• Chapter 9, “A Dynamic Help System”: The final chapter consists of an online help sys-
tem that is on hand to guide users through a suitable complicated online application.
It shows how a common desktop application can be brought to the Web and provided
at the touch of a button, just as it would be if it were on your desktop.

Prerequisites
The only prerequisites are a text editor to edit the scripts and a current web browser in
which to test them. The code examples focus on recent browsers, including Internet
Explorer 6 and 7, Firefox 2, Safari 2, and Opera 9.

Contacting the Authors
You can contact Jonathan Snook through his web site at http://snook.ca/.

■INTRODUCTIONxx

7648FMfinal.qxd 9/6/07 7:44 PM Page xx

http://snook.ca

The State of JavaScript

This chapter takes a brief walk down memory lane so you can get a sense of how the industry
has changed over the last decade, including the rise of Ajax and its influence on the popularity
of JavaScript. It then explains how JavaScript gets evaluated in the browser and how to plan for
that. You’ll learn ways to debug applications and the tools you can use to do so. It’s important
to understand how your code is working to fix those pesky bugs that haunt you.

JavaScript Is One of the Good Guys Again,
but Why Now?
JavaScript has come a long way since its inception back in 1995. Initially used for basic image
and form interactions, its uses have expanded to include all manner of user interface manipu-
lation. Web sites are no longer static. From form validation, to animation effects, to sites that
rival the flexibility and responsiveness traditionally found in desktop applications, JavaScript
has come into its own as a respected language. Traditional (and expensive) desktop applica-
tions such as word processors, calendars, and e-mail are being replicated in cheaper (and
often easier-to-use) Web-based versions such as Writely, 30 Boxes, and Google Mail.

Over the course of 10 years, the popularity of JavaScript has increased and waned; fortu-
nately, it is now making its triumphant return. But why now? One word: ubiquity (“the state of
being everywhere at once”). The goal of most developers has been to have the work they pro-
duce be available and accessible to everyone. HTML accomplished this goal early on. Much
of the format matured before the Internet really took off in the late 1990s. The HTML you pro-
duced for one browser would appear mostly the same in all other browsers: Mac, PC, or Linux.

JavaScript was still quite immature, however. Its capability to interact with the HTML doc-
ument was inconsistent across browsers. Its two main facilitators, Netscape and Internet
Explorer (IE), implemented very different approaches, which meant that two completely dif-
ferent implementations were required to complete the same task. People often tried to create
helper scripts, or sometimes even full-blown JavaScript libraries, to bridge the gap. Keep in
mind that JavaScript libraries weren’t that popular back in the day. Most saw them as bloated
and unnecessary to achieve what they needed. The libraries certainly eased development, but
they were large in comparison with the problems people were trying to solve with JavaScript.
Remember that broadband certainly wasn’t what it is today. Tack bandwidth concerns onto
security concerns and entire companies disabling JavaScript outright, and you have a situa-
tion in which JavaScript seemed like a toy language. You had something that seemed the Web
could do without.

1

C H A P T E R 1

7648ch01final.qxd 9/6/07 8:52 PM Page 1

With IE a clear victor of the “browser wars,” Netscape languished. You might have con-
cluded that developers would develop only for IE after it garnered more than 90 percent of the
market. And many did (including me). But that ubiquity still didn’t exist. Corporate environ-
ments and home users continued to use Netscape as a default browser. Clients I worked with
still demanded Netscape 4 compliance, even heading into the new millennium. Building any
sort of cross-browser functionality was still a hassle except for processes such as form
validation.

The World Wide Web Consortium (W3C), which included partners from many of the
browser developers, continued to update and finalize much of the technologies in use today,
including HTML/XHTML, Cascading Style Sheets (CSS), and the document object model
(DOM).

With standards in place and maturing, browser developers had a solid baseline from
which to develop against. Things began to change. When Mozilla Firefox finally came out in
2004, there was finally a browser that worked across multiple operating systems and had fan-
tastic support for the latest HTML/XHTML, CSS, and DOM standards. It even had support for
nonstandard technologies such as its own native version of the XMLHttpRequest object (a key
ingredient in enabling Ajax, which is covered in Chapter 5). Firefox quickly soared in popular-
ity, especially among the developer crowd. The W3Schools web site, for example, shows recent
Firefox usage at almost 34 percent (see http://w3schools.com, May, 2007).

■Note Take browser statistics with a grain of salt. As the saying goes, there are lies, damned lies, and sta-
tistics. Every site is different and attracts a certain demographic, so you can expect your stats to differ from
everybody else’s. For example, 60 percent of those who visit my site, with its heavy skew toward developers,
use Firefox. This speaks heavily to the need to build sites that work on all browsers because you never know
what your users will have or how the market might shift.

Apple released Safari for the Mac, which filled the gap when Microsoft decided to dis-
continue developing a browser for the Mac platform. Safari, along with Firefox and Camino
(based on the Gecko engine that Firefox uses), had solid support for HTML and CSS stan-
dards. Early versions of Safari had limited DOM support, but recent versions are much easier
to work with and also include support for XMLHttpRequest. Most importantly, they all support
the same set of standards.

The differences between the current versions of the browsers on the market became
minimal, so you have that ubiquity you’ve been looking for. The reduced set of differences
between browsers meant that smaller code libraries could be developed to reduce the com-
plexity of cross-browser development. Smart programmers also took advantage of JavaScript
in ways that few had done before. JavaScript’s resurgence is here!

Google demonstrated that JavaScript-powered applications were ready for the main-
stream. Google Maps (http://maps.google.com/) and Google Suggest (www.google.com/
webhp?complete=1) were just two of many applications that showed the power, speed, and
interactivity that could be achieved.

CHAPTER 1 ■ THE STATE OF JAVASCRIPT2

7648ch01final.qxd 9/6/07 8:52 PM Page 2

http://w3schools.com
http://maps.google.com
http://www.google.com/webhp?complete=1
http://www.google.com/webhp?complete=1
http://maps.google.com

JavaScript Meets HTML with the DOM
Although this discussion is about JavaScript and its evolution, it’s the DOM (which has evolved
immensely from its early days) that takes center stage in the browser. Netscape, back in ver-
sion 2 when JavaScript was invented, enabled you to access form and image elements. When
IE version 3 was released, it mimicked how Netscape did things to compete and not have
pages appear broken.

As the version 4 browsers were released, both browsers tried to expand their capabilities
by enabling ways to interact with more of the page; in particular, to position and move ele-
ments around the page. Each browser approached things in different and proprietary ways,
causing plenty of headaches.

The W3C developed its first DOM recommendation as a way to standardize the
approach that all browsers took, making it easier for developers to create functionality that
worked across all browsers—just like the HTML recommendations. The W3C DOM offered
the hope of interactivity with the full HTML (and XML) documents with the capability to add
and remove elements via JavaScript. The DOM Level 1 recommendation is fairly well sup-
ported across Mozilla and IE 5+.

The W3C has subsequently come out with versions 2 and 3 of the DOM recommenda-
tions, which continue to build on the functionality defined in level 1. (Differences between the
DOM versions are covered in Chapter 2.)

The Rise of Ajax
The term Ajax, which originally stood for Asynchronous JavaScript and XML, was coined by
Jesse James Garrett of Adaptive Path (www.adaptivepath.com/publications/essays/
archives/000385.php). It was meant to encapsulate the use of a set of technologies under an
umbrella term. At the heart of it is the use of the XMLHttpRequest object, along with DOM
scripting, CSS, and XML.

XMLHttpRequest is a proprietary technology that Microsoft developed in 1998 for its Out-
look Web Access. It is an ActiveX object that enables JavaScript to communicate with the
server without a page refresh. However, it wasn’t until the rise of Mozilla Firefox and its inclu-
sion of a native version of XMLHttpRequest that it was used on a large scale. With applications
such as Google Mail starting to take off, other browser developers quickly moved to include it.
Now IE, Firefox, Opera, and Safari all support a native XMLHttpRequest object. With that kind of
ubiquity, it was only inevitable to see the technology take off. The W3C has now moved to try
and establish a standard for Ajax (see www.w3.org/TR/XMLHttpRequest).

■Note ActiveX is a Microsoft technology that enables components within the operating system to com-
municate with each other. Using JavaScript with ActiveX, you can actually interact with many applications
stored on the client’s machine (if installed). For example, given a loose security setting, you can open
Microsoft Office applications, interact with them, and even copy data out of them—all from a web page.
The same can actually be done with any application that offers a component object model (COM) interface.

CHAPTER 1 ■ THE STATE OF JAVASCRIPT 3

7648ch01final.qxd 9/6/07 8:52 PM Page 3

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.w3.org/TR/XMLHttpRequest
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

I mentioned XML as being one of the core tenets of Ajax, and you might wonder how XML
fits into all this. As Jesse James Garrett originally describes, Ajax incorporates XML as a data
interchange format, XSLT as a manipulation format, and XHTML as a presentation format.
While XML was originally described as a major component of Ajax, that strict description has
loosened and now describes the process of communicating with the server via JavaScript
using the XMLHttpRequest object and the many technologies that are involved in implementing
a site or an application using Ajax (such as HTML and JSON).

Ajax enables communication with the server without requiring a page refresh. But what
does that mean to you? It gives you the ability to perform asynchronous actions (hence the
first A in Ajax). You can perform form validation before the form has even been submitted. For
example, have you ever tried signing up for a service only to find that the user ID was already
taken? You’d hit the Back button, try a different name (and retype your password because it is
never retained), and resubmit. This cycle would annoyingly repeat itself until you found an
unused name. With Ajax, you can check the user ID while the user is completing the rest of the
form. If the name is taken, an error message displays to the user, who can fix it before submit-
ting the form.

With this new power, developers have been pulling out all the stops to build some dazzling
applications. Alas, many are more glitz than guts; more pizzazz than power. While you might
find yourself wanting to add the latest trick, it will always be important to think about usability
and accessibility in all you put together. This topic will be discussed throughout the book.

Managing JavaScript
These days, JavaScript-based applications can get large and unwieldy. Before you get into any
JavaScript, I want to talk about where to place code in an HTML page and the best approaches
for long-term maintenance. There are some nuances that are important to remember when
testing and evaluating your own code.

Code Loading
The first process to understand is the loading process. When an HTML page loads, it loads and
evaluates any JavaScript that it comes across in the process. Script tags can appear in either
the <head> or the <body> of the document. If there’s a link to an external JavaScript file, it loads
that link before continuing to evaluate the page. Embedding third-party scripts can lead to
apparent slow page load times if the remote server is overburdened and can’t return the file
quickly enough. It’s usually best to load those scripts as close to the bottom of the HTML page
as possible.

<head>
<title>My Page</title>
<script type="text/javascript" src="myscript.js"></script>
</head>

Scripts that you build should appear at the head of the document and need to be loaded
as soon as possible because they’ll probably include functionality that the rest of the page
relies on.

CHAPTER 1 ■ THE STATE OF JAVASCRIPT4

7648ch01final.qxd 9/6/07 8:52 PM Page 4

Code Evaluation
Code evaluation is the process by which the browser takes the code you’ve written and turns
it into executable code. The first thing it will do is test to see whether the code is syntactically
correct. If it isn’t, it will fail right off the bat. If you try and run a function that has a syntax
error (for example, a missing bracket somewhere), you’ll likely receive an error message say-
ing that the function is undefined.

After the browser has ensured that the code is valid, it evaluates all the variables and func-
tions within the script block. If you have to call a function that’s in another script block or in
another file, be sure that it has loaded before the current script element is loaded. In the fol-
lowing code example, the loadGallery function still runs, even though the function is declared
after the function call:

<script type="text/javascript">
loadGallery();

function loadGallery()
{

/* gallery code */
}
</script>

In the following example, you’ll get an error message because the first script element is
evaluated and executed before the second one:

<script type="text/javascript">
loadGallery();
</script>

<script type="text/javascript">
function loadGallery()
{

/* gallery code */
}
</script>

My general approach is to include as much of my code in functions and load them in
from external files first; then I run some code to start the whole thing up.

Embedding Code Properly into an XHTML Page
Embedding JavaScript on an HTML page is easy enough, as you saw in the previous examples.
Many online examples usually include HTML comment tags to hide the JavaScript from
browsers that don’t recognize JavaScript.

<script type="text/javascript">
<!--
/* run my code */
loadGallery();
//-->
</script>

CHAPTER 1 ■ THE STATE OF JAVASCRIPT 5

7648ch01final.qxd 9/6/07 8:52 PM Page 5

However, the days of someone using a browser that doesn’t recognize JavaScript are long
gone, and HTML comments are no longer necessary.

XHTML, however, is a different beast. Because it follows the rules of XML, the script has to
be enclosed into a CDATA block, which starts with <![CDATA[and ends with]]>.

<script type="text/javascript">
<![CDATA[
/* run my code */
loadGallery();
]]>
</script>

■Note Throughout the book, I’ll be using HTML almost exclusively; if you prefer to use XHTML, you’ll need
to keep this in mind.

Debugging Your Code
It doesn’t matter how simple your code is, you are guaranteed to have errors in your code at
some point. As a result, you’ll need to have a way to understand what went wrong, why it went
wrong, and how to fix it.

Alert
Probably the most common technique of JavaScript debugging is using alert(). There’s no
software to install and no complicated code to set up. Just pop a line into your code, place the
information you’re looking for into the alert and see what comes up:

alert(varname);

An alert is ineffective, however, for tracing anything that is time sensitive or any values
within a loop. If something is time sensitive (for example, an animation), the alert throws
things off because it has to wait for your feedback before continuing on. If it’s a loop, you’ll
find yourself hitting the OK button countless times. If you accidentally create an infinite loop,
you have to force the browser to close entirely, losing anything else that was open, to regain
control of it—and that’s never fun!

Alerts can also be ineffective because they show only string data. If you need to know
what’s contained within an array, you have to build a string out of the array and then pass it
into the alert.

Page Logging
Page logging is a handy trick and a step above using an alert. Create an empty <div> on the
page and use absolute positioning along with setting the overflow to scroll. Then, any time you
want to track some information, just append (or prepend) the value into your <div>.

CHAPTER 1 ■ THE STATE OF JAVASCRIPT6

7648ch01final.qxd 9/6/07 8:52 PM Page 6

The script is as follows:

function logger(str){
var el = document.getElementById('logger');
// if the logger container isn't found, create it
if(!el) {
el = document.createElement('div');
el.id = 'logger';
var doc = document.getElementsByTagName('body')[0];
doc.appendChild(el);

}
el.innerHTML += str + '
';

}
var value = 5;
logger('value = ' + value);

The CSS used to give the element a little style and to ensure that it doesn’t interfere with
the layout is as follows:

#logger {
width:300px;
height:300px;
overflow:scroll;
position:absolute;
left:5px; top:5px;

}

Others have produced some elaborate and useful loggers that work in the same vein. Over
at A List Apart, on online web magazine, there’s an article on fvlogger (http://alistapart.
com/articles/jslogging). Also, check out the project log4javascript at (www.timdown.co.uk/
log4javascript). The log4javascript project uses a separate window to log messaging, which
can be handier because it’s not in the way of the current document.

Browser Plug-ins
Browser plug-ins are often beautifully crafted applications that can give you thorough minu-
tiae on not only JavaScript but also on the HTML and CSS rendered on the page. They can be
a lifesaver for learning what is actually happening on your page. On the downside, they’re
almost always browser-specific. That means that testing in some browsers might prove more
difficult, especially if the problem is happening only in that browser.

DOM Inspector
When it comes to JavaScript development, Firefox is one of the best browsers to develop for.
Its DOM support is certainly one of the best, if not the best, and it also has some of the best
tools for troubleshooting. Built right in is the DOM Inspector, as seen in Figure 1-1.

CHAPTER 1 ■ THE STATE OF JAVASCRIPT 7

7648ch01final.qxd 9/6/07 8:52 PM Page 7

http://alistapart.com/articles/jslogging
http://alistapart.com/articles/jslogging
http://www.timdown.co.uk/log4javascript
http://www.timdown.co.uk/log4javascript
http://www.timdown.co.uk/log4javascript
http://www.timdown.co.uk/log4javascript

Figure 1-1. The Firefox DOM Inspector

With the DOM Inspector, you can navigate the document tree and view the various prop-
erties for each one. In the screenshot, you can see the properties that you can access via
JavaScript. In addition, there are views for seeing which styles have been set, along with the
computed values, which are handy for seeing why a layout has gone awry.

Firebug
Firebug (www.getfirebug.com) is currently the reigning champion of JavaScript and CSS
debugging tools. It is by far the most powerful and flexible tool to have in your arsenal.

Firebug takes the DOM Inspector to a whole new level. Once installed, the interface panel
is accessible from the status bar. The icon (see Figure 1-2) indicates whether you have any
errors on the current page.

Figure 1-2. The Firebug check mark icon

Clicking the icon expands the interface. There’s a lot of functionality packed into it, and
while I won’t go into everything, I do want to highlight some key features that will help in your
debugging efforts.

In Figure 1-3, the Console tab is selected. JavaScript error messages, Ajax calls, Profile
results, and command-line results appear in the console. Objects can be expanded to view
properties, error messages can be clicked to view the offending line in the source, Ajax calls
can be expanded to view request and response information, and profile results can be ana-
lyzed to discover where errors might be occurring.

CHAPTER 1 ■ THE STATE OF JAVASCRIPT8

7648ch01final.qxd 9/6/07 8:52 PM Page 8

http://www.getfirebug.com

Figure 1-3. The Firebug console

The HTML, CSS, and Script tabs enable you to view the current state of each of those ele-
ments. You can also make changes and view them live in the Firefox window. Keep in mind
that those changes are only temporary and will be lost when you refresh the page or close the
window. The original files are never touched.

The DOM tab enables you to view the DOM tree and all its properties. The Net tab, as
seen in Figure 1-4, shows all file requests and how long each took to load. You can use this
information to determine where certain bottlenecks might be occurring.

Figure 1-4. The Net tab in Firebug

CHAPTER 1 ■ THE STATE OF JAVASCRIPT 9

7648ch01final.qxd 9/6/07 8:52 PM Page 9

On the main toolbar is the Inspect button, which is very useful, and you will probably use
it constantly (at least, I do!). When you click the button, you can then move your mouse any-
where on the HTML page. Firebug highlights which element you are currently hovering over.
It also highlights that element in the HTML tab.

With the current element selected in the HTML tab, you can see the applied style infor-
mation in the panel on the right (see Figure 1-5). You can even see when certain styles have
been overwritten by other styles. So as you can see, the power of Firebug extends well beyond
just JavaScript.

Figure 1-5. Selected element in Firebug

Instead of using alert statements or page logging, there are a number of hooks that Fire-
bug adds that enable you to log information right into the Firebug console. The one I use
most often is console.log(), which works exactly like the logger function discussed earlier,
but doesn’t disturb the current page—it just loads the information into the console. If you’re
tracing an object, you can click that object in the console and inspect all the properties of
that object.

There are plenty of other features stored within Firebug, and a whole chapter could prob-
ably be written just on the gems contained within. I’ll leave it up to you to discover those
jewels.

HTTP Debugging
Everything you do on the Web runs over HTTP, which is the protocol that sends the packets of
information back and forth.

Particularly with Ajax calls, but also useful with any server/client interaction, you’ll want
to see what information is actually getting sent or received. You can sometimes log this infor-
mation from the back end, but that doesn’t always paint a true picture of what’s happening on
the front end. For that, you need an HTTP debugger.

Firebug
As further evidence of its coolness, the debugger in Firebug traces Ajax calls, enabling you to
view the request and the response headers, as shown in Figure 1-6. This is handy to ensure
that you’re receiving the correct data back. You can inspect the call to also see what data has
been posted to the server and what the server returned.

CHAPTER 1 ■ THE STATE OF JAVASCRIPT10

7648ch01final.qxd 9/6/07 8:52 PM Page 10

Figure 1-6. Firebug Ajax call inspection

Live HTTP Headers
For more fine-grained analyses of HTTP requests, I recommend that you grab Live HTTP Head-
ers from http://livehttpheaders.mozdev.org. This helpful Firefox extension displays request
and response info for all HTTP requests, which can be handy for not only Ajax calls (such as the
one seen in Figure 1-7) but also monitoring page requests (including form data), redirects, and
even server calls from Flash. It also enables you to replay specific requests. Before replaying
data, you can even modify the headers that are being sent to test various scenarios.

Figure 1-7. Live HTTP Headers Ajax call inspection

CHAPTER 1 ■ THE STATE OF JAVASCRIPT 11

7648ch01final.qxd 9/6/07 8:52 PM Page 11

http://livehttpheaders.mozdev.org

Firebug reveals more response information, so you might have to bounce between it and
Live HTTP Headers to get a better picture of what’s going on.

ieHTTPHeaders
IE similarly has an add-in called ieHTTPHeaders to analyze the information going back and
forth. It’s available at www.blunck.info/iehttpheaders.html.

Charles
Probably the most robust HTTP debugging tool of the bunch is Charles. This debugger is
shareware, so you’ll have to spend a little money to include it in your toolbox—but it’s money
well spent for more than just tracing Ajax calls.

Charles can provide a number of useful tasks, such as bandwidth throttling for testing
slow connections and spoofing DNS information for testing under a domain name before it
goes live. It can automatically parse the AMF format that Adobe Flash uses for remote calls,
and can parse XML and JSON used in Ajax calls. (Data exchange using XML and JSON is dis-
cussed in Chapter 5.)

The other nice thing about Charles is that it is browser-agnostic. It works as a proxy server
and tracks everything through there, so you can use it with all your browsers. It’s even avail-
able for Mac OS X and Linux users. (You can grab it from www.xk72.com/charles.)

Summary
This chapter discussed the following topics:

• Why JavaScript is becoming more popular

• How JavaScript gets evaluated in the browser

• What tools you can use to debug your code

After the quick “how-do-you-dos,” you should now have a sense of why JavaScript has
become the superstar it is today. You have some understanding of the things to consider when
putting code into your page and have all the tools necessary to run and test the code you’ll be
developing from here on out. You’re all set to become a JavaScript ninja!

CHAPTER 1 ■ THE STATE OF JAVASCRIPT12

7648ch01final.qxd 9/6/07 8:52 PM Page 12

http://www.blunck.info/iehttpheaders.html
http://www.xk72.com/charles

HTML, CSS, and JavaScript

This chapter covers HTML, Cascading Style Sheets (CSS), and how to access elements and
attributes using the document object model (DOM). Discussions include event handling,
creating new elements, and content styling. You learn how to leverage HTML, CSS, and DOM
scripting for rapid development and easier maintenance.

Although I assume that you know your HTML and CSS, I cover some of the essentials and
offer tips to make application development with DOM scripting and Ajax quicker and easier.

Getting into the Basics
You can’t get any more basic than HTML when it comes to web application development.
HTML is the foundation upon which all else is built, so make sure that it is solid. I won’t cover
what element does what because I suspect you already have a pretty good grasp of HTML if
you picked up this book. What I will cover is a review of some of the basics that will be impor-
tant going forward.

Web Standards
Although many books might discuss web standards and CSS development as the separation
between content and style, using web standards appropriately can actually make application
development easier, too. In old-fashioned web development—the techniques you might have
learned in the 1990s, with tables and tags—HTML is used as a presentation language.
People would litter their code with whatever it took to make the design look as it should. This
was problematic because it made site updates difficult and confusing—especially to someone
who was jumping into the project for the first time.

The Web Standards Project (WaSP [see www.webstandards.org]), with people such as
Jeffrey Zeldman and Molly Holzschlag at the helm, sought to provide a new approach to web
development that would actually make it easier for people to develop the sites we love. There
are three general facets to using web standards:

• Use CSS for presentation

• Write valid HTML

• Write semantic HTML to add meaning to the content

Of course, you might be wondering about JavaScript at this point, and you might have
heard of the three-tier web development methodology of HTML for structure, CSS for style,

13

C H A P T E R 2

7648ch02final.qxd 9/6/07 7:55 PM Page 13

http://www.webstandards.org

and JavaScript for behavior (meaning dynamic functionality). It is definitely related and is an
important concept to bear in mind when working through this book (and for your general web
development work).

When people talk about web standards, they often discuss the separation between con-
tent (the HTML) and presentation (the CSS). Likewise, you need to ensure that the behavior
(the JavaScript) is separated in much the same way. The separation enables you to add func-
tionality to your application in a discrete way that can make your application much easier to
update and can reduce overall bandwidth. This separation of JavaScript is called unobtrusive
JavaScript. The Venn diagram seen in Figure 2-1 demonstrates that separation, with the inter-
section representing the sweet spot of potential experience.

Figure 2-1. The three elements of modern web development

CSS for Presentation
As sites such as CSS Zen Garden (http://csszengarden.com) have demonstrated, CSS is per-
fectly capable of handling even the most complex design. Some approaches to using CSS
effectively for web application development will be discussed later on in this chapter and
throughout the book.

Valid HTML
The fault tolerance built into browsers meant that many people (including me) would rely on
the way browsers displayed a particular piece of code instead of ensuring that the HTML itself
was correct. Over time, as new browsers were released, differences in how browsers rendered
invalid code made developing sites a hit-or-miss endeavor. Writing valid HTML helps to
ensure that browsers now and in the future will render your page exactly as you intended.
Valid HTML means writing to any one of the HTML or XHTML specifications set out by the
World Wide Web Consortium (W3C, found at http://w3.org).

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT14

7648ch02final.qxd 9/6/07 7:55 PM Page 14

http://csszengarden.com
http://w3.org

QUIRKS MODE VS. STRICT MODE

This is tangentially related to writing valid HTML. When some browsers encounter invalid HTML, they’re
thrown into Quirks mode, which is a special way to render pages and is designed to be more compatible with
older browsers. However, CSS handling isn’t according to specification and can make troubleshooting prob-
lems much more difficult. By writing valid HTML, browsers use a Strict mode that is intended to meet the
W3C specifications. This results in a more reliable rendering across browsers.

If you want to test whether the HTML you have written is valid, many applications such as Adobe
Dreamweaver have built-in validation tools. You can also use the W3C HTML Validation Service (see http://
validator.w3.org).

Semantic HTML
Semantic HTML is an important and crucial point that often gets lost in the idea of creating
valid HTML. Using semantic HTML means using elements that are appropriate for the con-
tent that it contains.

This is important for a few reasons. For one, those who use assistive technologies such as
screen readers will have an easier time navigating your page and will also get a more natural
read. Without the additional elements, the page would blur into one large block of text.

Semantic HTML also gives users more control over the page. Many designers shudder
over the possibility of users messing with their finely crafted masterpieces, but trust me, it’s
a good thing. Designers and developers are continually making assumptions about how func-
tional something is. It is assumed that they’ll understand that something is a button or that
the text is large enough. People can use user style sheets or tools (for example, Greasemonkey,
a plug-in that enables users to run custom scripts on any page) to improve the readability or
usability of your site or application to suit their own needs.

When it comes to web application development, using semantic HTML improves code
readability, makes CSS easier to work with, and allows for additional hooks with which to tie
in JavaScripting goodness.

What does semantic HTML look like? For examples, the main heading of a document
should be marked up by using an <h1> tag, subheadings should be marked up using <h2> to
<h6> tags, paragraphs should be marked up using <p> tags, and emphasized text should be
marked up using tags instead of <i> tags. If you’re curious about why tags should be
used instead of <i> tags, just think of what italicizing is: it’s presentational; there’s no specific
meaning to it. On the other hand, adds emphasis. The same goes for the difference
between and . Simply bolding the text adds no additional meaning to it; if you
want to say something strongly, use .

Semantic markup can also apply to your choice of class names on an element. Using <div
class="error"> is more useful than <div class="boldRed">, especially if you decide to change
the look and feel of your error messages. This also becomes more relevant when using DOM
scripting. Searching for something called error makes more sense than looking for something
called boldRed.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 15

7648ch02final.qxd 9/6/07 7:55 PM Page 15

http://validator.w3.org
http://validator.w3.org
http://validator.w3.org
http://validator.w3.org

HTML Best Practices
Although I certainly don’t preach the following as gospel, I want to cover some of my personal
practices and explain the reasons behind them before moving on. It’s always important to
understand why certain decisions are made, even if they seem to go against the popular trend.
Most importantly, do what works best for you. If there’s one universal truth when it comes to
web development, it’s that there’s never just one way to accomplish something.

HTML vs. XHTML
HTML actually comes in different flavors: HTML and XHTML. XHTML 1.0 is (for the most
part) just an XML-based version of HTML 4.01, the latest HTML standard. Many use and
advocate the use of XHTML because it is the more recent standard available from the W3C.

XHTML certainly has a number of benefits that make it an ideal candidate for web devel-
opment. Being an XML format, the document has stricter requirements about how the code
itself is written. For example, all elements must be closed. To close empty elements such as
images, a forward slash is placed just before the closing bracket:

XHTML also requires that tag names be lowercase and that all attributes be quoted.
Browsers that understand XHTML are stricter and tell you when you’ve written invalid code.
Having these stricter requirements helps you produce valid code.

In XHTML, CSS and JavaScript also offer up some additional changes. In CSS, element
selectors are now case sensitive. Likewise, JavaScript returns element names in lowercase
instead of uppercase, as it does with HTML.

Although there are considerable benefits of XHTML, there are also some serious down-
sides. XHTML should be sent to the browser and identified as such by using the MIME type
application/xhtml+xml. Unfortunately, Internet Explorer (IE) does not support this MIME
type and will try to download the file or pass it off to another application to handle.
XHTML 1.0 can be sent using the MIME type text/html, but browsers will render the page as
ordinary HTML.

When serving as XML, some older DOM objects and methods—such as innerHTML,
document.images, and document.forms—might no longer be available in some browsers.

Because of the complexities introduced by trying to develop in XHTML, I recommend
developing with HTML 4.01 Strict (see www.w3.org/TR/REC-html40); in fact, all the examples
in this book use it.

Best of Both Worlds
Just because you’re using HTML doesn’t mean that you can’t stick to some of the better prin-
ciples of XHTML. Most notably, make sure that attributes are quoted, keep your tag names
lowercase, and make sure that tags are closed properly. Elements that normally close in
XHTML with a closing slash don’t do so when written with HTML. For example, elements
such as the image () or the line break (
) are written without the closing slash, but
elements such as list items () and paragraphs (<p></p>) retain the closing tag.

Maintaining XHTML-style principles keeps your code easier to read, easier to trouble-
shoot, and easier to transition to XHTML if and when browser support progresses to the point
where it’s reasonable.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT16

7648ch02final.qxd 9/6/07 7:55 PM Page 16

http://www.w3.org/TR/REC-html40

CSS Basics
Like HTML, I’m assuming that you know the general CSS syntax, but I do want to review some
of the basics. I will also cover some strategies to make CSS management easier, especially for
interacting with JavaScript.

Say It with Meaning
Revisiting the semantic issue, I mentioned that using elements appropriate for the content is
advantageous and I’ll show you why in this section. Here is an example without meaning:

<div>This is a header</div>
<div>This is some text content.</div>
<div>Here is some additional content with emphasis and➥

strong emphasis.</div>

From a CSS perspective, you have no way to isolate styles to any one particular element.
Obviously, it doesn’t work. So, let’s add some meaning:

<div class="header">This is a header</div>
<div class="text">This is some text content.</div>
<div class="text">Here is some additional content with ➥

emphasis and strong emphasis.</div>

Look at that—the code now has meaning, doesn’t it? It does, but it’s terribly inefficient.
You haven’t taken advantage of the innate power of HTML. Let’s try it one more time:

<h2>This is a header</h2>
<p>This is some text content.</p>
<p>Here is some additional content with emphasis and strong➥

emphasis.</p>

You accomplished two goals by using semantic HTML:

• You added meaning to the document that the browser understands. From an accessi-
bility point of view, it also makes the document easier to understand for people who
use screen readers or might have the styles disabled.

• You used less HTML, and brevity is good. The fewer bytes you have to send back and
forth between the server and the client is a Good Thing™. Ajax has become popular in
part because it gives you the ability to send less information (see Chapter 5). It’s also
one of the reasons why CSS has become popular (and why I wanted to learn it). No
longer did I have to wrap tags around everything on the page; I could use CSS
to style the entire page. Better than that, the CSS file would get cached and make every
subsequent page request even faster.

When you get into dealing with the CSS, you’ll also discover that you can take advantage
of specificity rules: something that would be made more difficult by using the same element
for everything (specificity will be discussed in a bit).

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 17

7648ch02final.qxd 9/6/07 7:55 PM Page 17

Element Identifiers
HTML has two different attributes to identify an element: id and class.

An id attribute assigns a name to an element and must be unique on the page. It also has
strict naming conventions that must be followed. The W3C specification says the following:

ID and NAME tokens must begin with a letter ([A–Za–z]) and might be followed by any

number of letters, digits ([0–9]), hyphens (‘-’), underscores (‘_’), colons (‘:’), and periods

(‘.’).

An id attribute has several uses:

• As a style sheet selector (which has a higher specificity than other selectors)

• As a target anchor for hyperlinks

• As a means to reference a unique element using DOM scripting

The class attribute assigns a class name or multiple class names separated by a space.
The same class name can be applied to multiple elements on the page. Class naming conven-
tions are much looser than for IDs. You have letters, numbers, the hyphen, and most of the
Unicode character set at your disposal. However, I recommend sticking with letters, numbers,
and hyphens—anything else will be confusing.

■Tip Use class names that help to describe the content in a semantic way. The name “bluetext” isn’t very
helpful if you decide to change the design to green. Use names such as “callout” or “caption” to more accu-
rately describe things.

As you build your application, it’s important to know when to use each attribute. The
quickest rule is this: if there is and will only ever be one of a particular type of element, use an
id. Otherwise, you should use a class name.

Here’s a quick example:

<div id="todolists">
<div class="section">

<h3>General</h3>
<ul class="general">

Groceries
Dry cleaning
Buy books

</div>
<div class="section">

<h3>Programming</h3>

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT18

7648ch02final.qxd 9/6/07 7:55 PM Page 18

Finish project
Make cool examples
Write article for site

</div>

</div>

As you can see, I encapsulated all my lists in a <div> and gave it an ID. Each header and
list is encased in a <div> with a section class.

Applying CSS
CSS can be specified at various levels. The three main areas are as follows:

• External style sheets (attached to the markup using the <link> element in the docu-
ment header)

• Within the HTML document using the <style> element

• At the element level using the style attribute

Each location supersedes the previous one, meaning that declarations specified in the
style attribute will override any declarations made previously, and any declarations speci-
fied in the <style> element of the document will supersede those in an external style sheet.
For the most part, I recommend that you store all your declarations in one or more external
style sheets. It will be easier to organize and reuse them; and when you get to DOM scripting,
it will be easier to manage.

Inheritance
Inheritance, which is handy for streamlining your code, means that certain CSS properties are
automatically inherited from the parent.

Using the clean HTML example from before, specifying a color for the paragraph will also
mean that the emphasized text contained within it would inherit the color above it:

<h2>This is a header</h2>
<p>This is some text content.</p>
<p>Here is some additional content with emphasis and strong➥

emphasis.</p>

Declaring the font-family on the <body> element, for example, will be inherited by all ele-
ments on the page. You can apply different element styles, depending on which elements they
are contained within. Consider the following HTML, for example:

<div id="main"><h2>This is a header</h2></div>
<div id="sidebar"><h2>This is a header</h2></div>

In the style sheet you can make the following declarations:

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 19

7648ch02final.qxd 9/6/07 7:55 PM Page 19

#main h2 { color:red; }
#sidebar h2 { color:blue; }

The header in main will be red, whereas the header in the sidebar will be blue—despite
the fact that it is the same type of element being selected in each case.

Specificity
With the capability to declare styles with different types of selectors, a set of rules has been
defined to determine the importance of certain declarations over others. Specificity is an
important concept to grasp. As the sites or applications that you build get more complex, the
selectors required to properly style an element become even more complex.

Specificity is calculated by using four levels:

A. Count 1 if the selector is the style attribute. Style rules take precedence over every-
thing else.

B. Count the number of id attributes in the selector.

C. Count the number of other attributes (including classes and pseudoclasses) in the
selector.

D. Count the number of element names (including pseudoelement names) in the
selector.

Let’s take a look at a few examples, each one increasing in specificity (see Table 2-1):

Table 2-1. Specificity Examples Demonstrating Selector Weighting

Declaration A B C D

.list {} 0 0 1 0

#todolist {} 0 1 0 0

#todolist .list {} 0 1 1 0

#todolist ul.list {} 0 1 1 1

body div#todolist ul.list {} 0 1 1 3

#pagetodo #todolist {} 0 2 0 0

There are two factors for deciding whether something has higher specificity:

• The larger number at a certain level has a higher specificity. If you had used three
class selectors (level C) in a ruleset, and a second ruleset had two class selectors
(also level C), the first ruleset would have higher specificity than the second.

• More importantly, a selector at a higher level has higher specificity than a number at a
lower level. If you had a ruleset with an id selector (level B) and a second ruleset with
three class selectors (level C) and an element selector (level D), the first ruleset would
have higher specificity than the second.

If you find that applying a style to an element isn’t working, you might think to fall back
on the !important keyword to force the style. I recommend avoiding it if possible because it

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT20

7648ch02final.qxd 9/6/07 7:55 PM Page 20

limits the amount of flexibility you have (you then have to use !important along with a ruleset
with a higher specificity).

Another tip for keeping things simple is to use the fewest number of selectors possible to
style an element. Then, if you are having problems with specificity, you can look to add selec-
tors as needed.

Let’s demonstrate with a quick example, starting with an HTML snippet:

<div id="main">
<p class="intro">It's a fine morning today.</p>
<p>Yes. It is a fine morning.</p>

</div>

Now, let’s look at some CSS that could be used to style the text:

p { color:red; }
p.intro { color:blue; }
#main p { color:green; }

You might be surprised to see that the intro paragraph is green, not blue as you might
have expected. The color is green because the use of the ID selector gave that declaration a
higher importance over just the element selector and over the element with the class selector.
Therefore, to make that intro paragraph blue as you intended, you need at least one ID selec-
tor to compete.

#main p.intro { color:blue; }

The basic rule is to figure out what level (A, B, C, or D) is forcing the specificity. Then
apply a greater specificity by increasing the current level or moving up a level. If you had a
ruleset with two class selectors, then you would need at least three class selectors or one ID
selector. If you had one ID selector and one element selector, you’d need at least one ID selec-
tor and one class selector, or one ID selector and two element selectors, or two ID selectors.

JavaScript Basics
Although you’ve likely seen some of this before if you’ve done any JavaScript programming,
I’d like to review some of the terminology and touch on some JavaScript concepts that will be
important to understand before you get into the rest of the book.

Functions
Functions are a series of commands wrapped into one call. Functions enable you to encap-
sulate code into discrete tasks and enable you to reuse them in different ways (this will be
at the core of Chapter 3 when object-oriented programming with JavaScript is covered).
For example:

function foo(){ } // this is a function

Functions can also be anonymous. This means they don’t have a name. They’re like spirits
in the wind. An example is as follows:

function (){ } // this is an anonymous function

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 21

7648ch02final.qxd 9/6/07 7:55 PM Page 21

Anonymous functions are used often in object-oriented JavaScript programming as it
helps you to avoid naming conflicts and enables you to hide code that’s relevant only to the
object, inside the object.

Functions in JavaScript also have an added perk that you don’t find in a lot of other main-
stream languages: they are first-class citizens. That means functions can be assigned to
variables and passed as arguments into other functions, returned from functions, and stored
as an element of an array or as a property of an object.

Objects, Properties, and Methods
An object contains variables known as properties and functions known as methods. JavaScript
is very powerful in that it enables you to attach new properties and methods to an object at
any time, even after an object has been instantiated. Functions can actually form the structure
for an object. Let’s take a look at an example:

function foo(){ }
var bar = new foo();

Let’s extend the last example by adding new properties to each object:

function foo(){ }
var bar = new foo();
foo.value = 5;
alert(foo.value); // shows the value property "5"
bar.value = 6;
alert(bar.value); // shows the value property "6"

Likewise, if you want to add new methods, you can do the following:

function foo(){ }
var bar = new foo();
foo.value = 5;
alert(foo.value); // shows the value property "5"
bar.value = 6;
alert(bar.value); // shows the value property "6"
function myfunc(){ }
bar.mymethod = myfunc; // this assigns the function
bar.mymethod(); // this calls the method

A variation on this is to use an anonymous function:

function foo(){ }
var bar = new foo();
foo.value = 5;
alert(foo.value); // shows the value property "5"
bar.value = 6;
alert(bar.value); // shows the value property "6"
bar.mymethod = function (){ }; // this assigns the function
bar.mymethod(); // this calls the method

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT22

7648ch02final.qxd 9/6/07 7:55 PM Page 22

In this last example, using an anonymous function means that you don’t have to worry
about the function myfunc() conflicting with any other objects or variables on the page. It also
keeps the code cleaner.

■Note In JavaScript, functions are objects. As you can see in this last example, I attached a value attribute
to the foo function.

Dot Notation and Bracket Notation
JavaScript offers two ways to access the properties of an object. Dot notation is what I used in
the previous examples. If you’ve done any programming in languages such as Java or C++, dot
notation is very familiar. You can even chain commands together (something I do often with
string manipulation).

Let’s say you need to take a string that a user typed in and want to clean it up to use in the
search engine:

// The next statement would result in "what up dog"
"What up, dog!".toLowerCase().replace(/[^a-z0-9]/g,"");

Bracket notation is similar, except properties are referenced through square brackets like
an array. Using the example from the last section, you would do this:

alert(foo["value"]); // you should see "5"

You can even call methods by adding the brackets (along with any possible parameters on
to the end):

foo["mymethod"]();

You can still chain items using bracket notation, too:

// The next statement would still result in "what up dog"
"What up, dog!"["toLowerCase"]()["replace"](/[^a-z0-9]/g,"");

This is a little harder to read, so most people stick to the dot notation. Bracket notation
does give you the benefit of being able to use a variable to execute a function on an object:

function manipulateString(str, func)
{

return str[func]();
}
newstring = manipulateString("WHAT UP", "toLowerCase"); // newstring = "what up"

In the next two chapters, you’ll see some practical implementations.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 23

7648ch02final.qxd 9/6/07 7:55 PM Page 23

Prototypes
JavaScript is prototype-based, so you essentially clone existing objects to create new objects.
It also means that you can attach new properties and methods to the prototype and they’ll
become available for all objects, even ones that were already cloned. This is done by using
the prototype property of an object.

Let’s take the last example and build on top of it:

var foo = function(){ }
var bar = new foo();
foo.value = 5;
alert(foo.value); // shows the value property "5"
bar.value = 6;
alert(bar.value); // shows the value property "6"
bar.mymethod = function (){ }; // this assigns the function
bar.mymethod(); // this calls the method
foo.prototype.othervalue = 6;
alert(bar.othervalue); // shows "6"

As you can see, I attached the new property to the prototype of my original object foo, but
it is also available under my existing object bar. (This concept is discussed in more detail in
Chapter 3.)

Passing by Value or by Reference
There are two ways in which values are passed into a function: by value or by reference. When
passing a variable, a copy of the value is made and used within the function. Any changes to
the variable are reflected only within the function. The variable outside of the function
remains untouched. This is passing by value:

var foo = 5;
function bar(val)
{

val = 6; // I'm changing it to 6!
}
bar(foo);
alert(foo); // it's still 5

Passing an object in as a parameter will pass it in by reference. That means that you have
full access to the object’s methods and properties, and any changes made to the object will be
reflected outside of the function.

var foo = function(){};
foo.prototype.value = 5;
function bar(obj)
{

obj.value = 6; // I'm changing it to 6!
}
bar(foo);
alert(foo.value); // it's now 6!

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT24

7648ch02final.qxd 9/6/07 7:55 PM Page 24

Now, what happens if you try to pass in a function?

var foo = function(){};
foo.prototype.value = 5;
foo.prototype.addValue = function(){ foo.value = 6; }
function bar(func)
{

func(); // I'm running the function!
}
bar(foo.addValue); // pass in the function
alert(foo.value); // it's now 6!

