

Advanced
Linux
Programming

Contents At a Glance
I Advanced UNIX Programming

with Linux

1 Getting Started 3

2 Writing Good GNU/Linux
Software 17

3 Processes 45

4 Threads 61

5 Interprocess Communication 95

II Mastering Linux

6 Devices 129

7 The /proc File System 147

8 Linux System Calls 167

9 Inline Assembly Code 189

10 Security 197

11 A Sample GNU/Linux
Application 219

III Appendixes

A Other Development Tools 259

B Low-Level I/O 281

C Table of Signals 301

D Online Resources 303

E Open Publication License
Version 1.0 305

F GNU General Public License 309

00 0430 FM 5/22/01 2:32 PM Page i

00 0430 FM 5/22/01 2:32 PM Page ii

Advanced Linux
Programming

201 West 103rd Street, Indianapolis, Indiana 46290
An Imprint of Pearson Education
Boston • Indianapolis • London • Munich • New York • San Francisco

Mark Mitchell, Jeffrey Oldham,
and Alex Samuel

www.newriders.com

00 0430 FM 5/22/01 2:32 PM Page iii

Publisher
David Dwyer

Associate Publisher
Al Valvano

Executive Editor
Stephanie Wall

Managing Editor
Gina Brown

Acquisitions Editor
Ann Quinn

Development Editor
Laura Loveall

Product Marketing
Manager
Stephanie Layton

Publicity Manager
Susan Petro

Project Editor
Caroline Wise

Copy Editor
Krista Hansing

Senior Indexer
Cheryl Lenser

Manufacturing
Coordinator
Jim Conway

Book Designer
Louisa Klucznik

Cover Designer
Brainstorm Design, Inc.

Cover Production
Aren Howell

Proofreader
Debra Neel

Composition
Amy Parker

Advanced Linux Programming
Copyright © 2001 by New Riders Publishing

FIRST EDITION: June, 2001

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written
permission from the publisher, except for the inclusion of
brief quotations in a review.

International Standard Book Number: 0-7357-1043-0

Library of Congress Catalog Card Number: 00-105343

05 04 03 02 01 7 6 5 4 3 2 1

Interpretation of the printing code:The rightmost double-
digit number is the year of the book’s printing; the right-
most single-digit number is the number of the book’s
printing. For example, the printing code 01-1 shows that the
first printing of the book occurred in 2001.

Composed in Bembo and MCPdigital by New Riders
Publishing.

Printed in the United States of America.

Trademarks
All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately capital-
ized. New Riders Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service
mark.

PostScript is a trademark of Adobe Systems, Inc.

Linux is a trademark of Linus Torvalds.

Warning and Disclaimer
This book is designed to provide information about
Advanced Linux Programming. Every effort has been made to
make this book as complete and as accurate as possible, but
no warranty or fitness is implied.

The information is provided on an as-is basis.The authors
and New Riders Publishing shall have neither liability nor
responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this
book or from the use of the discs or programs that may
accompany it.

00 0430 FM 5/22/01 2:32 PM Page iv

00 0430 FM 5/22/01 2:32 PM Page v

Table of Contents

I Advanced UNIX Programming
with Linux 1

1 Getting Started 3
1.1 Editing with Emacs 4
1.2 Compiling with GCC 6
1.3 Automating the Process with GNU

Make 9
1.4 Debugging with GNU Debugger

(GDB) 11
1.5 Finding More Information 13

2 Writing Good GNU/Linux
Software 17
2.1 Interaction With the Execution

Environment 17
2.2 Coding Defensively 30
2.3 Writing and Using Libraries 36

3 Processes 45
3.1 Looking at Processes 45
3.2 Creating Processes 48
3.3 Signals 52
3.4 Process Termination 55

4 Threads 61
4.1 Thread Creation 62
4.2 Thread Cancellation 69
4.3 Thread-Specific Data 72
4.4 Synchronization and Critical Sections 77
4.5 GNU/Linux Thread Implementation 92
4.6 Processes Vs.Threads 94

00 0430 FM 5/22/01 2:32 PM Page vi

5 Interprocess Communication 95
5.1 Shared Memory 96
5.2 Processes Semaphores 101
5.3 Mapped Memory 105
5.4 Pipes 110
5.5 Sockets 116

II Mastering Linux 127

6 Devices 129
6.1 Device Types 130
6.2 Device Numbers 130
6.3 Device Entries 131
6.4 Hardware Devices 133
6.5 Special Devices 136
6.6 PTYs 142
6.7 ioctl 144

7 The /proc File System 147
7.1 Extracting Information from /proc 148
7.2 Process Entries 150
7.3 Hardware Information 158
7.4 Kernel Information 160
7.5 Drives, Mounts, and File Systems 161
7.6 System Statistics 165

8 Linux System Calls 167
8.1 Using strace 168
8.2 access:Testing File Permissions 169
8.3 fcntl: Locks and Other File

Operations 171
8.4 fsync and fdatasync: Flushing Disk

Buffers 173
8.5 getrlimit and setrlimit: Resource

Limits 174
8.6 getrusage: Process Statistics 175
8.7 gettimeofday:Wall-Clock Time 176

viiContents

00 0430 FM 5/22/01 2:32 PM Page vii

8.8 The mlock Family: Locking Physical
Memory 177

8.9 mprotect: Setting Memory
Permissions 179

8.10 nanosleep: High-Precision Sleeping 181
8.11 readlink: Reading Symbolic Links 182
8.12 sendfile: Fast Data Transfers 183
8.13 setitimer: Setting Interval Timers 185
8.14 sysinfo: Obtaining System Statistics 186
8.15 uname 187

9 Inline Assembly Code 189
9.1 When to Use Assembly Code 190
9.2 Simple Inline Assembly 191
9.3 Extended Assembly Syntax 192
9.4 Example 194
9.5 Optimization Issues 196
9.6 Maintenance and Portability Issues 196

10 Security 197
10.1 Users and Groups 198
10.2 Process User IDs and Process

Group IDs 199
10.3 File System Permissions 200
10.4 Real and Effective IDs 205
10.5 Authenticating Users 208
10.6 More Security Holes 211

11 A Sample GNU/Linux
Application 219
11.1 Overview 219
11.2 Implementation 221
11.3 Modules 239
11.4 Using the Server 252
11.5 Finishing Up 255

viii Contents

00 0430 FM 5/22/01 2:32 PM Page viii

III Appendixes 257

A Other Development Tools 259
A.1 Static Program Analysis 259
A.2 Finding Dynamic Memory Errors 261
A.3 Profiling 269

B Low-Level I/O 281
B.1 Reading and Writing Data 282
B.2 stat 291
B.3 Vector Reads and Writes 293
B.4 Relation to Standard C Library I/O

Functions 295
B.5 Other File Operations 296
B.6 Reading Directory Contents 296

C Table of Signals 301

D Online Resources 303
D.1 General Information 303
D.2 Information About GNU/Linux

Software 304
D.3 Other Sites 304

E Open Publication License
Version 1.0 305
I. Requirement on Both Unmodified and

Modified Versions 305
II. Copyright 306
III. Scope of License 306
IV. Requirements on Modified Works 306
V. Good-Practice Recommendations 306
VI. License Options 307
Open Publication Policy Appendix 307

ixContents

00 0430 FM 5/22/01 3:18 PM Page ix

F GNU General Public License 309
Preamble 309
Terms and Conditions for Copying,
Distribution and Modification 310
End of Terms and Conditions 315
How to Apply These Terms to Your New
Programs 315

Index 317

x Contents

00 0430 FM 5/22/01 2:32 PM Page x

00 0430 FM 5/22/01 2:32 PM Page xi

Table of Program Listings

1.1 main.c (C source file), 6
1.2 reciprocal.cpp (C++ source file), 6
1.3 reciprocal.hpp (header file), 7
2.1 arglist.c (argc and argv parameters), 18
2.2 getopt_long.c (getopt_long function), 21
2.3 print_env.c (printing execution

environment), 26
2.4 client.c (network client program), 26
2.5 temp_file.c (mkstemp function), 28
2.6 readfile.c (resource allocation during error

checking), 35
2.7 test.c (library contents), 37
2.8 app.c (program with library functions), 37
2.9 tifftest.c (libtiff library), 40
3.1 print-pid.c (printing process IDs), 46
3.2 system.c (system function), 48
3.3 fork.c (fork function), 49
3.4 fork-exec.c (fork and exec functions), 51
3.5 sigusr1.c (signal handlers), 54
3.6 zombie.c (zombie processes), 58
3.7 sigchld.c (cleaning up child processes), 60
4.1 thread-create.c (creating threads), 63
4.2 thread-create2 (creating two threads),

64
4.3 thread-create2.c (revised main function), 65
4.4 primes.c (prime number computation in a

thread), 67
4.5 detached.c (creating detached threads), 69
4.6 critical-section.c (critical sections), 71
4.7 tsd.c (thread-specific data), 73
4.8 cleanup.c (cleanup handlers), 75
4.9 cxx-exit.cpp (C++ thread cleanup), 76
4.10 job-queue1.c (thread race conditions), 78
4.11 job-queue2.c (mutexes), 80
4.12 job-queue3.c (semaphores), 84
4.13 spin-condvar.c (condition variables), 87

00 0430 FM 5/22/01 2:32 PM Page xii

4.14 condvar.c (condition variables), 90
4.15 thread-pid (printing thread process IDs), 92
5.1 shm.c (shared memory), 99
5.2 sem_all_deall.c (semaphore allocation and

deallocation), 102
5.3 sem_init.c (semaphore initialization), 102
5.4 sem_pv.c (semaphore wait and post

operations), 104
5.5 mmap-write.c (mapped memory), 106
5.6 mmap-read.c (mapped memory), 107
5.7 pipe.c (parent-child process

communication), 111
5.8 dup2.c (output redirection), 113
5.9 popen.c (popen command), 114
5.10 socket-server.c (local sockets), 120
5.11 socket-client.c (local sockets), 121
5.12 socket-inet.c (Internet-domain sockets), 124
6.1 random_number.c (random number

generation), 138
6.2 cdrom-eject.c (ioctl example), 144
7.1 clock-speed.c (cpu clock speed from

/proc/cpuinfo), 149
7.2 get-pid.c (process ID from /proc/self),

151
7.3 print-arg-list.c (printing process argument

lists), 153
7.4 print-environment.c (process environment),

154
7.5 get-exe-path.c (program executable path), 155
7.6 open-and-spin.c (opening files), 157
7.7 print-uptime.c (system uptime and idle time),

165
8.1 check-access.c (file access permissions), 170
8.2 lock-file.c (write locks), 171
8.3 write_journal_entry.c (data buffer

flushing), 173
8.4 limit-cpu.c (resource limits), 175
8.5 print-cpu-times.c (process statistics), 176

xiiiProgram Listings

00 0430 FM 5/22/01 2:32 PM Page xiii

8.6 print-time.c (date/time printing), 177
8.7 mprotect.c (memory access), 180
8.8 better_sleep.c (high-precision sleep), 182
8.9 print-symlink.c (symbolic links), 183
8.10 copy.c (sendfile system call), 184
8.11 itemer.c (interal timers), 185
8.12 sysinfo.c (system statistics), 187
8.13 print-uname (version number and

hardware information), 188
9.1 bit-pos-loop.c (bit position with loop),

194
9.2 bit-pos-asm.c (bit position with bsrl), 195
10.1 simpleid.c (printing user and

group IDs), 200
10.2 stat-perm.c (viewing file permissions with

stat system call), 202
10.3 setuid-test.c (setuid programs), 207
10.4 pam.c (PAM example), 209
10.5 temp-file.c (temporary file creation),

214
10.6 grep-dictionary.c (word search), 216
11.1 server.h (function and variable

declarations), 222
11.2 common.c (utility functions), 223
11.3 module.c (loading server modules),

226
11.4 server.c (server implementation), 228
11.5 main.c (main server program), 235
11.6 time.c (show wall-clock time), 239
11.7 issue.c (GNU/Linux distribution

information), 240
11.8 diskfree.c (free disk space information), 242
11.9 processes.c (summarizing running

processes), 244
11.10 Makefile (Makefile for sample application

program), 252

xiv Program Listings

00 0430 FM 5/22/01 2:32 PM Page xiv

A.1 hello.c (Hello World), 260
A.2 malloc-use.c (dynamic memory allocation),

267
A.3 calculator.c (main calculator program),

274
A.4 number.c (unary number implementation),

276
A.5 stack.c (unary number stack), 279
A.6 definitions.h (header file for calculator

program), 280
B.1 create-file.c (create a new file), 284
B.2 timestamp.c (append a timestamp), 285
B.3 write-all.c (write all buffered data), 286
B.4 hexdump.c (print a hexadecimal file dump),

287
B.5 lseek-huge.c (creating large files), 289
B.6 read-file.c (reading files into buffers),

292
B.7 write-args.c (writev function), 294
B.8 listdir.c (printing directory listings), 297

xvProgram Listings

00 0430 FM 5/22/01 2:32 PM Page xv

xvi

About the Authors
Mark Mitchell received a bachelor of arts degree in computer
science from Harvard in 1994 and a master of science degree from
Stanford in 1999. His research interests centered on computational
complexity and computer security. Mark has participated substantially
in the development of the GNU Compiler Collection, and he has a
strong interest in developing quality software.

Jeffrey Oldham received a bachelor of arts degree in computer
science from Rice University in 1991.After working at the Center for
Research on Parallel Computation, he obtained a doctor of philoso-
phy degree from Stanford in 2000. His research interests center on
algorithm engineering, concentrating on flow and other combinator-
ial algorithms. He works on GCC and scientific computing software.

Alex Samuel graduated from Harvard in 1995 with a degree in
physics. He worked as a software engineer at BBN before returning
to study physics at Caltech and the Stanford Linear Accelerator
Center.Alex administers the Software Carpentry project and works
on various other projects, such as optimizations in GCC.

Mark and Alex founded CodeSourcery LLC together in 1999.
Jeffrey joined the company in 2000. CodeSourcery’s mission is to
provide development tools for GNU/Linux and other operating
systems; to make the GNU tool chain a commercial-quality,
standards-conforming development tool set; and to provide general
consulting and engineering services. CodeSourcery’s Web site is
http://www.codesourcery.com.

00 0430 FM 5/22/01 2:32 PM Page xvi

xvii

About the Technical Reviewers
These reviewers contributed their considerable hands-on expertise to the entire devel-
opment process for Advanced Linux Programming.As the book was being written, these
dedicated professionals reviewed all the material for technical content, organization,
and flow.Their feedback was critical to ensuring that Advanced Linux Programming fits
our reader’s need for the highest quality technical information.

Glenn Becker has many degrees, all in theatre. He presently works as an
online producer for SCIFI.COM, the online component of the SCI FI
channel, in New York City.At home he runs Debian GNU/Linux and
obsesses about such topics as system administration, security, software
internationalization, and XML.

John Dean received a BSc(Hons) from the University of Sheffield in
1974, in pure science.As an undergraduate at Sheffield, John developed
his interest in computing. In 1986 he received a MSc from Cranfield
Institute of Science and Technology in Control Engineering.While work-
ing for Roll Royce and Associates, John became involved in developing
control software for computer-aided inspection equipment of nuclear
steam-raising plants. Since leaving RR&A in 1978, he has worked in the
petrochemical industry developing and maintaining process control soft-
ware. John worked a volunteer software developer for MySQL from 1996
until May 2000, when he joined MySQL as a full-time employee. John’s area of
responsibility is MySQL on MS Windows and developing a new MySQL GUI
client using Trolltech’s Qt GUI application toolkit on both Windows and
platforms that run X-11.

00 0430 FM 5/22/01 2:32 PM Page xvii

xviii

Acknowledgments
We greatly appreciate the pioneering work of Richard Stallman, without whom
there would never have been the GNU Project, and of Linus Torvalds, without
whom there would never have been the Linux kernel. Countless others have worked
on parts of the GNU/Linux operating system, and we thank them all.

We thank the faculties of Harvard and Rice for our undergraduate educations, and
Caltech and Stanford for our graduate training. Without all who taught us, we would
never have dared to teach others!

W. Richard Stevens wrote three excellent books on UNIX programming, and we have
consulted them extensively. Roland McGrath, Ulrich Drepper, and many others wrote
the GNU C library and its outstanding documentation.

Robert Brazile and Sam Kendall reviewed early outlines of this book and made won-
derful suggestions about tone and content. Our technical editors and reviewers (espe-
cially Glenn Becker and John Dean) pointed out errors, made suggestions, and provided
continuous encouragement. Of course, any errors that remain are no fault of theirs!

Thanks to Ann Quinn, of New Riders, for handling all the details involved in publish-
ing a book; Laura Loveall, also of New Riders, for not letting us fall too far behind on
our deadlines; and Stephanie Wall, also of New Riders, for encouraging us to write
this book in the first place!

00 0430 FM 5/22/01 2:32 PM Page xviii

xix

Tell Us What You Think

As the reader of this book, you are the most important critic and commentator.We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

As the Executive Editor for the Web Development team at New Riders Publishing, I
welcome your comments.You can fax, email, or write me directly to let me know
what you did or didn’t like about this book—as well as what we can do to make our
books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your
name and phone or fax number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Fax: 317-581-4663
Email: Stephanie.Wall@newriders.com

Mail: Stephanie Wall
Executive Editor
New Riders Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 0430 FM 5/22/01 2:32 PM Page xix

xx

Introduction
GNU/Linux has taken the world of computers by storm.At one time, personal com-
puter users were forced to choose among proprietary operating environments and
applications. Users had no way of fixing or improving these programs, could not look
“under the hood,” and were often forced to accept restrictive licenses. GNU/Linux
and other open source systems have changed that—now PC users, administrators, and
developers can choose a free operating environment complete with tools, applications,
and full source code.

A great deal of the success of GNU/Linux is owed to its open source nature.
Because the source code for programs is publicly available, everyone can take part in
development, whether by fixing a small bug or by developing and distributing a com-
plete major application.This opportunity has enticed thousands of capable developers
worldwide to contribute new components and improvements to GNU/Linux, to the
point that modern GNU/Linux systems rival the features of any proprietary system,
and distributions include thousands of programs and applications spanning many CD-
ROMs or DVDs.

The success of GNU/Linux has also validated much of the UNIX philosophy.
Many of the application programming interfaces (APIs) introduced in AT&T and BSD
UNIX variants survive in Linux and form the foundation on which programs are
built.The UNIX philosophy of many small command line-oriented programs working
together is the organizational principle that makes GNU/Linux so powerful. Even
when these programs are wrapped in easy-to-use graphical user interfaces, the under-
lying commands are still available for power users and automated scripts.

A powerful GNU/Linux application harnesses the power of these APIs and com-
mands in its inner workings. GNU/Linux’s APIs provide access to sophisticated fea-
tures such as interprocess communication, multithreading, and high-performance
networking.And many problems can be solved simply by assembling existing com-
mands and programs using simple scripts.

GNU and Linux
Where did the name GNU/Liux come from? You’ve certainly heard of Linux before,
and you may have heard of the GNU Project.You may not have heard the name
GNU/Linux, although you’re probably familiar with the system it refers to.

Linux is named after Linus Torvalds, the creator and original author of the kernel
that runs a GNU/Linux system.The kernel is the program that performs the most
basic functions of an operating system: It controls and interfaces with the computer’s
hardware, handles allocation of memory and other resources, allows multiple programs
to run at the same time, manages the file system, and so on.

00 0430 FM 5/22/01 2:32 PM Page xx

xxi

The kernel by itself doesn’t provide features that are useful to users. It can’t even
provide a simple prompt for users to enter basic commands. It provides no way for
users to manage or edit files, communicate with other computers, or write other pro-
grams.These tasks require the use of a wide array of other programs, including com-
mand shells, file utilities, editors, and compilers. Many of these programs, in turn, use
libraries of general-purpose functions, such as the library containing standard C library
functions, which are not included in the kernel.

On GNU/Linux systems, many of these other programs and libraries are software
developed as part of the GNU Project.1 A great deal of this software predates the
Linux kernel.The aim of the GNU Project is “to develop a complete UNIX-like
operating system which is free software” (from the GNU Project Web site,
http://www.gnu.org).

The Linux kernel and software from the GNU Project has proven to be a powerful
combination.Although the combination is often called “Linux” for short, the complete
system couldn’t work without GNU software, any more than it could operate without
the kernel. For this reason, throughout this book we’ll refer to the complete system as
GNU/Linux, except when we are specifically talking about the Linux kernel.

The GNU General Public License
The source code contained in this book is covered by the GNU General Public License
(GPL), which is listed in Appendix F,“GNU General Public License.”A great deal of
free software, especially GNU/Linux software, is licensed under it. For instance, the
Linux kernel itself is licensed under the GPL, as are many other GNU programs and
libraries you’ll find in GNU/Linux distributions. If you use the source code in this
book, be sure to read and understand the terms of the GPL.

The GNU Project Web site includes an extensive discussion of the GPL
(http://www.gnu.org/copyleft/) and other free software licenses.You can
find information about open source software licenses at http://www.opensource.org/
licenses/index.html.

Who Should Read This Book?
This book is intended for three types of readers:

n You might be a developer already experienced with programming for the
GNU/Linux system, and you want to learn about some of its advanced features
and capabilities.You might be interested in writing more sophisticated programs
with features such as multiprocessing, multithreading, interprocess communica-
tion, and interaction with hardware devices.You might want to improve your
programs by making them run faster, more reliably, and more securely, or by
designing them to interact better with the rest of the GNU/Linux system.

1. GNU is a recursive acronym: It stands for “GNU’s Not UNIX.”

00 0430 FM 5/22/01 2:32 PM Page xxi

xxii

n You might be a developer experienced with another UNIX-like system who’s
interested in developing GNU/Linux software, too.You might already be famil-
iar with standard APIs such as those in the POSIX specification.To develop
GNU/Linux software, you need to know the peculiarities of the system, its
limitations, additional capabilities, and conventions.

n You might be a developer making the transition from a non-UNIX environ-
ment, such as Microsoft’s Win32 platform.You might already be familiar with
the general principles of writing good software, but you need to know the spe-
cific techniques that GNU/Linux programs use to interact with the system and
with each other.And you want to make sure your programs fit naturally into the
GNU/Linux system and behave as users expect them to.

This book is not intended to be a comprehensive guide or reference to all aspects of
GNU/Linux programming. Instead, we’ll take a tutorial approach, introducing the
most important concepts and techniques, and giving examples of how to use them.
Section 1.5,“Finding More Information,” in Chapter 1,“Getting Started,” contains
references to additional documentation, where you can obtain complete details about
these and other aspects of GNU/Linux programming.

Because this is a book about advanced topics, we’ll assume that you are already
familiar with the C programming language and that you know how to use the stan-
dard C library functions in your programs.The C language is the most widely used
language for developing GNU/Linux software; most of the commands and libraries
that we discuss in this book, and most of the Linux kernel itself, are written in C.

The information in this book is equally applicable to C++ programs because that
language is roughly a superset of C. Even if you program in another language, you’ll
find this information useful because C language APIs and conventions are the lingua
franca of GNU/Linux.

If you’ve programmed on another UNIX-like system platform before, chances are
good that you already know your way around Linux’s low-level I/O functions (open,
read, stat, and so on).These are different from the standard C library’s I/O functions
(fopen, fprintf, fscanf, and so on). Both are useful in GNU/Linux programming, and
we use both sets of I/O functions throughout this book. If you’re not familiar with
the low-level I/O functions, jump to the end of the book and read Appendix B,
“Low-Level I/O,” before you start Chapter 2,“Writing Good GNU/Linux Software.”

00 0430 FM 5/22/01 2:32 PM Page xxii

xxiii

This book does not provide a general introduction to GNU/Linux systems.
We assume that you already have a basic knowledge of how to interact with a
GNU/Linux system and perform basic operations in graphical and command-line
environments. If you’re new to GNU/Linux, start with one of the many excellent
introductory books, such as Michael Tolber’s Inside Linux (New Riders Publishing,
2001).

Conventions
This book follows a few typographical conventions:

n A new term is set in italics the first time it is introduced.
n Program text, functions, variables, and other “computer language” are set in a

fixed-pitch font—for example, printf (“Hello, world!\bksl n”).
n Names of commands, files, and directories are also set in a fixed-pitch font—for

example, cd /.
n When we show interactions with a command shell, we use % as the shell prompt

(your shell is probably configured to use a different prompt). Everything after
the prompt is what you type, while other lines of text are the system’s response.

For example, in this interaction

% uname
Linux

the system prompted you with %.You entered the uname command.The system
responded by printing Linux.

n The title of each source code listing includes a filename in parentheses. If you
type in the listing, save it to a file by this name.You can also download the
source code listings from the Advanced Linux Programming Web site
(http://www.newriders.com or http://www.advancedlinuxprogramming.com).

We wrote this book and developed the programs listed in it using the Red Hat 6.2
distribution of GNU/Linux.This distribution incorporates release 2.2.14 of the Linux
kernel, release 2.1.3 of the GNU C library, and the EGCS 1.1.2 release of the GNU
C compiler.The information and programs in this book should generally be applicable
to other versions and distributions of GNU/Linux as well, including 2.4 releases of
the Linux kernel and 2.2 releases of the GNU C library.

00 0430 FM 5/22/01 2:32 PM Page xxiii

00 0430 FM 5/22/01 2:32 PM Page xxiv

Advanced UNIX Programming
with Linux

I

1 Getting Started

2 Writing Good GNU/Linux Software

3 Processes

4 Threads

5 Interprocess Communication

01 0430 PT01 5/22/01 10:09 AM Page 1

01 0430 PT01 5/22/01 10:09 AM Page 2

Getting Started

1

THIS CHAPTER SHOWS YOU HOW TO PERFORM THE BASIC steps required to create a
C or C++ Linux program. In particular, this chapter shows you how to create and
modify C and C++ source code, compile that code, and debug the result. If you’re
already accustomed to programming under Linux, you can skip ahead to Chapter 2,
“Writing Good GNU/Linux Software;” pay careful attention to Section 2.3,“Writing
and Using Libraries,” for information about static versus dynamic linking that you
might not already know.

Throughout this book, we’ll assume that you’re familiar with the C or C++ pro-
gramming languages and the most common functions in the standard C library.The
source code examples in this book are in C, except when demonstrating a particular
feature or complication of C++ programming.We also assume that you know how to
perform basic operations in the Linux command shell, such as creating directories and
copying files. Because many Linux programmers got started programming in the
Windows environment, we’ll occasionally point out similarities and contrasts between
Windows and Linux.

02 0430 CH01 5/22/01 10:19 AM Page 3

4 Chapter 1 Getting Started

1.1 Editing with Emacs
An editor is the program that you use to edit source code. Lots of different editors are
available for Linux, but the most popular and full-featured editor is probably GNU
Emacs.

About Emacs
Emacs is much more than an editor. It is an incredibly powerful program, so much so that at

CodeSourcery, it is affectionately known as the One True Program, or just the OTP for short. You can read

and send email from within Emacs, and you can customize and extend Emacs in ways far too numerous

to discuss here. You can even browse the Web from within Emacs!

If you’re familiar with another editor, you can certainly use it instead. Nothing in the
rest of this book depends on using Emacs. If you don’t already have a favorite Linux
editor, then you should follow along with the mini-tutorial given here.

If you like Emacs and want to learn about its advanced features, you might consider
reading one of the many Emacs books available. One excellent tutorial, Learning
GNU Emacs, is written by Debra Cameron, Bill Rosenblatt, and Eric S. Raymond
(O’Reilly, 1996).

1.1.1 Opening a C or C++ Source File
You can start Emacs by typing emacs in your terminal window and pressing the
Return key.When Emacs has been started, you can use the menus at the top to create
a new source file. Click the Files menu, choose Open Files, and then type the name of
the file that you want to open in the “minibuffer” at the bottom of the screen.1 If you
want to create a C source file, use a filename that ends in .c or .h. If you want to
create a C++ source file, use a filename that ends in .cpp, .hpp, .cxx, .hxx, .C, or .H.
When the file is open, you can type as you would in any ordinary word-processing
program.To save the file, choose the Save Buffer entry on the Files menu.When
you’re finished using Emacs, you can choose the Exit Emacs option on the Files
menu.

If you don’t like to point and click, you can use keyboard shortcuts to automatically
open files, save files, and exit Emacs.To open a file, type C-x C-f. (The C-x means to
hold down the Control key and then press the x key.) To save a file, type C-x C-s.To
exit Emacs, just type C-x C-c. If you want to get a little better acquainted with Emacs,
choose the Emacs Tutorial entry on the Help menu.The tutorial provides you with
lots of tips on how to use Emacs effectively.

1. If you’re not running in an X Window system, you’ll have to press F10 to access the
menus.

02 0430 CH01 5/22/01 10:19 AM Page 4

51.1 Editing with Emacs

1.1.2 Automatic Formatting
If you’re accustomed to programming in an Integrated Development Environment (IDE),
you’ll also be accustomed to having the editor help you format your code. Emacs can
provide the same kind of functionality. If you open a C or C++ source file, Emacs
automatically figures out that the file contains source code, not just ordinary text. If
you hit the Tab key on a blank line, Emacs moves the cursor to an appropriately
indented point. If you hit the Tab key on a line that already contains some text, Emacs
indents the text. So, for example, suppose that you have typed in the following:

int main ()
{
printf (“Hello, world\n”);
}

If you press the Tab key on the line with the call to printf, Emacs will reformat your
code to look like this:

int main ()
{
printf (“Hello, world\n”);

}

Notice how the line has been appropriately indented.
As you use Emacs more, you’ll see how it can help you perform all kinds of

complicated formatting tasks. If you’re ambitious, you can program Emacs to perform
literally any kind of automatic formatting you can imagine. People have used this
facility to implement Emacs modes for editing just about every kind of document,
to implement games2, and to implement database front ends.

1.1.3 Syntax Highlighting
In addition to formatting your code, Emacs can make it easier to read C and C++
code by coloring different syntax elements. For example, Emacs can turn keywords
one color, built-in types such as int another color, and comments another color.
Using color makes it a lot easier to spot some common syntax errors.

The easiest way to turn on colorization is to edit the file ~/.emacs and insert the
following string:

(global-font-lock-mode t)

Save the file, exit Emacs, and restart. Now open a C or C++ source file and enjoy!
You might have noticed that the string you inserted into your .emacs looks like

code from the LISP programming language.That’s because it is LISP code! Much of
Emacs is actually written in LISP.You can add functionality to Emacs by writing more
LISP code.

2.Try running the command M-x dunnet if you want to play an old-fashioned text
adventure game.

02 0430 CH01 5/22/01 10:19 AM Page 5

6 Chapter 1 Getting Started

1.2 Compiling with GCC
A compiler turns human-readable source code into machine-readable object code that
can actually run.The compilers of choice on Linux systems are all part of the GNU
Compiler Collection, usually known as GCC.3 GCC also include compilers for C,
C++, Java, Objective-C, Fortran, and Chill.This book focuses mostly on C and C++
programming.

Suppose that you have a project like the one in Listing 1.2 with one C++ source
file (reciprocal.cpp) and one C source file (main.c) like in Listing 1.1.These two files
are supposed to be compiled and then linked together to produce a program called
reciprocal.4 This program will compute the reciprocal of an integer.

Listing 1.1 (main.c) C source file—main.c

#include <stdio.h>
#include “reciprocal.hpp”

int main (int argc, char **argv)
{
int i;

i = atoi (argv[1]);
printf (“The reciprocal of %d is %g\n”, i, reciprocal (i));
return 0;

}

Listing 1.2 (reciprocal.cpp) C++ source file—reciprocal.cpp

#include <cassert>
#include “reciprocal.hpp”

double reciprocal (int i) {
// I should be non-zero.
assert (i != 0);
return 1.0/i;

}

3. For more information about GCC, visit http://gcc.gnu.org.

4. In Windows, executables usually have names that end in .exe. Linux programs, on the
other hand, usually have no extension. So, the Windows equivalent of this program would
probably be called reciprocal.exe; the Linux version is just plain reciprocal.

02 0430 CH01 5/22/01 10:19 AM Page 6

71.2 Compiling with GCC

There’s also one header file called reciprocal.hpp (see Listing 1.3).

Listing 1.3 (reciprocal.hpp) Header file—reciprocal.hpp

#ifdef __cplusplus
extern “C” {
#endif

extern double reciprocal (int i);

#ifdef __cplusplus
}
#endif

The first step is to turn the C and C++ source code into object code.

1.2.1 Compiling a Single Source File
The name of the C compiler is gcc. To compile a C source file, you use the -c
option. So, for example, entering this at the command prompt compiles the main.c
source file:

% gcc -c main.c

The resulting object file is named main.o.
The C++ compiler is called g++. Its operation is very similar to gcc; compiling

reciprocal.cpp is accomplished by entering the following:
% g++ -c reciprocal.cpp

The -c option tells g++ to compile the program to an object file only; without it, g++
will attempt to link the program to produce an executable.After you’ve typed this
command, you’ll have an object file called reciprocal.o.

You’ll probably need a couple other options to build any reasonably large program.
The -I option is used to tell GCC where to search for header files. By default, GCC
looks in the current directory and in the directories where headers for the standard
libraries are installed. If you need to include header files from somewhere else, you’ll
need the -I option. For example, suppose that your project has one directory called
src, for source files, and another called include.You would compile reciprocal.cpp
like this to indicate that g++ should use the ../include directory in addition to find
reciprocal.hpp:

% g++ -c -I ../include reciprocal.cpp

02 0430 CH01 5/22/01 10:19 AM Page 7

8 Chapter 1 Getting Started

Sometimes you’ll want to define macros on the command line. For example, in
production code, you don’t want the overhead of the assertion check present in
reciprocal.cpp; that’s only there to help you debug the program.You turn off
the check by defining the macro NDEBUG.You could add an explicit #define to
reciprocal.cpp, but that would require changing the source itself. It’s easier to
simply define NDEBUG on the command line, like this:

% g++ -c -D NDEBUG reciprocal.cpp

If you had wanted to define NDEBUG to some particular value, you could have done
something like this:

% g++ -c -D NDEBUG=3 reciprocal.cpp

If you’re really building production code, you probably want to have GCC optimize
the code so that it runs as quickly as possible.You can do this by using the -O2
command-line option. (GCC has several different levels of optimization; the second
level is appropriate for most programs.) For example, the following compiles
reciprocal.cpp with optimization turned on:

% g++ -c -O2 reciprocal.cpp

Note that compiling with optimization can make your program more difficult to
debug with a debugger (see Section 1.4,“Debugging with GDB”).Also, in certain
instances, compiling with optimization can uncover bugs in your program that did not
manifest themselves previously.

You can pass lots of other options to gcc and g++.The best way to get a complete
list is to view the online documentation.You can do this by typing the following at
your command prompt:

% info gcc

1.2.2 Linking Object Files
Now that you’ve compiled main.c and utilities.cpp, you’ll want to link them.You
should always use g++ to link a program that contains C++ code, even if it also con-
tains C code. If your program contains only C code, you should use gcc instead.
Because this program contains both C and C++, you should use g++, like this:

% g++ -o reciprocal main.o reciprocal.o

The -o option gives the name of the file to generate as output from the link step.
Now you can run reciprocal like this:

% ./reciprocal 7
The reciprocal of 7 is 0.142857

As you can see, g++ has automatically linked in the standard C runtime library con-
taining the implementation of printf. If you had needed to link in another library
(such as a graphical user interface toolkit), you would have specified the library with

02 0430 CH01 5/22/01 10:19 AM Page 8

91.3 Automating the Process with GNU Make

the -l option. In Linux, library names almost always start with lib. For example,
the Pluggable Authentication Module (PAM) library is called libpam.a.To link in
libpam.a, you use a command like this:

% g++ -o reciprocal main.o reciprocal.o -lpam

The compiler automatically adds the lib prefix and the .a suffix.
As with header files, the linker looks for libraries in some standard places, including

the /lib and /usr/lib directories that contain the standard system libraries. If you
want the linker to search other directories as well, you should use the -L option,
which is the parallel of the -I option discussed earlier.You can use this line to instruct
the linker to look for libraries in the /usr/local/lib/pam directory before looking in
the usual places:

% g++ -o reciprocal main.o reciprocal.o -L/usr/local/lib/pam -lpam

Although you don’t have to use the -I option to get the preprocessor to search the
current directory, you do have to use the -L option to get the linker to search the
current directory. In particular, you could use the following to instruct the linker to
find the test library in the current directory:

% gcc -o app app.o -L. -ltest

1.3 Automating the Process with GNU Make
If you’re accustomed to programming for the Windows operating system, you’re prob-
ably accustomed to working with an Integrated Development Environment (IDE).You
add sources files to your project, and then the IDE builds your project automatically.
Although IDEs are available for Linux, this book doesn’t discuss them. Instead, this
book shows you how to use GNU Make to automatically recompile your code, which
is what most Linux programmers actually do.

The basic idea behind make is simple.You tell make what targets you want to build
and then give rules explaining how to build them.You also specify dependencies that
indicate when a particular target should be rebuilt.

In our sample reciprocal project, there are three obvious targets: reciprocal.o,
main.o, and the reciprocal itself.You already have rules in mind for building these
targets in the form of the command lines given previously.The dependencies require a
little bit of thought. Clearly, reciprocal depends on reciprocal.o and main.o because
you can’t link the complete program until you have built each of the object files.The
object files should be rebuilt whenever the corresponding source files change.There’s
one more twist in that a change to reciprocal.hpp also should cause both of the
object files to be rebuilt because both source files include that header file.

In addition to the obvious targets, there should always be a clean target.This target
removes all the generated object files and programs so that you can start fresh.The rule
for this target uses the rm command to remove the files.

02 0430 CH01 5/22/01 10:19 AM Page 9

10 Chapter 1 Getting Started

You can convey all that information to make by putting the information in a file
named Makefile. Here’s what Makefile contains:

reciprocal: main.o reciprocal.o
g++ $(CFLAGS) -o reciprocal main.o reciprocal.o

main.o: main.c reciprocal.hpp
gcc $(CFLAGS) -c main.c

reciprocal.o: reciprocal.cpp reciprocal.hpp
g++ $(CFLAGS) -c reciprocal.cpp

clean:
rm -f *.o reciprocal

You can see that targets are listed on the left, followed by a colon and then any depen-
dencies.The rule to build that target is on the next line. (Ignore the $(CFLAGS) bit
for the moment.) The line with the rule on it must start with a Tab character, or make
will get confused. If you edit your Makefile in Emacs, Emacs will help you with the
formatting.

If you remove the object files that you’ve already built, and just type
% make

on the command-line, you’ll see the following:

% make
gcc -c main.c
g++ -c reciprocal.cpp
g++ -o reciprocal main.o reciprocal.o

You can see that make has automatically built the object files and then linked them.
If you now change main.c in some trivial way and type make again, you’ll see the
following:

% make
gcc -c main.c
g++ -o reciprocal main.o reciprocal.o

You can see that make knew to rebuild main.o and to re-link the program, but it
didn’t bother to recompile reciprocal.cpp because none of the dependencies for
reciprocal.o had changed.

The $(CFLAGS) is a make variable.You can define this variable either in the
Makefile itself or on the command line. GNU make will substitute the value of the
variable when it executes the rule. So, for example, to recompile with optimization
enabled, you would do this:

% make clean
rm -f *.o reciprocal
% make CFLAGS=-O2
gcc -O2 -c main.c
g++ -O2 -c reciprocal.cpp
g++ -O2 -o reciprocal main.o reciprocal.o

02 0430 CH01 5/22/01 10:19 AM Page 10

111.4 Debugging with GNU Debugger (GDB)

Note that the -O2 flag was inserted in place of $(CFLAGS) in the rules.
In this section, you’ve seen only the most basic capabilities of make.You can find

out more by typing this:
% info make

In that manual, you’ll find information about how to make maintaining a Makefile
easier, how to reduce the number of rules that you need to write, and how to auto-
matically compute dependencies.You can also find more information in GNU,
Autoconf,Automake, and Libtool by Gary V.Vaughan, Ben Elliston,Tom Tromey, and
Ian Lance Taylor (New Riders Publishing, 2000).

1.4 Debugging with GNU Debugger (GDB)
The debugger is the program that you use to figure out why your program isn’t behav-
ing the way you think it should.You’ll be doing this a lot.5 The GNU Debugger
(GDB) is the debugger used by most Linux programmers.You can use GDB to step
through your code, set breakpoints, and examine the value of local variables.

1.4.1 Compiling with Debugging Information
To use GDB, you’ll have to compile with debugging information enabled. Do this by
adding the -g switch on the compilation command line. If you’re using a Makefile as
described previously, you can just set CFLAGS equal to -g when you run make, as shown
here:

% make CFLAGS=-g
gcc -g -c main.c
g++ -g -c reciprocal.cpp
g++ -g -o reciprocal main.o reciprocal.o

When you compile with -g, the compiler includes extra information in the object files
and executables.The debugger uses this information to figure out which addresses cor-
respond to which lines in which source files, how to print out local variables, and so
forth.

1.4.2 Running GDB
You can start up gdb by typing:

% gdb reciprocal

When gdb starts up, you should see the GDB prompt:
(gdb)

5. …unless your programs always work the first time.

02 0430 CH01 5/22/01 10:19 AM Page 11

12 Chapter 1 Getting Started

The first step is to run your program inside the debugger. Just enter the command run
and any program arguments.Try running the program without any arguments, like
this:

(gdb) run
Starting program: reciprocal

Program received signal SIGSEGV, Segmentation fault.
__strtol_internal (nptr=0x0, endptr=0x0, base=10, group=0)
at strtol.c:287
287 strtol.c: No such file or directory.
(gdb)

The problem is that there is no error-checking code in main.The program expects
one argument, but in this case the program was run with no arguments.The SIGSEGV
message indicates a program crash. GDB knows that the actual crash happened in a
function called __strtol_internal.That function is in the standard library, and the
source isn’t installed, which explains the “No such file or directory” message.You can
see the stack by using the where command:

(gdb) where
#0 __strtol_internal (nptr=0x0, endptr=0x0, base=10, group=0)

at strtol.c:287
#1 0x40096fb6 in atoi (nptr=0x0) at ../stdlib/stdlib.h:251
#2 0x804863e in main (argc=1, argv=0xbffff5e4) at main.c:8

You can see from this display that main called the atoi function with a NULL pointer,
which is the source of the trouble.

You can go up two levels in the stack until you reach main by using the up
command:

(gdb) up 2
#2 0x804863e in main (argc=1, argv=0xbffff5e4) at main.c:8
8 i = atoi (argv[1]);

Note that gdb is capable of finding the source for main.c, and it shows the line where
the erroneous function call occurred.You can view the value of variables using the
print command:

(gdb) print argv[1]
$2 = 0x0

That confirms that the problem is indeed a NULL pointer passed into atoi.
You can set a breakpoint by using the break command:

(gdb) break main
Breakpoint 1 at 0x804862e: file main.c, line 8.

02 0430 CH01 5/22/01 10:19 AM Page 12

131.5 Finding More Information

This command sets a breakpoint on the first line of main.6 Now try rerunning the
program with an argument, like this:

(gdb) run 7
Starting program: reciprocal 7

Breakpoint 1, main (argc=2, argv=0xbffff5e4) at main.c:8
8 i = atoi (argv[1]);

You can see that the debugger has stopped at the breakpoint.
You can step over the call to atoi using the next command:

(gdb) next
9 printf (“The reciprocal of %d is %g\n”, i, reciprocal (i));

If you want to see what’s going on inside reciprocal, use the step command like this:

(gdb) step
reciprocal (i=7) at reciprocal.cpp:6
6 assert (i != 0);

You’re now in the body of the reciprocal function.
You might find it more convenient to run gdb from within Emacs rather than using

gdb directly from the command line. Use the command M-x gdb to start up gdb in an
Emacs window. If you are stopped at a breakpoint, Emacs automatically pulls up the
appropriate source file. It’s easier to figure out what’s going on when you’re looking at
the whole file rather than just one line of text.

1.5 Finding More Information
Nearly every Linux distribution comes with a great deal of useful documentation.You
could learn most of what we’ll talk about in this book by reading documentation in
your Linux distribution (although it would probably take you much longer).The doc-
umentation isn’t always well-organized, though, so the tricky part is finding what you
need. Documentation is also sometimes out-of-date, so take everything that you read
with a grain of salt. If the system doesn’t behave the way a man page (manual pages)
says it should, for instance, it may be that the man page is outdated.

To help you navigate, here are the most useful sources of information about
advanced Linux programming.

6. Some people have commented that saying break main is a little bit funny because
usually you want to do this only when main is already broken.

02 0430 CH01 5/22/01 10:19 AM Page 13

14 Chapter 1 Getting Started

1.5.1 Man Pages
Linux distributions include man pages for most standard commands, system calls, and
standard library functions.The man pages are divided into numbered sections; for pro-
grammers, the most important are these:

(1) User commands

(2) System calls

(3) Standard library functions

(8) System/administrative commands

The numbers denote man page sections. Linux’s man pages come installed on your
system; use the man command to access them.To look up a man page, simply invoke
man name, where name is a command or function name. In a few cases, the same name
occurs in more than one section; you can specify the section explicitly by placing the
section number before the name. For example, if you type the following, you’ll get the
man page for the sleep command (in section 1 of the Linux man pages):

% man sleep

To see the man page for the sleep library function, use this command:
% man 3 sleep

Each man page includes a one-line summary of the command or function.The
whatis name command displays all man pages (in all sections) for a command or
function matching name. If you’re not sure which command or function you want,
you can perform a keyword search on the summary lines, using man -k keyword.

Man pages include a lot of very useful information and should be the first place
you turn for help.The man page for a command describes command-line options and
arguments, input and output, error codes, configuration, and the like.The man page
for a system call or library function describes parameters and return values, lists error
codes and side effects, and specifies which include file to use if you call the function.

1.5.2 Info
The Info documentation system contains more detailed documentation for many core
components of the GNU/Linux system, plus several other programs. Info pages are
hypertext documents, similar to Web pages.To launch the text-based Info browser, just
type info in a shell window.You’ll be presented with a menu of Info documents
installed on your system. (Press Control+H to display the keys for navigating an Info
document.)

Among the most useful Info documents are these:
n gcc—The gcc compiler
n libc—The GNU C library, including many system calls
n gdb—The GNU debugger

02 0430 CH01 5/22/01 10:19 AM Page 14

151.5 Finding More Information

n emacs—The Emacs text editor
n info—The Info system itself

Almost all the standard Linux programming tools (including ld, the linker; as, the
assembler; and gprof, the profiler) come with useful Info pages.You can jump directly
to a particular Info document by specifying the page name on the command line:

% info libc

If you do most of your programming in Emacs, you can access the built-in Info
browser by typing M-x info or C-h i.

1.5.3 Header Files
You can learn a lot about the system functions that are available and how to use
them by looking at the system header files.These reside in /usr/include and
/usr/include/sys. If you are getting compile errors from using a system call, for
instance, take a look in the corresponding header file to verify that the function’s
signature is the same as what’s listed in the man page.

On Linux systems, a lot of the nitty-gritty details of how the system calls work are
reflected in header files in the directories /usr/include/bits, /usr/include/asm, and
/usr/include/linux. For instance, the numerical values of signals (described in Section
3.3,“Signals,” in Chapter 3,“Processes”) are defined in /usr/include/bits/signum.h.
These header files make good reading for inquiring minds. Don’t include them
directly in your programs, though; always use the header files in /usr/include or as
mentioned in the man page for the function you’re using.

1.5.4 Source Code
This is Open Source, right? The final arbiter of how the system works is the system
source code itself, and luckily for Linux programmers, that source code is freely avail-
able. Chances are, your Linux distribution includes full source code for the entire sys-
tem and all programs included with it; if not, you’re entitled under the terms of the
GNU General Public License to request it from the distributor. (The source code
might not be installed on your disk, though. See your distribution’s documentation for
instructions on installing it.)

The source code for the Linux kernel itself is usually stored under /usr/src/linux.
If this book leaves you thirsting for details of how processes, shared memory, and sys-
tem devices work, you can always learn straight from the source code. Most of the
system functions described in this book are implemented in the GNU C library;
check your distribution’s documentation for the location of the C library source code.

02 0430 CH01 5/22/01 10:19 AM Page 15

02 0430 CH01 5/22/01 10:19 AM Page 16

Writing Good GNU/Linux
Software

2

THIS CHAPTER COVERS SOME BASIC TECHNIQUES THAT MOST GNU/Linux program-
mers use. By following the guidelines presented, you’ll be able to write programs that
work well within the GNU/Linux environment and meet GNU/Linux users’ expec-
tations of how programs should operate.

2.1 Interaction With the Execution Environment
When you first studied C or C++, you learned that the special main function is the
primary entry point for a program.When the operating system executes your pro-
gram, it automatically provides certain facilities that help the program communicate
with the operating system and the user.You probably learned about the two parame-
ters to main, usually called argc and argv, which receive inputs to your program.
You learned about the stdout and stdin (or the cout and cin streams in C++) that
provide console input and output.These features are provided by the C and C++
languages, and they interact with the GNU/Linux system in certain ways. GNU/
Linux provides other ways for interacting with the operating environment, too.

03 0430 CH02 5/22/01 10:20 AM Page 17

18 Chapter 2 Writing Good GNU/Linux Software

2.1.1 The Argument List
You run a program from a shell prompt by typing the name of the program.
Optionally, you can supply additional information to the program by typing one or
more words after the program name, separated by spaces.These are called command-line
arguments. (You can also include an argument that contains a space, by enclosing the
argument in quotes.) More generally, this is referred to as the program’s argument list
because it need not originate from a shell command line. In Chapter 3,“Processes,”
you’ll see another way of invoking a program, in which a program can specify the
argument list of another program directly.

When a program is invoked from the shell, the argument list contains the entire
command line, including the name of the program and any command-line arguments
that may have been provided. Suppose, for example, that you invoke the ls command
in your shell to display the contents of the root directory and corresponding file sizes
with this command line:

% ls -s /

The argument list that the ls program receives has three elements.The first one is the
name of the program itself, as specified on the command line, namely ls.The second
and third elements of the argument list are the two command-line arguments, -s and /.

The main function of your program can access the argument list via the argc and
argv parameters to main (if you don’t use them, you may simply omit them).The first
parameter, argc, is an integer that is set to the number of items in the argument list.
The second parameter, argv, is an array of character pointers.The size of the array is
argc, and the array elements point to the elements of the argument list, as NUL-
terminated character strings.

Using command-line arguments is as easy as examining the contents of argc and
argv. If you’re not interested in the name of the program itself, don’t forget to skip the
first element.

Listing 2.1 demonstrates how to use argc and argv.

Listing 2.1 (arglist.c) Using argc and argv

#include <stdio.h>

int main (int argc, char* argv[])
{
printf (“The name of this program is ‘%s’.\n”, argv[0]);
printf (“This program was invoked with %d arguments.\n”, argc - 1);

/* Were any command-line arguments specified? */
if (argc > 1) {
/* Yes, print them. */
int i;
printf (“The arguments are:\n”);
for (i = 1; i < argc; ++i)

03 0430 CH02 5/22/01 10:20 AM Page 18

192.1 Interaction With the Execution Environment

printf (“ %s\n”, argv[i]);
}

return 0;
}

2.1.2 GNU/Linux Command-Line Conventions
Almost all GNU/Linux programs obey some conventions about how command-line
arguments are interpreted.The arguments that programs expect fall into two cate-
gories: options (or flags) and other arguments. Options modify how the program
behaves, while other arguments provide inputs (for instance, the names of input files).

Options come in two forms:
n Short options consist of a single hyphen and a single character (usually a lowercase

or uppercase letter). Short options are quicker to type.
n Long options consist of two hyphens, followed by a name made of lowercase and

uppercase letters and hyphens. Long options are easier to remember and easier
to read (in shell scripts, for instance).

Usually, a program provides both a short form and a long form for most options it
supports, the former for brevity and the latter for clarity. For example, most programs
understand the options -h and --help, and treat them identically. Normally, when a
program is invoked from the shell, any desired options follow the program name
immediately. Some options expect an argument immediately following. Many pro-
grams, for example, interpret the option --output foo to specify that output of the
program should be placed in a file named foo.After the options, there may follow
other command-line arguments, typically input files or input data.

For example, the command ls -s / displays the contents of the root directory.The
-s option modifies the default behavior of ls by instructing it to display the size (in
kilobytes) of each entry.The / argument tells ls which directory to list.The --size
option is synonymous with -s, so the same command could have been invoked as
ls --size /.

The GNU Coding Standards list the names of some commonly used command-line
options. If you plan to provide any options similar to these, it’s a good idea to use the
names specified in the coding standards.Your program will behave more like other
programs and will be easier for users to learn.You can view the GNU Coding
Standards’ guidelines for command-line options by invoking the following from a shell
prompt on most GNU/Linux systems:

% info “(standards)User Interfaces”

03 0430 CH02 5/22/01 10:20 AM Page 19

20 Chapter 2 Writing Good GNU/Linux Software

2.1.3 Using getopt_long
Parsing command-line options is a tedious chore. Luckily, the GNU C library provides
a function that you can use in C and C++ programs to make this job somewhat easier
(although still a bit annoying).This function, getopt_long, understands both short and
long options. If you use this function, include the header file <getopt.h>.

Suppose, for example, that you are writing a program that is to accept the three
options shown in Table 2.1.

Table 2.1 Example Program Options

Short Form Long Form Purpose

-h --help Display usage summary and exit

-o filename --output filename Specify output filename

-v --verbose Print verbose messages

In addition, the program is to accept zero or more additional command-line
arguments, which are the names of input files.

To use getopt_long, you must provide two data structures.The first is a character
string containing the valid short options, each a single letter.An option that requires
an argument is followed by a colon. For your program, the string ho:v indicates that
the valid options are -h, -o, and -v, with the second of these options followed by an
argument.

To specify the available long options, you construct an array of struct option ele-
ments. Each element corresponds to one long option and has four fields. In normal
circumstances, the first field is the name of the long option (as a character string, with-
out the two hyphens); the second is 1 if the option takes an argument, or 0 otherwise;
the third is NULL; and the fourth is a character constant specifying the short option
synonym for that long option.The last element of the array should be all zeros.You
could construct the array like this:

const struct option long_options[] = {
{ “help”, 0, NULL, ‘h’ },
{ “output”, 1, NULL, ‘o’ },
{ “verbose”, 0, NULL, ‘v’ },
{ NULL, 0, NULL, 0 }

};

You invoke the getopt_long function, passing it the argc and argv arguments to main,
the character string describing short options, and the array of struct option elements
describing the long options.

n Each time you call getopt_long, it parses a single option, returning the short-
option letter for that option, or –1 if no more options are found.

n Typically, you’ll call getopt_long in a loop, to process all the options the user has
specified, and you’ll handle the specific options in a switch statement.

03 0430 CH02 5/22/01 10:20 AM Page 20

212.1 Interaction With the Execution Environment

n If getopt_long encounters an invalid option (an option that you didn’t specify as
a valid short or long option), it prints an error message and returns the character
? (a question mark). Most programs will exit in response to this, possibly after
displaying usage information.

n When handling an option that takes an argument, the global variable optarg
points to the text of that argument.

n After getopt_long has finished parsing all the options, the global variable optind
contains the index (into argv) of the first nonoption argument.

Listing 2.2 shows an example of how you might use getopt_long to process your
arguments.

Listing 2.2 (getopt_long.c) Using getopt_long

#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>

/* The name of this program. */
const char* program_name;

/* Prints usage information for this program to STREAM (typically
stdout or stderr), and exit the program with EXIT_CODE. Does not
return. */

void print_usage (FILE* stream, int exit_code)
{
fprintf (stream, “Usage: %s options [inputfile ...]\n”, program_name);
fprintf (stream,

“ -h --help Display this usage information.\n”
“ -o --output filename Write output to file.\n”
“ -v --verbose Print verbose messages.\n”);

exit (exit_code);
}

/* Main program entry point. ARGC contains number of argument list
elements; ARGV is an array of pointers to them. */

int main (int argc, char* argv[])
{
int next_option;

/* A string listing valid short options letters. */
const char* const short_options = “ho:v”;
/* An array describing valid long options. */
const struct option long_options[] = {
{ “help”, 0, NULL, ‘h’ },
{ “output”, 1, NULL, ‘o’ },
{ “verbose”, 0, NULL, ‘v’ },

continues

03 0430 CH02 5/22/01 10:20 AM Page 21

22 Chapter 2 Writing Good GNU/Linux Software

{ NULL, 0, NULL, 0 } /* Required at end of array. */
};

/* The name of the file to receive program output, or NULL for
standard output. */

const char* output_filename = NULL;
/* Whether to display verbose messages. */
int verbose = 0;

/* Remember the name of the program, to incorporate in messages.
The name is stored in argv[0]. */

program_name = argv[0];

do {
next_option = getopt_long (argc, argv, short_options,

long_options, NULL);
switch (next_option)
{
case ‘h’: /* -h or --help */
/* User has requested usage information. Print it to standard

output, and exit with exit code zero (normal termination). */
print_usage (stdout, 0);

case ‘o’: /* -o or --output */
/* This option takes an argument, the name of the output file. */
output_filename = optarg;
break;

case ‘v’: /* -v or --verbose */
verbose = 1;
break;

case ‘?’: /* The user specified an invalid option. */
/* Print usage information to standard error, and exit with exit

code one (indicating abnormal termination). */
print_usage (stderr, 1);

case -1: /* Done with options. */
break;

default: /* Something else: unexpected. */
abort ();

}
}
while (next_option != -1);

/* Done with options. OPTIND points to first nonoption argument.
For demonstration purposes, print them if the verbose option was
specified. */

Listing 2.2 Continued

03 0430 CH02 5/22/01 10:20 AM Page 22

232.1 Interaction With the Execution Environment

if (verbose) {
int i;
for (i = optind; i < argc; ++i)
printf (“Argument: %s\n”, argv[i]);

}

/* The main program goes here. */

return 0;
}

Using getopt_long may seem like a lot of work, but writing code to parse the
command-line options yourself would take even longer.The getopt_long function is
very sophisticated and allows great flexibility in specifying what kind of options to
accept. However, it’s a good idea to stay away from the more advanced features and
stick with the basic option structure described.

2.1.4 Standard I/O
The standard C library provides standard input and output streams (stdin and stdout,
respectively).These are used by scanf, printf, and other library functions. In the
UNIX tradition, use of standard input and output is customary for GNU/Linux pro-
grams.This allows the chaining of multiple programs using shell pipes and input and
output redirection. (See the man page for your shell to learn its syntax.)

The C library also provides stderr, the standard error stream. Programs should
print warning and error messages to standard error instead of standard output.This
allows users to separate normal output and error messages, for instance, by redirecting
standard output to a file while allowing standard error to print on the console.The
fprintf function can be used to print to stderr, for example:

fprintf (stderr, (“Error: ...”));

These three streams are also accessible with the underlying UNIX I/O commands
(read, write, and so on) via file descriptors.These are file descriptors 0 for stdin, 1 for
stdout, and 2 for stderr.

When invoking a program, it is sometimes useful to redirect both standard output
and standard error to a file or pipe.The syntax for doing this varies among shells; for
Bourne-style shells (including bash, the default shell on most GNU/Linux distribu-
tions), the syntax is this:

% program > output_file.txt 2>&1
% program 2>&1 | filter

The 2>&1 syntax indicates that file descriptor 2 (stderr) should be merged into
file descriptor 1 (stdout). Note that 2>&1 must follow a file redirection (the first exam-
ple) but must precede a pipe redirection (the second example).

03 0430 CH02 5/22/01 10:20 AM Page 23

24 Chapter 2 Writing Good GNU/Linux Software

Note that stdout is buffered. Data written to stdout is not sent to the console
(or other device, if it’s redirected) until the buffer fills, the program exits normally, or
stdout is closed.You can explicitly flush the buffer by calling the following:

fflush (stdout);

In contrast, stderr is not buffered; data written to stderr goes directly to the console.1

This can produce some surprising results. For example, this loop does not print one
period every second; instead, the periods are buffered, and a bunch of them are printed
together when the buffer fills.

while (1) {
printf (“.”);
sleep (1);

}

In this loop, however, the periods do appear once a second:
while (1) {
fprintf (stderr, “.”);
sleep (1);

}

2.1.5 Program Exit Codes
When a program ends, it indicates its status with an exit code.The exit code is a
small integer; by convention, an exit code of zero denotes successful execution,
while nonzero exit codes indicate that an error occurred. Some programs use different
nonzero exit code values to distinguish specific errors.

With most shells, it’s possible to obtain the exit code of the most recently executed
program using the special $? variable. Here’s an example in which the ls command is
invoked twice and its exit code is printed after each invocation. In the first case, ls
executes correctly and returns the exit code zero. In the second case, ls encounters an
error (because the filename specified on the command line does not exist) and thus
returns a nonzero exit code.

% ls /
bin coda etc lib misc nfs proc sbin usr
boot dev home lost+found mnt opt root tmp var
% echo $?
0
% ls bogusfile
ls: bogusfile: No such file or directory
% echo $?
1

1. In C++, the same distinction holds for cout and cerr, respectively. Note that the endl
token flushes a stream in addition to printing a newline character; if you don’t want to flush the
stream (for performance reasons, for example), use a newline constant, ‘\n’, instead.

03 0430 CH02 5/22/01 10:20 AM Page 24

252.1 Interaction With the Execution Environment

A C or C++ program specifies its exit code by returning that value from the main
function.There are other methods of providing exit codes, and special exit codes
are assigned to programs that terminate abnormally (by a signal).These are discussed
further in Chapter 3.

2.1.6 The Environment
GNU/Linux provides each running program with an environment.The environment is
a collection of variable/value pairs. Both environment variable names and their values
are character strings. By convention, environment variable names are spelled in all
capital letters.

You’re probably familiar with several common environment variables already. For
instance:

n USER contains your username.
n HOME contains the path to your home directory.
n PATH contains a colon-separated list of directories through which Linux searches

for commands you invoke.
n DISPLAY contains the name and display number of the X Window server on

which windows from graphical X Window programs will appear.

Your shell, like any other program, has an environment. Shells provide methods for
examining and modifying the environment directly.To print the current environment
in your shell, invoke the printenv program.Various shells have different built-in syntax
for using environment variables; the following is the syntax for Bourne-style shells.

n The shell automatically creates a shell variable for each environment variable
that it finds, so you can access environment variable values using the $varname
syntax. For instance:

% echo $USER
samuel
% echo $HOME
/home/samuel

n You can use the export command to export a shell variable into the environ-
ment. For example, to set the EDITOR environment variable, you would use this:

% EDITOR=emacs
% export EDITOR

Or, for short:

% export EDITOR=emacs

03 0430 CH02 5/22/01 10:20 AM Page 25

26 Chapter 2 Writing Good GNU/Linux Software

In a program, you access an environment variable with the getenv function in
<stdlib.h>.That function takes a variable name and returns the corresponding value
as a character string, or NULL if that variable is not defined in the environment.To set
or clear environment variables, use the setenv and unsetenv functions, respectively.

Enumerating all the variables in the environment is a little trickier.To do this, you
must access a special global variable named environ, which is defined in the GNU C
library.This variable, of type char**, is a NULL-terminated array of pointers to character
strings. Each string contains one environment variable, in the form VARIABLE=value.

The program in Listing 2.3, for instance, simply prints the entire environment by
looping through the environ array.

Listing 2.3 (print-env.c) Printing the Execution Environment

#include <stdio.h>

/* The ENVIRON variable contains the environment. */
extern char** environ;

int main ()
{
char** var;
for (var = environ; *var != NULL; ++var)
printf (“%s\n”, *var);

return 0;
}

Don’t modify environ yourself; use the setenv and unsetenv functions instead.
Usually, when a new program is started, it inherits a copy of the environment of

the program that invoked it (the shell program, if it was invoked interactively). So, for
instance, programs that you run from the shell may examine the values of environment
variables that you set in the shell.

Environment variables are commonly used to communicate configuration informa-
tion to programs. Suppose, for example, that you are writing a program that connects to
an Internet server to obtain some information.You could write the program so that the
server name is specified on the command line. However, suppose that the server name
is not something that users will change very often.You can use a special environment
variable—say SERVER_NAME—to specify the server name; if that variable doesn’t exist, a
default value is used. Part of your program might look as shown in Listing 2.4.

Listing 2.4 (client.c) Part of a Network Client Program

#include <stdio.h>
#include <stdlib.h>

int main ()
{

03 0430 CH02 5/22/01 10:20 AM Page 26

272.1 Interaction With the Execution Environment

char* server_name = getenv (“SERVER_NAME”);
if (server_name == NULL)
/* The SERVER_NAME environment variable was not set. Use the

default. */
server_name = “server.my-company.com”;

printf (“accessing server %s\n”, server_name);
/* Access the server here... */

return 0;
}

Suppose that this program is named client.Assuming that you haven’t set the
SERVER_NAME variable, the default value for the server name is used:

% client
accessing server server.my-company.com

But it’s easy to specify a different server:
% export SERVER_NAME=backup-server.elsewhere.net
% client
accessing server backup-server.elsewhere.net

2.1.7 Using Temporary Files
Sometimes a program needs to make a temporary file, to store large data for a while or
to pass data to another program. On GNU/Linux systems, temporary files are stored
in the /tmp directory.When using temporary files, you should be aware of the follow-
ing pitfalls:

n More than one instance of your program may be run simultaneously (by the
same user or by different users).The instances should use different temporary
filenames so that they don’t collide.

n The file permissions of the temporary file should be set in such a way that
unauthorized users cannot alter the program’s execution by modifying or
replacing the temporary file.

n Temporary filenames should be generated in a way that cannot be predicted
externally; otherwise, an attacker can exploit the delay between testing whether
a given name is already in use and opening a new temporary file.

GNU/Linux provides functions, mkstemp and tmpfile, that take care of these issues for
you (in addition to several functions that don’t).Which you use depends on whether
you plan to hand the temporary file to another program, and whether you want to use
UNIX I/O (open, write, and so on) or the C library’s stream I/O functions (fopen,
fprintf, and so on).

03 0430 CH02 5/22/01 10:20 AM Page 27

28 Chapter 2 Writing Good GNU/Linux Software

Using mkstemp

The mkstemp function creates a unique temporary filename from a filename template,
creates the file with permissions so that only the current user can access it, and opens
the file for read/write.The filename template is a character string ending with
“XXXXXX” (six capital X’s); mkstemp replaces the X’s with characters so that the file-
name is unique.The return value is a file descriptor; use the write family of functions
to write to the temporary file.

Temporary files created with mkstemp are not deleted automatically. It’s up to you
to remove the temporary file when it’s no longer needed. (Programmers should be
very careful to clean up temporary files; otherwise, the /tmp file system will fill up
eventually, rendering the system inoperable.) If the temporary file is for internal use
only and won’t be handed to another program, it’s a good idea to call unlink on the
temporary file immediately.The unlink function removes the directory entry corre-
sponding to a file, but because files in a file system are reference-counted, the file itself
is not removed until there are no open file descriptors for that file, either.This way,
your program may continue to use the temporary file, and the file goes away automat-
ically as soon as you close the file descriptor. Because Linux closes file descriptors
when a program ends, the temporary file will be removed even if your program termi-
nates abnormally.

The pair of functions in Listing 2.5 demonstrates mkstemp. Used together, these
functions make it easy to write a memory buffer to a temporary file (so that memory
can be freed or reused) and then read it back later.

Listing 2.5 (temp_file.c) Using mkstemp

#include <stdlib.h>
#include <unistd.h>

/* A handle for a temporary file created with write_temp_file. In
this implementation, it’s just a file descriptor. */

typedef int temp_file_handle;

/* Writes LENGTH bytes from BUFFER into a temporary file. The
temporary file is immediately unlinked. Returns a handle to the
temporary file. */

temp_file_handle write_temp_file (char* buffer, size_t length)
{
/* Create the filename and file. The XXXXXX will be replaced with

characters that make the filename unique. */
char temp_filename[] = “/tmp/temp_file.XXXXXX”;
int fd = mkstemp (temp_filename);
/* Unlink the file immediately, so that it will be removed when the

file descriptor is closed. */
unlink (temp_filename);
/* Write the number of bytes to the file first. */
write (fd, &length, sizeof (length));

03 0430 CH02 5/22/01 10:20 AM Page 28

292.1 Interaction With the Execution Environment

/* Now write the data itself. */
write (fd, buffer, length);
/* Use the file descriptor as the handle for the temporary file. */
return fd;

}

/* Reads the contents of a temporary file TEMP_FILE created with
write_temp_file. The return value is a newly allocated buffer of
those contents, which the caller must deallocate with free.
*LENGTH is set to the size of the contents, in bytes. The
temporary file is removed. */

char* read_temp_file (temp_file_handle temp_file, size_t* length)
{
char* buffer;
/* The TEMP_FILE handle is a file descriptor to the temporary file. */
int fd = temp_file;
/* Rewind to the beginning of the file. */
lseek (fd, 0, SEEK_SET);
/* Read the size of the data in the temporary file. */
read (fd, length, sizeof (*length));
/* Allocate a buffer and read the data. */
buffer = (char*) malloc (*length);
read (fd, buffer, *length);
/* Close the file descriptor, which will cause the temporary file to

go away. */
close (fd);
return buffer;

}

Using tmpfile

If you are using the C library I/O functions and don’t need to pass the temporary file
to another program, you can use the tmpfile function.This creates and opens a tem-
porary file, and returns a file pointer to it.The temporary file is already unlinked, as in
the previous example, so it is deleted automatically when the file pointer is closed
(with fclose) or when the program terminates.