There are a couple of different things going on in this example. First, when you pass in the
function, don’t include the round brackets () because you can pass the function in without
actually executing the code contained within it. While not evident, you are actually making a
copy of the function (just like the variable) and passing that in. Later on, I’ll cover some things
to look out for with context and object referencing.

Had you included the brackets, the function would have run immediately, and the return
value of the function would have been passed through. Here’s a quick demonstration:

function foo()
{

return 6; // return a value
}
function bar(val)
{

alert(val);
}
bar(foo()); // shows 6

JavaScript and the DOM
JavaScript is the magician that brings the HTML and CSS to life! JavaScript, the language, is
pretty straightforward and I’m assuming that you’ve had some experience using JavaScript or
at least understand the basics of the JavaScript syntax.

The power of JavaScript is in the technologies that it can use. The browser actually makes
available various interfaces such as the window object, the XMLHttpRequest object, and the
document object. You’ll learn more about the window object and the XMLHttpRequest object in
a little bit. Before that, let’s talk about the DOM, which is what JavaScript uses to understand
and interact with the HTML document.

What Is the DOM?
The DOM is an application programming interface (API) that defines a set of objects along
with their properties and methods. The API was designed to be generic enough for both XML
and HTML.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 25

7648ch02final.qxd 9/6/07 7:55 PM Page 25

The DOM is actually a number of different recommendations, and while I refer to them
as one big standard, there are actually three different recommendations with various compo-
nents to each. The DOM is broken down into DOM Level 0, 1, 2, and 3:

• DOM Level 0 doesn’t actually exist as a recommendation of the W3C. It is used to refer
to the features available in the third versions of both IE and Netscape.

• DOM Level 1 consists of the core recommendation, which is meant for XML and HTML,
and also contains an HTML-specific extension. The extension also addresses the need
to be backward-compatible with the features of DOM Level 0. Many of these HTML-
specific features share widespread and consistent browser support.

• DOM Level 2 adds additional XML- and HTML-specific extensions and adds support
for manipulating style information, events, and ranges (handy for doing browser-based
WYSIWYG editing). At this level, you start to see a divergence in how these standards
are implemented across browsers.

Mozilla browsers such as Firefox have stuck very closely to the W3C specification,
whereas IE went in a different direction. For example, the current state of event han-
dling within IE is rooted in its initial implementation that goes back beyond the point
to which DOM Level 2 was even a recommendation in 1999. Unfortunately, they haven’t
updated the event handling since.

• DOM Level 3 adds additional extensions to the core and event handling, but most of
the specification hasn’t reached the recommendation level, and few browsers have
implemented any of the current specification.

Suffice it to say, you’ll be sticking to Level 1 with a smidge of Level 2.

■Note Although they are often referred to as web standards, in the academic sense they are called recom-
mendations. The members of a W3C committee work together to develop a set of recommendations for all to
follow.

DOM Tree Structures
The DOM is represented as a tree structure. In HTML, when a tag is inside another tag, it’s
considered a child element in the DOM:

<body>
<div class="intro">Here is some text

<p>More text</p>
<p>More text</p>

</div>
</body>

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT26

7648ch02final.qxd 9/6/07 7:55 PM Page 26

Figure 2-2 shows a graphical representation of how the preceding HTML looks to the
DOM.

Figure 2-2. A simple DOM tree diagram

There are some additional subtleties to the DOM as well. For example, the DOM sees ele-
ments as node types, but an element is just one type of node. There are 12 different node
types, most of which are more relevant to the XML folks. For those who work with HTML,
there are only three types of nodes that are used regularly: elements, attributes, and text.

Table 2-2 shows the relevant node types.

Table 2-2. Node Types and the Corresponding Node Type IDs

Description Node Type

Element 1

Attribute 2

Text 3

Comment 8

Document 9

So that last diagram is a little inaccurate because I haven’t represented my attribute or text
nodes. Figure 2-3 shows what the full DOM tree diagram should look like.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 27

7648ch02final.qxd 9/6/07 7:55 PM Page 27

Figure 2-3. The DOM tree diagram, with the attribute and text nodes added

As you can see, that tree structure just got a few more branches. Keep in mind—and this is
important—that even the space between tags is represented by a text node.

IE, in its usual desire to be different, doesn’t recognize that blank space as a node. When
you get to traversing the DOM, you’ll need to keep this browser difference in mind (discussed
later in this chapter).

The document Object
Now that you know what the DOM is, let’s have a look at how you use it (using the document
object, of course). From the document object you can reference every element on the page, add
new elements, and remove existing elements.

When working with the document, there are a few functions to get one or more elements,
three of which are most common:

• getElementById(): Retrieves a single element from the page.

• getElementsByTagName(): Retrieves all elements of a specific tag name. The W3C
specification indicates that HTML processors generally assume uppercase elements.
In current browsers, both uppercase and lowercase tag names will work. However, in
XHTML, the tag name must be lowercase. Therefore, I recommend that you use
lowercase.

• childNodes: A property that retrieves all nodes that are direct descendants of an
element.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT28

7648ch02final.qxd 9/6/07 7:55 PM Page 28

73ed30358d714f26dd2d9c0159f8cfe0

To see some of these functions in action, you need a document to work on:

<body>
<div id="main">

<p class="intro">Welcome to my web site</p>
<p>We sell all the widgets you need.</p>

</div>
<div id="footer">

Copyright 2006 Example Corp, Inc.
</div>

</body>

Now let’s play with the document a little bit:

var mainContent = document.getElementById("main");
mainContent.style.backgroundColor = '#FF0000';

var paragraphs = document.getElementsByTagName("p");
for(i=0;i<paragraphs.length;i++)
{

paragraphs[i].style.fontSize = '2em';
}

var elements = document.getElementsByTagName("body")[0].childNodes;
for(i=0;i<elements.length;i++)
{

if(elements[i].nodeType == 1 && elements[i].id) alert(elements[i].id);
}

First up, you grab the <div> with an ID of main and change the background color to
red. Next, you grab all the paragraph elements, loop through each one, and set the font
size to 2 ems. The last example grabs the <body> tag and then loops through its child
nodes and pops an alert with the ID of the element.

That last example covers a few tricks. First, all elements are grabbed that have the tag
name of body. Your HTML document will have only one. Therefore, you can use [0] to
retrieve the first (and only) element from the collection. Next, check to see whether the
node type is equal to 1. Each node type has a number. Element nodes are 1 and text
nodes are 3. Attributes have a node type, but you can’t retrieve them using the same
methods. Instead, you use either getAttribute() to retrieve a specific attribute or
attributes to access all of them.

Obtaining Elements by Class Name
As mentioned previously, one of the two ways that elements are identified is through IDs
(which you can retrieve through getElementById()) and through class names. Unfortunately,
there isn’t a getElementsByClassName() in the specification. Since getting elements by their
class name is an effective way to retrieve a set of elements, you’ll make your own function to
do this.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 29

7648ch02final.qxd 9/6/07 7:55 PM Page 29

function getElementsByClassName(node, classname)
{

var a = [];
var re = new RegExp('(^|)'+classname+'(|$)');
var els = node.getElementsByTagName("*");
for(var i=0,j=els.length; i<j; i++)

if(re.test(els[i].className))a.push(els[i]);
return a;

}

This function takes two parameters: the node from which you want to search and the
class name for which you want to search. It returns an array of elements with which you can
iterate through.

Taking a look at this function, first you create a regular expression object:

var re = new RegExp('(^|)'+classname+'(|$)');

A regular expression is a syntax for doing string matching. It is very powerful, but also
very confusing. I’ve hit my head against the wall many times trying to tame a regular
expression. (See later on in this chapter for more information on regular expressions.) This
particular regular expression matches a class name even if there is more than one applied
to the element. The regular expression tries to find the beginning of the class name, which
can either be at the beginning of the string or with a space in front of it. Then, find the class
name you passed into the function. Finally, find the end of the class name by looking for a
space or the end of the string. The ^ matches the beginning of a string; $ matches the end.
The | is similar to JavaScript’s || and checks to see whether it matches the character on the
right or the character on the left of |.

Next, get all elements of the node that were passed in:

var els = node.getElementsByTagName("*");

The asterisk ("*") being passed into the getElementsByTagName() method discussed ear-
lier means to return all elements.

Loop through the collection and test whether each class name matches the regular
expression:

for(var i=0,j=els.length; i<j; i++)
if(re.test(els[i].className))a.push(els[i]);

className is a property of an element and stores the value of the class attribute. You test
that against the regular expression, which returns true if it matches. If it’s true, add the cur-
rent element into the array.

Finally, after you’re done, pass back the array of elements:

return a;

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT30

7648ch02final.qxd 9/6/07 7:55 PM Page 30

Moving Around the DOM
After you retrieve a particular element, you often have to move around the DOM. There are
four ways to do this:

childNodes: As you saw earlier, childNodes enables you to retrieve all nodes under the cur-
rent element.

parentNode: Retrieves the direct parent of the current element.

nextSibling/previousSibling: Retrieves the next or previous node, respectively.

firstChild/lastChild: Retrieves the first or last child node of the current element.

Working Around Text Nodes
The way browsers handle text nodes can make moving around the DOM a little complicated.
Take the following code example:

<div id="node">
<p>Some text.</p>
<p>Some more text.</p>

</div>

It might seem to make sense that the <div> has two childNodes; in IE, that’s exactly what
you get. In all the other major browsers, however, it counts the whitespace between tags as a
node. As a result, you’ll get five childNodes instead of just two. You’ll need to take this into
account when navigating from element to element by checking to see whether the node you’re
on is a text node or not. For example:

var el = document.getElementById('node');
// grab the first element
var firstElement = el.childNodes[0];
if(firstElement.nodeType != 1) firstElement = el.childNodes[1];

If the first element turns out not to be an element type, grab the next node. I’m making
the assumption here that there is only the text node between the opening tag and the first
element. Comment nodes can throw a wrench into the works. If that’s the case, creating a
reusable function such as the following might be advantageous:

function getElement(node)
{
while(node && node.nodeType !=1)
{
node = node.nextSibling;

}
return node;

}

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 31

7648ch02final.qxd 9/6/07 7:55 PM Page 31

If the node passed in is an element, it skips the while loop altogether. Otherwise, it con-
tinues to loop until it finds a node that is an element or until it finds no more nodes (in that
case, it returns null).

You can now rewrite the example like so:

var el = document.getElementById('node');
// grab the first element
var actualFirstElement = getElement(el.childNodes[0]);

This returns a consistent result across browsers.

■Note Whitespace in HTML includes the space, tab, line feed, form feed, and carriage return characters.
Although you can’t see them, each of these characters takes up space in the file. As browsers render the
page, it should not render the whitespace of any text node that consists only of whitespace. Browsers also
collapse multiple whitespace characters into a single space, except in <pre> tags. Whitespace between the
opening tag and the first non-whitespace character should be ignored. Although rendering whitespace is
consistent across browsers, what happens when you retrieve it via JavaScript isn’t consistent. If you need
consistency in all browsers when manipulating text nodes, you need to normalize the string by trimming all
whitespace characters at the beginning and end of the string, along with replacing any nonspaces with
spaces and then compressing multiple spaces into a single space.

Handling Attributes
You have multiple ways of handling attributes. Agnostically, you have two methods of an ele-
ment that enable you to interact with attributes: getAttribute() and setAttribute().

Suppose that the following were the HTML:

My Link

You could retrieve the href attribute like this:

var a = document.getElementById("mylink");
var href = a.getAttribute("href");

Likewise, you can change the attribute using setAttribute() like so:

a.setAttribute("href", "newlink.html");

The HTML extensions to DOM Level 1 offer you a convenient shortcut to an element’s
attributes:

var href = a.href;

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT32

7648ch02final.qxd 9/6/07 7:55 PM Page 32

I prefer the brevity of this approach (you might find this to be a recurring theme with me).
In the case of the href attribute, there are caveats for the way different browsers behave.

When using the href property, the full resolved URL is returned. For example, a.href would
return "http://example.com/link.html". When using the getAttribute() method, IE still
returns the fully resolved URL, but Mozilla Firefox returns only the exact value of the attribute.
For this reason, I use a.href for consistency.

■Note There are a few differences in what the attribute property and what the getAttribute method
return. This mostly comes back to problems with the way IE has implemented those features. For example,
getAttribute("class") should work, but because IE simply maps the method to the attribute prop-
erty, and because class is a reserved word, it doesn’t work. Instead, you have to specify className. Tobie
Langel and Andrew Dupont delve deep into the issue on Tobie’s site: http://tobielangel.com/2007/
1/11/attribute-nightmare-in-ie.

The style Property
Each element in the DOM has a style property that enables you to style the elements dynami-
cally. All the CSS properties are available through the style property.

element.style.height = '100px'; // sets the height to 100 pixels
element.style.display = 'none'; // hides the element from the user

JavaScript doesn’t like hyphens in methods or properties, so any hyphenated CSS proper-
ties have the hyphen removed and the first letter of the second word capitalized—this format
is also known as camel case.

element.style.backgroundColor = '#FF0000'; // background is red
element.style.borderWidth = '2px'; // the border is 2px

You can even use shorthand CSS properties via JavaScript:

element.style.border = '1px solid blue';
element.style.background = 'red url(image.gif) no-repeat 0 0';

Animation effects can be achieved by incrementally changing an element’s style proper-
ties over time (this is covered in greater detail in Chapter 6).

The class Attribute
To avoid confusion with JavaScript classes, the class attribute is referred to using className.
You saw this in the getElementsByClassName() created earlier:

element.className = 'myclass';

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 33

7648ch02final.qxd 9/6/07 7:55 PM Page 33

http://example.com/link.html
http://tobielangel.com/2007

Do not underestimate the power of applying a class name instead of changing style prop-
erties. Much of the Ajax interaction that you’ll delve into later involves creating new elements
on a page. Trying to apply multiple styles using the style attribute would quickly become
cumbersome. Save yourself some time and define a class selector in your style sheet. Then,
when the new element is added to the DOM, set the className attribute, and the element will
be styled accordingly.

Let’s go through a quick example for error handling. Here is some sample CSS that will
show some red text in a rather large font:

.error { color:red; font-size:3em; }

If you detect an error in the form, you might decide to display an error message in the
document instead of displaying an ugly and intrusive alert:

document.getElementById("frm").onsubmit = function(){
var passcode = document.getElementById("passcode");
if(!passcode.regexp.test(passcode.value))
{
var el = document.createElement("div");
el.className = 'error';
el.innerHTML = 'Not a valid passcode';
document.getElementsByTagName("body")[0].appendChild(el);
return false;

}
}

When it comes to rapid development, I highly recommend that you avoid applying styles
directly to an element unless the value must be calculated at runtime (for example, anima-
tion).

Just as CSS establishes a separation of content and presentation with HTML, doing it in
this way helps maintain a separation between presentation and behavior with JavaScript.

Inserting Content into the DOM
In the preceding example, a few more features of the DOM were used. The first is the
createElement() method, which creates a new HTML element but sits in limbo until you insert
it into the document. There are three DOM methods to add new content into the document:

• appendChild(): Adds the element as the last child of a parent element.

• insertBefore(): Adds a new element before an element that you specify.

• replaceChild(): Replaces an existing element in the DOM with the element that you
want to add. You can also use this to replace one element with another element already
on the page.

In addition to these three methods, there is a fourth (currently nonstandard) way of
adding content into the document: the innerHTML property. This isn’t part of any specifica-
tion, but it has been implemented across all browsers and is even finding support in

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT34

7648ch02final.qxd 9/6/07 7:55 PM Page 34

XHTML. Firefox 1.0, for example, did not support the use of innerHTML when the docu-
ment was served as XHTML. Firefox 1.1+ supports innerHTML with XHTML, though.

innerHTML enables you to specify a string of HTML that will be parsed and inserted into
the document. This can be an efficient way of inserting multiple elements, attributes, or text
content.

Let’s do a comparison. First, use DOM methods:

var el = document.createElement("div");
var txt = document.createTextNode("What are you looking at?");
var img = document.createElement("img");
img.src = 'imagename.gif';
img.alt = 'I\'m wearing glasses.';
img.height = 200;
img.width = 600;
el.appendChild(txt);
el.appendChild(img);

Compare it with using innerHTML:

var el = document.createElement("div");
el.innerHTML = 'What are you looking at? <img src="imagename.gif" alt="I\'m wearing➥

glasses." height="200" width="200">';

Not only is it less code but it also actually performs better in the browser. However, don’t
accept innerHTML as a panacea. It will be important to evaluate when one approach is more
appropriate than the other. Using innerHTML is great when you’ve got a large block of HTML
that needs to be inserted; this is something you’ll commonly see when using Ajax. Whereas
DOM manipulation gives you some fine-grained control over inserting new elements, often
a combination of techniques results in the best solution. Suffice it to say, you’ll see more of
innerHTML going forward.

Attaching Properties and Methods to Existing DOM Elements
Objects returned from the DOM behave just like any other JavaScript objects. This can be a
handy way to store additional properties at the element level instead of in another abstracted
function or object.

For example, imagine a form field that requires validation (okay, that probably wasn’t very
hard to imagine). You could store validation parameters at the element level.

Use the following HTML:

<form id="frm">
<input id="passcode" type="text">
<input type="submit">

</form>

You can then use the following JavaScript:

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 35

7648ch02final.qxd 9/6/07 7:55 PM Page 35

var passcode = document.getElementById("passcode");
passcode.regexp = /^[0-9]+$/;

document.getElementById("frm").onsubmit = function(){
var passcode = document.getElementById("passcode");
if(!passcode.regexp.test(passcode.value))
{
alert('Not a valid passcode');
return false;

}
}

In this purely fictitious example, you grab the passcode element and assign a regular
expression to it. Then you attach an event handler for submitting the form that can verify the
contents of the field before submitting the form. If users have entered an invalid passcode,
they are told, and the form is stopped from processing by returning false.

Browser Sniffing vs. Object Detection
One of the biggest headaches you’ll run into when using JavaScript is the varying degrees to
which browsers support or implement certain features. It’s generally good practice to make
sure, as best you can, that the browser can complete the task at hand without spitting out
annoying error messages. There are a couple of ways to determine whether a browser is capa-
ble: browser sniffing and object detection.

Browser sniffing is the way it used to be done. The browser has a special object called
navigator, within which are properties that describe the browser in some fashion or another.
Most browser sniffing comes from dissecting the userAgent property. Here’s an example:

" Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; ➥

.NET CLR 1.1.4322; .NET CLR 2.0.50727)"

This is the user agent string for IE 7 on Windows XP. The problem is that browsers lie
because web site developers at one point used this string to determine whether a browser was
capable of using the site and would block out any user who wasn’t using the “right” browser.
Therefore, when browser makers were about to release a new version, they’d include a user
agent string that matched closely enough to get around these issues. IE pretended to be
Netscape; Opera pretended to be IE. Never mind the fact that in some browsers you can
change the string to anything you want. It really was a mess.

That leaves us with object detection, which checks to see whether the browser supports
a particular feature before it uses it. Object detection is much more reliable than string match-
ing. You shouldn’t use it to check every method you want to use, but at least use it to check for
certain features.

For example, using getElementById is a good way to check that you’re using a modern
DOM-aware browser:

if(document.getElementById)
{

var el = document.getElementById('myelement');
}

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT36

7648ch02final.qxd 9/6/07 7:55 PM Page 36

You can check whether the method exists by leaving off the brackets.
For a more comprehensive look at which methods are supported by which browsers,

check out the support table at www.webdevout.net/browser-support-dom.

Regular Expressions
As discussed earlier in this chapter, regular expressions are a way to accomplish string
matching (they’re often referred to as regex or regexp). They are very popular, especially for
validating form data, but they are tricky beasts to tame. Some of the basics are covered here,
but the discussion is not exhaustive.

■Note Check out the Apress book Regular Expression Recipes by Nathan A. Good (ISBN: 1-59059-441-X)
for a more in-depth look at regular expressions.

A regular expression can be instantiated in one of two ways. The first is by using the regu-
lar expression class:

var re = new RegExp('regex','ig');

The constructor takes two parameters, the first being the regular expression string to
match and the second parameter is the flags. There are three possible flags:

i: Ignore case

g: Global match

m: Match over multiple lines

The second way to declare a regular expression is to use the literal format:

var re = /regex/ig;

The literal format does not have quotes around it; it is surrounded by the forward slash.
The flags appear immediately after the regular expression.

The regular expression is meant to be used against a string. A regular expression object
has two main functions: exec and test.

exec performs a search on a string and returns an array of matches. test returns true if a
match is found and false otherwise. Here is a common way to test a possible American or
Canadian phone number format:

var phonenumber = '613-555-1212';
/^\d{3}-\d{3}-\d{4}$/.test(phonenumber); // returns true

The match, search, and replace methods of the built-in String object accept regular
expressions as parameters:

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 37

7648ch02final.qxd 9/6/07 7:55 PM Page 37

http://www.webdevout.net/browser-support-dom

• match behaves like exec by returning an array of results that match the regular
expression.

• search returns the index in which it could find a match within the string or returns -1
if no match is found.

• replace replaces the substring match with the characters of your choosing. An example
is rearranging a date format:

var dt = '12-01-2007';
dt.replace(/^(\d{2})-(\d{2})-(\d{4})$/, '$3$2$1'); // returns 20070112

A regular expression starts at the beginning of a string and works its way through trying to
match to the pattern defined.

The expression can be broken down into different types of tasks. First, there’s the charac-
ter match itself. It might be an A or a Q or the number 8. Most often, it’s a type of character or a
range of characters that you’re looking for. A range can be defined using square brackets with a
hyphen indicating the range:

/[a-zA-Z]/

To match against any character but those in the range, just precede the range with the
caret (^) character.

/[^a-zA-Z]/

You can use \w to match any letters or numbers including the underscore (\w means
“word characters”), which would be the same as [a-zA-Z0-9_]. \W does the opposite and
matches any character that is not in that range. Likewise, you can use \d just for numbers.
To match any character but a newline character, use the period (.).

You can anchor the search to the beginning of the string, the end of the string, or both.
To ensure that the match must start at the first character, use the caret (^) character. If it
should match the last character of the string, use the dollar sign ($) character.

The following example should match any string that starts with http and ends in .html:

/^http.*\.html$/

Next there’s checking for repetition of a particular character. You’ve already seen a couple of
examples of this. For example, {2} means matching the character two times in a row. You can set
up ranges such as {2,4}, which means that it must match a minimum of two characters in a row
to a maximum of four characters in a row. You can leave out the second parameter to indicate
that the match should start at a minimum number of characters and move up from there (exam-
ple: {2,}). The + character matches the character one or more times. The * character matches
the character zero or more times. In the following example, the first line makes sure that there’s
at least one number in a numbers-only string; the second example could match against an
empty string as well as a string that has one or more numbers in it:

/^\d+$/
/^\d*$/

To remember matches, use round brackets () to remember the match found. In the ear-
lier date swap example, I’m trying to remember three separate matches. In the replace, I can

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT38

7648ch02final.qxd 9/6/07 7:55 PM Page 38

refer to each of the round brackets using a $ followed by a number, which is handy for reorder-
ing the way a string might be put together.

There’s obviously so much more to regular expressions than what is covered here, so I
highly recommend that you take the time to learn more.

Code Formatting Practices
While there is usually never just one way to do things, it can be important to establish an
approach to coding that makes it clearer for both yourself and others to understand what your
code is trying to accomplish. In this chapter, I have used a particular naming convention for
variables and functions.

JavaScript is commonly written using camel case. Almost all JavaScript APIs, such as the
DOM and XMLHttpRequest, use it.

■Note Camel case is the practice of writing compound words without spaces and capitalizing each word.
For example, in camel case “load calendar data” would be written as LoadCalendarData. There are two vari-
ations, upper and lower. In upper camel case, the first word is capitalized (for example, LoadCalendarData);
in lower camel case, the first word is not (for example, loadCalendarData).

Variable names, function names, and object names use lower camel case, whereas classes
normally use upper camel case. A class is anything that gets instantiated with the new keyword.
(You learn all about classes and objects in Chapter 3.)

var element = document.createElement('div');
var object = new XMLHttpRequest();

Event Handling
JavaScript gets executed via an event, which might happen when the page loads, when a user
clicks something, or when the document loads. Code that is not encapsulated in a function or
object gets executed as soon as it is parsed by the browser. Code that is in a function or an
object has to be called via an event handler.

Inline Event Handling
Similar to using the style attribute in CSS, you can apply an event handler to elements
directly in the HTML. Let’s see a click event for a link:

My Link

When you click the link, the function foo() is executed. For elements that have a primary
behavior, such as links or forms, the behavior runs after the event handler has completed its
execution. In the previous example, after the foo() function is done, the user will be sent to

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 39

7648ch02final.qxd 9/6/07 7:55 PM Page 39

mylink.html. To prevent this default action from happening, you need to return false as the
last part of the onclick attribute:

My Link

Alternatively, the function can determine whether true or false should be returned and
passed back to the onclick handler:

My Link

This is most commonly seen in form handlers, in which any errors in form validation
return false, preventing the form from being submitted to the server. If no errors were found,
it returns true, and the form is submitted to the server.

For links, you can use the javascript: pseudoprotocol:

My Link

I definitely do not recommend that you use this practice because it’s sloppy and promotes
inaccessible coding practices. What do I mean by inaccessible practices? I mean inaccessible
for search bots (that currently don’t understand JavaScript) and inaccessible for users who
have JavaScript disabled. It’s best to always have a default behavior that is overridden by the
event handler.

Here is an example for doing a pop-up window:

My Link

If users have JavaScript enabled, clicking this link opens it in a new window. If users have
JavaScript disabled, they can still navigate to the page.

The this Keyword
In that last bit of code, you see the this keyword, which enables you to refer to the current
object. In this case, the <a> element is the current object. As you get into more advanced event
handling and object-oriented programming techniques, the this keyword will play a promi-
nent role.

Unobtrusive JavaScript
I previously mentioned the three pillars of separation: HTML from CSS from JavaScript. In the
case of inline event handlers, you’re not much better off than with style attributes. However,
you can centralize all the behavior in external files and apply them to each document as
required.

You do this by attaching event handlers to the objects via JavaScript. For example, if you
want to run some code after the page loads, you can do this:

window.onload = function()
{

foo();
bar();

}

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT40

7648ch02final.qxd 9/6/07 7:55 PM Page 40

If you want to create a rollover on an image, you can do something like this:

image.onmouseover = function()
{

this.src = 'newimage.gif';
}

Of course, you’ll want to change it back when you roll out:

image.onmouseout = function()
{

this.src = 'oldimage.gif';
}

Remember that you can store properties in an element to use them later? Let’s make a
more generic rollout script. You need to adjust the rollover script at the same time:

image.onmouseover = function()
{

this.oldsrc = this.src; // copy the current path into a custom property
this.src = 'newimage.gif';

}
image.onmouseout = function()
{

this.src = this.oldsrc; // use the old path that we specified
}

Accessing Elements Before the Page Loads
In all the previous examples, the assumption was made that the object you were looking for
existed when you asked for it. The browser makes each element on the page available via
JavaScript as it reads and renders each one. However, because JavaScript code is normally
included in the head of the document, the body of the document is unavailable to you. Trying
to access an object before it is available will generate an error. Therefore, before you can inter-
act with any of the elements on the page, you have to wait until the page is loaded.

As you just saw, you can wait until the page loads by using the window.onload event:

var el = document.getElementById("myelement"); // will generate an error message
window.onload = function()
{

var el = document.getElementById("myelement"); // yay! I've got my element!
}

Oh, but there’s a catch. (There had to be one.) The catch is that the onload event doesn’t
fire until the entire page and all its images have been downloaded. The user could be interact-
ing with the page well before the onload event actually is run. To get around this, you have
some options, but unfortunately, there’s no silver bullet solution. The easiest traditional way
was simply to place some JavaScript to run at the very end of the HTML page. Any HTML ele-
ments before the code should be accessible via the script. It isn’t very unobtrusive, however.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 41

7648ch02final.qxd 9/6/07 7:55 PM Page 41

The next trick is to use a timer to test for the existence of any elements before using
them and then using window.onload as a fallback. Stuart Colville (http://muffinresearch.
co.uk) did just that with his Element Ready script, which checks to see whether the ele-
ment exists. If it doesn’t, it checks again in a few milliseconds. It continues to check until
the element is found or until the window.onload event fires. A personal variation on his
script is shown here:

var ElementReady={
polled:[], /* store polled elements */
timer:null, /* store timer */
timerStarted: false,
ceasePoll:function()
{
clearTimeout(this.timer);
this.timerStarted = false;

},
startPoll:function()
{
if(!this.timerStarted) this.timer = ➥

setTimeout(function(){ElementReady.check(false)},100);
},
check:function(clean)
{
for(var i=0;i<this.polled.length;i++)
{
if(document.getElementById(this.polled[i]['element']))
{
this.polled[i]['callback']();
this.polled.splice(i--,1);

}else if(clean){
this.polled.splice(i--,1);

}
}
if(this.polled.length == 0) this.ceasePoll();

},
cleanUp:function()
{

this.check(true);
this.ceasePoll();

},
chkDomId:function(elId,callback) {

var el = document.getElementById(elId);
if (el)
{
callback();

}else{

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT42

7648ch02final.qxd 9/6/07 7:55 PM Page 42

http://muffinresearch.co.uk
http://muffinresearch.co.uk

this.polled[this.polled.length] = ➥

{'element':elId, 'callback':callback};
this.startPoll();

}
}

};

ElementReady.chkDomId('message',doStuff);
ElementReady.chkDomId('message2',doStuff2);

window.onload = function() {
ElementReady.cleanUp();

};

Element Ready has a number of methods and properties, most of which are for internal
use. The two key functions include chkDomId() and cleanUp(). The chkDomId() function takes
two parameters: the first is the ID of the object you want to retrieve, and the second is the
function you want to call once the element is available. The cleanUp() function is run on
window.onload to make sure to double-check that all the elements are loaded and to run the
callback function if it is.

Dean Edwards (http://dean.edwards.name) has done some testing and (with a few other
folks) has come up with a way to check that the document is completely loaded that works in
most browsers. Unfortunately, the solution is different for each browser, and some are only for
the more recent versions of a particular browser.

// for Mozilla and Opera 9+ browsers
if (document.addEventListener) {

document.addEventListener("DOMContentLoaded", init, false);
}

// for Internet Explorer (using conditional comments)
/*@cc_on @*/
/*@if (@_win32)
document.write("<script id=__ie_onload defer src=javascript:void(0)><\/script>");
var script = document.getElementById("__ie_onload");
script.onreadystatechange = function() {

if (this.readyState == "complete") {
init(); // call the onload handler

}
};
/*@end @*/

// for Safari
if (/WebKit/i.test(navigator.userAgent)) { // sniff

var _timer = setInterval(function() {
if (/loaded|complete/.test(document.readyState)) {

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 43

7648ch02final.qxd 9/6/07 7:55 PM Page 43

http://dean.edwards.name

clearInterval(_timer);
init(); // call the onload handler

}
}, 10);

}

// for other browsers
window.onload = init;

function init() {
// quit if this function has already been called
if (arguments.callee.done) return;

// flag this function so we don't do the same thing twice
arguments.callee.done = true;

// do stuff
};

In Dean’s code, the init() function is the only function that gets called. This differs from
the previous approach in that instead of seeing whether the specific element you want exists
and is ready for you, you instead see whether the entire document is ready for you. For the
most part, you rely on the browser to tell you that it has loaded, whereas the previous script
continually checked to see whether that is the case.

Attaching Events Using DOM Methods
So far, you’ve seen the use of attaching event handlers inline and using object properties.
Inline handlers are difficult for keeping things separated, and attaching via object properties
means you can attach only one handler at a time. To get around this, there is a DOM method
that enables multiple event handlers to be added to a single object: addEventListener.

You might have noticed that you can add only one event handler per event. This might
work well for small scripts or for large scripts in which you handle all the event handling, but
(as you’ll see when you get into JavaScript libraries in Chapter 4) when using other people’s
code that might use these events, they might not like it if you try to control everything.

The DOM offers you a solution—event listeners:

element.addEventListener(event, listener, false);

The event parameter is the event type (such as click, focus or blur, without the on prefix
that you used earlier). The second parameter is the function that should execute when the
event is fired (don’t use the brackets because the function would fire immediately). The last
parameter is a Boolean indicating whether the event handler should use capturing.

Event Capturing vs. Event Bubbling
As an event is fired, it first works its way down from the document to the element clicked (cap-
turing) and then works its way back up (bubbling), as demonstrated in Figure 2-4. Using the

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT44

7648ch02final.qxd 9/6/07 7:55 PM Page 44

W3C approach, you can attach the event handler to either process. If you stop the event dur-
ing capturing, the event won’t be fired on any elements on the way down. Likewise, you can
stop the event from continuing up during the bubbling phase.

Figure 2-4. The flow of capturing and bubbling of an event

To stop an event from moving up and down the DOM tree, you can use the event method
stopPropagation:

evt.stopPropagation();

For more information, refer to the W3C documentation at www.w3.org/TR/DOM-Level-3-
Events/events.html#Events-flow. Event capturing isn’t supported in IE, so it therefore tends
not to be used.

Attaching Events in IE
The largest problem with events is that event handling is different in IE than the other
browsers. It uses a method called attachEvent() and takes only two parameters: the event
name (with on), and the function you want called:

element.attachEvent('onclick', functionname);

To get around this difference, you need to fork the code. You can encapsulate the event
listener code into a function that you can reuse:

function addListener(element, event, listener) {
if (element.addEventListener){
element.addEventListener(event, listener, false);

} else if (element.attachEvent){
element.attachEvent('on'+event, listener);

}
}

Now, you can add multiple event handlers to a single event:

addListener(window, 'load', foo);
addListener(window, 'load', bar);

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 45

7648ch02final.qxd 9/6/07 7:55 PM Page 45

http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-flow
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-flow

Using event listeners are quite handy, but handling the event has become a little trickier.
Remember the this keyword? When using attachEvent() in IE, the this keyword doesn’t refer
to the object to which you attached the event; it refers to the window object.

Let’s demonstrate the problem:

// assume we have an a element on the page with an id of mylink
var mylink = document.getElementById("mylink");
addListener(mylink, 'click', foo);
function foo()
{

alert(this.href);
}

You’d probably expect this to refer to the link, and the href would pop up, but in IE it
doesn’t. Let’s take a moment to expand on the this keyword and see how context is handled.

Examining Context
When you run a function, the this keyword belongs to the owner of the function. The default
owner is the window object:

function myfunction()
{

alert(this); // this would refer to the window object.
}

As you add functions onto other objects, you are essentially chaining them together. One
object belongs to another, which belongs to another:

var el = function ()
{

alert(this); // this would refer to the window object.
}
el.methodname = function()
{

alert(this); // this would refer to our el object
}

This tends to get a little confusing when you pass a method of one object as a parameter
into another function:

var el = function ()
{

alert(this); // this would refer to the window object.
}
el.methodname = function()
{

alert(this);
}

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT46

7648ch02final.qxd 9/6/07 7:55 PM Page 46

function myfunc(func)
{

func();
}
myfunc(el.methodname);

The path of execution bounces around, so let’s step through it:

1. Create an el object and assign it a method called methodname(). If you were to run
el.methodname() now, you’d get the el object.

2. Create a function called myfunc() that accepts one parameter. The function expects the
parameter to be a function that it can execute.

3. Run the function passing the method of the el object in as a parameter. The myfunc()
function then executes the method.

Here’s where it’s a little confusing. Even though you are executing el.methodname(), you
passed in a reference only to the function, not to the whole object. Therefore, when you exe-
cute the function and it tries to alert this, it returns the window object because myfunc()
belongs to the window object.

This can be both an advantage and a disadvantage, depending on what your needs are.
Luckily, JavaScript offers a call() method that enables you to execute a method in the context
of another object:

function myfunc(func)
{

func.call(el);
}

In this example, the func function gets executed—but in the context of the el object.
Therefore, when using this, it refers to el.

Many of the JavaScript libraries out there create their own methods for binding objects
(this topic is discussed in more detail in Chapter 3).

Coming back to the example, you need to update the addListener() function to use
call() to pass through the correct context. An anonymous function is used to encapsulate the
reference:

function addListener(element, event, listener) {
if (element.addEventListener){
element.addEventListener(event, listener, false);

} else if (element.attachEvent){
element.attachEvent('on'+event, function(){listener.call(element)});

}
}

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 47

7648ch02final.qxd 9/6/07 7:55 PM Page 47

Cancelling Behavior
Now that the events are being called, you sometimes need to cancel the event. For example, if
you are doing form validation and the user has entered invalid data, you need to be able to tell
the browser to stop the form from submitting.

Let’s take another look at the passcode example:

var passcode = document.getElementById("passcode");
passcode.regexp = /^[0-9]+$/;

document.getElementById("frm").onsubmit = function(){
var passcode = document.getElementById("passcode");
if(!passcode.regexp.test(passcode.value))
{
alert('Not a valid passcode');
return false;

}
}

You’re not using the event listener approach here; instead, you attached the event handler
directly to the element. When you attach it directly to the element, you can return false to
cancel the default behavior of the element. In other words, if you attached an event handler to
a link, you could prevent the link from being followed and (as in the passcode example) pre-
vent the form from submitting.

When you use event listeners, you can’t cancel the behavior in this way. However, the
DOM event object gives you a way around this: preventDefault(). Let’s rewrite the passcode
example to use event listeners:

var passcode = document.getElementById("passcode");
passcode.regexp = /^[0-9]+$/;

function isPasscodeValid(evt)
{
var passcode = document.getElementById("passcode");
if(!passcode.regexp.test(passcode.value))
{
alert('Not a valid passcode');
evt.preventDefault();

}
}

addListener(document.getElementById("frm"), 'submit', isPasscodeValid);

Notice that the function is expecting a parameter. The DOM actually passes in the event
object as the first parameter, which is declared as evt.

An event object stores various properties and methods about the event, such as what type
of event, which mouse button was pressed (or which keys on the keyboard were pressed if it’s
a keyboard event), and what the target element is.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT48

7648ch02final.qxd 9/6/07 7:55 PM Page 48

Now you have to do something different for IE. Versions older that IE version 6 don’t pass
in the event object as a parameter, but instead have an event object at the window level that
you can access. In addition, IE’s event object doesn’t recognize preventDefault(); instead, it
requires use of the property returnValue.

Let’s update the function to work in IE:

function isPasscodeValid(evt)
{
evt = evt||window.event;
var passcode = document.getElementById('passcode');
if(!passcode.regexp.test(passcode.value))
{
alert('Not a valid passcode');
if(evt.preventDefault)
{
evt.preventDefault();

}else{
evt.returnValue=false;

}
}

}

Here’s a good example of the object detection described earlier. Because you don’t know
which browser is executing the code, you have to test for the existence of objects or methods
before using them (shown in two different ways in the example). The first uses the OR (||)
operator. If evt evaluates to false (which it will do if it’s null, undefined, 0, or false), assign
window.event. The second approach tests whether the preventDefault() method exists. You
call it without the parentheses, which will pass the function if it exists (evaluating to true), or
as undefined if it doesn’t (thus evaluating to false). You wouldn’t be able to test for the exis-
tence of a property in this way if the property might actually return a value of 0, false, or null.
In that case, you’d have to be verbose and see whether the property is undefined using typeof
propertyName == 'undefined'.

Tying It All Together
Let’s tie all the concepts together into a single example, in which you look through all the links
on the page and have all external links open up in a new window. You determine which links
are external by comparing the current domain against the links on the page. If the domains
don’t match, it will be considered an external link.

function addListener(element, event, listener) {
if (element.addEventListener){
element.addEventListener(event, listener, false);

} else if (element.attachEvent){
element.attachEvent('on'+event, function(){listener.call(element)});

}
}

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 49

7648ch02final.qxd 9/6/07 7:55 PM Page 49

function changeLinksToNewWindow()
{

// grab the url and match up to the first "/" after the "http://"
// grab the first (and only) match
var currentDomain = window.location.href.match(/^http:\/\/[^\/]+/)[0];
var elements = document.getElementsByTagName('a');
for(var i=0;i<elements.length;i++)
{
// if the currentDomain is in the href, it'll return a value of 0 or more.
if(elements[i].href.lastIndexOf(currentDomain) >= 0)
{

addListener(elements[i], 'click', openWin);
}

}
}

function openWin(evt)
{
evt = evt||window.event;
window.open(this.href);
if(evt.preventDefault)
{
evt.preventDefault();

}else{
evt.returnValue=false;

}
}

addListener(window, 'load', changeLinksToNewWindow);

This example is broken down into three functions and one attachment of an event hand-
ler. After the window has loaded, the changeLinksToNewWindow() function grabs all the links on
the page. The function then checks to see whether the current domain name, which was
retrieved from the window.location object, can be found at the beginning of each link. If they
don’t match, attach a click event handler so that when a person clicks the link, it opens up in
a new window.

Event Delegation
Adding event handlers can at times be cumbersome, most especially when there are too many
elements to attach to or when you are continually adding new elements into the DOM that
have to react to events. To get around this, you can use event delegation.

Event delegation relies on an element farther up in the DOM stack to receive the event via
event bubbling (see Figure 2-5). From there, you can use the target property of the event (or
srcElement in IE) to determine what element was the source of the click.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT50

7648ch02final.qxd 9/6/07 7:55 PM Page 50

Figure 2-5. A click event bubbling up from the link

// grab the target from the event or srcElement if target doesn't exist
var target = evt.target || evt.srcElement;

To demonstrate event delegation, I put together this really simple match game:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" ➥

"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Simple Match Game</title>

<link rel="stylesheet" href="site.css" type="text/css">
<style type="text/css">
li {
padding:80px 20px;
width:200px;
list-style:none;
float:left;
border:1px solid blue;
text-align:center;
text-indent:-9999px;

}
li.flipped {
text-indent:0;

}
</style>
<script type="text/javascript">

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 51

7648ch02final.qxd 9/6/07 7:55 PM Page 51

http://www.w3.org/TR/html4/strict.dtd

var selectedPiece;
var totalMatches = 4;
var matchesFound = 0;
function checkPiece(evt)
{
var currentPiece;
evt = evt || window.event;
var target = evt.target || evt.srcElement;
currentPiece = target;

// I clicked on a flipped piece, just ignore this move
if(currentPiece.className == 'flipped') return;

// show the current piece
currentPiece.className = 'flipped';
// if I don't have a piece already selected, use this piece
if(!selectedPiece)
{
selectedPiece = currentPiece;
return; // I've done my move

}

if(selectedPiece.innerHTML == currentPiece.innerHTML)
{
matchesFound++;
if(matchesFound == totalMatches)
{
alert('You found them all! Great game!');

}else{
alert('good match!');

}
}else{
alert('sorry, not a match!');
// reset styles and the selected element
currentPiece.className = '';
selectedPiece.className = '';

}
selectedPiece = null; // reset selected

}

window.onload=function()
{
var el = document.getElementById('pieces');
el.onclick = checkPiece;

}
</script>

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT52

7648ch02final.qxd 9/6/07 7:55 PM Page 52

</head>
<body>

<ul id="pieces">
Shark
Lion
Lion
Shark
Dolphin
Squirrel
Dolphin
Squirrel

</body>
</html>

In this very simple example shown in Figure 2-6, each piece is represented by a list item
within an unordered list. I attached the event handler to the unordered list container (the UL).

Figure 2-6. Match game

window.onload=function()
{
var el = document.getElementById('pieces');
el.onclick = checkPiece;

}

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 53

7648ch02final.qxd 9/6/07 7:55 PM Page 53

Any time something within the unordered list is clicked, the event is sent to the
checkPiece function.

function checkPiece(evt)
{
evt = evt || window.event;
var target = evt.target || evt.srcElement;
currentPiece = target;
...

}

The event target is located and assigned to a variable called currentPiece. If no piece has
been selected, the current piece is assigned to a placeholder called selectedPiece. If there is a
selected piece, the innerHTML is compared with that of the current piece. If they match, the
user is notified and the selected piece placeholder is cleared. If they don’t match, the pieces
are reset and the user tries again. This continues until the user has met the total possible num-
ber of matches (totalMatches).

Halfway Between Here and There
Things get a little trickier when the element you’re looking for is between the source element
and the element that handled the event. Luckily, it’s not all that complicated. All you have to
know is how to identify the element you want, which can be through an ID, through a class
name, or through a predictable HTML structure.

To get to the element that you want, start from the target and work your way back up the
tree using parentNode, checking each time to see whether the element has been clicked.

Take this rather straightforward list of items, for example:

<ul id="test">
<li class="theOne"><p>To test</p>
<p>To test</p>
<li class="theOne"><p>To test</p>
<p>To test</p>

In this case, you can see whether the user clicks any list item that has the class name of
theOne. You can grab all the elements, loop through each one to determine whether it has the
class name of theOne, and attach an event handler to it. Or you can use event delegation.

function evtHandler(evt)
{
evt = evt || window.event;
var currentElement = evt.target || evt.srcElement;
var evtElement = this;
while(currentElement && currentElement != evtElement)
{
if(currentElement.className == 'theOne')

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT54

7648ch02final.qxd 9/6/07 7:55 PM Page 54

{
alert('I have got one!');
break; // break out of the while statement

}
currentElement = currentElement.parentNode;

}
}

var el = document.getElementById('test');
el.onclick = evtHandler;

In this case, the event handler is attached to the entire list and acts as a catchall for any-
thing clicked within its borders. The currentElement variable stores the event target to start off
with. It’s the lowest element in the stack. I check to make sure I have a valid element (I’ll
explain why in a second) and I check whether the current element is not the element that fired
the event, evtElement. I do this because I want to check elements only from the source to the
element that fired the event. I could theoretically continue up the stack until I reach the top
(which I’ll discover when the parentNode is equal to null, hence the check for whether the cur-
rent element exists at all).

In the loop, I check to see that the current element is the one I want by matching specific
criteria. In this case, I’m checking whether the class name is theOne. If it is, I perform my
action and then break out of the loop (I have no reason to continue up the stack once I’ve
found what I’m looking for). If it’s not the right element, I set the current element to the parent
element and start again from the top of the while loop.

Sometimes you’ll know that the element you want will be a specific distance from the tar-
get element. That is, it will always be the direct parent or it will always be the sibling. In which
case, you can avoid looping and just use the DOM methods to get to where you want to go.

target.parentNode.nextSibling.innerHTML = 'I have been found!';

Refer to the section “Moving Around the DOM” earlier in this chapter regarding the caveat
of using nextSibling.

When Event Delegation Won’t Work
There are times when event delegation isn’t the most appropriate solution—usually when you
have an HTML element placed over those not in the same tree structure as a result of using
fixed, offset relative, or absolute positioning. Figure 2-7 shows an example of one relatively
positioned element overlapping another.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT 55

7648ch02final.qxd 9/6/07 7:55 PM Page 55

Figure 2-7. When one element overlaps another, the overlapping element initiates the event.

This might not seem like a common scenario—and it really isn’t. Most layouts do just fine.
It does, however, rear its ugly head when you drag and drop. Dragging an element over the
screen, you often want the element that you’re dragging over to react to demonstrate that it is
a valid drop zone. However, because the dragged element is underneath the mouse cursor
(using absolute positioning), you have no way to use event delegation on the document to
easily pull out targets on the page.

As a result, you’re left with using other means of determining whether the event is being
fired over an element you want, such as offsetting the dragged element or comparing the
mouse position with the position of the elements that would be drop targets.

Summary
This chapter covered a lot of ground, including the following topics:

• HTML and why semantics are important

• CSS, the importance of inheritance, specificity, and a few troubleshooting tips

• Coverage of some of the JavaScript basics

• The DOM, how to access elements and attributes, how to add new content into the
DOM, and event handling

In the next chapter, you’ll jump into object-oriented concepts and techniques with
JavaScript. This builds on much of what you’ve seen here, explains some of the different tech-
niques used so far, and goes into some more advanced JavaScript. You’ll see some techniques
that have really gained popularity because of many of the JavaScript frameworks that are
available.

CHAPTER 2 ■ HTML, CSS, AND JAVASCRIPT56

7648ch02final.qxd 9/6/07 7:55 PM Page 56

Object-Oriented Programming

Chapter 2 covered a lot of ground, and this chapter builds on that information. I’ll explain
what object-oriented programming (OOP) is, and you’ll learn how and why to do it with
JavaScript. I’ll also cover some advanced techniques for code management that can make
your code more powerful and more flexible.

What Is Object-Oriented Programming?
In the last chapter, you learned what objects are in JavaScript and how to give these objects
methods and properties. Object-oriented programming, often referred to as OOP, is a term
that describes a number of programming concepts. Languages such as Java and C# are OOP
at their core, and there’s no way to avoid it. JavaScript, on the other hand, is traditionally pro-
grammed by using simple functions and variables.

If you’ve never done OOP before, you might ask yourself why you’d even bother. You have
variables and you have functions, and if you need to reuse something, you make it a function.
If you need two functions to access the same variable, you can make sure that variable is
declared outside of those two functions. This process is great for small scripts, but it can turn
into quite a mess of code that is hard to read and hard to maintain.

The truth is that when you use JavaScript, you’re already using objects. It might be the
window object, an HTML element, or an XMLHttpRequest object. In JavaScript, everything is an
object. Learning to use object-oriented concepts can help you to build a more extensible
application and grow beyond simple interactions. It also becomes easier for others to use your
code—which is important if you want to share your code on the Internet or work in a larger
team of developers.

OOP is a programming paradigm and a way of thinking when coding that can include any
of the following traits:

• A class is the definition or blueprint for an object.

• An object is the result when a class is instantiated. It becomes an instance of a class. If
the class is the blueprint, the object is the house.

• A property is like a variable in that it defines a certain state or stores a value, but is con-
tained in an object. Properties are usually used to describe the object in some way.

57

C H A P T E R 3

7648ch03final.qxd 9/6/07 7:53 PM Page 57

• A method is a function that is attached to an object. A method can accept parameters,
often referred to as arguments, and can return values back. Methods are used to inter-
act with the object in some way, making it act and react. Methods are often used to
change the state (that is, a property) of an object. While some languages, such as Java,
require the use of methods to modify properties (also known as getter and setter meth-
ods because they get and set property values), JavaScript enables you to modify
properties directly. This negates the need for overly simple methods that just change
the value of a property.

• Encapsulation hides implementation details and restricts access to certain functional-
ity based on what needs to access it. For example, you might have an animation object
that stores a list of elements to be moved around the screen. Your code might depend
on that list to be in a certain order, so you’d want to limit others from being able to
access it. In other languages, encapsulation is often accomplished through private,
protected, and public functions.

• Inheritance, which is the subclassing of objects, enables you to define subclasses that
can inherit properties and methods from a parent object while offering up its own. The
document object model (DOM), for example, exhibits this behavior. All elements have
a generic set of methods and properties that they share, but certain elements, such as
the <select> element, define their own methods and properties while inheriting the
methods and properties from the generic element.

• Polymorphism allows for the same method name on two different subclasses to exhibit
different behavior. For example, you might have two different Ajax subclasses: one for
JSON calls and one for XML calls. Each could have a template method that takes the
Ajax response and turns it into an HTML snippet. Although both inherit the Ajax com-
munication functions from the Ajax parent class, the template methods need to act
differently because of the different data formats. (If the difference between JSON and
XML is lost on you, not to worry: Ajax, JSON, and XML are covered in Chapter 4.)

JavaScript, being a prototype-based language, wasn’t designed to work like class-based
languages such as Java or C++. However, these features can still be re-created using JavaScript’s
paradigm. Many developers who come from other classic OOP languages design their scripts to
act and behave much like the languages they are familiar with. Having knowledge of what these
OOP concepts are will strengthen your programming skills.

Now, let’s get into the fun stuff.

Functions
In JavaScript, functions are at the very core of OOP because functions are objects. They pro-
vide the bare-bones structure to enable attaching methods and properties.

function CustomObject(){ }; // or
var CustomObject = function(){ };

With a function, you can use the new keyword to create new objects from your template:

var newObject = new CustomObject();

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING58

7648ch03final.qxd 9/6/07 7:53 PM Page 58

Languages that have classes have a constructor, which is a special method that gets exe-
cuted when the new object is created and can perform some startup duties such as defining
default properties or other actions.

Here’s an example of a class and a constructor in Java (the important parts are bold):

public class Hello
{

public static void main(String[] args) {
System.out.println("Hello, World!");

}
}

Hello notifyTheWorld = new Hello();

First, class Hello declares the name of the class and uses curly braces to contain all the
methods within. The main function gets called every time you create a new object from this
class. Let’s look at what that code looks like in JavaScript:

function Hello()
{

alert("Hello, World!");
}

var notifyTheWorld = new Hello();

At a quick glance, the two seem similar, yet are quite different. In Java, the main function is
run when instantiating the new object. In JavaScript, however, instantiating the object runs
the function itself. The function is the class definition. The code within the function gets exe-
cuted each time you instantiate a new object.

This is important to know because it will affect some of the things you can do when
instantiating and extending your objects.

Adding Methods and Properties
Now that you have an object, you need to give it methods and properties. I covered this in the
last chapter, but let’s go over it again because I’ll be showing you a few different ways to do it:

var CustomObject = function(){ };
CustomObject.value = 5;
CustomObject.methodName = function(){ alert(this.value) };
CustomObject.methodName(); // it's 5!

This is great, but actually doesn’t help you much because these methods and properties
are accessible only on this object and won’t be retained when you create a new object from
this function (as the following example shows you):

var newObject = new CustomObject();
newObject.methodName(); // undefined... that didn't work.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 59

7648ch03final.qxd 9/6/07 7:53 PM Page 59

To add properties to a class, use the this keyword from within the function (I’ll explain
why in a minute):

var CustomObject = function(){
this.value = 5;
this.methodName = function(){ alert(this.value) };

};

Now that your class has properties, new objects instantiated from this class will have
these new properties, too:

var newObject = new CustomObject();
newObject.methodName(); // it's 5!

The properties you defined are available in any new object you instantiate.

The Mechanics of Object Instantiation
When the function is executed with the new keyword, a new object is instantiated and used
as the context from within the function. Within the function, the this keyword refers to that
object, and you can attach new properties and methods to that object. After your function
is done, that new object is assigned to your variable.

Now you can process information before assigning it to the new object:

var Adder = function(valueA, valueB){
var newvalue = valueA + valueB;
this.value = newvalue;
this.result = function(){ alert(this.value) };

};
var added = new Adder(5, 6);
added.result(); // it's 11!

Returning an Object in the Constructor
You can decide to ignore the this keyword and explicitly return your own object with methods
and properties attached to it:

var Adder = function(valueA, valueB){
var newvalue = valueA + valueB;
var object = new Object();
object.value = newvalue;
object.result = function(){ alert(this.value) };
return object;

};
var added = new Adder(5, 6);
added.result(); // it's 11!

Being able to return an object like this gives you plenty of flexibility, especially when it
comes to handling inheritance. This next example uses an object literal (which will be dis-
cussed in a little bit):

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING60

7648ch03final.qxd 9/6/07 7:53 PM Page 60

var coreMethods = {
add:function(a, b){
return a + b;

},
minus:function(a, b){
return a - b;

},
multiply:function(a, b){
return a * b;

},
divide:function(a, b)
{
return a / b;

}
};

var SimpleMath = function()
{
var methods = coreMethods;
methods.power = function(a, b)
{

return Math.pow(a,b);
}
return methods;

}

var sm = new SimpleMath();
alert(sm.power(5,6));

This example declared some core methods outside of the SimpleMath object. These core
methods can stand alone or be applied to another object in addition to being applied to the
SimpleMath object defined here.

The following shows another object that inherits the same core methods while still
extending it with its own methods. It’s a Pizza object that can be instantiated with the number
of slices. You can then split the pizza up among friends, which automatically uses the divide
method from the core methods:

var Pizza = function(slices)
{
var methods = coreMethods;
methods.split = function(friends)
{

return methods.divide(slices,friends);
}
return methods;

}

var za = new Pizza(16);
alert(za.split(4)); // alerts "4"

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 61

7648ch03final.qxd 9/6/07 7:53 PM Page 61

Prototype
JavaScript is called a prototype-based language (as opposed to a class-based language)
because inheritance is handled through prototype chaining. In the previous examples, each
new object that gets instantiated copies the new property and method onto each object. If
you have 1,000 objects, there would be 1,000 properties and methods—each holding a spe-
cial place in memory.

To avoid this overhead, there is a prototype property on which you can attach methods
that are meant to be shared across all objects:

var Adder = function(valueA, valueB){
var newvalue = valueA + valueB;
this.value = newvalue;

};
Adder.prototype.result = function(){ alert(this.value) };
var added = new Adder(5, 6);
added.result(); // it's 11!

Only the result() method was added onto the prototype. You can’t add the value prop-
erty because it changes depending on the parameters that you pass into the constructor.
Therefore, you have to attach that property at runtime using this.

The prototype property can also be handy because you can add properties to the base
object even after you instantiate new objects. When you do so, those new properties are
also available on the already instantiated objects. Let’s rearrange that previous example
to demonstrate:

var Adder = function(valueA, valueB){
var newvalue = valueA + valueB;
this.value = newvalue;

};
Adder.prototype.result = function(){ alert(this.value) };

var added = new Adder(5, 6);
added.result(); // it's 11

Adder.prototype.multiply = function(valueC){ alert(this.value * valueC) };
added.multiply(5); // it's 55!

Here’s how inheritance can be handled:

var Dog = function(){ };
Dog.prototype.bark = function(){ alert('woof') };

var Chihuahua = function(){ };
Chihuahua.prototype = new Dog();

var sparky = new Chihuahua();
sparky.bark(); // woof!

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING62

7648ch03final.qxd 9/6/07 7:53 PM Page 62

There is shallow inheritance and there is deep inheritance. The example shown here is
considered shallow inheritance. Deep inheritance means that you have a class that inherits
from another class that inherits from another class, and so on. Shallow inheritance means that
you might have a class inherit from another class, and that’s it. JavaScript was never designed
to allow for deep inheritance. The need for deep inheritance in JavaScript is less likely.

For more information on deep inheritance, check out the following:

• Classical Inheritance in JavaScript, by Douglas Crockford (http://javascript.
crockford.com/inheritance.html)

• Base, by Dean Edwards (http://dean.edwards.name/weblog/2006/03/base/)

Object Literals
Using an object literal is the other primary way of creating a new object. It’s also dirt simple
to do:

var customObject = {};

That’s it; you now have an object. Extending your object with its own properties and
methods is straightforward as well:

var customObject = {
customProperty: 5,
customMethod: function(){ /* using an anonymous function*/ }

};

Each property contains a key-colon-value combination, and each declaration is sepa-
rated by a comma. Key names get converted into strings internally. For the most part, this
doesn’t matter, but you can actually do some neat things if you know about it. The following
is completely valid:

var customObject = {
"My custom property": 5,
5:6,
"5":7

};

Keep in mind that because the keys get converted to strings, the second "5" would actu-
ally overwrite the first 5, leaving your customObject["5"] with a value of 7.

If you use special characters such as spaces, or if the property name starts with a number,
the only way to access those properties is through bracket notation or by looping through all
properties using a for..in loop.

You can add additional properties onto your object at any time by using dot or bracket
notation:

customObject.value = 6;
customObject["otherValue"] = 7;
customObject.newMethod = function(){};

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 63

7648ch03final.qxd 9/6/07 7:53 PM Page 63

http://javascript.crockford.com/inheritance.html
http://javascript.crockford.com/inheritance.html
http://dean.edwards.name/weblog/2006/03/base

The object literal is limited in that you can’t use it as a class to instantiate new objects.
One object is defined, and that’s it. Having only one of an object can be a very good thing.
Sometimes you want only a central location to manage things (this is often referred to as a
singleton design pattern).

■Note Design patterns are recurring approaches to a problem. By understanding the various approaches
to solving a problem, you can choose the solution that best fits a problem you might be having. Read more
about design patterns in Wikipedia at http://en.wikipedia.org/wiki/Design_pattern_
(computer_science).

The ElementReady object defined in the last chapter is a great example. Here’s a snippet of
that object:

var ElementReady={
polled:[], /* store polled elements */
timer:null, /* store timer */
timerStarted: false,
ceasePoll:function()
{
clearTimeout(this.timer);
this.timerStarted = false;

},
startPoll:function()
{
if(!this.timerStarted) this.timer = ~CCC

setTimeout(function(){ElementReady.check(false)},100);
}

}

The object literal made sense as a central point of access to control the execution of all
functions with just one timer.

Keep in mind that nothing is impossible in JavaScript. If you want to create a new object
from that object literal, you can use the following:

function object(o)
{

function F(){}
F.prototype = o;
return new F();

}

var newObject = object(ElementReady);

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING64

7648ch03final.qxd 9/6/07 7:53 PM Page 64

http://en.wikipedia.org/wiki/Design_pattern_

The object() function accepts an object as an argument. It creates a new function and
attaches the object to the prototype of that object, essentially copying all the properties and
methods to that new object. From there, a new object is instantiated and returned. Credit for
this little function goes to Douglas Crockford.

The for..in Loop
I mentioned the for..in loop earlier, but I want to discuss it in a little more detail because
there are some things to consider when using it. If you’re not familiar with the for..in loop,
it’s much like the regular for loop, but it enables you to loop through an object’s properties,
which act like an associative array:

// our object that we'll loop through
var coreMethods = {
add:function(b){
return a + b;

},
minus:function(b){
return a - b;

},
multiply:function(b){
return a * b;

},
divide:function(b){
return a / b;

}
};

for (var property in coreMethods) {
alert(coreMethods[property]); // alerts each of the functions

}

The for..in loop will loop through methods and properties on the object and on the
prototype. The variable before the in (property, in this case) gets populated with the key
name. Where this can be especially tricky is if someone has extended the Object with custom
methods. People often do this because it can be really handy. As an example, let’s create an
object in which you store a number of properties used to page through a set of search results:

var queryComponents = {
sortBy: 'name',
page: 1,
pages: 10,
resultsPerPage: 20

}

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 65

7648ch03final.qxd 9/6/07 7:53 PM Page 65

function queryBuilder(obj)
{
var querystring = '?';
for(var property in obj)
{
// make sure I have something already appended
// before adding the & to separate values
if(querystring.length > 1) querystring += '&';
querystring += property + '=' + obj[property];

}

return querystring;
}

queryComponents enables you to define your query string in a convenient manner. If you
want 30 results per page instead of 20, just change the value. The queryBuilder function loops
through the properties of the object and builds a query string that can be passed back to the
server. Running queryBuilder(queryComponents) gives you the following output:

?sortBy=name&page=1&pages=10&resultsPerPage=20

However, what happens if somebody adds to Object.prototype?

Object.prototype.extend = function(obj) {
for (var property in obj) {
this[property] = obj[property];

}
return this;

}

This function is pretty handy because it enables you to create a type of inheritance by
copying the methods and properties of one object onto another. But now when you run your
queryBuilder function, you get this result:

?sortBy=name&page=1&pages=10&resultsPerPage=20&extend=function (obj) {
for (var property in obj) {

this[property] = obj[property];
}
return this;

}

To check for properties that belong only to the object at hand, use the hasOwnProperty
method. Here’s the rewritten queryBuilder function that demonstrates it (the new addition is
highlighted in bold):

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING66

7648ch03final.qxd 9/6/07 7:53 PM Page 66

function queryBuilder(obj)
{
var querystring = '?';
for(var property in obj)
{
if(obj.hasOwnProperty(property))
{
// make sure I have something already appended
// before adding the & to separate values
if(querystring.length > 1) querystring += '&';
querystring += property + '=' + obj[property];

}
}

return querystring;
}

As you loop through all the properties, check to make sure that the property belongs
directly to the object and isn’t from the prototype. When using a for..in loop, it’s good prac-
tice to always check for hasOwnProperty.

Named Parameters
The object literal can be a handy way to handle named and optional arguments in JavaScript,
as well as being able to easily define default options for an object. When you declare a func-
tion, you normally specify a number of arguments as options for that function. If anything is
forgotten, it is simply passed through as undefined:

function func(a, b, c)
{

alert(a); //undefined
}

func();

Likewise, if you care about only the first and third arguments, you still have to pass some-
thing in for the second parameter. To accept an object literal for options, the function simply
accepts one parameter:

function func(options)
{

alert(options.a); // alert's 5
}
var myOptions = { a: 5, b: 6, c: 7 };
func(myOptions);

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 67

7648ch03final.qxd 9/6/07 7:53 PM Page 67

To have default options, you can declare them within the function and then overwrite
them with anything you pass into the function:

function func(updates)
{
var options = { a: 5, b: 6, c: 7 };

for (var property in updates) {
options[property] = updates[property];

}

alert(options.a); // alert's 8
}
func({a:8});

The for loop copies all the properties in the updates object and attaches them to the
internal options object.

Namespaces
Tangentially related to using object literals is the use of a namespace while developing. A
namespace is a container for a bunch of related items. Namespaces are common and even
a requirement in other languages such as Java. Although JavaScript doesn’t actually have a
specific construct to do namespacing, you can use the object literal and a naming conven-
tion to accomplish the same thing.

Using a namespace has a couple of benefits:

• It keeps the global object (also known as the window object) cleaner. With scripts get-
ting larger and more complicated, along with the use of third-party scripts, there
would be a much higher chance of naming collisions if everything was at the global
level. Both the Prototype JavaScript library and the jQuery library use $() to retrieve
HTML elements, but they behave in different ways, and the object returned will have
different methods available to you. The problem is that whichever library you include
last will overwrite the previous. Therefore, any code depending on the first will end
up breaking. jQuery has an option that enables you to remap the $() to avoid this
problem. If you think this isn’t a very common situation, you’d be surprised. As of this
writing, the popular site Digg.com is actually in the process of switching from Proto-
type to jQuery, so it has to be careful with code collisions during the transition.

• It can make your code easier to read. By encapsulating things into a single object, it
establishes code ownership and enables the code within to be more self-contained.
For example, any of the code on my site is in a SNOOK namespace, making it clear that
everything is related. Likewise, the Yahoo! User Interface library (which will be covered
in Chapter 4) uses YAHOO as its namespace. There’s no confusion. In addition, I can
store shared variables within the namespace that all functions within can have access
to without worrying about conflicting with other scripts.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING68

7648ch03final.qxd 9/6/07 7:53 PM Page 68

But is using namespaces necessary? Certainly not. People have lived without namespaces
for the past ten years of JavaScript development. However, it doesn’t hurt to keep things clean
and organized from the beginning.

Here is some code from my site to demonstrate how I declared a namespace. In my blog
I have a comment form that enables people to leave feedback about a particular post. When
users enter their name, e-mail address, and URL, they are remembered the next time they visit
the site. Once the namespace is declared, each of the methods gets attached to that object.

// declare the namespace
var SNOOK = {};

SNOOK.prepareCommentForm = function(){ /* initializes fields */ }
SNOOK.prepareField = function(options) { /* attaches event handlers, etc. */ }
SNOOK.setCookie = function(name, value, expires){ /* sets a cookie */ }
SNOOK.getCookie = function(name){ /* retrieves the value of a cookie */ }
SNOOK.remember = function(fld){ /* remembers the user-entered data*/ }

Closures
One of the vastly misunderstood features of JavaScript is its use of closures. With a closure,
a child function has access to the environment of the parent function, even after the parent
function has completed execution. In Figure 3-1, functions A and B have access to the vari-
ables and functions declared within the window object. Likewise, if functions C and D are
declared within function B, they have access to all the variables and functions declared within
the window object and also those within function B. Any functions declared within function C
have access to all variables and functions all the way up the tree.

Figure 3-1. How closures create a hierarchy of variable and function access

The most common example of closures involves declaring event handlers:

function attachBehavior(){
var element = document.getElementById('main');
element.onclick = function(){ element.innerHTML = 'Surprise!'; };

}

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 69

7648ch03final.qxd 9/6/07 7:53 PM Page 69

The function that you attach to the onclick event creates a closure, so it still has access to
the element variable.

As functions get passed around, they always retain access to this initial scoping. The
function can be returned or set as a parameter to another function, and it still has access to
its original scope. It’s important to remember, though, that the function has to be declared
from within the function whose variables that you want to retain access to.

function onclickHandler(){
element.innerHTML = 'Surprise!';

}
function attachBehavior(){

var element = document.getElementById('main');
element.onclick = onclickHandler;

}

If you run the attachBehavior function and click your main element, you’ll get an error
about the element being undefined because the function was declared outside of the
attachBehavior function. Even though it’s being assigned to a variable from within the func-
tion, where the function gets declared is what matters.

Closures can be useful for referencing information across the divide of event handling,
instead of having to worry about retaining proper access to this:

function launcher(element, message)
{
function openWin()
{
alert(message);

}
addListener(element, 'click', openWin);

}

launcher(document.getElementById('mylink'),
'This link will open in a new window!');

Using the addListener() function from the previous chapter, the openWin() function was
attached as the event handler. However, because of the closure, openWin() still has access to
the message argument after the event has been fired.

Once you get comfortable with closures, you might find yourself avoiding the use of this
more often.

Closures have a bit of a stigma because of the way Internet Explorer (IE) handles them
in conjunction with working with DOM objects. IE has traditionally had trouble releasing the
memory when a closure is used in this way, even after navigating away from the current page.
It requires the browser to be restarted to regain this memory. Microsoft resolved this problem
in IE 7; it then released a patch in June 2007 for IE 6 that resolved memory leaks in that
browser. Unfortunately, the patch applied only to those running IE 6 on Windows XP. Older
machines or those that don’t have the patch installed still have memory issues.

You might not notice the memory leak in a small application, and it would require a lot
of executions to see a large impact on system performance. When you get into larger appli-

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING70

7648ch03final.qxd 9/6/07 7:53 PM Page 70

cations, though, users tend to spend more time on a single page that does a lot more DOM
manipulation and event handling. The likelihood is therefore much higher that it can have an
impact on your customers—especially these days, when people are less and less likely to close
down their browsers on a regular basis. (I sometimes go days, if not weeks, at a time before
closing my browser down.)

To avoid memory leaks, you can avoid using closures:

function attachBehavior(){
var element = document.getElementById('main');
element.onclick = onclickHandler;

}

function onclickHandler(){
// the this keyword refers to the element clicked
// and not our variable 'element'
this.innerHTML = 'Surprise!';

}

Many of the JavaScript libraries, especially the ones covered in this book, implement their
scripts to minimize the potential for memory leaks.

Encapsulation
Encapsulation enables you to hide implementation details from those who use your scripts.
Remember the Java code from the beginning of the chapter?

public class Hello
{

public static void main(String[] args) {
System.out.println("Hello, World!");

}
}

I highlighted in bold how Java enables a developer to show or hide implementation
details from those who use the code. Public methods are an interaction point into the object.
If it were set to private, only the class itself could access those functions. Likewise, if the class
is set to private, only other classes in the namespace could access the class.

When developing code for other people to use, such as within a development team or as
a helper script released to the public, you normally have an application programming inter-
face (API). There are specific properties and methods that people can use; the rest just make
your life easier from within the script.

Let’s look at the ElementReady script:

var ElementReady={
polled:[], /* store polled elements */
timer:null, /* store timer */
timerStarted: false,

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 71

7648ch03final.qxd 9/6/07 7:53 PM Page 71

ceasePoll:function(){...},
startPoll:function(){...},
check:function(clean){...},
cleanUp:function(){...},
chkDomId:function(elId,callback) {...}

};

In this object that you’re using to handle all your tasks, most of these properties are
actually for internal use only. chkDomId(), cleanUp(), and check() are the only methods that
are ever used from outside the object. If that’s the case, should the other properties actually
be accessible? Based on what you have learned about object creation and closures, you can
actually redesign this class so that only those three functions are accessible. Everything else
will be accessible from only those functions:

var ElementReady= new function(){
var polled = []; /* store polled elements */
var timer = null; /* store timer */
var timerStarted = false;
var ceasePoll = function(){...};
var startPoll = function(){...};
return {

check:function(clean){...},
cleanUp:function(){...},
chkDomId:function(elId,callback) {...}

}
};

Let me explain what was updated. The first thing I did was change the main ElementReady
object from an object literal to an anonymous function that is instantiated into a new object.
Now that it’s no longer an object literal, the items within it are set up just like regular variables.
These will be your internal or private variables. Finally, I take the three functions that I want to
be available publicly and return them in an object literal.

With closures, those public functions still have access to the internal variables. The other
thing that had to change was how I referred to those internal variables—I dropped the this
keyword from them.

In the future, you can create a new version of the ElementReady script, and as long as the
interface for those three functions hasn’t changed, it doesn’t matter what you’ve done with the
rest of the implementation.

Here’s the final version with the changes implemented:

var ElementReady= new function(){
var polled = []; /* store polled elements */
var timer = null; /* store timer */
var timerStarted = false;

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING72

7648ch03final.qxd 9/6/07 7:53 PM Page 72

var ceasePoll = function()
{
clearTimeout(timer);
timerStarted = false;

};
var startPoll = function()
{
if(!timerStarted) {
timer = setTimeout(function(){ElementReady.check(false)}, 100);

}
};

return {
check:function(clean)
{
for(var i=0;i<polled.length;i++)
{
if(document.getElementById(polled[i]['element']))
{
polled[i]['callback']();
polled.splice(i--,1);

}else if(clean){
polled.splice(i--,1);

}
}
if(polled.length == 0) ceasePoll();

},
cleanUp:function()
{

check(true);
ceasePoll();

},
chkDomId:function(elId,callback) {

var el = document.getElementById(elId);
if (el)
{
callback();

}else{
polled[polled.length] = {'element':elId, 'callback':callback};
startPoll();

}
}

}
};

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 73

7648ch03final.qxd 9/6/07 7:53 PM Page 73

This type of encapsulation can also be used to create a class to instantiate a number of
objects in which each object needs access to these hidden properties and methods (called pri-
vate members):

function CurrentAnswer(num)
{
var current = num;

var newObject = {
getCurrent: function(){ return 'The current answer is: ' + current; }

}
return newObject;

}

var curr = new CurrentAnswer('5');

alert(curr.getCurrent()); // alert's the string 'The current answer is: 5'

Like the previous example, you can define a solid API with which to interact with your
object and obscure away the inner workings.

Functional Programming
Functional programming is another programming paradigm, just as OOP is a paradigm. It is
the concept of accepting functions as arguments and being able to return functions as a result
(known as higher-order functions). This approach is very powerful, and many JavaScript
libraries take advantage of JavaScript’s capability to do this.

Callbacks
A callback is the process of passing in a function (or the name of a function) into another
function so that when the code finishes executing, it can “call that function back.” Callbacks
are quite common, especially in event-driven scenarios. In fact, most custom event systems
use callbacks as a way of calling a function when an event occurs.

Callbacks are normally handled by passing a function into another object as one of the
parameters:

function Animation(startFunction, endFunction)
{

startFunction();
/* perform our animation magic here */
endFunction();

}

Animation(function(){ alert('Start!') }, function(){ alert('End!') });

Two anonymous functions were passed in: the first will get called before the animation
starts; the second will get called after it ends.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING74

7648ch03final.qxd 9/6/07 7:53 PM Page 74

Passing in a function that is a method of an object can be problematic unless you know
what to expect. In this case, the method will be disconnected from the object. When the func-
tion is executed from within the other function, you’ll likely get an error message:

function Pizza(includePepperoni)
{

this.pepperoni = includePepperoni;
this.hasPepperoni = function(){ return this.pepperoni; }

}
var newPizza = new Pizza(true);

function eatPizza(hasIngredient)
{

alert('Has Ingredient? ' + hasIngredient());
}

eatPizza(newPizza.hasPepperoni);

While this example might seem a little odd, the key thing to note is that the ingredient
returns undefined. The hasPepperoni() method has become detached from the newPizza
object and is being executed in the parent context of the eatPizza() function, which happens
to be the window object and doesn’t have a hasPepperoni property.

You can use the JavaScript function call() to run the function in the context of another
object. In this case, call executes the function hasIngredient, which is the function
hasPepperoni() that was passed in, and then runs it in the context of the pizza, which is the
newPizza object that was passed in. Thus, it behaves just like newPizza.hasPepperoni(). The
this keyword within the hasPepperoni function now properly tells you whether there is pep-
peroni on this pizza.

function eatPizza(hasIngredient, pizza)
{
alert('Has Ingredient? ' + hasIngredient.call(pizza));

}

eatPizza(newPizza.hasPepperoni, newPizza);

Alternatively, you can make use of closures to pass the information in by using your origi-
nal function:

function eatPizza(hasIngredient)
{
alert('Has Ingredient? ' + hasIngredient());

}

eatPizza(function(){ return newPizza.hasPepperoni() });

An anonymous function was passed in that simply returns whether the value is true or
false. As you’ve no doubt discovered, there’s almost always more than one way to accomplish
the same thing.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 75

7648ch03final.qxd 9/6/07 7:53 PM Page 75

The Functions call and apply
As you just saw, you can use call to run a function as if it were attached to a particular object.
You can also specify any number of additional parameters that should be passed on to the
function:

hasIngredient.call(pizza, 'hot');

This behaves the same as if you did the following:

newPizza.hasPepperoni('hot');

The apply function works almost the same way, but instead of specifying each parameter
separately, you can pass in an array as the second parameter, and each of those parameters is
passed through to the function in the same order as specified in the array:

hasIngredient.apply(pizza, ['hot','medium','mild']);

This behaves the same as if you did the following:

newPizza.hasPepperoni('hot','medium','mild');

The Prototype JavaScript library has probably one of the most applicable applications of
the apply function. It extends the Function prototype so every function can automatically be
bound to an object with a very succinct syntax:

Function.prototype.bind = function() {
var __method = this, args = $A(arguments), object = args.shift();
return function() {
return __method.apply(object, args.concat($A(arguments)));

}
}

The $A function is a Prototype JavaScript library function that takes a collection and turns
it into an array by iterating over the collection and adding each element into the array. It then
uses the array method shift to knock off the first element in the array and save it. This is the
first parameter you pass into the function and is the object with which you want to bind. Next,
it returns an anonymous function that does the fun stuff. Through the closure, it takes the cur-
rent function, which was assigned to __method, and applies it to object. It then takes the
arguments from before and adds them to the current list of arguments.

Here’s an example that demonstrates the relationship between everything:

function ObjectA(){ /* stuff */ }
ObjectA.methodB = function ()
{
// arguments now has 6 elements:
alert($A(arguments)); // 1,2,3,4,5,6

}

var bound = ObjectA.methodB.bind(ObjectA, '1','2','3','4');
bound('5','6');

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING76

7648ch03final.qxd 9/6/07 7:53 PM Page 76

Using call or apply, especially as shown here, can make your code look cleaner and more
readable.

Applying a Function to a Collection
A handy way to use callbacks is to apply a function to a series of elements within an array or
object (which are very similar in functionality). The ability to receive functions as parameters
enables you to apply a function to any and all items within a collection.

Here’s a great example taken from jQuery (http://jquery.com):

$("p").each(function(){
this.innerHTML = this + " is the Element";

});

Despite the brevity of this code example, there’s actually a lot happening here. First, a
function called $() takes in a string parameter. In this case, it finds all <p> elements on the
page. In other words, $("p") returns a collection of paragraphs in the document. Then, the
each() method will apply a function to each item in the collection (in this case, the innerHTML
of each paragraph tag will be replaced with the string).

You can create your own example now that will parse through your own special array:

function SpecialArray(arr)
{
this.arr = arr;

}
SpecialArray.prototype.map = function(func)
{

for(var i = 0; i < this.arr.length; i++)
{
this.arr[i] = func(this.arr[i]);
}
return this;

}

var obj = new SpecialArray(['A','B','C']);
obj.map(function(el){ return el.toLowerCase() }); // returns ['a','b','c']

First, there is a special new object called SpecialArray that has an internal array and one
method called map(). The map() method takes a function and runs that function on each of the
elements within the array. In this case, it changes all the elements from uppercase to lower-
case. By keeping it agnostic like this, you can manipulate the elements in the array any way
you please by simply passing in a different function:

obj.map(function(el){ return el + '!' }); // returns ['A!','B!','C!']

You can even work with arrays of different object types:

var obj = new SpecialArray([1,2,3]);
obj.map(function(el){ return el * el }); // returns [1,4,9]

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 77

7648ch03final.qxd 9/6/07 7:53 PM Page 77

http://jquery.com):

Chainable Methods
You’ve seen plenty of examples that follow the object.method() approach to things. However,
it can become cumbersome to assign something to a variable only to have to manipulate the
object further. Instead, you can often keep your code looking cleaner and simpler by chaining
methods together. This is quite common when working with string methods like this example:

"I went to my store".toUpperCase().replace("MY", "YOUR");
// returns "I WENT TO YOUR STORE"

With each method returning a string, you can continue to manipulate that string by
adding on new methods. If you begin chaining a lot of methods, you can make the code
cleaner by putting each subsequent call onto its own line:

"I went to my store"
.toUpperCase()
.replace("MY", "YOUR");

// returns "I WENT TO YOUR STORE"

To create your own chainable methods, you simply have to ensure that you are always
returning something at the end of a method call. With that returned data, you can continue to
manipulate it.

Using the SpecialArray, you can continue to manipulate the array with subsequent map
calls because you return the SpecialArray on which you’re performing the map:

var obj = new SpecialArray(['A','B','C']);
var arr = obj
.map(function(el){ return el.toLowerCase() }) // returns ['a','b','c']
.map(function(el){ return el += '!' }); // returns ['a!','b!','c!']

Internal Iterators
Collections are quite common in DOM scripting—from a simple array to a node list returned
from a getElementsByTagName() call. Creating a class—or extending the ones built into
JavaScript—can give you added flexibility to be able to manipulate those collections. An
internal iterator is a mechanism that enables you to navigate through a collection using
exposed elements.

Here’s an example collection object that enables you to navigate:

function Collection (arr)
{
this.current = 0;
this.items = arr;

}

Collection.prototype.getCurrent = function()
{
return this.items[this.current];

}

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING78

7648ch03final.qxd 9/6/07 7:53 PM Page 78

Collection.prototype.getNext = function()
{
return this.items[++this.current];

}
Collection.prototype.getPrevious = function()
{
return this.items[--this.current];

}

var coll = new Collection([1,2,3,4]);
alert(coll.getCurrent()); // 1
alert(coll.getNext()); // on to 2
alert(coll.getPrevious()); // back to 1

You have your main Collection class, which stores a pointer to the current item and the
array in a property called items. The getCurrent(), getNext(), and getPrevious() methods
enable you to move back and forth within the array, constantly updating the current pointer.
It could be extended with the map() function you saw earlier, along with error detection to
check whether you have reached the end or beginning of the collection.

Many of the JavaScript libraries have implemented iterators and offer plenty of methods
that can be extremely handy in working with collections of data like this.

Summary
In this chapter, you got a good sense of some object-oriented programming using JavaScript.
Some of the things you should know before you move on include the following:

• The different ways to create objects and when it is beneficial to use one instead of
another

• How to extend objects with methods and properties and when to use the prototype
property

• How to take advantage of closures

• How to use callbacks

Chapter 4 dives into the wonderful world of JavaScript libraries to learn what they have to
offer, and why and how you should use them.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING 79

7648ch03final.qxd 9/6/07 7:53 PM Page 79

7648ch03final.qxd 9/6/07 7:53 PM Page 80

Libraries

JavaScript libraries have been around in one form or another for almost as long as JavaScript
itself. As you go from project to project, it’s inevitable that you’ll find yourself reusing various
functions. They become part of your core that you end up copying each time you start up
something new. With any good library, code reuse leads to reliability; using the same code on
multiple projects means that the code has been exposed to more and more people, enabling
bugs or cross-browser issues to be resolved.

You can, of course, use someone else’s library. Using an existing library such as Prototype
or jQuery gives you a higher level of reliability that might be difficult to attain through main-
taining your own code base.

The trade-off of using a library is file size. Some of these libraries, if taken as a whole,
weigh in at more than 300 kilobytes. However, library developers are tuned in to these kinds
of issues and are building their code in a very modular way, enabling you to pick and choose
only the features you need. This keeps the amount of code bloat to a minimum. Sites such as
Mootools.net even include a module picker that enables you to select whether to compress
the files or not.

Libraries serve a number of purposes, which I’ve summarized into three categories:

• Document object model (DOM) access, traversing, and manipulation

• Application conveniences including language extensions

• Widgets

Working with the DOM
Because you’re working with HTML and Cascading Style Sheets (CSS), the DOM is likely the
most important interface when it comes to a solid library. It not only improves your efficiency
at retrieving elements from the DOM but it also smoothes the bumps of manipulation and tra-
versal that tend to be inconsistent across browsers.

Many of today’s popular libraries include some methods for working with the DOM,
including the capability to select nodes via CSS selectors and to move through a collection of
nodes using functions such as nextSibling() and previousSibling(). They often have con-
veniences for inserting new elements into the DOM, which is a tiresome process at best.

81

C H A P T E R 4

7648ch04final.qxd 9/6/07 7:56 PM Page 81

Animation
Part of working with the DOM is handling animation. Being able to handle animation means
being able to read and modify several DOM properties, such as the style object and element
offsets. Animation is simply the manipulation of element properties over time. It’s also a great
way to add interest to a page and can improve the usability of your site or application if used
appropriately. (You’ll learn more about animation in Chapter 6.)

Application Conveniences
The desktop is slowly moving to the Web with applications such as Google Docs and Spread-
sheets, and Google Mail. With these types of applications you are working not only with the
DOM but also with large data sets. JavaScript has some basic mechanisms, including arrays
and simple iteration, for handling data sets. However, larger data sets often require filtering
and ways to quickly load that data into the DOM.

Libraries solve these problems by automating much of the tedium as well as providing
a unified application programming interface (API) to various JavaScript and DOM features.
Libraries address the following issues:

• Language extensions and bridges

• Event handling

• Ajax

• Strings and templating

• Working with collections

• Handling JSON and XML

Language Extensions and Bridges
JavaScript and the DOM are great, but (as you saw in the last chapter) they weren’t neces-
sarily designed to do certain things (for example, deep inheritance, in which one object
inherits from another, which inherits from another, and so on). Similarly, new language
features get implemented in some browsers, but take a while before being introduced into
other browsers. These features can be covered with a language bridge, which is a chunk of
code that makes the feature of one browser available in another browser. A great example
is the Array.push() method. Older browser versions such as Internet Explorer (IE) version 5
didn’t support it. A simple function such as the following would be used to bridge the gap
between the support in IE 5 and other more modern browsers:

// if the method doesn't exist then add it in
if (!Array.prototype.push) {

Array.prototype.push = function(obj) {
this[this.length] = obj;

}
}

CHAPTER 4 ■ LIBRARIES82

7648ch04final.qxd 9/6/07 7:56 PM Page 82

Event Handling
Event handling falls under the category of “Language Extensions and Bridges,” but I separated
it into its own section because it’s so important. Far above any other issue, event handling is
the biggest problem that web developers using JavaScript have to deal with. Libraries solve
this problem by creating a unified interface for attaching events, maintaining object scope,
and stopping events. Let’s take a look at an example from Prototype:

Event.observe(element, 'click',
(function(){ alert(this.href) }).bindAsEventListener(element)
);

In Prototype an Event object has an observe() method that enables you to observe
events on a particular object. You want to track a click event on an element (a link, in this
case). The third parameter enables you to pass in a function to be called when the event is
fired. Because this is a simple example, I created an anonymous function, but notice the
method bindAsEventListener(). This method takes a single parameter: the element that
should have scope from within the function. When the function gets called, this will refer
to element. The bindAsEventListener() method makes use of the apply() method (refer to
Chapter 3), which ensures that scope is maintained.