GNU/Linux provides several other functions for generating temporary files and tem-
porary filenames, including mktemp, tmpnam, and tempnam. Don’t use these functions,
though, because they suffer from the reliability and security problems already mentioned.

03 0430 CH02 5/22/01 10:20 AM Page 29

30 Chapter 2 Writing Good GNU/Linux Software

2.2 Coding Defensively
Writing programs that run correctly under “normal” use is hard; writing programs that
behave gracefully in failure situations is harder.This section demonstrates some coding
techniques for finding bugs early and for detecting and recovering from problems in a
running program.

The code samples presented later in this book deliberately skip extensive error
checking and recovery code because this would obscure the basic functionality being
presented. However, the final example in Chapter 11,“A Sample GNU/Linux
Application,” comes back to demonstrating how to use these techniques to write
robust programs.

2.2.1 Using assert
A good objective to keep in mind when coding application programs is that bugs or
unexpected errors should cause the program to fail dramatically, as early as possible.
This will help you find bugs earlier in the development and testing cycles. Failures that
don’t exhibit themselves dramatically are often missed and don’t show up until the
application is in users’ hands.

One of the simplest methods to check for unexpected conditions is the standard C
assert macro.The argument to this macro is a Boolean expression.The program is
terminated if the expression evaluates to false, after printing an error message contain-
ing the source file and line number and the text of the expression.The assert macro
is very useful for a wide variety of consistency checks internal to a program. For
instance, use assert to test the validity of function arguments, to test preconditions
and postconditions of function calls (and method calls, in C++), and to test for unex-
pected return values.

Each use of assert serves not only as a runtime check of a condition, but also as
documentation about the program’s operation within the source code. If your program
contains an assert (condition) that says to someone reading your source code that
condition should always be true at that point in the program, and if condition is not
true, it’s probably a bug in the program.

For performance-critical code, runtime checks such as uses of assert can impose a
significant performance penalty. In these cases, you can compile your code with the
NDEBUG macro defined, by using the -DNDEBUG flag on your compiler command line.
With NDEBUG set, appearances of the assert macro will be preprocessed away. It’s a
good idea to do this only when necessary for performance reasons, though, and only
with performance-critical source files.

Because it is possible to preprocess assert macros away, be careful that any expres-
sion you use with assert has no side effects. Specifically, you shouldn’t call functions
inside assert expressions, assign variables, or use modifying operators such as ++.

03 0430 CH02 5/22/01 10:20 AM Page 30

312.2 Coding Defensively

Suppose, for example, that you call a function, do_something, repeatedly in a loop.
The do_something function returns zero on success and nonzero on failure, but you
don’t expect it ever to fail in your program.You might be tempted to write:

for (i = 0; i < 100; ++i)
assert (do_something () == 0);

However, you might find that this runtime check imposes too large a performance
penalty and decide later to recompile with NDEBUG defined.This will remove the
assert call entirely, so the expression will never be evaluated and do_something will
never be called.You should write this instead:

for (i = 0; i < 100; ++i) {
int status = do_something ();
assert (status == 0);

}

Another thing to bear in mind is that you should not use assert to test for invalid
user input. Users don’t like it when applications simply crash with a cryptic error mes-
sage, even in response to invalid input.You should still always check for invalid input
and produce sensible error messages in response input. Use assert for internal run-
time checks only.

Some good places to use assert are these:
n Check against null pointers, for instance, as invalid function arguments.The error

message generated by {assert (pointer != NULL)},
Assertion ‘pointer != ((void *)0)’ failed.

is more informative than the error message that would result if your program
dereferenced a null pointer:

Segmentation fault (core dumped)

n Check conditions on function parameter values. For instance, if a function
should be called only with a positive value for parameter foo, use this at the
beginning of the function body:

assert (foo > 0);

This will help you detect misuses of the function, and it also makes it very clear
to someone reading the function’s source code that there is a restriction on the
parameter’s value.

Don’t hold back; use assert liberally throughout your programs.

03 0430 CH02 5/22/01 10:20 AM Page 31

32 Chapter 2 Writing Good GNU/Linux Software

2.2.2 System Call Failures
Most of us were originally taught how to write programs that execute to completion
along a well-defined path.We divide the program into tasks and subtasks, and each
function completes a task by invoking other functions to perform corresponding sub-
tasks. Given appropriate inputs, we expect a function to produce the correct output
and side effects.

The realities of computer hardware and software intrude into this idealized dream.
Computers have limited resources; hardware fails; many programs execute at the same
time; users and programmers make mistakes. It’s often at the boundary between the
application and the operating system that these realities exhibit themselves.Therefore,
when using system calls to access system resources, to perform I/O, or for other pur-
poses, it’s important to understand not only what happens when the call succeeds, but
also how and when the call can fail.

System calls can fail in many ways. For example:
n The system can run out of resources (or the program can exceed the resource

limits enforced by the system of a single program). For example, the program
might try to allocate too much memory, to write too much to a disk, or to open
too many files at the same time.

n Linux may block a certain system call when a program attempts to perform an
operation for which it does not have permission. For example, a program might
attempt to write to a file marked read-only, to access the memory of another
process, or to kill another user’s program.

n The arguments to a system call might be invalid, either because the user pro-
vided invalid input or because of a program bug. For instance, the program
might pass an invalid memory address or an invalid file descriptor to a system
call. Or, a program might attempt to open a directory as an ordinary file, or
might pass the name of an ordinary file to a system call that expects a directory.

n A system call can fail for reasons external to a program.This happens most often
when a system call accesses a hardware device.The device might be faulty or
might not support a particular operation, or perhaps a disk is not inserted in the
drive.

n A system call can sometimes be interrupted by an external event, such as the
delivery of a signal.This might not indicate outright failure, but it is the respon-
sibility of the calling program to restart the system call, if desired.

In a well-written program that makes extensive use of system calls, it is often the case
that more code is devoted to detecting and handling errors and other exceptional cir-
cumstances than to the main work of the program.

03 0430 CH02 5/22/01 10:20 AM Page 32

332.2 Coding Defensively

2.2.3 Error Codes from System Calls
A majority of system calls return zero if the operation succeeds, or a nonzero value if
the operation fails. (Many, though, have different return value conventions; for
instance, malloc returns a null pointer to indicate failure.Always read the man page
carefully when using a system call.) Although this information may be enough to
determine whether the program should continue execution as usual, it probably does
not provide enough information for a sensible recovery from errors.

Most system calls use a special variable named errno to store additional information
in case of failure.2 When a call fails, the system sets errno to a value indicating what
went wrong. Because all system calls use the same errno variable to store error infor-
mation, you should copy the value into another variable immediately after the failed
call.The value of errno will be overwritten the next time you make a system call.

Error values are integers; possible values are given by preprocessor macros, by con-
vention named in all capitals and starting with “E”—for example, EACCES and EINVAL.
Always use these macros to refer to errno values rather than integer values. Include the
<errno.h> header if you use errno values.

GNU/Linux provides a convenient function, strerror, that returns a character
string description of an errno error code, suitable for use in error messages. Include
<string.h> if you use strerror.

GNU/Linux also provides perror, which prints the error description directly to
the stderr stream. Pass to perror a character string prefix to print before the error
description, which should usually include the name of the function that failed. Include
<stdio.h> if you use perror.

This code fragment attempts to open a file; if the open fails, it prints an error mes-
sage and exits the program. Note that the open call returns an open file descriptor if
the open operation succeeds, or –1 if the operation fails.

fd = open (“inputfile.txt”, O_RDONLY);
if (fd == -1) {
/* The open failed. Print an error message and exit. */
fprintf (stderr, “error opening file: %s\n”, strerror (errno));
exit (1);

}

Depending on your program and the nature of the system call, the appropriate action
in case of failure might be to print an error message, to cancel an operation, to abort
the program, to try again, or even to ignore the error. It’s important, though, to
include logic that handles all possible failure modes in some way or another.

2.Actually, for reasons of thread safety, errno is implemented as a macro, but it is used like a
global variable.

03 0430 CH02 5/22/01 10:20 AM Page 33

34 Chapter 2 Writing Good GNU/Linux Software

One possible error code that you should be on the watch for, especially with I/O
functions, is EINTR. Some functions, such as read, select, and sleep, can take signifi-
cant time to execute.These are considered blocking functions because program execu-
tion is blocked until the call is completed. However, if the program receives a signal
while blocked in one of these calls, the call will return without completing the opera-
tion. In this case, errno is set to EINTR. Usually, you’ll want to retry the system call in
this case.

Here’s a code fragment that uses the chown call to change the owner of a file given
by path to the user by user_id. If the call fails, the program takes action depending on
the value of errno. Notice that when we detect what’s probably a bug in the program,
we exit using abort or assert, which cause a core file to be generated.This can be
useful for post-mortem debugging. For other unrecoverable errors, such as out-of-
memory conditions, we exit using exit and a nonzero exit value instead because a
core file wouldn’t be very useful.

rval = chown (path, user_id, -1);
if (rval != 0) {
/* Save errno because it’s clobbered by the next system call. */
int error_code = errno;
/* The operation didn’t succeed; chown should return -1 on error. */
assert (rval == -1);
/* Check the value of errno, and take appropriate action. */
switch (error_code) {
case EPERM: /* Permission denied. */
case EROFS: /* PATH is on a read-only file system. */
case ENAMETOOLONG: /* PATH is too long. */
case ENOENT: /* PATH does not exit. */
case ENOTDIR: /* A component of PATH is not a directory. */
case EACCES: /* A component of PATH is not accessible. */
/* Something’s wrong with the file. Print an error message. */
fprintf (stderr, “error changing ownership of %s: %s\n”,

path, strerror (error_code));
/* Don’t end the program; perhaps give the user a chance to

choose another file... */
break;

case EFAULT:
/* PATH contains an invalid memory address. This is probably a bug. */
abort ();

case ENOMEM:
/* Ran out of kernel memory. */
fprintf (stderr, “%s\n”, strerror (error_code));
exit (1);

default:
/* Some other, unexpected, error code. We’ve tried to handle all

possible error codes; if we’ve missed one, that’s a bug! */
abort ();

};
}

03 0430 CH02 5/22/01 10:20 AM Page 34

352.2 Coding Defensively

You could simply have used this code, which behaves the same way if the call succeeds:
rval = chown (path, user_id, -1);
assert (rval == 0);

But if the call fails, this alternative makes no effort to report, handle, or recover from
errors.

Whether you use the first form, the second form, or something in between
depends on the error detection and recovery requirements for your program.

2.2.4 Errors and Resource Allocation
Often, when a system call fails, it’s appropriate to cancel the current operation but not
to terminate the program because it may be possible to recover from the error. One
way to do this is to return from the current function, passing a return code to the
caller indicating the error.

If you decide to return from the middle of a function, it’s important to make sure
that any resources successfully allocated previously in the function are first deallocated.
These resources can include memory, file descriptors, file pointers, temporary files,
synchronization objects, and so on. Otherwise, if your program continues running, the
resources allocated before the failure occurred will be leaked.

Consider, for example, a function that reads from a file into a buffer.The function
might follow these steps:

1. Allocate the buffer.

2. Open the file.

3. Read from the file into the buffer.

4. Close the file.

5. Return the buffer.

If the file doesn’t exist, Step 2 will fail.An appropriate course of action might be to
return NULL from the function. However, if the buffer has already been allocated in
Step 1, there is a risk of leaking that memory.You must remember to deallocate the
buffer somewhere along any flow of control from which you don’t return. If Step 3
fails, not only must you deallocate the buffer before returning, but you also must close
the file.

Listing 2.6 shows an example of how you might write this function.

Listing 2.6 (readfile.c) Freeing Resources During Abnormal Conditions

#include <fcntl.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

continues

03 0430 CH02 5/22/01 10:20 AM Page 35

36 Chapter 2 Writing Good GNU/Linux Software

char* read_from_file (const char* filename, size_t length)
{
char* buffer;
int fd;
ssize_t bytes_read;

/* Allocate the buffer. */
buffer = (char*) malloc (length);
if (buffer == NULL)
return NULL;

/* Open the file. */
fd = open (filename, O_RDONLY);
if (fd == -1) {
/* open failed. Deallocate buffer before returning. */
free (buffer);
return NULL;

}
/* Read the data. */
bytes_read = read (fd, buffer, length);
if (bytes_read != length) {
/* read failed. Deallocate buffer and close fd before returning. */
free (buffer);
close (fd);
return NULL;

}
/* Everything’s fine. Close the file and return the buffer. */
close (fd);
return buffer;

}

Linux cleans up allocated memory, open files, and most other resources when a pro-
gram terminates, so it’s not necessary to deallocate buffers and close files before calling
exit.You might need to manually free other shared resources, however, such as tempo-
rary files and shared memory, which can potentially outlive a program.

2.3 Writing and Using Libraries
Virtually all programs are linked against one or more libraries.Any program that uses a
C function (such as printf or malloc) will be linked against the C runtime library. If
your program has a graphical user interface (GUI), it will be linked against windowing
libraries. If your program uses a database, the database provider will give you libraries
that you can use to access the database conveniently.

In each of these cases, you must decide whether to link the library statically or
dynamically. If you choose to link statically, your programs will be bigger and harder to
upgrade, but probably easier to deploy. If you link dynamically, your programs will be

Listing 2.6 Continued

03 0430 CH02 5/22/01 10:20 AM Page 36

372.3 Writing and Using Libraries

smaller, easier to upgrade, but harder to deploy.This section explains how to link both
statically and dynamically, examines the trade-offs in more detail, and gives some “rules
of thumb” for deciding which kind of linking is better for you.

2.3.1 Archives
An archive (or static library) is simply a collection of object files stored as a single file.
(An archive is roughly the equivalent of a Windows .LIB file.) When you provide an
archive to the linker, the linker searches the archive for the object files it needs,
extracts them, and links them into your program much as if you had provided those
object files directly.

You can create an archive using the ar command.Archive files traditionally use a .a
extension rather than the .o extension used by ordinary object files. Here’s how you
would combine test1.o and test2.o into a single libtest.a archive:

% ar cr libtest.a test1.o test2.o

The cr flags tell ar to create the archive.3 Now you can link with this archive using
the -ltest option with gcc or g++, as described in Section 1.2.2,“Linking Object
Files,” in Chapter 1,“Getting Started.”

When the linker encounters an archive on the command line, it searches the
archive for all definitions of symbols (functions or variables) that are referenced from
the object files that it has already processed but not yet defined.The object files that
define those symbols are extracted from the archive and included in the final exe-
cutable. Because the linker searches the archive when it is encountered on the com-
mand line, it usually makes sense to put archives at the end of the command line. For
example, suppose that test.c contains the code in Listing 2.7 and app.c contains the
code in Listing 2.8.

Listing 2.7 (test.c) Library Contents

int f ()
{
return 3;

}

Listing 2.8 (app.c) A Program That Uses Library Functions

int main ()
{
return f ();

}

3.You can use other flags to remove a file from an archive or to perform other operations on
the archive.These operations are rarely used but are documented on the ar man page.

03 0430 CH02 5/22/01 10:20 AM Page 37

38 Chapter 2 Writing Good GNU/Linux Software

Now suppose that test.o is combined with some other object files to produce the
libtest.a archive.The following command line will not work:

% gcc -o app -L. -ltest app.o
app.o: In function ‘main’:
app.o(.text+0x4): undefined reference to ‘f’
collect2: ld returned 1 exit status

The error message indicates that even though libtest.a contains a definition of f, the
linker did not find it.That’s because libtest.a was searched when it was first encoun-
tered, and at that point the linker hadn’t seen any references to f.

On the other hand, if we use this line, no error messages are issued:
% gcc -o app app.o -L. –ltest

The reason is that the reference to f in app.o causes the linker to include the test.o
object file from the libtest.a archive.

2.3.2 Shared Libraries
A shared library (also known as a shared object, or as a dynamically linked library) is
similar to a archive in that it is a grouping of object files. However, there are many
important differences.The most fundamental difference is that when a shared library is
linked into a program, the final executable does not actually contain the code that is
present in the shared library. Instead, the executable merely contains a reference to the
shared library. If several programs on the system are linked against the same shared
library, they will all reference the library, but none will actually be included.Thus, the
library is “shared” among all the programs that link with it.

A second important difference is that a shared library is not merely a collection of
object files, out of which the linker chooses those that are needed to satisfy undefined
references. Instead, the object files that compose the shared library are combined into a
single object file so that a program that links against a shared library always includes all
of the code in the library, rather than just those portions that are needed.

To create a shared library, you must compile the objects that will make up the
library using the -fPIC option to the compiler, like this:

% gcc -c -fPIC test1.c

The -fPIC option tells the compiler that you are going to be using test.o as part of a
shared object.

Position-Independent Code (PIC)
PIC stands for position-independent code. The functions in a shared library may be loaded at different

addresses in different programs, so the code in the shared object must not depend on the address (or

position) at which it is loaded. This consideration has no impact on you, as the programmer, except that

you must remember to use the -fPIC flag when compiling code that will be used in a shared library.

03 0430 CH02 5/22/01 10:20 AM Page 38

392.3 Writing and Using Libraries

Then you combine the object files into a shared library, like this:
% gcc -shared -fPIC -o libtest.so test1.o test2.o

The -shared option tells the linker to produce a shared library rather than an ordinary
executable. Shared libraries use the extension .so, which stands for shared object. Like
static archives, the name always begins with lib to indicate that the file is a library.

Linking with a shared library is just like linking with a static archive. For example,
the following line will link with libtest.so if it is in the current directory, or one of
the standard library search directories on the system:

% gcc -o app app.o -L. –ltest

Suppose that both libtest.a and libtest.so are available.Then the linker must
choose one of the libraries and not the other.The linker searches each directory (first
those specified with -L options, and then those in the standard directories).When the
linker finds a directory that contains either libtest.a or libtest.so, the linker stops
search directories. If only one of the two variants is present in the directory, the linker
chooses that variant. Otherwise, the linker chooses the shared library version, unless
you explicitly instruct it otherwise.You can use the -static option to demand static
archives. For example, the following line will use the libtest.a archive, even if the
libtest.so shared library is also available:

% gcc -static -o app app.o -L. –ltest

The ldd command displays the shared libraries that are linked into an executable.
These libraries need to be available when the executable is run. Note that ldd will list
an additional library called ld-linux.so, which is a part of GNU/Linux’s dynamic
linking mechanism.

Using LD_LIBRARY_PATH

When you link a program with a shared library, the linker does not put the full path
to the shared library in the resulting executable. Instead, it places only the name of the
shared library.When the program is actually run, the system searches for the shared
library and loads it.The system searches only /lib and /usr/lib, by default. If a shared
library that is linked into your program is installed outside those directories, it will not
be found, and the system will refuse to run the program.

One solution to this problem is to use the -Wl,-rpath option when linking the
program. Suppose that you use this:

% gcc -o app app.o -L. -ltest -Wl,-rpath,/usr/local/lib

Then, when app is run, the system will search /usr/local/lib for any required shared
libraries.

03 0430 CH02 5/22/01 10:20 AM Page 39

40 Chapter 2 Writing Good GNU/Linux Software

Another solution to this problem is to set the LD_LIBRARY_PATH environment
variable when running the program. Like the PATH environment variable,
LD_LIBRARY_PATH is a colon-separated list of directories. For example, if
LD_LIBRARY_PATH is /usr/local/lib:/opt/lib, then /usr/local/lib and /opt/lib
will be searched before the standard /lib and /usr/lib directories.You should also
note that if you have LD_LIBRARY_PATH, the linker will search the directories given
there in addition to the directories given with the -L option when it is building an
executable.4

2.3.3 Standard Libraries
Even if you didn’t specify any libraries when you linked your program, it almost cer-
tainly uses a shared library.That’s because GCC automatically links in the standard C
library, libc, for you.The standard C library math functions are not included in libc;
instead, they’re in a separate library, libm, which you need to specify explicitly. For
example, to compile and link a program compute.c which uses trigonometric func-
tions such as sin and cos, you must invoke this code:

% gcc -o compute compute.c –lm

If you write a C++ program and link it using the c++ or g++ commands, you’ll also
get the standard C++ library, libstdc++, automatically.

2.3.4 Library Dependencies
One library will often depend on another library. For example, many GNU/Linux
systems include libtiff, a library that contains functions for reading and writing
image files in the TIFF format.This library, in turn, uses the libraries libjpeg (JPEG
image routines) and libz (compression routines).

Listing 2.9 shows a very small program that uses libtiff to open a TIFF image file.

Listing 2.9 (tifftest.c) Using libtiff

#include <stdio.h>
#include <tiffio.h>

int main (int argc, char** argv)
{
TIFF* tiff;
tiff = TIFFOpen (argv[1], “r”);
TIFFClose (tiff);
return 0;

}

4.You might see a reference to LD_RUN_PATH in some online documentation. Don’t believe
what you read; this variable does not actually do anything under GNU/Linux.

03 0430 CH02 5/22/01 10:20 AM Page 40

412.3 Writing and Using Libraries

Save this source file as tifftest.c.To compile this program and link with libtiff,
specify -ltiff on your link line:
% gcc -o tifftest tifftest.c –ltiff

By default, this will pick up the shared-library version of libtiff, found at
/usr/lib/libtiff.so. Because libtiff uses libjpeg and libz, the shared-library
versions of these two are also drawn in (a shared library can point to other shared
libraries that it depends on).To verify this, use the ldd command:

% ldd tifftest
libtiff.so.3 => /usr/lib/libtiff.so.3 (0x4001d000)
libc.so.6 => /lib/libc.so.6 (0x40060000)
libjpeg.so.62 => /usr/lib/libjpeg.so.62 (0x40155000)
libz.so.1 => /usr/lib/libz.so.1 (0x40174000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Static libraries, on the other hand, cannot point to other libraries. If decide to link
with the static version of libtiff by specifying -static on your command line, you
will encounter unresolved symbols:

% gcc -static -o tifftest tifftest.c -ltiff
/usr/bin/../lib/libtiff.a(tif_jpeg.o): In function ‘TIFFjpeg_error_exit’:
tif_jpeg.o(.text+0x2a): undefined reference to ‘jpeg_abort’
/usr/bin/../lib/libtiff.a(tif_jpeg.o): In function ‘TIFFjpeg_create_compress’:
tif_jpeg.o(.text+0x8d): undefined reference to ‘jpeg_std_error’
tif_jpeg.o(.text+0xcf): undefined reference to ‘jpeg_CreateCompress’
...

To link this program statically, you must specify the other two libraries yourself:
% gcc -static -o tifftest tifftest.c -ltiff -ljpeg -lz

Occasionally, two libraries will be mutually dependent. In other words, the first archive
will reference symbols defined in the second archive, and vice versa.This situation
generally arises out of poor design, but it does occasionally arise. In this case, you can
provide a single library multiple times on the command line.The linker will research
the library each time it occurs. For example, this line will cause libfoo.a to be
searched multiple times:

% gcc -o app app.o -lfoo -lbar –lfoo

So, even if libfoo.a references symbols in libbar.a, and vice versa, the program will
link successfully.

2.3.5 Pros and Cons
Now that you know all about static archives and shared libraries, you’re probably
wondering which to use.There are a few major considerations to keep in mind.

03 0430 CH02 5/22/01 10:20 AM Page 41

42 Chapter 2 Writing Good GNU/Linux Software

One major advantage of a shared library is that it saves space on the system where
the program is installed. If you are installing 10 programs, and they all make use of the
same shared library, then you save a lot of space by using a shared library. If you used a
static archive instead, the archive is included in all 10 programs. So, using shared
libraries saves disk space. It also reduces download times if your program is being
downloaded from the Web.

A related advantage to shared libraries is that users can upgrade the libraries with-
out upgrading all the programs that depend on them. For example, suppose that you
produce a shared library that manages HTTP connections. Many programs might
depend on this library. If you find a bug in this library, you can upgrade the library.
Instantly, all the programs that depend on the library will be fixed; you don’t have to
relink all the programs the way you do with a static archive.

Those advantages might make you think that you should always use shared
libraries. However, substantial reasons exist to use static archives instead.The fact that
an upgrade to a shared library affects all programs that depend on it can be a disadvan-
tage. For example, if you’re developing mission-critical software, you might rather link
to a static archive so that an upgrade to shared libraries on the system won’t affect
your program. (Otherwise, users might upgrade the shared library, thereby breaking
your program, and then call your customer support line, blaming you!)

If you’re not going to be able to install your libraries in /lib or /usr/lib, you
should definitely think twice about using a shared library. (You won’t be able to install
your libraries in those directories if you expect users to install your software without
administrator privileges.) In particular, the -Wl,-rpath trick won’t work if you don’t
know where the libraries are going to end up.And asking your users to set
LD_LIBRARY_PATH means an extra step for them. Because each user has to do this
individually, this is a substantial additional burden.

You’ll have to weigh these advantages and disadvantages for every program you
distribute.

2.3.6 Dynamic Loading and Unloading
Sometimes you might want to load some code at run time without explicitly linking
in that code. For example, consider an application that supports “plug-in” modules,
such as a Web browser.The browser allows third-party developers to create plug-ins to
provide additional functionality.The third-party developers create shared libraries and
place them in a known location.The Web browser then automatically loads the code
in these libraries.

This functionality is available under Linux by using the dlopen function.You could
open a shared library named libtest.so by calling dlopen like this:

dlopen (“libtest.so”, RTLD_LAZY)

03 0430 CH02 5/22/01 10:20 AM Page 42

432.3 Writing and Using Libraries

(The second parameter is a flag that indicates how to bind symbols in the shared
library.You can consult the online man pages for dlopen if you want more informa-
tion, but RTLD_LAZY is usually the setting that you want.) To use dynamic loading func-
tions, include the <dlfcn.h> header file and link with the –ldl option to pick up the
libdl library.

The return value from this function is a void * that is used as a handle for the
shared library.You can pass this value to the dlsym function to obtain the address of a
function that has been loaded with the shared library. For example, if libtest.so
defines a function named my_function, you could call it like this:

void* handle = dlopen (“libtest.so”, RTLD_LAZY);
void (*test)() = dlsym (handle, “my_function”);
(*test)();
dlclose (handle);

The dlsym system call can also be used to obtain a pointer to a static variable in the
shared library.

Both dlopen and dlsym return NULL if they do not succeed. In that event, you
can call dlerror (with no parameters) to obtain a human-readable error message
describing the problem.

The dlclose function unloads the shared library.Technically, dlopen actually loads
the library only if it is not already loaded. If the library has already been loaded,
dlopen simply increments the library reference count. Similarly, dlclose decrements
the reference count and then unloads the library only if the reference count has
reached zero.

If you’re writing the code in your shared library in C++, you will probably want
to declare those functions and variables that you plan to access elsewhere with the
extern “C” linkage specifier. For instance, if the C++ function my_function is in a
shared library and you want to access it with dlsym, you should declare it like this:

extern “C” void foo ();

This prevents the C++ compiler from mangling the function name, which would
change the function’s name from foo to a different, funny-looking name that encodes
extra information about the function.A C compiler will not mangle names; it will use
whichever name you give to your function or variable.

03 0430 CH02 5/22/01 10:20 AM Page 43

03 0430 CH02 5/22/01 10:20 AM Page 44

Processes

3

A RUNNING INSTANCE OF A PROGRAM IS CALLED A PROCESS. If you have two
terminal windows showing on your screen, then you are probably running the
same terminal program twice—you have two terminal processes. Each terminal
window is probably running a shell; each running shell is another process.When you
invoke a command from a shell, the corresponding program is executed in a new
process; the shell process resumes when that process completes.

Advanced programmers often use multiple cooperating processes in a single appli-
cation to enable the application to do more than one thing at once, to increase
application robustness, and to make use of already-existing programs.

Most of the process manipulation functions described in this chapter are similar to
those on other UNIX systems. Most are declared in the header file <unistd.h>; check
the man page for each function to be sure.

3.1 Looking at Processes
Even as you sit down at your computer, there are processes running. Every executing
program uses one or more processes. Let’s start by taking a look at the processes
already on your computer.

04 0430 CH03 5/22/01 10:13 AM Page 45

46 Chapter 3 Processes

3.1.1 Process IDs
Each process in a Linux system is identified by its unique process ID, sometimes
referred to as pid. Process IDs are 16-bit numbers that are assigned sequentially by
Linux as new processes are created.

Every process also has a parent process (except the special init process, described in
Section 3.4.3,“Zombie Processes”).Thus, you can think of the processes on a Linux
system as arranged in a tree, with the init process at its root.The parent process ID, or
ppid, is simply the process ID of the process’s parent.

When referring to process IDs in a C or C++ program, always use the pid_t
typedef, which is defined in <sys/types.h>.A program can obtain the process ID of
the process it’s running in with the getpid() system call, and it can obtain the process
ID of its parent process with the getppid() system call. For instance, the program in
Listing 3.1 prints its process ID and its parent’s process ID.

Listing 3.1 (print-pid.c) Printing the Process ID

#include <stdio.h>
#include <unistd.h>

int main ()
{
printf (“The process ID is %d\n”, (int) getpid ());
printf (“The parent process ID is %d\n”, (int) getppid ());
return 0;

}

Observe that if you invoke this program several times, a different process ID is
reported because each invocation is in a new process. However, if you invoke it every
time from the same shell, the parent process ID (that is, the process ID of the shell
process) is the same.

3.1.2 Viewing Active Processes
The ps command displays the processes that are running on your system.The
GNU/Linux version of ps has lots of options because it tries to be compatible with
versions of ps on several other UNIX variants.These options control which processes
are listed and what information about each is shown.

By default, invoking ps displays the processes controlled by the terminal or terminal
window in which ps is invoked. For example:

% ps
PID TTY TIME CMD

21693 pts/8 00:00:00 bash
21694 pts/8 00:00:00 ps

04 0430 CH03 5/22/01 10:13 AM Page 46

473.1 Looking at Processes

This invocation of ps shows two processes.The first, bash, is the shell running on this
terminal.The second is the running instance of the ps program itself.The first col-
umn, labeled PID, displays the process ID of each.

For a more detailed look at what’s running on your GNU/Linux system, invoke
this:

% ps -e -o pid,ppid,command

The -e option instructs ps to display all processes running on the system.The
-o pid,ppid,command option tells ps what information to show about each process—
in this case, the process ID, the parent process ID, and the command running in this
process.

ps Output Formats
With the -o option to the ps command, you specify the information about processes that you want in

the output as a comma-separated list. For example, ps -o pid,user,start_time,command displays

the process ID, the name of the user owning the process, the wall clock time at which the process

started, and the command running in the process. See the man page for ps for the full list of field codes.

You can use the -f (full listing), -l (long listing), or -j (jobs listing) options instead to get three differ-

ent preset listing formats.

Here are the first few lines and last few lines of output from this command on my
system.You may see different output, depending on what’s running on your system.

% ps -e -o pid,ppid,command
PID PPID COMMAND
1 0 init [5]
2 1 [kflushd]
3 1 [kupdate]

...
21725 21693 xterm
21727 21725 bash
21728 21727 ps -e -o pid,ppid,command

Note that the parent process ID of the ps command, 21727, is the process ID of bash,
the shell from which I invoked ps.The parent process ID of bash is in turn 21725, the
process ID of the xterm program in which the shell is running.

3.1.3 Killing a Process
You can kill a running process with the kill command. Simply specify on the com-
mand line the process ID of the process to be killed.

The kill command works by sending the process a SIGTERM, or termination,
signal.1 This causes the process to terminate, unless the executing program explicitly
handles or masks the SIGTERM signal. Signals are described in Section 3.3,“Signals.”

1.You can also use the kill command to send other signals to a process.This is described in
Section 3.4,“Process Termination.”

04 0430 CH03 5/22/01 10:13 AM Page 47

48 Chapter 3 Processes

3.2 Creating Processes
Two common techniques are used for creating a new process.The first is relatively
simple but should be used sparingly because it is inefficient and has considerably
security risks.The second technique is more complex but provides greater flexibility,
speed, and security.

3.2.1 Using system
The system function in the standard C library provides an easy way to execute a
command from within a program, much as if the command had been typed into a
shell. In fact, system creates a subprocess running the standard Bourne shell (/bin/sh)
and hands the command to that shell for execution. For example, this program in
Listing 3.2 invokes the ls command to display the contents of the root directory, as if
you typed ls -l / into a shell.

Listing 3.2 (system.c) Using the system Call

#include <stdlib.h>

int main ()
{
int return_value;
return_value = system (“ls -l /”);
return return_value;

}

The system function returns the exit status of the shell command. If the shell itself
cannot be run, system returns 127; if another error occurs, system returns –1.

Because the system function uses a shell to invoke your command, it’s subject to
the features, limitations, and security flaws of the system’s shell.You can’t rely on the
availability of any particular version of the Bourne shell. On many UNIX systems,
/bin/sh is a symbolic link to another shell. For instance, on most GNU/Linux sys-
tems, /bin/sh points to bash (the Bourne-Again SHell), and different GNU/Linux
distributions use different versions of bash. Invoking a program with root privilege
with the system function, for instance, can have different results on different
GNU/Linux systems.Therefore, it’s preferable to use the fork and exec method for
creating processes.

3.2.2 Using fork and exec
The DOS and Windows API contains the spawn family of functions.These functions
take as an argument the name of a program to run and create a new process instance
of that program. Linux doesn’t contain a single function that does all this in one step.
Instead, Linux provides one function, fork, that makes a child process that is an exact

04 0430 CH03 5/22/01 10:13 AM Page 48

493.2 Creating Processes

copy of its parent process. Linux provides another set of functions, the exec family, that
causes a particular process to cease being an instance of one program and to instead
become an instance of another program.To spawn a new process, you first use fork to
make a copy of the current process.Then you use exec to transform one of these
processes into an instance of the program you want to spawn.

Calling fork

When a program calls fork, a duplicate process, called the child process, is created.The
parent process continues executing the program from the point that fork was called.
The child process, too, executes the same program from the same place.

So how do the two processes differ? First, the child process is a new process and
therefore has a new process ID, distinct from its parent’s process ID. One way for a
program to distinguish whether it’s in the parent process or the child process is to call
getpid. However, the fork function provides different return values to the parent and
child processes—one process “goes in” to the fork call, and two processes “come out,”
with different return values.The return value in the parent process is the process ID of
the child.The return value in the child process is zero. Because no process ever has a
process ID of zero, this makes it easy for the program whether it is now running as the
parent or the child process.

Listing 3.3 is an example of using fork to duplicate a program’s process. Note that
the first block of the if statement is executed only in the parent process, while the
else clause is executed in the child process.

Listing 3.3 (fork.c) Using fork to Duplicate a Program’s Process

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main ()
{
pid_t child_pid;

printf (“the main program process ID is %d\n”, (int) getpid ());

child_pid = fork ();
if (child_pid != 0) {
printf (“this is the parent process, with id %d\n”, (int) getpid ());
printf (“the child’s process ID is %d\n”, (int) child_pid);

}
else
printf (“this is the child process, with id %d\n”, (int) getpid ());

return 0;
}

04 0430 CH03 5/22/01 10:13 AM Page 49

50 Chapter 3 Processes

Using the exec Family

The exec functions replace the program running in a process with another program.
When a program calls an exec function, that process immediately ceases executing that
program and begins executing a new program from the beginning, assuming that the
exec call doesn’t encounter an error.

Within the exec family, there are functions that vary slightly in their capabilities
and how they are called.

n Functions that contain the letter p in their names (execvp and execlp) accept a
program name and search for a program by that name in the current execution
path; functions that don’t contain the p must be given the full path of the pro-
gram to be executed.

n Functions that contain the letter v in their names (execv, execvp, and execve)
accept the argument list for the new program as a NULL-terminated array of
pointers to strings. Functions that contain the letter l (execl, execlp, and
execle) accept the argument list using the C language’s varargs mechanism.

n Functions that contain the letter e in their names (execve and execle) accept an
additional argument, an array of environment variables.The argument should be
a NULL-terminated array of pointers to character strings. Each character string
should be of the form “VARIABLE=value”.

Because exec replaces the calling program with another one, it never returns unless an
error occurs.

The argument list passed to the program is analogous to the command-line argu-
ments that you specify to a program when you run it from the shell.They are available
through the argc and argv parameters to main. Remember, when a program is
invoked from the shell, the shell sets the first element of the argument list argv[0]) to
the name of the program, the second element of the argument list (argv[1]) to the
first command-line argument, and so on.When you use an exec function in your pro-
grams, you, too, should pass the name of the function as the first element of the argu-
ment list.

Using fork and exec Together

A common pattern to run a subprogram within a program is first to fork the process
and then exec the subprogram.This allows the calling program to continue execution
in the parent process while the calling program is replaced by the subprogram in the
child process.

The program in Listing 3.4, like Listing 3.2, lists the contents of the root directory
using the ls command. Unlike the previous example, though, it invokes the ls com-
mand directly, passing it the command-line arguments -l and / rather than invoking it
through a shell.

04 0430 CH03 5/22/01 10:13 AM Page 50

513.2 Creating Processes

Listing 3.4 (fork-exec.c) Using fork and exec Together

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

/* Spawn a child process running a new program. PROGRAM is the name
of the program to run; the path will be searched for this program.
ARG_LIST is a NULL-terminated list of character strings to be
passed as the program’s argument list. Returns the process ID of
the spawned process. */

int spawn (char* program, char** arg_list)
{
pid_t child_pid;

/* Duplicate this process. */
child_pid = fork ();
if (child_pid != 0)
/* This is the parent process. */
return child_pid;

else {
/* Now execute PROGRAM, searching for it in the path. */
execvp (program, arg_list);
/* The execvp function returns only if an error occurs. */
fprintf (stderr, “an error occurred in execvp\n”);
abort ();

}
}

int main ()
{
/* The argument list to pass to the “ls” command. */
char* arg_list[] = {
“ls”, /* argv[0], the name of the program. */
“-l”,
“/”,
NULL /* The argument list must end with a NULL. */

};

/* Spawn a child process running the “ls” command. Ignore the
returned child process ID. */

spawn (“ls”, arg_list);

printf (“done with main program\n”);

return 0;
}

04 0430 CH03 5/22/01 10:13 AM Page 51

52 Chapter 3 Processes

3.2.3 Process Scheduling
Linux schedules the parent and child processes independently; there’s no guarantee of
which one will run first, or how long it will run before Linux interrupts it and lets the
other process (or some other process on the system) run. In particular, none, part, or all
of the ls command may run in the child process before the parent completes.2 Linux
promises that each process will run eventually—no process will be completely starved
of execution resources.

You may specify that a process is less important—and should be given a lower priority
—by assigning it a higher niceness value. By default, every process has a niceness of zero.
A higher niceness value means that the process is given a lesser execution priority;
conversely, a process with a lower (that is, negative) niceness gets more execution time.

To run a program with a nonzero niceness, use the nice command, specifying the
niceness value with the -n option. For example, this is how you might invoke the
command “sort input.txt > output.txt”, a long sorting operation, with a reduced
priority so that it doesn’t slow down the system too much:

% nice -n 10 sort input.txt > output.txt

You can use the renice command to change the niceness of a running process from
the command line.

To change the niceness of a running process programmatically, use the nice func-
tion. Its argument is an increment value, which is added to the niceness value of the
process that calls it. Remember that a positive value raises the niceness value and thus
reduces the process’s execution priority.

Note that only a process with root privilege can run a process with a negative nice-
ness value or reduce the niceness value of a running process.This means that you may
specify negative values to the nice and renice commands only when logged in as
root, and only a process running as root can pass a negative value to the nice function.
This prevents ordinary users from grabbing execution priority away from others using
the system.

3.3 Signals
Signals are mechanisms for communicating with and manipulating processes in Linux.
The topic of signals is a large one; here we discuss some of the most important signals
and techniques that are used for controlling processes.

A signal is a special message sent to a process. Signals are asynchronous; when a
process receives a signal, it processes the signal immediately, without finishing the cur-
rent function or even the current line of code.There are several dozen different sig-
nals, each with a different meaning. Each signal type is specified by its signal number,
but in programs, you usually refer to a signal by its name. In Linux, these are defined
in /usr/include/bits/signum.h. (You shouldn’t include this header file directly in
your programs; instead, use <signal.h>.)

2.A method for serializing the two processes is presented in Section 3.4.1,“Waiting for
Process Termination.”

04 0430 CH03 5/22/01 10:13 AM Page 52

533.3 Signals

When a process receives a signal, it may do one of several things, depending on the
signal’s disposition. For each signal, there is a default disposition, which determines what
happens to the process if the program does not specify some other behavior. For most
signal types, a program may specify some other behavior—either to ignore the signal
or to call a special signal-handler function to respond to the signal. If a signal handler is
used, the currently executing program is paused, the signal handler is executed, and,
when the signal handler returns, the program resumes.

The Linux system sends signals to processes in response to specific conditions. For
instance, SIGBUS (bus error), SIGSEGV (segmentation violation), and SIGFPE (floating
point exception) may be sent to a process that attempts to perform an illegal opera-
tion.The default disposition for these signals it to terminate the process and produce a
core file.

A process may also send a signal to another process. One common use of this
mechanism is to end another process by sending it a SIGTERM or SIGKILL signal.3

Another common use is to send a command to a running program.Two “user-
defined” signals are reserved for this purpose: SIGUSR1 and SIGUSR2.The SIGHUP signal
is sometimes used for this purpose as well, commonly to wake up an idling program
or cause a program to reread its configuration files.

The sigaction function can be used to set a signal disposition.The first parameter
is the signal number.The next two parameters are pointers to sigaction structures; the
first of these contains the desired disposition for that signal number, while the second
receives the previous disposition.The most important field in the first or second
sigaction structure is sa_handler. It can take one of three values:

n SIG_DFL, which specifies the default disposition for the signal.
n SIG_IGN, which specifies that the signal should be ignored.
n A pointer to a signal-handler function.The function should take one parameter,

the signal number, and return void.

Because signals are asynchronous, the main program may be in a very fragile state
when a signal is processed and thus while a signal handler function executes.
Therefore, you should avoid performing any I/O operations or calling most library
and system functions from signal handlers.

A signal handler should perform the minimum work necessary to respond to the
signal, and then return control to the main program (or terminate the program). In
most cases, this consists simply of recording the fact that a signal occurred.The main
program then checks periodically whether a signal has occurred and reacts accordingly.

It is possible for a signal handler to be interrupted by the delivery of another signal.
While this may sound like a rare occurrence, if it does occur, it will be very difficult to
diagnose and debug the problem. (This is an example of a race condition, discussed in
Chapter 4,“Threads,” Section 4.4,“Synchronization and Critical Sections.”) Therefore,
you should be very careful about what your program does in a signal handler.

3.What’s the difference? The SIGTERM signal asks a process to terminate; the process may
ignore the request by masking or ignoring the signal.The SIGKILL signal always kills the process
immediately because the process may not mask or ignore SIGKILL.

04 0430 CH03 5/22/01 10:13 AM Page 53

54 Chapter 3 Processes

Even assigning a value to a global variable can be dangerous because the assignment
may actually be carried out in two or more machine instructions, and a second signal
may occur between them, leaving the variable in a corrupted state. If you use a global
variable to flag a signal from a signal-handler function, it should be of the special type
sig_atomic_t. Linux guarantees that assignments to variables of this type are per-
formed in a single instruction and therefore cannot be interrupted midway. In Linux,
sig_atomic_t is an ordinary int; in fact, assignments to integer types the size of int or
smaller, or to pointers, are atomic. If you want to write a program that’s portable to
any standard UNIX system, though, use sig_atomic_t for these global variables.

This program skeleton in Listing 3.5, for instance, uses a signal-handler function to
count the number of times that the program receives SIGUSR1, one of the signals
reserved for application use.

Listing 3.5 (sigusr1.c) Using a Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

sig_atomic_t sigusr1_count = 0;

void handler (int signal_number)
{
++sigusr1_count;

}

int main ()
{
struct sigaction sa;
memset (&sa, 0, sizeof (sa));
sa.sa_handler = &handler;
sigaction (SIGUSR1, &sa, NULL);

/* Do some lengthy stuff here. */
/* ... */

printf (“SIGUSR1 was raised %d times\n”, sigusr1_count);
return 0;

}

04 0430 CH03 5/22/01 10:13 AM Page 54

553.4 Process Termination

3.4 Process Termination
Normally, a process terminates in one of two ways. Either the executing program calls
the exit function, or the program’s main function returns. Each process has an exit
code: a number that the process returns to its parent.The exit code is the argument
passed to the exit function, or the value returned from main.

A process may also terminate abnormally, in response to a signal. For instance, the
SIGBUS, SIGSEGV, and SIGFPE signals mentioned previously cause the process to termi-
nate. Other signals are used to terminate a process explicitly.The SIGINT signal is sent
to a process when the user attempts to end it by typing Ctrl+C in its terminal.The
SIGTERM signal is sent by the kill command.The default disposition for both of these
is to terminate the process. By calling the abort function, a process sends itself the
SIGABRT signal, which terminates the process and produces a core file.The most pow-
erful termination signal is SIGKILL, which ends a process immediately and cannot be
blocked or handled by a program.

Any of these signals can be sent using the kill command by specifying an extra
command-line flag; for instance, to end a troublesome process by sending it a SIGKILL,
invoke the following, where pid is its process ID:

% kill -KILL pid

To send a signal from a program, use the kill function.The first parameter is the tar-
get process ID.The second parameter is the signal number; use SIGTERM to simulate the
default behavior of the kill command. For instance, where child pid contains the
process ID of the child process, you can use the kill function to terminate a child
process from the parent by calling it like this:

kill (child_pid, SIGTERM);

Include the <sys/types.h> and <signal.h> headers if you use the kill function.
By convention, the exit code is used to indicate whether the program executed

correctly.An exit code of zero indicates correct execution, while a nonzero exit code
indicates that an error occurred. In the latter case, the particular value returned may
give some indication of the nature of the error. It’s a good idea to stick with this con-
vention in your programs because other components of the GNU/Linux system
assume this behavior. For instance, shells assume this convention when you connect
multiple programs with the && (logical and) and || (logical or) operators.Therefore,
you should explicitly return zero from your main function, unless an error occurs.

04 0430 CH03 5/22/01 10:13 AM Page 55

56 Chapter 3 Processes

With most shells, it’s possible to obtain the exit code of the most recently executed
program using the special $? variable. Here’s an example in which the ls command is
invoked twice and its exit code is displayed after each invocation. In the first case, ls
executes correctly and returns the exit code zero. In the second case, ls encounters an
error (because the filename specified on the command line does not exist) and thus
returns a nonzero exit code.

% ls /
bin coda etc lib misc nfs proc sbin usr
boot dev home lost+found mnt opt root tmp var
% echo $?
0
% ls bogusfile
ls: bogusfile: No such file or directory
% echo $?
1

Note that even though the parameter type of the exit function is int and the main
function returns an int, Linux does not preserve the full 32 bits of the return code. In
fact, you should use exit codes only between zero and 127. Exit codes above 128 have
a special meaning—when a process is terminated by a signal, its exit code is 128 plus
the signal number.

3.4.1 Waiting for Process Termination
If you typed in and ran the fork and exec example in Listing 3.4, you may have
noticed that the output from the ls program often appears after the “main program”
has already completed.That’s because the child process, in which ls is run, is sched-
uled independently of the parent process. Because Linux is a multitasking operating
system, both processes appear to execute simultaneously, and you can’t predict whether
the ls program will have a chance to run before or after the parent process runs.

In some situations, though, it is desirable for the parent process to wait until one or
more child processes have completed.This can be done with the wait family of system
calls.These functions allow you to wait for a process to finish executing, and enable
the parent process to retrieve information about its child’s termination.There are four
different system calls in the wait family; you can choose to get a little or a lot of infor-
mation about the process that exited, and you can choose whether you care about
which child process terminated.

3.4.2 The wait System Calls
The simplest such function is called simply wait. It blocks the calling process until one
of its child processes exits (or an error occurs). It returns a status code via an integer
pointer argument, from which you can extract information about how the child process
exited. For instance, the WEXITSTATUS macro extracts the child process’s exit code.

04 0430 CH03 5/22/01 10:13 AM Page 56

573.4 Process Termination

You can use the WIFEXITED macro to determine from a child process’s exit status
whether that process exited normally (via the exit function or returning from main)
or died from an unhandled signal. In the latter case, use the WTERMSIG macro to extract
from its exit status the signal number by which it died.

Here is the main function from the fork and exec example again.This time, the
parent process calls wait to wait until the child process, in which the ls command
executes, is finished.

int main ()
{
int child_status;

/* The argument list to pass to the “ls” command. */
char* arg_list[] = {
“ls”, /* argv[0], the name of the program. */
“-l”,
“/”,
NULL /* The argument list must end with a NULL. */

};

/* Spawn a child process running the “ls” command. Ignore the
returned child process ID. */

spawn (“ls”, arg_list);

/* Wait for the child process to complete. */
wait (&child_status);
if (WIFEXITED (child_status))
printf (“the child process exited normally, with exit code %d\n”,

WEXITSTATUS (child_status));
else
printf (“the child process exited abnormally\n”);

return 0;
}

Several similar system calls are available in Linux, which are more flexible or provide
more information about the exiting child process.The waitpid function can be used
to wait for a specific child process to exit instead of any child process.The wait3 func-
tion returns CPU usage statistics about the exiting child process, and the wait4
function allows you to specify additional options about which processes to wait for.

3.4.3 Zombie Processes
If a child process terminates while its parent is calling a wait function, the child
process vanishes and its termination status is passed to its parent via the wait call. But
what happens when a child process terminates and the parent is not calling wait?
Does it simply vanish? No, because then information about its termination—such as
whether it exited normally and, if so, what its exit status is—would be lost. Instead,
when a child process terminates, is becomes a zombie process.

04 0430 CH03 5/22/01 10:13 AM Page 57

58 Chapter 3 Processes

A zombie process is a process that has terminated but has not been cleaned up yet. It
is the responsibility of the parent process to clean up its zombie children.The wait
functions do this, too, so it’s not necessary to track whether your child process is still
executing before waiting for it. Suppose, for instance, that a program forks a child
process, performs some other computations, and then calls wait. If the child process
has not terminated at that point, the parent process will block in the wait call until the
child process finishes. If the child process finishes before the parent process calls wait,
the child process becomes a zombie.When the parent process calls wait, the zombie
child’s termination status is extracted, the child process is deleted, and the wait call
returns immediately.

What happens if the parent does not clean up its children? They stay around in the
system, as zombie processes.The program in Listing 3.6 forks a child process, which
terminates immediately and then goes to sleep for a minute, without ever cleaning up
the child process.

Listing 3.6 (zombie.c) Making a Zombie Process

#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main ()
{
pid_t child_pid;

/* Create a child process. */
child_pid = fork ();
if (child_pid > 0) {
/* This is the parent process. Sleep for a minute. */
sleep (60);

}
else {
/* This is the child process. Exit immediately. */
exit (0);

}
return 0;

}

Try compiling this file to an executable named make-zombie. Run it, and while it’s still
running, list the processes on the system by invoking the following command in
another window:

% ps -e -o pid,ppid,stat,cmd

04 0430 CH03 5/22/01 10:13 AM Page 58

593.4 Process Termination

This lists the process ID, parent process ID, process status, and process command
line. Observe that, in addition to the parent make-zombie process, there is another
make-zombie process listed. It’s the child process; note that its parent process ID is
the process ID of the main make-zombie process.The child process is marked as
<defunct>, and its status code is Z, for zombie.

What happens when the main make-zombie program ends when the parent process
exits, without ever calling wait? Does the zombie process stay around? No—try
running ps again, and note that both of the make-zombie processes are gone.When a
program exits, its children are inherited by a special process, the init program, which
always runs with process ID of 1 (it’s the first process started when Linux boots).The
init process automatically cleans up any zombie child processes that it inherits.

3.4.4 Cleaning Up Children Asynchronously
If you’re using a child process simply to exec another program, it’s fine to call wait
immediately in the parent process, which will block until the child process completes.
But often, you’ll want the parent process to continue running, as one or more children
execute synchronously. How can you be sure that you clean up child processes that
have completed so that you don’t leave zombie processes, which consume system
resources, lying around?

One approach would be for the parent process to call wait3 or wait4 periodically,
to clean up zombie children. Calling wait for this purpose doesn’t work well because,
if no children have terminated, the call will block until one does. However, wait3 and
wait4 take an additional flag parameter, to which you can pass the flag value WNOHANG.
With this flag, the function runs in nonblocking mode—it will clean up a terminated
child process if there is one, or simply return if there isn’t.The return value of the call
is the process ID of the terminated child in the former case, or zero in the latter case.

A more elegant solution is to notify the parent process when a child terminates.
There are several ways to do this using the methods discussed in Chapter 5,
“Interprocess Communication,” but fortunately Linux does this for you, using signals.
When a child process terminates, Linux sends the parent process the SIGCHLD signal.
The default disposition of this signal is to do nothing, which is why you might not
have noticed it before.

Thus, an easy way to clean up child processes is by handling SIGCHLD. Of course,
when cleaning up the child process, it’s important to store its termination status if this
information is needed, because once the process is cleaned up using wait, that infor-
mation is no longer available. Listing 3.7 is what it looks like for a program to use a
SIGCHLD handler to clean up its child processes.

04 0430 CH03 5/22/01 10:13 AM Page 59

60 Chapter 3 Processes

Listing 3.7 (sigchld.c) Cleaning Up Children by Handling SIGCHLD

#include <signal.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>

sig_atomic_t child_exit_status;

void clean_up_child_process (int signal_number)
{
/* Clean up the child process. */
int status;
wait (&status);
/* Store its exit status in a global variable. */
child_exit_status = status;

}

int main ()
{
/* Handle SIGCHLD by calling clean_up_child_process. */
struct sigaction sigchld_action;
memset (&sigchld_action, 0, sizeof (sigchld_action));
sigchld_action.sa_handler = &clean_up_child_process;
sigaction (SIGCHLD, &sigchld_action, NULL);

/* Now do things, including forking a child process. */
/* ... */

return 0;
}

Note how the signal handler stores the child process’s exit status in a global variable,
from which the main program can access it. Because the variable is assigned in a signal
handler, its type is sig_atomic_t.

04 0430 CH03 5/22/01 10:13 AM Page 60

Threads

4

THREADS, LIKE PROCESSES, ARE A MECHANISM TO ALLOW A PROGRAM to do more than
one thing at a time.As with processes, threads appear to run concurrently; the Linux
kernel schedules them asynchronously, interrupting each thread from time to time to
give others a chance to execute.

Conceptually, a thread exists within a process.Threads are a finer-grained unit of
execution than processes.When you invoke a program, Linux creates a new process
and in that process creates a single thread, which runs the program sequentially.That
thread can create additional threads; all these threads run the same program in the
same process, but each thread may be executing a different part of the program at any
given time.

We’ve seen how a program can fork a child process.The child process is initially
running its parent’s program, with its parent’s virtual memory, file descriptors, and so
on copied.The child process can modify its memory, close file descriptors, and the like
without affecting its parent, and vice versa.When a program creates another thread,
though, nothing is copied.The creating and the created thread share the same memory
space, file descriptors, and other system resources as the original. If one thread changes
the value of a variable, for instance, the other thread subsequently will see the modi-
fied value. Similarly, if one thread closes a file descriptor, other threads may not read

05 0430 CH04 5/22/01 10:21 AM Page 61

62 Chapter 4 Threads

from or write to that file descriptor. Because a process and all its threads can be exe-
cuting only one program at a time, if any thread inside a process calls one of the exec
functions, all the other threads are ended (the new program may, of course, create new
threads).

GNU/Linux implements the POSIX standard thread API (known as pthreads).All
thread functions and data types are declared in the header file <pthread.h>.The
pthread functions are not included in the standard C library. Instead, they are in
libpthread, so you should add -lpthread to the command line when you link your
program.

4.1 Thread Creation
Each thread in a process is identified by a thread ID.When referring to thread IDs in
C or C++ programs, use the type pthread_t.

Upon creation, each thread executes a thread function.This is just an ordinary func-
tion and contains the code that the thread should run.When the function returns, the
thread exits. On GNU/Linux, thread functions take a single parameter, of type void*,
and have a void* return type.The parameter is the thread argument: GNU/Linux passes
the value along to the thread without looking at it.Your program can use this parame-
ter to pass data to a new thread. Similarly, your program can use the return value to
pass data from an exiting thread back to its creator.

The pthread_create function creates a new thread.You provide it with the following:

1. A pointer to a pthread_t variable, in which the thread ID of the new thread is
stored.

2. A pointer to a thread attribute object.This object controls details of how the
thread interacts with the rest of the program. If you pass NULL as the thread
attribute, a thread will be created with the default thread attributes.Thread
attributes are discussed in Section 4.1.5,“Thread Attributes.”

3. A pointer to the thread function.This is an ordinary function pointer, of this
type:

void* (*) (void*)

4. A thread argument value of type void*. Whatever you pass is simply passed as
the argument to the thread function when the thread begins executing.

A call to pthread_create returns immediately, and the original thread continues exe-
cuting the instructions following the call. Meanwhile, the new thread begins executing
the thread function. Linux schedules both threads asynchronously, and your program
must not rely on the relative order in which instructions are executed in the two
threads.

05 0430 CH04 5/22/01 10:21 AM Page 62

634.1 Thread Creation

The program in Listing 4.1 creates a thread that prints x’s continuously to standard
error.After calling pthread_create, the main thread prints o’s continuously to standard
error.

Listing 4.1 (thread-create.c) Create a Thread

#include <pthread.h>
#include <stdio.h>

/* Prints x’s to stderr. The parameter is unused. Does not return. */

void* print_xs (void* unused)
{
while (1)
fputc (‘x’, stderr);

return NULL;
}

/* The main program. */

int main ()
{
pthread_t thread_id;
/* Create a new thread. The new thread will run the print_xs

function. */
pthread_create (&thread_id, NULL, &print_xs, NULL);
/* Print o’s continuously to stderr. */
while (1)
fputc (‘o’, stderr);

return 0;
}

Compile and link this program using the following code:
% cc -o thread-create thread-create.c -lpthread

Try running it to see what happens. Notice the unpredictable pattern of x’s and o’s as
Linux alternately schedules the two threads.

Under normal circumstances, a thread exits in one of two ways. One way, as illus-
trated previously, is by returning from the thread function.The return value from the
thread function is taken to be the return value of the thread.Alternately, a thread can
exit explicitly by calling pthread_exit.This function may be called from within the
thread function or from some other function called directly or indirectly by the thread
function.The argument to pthread_exit is the thread’s return value.

05 0430 CH04 5/22/01 10:21 AM Page 63

64 Chapter 4 Threads

4.1.1 Passing Data to Threads
The thread argument provides a convenient method of passing data to threads.
Because the type of the argument is void*, though, you can’t pass a lot of data directly
via the argument. Instead, use the thread argument to pass a pointer to some structure
or array of data. One commonly used technique is to define a structure for each
thread function, which contains the “parameters” that the thread function expects.

Using the thread argument, it’s easy to reuse the same thread function for many
threads.All these threads execute the same code, but on different data.

The program in Listing 4.2 is similar to the previous example.This one creates two
new threads, one to print x’s and the other to print o’s. Instead of printing infinitely,
though, each thread prints a fixed number of characters and then exits by returning
from the thread function.The same thread function, char_print, is used by both
threads, but each is configured differently using struct char_print_parms.

Listing 4.2 (thread-create2) Create Two Threads

#include <pthread.h>
#include <stdio.h>

/* Parameters to print_function. */

struct char_print_parms
{
/* The character to print. */
char character;
/* The number of times to print it. */
int count;

};

/* Prints a number of characters to stderr, as given by PARAMETERS,
which is a pointer to a struct char_print_parms. */

void* char_print (void* parameters)
{
/* Cast the cookie pointer to the right type. */
struct char_print_parms* p = (struct char_print_parms*) parameters;
int i;

for (i = 0; i < p->count; ++i)
fputc (p->character, stderr);

return NULL;
}

/* The main program. */

int main ()
{
pthread_t thread1_id;

05 0430 CH04 5/22/01 10:21 AM Page 64

654.1 Thread Creation

pthread_t thread2_id;
struct char_print_parms thread1_args;
struct char_print_parms thread2_args;

/* Create a new thread to print 30,000 ’x’s. */
thread1_args.character = ’x’;
thread1_args.count = 30000;
pthread_create (&thread1_id, NULL, &char_print, &thread1_args);

/* Create a new thread to print 20,000 o’s. */
thread2_args.character = ’o’;
thread2_args.count = 20000;
pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

return 0;
}

But wait! The program in Listing 4.2 has a serious bug in it.The main thread (which
runs the main function) creates the thread parameter structures (thread1_args and
thread2_args) as local variables, and then passes pointers to these structures to the
threads it creates.What’s to prevent Linux from scheduling the three threads in such a
way that main finishes executing before either of the other two threads are done?
Nothing! But if this happens, the memory containing the thread parameter structures
will be deallocated while the other two threads are still accessing it.

4.1.2 Joining Threads
One solution is to force main to wait until the other two threads are done.What we
need is a function similar to wait that waits for a thread to finish instead of a process.
That function is pthread_join, which takes two arguments: the thread ID of the
thread to wait for, and a pointer to a void* variable that will receive the finished
thread’s return value. If you don’t care about the thread return value, pass NULL as the
second argument.

Listing 4.3 shows the corrected main function for the buggy example in Listing 4.2.
In this version, main does not exit until both of the threads printing x’s and o’s have
completed, so they are no longer using the argument structures.

Listing 4.3 Revised Main Function for thread-create2.c

int main ()
{
pthread_t thread1_id;
pthread_t thread2_id;
struct char_print_parms thread1_args;
struct char_print_parms thread2_args;

continues

05 0430 CH04 5/22/01 10:21 AM Page 65

66 Chapter 4 Threads

/* Create a new thread to print 30,000 x’s. */
thread1_args.character = ’x’;
thread1_args.count = 30000;
pthread_create (&thread1_id, NULL, &char_print, &thread1_args);

/* Create a new thread to print 20,000 o’s. */
thread2_args.character = ’o’;
thread2_args.count = 20000;
pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

/* Make sure the first thread has finished. */
pthread_join (thread1_id, NULL);
/* Make sure the second thread has finished. */
pthread_join (thread2_id, NULL);

/* Now we can safely return. */
return 0;

}

The moral of the story: Make sure that any data you pass to a thread by reference is
not deallocated, even by a different thread, until you’re sure that the thread is done with
it.This is true both for local variables, which are deallocated when they go out of
scope, and for heap-allocated variables, which you deallocate by calling free (or using
delete in C++).

4.1.3 Thread Return Values
If the second argument you pass to pthread_join is non-null, the thread’s return value
will be placed in the location pointed to by that argument.The thread return value,
like the thread argument, is of type void*. If you want to pass back a single int or
other small number, you can do this easily by casting the value to void* and then
casting back to the appropriate type after calling pthread_join.1

The program in Listing 4.4 computes the nth prime number in a separate thread.
That thread returns the desired prime number as its thread return value.The main
thread, meanwhile, is free to execute other code. Note that the successive division
algorithm used in compute_prime is quite inefficient; consult a book on numerical
algorithims if you need to compute many prime numbers in your programs.

Listing 4.3 Continued

1. Note that this is not portable, and it’s up to you to make sure that your value can be cast
safely to void* and back without losing bits.

05 0430 CH04 5/22/01 10:21 AM Page 66

674.1 Thread Creation

Listing 4.4 (primes.c) Compute Prime Numbers in a Thread

#include <pthread.h>
#include <stdio.h>

/* Compute successive prime numbers (very inefficiently). Return the
Nth prime number, where N is the value pointed to by *ARG. */

void* compute_prime (void* arg)
{
int candidate = 2;
int n = *((int*) arg);

while (1) {
int factor;
int is_prime = 1;

/* Test primality by successive division. */
for (factor = 2; factor < candidate; ++factor)
if (candidate % factor == 0) {
is_prime = 0;
break;

}
/* Is this the prime number we’re looking for? */
if (is_prime) {
if (--n == 0)
/* Return the desired prime number as the thread return value. */
return (void*) candidate;

}
++candidate;

}
return NULL;

}

int main ()
{
pthread_t thread;
int which_prime = 5000;
int prime;

/* Start the computing thread, up to the 5,000th prime number. */
pthread_create (&thread, NULL, &compute_prime, &which_prime);
/* Do some other work here... */
/* Wait for the prime number thread to complete, and get the result. */
pthread_join (thread, (void*) &prime);
/* Print the largest prime it computed. */
printf(“The %dth prime number is %d.\n”, which_prime, prime);
return 0;

}

05 0430 CH04 5/22/01 10:21 AM Page 67

68 Chapter 4 Threads

4.1.4 More on Thread IDs
Occasionally, it is useful for a sequence of code to determine which thread is execut-
ing it.The pthread_self function returns the thread ID of the thread in which it is
called.This thread ID may be compared with another thread ID using the
pthread_equal function.

These functions can be useful for determining whether a particular thread ID
corresponds to the current thread. For instance, it is an error for a thread to call
pthread_join to join itself. (In this case, pthread_join would return the error code
EDEADLK.) To check for this beforehand, you might use code like this:

if (!pthread_equal (pthread_self (), other_thread))
pthread_join (other_thread, NULL);

4.1.5 Thread Attributes
Thread attributes provide a mechanism for fine-tuning the behavior of individual
threads. Recall that pthread_create accepts an argument that is a pointer to a thread
attribute object. If you pass a null pointer, the default thread attributes are used to
configure the new thread. However, you may create and customize a thread attribute
object to specify other values for the attributes.

To specify customized thread attributes, you must follow these steps:

1. Create a pthread_attr_t object.The easiest way is simply to declare an auto-
matic variable of this type.

2. Call pthread_attr_init, passing a pointer to this object.This initializes the
attributes to their default values.

3. Modify the attribute object to contain the desired attribute values.

4. Pass a pointer to the attribute object when calling pthread_create.

5. Call pthread_attr_destroy to release the attribute object.The pthread_attr_t
variable itself is not deallocated; it may be reinitialized with pthread_attr_init.

A single thread attribute object may be used to start several threads. It is not necessary
to keep the thread attribute object around after the threads have been created.

For most GNU/Linux application programming tasks, only one thread attribute is
typically of interest (the other available attributes are primarily for specialty real-time
programming).This attribute is the thread’s detach state.A thread may be created as a
joinable thread (the default) or as a detached thread.A joinable thread, like a process, is not
automatically cleaned up by GNU/Linux when it terminates. Instead, the thread’s exit
state hangs around in the system (kind of like a zombie process) until another thread
calls pthread_join to obtain its return value. Only then are its resources released.A
detached thread, in contrast, is cleaned up automatically when it terminates. Because a
detached thread is immediately cleaned up, another thread may not synchronize on its
completion by using pthread_join or obtain its return value.

05 0430 CH04 5/22/01 10:21 AM Page 68

694.2 Thread Cancellation

To set the detach state in a thread attribute object, use pthread_attr_setdetachstate.
The first argument is a pointer to the thread attribute object, and the second is the
desired detach state. Because the joinable state is the default, it is necessary to call this only
to create detached threads; pass PTHREAD_CREATE_DETACHED as the second argument.

The code in Listing 4.5 creates a detached thread by setting the detach state thread
attribute for the thread.

Listing 4.5 (detached.c) Skeleton Program That Creates a Detached Thread

#include <pthread.h>

void* thread_function (void* thread_arg)
{
/* Do work here... */

}

int main ()
{
pthread_attr_t attr;
pthread_t thread;

pthread_attr_init (&attr);
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
pthread_create (&thread, &attr, &thread_function, NULL);
pthread_attr_destroy (&attr);

/* Do work here... */

/* No need to join the second thread. */
return 0;

}

Even if a thread is created in a joinable state, it may later be turned into a detached
thread.To do this, call pthread_detach. Once a thread is detached, it cannot be made
joinable again.

4.2 Thread Cancellation
Under normal circumstances, a thread terminates when it exits normally, either by
returning from its thread function or by calling pthread_exit. However, it is possible
for a thread to request that another thread terminate.This is called canceling a thread.

To cancel a thread, call pthread_cancel, passing the thread ID of the thread to be
canceled.A canceled thread may later be joined; in fact, you should join a canceled
thread to free up its resources, unless the thread is detached (see Section 4.1.5,“Thread
Attributes”).The return value of a canceled thread is the special value given by
PTHREAD_CANCELED.

05 0430 CH04 5/22/01 10:21 AM Page 69

70 Chapter 4 Threads

Often a thread may be in some code that must be executed in an all-or-nothing
fashion. For instance, the thread may allocate some resources, use them, and then deal-
locate them. If the thread is canceled in the middle of this code, it may not have the
opportunity to deallocate the resources, and thus the resources will be leaked.To
counter this possibility, it is possible for a thread to control whether and when it can
be canceled.