Ajax
Ajax originally stood for Asynchronous JavaScript and XML, but it has morphed into an
umbrella term that encapsulates a number of technologies. At the core of Ajax, though, is still
the idea of using JavaScript to communicate with the server to send and receive data without
having to refresh the page. This is done using the XMLHttpRequest object, often referred to as
the XHR object.

The XHR object was originally created by Microsoft as an ActiveX object back in 2000.
Mozilla went on to create a native implementation of XHR in 2002; since then, Safari and
Opera have added support for it.

Ajax in itself is fairly straightforward, but handling all the contingencies might not be
obvious. JavaScript libraries provide a framework for handling successful calls and problem
calls (timeouts, for example). Chapter 5 will discuss Ajax in more detail.

Strings and Templating
When you work with Ajax-based web applications, you frequently take data that has been
received from the server and place it on the page somehow. The quickest way to do it is to
receive a full HTML snippet from the server and just plunk it on the page. However, that
process isn’t very practical. You end up using a lot of bandwidth just to send a little bit of data.
Templating solves this problem by enabling data received from the server to be quickly
merged with a template and then embedded in the page.

Additionally, web programming constantly uses strings, and having ways to filter, capital-
ize, or camel case strings can be extremely handy.

Here’s an example using Prototype to combine a data set with a template to create a list of
links:

CHAPTER 4 ■ LIBRARIES 83

7648ch04final.qxd 9/6/07 7:56 PM Page 83

<ul id="myul">

<script type="text/javascript">
var ul = $('myul');
//the dataset
var linkdata = [{name: 'About', url: '/about/'},

{name: 'Contact', url: '/contact/'},
{name: 'Help', url: '/help/'}];

//the template
var templ = new Template('#{name}');

//let's add each of these to the document.
linkdata.each(function(conv){

li = document.createElement('li');
li.innerHTML = templ.evaluate(conv);
ul.appendChild(li);

});
</script>

The example starts with an empty unordered list retrieved using the Prototype dollar
function $(). After that, some link information, which is a normal array of object literals, is
declared. Next, a new string template, which is another feature of Prototype, is declared. The
link data goes through each one using the Prototype each() method. Prototype automati-
cally makes the each() method available on all arrays. Each item in the array is evaluated
into the template and spit into a new list item, which gets appended to the list. In this case,
the link data is embedded in the script. A more common scenario is to pull in the link data
via an Ajax call.

Working with Collections
A collection is an array of objects, and the array functionality within JavaScript can be limiting.
Prototype, for example, includes a very robust Enumerable class for working with collections.
You can use methods that will automatically scan the array and remove elements, add ele-
ments, or return only a subset of elements.

As you saw in the last example, the each() method on the array was used to loop through
the array. Iteration is much simpler than having to create for loops every time.

Handling JSON and XML
The need to handle data sets is tied mostly to Ajax. These data sets need to be transferred in
a format that enables you to quickly understand how the data is structured. The two most
popular ways to do this are by using JSON and XML.

JSON (http://json.org), which stands for JavaScript Object Notation, uses a subset of
JavaScript to safely define and transport data. JSON parsers are available for dozens of

CHAPTER 4 ■ LIBRARIES84

7648ch04final.qxd 9/6/07 7:56 PM Page 84

http://json.org

server-side languages, making it extremely easy to integrate into a project. JSON has slowly
been taking over XML in popularity for transporting data from the server side to the client
side for a couple of reasons:

• JSON is almost always smaller in size because less markup is needed to define the data.

• JSON is quicker to parse and use on the client side because it is native JavaScript.

XML support was built into the responseXML property of the original XHR object being
returned. With an XML object, you can use familiar DOM methods to traverse the XML.

JavaScript libraries make handling JSON and XML easier by being able to automatically
detect which type of data is being returned by an XHR call and parse it appropriately. With
JSON, the data can be parsed to prevent against invalid or dangerous information being
served up from the server.

Widgets
Widgets are prebuilt components (such as file browsers, tabbed interfaces, or custom dialogs)
that can be plugged into an application and solve a discrete task, as can be seen in Figure 4-1.
Widgets essentially combine the first two categories—DOM manipulation and application
conveniences—into a well-oiled machine. Prebuilt widgets are best used for solving common
design issues and can take the pain out of having to deal with complicated edge cases that
inevitably occur when building complicated interfaces.

Figure 4-1. An example page from the ExtJS library featuring a tree widget, layout elements, and
drag and drop

CHAPTER 4 ■ LIBRARIES 85

7648ch04final.qxd 9/6/07 7:56 PM Page 85

Popular Libraries
A few libraries were previously mentioned, but brace yourself. Hundreds of libraries are out
there doing seemingly identical things, with more coming out almost daily. Each library might
take a slightly different approach to a certain feature—depending on what that developer felt
was important to include.

Thankfully, there’s plenty of support—including from large corporations—for just a hand-
ful of libraries, each with its own strengths and weaknesses. Weaknesses tend to be addressed
quickly by using techniques used by competing libraries or through plug-ins.

One of the largest downfalls of many open-source movements is documentation. You’ll
certainly find that documentation can be sparse and unclear. Some libraries do a better job
than others at addressing this.

The current leaders of the pack are the following:

• Dojo

• Prototype

• jQuery

• Yahoo! UI Library (YUI)

• Mootools

Library plug-ins focused specifically on animation or widgets include the following:

• Script.aculo.us

• Interface

• ExtJS

Recent additions likely to become popular include the following:

• base2.DOM

• DED|Chain

Let’s discuss each library in more detail to see how it can be used in your next project.

Dojo
Dojo (http://dojotoolkit.com) is a large library focused on easing the web application devel-
opment process by having widgets and other interface elements easily dropped into any
project. Here’s a description from the Dojo web site:

Dojo enables you to easily build dynamic capabilities into web pages and any other

environment that supports JavaScript sanely. You can use the components that Dojo

provides to make your web sites more usable, responsive, and functional.With Dojo you

can build degradable user interfaces more easily, prototype interactive widgets quickly,

and animate transitions.

CHAPTER 4 ■ LIBRARIES86

7648ch04final.qxd 9/6/07 7:56 PM Page 86

http://dojotoolkit.com

The Dojo library focuses on creating a platform on which to build desktop-like web appli-
cations like the e-mail example shown in Figure 4-2. It can be daunting and would certainly be
overkill if all you ever need to do is add some animation to your blog.

Figure 4-2. A Dojo example that uses many of the widgets available within the toolkit

Dojo covers all three of the key areas that libraries attempt to address: it smoothes the
rough terrain of working with the DOM, it includes many application conveniences, and it
includes many prebuilt widgets.

Prototype
Prototype (http://prototypejs.org) was one of the first libraries to gain widespread popu-
larity and helped popularize many of the JavaScript techniques used today. Prototype was
originally designed by Sam Stephenson (http://conio.net) and integrated into Ruby on
Rails (http://www.rubyonrails.org). Many of the ways that Prototype approaches problems
are similar in style to Ruby.

One of the reasons for Prototype’s popularity is the way it makes many things much eas-
ier, including the infamous dollar sign function ($). By using the dollar sign function, methods
are automatically attached to the returned DOM element, adding a lot more power to what
you can do with an element. Recent iterations of the library have improved on method chain-
ing, making it a formidable tool:

$('elementId').show(); // shows an element that was hidden using display:none

Prototype, unlike other libraries, really focuses heavily on addressing two key areas: work-
ing with the DOM and application conveniences including lots of string functions, and a
custom enumeration object that is used to extend a custom hash object and the built-in Array
object. When it comes to building web applications—especially Ajax-driven ones—Prototype
is a solid solution.

CHAPTER 4 ■ LIBRARIES 87

7648ch04final.qxd 9/6/07 7:56 PM Page 87

http://prototypejs.org
http://conio.net
http://www.rubyonrails.org

The latest version of Prototype also features a double dollar function ($$) for using CSS
selectors to retrieve an array of elements. Here’s a great example of how easy it can be used to
create an expand and collapse feature for an FAQ page:

<div class="question">What is an apple?</div>
<div class="answer">It's a fruit!</div>

$$('.question').each(function(el){
Event.observe(el , 'click', (function(){
this.next().toggle()

}).bindAsEventListener(el));
});

There’s a bunch of things happening in this example. First is the $$() function, which
retrieves any element on the page with a class name of question. This function returns an
array of elements. Because it is an array, you can now use the Array.each() method that the
Prototype library makes available to you. It takes a function as its sole parameter, executing
it for each element in the array, with the element getting passed into that function.

Within that anonymous function, a click event handler is attached to each element. The
element is bound as the event listener to access it from within the event handler by using the
this keyword. When a user clicks a question, the function will grab the next element and tog-
gle its visibility.

With this level of succinctness, you can lose readability. There are ways to write the code
to make it easier to read, but it’s often at the cost of brevity. Here’s a quick example that uses
named functions instead of anonymous functions to improve readability:

function onEach(el)
{

function toggle()
{

this.next().toggle();
}
Event.observe(el, 'click', toggle.bindAsEventListener(el));

}
$$('.question').each(onEach);

Prototype’s approach to object-oriented design is firmly in the object literal camp. A con-
structor can be created by specifying an initializing function:

<input type="text" id="searchfield" value="Search">

<script type="text/javascript">
var FormField = Class.create();
FormField.prototype = {
initialize: function(id) {
var el = $(id);
Event.observe(el,'focus',(function()

CHAPTER 4 ■ LIBRARIES88

7648ch04final.qxd 9/6/07 7:56 PM Page 88

{
if(this.value == this.defaultValue) this.value = '';

}).bindAsEventListener(el));

Event.observe(el,'blur',(function()
{

if(this.value == '') this.value = this.defaultValue;
}).bindAsEventListener(el));

}
};

new FormField('searchfield');
</script>

This example used the Prototype method of creating a class and then attaching the
initialize() function to the prototype by specifying it as a method in the object literal. When
a new object is instantiated from it, the initialize() function is automatically run. The focus
and blur events are observed. For the focus event, if the value contained within is the default
value, it will clear the input, enabling the user to type from scratch. Then, on blur, the field is
reset to the default value if the field is blank.

jQuery
jQuery (http://jquery.com) is quick and nimble, and it was the first library that really high-
lighted the power of method chaining. The library is well encapsulated and is guaranteed to
play well with other libraries using its own jQuery namespace. It offers a dollar sign function
that maps to an internal method. If you are using jQuery alongside Prototype or another
library that makes use of the dollar function, you can turn it off in jQuery.

jQuery is compact, yet extremely powerful. However, it is light in features when it comes to
many of the tasks required to handle desktop-like functionality in a web application. There’s no
templating or the capability to work with data sets from within the library. If you need to add
some interactivity to your site, jQuery is a great solution.

Here’s a quick example that helps demonstrate where jQuery really shines:

$("p.surprise").addClass("ohmy").show("slow");

You can probably see many similarities between this example and that for Prototype. First
and foremost, the important thing is how the dollar sign function accepts CSS selectors; with
Prototype you have to use the double dollar sign function. If you end up using each of these
libraries on different projects, this mistake might trip you up from time to time.

After the elements are retrieved, the example adds a class name of ohmy to each of the ele-
ments. After that, the show() method animates the elements. In this case, the script will create
a slow slide out on each paragraph with a class name of surprise.

Event handling is similarly done with method chaining. In the following example, all
paragraph elements on the page are retrieved. Each one gets a click event attached to it. When
the event fires, it will retrieve the text from that element. The text() method is a method of
the jQuery object.

CHAPTER 4 ■ LIBRARIES 89

7648ch04final.qxd 9/6/07 7:56 PM Page 89

http://jquery.com

$("p").bind("click", function(){
alert($(this).text());

});

Chaining works so well because jQuery returns a jQuery object each time. In fact, $() is
really just a shortcut to the jQuery function. The function uses itself as a class to instantiate
new objects from itself each time it is run. In doing so, the jQuery object can be accessed
much like a singleton (as in the following example) or as an object generator (as in the preced-
ing examples). This example instantiates an Ajax request and grabs the responseText property
from that, assigning it to a variable (check out Chapter 5 for more information on how Ajax
works):

var html = $.ajax({
url: "/servercall/",
async: false

}).responseText;

For documentation on jQuery, visit http://docs.jquery.com.

Yahoo! UI Library (YUI)
YUI (http://developer.yahoo.com/yui) is developed and backed by the folks at Yahoo! It’s
used on many of the Yahoo! properties, so it’s well designed and extremely robust. YUI takes
a more traditional approach to its library design—each method is simply a function call that
takes a number of parameters. You don’t get method chaining as with jQuery or the conven-
iences of many of the functions within Prototype (but take a look at DED|chain, mentioned
later in this chapter, which extends YUI to include method chaining). What you do get is a
well-thought-out library and prebuilt functionality that goes beyond many of the libraries
mentioned in this chapter.

YUI is also heavily namespaced. There’s the main YAHOO object; then everything branches
off from there. For example, to retrieve an element via the identifier, use the following:

YAHOO.util.Dom.get('elementID');

Of the three categories of problems that libraries try to solve, YUI mostly tackles DOM
tools such as those offered up in the Dom namespace and the Anim namespace (for animation).
It also includes a number of widgets, such as those shown in Figure 4-3.

CHAPTER 4 ■ LIBRARIES90

7648ch04final.qxd 9/6/07 7:56 PM Page 90

http://docs.jquery.com
http://developer.yahoo.com/yui

Figure 4-3. The TreeView, TabView, and Calendar controls available within the YUI library

Using the widgets can be a handy way to add complex functionality into an application.
The calendar widget is a very common one that can be used easily as a date picker:

function selEvent(type, args)
{
// type = event type ='select'

// the date selected is the first element in the array
var dates = args[0];
// the date clicked on is the first element of that array
var date = dates[0];
// the date is stored in an array as [YYYYY, MM, DD]
var year = date[0], month = date[1], day = date[2];

}
widget = new YAHOO.widget.Calendar("cal1","calwidget",{close:true,iframe:true});
widget.selectEvent.subscribe(selEvent, this, true);
widget.render();

The calendar widget takes three parameters: the first parameter is a unique identifier for
the calendar itself, the second is the ID of the HTML element being used as the placeholder
for the widget, and the third is an object literal to store options. In this case, you want to show
a CLOSE button and use an <iframe>, which sits behind the calendar and is used to lie on top
of <select> boxes that don’t allow other HTML elements to be shown over them. This issue
mostly applies to IE 6 or less; it has been fixed in IE 7.

Although the excessive namespacing might seem like a hassle, there’s always a really
quick way to create a shortcut. The following mimics Prototype a little bit by declaring a dollar
sign function on the page and points it to the get() method of the Dom object:

CHAPTER 4 ■ LIBRARIES 91

7648ch04final.qxd 9/6/07 7:56 PM Page 91

var $ = YAHOO.util.Dom.get;
var el = $('elementID');

Using the encapsulation techniques described in Chapter 3, you can create the shortcuts
within function calls or classes to keep the global namespace as clean as possible.

Mootools
Mootools (http://mootools.net) is a relative newcomer to the library scene. It originally
started as Moo.fx, which was an effects library built on top of the Prototype library. The devel-
opers behind it felt they had an opportunity to build a compact and modular library. One of
the major benefits of Mootools is the download configurator (see Figure 4-4), which enables
you to select which modules of the library you need. You can also choose the level of compres-
sion that should be performed. All the dependencies between the modules are determined
automatically. You can also decide whether to use a compressed version of the library or one
that is fully documented. By using a minimized version of the code, you can reduce the file
size and thereby reduce the amount of bandwidth the file needs to use. Many of the other
libraries, such as jQuery and YUI, also offer up minimized versions.

Figure 4-4. Mootools download configurator

■Note During the development phase of a project, it’s best to use the uncompressed versions of the
libraries. Debugging is much easier because code becomes easier to trace when in an unminimized form.
In its current 1.05 version, Firebug might report incorrect function names when using a minimized form.
Just remember to switch to the compressed versions when you’re ready to launch.

CHAPTER 4 ■ LIBRARIES92

7648ch04final.qxd 9/6/07 7:56 PM Page 92

http://mootools.net

One of my favorite features of Mootools is its capability to not only set animation on an
element but to set it on multiple elements at one time:

var myElementsEffects = new Fx.Elements($$('a'));
myElementsEffects.start({
'0': { //let's change the first element's opacity and width
'opacity': [0,1],
'width': [100,200]

},
'4': { //and the fifth one's opacity
'opacity': [0.2, 0.5]

}
});

Using the Fx.Elements class, it uses the $$() function just like Prototype; in this case, it
passes in a list of links. The start() method starts the animation and takes an options object
as its only parameter. The object literal uses keys to define which elements should be ani-
mated. The first and fifth elements (you’re starting from 0) will be animated with the first
element having its opacity changed from 0 percent to 100 percent (going from invisible to
completely visible) and its width going from 100px to 200px. The fifth element has its opacity
changed from 20 percent to 50 percent.

This functionality is handy if you have a number of dependent animations, such as
having one area expand while a number of other areas collapse at the same time.

Script.aculo.us
Script.aculo.us (http://script.aculo.us) is an animation and widget library built on top of
Prototype. The Prototype/Script.aculo.us combo is quite popular and is the default in a num-
ber of server-side frameworks.

Effects can be quickly and easily applied by using a couple lines of code:

new Effect.Opacity('myElement',
{ duration: 2.0,
transition: Effect.Transitions.linear,
from: 1.0, to: 0.5 });

The class takes the element ID (or the element itself) as the first parameter and an
options object literal as the second parameter. This example changes the opacity of an ele-
ment from 100 percent to 50 percent over 2 seconds. The transition property enables
mathematical transitions to be applied to create a more natural feel to the animations. They
can start off slow and then speed up. They can start off fast and then slow down. They can
even bounce back and forth before settling into place.

Script.aculo.us really shines when you use its controls, making it super simple to add
them in any project. Here’s a sortable list example:

Sortable.create("firstlist",
{dropOnEmpty:true,
containment:["firstlist","secondlist"],
constraint:false});

CHAPTER 4 ■ LIBRARIES 93

7648ch04final.qxd 9/6/07 7:56 PM Page 93

http://script.aculo.us

The Sortable control expects to use a list by default and makes each element draggable,
which enables each element to be dragged elsewhere in the tree (enabling the user to re-sort
the items). You can even enable dragging and dropping between lists. In this example, the
control enables elements to be dragged between firstlist and secondlist.

ExtJS
ExtJS (http://extjs.com) is a widget library, but it surpasses all others mentioned here in its
elegance and flexibility. It used to go under the name YUI.Ext because it was specifically an
add-on to the YUI library (just as Script.aculo.us is for Prototype). However, as the extension
neared its 1.0 release, the add-on got reworked to enable ExtJS to work with YUI, jQuery, or
Prototype. Now in its 1.1 release, ExtJS includes a stand-alone version, removing the need for
other libraries.

The documentation for the library even uses its own components, including the Tree and
Layout widgets, as seen in Figure 4-5.

Figure 4-5. ExtJS documentation using ExtJS widgets

ExtJS is fantastic for application prototyping because of the ease in which many of the
features can be implemented. The file browser–style navigation on the left side seen in
Figure 4-5 is easily created using a few lines of code:

Ext.onReady(function(){
// shorthand
var Tree = Ext.tree;

CHAPTER 4 ■ LIBRARIES94

7648ch04final.qxd 9/6/07 7:56 PM Page 94

http://extjs.com

var tree = new Tree.TreePanel('tree-div', {
animate:true,
loader: new Tree.TreeLoader({

dataUrl:'get-nodes.php'
}),
enableDD:true,
containerScroll: true

});

// set the root node
var root = new Tree.AsyncTreeNode({

text: 'Ext JS',
draggable:false,
id:'source'

});
tree.setRootNode(root);

// render the tree
tree.render();
root.expand();

});

Ext.js has an onReady() function that runs a piece of code as soon as the DOM is ready,
which normally occurs well before the window.onload event fires. jQuery has a similar func-
tion, as does Prototype via Dan Webb’s LowPro plug-in available at http://www.danwebb.net/
lowpro.

The tree structure is handled via a number of objects in the Ext.tree namespace:
TreePanel, TreeLoader, and AsyncTreeNode. The TreePanel takes two parameters: the first is
the ID in which the panel should be embedded, and the second is an object literal for options.
One of those options is loader, which uses the TreeLoader object to load in objects from the
server. In this example, the data is to be loaded as a JSON object from a PHP script.

A new node is created and set as the root node of the tree panel. The node is rendered and
then set to expand. By expanding the node, it will load in the child nodes using the TreeLoader
object. Once the data is loaded, it is cached on the client side so that further collapse/expands
don’t continually make calls to the server.

The tree nodes are very extensible and enable additional attributes to be attached to
them. The look of the nodes can also be completely customized, as demonstrated in
Figure 4-6.

The ExtJS library includes widgets for custom dialogs (instead of using alerts or pop-up
windows), tabbed interfaces, data grids, layouts, and a whole lot more.

ExtJS is also more than just a widget library because many of the underlying components
to these widgets can be used on their own as application conveniences such as the built-in
DOM tools, the event handling, the state management classes, or the data format classes for
XML or JSON handling.

CHAPTER 4 ■ LIBRARIES 95

7648ch04final.qxd 9/6/07 7:56 PM Page 95

http://www.danwebb.net

Figure 4-6. A photo album using the ExtJS TreePanel

New Libraries
Of course, nobody is ever content to leave well enough alone—and probably for good reason.
Libraries are continually tweaked and added upon to meet the needs of the ever-growing
number of people using these libraries. Inevitably, some will attempt to make their own
library to address the needs that libraries before them haven’t met.

Base2.DOM
Dean Edwards, a man who has contributed heavily to the popularity of JavaScript (including
his IE7Scripts that aim to fix CSS issues in IE 6 and IE 7), has come up with his own DOM tools
(http://dean.edwards.name/weblog/2007/03/yet-another).

Dean takes a different approach to developing a library: build an API that matches that
of the World Wide Web Consortium (W3C) and JavaScript 1.5 (http://developer.mozilla.
org/en/docs/Core_JavaScript_1.5_Reference), the idea being to support features such as
addEventListener() or Array.forEach() that some browsers don’t yet support (but hopefully
will). As new browsers come online that support these features, that portion of the library
becomes no longer necessary, yet no code that depended on the library has to change.

CHAPTER 4 ■ LIBRARIES96

7648ch04final.qxd 9/6/07 7:56 PM Page 96

http://dean.edwards.name/weblog/2007/03/yet-another
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference

DED|Chain
As mentioned, YUI doesn’t support method chaining. Many of those who have come to
appreciate jQuery’s simplicity have found YUI to be cumbersome to work with. Dustin Diaz
developed DED|Chain (http://dedchain.dustindiaz.com) to fill that gap by taking the YUI
library and extending it to offer chainable methods such as the following:

_$('#elementID').on('click', function(){ /* code goes here */ });

This uses _$ much as jQuery uses the $ to enable the retrieval of DOM elements using CSS
selectors. In this case, it returns all objects with an ID of elementID (you should have only one)
and then attaches an onclick event handler to them.

DED|Chain is still early in development, but I want to point it out because it emphasizes
one of the key features of JavaScript: it’s extremely flexible. Code can easily be extended to
offer the features that the core library might not take into account.

How to Choose a Library
With so many libraries out there and so many more to come, how can you ever narrow down
the field? Of course, your choice depends entirely on what you need to accomplish. As dis-
cussed at the beginning of this chapter, libraries tend to fall into one of the three major
categories: DOM tool, application helper, or widget. You need to consider what you might be
building and narrow down the field from there.

If you just need to add some interactivity to your blog, such as simple slide effects, you’ll
want a library that focuses on the core DOM features along with some basic effects. Mootools
or jQuery, for example, might be a good fit.

If you want to build a web application and need to manipulate data sets along with proto-
typing a complex user interface, using Prototype along with ExtJS might be a better solution.

When looking at any library, be sure to get your hands dirty and take a look at the source.
You’ll need to have a good understanding of how the library is put together to be able to take
advantage of its power. Plus, it’ll make it easier to do apples-to-apples comparisons.

The Community
Do a search in your favorite search engine to see who’s using the library and the types of
things they run into. Having a popular community behind it is a good indication of how solid
a library it is. You’ll also find places you can visit, such as blogs and forums, if you ever run into
a problem.

The Documentation
With many libraries being built and maintained by only a small team of developers on their
own time, you can imagine that documentation falls to the bottom of the to-do list. For
example, this was an issue with the Prototype library until only recently. The library had no
documentation except for a few third-party resources. A team of individuals banded together
to ensure that the library development itself continued on and that a proper site be built in
its honor, along with documentation.

CHAPTER 4 ■ LIBRARIES 97

7648ch04final.qxd 9/6/07 7:56 PM Page 97

http://dedchain.dustindiaz.com

■Tip When picking a library, be sure to look through the documentation. Is it up to date? Does it have
proper examples?

Luckily, as more and more people develop on top of these libraries, more examples will
make their way onto the Internet, and the documentation will be added to. JavaScript libraries
are almost always open-source projects that invite you to contribute to the active develop-
ment of the library.

Summary
You discovered that the field is ripe for the picking, with any number of JavaScript libraries
that might be well suited for your next project. It’s not necessary to reinvent the wheel each
time. The libraries mentioned in this chapter are popular, which means they are getting used
by thousands (even millions) of people, and that kind of quality assurance is hard to beat if
you’re continually starting from scratch. This will save plenty of time, not only in the develop-
ment of consistent cross-browser code but also with the bug testing and maintenance of such.
Each library has its strengths and weaknesses, and picking the right tool for the job can some-
times be half the battle.

Next up, you’ll look at Ajax and after that Visual Effects. In both chapters and the case
studies to follow, you’ll see the topic of JavaScript libraries come up again and see some great
examples of how they can be applied to a project.

CHAPTER 4 ■ LIBRARIES98

7648ch04final.qxd 9/6/07 7:56 PM Page 98

Ajax and Data Exchange

If you’ve heard the term used only casually, you might have pondered whether Ajax has sim-
ply become the new word for JavaScript. The term, coined by Jesse James Garrett of Adaptive
Path, actually came about fairly recently (in 2005). Garrett (and probably others within Adap-
tive Path) came up with the term as a convenient way of describing a specific interaction:
Asynchronous JavaScript and XML.

With Ajax, JavaScript can communicate with the server, returning results in a chunk of
XML. You can then use that new data to update what the user sees on the screen, and it all is
done without a page refresh. The great thing about this process is the asynchronous part: you
can perform these tasks behind the scenes while the user continues to interact with the page
at hand.

This chapter covers the following:

• Deconstructing the Ajax process

• Understanding data formats

• Building a reusable Ajax object

• Using libraries to handle Ajax calls

First, however, let’s look at a good example of Ajax and how it achieves the effects it does.

Examining an Ajax Application
Google Docs & Spreadsheets—along with most of the Google online applications, for that
matter—demonstrates the power of Ajax very well (see Figure 5-1). Changes to your docu-
ment get constantly sent back to the server to be saved. This type of interaction is just like
using a desktop application such as Microsoft Word. And although many of the applications
that make use of the technique attempt to be like desktop applications, it can be used for
even small tasks that can make a site seem extremely responsive and fun to use.

As another example, take a look at Figure 5-2. Notice the star where you can highlight
a particularly interesting item. Traditionally, clicking it would require the entire page to be
reloaded (all 16KB of it, not including JavaScript, Cascading Style Sheets [CSS], and images).
With Ajax, the user never leaves the spot, and the interaction sends only a few bytes back
and forth.

99

C H A P T E R 5

7648ch05final.qxd 9/6/07 8:53 PM Page 99

Figure 5-1. Google Docs automatically saves changes every minute to prevent losing any
precious changes.

Figure 5-2. The star enables you to target this item as interesting without having to refresh
the page.

Deconstructing the Ajax Process
At the core of Ajax is the XMLHttpRequest object (which is often referred to as XHR). Microsoft
originally developed an ActiveX object to be used for Outlook Web Access way back in 2000.
However, without cross-browser support, the functionality remained mostly in obscurity.
When Mozilla implemented a native version of the object in its browser, things really began
to take hold. Finally, with Safari and Opera implementing it, it took off. Now there are entire
conferences and consortia based on this lovely word.

While Ajax described a very specific set of interactions, its meaning has expanded some-
what to include a broader concept: any communication to the server via JavaScript using the
XMLHttpRequest object. The data returned might be XML, but it could also be HTML, JSON,
CSV, or whatever text format your heart desires.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE100

7648ch05final.qxd 9/6/07 8:53 PM Page 100

The process of making an Ajax request is fairly straightforward. Here’s a quick example
put together for you:

// Use the native version for everybody but IE6<
if(window.XMLHttpRequest) {

transport = new XMLHttpRequest();
}else{

try{ transport = new ActiveXObject("MSXML2.XMLHTTP.6.0"); }catch(e){}
try{ transport = new ActiveXObject("MSXML2.XMLHTTP"); }catch(e){}

}

if(transport)
{

transport.open("GET", "http://example.com/test/", true);
transport.onreadystatechange = function(){ alert('I am back!'); };
transport.send();

}

This is the basic structure of an Ajax request. The first part instantiates the XHR object,
beginning with trying to instantiate a native version of the object. If a native implementation
is not found, it attempts to instantiate the ActiveX objects for Internet Explorer (IE). (You’ll
learn more about why we check for both implementations later on.)

The second part takes the object and opens a connection with three parameters: the
first specifies the method (GET or POST), the second is the URL you want to open, and the
third determines whether the call should be synchronous or asynchronous.

If the third parameter is set to synchronous (false), the browser will wait for the call to
return before users can do anything. This isn’t ideal because users might think their browser
has frozen and needs to be shut down. Setting it to true makes the call asynchronous, enabling
the user to return to interact with the page while the call processes in the background.

The status of the XHR request makes a number of calls to the onreadystatechange event
handler. From within the event handler, you can check the status of the call by checking the
readyState property on the XHR object: transport. The readyState property will store a num-
ber between 0 and 4 at any given time (see Table 5-1).

Table 5-1. Possible readyState States

Value State Description

0 Uninitialized The open method of the XHR object hasn’t been called yet.

1 Loading The send method hasn’t been called yet.

2 Loaded The send method has been called; response headers are available.

3 Interactive The response data is in the process of downloading, and is available via
the responseText property of the XHR object.

4 Completed Everything is done, and the entire result is available in the responseText
and, if available, the responseXML properties of the XHR object.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 101

7648ch05final.qxd 9/6/07 8:53 PM Page 101

http://example.com/test

It is standard practice to check for a readyState of 4 (it is the XHR equivalent of
window.onload):

transport.onreadystatechange = function(){
if(transport.readyState == 4)
{
alert('I am done!');

}
};

That’s all there is to it. Okay, not really. There is much more to consider, starting with the
request/response process.

Ajax Request/Response Process
In a traditional request, a user initiates a request for data, waits for the server to send back a
response, and then waits for the browser to render the page. In an Ajax-enabled environment,
the amount of data that needs to be sent back and forth can be greatly reduced. Requests for
data can also be made while the user is in the midst of completing another task on the page,
negating the need for the user to initiate the request and wait for the entire response sequence
to re-create the page. Responses need to return changes only to the current document, not the
entire page (and any noncached assets such as images or CSS). You can then use JavaScript to
update the document object model (DOM) without the page refresh.

Figure 5-3 illustrates the difference between Ajax and non-Ajax sequences. Ajax can ulti-
mately mean a more responsive interface, taking less time to complete the same tasks.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE102

7648ch05final.qxd 9/6/07 8:53 PM Page 102

Figure 5-3. Ajax updates to the client can be made with or without user interaction (in
comparison with the traditional non-Ajax interaction).

When putting together any Ajax-based solution, it’s important to consider the user. Any
time you override the default behavior of the browser there will suddenly be a number of
points of failure. If something dies or takes too long to process, the user might never know
what happened and might think that the site is broken.

If the request is user-initiated, it’s important to show users that something is happening.
This is most often done with an animated graphic indicator (see Figure 5-4) placed on or near
where the interaction was initiated. The user then knows to wait or move onto some other part
of the page to wait for the interaction to complete.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 103

7648ch05final.qxd 9/6/07 8:53 PM Page 103

Figure 5-4. A variety of the indicators available at www.napyfab.com/ajax-indicators

Failure
As much as you might not like to admit it, sometimes things go wrong. So it’s best to plan for it
right from the get-go. Ask these questions:

• What happens if the request times out? How long should you wait?

• What happens when the data you get back isn’t what was expected?

• What happens when multiple requests are made? (Especially if they come back in a dif-
ferent order from what was requested!)

You’ll take a look at each of these questions and integrate solutions into a reusable library.

Storyboarding
When planning an Ajax-driven application, there are a number of interaction points. Yahoo!
refers to them as interesting moments. Figure 5-5 shows a portion of the storyboard matrix
that Yahoo! provides specifically for drag-and-drop functionality. I recommend that you have
something similar to plan for the interesting moments in your application.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE104

7648ch05final.qxd 9/6/07 8:53 PM Page 104

http://www.napyfab.com/ajax-indicators

Figure 5-5. Yahoo! storyboard matrix available at http://developer.yahoo.com/yui/dragdrop/
#storyboard

The Yahoo! implementation uses a grid with objects on the left and events along the top.
Alternatively, I like to develop a flowchart that demonstrates the interactions that I might run
into. In doing so, I can ensure that I build the various functions that might be required to
handle the various issues. It also helps me think through the entire process instead of thinking
strictly of the end goal.

Figure 5-6 is a sample flowchart that shows what might be involved in updating the data
within an HTML table on the page. You’ll notice that expired user sessions—a common prob-
lem in an authenticated application—have even been taken into account.

Figure 5-6. A flowchart explaining the interaction process that might exist to update a data table

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 105

7648ch05final.qxd 9/6/07 8:53 PM Page 105

http://developer.yahoo.com/yui/dragdrop

With an understanding of the planning involved in implementing an Ajax-enabled inter-
face, you’ll now get an explanation of the different ways data can be exchanged. After that,
you’ll dive into actually building the Ajax object and planning for all of these scenarios.

Data Formats in Ajax
When you begin to look at data exchanges between the server and client with Ajax, you need
to understand the different data formats that can be used to exchange data. You have access
to two properties when an Ajax call returns to retrieve the data sent back from the server:
responseText and responseXML. With responseXML, you have an XML object automatically
ready to go. With responseText, you have to parse it into whatever format you think you need.

■Note The responseXML property will be populated only if the server returns a valid XML document with
the MIME type text/xml.

XML
The XHR object was made for returning XML results. It has a responseXML property in which
XML is automatically parsed into a navigable object. You can then use familiar DOM methods
to navigate it:

var doc = transport.responseXML.documentElement; // grabs the root node
var songs = doc.getElementsByTagName('song'); // get all song nodes
for(var i=0;i<songs.length;i++)
{

// assuming each node just has text contained within it, we grab the
// text node and display its contents.
alert('I love ' + songs[i].firstChild.data);

}

Using the DOM in XML is a little different from using the DOM in HTML because you lose
some of the conveniences, forcing you to get at data in a slightly different way. The previous
example demonstrates this: in XML, text content is a node unto itself, just as it is in HTML,
and must be retrieved using firstChild (because the text is the first and only child of the ele-
ment). Then you use the data property of the text node to retrieve that text. You can also use
the nodeValue property, which behaves the same way.

Let’s take a look at some example XML and how you can use DOM methods to traverse
that data and insert it into the page. In this example, you convert an XML document into a
number of HTML elements:

CHAPTER 5 ■ AJAX AND DATA EXCHANGE106

7648ch05final.qxd 9/6/07 8:53 PM Page 106

<root>
<book id="id15669">
<title>The Long Road</title>
<author>Hayden Smith</author>
<description>Smith details his battles from the mailroom ...</description>

</book>
<book id="id15670">
<title>Time: fact or fiction</title>
<author>Dr. Michelle Doe</author>
<description>Is time just a figment of our imagination?...</description>

</book>
</root>

Here’s the base structure of the HTML page that includes how you want to style each of
the elements after you get them into the page. The book list will be inserted into the element
with the ID of books:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html lang="en">
<head>
<title>Books</title>

<style type="text/css">
body {
font-family:Arial,Helvetica,sans-serif;
}

.book {
border-top:1px solid #CCC;
padding:10px 5px
}

.book h2 {
margin:0;
font-size:1em;
}

.book .author {
margin:0;
font-weight:bold;
font-size:.9em;
}

.book p {
margin:0
}

</style>

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 107

7648ch05final.qxd 9/6/07 8:53 PM Page 107

http://www.w3.org/TR/html4/strict.dtd

</head>
<body>
<div id="books"></div>

</body>
</html>

The goal is to loop through each item and end up with the following HTML structure:

<div class="book" id="id15669">
<h2>The Long Road</h2>
<p class="author">Jonah Smith</p>
<p>Smith details his battles from the mailroom to the CEO of Megacorp</p>

</div>

Within the response of the Ajax call, use getElementsByTagName() to retrieve all the book
elements, looping through each one to add to the page. Using DOM methods, each of the ele-
ments and text nodes has to be created and appended to other nodes until finally the entire
book branch can be appended into the books element:

var doc = transport.responseXML.documentElement; // grabs the root node

var books = doc.getElementsByTagName('book'); // get all song nodes

var container = document.getElementById('books');
var book, title, author, description, text;
for(var i=0;i<books.length;i++)
{
// create the book container
book = document.createElement('div');
book.className = 'book';
book.id = books[i].getAttribute('id');

// create the title
title = document.createElement('h2');
text = document.createTextNode(books[i].childNodes[1].firstChild.data);
title.appendChild(text);
book.appendChild(title);

// create the author line
author = document.createElement('p');
author.className = 'author';
text = document.createTextNode(books[i].childNodes[3].firstChild.data);
author.appendChild(text);
book.appendChild(author);

CHAPTER 5 ■ AJAX AND DATA EXCHANGE108

7648ch05final.qxd 9/6/07 8:53 PM Page 108

// create the description
description = document.createElement('p');
text = document.createTextNode(books[i].childNodes[5].firstChild.data);
description.appendChild(text);
book.appendChild(description);

// add the entire book node to the document
container.appendChild(book);

}

The code retrieves the first, third, and fifth elements. Remember that empty text nodes
are considered elements, too, so you have to skip over them. The nice thing is that this behav-
ior is consistent in all browsers including IE. The firstChild of the element is the text node
and then the data property retrieves the text contained within. This should create an output
that looks like Figure 5-7.

Figure 5-7. The final output after converting the XML document into HTML

Using DOM methods in this fashion can be very verbose. An alternative response to an
Ajax call is to return the entire HTML structure within an XML node. However, before getting
into that, it’s extremely important that you understand how XML syntax works and behaves—
especially with validity and encoding.

XML Validity and Encoding
XML is meant to be a very rigid language. No mistakes are allowed (it’s affectionately known as
“Draconian error handling”). This is a good thing for the most part, but it can catch you if you
haven’t considered a particular scenario of how it will be used. Take a look at the following two
examples and see whether you can see the problem:

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 109

7648ch05final.qxd 9/6/07 8:53 PM Page 109

<myhtml>This is some content I want embedded on the page</myhtml>
<myhtml>This is some content I want embedded on the page</myhtml>

Now, if you were using the preceding syntax to embed this onto the page, it might look
something like this:

var doc = transport.responseXML.documentElement; // grabs the root node
// get all myhtml nodes of which I have one
var embedhtml = doc.getElementsByTagName('myhtml')[1];
// Grab the element on the page in which to embed the html
var el = document.getElementById('placeholder');
el.innerHTML = embedhtml.firstChild.data;

With the first <myhtml> element, everything looks the way it should, and the entire string
is embedded. But wait a second, from the second XML node example, only "This is some"
appears on the page. That’s because the tags are treated like another node, as
shown in Figure 5-8.

Figure 5-8. What the XML structure looks like

There are a couple of ways to get around having to parse through all the nodes: simply
encode any HTML or embed the HTML in a CDATA node.

Encoding HTML
XML has five characters that can be encoded: &, <, >, ', and ". These characters can be encoded
with their numerical character references or their predefined entities, as shown in Table 5-2.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE110

7648ch05final.qxd 9/6/07 8:53 PM Page 110

Table 5-2. Available Predefined Entities

Character Numerical Character Reference Predefined Entity

& & &

< < <

> > >

' ' '

" " "

Knowing this, you can re-encode the example from before:

<myhtml>This is some content
I want embedded on the page</myhtml>

If you are familiar with encoding characters in HTML, you can easily fall into another
trap: using HTML entities in XML. This, too, will get caught by the XML error handling and fail.

<myhtml>This page copyright by Smith & Smith</myhtml>
<myhtml>This page copyright by Smith & Smith</myhtml>
<myhtml>© Smith & Smith</myhtml>

The first example should be obvious because the ampersand hasn’t been encoded. No
problem in the second line because you’ve now properly encoded the ampersand. But in the
final example, you’re trying to use the HTML entity for the copyright symbol (©), which
ultimately fails in the XML example. To fix it, simply encode the ampersand in the entity itself:

<myhtml>&copy; Smith & Smith</myhtml>

The ampersand entity gets turned into an ampersand upon retrieval and then the copy-
right entity gets converted into a copyright symbol upon insertion into the HTML DOM.

Let’s take a look at the book example from before and see how you can approach it differ-
ently. The XML will need to contain the encoded HTML within each node:

<root>
<book id="id15669">
<h2>The Long Road</h2>
<p class="author">Jonah Smith</p>
<p>Smith details his battles from the mailroom to the CEO of Megacorp<➥

/p>
</book>
<book id="id15670">
<h2>Time: fact or fiction</h2>
<p class="author">Dr. Michelle Doe</p>
<p>Is time just a figment of our imagination? Dr. Doe, a physicist and➥

Nobel prize ...</p>
</book>

</root>

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 111

7648ch05final.qxd 9/6/07 8:53 PM Page 111

When you loop through, you can now simplify things greatly:

for(var i=0;i<books.length;i++)
{
// create the book container
book = document.createElement('div');
book.className = 'book';
book.id = books[i].getAttribute('id');
book.innerHTML = books[i].firstChild.data;

// add the entire book node to the document
container.appendChild(book);

}

The bolded code is where you assign the contents of each book node into the container.
You can even super-simplify it by including the entire HTML snippet as an escaped block:

<root>
<div class="book" id="id15669">
<h2>The Long Road</h2>
<p class="author">Jonah Smith</p>
<p>Smith details his battles from the mailroom to the CEO of Megacorp<➥

/p>
</div>
<div class="book" id="id15670">
<h2>Time: fact or fiction</h2>
<p class="author">Dr. Michelle Doe</p>
<p>Is time just a figment of our imagination? Dr. Doe, a physicist and➥

Nobel prize ...</p>
</div>

</root>

This way, you no longer have to loop through any elements; you can just append the con-
tents directly into the container:

var doc = transport.responseXML.documentElement; // grabs the root node
var books = doc.getElementsByTagName('book'); // get all song nodes
var container = document.getElementById('books');
container.innerHTML = doc.firstChild.data;

Escaping all that HTML, however, can make things hard to read and difficult to recognize
that the HTML being returned is actually valid.

CDATA Nodes
The alternative to text nodes is CDATA sections. The World Wide Web Consortium (W3C)
specification (http://www.w3.org/TR/2004/REC-xml-20040204/#sec-cdata-sect) describes
them really well:

CHAPTER 5 ■ AJAX AND DATA EXCHANGE112

7648ch05final.qxd 9/6/07 8:53 PM Page 112

http://www.w3.org/TR/2004/REC-xml-20040204/#sec-cdata-sect

CDATA sections MAY occur anywhere character data might occur; they are used to

escape blocks of text containing characters which would otherwise be recognized as

markup. CDATA sections begin with the string "<![CDATA]" and end with the

string "]]>".

CDATA sections give you a lot of flexibility and can remove much of the worry about
encoding, which makes it easier to work with HTML content:

<myhtml><![CDATA[© Smith & Smith]]></myhtml>

Retrieving the content from a CDATA section works exactly like retrieving it from a text
node. The book example would get encoded as follows:

<root><![CDATA[
<div class="book" id="id15669">
<h2>The Long Road</h2>
<p class="author">Jonah Smith</p>
<p>Smith details his battles from the mailroom to the CEO of Megacorp</p>

</div>
<div class="book" id="id15670">
<h2>Time: fact or fiction</h2>
<p class="author">Dr. Michelle Doe</p>
<p>Is time just a figment of our imagination? Dr. Doe, a physicist and➥

Nobel prize ...</p>
</div>

]]></root>

Already, the HTML is much easier to understand. Embedding that entire snippet is han-
dled exactly the same as it was before:

var doc = transport.responseXML.documentElement; // grabs the root node
var books = doc.getElementsByTagName('book'); // get all song nodes
var container = document.getElementById('books');
container.innerHTML = doc.firstChild.data;

XSLT
One reason to use XML as a data format is to take advantage of XSLT, which is a transforma-
tion language that converts an XML document into another format (most often another XML
format such as XHTML). Unfortunately, cross-browser support is often slow or buggy with
libraries built to address these shortcomings:

• Google AJAXSLT (http://goog-ajaxslt.sourceforge.net/): Google released its cross-
browser XSLT library as open source and it includes support for Safari 1.3+, Opera 7.5+,
IE 6+, and Firefox 1+.

• Sarissa (http://dev.abiss.gr/sarissa/): Sarissa acts as a cross-browser wrapper for a
number of XML application programming interfaces (APIs), including XMLDocument,
XMLElement, XMLHttpRequest, XMLSerializer, and XSLTProcessor.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 113

7648ch05final.qxd 9/6/07 8:53 PM Page 113

http://goog-ajaxslt.sourceforge.net/):
http://dev.abiss.gr/sarissa/):

Because client-side XSLT is almost always intended to convert an XML document into
HTML, I recommend that you avoid the hassle of dealing with cross-browser issues and create
the HTML snippet on the server side.

Alternatives to XML
As handy as XML might seem to be, it’s not without its downsides. It can be a complicated
method of navigating the document and it is verbose. Also, having to deal with a variety of
cross-browser issues is never fun. So, you can turn to responseText and discover some other
possibilities. A string response can be quite powerful because you can transform that string
into something much more useful.

HTML
This is super sweet and easy. All you have to do is return an HTML snippet and then insert that
snippet into the document:

var htmlSnippet = transport.responseText; // grabs the text response
var el = document.getElementById('placeholder');
el.innerHTML = htmlSnippet;

■Note If you return an HTML snippet with a <script> element embedded within it, the code will not
execute.

JavaScript
If you have conditional JavaScript that you want to execute but not cache as you normally
would, you can return the code via the responseText and then eval() it:

eval(transport.responseText); // grabs the text response

This technique isn’t one I’ve used often. Including the JavaScript with the <script> ele-
ment in the <head> is still the most practical approach. However, there is a variation to this
technique that has gained much popularity, possibly even surpassing XML as the preferred
approach for data transfer: JavaScript Object Notation (JSON).

JSON has been growing in popularity because of its XML-like structure and its capability
to integrate well into a JavaScript-based application (because it is JavaScript).

JSON syntax is a subset of object notation and is designed to make it more readily inter-
changeable with other programming languages. A JSON object is an object literal that con-
tains only the following types: strings, numbers, arrays, or other object literals. Strings should
use double quotes (JSON also requires that the keys be in double quotes).

The following is a JSON object showing the contents of a shopping cart. It contains two
object literals, fruits and vegetables, each containing a number of items:

CHAPTER 5 ■ AJAX AND DATA EXCHANGE114

7648ch05final.qxd 9/6/07 8:53 PM Page 114

var shoppingCart = {
"fruits": {

"apples":5,
"apricots":4,
"oranges":6,
"mangos":5

},
"vegetables":{

"celery":2,
"lettuce":1,
"green peppers":5

}
};

To reference the celery element:

shoppingCart.vegetables.celery; // or...
shoppingCart["vegetables"]["celery"];

You’ll notice that "green peppers" has a space in it. Because it is a string, the space is per-
fectly valid. However, when using spaces for member names, just remember that you can’t use
dot notation to refer to them. Therefore, you have to refer to the property "green peppers"
using bracket notation:

shoppingCart.vegetables["green peppers"]; // or...
shoppingCart["vegetables"]["green peppers"];

Parsers are available for languages such as .NET, PHP, and Java that recognize and can
convert JSON into native objects for those languages. You can find more information on JSON
at the JSON web site: http://www.json.org.

■Note Strings should be enclosed in double quotes ("), not just single quotes ('). While the single quotes
will work when evaluating the code in JavaScript, any attempts to parse the JSON object using a JSON
parser (server side or client side) will likely result in an error.

When JSON data is returned from the server, it needs to be evaluated just like any other
data. Because of the potential for code injection attacks (never assume that the data you
receive is safe), I highly recommend using a client-side parser such as the one on the JSON
web site.

var obj = transport.responseText.parseJSON();
if(obj) performMagic(obj);

You would then check that the data you were expecting exists and then move on to
process the data accordingly.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 115

7648ch05final.qxd 9/6/07 8:53 PM Page 115

http://www.json.org

Delimited Strings
A delimited string is one that separates values with a character. For example, a query string
of a URL is separated by ampersands, and key/value pairs are separated by an equal sign:

search=my+search+phrase&sortBy=title&page=2

Converting a query string into a JavaScript object requires two passes to build up the
object. The first pass splits the string at the ampersand, and the second pass separates
the key/value pairs:

var qs = "search=my+search+phrase&sortBy=title&page=2";
var data = qs.split('&');
for(var i=0;i<data.length;i++)
{

data[i] = data[i].split('=');
}
alert(data[1][1]); // alerts "title"

By the end, you’d have a multidimensional array. To access a key/value pair, you’d have
to know where in the array the value exists or else loop through all the items in the first
dimension of the array to find what you’re looking for. Alternatively, you might want to turn
the key/value pairs into an object, making it easier to access the parameters:

var qsObject = {}; // our object store
var qs = "search=my+search+phrase&sortBy=title&page=2";
var data = qs.split('&');
var tmp;
for(var i=0;i<data.length;i++)
{

tmp = data[i].split('=');
qsObject[tmp[0]] = tmp[1];

}
alert(qsObject.sortBy); // alerts "title"

Keep in mind that if there are duplicate keys, the last one defined in the query string will
take precedence.

You can use a comma-separated value (CSV) as another format for separating a string
into a number of parts. Each record is separated by a new line, and each field is separated by
a comma (hence comma-separated). Parsing a line of CSV isn’t just a matter of splitting the
string at the commas. Take a look at this example:

"Mr. Smith, Esq.", 2006, January, 26,Need to get in touch

Notice the comma in the first field. The entire field gets wrapped in quotes to indicate
that it’s all one field. And what if you have quotes inside a field? It gets even more complicated.
What if you have empty records? Yup, even more difficult. String parsing in this fashion is
practical only with simple data sets that are easily separated.

Returning the data in any other format besides JSON usually means parsing the data into
JavaScript before you can manipulate it; hence the reason JSON has become such a popular
format.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE116

7648ch05final.qxd 9/6/07 8:53 PM Page 116

■Caution As much as you want to think the data coming back to you is reliable, it might not be. Be suspi-
cious of anything and plan for it accordingly.

Building a Reusable Ajax Object
Now that you have an understanding of Ajax and how its information can be sent back and
forth, let’s look at creating an object that you can use with the projects.

The first thing you need to do is create an object that you can instantiate. You’ll want to
make it a reusable class because you’ll need to instantiate the object with each request you
want to make:

function Ajax()
{
var transport;
if(window.XMLHttpRequest) {
transport = new XMLHttpRequest();

}else{
try{ transport = new ActiveXObject("MSXML2.XMLHTTP.6.0"); }catch(e){}
try{ transport = new ActiveXObject("MSXML2.XMLHTTP"); }catch(e){}

}
if(!transport) return;
this.transport = transport;

}

Ajax.prototype.send = function(url, options)
{
if(!this.transport) return;
var transport = this.transport;
var _options = {

method:"GET",
callback:function(){}
};

// override options
for(var key in options)
{
_options[key] = options[key];

}

transport.open(_options.method, url, true);
transport.onreadystatechange = function(){ _options.callback(transport) };
transport.send();

}

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 117

7648ch05final.qxd 9/6/07 8:53 PM Page 117

In the object constructor, you establish which object you can use. First, you test for the
existence of the XMLHttpRequest object, which is supported in all modern browsers, including
Firefox 1+, Safari 1.2+, Opera 7.6+, and IE 7+. For IE 5 and 6 (or IE 7 users who might have the
native object turned off), try to instantiate the ActiveX versions of the XHR object.

You try to instantiate them in try/catch blocks because IE will generate an alert dialog if
the ActiveX objects are turned off altogether. First, test for the most recent version of the XHR
object; if that fails, try to use a fallback version. (See the section “What Do All the Different
ActiveX Objects Mean?” for more information.)

With the constructor complete, you need to give the object a send() method so that you
can actually send requests to the server. I’ve set it up to take two parameters: the URL that
you want to request and then an options object.

■Note Remember that passing in optional parameters using an object literal is a great way to keep the
code clear and concise.

Right now, there are only two optional properties: method (GET or POST) and callback.
The callback property gets called every time the readyState of the Ajax object changes. Once
the options are mapped to the internal _options object, open the URL, attach the event han-
dler, and then send the request.

■Note If you want to reuse this Ajax object to send another request, the onreadystatechange event has
to be declared after the open call; otherwise IE 5 or 6 will fail on every call after the first.

Now, let’s take a look at how to use the fancy new Ajax object:

function processRequest(transport)
{
if(transport.readyState == 4)
{
var obj = transport.responseText.parseJSON();

}
}

You set up the callback function, which takes the transport as its one and only parameter.
Within the callback function, see whether the state is equal to 4, which indicates that the
object has properly returned a result. In this case, you’re using the JSON library to parse the
response and turn it into a JavaScript object.

With all the pieces in place, it’s time to send out the request:

var ajax = new Ajax();
ajax.send('/path/to/script', {callback:processRequest});

I specified the URL that I want to call and specified the callback option, assigning to it the
processRequest() function. I didn’t specify the method because it automatically defaults to GET.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE118

7648ch05final.qxd 9/6/07 8:53 PM Page 118

What Do All the Different ActiveX Objects Mean?
If you’ve scoured through any number of Ajax solutions, you might have noticed different
XMLHttpRequest objects being referred to. Microsoft’s XML implementation, which is known
as MSXML, comes in many versions.

Here’s the list:

• Microsoft.XMLHTTP

• Msxml2.XMLHTTP

• Msxml2.XMLHTTP.3.0

• Msxml2.XMLHTTP.4.0

• Msxml2.XMLHTTP.5.0

• Msxml2.XMLHTTP.6.0

An article from the Microsoft XML team explains in some detail the differences between
the different versions and how they should be used (but it’s still not entirely clear: http://
blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-
internet-explorer.aspx).

MSXML 1.0 and 2.0 are no longer supported by Microsoft. Version 4.0 never saw an oper-
ating system release, and version 5.0 was a special version for Microsoft Office. The version-
independent IDs, Microsoft.XMLHTTP and Msxml2.XMLHTTP, now map directly to
version 3.0 (even if version 6.0 is installed). This really only leaves you with two possible
program IDs (referred to as progIDs by Microsoft):

• Msxml2.XMLHTTP

• Msxml2.XMLHTTP.6.0

Version 6 was introduced in IE 7 and includes some bug fixes (such as the one men-
tioned earlier, in which IE 5 and 6 fail when the onreadystatechange is declared before the
open call). Although IE 7 includes a native XHR object, users have the option of disabling it.
Therefore, it’s a good idea to test for Msxml2.XMLHTTP.6.0 first; if it doesn’t work, fall back to
the other version.

Planning for Failure
Now that you have the basic Ajax object in place, let’s review possible problems and work to
build solutions to those problems into the object:

• What happens if the request times out? How long should you wait?

• What happens when the data you get back isn’t what was expected?

• What happens when multiple requests are made? (Especially if they come back in a dif-
ferent order from what was requested!)

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 119

7648ch05final.qxd 9/6/07 8:53 PM Page 119

http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx
http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx
http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx
http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx
http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx
http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx
http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx
http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx

Handling Timeouts
Ajax calls usually stay open for as long as the server keeps the connection open. However, if
you have an unresponsive server, it might be too long for the user to wait. A more ideal solu-
tion is to simply time out the call and handle the error. I made the necessary updates to the
Ajax object, which I highlighted in bold:

function Ajax()
{
var transport;
if(window.XMLHttpRequest) {
transport = new XMLHttpRequest();

}else{
try{ transport = new ActiveXObject("MSXML2.XMLHTTP.6.0"); }catch(e){}
try{ transport = new ActiveXObject("MSXML2.XMLHTTP"); }catch(e){}

}
if(!transport) return;
this.transport = transport;

}

Ajax.prototype.send = function(url, options)
{
if(!this.transport) return;
var transport = this.transport;
var aborted = false;
var _options = {

method:"GET",
timeout:5,
onerror:function(){},
onsuccess:function(){}
};

// override options
for(var key in options)
{
_options[key] = options[key];

}

function checkForTimeout()
{

if(transport.readyState != 4)
{
aborted = true;
transport.abort();

}
}
setTimeout(checkForTimeout, _options.timeout * 1000);

CHAPTER 5 ■ AJAX AND DATA EXCHANGE120

7648ch05final.qxd 9/6/07 8:53 PM Page 120

function onreadystateCallback()
{
if(transport.readyState == 4)
{
if(!aborted && transport.status >= 200 && transport.status < 300)
{
_options.onsuccess(transport);

}else{
_options.onerror(transport);

}
}
}

transport.open(_options.method, url, true);
transport.onreadystatechange = onreadystateCallback;
transport.send('');

}

A bunch of new stuff has been added here, so let’s go through things one chunk at a time:

var aborted = false;
var _options = {

method:"GET",
timeout:5,
onerror:function(){},
onsuccess:function(){}
};

The aborted variable is a flag you’ll use to determine later whether you had to abort the
call manually. The _options object gets a timeout variable, which defines how many seconds
you should wait before giving up on the request. The _options object also loses its callback
property that gets replaced with onerror() and onsuccess() functions.

function checkForTimeout()
{

if(transport.readyState != 4)
{
aborted = true;
transport.abort();

}
}
setTimeout(checkForTimeout, _options.timeout * 1000);

A function is set up, which you’ll call after the timeout period to see whether the object
has successfully returned. If it hasn’t, set the aborted variable to true to indicate that you man-
ually had to end this call; you use the abort method on the XHR object. Doing so will automat-
ically execute the onreadystatechange event handler.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 121

7648ch05final.qxd 9/6/07 8:53 PM Page 121

function onreadystateCallback()
{
if(transport.readyState == 4)
{
if(!aborted && transport.status >= 200 && transport.status < 300)
{
_options.onsuccess(transport);

}else{
_options.onerror(transport);

}
}
}

transport.open(_options.method, url, true);
transport.onreadystatechange = onreadystateCallback;
transport.send();

The onreadystateCallback() function handles the onreadystatechange event. Within the
onreadystateCallback() function, check the status and dispatch to either the onsuccess or the
onerror event handlers accordingly. I check to see whether the call was aborted manually and
then whether the HTTP status code is between 200 and 300, which indicates a successful call.
The HTTP status code is accessed via the status attribute of the XHR object.

Finally, the onreadystatechange event handler was changed from the one that you had
originally passed in via the options object to the internal handler.

HTTP Status Codes
Whenever a browser makes a call, the server sends back a response. Within the response, a
status code is returned, letting the browser know some vital information. For an in-depth view
of all the possible status codes, check out the HTTP/1.1 recommendation from the W3C
(www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

What you hope to see is a status of 200, which indicates a successful response. Anything
within the 200 range is a success. A response in the 300 range is a redirection. The browser will
automatically handle the redirection and retrieve the new document, which should then
return the 200 response status. The 400 range is considered a client error. The request might
not have been sent correctly, or you asked for a page that doesn’t exist—that is, the dreaded
404! Last but not least, the 500 range indicates a server error of some sort. When it comes to
Ajax requests, you want a response only in the 200 range. The previous code examples already
did this by checking that the status was greater than or equal to 200 and less than 300.

if(!aborted && transport.status >= 200 && transport.status < 300)

Multiple Requests
It’s very likely that after you build an Ajax-enabled web site or application, you’ll need to make
multiple requests. There are two different scenarios with multiple requests that you have to
plan for:

CHAPTER 5 ■ AJAX AND DATA EXCHANGE122

7648ch05final.qxd 9/6/07 8:53 PM Page 122

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

• An initial request is made, but then a subsequent call is made that should override the
first call. For example, a user fills out a search box and then presses Enter. But before
the call has returned, the user realizes that a mistake was made, corrects it, and presses
Enter again. The user doesn’t want the first set of results—only the second. You’ll need
to detect that a second request has been made and determine whether you need to
override the original request.

• The other scenario is when you make sequential calls, but the calls return out of order.
For example, you have a chat program that continually polls the server for new mes-
sages. Messages need to be returned in the same order.

If you need to keep your calls in order, essentially mimicking a synchronous system with
an asynchronous one, you need to keep track of each call through a token. The token could
just be an integer that you increment each time you make a call.

Then you process the callbacks only when the current token is the next valid token; or if
a record or two is skipped, wait until the missing record comes in or times out.

Unexpected Data
You should never assume what data comes back from the server. You’ve already got an onerror
handler in case the server throws back something unusual. Beyond that, though, you should
add an extra level of error checking.

If you are expecting your data back in a particular format, such as XML or JSON, include
a server-based contingency plan that populates the return with an error code of some kind.
Then check for the error code on the client side before processing your results. If the server
doesn’t return what you want (for example, it returns an invalid JSON object or an unhandled
server-side error), you’ll need to handle that on the client side as well.

Here is a JSON example:

{"error":{"id":1,"message":"Your session has expired"}}

In the onsuccess event handler that you attached, you would have the following code:

var UNKNOWN = 0;
function processRequestSuccess(transport)
{
var obj = transport.responseText.parseJSON();
// if JSON parsing didn't work then no object exists
// which means the server failed somehow
if(!obj)
{
processError(UNKNOWN);
return;

}
// if I have an error property in my object, the server
// returned an error message and failed gracefully.
if(obj.error)
{
processError(obj.error.id, obj.error.message);

}

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 123

7648ch05final.qxd 9/6/07 8:53 PM Page 123

// continue to process request normally
// ...

}

The processError() function would simply take the parameters and process the error.
It could display an alert dialog or it could write the error message to the page.

Using Libraries to Handle Ajax Calls
As you’ve seen, there is a lot to consider each time an Ajax call is made. Many of the JavaScript
libraries mentioned in the previous chapter include an Ajax component. This is a perfect
example of why JavaScript libraries are so popular: most of the hard work is already done for
you. With a larger user base, bugs are found more quickly, and many of the planning issues
are already thought out for you. Let’s step through a few examples using various libraries.

Prototype
The Prototype library has some very handy Ajax functionality built in:

new Ajax.Request(url, {
method: 'get',
onSuccess: function(transport) { }

});

The format that the Prototype library takes is actually quite similar to the way you
approached the object. They go much farther in automating a number of features, however.
For example, there are event handlers for more than just success or failure. You can hook into
a number of events, such as the following:

• onCreate: Is used after the object is instantiated but before any of the methods of the
object are used.

• onComplete: Fires upon completion of the request and after the other event handlers
have been fired. This is a good place to stop any animation or loading indicator you
might be using.

• onException: Fires if it could not process the request. For example, if there was an
improperly formatted JSON object returned, this event would fire.

• onFailure: Fires if the call ends and there is no valid HTTP status code between 200
and 300 (similar to the way the custom object you saw earlier worked).

• onSuccess: Behaves just like the object and fires when the call has successfully com-
pleted.

• onXXX: Where X is the HTTP status code; unlikely to be something you’d use very often
because 200 is the most common return.

Some nice features of Prototype include its automatic handling of JSON. If the content-
type returned from the server is text/javascript or application/javascript (or a few other
variations), the responseText will automatically get parsed by its JSON filter. Alternatively,

CHAPTER 5 ■ AJAX AND DATA EXCHANGE124

7648ch05final.qxd 9/6/07 8:53 PM Page 124

you can pass data in on the X-JSON header but the amount of data you could pass in through
that is limited (this would be a reasonable place to put JSON-based error messaging, as cov-
ered earlier).

Ajax.Updater
Ajax.Updater, which is a specialization of the Ajax.Request object, takes responseText and
automatically inserts it into the HTML element of your choosing:

new Ajax.Updater(container, url, options)

The options parameter is exactly the same as before, except with a couple of additional
options, most notably the insertion property. By default, the Updater replaces the content
within the element. However, the contents can be appended to what is already there with
the insertion parameter. The insertion parameter takes an Insertion object (another Pro-
totype class) that enables you to specify whether the contents come before the element
(Insertion.Before), at the top of the element (Insertion.Top), at the bottom of the element
(Insertion.Bottom), or after the element (Insertion.After).

To build a really simple chat program, there is a chat window, a text box, and a send
button:

<div id="chat"></div>
<input type="text" id="msg" value="test">
<input type="button" id="send" value="Send">

To hook up the send button, add an event observer to it, sending the contents of the msg
input to the server. When the Ajax call returns, it automatically places the response at the end
of the chat element.

function sendMessage()
{
// update the chat element with the response
new Ajax.Updater($('chat'), '/path/to/script', {
parameters: { text: $('msg') },
insertion: Insertion.Bottom

});
}
// run sendMessage any time the send button is clicked
Event.observe($('send'), 'click', sendMessage);

Ajax.PeriodicalUpdater
If you want to add server polling to the chat program, you can extend the application with the
PeriodicalUpdater. As you can likely surmise, the PeriodicalUpdater will make a call to the
server every X seconds and update the chat element with the response:

new Ajax.PeriodicalUpdater($('chat'), '/path/to/script', {
frequency: 2, /* 2 seconds */
insertion: Insertion.Bottom

});

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 125

7648ch05final.qxd 9/6/07 8:53 PM Page 125

YUI
With the YUI library, everything is handled through the connection manager. Here’s an
example:

var transaction = YAHOO.util.Connect.asyncRequest('GET', sUrl, callback);

The first parameter tells YUI whether you are making a GET or POST request. The second
parameter is the URL to request. The third parameter is a callback object. The object stores
the success and failure callback functions as well as enabling you to pass arguments into the
call to be available upon return.

var callback = {
success: myObject.processRequestSuccess,
failure: myObject.processRequestFailure,
argument: [argument1, argument2, argument3],
scope: myObject

}

You can also specify the scope that should be passed to the function calls. That way, if the
success and failure callbacks are part of a larger object, you can maintain the scope for the
this variable.

If performing a POST request, you can pass the data in with a query string format as a
fourth parameter:

var transaction = YAHOO.util.Connect.asyncRequest('POST', sUrl, callback,➥

'key1=encoded+data&key2=even+more+data');

The YUI library even has a nice function to take all form fields and automatically append
them into a request (removing the need to specify the fourth parameter):

YAHOO.util.Connect.setForm(formObject);
var conn = YAHOO.util.Connect.asyncRequest('POST', 'http://example.com/', callback);

jQuery
jQuery is heavily designed around manipulating the DOM. Its Ajax approach takes the Proto-
type Ajax.Updater to another level:

$('#myelement').load('/updatestatus');

As you saw in the last chapter, the $ function grabs the elements (in this case, an element
with an ID of myelement). With that, it requests the updatestatus URL and replaces the con-
tents of the element with the response.

You can also make regular Ajax calls through the ajax() method of the jQuery object:

CHAPTER 5 ■ AJAX AND DATA EXCHANGE126

7648ch05final.qxd 9/6/07 8:53 PM Page 126

http://example.com

var options = {
url: 'document.xml',
type: 'GET',
dataType: 'xml',
timeout: 1000,
error: function(){

alert('Error loading XML document');
},
success: function(xml){

// do something with xml
}

}
$.ajax(options);

All options, including the URL, are sent through an object literal as the only parameter.

Summary
In this chapter you took a look at what Ajax is and what it means in comparison with tradi-
tional page calls. You took a look at the various data exchange formats available to you and
which approach might be more appropriate for certain situations.

The chapter stepped through building a custom Ajax object. It then showed how to
extend the object to plan for contingencies. Finally, the chapter took a look at how to take
advantage of popular JavaScript libraries to handle the grunt work for you.

In Chapter 6, you’ll take a look at visual effects and how they can be integrated into
your sites.

CHAPTER 5 ■ AJAX AND DATA EXCHANGE 127

7648ch05final.qxd 9/6/07 8:53 PM Page 127

7648ch05final.qxd 9/6/07 8:53 PM Page 128

Visual Effects

From animations and slides to fades, visual effects can add some sex and sizzle to a page.
While these effects can be easily overdone, you’ll soon understand why you should add them
to a page and what problems they solve. With that understanding, you’ll build your own ani-
mation object to demonstrate the concepts you’ve learned so far. To cap it all off, you’ll learn
how to use the JavaScript libraries talked about in Chapter 4 to handle these animation effects.

Why Use Visual Effects?
Visual effects sometimes have a reputation for being flashy or even gaudy. In some cases they
are, but animations can actually be quite helpful. Effects help to alert users or inform them
that stuff is happening on the page.

Traditionally, any interaction with a web page exhibited predictable feedback. You clicked
a link or a form submit button, and the browser icon would then begin rotating until the page
refreshed and completed loading. In an Ajax-driven application in which page refreshes can
disappear altogether, the user needs to be notified that certain actions have happened or are
in the process of occurring.

For example, Google applications such as Mail and Calendar indicate that they are in the
process of retrieving more data by using a loading indicator in the top-right corner of the
page, as seen in Figure 6-1.

Indicators and animations let users know that they are still in charge and that something
hasn’t mysteriously broken.

Animations can also be put to good use when revealing or hiding information. Basic
scripts often just toggle visibility, but if users aren’t paying close attention, they might not be
instantly aware of what just happened. Animate the element and the user will take notice and
draw a direct correlation between the cause and the effect.

129

C H A P T E R 6

7648ch06final.qxd 9/6/07 7:52 PM Page 129

Figure 6-1. The loading indicator in Google Calendar

Animations can add to the experience in other ways, too:

• Drop-down menus that fade or slide aren’t as jarring to the user as a sudden on/off
switch, especially as the user slides over multiple navigation items.

• Links to named anchors (links that start with the number sign: #) can cause the
browser to glide to the anchor instead of instantly displaying the section. For links
to places elsewhere on the same page, users understand that they haven’t been
sent to another page; they are just in another location on the same page.

• In a drag and drop, animating the dragged item back to its original location when the
user lets go of it can make clear to the user that the drop didn’t happen.

It is prudent not to overdo animations, of course. In particular, it’s important to keep ani-
mations short and snappy. Taking too long to complete an animation means that users are left
waiting for the animation to complete before proceeding with the task they want to accom-
plish. Although most animations should probably be no more than half a second long,
interact with what you’re building and ensure that it feels snappy without going crazy.

Yahoo! has a Design Pattern Library that discusses various patterns and their uses in
depth. Many of the patterns cover animations and transitions, the problems they solve, and
the caveats that go along with them. You can check it out at http://developer.yahoo.com/
ypatterns/index.php.

Building a Simple Animation Object
Now that you have a sense of why you might want to animate something, let’s look at building
your own animation object. Animating an element can be fairly simple: you take an element
and then change one or more of its properties over time.

CHAPTER 6 ■ VISUAL EFFECTS130

7648ch06final.qxd 9/6/07 7:52 PM Page 130

http://developer.yahoo.com

Because you’ll want the possibility of animating multiple objects, you should make it a
class construct. Define the function to take five parameters: the element to animate, the prop-
erty you want to change, the start value, the end value, and the length of time it should take to
complete the transition:

function Animation(element, property, from, to, duration){ }

The animation object would then be instantiated using the following structure:

new Animation('elementID', 'left', 0, 200, 1000);

When it comes to building any code, it’s a good idea to think through the implementation.
There are pros and cons to every decision taken, and you should always consider why you
make each decision.

Taking a look at the code so far, you can see that the element ID is passed in as a string,
presumably to retrieve the element within the animation object via the document object
model (DOM) method document.getElementById() or with a JavaScript library call such as $().
If you use a library call, you inevitably tie the animation object to that library of choice. Alter-
nately, you can stick with the DOM method, but it’s a little verbose. In this case, though, you
have to do it only once, so you should use the DOM method and keep things library agnostic.
The call is assigned to a variable to make it easier to refer to the element throughout the
object.

function Animation(element, property, from, to, duration)
{
var el = document.getElementById(element);
if(!el) return false;

}

A quick error check is performed to see whether the element exists, which can prevent
unsightly errors from popping up in the user’s browser because an element wasn’t defined.
You can then leave it up to the developer to fail from this error gracefully.

What if you want to perform an animation on an element that doesn’t have an ID? To make
this class even more flexible, let’s expect an element reference to be passed in instead of just an
ID string. Even better, check to see whether the element property passed in is an ID string. If it’s
a string and not an object reference, you’ll retrieve the element by using the DOM method. The
best of both worlds!

function Animation(element, property, from, to, duration)
{
var el = element;
if(typeof el == 'string') el = document.getElementById(element);
if(!el) return false;

}
new Animation(document.getElementById('elementID'), 'left', 0, 200, 1000);

You have five parameters, but glancing at the code to instantiate an object gives you little
insight about what the numbers mean. You have to refer to the class definition to understand
what the values mean. To solve this problem, you can switch the parameters to an object lit-
eral to take advantage of named keys. This change also gives you the flexibility to expand the

CHAPTER 6 ■ VISUAL EFFECTS 131

7648ch06final.qxd 9/6/07 7:52 PM Page 131

application programming interface (API) without making the instantiation even more compli-
cated. So change that around now by passing in only an options argument and pulling the
element ID from that options object:

function Animation(options)
{
var el = options.element;
if(typeof el == 'string') el = document.getElementById(options.element);
if(!el) return false;

}

Now when you want to instantiate the object, you can simply pass in an options object:

var options = {
element:document.getElementById('elementID'),
property: 'left',
from: 0,
to: 200,
duration: 1000

};
new Animation(options);

Next you need to perform the animation. Unfortunately, however, there’s no way to just
tell the document to animate an item. Like traditional animation, you place the element in a
new location after a fraction of time, which is done with small changes at multiple times per
second. This process creates the illusion of movement, as demonstrated (as well as a static
image can) in Figure 6-2.

Figure 6-2. Changing the value over time

To do this, you need to use either setInterval() or setTimeout(). What’s the difference?
Both take two parameters: the first is the code to execute, and the second is the amount of
time in milliseconds to wait before being called. Both return an ID that can be used to cancel
the call whenever you want:

var intervalID = setInterval(performAnimation, 1000); // call function every 1000 ms
var timeoutID = setTimeout(performAnimation, 1000); // call function in 1000 ms

CHAPTER 6 ■ VISUAL EFFECTS132

7648ch06final.qxd 9/6/07 7:52 PM Page 132

You can also pass in a string to be evaluated, which can be handy to pass in variables (I
prefer the previous approach, though):

var intervalID = setInterval("performAnimation("+id+")", 1000);
var timeoutID = setTimeout("performAnimation("+id+")", 1000);

The difference between setInterval() and setTimeout() is that setTimeout() will execute
the code only once, whereas setInterval() will continue to execute the code every second (or
whatever interval you set) until the call is cancelled.

To prevent setInterval() from firing, just call clearInterval() with the ID that was
returned when you called the setInterval() function:

clearInterval(intervalID);

Likewise, to stop the setTimeout() call from firing, just call clearTimeout() with the ID
that was returned from the setTimeout() function. Trying to clear a timeout after it has fired or
with an invalid ID doesn’t do anything, so you don’t have to worry about JavaScript errors.

clearTimeout(timeoutID);

Now that you have two ways to approach the timed sequences, you have to consider how
you want to approach the animation. On one hand, you can mimic the film approach by run-
ning so many times a second. The general minimum number of frames per second (fps) to
avoid choppy animation is 24, but you’ll usually see round numbers such as 30fps. Setting the
frame rate is really easy to do with setInterval():

var intervalID = setInterval(performAnimation, 33);

The first parameter is the function that you want to call, and the second parameter is 33
(1,000 milliseconds divided by 30fps and rounded to the nearest integer).

The other way you can calculate the frame rate is to look at the property that you want to
change and determine how many steps (pixels [px]) it would take to animate it over a certain
time frame. For example, if you have a property that you want to move from the left, starting at
50px and ending at 200px over a period of 3 seconds, calculate that at 200 minus 50 divided by
3 seconds = 50 iterations per second. Divide 1,000 milliseconds by 50 iterations, and you get
the following:

var intervalID = setInterval(performAnimation, 20);

This formula might work well for small iterations, but if you have an object that needs
to go from 0 to 1,000 in 1 second, that’s 1,000 iterations, but only 30 are required to give the
appearance of a smooth animation. Therefore, you should implement the first approach into
the script:

function Animation(options)
{
var el = options.element;
if(typeof el == 'string') el = document.getElementById(options.element);
if(!el) return false;
var fps = 30;

CHAPTER 6 ■ VISUAL EFFECTS 133

7648ch06final.qxd 9/6/07 7:52 PM Page 133

function animate()
{
}

var intervalID = setInterval(animate, 1000 / fps);
}

You now have a timer running and executing at 30fps. Next up, you need to take the
object that you want to animate and determine how many steps it will take to animate,
given the current frame rate and duration. After that, it’s simply a matter of incrementing
the steps each time you run the animate() function. After you reach the number of steps,
clear the interval—and the animation is done. This is the basic animation class:

function Animation(options)
{
var el = options.element;
if(typeof el == 'string') el = document.getElementById(options.element);
if(!el) return false;
var fps = 30;
// stores which step we're on
var step = 0;
// determines the total number of steps
var numsteps = options.duration / 1000 * fps;
// determines the interval between each step
var interval = (options.from - options.to) / numsteps;

function animate()
{

// what the new position will be
var newval = options.from - (step * interval);
// the step increments AFTER the comparison
if(step++ < numsteps) {
// use Math.ceil to round to an integer and style
el.style[options.property] = Math.ceil(newval) + 'px';

}else{
// set the element to its final spot
el.style[options.property] = options.to + 'px';
// clear the interval. the intervalID is available
// via the closure
clearInterval(intervalID);

}
}

var intervalID = setInterval(animate, 1000 / fps);
}

CHAPTER 6 ■ VISUAL EFFECTS134

7648ch06final.qxd 9/6/07 7:52 PM Page 134

This animation object can now modify a DOM property upon instantiation. But what if
you want more control on the animation process (for example, being able to decide when to
start, stop, or reset the animation)? Let’s extend the object further with some new methods.
You’ll add start() and stop(), which will work like the play and stop buttons on a tape
recorder (er, CD player—sorry, I mean MP3 player). However, while you’re here, let’s add a
couple of extra methods: gotoStart() and gotoEnd(). Using the multimedia machine analogy,
they will enable you to rewind or fast forward the animation, if need be.

There are two key changes that you need to make. The first is to have the setInterval()
not run automatically on instantiation, but to have it only when you run start(). The other
change is to offer up a public API by returning an object as a result of instantiation (this is a
great example of the encapsulation that was covered in Chapter 3):

function Animation(options)
{
var el = options.element;
if(typeof el == 'string') el = document.getElementById(options.element);
if(!el) return false;
var fps = 30;
// stores which step we're on
var step = 0;
// determines the total number of steps
var numsteps = options.duration / 1000 * fps;
// determines the interval between each step
var interval = (options.from - options.to) / numsteps;
var intervalID;

function animate()
{

// what the new position will be
var newval = options.from - (step * interval);
// the step increments AFTER the comparison
if(step++ < numsteps) {
// use Math.ceil to round to an integer and style
el.style[options.property] = Math.ceil(newval) + 'px';

}else{
el.style[options.property] = options.to + 'px';
publicMethods.stop();

}
}

var publicMethods = {
start:function(){
intervalID = setInterval(animate, 1000 / fps);

},
stop:function(){
clearInterval(intervalID);

},

CHAPTER 6 ■ VISUAL EFFECTS 135

7648ch06final.qxd 9/6/07 7:52 PM Page 135

gotoStart:function(){
step = 0;
el.style[options.property] = options.from + 'px';

},
gotoEnd:function(){
step = numsteps;
el.style[options.property] = options.to + 'px';

}
}
return publicMethods;

}

The interval variable was moved up to the top, so it’s with the rest of the variables. The
declaration is not moved to the start() function because you still need closures to be able to
access that variable in the stop() method. The other thing you’ll notice is that the animate()
function now runs the stop() method instead of just clearing the interval. This keeps all “stop”
logic in one place, which will be important as you continue to extend the API.

How can you possibly extend the API? Read on.

Callbacks
After you have the animation object all set to animate in an agnostic way, you might want to
create custom events that fire at certain times, enabling other code to tie into the animation to
perform related tasks. In any animation, there are usually only three interesting moments:

• The start of the animation: Tying into the start of an animation can be helpful if some-
thing you want to do is tied into the start of a particular animation. For example, you
might have a text label that needs to change based on the state of an animation.

• Each step of the animation: You generally won’t care about each step because there
would simply be too much noise. However, if building a game, it might be useful to
know whether an element is close to or intersecting another element on the page.
(Yes, you can build Pong by using JavaScript.)

• The end of the animation: This is the moment you’ll want to tie into to remove ele-
ments on the page, add new elements, or perform an Ajax call.

Looking at the API, you need to add the new code to the animate() function because it
knows when the animation is at the beginning, when it’s at the end, and when it makes each
step in the animation. Why not add the start and end callbacks in the start() and stop()
methods? Because the object can be stopped and restarted mid-animation, and adding it in
those places doesn’t properly account for that capability. You could add callbacks for all meth-
ods of the API, but that’s not as necessary. You can always execute your own function any time
you execute the API method. What you can’t predict is when an animation is necessarily
started, stopped, or stepped—thus the callbacks.

Let’s add in the additional code, for which only the animate() function is shown (because
it’s the only function that needs to be modifed):

CHAPTER 6 ■ VISUAL EFFECTS136

7648ch06final.qxd 9/6/07 7:52 PM Page 136

function animate()
{

// what the new position will be
var newval = options.from - (step * interval);
// the step increments AFTER the comparison
// check if the property exists and if the step
// is 0 (the first step)
if(options.onStart && step == 0) options.onStart();
if(options.onStep) options.onStep();
if(step++ <= numsteps) {
// use Math.ceil to round to an integer and style
el.style[options.property] = Math.ceil(newval) + 'px';

}else{
el.style[options.property] = options.to + 'px';
if(options.onEnd) options.onEnd();
publicMethods.stop();

}
}

The options object now has some additional properties that you can pass in:

var options = {
element:document.getElementById('elementID'),
property:'height',
from: 0,
to: 200,
duration: 1000,
onStart: function(){ console.log('started') },
onStep: function(){ console.log('stepped') },
onEnd: function(){ console.log('ended') }

};

Keep in mind that console.log() was used within these functions only to track when the
calls get made. As covered in Chapter 1, console.log() is a debugging technique that’s not
available in all browsers including Internet Explorer (IE) or Opera.

Queuing Animations
Queuing animations enables you to set up a sequence of events. To do this, you can actually
take advantage of the callbacks made available to you within the animation object to script a
number of animations to occur.

Let’s say you have three elements side by side that you want to reveal one at a time. To do
so, simply set the onEnd callback on the first object to start the animation on the second object,
and set the onEnd callback on the second object to start the animation on the third object. Just
like that, they’ll cascade through until the end:

CHAPTER 6 ■ VISUAL EFFECTS 137

7648ch06final.qxd 9/6/07 7:52 PM Page 137

var options1 = {
element:document.getElementById('element1'),
property:'height',
from: 0,
to: 200,
duration: 1000,
onEnd: function(){ a2.start(); }

};
var a1 = new Animation(options1);

var options2 = {
element: document.getElementById('element2'),
property:'height',
from: 0,
to: 200,
duration: 1000,
onEnd: function(){ a3.start(); }

};
var a2 = new Animation(options2);

var options3 = {
element: document.getElementById('element3'),
property:'height',
from: 0,
to: 200,
duration: 1000

};
var a3 = new Animation(options3);

// start everything
a1.start();

This code creates a sequence that looks similar to Figure 6-3.

CHAPTER 6 ■ VISUAL EFFECTS138

7648ch06final.qxd 9/6/07 7:52 PM Page 138

Figure 6-3. Animating elements

Extending the Animation Class
With the basic animation object in place, you can create a class that tackles a specific need.
Suppose you have a set of frequently asked questions (FAQ) on your page that continue down
the page like this: question—answer—question—answer.

The animation object on its own doesn’t quite have everything you need. First and fore-
most, you need to be able to remember the height of the object so that you know how big to
make it again after you’ve hidden the answer. Also, because the object has only two states—
open or closed—you’ll keep track of the state you’re in and toggle between them.

Call the new class Toggler, which will take just one argument: the element that will con-
trol the toggle:

function Toggler(element){ }

Take a quick look at what the HTML for this FAQ would look like. Each question has a
class name of question. In this example, each answer has a class name of answer, but it’s not
really necessary (as you’ll see in a moment):

<div class="question">Question 1</div>
<div class="answer">Lengthy description ... </div>
<div class="question">Question 2</div>
<div class="answer">Lengthy description ... </div>
<div class="question">Question 3</div>
<div class="answer">Lengthy description ... </div>
<div class="question">Question 4</div>
<div class="answer">Lengthy description ... </div>

When the window loads, you need to get all the question elements and create new
Toggler options with each one. This code uses the getElementsByClassName() function that
was covered in Chapter 2:

CHAPTER 6 ■ VISUAL EFFECTS 139

7648ch06final.qxd 9/6/07 7:52 PM Page 139

var els = getElementsByClassName(document, 'question');
for(var i=0;i<els.length;i++)
{
new Toggler(els[i]);

}

Now that you’ve created a bunch of new Toggler objects, you need to add some meat to
the Toggler class—you have to find the answer for the question selected. In this case, the
answer always appears right after the question. To retrieve the answer, simply use the DOM
property nextSibling. As you might remember, IE doesn’t count the empty text node between
the two nodes. Therefore, to ensure that all browsers get to the answer, check to see whether
you have an element; if not, grab the next element. You’ll also grab the initial height of the
answer and store it for later.

function Toggler(element){
var answer = element.nextSibling;
if(answer.nodeType !=1) answer = answer.nextSibling;
var startHeight = answer.offsetHeight;
var hidden = false;

}

Next, add the code that actually does the toggling. The toggle will instantiate a new ani-
mation object each time by swapping the to and from options to control the direction:

function Toggler(element){
var answer = element.nextSibling;
if(answer.nodeType !=1) answer = answer.nextSibling;
var startHeight = answer.offsetHeight;
var hidden = false;

function toggle()
{
var start, stop;
if(hidden)
{
start = 0;
stop = startHeight;

}else{
start = startHeight;
stop = 0;

}

var options = {
element: answer,
from:start,
to:stop,
duration:250,
property:'height'

};

CHAPTER 6 ■ VISUAL EFFECTS140

7648ch06final.qxd 9/6/07 7:52 PM Page 140

// instantiate and start the animation
(new Animation(options)).start()
// toggle the hidden property
hidden = hidden ? false : true;

}
}

With the toggle function defined, you need to add the last two ingredients (attaching the
event handler and hiding the answer to start off with):

function Toggler(element){
var answer = element.nextSibling;
if(answer.nodeType !=1) answer = answer.nextSibling;
var startHeight = answer.offsetHeight;
var hidden = false;

function toggle()
{
var start, stop;
if(hidden)
{
start = 0;
stop = startHeight;

}else{
start = startHeight;
stop = 0;

}

var options = {
element: answer,
from:start,
to:stop,
duration:250,
property:'height'

};
// instantiate and start the animation
(new Animation(options)).start()
// toggle the hidden property
hidden = hidden ? false : true;

}

element.onclick = toggle;
toggle();

}

CHAPTER 6 ■ VISUAL EFFECTS 141

7648ch06final.qxd 9/6/07 7:52 PM Page 141

Add a little bit of CSS:

.question {
font-weight:bold;
margin-top:10px;
cursor:pointer; /* use the same pointer as a link */

}

.answer {
/* must be overflow hidden to do the animation */
overflow:hidden;

}

And just like that, you’ve got a handy way to handle the FAQ, as demonstrated in
Figure 6-4.