A thread may be in one of three states with regard to thread cancellation.
n The thread may be asynchronously cancelable.The thread may be canceled at any

point in its execution.
n The thread may be synchronously cancelable.The thread may be canceled, but not

at just any point in its execution. Instead, cancellation requests are queued, and
the thread is canceled only when it reaches specific points in its execution.

n A thread may be uncancelable.Attempts to cancel the thread are quietly ignored.

When initially created, a thread is synchronously cancelable.

4.2.1 Synchronous and Asynchronous Threads
An asynchronously cancelable thread may be canceled at any point in its execution.A
synchronously cancelable thread, in contrast, may be canceled only at particular places
in its execution.These places are called cancellation points.The thread will queue a can-
cellation request until it reaches the next cancellation point.

To make a thread asynchronously cancelable, use pthread_setcanceltype.This
affects the thread that actually calls the function.The first argument should be
PTHREAD_CANCEL_ASYNCHRONOUS to make the thread asynchronously cancelable, or
PTHREAD_CANCEL_DEFERRED to return it to the synchronously cancelable state.The sec-
ond argument, if not null, is a pointer to a variable that will receive the previous can-
cellation type for the thread.This call, for example, makes the calling thread
asynchronously cancelable.

pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

What constitutes a cancellation point, and where should these be placed? The most
direct way to create a cancellation point is to call pthread_testcancel.This does
nothing except process a pending cancellation in a synchronously cancelable thread.
You should call pthread_testcancel periodically during lengthy computations in a
thread function, at points where the thread can be canceled without leaking any
resources or producing other ill effects.

Certain other functions are implicitly cancellation points as well.These are listed on
the pthread_cancel man page. Note that other functions may use these functions
internally and thus will indirectly be cancellation points.

05 0430 CH04 5/22/01 10:21 AM Page 70

714.2 Thread Cancellation

4.2.2 Uncancelable Critical Sections
A thread may disable cancellation of itself altogether with the
pthread_setcancelstate function. Like pthread_setcanceltype, this affects the calling
thread.The first argument is PTHREAD_CANCEL_DISABLE to disable cancellation, or
PTHREAD_CANCEL_ENABLE to re-enable cancellation.The second argument, if not null,
points to a variable that will receive the previous cancellation state.This call, for
instance, disables thread cancellation in the calling thread.

pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL);

Using pthread_setcancelstate enables you to implement critical sections.A critical sec-
tion is a sequence of code that must be executed either in its entirety or not at all; in
other words, if a thread begins executing the critical section, it must continue until the
end of the critical section without being canceled.

For example, suppose that you’re writing a routine for a banking program that
transfers money from one account to another.To do this, you must add value to the
balance in one account and deduct the same value from the balance of another
account. If the thread running your routine happened to be canceled at just the wrong
time between these two operations, the program would have spuriously increased the
bank’s total deposits by failing to complete the transaction.To prevent this possibility,
place the two operations in a critical section.

You might implement the transfer with a function such as process_transaction,
shown in Listing 4.6.This function disables thread cancellation to start a critical sec-
tion before it modifies either account balance.

Listing 4.6 (critical-section.c) Protect a Bank Transaction with a Critical Section

#include <pthread.h>
#include <stdio.h>
#include <string.h>

/* An array of balances in accounts, indexed by account number. */

float* account_balances;

/* Transfer DOLLARS from account FROM_ACCT to account TO_ACCT. Return
0 if the transaction succeeded, or 1 if the balance FROM_ACCT is
too small. */

int process_transaction (int from_acct, int to_acct, float dollars)
{
int old_cancel_state;

/* Check the balance in FROM_ACCT. */
if (account_balances[from_acct] < dollars)
return 1;

continues

05 0430 CH04 5/22/01 10:21 AM Page 71

72 Chapter 4 Threads

/* Begin critical section. */
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &old_cancel_state);
/* Move the money. */
account_balances[to_acct] += dollars;
account_balances[from_acct] -= dollars;
/* End critical section. */
pthread_setcancelstate (old_cancel_state, NULL);

return 0;
}

Note that it’s important to restore the old cancel state at the end of the critical section
rather than setting it unconditionally to PTHREAD_CANCEL_ENABLE.This enables you to
call the process_transaction function safely from within another critical section—in
that case, your function will leave the cancel state the same way it found it.

4.2.3 When to Use Thread Cancellation
In general, it’s a good idea not to use thread cancellation to end the execution of a
thread, except in unusual circumstances. During normal operation, a better strategy is
to indicate to the thread that it should exit, and then to wait for the thread to exit on
its own in an orderly fashion.We’ll discuss techniques for communicating with the
thread later in this chapter, and in Chapter 5,“Interprocess Communication.”

4.3 Thread-Specific Data
Unlike processes, all threads in a single program share the same address space.This
means that if one thread modifies a location in memory (for instance, a global vari-
able), the change is visible to all other threads.This allows multiple threads to operate
on the same data without the use interprocess communication mechanisms (which are
described in Chapter 5).

Each thread has its own call stack, however.This allows each thread to execute dif-
ferent code and to call and return from subroutines in the usual way.As in a single-
threaded program, each invocation of a subroutine in each thread has its own set of
local variables, which are stored on the stack for that thread.

Sometimes, however, it is desirable to duplicate a certain variable so that each
thread has a separate copy. GNU/Linux supports this by providing each thread with a
thread-specific data area.The variables stored in this area are duplicated for each thread,
and each thread may modify its copy of a variable without affecting other threads.
Because all threads share the same memory space, thread-specific data may not be
accessed using normal variable references. GNU/Linux provides special functions for
setting and retrieving values from the thread-specific data area.

Listing 4.6 Continued

05 0430 CH04 5/22/01 10:21 AM Page 72

734.3 Thread-Specific Data

You may create as many thread-specific data items as you want, each of type void*.
Each item is referenced by a key.To create a new key, and thus a new data item for
each thread, use pthread_key_create.The first argument is a pointer to a
pthread_key_t variable.That key value can be used by each thread to access its own
copy of the corresponding data item.The second argument to pthread_key_t is a
cleanup function. If you pass a function pointer here, GNU/Linux automatically calls
that function when each thread exits, passing the thread-specific value corresponding
to that key.This is particularly handy because the cleanup function is called even if the
thread is canceled at some arbitrary point in its execution. If the thread-specific value
is null, the thread cleanup function is not called. If you don’t need a cleanup function,
you may pass null instead of a function pointer.

After you’ve created a key, each thread can set its thread-specific value correspond-
ing to that key by calling pthread_setspecific.The first argument is the key, and the
second is the void* thread-specific value to store.To retrieve a thread-specific data
item, call pthread_getspecific, passing the key as its argument.

Suppose, for instance, that your application divides a task among multiple threads.
For audit purposes, each thread is to have a separate log file, in which progress mes-
sages for that thread’s tasks are recorded.The thread-specific data area is a convenient
place to store the file pointer for the log file for each individual thread.

Listing 4.7 shows how you might implement this.The main function in this sample
program creates a key to store the thread-specific file pointer and then stores it in
thread_log_key. Because this is a global variable, it is shared by all threads.When each
thread starts executing its thread function, it opens a log file and stores the file pointer
under that key. Later, any of these threads may call write_to_thread_log to write a
message to the thread-specific log file.That function retrieves the file pointer for the
thread’s log file from thread-specific data and writes the message.

Listing 4.7 (tsd.c) Per-Thread Log Files Implemented with Thread-Specific Data

#include <malloc.h>
#include <pthread.h>
#include <stdio.h>

/* The key used to associate a log file pointer with each thread. */
static pthread_key_t thread_log_key;

/* Write MESSAGE to the log file for the current thread. */

void write_to_thread_log (const char* message)
{
FILE* thread_log = (FILE*) pthread_getspecific (thread_log_key);
fprintf (thread_log, “%s\n”, message);

}

/* Close the log file pointer THREAD_LOG. */

void close_thread_log (void* thread_log)

continues

05 0430 CH04 5/22/01 10:21 AM Page 73

74 Chapter 4 Threads

{
fclose ((FILE*) thread_log);

}

void* thread_function (void* args)
{
char thread_log_filename[20];
FILE* thread_log;

/* Generate the filename for this thread’s log file. */
sprintf (thread_log_filename, “thread%d.log”, (int) pthread_self ());
/* Open the log file. */
thread_log = fopen (thread_log_filename, “w”);
/* Store the file pointer in thread-specific data under thread_log_key. */
pthread_setspecific (thread_log_key, thread_log);

write_to_thread_log (“Thread starting.”);
/* Do work here... */

return NULL;
}

int main ()
{
int i;
pthread_t threads[5];

/* Create a key to associate thread log file pointers in
thread-specific data. Use close_thread_log to clean up the file
pointers. */

pthread_key_create (&thread_log_key, close_thread_log);
/* Create threads to do the work. */
for (i = 0; i < 5; ++i)
pthread_create (&(threads[i]), NULL, thread_function, NULL);

/* Wait for all threads to finish. */
for (i = 0; i < 5; ++i)
pthread_join (threads[i], NULL);

return 0;
}

Observe that thread_function does not need to close the log file.That’s because when
the log file key was created, close_thread_log was specified as the cleanup function
for that key.Whenever a thread exits, GNU/Linux calls that function, passing the
thread-specific value for the thread log key.This function takes care of closing the
log file.

Listing 4.7 Continued

05 0430 CH04 5/22/01 10:21 AM Page 74

754.3 Thread-specific Data

4.3.1 Cleanup Handlers
The cleanup functions for thread-specific data keys can be very handy for ensuring
that resources are not leaked when a thread exits or is canceled. Sometimes, though,
it’s useful to be able to specify cleanup functions without creating a new thread-
specific data item that’s duplicated for each thread. GNU/Linux provides cleanup
handlers for this purpose.

A cleanup handler is simply a function that should be called when a thread exits.
The handler takes a single void* parameter, and its argument value is provided when
the handler is registered—this makes it easy to use the same handler function to deal-
locate multiple resource instances.

A cleanup handler is a temporary measure, used to deallocate a resource only if the
thread exits or is canceled instead of finishing execution of a particular region of code.
Under normal circumstances, when the thread does not exit and is not canceled, the
resource should be deallocated explicitly and the cleanup handler should be removed.

To register a cleanup handler, call pthread_cleanup_push, passing a pointer
to the cleanup function and the value of its void* argument.The call to
pthread_cleanup_push must be balanced by a corresponding call to
pthread_cleanup_pop, which unregisters the cleanup handler.As a convenience,
pthread_cleanup_pop takes an int flag argument; if the flag is nonzero, the cleanup
action is actually performed as it is unregistered.

The program fragment in Listing 4.8 shows how you might use a cleanup handler
to make sure that a dynamically allocated buffer is cleaned up if the thread terminates.

Listing 4.8 (cleanup.c) Program Fragment Demonstrating a Thread
Cleanup Handler

#include <malloc.h>
#include <pthread.h>

/* Allocate a temporary buffer. */

void* allocate_buffer (size_t size)
{
return malloc (size);

}

/* Deallocate a temporary buffer. */

void deallocate_buffer (void* buffer)
{
free (buffer);

}

void do_some_work ()
{
/* Allocate a temporary buffer. */

continues

05 0430 CH04 5/22/01 10:21 AM Page 75

76 Chapter 4 Threads

void* temp_buffer = allocate_buffer (1024);
/* Register a cleanup handler for this buffer, to deallocate it in

case the thread exits or is cancelled. */
pthread_cleanup_push (deallocate_buffer, temp_buffer);

/* Do some work here that might call pthread_exit or might be
cancelled... */

/* Unregister the cleanup handler. Because we pass a nonzero value,
this actually performs the cleanup by calling
deallocate_buffer. */

pthread_cleanup_pop (1);
}

Because the argument to pthread_cleanup_pop is nonzero in this case, the cleanup
function deallocate_buffer is called automatically here and does not need to be
called explicitly. In this simple case, we could have used the standard library function
free directly as our cleanup handler function instead of deallocate_buffer.

4.3.2 Thread Cleanup in C++
C++ programmers are accustomed to getting cleanup “for free” by wrapping cleanup
actions in object destructors.When the objects go out of scope, either because a block
is executed to completion or because an exception is thrown, C++ makes sure that
destructors are called for those automatic variables that have them.This provides a
handy mechanism to make sure that cleanup code is called no matter how the block is
exited.

If a thread calls pthread_exit, though, C++ doesn’t guarantee that destructors are
called for all automatic variables on the thread’s stack.A clever way to recover this
functionality is to invoke pthread_exit at the top level of the thread function by
throwing a special exception.

The program in Listing 4.9 demonstrates this. Using this technique, a function indi-
cates its intention to exit the thread by throwing a ThreadExitException instead of
calling pthread_exit directly. Because the exception is caught in the top-level thread
function, all local variables on the thread’s stack will be destroyed properly as the
exception percolates up.

Listing 4.9 (cxx-exit.cpp) Implementing Safe Thread Exit with C++ Exceptions

#include <pthread.h>

class ThreadExitException
{
public:
/* Create an exception-signaling thread exit with RETURN_VALUE. */
ThreadExitException (void* return_value)
: thread_return_value_ (return_value)

Listing 4.8 Continued

05 0430 CH04 5/22/01 10:21 AM Page 76

774.4 Synchronization and Critical Sections

{
}

/* Actually exit the thread, using the return value provided in the
constructor. */

void* DoThreadExit ()
{
pthread_exit (thread_return_value_);

}

private:
/* The return value that will be used when exiting the thread. */
void* thread_return_value_;

};

void do_some_work ()
{
while (1) {
/* Do some useful things here... */

if (should_exit_thread_immediately ())
throw ThreadExitException (/* thread’s return value = */ NULL);

}
}

void* thread_function (void*)
{
try {
do_some_work ();

}
catch (ThreadExitException ex) {
/* Some function indicated that we should exit the thread. */
ex.DoThreadExit ();

}
return NULL;

}

4.4 Synchronization and Critical Sections
Programming with threads is very tricky because most threaded programs are concur-
rent programs. In particular, there’s no way to know when the system will schedule
one thread to run and when it will run another. One thread might run for a very
long time, or the system might switch among threads very quickly. On a system with
multiple processors, the system might even schedule multiple threads to run at literally
the same time.

Debugging a threaded program is difficult because you cannot always easily repro-
duce the behavior that caused the problem.You might run the program once and have
everything work fine; the next time you run it, it might crash.There’s no way to make
the system schedule the threads exactly the same way it did before.

05 0430 CH04 5/22/01 10:21 AM Page 77

78 Chapter 4 Threads

The ultimate cause of most bugs involving threads is that the threads are accessing
the same data.As mentioned previously, that’s one of the powerful aspects of threads,
but it can also be dangerous. If one thread is only partway through updating a data
structure when another thread accesses the same data structure, chaos is likely to
ensue. Often, buggy threaded programs contain a code that will work only if one
thread gets scheduled more often—or sooner—than another thread.These bugs are
called race conditions; the threads are racing one another to change the same data
structure.

4.4.1 Race Conditions
Suppose that your program has a series of queued jobs that are processed by several
concurrent threads.The queue of jobs is represented by a linked list of struct job
objects.

After each thread finishes an operation, it checks the queue to see if an additional
job is available. If job_queue is non-null, the thread removes the head of the linked list
and sets job_queue to the next job on the list.

The thread function that processes jobs in the queue might look like Listing 4.10.

Listing 4.10 (job-queue1.c) Thread Function to Process Jobs from the Queue

#include <malloc.h>

struct job {
/* Link field for linked list. */
struct job* next;

/* Other fields describing work to be done... */
};

/* A linked list of pending jobs. */
struct job* job_queue;

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)
{
while (job_queue != NULL) {
/* Get the next available job. */
struct job* next_job = job_queue;
/* Remove this job from the list. */
job_queue = job_queue->next;
/* Carry out the work. */
process_job (next_job);
/* Clean up. */
free (next_job);

}
return NULL;

}

05 0430 CH04 5/22/01 10:21 AM Page 78

794.4 Synchronization and Critical Sections

Now suppose that two threads happen to finish a job at about the same time, but only
one job remains in the queue.The first thread checks whether job_queue is null; find-
ing that it isn’t, the thread enters the loop and stores the pointer to the job object in
next_job.At this point, Linux happens to interrupt the first thread and schedules the
second.The second thread also checks job_queue and finding it non-null, also assigns
the same job pointer to next_job. By unfortunate coincidence, we now have two
threads executing the same job.

To make matters worse, one thread will unlink the job object from the queue,
leaving job_queue containing null.When the other thread evaluates job_queue->next,
a segmentation fault will result.

This is an example of a race condition. Under “lucky” circumstances, this particular
schedule of the two threads may never occur, and the race condition may never
exhibit itself. Only under different circumstances, perhaps when running on a heavily
loaded system (or on an important customer’s new multiprocessor server!) may the
bug exhibit itself.

To eliminate race conditions, you need a way to make operations atomic.An atomic
operation is indivisible and uninterruptible; once the operation starts, it will not be
paused or interrupted until it completes, and no other operation will take place mean-
while. In this particular example, you want to check job_queue; if it’s not empty,
remove the first job, all as a single atomic operation.

4.4.2 Mutexes
The solution to the job queue race condition problem is to let only one thread access
the queue of jobs at a time. Once a thread starts looking at the queue, no other thread
should be able to access it until the first thread has decided whether to process a job
and, if so, has removed the job from the list.

Implementing this requires support from the operating system. GNU/Linux pro-
vides mutexes, short for MUTual EXclusion locks.A mutex is a special lock that only one
thread may lock at a time. If a thread locks a mutex and then a second thread also tries
to lock the same mutex, the second thread is blocked, or put on hold. Only when the
first thread unlocks the mutex is the second thread unblocked—allowed to resume
execution. GNU/Linux guarantees that race conditions do not occur among threads
attempting to lock a mutex; only one thread will ever get the lock, and all other
threads will be blocked.

Think of a mutex as the lock on a lavatory door.Whoever gets there first enters the
lavatory and locks the door. If someone else attempts to enter the lavatory while it’s
occupied, that person will find the door locked and will be forced to wait outside
until the occupant emerges.

To create a mutex, create a variable of type pthread_mutex_t and pass a pointer to
it to pthread_mutex_init.The second argument to pthread_mutex_init is a pointer
to a mutex attribute object, which specifies attributes of the mutex.As with

05 0430 CH04 5/22/01 10:21 AM Page 79

80 Chapter 4 Threads

pthread_create, if the attribute pointer is null, default attributes are assumed.The
mutex variable should be initialized only once.This code fragment demonstrates the
declaration and initialization of a mutex variable.

pthread_mutex_t mutex;
pthread_mutex_init (&mutex, NULL);

Another simpler way to create a mutex with default attributes is to initialize it
with the special value PTHREAD_MUTEX_INITIALIZER. No additional call to
pthread_mutex_init is necessary.This is particularly convenient for global variables
(and, in C++, static data members).The previous code fragment could equivalently
have been written like this:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

A thread may attempt to lock a mutex by calling pthread_mutex_lock on it. If the
mutex was unlocked, it becomes locked and the function returns immediately. If the
mutex was locked by another thread, pthread_mutex_lock blocks execution and
returns only eventually when the mutex is unlocked by the other thread. More than
one thread may be blocked on a locked mutex at one time.When the mutex is
unlocked, only one of the blocked threads (chosen unpredictably) is unblocked and
allowed to lock the mutex; the other threads stay blocked.

A call to pthread_mutex_unlock unlocks a mutex.This function should always be
called from the same thread that locked the mutex.

Listing 4.11 shows another version of the job queue example. Now the queue is
protected by a mutex. Before accessing the queue (either for read or write), each
thread locks a mutex first. Only when the entire sequence of checking the queue and
removing a job is complete is the mutex unlocked.This prevents the race condition
previously described.

Listing 4.11 (job-queue2.c) Job Queue Thread Function, Protected by a Mutex

#include <malloc.h>
#include <pthread.h>

struct job {
/* Link field for linked list. */
struct job* next;

/* Other fields describing work to be done... */
};

/* A linked list of pending jobs. */
struct job* job_queue;

/* A mutex protecting job_queue. */
pthread_mutex_t job_queue_mutex = PTHREAD_MUTEX_INITIALIZER;

05 0430 CH04 5/22/01 10:21 AM Page 80

814.4 Synchronization and Critical Sections

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)
{
while (1) {
struct job* next_job;

/* Lock the mutex on the job queue. */
pthread_mutex_lock (&job_queue_mutex);
/* Now it’s safe to check if the queue is empty. */
if (job_queue == NULL)
next_job = NULL;

else {
/* Get the next available job. */
next_job = job_queue;
/* Remove this job from the list. */
job_queue = job_queue->next;

}
/* Unlock the mutex on the job queue because we’re done with the

queue for now. */
pthread_mutex_unlock (&job_queue_mutex);

/* Was the queue empty? If so, end the thread. */
if (next_job == NULL)
break;

/* Carry out the work. */
process_job (next_job);
/* Clean up. */
free (next_job);

}
return NULL;

}

All accesses to job_queue, the shared data pointer, come between the call to
pthread_mutex_lock and the call to pthread_mutex_unlock.A job object, stored in
next_job, is accessed outside this region only after that object has been removed from
the queue and is therefore inaccessible to other threads.

Note that if the queue is empty (that is, job_queue is null), we don’t break out of
the loop immediately because this would leave the mutex permanently locked and
would prevent any other thread from accessing the job queue ever again. Instead, we
remember this fact by setting next_job to null and breaking out only after unlocking
the mutex.

Use of the mutex to lock job_queue is not automatic; it’s up to you to add code to
lock the mutex before accessing that variable and then to unlock it afterward. For
example, a function to add a job to the job queue might look like this:

void enqueue_job (struct job* new_job)
{
pthread_mutex_lock (&job_queue_mutex);

05 0430 CH04 5/22/01 10:21 AM Page 81

82 Chapter 4 Threads

new_job->next = job_queue;
job_queue = new_job;
pthread_mutex_unlock (&job_queue_mutex);

}

4.4.3 Mutex Deadlocks
Mutexes provide a mechanism for allowing one thread to block the execution of
another.This opens up the possibility of a new class of bugs, called deadlocks.A dead-
lock occurs when one or more threads are stuck waiting for something that never will
occur.

A simple type of deadlock may occur when the same thread attempts to lock a
mutex twice in a row.The behavior in this case depends on what kind of mutex is
being used.Three kinds of mutexes exist:

n Locking a fast mutex (the default kind) will cause a deadlock to occur.An
attempt to lock the mutex blocks until the mutex is unlocked. But because the
thread that locked the mutex is blocked on the same mutex, the lock cannot
ever be released.

n Locking a recursive mutex does not cause a deadlock.A recursive mutex may
safely be locked many times by the same thread.The mutex remembers how
many times pthread_mutex_lock was called on it by the thread that holds the
lock; that thread must make the same number of calls to pthread_mutex_unlock
before the mutex is actually unlocked and another thread is allowed to lock it.

n GNU/Linux will detect and flag a double lock on an error-checking mutex that
would otherwise cause a deadlock.The second consecutive call to
pthread_mutex_lock returns the failure code EDEADLK.

By default, a GNU/Linux mutex is of the fast kind.To create a mutex of one
of the other two kinds, first create a mutex attribute object by declaring a
pthread_mutexattr_t variable and calling pthread_mutexattr_init on a
pointer to it.Then set the mutex kind by calling pthread_mutexattr_setkind_np; the
first argument is a pointer to the mutex attribute object, and the second is
PTHREAD_MUTEX_RECURSIVE_NP for a recursive mutex, or PTHREAD_MUTEX_ERRORCHECK_NP
for an error-checking mutex. Pass a pointer to this attribute object to
pthread_mutex_init to create a mutex of this kind, and then destroy the attribute
object with pthread_mutexattr_destroy.

This code sequence illustrates creation of an error-checking mutex, for instance:
pthread_mutexattr_t attr;
pthread_mutex_t mutex;

pthread_mutexattr_init (&attr);
pthread_mutexattr_setkind_np (&attr, PTHREAD_MUTEX_ERRORCHECK_NP);
pthread_mutex_init (&mutex, &attr);
pthread_mutexattr_destroy (&attr);

05 0430 CH04 5/22/01 10:21 AM Page 82

834.4 Synchronization and Critical Sections

As suggested by the “np” suffix, the recursive and error-checking mutex kinds are spe-
cific to GNU/Linux and are not portable.Therefore, it is generally not advised to use
them in programs. (Error-checking mutexes can be useful when debugging, though.)

4.4.4 Nonblocking Mutex Tests
Occasionally, it is useful to test whether a mutex is locked without actually blocking
on it. For instance, a thread may need to lock a mutex but may have other work to do
instead of blocking if the mutex is already locked. Because pthread_mutex_lock will
not return until the mutex becomes unlocked, some other function is necessary.

GNU/Linux provides pthread_mutex_trylock for this purpose. If you call
pthread_mutex_trylock on an unlocked mutex, you will lock the mutex as if you had
called pthread_mutex_lock, and pthread_mutex_trylock will return zero. However, if
the mutex is already locked by another thread, pthread_mutex_trylock will not block.
Instead, it will return immediately with the error code EBUSY.The mutex lock held by
the other thread is not affected.You may try again later to lock the mutex.

4.4.5 Semaphores for Threads
In the preceding example, in which several threads process jobs from a queue, the
main thread function of the threads carries out the next job until no jobs are left and
then exits the thread.This scheme works if all the jobs are queued in advance or if
new jobs are queued at least as quickly as the threads process them. However, if the
threads work too quickly, the queue of jobs will empty and the threads will exit. If
new jobs are later enqueued, no threads may remain to process them.What we might
like instead is a mechanism for blocking the threads when the queue empties until
new jobs become available.

A semaphore provides a convenient method for doing this.A semaphore is a counter
that can be used to synchronize multiple threads.As with a mutex, GNU/Linux guar-
antees that checking or modifying the value of a semaphore can be done safely, with-
out creating a race condition.

Each semaphore has a counter value, which is a non-negative integer.A semaphore
supports two basic operations:

n A wait operation decrements the value of the semaphore by 1. If the value is
already zero, the operation blocks until the value of the semaphore becomes
positive (due to the action of some other thread).When the semaphore’s value
becomes positive, it is decremented by 1 and the wait operation returns.

n A post operation increments the value of the semaphore by 1. If the semaphore
was previously zero and other threads are blocked in a wait operation on that
semaphore, one of those threads is unblocked and its wait operation completes
(which brings the semaphore’s value back to zero).

05 0430 CH04 5/22/01 10:21 AM Page 83

84 Chapter 4 Threads

Note that GNU/Linux provides two slightly different semaphore implementations.
The one we describe here is the POSIX standard semaphore implementation. Use
these semaphores when communicating among threads The other implementation,
used for communication among processes, is described in Section 5.2,“Process
Semaphores.” If you use semaphores, include <semaphore.h>.

A semaphore is represented by a sem_t variable. Before using it, you must initialize
it using the sem_init function, passing a pointer to the sem_t variable.The second
parameter should be zero,2 and the third parameter is the semaphore’s initial value. If
you no longer need a semaphore, it’s good to deallocate it with sem_destroy.

To wait on a semaphore, use sem_wait.To post to a semaphore, use sem_post.
A nonblocking wait function, sem_trywait, is also provided. It’s similar to
pthread_mutex_trylock—if the wait would have blocked because the semaphore’s
value was zero, the function returns immediately, with error value EAGAIN, instead of
blocking.

GNU/Linux also provides a function to retrieve the current value of a semaphore,
sem_getvalue, which places the value in the int variable pointed to by its second
argument.You should not use the semaphore value you get from this function to make
a decision whether to post to or wait on the semaphore, though.To do this could lead
to a race condition:Another thread could change the semaphore’s value between the
call to sem_getvalue and the call to another semaphore function. Use the atomic post
and wait functions instead.

Returning to our job queue example, we can use a semaphore to count the num-
ber of jobs waiting in the queue. Listing 4.12 controls the queue with a semaphore.
The function enqueue_job adds a new job to the queue.

Listing 4.12 (job-queue3.c) Job Queue Controlled by a Semaphore

#include <malloc.h>
#include <pthread.h>
#include <semaphore.h>

struct job {
/* Link field for linked list. */
struct job* next;

/* Other fields describing work to be done... */
};

/* A linked list of pending jobs. */
struct job* job_queue;

/* A mutex protecting job_queue. */
pthread_mutex_t job_queue_mutex = PTHREAD_MUTEX_INITIALIZER;

2.A nonzero value would indicate a semaphore that can be shared across processes, which is
not supported by GNU/Linux for this type of semaphore.

05 0430 CH04 5/22/01 10:21 AM Page 84

854.4 Synchronization and Critical Sections

/* A semaphore counting the number of jobs in the queue. */
sem_t job_queue_count;

/* Perform one-time initialization of the job queue. */

void initialize_job_queue ()
{
/* The queue is initially empty. */
job_queue = NULL;
/* Initialize the semaphore which counts jobs in the queue. Its

initial value should be zero. */
sem_init (&job_queue_count, 0, 0);

}

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)
{
while (1) {
struct job* next_job;

/* Wait on the job queue semaphore. If its value is positive,
indicating that the queue is not empty, decrement the count by
1. If the queue is empty, block until a new job is enqueued. */

sem_wait (&job_queue_count);

/* Lock the mutex on the job queue. */
pthread_mutex_lock (&job_queue_mutex);
/* Because of the semaphore, we know the queue is not empty. Get

the next available job. */
next_job = job_queue;
/* Remove this job from the list. */
job_queue = job_queue->next;
/* Unlock the mutex on the job queue because we’re done with the

queue for now. */
pthread_mutex_unlock (&job_queue_mutex);

/* Carry out the work. */
process_job (next_job);
/* Clean up. */
free (next_job);

}
return NULL;

}

/* Add a new job to the front of the job queue. */

void enqueue_job (/* Pass job-specific data here... */)
{
struct job* new_job;

continues

05 0430 CH04 5/22/01 10:21 AM Page 85

86 Chapter 4 Threads

/* Allocate a new job object. */
new_job = (struct job*) malloc (sizeof (struct job));
/* Set the other fields of the job struct here... */

/* Lock the mutex on the job queue before accessing it. */
pthread_mutex_lock (&job_queue_mutex);
/* Place the new job at the head of the queue. */
new_job->next = job_queue;
job_queue = new_job;

/* Post to the semaphore to indicate that another job is available. If
threads are blocked, waiting on the semaphore, one will become
unblocked so it can process the job. */

sem_post (&job_queue_count);

/* Unlock the job queue mutex. */
pthread_mutex_unlock (&job_queue_mutex);

}

Before taking a job from the front of the queue, each thread will first wait on the
semaphore. If the semaphore’s value is zero, indicating that the queue is empty, the
thread will simply block until the semaphore’s value becomes positive, indicating that a
job has been added to the queue.

The enqueue_job function adds a job to the queue. Just like thread_function, it
needs to lock the queue mutex before modifying the queue.After adding a job to the
queue, it posts to the semaphore, indicating that a new job is available. In the version
shown in Listing 4.12, the threads that process the jobs never exit; if no jobs are avail-
able for a while, all the threads simply block in sem_wait.

4.4.6 Condition Variables
We’ve shown how to use a mutex to protect a variable against simultaneous access by
two threads and how to use semaphores to implement a shared counter.A condition
variable is a third synchronization device that GNU/Linux provides; with it, you can
implement more complex conditions under which threads execute.

Suppose that you write a thread function that executes a loop infinitely, performing
some work on each iteration.The thread loop, however, needs to be controlled by a
flag:The loop runs only when the flag is set; when the flag is not set, the loop pauses.

Listing 4.13 shows how you might implement this by spinning in a loop. During
each iteration of the loop, the thread function checks that the flag is set. Because the
flag is accessed by multiple threads, it is protected by a mutex.This implementation
may be correct, but it is not efficient.The thread function will spend lots of CPU

Listing 4.12 Continued

05 0430 CH04 5/22/01 10:21 AM Page 86

874.4 Synchronization and Critical Sections

whenever the flag is not set, checking and rechecking the flag, each time locking and
unlocking the mutex.What you really want is a way to put the thread to sleep when
the flag is not set, until some circumstance changes that might cause the flag to
become set.

Listing 4.13 (spin-condvar.c) A Simple Condition Variable Implementation

#include <pthread.h>

int thread_flag;
pthread_mutex_t thread_flag_mutex;

void initialize_flag ()
{
pthread_mutex_init (&thread_flag_mutex, NULL);
thread_flag = 0;

}

/* Calls do_work repeatedly while the thread flag is set; otherwise
spins. */

void* thread_function (void* thread_arg)
{
while (1) {
int flag_is_set;

/* Protect the flag with a mutex lock. */
pthread_mutex_lock (&thread_flag_mutex);
flag_is_set = thread_flag;
pthread_mutex_unlock (&thread_flag_mutex);

if (flag_is_set)
do_work ();

/* Else don’t do anything. Just loop again. */
}
return NULL;

}

/* Sets the value of the thread flag to FLAG_VALUE. */

void set_thread_flag (int flag_value)
{
/* Protect the flag with a mutex lock. */
pthread_mutex_lock (&thread_flag_mutex);
thread_flag = flag_value;
pthread_mutex_unlock (&thread_flag_mutex);

}

05 0430 CH04 5/22/01 10:21 AM Page 87

88 Chapter 4 Threads

A condition variable enables you to implement a condition under which a thread exe-
cutes and, inversely, the condition under which the thread is blocked.As long as every
thread that potentially changes the sense of the condition uses the condition variable
properly, Linux guarantees that threads blocked on the condition will be unblocked
when the condition changes.

As with a semaphore, a thread may wait on a condition variable. If thread A waits
on a condition variable, it is blocked until some other thread, thread B, signals the
same condition variable. Unlike a semaphore, a condition variable has no counter or
memory; thread A must wait on the condition variable before thread B signals it. If
thread B signals the condition variable before thread A waits on it, the signal is lost,
and thread A blocks until some other thread signals the condition variable again.

This is how you would use a condition variable to make the previous sample more
efficient:

n The loop in thread_function checks the flag. If the flag is not set, the thread
waits on the condition variable.

n The set_thread_flag function signals the condition variable after changing the
flag value.That way, if thread_function is blocked on the condition variable, it
will be unblocked and will check the condition again.

There’s one problem with this:There’s a race condition between checking the
flag value and signaling or waiting on the condition variable. Suppose that
thread_function checked the flag and found that it was not set.At that moment, the
Linux scheduler paused that thread and resumed the main one. By some coincidence,
the main thread is in set_thread_flag. It sets the flag and then signals the condition
variable. Because no thread is waiting on the condition variable at the time (remember
that thread_function was paused before it could wait on the condition variable), the
signal is lost. Now, when Linux reschedules the other thread, it starts waiting on the
condition variable and may end up blocked forever.

To solve this problem, we need a way to lock the flag and the condition variable
together with a single mutex. Fortunately, GNU/Linux provides exactly this mecha-
nism. Each condition variable must be used in conjunction with a mutex, to prevent
this sort of race condition. Using this scheme, the thread function follows these steps:

1. The loop in thread_function locks the mutex and reads the flag value.

2. If the flag is set, it unlocks the mutex and executes the work function.

3. If the flag is not set, it atomically unlocks the mutex and waits on the condition
variable.

The critical feature here is in step 3, in which GNU/Linux allows you to unlock the
mutex and wait on the condition variable atomically, without the possibility of
another thread intervening.This eliminates the possibility that another thread may
change the flag value and signal the condition variable in between thread_function’s
test of the flag value and wait on the condition variable.

05 0430 CH04 5/22/01 10:21 AM Page 88

894.4 Synchronization and Critical Sections

A condition variable is represented by an instance of pthread_cond_t. Remember
that each condition variable should be accompanied by a mutex.These are the func-
tions that manipulate condition variables:

n pthread_cond_init initializes a condition variable.The first argument is a
pointer to a pthread_cond_t instance.The second argument, a pointer to a con-
dition variable attribute object, is ignored under GNU/Linux.

The mutex must be initialized separately, as described in Section 4.4.2,
“Mutexes.”

n pthread_cond_signal signals a condition variable.A single thread that is blocked
on the condition variable will be unblocked. If no other thread is blocked on
the condition variable, the signal is ignored.The argument is a pointer to the
pthread_cond_t instance.

A similar call, pthread_cond_broadcast, unblocks all threads that are blocked on
the condition variable, instead of just one.

n pthread_cond_wait blocks the calling thread until the condition variable is sig-
naled.The argument is a pointer to the pthread_cond_t instance.The second
argument is a pointer to the pthread_mutex_t mutex instance.

When pthread_cond_wait is called, the mutex must already be locked by the
calling thread.That function atomically unlocks the mutex and blocks on the
condition variable.When the condition variable is signaled and the calling thread
unblocks, pthread_cond_wait automatically reacquires a lock on the mutex.

Whenever your program performs an action that may change the sense of the condi-
tion you’re protecting with the condition variable, it should perform these steps. (In
our example, the condition is the state of the thread flag, so these steps must be taken
whenever the flag is changed.)

1. Lock the mutex accompanying the condition variable.

2. Take the action that may change the sense of the condition (in our example, set
the flag).

3. Signal or broadcast the condition variable, depending on the desired behavior.

4. Unlock the mutex accompanying the condition variable.

Listing 4.14 shows the previous example again, now using a condition variable to
protect the thread flag. Note that in thread_function, a lock on the mutex is held
before checking the value of thread_flag.That lock is automatically released by
pthread_cond_wait before blocking and is automatically reacquired afterward.Also
note that set_thread_flag locks the mutex before setting the value of thread_flag
and signaling the mutex.

05 0430 CH04 5/22/01 10:21 AM Page 89

90 Chapter 4 Threads

Listing 4.14 (condvar.c) Control a Thread Using a Condition Variable

#include <pthread.h>

int thread_flag;
pthread_cond_t thread_flag_cv;
pthread_mutex_t thread_flag_mutex;

void initialize_flag ()
{
/* Initialize the mutex and condition variable. */
pthread_mutex_init (&thread_flag_mutex, NULL);
pthread_cond_init (&thread_flag_cv, NULL);
/* Initialize the flag value. */
thread_flag = 0;

}

/* Calls do_work repeatedly while the thread flag is set; blocks if
the flag is clear. */

void* thread_function (void* thread_arg)
{
/* Loop infinitely. */
while (1) {
/* Lock the mutex before accessing the flag value. */
pthread_mutex_lock (&thread_flag_mutex);
while (!thread_flag)
/* The flag is clear. Wait for a signal on the condition

variable, indicating that the flag value has changed. When the
signal arrives and this thread unblocks, loop and check the
flag again. */

pthread_cond_wait (&thread_flag_cv, &thread_flag_mutex);
/* When we’ve gotten here, we know the flag must be set. Unlock

the mutex. */
pthread_mutex_unlock (&thread_flag_mutex);
/* Do some work. */
do_work ();

}
return NULL;

}

/* Sets the value of the thread flag to FLAG_VALUE. */

void set_thread_flag (int flag_value)
{
/* Lock the mutex before accessing the flag value. */
pthread_mutex_lock (&thread_flag_mutex);
/* Set the flag value, and then signal in case thread_function is

blocked, waiting for the flag to become set. However,
thread_function can’t actually check the flag until the mutex is
unlocked. */

05 0430 CH04 5/22/01 10:21 AM Page 90

914.4 Synchronization and Critical Sections

thread_flag = flag_value;
pthread_cond_signal (&thread_flag_cv);
/* Unlock the mutex. */
pthread_mutex_unlock (&thread_flag_mutex);

}

The condition protected by a condition variable can be arbitrarily complex. However,
before performing any operation that may change the sense of the condition, a mutex
lock should be required, and the condition variable should be signaled afterward.

A condition variable may also be used without a condition, simply as a mechanism
for blocking a thread until another thread “wakes it up.”A semaphore may also be
used for that purpose.The principal difference is that a semaphore “remembers” the
wake-up call even if no thread was blocked on it at the time, while a condition
variable discards the wake-up call unless some thread is actually blocked on it
at the time.Also, a semaphore delivers only a single wake-up per post; with
pthread_cond_broadcast, an arbitrary and unknown number of blocked threads
may be awoken at the same time.

4.4.7 Deadlocks with Two or More Threads
Deadlocks can occur when two (or more) threads are each blocked, waiting for a con-
dition to occur that only the other one can cause. For instance, if thread A is blocked
on a condition variable waiting for thread B to signal it, and thread B is blocked on a
condition variable waiting for thread A to signal it, a deadlock has occurred because
neither thread will ever signal the other.You should take care to avoid the possibility
of such situations because they are quite difficult to detect.

One common error that can cause a deadlock involves a problem in which more
than one thread is trying to lock the same set of objects. For example, consider a pro-
gram in which two different threads, running two different thread functions, need to
lock the same two mutexes. Suppose that thread A locks mutex 1 and then mutex 2,
and thread B happens to lock mutex 2 before mutex 1. In a sufficiently unfortunate
scheduling scenario, Linux may schedule thread A long enough to lock mutex 1, and
then schedule thread B, which promptly locks mutex 2. Now neither thread can
progress because each is blocked on a mutex that the other thread holds locked.

This is an example of a more general deadlock problem, which can involve not
only synchronization objects such as mutexes, but also other resources, such as locks
on files or devices.The problem occurs when multiple threads try to lock the same set
of resources in different orders.The solution is to make sure that all threads that lock
more than one resource lock them in the same order.

05 0430 CH04 5/22/01 10:21 AM Page 91

92 Chapter 4 Threads

4.5 GNU/Linux Thread Implementation
The implementation of POSIX threads on GNU/Linux differs from the thread imple-
mentation on many other UNIX-like systems in an important way: on GNU/Linux,
threads are implemented as processes.Whenever you call pthread_create to create a
new thread, Linux creates a new process that runs that thread. However, this process is
not the same as a process you would create with fork; in particular, it shares the same
address space and resources as the original process rather than receiving copies.

The program thread-pid shown in Listing 4.15 demonstrates this.The program
creates a thread; both the original thread and the new one call the getpid function
and print their respective process IDs and then spin infinitely.

Listing 4.15 (thread-pid) Print Process IDs for Threads

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

void* thread_function (void* arg)
{
fprintf (stderr, “child thread pid is %d\n”, (int) getpid ());
/* Spin forever. */
while (1);
return NULL;

}

int main ()
{
pthread_t thread;
fprintf (stderr, “main thread pid is %d\n”, (int) getpid ());
pthread_create (&thread, NULL, &thread_function, NULL);
/* Spin forever. */
while (1);
return 0;

}

Run the program in the background, and then invoke ps x to display your running
processes. Don’t forget to kill the thread-pid program afterward—it consumes lots of
CPU doing nothing. Here’s what the output might look like:

% cc thread-pid.c -o thread-pid -lpthread
% ./thread-pid &
[1] 14608
main thread pid is 14608
child thread pid is 14610
% ps x
PID TTY STAT TIME COMMAND

14042 pts/9 S 0:00 bash
14608 pts/9 R 0:01 ./thread-pid

05 0430 CH04 5/22/01 10:21 AM Page 92

934.5 GNU/Linux Thread Implementation

14609 pts/9 S 0:00 ./thread-pid
14610 pts/9 R 0:01 ./thread-pid
14611 pts/9 R 0:00 ps x
% kill 14608
[1]+ Terminated ./thread-pid

Job Control Notification in the Shell
The lines starting with [1] are from the shell. When you run a program in the background, the shell

assigns a job number to it—in this case, 1—and prints out the program’s pid. If a background job termi-

nates, the shell reports that fact the next time you invoke a command.

Notice that there are three processes running the thread-pid program.The first of
these, with pid 14608, is the main thread in the program; the third, with pid 14610, is
the thread we created to execute thread_function.

How about the second thread, with pid 14609? This is the “manager thread,” which
is part of the internal implementation of GNU/Linux threads.The manager thread is
created the first time a program calls pthread_create to create a new thread.

4.5.1 Signal Handling
Suppose that a multithreaded program receives a signal. In which thread is the signal
handler invoked? The behavior of the interaction between signals and threads varies
from one UNIX-like system to another. In GNU/Linux, the behavior is dictated by
the fact that threads are implemented as processes.

Because each thread is a separate process, and because a signal is delivered to a par-
ticular process, there is no ambiguity about which thread receives the signal.Typically,
signals sent from outside the program are sent to the process corresponding to the
main thread of the program. For instance, if a program forks and the child process
execs a multithreaded program, the parent process will hold the process id of the main
thread of the child process’s program and will use that process id to send signals to its
child.This is generally a good convention to follow yourself when sending signals to a
multithreaded program.

Note that this aspect of GNU/Linux’s implementation of pthreads is at variance
with the POSIX thread standard. Do not rely on this behavior in programs that are
meant to be portable.

Within a multithreaded program, it is possible for one thread to send a signal
specifically to another thread. Use the pthread_kill function to do this. Its first para-
meter is a thread ID, and its second parameter is a signal number.

4.5.2 The clone System Call
Although GNU/Linux threads created in the same program are implemented as sepa-
rate processes, they share their virtual memory space and other resources.A child
process created with fork, however, gets copies of these items. How is the former type
of process created?

05 0430 CH04 5/22/01 10:21 AM Page 93

94 Chapter 4 Threads

The Linux clone system call is a generalized form of fork and pthread_create that
allows the caller to specify which resources are shared between the calling process and
the newly created process.Also, clone requires you to specify the memory region for
the execution stack that the new process will use.Although we mention clone here to
satisfy the reader’s curiosity, that system call should not ordinarily be used in programs.
Use fork to create new processes or pthread_create to create threads.

4.6 Processes Vs.Threads
For some programs that benefit from concurrency, the decision whether to use
processes or threads can be difficult. Here are some guidelines to help you decide
which concurrency model best suits your program:

n All threads in a program must run the same executable.A child process, on the
other hand, may run a different executable by calling an exec function.

n An errant thread can harm other threads in the same process because threads
share the same virtual memory space and other resources. For instance, a wild
memory write through an uninitialized pointer in one thread can corrupt
memory visible to another thread.

An errant process, on the other hand, cannot do so because each process has a
copy of the program’s memory space.

n Copying memory for a new process adds an additional performance overhead
relative to creating a new thread. However, the copy is performed only when
the memory is changed, so the penalty is minimal if the child process only reads
memory.

n Threads should be used for programs that need fine-grained parallelism. For
example, if a problem can be broken into multiple, nearly identical tasks, threads
may be a good choice. Processes should be used for programs that need coarser
parallelism.

n Sharing data among threads is trivial because threads share the same memory.
(However, great care must be taken to avoid race conditions, as described previ-
ously.) Sharing data among processes requires the use of IPC mechanisms, as
described in Chapter 5.This can be more cumbersome but makes multiple
processes less likely to suffer from concurrency bugs.

05 0430 CH04 5/22/01 10:21 AM Page 94

Interprocess Communication

5

CHAPTER 3,“PROCESSES,” DISCUSSED THE CREATION OF PROCESSES and showed
how one process can obtain the exit status of a child process.That’s the simplest form
of communication between two processes, but it’s by no means the most powerful.The
mechanisms of Chapter 3 don’t provide any way for the parent to communicate with
the child except via command-line arguments and environment variables, nor any way
for the child to communicate with the parent except via the child’s exit status. None
of these mechanisms provides any means for communicating with the child process
while it is actually running, nor do these mechanisms allow communication with a
process outside the parent-child relationship.

This chapter describes means for interprocess communication that circumvent these
limitations.We will present various ways for communicating between parents and chil-
dren, between “unrelated” processes, and even between processes on different
machines.

Interprocess communication (IPC) is the transfer of data among processes. For example,
a Web browser may request a Web page from a Web server, which then sends HTML
data.This transfer of data usually uses sockets in a telephone-like connection. In
another example, you may want to print the filenames in a directory using a command
such as ls | lpr.The shell creates an ls process and a separate lpr process, connecting

06 0430 CH05 5/22/01 10:22 AM Page 95

96 Chapter 5 Interprocess Communication

the two with a pipe, represented by the “|” symbol.A pipe permits one-way commu-
nication between two related processes.The ls process writes data into the pipe, and
the lpr process reads data from the pipe.

In this chapter, we discuss five types of interprocess communication:
n Shared memory permits processes to communicate by simply reading and

writing to a specified memory location.
n Mapped memory is similar to shared memory, except that it is associated with a

file in the filesystem.
n Pipes permit sequential communication from one process to a related process.
n FIFOs are similar to pipes, except that unrelated processes can communicate

because the pipe is given a name in the filesystem.
n Sockets support communication between unrelated processes even on different

computers.

These types of IPC differ by the following criteria:
n Whether they restrict communication to related processes (processes with a

common ancestor), to unrelated processes sharing the same filesystem, or to any
computer connected to a network

n Whether a communicating process is limited to only write data or only
read data

n The number of processes permitted to communicate
n Whether the communicating processes are synchronized by the IPC—for

example, a reading process halts until data is available to read

In this chapter, we omit discussion of IPC permitting communication only a limited
number of times, such as communicating via a child’s exit value.

5.1 Shared Memory
One of the simplest interprocess communication methods is using shared memory.
Shared memory allows two or more processes to access the same memory as if they all
called malloc and were returned pointers to the same actual memory.When one
process changes the memory, all the other processes see the modification.

5.1.1 Fast Local Communication
Shared memory is the fastest form of interprocess communication because all
processes share the same piece of memory.Access to this shared memory is as fast as
accessing a process’s nonshared memory, and it does not require a system call or entry
to the kernel. It also avoids copying data unnecessarily.

06 0430 CH05 5/22/01 10:22 AM Page 96

975.1 Shared Memory

Because the kernel does not synchronize accesses to shared memory, you must pro-
vide your own synchronization. For example, a process should not read from the
memory until after data is written there, and two processes must not write to the same
memory location at the same time.A common strategy to avoid these race conditions
is to use semaphores, which are discussed in the next section. Our illustrative pro-
grams, though, show just a single process accessing the memory, to focus on the shared
memory mechanism and to avoid cluttering the sample code with synchronization
logic.

5.1.2 The Memory Model
To use a shared memory segment, one process must allocate the segment.Then each
process desiring to access the segment must attach the segment.After finishing its use
of the segment, each process detaches the segment.At some point, one process must
deallocate the segment.

Understanding the Linux memory model helps explain the allocation and attach-
ment process. Under Linux, each process’s virtual memory is split into pages. Each
process maintains a mapping from its memory addresses to these virtual memory pages,
which contain the actual data. Even though each process has its own addresses, multiple
processes’ mappings can point to the same page, permitting sharing of memory.
Memory pages are discussed further in Section 8.8,“The mlock Family: Locking
Physical Memory,” of Chapter 8,“Linux System Calls.”

Allocating a new shared memory segment causes virtual memory pages to be cre-
ated. Because all processes desire to access the same shared segment, only one process
should allocate a new shared segment.Allocating an existing segment does not create
new pages, but it does return an identifier for the existing pages.To permit a process
to use the shared memory segment, a process attaches it, which adds entries mapping
from its virtual memory to the segment’s shared pages.When finished with the seg-
ment, these mapping entries are removed.When no more processes want to access
these shared memory segments, exactly one process must deallocate the virtual
memory pages.

All shared memory segments are allocated as integral multiples of the system’s page
size, which is the number of bytes in a page of memory. On Linux systems, the page
size is 4KB, but you should obtain this value by calling the getpagesize function.

5.1.3 Allocation
A process allocates a shared memory segment using shmget (“SHared Memory
GET”). Its first parameter is an integer key that specifies which segment to create.
Unrelated processes can access the same shared segment by specifying the same key
value. Unfortunately, other processes may have also chosen the same fixed key, which
could lead to conflict. Using the special constant IPC_PRIVATE as the key value guaran-
tees that a brand new memory segment is created.

06 0430 CH05 5/22/01 10:22 AM Page 97

98 Chapter 5 Interprocess Communication

Its second parameter specifies the number of bytes in the segment. Because seg-
ments are allocated using pages, the number of actually allocated bytes is rounded up
to an integral multiple of the page size.

The third parameter is the bitwise or of flag values that specify options to shmget.
The flag values include these:

n IPC_CREAT—This flag indicates that a new segment should be created.This per-
mits creating a new segment while specifying a key value.

n IPC_EXCL—This flag, which is always used with IPC_CREAT, causes shmget to fail
if a segment key is specified that already exists.Therefore, it arranges for the call-
ing process to have an “exclusive” segment. If this flag is not given and the key
of an existing segment is used, shmget returns the existing segment instead of
creating a new one.

n Mode flags—This value is made of 9 bits indicating permissions granted to
owner, group, and world to control access to the segment. Execution bits are
ignored.An easy way to specify permissions is to use the constants defined in
<sys/stat.h> and documented in the section 2 stat man page.1 For example,
S_IRUSR and S_IWUSR specify read and write permissions for the owner of the
shared memory segment, and S_IROTH and S_IWOTH specify read and write per-
missions for others.

For example, this invocation of shmget creates a new shared memory segment (or
access to an existing one, if shm_key is already used) that’s readable and writeable to
the owner but not other users.

int segment_id = shmget (shm_key, getpagesize (),
IPC_CREAT | S_IRUSR | S_IWUSER);

If the call succeeds, shmget returns a segment identifier. If the shared memory segment
already exists, the access permissions are verified and a check is made to ensure that
the segment is not marked for destruction.

5.1.4 Attachment and Detachment
To make the shared memory segment available, a process must use shmat,“SHared
Memory ATtach.” Pass it the shared memory segment identifier SHMID returned by
shmget.The second argument is a pointer that specifies where in your process’s address
space you want to map the shared memory; if you specify NULL, Linux will choose
an available address.The third argument is a flag, which can include the following:

n SHM_RND indicates that the address specified for the second parameter should be
rounded down to a multiple of the page size. If you don’t specify this flag, you
must page-align the second argument to shmat yourself.

n SHM_RDONLY indicates that the segment will be only read, not written.

1.These permission bits are the same as those used for files.They are described in Section
10.3,“File System Permissions.”

06 0430 CH05 5/22/01 10:22 AM Page 98

995.1 Shared Memory

If the call succeeds, it returns the address of the attached shared segment. Children cre-
ated by calls to fork inherit attached shared segments; they can detach the shared
memory segments, if desired.

When you’re finished with a shared memory segment, the segment should be
detached using shmdt (“SHared Memory DeTach”). Pass it the address returned by
shmat. If the segment has been deallocated and this was the last process using it, it is
removed. Calls to exit and any of the exec family automatically detach segments.

5.1.5 Controlling and Deallocating Shared Memory
The shmctl (“SHared Memory ConTroL”) call returns information about a shared
memory segment and can modify it.The first parameter is a shared memory segment
identifier.

To obtain information about a shared memory segment, pass IPC_STAT as the
second argument and a pointer to a struct shmid_ds.

To remove a segment, pass IPC_RMID as the second argument, and pass NULL as the
third argument.The segment is removed when the last process that has attached it
finally detaches it.

Each shared memory segment should be explicitly deallocated using shmctl when
you’re finished with it, to avoid violating the systemwide limit on the total number of
shared memory segments. Invoking exit and exec detaches memory segments but
does not deallocate them.

See the shmctl man page for a description of other operations you can perform on
shared memory segments.

5.1.6 An Example Program
The program in Listing 5.1 illustrates the use of shared memory.

Listing 5.1 (shm.c) Exercise Shared Memory

#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main ()
{
int segment_id;
char* shared_memory;
struct shmid_ds shmbuffer;
int segment_size;
const int shared_segment_size = 0x6400;

/* Allocate a shared memory segment. */
segment_id = shmget (IPC_PRIVATE, shared_segment_size,

IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);

continues

06 0430 CH05 5/22/01 10:22 AM Page 99

100 Chapter 5 Interprocess Communication

/* Attach the shared memory segment. */
shared_memory = (char*) shmat (segment_id, 0, 0);
printf (“shared memory attached at address %p\n”, shared_memory);
/* Determine the segment’s size. */
shmctl (segment_id, IPC_STAT, &shmbuffer);
segment_size = shmbuffer.shm_segsz;
printf (“segment size: %d\n”, segment_size);
/* Write a string to the shared memory segment. */
sprintf (shared_memory, “Hello, world.”);
/* Detach the shared memory segment. */
shmdt (shared_memory);

/* Reattach the shared memory segment, at a different address. */
shared_memory = (char*) shmat (segment_id, (void*) 0x5000000, 0);
printf (“shared memory reattached at address %p\n”, shared_memory);
/* Print out the string from shared memory. */
printf (“%s\n”, shared_memory);
/* Detach the shared memory segment. */
shmdt (shared_memory);

/* Deallocate the shared memory segment. */
shmctl (segment_id, IPC_RMID, 0);

return 0;
}

5.1.7 Debugging
The ipcs command provides information on interprocess communication facilities,
including shared segments. Use the -m flag to obtain information about shared
memory. For example, this code illustrates that one shared memory segment,
numbered 1627649, is in use:

% ipcs -m

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 1627649 user 640 25600 0

If this memory segment was erroneously left behind by a program, you can use the
ipcrm command to remove it.

% ipcrm shm 1627649

Listing 5.1 Continued

06 0430 CH05 5/22/01 10:22 AM Page 100

1015.2 Processes Semaphores

5.1.8 Pros and Cons
Shared memory segments permit fast bidirectional communication among any number
of processes. Each user can both read and write, but a program must establish and fol-
low some protocol for preventing race conditions such as overwriting information
before it is read. Unfortunately, Linux does not strictly guarantee exclusive access even
if you create a new shared segment with IPC_PRIVATE.

Also, for multiple processes to use a shared segment, they must make arrangements
to use the same key.

5.2 Processes Semaphores
As noted in the previous section, processes must coordinate access to shared memory.
As we discussed in Section 4.4.5,“Semaphores for Threads,” in Chapter 4,“Threads,”
semaphores are counters that permit synchronizing multiple threads. Linux provides a
distinct alternate implementation of semaphores that can be used for synchronizing
processes (called process semaphores or sometimes System V semaphores). Process sem-
aphores are allocated, used, and deallocated like shared memory segments.Although a
single semaphore is sufficient for almost all uses, process semaphores come in sets.
Throughout this section, we present system calls for process semaphores, showing how
to implement single binary semaphores using them.

5.2.1 Allocation and Deallocation
The calls semget and semctl allocate and deallocate semaphores, which is analogous to
shmget and shmctl for shared memory. Invoke semget with a key specifying a sema-
phore set, the number of semaphores in the set, and permission flags as for shmget; the
return value is a semaphore set identifier.You can obtain the identifier of an existing
semaphore set by specifying the right key value; in this case, the number of sema-
phores can be zero.

Semaphores continue to exist even after all processes using them have terminated.
The last process to use a semaphore set must explicitly remove it to ensure that the
operating system does not run out of semaphores.To do so, invoke semctl with the
semaphore identifier, the number of semaphores in the set, IPC_RMID as the third argu-
ment, and any union semun value as the fourth argument (which is ignored).The
effective user ID of the calling process must match that of the semaphore’s allocator
(or the caller must be root). Unlike shared memory segments, removing a semaphore
set causes Linux to deallocate immediately.

Listing 5.2 presents functions to allocate and deallocate a binary semaphore.

06 0430 CH05 5/22/01 10:22 AM Page 101

102 Chapter 5 Interprocess Communication

Listing 5.2 (sem_all_deall.c) Allocating and Deallocating a Binary Semaphore

#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/types.h>

/* We must define union semun ourselves. */

union semun {
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;

};

/* Obtain a binary semaphore’s ID, allocating if necessary. */

int binary_semaphore_allocation (key_t key, int sem_flags)
{
return semget (key, 1, sem_flags);

}

/* Deallocate a binary semaphore. All users must have finished their
use. Returns -1 on failure. */

int binary_semaphore_deallocate (int semid)
{
union semun ignored_argument;
return semctl (semid, 1, IPC_RMID, ignored_argument);

}

5.2.2 Initializing Semaphores
Allocating and initializing semaphores are two separate operations.To initialize a sema-
phore, use semctl with zero as the second argument and SETALL as the third argument.
For the fourth argument, you must create a union semun object and point its array
field at an array of unsigned short values. Each value is used to initialize one sema-
phore in the set.

Listing 5.3 presents a function that initializes a binary semaphore.

Listing 5.3 (sem_init.c) Initializing a Binary Semaphore

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

06 0430 CH05 5/22/01 10:22 AM Page 102

1035.2 Processes Semaphores

/* We must define union semun ourselves. */

union semun {
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;

};

/* Initialize a binary semaphore with a value of 1. */

int binary_semaphore_initialize (int semid)
{
union semun argument;
unsigned short values[1];
values[0] = 1;
argument.array = values;
return semctl (semid, 0, SETALL, argument);

}

5.2.3 Wait and Post Operations
Each semaphore has a non-negative value and supports wait and post operations.The
semop system call implements both operations. Its first parameter specifies a semaphore
set identifier. Its second parameter is an array of struct sembuf elements, which specify
the operations you want to perform.The third parameter is the length of this array.

The fields of struct sembuf are listed here:
n sem_num is the semaphore number in the semaphore set on which the operation

is performed.
n sem_op is an integer that specifies the semaphore operation.

If sem_op is a positive number, that number is added to the semaphore value
immediately.

If sem_op is a negative number, the absolute value of that number is subtracted
from the semaphore value. If this would make the semaphore value negative, the
call blocks until the semaphore value becomes as large as the absolute value of
sem_op (because some other process increments it).

If sem_op is zero, the operation blocks until the semaphore value becomes zero.
n sem_flg is a flag value. Specify IPC_NOWAIT to prevent the operation from

blocking; if the operation would have blocked, the call to semop fails instead.
If you specify SEM_UNDO, Linux automatically undoes the operation on the
semaphore when the process exits.

06 0430 CH05 5/22/01 10:22 AM Page 103

104 Chapter 5 Interprocess Communication

Listing 5.4 illustrates wait and post operations for a binary semaphore.

Listing 5.4 (sem_pv.c) Wait and Post Operations for a Binary Semaphore

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

/* Wait on a binary semaphore. Block until the semaphore value is positive, then
decrement it by 1. */

int binary_semaphore_wait (int semid)
{
struct sembuf operations[1];
/* Use the first (and only) semaphore. */
operations[0].sem_num = 0;
/* Decrement by 1. */
operations[0].sem_op = -1;
/* Permit undo’ing. */
operations[0].sem_flg = SEM_UNDO;

return semop (semid, operations, 1);
}

/* Post to a binary semaphore: increment its value by 1.
This returns immediately. */

int binary_semaphore_post (int semid)
{
struct sembuf operations[1];
/* Use the first (and only) semaphore. */
operations[0].sem_num = 0;
/* Increment by 1. */
operations[0].sem_op = 1;
/* Permit undo’ing. */
operations[0].sem_flg = SEM_UNDO;

return semop (semid, operations, 1);
}

Specifying the SEM_UNDO flag permits dealing with the problem of terminating a
process while it has resources allocated through a semaphore.When a process termi-
nates, either voluntarily or involuntarily, the semaphore’s values are automatically
adjusted to “undo” the process’s effects on the semaphore. For example, if a process
that has decremented a semaphore is killed, the semaphore’s value is incremented.

06 0430 CH05 5/22/01 10:22 AM Page 104

1055.3 Mapped Memory

5.2.4 Debugging Semaphores
Use the command ipcs -s to display information about existing semaphore sets. Use
the ipcrm sem command to remove a semaphore set from the command line. For
example, to remove the semaphore set with identifier 5790517, use this line:

% ipcrm sem 5790517

5.3 Mapped Memory
Mapped memory permits different processes to communicate via a shared file.
Although you can think of mapped memory as using a shared memory segment
with a name, you should be aware that there are technical differences. Mapped
memory can be used for interprocess communication or as an easy way to access
the contents of a file.

Mapped memory forms an association between a file and a process’s memory.
Linux splits the file into page-sized chunks and then copies them into virtual memory
pages so that they can be made available in a process’s address space.Thus, the process
can read the file’s contents with ordinary memory access. It can also modify the file’s
contents by writing to memory.This permits fast access to files.

You can think of mapped memory as allocating a buffer to hold a file’s entire con-
tents, and then reading the file into the buffer and (if the buffer is modified) writing
the buffer back out to the file afterward. Linux handles the file reading and writing
operations for you.

There are uses for memory-mapped files other than interprocess communication.
Some of these are discussed in Section 5.3.5,“Other Uses for mmap.”

5.3.1 Mapping an Ordinary File
To map an ordinary file to a process’s memory, use the mmap (“Memory MAPped,”
pronounced “em-map”) call.The first argument is the address at which you would like
Linux to map the file into your process’s address space; the value NULL allows Linux
to choose an available start address.The second argument is the length of the map in
bytes.The third argument specifies the protection on the mapped address range.The
protection consists of a bitwise “or” of PROT_READ, PROT_WRITE, and PROT_EXEC, corre-
sponding to read, write, and execution permission, respectively.The fourth argument is
a flag value that specifies additional options.The fifth argument is a file descriptor
opened to the file to be mapped.The last argument is the offset from the beginning of
the file from which to start the map.You can map all or part of the file into memory
by choosing the starting offset and length appropriately.

The flag value is a bitwise “or” of these constraints:
n MAP_FIXED—If you specify this flag, Linux uses the address you request to map

the file rather than treating it as a hint.This address must be page-aligned.
n MAP_PRIVATE—Writes to the memory range should not be written back to the

attached file, but to a private copy of the file. No other process sees these writes.
This mode may not be used with MAP_SHARED.

06 0430 CH05 5/22/01 10:22 AM Page 105

106 Chapter 5 Interprocess Communication

n MAP_SHARED—Writes are immediately reflected in the underlying file rather than
buffering writes. Use this mode when using mapped memory for IPC.This
mode may not be used with MAP_PRIVATE.

If the call succeeds, it returns a pointer to the beginning of the memory. On failure, it
returns MAP_FAILED.

When you’re finished with a memory mapping, release it by using munmap. Pass it
the start address and length of the mapped memory region. Linux automatically
unmaps mapped regions when a process terminates.

5.3.2 Example Programs
Let’s look at two programs to illustrate using memory-mapped regions to read and
write to files.The first program, Listing 5.5, generates a random number and writes it
to a memory-mapped file.The second program, Listing 5.6, reads the number, prints
it, and replaces it in the memory-mapped file with double the value. Both take a
command-line argument of the file to map.

Listing 5.5 (mmap-write.c) Write a Random Number to a Memory-Mapped File

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <time.h>
#include <unistd.h>
#define FILE_LENGTH 0x100

/* Return a uniformly random number in the range [low,high]. */

int random_range (unsigned const low, unsigned const high)
{
unsigned const range = high - low + 1;
return low + (int) (((double) range) * rand () / (RAND_MAX + 1.0));

}

int main (int argc, char* const argv[])
{
int fd;
void* file_memory;

/* Seed the random number generator. */
srand (time (NULL));

/* Prepare a file large enough to hold an unsigned integer. */
fd = open (argv[1], O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
lseek (fd, FILE_LENGTH+1, SEEK_SET);

06 0430 CH05 5/22/01 10:22 AM Page 106

1075.3 Mapped Memory

write (fd, “”, 1);
lseek (fd, 0, SEEK_SET);

/* Create the memory mapping. */
file_memory = mmap (0, FILE_LENGTH, PROT_WRITE, MAP_SHARED, fd, 0);
close (fd);
/* Write a random integer to memory-mapped area. */
sprintf((char*) file_memory, “%d\n”, random_range (-100, 100));
/* Release the memory (unnecessary because the program exits). */
munmap (file_memory, FILE_LENGTH);

return 0;
}

The mmap-write program opens the file, creating it if it did not previously exist.The
third argument to open specifies that the file is opened for reading and writing.
Because we do not know the file’s length, we use lseek to ensure that the file is large
enough to store an integer and then move back the file position to its beginning.

The program maps the file and then closes the file descriptor because it’s no longer
needed.The program then writes a random integer to the mapped memory, and thus
the file, and unmaps the memory.The munmap call is unnecessary because Linux would
automatically unmap the file when the program terminates.

Listing 5.6 (mmap-read.c) Read an Integer from a Memory-Mapped File, and
Double It

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#define FILE_LENGTH 0x100

int main (int argc, char* const argv[])
{
int fd;
void* file_memory;
int integer;

/* Open the file. */
fd = open (argv[1], O_RDWR, S_IRUSR | S_IWUSR);
/* Create the memory mapping. */
file_memory = mmap (0, FILE_LENGTH, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);
close (fd);

continues

06 0430 CH05 5/22/01 10:22 AM Page 107

108 Chapter 5 Interprocess Communication

/* Read the integer, print it out, and double it. */
scanf (file_memory, “%d”, &integer);
printf (“value: %d\n”, integer);
sprintf ((char*) file_memory, “%d\n”, 2 * integer);
/* Release the memory (unnecessary because the program exits). */
munmap (file_memory, FILE_LENGTH);

return 0;
}

The mmap-read program reads the number out of the file and then writes the doubled
value to the file. First, it opens the file and maps it for reading and writing. Because
we can assume that the file is large enough to store an unsigned integer, we need not
use lseek, as in the previous program.The program reads and parses the value out
of memory using sscanf and then formats and writes the double value using sprintf.

Here’s an example of running these example programs. It maps the file
/tmp/integer-file.