Figure 6-4. The FAQ with one item expanded

■Note You’ll see more FAQ magic in Chapter 8, which contains an FAQ case study.

Using Libraries for Animation
Even though you’ve put together a pretty decent little class of your own, there are still a
number of areas to tackle, which is why libraries are beneficial: they have already solved a lot
of the problems.

Take for example, modifying the opacity of an object. Unlike other properties, such as left
or top, opacity takes a value only between 0 and 1 and isn’t a pixel-based measurement. There-
fore, you have to start adding in special cases, checking for property values being passed in
and planning for them.

CHAPTER 6 ■ VISUAL EFFECTS142

7648ch06final.qxd 9/6/07 7:52 PM Page 142

You’ll now take a look at a few of the different animation options available to use through
the following libraries:

• Script.aculo.us

• jQuery

• Mootools

Script.aculo.us
The Script.aculo.us library extends Prototype to offer up a number of animation possibilities
through its core and combination effect components.

Similar to the animation object you developed previously, there is a base effect class,
called Effect.Base, from which all the other effect classes extend. It’s slightly different in that
the base class doesn’t actually change the value of any object, but is instead left up to the child
classes. The base class handles all the timing, which enables each child class to do what it does
best and account for the special scenarios (such as the opacity issue).

The core effects are as follows:

• Effect.Opacity: Changes the opacity of an element, enabling it to fade in or out

• Effect.Move: Moves an element around the page

• Effect.Scale: Scales the element up by resizing its dimensions and the font size of the
content within

• Effect.Highlight: Adjusts the background color, usually from a bright color to the
default color (highlights status changes)

• Effect.ScrollTo: Scrolls the window to a particular location on the page (useful for
those anchored links mentioned earlier)

The combination effects that build on top of the core events are the following:

• Effect.Fade

• Effect.Appear

• Effect.Puff

• Effect.BlindUp

• Effect.BlindDown

• Effect.SwitchOff

• Effect.DropOut

• Effect.Shake

• Effect.SlideDown

• Effect.SlideUp

• Effect.Squish

CHAPTER 6 ■ VISUAL EFFECTS 143

7648ch06final.qxd 9/6/07 7:52 PM Page 143

• Effect.Grow

• Effect.Shrink

• Effect.Pulsate

• Effect.Fold

• Effect.Morph

Effects are instantiated by passing the element or the element ID into the constructor:

new Effect.Puff('elementID');

Each class takes an options object as the second parameter, but the options will vary from
class to class.

The Script.aculo.us web site includes a demo of each of these effects (http://wiki.
script.aculo.us/scriptaculous/show/CombinationEffectsDemo) if you want to see them in
action (see Figure 6-5).

Figure 6-5. The Puff effect in action as it fades and “blows out” like a puff of smoke

If you’re already using Prototype on a project that includes Prototype and Script.aculo.us
by default (for example, a Ruby on Rails project), adding Script.aculo.us effects is super
simple.

CHAPTER 6 ■ VISUAL EFFECTS144

7648ch06final.qxd 9/6/07 7:52 PM Page 144

http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo
http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo

jQuery
This extremely compact library (only 20K) can do a number of straightforward animations
out of the box. jQuery is great for adding simple animations because of its structure. Just
pull out one or more elements and then use any of the animation objects to animate.

The standard jQuery animations include the following:

• fadeIn(), fadeOut(), and fadeTo(): These animations enable you to fade an object in
and out or fade from the current value to a predefined value.

• slideDown(), slideUp(), and slideToggle(): These animations have the same effects
as the FAQ example you did earlier, expanding and collapsing a section of the page.
slideToggle() toggles an element between slideDown() and slideUp().

• show(), hide(), and toggle(): show() and hide() fade and resize the element; toggle()
switches between showing and hiding the item.

These effects are really easy to use and can be tweaked by specifying the speed of the ani-
mation as 'slow', 'normal', 'fast', or the number of milliseconds for the animation. You can
add a second parameter, which is the callback function to be called upon completion of the
animation.

$('#elementID').fadeOut('fast', function(){
alert("I'm done the animation")

});

jQuery also offers up an animate() method that enables you to change multiple proper-
ties at the same time. The properties to change are contained in an object literal and passed
as the first parameter. The second parameter is speed, the next is the easing effect, and the
last is the callback function. Only the first parameter is required; the others are optional.
jQuery even tries (and succeeds) to be smart and enables any of the optional parameters to
appear in any order.

$("#elementID").animate(
{ height: 'toggle', opacity: 'toggle' },
"fast",
"easein",
function(){alert('done!');}

);

■Note Easing uses mathematics to adjust the speed of the animation over time. The animation might start
slowly and then speed up as it gets close to the end (or vice versa), creating a more natural feel than an ani-
mation that doesn’t change in speed.

Easing effects are handled via a jQuery plug-in, which is an additional function that ties
into the jQuery namespace. The supported easing effects are handled by the jQuery Easing
Plugin, available from http://gsgd.co.uk/sandbox/jquery.easing.php. Common easing

CHAPTER 6 ■ VISUAL EFFECTS 145

7648ch06final.qxd 9/6/07 7:52 PM Page 145

http://gsgd.co.uk/sandbox/jquery.easing.php

effects include easein and easeout, along with fancier effects such as bouncein/bounceout and
backin/backout.

You can find more jQuery plug-ins at http://docs.jquery.com/Plugins.

Mootools
Mootools is made by the same folks who gave you Moo.fx, which gained popularity because
it was small (3K), came with a compact version of Prototype dubbed Prototype Lite (5K),
and focused strictly on animations. This time around, the developers dropped the Prototype
requirement and created a variety of useful components. The effects are broken down into
a number of components (similar to Script.aculo.us).

The Fx.Base is very similar to Script.aculo.us, with the other classes extending it as need
be. Of the Fx classes, only three offer up specific animation functionality:

• Fx.Style: Modifies an element style property over time

• Fx.Scroll: Scrolls the window or an element with overflow:scroll

• Fx.Slide: Shows or hides content using a slide animation

The other Fx classes are utility classes to handle various animation duties such as transi-
tions (Fx.Transitions) or applying multiple style effects to multiple elements at once
(Fx.Elements). The Style object resembles your approach in that the animation begins only
after the start() method is executed.

var anim = new Fx.Style('elementID', left',{duration:500});
anim.start(0, 100);

Summary
There can be a place for visual effects in your work because they can solve usability issues
inherent within even standard web pages. You built your own animation class and in the
process discovered many of the concepts discussed over the last few chapters. Finally, you saw
how the popular JavaScript libraries handle animation and which additional features they
have to offer up.

In Chapter 7, Stuart Langridge takes a good look at one of the most common uses for
DOM scripting: form validation.

CHAPTER 6 ■ VISUAL EFFECTS146

7648ch06final.qxd 9/6/07 7:52 PM Page 146

http://docs.jquery.com/Plugins

Form Validation and
JavaScript

By Stuart Langridge

Most web applications use the <form> tag at one place or another. If your app uses a <form>
to gather information, you’ll probably want to try and validate that information to make sure
that what the user is filling in is reasonable in some way. Hence the convention that an * next
to a bit of a form means “this part is mandatory; you must fill it in.” It’s equally important that
if you want the information you receive to be in a certain format you have your app enforce
that format. This is what validation is all about: having your app check what the user types to
confirm that it’s what you were expecting. If you’re asking users for the number of chickens
they own, it’s a good idea to check that what they type in is a number instead of “I don’t own
any chickens,” or something similar.

Validation helps with data quality. It also means that later bits of your programs can assume
that the data they have is valid; for example, if you want to sell the user another chicken, you can
write “How would you like to own ($chickens + 1) chickens?” without having to worry about
what happens if you try to add 1 to what the user typed in. Validation is important.

Since this is a book about document object model (DOM) scripting, you might think that
you’ll launch immediately into JavaScript, but that’s not the case. One of the important points
about validation on the Web is that you must not just use JavaScript to do it. Users might have
JavaScript turned off; they might be using their cell phone; they might be demonstrating your
magnificent chickenbuyer.example.com site to someone on a train using a Blackberry. Valida-
tion must take place on the server as well as on the client. So first you’ll briefly look at
server-based validation, and then at how and why to extend it to JavaScript.

Doing It on the Server
You’ll use regular expressions here to check a form submission. The examples in Listing 7-1
are PHP, but every language now includes support for regular expressions; simply adapt for
your choice of server-side technology. If you’re not familiar with regular expressions, there are
guides galore on the Web: http://www.regular-expressions.info/ is a good introduction that
goes into a decent level of detail. The canonical written reference is Jeffrey Friedl’s Mastering
Regular Expressions, described at http://regex.info/.

147

C H A P T E R 7

7648ch07final.qxd 9/6/07 7:59 PM Page 147

http://www.regular-expressions.info
http://regex.info

Listing 7-1. simple-form.php shows validation of a simple form in PHP

<?php

$VALIDATIONS = Array(
"firstname" => Array("regexp" => '.+', "error" => "Enter a name"),
"lastname" => Array("regexp" => '.+', "error" => "Enter a name"),
"heads" => Array("regexp" => '^\d+$', "error" => "Number of heads ➥

should be a whole number"),
"dob" => Array("regexp" => '^\d\d[\/.-]\d\d[\/.-]\d\d\d\d$', "error" => ➥

"Enter dates in format DD/MM/YYYY"),
"email" => Array("regexp" => '^.+@.+\..+$', "error" => ➥

"This address is not valid")
);

$ERRORS = Array();

if (isset($_GET["submit"])) {
form was submitted
foreach ($VALIDATIONS as $field => $data) {
if (!isset($_GET[$field])) continue; # skip any that aren't sent

$regexpstr = $data["regexp"];

if (preg_match("/$regexpstr/", $_GET[$field]) == 0) {
$ERRORS[$field] = $data["error"];

}
}

if (count($ERRORS) == 0) echo "Data OK; now redirect!";
}
?>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>

<title>A simple PHP form using regular expressions for validation</title>
<link rel="stylesheet" href="styles.css">
</head>

<body>
<h1>A simple PHP form using regular expressions for validation</h1>
<form>
<p><label for="firstname">First name</label>

<input type="text" id="firstname" name="firstname">

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT148

7648ch07final.qxd 9/6/07 7:59 PM Page 148

http://www.w3.org/TR/html4/strict.dtd

<?php if (array_key_exists("firstname",$ERRORS)) echo $ERRORS["firstname"]; ?>

</p>

<p><label for="lastname">Last name</label>
<input type="text" id="lastname" name="lastname">

<?php if (array_key_exists("lastname",$ERRORS)) echo $ERRORS["lastname"]; ?>

</p>

<p><label for="heads">Number of heads</label>
<input type="text" id="heads" name="heads">

<?php if (array_key_exists("heads",$ERRORS)) echo $ERRORS["heads"]; ?>

</p>

<p><label for="dob">Date of birth (DD/MM/YYYY)</label>
<input type="text" id="dob" name="dob">

<?php if (array_key_exists("dob",$ERRORS)) echo $ERRORS["dob"]; ?>

</p>

<p><label for="email">Email address of someone you don't like for
spamming purposes</label>
<input type="text" id="email" name="email">

<?php if (array_key_exists("email",$ERRORS)) echo $ERRORS["email"]; ?>

</p>

<p><input type="submit" name="submit" value="Send answers"></p>
</form>
</body>
</html>

The simple-form.php file is a very basic example of how you might do regexp-based vali-
dation in PHP on the server. Each field is given a regexp to match against what the user
submits and an error message to display if it doesn’t match. For example, the “number of
heads” field must contain digits, so its regexp is ^\d+$. (Note the +, meaning “one or more of
these,” which makes this field compulsory.) If completing the field were optional (so it could
be left blank), the regexp would have been ^\d*$ because * means “zero or more of these.”

Note also that some of these regexps are fairly simplistic. Regular expressions are good
but imperfect tools. For example, the e-mail regexp—^.+@.+\..+$—allows invalid nastinesses
such as stuart@somewhere@somewhere@somewhere.com. You often cannot completely rely on
a regexp to give you validity. http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html has

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT 149

7648ch07final.qxd 9/6/07 7:59 PM Page 149

mailto:stuart@somewhere@somewhere@somewhere.com
http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html

a “proper” regexp for matching e-mail addresses, which is a mighty 6251 characters long.
In practice, what you’re doing with validation here is stripping out things that are obviously
wrong, not trying to catch every single invalid case.

The Client Side
On to JavaScript. JavaScript supports regexps natively; a string has a search() method that
takes a regexp as parameter and returns the first character where the regexp is found in the
string, or -1 if it’s not found at all. That being the case, then, you need JavaScript to do the
following:

1. Define the list of regular expressions and the fields to which they apply.

2. On page load, attach an onBlur handler to each field that has an applicable regexp.

3. The onBlur handler, which runs when the user’s focus leaves a field, should check what
the user has entered in that field against the regexp.

4. If the regexp doesn’t match what users enter, display an error message so they know
they’ve entered something incorrectly.

Note that you’re hooking up the JavaScript validation to the fields on page load, following
the DOM scripting principles of unobtrusiveness and progressive enhancement. If the user
doesn’t have JavaScript, the hookup won’t happen, but because you’re already validating on
the server, the validation still happens and the page isn’t broken. Equally, you’re not mixing
lots of JavaScript code in with the HTML markup; the script is self-contained in a <script>
tag in the page header.

Since you already have the list of fields and regular expressions in PHP, it would be good
to have the PHP dynamically write out that list in a form that JavaScript can understand (so it
doesn’t have to be entered twice). JavaScript natively supports regexps; you can define a reg-
exp in JavaScript by putting slashes around it (for example, /^hello$/). So the structure you
want to create in JavaScript should look something like this:

VALIDATIONS = {
"firstname": { 'regexp': /.+/, 'error': 'Enter a name' },
"lastname": { 'regexp': /.+/, 'error': 'Enter a name' },
"heads": { 'regexp': /^\d+$/,
'error': 'Number of heads should be a whole number' }

};

This can be written out directly into the <script> tag by the server-side PHP, so you don’t
need to define the list twice. The code in Listing 7-2 does exactly this; the PHP iterates through
the PHP $VALIDATIONS array and writes out the equivalent JavaScript associative array.

The next step is to walk through the list of validations, find each associated field, and
attach an onBlur handler:

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT150

7648ch07final.qxd 9/6/07 7:59 PM Page 150

for (fieldname in VALIDATIONS) {
fld = document.getElementById(fieldname);
if (!fld) continue; // ignore this field if it doesn't exist in the page
addEvent(fld, "blur", checkField);

}

VALIDATIONS is an associative array (sometimes called a hash table or a dictionary), which
means that you can walk through its keys with for (key in VALIDATIONS), a useful technique.
The keys of the array are the field names, which is what you care about, so for each one you
fetch the page element with that ID (exiting if there is no element with that ID), and then set
the function checkField() to be the event handler for the blur event.

The checkField() function implements steps 3 and 4 in the requirements list—checking
what the user entered in a field against the field’s regexp, and displaying an error message if it
doesn’t match. It looks like this:

function checkField(e) {

fld = window.event ? window.event.srcElement : e.target;

fieldname = fld.id;

if (VALIDATIONS[fieldname]) {
re = VALIDATIONS[fieldname]["regexp"];

if (fld.value.search(re) == -1) {
// the regular expression didn't match
// find the span.error element for this field
// and put the error message in it

span = fld.parentNode.getElementsByTagName('span')[0];
span.innerHTML = VALIDATIONS[fieldname]["error"];

} else {
// the regular expression *did* match
// remove the error message!

span = fld.parentNode.getElementsByTagName('span')[0];
span.innerHTML = "";

}
}

}

First, since this is an event handler, you need to get the element that fired the event—
in this case, that element will be the text field itself, which is what you care about. You use a
little cross-browser coding to get a reference to the element, using the window.event object
in browsers that provide it (Internet Explorer) and the World Wide Web Consortium (W3C)
event object in other browsers.

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT 151

7648ch07final.qxd 9/6/07 7:59 PM Page 151

Following that, you look in the VALIDATIONS object to see whether there’s a regexp defined
for this field by checking whether VALIDATIONS[fieldname] exists. If it does, you retrieve the
regexp defined in VALIDATIONS, ready for checking.

Text fields have their current value available in fieldobject.value, which is a string, and
strings (as noted previously) have a search() method to check the string against a regexp that
returns -1 if there’s no match. So the following means “if the value in this field does not match
the regexp,” and that’s when the error message needs to be displayed:

if (fld.value.search(re) == -1)

The page has been built so that the part containing this field looks like the following:

<p><label for="dob">Date of birth (DD/MM/YYYY)</label>

<input type="text" id="dob" name="dob">

</p>

So each field has an associated span for displaying the error messages. The DOM tree for
that snippet, then, would be that the <label>, the <input>, and the are all children of
the <p> element. So the best way to get a reference to the is with the following:

fld.parentNode.getElementsByTagName('span')[0]

At that point, you can simply set the appropriate error message to display by setting the
innerHTML of the . Similarly, when the if statement that checks the field against the
regexp returns something other than -1, it means that the field value is correct, so you can
remove the error message by setting the innerHTML of to blank.

Finally, you add a cross-browser addEvent() function and wrap the whole block of
JavaScript code up in a simple object (so that the function names and variables don’t collide
with any other scripts you happen to be loading), and tidy up the PHP a tiny bit (printing a
field with a function instead of having all the fields directly inline in the page), and you have
Listing 7-2.

Listing 7-2. simple-form-tidier-js.php adds JavaScript regular expression validation to
simple-form.php

<?php
$VALIDATIONS = Array(
"firstname" => Array("regexp" => '.+', "error" => "Enter a name"),
"lastname" => Array("regexp" => '.+', "error" => "Enter a name"),
"heads" => Array("regexp" => '^\d+$',

"error" => "Number of heads should be a whole number"),
"dob" => Array("regexp" => '^\d\d[\/.-]\d\d[\/.-]\d\d\d\d$',

"error" => "Enter dates in format DD/MM/YYYY"),
"email" => Array("regexp" => '^.+@.+\..+$',

"error" => "This address is not valid")
);

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT152

7648ch07final.qxd 9/6/07 7:59 PM Page 152

$ERRORS = Array();

if (isset($_GET["submit"])) {
form was submitted

foreach ($VALIDATIONS as $field => $data) {
if (!isset($_GET[$field])) continue; # skip any that aren't sent

$regexpstr = $data["regexp"];

if (preg_match("/$regexpstr/", $_GET[$field]) == 0) {
$ERRORS[$field] = $data["error"];

}

}

if (count($ERRORS) == 0) echo "Data OK; now redirect!";
}

?>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<title>A simple PHP form using regular expressions for validation</title>

<link rel="stylesheet" href="styles.css">

<script type="text/javascript">
validator = {

VALIDATIONS: {

<?php

foreach ($VALIDATIONS as $field => $data) {

$regexpstr = $data["regexp"];

$errorstr = $data["error"];
echo "\"$field\": { 'regexp': /$regexpstr/, 'error': '$errorstr' },\n";

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT 153

7648ch07final.qxd 9/6/07 7:59 PM Page 153

http://www.w3.org/TR/html4/strict.dtd

}
?>
},

init: function() {
// check this browser has the chops to do the DOM scripting we need

if (!document.getElementById) return;

// Walk through the VALIDATIONS list and for each one find the field
// it applies to and attach an onBlur handler, so when the user leaves
// the field, it checks the contents of the field against the regexp.

for (fieldname in validator.VALIDATIONS) {
fld = document.getElementById(fieldname);

if (!fld) continue; // ignore this field if it doesn't exist in the page

validator.addEvent(fld, "blur", validator.checkField);
}

},

checkField: function(e) {
fld = window.event ? window.event.srcElement : e.target;

fieldname = fld.id;

if (validator.VALIDATIONS[fieldname]) {
re = validator.VALIDATIONS[fieldname]["regexp"];

if (fld.value.search(re) == -1) {
// the regular expression didn't match
// find the span.error element for this field
// and put the error message in it

span = fld.parentNode.getElementsByTagName('span')[0];
span.innerHTML = validator.VALIDATIONS[fieldname]["error"];

} else {
// the regular expression *did* match
// remove the error message!

span = fld.parentNode.getElementsByTagName('span')[0];
span.innerHTML = "";

}
}

},

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT154

7648ch07final.qxd 9/6/07 7:59 PM Page 154

addEvent: function(obj, type, fn) {
if (obj.addEventListener) {
obj.addEventListener(type, fn, false);

} else if (obj.attachEvent) {
obj["e"+type+fn] = fn;
obj[type+fn] = function() { obj["e"+type+fn](window.event); }
obj.attachEvent("on"+type, obj[type+fn]);

}
}

}

validator.addEvent(window, "load", validator.init);

</script>
</head>

<body>

<h1>A simple PHP form using regular expressions for validation</h1>

<form>

<?php
function field($name, $text) {

global $ERRORS;

echo "<p><label for=\"$name\"";

if (array_key_exists($name,$ERRORS)) {
echo " class=\"error\"";

}

echo ">$text</label>\n";
echo "<input type=\"text\" id=\"$name\" name=\"$name\">\n";

if (array_key_exists($name,$ERRORS)) {
$err = $ERRORS[$name];

echo "$err";
} else {
echo "";
}

echo "</p>\n";
}

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT 155

7648ch07final.qxd 9/6/07 7:59 PM Page 155

field("firstname", "First name");
field("lastname", "Last name");
field("heads", "Number of heads");
field("dob", "Date of birth (DD/MM/YYYY)");
field("email", "Email address of someone you don't like for spamming purposes");
?>

<p><input type="submit" name="submit" value="Send answers"></p>

</form>
</body>
</html>

And there you have it: form validation with regular expressions, progressively enhanced
to use DOM scripting.

Now that there’s an infrastructure in place to do the validation of this form, there are
numerous ways to add extra enhancements. Here I’ll discuss two: having the page add the
error span itself (instead of requiring it to already be present in the HTML) and preventing
the form being submitted if there are errors.

Adding the Error Span from JavaScript
In Listing 7-2, the PHP server code writes out a for each field,
even when there aren’t any errors, as a placeholder for the error message. While these spans
are empty and hence don’t contribute to page layout, it’s a little inelegant, and they clutter
the resultant HTML. It would be tidier if the JavaScript added and removed the spans itself.
Remember that you can’t just assume that JavaScript detecting an error means that you
should add a span—if the server code detects an error it will correctly write out that error
message. So, on detecting an error, the script needs to check whether there’s an error span
already present. If there is, alter its content; if there isn’t, create one.

Listing 7-3 is a relatively simple addition to the existing Listing 7-2; nothing needs to
change other than the JavaScript checkField() function.

Listing 7-3. checkField() from simple-form-tidier-js-create-spans.php

checkField: function(e) {
fld = window.event ? window.event.srcElement : e.target;
fieldname = fld.id;
if (validator.VALIDATIONS[fieldname]) {
re = validator.VALIDATIONS[fieldname]["regexp"];

if (fld.value.search(re) == -1) {
// the regular expression didn't match
// find the span.error element for this field
// and put the error message in it
spans = fld.parentNode.getElementsByTagName('span');

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT156

7648ch07final.qxd 9/6/07 7:59 PM Page 156

if (spans.length == 0) {
// there is no error span, so, create one
span = document.createElement('span');
span.className = 'error';
fld.parentNode.appendChild(span);

} else {
span = fld.parentNode.getElementsByTagName('span')[0];

}
span.innerHTML = validator.VALIDATIONS[fieldname]["error"];

} else {
// the regular expression *did* match
// is there a span.error already?
spans = fld.parentNode.getElementsByTagName('span');
if (spans.length == 0) {
// there is no error span, so do nothing

} else {
// remove the error span
span = fld.parentNode.getElementsByTagName('span')[0];
span.parentNode.removeChild(span);
// and remove class="error" on the field's label, if it has it
lbl = fld.parentNode.getElementsByTagName('label')[0];
if (lbl.className == 'error') {
lbl.className = lbl.className.replace(/\berror\b/,'');

}
}

}
}

}

The bold sections are those that have changed. The code to display an error message
simply, instead of assuming that a span exists, checks to see whether it does exist (by look-
ing for spans that are siblings of the text field). If it does not, the code creates the span with
createElement() and inserts it into the document. Similarly, the code to remove the error
message checks whether a span exists; if it does, the span is removed.

As a small extra wrinkle, the remove code also removes class="error" from the label if the
server code put it there.

Preventing the Form Being Submitted
Another usability enhancement is to prevent the form from being submitted if there are errors
present. It’s generally good practice to stop the user from doing something if you know it’s not
going to work. If there’s an error showing on the form you do indeed know that. However, it’s
something to be careful about; you don’t want the form to remain unsubmittable if something
goes wrong with the JavaScript checking or if JavaScript isn’t available. First, then, you need a
function that can enable or disable the submit button of the form—if there are errors showing,
disable the button; if there are no errors, enable it. This is quite a simple function that doesn’t
depend on the current state of the button; if the button is already enabled, the function
enables it again with no ill effects.

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT 157

7648ch07final.qxd 9/6/07 7:59 PM Page 157

checkForErrors: function() {
// Look for span.error in the page
var spans = document.getElementsByTagName('span');
for (var i=0; i<spans.length; i++) {
// does this span have class=error?
if (spans[i].className.match(/\berror\b/)) {
// disable the submit button and exit
document.getElementById("submitButton").disabled = true;
return;

}
}
// there were no span.error elements, so enable the submit button
document.getElementById("submitButton").disabled = false;

}

To make the function’s job easier, I also added an ID to the form’s submit button.
The checkForErrors() function then needs to be called from a couple of different places.

Whenever a field is checked (in the checkField() function), call checkForErrors(). It would
be possible to be clever about this—call checkForErrors() only if the field’s error status has
changed from OK to error or the other way around—but it’s often easier to understand if it’s
just called unconditionally, as you do here.

The function is also called when the JavaScript starts up from the init() function. This
means that if the PHP code shows an error with the field, the submit button will be immedi-
ately disabled until the error is fixed. Importantly, the button is disabled by JavaScript; if the
button is disabled by the PHP, and JavaScript isn’t turned on, there is no way to re-enable it.
It’s important that you maintain this separation between server-side code and client-side
code; don’t do things on the server that require client-side code to put right or to alter
because they won’t work in scriptless environments.

Listing 7-4 shows this code in practice, with the (minimal) changes in bold.

Listing 7-4. simple-form-tidier-js-prevent-submission.php

...
<html>
<head>
<title>A simple PHP form using regular expressions for validation</title>
<link rel="stylesheet" href="styles.css">
<script type="text/javascript">

...

init: function() {
// check this browser has the chops to do the DOM scripting we need
if (!document.getElementById) return;

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT158

7648ch07final.qxd 9/6/07 7:59 PM Page 158

// Walk through the VALIDATIONS list and for each one find the field
// it applies to and attach an onBlur handler, so when the user leaves
// the field, it checks the contents of the field against the regexp.
for (fieldname in validator.VALIDATIONS) {
fld = document.getElementById(fieldname);
if (!fld) continue; // ignore this field if it doesn't exist in the page
validator.addEvent(fld, "blur", validator.checkField);

}
validator.checkForErrors();

},

checkField: function(e) {
...
// finally, disable or enable the submit button as appropriate
validator.checkForErrors();

},

checkForErrors: function() {
// Look for span.error in the page
var spans = document.getElementsByTagName('span');
for (var i=0; i<spans.length; i++) {
// does this span have class=error?
if (spans[i].className.match(/\berror\b/)) {
// disable the submit button and exit
document.getElementById("submitButton").disabled = true;
return;

}
}
// there were no span.error elements, so enable the submit button
document.getElementById("submitButton").disabled = false;

},

addEvent: function(obj, type, fn) {
...

}
}
</script>
</head>

<body>
<h1>A simple PHP form using regular expressions for validation</h1>
<form>

...
<p><input type="submit" name="submit" id="submitButton" value="Send answers"></p>
</form>
</body>
</html>

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT 159

7648ch07final.qxd 9/6/07 7:59 PM Page 159

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT160

Form Validation with Ajax
Regular expressions are a powerful tool, but they do have their limitations. In the previous
example, the date expression was ^\d\d[\/.-]\d\d[\/.-]\d\d\d\d$, which allows two digits, a
separator, two digits, a separator, and four digits. This will correctly block something similar to
“I’m not telling you my date of birth”, but it will merrily allow such invalid monstrosities as
“99/99/9999”, “32/01/1995”, and “29/02/2007”. Writing a regular expression to correctly trap
all these cases would be impossible. There are also plenty of things that can’t be checked with
a regular expression at all: for example, freeform date fields, numbers with a range, or URLs
(you can check that something looks like a URL, but not whether that URL actually works). For
checking this sort of user entry, you need real code.

Doing It on the Server
It’s pretty easy to put together a server-side form in which each field is tied to a particular
function that validates what’s entered into it. A little PHP example is shown in Listing 7-5.

Listing 7-5. noajax-form.php demonstrates PHP server-side validation

<?php

require_once "validation.php";

$ERRORS = Array();

if (isset($_GET["submit"])) {

form was submitted

foreach ($_GET as $field => $data) {
$check = validate($field, $data);

if ($check != "") {
$ERRORS[$field] = $check;

}
}

if (count($ERRORS) == 0) echo "Data OK; now redirect!";
}
?>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>

7648ch07final.qxd 9/6/07 7:59 PM Page 160

http://www.w3.org/TR/html4/strict.dtd

<head>
<title>A simple PHP form using separate code for validation</title>
<link rel="stylesheet" href="styles.css">
</head>

<body>
<h1>A simple PHP form using separate code for validation</h1>

<form>

<p><label for="dayofyear">Favourite day of the year (1-365)</label>
<input type="text" id="dayofyear" name="dayofyear">

<?php if (array_key_exists("dayofyear",$ERRORS)) echo $ERRORS["dayofyear"]; ?>

</p>

<p><label for="date">Favourite date of all time</label>
<input type="text" id="date" name="date">

<?php if (array_key_exists("date",$ERRORS)) echo $ERRORS["date"]; ?>

</p>

<p><label for="word">Favourite word</label>
<input type="text" id="word" name="word">

<?php if (array_key_exists("word",$ERRORS)) echo $ERRORS["word"]; ?>

</p>

<p><input type="submit" name="submit" value="Send answers"></p>
</form>

</body>
</html>

This code uses the $ERRORS approach and a form structure similar to the preceding regu-
lar expressions form, but it now calls a function validate() for each submitted form value.
The validate() function is defined in a separate file (for reasons that will become clear in
a moment), and it is more trivial PHP, as shown in Listing 7-6.

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT 161

7648ch07final.qxd 9/6/07 7:59 PM Page 161

Listing 7-6. validation.php contains the validation functions for each field

<?php

function validate($field, $value) {

switch ($field) {

case "dayofyear":
if (is_numeric($value) && intval($value) > 0 && intval($value) <= 365) {
return "";

} else {
return "Day of year must be between 1 and 365";

}
break;

case "date":
if (strtotime($value) === false) {
return "Invalid date (try 10 September 2000, +1 week, or next Thursday)";

} else {
return "";

}
break;

case "word":
if ($value == "" || is_numeric($value)) {
return "You must supply a favorite word";

} else {
return "";

}
break;

default:
return "";

}
}

You pass a field name and a field value to the validate() function. It returns an empty
string if the value is valid and an error message if it isn’t. This function could obviously call
other functions and be as complex as you like.

The Client Side
The advantage of having the validation routine separate from the page is that you can then
enhance the form by having JavaScript check the validity of each field through an Ajax call
to the server. In simple terms, it should work like this:

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT162

7648ch07final.qxd 9/6/07 7:59 PM Page 162

1. On page load, attach a handler to the blur event of each field.

2. The onBlur handler, which runs when the user’s focus leaves a field, should grab the
value out of the field and make an XMLHttpRequest call to the server, passing the field’s
name and field value.

3. The server then runs the validation code—this is exactly the same validation code that
the form uses on the server side, not any kind of copy or duplicate of it—and returns
the validate() function’s result.

4. The JavaScript receives the result of the Ajax call, and if it’s an error message, it updates
the page with the error.

Again, it’s important to note that there’s only one validate() function. The server-side
code calls it when doing validation of the form, and the enhanced form calls the same func-
tion via Ajax.

There are a number of parts to building this new form. The previous regular-
expressions-based example didn’t do anything hugely complicated in terms of JavaScript.
With an Ajax-based approach you need to attach events, make an Ajax call, parse the
results of the Ajax call into something meaningful, and update the DOM of the page. This
is the ideal time to start thinking about introducing a JavaScript library to do some of the
heavy lifting. All the libraries out there will make DOM manipulation and Ajax calls sim-
ple, and having a library do XMLHttpRequest is far easier than handling the complexities
of it yourself in most cases.

For this example you’ll use jQuery, which is very easy if the application you’re building is
on the Internet: simply add the following to the <head> of your page:

<script type="text/javascript"
src="http://code.jquery.com/jquery-latest.pack.js"></script>

If you’re building an internal application where your users won’t have access to the Inter-
net, you can download jQuery from http://jquery.com.

JSON is a convenient way to send small amounts of data back and forth to the server from
JavaScript. You’ll also use a library called Services_JSON (http://mike.teczno.com/json.html)
that enables you to return JSON from the server in a convenient way so that you don’t have to
worry about the detail. Since you’re sending only a field name and a value to the server, pass-
ing this information in the query string is the most convenient way. The server URL needs to
extract this information from the query string, call the validate() function to validate it, and
then return the results in the JSON format. In PHP, it would look something like Listing 7-7.

Listing 7-7. ajax-validate.php calls the validate() function and returns the result as JSON

<?php
require_once "validation.php";
require_once "JSON.php";

$field = $_GET["field"];
$value = $_GET["value"];

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT 163

7648ch07final.qxd 9/6/07 7:59 PM Page 163

http://code.jquery.com/jquery-latest.pack.js
http://jquery.com
http://mike.teczno.com/json.html

if (!isset($field) || !isset($value)) {
return_json("");
die();

}

$check = validate($field, $value);

return_json($check);
die();

function return_json($data) {
$json = new SERVICES_JSON();
echo $json->encode($data);

}
?>

To test the Services_JSON PHP library visit the validate URL directly in your browser. Visit-
ing http://your_server_name/ajax-validate.php?field=dayofyear&value=invalid-value will
return the following:

"Day of year must be between 1 and 365", which is the correct error message.

There is built-in support in jQuery for requesting JSON data by Ajax with the $.getJSON()
function. To request a URL and get back JSON data, use this call:

$.getJSON("ajax-validate.php",{
"field": "dayofyear",
"value": "invalid-value"

}, function(data) {
alert("this function is called with the JSON data: " + data);

});

As you can see, you pass the URL to fetch a JavaScript associative array of parameters that
make up the query string and an inline callback function to call with the result.

Now you have everything you need to build the JavaScript half of the Ajax validation rou-
tine in your form. It’s embarrassingly short:

$(document).ready(function(){
$('input[@type=text]').blur(function(){
var thisfield = this;

$.getJSON("ajax-validate.php",{
"field": this.name,
"value": this.value

}, function(data) {
$(thisfield).siblings("span.error").empty();
if (!(data == "")) {

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT164

7648ch07final.qxd 9/6/07 7:59 PM Page 164

http://your_server_name/ajax-validate.php?field=dayofyear&value=invalid-value
mailto:input[@type=text]').blur

$(thisfield).siblings("span.error").append(data);
}

});
});

});

It may look complicated at first, but it’s simply what you get when you combine the
previous parts. A couple of extra wrinkles show up in this finished version, though.

The first is that inside a jQuery event handler, the element that the event actually hap-
pened on is called this. The code stores away a reference to this in a variable thisfield, so
that it’s still available in the callback.

A second wrinkle is that it’s possible to create a jQuery query object from an existing vari-
able by writing $(variable); this is used to make a query object from the stored thisfield
variable.

The code makes use of another jQuery method: siblings(). This does the same thing as
the fld.parentNode.getElementsByTagName('span')[0] part of the regular expression’s code,
but in a much easier-to-read way (I’m sure you’ll agree). The siblings() method by itself will
return all the other children of the same parent node, but you can pass a Cascading Style
Sheets (CSS) selector as before to limit it to only the siblings you care about.

Finally, the empty() method is used to remove the contents of the error span, and the
append() method fills in the error span with the error message passed back from the server
if there was one.

Using Ajax to handle form validation is a convenient way to make your forms more
usable; you avoid a page refresh and having to wait for the server to resend the whole page,
but still take advantage of all the complexity and power of the code running on the server to
make your validation routines as comprehensive as you want.

Summary
Form validation is important. If you care about the quality of your data, the best thing to do
is to try and enforce that quality as much as possible. (And if you don’t care, why collect it?)
Although validation needs to happen on the server, it’s good for users and for the feel and
usability of your applications to have JavaScript-enhanced validation.

With a little extra work and help from a library or two, you can have your server-side vali-
dation also take place in the user’s browser without having to duplicate all your validation
functions in JavaScript.

May all your data gathering be valid from now on!

CHAPTER 7 ■ FORM VALIDATION AND JAVASCRIPT 165

7648ch07final.qxd 9/6/07 7:59 PM Page 165

7648ch07final.qxd 9/6/07 7:59 PM Page 166

Case Study: FAQ Facelift

By Aaron Gustafson

In the history of the Internet, there have been few things as constant as Frequently Asked
Questions (FAQ) pages. Nearly every site has one, either in name or in spirit, and these pages
really haven’t changed much since they first appeared in the early 1990s.

Most FAQs take the form of a list of questions in which each is a link (using either an id
or a name reference) to the applicable question/answer pair somewhere further down on the
page, as seen in Figure 8-1. Maintenance of these FAQs can quickly become a nightmare
because editors must not only create the question/answer pair but also then update the list
at the top of the page (or on another page altogether). DRY principle be damned.

■Note DRY: Don’t Repeat Yourself.

Over the years, many of us have searched for a better way to manage FAQs, if only to
make our lives a little easier. This case study will explore one way to give FAQs a facelift. With
progressive enhancement in mind, you’ll create a baseline, or low-fi, experience using just
markup. Then you’ll add a layer of interaction that relies solely on Cascading Style Sheets
(CSS) for a hi-fi experience. Finally, you’ll add a layer of interaction with JavaScript to kick it
all into hi-def, or at least give it a little of that oh-so-popular Web 2.0 feel.

■Note Jonathan introduced the concept of progressive enhancement in Chapter 7.

Your guinea pig will be the FAQ page for Firebug (http://getfirebug.com), the popular
debugging extension for Firefox. You can find the files for this case study in /starting files/.
The HTML file you’ll be enhancing is faq.html, but you’ll spend the majority of your time
working in faq.js and firebug.css.

167

C H A P T E R 8

7648ch08final.qxd 9/6/07 7:50 PM Page 167

http://getfirebug.com

Figure 8-1. A typical FAQ page taken from http://ride4ever.org

Layer 1: Target Practice
A few years back, while experimenting with a definition list (dl) for marking up the
question/answer pairs in an FAQ, it dawned on me that the extra list of questions at the top of
FAQ pages wasn’t needed. Using clever CSS, you can create the list effect by hiding the answers
and showing them only when the appropriate question’s link is clicked. It requires the use of a
CSS3 pseudoclass selector (:target), but it is perfectly in keeping with the spirit of progressive
enhancement.

Using a dl to mark up an FAQ looks something like this:

<dl>
<dt><!-- QUESTION --></dt>
<dd><!-- ANSWER --></dd>
<dt><!-- QUESTION --></dt>
<dd><!-- ANSWER --></dd>
...cut...

</dl>

And if you add a few hooks to the markup you can leverage :target to make the answers
hidden by default, but visible when the corresponding link is clicked. The following is the way
faq.html is constructed:

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT168

7648ch08final.qxd 9/6/07 7:50 PM Page 168

http://ride4ever.org

<dl class="faq">
<dt><!-- QUESTION --></dt>
<dd id="faq_1"><!-- ANSWER --></dd>
<dt><!-- QUESTION --></dt>
<dd id="faq_2"><!-- ANSWER --></dd>
...cut...

</dl>

I have already taken the lead and filled in this markup in faq.html. Open it up in a
browser and take a look. You should see something akin to Figure 8-2.

Figure 8-2. The default layout of the FAQ example

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 169

7648ch08final.qxd 9/6/07 7:50 PM Page 169

This is a perfectly usable document. Each question has an answer and, more importantly,
each answer has an id that enables it to be bookmarked. Clicking any of the links will immedi-
ately jump the browser to that answer, which is just what you want.

Now open firebug.css and add the following styles at the bottom:

.faq dt,

.faq dd {
margin: 0;
padding: 0;

}
.faq dd {
margin-top: -3em;
padding-top: 3.3em;
position: absolute;
top: 0;
left: -999em;

}
.faq dd:target {
position: static;

}

These rules did the following:

1. Reset the margin and padding on the definition term (dt) and definition data (dd) ele-
ments

2. Adjusted the margin-top on the dd to bring it up 3em (thereby overlapping the dt, so
that the dt is still visible if the dd is linked to in the fragment identifier; that is, as a
jump reference)

3. Adjusted the padding-top on the dd to push its contents down 3.3em so they are not
overlapping the dt, to create a little breathing room

4. Positioned the dd absolutely (taking it out of the normal flow) and pushed it off the left
side of the page so it is out of view (which is more accessible than display: none)

5. Set the dd to be statically positioned (that is, placed back in the normal flow) when it is
the :target (the fragment identifier in the URI string)

■Tip If you already use a universal reset in your style sheets, you can skip step 1.

Before you save the file and take a peek at the page again in a browser, add just a few more
basic layout styles to keep the design from feeling too claustrophobic:

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT170

7648ch08final.qxd 9/6/07 7:50 PM Page 170

.faq dt {
font-weight: bold;
margin: 1em 0 0;

}
.faq dd > :last-child {
margin-bottom: 0;
padding-bottom: 0;

}

These styles will give the dt a little room on top and keep the last child of any of the dd ele-
ments from adding any unwanted gaps to the layout. Now save the file and refresh the
browser to see your handiwork. You should see just the list of questions. Click a question, and
the answer will be revealed, as shown in Figure 8-3. Internet Explorer (IE) 6 users will not see
any change, but getting that problematic browser on track isn’t too difficult and is covered in
the sidebar.

Figure 8-3. FAQ using :target shows the question you clicked in the open position.

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 171

7648ch08final.qxd 9/6/07 7:50 PM Page 171

FIXING IE 6

Suckerfish Shoal (http://tmldog.com/articles/suckerfish/shoal/, by Patrick Griffiths and Dan
Webb) and Dean Edwards’ IE 7 scripts (http://dean.edwards.name/IE7/) will both enable IE 6 to apply
target styles. If you have to overcome a lot of the IE 6 CSS and HTML shortcomings, the IE 7 scripts are my
recommendation because they require no modifications to your style sheets to work.

It is recommended that you apply either fix by using conditional comments to avoid burdening more
standards-compliant browsers with the extra download(s):

<!--[if IE lte 6]>
<script type="text/javascript" src="/js/ie7/ie7-core.js"></script>
<script type="text/javascript" src="/js/ie7/ie7-css3-selectors.js"></script>
<![endif]-->

This conditional comment serves ie8-core.js and ie8-css3-selectors.js to users of IE 6 and
below.

Browsers that don’t understand CSS get a nice listing of the questions and answers, with
all the benefits of nice semantic markup, as seen in Figure 8-4.

Figure 8-4. No CSS support, no problem.

With the CSS-based interaction complete, you can move on to the really exciting bit: the
JavaScript.

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT172

7648ch08final.qxd 9/6/07 7:50 PM Page 172

http://tmldog.com/articles/suckerfish/shoal
http://dean.edwards.name/IE7

Layer 2: JavaScript Boogaloo
The CSS-based interaction you created is pretty good, but you can spruce it up and give it
some flair. I’ve always liked the accordion-type effects that you see on some of the more
Web 2.0-y sites, but that effect alone won’t quite meet your needs. You can, however, use the
basic concept and tailor it to your purposes. In this section, you’ll create a JavaScript-based
interaction for the FAQ that does the following:

• Triggers the answers to slide open when the corresponding question is clicked

• Enables one answer to reference another (triggering the reference to open without
closing the original question, so the reference isn’t lost)

• Keeps each question and answer pair bookmarkable

• Scrolls the window to bring focus to the newly opened answer

You’ll use a few libraries and some other assorted helpers to get the job done:

• Prototype and Moo.fx for Prototype (http://moofx.mad4milk.net/) will provide some
assistance to you in the general construction and animation of the script.

• To get the script going as soon as the page loads, you’ll use Jesse Skinner’s
addDOMLoadEvent() (www.thefutureoftheweb.com/blog/adddomloadevent).

• To help you with debugging, I included jsTrace (http://code.google.com/p/
easy-designs/wiki/jsTrace).

All this code has been included in the project files. Upon opening faq.html, you’ll notice
that the two libraries and jsTrace files (dom-drag.js and jsTrace.js) have already been
included, as have main.js (containing the source for addDOMLoadEvent() and the trace() func-
tion for jsTrace, which you’ll see in the next section) and faq.js (where you’ll be building the
FAQ object):

<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="moo.fx.js"></script>
<script type="text/javascript" src="dom-drag.js"></script>
<script type="text/javascript" src="jsTrace.js"></script>
<script type="text/javascript" src="main.js"></script>
<script type="text/javascript" src="faq.js"></script>

Close that file and open up faq.js. Here you’ll find the humble beginnings of the FAQ
object:

var FAQ = {
// open items
open_items: [],
// running processes
processes: [],
// timer wrapper
timer: new Object(),
// what's opening
to_open: null,

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 173

7648ch08final.qxd 9/6/07 7:50 PM Page 173

http://moofx.mad4milk.net
http://www.thefutureoftheweb.com/blog/adddomloadevent
http://code.google.com/p/easy-designs/wiki/jsTrace
http://code.google.com/p/easy-designs/wiki/jsTrace

// position we are scrolling to
scrolling_to: null,
/* cache of where we are in the scrolling to keep us from

trying to scroll again at the top or bottom */
scroll_cache: null,

// ----- Initialization
initialize: function(){
// startup stuff

},

// ----- Open/Close/Complete
open: function(){
// opener

},
closeAndGo: function(){
// closer & scroll trigger

},
complete: function(dd){
// housekeeping

},

// ----- Scrolling stuff
goTo: function(){
// scroll manager

},
/* Based on Travis Beckham's (squidfingers.com) smooth scroll

with a little Shaun Inman (shauninman.com) thrown in */
getScrollLeft: function(){
if(document.all){
return (document.documentElement.scrollLeft) ?

document.documentElement.scrollLeft :
document.body.scrollLeft;

} else {
return window.pageXOffset;

}
},
getScrollTop: function(){
if(document.all){
return (document.documentElement.scrollTop) ?

document.documentElement.scrollTop :
document.body.scrollTop;

} else {
return window.pageYOffset;

}
},
scroll: function(){
// smooth scroll logic

},

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT174

7648ch08final.qxd 9/6/07 7:50 PM Page 174

// ----- Element Finder
getDT: function(){
// finds the DT associated with the DD

},

// ----- Process Management
processing: function(){
// let's us know if something is processing

},
wait: function(method){
// makes a script wait to execute

}
};

You’ll address each property and method of this object in turn, but I want to give you the
general outline before you go too deep. As the comments mention, Travis Beckham (http://
squidfingers.com) and Shaun Inman (http://shauninman.com) provided a little code and a lot
of inspiration for the scroll manager you’ll build. With that shout-out complete, let’s dive right
in and start hacking away on FAQ.initialize().

Starting the Engine
The first thing the script needs to do is scan the document and grab any dl elements classified
as faq so you can work your magic.

1. Using Prototype’s $$() function, it’s easy enough. Let’s toss in a few trace() calls as
well; it will give you a running tally of what’s going on in the script. For more on using
trace(), see the sidebar “Using jsTrace.”

initialize: function(){
trace('initialize()');
// Collect the DLs & loop
$$('dl.faq').each(function(dl){
trace('DL loop');
// magic goes here

}.bind(this)); // End DL loop
},

■Note If you feel $$() is too slow for this purpose, you can always use old-school document object model
(DOM) methods to do the same thing. Just be sure to make your results enumerable and then skip any dl
that does not have a class of faq.

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 175

7648ch08final.qxd 9/6/07 7:50 PM Page 175

http://squidfingers.com
http://squidfingers.com
http://shauninman.com

USING JSTRACE

Inspired by the trace() method in JavaScript’s cousin, ActionScript, jsTrace is a web page overlay that pro-
vides a quick rundown on what’s occurring in your scripts as it happens. To set it up, you simply define the
trace() function and set it to send a message to the jsTrace window if jsTrace exists.

var trace;
if(typeof(jsTrace) != 'undefined'){
trace = function(msg){
jsTrace.send(msg);

};
} else {
trace = function(){ };

}

By defining trace() as a null function when jsTrace is undefined, you make it safe to remove or com-
ment out the jsTrace files without throwing JavaScript errors from trace() calls in the scripts. Of course,
any trace() calls should be removed as part of your script-optimization regimen, but during the develop-
ment process, it is very helpful to be able to turn jsTrace off and then on again easily.

You can also drag the jsTrace debugger window around to reposition it and grab the little triangle in the
lower-right corner to resize it. You can also close it altogether by clicking the X in the upper-right corner. If
you have cookies enabled, the size and position of the debugger will be maintained as well. So you can tuck
it out of the way and won’t have to move it each time you refresh.

2. Of course, you still haven’t set up FAQ.initialize() to actually run yet, so you should
do that as well. At the bottom of faq.js, add the following just after the closing brace
of the object:

if(typeof(Prototype) != 'undefined' &&
typeof(fx) != 'undefined' &&
document.getElementsByTagName('dl')){

addDOMLoadEvent(function(){ FAQ.initialize(); });
}

This sets FAQ.initialize() to run as soon as the DOM is loaded, but only if Prototype
and Moo.fx are both defined and the document contains one or more dl elements.
After all, the script will throw a lot of errors without the libraries, and there’s no reason
to run it if there are no dl elements on the page.

3. If you save the file and refresh your browser, you should see the jsTrace window shown
in Figure 8-5.

■Note You’ll be using trace() throughout this script so you can pause at just about any time to refresh
your browser and see that everything is working as expected.

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT176

7648ch08final.qxd 9/6/07 7:50 PM Page 176

Figure 8-5. jsTrace shows that something has transpired.

4. All the answers are currently collapsed (that is, they’re invisible because you threw
them off the left side of the page). You don’t want the CSS interaction and the
JavaScript interaction butting heads, so you need to trigger the CSS to release its stran-
glehold on those answers. To do that, simply add a class to the dl to signify that the
FAQ has been turned on:

initialize: function(){
trace('initialize()');
// Collect the DLs & loop
$$('dl.faq').each(function(dl){
trace('DL loop');
// Turn "on" the FAQ
dl.addClassName('on');

}.bind(this)); // End DL loop
},

5. In firebug.css just add the appropriate selector (.faq.on dd) to the declaration block
you already created for .faq dd:target—and you’re all set:

.faq.on dd,

.faq dd:target {
position: static;

}

■Note Remember that IE 6 does not understand multiple class selectors and will default to using the last
class defined in the selector (on in this case). If IE 6 is a major target for you and you think there may be
conflict, you might want to use faq-on instead.

6. Since you’re in the style sheet, go ahead and add the following rule:

.faq.on dd {
margin-top: 0;
padding-top: 0;

}

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 177

7648ch08final.qxd 9/6/07 7:50 PM Page 177

This will reset the margin-top and padding-top for the dd because you don’t need them
when FAQ is turned on.

7. Save the CSS file and refresh to view the answers fully expanded.

8. Back inside the FAQ you need to do two things: prepare the dd elements for opening
and closing and then establish the event handler for the anchors. The dd bit is pretty
straightforward:

initialize: function(){
trace('initialize()');
// Collect the DLs & loop
$$('dl.faq').each(function(dl){
trace('DL loop');
// Turn "on" the FAQ
dl.addClassName('on');
// Loop through the DDs
$A(dl.getElementsByTagName('dd')).each(function(dd){
// Set up the height effect (using moo.fx)
dd.heightFX = new fx.Style(
dd, 'height',
{ duration: 500,
onComplete: function(){

this.complete(dd);
}.bind(this)

}
);
// store the original height for later
dd.openHeight = dd.getHeight();
// Close this DD
dd.heightFX.set(0);

}.bind(this)); // End DD loop
}.bind(this); // End DL loop

},

This code collects the <dd> elements within each FAQ dl and makes them enumerable
(using Prototype’s $A()). It then iterates through each (using Prototype’s Enumerable
.each() method), setting the dd elements heightFX property to be an instance of
fx.Style, which is a generic way Moo.fx enables you to transition a CSS property from
one value to another (and enables you to include only the base Moo.fx library). In this
example, you’ll transition the height property of the dd over a period of half a second
(500ms) and trigger the FAQ.complete() method (which currently doesn’t do anything,
but will do some housekeeping for you later on) when the effect has finished. Finally,
this addition uses Prototype’s Element.getHeight() method to store the current height
of the dd in its openHeight property and then uses the fx.Style object’s set() method
to set the height of each dd to 0, thereby collapsing them.

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT178

7648ch08final.qxd 9/6/07 7:50 PM Page 178

■Note All the calls to bind(this) help maintain proper scope for this within the loops and the effect.
Whenever this is used within this script, it refers to the FAQ object.

9. If you were to refresh the browser at this point, you’d see a terrible mess because you
shrank the height of the dd, but didn’t tell it to hide any of the content that overflows its
box. One minor addition to the style sheet covers it:

.faq.on dd {
margin-top: 0;
padding-top: 0;
overflow: hidden;

}

10. Another refresh, and everything’s golden; the dd elements are collapsed and none of
the content is sticking out. Now it’s time to tackle those anchors.

11. Handling the anchors is not overly complex. You can loop through and collect all
the anchors inside the dl and then determine whether you need to set an onclick
event handler by asking whether or not the href contains an in-page id reference
and whether that id actually exists (just to be sure). If you need to set the event
handler, use Prototype’s Event.observe() and determine whether the anchor is a
question within that handler (which should close any open answers and scroll to
and open its own) or a reference to another question (in which case, it should just
open the new answer and scroll to it). This determination can easily be made by
simply checking to see whether the link’s parentNode is a dt and then triggering the
appropriate FAQ method.

initialize: function(){
trace('initialize()');
// Collect the DLs & loop
$$('dl.faq').each(function(dl){
...cut...
// Loop through the ANCHORs
$A(dl.getElementsByTagName('a')).each(function(a){
var href = a.getAttribute('href');
/* Drop out if the link is not an in-page ANCHOR

or if it's TARGET cannot be found */
if(!href.match(/#/)||

!$(href.replace(/.*?#(.*)/, ''))) return;
// set the event handler
Event.observe(a, 'click', function(e){
var el = Event.element(e);
var id = el.getAttribute('href').replace(/.*?#/, '');
trace('looking for ' + id);

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 179

7648ch08final.qxd 9/6/07 7:50 PM Page 179

// check to see if this link is already open
if(this.open_items.indexOf(id) == -1){
this.to_open = id;
// See if the ANCHOR is inside a DT
if(el.parentNode.nodeName.toUpperCase() == 'DT'){
/* If yes, we need to set the action to close

any open FAQs and then go */
this.closeAndGo();
} else {
// Otherwise we need to just go to the chosen FAQ
this.goTo();

}
}
return false;

}.bind(this), false);
}.bind(this)); // End ANCHOR loop

} // End DL loop
},

Before you move on, let’s talk about where things are wiring into one another. You’re
tying into two methods, FAQ.closeAndGo() and FAQ.goTo(), for handling the close-scroll-
open (for a question click) and scroll-open (for a reference click) interactions, respectively.
You’ll fill in the logic for those methods in a moment. Keep in mind that the links won’t be
functional until you do.

You’re also starting to make use of some of the properties of the FAQ object. The first, as
you might have noticed, is FAQ.open_items. Before you execute any action in the event han-
dler, you test to see whether the id referenced by the clicked anchor is already in that array
(using Prototype’s Array.indexOf()). When you get to writing the FAQ.open() method, you’ll
set it to add the id of the newly opened answer to FAQ.open_items.

This brings you to the second property used here: FAQ.to_open. This property enables you
to track the id of the element you’re opening, so you don’t have to keep passing it as an argu-
ment from method to method.

Refreshing the page at this point gives you a trace of the events taking place as you click
each question link. Obviously, you haven’t written the code to actually open the answers back
up, but the clicks are triggering the script to look for the correct id, as shown in Figure 8-6.

Figure 8-6. A trace of some question clicks

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT180

7648ch08final.qxd 9/6/07 7:50 PM Page 180

Opening Up
With the stage set by FAQ.initialize(), you can begin to work on the animation for opening
and closing the dd elements. The click events trigger one of two different methods, depending
on their context: FAQ.closeAndGo() or FAQ.goTo().

1. Before getting into them, fill in FAQ.open():

open: function(){
trace('open()');
var dd = $(this.to_open);
dd.heightFX.custom(0, dd.openHeight);

},

This method is pretty straightforward; it finds the dd you want to open ($(this.
to_open)) and then implements a custom animation, triggering the dd height to
transition from 0 to the height you stored in the dd openHeight property.

2. Next, set FAQ.goTo() to open the dd (you’ll be adding in some scroll triggers later, but
for now, keep it simple):

goTo: function(){
trace('goTo()');
this.open();

},

3. Add in the logic for FAQ.closeAndGo():

closeAndGo: function(){
trace('need to close '+this.open_items.length+' dds');
if(this.open_items.length > 0){
$A(this.open_items).each(function(id){
var dd = $(id);
dd.heightFX.custom(dd.openHeight, 0);

}.bind(this));
}
this.goTo();

},

All FAQ.closeAndGo() does is close any open dd elements (which it obtains by referenc-
ing FAQ.open_items) and then calls FAQ.goTo(). You have not written any logic to add
anything to the FAQ.open_items array, however, so do that now. This is where the
FAQ.complete() method comes in.

4. You might recall that you set the size transition effect to call FAQ.complete() when the
effect was done, so it is the perfect place to add and remove items from the FAQ.open_
items array. Since you’ll use this method on both open and close, you’ll pass the
method a reference to the dd whose animation just completed. If its id matches
FAQ.to_open, you know it is the newly opened dd and can add it to the FAQ.open_items
array using Array.push(). If not, it has just closed, and you can remove it from the
array using Prototype’s Array.without():

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 181

7648ch08final.qxd 9/6/07 7:50 PM Page 181

complete: function(dd){
trace('transition complete');
var id = dd.getAttribute('id');
if(this.to_open == id){
this.open_items.push(id);

} else {
this.open_items = this.open_items.without(id);

}
},

5. Save your work and refresh the browser. Upon clicking the first question, you should
see it slide open. Click the second question; the first will slide shut while the second
slides open. Now, click the last question; this one is a test of the referencing link event.
When it opens, click the link inside; you should see the answer to the first question
open, but the one you started from will not have closed, just as you planned. Clicking
another question will close those two and open the new one, and so on.

■Tip If the animation looks a little choppy to you, try commenting out the <script> element linking to
jsTrace in faq.html. Without the jsTrace defined, trace() calls will be ignored, and everything will run
a little more smoothly.

Everything is progressing nicely, but before you jump into the scrolling, let’s talk a little bit
about conflict.

Reducing Conflict
When you have a lot of animation, scrolling, and so forth in a page, it can get a little distracting
and possibly overwhelming for the user. Also, if the answers in your FAQ vary greatly in length,
you can end up with some very strange scrolling behaviors as they shrink and enlarge.

It would be nice to have an orderly means of triggering events so you don’t have this sort
of conflict. Open questions should have time to close before the page begins to scroll, and the
scrolling should come to a halt before the new question opens up.

One way of accomplishing this is to set up a process queue and instruct methods to wait
their turn. You’ll implement it using two helper methods and a few of the properties of the FAQ
object that you already defined.

1. You’ll start with FAQ.processing(). This simple method will return true if there is any-
thing in the FAQ.processes queue and false if there isn’t. It will be the indicator to a
method about whether it is safe to proceed with carrying out its business:

processing: function(){
trace('current processes: ' + this.processes.toString());
return (this.processes.length > 0) ? true : false;

},

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT182

7648ch08final.qxd 9/6/07 7:50 PM Page 182

2. FAQ.wait() accepts an argument of the method name that needs to wait and sets a
timer to try that method again in 10ms:

wait: function(method){
trace('waiting to run this.' + method + '()');
this.timer[method] = setTimeout('FAQ.' + method + '()', 10);
return false;

},

3. Implementation of these methods is pretty straightforward. You’ll start with
FAQ.open():

open: function(){
if(this.processing()) return this.wait('open');
clearTimeout(this.timer['open']);
trace('open()');
var dd = $(this.to_open);
dd.heightFX.custom(0, dd.openHeight);

},

When FAQ.open() is called, it checks to see whether there are any active processes. If
there are, it waits and tries again 10ms later. Once the coast is clear, the timer (which is
stored as part of the FAQ.timer object) gets the axe, and the script proceeds normally.

4. Take a minute and implement this for FAQ.closeAndGo() and FAQ.goTo():

closeAndGo: function(){
if(this.processing()) return this.wait('closeAndGo');
clearInterval(this.timer['closeAndGo']);
trace('need to close '+this.open_items.length+' dds');
...cut...

},
...cut...
goTo: function(){
if(this.processing()) return this.wait('goTo');
clearInterval(this.timer['goTo']);
trace('goTo()');
...cut...

},

5. With that done, you can set up the addition and removal of the dd closing processes
(you’ll add the scroll ones in a minute):

closeAndGo: function(){
...cut...
if(this.open_items.length > 0){
$A(this.open_items).each(function(id){
trace('closing ' + id);
this.processes.push(id);

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 183

7648ch08final.qxd 9/6/07 7:50 PM Page 183

var dd = $(id);
dd.heightFX.custom(dd.openHeight, 0);

}.bind(this));
}
this.goTo();

},
complete: function(dd){
...cut...
this.processes = this.processes.without(id);

},

■Note You can safely skip adding the open process to the list because in this example FAQ.open() will
always be the last method called.

6. If you save the script, refresh your browser, and click a few links, you’ll see open
answers close before new ones are opened. Perfect.

Now, you’ve got some scrollin’ to do.

Getting Things Scrolling
The scrolling effect is actually quite simple and involves only a few of the methods.
FAQ.getScrollLeft() and FAQ.getScrollTop(), which obtain the current scroll position, have
already been provided for you, which enables you to jump right into FAQ.scroll().

1. FAQ.scroll() will handle the scrolling of the page from start to finish, and because you
have FAQ.processes to tell you what’s going on, this method can easily determine
whether it is starting the scroll or in the midst of it. FAQ.scroll() will also be able to tell
when it should stop scrolling by comparing the current scroll position (determined by
using FAQ.getScrollLeft() and FAQ.getScrollTop()) to its intended destination. You’ll
also cache the current scroll position in FAQ.scroll_cache, so you can easily determine
whether the window just won’t scroll any more (that is, you are at the bottom or top of
the window):

scroll: function(){
if(this.processes.indexOf('scroll') != -1){
// scrolling
var left = this.getScrollLeft();
var top = this.getScrollTop();
if(// damn close

(Math.abs(left - this.scrolling_to[0]) <= 1 &&
Math.abs(top - this.scrolling_to[1]) <= 1) ||

// can't scroll any farther
(this.scroll_cache &&
(this.scroll_cache[0] == left &&
this.scroll_cache[1] == top))){

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT184

7648ch08final.qxd 9/6/07 7:50 PM Page 184

trace('wrapping the scroll()');
window.scrollTo(this.scrolling_to[0], this.scrolling_to[1]);
clearInterval(this.timer.scroll);
this.scroll_cache = null;
this.processes = this.processes.without('scroll');

} else {
trace('scrolling()');
window.scrollTo(left + (this.scrolling_to[0] - left)/2,

top + (this.scrolling_to[1] - top)/2);
this.scroll_cache = [left, top];

}
} else {
trace('starting the scroll()');
this.processes.push('scroll');
this.timer.scroll = setInterval('FAQ.scroll()', 100);

}
},

You define yet another timer (FAQ.timer.scroll) to repeatedly trigger FAQ.scroll() at
100ms intervals to smoothly move you down the page to the destination coordinates
set in FAQ.scrolling_to.

2. Those coordinates are set in FAQ.goTo() by using another helper method, FAQ.getDT(),
before calling FAQ.scroll(). FAQ.getDT() returns a reference to the DT associated with
the dd being opened. FAQ.goTo() uses this reference to get the dt element’s position
using Prototype’s Position.cumulativeOffset():

goTo: function(){
...cut...
/* We are looking to scroll to the DT so we

need its position */
this.scrolling_to = Position.cumulativeOffset(this.getDT());
trace('DT position: '+ this.scrolling_to[0] + ',' + this.scrolling_to[1]);
this.scroll();
this.open();

},
...cut...
getDT: function(){
trace('looking for the DT associated with ' + this.to_open);
var el = $(this.to_open).previousSibling;
while(el.nodeName.toLowerCase() != 'dt'){
el = el.previousSibling;

}
return el;

},

And because you have implemented process handling, you can safely call FAQ.open()
from within FAQ.goTo() without causing conflict with the call to FAQ.scroll() just ahead of it.

You’re in the final stretch now; you just have a little cleanup left to do.

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 185

7648ch08final.qxd 9/6/07 7:50 PM Page 185

Time to Tidy Up a Bit
Because you’re invoking the scroll before you open the targeted answer, you can sometimes
end up with a little extra room to scroll after the answer is fully open. To compensate for this,
you can set the FAQ.complete() method to attempt a little more of a scroll just in case it’s
available:

complete: function(dd){
...cut...
if(this.to_open == id){
this.open_items.push(id);
// run the scroll again (just in case the page has changed)
this.scrolling_to = Position.cumulativeOffset(this.getDT());
this.scroll();

} else {
this.open_items = this.open_items.without(id);

}
this.processes = this.processes.without(id);

},

The final little tweak has to do with bookmarking. You want the answers to be book-
markable so that the following are true:

• The bookmarked question automatically opens when the page loads.

• If someone links to a bookmark, and the person following that link doesn’t have
JavaScript enabled, the bookmark will work for the second user, too.

• The page won’t jump to the anchor reference when it loads (because you want the
script to control the scrolling if it can).

One way to meet all these needs is to do a little dynamic id rewriting and then set the
script to transpose any fragment identifier found in the URI string to the new id schema and
trigger the referenced dd to open. You do this so the id referenced can’t be found, enabling
JavaScript to control the scroll. All the logic goes into FAQ.initialize():

initialize: function(){
...cut...
$$('dl.faq').each(function(dl){
...cut...
$A(dl.getElementsByTagName('dd')).each(function(dd){
...cut...
// Reset the ID (so we can keep bookmarking active)
var new_id = 'FAQ_' + dd.getAttribute('id');
dd.setAttribute('id', new_id);
// Close this DD
dd.heightFX.set(0);

}.bind(this)); // End DD Loop
// Loop through the ANCHORs
$A(dl.getElementsByTagName('a')).each(function(a){
var href = a.getAttribute('href');

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT186

7648ch08final.qxd 9/6/07 7:50 PM Page 186

/* Drop out if the link is not an in-page ANCHOR
or if it's TARGET cannot be found */

if(!href.match(/#/)||
!$(href.replace(/.*?#(.*)/, "FAQ_$1"))) return;

// set the event handler
Event.observe(a, 'click', function(e){
var el = Event.element(e);
var id = 'FAQ_' + el.getAttribute('href').replace(/.*?#/, '');
...cut...

}.bind(this), false);
}.bind(this)); // End ANCHOR loop

}.bind(this)); // End DL loop
// See if we have a bookmark situation
if(window.location.toString().indexOf('#') != -1){
var id = 'FAQ_' + window.location.hash.toString().replace(/#/, '');
trace('loading with bookmark: ' + id);
if(!$(id)){
trace("can't find " + id);

} else {
this.to_open = id;
this.open();

}
}

},

The first change is to rewrite the id of the dd in the dd loop. Then, in the anchor loop, you
make sure that it does the transposition of the id referenced in the anchor (that is, the original
one) to the newly created id ('FAQ_' + the original one). This keeps everything working nicely
in the script’s normal operations.

The final step is to add the handler for an id reference existing in the URI (that is, an answer
that has been bookmarked or directly linked to). You transpose the fragment identifier into the
new id schema and then test its existence. If it exists, you open it. Easy, peasy.

Save your work, refresh your browser, and take a look. There you have it: a beautiful, pro-
gressively enhanced FAQ.

Summary
This case study walked you through the creation of a progressively enhanced FAQ interface. The
baseline was a semantically marked-up list of questions and answers (using a definition list).
The next level of experience involved the use of some advanced CSS to spice things up a little bit,
showing and hiding content in an accessible way using the :target pseudoclass selector. The
final level of experience was delivered via JavaScript, which dynamically opened and closed the
answers with a nice sliding motion and scrolled the page to make reading easier.

In addition to learning the techniques needed to accomplish this task, you also got to
work a little more with the Prototype and Moo.fx libraries, and you learned how to manage
potential script conflicts by keeping track of processes.

CHAPTER 8 ■ CASE STUDY: FAQ FACELIFT 187

7648ch08final.qxd 9/6/07 7:50 PM Page 187

7648ch08final.qxd 9/6/07 7:50 PM Page 188

A Dynamic Help System

By Dan Webb

Modern web applications are often characterized as having richer and more dynamic inter-
faces that mimic the desktop experiences much more closely than their predecessors. Most of
the credit for this can be given to the major JavaScript libraries (and, of course, to their devel-
opers) as we now have a much more solid base on which to work when starting to develop
these interfaces. JavaScript libraries, as discussed throughout this book, take care of lots of the
detail of cross-browser compatibility and JavaScript’s quirks. When writing a web application,
however, they are rarely the only challenges you’ll face. Your user interface (UI) must interact
with server-side code well, be as robust as possible (even on platforms that don’t support
JavaScript (JS), and be easily maintainable.

To this end, this project illustrates implementing a typical dynamic UI feature, from plan-
ning and design right through to interfacing with server-side elements, to give you a good idea
of how to write solid JavaScript in the context of a real application. In this case, you’ll imple-
ment a help feature.

The code examples in this chapter are based on Ruby On Rails, the web development
framework du jour, for your code examples. I chose it because it works well with your chosen
JavaScript libraries, Prototype and Low Pro, and because it has a knack for doing its job with-
out getting in the way of the real meat of the project—in this case, HTML, Cascading Style
Sheets (CSS), JavaScript, and the concept of progressive enhancement. However, if you’re not
familiar with Ruby On Rails, don’t worry. The concepts shown in the code examples can easily
be reimplemented in PHP, Java, Django, or whatever other kind of crazy platform takes your
fancy.

The Job at Hand
So what exactly will you be creating? Well, let’s set the scene a little. After any application, web-
based or not, has a nontrivial feature set, it will need some kind of help system to guide users
around the application and provide supporting information. Many web applications tackle
this problem by having a help link that typically pops up a new browser window with the help
content inside. Users then scrabble around trying to find the information relative to the part
of the application they’re using at the time and then proceed to enter into a frustrating win-
dow-shuffling dance in which they try to refer to the help and the application at the same
time. Not ideal. 189

C H A P T E R 9

7648ch09final.qxd 9/6/07 7:47 PM Page 189

However, many desktop applications have had a better solution than this for some time:
the Talking Paper Clip. Well, maybe not. Joking aside, what I’m actually referring to here is the
contextual help sidebar that can be seen in applications such as Microsoft Word and Excel, as
well as in many other common applications. When users need help with a certain part of the
application, they can press a key combination or click a help button or icon and then be
shown the relevant part of the help alongside the application they are working with—no hunt-
ing for the correct help section or shuffling between the help window and the application
window necessary. The help you want is given to you where you need it.

This project will take this feature from the desktop to web applications using a little Ajax
and a sprinkle of server-side magic. So without further ado, let’s get on with it.

Planning and Preparation
Besides regular preparation work, such as creating files and downloading library code (which
will be covered later on), it is worth doing some planning for the project up front. No diagrams
or written specs are required; simply pause before you start bashing away at the keyboard and
think about how the project will go together.

To provide the most robust implementation you’ll provide the help sidebar as a progres-
sive enhancement to the regular help system. This means that you’ll build the plain HTML
and CSS nondynamic version of the feature and ensure that it works before enhancing the UI
with the help sidebar using document object model (DOM) scripting. This way you can ensure
that users can get access to help if their browser doesn’t support JavaScript or their firewall
blocks JavaScript, albeit in a more basic fashion. The bottom line is that the help content
should be accessible in as many cases as possible, instead of not being available unless you
have a modern JavaScript-capable browser.

There’s a certain amount of forward planning required in providing good progressive
enhancement. Take a leaf from Jeremy Keith’s book: plan for progressive enhancement from
the start; implement at the end. Although you’ll build the basic application first and then layer
on the help sidebar as an enhancement, it pays to plan for this right from the start. After you
write progressive enhancements once or twice it becomes habit, but for now outline your plan
of how to implement the feature.

The Master Plan
Planning a progressively enhanced feature is all about setting out the flow of the basic version
of the feature and then identifying at what points your progressive enhancement diverges
from it (see Figure 9-1).

As you can see, the basic and enhanced versions of the feature differ very little in terms
of application flow. Perfect. When you work with progressive enhancement, this is a sign that
your design is good. If you find that you’re writing two totally separate applications for
browsers with and without JavaScript, it’s worth having a major rethink. There’s normally
a better way.

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM190

7648ch09final.qxd 9/6/07 7:47 PM Page 190

Figure 9-1. A diagram showing the basic and enhanced flow of the help feature

Preparing the Project
I assume that you have Ruby and Ruby On Rails installed on your machine. If you don’t, you
can visit the Ruby On Rails site to get full instructions on its installation (http://rubyonrails.
org/download). After you have Rails installed, download the example code from
www.apress.com and unzip it to your working directory (I also listed it at the end of this chapter
for quick reference). This gives you a Rails application with some of the donkey work done for
you so you can concentrate on the UI.

The only files you’ll need to manipulate are those in the public directory (which contains
the style sheets and scripts) and those in app/views (the HTML templates, with .rhtml exten-
sions). Notice that the library files you’ll use are placed in public/javascripts. In this project
you’ll use Prototype (prototype.js), Low Pro (lowpro.js), and finally, for visual effects, Moo.fx
for Prototype (moofx.js). You’ll be taking a closer look at these later—now you can start writing
some HTML.

Writing the Markup
Although this is not a book about HTML, it’s worth stressing that writing the HTML for an
application should be a considered process instead of an afterthought. The HTML is the foun-
dation of your UI in any web application, so careful and semantic use of HTML and consid-
ered use of IDs and classes will really help you when it comes to DOM scripting.

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 191

7648ch09final.qxd 9/6/07 7:47 PM Page 191

http://rubyonrails.org/download
http://rubyonrails.org/download
http://www.apress.com

Really think about whether you’re using the correct elements for the content in hand and
be careful not to fall into the trap of “divitis” (wrapping everything in <div> elements and
bloating out your HTML). A nice, clean, and meaningful markup means that, in many cases,
browsers can do much of your work for you. Use <a> tags to link to content, and to
mark up lists and forms, and buttons to trigger server-side actions. Work with the grain of the
browser instead of misusing elements and then coding around your misuse with JavaScript.
With that said, let’s get into the code.

Using Layouts for Common Markup
First you need to write the common HTML that will form the layout of your application. In
Ruby On Rails terms, a layout is a means of including common elements in many pages of
your application. You can think of it as the inverse of server-side includes (such as those sup-
ported by many platforms such as PHP and ASP). Instead of defining snippets of common
content that are included into each of your documents, a layout is a common template into
which page-specific content is injected (see Figure 9-2).

Figure 9-2. The differences between includes and layouts

Although layouts are a Ruby On Rails feature, many other frameworks, including
CakePHP, CodeIgniter, and Django, have an equivalent. Even if your platform doesn’t, you can
roll your own rather simply. As you’ll see, as well as being a generally useful tool, layouts will
also become very useful to you later on down the line.

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM192

7648ch09final.qxd 9/6/07 7:47 PM Page 192

Following is the layout you’ll be starting with for your application:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title>Pro DOM Scripting with Ajax, APIs and Libraries Chapter 9</title>

</head>

<body>
<div id="content">
<div id="header">
<h1>Examplr Beta</h1>

</div>

<%= yield %>

</div>
</body>

</html>

In Rails, the <%= yield %> statement marks where each page’s content will be inserted
into the layout. This simple layout includes a content area (the <div> with the id content) with
an application-wide header. You’ll add an area for the help sidebar content later in the “Styling
with CSS” section.

This file can be found at app/views/layouts/application.rhtml in the example application.

Adding an Example Application Page
With the layout in place, you can turn your attention to the application pages themselves. For
the sake of this project you’ll create only one application page, the suitably confusing Add A
Sprocket form. Users are bound to need some help with this.

Once again, the markup is simple:

<h2>Add A Sprocket ?</h2>

<form action="/nowhere" method="post">
<fieldset>
<p><label for="name">Name</label> <input name="name" id="name" /></p>
<p><label for="spid">Sprocket ID <a href="/help/sprocket#sprocketid"

rel="help">?</label> <input name="spid" id="spid" /></p>
<p><label for="desc">Description</label> <textarea name="desc"

id="desc"></textarea></p>
<p><label for="tr">Tacion Rating <a href="/help/tacion"

rel="help">?</label> <input name="tr" id="tr" /></p>
<p class="check"><label for="xx75">XX-75 Approved <a href="/help/xx75"

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 193

7648ch09final.qxd 9/6/07 7:47 PM Page 193

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

rel="help">?</label> <input name="xx75" id="xx75" type="checkbox" /></p>
<p class="submit"><input type="submit" name="submit"

value="Add Sprocket" /></p>
</fieldset>

</form>

You can find this file at app/views/main/index.rhtml in the example application. Notice
that contextual help links are added with a rel attribute of "help" throughout the form. The
rel attribute describes the relationship of the link to the resource and is a very convenient
hook for many types of scripts. Later you’ll use the rel attribute to determine whether the
resulting content in the help sidebar should display when a link is clicked. You could also use
a class name to differentiate help links from other normal links on the page, but in this case it
seems most semantically correct to specify a relationship.

These links point to various pages within the help section. In the example code the help
section is hooked up for you, but it’s worth having a brief look at the controller code:

class HelpController < ApplicationController

def show
render :template => '/help/' + params[:path].join('/'), :layout => 'help'

end

end

For those not familiar with Rails or Ruby, this action renders the specified template from
within app/views/help with the layout named help. For instance, the URL /help/sprocket will
render the template at app/views/help/sprocket.rhtml. (I put a few example help pages in
there for you.) The help layout looks fairly similar to the main page layout. Try clicking one of
the help links and you’ll see the result: the help content is rendered in its own page.

You have achieved your first goal: you have a form with working links to your help content.
Now it’s time to start the progressive enhancement and layer on the help sidebar behavior.

Styling with CSS
This is a book about JavaScript, not CSS, so I won’t get into too much detail about styling the
form. For this example, use the CSS file included in the example files (public/stylesheets/
main.css). To use this CSS file in your Rails project, open the layout file (app/views/layouts/
application.rhtml) and insert this line into the <head> of the document:

<%= stylesheet_link_tag "main" %>

You should now have a styled form page. At this point you need to think about the help
panel and how it will be styled. First you’ll need to add the help panel into the HTML. Add a
<div id="help"> to your layout. You can add a little bit of fake content in there temporarily for
testing if you need to. Here’s how the layout looks now:

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM194

7648ch09final.qxd 9/6/07 7:47 PM Page 194

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title>Pro DOM Scripting with Ajax, APIs and Libraries Chapter 9</title>
<%= stylesheet_link_tag "main" %>

</head>

<body>
<div id="content">
<div id="header">
<h1>Examplr Beta</h1>

</div>

<%= yield %>

</div>
<div id="help">
Some example help content.

</div>
</body>

</html>

You’ll notice that the help panel is now on the page, but it is dangling at the end of the
form in a rather ugly way. You can use CSS to rectify this. The help panel will have two states:
closed (which is the default) and open. When closed, you simply need to hide the panel
altogether. To this end, add this style rule to your CSS:

#help {
display: none;

}

When the panel is open the main panel needs to make space on the right for the panel,
and the panel needs to be shown in that space. You could do this by manipulating the ele-
ment’s style property with JavaScript, but it’s much better to use the right tool for the right
job. CSS is for presentation, so you can use a class on the body to denote whether the page
has help open or closed. If the body of the document has the class name with-help you can
apply the relevant styles to show the help panel. Add the following to the CSS:

body.with-help {
margin-right: 350px;

}

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 195

7648ch09final.qxd 9/6/07 7:47 PM Page 195

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

body.with-help #help {
background: #F4EEBC;
border: 1px solid #000;
border-color: #CCC #333 #333 #CCC;
width: 320px;
position: absolute;
top: 0;
right: 0;
margin: 8px 30px;
padding: 10px;
overflow: hidden;

}

If you have Firebug installed in your browser you can test the open and closed states by
opening the console and typing the following:

document.body.className = "with-help";

Enter Prototype and Low Pro
Prototype was the first of the current generation of JavaScript libraries that are powering many
of the latest applications on the Web. Prototype (for which you can find downloads and full
documentation at http://prototypejs.org) is now shipped with Ruby On Rails, but it can be
(and is) regularly used on its own. Scriptaculous is commonly used with it to provide effects
and components. But because you’ll be using only lightweight effects in this application, the
smaller and simpler Moo.fx library will be most appropriate.

Finally, because you’ll code this feature in an unobtrusive style you’ll need a few extra
utilities that are contained in the Low Pro (http://danwebb.net/lowpro) library, another exten-
sion library to Prototype. Low Pro contains a whole raft of useful extensions to Prototype’s
event handling, DOM manipulation and creation, and something that you’ll be using heavily
in this application: behaviors.

I’ll discuss the parts of these libraries that you need as you use them, so don’t worry if
you’re not familiar with them at this point—you will be by the end of the chapter. It is, how-
ever, a good idea to have a browser tab open with the Prototype API documentation in it (you
can find it at http://prototypejs.org/api/).

Using the Libraries in Your Project
Prototype, Low Pro, and Moo.fx are all included in the example files. To add them into your
project, open the application.rhtml layout file and add the following into the head of the
document:

<%= javascript_include_tag 'prototype', 'lowpro', 'moofx' %>

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM196

7648ch09final.qxd 9/6/07 7:47 PM Page 196

http://prototypejs.org
http://danwebb.net/lowpro
http://prototypejs.org/api

Or, of course, you can write the HTML directly:

<script type="text/javascript" src="/javascripts/prototype.js"></script>
<script type="text/javascript" src="/javascripts/lowpro.js"></script>
<script type="text/javascript" src="/javascripts/moofx.js"></script>

With that you’re ready to bring your help sidebar to life.

Bringing Help to Life
As they say on MTV Cribs, this is where the magic happens. Now you need to add the
JavaScript behavior layer that will turn your basic help system into a dynamic contextual
sidebar. There is, in fact, very little JavaScript required to get you off the ground, which is
indicative of a solid design. If you let all the other parts of the application handle the jobs,
they should; then JavaScript just needs to be the behavioral glue to connect events on the
page to actions.

Building the Help Controller
To help you manage the code you need to implement the help sidebar and wrap it up in an
object. Because there is only one help sidebar per page, you can represent the help with a
single Help object. Open up public/javascripts/application.js to start writing the help
controller. You’ll start with the basic open and close functionality:

var Help = {
open : function() {
$(document.body).addClassName('with-help');

},
close : function() {
$(document.body).removeClassName('with-help');

}
};

As mentioned before, to open and close the sidebar you simply need to add and remove
the with-help class on the body. Next you need to add a method that requests the help page
via an Ajax request and updates the help element with the content. Prototype’s Ajax.Updater
(as discussed in Chapter 5) does exactly this:

Help = {
open : function() {
$(document.body).addClassName('with-help');

},
close : function() {
$(document.body).removeClassName('with-help');

},

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 197

7648ch09final.qxd 9/6/07 7:47 PM Page 197

request : function(url, callback) {
new Ajax.Updater('help', url, {
method: 'get',
onComplete: callback.bind(this)

});
}

};

The new request() method takes a URL and a callback function, which will be called
when the Ajax request has completed successfully. The body of the function contains an
Ajax.Updater call, which updates the contents of the element with ID help, which in this case
is the help sidebar, and specifies that the passed callback should be executed on completion.
Notice that you’re using Prototype’s bind() method to ensure that the this keyword will point
to the Help controller object within the callback.

When you click a help link you want to trigger the request to get a certain URL. And when
the request has got the help content, you want to reveal the sidebar. So let’s wrap that up in
another controller method:

Help = {
openWith : function(url) {
this.request(url, function() {
if ($(document.body).hasClassName('with-help') == false) this.open();

});
},
open : function() {
$(document.body).addClassName('with-help');

},
close : function() {
$(document.body).removeClassName('with-help');

},
request : function(url, callback) {
new Ajax.Updater('help', url, {
method: 'get',
onComplete: callback.bind(this)

});
}

};

The new openWith() method does exactly this, so now the skeleton controller object is
essentially complete. The next step is to wire it to the help links on the page, which is where
Low Pro comes in very handy.

Adding Behaviors
You can think of LowPro’s Event.addBehavior() method as the equivalent of CSS, but for
behavior instead of style (a behavior sheet, if you like). In fact, the Event.addBehavior() usage
feels very similar to CSS in that it uses an extended form of CSS selectors to select elements
and events to apply behavior to. A typical call might look like this:

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM198

7648ch09final.qxd 9/6/07 7:47 PM Page 198

Event.addBehavior({
'a.product:click' : function() {
// when a elements with the class 'product' are clicked
// the code within this function will run

},
'div.description:mouseover' : function() {
// when divs with the class 'description' are moused over
// this function will run

}
});

You can call Event.addBehavior() as many times as you like and it will stack the behaviors
onto the elements automatically. Also, by default it will try to reapply its behaviors after every
Ajax request to ensure that any new content will have the behaviors applied to it. To hook up
the help controller to the help links on the page, place this in application.js:

Event.addBehavior({
'a[rel=help]:click' : function() {
Help.openWith(this.href);
return false;

}
});

Here you’re using an attribute selector to select all the <a> elements with a rel attribute of
help and triggering Help.openWith(), passing the link’s href when it is clicked. As with normal
event handlers, returning false will stop the default action of the link so you don’t get taken
off to the help page.

You’re now ready to test it, so let’s include application.js in the page by updating the
application layout:

<%= javascript_include_tag 'prototype', 'lowpro', 'moofx', 'application' %>

When clicking any of the help links, you should now get the help content in the sidebar—
but you aren’t quite there yet. At the moment, the help content comes with a whole HTML page
wrapped around it, but you just want to inject the inner content. To implement this you need to
return to the Rails help controller (app/controllers/help_controller.rb) and adjust it so that if
the page is requested via Ajax, you return the content with a different layout:

class HelpController < ApplicationController

def show
template = '/help/' + params[:path].join('/')
if request.xhr?
render :template => template, :layout => 'help_sidebar'

else
render :template => template, :layout => 'help'

end
end

end

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 199

7648ch09final.qxd 9/6/07 7:47 PM Page 199

You’ve added a condition to test whether the request does come from XMLHttpRequest (a.k.a.
Ajax) and then send the same template, but with the help_sidebar layout instead. In Rails, as
demonstrated previously, you can use request.xhr? to find out whether the request came via
Ajax, but it’s easily replicated if you aren’t using Rails. Under the hood, the request.xhr? method
simply checks whether the X-Requested-With HTTP header is 'XMLHttpRequest'. Prototype’s Ajax
routines append this header to all Ajax requests by default.