% ./mmap-write /tmp/integer-file
% cat /tmp/integer-file
42
% ./mmap-read /tmp/integer-file
value: 42
% cat /tmp/integer-file
84

Observe that the text 42 was written to the disk file without ever calling write, and
was read back in again without calling read. Note that these sample programs write
and read the integer as a string (using sprintf and sscanf) for demonstration purposes
only—there’s no need for the contents of a memory-mapped file to be text.You can
store and retrieve arbitrary binary in a memory-mapped file.

5.3.3 Shared Access to a File
Different processes can communicate using memory-mapped regions associated with
the same file. Specify the MAP_SHARED flag so that any writes to these regions are
immediately transferred to the underlying file and made visible to other processes.
If you don’t specify this flag, Linux may buffer writes before transferring them to
the file.

Alternatively, you can force Linux to incorporate buffered writes into the disk file
by calling msync. Its first two parameters specify a memory-mapped region, as for
munmap.The third parameter can take these flag values:

n MS_ASYNC—The update is scheduled but not necessarily run before the call
returns.

n MS_SYNC—The update is immediate; the call to msync blocks until it’s done.
MS_SYNC and MS_ASYNC may not both be used.

Listing 5.6 Continued

06 0430 CH05 5/22/01 10:22 AM Page 108

1095.3 Mapped Memory

n MS_INVALIDATE—All other file mappings are invalidated so that they can see the
updated values.

For example, to flush a shared file mapped at address mem_addr of length mem_length
bytes, call this:

msync (mem_addr, mem_length, MS_SYNC | MS_INVALIDATE);

As with shared memory segments, users of memory-mapped regions must establish
and follow a protocol to avoid race conditions. For example, a semaphore can be used
to prevent more than one process from accessing the mapped memory at one time.
Alternatively, you can use fcntl to place a read or write lock on the file, as described
in Section 8.3,“fcntl: Locks and Other File Operations,” in Chapter 8.

5.3.4 Private Mappings
Specifying MAP_PRIVATE to mmap creates a copy-on-write region.Any write to the
region is reflected only in this process’s memory; other processes that map the same
file won’t see the changes. Instead of writing directly to a page shared by all processes,
the process writes to a private copy of this page.All subsequent reading and writing by
the process use this page.

5.3.5 Other Uses for mmap
The mmap call can be used for purposes other than interprocess communications. One
common use is as a replacement for read and write. For example, rather than explic-
itly reading a file’s contents into memory, a program might map the file into memory
and scan it using memory reads. For some programs, this is more convenient and may
also run faster than explicit file I/O operations.

One advanced and powerful technique used by some programs is to build data
structures (ordinary struct instances, for example) in a memory-mapped file. On a
subsequent invocation, the program maps that file back into memory, and the data
structures are restored to their previous state. Note, though, that pointers in these data
structures will be invalid unless they all point within the same mapped region of
memory and unless care is taken to map the file back into the same address region
that it occupied originally.

Another handy technique is to map the special /dev/zero file into memory.That
file, which is described in Section 6.5.2,“/dev/zero,” of Chapter 6,“Devices,” behaves
as if it were an infinitely long file filled with 0 bytes.A program that needs a source of
0 bytes can mmap the file /dev/zero.Writes to /dev/zero are discarded, so the mapped
memory may be used for any purpose. Custom memory allocators often map
/dev/zero to obtain chunks of preinitialized memory.

06 0430 CH05 5/22/01 10:22 AM Page 109

110 Chapter 5 Interprocess Communication

5.4 Pipes
A pipe is a communication device that permits unidirectional communication. Data
written to the “write end” of the pipe is read back from the “read end.” Pipes are
serial devices; the data is always read from the pipe in the same order it was written.
Typically, a pipe is used to communicate between two threads in a single process or
between parent and child processes.

In a shell, the symbol | creates a pipe. For example, this shell command causes the
shell to produce two child processes, one for ls and one for less:

% ls | less

The shell also creates a pipe connecting the standard output of the ls subprocess with
the standard input of the less process.The filenames listed by ls are sent to less in
exactly the same order as if they were sent directly to the terminal.

A pipe’s data capacity is limited. If the writer process writes faster than the reader
process consumes the data, and if the pipe cannot store more data, the writer process
blocks until more capacity becomes available. If the reader tries to read but no data is
available, it blocks until data becomes available.Thus, the pipe automatically synchro-
nizes the two processes.

5.4.1 Creating Pipes
To create a pipe, invoke the pipe command. Supply an integer array of size 2.The call
to pipe stores the reading file descriptor in array position 0 and the writing file
descriptor in position 1. For example, consider this code:

int pipe_fds[2];
int read_fd;
int write_fd;

pipe (pipe_fds);
read_fd = pipe_fds[0];
write_fd = pipe_fds[1];

Data written to the file descriptor read_fd can be read back from write_fd.

5.4.2 Communication Between Parent and Child Processes
A call to pipe creates file descriptors, which are valid only within that process and its
children.A process’s file descriptors cannot be passed to unrelated processes; however,
when the process calls fork, file descriptors are copied to the new child process.Thus,
pipes can connect only related processes.

In the program in Listing 5.7, a fork spawns a child process.The child inherits the
pipe file descriptors.The parent writes a string to the pipe, and the child reads it out.
The sample program converts these file descriptors into FILE* streams using fdopen.
Because we use streams rather than file descriptors, we can use the higher-level
standard C library I/O functions such as printf and fgets.

06 0430 CH05 5/22/01 10:23 AM Page 110

1115.4 Pipes

Listing 5.7 (pipe.c) Using a Pipe to Communicate with a Child Process

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

/* Write COUNT copies of MESSAGE to STREAM, pausing for a second
between each. */

void writer (const char* message, int count, FILE* stream)
{
for (; count > 0; --count) {
/* Write the message to the stream, and send it off immediately. */
fprintf (stream, “%s\n”, message);
fflush (stream);
/* Snooze a while. */
sleep (1);

}
}

/* Read random strings from the stream as long as possible. */

void reader (FILE* stream)
{
char buffer[1024];
/* Read until we hit the end of the stream. fgets reads until

either a newline or the end-of-file. */
while (!feof (stream)

&& !ferror (stream)
&& fgets (buffer, sizeof (buffer), stream) != NULL)

fputs (buffer, stdout);
}

int main ()
{
int fds[2];
pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are
placed in fds. */

pipe (fds);
/* Fork a child process. */
pid = fork ();
if (pid == (pid_t) 0) {
FILE* stream;
/* This is the child process. Close our copy of the write end of

the file descriptor. */
close (fds[1]);
/* Convert the read file descriptor to a FILE object, and read

from it. */
stream = fdopen (fds[0], “r”);
reader (stream);

continues

06 0430 CH05 5/22/01 10:23 AM Page 111

112 Chapter 5 Interprocess Communication

close (fds[0]);
}
else {
/* This is the parent process. */
FILE* stream;
/* Close our copy of the read end of the file descriptor. */
close (fds[0]);
/* Convert the write file descriptor to a FILE object, and write

to it. */
stream = fdopen (fds[1], “w”);
writer (“Hello, world.”, 5, stream);
close (fds[1]);

}

return 0;
}

At the beginning of main, fds is declared to be an integer array with size 2.The pipe
call creates a pipe and places the read and write file descriptors in that array.The pro-
gram then forks a child process.After closing the read end of the pipe, the parent
process starts writing strings to the pipe.After closing the write end of the pipe, the
child reads strings from the pipe.

Note that after writing in the writer function, the parent flushes the pipe by
calling fflush. Otherwise, the string may not be sent through the pipe immediately.

When you invoke the command ls | less, two forks occur: one for the ls child
process and one for the less child process. Both of these processes inherit the pipe file
descriptors so they can communicate using a pipe.To have unrelated processes com-
municate, use a FIFO instead, as discussed in Section 5.4.5,“FIFOs.”

5.4.3 Redirecting the Standard Input, Output, and Error
Streams
Frequently, you’ll want to create a child process and set up one end of a pipe as its
standard input or standard output. Using the dup2 call, you can equate one file
descriptor with another. For example, to redirect a process’s standard input to a file
descriptor fd, use this line:

dup2 (fd, STDIN_FILENO);

The symbolic constant STDIN_FILENO represents the file descriptor for the standard
input, which has the value 0.The call closes standard input and then reopens it as a
duplicate of fd so that the two may be used interchangeably. Equated file descriptors
share the same file position and the same set of file status flags.Thus, characters read
from fd are not reread from standard input.

Listing 5.7 Continued

06 0430 CH05 5/22/01 10:23 AM Page 112

1135.4 Pipes

The program in Listing 5.8 uses dup2 to send the output from a pipe to the sort
command.2 After creating a pipe, the program forks.The parent process prints some
strings to the pipe.The child process attaches the read file descriptor of the pipe to its
standard input using dup2. It then executes the sort program.

Listing 5.8 (dup2.c) Redirect Output from a Pipe with dup2

#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int main ()
{
int fds[2];
pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are
placed in fds. */

pipe (fds);
/* Fork a child process. */
pid = fork ();
if (pid == (pid_t) 0) {
/* This is the child process. Close our copy of the write end of

the file descriptor. */
close (fds[1]);
/* Connect the read end of the pipe to standard input. */
dup2 (fds[0], STDIN_FILENO);
/* Replace the child process with the “sort” program. */
execlp (“sort”, “sort”, 0);

}
else {
/* This is the parent process. */
FILE* stream;
/* Close our copy of the read end of the file descriptor. */
close (fds[0]);
/* Convert the write file descriptor to a FILE object, and write

to it. */
stream = fdopen (fds[1], “w”);
fprintf (stream, “This is a test.\n”);
fprintf (stream, “Hello, world.\n”);
fprintf (stream, “My dog has fleas.\n”);
fprintf (stream, “This program is great.\n”);
fprintf (stream, “One fish, two fish.\n”);
fflush (stream);
close (fds[1]);
/* Wait for the child process to finish. */
waitpid (pid, NULL, 0);

}

return 0;
}

2. sort reads lines of text from standard input, sorts them into alphabetical order, and prints
them to standard output.

06 0430 CH05 5/22/01 10:23 AM Page 113

114 Chapter 5 Interprocess Communication

5.4.4 popen and pclose
A common use of pipes is to send data to or receive data from a program being run in
a subprocess.The popen and pclose functions ease this paradigm by eliminating the
need to invoke pipe, fork, dup2, exec, and fdopen.

Compare Listing 5.9, which uses popen and pclose, to the previous example
(Listing 5.8).

Listing 5.9 (popen.c) Example Using popen

#include <stdio.h>
#include <unistd.h>

int main ()
{
FILE* stream = popen (“sort”, “w”);
fprintf (stream, “This is a test.\n”);
fprintf (stream, “Hello, world.\n”);
fprintf (stream, “My dog has fleas.\n”);
fprintf (stream, “This program is great.\n”);
fprintf (stream, “One fish, two fish.\n”);
return pclose (stream);

}

The call to popen creates a child process executing the sort command, replacing calls
to pipe, fork, dup2, and execlp.The second argument, “w”, indicates that this process
wants to write to the child process.The return value from popen is one end of a pipe;
the other end is connected to the child process’s standard input.After the writing fin-
ishes, pclose closes the child process’s stream, waits for the process to terminate, and
returns its status value.

The first argument to popen is executed as a shell command in a subprocess run-
ning /bin/sh.The shell searches the PATH environment variable in the usual way to
find programs to execute. If the second argument is “r”, the function returns the child
process’s standard output stream so that the parent can read the output. If the second
argument is “w”, the function returns the child process’s standard input stream so that
the parent can send data. If an error occurs, popen returns a null pointer.

Call pclose to close a stream returned by popen.After closing the specified stream,
pclose waits for the child process to terminate.

5.4.5 FIFOs
A first-in, first-out (FIFO) file is a pipe that has a name in the filesystem.Any process
can open or close the FIFO; the processes on either end of the pipe need not be
related to each other. FIFOs are also called named pipes.

06 0430 CH05 5/22/01 10:23 AM Page 114

1155.4 Pipes

You can make a FIFO using the mkfifo command. Specify the path to the FIFO
on the command line. For example, create a FIFO in /tmp/fifo by invoking this:

% mkfifo /tmp/fifo
% ls -l /tmp/fifo
prw-rw-rw- 1 samuel users 0 Jan 16 14:04 /tmp/fifo

The first character of the output from ls is p, indicating that this file is actually a
FIFO (named pipe). In one window, read from the FIFO by invoking the following:

% cat < /tmp/fifo

In a second window, write to the FIFO by invoking this:
% cat > /tmp/fifo

Then type in some lines of text. Each time you press Enter, the line of text is sent
through the FIFO and appears in the first window. Close the FIFO by pressing
Ctrl+D in the second window. Remove the FIFO with this line:

% rm /tmp/fifo

Creating a FIFO

Create a FIFO programmatically using the mkfifo function.The first argument is the
path at which to create the FIFO; the second parameter specifies the pipe’s owner,
group, and world permissions, as discussed in Chapter 10,“Security,” Section 10.3,
“File System Permissions.” Because a pipe must have a reader and a writer, the permis-
sions must include both read and write permissions. If the pipe cannot be created
(for instance, if a file with that name already exists), mkfifo returns –1. Include
<sys/types.h> and <sys/stat.h> if you call mkfifo.

Accessing a FIFO

Access a FIFO just like an ordinary file.To communicate through a FIFO, one pro-
gram must open it for writing, and another program must open it for reading. Either
low-level I/O functions (open, write, read, close, and so on, as listed in Appendix B,
“Low-Level I/O”) or C library I/O functions (fopen, fprintf, fscanf, fclose, and so
on) may be used.

For example, to write a buffer of data to a FIFO using low-level I/O routines, you
could use this code:

int fd = open (fifo_path, O_WRONLY);
write (fd, data, data_length);
close (fd);

To read a string from the FIFO using C library I/O functions, you could use
this code:

FILE* fifo = fopen (fifo_path, “r”);
fscanf (fifo, “%s”, buffer);
fclose (fifo);

06 0430 CH05 5/22/01 10:23 AM Page 115

116 Chapter 5 Interprocess Communication

A FIFO can have multiple readers or multiple writers. Bytes from each writer are
written atomically up to a maximum size of PIPE_BUF (4KB on Linux). Chunks from
simultaneous writers can be interleaved. Similar rules apply to simultaneous reads.

Differences from Windows Named Pipes

Pipes in the Win32 operating systems are very similar to Linux pipes. (Refer to the
Win32 library documentation for technical details about these.) The main differences
concern named pipes, which, for Win32, function more like sockets.Win32 named
pipes can connect processes on separate computers connected via a network. On
Linux, sockets are used for this purpose.Also,Win32 allows multiple reader-writer
connections on a named pipe without interleaving data, and pipes can be used for
two-way communication.3

5.5 Sockets
A socket is a bidirectional communication device that can be used to communicate with
another process on the same machine or with a process running on other machines.
Sockets are the only interprocess communication we’ll discuss in this chapter that
permit communication between processes on different computers. Internet programs
such as Telnet, rlogin, FTP, talk, and the World Wide Web use sockets.

For example, you can obtain the WWW page from a Web server using the
Telnet program because they both use sockets for network communications.4

To open a connection to a WWW server at www.codesourcery.com, use
telnet www.codesourcery.com 80.The magic constant 80 specifies a connection to
the Web server programming running www.codesourcery.com instead of some other
process.Try typing GET / after the connection is established.This sends a message
through the socket to the Web server, which replies by sending the home page’s
HTML source and then closing the connection—for example:

% telnet www.codesourcery.com 80
Trying 206.168.99.1...
Connected to merlin.codesourcery.com (206.168.99.1).
Escape character is ‘^]’.
GET /
<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>

...

3. Note that only Windows NT can create a named pipe;Windows 9x programs can form
only client connections.

4. Usually, you’d use telnet to connect a Telnet server for remote logins. But you can also use
telnet to connect to a server of a different kind and then type comments directly at it.

06 0430 CH05 5/22/01 10:23 AM Page 116

1175.5 Sockets

5.5.1 Socket Concepts
When you create a socket, you must specify three parameters: communication style,
namespace, and protocol.

A communication style controls how the socket treats transmitted data and specifies
the number of communication partners.When data is sent through a socket, it is pack-
aged into chunks called packets.The communication style determines how these
packets are handled and how they are addressed from the sender to the receiver.

n Connection styles guarantee delivery of all packets in the order they were sent. If
packets are lost or reordered by problems in the network, the receiver automati-
cally requests their retransmission from the sender.

A connection-style socket is like a telephone call:The addresses of the sender
and receiver are fixed at the beginning of the communication when the connec-
tion is established.

n Datagram styles do not guarantee delivery or arrival order. Packets may be lost or
reordered in transit due to network errors or other conditions. Each packet must
be labeled with its destination and is not guaranteed to be delivered.The system
guarantees only “best effort,” so packets may disappear or arrive in a different
order than shipping.

A datagram-style socket behaves more like postal mail.The sender specifies the
receiver’s address for each individual message.

A socket namespace specifies how socket addresses are written.A socket address identi-
fies one end of a socket connection. For example, socket addresses in the “local name-
space” are ordinary filenames. In “Internet namespace,” a socket address is composed of
the Internet address (also known as an Internet Protocol address or IP address) of a host
attached to the network and a port number.The port number distinguishes among
multiple sockets on the same host.

A protocol specifies how data is transmitted. Some protocols are TCP/IP, the pri-
mary networking protocols used by the Internet; the AppleTalk network protocol; and
the UNIX local communication protocol. Not all combinations of styles, namespaces,
and protocols are supported.

5.5.2 System Calls
Sockets are more flexible than previously discussed communication techniques.These
are the system calls involving sockets:

socket—Creates a socket

closes—Destroys a socket

connect—Creates a connection between two sockets

bind—Labels a server socket with an address

listen—Configures a socket to accept conditions

accept—Accepts a connection and creates a new socket for the connection

Sockets are represented by file descriptors.

06 0430 CH05 5/22/01 10:23 AM Page 117

118 Chapter 5 Interprocess Communication

Creating and Destroying Sockets

The socket and close functions create and destroy sockets, respectively.When you
create a socket, specify the three socket choices: namespace, communication style, and
protocol. For the namespace parameter, use constants beginning with PF_ (abbreviating
“protocol families”). For example, PF_LOCAL or PF_UNIX specifies the local namespace,
and PF_INET specifies Internet namespaces. For the communication style parameter, use
constants beginning with SOCK_. Use SOCK_STREAM for a connection-style socket, or use
SOCK_DGRAM for a datagram-style socket.

The third parameter, the protocol, specifies the low-level mechanism to transmit
and receive data. Each protocol is valid for a particular namespace-style combination.
Because there is usually one best protocol for each such pair, specifying 0 is usually the
correct protocol. If socket succeeds, it returns a file descriptor for the socket.You can
read from or write to the socket using read, write, and so on, as with other file
descriptors.When you are finished with a socket, call close to remove it.

Calling connect

To create a connection between two sockets, the client calls connect, specifying the
address of a server socket to connect to.A client is the process initiating the connec-
tion, and a server is the process waiting to accept connections.The client calls connect
to initiate a connection from a local socket to the server socket specified by the
second argument.The third argument is the length, in bytes, of the address structure
pointed to by the second argument. Socket address formats differ according to the
socket namespace.

Sending Information

Any technique to write to a file descriptor can be used to write to a socket. See
Appendix B for a discussion of Linux’s low-level I/O functions and some of the issues
surrounding their use.The send function, which is specific to the socket file descrip-
tors, provides an alternative to write with a few additional choices; see the man page
for information.

5.5.3 Servers
A server’s life cycle consists of the creation of a connection-style socket, binding an
address to its socket, placing a call to listen that enables connections to the socket,
placing calls to accept incoming connections, and then closing the socket. Data isn’t
read and written directly via the server socket; instead, each time a program accepts a
new connection, Linux creates a separate socket to use in transferring data over that
connection. In this section, we introduce bind, listen, and accept.

06 0430 CH05 5/22/01 10:23 AM Page 118

1195.5 Sockets

An address must be bound to the server’s socket using bind if a client is to find it.
Its first argument is the socket file descriptor.The second argument is a pointer to a
socket address structure; the format of this depends on the socket’s address family.The
third argument is the length of the address structure, in bytes.When an address is
bound to a connection-style socket, it must invoke listen to indicate that it is a
server. Its first argument is the socket file descriptor.The second argument specifies
how many pending connections are queued. If the queue is full, additional connec-
tions will be rejected.This does not limit the total number of connections that a server
can handle; it limits just the number of clients attempting to connect that have not yet
been accepted.

A server accepts a connection request from a client by invoking accept. The first
argument is the socket file descriptor.The second argument points to a socket address
structure, which is filled with the client socket’s address.The third argument is the
length, in bytes, of the socket address structure.The server can use the client address to
determine whether it really wants to communicate with the client.The call to accept
creates a new socket for communicating with the client and returns the corresponding
file descriptor.The original server socket continues to accept new client connections.
To read data from a socket without removing it from the input queue, use recv. It
takes the same arguments as read, plus an additional FLAGS argument.A flag of
MSG_PEEK causes data to be read but not removed from the input queue.

5.5.4 Local Sockets
Sockets connecting processes on the same computer can use the local namespace
represented by the synonyms PF_LOCAL and PF_UNIX.These are called local sockets or
UNIX-domain sockets.Their socket addresses, specified by filenames, are used only when
creating connections.

The socket’s name is specified in struct sockaddr_un.You must set the sun_family
field to AF_LOCAL, indicating that this is a local namespace.The sun_path field specifies
the filename to use and may be, at most, 108 bytes long.The actual length of
struct sockaddr_un should be computed using the SUN_LEN macro.Any filename can
be used, but the process must have directory write permissions, which permit adding
files to the directory.To connect to a socket, a process must have read permission for
the file. Even though different computers may share the same filesystem, only processes
running on the same computer can communicate with local namespace sockets.

The only permissible protocol for the local namespace is 0.
Because it resides in a file system, a local socket is listed as a file. For example,

notice the initial s:
% ls -l /tmp/socket
srwxrwx--x 1 user group 0 Nov 13 19:18 /tmp/socket

Call unlink to remove a local socket when you’re done with it.

06 0430 CH05 5/22/01 10:23 AM Page 119

120 Chapter 5 Interprocess Communication

5.5.5 An Example Using Local Namespace Sockets
We illustrate sockets with two programs.The server program, in Listing 5.10, creates a
local namespace socket and listens for connections on it.When it receives a connec-
tion, it reads text messages from the connection and prints them until the connection
closes. If one of these messages is “quit,” the server program removes the socket and
ends.The socket-server program takes the path to the socket as its command-line
argument.

Listing 5.10 (socket-server.c) Local Namespace Socket Server

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

/* Read text from the socket and print it out. Continue until the
socket closes. Return nonzero if the client sent a “quit”
message, zero otherwise. */

int server (int client_socket)
{
while (1) {
int length;
char* text;

/* First, read the length of the text message from the socket. If
read returns zero, the client closed the connection. */

if (read (client_socket, &length, sizeof (length)) == 0)
return 0;

/* Allocate a buffer to hold the text. */
text = (char*) malloc (length);
/* Read the text itself, and print it. */

read (client_socket, text, length);
printf (“%s\n”, text);
/* Free the buffer. */
free (text);
/* If the client sent the message “quit,” we’re all done. */
if (!strcmp (text, “quit”))
return 1;

}
}

int main (int argc, char* const argv[])
{
const char* const socket_name = argv[1];

06 0430 CH05 5/22/01 10:23 AM Page 120

1215.5 Sockets

int socket_fd;
struct sockaddr_un name;
int client_sent_quit_message;

/* Create the socket. */
socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);
/* Indicate that this is a server. */
name.sun_family = AF_LOCAL;
strcpy (name.sun_path, socket_name);
bind (socket_fd, &name, SUN_LEN (&name));
/* Listen for connections. */
listen (socket_fd, 5);

/* Repeatedly accept connections, spinning off one server() to deal
with each client. Continue until a client sends a “quit” message. */

do {
struct sockaddr_un client_name;
socklen_t client_name_len;
int client_socket_fd;

/* Accept a connection. */
client_socket_fd = accept (socket_fd, &client_name, &client_name_len);
/* Handle the connection. */
client_sent_quit_message = server (client_socket_fd);
/* Close our end of the connection. */
close (client_socket_fd);

}
while (!client_sent_quit_message);

/* Remove the socket file. */
close (socket_fd);
unlink (socket_name);

return 0;
}

The client program, in Listing 5.11, connects to a local namespace socket and sends
a message.The name path to the socket and the message are specified on the
command line.

Listing 5.11 (socket-client.c) Local Namespace Socket Client

#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

continues

06 0430 CH05 5/22/01 10:23 AM Page 121

122 Chapter 5 Interprocess Communication

/* Write TEXT to the socket given by file descriptor SOCKET_FD. */

void write_text (int socket_fd, const char* text)
{
/* Write the number of bytes in the string, including

NUL-termination. */
int length = strlen (text) + 1;
write (socket_fd, &length, sizeof (length));
/* Write the string. */
write (socket_fd, text, length);

}

int main (int argc, char* const argv[])
{
const char* const socket_name = argv[1];
const char* const message = argv[2];
int socket_fd;
struct sockaddr_un name;

/* Create the socket. */
socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);
/* Store the server’s name in the socket address. */
name.sun_family = AF_LOCAL;
strcpy (name.sun_path, socket_name);
/* Connect the socket. */
connect (socket_fd, &name, SUN_LEN (&name));
/* Write the text on the command line to the socket. */
write_text (socket_fd, message);
close (socket_fd);
return 0;

}

Before the client sends the message text, it sends the length of that text by sending the
bytes of the integer variable length. Likewise, the server reads the length of the text by
reading from the socket into an integer variable.This allows the server to allocate an
appropriately sized buffer to hold the message text before reading it from the socket.

To try this example, start the server program in one window. Specify a path to a
socket—for example, /tmp/socket.

% ./socket-server /tmp/socket

In another window, run the client a few times, specifying the same socket path plus
messages to send to the client:

% ./socket-client /tmp/socket “Hello, world.”
% ./socket-client /tmp/socket “This is a test.”

Listing 5.11 Continued

06 0430 CH05 5/22/01 10:23 AM Page 122

1235.5 Sockets

The server program receives and prints these messages.To close the server, send the
message “quit” from a client:

% ./socket-client /tmp/socket “quit”

The server program terminates.

5.5.6 Internet-Domain Sockets
UNIX-domain sockets can be used only for communication between two processes
on the same computer. Internet-domain sockets, on the other hand, may be used to con-
nect processes on different machines connected by a network.

Sockets connecting processes through the Internet use the Internet namespace rep-
resented by PF_INET.The most common protocols are TCP/IP.The Internet Protocol
(IP), a low-level protocol, moves packets through the Internet, splitting and rejoining
the packets, if necessary. It guarantees only “best-effort” delivery, so packets may vanish
or be reordered during transport. Every participating computer is specified using a
unique IP number.The Transmission Control Protocol (TCP), layered on top of IP, pro-
vides reliable connection-ordered transport. It permits telephone-like connections to
be established between computers and ensures that data is delivered reliably and in
order.

DNS Names
Because it is easier to remember names than numbers, the Domain Name Service (DNS) associates names

such as www.codesourcery.com with computers’ unique IP numbers. DNS is implemented by a world-

wide hierarchy of name servers, but you don’t need to understand DNS protocols to use Internet host

names in your programs.

Internet socket addresses contain two parts: a machine and a port number.This infor-
mation is stored in a struct sockaddr_in variable. Set the sin_family field to AF_INET
to indicate that this is an Internet namespace address.The sin_addr field stores the
Internet address of the desired machine as a 32-bit integer IP number.A port number
distinguishes a given machine’s different sockets. Because different machines store
multibyte values in different byte orders, use htons to convert the port number to
network byte order. See the man page for ip for more information.

To convert human-readable hostnames, either numbers in standard dot notation
(such as 10.0.0.1) or DNS names (such as www.codesourcery.com) into 32-bit IP
numbers, you can use gethostbyname.This returns a pointer to the struct hostent
structure; the h_addr field contains the host’s IP number. See the sample program in
Listing 5.12.

Listing 5.12 illustrates the use of Internet-domain sockets.The program obtains the
home page from the Web server whose hostname is specified on the command line.

06 0430 CH05 5/22/01 10:23 AM Page 123

124 Chapter 5 Interprocess Communication

Listing 5.12 (socket-inet.c) Read from a WWW Server

#include <stdlib.h>
#include <stdio.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/socket.h>
#include <unistd.h>
#include <string.h>

/* Print the contents of the home page for the server’s socket.
Return an indication of success. */

void get_home_page (int socket_fd)
{
char buffer[10000];
ssize_t number_characters_read;

/* Send the HTTP GET command for the home page. */
sprintf (buffer, “GET /\n”);
write (socket_fd, buffer, strlen (buffer));
/* Read from the socket. The call to read may not
return all the data at one time, so keep
trying until we run out. */
while (1) {
number_characters_read = read (socket_fd, buffer, 10000);
if (number_characters_read == 0)
return;

/* Write the data to standard output. */
fwrite (buffer, sizeof (char), number_characters_read, stdout);

}
}

int main (int argc, char* const argv[])
{
int socket_fd;
struct sockaddr_in name;
struct hostent* hostinfo;

/* Create the socket. */
socket_fd = socket (PF_INET, SOCK_STREAM, 0);
/* Store the server’s name in the socket address. */
name.sin_family = AF_INET;
/* Convert from strings to numbers. */
hostinfo = gethostbyname (argv[1]);
if (hostinfo == NULL)
return 1;

else
name.sin_addr = *((struct in_addr *) hostinfo->h_addr);

/* Web servers use port 80. */
name.sin_port = htons (80);

06 0430 CH05 5/22/01 10:23 AM Page 124

1255.5 Sockets

/* Connect to the Web server */
if (connect (socket_fd, &name, sizeof (struct sockaddr_in)) == -1) {
perror (“connect”);
return 1;

}
/* Retrieve the server’s home page. */
get_home_page (socket_fd);

return 0;
}

This program takes the hostname of the Web server on the command line (not a
URL—that is, without the “http://”). It calls gethostbyname to translate the hostname
into a numerical IP address and then connects a stream (TCP) socket to port 80 on
that host.Web servers speak the Hypertext Transport Protocol (HTTP), so the program
issues the HTTP GET command and the server responds by sending the text of the
home page.

Standard Port Numbers
By convention, Web servers listen for connections on port 80. Most Internet network services are associ-

ated with a standard port number. For example, secure Web servers that use SSL listen for connections

on port 443, and mail servers (which speak SMTP) use port 25.

On GNU/Linux systems, the associations between protocol/service names and standard port numbers are

listed in the file /etc/services. The first column is the protocol or service name. The second column

lists the port number and the connection type: tcp for connection-oriented, or udp for datagram.

If you implement custom network services using Internet-domain sockets, use port numbers greater

than 1024.

For example, to retrieve the home page from the Web site www.codesourcery.com,
invoke this:

% ./socket-inet www.codesourcery.com
<html>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>

...

5.5.7 Socket Pairs
As we saw previously, the pipe function creates two file descriptors for the beginning
and end of a pipe. Pipes are limited because the file descriptors must be used by
related processes and because communication is unidirectional.The socketpair func-
tion creates two file descriptors for two connected sockets on the same computer.
These file descriptors permit two-way communication between related processes.

06 0430 CH05 5/22/01 10:23 AM Page 125

126 Chapter 5 Interprocess Communication

Its first three parameters are the same as those of the socket call:They specify the
domain, connection style, and protocol.The last parameter is a two-integer array,
which is filled with the file descriptions of the two sockets, similar to pipe.When you
call socketpair, you must specify PF_LOCAL as the domain.

06 0430 CH05 5/22/01 10:23 AM Page 126

Mastering Linux

II

6 Devices

7 The /proc File System

8 Linux System Calls

9 Inline Assembly Code

10 Security

11 A Sample GNU/Linux Application

07 0430 PT02 5/22/01 10:34 AM Page 127

07 0430 PT02 5/22/01 10:34 AM Page 128

Devices

6

LINUX, LIKE MOST OPERATING SYSTEMS, INTERACTS WITH HARDWARE devices via
modularized software components called device drivers.A device driver hides the pecu-
liarities of a hardware device’s communication protocols from the operating system
and allows the system to interact with the device through a standardized interface.

Under Linux, device drivers are part of the kernel and may be either linked stati-
cally into the kernel or loaded on demand as kernel modules. Device drivers run as
part of the kernel and aren’t directly accessible to user processes. However, Linux pro-
vides a mechanism by which processes can communicate with a device driver—and
through it with a hardware device—via file-like objects.These objects appear in the
file system, and programs can open them, read from them, and write to them practi-
cally as if they were normal files. Using either Linux’s low-level I/O operations (see
Appendix B,“Low-Level I/O”) or the standard C library’s I/O operations, your pro-
grams can communicate with hardware devices through these file-like objects.

Linux also provides several file-like objects that communicate directly with the
kernel rather than with device drivers.These aren’t linked to hardware devices; instead,
they provide various kinds of specialized behavior that can be of use to application and
system programs.

08 0430 CH06 5/22/01 10:29 AM Page 129

130 Chapter 6 Devices

Exercise Caution When Accessing Devices!
The techniques in this chapter provide direct access to device drivers running in the Linux kernel, and

through them to hardware devices connected to the system. Use these techniques with care because mis-

use can cause impair or damage the GNU/Linux system.

See especially the sidebar “Dangers of Block Devices.”

6.1 Device Types
Device files aren’t ordinary files—they do not represent regions of data on a disk-
based file system. Instead, data read from or written to a device file is communicated
to the corresponding device driver, and from there to the underlying device. Device
files come in two flavors:

n A character device represents a hardware device that reads or writes a serial stream
of data bytes. Serial and parallel ports, tape drives, terminal devices, and sound
cards are examples of character devices.

n A block device represents a hardware device that reads or writes data in fixed-size
blocks. Unlike a character device, a block device provides random access to data
stored on the device.A disk drive is an example of a block device.

Typical application programs will never use block devices.While a disk drive is repre-
sented as block devices, the contents of each disk partition typically contain a file sys-
tem, and that file system is mounted into GNU/Linux’s root file system tree. Only the
kernel code that implements the file system needs to access the block device directly;
application programs access the disk’s contents through normal files and directories.

Dangers of Block Devices
Block devices provide direct access to disk drive data. Although most GNU/Linux systems are configured

to prevent nonroot processes from accessing these devices directly, a root process can inflict severe dam-

age by changing the contents of the disk. By writing to a disk block device, a program can modify or

destroy file system control information and even a disk’s partition table and master boot record, thus

rendering a drive or even the entire system unusable. Always access these devices with great care.

Applications sometimes make use of character devices, though.We’ll discuss several
of them in the following sections.

6.2 Device Numbers
Linux identifies devices using two numbers: the major device number and the minor device
number.The major device number specifies which driver the device corresponds to.
The correspondence from major device numbers to drivers is fixed and part of the
Linux kernel sources. Note that the same major device number may correspond to

08 0430 CH06 5/22/01 10:29 AM Page 130

1316.3 Device Entries

two different drivers, one a character device and one a block device. Minor device
numbers distinguish individual devices or components controlled by a single driver.
The meaning of a minor device number depends on the device driver.

For example, major device no. 3 corresponds to the primary IDE controller on the
system.An IDE controller can have two devices (disk, tape, or CD-ROM drives)
attached to it; the “master” device has minor device no. 0, and the “slave” device has
minor device no. 64. Individual partitions on the master device (if the device supports
partitions) are represented by minor device numbers 1, 2, 3, and so on. Individual parti-
tions on the slave device are represented by minor device numbers 65, 66, 67, and so on.

Major device numbers are listed in the Linux kernel sources documentation.
On many GNU/Linux distributions, this documentation can be found in
/usr/src/linux/Documentation/devices.txt.The special entry /proc/devices lists
major device numbers corresponding to active device drivers currently loaded into the
kernel. (See Chapter 7,“The /proc File System,” for more information about /proc
file system entries.)

6.3 Device Entries
A device entry is in many ways the same as a regular file.You can move it using the mv
command and delete it using the rm command. If you try to copy a device entry using
cp, though, you’ll read bytes from the device (if the device supports reading) and write
them to the destination file. If you try to overwrite a device entry, you’ll write bytes to
the corresponding device instead.

You can create a device entry in the file system using the mknod command (invoke
man 1 mknod for the man page) or the mknod system call (invoke man 2 mknod for the
man page). Creating a device entry in the file system doesn’t automatically imply that
the corresponding device driver or hardware device is present or available; the device
entry is merely a portal for communicating with the driver, if it’s there. Only superuser
processes can create block and character devices using the mknod command or the
mknod system call.

To create a device using the mknod command, specify as the first argument the path
at which the entry will appear in the file system. For the second argument, specify b
for a block device or c for a character device. Provide the major and minor device
numbers as the third and fourth arguments, respectively. For example, this command
makes a character device entry named lp0 in the current directory.The device has
major device no. 6 and minor device no. 0.These numbers correspond to the first par-
allel port on the Linux system.

% mknod ./lp0 c 6 0

08 0430 CH06 5/22/01 10:29 AM Page 131

132 Chapter 6 Devices

Remember that only superuser processes can create block and character devices, so
you must be logged in as root to invoke this command successfully.

The ls command displays device entries specially. If you invoke ls with the -l or
-o options, the first character on each line of output specifies the type of the entry.
Recall that - (a hyphen) designates a normal file, while d designates a directory.
Similarly, b designates a block device, and c designates a character device. For the latter
two, ls prints the major and minor device numbers where it would the size of an
ordinary file. For example, we can display the block device that we just created:

% ls -l lp0
crw-r----- 1 root root 6, 0 Mar 7 17:03 lp0

In a program, you can determine whether a file system entry is a block or character
device and then retrieve its device numbers using stat. See Section B.2,“stat,” in
Appendix B, for instructions.

To remove the entry, use rm.This doesn’t remove the device or device driver; it
simply removes the device entry from the file system.

% rm ./lp0

6.3.1 The /dev Directory
By convention, a GNU/Linux system includes a directory /dev containing the full
complement of character and block device entries for devices that Linux knows about.
Entries in /dev have standardized names corresponding to major and minor device
numbers.

For example, the master device attached to the primary IDE controller, which has
major and minor device numbers 3 and 0, has the standard name /dev/hda. If this
device supports partitions, the first partition on it, which has minor device no. 1, has
the standard name /dev/hda1.You can check that this is true on your system:

% ls -l /dev/hda /dev/hda1
brw-rw---- 1 root disk 3, 0 May 5 1998 /dev/hda
brw-rw---- 1 root disk 3, 1 May 5 1998 /dev/hda1

Similarly, /dev has an entry for the parallel port character device that we used
previously:

% ls -l /dev/lp0
crw-rw---- 1 root daemon 6, 0 May 5 1998 /dev/lp0

In most cases, you should not use mknod to create your own device entries. Use the
entries in /dev instead. Non-superuser programs have no choice but to use preexisting
device entries because they cannot create their own.Typically, only system administra-
tors and developers working with specialized hardware devices will need to create
device entries. Most GNU/Linux distributions include facilities to help system
administrators create standard device entries with the correct names.

08 0430 CH06 5/22/01 10:29 AM Page 132

1336.4 Hardware Devices

6.3.2 Accessing Devices by Opening Files
How do you use these devices? In the case of character devices, it can be quite simple:
Open the device as if it were a normal file, and read from or write to it.You can even
use normal file commands such as cat, or your shell’s redirection syntax, to send data
to or from the device.

For example, if you have a printer connected to your computer’s first parallel port,
you can print files by sending them directly to /dev/lp0.1 To print the contents of
document.txt, invoke the following:

% cat document.txt > /dev/lp0

You must have permission to write to the device entry for this to succeed; on many
GNU/Linux systems, the permissions are set so that only root and the system’s printer
daemon (lpd) can write to the file.Also, what comes out of your printer depends on
how your printer interprets the contents of the data you send it. Some printers will
print plain text files that are sent to them,2 while others will not. PostScript printers
will render and print PostScript files that you send to them.

In a program, sending data to a device is just as simple. For example, this code frag-
ment uses low-level I/O functions to send the contents of a buffer to /dev/lp0.

int fd = open (“/dev/lp0”, O_WRONLY);
write (fd, buffer, buffer_length);
close (fd);

6.4 Hardware Devices
Some common block devices are listed in Table 6.1. Device numbers for similar
devices follow the obvious pattern (for instance, the second partition on the first SCSI
drive is /dev/sda2). It’s occasionally useful to know which devices these device names
correspond to when examining mounted file systems in /proc/mounts (see Section
7.5,“Drives, Mounts, and File Systems,” in Chapter 7, for more about this).

Table 6.1 Partial Listing of Common Block Devices

Device Name Major Minor

First floppy drive /dev/fd0 2 0
Second floppy drive /dev/fd1 2 1

Primary IDE controller, master device /dev/hda 3 0

Primary IDE controller, master device, /dev/hda1 3 1
first partition

1. Windows users will recognize that this device is similar to the magic Windows file LPR1.
2. Your printer may require explicit carriage return characters,ASCII code 14, at the end of

each line, and may require a form feed character,ASCII code 12, at the end of each page.

continues

08 0430 CH06 5/22/01 10:29 AM Page 133

134 Chapter 6 Devices

Primary IDE controller, secondary device /dev/hdb 3 64

Primary IDE controller, secondary device, /dev/hdb1 3 65
first partition

Secondary IDE controller, master device /dev/hdc 22 0

Secondary IDE controller, secondary device /dev/hdd 22 64

First SCSI drive /dev/sda 8 0

First SCSI drive, first partition /dev/sda1 8 1

Second SCSI disk /dev/sdb 8 16

Second SCSI disk, first partition /dev/sdb1 8 17

First SCSI CD-ROM drive /dev/scd0 11 0

Second SCSI CD-ROM drive /dev/scd1 11 1

Table 6.2 lists some common character devices.

Table 6.2 Some Common Character Devices

Device Name Major Minor

Parallel port 0 /dev/lp0 or /dev/par0 6 0

Parallel port 1 /dev/lp1 or /dev/par1 6 1

First serial port /dev/ttyS0 4 64

Second serial port /dev/ttyS1 4 65

IDE tape drive /dev/ht0 37 0

First SCSI tape drive /dev/st0 9 0

Second SCSI tape drive /dev/st1 9 1

System console /dev/console 5 1

First virtual terminal /dev/tty1 4 1

Second virtual terminal /dev/tty2 4 2

Process’s current terminal device /dev/tty 5 0

Sound card /dev/audio 14 4

You can access certain hardware components through more than one character device;
often, the different character devices provide different semantics. For example, when
you use the IDE tape device /dev/ht0, Linux automatically rewinds the tape in the
drive when you close the file descriptor.You can use the device /dev/nht0 to access
the same tape drive, except that Linux will not automatically rewind the tape when
you close the file descriptor.You sometimes might see programs using /dev/cua0 and
similar devices; these are older interfaces to serial ports such as /dev/ttyS0.

Table 6.1 Continued

Device Name Major Minor

08 0430 CH06 5/22/01 10:29 AM Page 134

1356.4 Hardware Devices

Occasionally, you’ll want to write data directly to character devices—for example:
n A terminal program might access a modem directly through a serial port device.

Data written to or read from the devices is transmitted via the modem to a
remote computer.

n A tape backup program might write data directly to a tape device.The backup
program could implement its own compression and error-checking format.

n A program can write directly to the first virtual terminal3 writing data to
/dev/tty1.

Terminal windows running in a graphical environment, or remote login terminal
sessions, are not associated with virtual terminals; instead, they’re associated with
pseudo-terminals. See Section 6.6,“PTYs,” for information about these.

n Sometimes a program needs to access the terminal device with which it is
associated.

For example, your program may need to prompt the user for a password. For
security reasons, you might want to ignore redirection of standard input and
output and always read the password from the terminal, no matter how the user
invokes the command. One way to do this is to open /dev/tty, which always
corresponds to the terminal device associated with the process that opens it.
Write the prompt message to that device, and read the password from it. By
ignoring standard input and output, this prevents the user from feeding your
program a password from a file using shell syntax such as this:

% secure_program < my-password.txt

If you need to authenticate users in your program, you should learn about
GNU/Linux’s PAM facility. See Section 10.5,“Authenticating Users,” in
Chapter 10,“Security,” for more information.

n A program can play sounds through the system’s sound card by sending audio
data to /dev/audio. Note that the audio data must be in Sun audio format (usu-
ally associated with the .au extension).

For example, many GNU/Linux distributions come with the classic sound file
/usr/share/sndconfig/sample.au. If your system includes this file, try playing it
by invoking the following:

% cat /usr/share/sndconfig/sample.au > /dev/audio

If you’re planning on using sound in your program, though, you should investi-
gate the various sound libraries and services available for GNU/Linux.The
Gnome windowing environment uses the Enlightenment Sound Daemon
(EsounD), at http://www.tux.org/~ricdude/EsounD.html. KDE uses aRts, at
http://space.twc.de/~stefan/kde/arts-mcop-doc/. If you use one of these
sound systems instead of writing directly to /dev/audio, your program will
cooperate better with other programs that use the computer’s sound card.

3. On most GNU/Linux systems, you can switch to the first virtual terminal by pressing
Ctrl+Alt+F1. Use Ctrl+Alt+F2 for the second virtual terminal, and so on.

08 0430 CH06 5/22/01 10:29 AM Page 135

136 Chapter 6 Devices

6.5 Special Devices
Linux also provides several character devices that don’t correspond to hardware
devices.These entries all use the major device no. 1, which is associated with the
Linux kernel’s memory device instead of a device driver.

6.5.1 /dev/null
The entry /dev/null, the null device, is very handy. It serves two purposes; you are
probably familiar at least with the first one:

n Linux discards any data written to /dev/null.A common trick is to specify
/dev/null as an output file in some context where the output is unwanted.

For example, to run a command and discard its standard output (without print-
ing it or writing it to a file), redirect standard output to /dev/null:

% verbose_command > /dev/null

n Reading from /dev/null always results in an end-of-file. For instance, if you
open a file descriptor to /dev/null using open and then attempt to read from
the file descriptor, read will read no bytes and will return 0. If you copy from
/dev/null to another file, the destination will be a zero-length file:

% cp /dev/null empty-file
% ls -l empty-file
-rw-rw---- 1 samuel samuel 0 Mar 8 00:27 empty-file

6.5.2 /dev/zero
The device entry /dev/zero behaves as if it were an infinitely long file filled with 0
bytes.As much data as you’d try to read from /dev/zero, Linux “generates” enough 0
bytes.

To illustrate this, let’s run the hex dump program presented in Listing B.4 in
Section B.1.4,“Reading Data,” of Appendix B.This program prints the contents of a
file in hexadecimal form.

% ./hexdump /dev/zero
0x000000 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x000010 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x000020 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x000030 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...

Hit Ctrl+C when you’re convinced that it will go on indefinitely.
Memory mapping /dev/zero is an advanced technique for allocating memory. See

Section 5.3.5,“Other Uses for mmap,” in Chapter 5,“Interprocess Communication,” for
more information, and see the sidebar “Obtaining Page-Aligned Memory” in Section
8.9,“mprotect: Setting Memory Permissions,” in Chapter 8,“Linux System Calls,” for
an example.

08 0430 CH06 5/22/01 10:29 AM Page 136

1376.5 Special Devices

6.5.3 /dev/full
The entry /dev/full behaves as if it were a file on a file system that has no more
room.A write to /dev/full fails and sets errno to ENOSPC, which ordinarily indicates
that the written-to device is full.

For example, you can try to write to /dev/full using the cp command:
% cp /etc/fstab /dev/full
cp: /dev/full: No space left on device

The /dev/full entry is primarily useful to test how your program behaves if it runs
out of disk space while writing to a file.

6.5.4 Random Number Devices
The special devices /dev/random and /dev/urandom provide access to the Linux ker-
nel’s built-in random number–generation facility.

Most software functions for generating random numbers, such as the rand function
in the standard C library, actually generate pseudorandom numbers. Although these
numbers satisfy some properties of random numbers, they are reproducible: If you start
with the same seed value, you’ll obtain the same sequence of pseudorandom numbers
every time.This behavior is inevitable because computers are intrinsically deterministic
and predictable. For certain applications, though, this behavior is undesirable; for
instance, it is sometimes possible to break a cryptographic algorithm if you can obtain
the sequence of random numbers that it employs.

To obtain better random numbers in computer programs requires an external
source of randomness.The Linux kernel harnesses a particularly good source of
randomness: you! By measuring the time delay between your input actions, such as
keystrokes and mouse movements, Linux is capable of generating an unpredictable
stream of high-quality random numbers.You can access this stream by reading from
/dev/random and /dev/urandom.The data that you read is a stream of randomly
generated bytes.

The difference between the two devices exhibits itself when Linux exhausts its
store of randomness. If you try to read a large number of bytes from /dev/random but
don’t generate any input actions (you don’t type, move the mouse, or perform a similar
action), Linux blocks the read operation. Only when you provide some randomness
does Linux generate some more random bytes and return them to your program.

For example, try displaying the contents of /dev/random using the od command.4

Each row of output shows 16 random bytes.

4.We use od here instead of the hexdump program presented in Listing B.4, even though they
do pretty much the same thing, because hexdump terminates when it runs out of data, while od
waits for more data to become available.The -t x1 option tells od to print file contents in
hexadecimal.

08 0430 CH06 5/22/01 10:29 AM Page 137

138 Chapter 6 Devices

% od -t x1 /dev/random
0000000 2c 9c 7a db 2e 79 3d 65 36 c2 e3 1b 52 75 1e 1a
0000020 d3 6d 1e a7 91 05 2d 4d c3 a6 de 54 29 f4 46 04
0000040 b3 b0 8d 94 21 57 f3 90 61 dd 26 ac 94 c3 b9 3a
0000060 05 a3 02 cb 22 0a bc c9 45 dd a6 59 40 22 53 d4

The number of lines of output that you see will vary—there may be quite a few—but
the output will eventually pause when Linux exhausts its store of randomness. Now
try moving your mouse or typing on the keyboard, and watch additional random
numbers appear. For even better randomness, let your cat walk on the keyboard.

A read from /dev/urandom, in contrast, will never block. If Linux runs out of ran-
domness, it uses a cryptographic algorithm to generate pseudorandom bytes from the
past sequence of random bytes.Although these bytes are random enough for many
purposes, they don’t pass as many tests of randomness as those obtained from
/dev/random.

For instance, if you invoke the following, the random bytes will fly by forever, until
you kill the program with Ctrl+C:

% od -t x1 /dev/urandom
0000000 62 71 d6 3e af dd de 62 c0 42 78 bd 29 9c 69 49
0000020 26 3b 95 bc b9 6c 15 16 38 fd 7e 34 f0 ba ce c3
0000040 95 31 e5 2c 8d 8a dd f4 c4 3b 9b 44 2f 20 d1 54
...

Using random numbers from /dev/random in a program is easy, too. Listing 6.1
presents a function that generates a random number using bytes read from in
/dev/random. Remember that /dev/random blocks a read until there is enough ran-
domness available to satisfy it; you can use /dev/urandom instead if fast execution is
more important and you can live with the potential lower quality of random numbers.

Listing 6.1 (random_number.c) Function to Generate a Random Number
Using /dev/random

#include <assert.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>

/* Return a random integer between MIN and MAX, inclusive. Obtain
randomness from /dev/random. */

int random_number (int min, int max)
{
/* Store a file descriptor opened to /dev/random in a static

variable. That way, we don’t need to open the file every time
this function is called. */

static int dev_random_fd = -1;

08 0430 CH06 5/22/01 10:29 AM Page 138

1396.5 Special Devices

char* next_random_byte;
int bytes_to_read;
unsigned random_value;

/* Make sure MAX is greater than MIN. */
assert (max > min);

/* If this is the first time this function is called, open a file
descriptor to /dev/random. */

if (dev_random_fd == -1) {
dev_random_fd = open (“/dev/random”, O_RDONLY);
assert (dev_random_fd != -1);

}

/* Read enough random bytes to fill an integer variable. */
next_random_byte = (char*) &random_value;
bytes_to_read = sizeof (random_value);
/* Loop until we’ve read enough bytes. Because /dev/random is filled

from user-generated actions, the read may block and may only
return a single random byte at a time. */

do {
int bytes_read;
bytes_read = read (dev_random_fd, next_random_byte, bytes_to_read);
bytes_to_read -= bytes_read;
next_random_byte += bytes_read;

} while (bytes_to_read > 0);

/* Compute a random number in the correct range. */
return min + (random_value % (max - min + 1));

}

6.5.5 Loopback Devices
A loopback device enables you to simulate a block device using an ordinary disk file.
Imagine a disk drive device for which data is written to and read from a file named
disk-image rather than to and from the tracks and sectors of an actual physical disk
drive or disk partition. (Of course, the file disk-image must reside on an actual disk,
which must be larger than the simulated disk.) A loopback device enables you to use a
file in this manner.

Loopback devices are named /dev/loop0, /dev/loop1, and so on. Each can be used
to simulate a single block device at one time. Note that only the superuser can set up
a loopback device.

A loopback device can be used in the same way as any other block device. In
particular, you can construct a file system on the device and then mount that file sys-
tem as you would mount the file system on an ordinary disk or partition. Such a file
system, which resides in its entirety within an ordinary disk file, is called a virtual file
system.

08 0430 CH06 5/22/01 10:29 AM Page 139

140 Chapter 6 Devices

To construct a virtual file system and mount it with a loopback device, follow
these steps:

1. Create an empty file to hold the virtual file system.The size of the file will be
the apparent size of the loopback device after it is mounted.

One convenient way to construct a file of a fixed size is with the dd command.
This command copies blocks (by default, 512 bytes each) from one file to
another.The /dev/zero file is a convenient source of bytes to copy from.

To construct a 10MB file named disk-image, invoke the following:

% dd if=/dev/zero of=/tmp/disk-image count=20480

20480+0 records in

20480+0 records out

% ls -l /tmp/disk-image

-rw-rw---- 1 root root 10485760 Mar 8 01:56 /tmp/disk-image

2. The file that you’ve just created is filled with 0 bytes. Before you mount it, you
must construct a file system.This sets up the various control structures needed to
organize and store files, and builds the root directory.

You can build any type of file system you like in your disk image.To construct
an ext2 file system (the type most commonly used for Linux disks), use the
mke2fs command. Because it’s usually run on a block device, not an ordinary
file, it asks for confirmation:

% mke2fs -q /tmp/disk-image

mke2fs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09

disk-image is not a block special device.

Proceed anyway? (y,n) y

The -q option suppresses summary information about the newly created file
system. Leave this option out if you’re curious about it.

Now disk-image contains a brand-new file system, as if it were a freshly
initialized 10MB disk drive.

08 0430 CH06 5/22/01 2:37 PM Page 140

1416.5 Special Devices

3. Mount the file system using a loopback device.To do this, use the mount
command, specifying the disk image file as the mount device.Also specify
loop=loopback-device as a mount option, using the -o option to mount to tell
mount which loopback device to use.

For example, to mount our disk-image file system, invoke these commands.
Remember, only the superuser may use a loopback device.The first command
creates a directory, /tmp/virtual-fs, to use as the mount point for the virtual
file system.

% mkdir /tmp/virtual-fs

% mount -o loop=/dev/loop0 /tmp/disk-image /tmp/virtual-fs

Now your disk image is mounted as if it were an ordinary 10MB disk drive.

% df -h /tmp/virtual-fs

Filesystem Size Used Avail Use% Mounted on

/tmp/disk-image 9.7M 13k 9.2M 0% /tmp/virtual-fs

You can use it like any other disk:

% cd /tmp/virtual-fs

% echo ‘Hello, world!’ > test.txt

% ls -l

total 13

drwxr-xr-x 2 root root 12288 Mar 8 02:00 lost+found

-rw-rw---- 1 root root 14 Mar 8 02:12 test.txt

% cat test.txt

Hello, world!

Note that lost+found is a directory that was automatically added by mke2fs.5

5. If the file system is ever damaged, and some data is recovered but not associated with a
file, it is placed in lost+found.

08 0430 CH06 5/22/01 2:37 PM Page 141

142 Chapter 6 Devices

When you’re done, unmount the virtual file system.

% cd /tmp

% umount /tmp/virtual-fs

You can delete disk-image if you like, or you can mount it later to access the
files on the virtual file system.You can also copy it to another computer and
mount it there—the whole file system that you created on it will be intact.

Instead of creating a file system from scratch, you can copy one directly from a device.
For instance, you can create an image of the contents of a CD-ROM simply by
copying it from the CD-ROM device.

If you have an IDE CD-ROM drive, use the corresponding device name, such as
/dev/hda, described previously. If you have a SCSI CD-ROM drive, the device name
will be /dev/scd0 or similar.Your system may also have a symbolic link /dev/cdrom
that points to the appropriate device. Consult your /etc/fstab file to determine what
device corresponds to your computer’s CD-ROM drive.

Simply copy that device to a file.The resulting file will be a complete disk image of
the file system on the CD-ROM in the drive—for example:

% cp /dev/cdrom /tmp/cdrom-image

This may take several minutes, depending on the CD-ROM you’re copying and the
speed of your drive.The resulting image file will be quite large—as large as the con-
tents of the CD-ROM.

Now you can mount this CD-ROM image without having the original CD-ROM
in the drive. For example, to mount it on /mnt/cdrom, use this line:

% mount -o loop=/dev/loop0 /tmp/cdrom-image /mnt/cdrom

Because the image is on a hard disk drive, it’ll perform much faster than the actual
CD-ROM disk. Note that most CD-ROMs use the file system type iso9660.

6.6 PTYs
If you run the mount command with no command-line arguments, which displays
the file systems mounted on your system, you’ll notice a line that looks something
like this:

none on /dev/pts type devpts (rw,gid=5,mode=620)

This indicates that a special type of file system, devpts, is mounted at /dev/pts.This
file system, which isn’t associated with any hardware device, is a “magic” file system
that is created by the Linux kernel. It’s similar to the /proc file system; see Chapter 7
for more information about how this works.

08 0430 CH06 5/22/01 2:37 PM Page 142

1436.6 PTYs

Like the /dev directory, /dev/pts contains entries corresponding to devices. But
unlike /dev, which is an ordinary directory, /dev/pts is a special directory that is cre-
ated dynamically by the Linux kernel.The contents of the directory vary with time
and reflect the state of the running system.

The entries in /dev/pts correspond to pseudo-terminals (or pseudo-TTYs, or PTYs).
Linux creates a PTY for every new terminal window you open and displays a corre-
sponding entry in /dev/pts.The PTY device acts like a terminal device—it accepts
input from the keyboard and displays text output from the programs that run in it.
PTYs are numbered, and the PTY number is the name of the corresponding entry in
/dev/pts.

You can display the terminal device associated with a process using the ps com-
mand. Specify tty as one of the fields of a custom format with the -o option.To dis-
play the process ID,TTY, and command line of each process sharing the same
terminal, invoke ps -o pid,tty,cmd.

6.6.1 A PTY Demonstration
For example, you can determine the PTY associated with a given terminal window by
invoking in the window this command:

% ps -o pid,tty,cmd
PID TT CMD

28832 pts/4 bash
29287 pts/4 ps -o pid,tty,cmd

This particular terminal window is running in PTY 4.
The PTY has a corresponding entry in /dev/pts:
% ls -l /dev/pts/4
crw--w---- 1 samuel tty 136, 4 Mar 8 02:56 /dev/pts/4

Note that it is a character device, and its owner is the owner of the process for which
it was created.

You can read from or write to the PTY device. If you read from it, you’ll hijack
keyboard input that would otherwise be sent to the program running in the PTY. If
you write to it, the data will appear in that window.

Try opening a new terminal window, and determine its PTY number by invoking
ps -o pid,tty,cmd. From another window, write some text to the PTY device. For
example, if the new terminal window’s PTY number is 7, invoke this command from
another window:

% echo ‘Hello, other window!’ > /dev/pts/7

The output appears in the new terminal window. If you close the new terminal win-
dow, the entry 7 in /dev/pts disappears.

08 0430 CH06 5/22/01 10:29 AM Page 143

144 Chapter 6 Devices

If you invoke ps to determine the TTY from a text-mode virtual terminal (press
Ctrl+Alt+F1 to switch to the first virtual terminal, for instance), you’ll see that it’s
running in an ordinary terminal device instead of a PTY:

% ps -o pid,tty,cmd
PID TT CMD

29325 tty1 -bash
29353 tty1 ps -o pid,tty,cmd

6.7 ioctl
The ioctl system call is an all-purpose interface for controlling hardware devices.The
first argument to ioctl is a file descriptor, which should be opened to the device that
you want to control.The second argument is a request code that indicates the opera-
tion that you want to perform.Various request codes are available for different devices.
Depending on the request code, there may be additional arguments supplying data
to ioctl.

Many of the available requests codes for various devices are listed in the ioctl_list
man page. Using ioctl generally requires a detailed understanding of the device driver
corresponding to the hardware device that you want to control. Most of these are
quite specialized and are beyond the scope of this book. However, we’ll present one
example to give you a taste of how ioctl is used.

Listing 6.2 (cdrom-eject.c) Eject a CD-ROM

#include <fcntl.h>
#include <linux/cdrom.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
/* Open a file descriptor to the device specified on the command line. */
int fd = open (argv[1], O_RDONLY);
/* Eject the CD-ROM. */
ioctl (fd, CDROMEJECT);
/* Close the file descriptor. */
close (fd);

return 0;
}

08 0430 CH06 5/22/01 10:29 AM Page 144

1456.7 ioctl

Listing 6.2 presents a short program that ejects the disk in a CD-ROM drive (if the
drive supports this). It takes a single command-line argument, the CD-ROM drive
device. It opens a file descriptor to the device and invokes ioctl with the request
code CDROMEJECT.This request, defined in the header <linux/cdrom.h>, instructs the
device to eject the disk.

For example, if your system has an IDE CD-ROM drive connected as the master
device on the secondary IDE controller, the corresponding device is /dev/hdc.To eject
the disk from the drive, invoke this line:

% ./cdrom-eject /dev/hdc

08 0430 CH06 5/22/01 10:29 AM Page 145

08 0430 CH06 5/22/01 10:29 AM Page 146

The /proc File System

7

TRY INVOKING THE mount COMMAND WITHOUT ARGUMENTS—this displays the file
systems currently mounted on your GNU/Linux computer.You’ll see one line that
looks like this:

none on /proc type proc (rw)

This is the special /proc file system. Notice that the first field, none, indicates that this
file system isn’t associated with a hardware device such as a disk drive. Instead, /proc

is a window into the running Linux kernel. Files in the /proc file system don’t corre-
spond to actual files on a physical device. Instead, they are magic objects that behave
like files but provide access to parameters, data structures, and statistics in the kernel.
The “contents” of these files are not always fixed blocks of data, as ordinary file con-
tents are. Instead, they are generated on the fly by the Linux kernel when you read
from the file.You can also change the configuration of the running kernel by writing
to certain files in the /proc file system.

Let’s look at an example:
% ls -l /proc/version
-r--r--r-- 1 root root 0 Jan 17 18:09 /proc/version

Note that the file size is zero; because the file’s contents are generated by the kernel,
the concept of file size is not applicable.Also, if you try this command yourself, you’ll
notice that the modification time on the file is the current time.

09 0430 CH07 5/22/01 10:30 AM Page 147

148 Chapter 7 The /proc File System

What’s in this file? The contents of /proc/version consist of a string describing the
Linux kernel version number. It contains the version information that would be
obtained by the uname system call, described in Chapter 8,“Linux System Calls,” in
Section 8.15,“uname,” plus additional information such as the version of the compiler
that was used to compile the kernel.You can read from /proc/version like you would
any other file. For instance, an easy way to display its contents is with the cat command.

% cat /proc/version
Linux version 2.2.14-5.0 (root@porky.devel.redhat.com) (gcc version egcs-2.91.
66 19990314/Linux (egcs-1.1.2 release)) #1 Tue Mar 7 21:07:39 EST 2000

The various entries in the /proc file system are described extensively in the proc man
page (Section 5).To view it, invoke this command:

% man 5 proc

In this chapter, we’ll describe some of the features of the /proc file system that are
most likely to be useful to application programmers, and we’ll give examples of using
them. Some of the features of /proc are handy for debugging, too.

If you’re interested in exactly how /proc works, take a look at the source code in
the Linux kernel sources, under /usr/src/linux/fs/proc/.

7.1 Extracting Information from /proc
Most of the entries in /proc provide information formatted to be readable by humans,
but the formats are simple enough to be easily parsed. For example, /proc/cpuinfo
contains information about the system CPU (or CPUs, for a multiprocessor machine).
The output is a table of values, one per line, with a description of the value and a
colon preceding each value.

For example, the output might look like this:
% cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 5
model name : Pentium II (Deschutes)
stepping : 2
cpu MHz : 400.913520
cache size : 512 KB
fdiv_bug : no
hlt_bug : no
sep_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep
mtrr pge mca cmov pat pse36 mmx fxsr
bogomips : 399.77

09 0430 CH07 5/22/01 10:30 AM Page 148

1497.1 Extracting Information from /proc

We’ll describe the interpretation of some of these fields in Section 7.3.1,“CPU
Information.”

A simple way to extract a value from this output is to read the file into a buffer and
parse it in memory using sscanf. Listing 7.1 shows an example of this.The program
includes the function get_cpu_clock_speed that reads from /proc/cpuinfo into
memory and extracts the first CPU’s clock speed.

Listing 7.1 (clock-speed.c) Extract CPU Clock Speed from /proc/cpuinfo

#include <stdio.h>
#include <string.h>

/* Returns the clock speed of the system’s CPU in MHz, as reported by
/proc/cpuinfo. On a multiprocessor machine, returns the speed of
the first CPU. On error returns zero. */

float get_cpu_clock_speed ()
{
FILE* fp;
char buffer[1024];
size_t bytes_read;
char* match;
float clock_speed;

/* Read the entire contents of /proc/cpuinfo into the buffer. */
fp = fopen (“/proc/cpuinfo”, “r”);
bytes_read = fread (buffer, 1, sizeof (buffer), fp);
fclose (fp);
/* Bail if read failed or if buffer isn’t big enough. */
if (bytes_read == 0 || bytes_read == sizeof (buffer))
return 0;

/* NUL-terminate the text. */
buffer[bytes_read] = ‘\0’;
/* Locate the line that starts with “cpu MHz”. */
match = strstr (buffer, “cpu MHz”);
if (match == NULL)
return 0;

/* Parse the line to extract the clock speed. */
sscanf (match, “cpu MHz : %f”, &clock_speed);
return clock_speed;

}

int main ()
{
printf (“CPU clock speed: %4.0f MHz\n”, get_cpu_clock_speed ());
return 0;

}

09 0430 CH07 5/22/01 10:30 AM Page 149

150 Chapter 7 The /proc File System

Be aware, however, that the names, semantics, and output formats of entries in the
/proc file system might change in new Linux kernel revisions. If you use them in a
program, you should make sure that the program’s behavior degrades gracefully if the
/proc entry is missing or is formatted unexpectedly.

7.2 Process Entries
The /proc file system contains a directory entry for each process running on the
GNU/Linux system.The name of each directory is the process ID of the correspond-
ing process.1 These directories appear and disappear dynamically as processes start and
terminate on the system. Each directory contains several entries providing access to
information about the running process. From these process directories the /proc file
system gets its name.

Each process directory contains these entries:
n cmdline contains the argument list for the process.The cmdline entry is

described in Section 7.2.2,“Process Argument List.”
n cwd is a symbolic link that points to the current working directory of the process

(as set, for instance, with the chdir call).
n environ contains the process’s environment.The environ entry is described in

Section 7.2.3,“Process Environment.”
n exe is a symbolic link that points to the executable image running in the

process.The exe entry is described in Section 7.2.4,“Process Executable.”
n fd is a subdirectory that contains entries for the file descriptors opened by the

process.These are described in Section 7.2.5,“Process File Descriptors.”
n maps displays information about files mapped into the process’s address. See

Chapter 5,“Interprocess Communication,” Section 5.3,“Mapped Memory,” for
details of how memory-mapped files work. For each mapped file, maps displays
the range of addresses in the process’s address space into which the file is
mapped, the permissions on these addresses, the name of the file, and other
information.

The maps table for each process displays the executable running in the process,
any loaded shared libraries, and other files that the process has mapped in.

n root is a symbolic link to the root directory for this process. Usually, this is a
symbolic link to /, the system root directory.The root directory for a process
can be changed using the chroot call or the chroot command.2

1. On some UNIX systems, the process IDs are padded with zeros. On GNU/Linux, they
are not.

2.The chroot call and command are outside the scope of this book. See the chroot man page
in Section 1 for information about the command (invoke man 1 chroot), or the chroot man
page in Section 2 (invoke man 2 chroot) for information about the call.

09 0430 CH07 5/22/01 10:30 AM Page 150

1517.2 Process Entries

n stat contains lots of status and statistical information about the process.These
are the same data as presented in the status entry, but in raw numerical format,
all on a single line.The format is difficult to read but might be more suitable for
parsing by programs.

If you want to use the stat entry in your programs, see the proc man page,
which describes its contents, by invoking man 5 proc.

n statm contains information about the memory used by the process.The statm
entry is described in Section 7.2.6,“Process Memory Statistics.”

n status contains lots of status and statistical information about the process,
formatted to be comprehensible by humans. Section 7.2.7,“Process Statistics,”
contains a description of the status entry.

n The cpu entry appears only on SMP Linux kernels. It contains a breakdown of
process time (user and system) by CPU.

Note that for security reasons, the permissions of some entries are set so that only the
user who owns the process (or the superuser) can access them.

7.2.1 /proc/self
One additional entry in the /proc file system makes it easy for a program to use /proc
to find information about its own process.The entry /proc/self is a symbolic link to
the /proc directory corresponding to the current process.The destination of the
/proc/self link depends on which process looks at it: Each process sees its own
process directory as the target of the link.

For example, the program in Listing 7.2 reads the target of the /proc/self link to
determine its process ID. (We’re doing it this way for illustrative purposes only; calling
the getpid function, described in Chapter 3,“Processes,” in Section 3.1.1,“Process
IDs,” is a much easier way to do the same thing.) This program uses the readlink sys-
tem call, described in Section 8.11,“readlink: Reading Symbolic Links,” to extract
the target of the symbolic link.

Listing 7.2 (get-pid.c) Obtain the Process ID from /proc/self

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

/* Returns the process ID of the calling processes, as determined from
the /proc/self symlink. */

pid_t get_pid_from_proc_self ()
{
char target[32];
int pid;
/* Read the target of the symbolic link. */
readlink (“/proc/self”, target, sizeof (target));

continues

09 0430 CH07 5/22/01 10:30 AM Page 151

152 Chapter 7 The /proc File System

/* The target is a directory named for the process ID. */
sscanf (target, “%d”, &pid);
return (pid_t) pid;

}

int main ()
{
printf (“/proc/self reports process id %d\n”,

(int) get_pid_from_proc_self ());
printf (“getpid() reports process id %d\n”, (int) getpid ());
return 0;

}

7.2.2 Process Argument List
The cmdline entry contains the process argument list (see Chapter 2,“Writing Good
GNU/Linux Software,” Section 2.1.1,“The Argument List”).The arguments are pre-
sented as a single character string, with arguments separated by NULs. Most string func-
tions expect that the entire character string is terminated with a single NUL and will not
handle NULs embedded within strings, so you’ll have to handle the contents specially.

NUL vs. NULL
NUL is the character with integer value 0. It’s different from NULL, which is a pointer with value 0.

In C, a character string is usually terminated with a NUL character. For instance, the character string

“Hello, world!” occupies 14 bytes because there is an implicit NUL after the exclamation point

indicating the end of the string.

NULL, on the other hand, is a pointer value that you can be sure will never correspond to a real memory

address in your program.

In C and C++, NUL is expressed as the character constant ‘\0’, or (char) 0. The definition of NULL

differs among operating systems; on Linux, it is defined as ((void*)0) in C and simply 0 in C++.

In Section 2.1.1, we presented a program in Listing 2.1 that printed out its own argu-
ment list. Using the cmdline entries in the /proc file system, we can implement a pro-
gram that prints the argument of another process. Listing 7.3 is such a program; it
prints the argument list of the process with the specified process ID. Because there
may be several NULs in the contents of cmdline rather than a single one at the end,
we can’t determine the length of the string with strlen (which simply counts the
number of characters until it encounters a NUL). Instead, we determine the length of
cmdline from read, which returns the number of bytes that were read.

Listing 7.2 Continued

09 0430 CH07 5/22/01 10:30 AM Page 152

1537.2 Process Entries

Listing 7.3 (print-arg-list.c) Print the Argument List of a Running Process

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

/* Prints the argument list, one argument to a line, of the process
given by PID. */

void print_process_arg_list (pid_t pid)
{
int fd;
char filename[24];
char arg_list[1024];
size_t length;
char* next_arg;

/* Generate the name of the cmdline file for the process. */
snprintf (filename, sizeof (filename), “/proc/%d/cmdline”, (int) pid);
/* Read the contents of the file. */
fd = open (filename, O_RDONLY);
length = read (fd, arg_list, sizeof (arg_list));
close (fd);
/* read does not NUL-terminate the buffer, so do it here. */
arg_list[length] = ‘\0’;

/* Loop over arguments. Arguments are separated by NULs. */
next_arg = arg_list;
while (next_arg < arg_list + length) {
/* Print the argument. Each is NUL-terminated, so just treat it

like an ordinary string. */
printf (“%s\n”, next_arg);
/* Advance to the next argument. Since each argument is

NUL-terminated, strlen counts the length of the next argument,
not the entire argument list. */

next_arg += strlen (next_arg) + 1;
}

}

int main (int argc, char* argv[])
{
pid_t pid = (pid_t) atoi (argv[1]);
print_process_arg_list (pid);
return 0;

}

09 0430 CH07 5/22/01 10:30 AM Page 153

154 Chapter 7 The /proc File System

For example, suppose that process 372 is the system logger daemon, syslogd.
% ps 372
PID TTY STAT TIME COMMAND
372 ? S 0:00 syslogd -m 0

% ./print-arg-list 372
syslogd
-m
0

In this case, syslogd was invoked with the arguments -m 0.

7.2.3 Process Environment
The environ entry contains a process’s environment (see Section 2.1.6,“The
Environment”).As with cmdline, the individual environment variables are separated by
NULs.The format of each element is the same as that used in the environ variable,
namely VARIABLE=value.

Listing 7.4 presents a generalization of the program in Listing 2.3 in Section 2.1.6.
This version takes a process ID number on its command line and prints the environ-
ment for that process by reading it from /proc.

Listing 7.4 (print-environment.c) Display the Environment of a Process

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

/* Prints the environment, one environment variable to a line, of the
process given by PID. */

void print_process_environment (pid_t pid)
{
int fd;
char filename[24];
char environment[8192];
size_t length;
char* next_var;

/* Generate the name of the environ file for the process. */
snprintf (filename, sizeof (filename), “/proc/%d/environ”, (int) pid);
/* Read the contents of the file. */
fd = open (filename, O_RDONLY);
length = read (fd, environment, sizeof (environment));
close (fd);
/* read does not NUL-terminate the buffer, so do it here. */
environment[length] = ‘\0’;

09 0430 CH07 5/22/01 10:30 AM Page 154

1557.2 Process Entries

/* Loop over variables. Variables are separated by NULs. */
next_var = environment;
while (next_var < environment + length) {
/* Print the variable. Each is NUL-terminated, so just treat it

like an ordinary string. */
printf (“%s\n”, next_var);
/* Advance to the next variable. Since each variable is

NUL-terminated, strlen counts the length of the next variable,
not the entire variable list. */

next_var += strlen (next_var) + 1;
}

}

int main (int argc, char* argv[])
{
pid_t pid = (pid_t) atoi (argv[1]);
print_process_environment (pid);
return 0;

}

7.2.4 Process Executable
The exe entry points to the executable file being run in a process. In Section 2.1.1,
we explained that typically the program executable name is passed as the first element
of the argument list. Note, though, that this is purely conventional; a program may be
invoked with any argument list. Using the exe entry in the /proc file system is a more
reliable way to determine which executable is running.

One useful technique is to extract the path containing the executable from the
/proc file system. For many programs, auxiliary files are installed in directories with
known paths relative to the main program executable, so it’s necessary to determine
where that executable actually is.The function get_executable_path in Listing 7.5
determines the path of the executable running in the calling process by examining the
symbolic link /proc/self/exe.

Listing 7.5 (get-exe-path.c) Get the Path of the Currently Running Program
Executable

#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

/* Finds the path containing the currently running program executable.
The path is placed into BUFFER, which is of length LEN. Returns
the number of characters in the path, or -1 on error. */

continues

09 0430 CH07 5/22/01 10:30 AM Page 155

156 Chapter 7 The /proc File System

size_t get_executable_path (char* buffer, size_t len)
{
char* path_end;
/* Read the target of /proc/self/exe. */
if (readlink (“/proc/self/exe”, buffer, len) <= 0)
return -1;

/* Find the last occurrence of a forward slash, the path separator. */
path_end = strrchr (buffer, ‘/’);
if (path_end == NULL)
return -1;

/* Advance to the character past the last slash. */
++path_end;
/* Obtain the directory containing the program by truncating the

path after the last slash. */
*path_end = ‘\0’;
/* The length of the path is the number of characters up through the

last slash. */
return (size_t) (path_end - buffer);

}

int main ()
{
char path[PATH_MAX];
get_executable_path (path, sizeof (path));
printf (“this program is in the directory %s\n”, path);
return 0;

}

7.2.5 Process File Descriptors
The fd entry is a subdirectory that contains entries for the file descriptors opened by a
process. Each entry is a symbolic link to the file or device opened on that file descrip-
tor.You can write to or read from these symbolic links; this writes to or reads from the
corresponding file or device opened in the target process.The entries in the fd subdi-
rectory are named by the file descriptor numbers.

Here’s a neat trick you can try with fd entries in /proc. Open a new window, and
find the process ID of the shell process by running ps.

% ps
PID TTY TIME CMD
1261 pts/4 00:00:00 bash
2455 pts/4 00:00:00 ps

Listing 7.5 Continued

09 0430 CH07 5/22/01 10:30 AM Page 156

1577.2 Process Entries

In this case, the shell (bash) is running in process 1261. Now open a second window,
and look at the contents of the fd subdirectory for that process.

% ls -l /proc/1261/fd
total 0
lrwx------ 1 samuel samuel 64 Jan 30 01:02 0 -> /dev/pts/4
lrwx------ 1 samuel samuel 64 Jan 30 01:02 1 -> /dev/pts/4
lrwx------ 1 samuel samuel 64 Jan 30 01:02 2 -> /dev/pts/4

(There may be other lines of output corresponding to other open file descriptors as
well.) Recall that we mentioned in Section 2.1.4,“Standard I/O,” that file descriptors
0, 1, and 2 are initialized to standard input, output, and error, respectively.Thus, by
writing to /proc/1261/fd/1, you can write to the device attached to stdout for the
shell process—in this case, the pseudo TTY in the first window. In the second win-
dow, try writing a message to that file:

% echo “Hello, world.” >> /proc/1261/fd/1

The text appears in the first window.
File descriptors besides standard input, output, and error appear in the fd subdirec-

tory, too. Listing 7.6 presents a program that simply opens a file descriptor to a file
specified on the command line and then loops forever.

Listing 7.6 (open-and-spin.c) Open a File for Reading

#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
const char* const filename = argv[1];
int fd = open (filename, O_RDONLY);
printf (“in process %d, file descriptor %d is open to %s\n”,

(int) getpid (), (int) fd, filename);
while (1);
return 0;

}

Try running it in one window:
% ./open-and-spin /etc/fstab
in process 2570, file descriptor 3 is open to /etc/fstab

In another window, take a look at the fd subdirectory corresponding to this process in
/proc.

% ls -l /proc/2570/fd
total 0
lrwx------ 1 samuel samuel 64 Jan 30 01:30 0 -> /dev/pts/2

09 0430 CH07 5/22/01 10:30 AM Page 157

158 Chapter 7 The /proc File System

lrwx------ 1 samuel samuel 64 Jan 30 01:30 1 -> /dev/pts/2
lrwx------ 1 samuel samuel 64 Jan 30 01:30 2 -> /dev/pts/2
lr-x------ 1 samuel samuel 64 Jan 30 01:30 3 -> /etc/fstab

Notice the entry for file descriptor 3, linked to the file /etc/fstab opened on this
descriptor.

File descriptors can be opened on sockets or pipes, too (see Chapter 5 for more
information about these). In such a case, the target of the symbolic link corresponding
to the file descriptor will state “socket” or “pipe” instead of pointing to an ordinary
file or device.

7.2.6 Process Memory Statistics
The statm entry contains a list of seven numbers, separated by spaces. Each number is
a count of the number of pages of memory used by the process in a particular cate-
gory.The categories, in the order the numbers appear, are listed here:

n The total process size
n The size of the process resident in physical memory
n The memory shared with other processes—that is, memory mapped both by

this process and at least one other (such as shared libraries or untouched copy-
on-write pages)

n The text size of the process—that is, the size of loaded executable code
n The size of shared libraries mapped into this process
n The memory used by this process for its stack
n The number of dirty pages—that is, pages of memory that have been modified

by the program

7.2.7 Process Statistics
The status entry contains a variety of information about the process, formatted for
comprehension by humans.Among this information is the process ID and parent
process ID, the real and effective user and group IDs, memory usage, and bit masks
specifying which signals are caught, ignored, and blocked.

7.3 Hardware Information
Several of the other entries in the /proc file system provide access to information
about the system hardware.Although these are typically of interest to system configu-
rators and administrators, the information may occasionally be of use to application
programmers as well.We’ll present some of the more useful entries here.

09 0430 CH07 5/22/01 10:30 AM Page 158

1597.3 Hardware Information

7.3.1 CPU Information
As shown previously, /proc/cpuinfo contains information about the CPU or CPUs
running the GNU/Linux system.The Processor field lists the processor number; this is
0 for single-processor systems.The Vendor, CPU Family, Model, and Stepping fields
enable you to determine the exact model and revision of the CPU. More useful, the
Flags field shows which CPU flags are set, which indicates the features available in
this CPU. For example,“mmx” indicates the availability of the extended MMX
instructions.3

Most of the information returned from /proc/cpuinfo is derived from the cpuid
x86 assembly instruction.This instruction is the low-level mechanism by which a pro-
gram obtains information about the CPU. For a greater understanding of the output
of /proc/cpuinfo, see the documentation of the cpuid instruction in Intel’s IA-32 Intel
Architecture Software Developer’s Manual,Volume 2: Instruction Set Reference.This manual is
available from http://developer.intel.com/design.

The last element, bogomips, is a Linux-specific value. It is a measurement of the
processor’s speed spinning in a tight loop and is therefore a rather poor indicator of
overall processor speed.

7.3.2 Device Information
The /proc/devices file lists major device numbers for character and block devices
available to the system. See Chapter 6,“Devices,” for information about types of
devices and device numbers.

7.3.3 PCI Bus Information
The /proc/pci file lists a summary of devices attached to the PCI bus or buses.These
are actual PCI expansion cards and may also include devices built into the system’s
motherboard, plus AGP graphics cards.The listing includes the device type; the device
and vendor ID; a device name, if available; information about the features offered by
the device; and information about the PCI resources used by the device.

7.3.4 Serial Port Information
The /proc/tty/driver/serial file lists configuration information and statistics about
serial ports. Serial ports are numbered from 0.4 Configuration information about serial
ports can also be obtained, as well as modified, using the setserial command.
However, /proc/tty/driver/serial displays additional statistics about each serial
port’s interrupt counts.

3. See the IA-32 Intel Architecture Software Developer’s Manual for documentation about MMX
instructions, and see Chapter 9,“Inline Assembly Code,” in this book for information on how to
use these and other special assembly instructions in GNU/Linux programs.

4. Note that under DOS and Windows, serial ports are numbered from 1, so COM1 corresponds
to serial port number 0 under Linux.

09 0430 CH07 5/22/01 10:30 AM Page 159

160 Chapter 7 The /proc File System

For example, this line from /proc/tty/driver/serial might describe serial port 1
(which would be COM2 under Windows):

1: uart:16550A port:2F8 irq:3 baud:9600 tx:11 rx:0

This indicates that the serial port is run by a 16550A-type UART, uses I/O port 0x2f8
and IRQ 3 for communication, and runs at 9,600 baud.The serial port has seen 11
transmit interrupts and 0 receive interrupts.

See Section 6.4,“Hardware Devices,” for information about serial devices.

7.4 Kernel Information
Many of the entries in /proc provide access to information about the running kernel’s
configuration and state. Some of these entries are at the top level of /proc; others are
under /proc/sys/kernel.

7.4.1 Version Information
The file /proc/version contains a long string describing the kernel’s release number
and build version. It also includes information about how the kernel was built: the
user who compiled it, the machine on which it was compiled, the date it was com-
piled, and the compiler release that was used—for example:

% cat /proc/version
Linux version 2.2.14-5.0 (root@porky.devel.redhat.com) (gcc version
egcs-2.91.66 19990314/Linux (egcs-1.1.2 release)) #1 Tue Mar 7
21:07:39 EST 2000

This indicates that the system is running a 2.2.14 release of the Linux kernel, which
was compiled with EGCS release 1.1.2. (EGCS, the Experimental GNU Compiler
System, was a precursor to the current GCC project.)

The most important items in this output, the OS name and kernel version
and revision, are available in separate /proc entries as well.These are /proc/sys/
kernel/ostype, /proc/sys/kernel/osrelease, and /proc/sys/kernel/version,
respectively.

% cat /proc/sys/kernel/ostype
Linux
% cat /proc/sys/kernel/osrelease
2.2.14-5.0
% cat /proc/sys/kernel/version
#1 Tue Mar 7 21:07:39 EST 2000

7.4.2 Hostname and Domain Name
The /proc/sys/kernel/hostname and /proc/sys/kernel/domainname entries contain
the computer’s hostname and domain name, respectively.This information is the same
as that returned by the uname system call, described in Section 8.15.

09 0430 CH07 5/22/01 10:30 AM Page 160

1617.5 Drives, Mounts, and File Systems

7.4.3 Memory Usage
The /proc/meminfo entry contains information about the system’s memory usage.
Information is presented both for physical memory and for swap space.The first three
lines present memory totals, in bytes; subsequent lines summarize this information in
kilobytes—for example:

% cat /proc/meminfo
total: used: free: shared: buffers: cached:

Mem: 529694720 519610368 10084352 82612224 10977280 82108416
Swap: 271392768 44003328 227389440
MemTotal: 517280 kB
MemFree: 9848 kB
MemShared: 80676 kB
Buffers: 10720 kB
Cached: 80184 kB
BigTotal: 0 kB
BigFree: 0 kB
SwapTotal: 265032 kB
SwapFree: 222060 kB

This shows 512MB physical memory, of which about 9MB is free, and 258MB of
swap space, of which 216MB is free. In the row corresponding to physical memory,
three other values are presented:

n The Shared column displays total shared memory currently allocated on the sys-
tem (see Section 5.1,“Shared Memory”).

n The Buffers column displays the memory allocated by Linux for block device
buffers.These buffers are used by device drivers to hold blocks of data being
read from and written to disk.

n The Cached column displays the memory allocated by Linux to the page cache.
This memory is used to cache accesses to mapped files.

You can use the free command to display the same memory information.

7.5 Drives, Mounts, and File Systems
The /proc file system also contains information about the disk drives present in the
system and the file systems mounted from them.

7.5.1 File Systems
The /proc/filesystems entry displays the file system types known to the kernel. Note
that this list isn’t very useful because it is not complete: File systems can be loaded and
unloaded dynamically as kernel modules.The contents of /proc/filesystems list only
file system types that either are statically linked into the kernel or are currently loaded.
Other file system types may be available on the system as modules but might not be
loaded yet.

09 0430 CH07 5/22/01 10:30 AM Page 161

162 Chapter 7 The /proc File System

7.5.2 Drives and Partitions
The /proc file system includes information about devices connected to both IDE
controllers and SCSI controllers (if the system includes them).

On typical systems, the /proc/ide subdirectory may contain either or both of two
subdirectories, ide0 and ide1, corresponding to the primary and secondary IDE con-
trollers on the system.5 These contain further subdirectories corresponding to physical
devices attached to the controllers.The controller or device directories may be absent
if Linux has not recognized any connected devices.The full paths corresponding to
the four possible IDE devices are listed in Table 7.1.

Table 7.1 Full Paths Corresponding to the Four Possible IDE Devices

Controller Device Subdirectory

Primary Master /proc/ide/ide0/hda/

Primary Slave /proc/ide/ide0/hdb/

Secondary Master /proc/ide/ide1/hdc/

Secondary Slave /proc/ide/ide1/hdd/

See Section 6.4,“Hardware Devices,” for more information about IDE device names.
Each IDE device directory contains several entries providing access to identification

and configuration information for the device.A few of the most useful are listed here:
n model contains the device’s model identification string.
n media contains the device’s media type. Possible values are disk, cdrom, tape,

floppy, and UNKNOWN.
n capacity contains the device’s capacity, in 512-byte blocks. Note that for CD-

ROM devices, the value will be 231 –1, not the capacity of the disk in the drive.
Note that the value in capacity represents the capacity of the entire physical
disk; the capacity of file systems contained in partitions of the disk will be
smaller.

For example, these commands show how to determine the media type and device
identification for the master device on the secondary IDE controller. In this case, it
turns out to be a Toshiba CD-ROM drive.

% cat /proc/ide/ide1/hdc/media
cdrom
% cat /proc/ide/ide1/hdc/model
TOSHIBA CD-ROM XM-6702B

5. If properly configured, the Linux kernel can support additional IDE controllers.These are
numbered sequentially from ide2.

09 0430 CH07 5/22/01 10:30 AM Page 162

1637.5 Drives, Mounts, and File Systems

If SCSI devices are present in the system, /proc/scsi/scsi contains a summary of
their identification values. For example, the contents might look like this:

% cat /proc/scsi/scsi
Attached devices:
Host: scsi0 Channel: 00 Id: 00 Lun: 00
Vendor: QUANTUM Model: ATLAS_V__9_WLS Rev: 0230
Type: Direct-Access ANSI SCSI revision: 03

Host: scsi0 Channel: 00 Id: 04 Lun: 00
Vendor: QUANTUM Model: QM39100TD-SW Rev: N491
Type: Direct-Access ANSI SCSI revision: 02

This computer contains one single-channel SCSI controller (designated “scsi0”), to
which two Quantum disk drives are connected, with SCSI device IDs 0 and 4.

The /proc/partitions entry displays the partitions of recognized disk devices. For
each partition, the output includes the major and minor device number, the number
of 1024-byte blocks, and the device name corresponding to that partition.

The /proc/sys/dev/cdrom/info entry displays miscellaneous information about the
capabilities of CD-ROM drives.The fields are self-explanatory:

% cat /proc/sys/dev/cdrom/info
CD-ROM information, Id: cdrom.c 2.56 1999/09/09

drive name: hdc
drive speed: 48
drive # of slots: 0
Can close tray: 1
Can open tray: 1
Can lock tray: 1
Can change speed: 1
Can select disk: 0
Can read multisession: 1
Can read MCN: 1
Reports media changed: 1
Can play audio: 1

7.5.3 Mounts
The /proc/mounts file provides a summary of mounted file systems. Each line corre-
sponds to a single mount descriptor and lists the mounted device, the mount point, and
other information. Note that /proc/mounts contains the same information as the ordi-
nary file /etc/mtab, which is automatically updated by the mount command.

These are the elements of a mount descriptor:
n The first element on the line is the mounted device (see Chapter 6). For special

file systems such as the /proc file system, this is none.
n The second element is the mount point, the place in the root file system at which

the file system contents appear. For the root file system itself, the mount point is
listed as /. For swap drives, the mount point is listed as swap.

09 0430 CH07 5/22/01 10:30 AM Page 163

164 Chapter 7 The /proc File System

n The third element is the file system type. Currently, most GNU/Linux systems
use the ext2 file system for disk drives, but DOS or Windows drives may be
mounted with other file system types, such as fat or vfat. Most CD-ROMs
contain an iso9660 file system. See the man page for the mount command for a
list of file system types.

n The fourth element lists mount flags.These are options that were specified when
the mount was added. See the man page for the mount command for an expla-
nation of flags for the various file system types.

In /proc/mounts, the last two elements are always 0 and have no meaning.
See the man page for fstab for details about the format of mount descriptors.6

GNU/Linux includes functions to help you parse mount descriptors; see the man
page for the getmntent function for information on using these.

7.5.4 Locks
Section 8.3,“fcntl: Locks and Other File Operations,” describes how to use the fcntl
system call to manipulate read and write locks on files.The /proc/locks entry
describes all the file locks currently outstanding in the system. Each row in the output
corresponds to one lock.

For locks created with fcntl, the first two entries on the line are POSIX ADVISORY.
The third is WRITE or READ, depending on the lock type.The next number is the
process ID of the process holding the lock.The following three numbers, separated by
colons, are the major and minor device numbers of the device on which the file
resides and the inode number, which locates the file in the file system.The remainder
of the line lists values internal to the kernel that are not of general utility.

Turning the contents of /proc/locks into useful information takes some detective
work.You can watch /proc/locks in action, for instance, by running the program in
Listing 8.2 to create a write lock on the file /tmp/test-file.

% touch /tmp/test-file
% ./lock-file /tmp/test-file
file /tmp/test-file
opening /tmp/test-file
locking
locked; hit enter to unlock...

In another window, look at the contents of /proc/locks.
% cat /proc/locks
1: POSIX ADVISORY WRITE 5467 08:05:181288 0 2147483647 d1b5f740 00000000
dfea7d40 00000000 00000000

6.The /etc/fstab file lists the static mount configuration of the GNU/Linux system.

09 0430 CH07 5/22/01 10:30 AM Page 164

1657.6 System Statistics

There may be other lines of output, too, corresponding to locks held by other pro-
grams. In this case, 5467 is the process ID of the lock-file program. Use ps to figure
out what this process is running.

% ps 5467
PID TTY STAT TIME COMMAND
5467 pts/28 S 0:00 ./lock-file /tmp/test-file

The locked file, /tmp/test-file, resides on the device that has major and minor
device numbers 8 and 5, respectively.These numbers happen to correspond to
/dev/sda5.

% df /tmp
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda5 8459764 5094292 2935736 63% /
% ls -l /dev/sda5
brw-rw---- 1 root disk 8, 5 May 5 1998 /dev/sda5

The file /tmp/test-file itself is at inode 181,288 on that device.
% ls --inode /tmp/test-file
181288 /tmp/test-file

See Section 6.2,“Device Numbers,” for more information about device numbers.

7.6 System Statistics
Two entries in /proc contain useful system statistics.The /proc/loadavg file contains
information about the system load.The first three numbers represent the number of
active tasks on the system—processes that are actually running—averaged over the last
1, 5, and 15 minutes.The next entry shows the instantaneous current number of
runnable tasks—processes that are currently scheduled to run rather than being blocked
in a system call—and the total number of processes on the system.The final entry is
the process ID of the process that most recently ran.

The /proc/uptime file contains the length of time since the system was booted, as
well as the amount of time since then that the system has been idle. Both are given as
floating-point values, in seconds.

% cat /proc/uptime
3248936.18 3072330.49

The program in Listing 7.7 extracts the uptime and idle time from the system and dis-
plays them in friendly units.

Listing 7.7 (print-uptime.c) Print the System Uptime and Idle Time

#include <stdio.h>

/* Summarize a duration of time to standard output. TIME is the
amount of time, in seconds, and LABEL is a short descriptive label. */

void print_time (char* label, long time)
{

continues

09 0430 CH07 5/22/01 10:30 AM Page 165

166 Chapter 7 The /proc File System

/* Conversion constants. */
const long minute = 60;
const long hour = minute * 60;
const long day = hour * 24;
/* Produce output. */
printf (“%s: %ld days, %ld:%02ld:%02ld\n”, label, time / day,

(time % day) / hour, (time % hour) / minute, time % minute);
}

int main ()
{
FILE* fp;
double uptime, idle_time;
/* Read the system uptime and accumulated idle time from /proc/uptime. */
fp = fopen (“/proc/uptime”, “r”);
fscanf (fp, “%lf %lf\n”, &uptime, &idle_time);
fclose (fp);
/* Summarize it. */
print_time (“uptime “, (long) uptime);
print_time (“idle time”, (long) idle_time);
return 0;

}

The uptime command and the sysinfo system call (see Section 8.14,“sysinfo:
Obtaining System Statistics”) also can obtain the system’s uptime.The uptime
command also displays the load averages found in /proc/loadavg.

Listing 7.7 Continued

09 0430 CH07 5/22/01 10:30 AM Page 166

Linux System Calls

8

SO FAR,WE’VE PRESENTED A VARIETY OF FUNCTIONS that your program can invoke
to perform system-related functions, such as parsing command-line options, manipu-
lating processes, and mapping memory. If you look under the hood, you’ll find that
these functions fall into two categories, based on how they are implemented.

n A library function is an ordinary function that resides in a library external to your
program. Most of the library functions we’ve presented so far are in the standard
C library, libc. For example, getopt_long and mkstemp are functions provided in
the C library.

A call to a library function is just like any other function call.The arguments are
placed in processor registers or onto the stack, and execution is transferred to
the start of the function’s code, which typically resides in a loaded shared library.

n A system call is implemented in the Linux kernel.When a program makes a
system call, the arguments are packaged up and handed to the kernel, which
takes over execution of the program until the call completes.A system call isn’t
an ordinary function call, and a special procedure is required to transfer control
to the kernel. However, the GNU C library (the implementation of the standard
C library provided with GNU/Linux systems) wraps Linux system calls with
functions so that you can call them easily. Low-level I/O functions such as open
and read are examples of system calls on Linux.

10 0430 Ch08 5/22/01 10:33 AM Page 167

168 Chapter 8 Linux System Calls

The set of Linux system calls forms the most basic interface between programs
and the Linux kernel. Each call presents a basic operation or capability.

Some system calls are very powerful and can exert great influence on the
system. For instance, some system calls enable you to shut down the Linux
system or to allocate system resources and prevent other users from accessing
them.These calls have the restriction that only processes running with superuser
privilege (programs run by the root account) can invoke them.These calls fail if
invoked by a nonsuperuser process.

Note that a library function may invoke one or more other library functions or system
calls as part of its implementation.

Linux currently provides about 200 different system calls.A listing of system calls
for your version of the Linux kernel is in /usr/include/asm/unistd.h. Some of these
are for internal use by the system, and others are used only in implementing special-
ized library functions. In this chapter, we’ll present a selection of system calls that are
likely to be the most useful to application and system programmers.

Most of these system calls are declared in <unistd.h>.

8.1 Using strace
Before we start discussing system calls, it will be useful to present a command with
which you can learn about and debug system calls.The strace command traces the
execution of another program, listing any system calls the program makes and any sig-
nals it receives.

To watch the system calls and signals in a program, simply invoke strace, followed
by the program and its command-line arguments. For example, to watch the system
calls that are invoked by the hostname1 command, use this command:

% strace hostname

This produces a couple screens of output. Each line corresponds to a single system
call. For each call, the system call’s name is listed, followed by its arguments (or abbre-
viated arguments, if they are very long) and its return value.Where possible, strace
conveniently displays symbolic names instead of numerical values for arguments and
return values, and it displays the fields of structures passed by a pointer into the system
call. Note that strace does not show ordinary function calls.

In the output from strace hostname, the first line shows the execve system call
that invokes the hostname program:2

execve(“/bin/hostname”, [“hostname”], [/* 49 vars */]) = 0

1. hostname invoked without any flags simply prints out the computer’s hostname to
standard output.

2. In Linux, the exec family of functions is implemented via the execve system call.

10 0430 Ch08 5/22/01 10:33 AM Page 168

1698.2 access: Testing File Permissions

The first argument is the name of the program to run; the second is its argument list,
consisting of only a single element; and the third is its environment list, which strace
omits for brevity.The next 30 or so lines are part of the mechanism that loads the
standard C library from a shared library file.

Toward the end are system calls that actually help do the program’s work.The
uname system call is used to obtain the system’s hostname from the kernel,

uname({sys=”Linux”, node=”myhostname”, ...}) = 0

Observe that strace helpfully labels the fields (sys and node) of the structure argu-
ment.This structure is filled in by the system call—Linux sets the sys field to the
operating system name and the node field to the system’s hostname.The uname call is
discussed further in Section 8.15,“uname.”

Finally, the write system call produces output. Recall that file descriptor 1 corre-
sponds to standard output.The third argument is the number of characters to write,
and the return value is the number of characters that were actually written.

write(1, “myhostname\n”, 11) = 11

This may appear garbled when you run strace because the output from the hostname
program itself is mixed in with the output from strace.

If the program you’re tracing produces lots of output, it is sometimes more conve-
nient to redirect the output from strace into a file. Use the option -o filename to
do this.

Understanding all the output from strace requires detailed familiarity with the
design of the Linux kernel and execution environment. Much of this is of limited
interest to application programmers. However, some understanding is useful for debug-
ging tricky problems or understanding how other programs work.

8.2 access:Testing File Permissions
The access system call determines whether the calling process has access permission
to a file. It can check any combination of read, write, and execute permission, and it
can also check for a file’s existence.

The access call takes two arguments.The first is the path to the file to check.The
second is a bitwise or of R_OK, W_OK, and X_OK, corresponding to read, write, and exe-
cute permission.The return value is 0 if the process has all the specified permissions. If
the file exists but the calling process does not have the specified permissions, access
returns –1 and sets errno to EACCES (or EROFS, if write permission was requested for a
file on a read-only file system).

If the second argument is F_OK, access simply checks for the file’s existence. If the file
exists, the return value is 0; if not, the return value is –1 and errno is set to ENOENT. Note
that errno may instead be set to EACCES if a directory in the file path is inaccessible.

10 0430 Ch08 5/22/01 10:33 AM Page 169

170 Chapter 8 Linux System Calls

The program shown in Listing 8.1 uses access to check for a file’s existence and to
determine read and write permissions. Specify the name of the file to check on the
command line.

Listing 8.1 (check-access.c) Check File Access Permissions

#include <errno.h>
#include <stdio.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
char* path = argv[1];
int rval;

/* Check file existence. */
rval = access (path, F_OK);
if (rval == 0)
printf (“%s exists\n”, path);

else {
if (errno == ENOENT)
printf (“%s does not exist\n”, path);

else if (errno == EACCES)
printf (“%s is not accessible\n”, path);

return 0;
}

/* Check read access. */
rval = access (path, R_OK);
if (rval == 0)
printf (“%s is readable\n”, path);

else
printf (“%s is not readable (access denied)\n”, path);

/* Check write access. */
rval = access (path, W_OK);
if (rval == 0)
printf (“%s is writable\n”, path);

else if (errno == EACCES)
printf (“%s is not writable (access denied)\n”, path);

else if (errno == EROFS)
printf (“%s is not writable (read-only filesystem)\n”, path);

return 0;
}

For example, to check access permissions for a file named README on a CD-ROM,
invoke it like this:

% ./check-access /mnt/cdrom/README
/mnt/cdrom/README exists
/mnt/cdrom/README is readable
/mnt/cdrom/README is not writable (read-only filesystem)

10 0430 Ch08 5/22/01 10:33 AM Page 170

1718.3 fcntl: Locks and Other File Operations

8.3 fcntl: Locks and Other File Operations
The fcntl system call is the access point for several advanced operations on file
descriptors.The first argument to fcntl is an open file descriptor, and the second is a
value that indicates which operation is to be performed. For some operations, fcntl
takes an additional argument.We’ll describe here one of the most useful fcntl opera-
tions, file locking. See the fcntl man page for information about the others.

The fcntl system call allows a program to place a read lock or a write lock on a
file, somewhat analogous to the mutex locks discussed in Chapter 5,“Interprocess
Communication.”A read lock is placed on a readable file descriptor, and a write lock
is placed on a writable file descriptor. More than one process may hold a read lock on
the same file at the same time, but only one process may hold a write lock, and the
same file may not be both locked for read and locked for write. Note that placing a
lock does not actually prevent other processes from opening the file, reading from it,
or writing to it, unless they acquire locks with fcntl as well.

To place a lock on a file, first create and zero out a struct flock variable. Set the
l_type field of the structure to F_RDLCK for a read lock or F_WRLCK for a write lock.
Then call fcntl, passing a file descriptor to the file, the F_SETLCKW operation code, and
a pointer to the struct flock variable. If another process holds a lock that prevents a
new lock from being acquired, fcntl blocks until that lock is released.

The program in Listing 8.2 opens a file for writing whose name is provided on the
command line, and then places a write lock on it.The program waits for the user to
hit Enter and then unlocks and closes the file.

Listing 8.2 (lock-file.c) Create a Write Lock with fcntl

#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
char* file = argv[1];
int fd;
struct flock lock;

printf (“opening %s\n”, file);
/* Open a file descriptor to the file. */
fd = open (file, O_WRONLY);
printf (“locking\n”);
/* Initialize the flock structure. */
memset (&lock, 0, sizeof(lock));
lock.l_type = F_WRLCK;
/* Place a write lock on the file. */
fcntl (fd, F_SETLKW, &lock);

continues

10 0430 Ch08 5/22/01 10:33 AM Page 171

172 Chapter 8 Linux System Calls

printf (“locked; hit Enter to unlock... “);
/* Wait for the user to hit Enter. */
getchar ();

printf (“unlocking\n”);
/* Release the lock. */
lock.l_type = F_UNLCK;
fcntl (fd, F_SETLKW, &lock);

close (fd);
return 0;

}

Compile and run the program on a test file—say, /tmp/test-file—like this:
% cc -o lock-file lock-file.c
% touch /tmp/test-file
% ./lock-file /tmp/test-file
opening /tmp/test-file
locking
locked; hit Enter to unlock...

Now, in another window, try running it again on the same file.
% ./lock-file /tmp/test-file
opening /tmp/test-file
locking

Note that the second instance is blocked while attempting to lock the file. Go back to
the first window and press Enter:

unlocking

The program running in the second window immediately acquires the lock.
If you prefer fcntl not to block if the call cannot get the lock you requested,

use F_SETLK instead of F_SETLKW. If the lock cannot be acquired, fcntl returns –1
immediately.

Linux provides another implementation of file locking with the flock call.The
fcntl version has a major advantage: It works with files on NFS3 file systems (as long
as the NFS server is reasonably recent and correctly configured). So, if you have access
to two machines that both mount the same file system via NFS, you can repeat the
previous example using two different machines. Run lock-file on one machine,
specifying a file on an NFS file system, and then run it again on another machine,
specifying the same file. NFS wakes up the second program when the lock is released
by the first program.

3. Network File System (NFS) is a common network file sharing technology, comparable to
Windows’ shares and network drives.

Listing 8.2 Continued

10 0430 Ch08 5/22/01 10:33 AM Page 172

1738.4 fsync and fdatasync: Flushing Disk Buffers

8.4 fsync and fdatasync: Flushing Disk Buffers
On most operating systems, when you write to a file, the data is not immediately
written to disk. Instead, the operating system caches the written data in a memory
buffer, to reduce the number of required disk writes and improve program responsive-
ness.When the buffer fills or some other condition occurs (for instance, enough time
elapses), the system writes the cached data to disk all at one time.

Linux provides caching of this type as well. Normally, this is a great boon to perfor-
mance. However, this behavior can make programs that depend on the integrity of
disk-based records unreliable. If the system goes down suddenly—for instance, due to a
kernel crash or power outage—any data written by a program that is in the memory
cache but has not yet been written to disk is lost.

For example, suppose that you are writing a transaction-processing program that
keeps a journal file.The journal file contains records of all transactions that have been
processed so that if a system failure occurs, the state of the transaction data can be
reconstructed. It is obviously important to preserve the integrity of the journal file—
whenever a transaction is processed, its journal entry should be sent to the disk drive
immediately.

To help you implement this, Linux provides the fsync system call. It takes one
argument, a writable file descriptor, and flushes to disk any data written to this file.
The fsync call doesn’t return until the data has physically been written.

The function in Listing 8.3 illustrates the use of fsync. It writes a single-line entry
to a journal file.

Listing 8.3 (write_journal_entry.c) Write and Sync a Journal Entry

#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

const char* journal_filename = “journal.log”;

void write_journal_entry (char* entry)
{
int fd = open (journal_filename, O_WRONLY | O_CREAT | O_APPEND, 0660);
write (fd, entry, strlen (entry));
write (fd, “\n”, 1);
fsync (fd);
close (fd);

}

Another system call, fdatasync does the same thing. However, although fsync guaran-
tees that the file’s modification time will be updated, fdatasync does not; it guarantees
only that the file’s data will be written.This means that in principal, fdatasync can
execute faster than fsync because it needs to force only one disk write instead of two.

10 0430 Ch08 5/22/01 10:33 AM Page 173

174 Chapter 8 Linux System Calls

However, in current versions of Linux, these two system calls actually do the same
thing, both updating the file’s modification time.

The fsync system call enables you to force a buffer write explicitly.You can also
open a file for synchronous I/O, which causes all writes to be committed to disk imme-
diately.To do this, specify the O_SYNC flag when opening the file with the open call.

8.5 getrlimit and setrlimit: Resource Limits
The getrlimit and setrlimit system calls allow a process to read and set limits on the
system resources that it can consume.You may be familiar with the ulimit shell com-
mand, which enables you to restrict the resource usage of programs you run;4 these
system calls allow a program to do this programmatically.

For each resource there are two limits, the hard limit and the soft limit.The soft limit
may never exceed the hard limit, and only processes with superuser privilege may
change the hard limit.Typically, an application program will reduce the soft limit to
place a throttle on the resources it uses.

Both getrlimit and setrlimit take as arguments a code specifying the resource
limit type and a pointer to a structrlimit variable.The getrlimit call fills the fields
of this structure, while the setrlimit call changes the limit based on its contents.The
rlimit structure has two fields: rlim_cur is the soft limit, and rlim_max is the hard
limit.

Some of the most useful resource limits that may be changed are listed here, with
their codes:

n RLIMIT_CPU—The maximum CPU time, in seconds, used by a program.This is
the amount of time that the program is actually executing on the CPU, which is
not necessarily the same as wall-clock time. If the program exceeds this time
limit, it is terminated with a SIGXCPU signal.

n RLIMIT_DATA—The maximum amount of memory that a program can allocate
for its data.Additional allocation beyond this limit will fail.

n RLIMIT_NPROC—The maximum number of child processes that can be running
for this user. If the process calls fork and too many processes belonging to this
user are running on the system, fork fails.

n RLIMIT_NOFILE—The maximum number of file descriptors that the process may
have open at one time.

See the setrlimit man page for a full list of system resources.
The program in Listing 8.4 illustrates setting the limit on CPU time consumed by

a program. It sets a 1-second CPU time limit and then spins in an infinite loop. Linux
kills the process soon afterward, when it exceeds 1 second of CPU time.

4. See the man page for your shell for more information about ulimit.

10 0430 Ch08 5/22/01 10:33 AM Page 174

1758.6 getrusage: Process Statistics

Listing 8.4 (limit-cpu.c) CPU Time Limit Demonstration

#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>

int main ()
{
struct rlimit rl;

/* Obtain the current limits. */
getrlimit (RLIMIT_CPU, &rl);
/* Set a CPU limit of 1 second. */
rl.rlim_cur = 1;
setrlimit (RLIMIT_CPU, &rl);
/* Do busy work. */
while (1);

return 0;
}

When the program is terminated by SIGXCPU, the shell helpfully prints out a message
interpreting the signal:

% ./limit_cpu
CPU time limit exceeded

8.6 getrusage: Process Statistics
The getrusage system call retrieves process statistics from the kernel. It can be used to
obtain statistics either for the current process by passing RUSAGE_SELF as the first argu-
ment, or for all terminated child processes that were forked by this process and its
children by passing RUSAGE_CHILDREN.The second argument to rusage is a pointer
to a struct rusage variable, which is filled with the statistics.

A few of the more interesting fields in struct rusage are listed here:
n ru_utime—A struct timeval field containing the amount of user time, in sec-

onds, that the process has used. User time is CPU time spent executing the user
program, rather than in kernel system calls.

n ru_stime—A struct timeval field containing the amount of system time, in sec-
onds, that the process has used. System time is the CPU time spent executing
system calls on behalf of the process.

n ru_maxrss—The largest amount of physical memory occupied by the process’s
data at one time over the course of its execution.

The getrusage man page lists all the available fields. See Section 8.7,“gettimeofday:
Wall-Clock Time,” for information about struct timeval.

10 0430 Ch08 5/22/01 10:33 AM Page 175

176 Chapter 8 Linux System Calls

The function in Listing 8.5 prints out the current process’s user and system time.

Listing 8.5 (print-cpu-times.c) Display Process User and System Times

#include <stdio.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>

void print_cpu_time()
{
struct rusage usage;
getrusage (RUSAGE_SELF, &usage);
printf (“CPU time: %ld.%06ld sec user, %ld.%06ld sec system\n”,

usage.ru_utime.tv_sec, usage.ru_utime.tv_usec,
usage.ru_stime.tv_sec, usage.ru_stime.tv_usec);

}

8.7 gettimeofday:Wall-Clock Time
The gettimeofday system call gets the system’s wall-clock time. It takes a pointer to a
struct timeval variable.This structure represents a time, in seconds, split into two
fields.The tv_sec field contains the integral number of seconds, and the tv_usec field
contains an additional number of microseconds.This struct timeval value represents
the number of seconds elapsed since the start of the UNIX epoch, on midnight UTC
on January 1, 1970.The gettimeofday call also takes a second argument, which should
be NULL. Include <sys/time.h> if you use this system call.

The number of seconds in the UNIX epoch isn’t usually a very handy way of rep-
resenting dates.The localtime and strftime library functions help manipulate the
return value of gettimeofday.The localtime function takes a pointer to the number
of seconds (the tv_sec field of struct timeval) and returns a pointer to a struct tm
object.This structure contains more useful fields, which are filled according to the
local time zone:

n tm_hour, tm_min, tm_sec—The time of day, in hours, minutes, and seconds.
n tm_year, tm_mon, tm_day—The year, month, and date.
n tm_wday—The day of the week. Zero represents Sunday.
n tm_yday—The day of the year.
n tm_isdst—A flag indicating whether daylight savings time is in effect.

The strftime function additionally can produce from the struct tm pointer a cus-
tomized, formatted string displaying the date and time.The format is specified in a
manner similar to printf, as a string with embedded codes indicating which time
fields to include. For example, this format string

“%Y-%m-%d %H:%M:%S”

10 0430 Ch08 5/22/01 10:33 AM Page 176

1778.8 The mlock Family: Locking Physical Memory

specifies the date and time in this form:
2001-01-14 13:09:42

Pass strftime a character buffer to receive the string, the length of that buffer, the for-
mat string, and a pointer to a struct tm variable. See the strftime man page for a
complete list of codes that can be used in the format string. Notice that neither
localtime nor strftime handles the fractional part of the current time more precise
than 1 second (the tv_usec field of struct timeval). If you want this in your format-
ted time strings, you’ll have to include it yourself.

Include <time.h> if you call localtime or strftime.
The function in Listing 8.6 prints the current date and time of day, down to the

millisecond.

Listing 8.6 (print-time.c) Print Date and Time

#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

void print_time ()
{
struct timeval tv;
struct tm* ptm;
char time_string[40];
long milliseconds;

/* Obtain the time of day, and convert it to a tm struct. */
gettimeofday (&tv, NULL);
ptm = localtime (&tv.tv_sec);
/* Format the date and time, down to a single second. */
strftime (time_string, sizeof (time_string), “%Y-%m-%d %H:%M:%S”, ptm);
/* Compute milliseconds from microseconds. */
milliseconds = tv.tv_usec / 1000;
/* Print the formatted time, in seconds, followed by a decimal point

and the milliseconds. */
printf (“%s.%03ld\n”, time_string, milliseconds);

}

8.8 The mlock Family: Locking Physical
Memory
The mlock family of system calls allows a program to lock some or all of its address
space into physical memory.This prevents Linux from paging this memory to swap
space, even if the program hasn’t accessed it for a while.

10 0430 Ch08 5/22/01 10:33 AM Page 177

178 Chapter 8 Linux System Calls

A time-critical program might lock physical memory because the time delay of
paging memory out and back may be too long or too unpredictable. High-security
applications may also want to prevent sensitive data from being written out to a swap
file, where they might be recovered by an intruder after the program terminates.

Locking a region of memory is as simple as calling mlock with a pointer to the start
of the region and the region’s length. Linux divides memory into pages and can lock
only entire pages at a time; each page that contains part of the memory region speci-
fied to mlock is locked.The getpagesize function returns the system’s page size, which
is 4KB on x86 Linux.

For example, to allocate 32MB of address space and lock it into RAM, you would
use this code:

const int alloc_size = 32 * 1024 * 1024;
char* memory = malloc (alloc_size);
mlock (memory, alloc_size);

Note that simply allocating a page of memory and locking it with mlock doesn’t
reserve physical memory for the calling process because the pages may be copy-on-
write.5 Therefore, you should write a dummy value to each page as well:

size_t i;
size_t page_size = getpagesize ();
for (i = 0; i < alloc_size; i += page_size)
memory[i] = 0;

The write to each page forces Linux to assign a unique, unshared memory page to the
process for that page.

To unlock a region, call munlock, which takes the same arguments as mlock.
If you want your program’s entire address space locked into physical memory, call

mlockall. This system call takes a single flag argument: MCL_CURRENT locks all currently
allocated memory, but future allocations are not locked; MCL_FUTURE locks all pages that
are allocated after the call. Use MCL_CURRENT|MCL_FUTURE to lock into memory both
current and subsequent allocations.

Locking large amounts of memory, especially using mlockall, can be dangerous to
the entire Linux system. Indiscriminate memory locking is a good method of bringing
your system to a grinding halt because other running processes are forced to compete
for smaller physical memory resources and swap rapidly into and back out of memory
(this is known as thrashing). If you lock too much memory, the system will run out of
memory entirely and Linux will start killing off processes.

For this reason, only processes with superuser privilege may lock memory with
mlock or mlockall. If a nonsuperuser process calls one of these functions, it will fail,
return –1, and set errno to EPERM.

The munlockall call unlocks all memory locked by the current process, including
memory locked with mlock and mlockall.

5. Copy-on-write means that Linux makes a private copy of a page of memory for a process
only when that process writes a value somewhere into it.

10 0430 Ch08 5/22/01 10:33 AM Page 178

1798.9 mprotect: Setting Memory Permissions

A convenient way to monitor the memory usage of your program is to use the top
command. In the output from top, the SIZE column displays the virtual address space
size of each program (the total size of your program’s code, data, and stack, some of
which may be paged out to swap space).The RSS column (for resident set size) shows
the size of physical memory that each program currently resides in.The sum of all the
RSS values for all running programs cannot exceed your computer’s physical memory
size, and the sum of all address space sizes is limited to 2GB (for 32-bit versions of
Linux).

Include <sys/mman.h> if you use any of the mlock system calls.

8.9 mprotect: Setting Memory Permissions
In Section 5.3,“Mapped Memory,” we showed how to use the mmap system call to
map a file into memory. Recall that the third argument to mmap is a bitwise or of
memory protection flags PROT_READ, PROT_WRITE, and PROT_EXEC for read, write, and
execute permission, respectively, or PROT_NONE for no memory access. If a program
attempts to perform an operation on a memory location that is not allowed by these
permissions, it is terminated with a SIGSEGV (segmentation violation) signal.

After memory has been mapped, these permissions can be modified with the
mprotect system call.The arguments to mprotect are an address of a memory region,
the size of the region, and a set of protection flags.The memory region must consist of
entire pages:The address of the region must be aligned to the system’s page size, and
the length of the region must be a page size multiple.The protection flags for these
pages are replaced with the specified value.

Obtaining Page-Aligned Memory
Note that memory regions returned by malloc are typically not page-aligned, even if the size of the

memory is a multiple of the page size. If you want to protect memory obtained from malloc, you will

have to allocate a larger memory region and find a page-aligned region within it.

Alternately, you can use the mmap system call to bypass malloc and allocate page-aligned memory

directly from the Linux kernel. See Section 5.3, “Mapped Memory,” for details.

For example, suppose that your program allocates a page of memory by mapping
/dev/zero, as described in Section 5.3.5,“Other Uses for mmap.”The memory is ini-
tially both readable and writable.

int fd = open (“/dev/zero”, O_RDONLY);
char* memory = mmap (NULL, page_size, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0);
close (fd);

Later, your program could make the memory read-only by calling mprotect:
mprotect (memory, page_size, PROT_READ);

10 0430 Ch08 5/22/01 10:33 AM Page 179

180 Chapter 8 Linux System Calls

An advanced technique to monitor memory access is to protect the region of memory
using mmap or mprotect and then handle the SIGSEGV signal that Linux sends to the
program when it tries to access that memory.The example in Listing 8.7 illustrates this
technique.

Listing 8.7 (mprotect.c) Detect Memory Access Using mprotect

#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

static int alloc_size;
static char* memory;

void segv_handler (int signal_number)
{
printf (“memory accessed!\n”);
mprotect (memory, alloc_size, PROT_READ | PROT_WRITE);

}

int main ()
{
int fd;
struct sigaction sa;

/* Install segv_handler as the handler for SIGSEGV. */
memset (&sa, 0, sizeof (sa));
sa.sa_handler = &segv_handler;
sigaction (SIGSEGV, &sa, NULL);

/* Allocate one page of memory by mapping /dev/zero. Map the memory
as write-only, initially. */

alloc_size = getpagesize ();
fd = open (“/dev/zero”, O_RDONLY);
memory = mmap (NULL, alloc_size, PROT_WRITE, MAP_PRIVATE, fd, 0);
close (fd);
/* Write to the page to obtain a private copy. */
memory[0] = 0;
/* Make the memory unwritable. */
mprotect (memory, alloc_size, PROT_NONE);

/* Write to the allocated memory region. */
memory[0] = 1;

10 0430 Ch08 5/22/01 10:33 AM Page 180

1818.10 nanosleep: High-Precision Sleeping

/* All done; unmap the memory. */
printf (“all done\n”);
munmap (memory, alloc_size);
return 0;

}

The program follows these steps:

1. The program installs a signal handler for SIGSEGV.

2. The program allocates a page of memory by mapping /dev/zero and writing a
value to the allocated page to obtain a private copy.

3. The program protects the memory by calling mprotect with the PROT_NONE
permission.

4. When the program subsequently writes to memory, Linux sends it SIGSEGV,
which is handled by segv_handler.The signal handler unprotects the memory,
which allows the memory access to proceed.

5. When the signal handler completes, control returns to main, where the program
deallocates the memory using munmap.

8.10 nanosleep: High-Precision Sleeping
The nanosleep system call is a high-precision version of the standard UNIX sleep
call. Instead of sleeping an integral number of seconds, nanosleep takes as its argument
a pointer to a struct timespec object, which can express time to nanosecond preci-
sion. However, because of the details of how the Linux kernel works, the actual
precision provided by nanosleep is 10 milliseconds—still better than that afforded by
sleep.This additional precision can be useful, for instance, to schedule frequent opera-
tions with short time intervals between them.

The struct timespec structure has two fields: tv_sec, the integral number of sec-
onds, and tv_nsec, an additional number of milliseconds.The value of tv_nsec must
be less than 109.

The nanosleep call provides another advantage over sleep.As with sleep, the
delivery of a signal interrupts the execution of nanosleep, which sets errno to EINTR
and returns –1. However, nanosleep takes a second argument, another pointer to a
struct timespec object, which, if not null, is filled with the amount of time remain-
ing (that is, the difference between the requested sleep time and the actual sleep time).
This makes it easy to resume the sleep operation.

The function in Listing 8.8 provides an alternate implementation of sleep. Unlike
the ordinary system call, this function takes a floating-point value for the number of
seconds to sleep and restarts the sleep operation if it’s interrupted by a signal.

10 0430 Ch08 5/22/01 10:33 AM Page 181

182 Chapter 8 Linux System Calls

Listing 8.8 (better_sleep.c) High-Precision Sleep Function

#include <errno.h>
#include <time.h>

int better_sleep (double sleep_time)
{
struct timespec tv;
/* Construct the timespec from the number of whole seconds... */
tv.tv_sec = (time_t) sleep_time;
/* ... and the remainder in nanoseconds. */
tv.tv_nsec = (long) ((sleep_time - tv.tv_sec) * 1e+9);

while (1)
{
/* Sleep for the time specified in tv. If interrupted by a

signal, place the remaining time left to sleep back into tv. */
int rval = nanosleep (&tv, &tv);
if (rval == 0)
/* Completed the entire sleep time; all done. */
return 0;

else if (errno == EINTR)
/* Interrupted by a signal. Try again. */
continue;

else
/* Some other error; bail out. */
return rval;

}
return 0;

}

8.11 readlink: Reading Symbolic Links
The readlink system call retrieves the target of a symbolic link. It takes three argu-
ments: the path to the symbolic link, a buffer to receive the target of the link, and the
length of that buffer. Unusually, readlink does not NUL-terminate the target path
that it fills into the buffer. It does, however, return the number of characters in the
target path, so NUL-terminating the string is simple.

If the first argument to readlink points to a file that isn’t a symbolic link, readlink
sets errno to EINVAL and returns –1.

The small program in Listing 8.9 prints the target of the symbolic link specified on
its command line.

10 0430 Ch08 5/22/01 10:33 AM Page 182

1838.12 sendfile: Fast Data Transfers

Listing 8.9 (print-symlink.c) Print the Target of a Symbolic Link

#include <errno.h>
#include <stdio.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
char target_path[256];
char* link_path = argv[1];

/* Attempt to read the target of the symbolic link. */
int len = readlink (link_path, target_path, sizeof (target_path));

if (len == -1) {
/* The call failed. */
if (errno == EINVAL)
/* It’s not a symbolic link; report that. */
fprintf (stderr, “%s is not a symbolic link\n”, link_path);

else
/* Some other problem occurred; print the generic message. */
perror (“readlink”);

return 1;
}
else {
/* NUL-terminate the target path. */
target_path[len] = ‘\0’;
/* Print it. */
printf (“%s\n”, target_path);
return 0;

}
}

For example, here’s how you could make a symbolic link and use print-symlink to
read it back:

% ln -s /usr/bin/wc my_link
% ./print-symlink my_link
/usr/bin/wc

8.12 sendfile: Fast Data Transfers
The sendfile system call provides an efficient mechanism for copying data from one
file descriptor to another.The file descriptors may be open to disk files, sockets, or
other devices.

Typically, to copy from one file descriptor to another, a program allocates a fixed-
size buffer, copies some data from one descriptor into the buffer, writes the buffer out
to the other descriptor, and repeats until all the data has been copied.This is inefficient
in both time and space because it requires additional memory for the buffer and per-
forms an extra copy of the data into that buffer.

10 0430 Ch08 5/22/01 10:33 AM Page 183

184 Chapter 8 Linux System Calls

Using sendfile, the intermediate buffer can be eliminated. Call sendfile, passing
the file descriptor to write to; the descriptor to read from; a pointer to an offset vari-
able; and the number of bytes to transfer.The offset variable contains the offset in the
input file from which the read should start (0 indicates the beginning of the file) and
is updated to the position in the file after the transfer.The return value is the number
of bytes transferred. Include <sys/sendfile.h> in your program if it uses sendfile.

The program in Listing 8.10 is a simple but extremely efficient implementation of
a file copy.When invoked with two filenames on the command line, it copies the con-
tents of the first file into a file named by the second. It uses fstat to determine the
size, in bytes, of the source file.

Listing 8.10 (copy.c) File Copy Using sendfile

#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/sendfile.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
int read_fd;
int write_fd;
struct stat stat_buf;
off_t offset = 0;

/* Open the input file. */
read_fd = open (argv[1], O_RDONLY);
/* Stat the input file to obtain its size. */
fstat (read_fd, &stat_buf);
/* Open the output file for writing, with the same permissions as the

source file. */
write_fd = open (argv[2], O_WRONLY | O_CREAT, stat_buf.st_mode);
/* Blast the bytes from one file to the other. */
sendfile (write_fd, read_fd, &offset, stat_buf.st_size);
/* Close up. */
close (read_fd);
close (write_fd);

return 0;
}

The sendfile call can be used in many places to make copies more efficient. One
good example is in a Web server or other network daemon, that serves the contents of
a file over the network to a client program.Typically, a request is received from a
socket connected to the client computer.The server program opens a local disk file to

10 0430 Ch08 5/22/01 10:33 AM Page 184

1858.13 setitimer: Setting Interval Timers

retrieve the data to serve and writes the file’s contents to the network socket. Using
sendfile can speed up this operation considerably. Other steps need to be taken to
make the network transfer as efficient as possible, such as setting the socket parameters
correctly. However, these are outside the scope of this book.

8.13 setitimer: Setting Interval Timers
The setitimer system call is a generalization of the alarm call. It schedules the delivery
of a signal at some point in the future after a fixed amount of time has elapsed.

A program can set three different types of timers with setitimer:
n If the timer code is ITIMER_REAL, the process is sent a SIGALRM signal after the

specified wall-clock time has elapsed.
n If the timer code is ITIMER_VIRTUAL, the process is sent a SIGVTALRM signal after

the process has executed for the specified time.Time in which the process is not
executing (that is, when the kernel or another process is running) is not
counted.

n If the timer code is ITIMER_PROF, the process is sent a SIGPROF signal when the
specified time has elapsed either during the process’s own execution or the
execution of a system call on behalf of the process.

The first argument to setitimer is the timer code, specifying which timer to set.
The second argument is a pointer to a struct itimerval object specifying the new
settings for that timer.The third argument, if not null, is a pointer to another
struct itimerval object that receives the old timer settings.

A struct itimerval variable has two fields:
n it_value is a struct timeval field that contains the time until the timer next

expires and a signal is sent. If this is 0, the timer is disabled.
n it_interval is another struct timeval field containing the value to which the

timer will be reset after it expires. If this is 0, the timer will be disabled after it
expires. If this is nonzero, the timer is set to expire repeatedly after this interval.

The struct timeval type is described in Section 8.7,“gettimeofday:Wall-Clock
Time.”

The program in Listing 8.11 illustrates the use of setitimer to track the execution
time of a program.A timer is configured to expire every 250 milliseconds and send a
SIGVTALRM signal.

Listing 8.11 (itemer.c) Timer Example

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>

continues

10 0430 Ch08 5/22/01 10:33 AM Page 185

186 Chapter 8 Linux System Calls

void timer_handler (int signum)
{
static int count = 0;
printf (“timer expired %d times\n”, ++count);

}

int main ()
{
struct sigaction sa;
struct itimerval timer;

/* Install timer_handler as the signal handler for SIGVTALRM. */
memset (&sa, 0, sizeof (sa));
sa.sa_handler = &timer_handler;
sigaction (SIGVTALRM, &sa, NULL);

/* Configure the timer to expire after 250 msec... */
timer.it_value.tv_sec = 0;
timer.it_value.tv_usec = 250000;
/* ... and every 250 msec after that. */
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = 250000;
/* Start a virtual timer. It counts down whenever this process is

executing. */
setitimer (ITIMER_VIRTUAL, &timer, NULL);

/* Do busy work. */
while (1);

}

8.14 sysinfo: Obtaining System Statistics
The sysinfo system call fills a structure with system statistics. Its only argument is a
pointer to a struct sysinfo. Some of the more interesting fields of struct sysinfo
that are filled include these:

n uptime—Time elapsed since the system booted, in seconds
n totalram—Total available physical RAM
n freeram—Free physical RAM
n procs—Number of processes on the system

See the sysinfo man page for a full description of structsysinfo. Include
<linux/kernel.h>, <linux/sys.h>, and <sys/sysinfo.h> if you use sysinfo.

The program in Listing 8.12 prints some statistics about the current system.

Listing 8.11 Continued

10 0430 Ch08 5/22/01 10:33 AM Page 186

1878.15 uname

Listing 8.12 (sysinfo.c) Print System Statistics

#include <linux/kernel.h>
#include <linux/sys.h>
#include <stdio.h>
#include <sys/sysinfo.h>

int main ()
{
/* Conversion constants. */
const long minute = 60;
const long hour = minute * 60;
const long day = hour * 24;
const double megabyte = 1024 * 1024;
/* Obtain system statistics. */
struct sysinfo si;
sysinfo (&si);
/* Summarize interesting values. */
printf (“system uptime : %ld days, %ld:%02ld:%02ld\n”,

si.uptime / day, (si.uptime % day) / hour,
(si.uptime % hour) / minute, si.uptime % minute);

printf (“total RAM : %5.1f MB\n”, si.totalram / megabyte);
printf (“free RAM : %5.1f MB\n”, si.freeram / megabyte);
printf (“process count : %d\n”, si.procs);
return 0;

}

8.15 uname
The uname system call fills a structure with various system information, including the
computer’s network name and domain name, and the operating system version it’s
running. Pass uname a single argument, a pointer to a struct utsname object. Include
<sys/utsname.h> if you use uname.

The call to uname fills in these fields:
n sysname—The name of the operating system (such as Linux).
n release, version—The Linux kernel release number and version level.
n machine—Some information about the hardware platform running Linux. For

x86 Linux, this is i386 or i686, depending on the processor.
n node—The computer’s unqualified hostname.
n __domain—The computer’s domain name.

Each of these fields is a character string.
The small program in Listing 8.13 prints the Linux release and version number and

the hardware information.

10 0430 Ch08 5/22/01 10:33 AM Page 187

188 Chapter 8 Linux System Calls

Listing 8.13 (print-uname) Print Linux Version Number and Hardware Information

#include <stdio.h>
#include <sys/utsname.h>

int main ()
{
struct utsname u;
uname (&u);
printf (“%s release %s (version %s) on %s\n”, u.sysname, u.release,

u.version, u.machine);
return 0;

}

10 0430 Ch08 5/22/01 10:33 AM Page 188

Inline Assembly Code

9

TODAY, FEW PROGRAMMERS USE ASSEMBLY LANGUAGE. Higher-level languages such
as C and C++ run on nearly all architectures and yield higher productivity when
writing and maintaining code. For occasions when programmers need to use assembly
instructions in their programs, the GNU Compiler Collection permits programmers
to add architecture-dependent assembly language instructions to their programs.

GCC’s inline assembly statements should not be used indiscriminately.Assembly
language instructions are architecture-dependent, so, for example, programs using x86
instructions cannot be compiled on PowerPC computers.To use them, you’ll require a
facility in the assembly language for your architecture. However, inline assembly
statements permit you to access hardware directly and can also yield faster code.

An asm instruction allows you to insert assembly instructions into C and C++
programs. For example, this instruction

asm (“fsin” : “=t” (answer) : “0” (angle));

is an x86-specific way of coding this C statement:1

answer = sin (angle);

1.The expression sin (angle) is usually implemented as a function call into the math
library, but if you specify the -O1 or higher optimization flag, GCC is smart enough to replace
the function call with a single fsin assembly instruction.

11 0430 CH09 5/22/01 10:36 AM Page 189

190 Chapter 9 Inline Assembly Code

Observe that unlike ordinary assembly code instructions, asm statements permit you to
specify input and output operands using C syntax.

To read more about the x86 instruction set, which we will use in this
chapter, see http://developer.intel.com/design/pentiumii/manuals/ and
http://www.x86-64.org/documentation.

9.1 When to Use Assembly Code
Although asm statements can be abused, they allow your programs to access the
computer hardware directly, and they can produce programs that execute quickly.
You can use them when writing operating system code that directly needs to
interact with hardware. For example, /usr/include/asm/io.h contains assembly
instructions to access input/output ports directly.The Linux source code file
/usr/src/linux/arch/i386/kernel/process.s provides another example, using hlt in
idle loop code. See other Linux source code files in /usr/src/linux/arch/ and
/usr/src/linux/drivers/.

Assembly instructions can also speed the innermost loop of computer programs.
For example, if the majority of a program’s running time is computing the sine and
cosine of the same angles, this innermost loop could be recoded using the fsincos
x86 instruction.2 See, for example, /usr/include/bits/mathinline.h, which wraps
up into macros some inline assembly sequences that speed transcendental function
computation.

You should use inline assembly to speed up code only as a last resort. Current com-
pilers are quite sophisticated and know a lot about the details of the processors for
which they generate code.Therefore, compilers can often choose code sequences that
may seem unintuitive or roundabout but that actually execute faster than other
instruction sequences. Unless you understand the instruction set and scheduling attrib-
utes of your target processor very well, you’re probably better off letting the compiler’s
optimizers generate assembly code for you for most operations.

Occasionally, one or two assembly instructions can replace several lines of higher-
level language code. For example, determining the position of the most significant
nonzero bit of a nonzero integer using the C programming languages requires a loop
or floating-point computations. Many architectures, including the x86, have a single
assembly instruction (bsr) to compute this bit position.We’ll demonstrate the use of
one of these in Section 9.4,“Example.”

2.Algorithmic or data structure changes may be more effective in reducing a program’s
running time than using assembly instructions.

11 0430 CH09 5/22/01 10:36 AM Page 190

1919.2 Simple Inline Assembly

9.2 Simple Inline Assembly
Here we introduce the syntax of asm assembler instructions with an x86 example to
shift a value 8 bits to the right:

asm (“shrl $8, %0” : “=r” (answer) : “r” (operand) : “cc”);

The keyword asm is followed by a parenthetic expression consisting of sections sepa-
rated by colons.The first section contains an assembler instruction and its operands. In
this example, shrl right-shifts the bits in its first operand. Its first operand is repre-
sented by %0. Its second operand is the immediate constant $8.

The second section specifies the outputs.The instruction’s one output will be
placed in the C variable answer, which must be an lvalue.The string “=r” contains an
equals sign indicating an output operand and an r indicating that answer is stored in a
register.

The third section specifies the inputs.The C variable operand specifies the value to
shift.The string “r” indicates that it is stored in a register but omits an equals sign
because it is an input operand, not an output operand.

The fourth section indicates that the instruction changes the value in the condition
code cc register.

9.2.1 Converting an asm to Assembly Instructions
GCC’s treatment of asm statements is very simple. It produces assembly instructions to
deal with the asm’s operands, and it replaces the asm statement with the instruction
that you specify. It does not analyze the instruction in any way.

For example, GCC converts this program fragment
double foo, bar;
asm (“mycool_asm %1, %0” : “=r” (bar) : “r” (foo));

to these x86 assembly instructions:
movl -8(%ebp),%edx
movl -4(%ebp),%ecx

#APP
mycool_asm %edx, %edx

#NO_APP
movl %edx,-16(%ebp)
movl %ecx,-12(%ebp)

Remember that foo and bar each require two words of stack storage on a 32-bit x86
architecture.The register ebp points to data on the stack.

The first two instructions copy foo into registers EDX and ECX on which mycool_asm
operates.The compiler decides to use the same registers to store the answer, which is
copied into bar by the final two instructions. It chooses appropriate registers, even
reusing the same registers, and copies operands to and from the proper locations
automatically.

11 0430 CH09 5/22/01 10:36 AM Page 191

192 Chapter 9 Inline Assembly Code

9.3 Extended Assembly Syntax
In the subsections that follow, we describe the syntax rules for asm statements.Their
sections are separated by colons.

We will refer to this illustrative asm statement, which computes the Boolean
expression x > y:

asm (“fucomip %%st(1), %%st; seta %%al” :
“=a” (result) : “u” (y), “t” (x) : “cc”, “st”);

First, fucomip compares its two operands x and y, and stores values indicating the result
into the condition code register.Then seta converts these values into a 0 or 1 result.

9.3.1 Assembler Instructions
The first section contains the assembler instructions, enclosed in quotation marks.The
example asm contains two assembly instructions, fucomip and seta, separated by semi-
colons. If the assembler does not permit semicolons, use newline characters (\n) to
separate instructions.

The compiler ignores the contents of this first section, except that one level of
percentage signs is removed, so %% changes to %.The meaning of %%st(1) and other
such terms is architecture-dependent.

GCC will complain if you specify the -traditional option or the -ansi option
when compiling a program containing asm statements.To avoid producing these
errors, such as in header files, use the alternative keyword __asm__.

9.3.2 Outputs
The second section specifies the instructions’ output operands using C syntax. Each
operand is specified by an operand constraint string followed by a C expression in
parentheses. For output operands, which must be lvalues, the constraint string should
begin with an equals sign.The compiler checks that the C expression for each output
operand is in fact an lvalue.

Letters specifying registers for a particular architecture can be found in the
GCC source code, in the REG_CLASS_FROM_LETTER macro. For example, the
gcc/config/i386/i386.h configuration file in GCC lists the register letters for the x86
architecture.3 Table 9.1 summarizes these.

3. You’ll need to have some familiarity with GCC’s internals to make sense of this file.

11 0430 CH09 5/22/01 10:36 AM Page 192

1939.3 Extended Assembly Syntax

Table 9.1 Register Letters for the Intel x86 Architecture

Register Letter Registers That GCC May Use

R General register (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP)
q General register for data (EAX, EBX, ECX, EDX)

f Floating-point register

t Top floating-point register

u Second-from-top floating-point register

a EAX register

b EBX register

c ECX register

d EDX register

x SSE register (Streaming SIMD Extension register)

y MMX multimedia registers

A An 8-byte value formed from EAX and EDX

D Destination pointer for string operations (EDI)

S Source pointer for string operations (ESI)

Multiple operands in an asm statement, each specified by a constraint string and a C
expression, are separated by commas, as illustrated in the example asm’s input section.
You may specify up to 10 operands, denoted %0, %1, …, %9, in the output and
input sections. If there are no output operands but there are input operands or
clobbered registers, leave the output section empty or mark it with a comment like
/* no outputs */.

9.3.3 Inputs
The third section specifies the input operands for the assembler instructions.The con-
straint string for an input operand should not have an equals sign, which indicates an
lvalue. Otherwise, an input operand’s syntax is the same as for output operands.

To indicate that a register is both read from and written to in the same asm, use an
input constraint string of the output operand’s number. For example, to indicate that
an input register is the same as the first output register number, use 0. Output
operands are numbered left to right, starting with 0. Merely specifying the same C
expression for an output operand and an input operand does not guarantee that the
two values will be placed in the same register.

This input section can be omitted if there are no input operands and the subse-
quent clobber section is empty.

11 0430 CH09 5/22/01 10:36 AM Page 193

194 Chapter 9 Inline Assembly Code

9.3.4 Clobbers
If an instruction modifies the values of one or more registers as a side effect, specify
the clobbered registers in the asm’s fourth section. For example, the fucomip instruc-
tion modifies the condition code register, which is denoted cc. Separate strings repre-
senting clobbered registers with commas. If the instruction can modify an arbitrary
memory location, specify memory. Using the clobber information, the compiler deter-
mines which values must be reloaded after the asm executes. If you don’t specify this
information correctly, GCC may assume incorrectly that registers still contain values
that have, in fact, been overwritten, which will affect your program’s correctness.

9.4 Example
The x86 architecture includes instructions that determine the positions of the least
significant set bit and the most significant set bit in a word.The processor can execute
these instructions quite efficiently. In contrast, implementing the same operation in C
requires a loop and a bit shift.

For example, the bsrl assembly instruction computes the position of the most sig-
nificant bit set in its first operand, and places the bit position (counting from 0, the
least significant bit) into its second operand.To place the bit position for number into
position, we could use this asm statement:

asm (“bsrl %1, %0” : “=r” (position) : “r” (number));

One way you could implement the same operation in C is using this loop:
long i;
for (i = (number >> 1), position = 0; i != 0; ++position)
i >>= 1;

To test the relative speeds of these two versions, we’ll place them in a loop that com-
putes the bit positions for a large number of values. Listing 9.1 does this using the C
loop implementation.The program loops over integers, from 1 up to the value speci-
fied on the command line. For each value of number, it computes the most significant
bit that is set. Listing 9.2 does the same thing using the inline assembly instruction.
Note that in both versions, we assign the computed bit position to a volatile variable
result.This is to coerce the compiler’s optimizer so that it does not eliminate the
entire bit position computation; if the result is not used or stored in memory, the opti-
mizer eliminates the computation as “dead code.”

Listing 9.1 (bit-pos-loop.c) Find Bit Position Using a Loop

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char* argv[])
{
long max = atoi (argv[1]);
long number;

11 0430 CH09 5/22/01 10:36 AM Page 194

1959.4 Example

long i;
unsigned position;
volatile unsigned result;

/* Repeat the operation for a large number of values. */
for (number = 1; number <= max; ++number) {
/* Repeatedly shift the number to the right, until the result is

zero. Keep count of the number of shifts this requires. */
for (i = (number >> 1), position = 0; i != 0; ++position)
i >>= 1;

/* The position of the most significant set bit is the number of
shifts we needed after the first one. */

result = position;
}

return 0;
}

Listing 9.2 (bit-pos-asm.c) Find Bit Position Using bsrl

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char* argv[])
{
long max = atoi (argv[1]);
long number;
unsigned position;
volatile unsigned result;

/* Repeat the operation for a large number of values. */
for (number = 1; number <= max; ++number) {
/* Compute the position of the most significant set bit using the

bsrl assembly instruction. */
asm (“bsrl %1, %0” : “=r” (position) : “r” (number));
result = position;

}

return 0;
}

We’ll compile both versions with full optimization:
% cc -O2 -o bit-pos-loop bit-pos-loop.c
% cc -O2 -o bit-pos-asm bit-pos-asm.c

Now let’s run each using the time command to measure execution time.We’ll specify
a large value as the command-line argument, to make sure that each version takes at
least a few seconds to run.

11 0430 CH09 5/22/01 10:36 AM Page 195

196 Chapter 9 Inline Assembly Code

% time ./bit-pos-loop 250000000
19.51user 0.00system 0:20.40elapsed 95%CPU (0avgtext+0avgdata
0maxresident)k0inputs+0outputs (73major+11minor)pagefaults 0swaps
% time ./bit-pos-asm 250000000
3.19user 0.00system 0:03.32elapsed 95%CPU (0avgtext+0avgdata
0maxresident)k0inputs+0outputs (73major+11minor)pagefaults 0swaps

Notice that the version that uses inline assembly executes a great deal faster (your
results for this example may vary).

9.5 Optimization Issues
GCC’s optimizer attempts to rearrange and rewrite programs’ code to minimize exe-
cution time even in the presence of asm expressions. If the optimizer determines that
an asm’s output values are not used, the instruction will be omitted unless the keyword
volatile occurs between asm and its arguments. (As a special case, GCC will not
move an asm without any output operands outside a loop.) Any asm can be moved in
ways that are difficult to predict, even across jumps.The only way to guarantee a par-
ticular assembly instruction ordering is to include all the instructions in the same asm.

Using asms can restrict the optimizer’s effectiveness because the compiler does not
know the asms’ semantics. GCC is forced to make conservative guesses that may pre-
vent some optimizations. Caveat emptor!

9.6 Maintenance and Portability Issues
If you decide to use nonportable, architecture-dependent asm statements, encapsulating
these statements within macros or functions can aid in maintenance and porting.
Placing all these macros in one file and documenting them will ease porting to a dif-
ferent architecture, something that occurs with surprising frequency even for “throw-
away” programs.Thus, the programmer will need to rewrite only one file for the
different architecture.

For example, most asm statements in the Linux source code are grouped into
/usr/src/linux/include/asm and /usr/src/linux/include/asm-i386 header files, and
/usr/src/linux/arch/i386/ and /usr/src/linux/drivers/ source files.

11 0430 CH09 5/22/01 10:36 AM Page 196

Security

10

MUCH OF THE POWER OF A GNU/LINUX SYSTEM COMES FROM its support for
multiple users and for networking. Many people can use the system at once, and they
can connect to the system from remote locations. Unfortunately, with this power
comes risk, especially for systems connected to the Internet. Under some circum-
stances, a remote “hacker” can connect to the system and read, modify, or remove files
that are stored on the machine. Or, two users on the same machine can read, modify,
or remove each other’s files when they should not be allowed to do so.When this
happens, the system’s security is said to have been compromised.

The Linux kernel provides a variety of facilities to ensure that these events do not
take place. But to avoid security breaches, ordinary applications must be careful as well.
For example, imagine that you are developing accounting software.Although you
might want all users to be able to file expense reports with the system, you wouldn’t
want all users to be able to approve those reports.You might want users to be able to
view their own payroll information, but you certainly wouldn’t want them to be able
to view everyone else’s payroll information.You might want managers to be able to
view the salaries of employees in their departments, but you wouldn’t want them to
view the salaries of employees in other departments.

12 0430 CH10 5/22/01 10:42 AM Page 197

198 Chapter 10 Security

To enforce these kinds of controls, you have to be very careful. It’s amazingly easy
to make a mistake that allows users to do something you didn’t intend them to be able
to do.The best approach is to enlist the help of security experts. Still, every application
developer ought to understand the basics.

10.1 Users and Groups
Each Linux user is assigned a unique number, called a user ID, or UID. Of course,
when you log in, you use a username rather than a user ID.The system converts your
username to a particular user ID, and from then on it’s only the user ID that counts.

You can actually have more than one username for the same user ID.As far as the
system is concerned, the user IDs, not the usernames, matter.There’s no way to give
one username more power than another if they both correspond to the same user ID.

You can control access to a file or other resource by associating it with a particular
user ID.Then only the user corresponding to that user ID can access the resource. For
example, you can create a file that only you can read, or a directory in which only you
can create new files.That’s good enough for many simple cases.

Sometimes, however, you want to share a resource among multiple users. For exam-
ple, if you’re a manager, you might want to create a file that any manager can read but
that ordinary employees cannot. Linux doesn’t allow you to associate multiple user IDs
with a file, so you can’t just create a list of all the people to whom you want to give
access and attach them all to the file.

You can, however, create a group. Each group is assigned a unique number, called a
group ID, or GID. Every group contains one or more user IDs.A single user ID can be
a member of lots of groups, but groups can’t contain other groups; they can contain
only users. Like users, groups have names.Also like usernames, however, the group
names don’t really matter; the system always uses the group ID internally.

Continuing our example, you could create a managers group and put the user IDs
for all the managers in this group.You could then create a file that can be read by any-
one in the managers group but not by people who aren’t in the group. In general, you
can associate only one group with a resource.There’s no way to specify that users can
access a file only if they’re in either group 7 or group 42, for example.

If you’re curious to see what your user ID is and what groups you are in, you can
use the id command. For example, the output might look like this:

% id
uid=501(mitchell) gid=501(mitchell) groups=501(mitchell),503(csl)

The first part shows you that the user ID for the user who ran the command was 501.
The command also figures out what the corresponding username is and displays that
in parentheses.The command shows that user ID 501 is actually in two groups: group
501 (called mitchell) and group 503 (called csl).You’re probably wondering why
group 501 appears twice: once in the gid field and once in the groups field.We’ll
explain this later.

12 0430 CH10 5/22/01 10:42 AM Page 198

19910.2 Process User IDs and Process Group IDs

10.1.1 The Superuser
One user account is very special.1 This user has user ID 0 and usually has the user-
name root. It is also sometimes referred to as the superuser account.The root user can
do just about anything: read any file, remove any file, add new users, turn off network
access, and so forth. Lots of special operations can be performed only by processes
running with root privilege—that is, running as user root.

The trouble with this design is that a lot of programs need to be run by root
because a lot of programs need to perform one of these special operations. If any of
these programs misbehaves, chaos can result.There’s no effective way to contain a pro-
gram when it’s run by root; it can do anything. Programs run by root must be written
very carefully.

10.2 Process User IDs and Process Group IDs
Until now, we’ve talked about commands being executed by a particular user.That’s
not quite accurate because the computer never really knows which user is using it. If
Eve learns Alice’s username and password, then Eve can log in as Alice, and the com-
puter will let Eve do everything that Alice can do.The system knows only which user
ID is in use, not which user is typing the commands. If Alice can’t be trusted to keep
her password to herself, for example, then nothing you do as an application developer
will prevent Eve from accessing Alice’s files.The responsibility for system security is
shared among the application developer, the users of the system, and the administrators
of the system.

Every process has an associated user ID and group ID.When you invoke a com-
mand, it typically runs in a process whose user and group IDs are the same as your
user and group IDs.When we say that a user performs an operation, we really mean
that a process with the corresponding user ID performs that operation.When the
process makes a system call, the kernel decides whether to allow the operation to pro-
ceed. It makes that determination by examining the permissions associated with the
resources that the process is trying to access and by checking the user ID and group
ID associated with the process trying to perform the action.

Now you know what that middle field printed by the id command is all about. It’s
showing the group ID of the current process. Even though user 501 is in multiple
groups, the current process can have only one group ID. In the example shown previ-
ously, the current group ID is 501.

If you have to manipulate user IDs and group IDs in your program (and you will, if
you’re writing programs that deal with security), then you should use the uid_t and
gid_t types defined in <sys/types.h>. Even though user IDs and group IDs are essen-
tially just integers, avoid making any assumptions about how many bits are used in
these types or perform arithmetic operations on them. Just treat them as opaque
handles for user and group identity.

1.The fact that there is only one special user gave AT&T the name for its UNIX operating
system. In contrast, an earlier operating system that had multiple special users was called
MULTICS. GNU/Linux, of course, is mostly compatible with UNIX.

12 0430 CH10 5/22/01 10:42 AM Page 199

200 Chapter 10 Security

To get the user ID and group ID for the current process, you can use the geteuid
and getegid functions, declared in <unistd.h>.These functions don’t take any parame-
ters, and they always work; you don’t have to check for errors. Listing 10.1 shows a
simple program that provides a subset of the functionality provide by the id command:

Listing 10.1 (simpleid.c) Print User and Group IDs

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main()
{
uid_t uid = geteuid ();
gid_t gid = getegid ();
printf (“uid=%d gid=%d\n”, (int) uid, (int) gid);
return 0;

}

When this program is run (by the same user who ran the real id program) the output
is as follows:

% ./simpleid
uid=501 gid=501

10.3 File System Permissions
A good way to see users and groups in action is to look at file system permissions. By
examining how the system associates permissions with each file and then seeing how
the kernel checks to see who is allowed to access which files, the concepts of user ID
and group ID should become clearer.

Each file has exactly one owning user and exactly one owning group.When you create
a new file, the file is owned by the user and group of the creating process.2

The basic things that you can do with files, as far as Linux is concerned, are read
from them, write to them, and execute them. (Note that creating a file and removing a
file are not considered things you can do with the file; they’re considered things you
can do with the directory containing the file.We’ll get to this a little later.) If you can’t
read a file, Linux won’t let you examine the file’s contents. If you can’t write a file, you
can’t change its contents. If there’s a program file for which you do not have execute
permission, you cannot run the program.

2.Actually, there are some rare exceptions, involving sticky bits, discussed later in Section
10.3.2,“Sticky Bits.”

12 0430 CH10 5/22/01 10:42 AM Page 200

20110.3 File System Permissions

Linux enables you to designate which of these three actions—reading, writing, and
executing—can be performed by the owning user, owning group, and everybody else.
For example, you could say that the owning user can do anything she wants with the
file, that anyone in the owning group can read and execute the file (but not write to
it), and that nobody else can access the file at all.

You can view these permission bits interactively with the ls command by using the
-l or -o options and programmatically with the stat system call.You can set the per-
mission bits interactively with the chmod program3 or programmatically with the
system call of the same name.To look at the permissions on a file named hello, use
ls -l hello. Here’s how the output might look:

% ls -l hello
-rwxr-x--- 1 samuel csl 11734 Jan 22 16:29 hello

The samuel and csl fields indicate that the owning user is samuel and that the owning
group is csl.

The string of characters at the beginning of the line indicates the permissions asso-
ciated with the file.The first dash indicates that this is a normal file. It would be d for
a directory, or it can be other letters for special kinds of files such as devices (see
Chapter 6,“Devices”) or named pipes (see Chapter 5,“Interprocess Communication,”
Section 5.4,“Pipes”).The next three characters show permissions for the owning user;
they indicate that samuel can read, write, and execute the file.The next three charac-
ters show permissions for members of the csl group; these members are allowed only
to read and execute the file.The last three characters show permissions for everyone
else; these users are not allowed to do anything with hello.

Let’s see how this works. First, let’s try to access the file as the user nobody, who is
not in the csl group:

% id
uid=99(nobody) gid=99(nobody) groups=99(nobody)
% cat hello
cat: hello: Permission denied
% echo hi > hello
sh: ./hello: Permission denied
% ./hello
sh: ./hello: Permission denied

We can’t read the file, which is why cat fails; we can’t write to the file, which is why
echo fails; and we can’t run the file, which is why ./hello fails.

3.You’ll sometimes see the permission bits for a file referred to as the file’s mode.The name
of the chmod command is short for “change mode.”

12 0430 CH10 5/22/01 10:42 AM Page 201

202 Chapter 10 Security

Things are better if we are accessing the file as mitchell, who is a member of the
csl group:

% id
uid=501(mitchell) gid=501(mitchell) groups=501(mitchell),503(csl)
% cat hello
#!/bin/bash
echo “Hello, world.”
% ./hello
Hello, world.
% echo hi > hello
bash: ./hello: Permission denied

We can list the contents of the file, and we can run it (it’s a simple shell script), but we
still can’t write to it.

If we run as the owner (samuel), we can even overwrite the file:
% id
uid=502(samuel) gid=502(samuel) groups=502(samuel),503(csl)
% echo hi > hello
% cat hello
hi

You can change the permissions associated with a file only if you are the file’s owner
(or the superuser). For example, if you now want to allow everyone to execute the
file, you can do this:

% chmod o+x hello
% ls -l hello
-rwxr-x--x 1 samuel csl 3 Jan 22 16:38 hello

Note that there’s now an x at the end of the first string of characters.The o+x bit
means that you want to add the execute permission for other people (not the file’s
owner or members of its owning group).You could use g-w instead, to remove the
write permission from the group. See the man page in section 1 for chmod for details
about this syntax:

% man 1 chmod

Programmatically, you can use the stat system call to find the permissions associated
with a file.This function takes two parameters: the name of the file you want to find
out about, and the address of a data structure that is filled in with information about
the file. See Appendix B,“Low-Level I/O,” Section B.2,“stat,” for a discussion of other
information that you can obtain with stat. Listing 10.2 shows an example of using
stat to obtain file permissions.

Listing 10.2 (stat-perm.c) Determine File Owner’s Write Permission

#include <stdio.h>
#include <sys/stat.h>

int main (int argc, char* argv[])
{
const char* const filename = argv[1];
struct stat buf;

12 0430 CH10 5/22/01 10:42 AM Page 202

20310.3 File System Permissions

/* Get file information. */
stat (filename, &buf);
/* If the permissions are set such that the file’s owner can write

to it, print a message. */
if (buf.st_mode & S_IWUSR)
printf (“Owning user can write `%s’.\n”, filename);

return 0;
}

If you run this program on our hello program, it says:
% ./stat-perm hello
Owning user can write ‘hello’.

The S_IWUSR constant corresponds to write permission for the owning user.There are
other constants for all the other bits. For example, S_IRGRP is read permission for the
owning group, and S_IXOTH is execute permission for users who are neither the own-
ing user nor a member of the owning group. If you store permissions in a variable, use
the typedef mode_t for that variable. Like most system calls, stat will return -1 and set
errno if it can’t obtain information about the file.

You can use the chmod function to change the permission bits on an existing file.
You call chmod with the name of the file you want to change and the permission bits
you want set, presented as the bitwise or of the various permission constants men-
tioned previously. For example, this next line would make hello readable and exe-
cutable by its owning user but would disable all other permissions associated with
hello:

chmod (“hello”, S_IRUSR | S_IXUSR);

The same permission bits apply to directories, but they have different meanings. If a
user is allowed to read from a directory, the user is allowed to see the list of files that
are present in that directory. If a user is allowed to write to a directory, the user is
allowed to add or remove files from the directory. Note that a user may remove files
from a directory if she is allowed to write to the directory, even if she does not have per-
mission to modify the file she is removing. If a user is allowed to execute a directory, the
user is allowed to enter that directory and access the files therein.Without execute
access to a directory, a user is not allowed to access the files in that directory indepen-
dent of the permissions on the files themselves.

To summarize, let’s review how the kernel decides whether to allow a process to
access a particular file. It checks to see whether the accessing user is the owning user, a
member of the owning group, or someone else.The category into which the accessing
user falls is used to determine which set of read/write/execute bits are checked.Then
the kernel checks the operation that is being performed against the permission bits
that apply to this user.4

4.The kernel may also deny access to a file if a component directory in its file path is inac-
cessible. For instance, if a process may not access the directory /tmp/private/, it may not read
/tmp/private/data, even if the permissions on the latter are set to allow the access.

12 0430 CH10 5/22/01 10:42 AM Page 203

204 Chapter 10 Security

There is one important exception: Processes running as root (those with user ID 0)
are always allowed to access any file, regardless of the permissions associated with it.

10.3.1 Security Hole: Programs Without Execute Permissions
Here’s a first example of where security gets very tricky.You might think that if you
disallow execution of a program, then nobody can run it.After all, that’s what it means
to disallow execution. But a malicious user can make a copy of the program, change
the permissions to make it executable, and then run the copy! If you rely on users not
being able to run programs that aren’t executable but then don’t prevent them from
copying the programs, you have a security hole—a means by which users can perform
some action that you didn’t intend.

10.3.2 Sticky Bits
In addition to read, write, and execute permissions, there is a magic bit called the sticky
bit.5 This bit applies only to directories.

A directory that has the sticky bit set allows you to delete a file only if you are the
owner of the file.As mentioned previously, you can ordinarily delete a file if you have
write access to the directory that contains it, even if you are not the file’s owner.When
the sticky bit is set, you still must have write access to the directory, but you must also
be the owner of the file that you want to delete.

A few directories on the typical GNU/Linux system have the sticky bit set. For
example, the /tmp directory, in which any user can place temporary files, has the sticky
bit set.This directory is specifically designed to be used by all users, so the directory
must be writable by everyone. But it would be bad if one user could delete another
user’s files, so the sticky bit is set on the directory.Then only the owning user (or
root, of course) can remove a file.

You can see the sticky bit is set because of the t at the end of the permission bits
when you run ls on /tmp:

% ls -ld /tmp
drwxrwxrwt 12 root root 2048 Jan 24 17:51 /tmp

The corresponding constant to use with stat and chmod is S_ISVTX.
If your program creates directories that behave like /tmp, in that lots of people put

things there but shouldn’t be able to remove each other’s files, then you should set the
sticky bit on the directory.You can set the sticky bit on a directory with the chmod
command by invoking the following:

% chmod o+t directory

5.This name is anachronistic; it goes back to a time when setting the sticky bit caused a pro-
gram to be retained in main memory even when it was done executing.The pages allocated to
the program were “stuck” in memory.

12 0430 CH10 5/22/01 10:42 AM Page 204

20510.4 Real and Effective IDs

To set the sticky bit programmatically, call chmod with the S_ISVTX mode flag. For
example, to set the sticky bit of the directory specified by dir_path to those of the
/tmp and give full read, write, and execute permissions to all users, use this call:

chmod (dir_path, S_IRWXU | S_IRWXG | S_IRWXO | S_ISVTX);

10.4 Real and Effective IDs
Until now, we’ve talked about the user ID and group ID associated with a process as if
there were only one such user ID and one such group ID. But, actually, it’s not quite
that simple.

Every process really has two user IDs: the effective user ID and the real user ID. (Of
course, there’s also an effective group ID and real group ID. Just about everything that’s
true about user IDs is also true about group IDs.) Most of the time, the kernel checks
only the effective user ID. For example, if a process tries to open a file, the kernel
checks the effective user ID when deciding whether to let the process access the file.

The geteuid and getegid functions described previously return the effective user
ID and the effective group ID. Corresponding getuid and getgid functions return the
real user ID and real group ID.

If the kernel cares about only the effective user ID, it doesn’t seem like there’s
much point in having a distinction between a real user ID and an effective user ID.
However, there is one very important case in which the real user ID matters. If you
want to change the effective user ID of an already running process, the kernel looks at
the real user ID as well as the effective user ID.

Before looking at how you can change the effective user ID of a process, let’s exam-
ine why you would want to do such a thing by looking back at our accounting pack-
age. Suppose that there’s a server process that might need to look at any file on the
system, regardless of the user who created it. Such a process must run as root because
only root can be guaranteed to be capable of looking at any file. But now suppose
that a request comes in from a particular user (say, mitchell) to access some file.The
server process could carefully examine the permissions associated with the files in
question and try to decide whether mitchell should be allowed to access those files.
But that would mean duplicating all the processing that the kernel would normally do
to check file access permissions. Reimplementing that logic would be complex, error-
prone, and tedious.

A better approach is simply to temporarily change the effective user ID of the
process from root to mitchell and then try to perform the operations required. If
mitchell is not allowed to access the data, the kernel will prevent the process from
doing so and will return appropriate indications of error.After all the operations taken
on behalf of mitchell are complete, the process can restore its original effective user
ID to root.

12 0430 CH10 5/22/01 2:38 PM Page 205

206 Chapter 10 Security

Programs that authenticate users when they log in take advantage of the capability
to change user IDs as well.These login programs run as root.When the user enters a
username and password, the login program verifies the username and password in the
system password database.Then the login program changes both the effective user ID
and the real ID to be that of the user. Finally, the login program calls exec to start the
user’s shell, leaving the user running a shell whose effective user ID and real user ID
are that of the user.

The function used to change the user IDs for a process is setreuid. (There is, of
course, a corresponding setregid function as well.) This function takes two argu-
ments.The first argument is the desired real user ID; the second is the desired effective
user ID. For example, here’s how you would exchange the effective and real user IDs:

setreuid (geteuid(), getuid ());

Obviously, the kernel won’t let just any process change its user IDs. If a process were
allowed to change its effective user ID at will, then any user could easily impersonate
any other user, simply by changing the effective user ID of one of his processes.The
kernel will let a process running with an effective user ID of 0 change its user IDs as
it sees fit. (Again, notice how much power a process running as root has! A process
whose effective user ID is 0 can do absolutely anything it pleases.) Any other process,
however, can do only one of the following things:

n Set its effective user ID to be the same as its real user ID
n Set its real user ID to be the same as its effective user ID
n Swap the two user IDs

The first alternative would be used by our accounting process when it has finished
accessing files as mitchell and wants to return to being root.The second alternative
could be used by a login program after it has set the effective user ID to that of the
user who just logged in. Setting the real user ID ensures that the user will never be
able go back to being root. Swapping the two user IDs is almost a historical artifact;
modern programs rarely use this functionality.

You can pass -1 to either argument to setreuid if you want to leave that user ID
alone.There’s also a convenience function called seteuid.This function sets the effec-
tive user ID, but it doesn’t modify the real user ID.The following two statements both
do exactly the same thing:

seteuid (id);
setreuid (-1, id);

10.4.1 Setuid Programs
Using the previous techniques, you know how to make a root process impersonate
another process temporarily and then return to being root.You also know how to
make a root process drop all its special privileges by setting both its real user ID and
its effective user ID.

12 0430 CH10 5/22/01 10:42 AM Page 206

20710.4 Real and Effective IDs

Here’s a puzzle: Can you, running as a non-root user, ever become root? That
doesn’t seem possible, using the previous techniques, but here’s proof that it can be
done:

% whoami
mitchell
% su
Password: ...
% whoami
root

The whoami command is just like id, except that it shows only the effective user ID,
not all the other information.The su command enables you to become the superuser
if you know the root password.

How does su work? Because we know that the shell was originally running with
both its real user ID and its effective user ID set to mitchell, setreuid won’t allow us
to change either user ID.

The trick is that the su program is a setuid program.That means that when it is
run, the effective user ID of the process will be that of the file’s owner rather than the
effective user ID of the process that performed the exec call. (The real user ID will
still be that of the executing user.) To create a setuid program, you use chmod +s at the
command line, or use the S_ISUID flag if calling chmod programmatically.6

For example, consider the program in Listing 10.3.

Listing 10.3 (setuid-test.c) Setuid Demonstration Program

#include <stdio.h>
#include <unistd.h>

int main ()
{
printf (“uid=%d euid=%d\n”, (int) getuid (), (int) geteuid ());
return 0;

}

Now suppose that this program is setuid and owned by root. In that case, the ls out-
put will look like this:

-rwsrws--x 1 root root 11931 Jan 24 18:25 setuid-test

The s bits indicate that the file is not only executable (as an x bit would indicate) but
also setuid and setgid.When we use this program, we get output like this:

% whoami
mitchell
% ./setuid-test
uid=501 euid=0

6. Of course, there is a similar notion of a setgid program.When run, its effective group
ID is the same as that of the group owner of the file. Most setuid programs are also setgid
programs.

12 0430 CH10 5/22/01 10:42 AM Page 207

208 Chapter 10 Security

Note that the effective user ID is set to 0 when the program is run.
You can use the chmod command with the u+s or g+s arguments to set the setuid

and setgid bits on an executable file, respectively—for example:
% ls -l program
-rwxr-xr-x 1 samuel csl 0 Jan 30 23:38 program
% chmod g+s program
% ls -l program
-rwxr-sr-x 1 samuel csl 0 Jan 30 23:38 program
% chmod u+s program
% ls -l program
-rwsr-sr-x 1 samuel csl 0 Jan 30 23:38 program

You can also use the chmod call with the S_ISUID or S_ISGID mode flags.
su is capable of changing the effective user ID through this mechanism. It runs

initially with an effective user ID of 0.Then it prompts you for a password. If the
password matches the root password, it sets its real user ID to be root as well and
then starts a new shell. Otherwise, it exits, unceremoniously leaving you as a non-
privileged user.

Take a look at the permissions on the su program:
% ls -l /bin/su
-rwsr-xr-x 1 root root 14188 Mar 7 2000 /bin/su

Notice that it’s owned by root and that the setuid bit is set.
Note that su doesn’t actually change the user ID of the shell from which it was

run. Instead, it starts a new shell process with the new user ID.The original shell is
blocked until the new shell completes and su exits.

10.5 Authenticating Users
Often, if you have a setuid program, you don’t want to offer its services to everyone.
For example, the su program lets you become root only if you know the root pass-
word.The program makes you prove that you are entitled to become root before
going ahead with its actions.This process is called authentication—the su program is
checking to see that you are authentic.

If you’re administering a very secure system, you probably don’t want to let people
log in just by typing an ordinary password. Users tend to write down passwords, and
black hats tend to find them. Users tend to pick passwords that involve their birthdays,
the names of their pets, and so forth.7 Passwords just aren’t all that secure.

7. It has been found that system administrators tend to pick the word god as their password
more often than any other password. (Make of that what you will.) So, if you ever need root
access on a machine and the sysadmin isn’t around, a little divine inspiration might be just what
you need.

12 0430 CH10 5/22/01 10:42 AM Page 208

20910.5 Authenticating Users

For example, many organizations now require the use of special “one-time” pass-
words that are generated by special electronic ID cards that users keep with them.The
same password can’t be used twice, and you can’t get a valid password out of the ID
card without entering a PIN. So, an attacker must obtain both the physical card and
the PIN to break in. In a really secure facility, retinal scans or other kinds of biometric
testing are used.

If you’re writing a program that must perform authentication, you should allow the
system administrator to use whatever means of authentication is appropriate for that
installation. GNU/Linux comes with a very useful library that makes this very easy.
This facility, called Pluggable Authentication Modules, or PAM, makes it easy to write
applications that authenticate their users as the system administrator sees fit.

It’s easiest to see how PAM works by looking at a simple PAM application. Listing
10.4 illustrates the use of PAM.

Listing 10.4 (pam.c) PAM Example

#include <security/pam_appl.h>
#include <security/pam_misc.h>
#include <stdio.h>

int main ()
{
pam_handle_t* pamh;
struct pam_conv pamc;

/* Set up the PAM conversation. */
pamc.conv = &misc_conv;
pamc.appdata_ptr = NULL;
/* Start a new authentication session. */
pam_start (“su”, getenv (“USER”), &pamc, &pamh);
/* Authenticate the user. */
if (pam_authenticate (pamh, 0) != PAM_SUCCESS)
fprintf (stderr, “Authentication failed!\n”);

else
fprintf (stderr, “Authentication OK.\n”);

/* All done. */
pam_end (pamh, 0);
return 0;

}

To compile this program, you have to link it with two libraries: the libpam library and
a helper library called libpam_misc:

% gcc -o pam pam.c -lpam -lpam_misc

12 0430 CH10 5/22/01 10:42 AM Page 209

210 Chapter 10 Security

This program starts off by building up a PAM conversation object.This object is used
by the PAM library whenever it needs to prompt the user for information.The
misc_conv function used in this example is a standard conversation function that uses
the terminal for input and output.You could write your own function that pops up a
dialog box, or that uses speech for input and output, or that provides even more exotic
input and output methods.

The program then calls pam_start.This function initializes the PAM library.The first
argument is a service name.You should use a name that uniquely identifies your appli-
cation. For example, if your application is named whizbang, you should probably use
that for the service name, too. However, the program probably won’t work until the
system administrator explicitly configures the system to work with your service. So, in
this example, we use the su service, which says that our program should authenticate
users in the same way that the su command does.You should not use this technique in a
real program. Pick a real service name, and have your installation scripts help the system
administrator to set up a correct PAM configuration for your application.

The second argument is the name of the user whom you want to authenticate. In
this example, we use the value of the USER environment variable. (Normally, this is the
username that corresponds to the effective user ID of the current process, but that’s
not always the case.) In most real programs, you would prompt for a username at this
point.The third argument indicates the PAM conversation, discussed previously.The
call to pam_start fills in the handle provided as the fourth argument. Pass this handle
to subsequent calls to PAM library routines.

Next, the program calls pam_authenticate.The second argument enables you to
pass various flags; the value 0 means to use the default options.The return value from
this function indicates whether authentication succeeded.

Finally, the programs calls pam_end to clean up any allocated data structures.
Let’s assume that the valid password for the current user is “password” (an excep-

tionally poor password).Then, running this program with the correct password pro-
duces the expected:

% ./pam
Password: password

Authentication OK.

If you run this program in a terminal, the password probably won’t actually appear
when you type it in; it’s hidden to prevent others from peeking at your password over
your shoulder as you type.

However, if a hacker tries to use the wrong password, the PAM library will cor-
rectly indicate failure:

% ./pam
Password: badguess

Authentication failed!

12 0430 CH10 5/22/01 10:42 AM Page 210

21110.6 More Security Holes

The basics covered here are enough for most simple programs. Full documentation
about how PAM works is available in /usr/doc/pam on most GNU/Linux systems.

10.6 More Security Holes
Although this chapter will point out a few common security holes, you should by no
means rely on this book to cover all possible security holes.A great many have already
been discovered, and many more are out there waiting to be found. If you are trying
to write secure code, there is really no substitute for having a security expert audit
your code.

10.6.1 Buffer Overruns
Almost every major Internet application daemon, including the sendmail daemon, the
finger daemon, the talk daemon, and others, has at one point been compromised
through a buffer overrun.

If you are writing any code that will ever be run as root, you absolutely must be
aware of this particular kind of security hole. If you are writing a program that per-
forms any kind of interprocess communication, you should definitely be aware of this
kind of security hole. If you are writing a program that reads files (or might read files)
that are not owned by the user executing the program, you should be aware of
this kind of security hole.That last criterion applies to almost every program.
Fundamentally, if you’re going to write GNU/Linux software, you ought to know
about buffer overruns.

The idea behind a buffer overrun attack is to trick a program into executing code
that it did not intend to execute.The usual mechanism for achieving this feat is to
overwrite some portion of the program’s process stack.The program’s stack contains,
among other things, the memory location to which the program will transfer control
when the current function returns.Therefore, if you can put the code that you want
to have executed into memory somewhere and then change the return address to
point to that piece of memory, you can cause the program to execute anything.When
the program returns from the function it is executing, it will jump to the new code
and execute whatever is there, running with the privileges of the current process.
Clearly, if the current process is running as root, this would be a disaster. If the process
is running as another user, it’s a disaster “only” for that user—and anybody else who
depends on the contents of files owned by that user, and so forth.

If the program is running as a daemon and listening for incoming network connec-
tions, the situation is even worse.A daemon typically runs as root. If it contains buffer
overrun bugs, anyone who can connect via the network to a computer running the
daemon can seize control of the computer by sending a malignant sequence of data to
the daemon over the network.A program that does not engage in network communi-
cations is much safer because only users who are already able to log in to the com-
puter running the program are able to attack it.

12 0430 CH10 5/22/01 10:42 AM Page 211

212 Chapter 10 Security

The buggy versions of finger, talk, and sendmail all shared a common flaw. Each
used a fixed-length string buffer, which implied a constant upper limit on the size of
the string but then allowed network clients to provide strings that overflowed the
buffer. For example, they contained code similar to this:

#include <stdio.h>

int main ()
{
/* Nobody in their right mind would have more than 32 characters in

their username. Plus, I think UNIX allows only 8-character
usernames. So, this should be plenty of space. */

char username[32];
/* Prompt the user for the username. */
printf (“Enter your username: “);
/* Read a line of input. */
gets (username);
/* Do other things here... */

return 0;
}

The combination of the 32-character buffer with the gets function permits a buffer
overrun.The gets function reads user input up until the next newline character and
stores the entire result in the username buffer.The comments in the code are correct
in that people generally have short usernames, so no well-meaning user is likely to
type in more than 32 characters. But when you’re writing secure software, you must
consider what a malicious attacker might do. In this case, the attacker might deliber-
ately type in a very long username. Local variables such as username are stored on the
stack, so by exceeding the array bounds, it’s possible to put arbitrary bytes onto the
stack beyond the area reserved for the username variable.The username will overrun
the buffer and overwrite parts of the surrounding stack, allowing the kind of attack
described previously.

Fortunately, it’s relatively easy to prevent buffer overruns.When reading strings, you
should always use a function, such as getline, that either dynamically allocates a suffi-
ciently large buffer or stops reading input if the buffer is full. For example, you could
use this:

char* username = getline (NULL, 0, stdin);

This call automatically uses malloc to allocate a buffer big enough to hold the line and
returns it to you.You have to remember to call free to deallocate the buffer, of course,
to avoid leaking memory.

Your life will be even easier if you use C++ or another language that provides
simple primitives for reading input. In C++, for example, you can simply use this:

string username;
getline (cin, username);

12 0430 CH10 5/22/01 10:42 AM Page 212

21310.6 More Security Holes

The username string will automatically be deallocated as well; you don’t have to
remember to free it.8

Of course, buffer overruns can occur with any statically sized array, not just with
strings. If you want to write secure code, you should never write into a data structure,
on the stack or elsewhere, without verifying that you’re not going to write beyond its
region of memory.

10.6.2 Race Conditions in /tmp
Another very common problem involves the creation of files with predictable names,
typically in the /tmp directory. Suppose that your program prog, running as root,
always creates a temporary file called /tmp/prog and writes some vital information
there.A malicious user can create a symbolic link from /tmp/prog to any other file on
the system.When your program goes to create the file, the open system call will suc-
ceed. However, the data that you write will not go to /tmp/prog; instead, it will be
written to some arbitrary file of the attacker’s choosing.

This kind of attack is said to exploit a race condition.There is implicitly a race
between you and the attacker.Whoever manages to create the file first wins.

This attack is often used to destroy important parts of the file system. By creating
the appropriate links, the attacker can trick a program running as root that is supposed
to write a temporary file into overwriting an important system file instead. For exam-
ple, by making a symbolic link to /etc/passwd, the attacker can wipe out the system’s
password database.There are also ways in which a malicious user can obtain root
access using this technique.

One attempt at avoiding this attack is to use a randomized name for the file. For
example, you could read from /dev/random to get some bits to use in the name of the
file.This certainly makes it harder for a malicious user to guess the filename, but it
doesn’t make it impossible.The attacker might just create a large number of symbolic
links, using many potential names. Even if she has to try 10,000 times before wining
the race condition, that one time could be disastrous.

Another approach is to use the O_EXCL flag when calling open.This flag causes open
to fail if the file already exists. Unfortunately, if you’re using the Network File System
(NFS), or if anyone who’s using your program might ever be using NFS, that’s not a
sufficiently robust approach because O_EXCL is not reliable when NFS is in use.You
can’t ever really know for sure whether your code will be used on a system that uses
NFS, so if you’re highly paranoid, don’t rely on using O_EXCL.

In Chapter 2,“Writing Good GNU/Linux Software,” Section 2.1.7,“Using
Temporary Files,” we showed how to use mkstemp to create temporary files.
Unfortunately, what mkstemp does on Linux is open the file with O_EXCL after trying to
pick a name that is hard to guess. In other words, using mkstemp is still insecure if /tmp
is mounted over NFS.9 So, using mkstemp is better than nothing, but it’s not fully secure.

8. Some programmers believe that C++ is a horrible and overly complex language.Their
arguments about multiple inheritance and other such complications have some merit, but it is
easier to write code that avoids buffer overruns and other similar problems in C++ than in C.

9. Obviously, if you’re also a system administrator, you shouldn’t mount /tmp over NFS.

12 0430 CH10 5/22/01 10:42 AM Page 213

214 Chapter 10 Security

One approach that works is to call lstat on the newly created file (lstat is discussed in
Section B.2,“stat”).The lstat function is like stat, except that if the file referred to
is a symbolic link, lstat tells you about the link, not the file to which it refers. If
lstat tells you that your new file is an ordinary file, not a symbolic link, and that it is
owned by you, then you should be okay.

Listing 10.5 presents a function that tries to securely open a file in /tmp.The authors
of this book have not had it audited professionally, nor are we professional security
experts, so there’s a good chance that it has a weakness, too.We do not recommend that
you use this code without getting an audit, but it should at least convince you that
writing secure code is tricky.To help dissuade you, we’ve deliberately made the inter-
face difficult to use in real programs. Error checking is an important part of writing
secure software, so we’ve included error-checking logic in this example.

Listing 10.5 (temp-file.c) Create a Temporary File

#include <fcntl.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

/* Returns the file descriptor for a newly created temporary file.
The temporary file will be readable and writable by the effective
user ID of the current process but will not be readable or
writable by anybody else.

Returns -1 if the temporary file could not be created. */

int secure_temp_file ()
{
/* This file descriptor points to /dev/random and allows us to get

a good source of random bits. */
static int random_fd = -1;
/* A random integer. */
unsigned int random;
/* A buffer, used to convert from a numeric to a string

representation of random. This buffer has fixed size, meaning
that we potentially have a buffer overrun bug if the integers on
this machine have a *lot* of bits. */

char filename[128];
/* The file descriptor for the new temporary file. */
int fd;
/* Information about the newly created file. */
struct stat stat_buf;

/* If we haven’t already opened /dev/random, do so now. (This is
not threadsafe.) */

if (random_fd == -1) {

12 0430 CH10 5/22/01 10:42 AM Page 214

21510.6 More Security Holes

/* Open /dev/random. Note that we’re assuming that /dev/random
really is a source of random bits, not a file full of zeros
placed there by an attacker. */

random_fd = open (“/dev/random”, O_RDONLY);
/* If we couldn’t open /dev/random, give up. */
if (random_fd == -1)
return -1;

}

/* Read an integer from /dev/random. */
if (read (random_fd, &random, sizeof (random)) !=

sizeof (random))
return -1;

/* Create a filename out of the random number. */
sprintf (filename, “/tmp/%u”, random);
/* Try to open the file. */
fd = open (filename,

/* Use O_EXECL, even though it doesn’t work under NFS. */
O_RDWR | O_CREAT | O_EXCL,
/* Make sure nobody else can read or write the file. */
S_IRUSR | S_IWUSR);

if (fd == -1)
return -1;

/* Call lstat on the file, to make sure that it is not a symbolic
link. */

if (lstat (filename, &stat_buf) == -1)
return -1;

/* If the file is not a regular file, someone has tried to trick
us. */

if (!S_ISREG (stat_buf.st_mode))
return -1;

/* If we don’t own the file, someone else might remove it, read it,
or change it while we’re looking at it. */

if (stat_buf.st_uid != geteuid () || stat_buf.st_gid != getegid ())
return -1;

/* If there are any more permission bits set on the file,
something’s fishy. */

if ((stat_buf.st_mode & ~(S_IRUSR | S_IWUSR)) != 0)
return -1;

return fd;
}

This function calls open to create the file and then calls lstat a few lines later to make
sure that the file is not a symbolic link. If you’re thinking carefully, you’ll realize that
there seems to be a race condition at this point. In particular, an attacker could remove
the file and replace it with a symbolic link between the time we call open and the

12 0430 CH10 5/22/01 10:42 AM Page 215

216 Chapter 10 Security

time we call lstat.That won’t harm us directly because we already have an open file
descriptor to the newly created file, but it will cause us to indicate an error to our
caller.This attack doesn’t create any direct harm, but it does make it impossible for our
program to get its work done. Such an attack is called a denial-of-service (DoS) attack.

Fortunately, the sticky bit comes to the rescue. Because the sticky bit is set on /tmp,
nobody else can remove files from that directory. Of course, root can still remove files
from /tmp, but if the attacker has root privilege, there’s nothing you can do to protect
your program.

If you choose to assume competent system administration, then /tmp will not be
mounted via NFS.And if the system administrator was foolish enough to mount /tmp
over NFS, then there’s a good chance that the sticky bit isn’t set, either. So, for most
practical purposes, we think it’s safe to use mkstemp. But you should be aware of these
issues, and you should definitely not rely on O_EXCL to work correctly if the directory
in use is not /tmp—nor you should rely on the sticky bit being set anywhere else.

10.6.3 Using system or popen
The third common security hole that every programmer should bear in mind involves
using the shell to execute other programs.As a toy example, let’s consider a dictionary
server.This program is designed to accept connections via the Internet. Each client
sends a word, and the server tells it whether that is a valid English word. Because
every GNU/Linux system comes with a list of about 45,000 English words in
/usr/dict/words, an easy way to build this server is to invoke the grep program,
like this:

% grep -x word /usr/dict/words

Here, word is the word that the user is curious about.The exit code from grep will tell
you whether that word appears in /usr/dict/words.10

Listing 10.6 shows how you might try to code the part of the server that
invokes grep:

Listing 10.6 (grep-dictionary.c) Search for a Word in the Dictionary

#include <stdio.h>
#include <stdlib.h>

/* Returns a nonzero value if and only if the WORD appears in
/usr/dict/words. */

int grep_for_word (const char* word)
{
size_t length;
char* buffer;
int exit_code;

10. If you don’t know about grep, you should look at the manual pages. It’s an incredibly
useful program.

12 0430 CH10 5/22/01 10:42 AM Page 216

21710.6 More Security Holes

/* Build up the string ‘grep -x WORD /usr/dict/words’. Allocate the
string dynamically to avoid buffer overruns. */

length =
strlen (“grep -x “) + strlen (word) + strlen (“ /usr/dict/words”) + 1;

buffer = (char*) malloc (length);
sprintf (buffer, “grep -x %s /usr/dict/words”, word);

/* Run the command. */
exit_code = system (buffer);
/* Free the buffer. */
free (buffer);
/* If grep returned 0, then the word was present in the

dictionary. */
return exit_code == 0;

}

Note that by calculating the number of characters we need and then allocating the
buffer dynamically, we’re sure to be safe from buffer overruns.

Unfortunately, the use of the system function (described in Chapter 3,“Processes,”
Section 3.2.1,“Using system”) is unsafe.This function invokes the standard system
shell to run the command and then returns the exit value. But what happens if a mali-
cious hacker sends a “word” that is actually the following line or a similar string?

foo /dev/null; rm -rf /

In that case, the server will execute this command:
grep -x foo /dev/null; rm -rf / /usr/dict/words

Now the problem is obvious.The user has turned one command, ostensibly the invo-
cation of grep, into two commands because the shell treats a semicolon as a command
separator.The first command is still a harmless invocation of grep, but the second
removes all files on the entire system! Even if the server is not running as root, all the
files that can be removed by the user running the server will be removed.The same
problem can arise with popen (described in Section 5.4.4,“popen and pclose”), which
creates a pipe between the parent and child process but still uses the shell to run the
command.

There are two ways to avoid these problems. One is to use the exec family of func-
tions instead of system or popen.That solution avoids the problem because characters
that the shell treats specially (such as the semicolon in the previous command) are not
treated specially when they appear in the argument list to an exec call. Of course, you
give up the convenience of system and popen.

12 0430 CH10 5/22/01 10:42 AM Page 217

218 Chapter 10 Security

The other alternative is to validate the string to make sure that it is benign. In the
dictionary server example, you would make sure that the word provided contains only
alphabetic characters, using the isalpha function. If it doesn’t contain any other char-
acters, there’s no way to trick the shell into executing a second command. Don’t
implement the check by looking for dangerous and unexpected characters; it’s always
safer to explicitly check for the characters that you know are safe rather than try to
anticipate all the characters that might cause trouble.

12 0430 CH10 5/22/01 10:42 AM Page 218

A Sample GNU/Linux
Application

11

THIS CHAPTER IS WHERE IT ALL COMES TOGETHER.WE’LL DESCRIBE and implement a
complete GNU/Linux program that incorporates many of the techniques described in
this book.The program provides information about the system it’s running on via a
Web interface.

The program is a complete demonstration of some of the methods we’ve described
for GNU/Linux programming and illustrated in shorter programs.This program is
written more like “real-world” code, unlike most of the code listings that we presented
in previous chapters. It can serve as a jumping-off point for your own GNU/Linux
programs.

11.1 Overview
The example program is part of a system for monitoring a running GNU/Linux
system. It includes these features:

n The program incorporates a minimal Web server. Local or remote clients access
system information by requesting Web pages from the server via HTTP.

n The program does not serve static HTML pages. Instead, the pages are generated
on the fly by modules, each of which provides a page summarizing one aspect of
the system’s state.

13 0430 CH11 5/22/01 10:46 AM Page 219

220 Chapter 11 A Sample GNU/Linux Application

n Modules are not linked statically into the server executable. Instead, they are
loaded dynamically from shared libraries. Modules can be added, removed, or
replaced while the server is running.

n The server services each connection in a child process.This enables the server to
remain responsive even when individual requests take a while to complete, and
it shields the server from failures in modules.

n The server does not require superuser privilege to run (as long as it is not run
on a privileged port). However, this limits the system information that it can
collect.

We provide four sample modules that demonstrate how modules might be written.
They further illustrate some of the techniques for gathering system information pre-
sented previously in this book.The time module demonstrates using the gettimeofday
system call.The issue module demonstrates low-level I/O and the sendfile system
call.The diskfree module demonstrates the use of fork, exec, and dup2 by running a
command in a child process.The processes module demonstrates the use of the /proc
file system and various system calls.

11.1.1 Caveats
This program has many of the features you’d expect in an application program, such as
command-line parsing and error checking.At the same time, we’ve made some simpli-
fications to improve readability and to focus on the GNU/Linux-specific topics dis-
cussed in this book. Bear in mind these caveats as you examine the code.

n We don’t attempt to provide a full implementation of HTTP. Instead, we
implement just enough for the server to interact with Web clients.A real-world
program either would provide a more complete HTTP implementation or
would interface with one of the various excellent Web server implementations1

available instead of providing HTTP services directly.
n Similarly, we don’t aim for full compliance with HTML specifications (see

http://www.w3.org/MarkUp/).We generate simple HTML output that can be
handled by popular Web browsers.

n The server is not tuned for high performance or minimum resource usage. In
particular, we intentionally omit some of the network configuration code that
you would expect in a Web server.This topic is outside the scope of this book.
See one of the many excellent references on network application development,
such as UNIX Network Programming,Volume 1: Networking APIs—Sockets and XTI,
by W. Richard Stevens (Prentice Hall, 1997), for more information.

1.The most popular open source Web server for GNU/Linux is the Apache server, available
from http://www.apache.org.

13 0430 CH11 5/22/01 10:46 AM Page 220

22111.2 Implementation

n We make no attempt to regulate the resources (number of processes, memory
use, and so on) consumed by the server or its modules. Many multiprocess Web
server implementations service connections using a fixed pool of processes rather
than creating a new child process for each connection.

n The server loads the shared library for a server module each time it is requested
and then immediately unloads it when the request has been completed.A more
efficient implementation would probably cache loaded modules.

HTTP
The Hypertext Transport Protocol (HTTP) is used for communication between Web clients and servers. The

client connects to the server by establishing a connection to a well-known port (usually port 80 for

Internet Web servers, but any port may be used). HTTP requests and headers are composed of plain text.

Once connected, the client sends a request to the server. A typical request is GET /page HTTP/1.0.

The GET method indicates that the client is requesting that the server send it a Web page. The second

element is the path to that page on the server. The third element is the protocol and version. Subsequent

lines contain header fields, formatted similarly to email headers, which contain extra information about

the client. The header ends with a blank line.

The server sends back a response indicating the result of processing the request. A typical response is

HTTP/1.0 200 OK. The first element is the protocol version. The next two elements indicate the

result; in this case, result 200 indicates that the request was processed successfully. Subsequent lines

contain header fields, formatted similarly to email headers. The header ends with a blank line. The server

may then send arbitrary data to satisfy the request.

Typically, the server responds to a page request by sending back HTML source for the Web page. In this

case, the response headers will include Content-type: text/html, indicating that the result is

HTML source. The HTML source follows immediately after the header.

See the HTTP specification at http://www.w3.org/Protocols/ for more information.

11.2 Implementation
All but the very smallest programs written in C require careful organization to pre-
serve the modularity and maintainability of the source code.This program is divided
into four main source files.

Each source file exports functions or variables that may be accessed by the other
parts of the program. For simplicity, all exported functions and variables are declared in
a single header file, server.h (see Listing 11.1), which is included by the other files.
Functions that are intended for use within a single compilation unit only are declared
static and are not declared in server.h.

13 0430 CH11 5/22/01 10:46 AM Page 221

222 Chapter 11 A Sample GNU/Linux Application

Listing 11.1 (server.h) Function and Variable Declarations

#ifndef SERVER_H
#define SERVER_H

#include <netinet/in.h>
#include <sys/types.h>

/*** Symbols defined in common.c. ************************************/

/* The name of this program. */
extern const char* program_name;

/* If nonzero, print verbose messages. */
extern int verbose;

/* Like malloc, except aborts the program if allocation fails. */
extern void* xmalloc (size_t size);

/* Like realloc, except aborts the program if allocation fails. */
extern void* xrealloc (void* ptr, size_t size);

/* Like strdup, except aborts the program if allocation fails. */
extern char* xstrdup (const char* s);

/* Print an error message for a failed call OPERATION, using the value
of errno, and end the program. */

extern void system_error (const char* operation);

/* Print an error message for failure involving CAUSE, including a
descriptive MESSAGE, and end the program. */

extern void error (const char* cause, const char* message);

/* Return the directory containing the running program’s executable.
The return value is a memory buffer that the caller must deallocate
using free. This function calls abort on failure. */

extern char* get_self_executable_directory ();

/*** Symbols defined in module.c **************************************/

/* An instance of a loaded server module. */
struct server_module {
/* The shared library handle corresponding to the loaded module. */
void* handle;
/* A name describing the module. */
const char* name;
/* The function that generates the HTML results for this module. */

void (* generate_function) (int);
};

13 0430 CH11 5/22/01 10:46 AM Page 222

22311.2 Implementation

/* The directory from which modules are loaded. */
extern char* module_dir;

/* Attempt to load a server module with the name MODULE_PATH. If a
server module exists with this path, loads the module and returns a
server_module structure representing it. Otherwise, returns NULL. */

extern struct server_module* module_open (const char* module_path);

/* Close a server module and deallocate the MODULE object. */
extern void module_close (struct server_module* module);

/*** Symbols defined in server.c. ************************************/

/* Run the server on LOCAL_ADDRESS and PORT. */
extern void server_run (struct in_addr local_address, uint16_t port);

#endif /* SERVER_H */

11.2.1 Common Functions
common.c (see Listing 11.2) contains functions of general utility that are used through-
out the program.

Listing 11.2 (common.c) General Utility Functions

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include “server.h”

const char* program_name;

int verbose;

void* xmalloc (size_t size)
{
void* ptr = malloc (size);
/* Abort if the allocation failed. */
if (ptr == NULL)
abort ();

else
return ptr;

}

continues

13 0430 CH11 5/22/01 10:46 AM Page 223

224 Chapter 11 A Sample GNU/Linux Application

void* xrealloc (void* ptr, size_t size)
{
ptr = realloc (ptr, size);
/* Abort if the allocation failed. */
if (ptr == NULL)
abort ();

else
return ptr;

}

char* xstrdup (const char* s)
{
char* copy = strdup (s);
/* Abort if the allocation failed. */
if (copy == NULL)
abort ();

else
return copy;

}

void system_error (const char* operation)
{
/* Generate an error message for errno. */
error (operation, strerror (errno));

}

void error (const char* cause, const char* message)
{
/* Print an error message to stderr. */
fprintf (stderr, “%s: error: (%s) %s\n”, program_name, cause, message);
/* End the program. */
exit (1);

}

char* get_self_executable_directory ()
{
int rval;
char link_target[1024];
char* last_slash;
size_t result_length;
char* result;

/* Read the target of the symbolic link /proc/self/exe. */
rval = readlink (“/proc/self/exe”, link_target, sizeof (link_target));
if (rval == -1)
/* The call to readlink failed, so bail. */
abort ();

else

Listing 11.2 Continued

13 0430 CH11 5/22/01 10:46 AM Page 224

22511.2 Implementation

/* NUL-terminate the target. */
link_target[rval] = ‘\0’;

/* We want to trim the name of the executable file, to obtain the
directory that contains it. Find the rightmost slash. */

last_slash = strrchr (link_target, ‘/’);
if (last_slash == NULL || last_slash == link_target)
/* Something strange is going on. */
abort ();

/* Allocate a buffer to hold the resulting path. */
result_length = last_slash - link_target;
result = (char*) xmalloc (result_length + 1);
/* Copy the result. */
strncpy (result, link_target, result_length);
result[result_length] = ‘\0’;
return result;

}

You could use these functions in other programs as well; the contents of this file might
be included in a common code library that is shared among many projects:

n xmalloc, xrealloc, and xstrdup are error-checking versions of the C library
functions malloc, realloc, and strdup, respectively. Unlike the standard versions,
which return a null pointer if the allocation fails, these functions immediately
abort the program when insufficient memory is available.

Early detection of memory allocation failure is a good idea. Otherwise, failed
allocations introduce null pointers at unexpected places into the program.
Because allocation failures are not easy to reproduce, debugging such problems
can be difficult.Allocation failures are usually catastrophic, so aborting the pro-
gram is often an acceptable course of action.

n The error function is for reporting a fatal program error. It prints a message to
stderr and ends the program. For errors caused by failed system calls or library
calls, system_error generates part of the error message from the value of errno
(see Section 2.2.3,“Error Codes from System Calls,” in Chapter 2,“Writing
Good GNU/Linux Software”).

n get_self_executable_directory determines the directory containing the exe-
cutable file being run in the current process.The directory path can be used to
locate other components of the program, which are installed in the same place
at runtime.This function works by examining the symbolic link /proc/self/exe
in the /proc file system (see Section 7.2.1,“/proc/self,” in Chapter 7,“The
/proc File System”).

In addition, common.c defines two useful global variables:
n The value of program_name is the name of the program being run, as specified in

its argument list (see Section 2.1.1,“The Argument List,” in Chapter 2).When
the program is invoked from the shell, this is the path and name of the program
as the user entered it.

13 0430 CH11 5/22/01 10:46 AM Page 225

226 Chapter 11 A Sample GNU/Linux Application

n The variable verbose is nonzero if the program is running in verbose mode. In
this case, various parts of the program print progress messages to stdout.

11.2.2 Loading Server Modules
module.c (see Listing 11.3) provides the implementation of dynamically loadable
server modules.A loaded server module is represented by an instance of
struct server_module, which is defined in server.h.

Listing 11.3 (module.c) Server Module Loading and Unloading

#include <dlfcn.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include “server.h”

char* module_dir;

struct server_module* module_open (const char* module_name)
{
char* module_path;
void* handle;
void (* module_generate) (int);
struct server_module* module;

/* Construct the full path of the module shared library we’ll try to
load. */

module_path =
(char*) xmalloc (strlen (module_dir) + strlen (module_name) + 2);

sprintf (module_path, “%s/%s”, module_dir, module_name);

/* Attempt to open MODULE_PATH as a shared library. */
handle = dlopen (module_path, RTLD_NOW);
free (module_path);
if (handle == NULL) {
/* Failed; either this path doesn’t exist or it isn’t a shared

library. */
return NULL;

}

/* Resolve the module_generate symbol from the shared library. */
module_generate = (void (*) (int)) dlsym (handle, “module_generate”);
/* Make sure the symbol was found. */
if (module_generate == NULL) {

13 0430 CH11 5/22/01 10:46 AM Page 226

22711.2 Implementation

/* The symbol is missing. While this is a shared library, it
probably isn’t a server module. Close up and indicate failure. */

dlclose (handle);
return NULL;

}

/* Allocate and initialize a server_module object. */
module = (struct server_module*) xmalloc (sizeof (struct server_module));
module->handle = handle;
module->name = xstrdup (module_name);
module->generate_function = module_generate;
/* Return it, indicating success. */
return module;

}

void module_close (struct server_module* module)
{
/* Close the shared library. */
dlclose (module->handle);
/* Deallocate the module name. */
free ((char*) module->name);
/* Deallocate the module object. */
free (module);

}

Each module is a shared library file (see Section 2.3.2,“Shared Libraries,” in Chapter
2) and must define and export a function named module_generate.This function gen-
erates an HTML Web page and writes it to the client socket file descriptor passed as
its argument.

module.c contains two functions:
n module_open attempts to load a server module with a given name.The name

normally ends with the .so extension because server modules are implemented
as shared libraries.This function opens the shared library with dlopen and
resolves a symbol named module_generate from the library with dlsym (see
Section 2.3.6,“Dynamic Loading and Unloading,” in Chapter 2). If the library
can’t be opened, or if module_generate isn’t a name exported by the library, the
call fails and module_open returns a null pointer. Otherwise, it allocates and
returns a module object.

n module_close closes the shared library corresponding to the server module and
deallocates the struct server_module object.

module.c also defines a global variable module_dir.This is the path of the directory in
which module_open attempts to find shared libraries corresponding to server modules.

13 0430 CH11 5/22/01 10:46 AM Page 227

228 Chapter 11 A Sample GNU/Linux Application

11.2.3 The Server
server.c (see Listing 11.4) is the implementation of the minimal HTTP server.

Listing 11.4 (server.c) Server Implementation

#include <arpa/inet.h>
#include <assert.h>
#include <errno.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <unistd.h>

#include “server.h”

/* HTTP response and header for a successful request. */

static char* ok_response =
“HTTP/1.0 200 OK\n”
“Content-type: text/html\n”
“\n”;

/* HTTP response, header, and body, indicating that we didn’t
understand the request. */

static char* bad_request_response =
“HTTP/1.0 400 Bad Request\n”
“Content-type: text/html\n”
“\n”
“<html>\n”
“ <body>\n”
“ <h1>Bad Request</h1>\n”
“ <p>This server did not understand your request.</p>\n”
“ </body>\n”
“</html>\n”;

/* HTTP response, header, and body template, indicating that the
requested document was not found. */

static char* not_found_response_template =
“HTTP/1.0 404 Not Found\n”
“Content-type: text/html\n”
“\n”
“<html>\n”
“ <body>\n”
“ <h1>Not Found</h1>\n”

13 0430 CH11 5/22/01 10:46 AM Page 228

22911.2 Implementation

“ <p>The requested URL %s was not found on this server.</p>\n”
“ </body>\n”
“</html>\n”;

/* HTTP response, header, and body template, indicating that the
method was not understood. */

static char* bad_method_response_template =
“HTTP/1.0 501 Method Not Implemented\n”
“Content-type: text/html\n”
“\n”
“<html>\n”
“ <body>\n”
“ <h1>Method Not Implemented</h1>\n”
“ <p>The method %s is not implemented by this server.</p>\n”
“ </body>\n”
“</html>\n”;

/* Handler for SIGCHLD, to clean up child processes that have
terminated. */

static void clean_up_child_process (int signal_number)
{
int status;
wait (&status);

}

/* Process an HTTP “GET” request for PAGE, and send the results to the
file descriptor CONNECTION_FD. */

static void handle_get (int connection_fd, const char* page)
{
struct server_module* module = NULL;

/* Make sure the requested page begins with a slash and does not
contain any additional slashes -- we don’t support any
subdirectories. */

if (*page == ‘/’ && strchr (page + 1, ‘/’) == NULL) {
char module_file_name[64];

/* The page name looks OK. Construct the module name by appending
“.so” to the page name. */

snprintf (module_file_name, sizeof (module_file_name),
“%s.so”, page + 1);

/* Try to open the module. */
module = module_open (module_file_name);

}

if (module == NULL) {
/* Either the requested page was malformed, or we couldn’t open a

module with the indicated name. Either way, return the HTTP
response 404, Not Found. */

continues

13 0430 CH11 5/22/01 10:46 AM Page 229

230 Chapter 11 A Sample GNU/Linux Application

char response[1024];

/* Generate the response message. */
snprintf (response, sizeof (response), not_found_response_template, page);
/* Send it to the client. */
write (connection_fd, response, strlen (response));

}
else {
/* The requested module was loaded successfully. */

/* Send the HTTP response indicating success, and the HTTP header
for an HTML page. */

write (connection_fd, ok_response, strlen (ok_response));
/* Invoke the module, which will generate HTML output and send it

to the client file descriptor. */
(*module->generate_function) (connection_fd);
/* We’re done with the module. */
module_close (module);

}
}

/* Handle a client connection on the file descriptor CONNECTION_FD. */

static void handle_connection (int connection_fd)
{
char buffer[256];
ssize_t bytes_read;

/* Read some data from the client. */
bytes_read = read (connection_fd, buffer, sizeof (buffer) - 1);
if (bytes_read > 0) {
char method[sizeof (buffer)];
char url[sizeof (buffer)];
char protocol[sizeof (buffer)];

/* Some data was read successfully. NUL-terminate the buffer so
we can use string operations on it. */

buffer[bytes_read] = ‘\0’;
/* The first line the client sends is the HTTP request, which is

composed of a method, the requested page, and the protocol
version. */

sscanf (buffer, “%s %s %s”, method, url, protocol);
/* The client may send various header information following the

request. For this HTTP implementation, we don’t care about it.
However, we need to read any data the client tries to send. Keep
on reading data until we get to the end of the header, which is
delimited by a blank line. HTTP specifies CR/LF as the line
delimiter. */

while (strstr (buffer, “\r\n\r\n”) == NULL)

Listing 11.4 Continued

13 0430 CH11 5/22/01 10:46 AM Page 230

23111.2 Implementation

bytes_read = read (connection_fd, buffer, sizeof (buffer));
/* Make sure the last read didn’t fail. If it did, there’s a

problem with the connection, so give up. */
if (bytes_read == -1) {
close (connection_fd);
return;

}
/* Check the protocol field. We understand HTTP versions 1.0 and

1.1. */
if (strcmp (protocol, “HTTP/1.0”) && strcmp (protocol, “HTTP/1.1”)) {
/* We don’t understand this protocol. Report a bad response. */
write (connection_fd, bad_request_response,

sizeof (bad_request_response));
}
else if (strcmp (method, “GET”)) {
/* This server only implements the GET method. The client

specified some other method, so report the failure. */
char response[1024];

snprintf (response, sizeof (response),
bad_method_response_template, method);

write (connection_fd, response, strlen (response));
}
else
/* A valid request. Process it. */
handle_get (connection_fd, url);

}
else if (bytes_read == 0)
/* The client closed the connection before sending any data.

Nothing to do. */
;

else
/* The call to read failed. */
system_error (“read”);

}

void server_run (struct in_addr local_address, uint16_t port)
{
struct sockaddr_in socket_address;
int rval;
struct sigaction sigchld_action;
int server_socket;

/* Install a handler for SIGCHLD that cleans up child processes that
have terminated. */

memset (&sigchld_action, 0, sizeof (sigchld_action));
sigchld_action.sa_handler = &clean_up_child_process;
sigaction (SIGCHLD, &sigchld_action, NULL);

continues

13 0430 CH11 5/22/01 10:46 AM Page 231

232 Chapter 11 A Sample GNU/Linux Application

/* Create a TCP socket. */
server_socket = socket (PF_INET, SOCK_STREAM, 0);
if (server_socket == -1)
system_error (“socket”);

/* Construct a socket address structure for the local address on
which we want to listen for connections. */

memset (&socket_address, 0, sizeof (socket_address));
socket_address.sin_family = AF_INET;
socket_address.sin_port = port;
socket_address.sin_addr = local_address;
/* Bind the socket to that address. */
rval = bind (server_socket, &socket_address, sizeof (socket_address));
if (rval != 0)
system_error (“bind”);

/* Instruct the socket to accept connections. */
rval = listen (server_socket, 10);
if (rval != 0)
system_error (“listen”);

if (verbose) {
/* In verbose mode, display the local address and port number

we’re listening on. */
socklen_t address_length;

/* Find the socket’s local address. */
address_length = sizeof (socket_address);
rval = getsockname (server_socket, &socket_address, &address_length);
assert (rval == 0);
/* Print a message. The port number needs to be converted from

network byte order (big endian) to host byte order. */
printf (“server listening on %s:%d\n”,

inet_ntoa (socket_address.sin_addr),
(int) ntohs (socket_address.sin_port));

}

/* Loop forever, handling connections. */
while (1) {
struct sockaddr_in remote_address;
socklen_t address_length;
int connection;
pid_t child_pid;

/* Accept a connection. This call blocks until a connection is
ready. */

address_length = sizeof (remote_address);
connection = accept (server_socket, &remote_address, &address_length);
if (connection == -1) {
/* The call to accept failed. */
if (errno == EINTR)

Listing 11.4 Continued

13 0430 CH11 5/22/01 10:46 AM Page 232

23311.2 Implementation

/* The call was interrupted by a signal. Try again. */
continue;

else
/* Something else went wrong. */
system_error (“accept”);

}

/* We have a connection. Print a message if we’re running in
verbose mode. */

if (verbose) {
socklen_t address_length;

/* Get the remote address of the connection. */
address_length = sizeof (socket_address);
rval = getpeername (connection, &socket_address, &address_length);
assert (rval == 0);
/* Print a message. */
printf (“connection accepted from %s\n”,

inet_ntoa (socket_address.sin_addr));
}

/* Fork a child process to handle the connection. */
child_pid = fork ();
if (child_pid == 0) {
/* This is the child process. It shouldn’t use stdin or stdout,

so close them. */
close (STDIN_FILENO);
close (STDOUT_FILENO);
/* Also this child process shouldn’t do anything with the

listening socket. */
close (server_socket);
/* Handle a request from the connection. We have our own copy

of the connected socket descriptor. */
handle_connection (connection);
/* All done; close the connection socket, and end the child

process. */
close (connection);
exit (0);

}
else if (child_pid > 0) {
/* This is the parent process. The child process handles the

connection, so we don’t need our copy of the connected socket
descriptor. Close it. Then continue with the loop and
accept another connection. */

close (connection);
}
else
/* Call to fork failed. */
system_error (“fork”);

}
}

13 0430 CH11 5/22/01 10:46 AM Page 233

234 Chapter 11 A Sample GNU/Linux Application

These are the functions in server.c:
n server_run is the main entry point for running the server.This function starts

the server and begins accepting connections, and does not return unless a seri-
ous error occurs.The server uses a TCP stream server socket (see Section 5.5.3,
“Servers,” in Chapter 5,“Interprocess Communication”).

The first argument to server_run specifies the local address at which connec-
tions are accepted.A GNU/Linux computer may have multiple network
addresses, and each address may be bound to a different network interface.2 To
restrict the server to accept connections from a particular interface, specify the
corresponding network address. Specify the local address INADDR_ANY to accept
connections for any local address.

The second argument to server_run is the port number on which to accept
connections. If the port number is already in use, or if it corresponds to a privi-
leged port and the server is not being run with superuser privilege, the server
fails.The special value 0 instructs Linux to select an unused port automatically.
See the inet man page for more information about Internet-domain addresses
and port numbers.

The server handles each client connection in a child process created with fork
(see Section 3.2.2,“Using fork and exec,” in Chapter 3,“Processes”).The main
(parent) process continues accepting new connections while existing ones are
being serviced.The child process invokes handle_connection and then closes the
connection socket and exits.

n handle_connection processes a single client connection, using the socket file
descriptor passed as its argument.This function reads data from the socket and
attempts to interpret this as an HTTP page request.

The server processes only HTTP version 1.0 and version 1.1 requests.When
faced with a different protocol or version, it responds by sending the HTTP
result code 400 and the message bad_request_response.The server understands
only the HTTP GET method. If the client requests any other method, the
server responds by sending the HTTP result code 501 and the message
bad_method_response_template.

n If the client sends a well-formed GET request, handle_connection calls
handle_get to service it.This function attempts to load a server module
with a name generated from the requested page. For example, if the client
requests the page named information, it attempts to load a server module named
information.so. If the module can’t be loaded, handle_get sends the client the
HTTP result code 404 and the message not_found_response_template.

2.Your computer might be configured to include such interfaces as eth0, an Ethernet card;
lo, the local (loopback) network; or ppp0, a dial-up network connection.

13 0430 CH11 5/22/01 10:46 AM Page 234

23511.2 Implementation

If the client sends a page request that corresponds to a server module,
handle_get sends a result code 200 header to the client, which indicates that the
request was processed successfully and invokes the module’s module_generate
function.This function generates the HTML source for a Web page and sends it
to the Web client.

n server_run installs clean_up_child_process as the signal handler for SIGCHLD.
This function simply cleans up terminated child processes (see Section 3.4.4,
“Cleaning Up Children Asynchronously,” in Chapter 3).

11.2.4 The Main Program
main.c (see Listing 11.5) provides the main function for the server program. Its respon-
sibility is to parse command-line options, detect and report command-line errors, and
configure and run the server.

Listing 11.5 (main.c) Main Server Program and Command-Line Parsing

#include <assert.h>
#include <getopt.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>

#include “server.h”

/* Description of long options for getopt_long. */

static const struct option long_options[] = {
{ “address”, 1, NULL, ‘a’ },
{ “help”, 0, NULL, ‘h’ },
{ “module-dir”, 1, NULL, ‘m’ },
{ “port”, 1, NULL, ‘p’ },
{ “verbose”, 0, NULL, ‘v’ },

};

/* Description of short options for getopt_long. */

static const char* const short_options = “a:hm:p:v”;

/* Usage summary text. */

static const char* const usage_template =
“Usage: %s [options]\n”
“ -a, --address ADDR Bind to local address (by default, bind\n”
“ to all local addresses).\n”

continues

13 0430 CH11 5/22/01 10:46 AM Page 235

236 Chapter 11 A Sample GNU/Linux Application

“ -h, --help Print this information.\n”
“ -m, --module-dir DIR Load modules from specified directory\n”
“ (by default, use executable directory).\n”
“ -p, --port PORT Bind to specified port.\n”
“ -v, --verbose Print verbose messages.\n”;

/* Print usage information and exit. If IS_ERROR is nonzero, write to
stderr and use an error exit code. Otherwise, write to stdout and
use a non-error termination code. Does not return. */

static void print_usage (int is_error)
{
fprintf (is_error ? stderr : stdout, usage_template, program_name);
exit (is_error ? 1 : 0);

}

int main (int argc, char* const argv[])
{
struct in_addr local_address;
uint16_t port;
int next_option;

/* Store the program name, which we’ll use in error messages. */
program_name = argv[0];

/* Set defaults for options. Bind the server to all local addresses,
and assign an unused port automatically. */

local_address.s_addr = INADDR_ANY;
port = 0;
/* Don’t print verbose messages. */
verbose = 0;
/* Load modules from the directory containing this executable. */
module_dir = get_self_executable_directory ();
assert (module_dir != NULL);

/* Parse options. */
do {
next_option =
getopt_long (argc, argv, short_options, long_options, NULL);

switch (next_option) {
case ‘a’:
/* User specified -a or --address. */
{
struct hostent* local_host_name;

/* Look up the hostname the user specified. */
local_host_name = gethostbyname (optarg);
if (local_host_name == NULL || local_host_name->h_length == 0)

Listing 11.5 Continued

13 0430 CH11 5/22/01 10:46 AM Page 236

23711.2 Implementation

/* Could not resolve the name. */
error (optarg, “invalid host name”);

else
/* Hostname is OK, so use it. */
local_address.s_addr =
((int) (local_host_name->h_addr_list[0]));

}
break;

case ‘h’:
/* User specified -h or --help. */
print_usage (0);

case ‘m’:
/* User specified -m or --module-dir. */
{
struct stat dir_info;

/* Check that it exists. */
if (access (optarg, F_OK) != 0)
error (optarg, “module directory does not exist”);

/* Check that it is accessible. */
if (access (optarg, R_OK | X_OK) != 0)
error (optarg, “module directory is not accessible”);

/* Make sure that it is a directory. */
if (stat (optarg, &dir_info) != 0 || !S_ISDIR (dir_info.st_mode))
error (optarg, “not a directory”);

/* It looks OK, so use it. */
module_dir = strdup (optarg);

}
break;

case ‘p’:
/* User specified -p or --port. */
{
long value;
char* end;

value = strtol (optarg, &end, 10);
if (*end != ‘\0’)
/* The user specified nondigits in the port number. */
print_usage (1);

/* The port number needs to be converted to network (big endian)
byte order. */

port = (uint16_t) htons (value);
}
break;

case ‘v’:
/* User specified -v or --verbose. */
verbose = 1;
break;

continues

13 0430 CH11 5/22/01 10:46 AM Page 237

238 Chapter 11 A Sample GNU/Linux Application

case ‘?’:
/* User specified an unrecognized option. */
print_usage (1);

case -1:
/* Done with options. */
break;

default:
abort ();

}
} while (next_option != -1);

/* This program takes no additional arguments. Issue an error if the
user specified any. */

if (optind != argc)
print_usage (1);

/* Print the module directory, if we’re running verbose. */
if (verbose)
printf (“modules will be loaded from %s\n”, module_dir);

/* Run the server. */
server_run (local_address, port);

return 0;
}

main.c contains these functions:
n main invokes getopt_long (see Section 2.1.3,“Using getopt_long,” in Chapter

2) to parse command-line options. It provides both long and short option forms,
the former in the long_options array and the latter in the short_options string.

The default value for the server port is 0 and for a local address is INADDR_ANY.
These can be overridden by the --port (-p) and --address (-a) options,
respectively. If the user specifies an address, main calls the library function
gethostbyname to convert it to a numerical Internet address.

3

The default value for the directory from which to load server modules
is the directory containing the server executable, as determined by
get_self_executable_directory.The user may override this with the
--module-dir (-m) option; main makes sure that the specified directory is
accessible.

By default, verbose messages are not printed.The user may enable them by
specifying the --verbose (-v) option.

3. gethostbyname performs name resolution using DNS, if necessary.

Listing 11.5 Continued

13 0430 CH11 5/22/01 10:46 AM Page 238

23911.3 Modules

n If the user specifies the --help (-h) option or specifies invalid options, main
invokes print_usage, which prints a usage summary and exits.

11.3 Modules
We provide four modules to demonstrate the kind of functionality you could imple-
ment using this server implementation. Implementing your own server module is as
simple as defining a module_generate function to return the appropriate HTML text.

11.3.1 Show Wall-Clock Time
The time.so module (see Listing 11.6) generates a simple page containing the server’s
local wall-clock time.This module’s module_generate calls gettimeofday to obtain the
current time (see Section 8.7,“gettimeofday:Wall-Clock Time,” in Chapter 8,“Linux
System Calls”) and uses localtime and strftime to generate a text representation of
it.This representation is embedded in the HTML template page_template.

Listing 11.6 (time.c) Server Module to Show Wall-Clock Time

#include <assert.h>
#include <stdio.h>
#include <sys/time.h>
#include <time.h>

#include “server.h”

/* A template for the HTML page this module generates. */

static char* page_template =
“<html>\n”
“ <head>\n”
“ <meta http-equiv=\”refresh\” content=\”5\”>\n”
“ </head>\n”
“ <body>\n”
“ <p>The current time is %s.</p>\n”
“ </body>\n”
“</html>\n”;

void module_generate (int fd)
{
struct timeval tv;
struct tm* ptm;
char time_string[40];
FILE* fp;

/* Obtain the time of day, and convert it to a tm struct. */
gettimeofday (&tv, NULL);
ptm = localtime (&tv.tv_sec);

continues

13 0430 CH11 5/22/01 10:46 AM Page 239

240 Chapter 11 A Sample GNU/Linux Application

/* Format the date and time, down to a single second. */
strftime (time_string, sizeof (time_string), “%H:%M:%S”, ptm);

/* Create a stream corresponding to the client socket file
descriptor. */

fp = fdopen (fd, “w”);
assert (fp != NULL);
/* Generate the HTML output. */
fprintf (fp, page_template, time_string);
/* All done; flush the stream. */
fflush (fp);

}

This module uses standard C library I/O routines for convenience.The fdopen call
generates a stream pointer (FILE*) corresponding to the client socket file descriptor
(see Section B.4,“Relation to Standard C Library I/O Functions,” in Appendix B,
“Low-Level I/O”).The module writes to it using fprintf and flushes it using fflush
to prevent the loss of buffered data when the socket is closed.

The HTML page returned by the time.so module includes a <meta> element in
the page header that instructs clients to reload the page every 5 seconds.This way the
client displays the current time.

11.3.2 Show the GNU/Linux Distribution
The issue.so module (see Listing 11.7) displays information about the GNU/Linux
distribution running on the server.This information is traditionally stored in the file
/etc/issue.This module sends the contents of this file, wrapped in a <pre> element of
an HTML page.

Listing 11.7 (issue.c) Server Module to Display GNU/Linux Distribution
Information

#include <fcntl.h>
#include <string.h>
#include <sys/sendfile.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#include “server.h”

/* HTML source for the start of the page we generate. */

static char* page_start =
“<html>\n”
“ <body>\n”

Listing 11.6 Continued

13 0430 CH11 5/22/01 10:46 AM Page 240

24111.3 Modules

“ <pre>\n”;

/* HTML source for the end of the page we generate. */

static char* page_end =
“ </pre>\n”
“ </body>\n”
“</html>\n”;

/* HTML source for the page indicating there was a problem opening
/proc/issue. */

static char* error_page =
“<html>\n”
“ <body>\n”
“ <p>Error: Could not open /proc/issue.</p>\n”
“ </body>\n”
“</html>\n”;

/* HTML source indicating an error. */

static char* error_message = “Error reading /proc/issue.”;

void module_generate (int fd)
{
int input_fd;
struct stat file_info;
int rval;

/* Open /etc/issue. */
input_fd = open (“/etc/issue”, O_RDONLY);
if (input_fd == -1)
system_error (“open”);

/* Obtain file information about it. */
rval = fstat (input_fd, &file_info);

if (rval == -1)
/* Either we couldn’t open the file or we couldn’t read from it. */
write (fd, error_page, strlen (error_page));

else {
int rval;
off_t offset = 0;

/* Write the start of the page. */
write (fd, page_start, strlen (page_start));
/* Copy from /proc/issue to the client socket. */
rval = sendfile (fd, input_fd, &offset, file_info.st_size);
if (rval == -1)
/* Something went wrong sending the contents of /proc/issue.

Write an error message. */
write (fd, error_message, strlen (error_message));

continues

13 0430 CH11 5/22/01 10:46 AM Page 241

242 Chapter 11 A Sample GNU/Linux Application

/* End the page. */
write (fd, page_end, strlen (page_end));

}

close (input_fd);
}

The module first tries to open /etc/issue. If that file can’t be opened, the module
sends an error page to the client. Otherwise, the module sends the start of the
HTML page, contained in page_start.Then it sends the contents of /etc/issue using
sendfile (see Section 8.12,“sendfile: Fast Data Transfers,” in Chapter 8). Finally, it
sends the end of the HTML page, contained in page_end.

You can easily adapt this module to send the contents of another file. If the file
contains a complete HTML page, simply omit the code that sends the contents of
page_start and page_end.You could also adapt the main server implementation to
serve static files, in the manner of a traditional Web server. Using sendfile provides an
extra degree of efficiency.

11.3.3 Show Free Disk Space
The diskfree.so module (see Listing 11.8) generates a page displaying information
about free disk space on the file systems mounted on the server computer.This gener-
ated information is simply the output of invoking the df -h command. Like issue.so,
this module wraps the output in a <pre> element of an HTML page.

Listing 11.8 (diskfree.c) Server Module to Display Information About Free Disk
Space

#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#include “server.h”

/* HTML source for the start of the page we generate. */

static char* page_start =
“<html>\n”
“ <body>\n”
“ <pre>\n”;

Listing 11.7 Continued

13 0430 CH11 5/22/01 10:46 AM Page 242

24311.3 Modules

/* HTML source for the end of the page we generate. */

static char* page_end =
“ </pre>\n”
“ </body>\n”
“</html>\n”;

void module_generate (int fd)
{
pid_t child_pid;
int rval;

/* Write the start of the page. */
write (fd, page_start, strlen (page_start));
/* Fork a child process. */
child_pid = fork ();
if (child_pid == 0) {
/* This is the child process. */
/* Set up an argument list for the invocation of df. */
char* argv[] = { “/bin/df”, “-h”, NULL };

/* Duplicate stdout and stderr to send data to the client socket. */
rval = dup2 (fd, STDOUT_FILENO);
if (rval == -1)
system_error (“dup2”);

rval = dup2 (fd, STDERR_FILENO);
if (rval == -1)
system_error (“dup2”);

/* Run df to show the free space on mounted file systems. */
execv (argv[0], argv);
/* A call to execv does not return unless an error occurred. */
system_error (“execv”);

}
else if (child_pid > 0) {
/* This is the parent process. Wait for the child process to

finish. */
rval = waitpid (child_pid, NULL, 0);
if (rval == -1)
system_error (“waitpid”);

}
else
/* The call to fork failed. */
system_error (“fork”);

/* Write the end of the page. */
write (fd, page_end, strlen (page_end));

}

13 0430 CH11 5/22/01 10:46 AM Page 243

244 Chapter 11 A Sample GNU/Linux Application

While issue.so sends the contents of a file using sendfile, this module must invoke a
command and redirect its output to the client.To do this, the module follows these
steps:

1. First, the module creates a child process using fork (see Section 3.2.2,“Using
fork and exec,” in Chapter 3).

2. The child process copies the client socket file descriptor to file descriptors
STDOUT_FILENO and STDERR_FILENO, which correspond to standard output and
standard error (see Section 2.1.4,“Standard I/O,” in Chapter 2).The file descrip-
tors are copied using the dup2 call (see Section 5.4.3,“Redirecting the Standard
Input, Output, and Error Streams,” in Chapter 5).All further output from the
process to either of these streams is sent to the client socket.

3. The child process invokes the df command with the -h option by calling execv
(see Section 3.2.2,“Using fork and exec,” in Chapter 3).

4. The parent process waits for the child process to exit by calling waitpid (see
Section 3.4.2,“The wait System Calls,” in Chapter 3).

You could easily adapt this module to invoke a different command and redirect its
output to the client.

11.3.4 Summarize Running Processes
The processes.so module (see Listing 11.9) is a more extensive server module imple-
mentation. It generates a page containing a table that summarizes the processes cur-
rently running on the server system. Each process is represented by a row in the table
that lists the PID, the executable program name, the owning user and group names,
and the resident set size.

Listing 11.9 (processes.c) Server Module to Summarize Processes

#include <assert.h>
#include <dirent.h>
#include <fcntl.h>
#include <grp.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

#include “server.h”

/* Set *UID and *GID to the owning user ID and group ID, respectively,
of process PID. Return 0 on success, nonzero on failure. */

13 0430 CH11 5/22/01 10:46 AM Page 244

24511.3 Modules

static int get_uid_gid (pid_t pid, uid_t* uid, gid_t* gid)
{
char dir_name[64];
struct stat dir_info;
int rval;

/* Generate the name of the process’s directory in /proc. */
snprintf (dir_name, sizeof (dir_name), “/proc/%d”, (int) pid);
/* Obtain information about the directory. */
rval = stat (dir_name, &dir_info);
if (rval != 0)
/* Couldn’t find it; perhaps this process no longer exists. */
return 1;

/* Make sure it’s a directory; anything else is unexpected. */
assert (S_ISDIR (dir_info.st_mode));

/* Extract the IDs we want. */
*uid = dir_info.st_uid;
*gid = dir_info.st_gid;
return 0;

}

/* Return the name of user UID. The return value is a buffer that the
caller must allocate with free. UID must be a valid user ID. */

static char* get_user_name (uid_t uid)
{
struct passwd* entry;

entry = getpwuid (uid);
if (entry == NULL)
system_error (“getpwuid”);

return xstrdup (entry->pw_name);
}

/* Return the name of group GID. The return value is a buffer that the
caller must allocate with free. GID must be a valid group ID. */

static char* get_group_name (gid_t gid)
{
struct group* entry;

entry = getgrgid (gid);
if (entry == NULL)
system_error (“getgrgid”);

return xstrdup (entry->gr_name);
}

continues

13 0430 CH11 5/22/01 10:46 AM Page 245

246 Chapter 11 A Sample GNU/Linux Application

/* Return the name of the program running in process PID, or NULL on
error. The return value is a newly allocated buffer which the caller
must deallocate with free. */

static char* get_program_name (pid_t pid)
{
char file_name[64];
char status_info[256];
int fd;
int rval;
char* open_paren;
char* close_paren;
char* result;

/* Generate the name of the “stat” file in the process’s /proc
directory, and open it. */

snprintf (file_name, sizeof (file_name), “/proc/%d/stat”, (int) pid);
fd = open (file_name, O_RDONLY);
if (fd == -1)
/* Couldn’t open the stat file for this process. Perhaps the

process no longer exists. */
return NULL;

/* Read the contents. */
rval = read (fd, status_info, sizeof (status_info) - 1);
close (fd);
if (rval <= 0)
/* Couldn’t read, for some reason; bail. */
return NULL;

/* NUL-terminate the file contents. */
status_info[rval] = ‘\0’;

/* The program name is the second element of the file contents and is
surrounded by parentheses. Find the positions of the parentheses
in the file contents. */

open_paren = strchr (status_info, ‘(‘);
close_paren = strchr (status_info, ‘)’);
if (open_paren == NULL

|| close_paren == NULL
|| close_paren < open_paren)

/* Couldn’t find them; bail. */
return NULL;

/* Allocate memory for the result. */
result = (char*) xmalloc (close_paren - open_paren);
/* Copy the program name into the result. */
strncpy (result, open_paren + 1, close_paren - open_paren - 1);
/* strncpy doesn’t NUL-terminate the result, so do it here. */
result[close_paren - open_paren - 1] = ‘\0’;
/* All done. */
return result;

}

Listing 11.9 Continued

13 0430 CH11 5/22/01 10:46 AM Page 246

24711.3 Modules

/* Return the resident set size (RSS), in kilobytes, of process PID.
Return -1 on failure. */

static int get_rss (pid_t pid)
{
char file_name[64];
int fd;
char mem_info[128];
int rval;
int rss;

/* Generate the name of the process’s “statm” entry in its /proc
directory. */

snprintf (file_name, sizeof (file_name), “/proc/%d/statm”, (int) pid);
/* Open it. */
fd = open (file_name, O_RDONLY);
if (fd == -1)
/* Couldn’t open it; perhaps this process no longer exists. */
return -1;

/* Read the file’s contents. */
rval = read (fd, mem_info, sizeof (mem_info) - 1);
close (fd);
if (rval <= 0)
/* Couldn’t read the contents; bail. */
return -1;

/* NUL-terminate the contents. */
mem_info[rval] = ‘\0’;
/* Extract the RSS. It’s the second item. */
rval = sscanf (mem_info, “%*d %d”, &rss);
if (rval != 1)
/* The contents of statm are formatted in a way we don’t understand. */
return -1;

/* The values in statm are in units of the system’s page size.
Convert the RSS to kilobytes. */

return rss * getpagesize () / 1024;
}

/* Generate an HTML table row for process PID. The return value is a
pointer to a buffer that the caller must deallocate with free, or
NULL if an error occurs. */

static char* format_process_info (pid_t pid)
{
int rval;
uid_t uid;
gid_t gid;
char* user_name;
char* group_name;
int rss;
char* program_name;

continues

13 0430 CH11 5/22/01 10:46 AM Page 247

248 Chapter 11 A Sample GNU/Linux Application

size_t result_length;
char* result;

/* Obtain the process’s user and group IDs. */
rval = get_uid_gid (pid, &uid, &gid);
if (rval != 0)
return NULL;

/* Obtain the process’s RSS. */
rss = get_rss (pid);
if (rss == -1)
return NULL;

/* Obtain the process’s program name. */
program_name = get_program_name (pid);
if (program_name == NULL)
return NULL;

/* Convert user and group IDs to corresponding names. */
user_name = get_user_name (uid);
group_name = get_group_name (gid);

/* Compute the length of the string we’ll need to hold the result, and
allocate memory to hold it. */

result_length = strlen (program_name)
+ strlen (user_name) + strlen (group_name) + 128;

result = (char*) xmalloc (result_length);
/* Format the result. */
snprintf (result, result_length,

“<tr><td align=\”right\”>%d</td><td><tt>%s</tt></td><td>%s</td>”
“<td>%s</td><td align=\”right\”>%d</td></tr>\n”,
(int) pid, program_name, user_name, group_name, rss);

/* Clean up. */
free (program_name);
free (user_name);
free (group_name);
/* All done. */
return result;

}

/* HTML source for the start of the process listing page. */

static char* page_start =
“<html>\n”
“ <body>\n”
“ <table cellpadding=\”4\” cellspacing=\”0\” border=\”1\”>\n”
“ <thead>\n”
“ <tr>\n”
“ <th>PID</th>\n”
“ <th>Program</th>\n”
“ <th>User</th>\n”
“ <th>Group</th>\n”

Listing 11.9 Continued

13 0430 CH11 5/22/01 10:46 AM Page 248

24911.3 Modules

“ <th>RSS (KB)</th>\n”
“ </tr>\n”
“ </thead>\n”
“ <tbody>\n”;

/* HTML source for the end of the process listing page. */

static char* page_end =
“ </tbody>\n”
“ </table>\n”
“ </body>\n”
“</html>\n”;

void module_generate (int fd)
{
size_t i;
DIR* proc_listing;

/* Set up an iovec array. We’ll fill this with buffers that’ll be
part of our output, growing it dynamically as necessary. */

/* The number of elements in the array that we’ve used. */
size_t vec_length = 0;
/* The allocated size of the array. */
size_t vec_size = 16;
/* The array of iovcec elements. */
struct iovec* vec =
(struct iovec*) xmalloc (vec_size * sizeof (struct iovec));

/* The first buffer is the HTML source for the start of the page. */
vec[vec_length].iov_base = page_start;
vec[vec_length].iov_len = strlen (page_start);
++vec_length;

/* Start a directory listing for /proc. */
proc_listing = opendir (“/proc”);
if (proc_listing == NULL)
system_error (“opendir”);

/* Loop over directory entries in /proc. */
while (1) {
struct dirent* proc_entry;
const char* name;
pid_t pid;
char* process_info;

/* Get the next entry in /proc. */
proc_entry = readdir (proc_listing);
if (proc_entry == NULL)
/* We’ve hit the end of the listing. */
break;

continues

13 0430 CH11 5/22/01 10:46 AM Page 249

250 Chapter 11 A Sample GNU/Linux Application

/* If this entry is not composed purely of digits, it’s not a
process directory, so skip it. */

name = proc_entry->d_name;
if (strspn (name, “0123456789”) != strlen (name))
continue;

/* The name of the entry is the process ID. */
pid = (pid_t) atoi (name);
/* Generate HTML for a table row describing this process. */
process_info = format_process_info (pid);
if (process_info == NULL)
/* Something went wrong. The process may have vanished while we

were looking at it. Use a placeholder row instead. */
process_info = “<tr><td colspan=\”5\”>ERROR</td></tr>”;

/* Make sure the iovec array is long enough to hold this buffer
(plus one more because we’ll add an extra element when we’re done
listing processes). If not, grow it to twice its current size. */

if (vec_length == vec_size - 1) {
vec_size *= 2;
vec = xrealloc (vec, vec_size * sizeof (struct iovec));

}
/* Store this buffer as the next element of the array. */
vec[vec_length].iov_base = process_info;
vec[vec_length].iov_len = strlen (process_info);
++vec_length;

}

/* End the directory listing operation. */
closedir (proc_listing);

/* Add one last buffer with HTML that ends the page. */
vec[vec_length].iov_base = page_end;
vec[vec_length].iov_len = strlen (page_end);
++vec_length;

/* Output the entire page to the client file descriptor all at once. */
writev (fd, vec, vec_length);

/* Deallocate the buffers we created. The first and last are static
and should not be deallocated. */

for (i = 1; i < vec_length - 1; ++i)
free (vec[i].iov_base);

/* Deallocate the iovec array. */
free (vec);

}

Listing 11.9 Continued

13 0430 CH11 5/22/01 10:46 AM Page 250

25111.3 Modules

Gathering process data and formatting it as an HTML table is broken down into
several simpler operations:

n get_uid_gid extracts the IDs of the owning user and group of a process.To do
this, the function invokes stat (see Section B.2,“stat,” in Appendix B) on the
process’s subdirectory in /proc (see Section 7.2,“Process Entries,” in Chapter 7).
The user and group that own this directory are identical to the process’s owning
user and group.

n get_user_name returns the username corresponding to a UID.This function
simply calls the C library function getpwuid, which consults the system’s
/etc/passwd file and returns a copy of the result. get_group_name returns the
group name corresponding to a GID. It uses the getgrgid call.

n get_program_name returns the name of the program running in a specified
process.This information is extracted from the stat entry in the process’s direc-
tory under /proc (see Section 7.2,“Process Entries,” in Chapter 7).We use this
entry rather than examining the exe symbolic link (see Section 7.2.4,“Process
Executable,” in Chapter 7) or cmdline entry (see Section 7.2.2,“Process
Argument List,” in Chapter 7) because the latter two are inaccessible if the
process running the server isn’t owned by the same user as the process being
examined.Also, reading from stat doesn’t force Linux to page the process under
examination back into memory, if it happens to be swapped out.

n get_rss returns the resident set size of a process.This information is available as
the second element in the contents of the process’s statm entry (see Section
7.2.6,“Process Memory Statistics,” in Chapter 7) in its /proc subdirectory.

n format_process_info generates a string containing HTML elements for a
single table row, representing a single process.After calling the functions listed
previously to obtain this information, it allocates a buffer and generates HTML
using snprintf.

n module_generate generates the entire HTML page, including the table.The
output consists of one string containing the start of the page and the table (in
page_start), one string for each table row (generated by format_process_info),
and one string containing the end of the table and the page (in page_end).

module_generate determines the PIDs of the processes running on the system
by examining the contents of /proc. It obtains a listing of this directory using
opendir and readdir (see Section B.6,“Reading Directory Contents,” in
Appendix B). It scans the contents, looking for entries whose names are com-
posed entirely of digits; these are taken to be process entries.

Potentially a large number of strings must be written to the client socket—one
each for the page start and end, plus one for each process. If we were to write
each string to the client socket file descriptor with a separate call to write, this
would generate unnecessary network traffic because each string may be sent in a
separate network packet.

13 0430 CH11 5/22/01 10:46 AM Page 251

252 Chapter 11 A Sample GNU/Linux Application

To optimize packing of data into packets, we use a single call to writev instead
(see Section B.3,“Vector Reads and Writes,” in Appendix B).To do this, we
must construct an array of struct iovec objects, vec. However, because we do
not know the number of processes beforehand, we must start with a small array
and expand it as new processes are added.The variable vec_length contains the
number of elements of vec that are used, while vec_size contains the allocated
size of vec.When vec_length is about to exceed vec_size, we expand vec to
twice its size by calling xrealloc.When we’re done with the vector write, we
must deallocate all of the dynamically allocated strings pointed to by vec, and
then vec itself.

11.4 Using the Server
If we were planning to distribute this program in source form, maintain it on an
ongoing basis, or port it to other platforms, we probably would want to package it
using GNU Automake and GNU Autoconf, or a similar configuration automation sys-
tem. Such tools are outside the scope of this book; for more information about them,
consult GNU Autoconf,Automake, and Libtool (by Vaughan, Elliston,Tromey, and Taylor,
published by New Riders, 2000).

11.4.1 The Makefile
Instead of using Autoconf or a similar tool, we provide a simple Makefile compatible
with GNU Make4 so that it’s easy to compile and link the server and its modules.The
Makefile is shown in Listing 11.10. See the info page for GNU Make for details of
the file’s syntax.

Listing 11.10 (Makefile) GNU Make Configuration File for Server Example

Configuration.

Default C compiler options.
CFLAGS = -Wall -g
C source files for the server.
SOURCES = server.c module.c common.c main.c
Corresponding object files.
OBJECTS = $(SOURCES:.c=.o)
Server module shared library files.
MODULES = diskfree.so issue.so processes.so time.so

Rules.

Phony targets don’t correspond to files that are built; they’re names
for conceptual build targets.
.PHONY: all clean

4. GNU Make comes installed on GNU/Linux systems.

13 0430 CH11 5/22/01 10:46 AM Page 252

25311.4 Using the Server

Default target: build everything.
all: server $(MODULES)

Clean up build products.
clean:

rm -f $(OBJECTS) $(MODULES) server

The main server program. Link with -Wl,-export-dyanamic so
dynamically loaded modules can bind symbols in the program. Link in
libdl, which contains calls for dynamic loading.
server: $(OBJECTS)

$(CC) $(CFLAGS) -Wl,-export-dynamic -o $@ $^ -ldl

All object files in the server depend on server.h. But use the
default rule for building object files from source files.
$(OBJECTS): server.h

Rule for building module shared libraries from the corresponding
source files. Compile -fPIC and generate a shared object file.
$(MODULES): \
%.so: %.c server.h

$(CC) $(CFLAGS) -fPIC -shared -o $@ $<

The Makefile provides these targets:
n all (the default if you invoke make without arguments because it’s the first target

in the Makefile) includes the server executable and all the modules.The mod-
ules are listed in the variable MODULES.

n clean deletes any build products that are produced by the Makefile.
n server links the server executable.The source files listed in the variable SOURCES

are compiled and linked in.
n The last rule is a generic pattern for compiling shared object files for server

modules from the corresponding source files.

Note that source files for server modules are compiled with the -fPIC option because
they are linked into shared libraries (see Section 2.3.2,“Shared Libraries,” in Chapter 2).

Also observe that the server executable is linked with the -Wl,-export-dynamic
compiler option.With this option, GCC passes the -export-dynamic option to the
linker, which creates an executable file that also exports its external symbols as a shared
library.This allows modules, which are dynamically loaded as shared libraries, to refer-
ence functions from common.c that are linked statically into the server executable.

13 0430 CH11 5/22/01 10:46 AM Page 253

254 Chapter 11 A Sample GNU/Linux Application

11.4.2 Building the Server
Building the program is easy. From the directory containing the sources, simply invoke
make:

% make
cc -Wall -g -c -o server.o server.c
cc -Wall -g -c -o module.o module.c
cc -Wall -g -c -o common.o common.c
cc -Wall -g -c -o main.o main.c
cc -Wall -g -Wl,-export-dynamic -o server server.o module.o common.o main.o -ldl
cc -Wall -g -fPIC -shared -o diskfree.so diskfree.c
cc -Wall -g -fPIC -shared -o issue.so issue.c
cc -Wall -g -fPIC -shared -o processes.so processes.c
cc -Wall -g -fPIC -shared -o time.so time.c

This builds the server program and the server module shared libraries.
% ls -l server *.so
-rwxr-xr-x 1 samuel samuel 25769 Mar 11 01:15 diskfree.so
-rwxr-xr-x 1 samuel samuel 31184 Mar 11 01:15 issue.so
-rwxr-xr-x 1 samuel samuel 41579 Mar 11 01:15 processes.so
-rwxr-xr-x 1 samuel samuel 71758 Mar 11 01:15 server
-rwxr-xr-x 1 samuel samuel 13980 Mar 11 01:15 time.so

11.4.3 Running the Server
To run the server, simply invoke the server executable.

If you do not specify the server port number with the --port (-p) option, Linux
will choose one for you; in this case, specify --verbose (-v) to make the server print
out the port number in use.

If you do not specify an address with --address (-a), the server runs on all your
computer’s network addresses. If your computer is attached to a network, that means
that others will be capable of accessing the server, provided that they know the correct
port number to use and page to request. For security reasons, it’s a good idea to spec-
ify the localhost address until you’re confident that the server works correctly and is
not releasing any information that you prefer to not make public. Binding to the
localhost causes the server to bind to the local network device (designated “lo”)—
only programs running on the same computer can connect to it. If you specify a dif-
ferent address, it must be an address that corresponds to your computer:

% ./server --address localhost --port 4000

The server is now running. Open a browser window, and attempt to contact the server
at this port number. Request a page whose name matches one of the modules. For
instance, to invoke the diskfree.so module, use this URL:

http://localhost:4000/diskfree

13 0430 CH11 5/22/01 10:46 AM Page 254

25511.5 Finishing Up

Instead of 4000, enter the port number you specified (or the port number that Linux
chose for you). Press Ctrl+C to kill the server when you’re done.

If you didn’t specify localhost as the server address, you can also connect to the
server with a Web browser running on another computer by using your computer’s
hostname in the URL—for example:

http://host.domain.com:4000/diskfree

If you specify the --verbose (-v) option, the server prints some information at startup
and displays the numerical Internet address of each client that connects to it. If you
connect via the localhost address, the client address will always be 127.0.0.1.

If you experiment with writing your own server modules, you may place them in a
different directory than the one containing the server module. In this case, specify
that directory with the --module-dir (-m) option.The server will look in this direc-
tory for server modules instead.

If you forget the syntax of the command-line options, invoke server with the
--help (-h) option.

% ./server --help
Usage: ./server [options]
-a, --address ADDR Bind to local address (by default, bind

to all local addresses).
-h, --help Print this information.
-m, --module-dir DIR Load modules from specified directory

(by default, use executable directory).
-p, --port PORT Bind to specified port.
-v, --verbose Print verbose messages.

11.5 Finishing Up
If you were really planning on releasing this program for general use, you’d need to
write documentation for it as well. Many people don’t realize that writing good docu-
mentation is just as difficult and time-consuming—and just as important—as writing
good software. However, software documentation is a subject for another book, so
we’ll leave you with a few references of where to learn more about documenting
GNU/Linux software.

You’d probably want to write a man page for the server program, for instance.This
is the first place many users will look for information about a program. Man pages are
formatted using a classic UNIX formatting system troff.To view the man page for
troff, which describes the format of troff files, invoke the following:

% man troff

To learn about how GNU/Linux locates man pages, consult the man page for the man
command itself by invoking this:

% man man

13 0430 CH11 5/22/01 10:46 AM Page 255

256 Chapter 11 A Sample GNU/Linux Application

You might also want to write info pages, using the GNU Info system, for the server
and its modules. Naturally, documentation about the info system comes in info format;
to view it, invoke this line:

% info info

Many GNU/Linux programs come with documentation in plain text or HTML
formats as well.

Happy GNU/Linux programming!

13 0430 CH11 5/22/01 10:46 AM Page 256

Appendixes

III

A Other Development Tools

B Low-Level I/O

C Table of Signals

D Online Resources

E Open Publication License Version 1.0

F GNU General Public License

14 0430 PT03 5/22/01 10:48 AM Page 257

14 0430 PT03 5/22/01 10:48 AM Page 258

Other Development Tools

A

DEVELOPING CORRECT, FAST C OR C++ GNU/LINUX PROGRAMS requires more
than just understanding the GNU/Linux operating system and its system calls. In this
appendix, we discuss development tools to find runtime errors such as illegal use of
dynamically allocated memory and to determine which parts of a program are taking
most of the execution time.Analyzing a program’s source code can reveal some of this
information; by using these runtime tools and actually executing the program, you can
find out much more.

A.1 Static Program Analysis
Some programming errors can be detected using static analysis tools that analyze the
program’s source code. If you invoke GCC with -Wall and -pedantic, the compiler
issues warnings about risky or possibly erroneous programming constructions. By
eliminating such constructions, you’ll reduce the risk of program bugs, and you’ll find
it easier to compile your programs on different GNU/Linux variants and even on
other operating systems.

15 0430 APPA 5/22/01 10:53 AM Page 259

260 Appendix A Other Development Tools

Using various command options, you can cause GCC to issue warnings about
many different types of questionable programming constructs.The -Wall option
enables most of these checks. For example, the compiler will produce a warning
about a comment that begins within another comment, about an incorrect return type
specified for main, and about a non void function omitting a return statement. If you
specify the -pedantic option, GCC emits warnings demanded by strict ANSI C and
ISO C++ compliance. For example, use of the GNU asm extension causes a warning
using this option.A few GNU extensions, such as using alternate keywords beginning
with __ (two underscores), will not trigger warning messages.Although the GCC
info pages deprecate use of this option, we recommend that you use it anyway and
avoid most GNU language extensions because GCC extensions tend to change
through time and frequently interact poorly with code optimization.

Listing A.1 (hello.c) Hello World Program

main ()
{
printf (“Hello, world.\n”);

}

Consider compiling the “Hello World” program shown in Listing A.1.Though GCC
compiles the program without complaint, the source code does not obey ANSI C
rules. If you enable warnings by compiling with the -Wall -pedantic, GCC reveals
three questionable constructs.

% gcc -Wall -pedantic hello.c
hello.c:2: warning: return type defaults to ‘int’
hello.c: In function ‘main’:
hello.c:3: warning: implicit declaration of function ‘printf’
hello.c:4: warning: control reaches end of non-void function

These warnings indicate that the following problems occurred:
n The return type for main was not specified.
n The function printf is implicitly declared because <stdio.h> is not included.
n The function, implicitly declared to return an int, actually returns no value.

Analyzing a program’s source code cannot find all programming mistakes and ineffi-
ciencies. In the next section, we present four tools to find mistakes in using dynami-
cally allocated memory. In the subsequent section, we show how to analyze the
program’s execution time using the gprof profiler.

15 0430 APPA 5/22/01 2:40 PM Page 260

261A.2 Finding Dynamic Memory Errors

A.2 Finding Dynamic Memory Errors
When writing a program, you frequently can’t know how much memory the program
will need when it runs. For example, a line read from a file at runtime might have any
finite length. C and C++ programs use malloc, free, and their variants to dynamically
allocate memory while the program is running.The rules for dynamic memory use
include these:

n The number of allocation calls (calls to malloc) must exactly match the number
of deallocation calls (calls to free).

n Reads and writes to the allocated memory must occur within the memory, not
outside its range.

n The allocated memory cannot be used before it is allocated or after it is
deallocated.

Because dynamic memory allocation and deallocation occur at runtime, static program
analysis rarely find violations. Instead, memory-checking tools run the program, col-
lecting data to determine if any of these rules have been violated.The violations a tool
may find include the following:

n Reading from memory before allocating it
n Writing to memory before allocating it
n Reading before the beginning of allocated memory
n Writing before the beginning of allocated memory
n Reading after the end of allocated memory
n Writing after the end of allocated memory
n Reading from memory after its deallocation
n Writing to memory after its deallocation
n Failing to deallocate allocated memory
n Deallocating the same memory twice
n Deallocating memory that is not allocated

It is also useful to warn about requesting an allocation with 0 bytes, which probably
indicates programmer error.

Table A.1 indicates four different tools’ diagnostic capabilities. Unfortunately, no
single tool diagnoses all the memory use errors.Also, no tool claims to detect reading
or writing before allocating memory, but doing so will probably cause a segmentation
fault. Deallocating memory twice will probably also cause a segmentation fault.These
tools diagnose only errors that actually occur while the program is running. If you run
the program with inputs that cause no memory to be allocated, the tools will indicate
no memory errors.To test a program thoroughly, you must run the program using dif-
ferent inputs to ensure that every possible path through the program occurs.Also, you
may use only one tool at a time, so you’ll have to repeat testing with several tools to
get the best error checking.

15 0430 APPA 5/22/01 10:53 AM Page 261

262 Appendix A Other Development Tools

Table A.1 Capabilities of Dynamic Memory-Checking Tools (X Indicates
Detection, and O Indicates Detection for Some Cases)

Erroneous Behavior malloc mtrace ccmalloc Electric
Checking Fence

Read before allocating memory

Write before allocating memory

Read before beginning of allocation X

Write before beginning of allocation O O X

Read after end of allocation X

Write after end of allocation X X

Read after deallocation X

Write after deallocation X

Failure to deallocate memory X X

Deallocating memory twice X X

Deallocating nonallocated memory X X

Zero-size memory allocation X X

In the sections that follow, we first describe how to use the more easily used malloc
checking and mtrace, and then ccmalloc and Electric Fence.

A.2.1 A Program to Test Memory Allocation and
Deallocation
We’ll use the malloc-use program in Listing A.2 to illustrate memory allocation, deal-
location, and use.To begin running it, specify the maximum number of allocated
memory regions as its only command-line argument. For example, malloc-use 12
creates an array A with 12 character pointers that do not point to anything.The
program accepts five different commands:

n To allocate b bytes pointed to by array entry A[i], enter a i b.The array index i
can be any non-negative number smaller than the command-line argument.The
number of bytes must be non-negative.

n To deallocate memory at array index i, enter d i.
n To read the pth character from the allocated memory at index i (as in A[i][p]),

enter r i p. Here, p can have an integral value.
n To write a character to the pth position in the allocated memory at index i,

enter w i p.
n When finished, enter q.

We’ll present the program’s code later, in Section A.2.7, and illustrate how to use it.

15 0430 APPA 5/22/01 10:53 AM Page 262

263A.2 Finding Dynamic Memory Errors

A.2.2 malloc Checking
The memory allocation functions provided by the GNU C library can detect writing
before the beginning of an allocation and deallocating the same allocation twice.
Defining the environment variable MALLOC_CHECK_ to the value 2 causes a program to
halt when such an error is detected. (Note the environment variable’s ending under-
score.) There is no need to recompile the program.

We illustrate diagnosing a write to memory to a position just before the beginning
of an allocation.

% export MALLOC_CHECK_=2
% ./malloc-use 12
Please enter a command: a 0 10
Please enter a command: w 0 -1
Please enter a command: d 0
Aborted (core dumped)

export turns on malloc checking. Specifying the value 2 causes the program to halt as
soon as an error is detected.

Using malloc checking is advantageous because the program need not be recom-
piled, but its capability to diagnose errors is limited. Basically, it checks that the alloca-
tor data structures have not been corrupted.Thus, it can detect double deallocation of
the same allocation.Also, writing just before the beginning of a memory allocation
can usually be detected because the allocator stores the size of each memory allocation
just before the allocated region.Thus, writing just before the allocated memory will
corrupt this number. Unfortunately, consistency checking can occur only when your
program calls allocation routines, not when it accesses memory, so many illegal reads
and writes can occur before an error is detected. In the previous example, the illegal
write was detected only when the allocated memory was deallocated.

A.2.3 Finding Memory Leaks Using mtrace
The mtrace tool helps diagnose the most common error when using dynamic
memory: failure to match allocations and deallocations.There are four steps to using
mtrace, which is available with the GNU C library:

1. Modify the source code to include <mcheck.h> and to invoke mtrace () as soon
as the program starts, at the beginning of main.The call to mtrace turns on
tracking of memory allocations and deallocations.

2. Specify the name of a file to store information about all memory allocations and
deallocations:
% export MALLOC_TRACE=memory.log

3. Run the program.All memory allocations and deallocations are stored in the
logging file.

15 0430 APPA 5/22/01 10:53 AM Page 263

264 Appendix A Other Development Tools

4. Using the mtrace command, analyze the memory allocations and deallocations
to ensure that they match.
% mtrace my_program $MALLOC_TRACE

The messages produced by mtrace are relatively easy to understand. For example, for
our malloc-use example, the output would look like this:

- 0000000000 Free 3 was never alloc’d malloc-use.c:39

Memory not freed:

Address Size Caller
0x08049d48 0xc at malloc-use.c:30

These messages indicate an attempt on line 39 of malloc-use.c to free memory that
was never allocated, and an allocation of memory on line 30 that was never freed.

mtrace diagnoses errors by having the executable record all memory allocations
and deallocations in the file specified by the MALLOC_TRACE environment variable.The
executable must terminate normally for the data to be written.The mtrace command
analyzes this file and lists unmatched allocations and deallocations.

A.2.4 Using ccmalloc
The ccmalloc library diagnoses dynamic memory errors by replacing malloc and free
with code tracing their use. If the program terminates gracefully, it produces a report
of memory leaks and other errors.The ccmalloc library was written by Armin Bierce.

You’ll probably have to download and install the ccmalloc library yourself.
Download it from http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/,
unpack the code, and run configure. Run make and make install, copy the
ccmalloc.cfg file to the directory where you’ll run the program you want to check,
and rename the copy to .ccmalloc. Now you are ready to use the tool.

The program’s object files must be linked with ccmalloc’s library and the dynamic
linking library.Append -lccmalloc -ldl to your link command, for instance.

% gcc -g -Wall -pedantic malloc-use.o -o ccmalloc-use -lccmalloc –ldl

Execute the program to produce a report. For example, running our malloc-use pro-
gram to allocate but not deallocate memory produces the following report:

% ./ccmalloc-use 12
file-name=a.out does not contain valid symbols
trying to find executable in current directory ...
using symbols from ‘ccmalloc-use’
(to speed up this search specify ‘file ccmalloc-use’
in the startup file ‘.ccmalloc’)
Please enter a command: a 0 12
Please enter a command: q

15 0430 APPA 5/22/01 10:53 AM Page 264

265A.2 Finding Dynamic Memory Errors

.---------------.
|ccmalloc report|
==
| total # of| allocated | deallocated | garbage |
+-----------+-------------+-------------+---------------+
| bytes| 60 | 48 | 12 |
+-----------+-------------+-------------+---------------+
|allocations| 2 | 1 | 1 |
+---+
| number of checks: 1 |
| number of counts: 3 |
| retrieving function names for addresses ... done. |
| reading file info from gdb ... done. |
| sorting by number of not reclaimed bytes ... done. |
| number of call chains: 1 |
| number of ignored call chains: 0 |
| number of reported call chains: 1 |
| number of internal call chains: 1 |
| number of library call chains: 0 |
==
|
*100.0% = 12 Bytes of garbage allocated in 1 allocation
| |
| | 0x400389cb in <???>
| |
| | 0x08049198 in <main>
| | at malloc-use.c:89
| |
| | 0x08048fdc in <allocate>
| | at malloc-use.c:30
| |
| ‘-----> 0x08049647 in <malloc>
| at src/wrapper.c:284
|
‘--

The last few lines indicate the chain of function calls that allocated memory that was
not deallocated.

To use ccmalloc to diagnose writes before the beginning or after the end of the
allocated region, you’ll have to modify the .ccmalloc file in the current directory.This
file is read when the program starts execution.

A.2.5 Electric Fence
Written by Bruce Perens, Electric Fence halts executing programs on the exact
line where a write or a read outside an allocation occurs.This is the only tool that
discovers illegal reads. It is included in most GNU/Linux distributions, but the source
code can be found at http://www.perens.com/FreeSoftware/.

15 0430 APPA 5/22/01 10:53 AM Page 265

266 Appendix A Other Development Tools

As with ccmalloc, your program’s object files must be linked with Electric Fence’s
library by appending -lefence to the linking command, for instance:

% gcc -g -Wall -pedantic malloc-use.o -o emalloc-use –lefence

As the program runs, allocated memory uses are checked for correctness.A violation
causes a segmentation fault:

% ./emalloc-use 12
Electric Fence 2.0.5 Copyright (C) 1987-1998 Bruce Perens.

Please enter a command: a 0 12
Please enter a command: r 0 12
Segmentation fault

Using a debugger, you can determine the context of the illegal action.
By default, Electric Fence diagnoses only accesses beyond the ends of allocations.To

find accesses before the beginning of allocations instead of accesses beyond the end of
allocations, use this code:

% export EF_PROTECT_BELOW=1

To find accesses to deallocated memory, set EF_PROTECT_FREE to 1. More capabilities
are described in the libefence manual page.

Electric Fence diagnoses illegal memory accesses by storing each allocation on at
least two memory pages. It places the allocation at the end of the first page; any access
beyond the end of the allocation, on the second page, causes a segmentation fault. If
you set EF_PROTECT_BELOW to 1, it places the allocation at the beginning of the second
page instead. Because it allocates two memory pages per call to malloc, Electric Fence
can use an enormous amount of memory. Use this library for debugging only.

A.2.6 Choosing Among the Different Memory-Debugging
Tools
We have discussed four separate, incompatible tools to diagnose erroneous use of
dynamic memory. How does a GNU/Linux programmer ensure that dynamic mem-
ory is correctly used? No tool guarantees diagnosing all errors, but using any of them
does increase the probability of finding errors.To ease finding dynamically allocated
memory errors, separately develop and test the code that deals with dynamic memory.
This reduces the amount of code that you must search for errors. If you are using
C++, write a class that handles all dynamic memory use. If you are using C, minimize
the number of functions using allocation and deallocation.When testing this code, be
sure to use only one tool at a one time because they are incompatible.When testing a
program, be sure to vary how the program executes, to test the most commonly exe-
cuted portions of the code.

Which of the four tools should you use? Because failing to match allocations and
deallocations is the most common dynamic memory error, use mtrace during initial
development.The program is available on all GNU/Linux systems and has been well
tested.After ensuring that the number of allocations and deallocations match, use

15 0430 APPA 5/22/01 10:53 AM Page 266

267A.2 Finding Dynamic Memory Errors

Electric Fence to find illegal memory accesses.This will eliminate almost all memory
errors.When using Electric Fence, you will need to be careful to not perform too
many allocations and deallocations because each allocation requires at least two pages
of memory. Using these two tools will reveal most memory errors.

A.2.7 Source Code for the Dynamic Memory Program
Listing A.2 shows the source code for a program illustrating dynamic memory alloca-
tion, deallocation, and use. See Section A.2.1,“A Program to Test Memory Allocation
and Deallocation,” for a description of how to use it.

Listing A.2 (malloc-use.c) Dynamic Memory Allocation Checking Example

/* Use C’s dynamic memory allocation functions. */

/* Invoke the program using one command-line argument specifying the
size of an array. This array consists of pointers to (possibly)
allocated arrays.

When the programming is running, select among the following
commands:

o allocate memory: a <index> <memory-size>
o deallocate memory: d <index>
o read from memory: r <index> <position-within-allocation>
o write to memory: w <index> <position-within-allocation>
o quit: q

The user is responsible for obeying (or disobeying) the rules on dynamic
memory use. */

#ifdef MTRACE
#include <mcheck.h>
#endif /* MTRACE */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

/* Allocate memory with the specified size, returning nonzero upon
success. */

void allocate (char** array, size_t size)
{
*array = malloc (size);

}

/* Deallocate memory. */

void deallocate (char** array)

continues

15 0430 APPA 5/22/01 10:53 AM Page 267

268 Appendix A Other Development Tools

{
free ((void*) *array);

}

/* Read from a position in memory. */

void read_from_memory (char* array, int position)
{
char character = array[position];

}

/* Write to a position in memory. */

void write_to_memory (char* array, int position)
{
array[position] = ‘a’;

}

int main (int argc, char* argv[])
{
char** array;
unsigned array_size;
char command[32];
unsigned array_index;
char command_letter;
int size_or_position;
int error = 0;

#ifdef MTRACE
mtrace ();

#endif /* MTRACE */

if (argc != 2) {
fprintf (stderr, “%s: array-size\n”, argv[0]);
return 1;

}

array_size = strtoul (argv[1], 0, 0);
array = (char **) calloc (array_size, sizeof (char *));
assert (array != 0);

/* Follow the user’s commands. */
while (!error) {
printf (“Please enter a command: “);
command_letter = getchar ();
assert (command_letter != EOF);
switch (command_letter) {

case ‘a’:
fgets (command, sizeof (command), stdin);
if (sscanf (command, “%u %i”, &array_index, &size_or_position) == 2

&& array_index < array_size)

Listing A.2 Continued

15 0430 APPA 5/22/01 10:53 AM Page 268

269A.2 Finding Dynamic Memory Errors

allocate (&(array[array_index]), size_or_position);
else
error = 1;

break;

case ‘d’:
fgets (command, sizeof (command), stdin);
if (sscanf (command, “%u”, &array_index) == 1

&& array_index < array_size)
deallocate (&(array[array_index]));

else
error = 1;

break;

case ‘r’:
fgets (command, sizeof (command), stdin);
if (sscanf (command, “%u %i”, &array_index, &size_or_position) == 2

&& array_index < array_size)
read_from_memory (array[array_index], size_or_position);

else
error = 1;

break;

case ‘w’:
fgets (command, sizeof (command), stdin);
if (sscanf (command, “%u %i”, &array_index, &size_or_position) == 2

&& array_index < array_size)
write_to_memory (array[array_index], size_or_position);

else
error = 1;

break;

case ‘q’:
free ((void *) array);
return 0;

default:
error = 1;

}
}

free ((void *) array);
return 1;

}

A.3 Profiling
Now that your program is (hopefully) correct, we turn to speeding its execution.
Using the profiler gprof, you can determine which functions require the most execu-
tion time.This can help you determine which parts of the program to optimize or
rewrite to execute more quickly. It can also help you find errors. For example, you
may find that a particular function is called many more times than you expect.

15 0430 APPA 5/22/01 10:53 AM Page 269

270 Appendix A Other Development Tools

In this section, we describe how to use gprof. Rewriting code to run more quickly
requires creativity and careful choice of algorithms.

Obtaining profiling information requires three steps:

1. Compile and link your program to enable profiling.

2. Execute your program to generate profiling data.

3. Use gprof to analyze and display the profiling data.

Before we illustrate these steps, we introduce a large enough program to make
profiling interesting.

A.3.1 A Simple Calculator
To illustrate profiling, we’ll use a simple calculator program.To ensure that the calcula-
tor takes a nontrivial amount of time, we’ll use unary numbers for calculations, some-
thing we would definitely not want to do in a real-world program. Code for this
program appears at the end of this chapter.

A unary number is represented by as many symbols as its value. For example, the
number 1 is represented by “x,” 2 by “xx,” and 3 by “xxx.” Instead of using x’s, our
program represents a non-negative number using a linked list with as many elements
as the number’s value.The number.c file contains routines to create the number 0, add
1 to a number, subtract 1 from a number, and add, subtract, and multiply numbers.
Another function converts a string holding a non-negative decimal number to a unary
number, and a function converts from a unary number to an int.Addition is imple-
mented using repeated addition of 1s, while subtraction uses repeated removal of 1s.
Multiplication is defined using repeated addition.The unary predicates even and odd
each return the unary number for 1 if and only if its one operand is even or odd,
respectively; otherwise they return the unary number for 0.The two predicates are
mutually recursive. For example, a number is even if it is zero, or if one less than the
number is odd.

The calculator accepts one-line postfix expressions1 and prints each expression’s
value—for example:

% ./calculator
Please enter a postfix expression:
2 3 +
5
Please enter a postfix expression:
2 3 + 4 -
1

1. In postfix notation, a binary operator is placed after its operands instead of between them.
So, for example, to multiply 6 and 8, you would use 6 8 ×.To multiply 6 and 8 and then add 5
to the result, you would use 6 8 × 5 +.

15 0430 APPA 5/22/01 10:53 AM Page 270

271A.3 Profiling

The calculator, defined in calculator.c, reads each expression, storing intermediate
values on a stack of unary numbers, defined in stack.c.The stack stores its unary
numbers in a linked list.

A.3.2 Collecting Profiling Information
The first step in profiling a program is to annotate its executable to collect profiling
information.To do so, use the -pg compiler flag when both compiling the object files
and linking. For example, consider this code:

% gcc -pg -c -o calculator.o calculator.c
% gcc -pg -c -o stack.o stack.c
% gcc -pg -c -o number.o number.c
% gcc -pg calculator.o stack.o number.o -o calculator

This enables collecting information about function calls and timing information.To
collect line-by-line use information, also specify the debugging flag -g.To count basic
block executions, such as the number of do-loop iterations, use -a.

The second step is to run the program.While it is running, profiling data is col-
lected into a file named gmon.out, only for those portions of the code that are exer-
cised.You must vary the program’s input or commands to exercise the code sections
that you want to profile.The program must terminate normally for the profiling file to
be written.

A.3.3 Displaying Profiling Data
Given the name of an executable, gprof analyzes the gmon.out file to display informa-
tion about how much time each function required. For example, consider the “flat”
profiling data for computing 1787 × 13 – 1918 using our calculator program, which is
produced by executing gprof ./calculator:

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
26.07 1.76 1.76 20795463 0.00 0.00 decrement_number
24.44 3.41 1.65 1787 0.92 1.72 add
19.85 4.75 1.34 62413059 0.00 0.00 zerop
15.11 5.77 1.02 1792 0.57 2.05 destroy_number
14.37 6.74 0.97 20795463 0.00 0.00 add_one
0.15 6.75 0.01 1788 0.01 0.01 copy_number
0.00 6.75 0.00 1792 0.00 0.00 make_zero
0.00 6.75 0.00 11 0.00 0.00 empty_stack

Computing the function decrement_number and all the functions it calls required
26.07% of the program’s total execution time. It was called 20,795,463 times. Each
individual execution required 0.0 seconds—namely, a time too small to measure.The
add function was invoked 1,787 times, presumably to compute the product. Each call

15 0430 APPA 5/22/01 10:53 AM Page 271

272 Appendix A Other Development Tools

required 0.92 seconds.The copy_number function was invoked only 1,788 times, while
it and the functions it calls required only 0.15% of the total execution time.
Sometimes the mcount and profil functions used by profiling appear in the data.

In addition to the flat profile data, which indicates the total time spent within each
function, gprof produces call graph data showing the time spent in each function and
its children within the context of a function call chain:

index % time self children called name
<spontaneous>

[1] 100.0 0.00 6.75 main [1]
0.00 6.75 2/2 apply_binary_function [2]
0.00 0.00 1/1792 destroy_number [4]
0.00 0.00 1/1 number_to_unsigned_int [10]
0.00 0.00 3/3 string_to_number [12]
0.00 0.00 3/5 push_stack [16]
0.00 0.00 1/1 create_stack [18]
0.00 0.00 1/11 empty_stack [14]
0.00 0.00 1/5 pop_stack [15]
0.00 0.00 1/1 clear_stack [17]

0.00 6.75 2/2 main [1]

[2] 100.0 0.00 6.75 2 apply_binary_function [2]
0.00 6.74 1/1 product [3]
0.00 0.01 4/1792 destroy_number [4]
0.00 0.00 1/1 subtract [11]
0.00 0.00 4/11 empty_stack [14]
0.00 0.00 4/5 pop_stack [15]
0.00 0.00 2/5 push_stack [16]

0.00 6.74 1/1 apply_binary_function [2]

[3] 99.8 0.00 6.74 1 product [3]
1.02 2.65 1787/1792 destroy_number [4]
1.65 1.43 1787/1787 add [5]
0.00 0.00 1788/62413059 zerop [7]
0.00 0.00 1/1792 make_zero [13]

The first frame shows that executing main and its children required 100% of the pro-
gram’s 6.75 seconds. It called apply_binary_function twice, which was called a total
of two times throughout the entire program. Its caller was <spontaneous>; this indi-
cates that the profiler was not capable of determining who called main.This first frame
also shows that string_to_number called push_stack three times but was called five
times throughout the program.The third frame shows that executing product and the
functions it calls required 99.8% of the program’s total execution time. It was invoked
once by apply_binary_function.

The call graph data displays the total time spent executing a function and its chil-
dren. If the function call graph is a tree, this number is easy to compute, but recur-
sively defined functions must be treated specially. For example, the even function calls
odd, which calls even. Each largest such call cycle is given its own number and is dis-

15 0430 APPA 5/22/01 10:53 AM Page 272

273A.3 Profiling

played individually in the call graph data. Consider this profiling data from determin-
ing whether 1787 × 13 × 3 is even:

0.00 0.02 1/1 main [1]

[9] 0.1 0.00 0.02 1 apply_unary_function [9]
0.01 0.00 1/1 even <cycle 1> [13]
0.00 0.00 1/1806 destroy_number [5]
0.00 0.00 1/13 empty_stack [17]
0.00 0.00 1/6 pop_stack [18]
0.00 0.00 1/6 push_stack [19]

[10] 0.1 0.01 0.00 1+69693 <cycle 1 as a whole> [10]

0.00 0.00 34847 even <cycle 1> [13]

34847 even <cycle 1> [13]
[11] 0.1 0.01 0.00 34847 odd <cycle 1> [11]

0.00 0.00 34847/186997954 zerop [7]
0.00 0.00 1/1806 make_zero [16]

34846 even <cycle 1> [13]

The 1+69693 in the [10] frame indicates that cycle 1 was called once, while the func-
tions in the cycle were called 69,693 times.The cycle called the even function.The
next entry shows that odd was called 34,847 times by even.

In this section, we have briefly discussed only some of gprof’s features. Its info
pages contain information about other useful features:

n Use the -s option to sum the execution results from several different runs.
n Use the -c option to identify children that could have been called but were not.
n Use the -l option to display line-by-line profiling information.
n Use the -A option to display source code annotated with percentage execution

numbers.

The info pages also provide more information about the interpretation of the
analyzed data.

A.3.4 How gprof Collects Data
When a profiled executable runs, every time a function is called its count is also incre-
mented.Also, gprof periodically interrupts the executable to determine the currently
executing function.These samples determine function execution times. Because
Linux’s clock ticks are 0.01 seconds apart, these interruptions occur, at most, every
0.01 seconds.Thus, profiles for quickly executing programs or for quickly executing
infrequently called functions may be inaccurate.To avoid these inaccuracies, run the
executable for longer periods of time, or sum together profile data from several execu-
tions. Read about the -s option to sum profiling data in gprof’s info pages.

15 0430 APPA 5/22/01 10:53 AM Page 273

274 Appendix A Other Development Tools

A.3.5 Source Code for the Calculator Program
Listing A.3 presents a program that calculates the value of postfix expressions.

Listing A.3 (calculator.c) Main Calculator Program

/* Calculate using unary numbers. */

/* Enter one-line expressions using reverse postfix notation, e.g.,
602 7 5 - 3 * +

Nonnegative numbers are entered using decimal notation. The
operators “+”, “-”, and “*” are supported. The unary operators
“even” and “odd” return the number 1 if its one operand is even
or odd, respectively. Spaces must separate all words. Negative
numbers are not supported. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include “definitions.h”

/* Apply the binary function with operands obtained from the stack,
pushing the answer on the stack. Return nonzero upon success. */

int apply_binary_function (number (*function) (number, number),
Stack* stack)

{
number operand1, operand2;
if (empty_stack (*stack))
return 0;

operand2 = pop_stack (stack);
if (empty_stack (*stack))
return 0;

operand1 = pop_stack (stack);
push_stack (stack, (*function) (operand1, operand2));
destroy_number (operand1);
destroy_number (operand2);
return 1;

}

/* Apply the unary function with an operand obtained from the stack,
pushing the answer on the stack. Return nonzero upon success. */

int apply_unary_function (number (*function) (number),
Stack* stack)

{
number operand;
if (empty_stack (*stack))
return 0;

15 0430 APPA 5/22/01 10:53 AM Page 274

275A.3 Profiling

operand = pop_stack (stack);
push_stack (stack, (*function) (operand));
destroy_number (operand);
return 1;

}

int main ()
{
char command_line[1000];
char* command_to_parse;
char* token;
Stack number_stack = create_stack ();

while (1) {
printf (“Please enter a postfix expression:\n”);
command_to_parse = fgets (command_line, sizeof (command_line), stdin);
if (command_to_parse == NULL)
return 0;

token = strtok (command_to_parse, “ \t\n”);
command_to_parse = 0;
while (token != 0) {
if (isdigit (token[0]))
push_stack (&number_stack, string_to_number (token));

else if (((strcmp (token, “+”) == 0) &&
!apply_binary_function (&add, &number_stack)) ||
((strcmp (token, “-”) == 0) &&
!apply_binary_function (&subtract, &number_stack)) ||
((strcmp (token, “*”) == 0) &&
!apply_binary_function (&product, &number_stack)) ||
((strcmp (token, “even”) == 0) &&
!apply_unary_function (&even, &number_stack)) ||
((strcmp (token, “odd”) == 0) &&
!apply_unary_function (&odd, &number_stack)))

return 1;
token = strtok (command_to_parse, “ \t\n”);

}
if (empty_stack (number_stack))
return 1;

else {
number answer = pop_stack (&number_stack);
printf (“%u\n”, number_to_unsigned_int (answer));
destroy_number (answer);
clear_stack (&number_stack);

}
}

return 0;
}

15 0430 APPA 5/22/01 10:53 AM Page 275

276 Appendix A Other Development Tools

The functions in Listing A.4 implement unary numbers using empty linked lists.

Listing A.4 (number.c) Unary Number Implementation

/* Operate on unary numbers. */

#include <assert.h>
#include <stdlib.h>
#include <limits.h>
#include “definitions.h”

/* Create a number representing zero. */

number make_zero ()
{
return 0;

}

/* Return nonzero if the number represents zero. */

int zerop (number n)
{
return n == 0;

}

/* Decrease a positive number by 1. */

number decrement_number (number n)
{
number answer;
assert (!zerop (n));
answer = n->one_less_;
free (n);
return answer;

}

/* Add 1 to a number. */

number add_one (number n)
{
number answer = malloc (sizeof (struct LinkedListNumber));
answer->one_less_ = n;
return answer;

}

/* Destroying a number. */

void destroy_number (number n)
{
while (!zerop (n))
n = decrement_number (n);

15 0430 APPA 5/22/01 10:53 AM Page 276

277A.3 Profiling

}

/* Copy a number. This function is needed only because of memory
allocation. */

number copy_number (number n)
{
number answer = make_zero ();
while (!zerop (n)) {
answer = add_one (answer);
n = n->one_less_;

}
return answer;

}

/* Add two numbers. */

number add (number n1, number n2)
{
number answer = copy_number (n2);
number addend = n1;
while (!zerop (addend)) {
answer = add_one (answer);
addend = addend->one_less_;

}
return answer;

}

/* Subtract a number from another. */

number subtract (number n1, number n2)
{
number answer = copy_number (n1);
number subtrahend = n2;
while (!zerop (subtrahend)) {
assert (!zerop (answer));
answer = decrement_number (answer);
subtrahend = subtrahend->one_less_;

}
return answer;

}

/* Return the product of two numbers. */

number product (number n1, number n2)
{
number answer = make_zero ();
number multiplicand = n1;
while (!zerop (multiplicand)) {
number answer2 = add (answer, n2);
destroy_number (answer);

continues

15 0430 APPA 5/22/01 10:53 AM Page 277

278 Appendix A Other Development Tools

answer = answer2;
multiplicand = multiplicand->one_less_;

}
return answer;

}

/* Return nonzero if number is even. */

number even (number n)
{
if (zerop (n))
return add_one (make_zero ());

else
return odd (n->one_less_);

}

/* Return nonzero if number is odd. */

number odd (number n)
{
if (zerop (n))
return make_zero ();

else
return even (n->one_less_);

}

/* Convert a string representing a decimal integer into a “number”. */

number string_to_number (char * char_number)
{
number answer = make_zero ();
int num = strtoul (char_number, (char **) 0, 0);
while (num != 0) {
answer = add_one (answer);
--num;

}
return answer;

}

/* Convert a “number” into an “unsigned int”. */

unsigned number_to_unsigned_int (number n)
{
unsigned answer = 0;
while (!zerop (n)) {
n = n->one_less_;
++answer;

}
return answer;

}

Listing A.4 Continued

15 0430 APPA 5/22/01 10:53 AM Page 278

279A.3 Profiling

The functions in Listing A.5 implement a stack of unary numbers using a linked list.

Listing A.5 (stack.c) Unary Number Stack

/* Provide a stack of “number”s. */

#include <assert.h>
#include <stdlib.h>
#include “definitions.h”

/* Create an empty stack. */

Stack create_stack ()
{
return 0;

}

/* Return nonzero if the stack is empty. */

int empty_stack (Stack stack)
{
return stack == 0;

}

/* Remove the number at the top of a nonempty stack. If the stack is
empty, abort. */

number pop_stack (Stack* stack)
{
number answer;
Stack rest_of_stack;

assert (!empty_stack (*stack));
answer = (*stack)->element_;
rest_of_stack = (*stack)->next_;
free (*stack);
*stack = rest_of_stack;
return answer;

}

/* Add a number to the beginning of a stack. */

void push_stack (Stack* stack, number n)
{
Stack new_stack = malloc (sizeof (struct StackElement));
new_stack->element_ = n;
new_stack->next_ = *stack;
*stack = new_stack;

}

/* Remove all the stack’s elements. */

continues

15 0430 APPA 5/22/01 10:53 AM Page 279

280 Appendix A Other Development Tools

void clear_stack (Stack* stack)
{
while (!empty_stack (*stack)) {
number top = pop_stack (stack);
destroy_number (top);

}
}

Listing A.6 contains declarations for stacks and numbers.

Listing A.6 (definitions.h) Header File for number.c and stack.c

#ifndef DEFINITIONS_H
#define DEFINITIONS_H 1

/* Implement a number using a linked list. */
struct LinkedListNumber
{
struct LinkedListNumber*

one_less_;
};
typedef struct LinkedListNumber* number;

/* Implement a stack of numbers as a linked list. Use 0 to represent
an empty stack. */

struct StackElement
{
number element_;
struct StackElement* next_;

};
typedef struct StackElement* Stack;

/* Operate on the stack of numbers. */
Stack create_stack ();
int empty_stack (Stack stack);
number pop_stack (Stack* stack);
void push_stack (Stack* stack, number n);
void clear_stack (Stack* stack);

/* Operations on numbers. */
number make_zero ();
void destroy_number (number n);
number add (number n1, number n2);
number subtract (number n1, number n2);
number product (number n1, number n2);
number even (number n);
number odd (number n);
number string_to_number (char* char_number);
unsigned number_to_unsigned_int (number n);

#endif /* DEFINITIONS_H */

Listing A.5 Continued

15 0430 APPA 5/22/01 10:53 AM Page 280

Low-Level I/O

B

C PROGRAMMERS ON GNU/LINUX HAVE TWO SETS OF INPUT/OUTPUT functions at
their disposal.The standard C library provides I/O functions: printf, fopen, and so
on.1 The Linux kernel itself provides another set of I/O operations that operate at a
lower level than the C library functions.

Because this book is for people who already know the C language, we’ll assume
that you have encountered and know how to use the C library I/O functions.

Often there are good reasons to use Linux’s low-level I/O functions. Many of these
are kernel system calls2 and provide the most direct access to underlying system capa-
bilities that is available to application programs. In fact, the standard C library I/O
routines are implemented on top of the Linux low-level I/O system calls. Using the
latter is usually the most efficient way to perform input and output operations—and is
sometimes more convenient, too.

1.The C++ standard library provides iostreams with similar functionality.The standard C
library is also available in the C++ language.

2. See Chapter 8,“Linux System Calls,” for an explanation of the difference between a system
call and an ordinary function call.

16 0430 APPB 5/22/01 10:58 AM Page 281

282 Appendix B Low-Level I/O

Throughout this book, we assume that you’re familiar with the calls described in this
appendix.You may already be familiar with them because they’re nearly the same as
those provided on other UNIX and UNIX-like operating systems (and on the Win32
platform as well). If you’re not familiar with them, however, read on; you’ll find the
rest of the book much easier to understand if you familiarize yourself with this
material first.

B.1 Reading and Writing Data
The first I/O function you likely encountered when you first learned the C language
was printf.This formats a text string and then prints it to standard output.The gener-
alized version, fprintf, can print the text to a stream other than standard output.A
stream is represented by a FILE* pointer.You obtain a FILE* pointer by opening a file
with fopen.When you’re done, you can close it with fclose. In addition to fprintf,
you can use such functions as fputc, fputs, and fwrite to write data to the stream, or
fscanf, fgetc, fgets, and fread to read data.

With the Linux low-level I/O operations, you use a handle called a file descriptor
instead of a FILE* pointer.A file descriptor is an integer value that refers to a particu-
lar instance of an open file in a single process. It can be open for reading, for writing,
or for both reading and writing.A file descriptor doesn’t have to refer to an open file;
it can represent a connection with another system component that is capable of send-
ing or receiving data. For example, a connection to a hardware device is represented
by a file descriptor (see Chapter 6,“Devices”), as is an open socket (see Chapter 5,
“Interprocess Communication,” Section 5.5,“Sockets”) or one end of a pipe (see
Section 5.4,“Pipes”).

Include the header files <fcntl.h>, <sys/types.h>, <sys/stat.h>, and <unistd.h>
if you use any of the low-level I/O functions described here.

B.1.1 Opening a File
To open a file and produce a file descriptor that can access that file, use the open call.
It takes as arguments the path name of the file to open, as a character string, and flags
specifying how to open it.You can use open to create a new file; if you do, pass a third
argument that specifies the access permissions to set for the new file.

If the second argument is O_RDONLY, the file is opened for reading only; an error
will result if you subsequently try to write to the resulting file descriptor. Similarly,
O_WRONLY causes the file descriptor to be write-only. Specifying O_RDWR produces a file
descriptor that can be used both for reading and for writing. Note that not all files
may be opened in all three modes. For instance, the permissions on a file might forbid
a particular process from opening it for reading or for writing; a file on a read-only
device such as a CD-ROM drive may not be opened for writing.

16 0430 APPB 5/22/01 10:58 AM Page 282

283B.1 Reading and Writing Data

You can specify additional options by using the bitwise or of this value with one or
more flags.These are the most commonly used values:

n Specify O_TRUNC to truncate the opened file, if it previously existed. Data written
to the file descriptor will replace previous contents of the file.

n Specify O_APPEND to append to an existing file. Data written to the file descriptor
will be added to the end of the file.

n Specify O_CREAT to create a new file. If the filename that you provide to open
does not exist, a new file will be created, provided that the directory containing
it exists and that the process has permission to create files in that directory. If the
file already exists, it is opened instead.

n Specify O_EXCL with O_CREAT to force creation of a new file. If the file already
exists, the open call will fail.

If you call open with O_CREAT, provide an additional third argument specifying the per-
missions for the new file. See Chapter 10,“Security,” Section 10.3,“File System
Permissions,” for a description of permission bits and how to use them.

For example, the program in Listing B.1 creates a new file with the filename speci-
fied on the command line. It uses the O_EXCL flag with open, so if the file already
exists, an error occurs.The new file is given read and write permissions for the owner
and owning group, and read permissions only for others. (If your umask is set to a
nonzero value, the actual permissions may be more restrictive.)

Umasks

When you create a new file with open, some permission bits that you specify may be turned off. This is

because your umask is set to a nonzero value. A process’s umask specifies bits that are masked out of all

newly created files’ permissions. The actual permissions used are the bitwise and of the permissions you

specify to open and the bitwise complement of the umask.

To change your umask from the shell, use the umask command, and specify the numerical value of the

mask, in octal notation. To change the umask for a running process, use the umask call, passing it the

desired mask value to use for subsequent open calls.

For example, calling this line

umask (S_IRWXO | S_IWGRP);

in a program, or invoking this command

% umask 027

specifies that write permissions for group members and read, write, and execute permissions for others

will always be masked out of a new file’s permissions.

16 0430 APPB 5/22/01 10:58 AM Page 283

284 Appendix B Low-Level I/O

Listing B.1 (create-file.c) Create a New File

#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
/* The path at which to create the new file. */
char* path = argv[1];
/* The permissions for the new file. */
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH;

/* Create the file. */
int fd = open (path, O_WRONLY | O_EXCL | O_CREAT, mode);
if (fd == -1) {
/* An error occurred. Print an error message and bail. */
perror (“open”);
return 1;

}

return 0;
}

Here’s the program in action:
% ./create-file testfile
% ls -l testfile
-rw-rw-r-- 1 samuel users 0 Feb 1 22:47 testfile
% ./create-file testfile
open: File exists

Note that the length of the new file is 0 because the program didn’t write any data to it.

B.1.2 Closing File Descriptors
When you’re done with a file descriptor, close it with close. In some cases, such as the
program in Listing B.1, it’s not necessary to call close explicitly because Linux closes
all open file descriptors when a process terminates (that is, when the program ends).
Of course, once you close a file descriptor, you should no longer use it.

Closing a file descriptor may cause Linux to take a particular action, depending on
the nature of the file descriptor. For example, when you close a file descriptor for a
network socket, Linux closes the network connection between the two computers
communicating through the socket.

Linux limits the number of open file descriptors that a process may have open at a
time. Open file descriptors use kernel resources, so it’s good to close file descriptors
when you’re done with them.A typical limit is 1,024 file descriptors per process.You
can adjust this limit with the setrlimit system call; see Section 8.5,“getrlimit and
setrlimit: Resource Limits,” for more information.

16 0430 APPB 5/22/01 10:58 AM Page 284

285B.1 Reading and Writing Data

B.1.3 Writing Data
Write data to a file descriptor using the write call. Provide the file descriptor, a
pointer to a buffer of data, and the number of bytes to write.The file descriptor must
be open for writing.The data written to the file need not be a character string; write
copies arbitrary bytes from the buffer to the file descriptor.

The program in Listing B.2 appends the current time to the file specified on the
command line. If the file doesn’t exist, it is created.This program also uses the time,
localtime, and asctime functions to obtain and format the current time; see their
respective man pages for more information.

Listing B.2 (timestamp.c) Append a Timestamp to a File

#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>

/* Return a character string representing the current date and time. */

char* get_timestamp ()
{
time_t now = time (NULL);
return asctime (localtime (&now));

}

int main (int argc, char* argv[])
{
/* The file to which to append the timestamp. */
char* filename = argv[1];
/* Get the current timestamp. */
char* timestamp = get_timestamp ();
/* Open the file for writing. If it exists, append to it;

otherwise, create a new file. */
int fd = open (filename, O_WRONLY | O_CREAT | O_APPEND, 0666);
/* Compute the length of the timestamp string. */
size_t length = strlen (timestamp);
/* Write the timestamp to the file. */
write (fd, timestamp, length);
/* All done. */
close (fd);
return 0;

}

16 0430 APPB 5/22/01 10:58 AM Page 285

286 Appendix B Low-Level I/O

Here’s how the timestamp program works:
% ./timestamp tsfile
% cat tsfile
Thu Feb 1 23:25:20 2001
% ./timestamp tsfile
% cat tsfile
Thu Feb 1 23:25:20 2001
Thu Feb 1 23:25:47 2001

Note that the first time we invoke timestamp, it creates the file tsfile, while the
second time it appends to it.

The write call returns the number of bytes that were actually written, or -1 if an
error occurred. For certain kinds of file descriptors, the number of bytes actually writ-
ten may be less than the number of bytes requested. In this case, it’s up to you to call
write again to write the rest of the data.The function in Listing B.3 demonstrates
how you might do this. Note that for some applications, you may have to check for
special conditions in the middle of the writing operation. For example, if you’re writ-
ing to a network socket, you’ll have to augment this function to detect whether the
network connection was closed in the middle of the write operation, and if it has, to
react appropriately.

Listing B.3 (write-all.c) Write All of a Buffer of Data

/* Write all of COUNT bytes from BUFFER to file descriptor FD.
Returns -1 on error, or the number of bytes written. */

ssize_t write_all (int fd, const void* buffer, size_t count)
{
size_t left_to_write = count;
while (left_to_write > 0) {
size_t written = write (fd, buffer, count);
if (written == -1)
/* An error occurred; bail. */
return -1;

else
/* Keep count of how much more we need to write. */
left_to_write -= written;

}
/* We should have written no more than COUNT bytes! */
assert (left_to_write == 0);
/* The number of bytes written is exactly COUNT. */
return count;

}

16 0430 APPB 5/22/01 10:58 AM Page 286

287B.1 Reading and Writing Data

B.1.4 Reading Data
The corresponding call for reading data is read. Like write, it takes a file descriptor, a
pointer to a buffer, and a count.The count specifies how many bytes are read from the
file descriptor into the buffer.The call to read returns -1 on error or the number of
bytes actually read.This may be smaller than the number of bytes requested, for exam-
ple, if there aren’t enough bytes left in the file.

Reading DOS/Windows Text Files
After reading this book, we’re positive that you’ll choose to write all your programs for GNU/Linux.

However, your programs may occasionally need to read text files generated by DOS or Windows pro-

grams. It’s important to anticipate an important difference in how text files are structured between these

two platforms.

In GNU/Linux text files, each line is separated from the next with a newline character. A newline is repre-

sented by the character constant ’\n’, which has ASCII code 10. On Windows, however, lines are sepa-

rated by a two-character combination: a carriage return character (the character ’\r,’ which has ASCII

code 13), followed by a newline character.

Some GNU/Linux text editors display ^M at the end of each line when showing a Windows text file—this

is the carriage return character. Emacs displays Windows text files properly but indicates them by show-

ing (DOS) in the mode line at the bottom of the buffer. Some Windows editors, such as Notepad, display

all the text in a GNU/Linux text file on a single line because they expect a carriage return at the end of

each line. Other programs for both GNU/Linux and Windows that process text files may report mysterious

errors when given as input a text file in the wrong format.

If your program reads text files generated by Windows programs, you’ll probably want to replace the

sequence ’\r\n’ with a single newline. Similarly, if your program writes text files that must be read by

Windows programs, replace lone newline characters with ’\r\n’ combinations. You must do this

whether you use the low-level I/O calls presented in this appendix or the standard C library I/O functions.

Listing B.4 provides a simple demonstration of read.The program prints a hexadeci-
mal dump of the contents of the file specified on the command line. Each line displays
the offset in the file and the next 16 bytes.

Listing B.4 (hexdump.c) Print a Hexadecimal Dump of a File

#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
unsigned char buffer[16];
size_t offset = 0;
size_t bytes_read;

continues

16 0430 APPB 5/22/01 10:58 AM Page 287

288 Appendix B Low-Level I/O

int i;

/* Open the file for reading. */
int fd = open (argv[1], O_RDONLY);

/* Read from the file, one chunk at a time. Continue until read
“comes up short”, that is, reads less than we asked for.
This indicates that we’ve hit the end of the file. */

do {
/* Read the next line’s worth of bytes. */
bytes_read = read (fd, buffer, sizeof (buffer));
/* Print the offset in the file, followed by the bytes themselves. */
printf (“0x%06x : “, offset);
for (i = 0; i < bytes_read; ++i)
printf (“%02x “, buffer[i]);

printf (“\n”);
/* Keep count of our position in the file. */
offset += bytes_read;

}
while (bytes_read == sizeof (buffer));

/* All done. */
close (fd);
return 0;

}

Here’s hexdump in action. It’s shown printing out a dump of its own executable file:
% ./hexdump hexdump
0x000000 : 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
0x000010 : 02 00 03 00 01 00 00 00 c0 83 04 08 34 00 00 00
0x000020 : e8 23 00 00 00 00 00 00 34 00 20 00 06 00 28 00
0x000030 : 1d 00 1a 00 06 00 00 00 34 00 00 00 34 80 04 08
...

Your output may be different, depending on the compiler you used to compile
hexdump and the compilation flags you specified.

B.1.5 Moving Around a File
A file descriptor remembers its position in a file.As you read from or write to the file
descriptor, its position advances corresponding to the number of bytes you read or
write. Sometimes, however, you’ll need to move around a file without reading or writ-
ing data. For instance, you might want to write over the middle of a file without
modifying the beginning, or you might want to jump back to the beginning of a file
and reread it without reopening it.

Listing B.4 Continued

16 0430 APPB 5/22/01 10:58 AM Page 288

289B.1 Reading and Writing Data

The lseek call enables you to reposition a file descriptor in a file. Pass it the file
descriptor and two additional arguments specifying the new position.

n If the third argument is SEEK_SET, lseek interprets the second argument as a
position, in bytes, from the start of the file.

n If the third argument is SEEK_CUR, lseek interprets the second argument as an
offset, which may be positive or negative, from the current position.

n If the third argument is SEEK_END, lseek interprets the second argument as an
offset from the end of the file.A positive value indicates a position beyond the
end of the file.

The call to lseek returns the new position, as an offset from the beginning of the file.
The type of the offset is off_t. If an error occurs, lseek returns -1.You can’t use
lseek with some types of file descriptors, such as socket file descriptors.

If you want to find the position of a file descriptor in a file without changing it,
specify a 0 offset from the current position—for example:

off_t position = lseek (file_descriptor, 0, SEEK_CUR);

Linux enables you to use lseek to position a file descriptor beyond the end of the file.
Normally, if a file descriptor is positioned at the end of a file and you write to the file
descriptor, Linux automatically expands the file to make room for the new data. If you
position a file descriptor beyond the end of a file and then write to it, Linux first
expands the file to accommodate the “gap” that you created with the lseek operation
and then writes to the end of it.This gap, however, does not actually occupy space on
the disk; instead, Linux just makes a note of how long it is. If you later try to read
from the file, it appears to your program that the gap is filled with 0 bytes.

Using this behavior of lseek, it’s possible to create extremely large files that occupy
almost no disk space.The program lseek-huge in Listing B.5 does this. It takes as
command-line arguments a filename and a target file size, in megabytes.The program
opens a new file, advances past the end of the file using lseek, and then writes a single
0 byte before closing the file.

Listing B.5 (lseek-huge.c) Create Large Files with lseek

#include <fcntl.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
int zero = 0;
const int megabyte = 1024 * 1024;

char* filename = argv[1];

continues

16 0430 APPB 5/22/01 10:58 AM Page 289

290 Appendix B Low-Level I/O

size_t length = (size_t) atoi (argv[2]) * megabyte;

/* Open a new file. */
int fd = open (filename, O_WRONLY | O_CREAT | O_EXCL, 0666);
/* Jump to 1 byte short of where we want the file to end. */
lseek (fd, length - 1, SEEK_SET);
/* Write a single 0 byte. */
write (fd, &zero, 1);
/* All done. */
close (fd);

return 0;
}

Using lseek-huge, we’ll make a 1GB (1024MB) file. Note the free space on the drive
before and after the operation.

% df -h .
Filesystem Size Used Avail Use% Mounted on
/dev/hda5 2.9G 2.1G 655M 76% /
% ./lseek-huge bigfile 1024
% ls -l bigfile
-rw-r----- 1 samuel samuel 1073741824 Feb 5 16:29 bigfile
% df -h .
Filesystem Size Used Avail Use% Mounted on
/dev/hda5 2.9G 2.1G 655M 76% /

No appreciable disk space is consumed, despite the enormous size of bigfile. Still, if
we open bigfile and read from it, it appears to be filled with 1GB worth of 0s. For
instance, we can examine its contents with the hexdump program of Listing B.4.

% ./hexdump bigfile | head -10
0x000000 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x000010 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x000020 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x000030 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x000040 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x000050 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...

If you run this yourself, you’ll probably want to kill it with Ctrl+C, rather than watch-
ing it print out 230 0 bytes.

Note that these magic gaps in files are a special feature of the ext2 file system that’s
typically used for GNU/Linux disks. If you try to use lseek-huge to create a file on
some other type of file system, such as the fat or vfat file systems used to mount
DOS and Windows partitions, you’ll find that the resulting file does actually occupy
the full amount of disk space.

Linux does not permit you to rewind before the start of a file with lseek.

Listing B.5 Continued

16 0430 APPB 5/22/01 10:58 AM Page 290

291B.2 stat

B.2 stat
Using open and read, you can extract the contents of a file. But how about other
information? For instance, invoking ls -l displays, for the files in the current direc-
tory, such information as the file size, the last modification time, permissions, and the
owner.

The stat call obtains this information about a file. Call stat with the path to the
file you’re interested in and a pointer to a variable of type struct stat. If the call to
stat is successful, it returns 0 and fills in the fields of the structure with information
about that file; otherwise, it returns -1.

These are the most useful fields in struct stat:
n st_mode contains the file’s access permissions. File permissions are explained in

Section 10.3,“File System Permissions.”
n In addition to the access permissions, the st_mode field encodes the type of the

file in higher-order bits. See the text immediately following this bulleted list for
instructions on decoding this information.

n st_uid and st_gid contain the IDs of the user and group, respectively, to which
the file belongs. User and group IDs are described in Section 10.1,“Users and
Groups.”

n st_size contains the file size, in bytes.
n st_atime contains the time when this file was last accessed (read or written).
n st_mtime contains the time when this file was last modified.

These macros check the value of the st_mode field value to figure out what kind of
file you’ve invoked stat on.A macro evaluates to true if the file is of that type.

S_ISBLK (mode) block device

S_ISCHR (mode) character device

S_ISDIR (mode) directory

S_ISFIFO (mode) fifo (named pipe)

S_ISLNK (mode) symbolic link

S_ISREG (mode) regular file

S_ISSOCK (mode) socket

The st_dev field contains the major and minor device number of the hardware device
on which this file resides. Device numbers are discussed in Chapter 6.The major
device number is shifted left 8 bits; the minor device number occupies the least signif-
icant 8 bits.The st_ino field contains the inode number of this file.This locates the file
in the file system.

16 0430 APPB 5/22/01 10:58 AM Page 291

292 Appendix B Low-Level I/O

If you call stat on a symbolic link, stat follows the link and you can obtain the
information about the file that the link points to, not about the symbolic link itself.
This implies that S_ISLNK will never be true for the result of stat. Use the lstat
function if you don’t want to follow symbolic links; this function obtains information
about the link itself rather than the link’s target. If you call lstat on a file that isn’t a
symbolic link, it is equivalent to stat. Calling stat on a broken link (a link that points
to a nonexistent or inaccessible target) results in an error, while calling lstat on such
a link does not.

If you already have a file open for reading or writing, call fstat instead of stat.
This takes a file descriptor as its first argument instead of a path.

Listing B.6 presents a function that allocates a buffer large enough to hold the con-
tents of a file and then reads the file into the buffer.The function uses fstat to deter-
mine the size of the buffer that it needs to allocate and also to check that the file is
indeed a regular file.

Listing B.6 (read-file.c) Read a File into a Buffer

#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

/* Read the contents of FILENAME into a newly allocated buffer. The
size of the buffer is stored in *LENGTH. Returns the buffer, which
the caller must free. If FILENAME doesn’t correspond to a regular
file, returns NULL. */

char* read_file (const char* filename, size_t* length)
{
int fd;
struct stat file_info;
char* buffer;

/* Open the file. */
fd = open (filename, O_RDONLY);

/* Get information about the file. */
fstat (fd, &file_info);
*length = file_info.st_size;
/* Make sure the file is an ordinary file. */
if (!S_ISREG (file_info.st_mode)) {
/* It’s not, so give up. */
close (fd);
return NULL;

}

16 0430 APPB 5/22/01 10:58 AM Page 292

293B.3 Vector Reads and Writes

/* Allocate a buffer large enough to hold the file’s contents. */
buffer = (char*) malloc (*length);
/* Read the file into the buffer. */
read (fd, buffer, *length);

/* Finish up. */
close (fd);
return buffer;

}

B.3 Vector Reads and Writes
The write call takes as arguments a pointer to the start of a buffer of data and the
length of that buffer. It writes a contiguous region of memory to the file descriptor.
However, a program often will need to write several items of data, each residing at a
different part of memory.To use write, the program either will have to copy the items
into a single memory region, which obviously makes inefficient use of CPU cycles
and memory, or will have to make multiple calls to write.

For some applications, multiple calls to write are inefficient or undesirable. For
example, when writing to a network socket, two calls to write may cause two packets
to be sent across the network, whereas the same data could be sent in a single packet if
a single call to write were possible.

The writev call enables you to write multiple discontiguous regions of memory
to a file descriptor in a single operation.This is called a vector write.The cost of using
writev is that you must set up a data structure specifying the start and length of each
region of memory.This data structure is an array of struct iovec elements. Each
element specifies one region of memory to write; the fields iov_base and iov_len
specify the address of the start of the region and the length of the region, respectively.
If you know ahead of time how many regions you’ll need, you can simply declare a
struct iovec array variable; if the number of regions can vary, you must allocate the
array dynamically.

Call writev passing a file descriptor to write to, the struct iovec array, and the
number of elements in the array.The return value is the total number of bytes written.

The program in Listing B.7 writes its command-line arguments to a file using a
single writev call.The first argument is the name of the file; the second and subse-
quent arguments are written to the file of that name, one on each line.The program
allocates an array of struct iovec elements that is twice as long as the number of
arguments it is writing—for each argument it writes the text of the argument itself as
well as a new line character. Because we don’t know the number of arguments in
advance, the array is allocated using malloc.

16 0430 APPB 5/22/01 10:58 AM Page 293

294 Appendix B Low-Level I/O

Listing B.7 (write-args.c) Write the Argument List to a File with writev

#include <fcntl.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

int main (int argc, char* argv[])
{
int fd;
struct iovec* vec;
struct iovec* vec_next;
int i;
/* We’ll need a “buffer” containing a newline character. Use an

ordinary char variable for this. */
char newline = ‘\n’;
/* The first command-line argument is the output filename. */
char* filename = argv[1];
/* Skip past the first two elements of the argument list. Element

0 is the name of this program, and element 1 is the output
filename. */

argc -= 2;
argv += 2;

/* Allocate an array of iovec elements. We’ll need two for each
element of the argument list, one for the text itself, and one for
a newline. */

vec = (struct iovec*) malloc (2 * argc * sizeof (struct iovec));

/* Loop over the argument list, building the iovec entries. */
vec_next = vec;
for (i = 0; i < argc; ++i) {
/* The first element is the text of the argument itself. */
vec_next->iov_base = argv[i];
vec_next->iov_len = strlen (argv[i]);
++vec_next;
/* The second element is a single newline character. It’s okay for

multiple elements of the struct iovec array to point to the
same region of memory. */

vec_next->iov_base = &newline;
vec_next->iov_len = 1;
++vec_next;

}

/* Write the arguments to a file. */
fd = open (filename, O_WRONLY | O_CREAT);
writev (fd, vec, 2 * argc);

16 0430 APPB 5/22/01 10:58 AM Page 294

295B.4 Relation to Standard C Library I/O Functions

close (fd);

free (vec);
return 0;

}

Here’s an example of running write-args.
% ./write-args outputfile “first arg” “second arg” “third arg”
% cat outputfile
first arg
second arg
third arg

Linux provides a corresponding function readv that reads in a single operation
into multiple discontiguous regions of memory. Similar to writev, an array of
struct iovec elements specifies the memory regions into which the data will
be read from the file descriptor.

B.4 Relation to Standard C Library I/O
Functions
We mentioned earlier that the standard C library I/O functions are implemented on
top of these low-level I/O functions. Sometimes, though, it’s handy to use standard
library functions with file descriptors, or to use low-level I/O functions on a standard
library FILE* stream. GNU/Linux enables you to do both.

If you’ve opened a file using fopen, you can obtain the underlying file descriptor
using the fileno function.This takes a FILE* argument and returns the file descriptor.
For example, to open a file with the standard library fopen call but write to it with
writev, you could use this code:

FILE* stream = fopen (filename, “w”);
int file_descriptor = fileno (stream);
writev (file_descriptor, vector, vector_length);

Note that stream and file_descriptor correspond to the same opened file. If you call
this line, you may no longer write to file_descriptor:

fclose (stream);

Similarly, if you call this line, you may no longer write to stream:
close (file_descriptor);

To go the other way, from a file descriptor to a stream, use the fdopen function.This
constructs a FILE* stream pointer corresponding to a file descriptor.The fdopen func-
tion takes a file descriptor argument and a string argument specifying the mode in

16 0430 APPB 5/22/01 10:58 AM Page 295

296 Appendix B Low-Level I/O

which to create the stream.The syntax of the mode argument is the same as that of
the second argument to fopen, and it must be compatible with the file descriptor. For
example, specify a mode of r for a read file descriptor or w for a write file descriptor.
As with fileno, the stream and file descriptor refer to the same open file, so if you
close one, you may not subsequently use the other.

B.5 Other File Operations
A few other operations on files and directories come in handy:

n getcwd obtains the current working directory. It takes two arguments, a char
buffer and the length of the buffer. It copies the path of the current working
directory into the buffer.

n chdir changes the current working directory to the path provided as its argu-
ment.

n mkdir creates a new directory. Its first argument is the path of the new directory.
Its second argument is the access permissions to use for the new file.The inter-
pretation of the permissions are the same as that of the third argument to open
and are modified by the process’s umask.

n rmdir deletes a directory. Its argument is the directory’s path.
n unlink deletes a file. Its argument is the path to the file.This call can also be

used to delete other file system objects, such as named pipes (see Section 5.4.5,
“FIFOs”) or devices (see Chapter 6).

Actually, unlink doesn’t necessarily delete the file’s contents.As its name implies,
it unlinks the file from the directory containing it.The file is no longer listed in
that directory, but if any process holds an open file descriptor to the file, the file’s
contents are not removed from the disk. Only when no process has an open file
descriptor are the file’s contents deleted. So, if one process opens a file for read-
ing or writing and then a second process unlinks the file and creates a new file
with the same name, the first process sees the old contents of the file rather than
the new contents (unless it closes the file and reopens it).

n rename renames or moves a file. Its two arguments are the old path and the new
path for the file. If the paths are in different directories, rename moves the file, as
long as both are on the same file system.You can use rename to move directories
or other file system objects as well.

B.6 Reading Directory Contents
GNU/Linux provides functions for reading the contents of directories.Although these
aren’t directly related to the low-level I/O functions described in this appendix, we
present them here anyway because they’re often useful in application programs.

16 0430 APPB 5/22/01 10:58 AM Page 296

297B.6 Reading Directory Contents

To read the contents of a directory, follow these steps:

1. Call opendir, passing the path of the directory that you want to examine.The
call to opendir returns a DIR* handle, which you’ll use to access the directory
contents. If an error occurs, the call returns NULL.

2. Call readdir repeatedly, passing the DIR* handle that you obtained from
opendir. Each time you call readdir, it returns a pointer to a struct dirent
instance corresponding to the next directory entry.When you reach the end of
the directory’s contents, readdir returns NULL.

The struct dirent that you get back from readdir has a field d_name, which
contains the name of the directory entry.

3. Call closedir, passing the DIR* handle, to end the directory listing operation.

Include <sys/types.h> and <dirent.h> if you use these functions in your program.
Note that if you need the contents of the directory arranged in a particular order,

you’ll have to sort them yourself.
The program in Listing B.8 prints out the contents of a directory.The directory

may be specified on the command line, but if it is not specified, the program uses the
current working directory. For each entry in the directory, it displays the type of the
entry and its path.The get_file_type function uses lstat to determine the type of a
file system entry.

Listing B.8 (listdir.c) Print a Directory Listing

#include <assert.h>
#include <dirent.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

/* Return a string that describes the type of the file system entry PATH. */

const char* get_file_type (const char* path)
{
struct stat st;
lstat (path, &st);
if (S_ISLNK (st.st_mode))
return “symbolic link”;

else if (S_ISDIR (st.st_mode))
return “directory”;

else if (S_ISCHR (st.st_mode))
return “character device”;

else if (S_ISBLK (st.st_mode))
return “block device”;

continues

16 0430 APPB 5/22/01 10:58 AM Page 297

298 Appendix B Low-Level I/O

else if (S_ISFIFO (st.st_mode))
return “fifo”;

else if (S_ISSOCK (st.st_mode))
return “socket”;

else if (S_ISREG (st.st_mode))
return “regular file”;

else
/* Unexpected. Each entry should be one of the types above. */
assert (0);

}

int main (int argc, char* argv[])
{
char* dir_path;
DIR* dir;
struct dirent* entry;
char entry_path[PATH_MAX + 1];
size_t path_len;

if (argc >= 2)
/* If a directory was specified on the command line, use it. */
dir_path = argv[1];

else
/* Otherwise, use the current directory. */
dir_path = “.”;

/* Copy the directory path into entry_path. */
strncpy (entry_path, dir_path, sizeof (entry_path));
path_len = strlen (dir_path);
/* If the directory path doesn’t end with a slash, append a slash. */
if (entry_path[path_len - 1] != ‘/’) {
entry_path[path_len] = ‘/’;
entry_path[path_len + 1] = ‘\0’;
++path_len;

}

/* Start the listing operation of the directory specified on the
command line. */

dir = opendir (dir_path);
/* Loop over all directory entries. */
while ((entry = readdir (dir)) != NULL) {
const char* type;
/* Build the path to the directory entry by appending the entry

name to the path name. */
strncpy (entry_path + path_len, entry->d_name,

sizeof (entry_path) - path_len);
/* Determine the type of the entry. */
type = get_file_type (entry_path);
/* Print the type and path of the entry. */
printf (“%-18s: %s\n”, type, entry_path);

}

Listing B.8 Continued

16 0430 APPB 5/22/01 10:58 AM Page 298

299B.6 Reading Directory Contents

/* All done. */
closedir (dir);
return 0;

}

Here are the first few lines of output from listing the /dev directory. (Your output
might differ somewhat.)

% ./listdir /dev
directory : /dev/.
directory : /dev/..
socket : /dev/log
character device : /dev/null
regular file : /dev/MAKEDEV
fifo : /dev/initctl
character device : /dev/agpgart
...

To verify this, you can use the ls command on the same directory. Specify the -U flag
to instruct ls not to sort the entries, and specify the -a flag to cause the current direc-
tory (.) and the parent directory (..) to be included.

% ls -lUa /dev
total 124
drwxr-xr-x 7 root root 36864 Feb 1 15:14 .
drwxr-xr-x 22 root root 4096 Oct 11 16:39 ..
srw-rw-rw- 1 root root 0 Dec 18 01:31 log
crw-rw-rw- 1 root root 1, 3 May 5 1998 null
-rwxr-xr-x 1 root root 26689 Mar 2 2000 MAKEDEV
prw------- 1 root root 0 Dec 11 18:37 initctl
crw-rw-r-- 1 root root 10, 175 Feb 3 2000 agpgart
...

The first character of each line in the output of ls indicates the type of the entry.

16 0430 APPB 5/22/01 10:58 AM Page 299

16 0430 APPB 5/22/01 10:58 AM Page 300

Table of Signals

C

TABLE C.1 LISTS SOME OF THE LINUX SIGNALS YOU’RE MOST LIKELY to encounter or
use. Note that some signals have multiple interpretations, depending on where they
occur.

The names of the signals listed here are defined as preprocessor macros.To
use them in your program, include <signal.h>.The actual definitions are in
/usr/include/sys/signum.h, which is included as part of <signal.h>.

For a full list of Linux signals, including a short description of each and the default
behavior when the signal is delivered, consult the signal man page in Section 7 by
invoking the following:

% man 7 signal

Table C.1 Linux Signals

Name Description

SIGHUP Linux sends a process this signal when it becomes disconnected
from a terminal. Many Linux programs use SIGHUP for an unre-
lated purpose: to indicate to a running program that it should
reread its configuration files.

continues

17 0430 APPC 5/22/01 10:59 AM Page 301

302 Appendix C Table of Signals

SIGINT Linux sends a process this signal when the user tries to end it by
pressing Ctrl+C.

SIGILL A process gets this signal when it attempts to execute an illegal
instruction.This could indicate that the program’s stack is
corrupted.

SIGABRT The abort function causes the process to receive this signal.

SIGFPE The process has executed an invalid floating-point math instruc-
tion. Depending on how the CPU is configured, an invalid
floating-point operation may return a special non-number value
such as inf (infinity) or NaN (not a number) instead of raising
SIGFPE.

SIGKILL This signal ends a process immediately and cannot be handled.

SIGUSR1 This signal is reserved for application use.

SIGUSR2 This signal is reserved for application use.

SIGSEGV The program attempted an invalid memory access.The access
may be to an address that is invalid in the process’s virtual mem-
ory space, or the access may be forbidden by the target memory’s
permissions. Dereferencing a “wild pointer” can cause a SIGSEGV.

SIGPIPE The program has attempted to access a broken data stream, such
as a socket connection that has been closed by the other party.

SIGALRM The alarm system call schedules the delivery of this signal at a
later time. See Section 8.13,“setitimer: Setting Interval Timers,”
in Chapter 8,“Linux System Calls,” for information about
setitimer, a generalized version of alarm.

SIGTERM This signal requests that a process terminate.This is the default
signal sent by the kill command.

SIGCHLD Linux sends a process this signal when a child process exits. See
Section 3.4.4,“Cleaning Up Children Asynchronously,” in
Chapter 3,“Processes.”

SIGXCPU Linux sends a process this signal when it exceeds the limit of
CPU time that it can consume. See Section 8.5,“getrlimit and
setrlimit: Resource Limits,” in Chapter 8 for information on
CPU time limits.

SIGVTALRM The setitimer schedules the delivery of this signal at a future
time. See Section 8.13,“setitimer: Setting Interval Timers.”

Table C.1 Continued

Name Description

17 0430 APPC 5/22/01 10:59 AM Page 302

Online Resources

D

THIS APPENDIX LISTS SOME PLACES TO VISIT ON THE INTERNET to learn more about
programming for the GNU/Linux system.

D.1 General Information
n http://www.advancedlinuxprogramming.com is this book’s home on the

Internet. Here, you can download the full text of this book and program source
code, find links to other online resources, and get more information about pro-
gramming GNU/Linux.The same information can also be found at
http://www.newriders.com.

n http://www.linuxdoc.org is the home of the Linux Documentation Project.
This site is a repository for a wealth of documentation, FAQ lists, HOWTOs,
and other documentation about GNU/Linux systems and software.

18 0430 APPD 5/22/01 3:18 PM Page 303

304 Appendix D Online Resources

D.2 Information About GNU/Linux Software
n http://www.gnu.org is the home of the GNU Project. From this site, you can

download a staggering array of sophisticated free software applications.Among
them is the GNU C library, which is part of every GNU/Linux system and
contains many of the functions described in this book.The GNU Project site
also provides information about how you can contribute to the development of
the GNU/Linux system by writing code or documentation, by using free soft-
ware, and by spreading the free software message.

n http://www.kernel.org is the primary site for distribution of the Linux kernel
source code. For the trickiest and most technically detailed questions about how
Linux works, the source code is the best place to look. See also the
Documentation directory for explanation of the kernel internals.

n http://www.linuxhq.com also distributes Linux kernel sources, patches, and
related information.

n http://gcc.gnu.org is the home of the GNU Compiler Collection (GCC).
GCC is the primary compiler used on GNU/Linux systems, and it includes
compilers for C, C++, Objective C, Java, Chill, and Fortran.

n http://www.gnome.org and http://www.kde.org are the homes of the two most
popular GNU/Linux windowing environments, Gnome and KDE. If you plan
to write an application with a graphical user interface, you should familiarize
yourself with either or both.

D.3 Other Sites
n http://developer.intel.com provides information about Intel processor archi-

tectures, including the x86 (IA32) architecture. If you are developing for x86
Linux and you use inline assembly instructions, the technical manuals available
here will be very useful.

n http://www.amd.com/devconn/ provides similar information about AMD’s line of
microprocessors and its special features.

n http://freshmeat.net is an index of open source software, generally for
GNU/Linux.This site is one of the best places to stay abreast of the newest
releases of GNU/Linux software, from core system components to more
obscure, specialized applications.

m http://www.linuxsecurity.com contains information, techniques, and links to
software related to GNU/Linux security.The site is of interest to users, system
administrators, and developers.

18 0430 APPD 5/22/01 3:18 PM Page 304

Open Publication License
Version 1.0

E

I. Requirements on Both Unmodified and
Modified Versions
The Open Publication works may be reproduced and distributed in whole or in part,
in any medium, physical or electronic, provided that the terms of this license are
adhered to and that this license or an incorporation of it by reference (with any
options elected by the author(s) and/or publisher) is displayed in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright© <year> by <author’s name or designee>.This material may be
distributed only subject to the terms and conditions set forth in the Open
Publication License, vX.Y or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The reference must be immediately followed with any options elected by the author(s)
or publisher of the document (see Section VI,“License Options”).

Commercial redistribution of Open Publication-licensed material is permitted.
Any publication in standard (paper) book form shall require the citation of the

original publisher and author.The publisher and author’s names shall appear on all
outer surfaces of the book. On all outer surfaces of the book, the original publisher’s
name shall be as large as the title of the work and cited as possessive with respect to
the title.

19 0430 APPE 5/22/01 11:05 AM Page 305

306 Appendix E Open Publication License Version 1.0

II. Copyright
The copyright to each Open Publication is owned by its author(s) or designee.

III. Scope of License
The following license terms apply to all Open Publication works, unless otherwise
explicitly stated in the document.

Mere aggregation of Open Publication works or a portion of an Open Publication
work with other works or programs on the same media shall not cause this license to
apply to those other works.The aggregate work shall contain a notice specifying the
inclusion of the Open Publication material and appropriate copyright notice.

n Severability. If any part of this license is found to be unenforceable in any
jurisdiction, the remaining portions of the license remain in force.

n No warranty. Open Publication works are licensed and provided “as is” with-
out warranty of any kind, express or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose or a
warranty of noninfringement.

IV. Requirements on Modified Works
All modified versions of documents covered by this license, including translations,
anthologies, compilations, and partial documents, must meet the following requirements:

1. The modified version must be labeled as such.

2. The person making the modifications must be identified, and the modifications
must be dated.

3. Acknowledgement of the original author and publisher, if applicable, must be
retained according to normal academic citation practices.

4. The location of the original unmodified document must be identified.

5. The original author’s (or authors’) name(s) may not be used to assert or imply
endorsement of the resulting document without the original author’s (or
authors’) permission.

V. Good-Practice Recommendations
In addition to the requirements of this license, it is requested from and strongly rec-
ommended of redistributors that:

1. If you are distributing Open Publication works on hard copy or CD-ROM, you
provide email notification to the authors of your intent to redistribute at least 30
days before your manuscript or media freeze, to give the authors time to provide
updated documents.This notification should describe modifications, if any, made
to the document.

19 0430 APPE 5/22/01 11:05 AM Page 306

307Open Publication Policy Appendix

2. All substantive modifications (including deletions) be either clearly marked up in
the document or else described in an attachment to the document.

3. Finally, although it is not mandatory under this license, it is considered good
form to offer a free copy of any hard copy and CD-ROM expression of an
Open Publication-licensed work to its author(s).

VI. License Options
The author(s) or publisher of an Open Publication-licensed document may elect cer-
tain options by appending language to the reference to or copy of the license.These
options are considered part of the license instance and must be included with the
license (or its incorporation by reference) in derived works.

A. To prohibit distribution of substantively modified versions without the explicit
permission of the author(s).“Substantive modification” is defined as a change to
the semantic content of the document and excludes mere changes in format or
typographical corrections.

To accomplish this, add the phrase “Distribution of substantively modified ver-
sions of this document is prohibited without the explicit permission of the
copyright holder” to the license reference or copy.

B. To prohibit any publication of this work or derivative works in whole or in part
in standard (paper) book form for commercial purposes is prohibited unless
prior permission is obtained from the copyright holder.

To accomplish this, add the phrase “Distribution of the work or derivative of the
work in any standard (paper) book form is prohibited unless prior permission is
obtained from the copyright holder” to the license reference or copy.

Open Publication Policy Appendix
(This is not considered part of the license.)

Open Publication works are available in source format via the Open Publication
home page at http://works.opencontent.org/.

Open Publication authors who want to include their own license on Open
Publication works may do so, as long as their terms are not more restrictive than the
Open Publication license.

If you have questions about the Open Publication License, please contact David
Wiley, or the Open Publication Authors’ List at opal@opencontent.org, via email.

To subscribe to the Open Publication Authors’ List, send email to
opal-request@opencontent.org with the word “subscribe” in the body.

19 0430 APPE 5/22/01 11:05 AM Page 307

308 Appendix E Open Publication License Version 1.0

To post to the Open Publication Authors’ List, send email to opal@opencontent.org,
or simply reply to a previous post.

To unsubscribe from the Open Publication Authors’ List, send email to
opal-request@opencontent.org with the word “unsubscribe” in the body.

19 0430 APPE 5/22/01 11:05 AM Page 308

GNU General Public License1

F

Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place–Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its
users.This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

1.This license can also be found online at http://www.gnu.org/copyleft/gpl.html.

20 0430 APPF 5/22/01 11:02 AM Page 309

310 Appendix F GNU/General Public License

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights.These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have.You must make sure that they,
too, receive or can get the source code.And you must show them these terms so they
know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have is
not the original, so that any problems introduced by others will not reflect on the
original authors’ reputations.

Finally, any free program is threatened constantly by software patents.We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary.To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions for Copying,
Distribution and Modification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public License.The “Program,” below, refers to any such program or
work, and a “work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation is included without limita-
tion in the term “modification.”) Each licensee is addressed as “you.”

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope.The act of running the Program is not
restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program).Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropri-
ately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the absence

20 0430 APPF 5/22/01 2:41 PM Page 310

311TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

of any warranty; and give any other recipients of the Program a copy of this
License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifica-
tions or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

n a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

n b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof, to
be licensed as a whole at no charge to all third parties under the terms of
this License.

n c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

20 0430 APPF 5/22/01 11:02 AM Page 311

312 Appendix F GNU/General Public License

3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

n a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1 and
2 above on a medium customarily used for software interchange; or,

n b) Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically perform-
ing source distribution, a complete machine-readable copy of the corre-
sponding source code, to be distributed under the terms of Sections 1 and
2 above on a medium customarily used for software interchange; or,

n c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the exe-
cutable. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating sys-
tem on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License.Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works.These actions are prohibited by law if you do
not accept this License.Therefore, by modifying or distributing the Program (or
any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

20 0430 APPF 5/22/01 11:02 AM Page 312

313TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions.You may
not impose any further restrictions on the recipients’ exercise of the rights
granted herein.You are not responsible for enforcing compliance by third parties
to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on
you (whether by court order, agreement or otherwise) that contradict the condi-
tions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a consequence you may
not distribute the Program at all. For example, if a patent license would not per-
mit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it
and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particu-
lar circumstance, the balance of the section is intended to apply and the section
as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a con-
sequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical distribu-
tion limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

20 0430 APPF 5/22/01 11:02 AM Page 313

314 Appendix F GNU/General Public License

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you
have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of soft-
ware generally.

No Warranty

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,THERE
IS NO WARRANTY FOR THE PROGRAM,TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS”WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

20 0430 APPF 5/22/01 2:42 PM Page 314

315How to Apply These Terms to Your New Programs

End of Terms and Conditions

How to Apply These Terms to Your New
Programs
If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty; and
each file should have at least the “copyright” line and a pointer to where the full
notice is found.

one line to give the program’s name and an idea of what it does.

Copyright © yyyy name of author

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place–Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in

an interactive mode:

Gnomovision version 69, Copyright © year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts
of the General Public License. Of course, the commands you use may be called some-
thing other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu
items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a “copyright disclaimer” for the program, if necessary. Here is a sample;
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

20 0430 APPF 5/22/01 2:42 PM Page 315

316 Appendix F GNU/General Public License

This General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more use-
ful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Library General Public License instead of this License.

FSF & GNU inquiries & questions to gnu@gnu.org.
Comments on these web pages to webmasters@www.gnu.org, send other questions

to gnu@gnu.org.
Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place–Suite 330, Boston, MA 02111, USA
Updated: 31 Jul 2000 jonas

20 0430 APPF 5/22/01 11:02 AM Page 316

Index

Symbols

\$(CFLAGS), make variable, 10

/dev directory, 132

/dev/full, 137

/dev/loop# (loopback devices),
139-142

/dev/null (null device), 136

/dev/pts (PTYs), 142-144

/dev/random (random number
device), 137-139

/dev/urandom (random number
device), 137-139

/dev/zero, 136
mapped memory, 109

/etc/services file, 125

/proc file system, 147-148
CD-ROM drive information, 163
CPU information, 159
device information, 159
file locks information, 164-165
file size, 147
file systems information, 161
hostname and domain name, 160
IDE device information, 162
memory usage of kernel, 161
mounted file system information,

163-164
output from, 148-150
partition information, 163
PCI bus information, 159
process argument list, 152-154
process directories, 150-151
process environment, 154-155
process executable, 155-156
process file descriptors, 156-158
process memory statistics, 158
process statistics, 158
SCSI device information, 163
serial port information, 159-160

system load information, 165
system uptime information, 165-166
version number of kernel, 148, 160

/proc/cpuinfo (system CPU
information), 148-150, 159

/proc/devices (device information), 159

/proc/filesystems (file systems
information), 161

/proc/ide (IDE device information), 162

/proc/loadavg (system load
information), 165

/proc/locks (file locks information),
164-165

/proc/meminfo (memory usage of
kernel), 161

/proc/mounts (mounted file system
information), 163-164

/proc/pci (PCI bus information), 159

/proc/scsi/scsi (SCSI device
information), 163

/proc/self, 151-152

/proc/sys/dev/cdrom/info (CD-ROM
drive information), 163

/proc/sys/kernel/domainname
(domain names), 160

/proc/sys/kernel/hostname
(hostnames), 160

/proc/tty/driver/serial (serial port
information), 159-160

/proc/uptime (system uptime
information), 165-166

/proc/version (version number of
kernel), 148, 160

/tmp directory, race conditions
(security hole), 213-216

| (pipe symbol), 110

21 0430 index 5/22/01 2:26 PM Page 317

318 abort function

input operands, 193
output operands, 192-193

versus C code, performance, 194-196
when to use, 190

assembler instructions, asm syntax, 192

assembly code, 189-190
asm syntax, 191-192

assembler instructions, 192
clobbered registers, 194
input operands, 193
output operands, 192-193

GCC conversion of asm, 191
maintenance and portability, 196
optimization, 196
versus C code, performance, 194-196
when to use, 190

assert macro (error checking), 30-31

asynchronously cancelable threads, 70

atomic operations, defined, 79

attachment, shared memory, 98-99

attributes, thread
customized, 68-69
defined, 62

audio, playing sound files, 135

authentication, 208-211

B

better_sleep.c (high-precision sleep),
listing 8.8, 182

binary semaphores. See semaphores
(processes)

bind function, 119

bit position, determining (assembly
code versus C code), 194-196

bit-pos-asm.c (bit position with bsrl),
listing 9.2, 195

bit-pos-loop.c (bit position with loop),
listing 9.1, 194-195

block devices
defined, 130
list of, 133-134
loopback devices, 139-142
warning about, 130

blocking functions, defined, 34

A

abort function, terminating
processes, 55

accept function, 119

access speed, shared memory, 96-97

access system call, 169-170

accessing
character devices, 134-135
devices by opening files, 133
FIFOs, 115-116
terminals, 135

active processes, viewing, 46-47

addresses
Internet-domain sockets, 123
sockets, 117

alarm system call, 185

allocation. See also memory allocation;
resource allocation

semaphores (processes), 101
shared memory, 97-98

app.c (program with library
functions), listing 2.8, 37

ar command, 37

archives (static libraries), 37-38
versus shared libraries, 41-42

argc parameter (main function), 18-19

arglist.c (argc and argv parameters),
listing 2.1, 18-19

argument list, 18-19
command-line options, 19

getopt_long function, 20-23
processes, 152-154

arguments, thread
defined, 62
passing data, 64-65

argv parameter (main function), 18-19

asm statement (assembly code),
189-190

GCC conversion of, 191
maintenance and portability, 196
optimization, 196
syntax, 191-192

assembler instructions, 192
clobbered registers, 194

21 0430 index 5/22/01 2:26 PM Page 318

319commands

break command, GDB, 12

buffer overruns (security hole), 211-213

buffering output and error streams, 24

buffers. See disk buffers

bugs, finding. See error checking

building sample application
programs, 254

C

C code versus assembly code,
performance, 194-196

C library functions, relationship with
low-level I/O functions, 295-296

-c option (GCC compiler), 7

C++, thread cleanup handlers, 76-77

cache. See disk buffers

calculator program example, profiling
programs, 270-280

calculator.c (main calculator
program), listing A.3, 274-275

canceling threads, 69-70
asynchronously cancelable and

synchronously cancelable threads, 70
uncancelable threads, 71-72
when to use, 72

cancellation points (threads), 70

carriage return character, reading
DOS/Windows text files, 287

ccmalloc (dynamic memory
allocation), 264-265

comparison with other dynamic
memory allocation tools, 262

CD-ROM drive information,
/proc/sys/dev/cdrom/info, 163

cdrom-eject.c (ioctl example),
listing 6.2, 144

character devices
accessing, 134-135
defined, 130
list of, 134
special devices, 136

/dev/full, 137
/dev/zero, 136

null device, 136
random number devices, 137-139

char_print function, 64

chdir system call, 296

check-access.c (file access
permissions), listing 8.1, 170

child processes, 49
cleaning up, 59-60
communciation with parent processes,

pipes, 110-112
zombie processes, 57-59

chmod system call
changing permission bits, 203
setuid programs, 208
sticky bits, 204

clean target (make), 9

cleaning up child processes, 59-60

cleanup handlers, threads, 75-76
in C++, 76-77

cleanup.c (cleanup handlers),
listing 4.8, 75-76

clearing environment variables, 26

client.c (network client program),
listing 2.4, 26

clients, defined, 118

clobbered registers, asm syntax, 194

clock-speed.c (cpu clock speed from
/proc/cpuinfo), listing 7.1, 149

clone system call, 93-94

close system call, 118, 284

closedir function, 297

closing file descriptors, low-level I/O
functions, 284-285

cmdline process entry, 150, 152-154

code. See source files

code listings. See listings

command-line arguments, 18-19
options, 19

getopt_long function, 20-23

commands, 53. See also functions;
system calls

ar, 37
cp, device entries, 131
dd (block copying), 140

21 0430 index 5/22/01 2:26 PM Page 319

320 commands

export, 25
free, 161
hostname, 168
id, 198
ipcrm, 100
ipcrm sem, 105
ipcs, 100
ipcs -s, 105
ldd, 39, 41
ls, 299

displaying device entries, 132
viewing permission bits, 201

man, 14, 255
mke2fs, 140
mkfifo, 115
mkstemp, race conditions, 213
ps

displaying terminal devices, 143
viewing active processes, 46-47

renice, scheduling processes, 52
rm, removing device entries, 132
sort, 113
sscanf, 149
strace, 168-169
top, 179
uptime, 166
whoami, 207

common.c (utility functions),
listing 11.2, 223-225

compilers
defined, 6-7
GCC, 6-7

linking object files, 8-9
options for source file compilation, 7-8

compiling source files, 9
with debugging information, 11
with make, 9-11

condition variables, synchronizing
threads, 86-91

condvar.c (condition variables),
listing 4.14, 90-91

configuration, environment variables as
configuration information, 26-27

connect function, 118

connection-style sockets, 117

conversation objects (PAM), 210

conversion, hostnames, 123

converting asm statements to assembly
code, 191

copy-on-write pages, defined, 178

copy.c (sendfile system call),
listing 8.10, 184

copying
from/to file descriptors, 183-185
virtual file systems, 142

cp command, device entries, 131

CPU information, /proc/cpuinfo,
148-150, 159

cpu process entry, 151

create-file.c (create a new files),
listing B.1, 284

creating
detached threads, 69
FIFOs, 115
keys (thread-specific data), 73
mutexes, 79
pipes, 110
sockets, 118
threads, 62-63

critical sections, uncancelable threads,
71-72

critical-section.c (critical sections),
listing 4.6, 71

customized thread attributes, 68-69

cwd process entry, 150

cxx-exit.cpp (C++ thread cleanup),
listing 4.9, 76-77

D

daemons, buffer overruns (security
hole), 211-213

data structures, mapped memory, 109

data transfer, sendfile system call,
183-185

datagram-style sockets, 117

date information, gettimeofday system
call, 176-177

dd command (block copying), 140

deadlocks (threads), 82-83
on multiple threads, 91

21 0430 index 5/22/01 2:26 PM Page 320

321DNS (Domain Name Service)

deallocation
semaphores (processes), 101
shared memory, 99

debug code. See error checking

debuggers, GDB, 11
compiling with, 11
running, 11-13

debugging
semaphores (processes), 105
shared memory, 100
system calls, strace command, 168-169
threads, 77-78

definitions.h (header file for calculator
program), listing A.6, 280

deleting
files, sticky bits, 204
temporary files, 28

denial-of-service (DoS) attack, 216

dependencies
libraries, 40-41
make, 9

destroying sockets, 118

detach state (threads), 68

detached threads
creating, 69
defined, 68

detached.c (creating detached threads),
listing 4.5, 69

detachment, shared memory, 98-99

development tools
dynamic memory allocation, 261-262

ccmalloc, 264-265
Electric Fence, 265-266
malloc, 262-263
mtrace, 263-264
sample program, 267-269
selecting, 266-267

gprof (profiling), 269-270
calculator program example, 270-280
collecting information, 271-273
displaying data, 271-273

static program analysis, 259-260

device drivers
defined, 129
warning about, 130

device entries, 131-132
/dev directory, 132
accessing devices, 133
cp command, 131
creating, 131-132
displaying, 132
removing, 132

device files, types of, 130

device information, /proc/devices, 159

device numbers, defined, 130-131

devices
accessing by opening files, 133
block devices, list of, 133-134
character devices

accessing, 134-135
list of, 134

ioctl system call, 144
PTYs (pseudo-terminals), 142-144
special devices, 136

/dev/full, 137
/dev/zero, 136
loopback devices, 139-142
null device, 136
random number devices, 137-139

directories
/dev, 132
/proc file system process directories,

150-151
/tmp, race conditions (security hole),

213-216
permissions, 203

sticky bits, 204-205
reading contents of, 296-297, 299

disk buffers, flushing, 173-174

diskfree.c (free disk space
information), listing 11.8, 242-243

diskfree.so module (sample application
program), 242-244

DISPLAY environment variable, 25

dispositions (signals), 53

dlclose function, 43

dlerror function, 43

dlopen function, 42-43

dlsym function, 43

DNS (Domain Name Service), 123

21 0430 index 5/22/01 2:26 PM Page 321

322 documentation

documentation, 13
header files, 15
Info documentation system, 14-15
man pages, 14
sample application program, 255-256
source code, 15

Domain Name Service (DNS), 123

domain names,
/proc/sys/kernel/domainname, 160

DoS (denial-of-service) attack, 216

DOS/Windows text files, reading, 287

drivers. See device drivers

dup2 system call, 112-113

dup2.c (output redirection),
listing 5.8, 113

dynamic linking (libraries), 36

dynamic memory allocation, 261-262
ccmalloc, 264-265
Electric Fence, 265-266
malloc, 262-263
mtrace, 263-264
sample program, 267-269
selecting development tools, 266-267

dynamic runtime loading, shared
libraries, 42-43

dynamically linked libraries. See shared
libraries

E

-e option (ps command), 47

editors
defined, 4
Emacs, 4

automatic formatting, 5
opening source files, 4
running GDB in, 13
syntax highlighting, 5

effective user IDs versus real user IDs,
205-206

setuid programs, 206-208

EINTR error code, 34

Electric Fence (dynamic memory
allocation), 265-266

comparison with other dynamic
memory allocation tools, 262

Emacs, 4
automatic formatting, 5
opening source files, 4
running GDB in, 13
syntax highlighting, 5

environ global variable, 26

environ process entry, 150, 154-155

environment
defined, 25-27
printing, 25
processes, 154-155

environment variables, 25-27
accessing, 26
clearing, 26
as configuration information, 26-27
enumerating all, 26
MALLOC_CHECK, 263
MALLOC_TRACE, 264
setting, 26

errno variable, 33

error checking, 30
assert macro, 30-31
resource allocation, 35-36
system call failures, 32

error codes, 33-35

error codes, system call failures, 33-35

error function, 225

error streams, redirection with pipes,
112-113

error-checking functions, memory
allocation, 225

error-checking mutexes, locking, 82

errors, stderr (error stream), 23-24

example program. See sample
application program

exe process entry, 150, 155-156

exec functions
avoiding security holes, 217
creating processes, 48, 50-51

executable files, processes, 155-156

execute permissions, warning
about, 204

executing programs with the shell,
security holes, 216-218

execve system call, 168

21 0430 index 5/22/01 2:27 PM Page 322

323functions

exit codes, 24-25
terminating processes, 55

exit system call, terminating processes,
55-56

exiting threads, 63, 69
cleanup handlers, 75-77

export command, 25

ext2 file system, gaps in large files, 290

F

-f option (ps command), 47

fast mutexes, locking, 82

fcntl system call, 164, 171-172

fd process entry, 150, 156-158

fdatasync system call, 173-174

fdopen function, 295

FIFOs (first-in, first-out files), 114-115
accessing, 115-116
creating, 115
versus Win32 named pipes, 116

file descriptors (low-level I/O), 282
closing low-level I/O functions, 284-285
copying from/to, 183-185
I/O and error streams, 23
moving low-level I/O functions,

288-290
processes, 156-158
reading data from low-level I/O

functions, 287-288
using with C library functions, 295-296
writing data to low-level I/O functions,

285-286

file locking, 171-172

file locks information, /proc/locks,
164-165

file permissions, verifying, 169-170

file size, /proc file system, 147

file systems
ext2, gaps in large files, 290
PTYs (pseudo-terminals), 142-144
virtual file systems

copying from devices, 142
creating, 140-142
defined, 139

file systems information,
/proc/filesystems, 161

FILE* pointer, 282

FILE* stream, using with low-level
I/O functions, 295-296

fileno function, 295

files
deleting sticky bits, 204
opening

accessing devices by, 133
low-level I/O functions, 282-284

owners, 200
permission bits, umasks, 283
permissions, 200-204

warning about execute permissions, 204
temporary files, 27

deleting, 28
mkstemp function, 28-29
tmpfile function, 29

first-in, first-out files. See FIFOs

flags. See options

flock system call, 172

flushing disk buffers, 173-174

fopen function, 295

fork system call, creating processes,
48-51

fork-exec.c (fork and exec functions),
listing 3.4, 51

fork.c (fork function), listing 3.3, 49

formatting source files with Emacs, 5

-fPIC option (GCC compiler), 38

fprintf function, 282

free command, 161

free disk space information, sample
application program, 242-244

fstat system call, 292

fsync system call, 173-174

functions, 53. See also commands;
system calls

abort, terminating processes, 55
accept, 119
bind, 119
blocking functions, defined, 34
char_print, 64

21 0430 index 5/22/01 2:27 PM Page 323

324 functions

cleanup handlers, 75-76
in C++, 76-77

closedir, 297
connect, 118
dlclose, 43
dlerror, 43
dlopen, 42-43
dlsym, 43
error, 225
error-checking functions, memory

allocation, 225
exec

avoiding security holes, 217
creating processes, 48, 50-51

fdopen, 295
fileno, 295
fopen, 295
fprintf, 282
getenv, 26
gethostbyname, 123
getline, buffer overruns, 212
getopt_long, 20-23
getpagesize, 97, 178
gets, buffer overruns, 212
htons, 123
library functions, defined, 167
listen, 119
localtime, 176
low-level I/O. See low-level I/O

functions
main

argc and argv parameters, 18-19
interaction with operating

environment, 17
waiting for threads to exit, 65

mkstemp, 28-29
opendir, 297
pclose, 114
perror, 33
popen, 114

security holes, 216-218
printf, 282
pthread_attr_setdetachstate, 69
pthread_cancel, 69
pthread_cleanup_pop, 75
pthread_cleanup_push, 75
pthread_cond_broadcast, 89
pthread_cond_init, 89
pthread_cond_signal, 89
pthread_cond_wait, 89
pthread_create, 62

pthread_detach, 69
pthread_equal, 68
pthread_exit, 63, 69

thread cleanup in C++, 76
pthread_join, 65
pthread_key_create, 73
pthread_mutexattr_destroy, 82
pthread_mutexattr_init, 82
pthread_mutexattr_setkind_np, 82
pthread_mutex_init, 79
pthread_mutex_lock, 80
pthread_mutex_trylock, 83
pthread_mutex_unlock, 80
pthread_self, 68
pthread_setcancelstate, 71
pthread_setcanceltype, 70
pthread_setspecific, 73
pthread_testcancel, 70
reading directory contents, 296-297, 299
recv, 119
sample application program, 223-226
semctl, 101-102
semget, 101
semop, 103
sem_destroy, 84
sem_getvalue, 84
sem_init, 84
sem_post, 84
sem_trywait, 84
sem_wait, 84
send, 118
setenv, 26
seteuid, 206
shmat, 98-99
shmctl, 99
shmdt, 99
shmget, 97-98
signal handlers, 53-54
sleep, 181
socket, 118
socketpair, 125-126
for sockets, list of, 117
strerror, 33
strftime, 176-177
system

creating processes, 48
security holes, 216-218

thread functions, defined, 62
tmpfile, 29
unsetenv, 26
wait, terminating processes, 56-57

21 0430 index 5/22/01 2:27 PM Page 324

325HTTP (Hypertext Transport