The help_sidebar layout is pretty simple. You’ll notice that it doesn’t contain a whole
HTML document; it’s just a fragment, which is what you need if you want to update just part
of an existing page. You also need to add a close link that can used to close the sidebar:

<p id="close_help">X</p>

<%= yield %>

Test the page again and you’ll see a much better effect. The layout now remains intact
when the sidebar is open. You need to make the close button work by adding another rule to
the Event.addBehavior() block:

Event.addBehavior({
'a[rel=help]:click' : function() {
Help.openWith(this.href);
return false;

},
'#close_help a:click' : function() {
Help.close();
return false;

}
});

Implementing a Loader
Although the feature is now working, it’s always a good idea to implement a loader to give the
user some feedback if the help content is taking some time to load. A nice simple approach to
this is to create a global loader that responds to all Ajax requests automatically. Fortunately,
Prototype makes this really simple.

There will be only one global loader on the page, so you can represent it with a singleton
object, which (boringly) will be called Loader. Loader needs to encapsulate three basic func-
tions: initializing (which includes creating the loader element itself), showing the loader, and
hiding the loader:

Loader = {
initialize: function(parent) {
this.loader =
$img({ src: 'images/loader.gif', alt: 'Loading...', id: 'loader' });

parent.appendChild(this.loader);
this.hide();

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM200

7648ch09final.qxd 9/6/07 7:47 PM Page 200

Ajax.Responders.register({
onCreate: function() {
Loader.show();

},
onComplete: function() {
Loader.hide();

}
});

},
show: function() {
this.loader.show();

},
hide: function() {
this.loader.hide();

}
};

Most of the work is in the initialize() method. First, the method creates the loader element
itself with Low Pro’s DOM builder, which provides a shortcut and some cross-browser fixes for
creating DOM node structures. For each HTML tag there is a $xxx() function that will create
that node. If you pass in an object literal as the first argument, the given properties will be set
as attributes on the element. Any other arguments are appended as children to the created
node. The preceding example just creates a single tag, but take a look at the following
example to get an idea of how a larger node structure might go together:

var product = $div({ 'class' : 'product' },
$h2('Sprocket 47'),
$p({ 'class' : 'description' }, 'The worlds best sprocket'),
$a({ href : '/sprockets/74'}, 'Read more')

);

Back to the Loader; after creating the loader image element, append it onto the passed
parent-child nodes. The second part of the initialize() method then uses Prototype’s
Ajax.Responders to show and hide the loader graphic when necessary. Ajax.Responders.
register() enables you to register global event handlers that are called whenever any Ajax
call is initiated or completed. This gives you an excellent and extremely simple method by
which to implement a global loader.

Now that you’ve finished writing the loader you need to attach it into the page. You can
do this by using Event.addBehavior() once again:

Event.addBehavior({
'#header' : function() {
Loader.initialize(this);

}
});

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 201

7648ch09final.qxd 9/6/07 7:47 PM Page 201

Here Event.addBehavior() is used in a slightly different way. When you just specify a CSS
selector without the event type, the given function is executed as soon as the DOM is loaded.
You exploit this behavior to initialize the Loader object passing it, which refers to the selected
element, as the parent node to the loader. I added a little CSS in the main.css to make sure
that it appears in the top-right corner of the header; then you’re done.

When using Low Pro, Event.addBehavior() becomes the glue between the HTML docu-
ment and the core JavaScript code. Decoupling JavaScript logic from the document has pow-
erful advantages for maintainance and if the HTML changes at any point. Instead of searching
through the core code to find out which code affects which element, you just change the CSS
selectors to reflect the new structure of the document.

Finishing Touches
You’re now pretty much done implementing the help sidebar, but there are always a few
things you can do to make things a bit slicker. So to polish the feature a little bit you’ll be
adding some animation and a few extra features.

Adding Animation with Moo.fx
Earlier in the chapter I briefly mentioned Moo.fx, the ultra-compact effects library. Now it’s
time to put it into action. Let’s make the help sidebar slide in and out instead of snapping
straight from one state to another.

At its most basic level, animation in JavaScript is all about manipulating one or more
style properties of an element over time. Moo.fx gives you a basic yet versatile interface to do
this with the fx.Style constructor, but first you need to look at the CSS to identify what style
properties you need to animate to get the sliding effect. Here are the rules in question:

body.with-help {
margin-right: 350px;

}

body.with-help #help {
background: #F4EEBC;
border: 1px solid #000;
border-color: #CCC #333 #333 #CCC;
width: 320px;
position: absolute;
top: 0;
right: 0;
margin: 8px 30px;
padding: 10px;
overflow: hidden;

}

A quick look at this code tells you that the margin-right property needs to be animated
out to 350px to make room for the help sidebar. At the same time you need to animate the
width property of the sidebar from 0 to 320px to give the effect of it opening out. Of course,

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM202

7648ch09final.qxd 9/6/07 7:47 PM Page 202

the reverse is required to close the sidebar again. You also still need to ensure that the with-
help class name is added and removed as before.

Returning to application.js, you now need to create the effects objects that you can use
to perform the animations. You can keep the effects you need inside the fx property of the
Help object and you need to create them only once—as soon as the DOM is available. To do
this, use Low Pro’s Event.onReady() method:

Event.onReady(function() {
Help.fx = {
openHelp: new fx.Style('help', 'width', {
onStart : function() {
$(document.body).addClassName('with-help');

}
}),
closeHelp: new fx.Style('help', 'width', {
onComplete : function() {
$(document.body).removeClassName('with-help');

}
}),
slideBody: new fx.Style(document.body, 'margin-right')

};
});

Here three effects are defined. First is openHelp, which operates on the width property
of the help element—the sidebar. You use the onStart callback of the effect to add with-
help. Second, closeHelp is very similar, but you use onComplete to remove with-help when
the effect has finished. Finally, you define slideBody, which operates on the margin-right
property of the document.body. Now update the open and close methods to use these
effects:

Help = {
SIDEBAR_WIDTH: 350,
SIDEBAR_MARGIN: 30,
openWith : function(url) {
this.request(url, function() {
if ($(document.body).hasClassName('with-help') == false) this.open();

});
},
open : function() {
Help.fx.openHelp.custom(0, this.SIDEBAR_WIDTH – this.SIDEBAR_MARGIN);
Help.fx.slideBody.custom(this.SIDEBAR_MARGIN , this.SIDEBAR_WIDTH);

},
close : function() {
Help.fx.closeHelp.custom(this.SIDEBAR_WIDTH – this.SIDEBAR_MARGIN , 0);
Help.fx.slideBody.custom(this.SIDEBAR_WIDTH , this.SIDEBAR_MARGIN);

},

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 203

7648ch09final.qxd 9/6/07 7:47 PM Page 203

request : function(url, callback) {
new Ajax.Updater('help', url, {
method: 'get',
onComplete: callback.bind(this)

});
}

};

Now open and close: use the custom method of the effects objects to perform the anima-
tions passing in the start and end values for the animation.

Implementing Anchors Within the Sidebar
You might have noticed that when using the basic HTML-only version of the help system,
clicking the help for Sprocket ID will take you directly to that section of the sprocket help
page. This is because you’ve used a normal HTML page anchor to ensure that the browser
scrolls to the relevant section:

?

But after you implemented the enhanced version, which hijacks the browser’s normal
behavior, you lost this effect. However, it would be great to enhance the script so that users
would be taken straight to the relevant part of the help in the sidebar. Maybe you could
even improve on this by implementing some kind of highlighting of that section to draw
the user’s eye.

A great approach to solving many DOM scripting problems is to try to use the informa-
tion contained within the HTML as much as possible. You previously used the href attribute
of help links to inform the help system of what content to load. To implement this feature,
you can examine the href attributes further to pull out the anchor portion of the href. This
will give you the ID of the section you need to scroll to. You’ll need to update the openWith()
method of the Help object:

Help = {
openWith : function(url) {
var urlParts = url.split('#');
var path = urlParts[0], anchor = urlParts[1];

this.request(url, function() {
if ($(document.body).hasClassName('with-help') == false) this.open();

if (anchor && anchorEl = $(anchor)) {
anchorEl.scrollTo();
anchorEl.addClassName('highlighted');

}
});

},
...

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM204

7648ch09final.qxd 9/6/07 7:47 PM Page 204

First, you split out the path and anchor portions of the URL using split(). Once you
have the anchor portion of the URL you can initiate a request for the page as normal, but
this time the callback is slightly different. If there is an anchor, and that element exists, you
can use Prototype’s scrollTo() method to scroll the browser window down to the relevant
section. It very closely mimics the browser’s default behavior for anchors. Finally, you add
the highlighted class name on to that element, which enables you to apply some extra styles
to the anchored element.

Looking Back
In this chapter you’ve seen that with the power of Prototype and Low Pro, and a little bit of
help from Rails, you achieved quite a lot with a minimal amount of complexity. So let’s take
a look back over the decisions made during the implementation of the help sidebar and
examine the advantage of each in more detail.

Begin with a Solid Base of Semantic HTML
JavaScript gives you almost ultimate power to manipulate the look, feel, and behavior of
HTML elements, which often leads to JavaScript programmers diving straight in to scripting,
writing HTML to support their script. However, if you start by thinking how to best represent
the information on the page with static HTML you can take advantage of the built-in behav-
iors that the browser gives you, enabling you to write less code as well as ensuring that the
application works as well as possible for users without JavaScript.

As a general rule, it’s always advisable to start out by making a working version of your
feature with static HTML. Don’t worry so much about this being usable or slick. Just make it
work and make sure that you put as much semantic value into the HTML as possible because
the richer your content is from a semantic point of view, the more hooks you’ll have available
to you for your script.

In this chapter, you made sure that the static HTML version was working before even
starting to write JavaScript at all. This provides a very solid foundation to build on top of,
which ensures that the help content is accessible, search-engine indexable, printable, and
bookmarkable. Once this is in place you can go about writing the JavaScript as an enhance-
ment to this already fully operational feature. This is a prime example of progressive
enhancement.

Using HTML, CSS, and JavaScript Appropriately
HTML is for content and structure, CSS is for presentation, and JavaScript (in the context of
the browser) is for interactivity. They were each designed for their specific purpose and are the
best at their particular job. It’s very common, however, for developers to get into the habit of
letting HTML do some of the presentation (with , for example, just because you want
something bold, in-line style attributes, and so on) or even letting CSS do some of the inter-
activity (a big example being CSS-only drop-down menus), but the biggest temptation lies
within JavaScript.

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 205

7648ch09final.qxd 9/6/07 7:47 PM Page 205

JavaScript has a special role in the browser in that it has the power to manipulate presen-
tation and content very easily. Even though this is the case, it’s still normally advantageous to
avoid manipulating style properties or adding content to the page. If you want to change the
visual state of an element from JavaScript, do so by adding a class name (as you did using the
with-help class earlier). Similarly, instead of generating lots of HTML from a script, ensure
that it is in the document to begin with. The only common exception is animation, which nec-
essarily manipulates the values of style properties over time.

One main advantage of working this way is that it enables you to change the look and
feel of the application without going anywhere near the JavaScript itself. If the highlighted
state of the selected section needs to be changed you can simply point the designer at the
highlighted style rules in the CSS. Similarly, if all the content is in the HTML, a nontechnical
team member can make changes to copy without going near the JavaScript. Finally, if all the
content is with HTML, you can ensure that the user still has access to that content, even if
JavaScript is not working.

Using CSS Selectors As Application Glue
CSS selectors are incredibly good at their job of selecting elements to apply style properties
to in CSS, and now all the major JavaScript libraries have really solid implementations that
are becoming faster and faster all the time, as well as supporting more of the CSS standard
than the built-in browser versions. This means that CSS selectors can now not only be used
to glue style to your documents but also to glue JavaScript behavior. Low Pro behaviors are
one of several frameworks that automate this process, giving you what is essentially a style
sheet for behavior.

The main advantage of attaching JavaScript in this way is that you can decouple your
application code from the document itself. In this project, for example, you used LowPro to
wire a call to Help.openWith() (from the application code) to links with rel="help". If you
want to change it (to use class="help" instead, for instance), it’s very easy to change. In fact,
it can be so simple that designers in your team can update it. The help sidebar feature is very
simple, but with large projects the gains in maintainability become even more apparent. You
can separate a very complex JavaScript project up into several behaviors that are then glued
into the document via Event.addBehavior(). If the HTML structure changes, it’s trivial to
adapt your scripts.

When It Comes to Ajax, Simple Is Best
There are many methods of communication between JavaScript and the server side. Of
course, originally, there was the X in Ajax: XML. Since then JSON, RJS, and plain HTML have
emerged as other formats, as well as a whole raft of more niche technologies. The rule of
thumb here is to go for the simplest method possible to get the job done. In most cases you
don’t even need anything as rich as JSON; most of the time you can just send a request, return
a chunk of update HTML and replace the relevant part of the document with it. Prototype’s
Ajax.Updater makes this method extremely simple.

In this project, Ajax.Updater is used to great effect. There’s no need to wrap the Ajax
responses up in JSON and then write code to unpack it and handle it on the client side, so the
returned HTML is simply placed into the sidebar <div>.

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM206

7648ch09final.qxd 9/6/07 7:47 PM Page 206

There are numerous advantages to keeping your Ajax communications simple. Because
each user needs to download and execute the JavaScript code on each computer, less code is
always best. Why write lots of code to unpack an XML or a JSON response and act on it when
you can just move chunks of HTML around? Second, browser JavaScript, by its very nature, is
a slow and unreliable beast. The less work you can get away with, the more likely it is to work,
and the more responsive your application will be. There are, of course, many use cases in
which JSON or XML might be necessary, but on the whole you can get away with something
very simple—so always strive for that.

Summary
In implementing the sidebar feature in this chapter I hopefully demonstrated that progres-
sive enhancement is no more difficult than old-fashioned, obtrusive scripting. Especially
with tools such as Low Pro, you can get powerful results without the expense of breaking
browser functionality, rendering your application inaccessible or useless to users on mobile
browsers or behind firewalls. There’s a common misconception that progressive enhance-
ment is more effort than obtrusive techniques, and even that progressive enhancement is
not possible for most applications, but I’m sure you’ll find that this is simply not the case.
Progressive enhancement should be your default approach to DOM scripting.

Source Code
Rails generates a large amount of boilerplate code to support your application, but for this
project only a few files are actually relevant. Following are the complete listings of those files
for your reference.

Listing 9-1. The application layout (app/views/layouts/application.rhtml)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title>Pro DOM Scripting with Ajax, APIs and Libraries Chapter 9</title>
<%= stylesheet_link_tag 'main' %>
<%= javascript_include_tag 'prototype', 'lowpro', 'moofx', 'application' %>

</head>

<body>
<div id="content">
<div id="header">
<h1>Examplr Beta</h1>

</div>

<%= yield %>

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 207

7648ch09final.qxd 9/6/07 7:47 PM Page 207

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

</div>

<div id="help"></div>
</body>

</html>

Listing 9-2. The full page help layout (app/views/layouts/help.rhtml)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title>Pro DOM Scripting with Ajax, APIs and Libraries Chapter 9</title>
<%= stylesheet_link_tag 'main' %>

</head>

<body>
<div id="content">
<div id="header">
<h1>Examplr Help</h1>

</div>

<%= yield %>

</div>
</body>

</html>

Listing 9-3. The help sidebar layout (app/views/layouts/help_sidebar.rhtml)

<p id="close_help">X</p>

<%= yield %>

Listing 9-4. The form page (app/views/main/index.rhtml)

<h2>Add A Sprocket ?</h2>

<form action="/nowhere" method="post">
<fieldset>
<p><label for="name">Name</label> <input name="name" id="name" /></p>
<p><label for="spid">Sprocket ID <a href="/help/sprocket#sprocketid"

rel="help">?</label> <input name="spid" id="spid" /></p>
<p><label for="desc">Description</label> <textarea name="desc"

id="desc"></textarea></p>
<p><label for="tr">Tacion Rating <a href="/help/tacion"

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM208

7648ch09final.qxd 9/6/07 7:47 PM Page 208

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

rel="help">?</label> <input name="tr" id="tr" /></p>
<p class="check"><label for="xx75">XX-75 Approved <a href="/help/xx75"

rel="help">?</label> <input name="xx75" id="xx75" type="checkbox" /></p>
<p class="submit"><input type="submit" name="submit" value="Add Sprocket"

/></p>
</fieldset>

</form>

Listing 9-5. The application CSS file (public/stylesheets/main.css)

body {
background: #999;
padding: 0 30px;
font-family: helvetica, arial, sans-serif;

}

#content {
background: #FFF;
border: 1px solid #FFF;
border-color: #CCC #333 #333 #CCC;

}

#header {
background: #5D8ED3;
padding: 1em;
color: #FFF;
font-family: georgia, serif;
position: relative;

}

#content h2, #content form, #content p, #content h3 {
margin: 1em 1em;

}

fieldset {
border: 0;
width: 50%;

}

#content h2 {
font-family: georgia, serif;
border-bottom: 1px solid #5D8ED3;
padding-bottom: 0.5em;

}

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 209

7648ch09final.qxd 9/6/07 7:47 PM Page 209

label {
display: block;

}

input, textarea {
width: 99%;

}

textarea {
height: 7em;

}

p.check label {
display: inline;

}

p.check input, p.submit input {
width: auto;

}

fieldset p {
padding: 0.7em 0;
margin: 1px;

}

p.submit input {
font-size: 1.3em;

}

#help {
display: none;

}

body.with-help {
margin-right: 350px;

}

body.with-help #help {
display: block;
background: #F4EEBC;
border: 1px solid #000;
border-color: #CCC #333 #333 #CCC;
width: 320px;
position: absolute;

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM210

7648ch09final.qxd 9/6/07 7:47 PM Page 210

top: 0;
right: 0;
margin: 8px 30px;
padding: 10px;
overflow: hidden;

}

#help p, #help h2 {
width: 300px;

}

#help p#close_help {
position: absolute;
top: 0;
right: 15px;
width: auto;

}

#close_help a {
color: black;
text-decoration: none;
font-weight: bold;

}

#loader {
position: absolute;
top: 10px;
right: 10px;

}

Listing 9-6. The application javascript file (public/javascripts/application.js)

Event.addBehavior({
'a[rel=help]:click' : function() {
Help.openWith(this.href);
return false;

},
'#close_help a:click' : function() {
Help.close();
return false;

},
'#header' : function() {
Loader.initialize(this);

}
});

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 211

7648ch09final.qxd 9/6/07 7:47 PM Page 211

Help = {
openWith : function(url) {
var urlParts = url.split('#');
var path = urlParts[0], anchor = urlParts[1];

this.request(url, function() {
if ($(document.body).hasClassName('with-help') == false) this.open();

if (anchor && (anchorEl = $(anchor))) {
anchorEl.scrollTo();
anchorEl.addClassName('highlighted');

}
});

},
open : function() {
Help.fx.openHelp.custom(0, 320);
Help.fx.slideBody.custom(30, 350);

},
close : function() {
Help.fx.closeHelp.custom(320, 0);
Help.fx.slideBody.custom(350, 30);

},
request : function(url, callback) {
new Ajax.Updater('help', url, {
method: 'get',
onComplete: callback.bind(this)

});
}

};

Event.onReady(function() {
Help.fx = {
openHelp: new fx.Style('help', 'width', {
onStart : function() {
$(document.body).addClassName('with-help');

}
}),
closeHelp: new fx.Style('help', 'width', {
onComplete : function() {
$(document.body).removeClassName('with-help');

}
}),
slideBody: new fx.Style(document.body, 'margin-right')

};
});

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM212

7648ch09final.qxd 9/6/07 7:47 PM Page 212

Loader = {
initialize: function(parent) {
this.loader = $img({ src: 'images/loader.gif', alt: 'Loading...', id:

'loader' });
parent.appendChild(this.loader);
this.hide();

Ajax.Responders.register({
onCreate: function() {
Loader.show();

},
onComplete: function() {
Loader.hide();

}
});

},
show: function() {
this.loader.show();

},
hide: function() {
this.loader.hide();

}
};

CHAPTER 9 ■ A DYNAMIC HELP SYSTEM 213

7648ch09final.qxd 9/6/07 7:47 PM Page 213

7648ch09final.qxd 9/6/07 7:47 PM Page 214

■Symbols
$ function (Prototype library), 87
$ function (jQuery library), 89–90
$$ function (Prototype library), 88
$$ function (Mootools library), 93
$A function (Prototype library), 76

■A
ActiveX, described, 3
addBehavior method (Low Pro library),

198–202
addDOMLoadEvent method, 173
addEventListener DOM method, 44
Adobe Dreamweaver, HTML validation, 15
Ajax (Asynchronous JavaScript and XML)

advantages, 17, 99–100, 102
capabilities, 99–100
communication methods, 206–207
communication with, 4
data formats, 100, 106
delimited string format, 116
error handling, 104, 119–124
executing JavaScript code from, 114–115
Google Docs & Spreadsheets, use of,

99–100
history, 3, 99
HTML format, 114
HTTP status codes, 122
interface planning, 104–106
JavaScript format, 114–115
libraries, 83, 124–127, 197–198, 201
multiple requests, 122–123
progress indicators, 103–104
request source, determining whether, 200
request structure, 101
request/response process, 102–103
reusable, 117–118
security issues, 115, 117
string syntax, 116
timeout handling, 120–122
unexpected data, 123–124
user interaction, 104
validation, 160–165
W3C standard, 3
XML and, 4, 106–110
Yahoo! User Interface library and, 126

Ajax.PeriodicalUpdater library, 125
Ajax.Responders, 201

Ajax.Updater library, 125, 197–198, 206
alert method, 6
anchors, 130, 204–205
animation

about, 82
advantages, 129–130
building simple, 130–136
callback events, 136–137
easing, 145–146
enhancing, 135–136
FAQ example, 139–142
guidelines, 130
help system example, 202–204
libraries, 86–87, 93, 142, 145–146
queueing, 137–139
sliding effect, 202–204
techniques, 33
timed sequence management, 132–134

anonymous functions, 21–23
append method (jQuery library), 165
appendChild method, 34
Apple Internet browsers, 2
apply method (JavaScript), 76–77, 83
arguments, method, 24–25, 58, 67–68, 118
Array.each method (Prototype library), 84, 88
Array.push method, 82
arrays, 77, 78–79
Asynchronous JavaScript and XML. See Ajax
attachEvent method (Internet Explorer),

45–46
attributes, handling, 29, 32–33
attributes property, 29

■B
Base (Edwards), 63
base2.DOM library, 86, 96
Beckham, Travis, 175
bind(this) call, 179, 198
bindAsEventListener method, 83
binding objects in JavaScript libraries, 47
bracket notation, JavaScript, 23
browser sniffing, 36
browsers, Internet. See also individual

browsers
capabilities, detecting, 36–37
characteristics, 1
document load, testing for, 44
DOM support, 3, 7, 16, 26, 28, 33–34
history, 2, 14

Index

215

7648IDXfinal.qxd 9/6/07 10:50 PM Page 215

JavaScript development, selection, 7
plug-ins, 7, 15, 95
Quirks mode, 15
standards, 1–2
Strict mode, 15
XMLHttpRequest support, 3, 100, 118–119
XML/XSLT libraries, 113

■C
C# language, 57
calendar, Google, 129–130
calendar widget (Yahoo! User Interface

library), 91
call method (JavaScript), 47, 75–77
callbacks, 74–75, 77, 136–137
camel case format, 33, 39
Camino browser, 2
Cascading Style Sheets. See CSS
CDATA blocks, 6, 90, 97, 110–113
chaining, method, 78
Charles, 12
childNodes property, 28, 31
class attribute (DOM), 33–34
class attributes (HTML), 18
class name, retrieving elements by, 29–30
classes

JavaScript, 35–36, 39, 59–60, 63, 65
OOP, 57

Classical Inheritance in JavaScript
(Crockford), 63

className property, 30, 33–34
clearInterval method, 133
clearTimeout method, 133
closures, 69–71, 75
collections, 77, 78–79, 81, 84
Colville, Stuart, 42
COM (component object model) interface, 3
comma-separated values (CSV), 19–21, 63,

116
comment tags, 5
console.log method, 10, 137
constructors, 59, 60
context, object, 46–47
contextual sidebar help example

anchors, 204–205
animation, 202
application pages, 193–194
JavaScript behavior layer, 197–200
layout, starting, 193
loader, implementing, 200–202
planning, 190–191
Rails code, 207–209, 211
styling, 194–196

createElement method, 34
Crockford, Douglas, 63, 65

CSS (Cascading Style Sheets)
advantages, 17
applying, 19–21
browser support, 2
characteristics, 14
FAQ hiding answer example, 170–172
inheritance, 19–20
properties, 33
in Rails project, 194
selectors, 206
semantic HTML, 17
standards, 2
styling with, 194–196
uses, 205–206
XHTML differences, 16

CSS Zen Garden, 14
CSV (comma-separated values), 19–21, 63,

116

■D
DED|Chain library, 86, 97
delimited strings, 116
Design Pattern Library (Yahoo!), 130
design patterns, 64
desktop, transition of web to, 82
Diaz, Dustin, 97
Digg.com site, 68
document object model. See DOM
document.getElementById method (DOM),

131
Dojo library, 86–87
$ function (Prototype library), 87
$ function (jQuery library), 89–90
$A function (Prototype library), 76
DOM (document object model)

addEventListener method, 44
adding properties/methods to existing

elements, 35–36
browser support, 3, 7, 16, 26, 28, 33–35
class attribute, 33–34
content, inserting, 34–35, 81
described, 25–26
document.getElementById method, 131
inheritance in, 58
libraries, 81–87, 90, 96
moving within, 31–32
node types, 27
standards, 2–3, 26, 28
tree structures, 26–27
XML vs. HTML, 106

DOM Inspector, 7–8
dot notation, JavaScript, 23
$$ function (Prototype library), 88
$$ function (Mootools library), 93
drag and drop, 56, 130
Dreamweaver, HTML validation, 15

■INDEX216

7648IDXfinal.qxd 9/6/07 10:50 PM Page 216

drop-down menus, 130
DRY principle, 167
Dupont, Andrew, 33

■E
each method (Prototype library), 84, 88
easing, 145–146
Edwards, Dean, 43–44, 63, 96
effects, visual, 129
Element Ready script (Colville), 42–43
elements

accessing before load, 41–44
adding properties/methods to existing,

35–36
getting, 28–30
HTML identifiers, 18–19
retrieving by class name, 29–30
web standards, 13–14

empty method (jQuery library), 165
encapsulation, 58, 71–72, 74
Enumerable class (Prototype library), 84
error span, JavaScript implementation, 152,

156–157
errors

Ajax, 104, 119–124
JavaScript, 5
JSON, 123–124

event bubbling, 44–45
event capturing, 44–45
event delegation, 50–51, 53–56
event handling, JavaScript. See also event

delegation
about, 39
attaching handlers to objects, 40–41, 44
cancelling behavior, 48
default action, stopping, 199
drag and drop, 56
inline, 39–40, 44
in Internet Explorer, 45–46
language bridges for, 83
on page load, 41, 44
using jQuery library, 89

Event.addBehavior method, 198–202, 206
Event.onReady method (Low Pro library), 203
exec function (regular expressions), 37
ExtJ S library, 86, 94–95

■F
FAQ (frequently asked questions) pages

cleanup example, 186–187
conflict reduction enhancement, 182–184
format, 167–168
hiding answer technique, 168–172
history, 167
JavaScript enhancement, 173, 175–182
scrolling enhancement, 184–185

Firebug, 8–10, 12, 167, 196
FireFox. See Mozilla Firefox browser
firstChild property, 31
for..in loop, 65–67
forms, 35–36, 40, 48, 157–159
frequently asked questions pages. See FAQ

pages
Friedl, Jeffrey, 147
functional programming, 47, 74–77, 78, 83,

136–137
functions, JavaScript. See methods,

JavaScript

■G
Garrett, Jesse James, 3, 99
getAttribute method, 29, 32–33
getElementById method, 28, 36
getElementsByClassName method, 139
getElementsByTagName method, 28, 30
Good, Nathan A., 37
Google Calendar, 129–130
Google Docs & Spreadsheets, Ajax use,

99–100
Google Mail, 129
Google Maps, 2
Google Suggest, 2
Greasemonkey, 15

■H
hasOwnProperty method, 66–67
help controller, 189, 197–200
help system, 190, 194, 202–204. See also

contextual sidebar help example
higher-order functions, returning, 74
Holzschlag, Molly, 13
HTML

browser support, 2
class attributes, 18
described, 13
element identifiers, 18–19
format, 114
hiding in XML, 110–112
history, 1
libraries, including, 197
loading pages, 4
parsing with XML, 110–112
semantic, 15, 17
user interface, 191–192, 194–195, 205–206
validation, 14, 15
W3C standard, 14
whitespace, 32
XHTML differences, 16
XML differences, 106

HTTP, 10–12, 122
HXR object. See XMLHttpRequest object
hyphens in JavaScript names, 33

■INDEX 217

Find
itfasterathttp://superindex.apress.com

/

7648IDXfinal.qxd 9/6/07 10:50 PM Page 217

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

■I
id attributes (HTML), 18
IE. See Internet Explorer
ieHTTPHeaders, 12
!important keyword, 20
includes compared to layouts, 192
inheritance

about, 58
CSS, 19–20
DOM, 58
JavaScript, 60, 63, 66

Inman, Shaun, 175
innerHTML property, 34–35
insertBefore method, 34
interesting moments, 104
Interface library, 86
internal iterators, 78–79
Internet Explorer (IE)

Array.push support, 82
calendar widget support, 91
cancelling behavior, 49
closure handling, 70–71
document load, testing for, 43
DOM support, 3, 26, 28, 33
event capturing, lack of support for, 45
extensions, 12
history, 1, 3
limitations, 137, 177
target styles, applying, 172
XHTML support, 16
XMLHttpRequest support, 3

iterators, internal, 78–79

■J
Java, 57, 59, 62, 68
JavaScript. See also event handling,

JavaScript; methods, JavaScript
advantages, 25
binding objects, 47
bracket notation, 23
browser selection, 7
characteristics, 57–58
classes, 35–36, 39, 59–60, 63, 65
closures, 69–71, 75
data sets, handling, 82
debugging, 6–12
dot notation, 23
embedding, 5
errors, 5
evaluation, 5
executing code from Ajax, 114–115
FAQ enhancement example, 173, 175–187
formatting, 39
history, 1–2
inheritance, 60, 63, 66
limitations, 64, 75

loading process, 4
names, 33
namespaces, 68–69
objects, 22, 36, 49, 58, 60, 63
parameters, 24–25, 118
properties, adding, 35–36, 59–60, 63, 65
prototypes, 24, 62
regular expressions, 150–152, 156
string syntax, 115
unobtrusive, 14, 40
uses, 205–206
validation, 147, 150–152, 156, 163–165
variables, 22
whitespace, handling, 32
XHTML differences, 16

JavaScript Object Notation. See JSON
javascript\ pseudoprotocol, 40
jQuery library

advantages, 89
Ajax functionality, 126–127
animation features, 145–146
append method, 165
chaining, 90
empty method, 165
event handling, 89
history, 89
namespaces, 89
naming collisions, 68, 89
obtaining, 163
popularity, 86
query objects, 165
resources on, 90
siblings method, 165
size, minimizing, 92
this element, 165
validation, 163, 164

JSON (JavaScript Object Notation)
advantages, 85, 114, 116
described, 84–85, 114–115
error handling, 123–124
libraries, 85, 95, 124, 163–164
parsers, 115
security, 115, 117
string syntax, 115
uses, 84
validation, 163–164

jsTrace debugging library, 173, 176–177, 182

■L
Langel, Tobie, 33
language bridges, defined, 82–83
lastChildproperty, 31
layouts, 192
libraries. See also specific libraries

advantages, 81–82, 86, 96, 189
animation, 86–87, 93

■INDEX218

7648IDXfinal.qxd 9/6/07 10:50 PM Page 218

availability, 86
categories, 81
choosing, 97–98
commercial, 81
disadvantages, 81, 86, 131
documentation, 97–98
DOM, 81–87, 90, 96
history, 81
including, 196, 197
size, minimizing, 81, 92
validation, 163–164
widgets, 85–87, 90–91, 93–96
XML, 95

Live HTTP Headers, 11–12
loaders, 200–202
loggers, 6–7
loop, for..in, 65–67
Low Pro library, 196, 198–199, 201–203, 206
Low Pro plug-in, 95
lower camel case, 39

■M
main function (Java), 59
Mastering Regular Expressions (Friedl), 147
match method (String object), 37–38
members, private, 74
methods, JavaScript

adding, 59–60, 63, 65
callback, 74–75, 77, 136–137
chaining, 78
constructor, 6–7
defining outside objects, 61
described, 21–23, 58–59
detecting existence, 49

methods (OOP), defined, 58
Microsoft XML (MSXML), 119
Moo.fx library, 146, 173, 176, 178, 196,

202–204
Mootools library, 86, 92–93, 146
Mootools.net, 81
Mozilla Firefox browser

document load, testing for, 43
DOM support, 3, 7, 26, 33, 35
extensions, 11
history, 2
HTML/CSS support, 2
popularity, 2
XMLHttpRequest object, 83, 100

MSXML (Microsoft XML), 119

■N
named anchors, link behavior, 130
namespaces

JavaScript, 68–69
jQuery library, 89

SNOOK, 68
Yahoo! User Interface library, 68, 90–92

naming collisions, 68, 89. See also
namespaces

navigator object, 36
Netscape browser, 1, 3
new keyword, 58, 60
nextSibling property, 31
node types, DOM, 27

■O
object literals, 63–65, 67
object-oriented programming, described,

57–58
objects, JavaScript

about, 22
creating new, 58, 63
detecting, 36, 49
instantiating, 60

objects (OOP), defined, 57
observe method (Event object, Prototype

library), 83
onload event, 41
onReady method, 95
OOP (object-oriented programming),

described, 57–58
Opera browser, 3, 43, 83, 100, 137

■P
page logging, 6–7
parameters, method, 24–25, 58, 67–68, 118
parentNode property, 31
PHP regular expression example, 148–150,

152, 156
plug-ins, browser, 7, 15, 95
polymorphism concept, defined, 58
preventDefault method (DOM event object),

48–49
previousSibling property, 31
private members, 74
progressive enhancement, 190, 207
properties (OOP), defined, 57
prototype chaining, 62
Prototype JavaScript library

advantages, 87–88
Ajax functionality, 124–125
Ajax.Responders, 201
Ajax.Updater, 197–198
apply method, 76
documentation, 97
event handling, 83
FAQ enhancement example, 173, 175–176,

178–179
history, 87, 196
naming collisions, 68
object-oriented design, 88–89

■INDEX 219

Find
itfasterathttp://superindex.apress.com

/

7648IDXfinal.qxd 9/6/07 10:50 PM Page 219

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

popularity, 86
resource locations, 196
templating example, 83–84

prototypes, JavaScript, 24, 62

■Q
Quirks mode, 15

■R
Rails templates, 194
ranges, defining in regular expressions, 38
reference, passing parameters by, 24–25
Regular Expression Recipes (Good), 37
regular expressions

behavior, 38–39
complexity, 30
described, 37
functions, 37
information resources, 147
instantiation, 37
JavaScript support, 150–152, 156
limitations, 149, 160
PHP example, 148–150, 152, 156
ranges, defining, 38
test function, 37
validation, 147

rel attribute, 194
replace method (String object), 37–38
replaceChild method, 34
responseText, 101, 106, 114
responseXML, 106
Ruby on Rails, 87, 144, 189, 191–192, 194

■S
Safari browser, 2, 3, 43, 83, 100
Script.aculo.us library, 86, 93–94, 143–144,

196
scripts, loading, 4
scrollTo method (Prototype library), 205
search method (String object), 37–38
selectors, CSS, 206
semantic HTML, 15, 17
Services_JSON library, 163–164
setAttribute method, 32
setInterval method, 132–133
setTimeout method, 132–133
siblings method (jQuery library), 165
singleton design pattern, 64
Skinner, Jesse, 173
SNOOK namespace, 68
specificity, declaration, 20–21
split method, 205
Stephenson, Sam, 87
stopPropagation method, 45
Strict mode, 15
String object, 37–38

strings
Ajax syntax, 116
delimited, 116
JavaScript syntax, 115
JSON syntax, 115
manipulation, 83–84

style property, 33–34

■T
Talking Paper Clip, 190
templating, 83–84
test function (regular expressions), 37
text nodes, moving between, 31–32
this keyword, 40, 46–47, 60, 179, 198
timeouts, Ajax, 120–122
tree widget (ExtJ S library), 95–96

■U
unobtrusive JavaScript, 14, 40
upper camel case, 39
user interface (UI). See also contextual

sidebar help example
help system, 189–190, 194, 202–204
HTML, 191–192, 194–195, 205–206
requirements, 189

■V
validation

Ajax, 160–165
client-based, 147, 150–152, 156, 162–165
forms, 35–36, 40
HTML, 14, 15
importance, 147, 165
JavaScript and, 147, 150–152, 156, 163–165
libraries, 163–164
regular expressions, 147
server-based, 147–150, 158, 160–162

value, passing parameters by, 24–25
visual effects, 129

■W
W3C (World Wide Web Consortium)

about, 2–3
Ajax standard, 3
DOM standard, 26, 28
event capturing, 45
HTML/XHTML standard, 14
recommendations, 26

WaSP (Web Standards Project), 13
web standards, 13–14, 26
Web Standards Project (WaSP), 13
Webb, Dan, 95
whitespace, 32
widget libraries, 85–87, 90–91, 93–96
World Wide Web Consortium. See W3C

■INDEX220

7648IDXfinal.qxd 9/6/07 10:50 PM Page 220

■X
XHTML, 6, 14, 16
XML

advantages, 113
Ajax and, 4, 106–110
disadvantages, 114
encodable characters, 110
libraries, 95
Microsoft implementation, 119
parsing HTML, 110–112
support, 85
uses, 84
validity, 109–111

XMLHttpRequest object. See also Ajax
browser support, 2–3, 83, 100, 118–119
described, 3–4
history, 100
status, 101–102

XSLT, 113–114

■Y
Yahoo!, 104, 105
Yahoo! Design Pattern Library, 130
Yahoo! User Interface library (YUI)

advantages, 90
Ajax functionality, 126
CDATA blocks with, 90, 97
design, 90
disadvantages, 97
namespaces, 68, 90–92
popularity, 86
size, minimizing, 92

■Z
Zeldman, Jeffrey, 13

■INDEX 221

Find
itfasterathttp://superindex.apress.com

/

7648IDXfinal.qxd 9/6/07 10:50 PM Page 221

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

	Accelerated DOM Scripting with Ajax, APIs, and Libraries
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Prerequisites
	Contacting the Authors

	The State of JavaScript
	JavaScript Is One of the Good Guys Again, but Why Now?
	JavaScript Meets HTML with the DOM
	The Rise of Ajax
	Managing JavaScript
	Code Loading
	Code Evaluation
	Embedding Code Properly into an XHTML Page

	Debugging Your Code
	Alert
	Page Logging
	Browser Plug-ins
	DOM Inspector
	Firebug

	HTTP Debugging
	Firebug
	Live HTTP Headers
	ieHTTPHeaders
	Charles

	Summary

	HTML, CSS, and JavaScript
	Getting into the Basics
	Web Standards
	CSS for Presentation
	Valid HTML
	Semantic HTML

	HTML Best Practices
	HTML vs. XHTML
	Best of Both Worlds

	CSS Basics
	Say It with Meaning
	Element Identifiers
	Applying CSS
	Inheritance
	Specificity

	JavaScript Basics
	Functions
	Objects, Properties, and Methods
	Dot Notation and Bracket Notation
	Prototypes
	Passing by Value or by Reference

	JavaScript and the DOM
	What Is the DOM?
	DOM Tree Structures
	The document Object
	Obtaining Elements by Class Name

	Moving Around the DOM
	Working Around Text Nodes

	Handling Attributes
	The style Property
	The class Attribute

	Inserting Content into the DOM
	Attaching Properties and Methods to Existing DOM Elements

	Browser Sniffing vs. Object Detection
	Regular Expressions
	Code Formatting Practices
	Event Handling
	Inline Event Handling
	The this Keyword
	Unobtrusive JavaScript
	Accessing Elements Before the Page Loads
	Attaching Events Using DOM Methods
	Event Capturing vs. Event Bubbling
	Attaching Events in IE
	Examining Context
	Cancelling Behavior
	Tying It All Together

	Event Delegation
	Halfway Between Here and There
	When Event Delegation Won’t Work

	Summary

	Object-Oriented Programming
	What Is Object-Oriented Programming?
	Functions
	Adding Methods and Properties
	The Mechanics of Object Instantiation
	Returning an Object in the Constructor
	Prototype

	Object Literals
	The for..in Loop
	Named Parameters
	Namespaces
	Closures
	Encapsulation
	Functional Programming
	Callbacks
	The Functions call and apply
	Applying a Function to a Collection
	Chainable Methods
	Internal Iterators

	Summary

	Libraries
	Working with the DOM
	Animation

	Application Conveniences
	Language Extensions and Bridges
	Event Handling
	Ajax
	Strings and Templating
	Working with Collections
	Handling JSON and XML

	Widgets
	Popular Libraries
	Dojo
	Prototype
	jQuery
	Yahoo! UI Library (YUI)
	Mootools
	Script.aculo.us
	ExtJS

	New Libraries
	Base2.DOM
	DED|Chain

	How to Choose a Library
	The Community
	The Documentation

	Summary

	Ajax and Data Exchange
	Examining an Ajax Application
	Deconstructing the Ajax Process
	Ajax Request/Response Process
	Failure
	Storyboarding

	Data Formats in Ajax
	XML
	XML Validity and Encoding
	Encoding HTML
	CDATA Nodes
	XSLT

	Alternatives to XML
	HTML
	JavaScript
	Delimited Strings

	Building a Reusable Ajax Object
	What Do All the Different ActiveX Objects Mean?

	Planning for Failure
	Handling Timeouts
	HTTP Status Codes
	Multiple Requests
	Unexpected Data

	Using Libraries to Handle Ajax Calls
	Prototype
	Ajax.Updater
	Ajax.PeriodicalUpdater

	YUI
	jQuery

	Summary

	Visual Effects
	Why Use Visual Effects?
	Building a Simple Animation Object
	Callbacks
	Queuing Animations

	Extending the Animation Class
	Using Libraries for Animation
	Script.aculo.us
	jQuery
	Mootools

	Summary

	Form Validation and JavaScript
	Doing It on the Server
	The Client Side
	Adding the Error Span from JavaScript
	Preventing the Form Being Submitted

	Form Validation with Ajax
	Doing It on the Server
	The Client Side

	Summary

	Case Study: FAQ Facelift
	Layer 1: Target Practice
	Layer 2: JavaScript Boogaloo
	Unknown
	Starting the Engine
	Opening Up
	Reducing Conflict
	Getting Things Scrolling
	Time to Tidy Up a Bit

	Summary

	A Dynamic Help System
	The Job at Hand
	Planning and Preparation
	The Master Plan
	Preparing the Project

	Writing the Markup
	Using Layouts for Common Markup
	Adding an Example Application Page

	Styling with CSS
	Enter Prototype and Low Pro
	Using the Libraries in Your Project

	Bringing Help to Life
	Building the Help Controller
	Adding Behaviors
	Implementing a Loader

	Finishing Touches
	Adding Animation with Moo.fx
	Implementing Anchors Within the Sidebar

	Looking Back
	Begin with a Solid Base of Semantic HTML
	Using HTML, CSS, and JavaScript Appropriately
	Using CSS Selectors As Application Glue
	When It Comes to Ajax, Simple Is Best

	Summary
	Source Code

	Index

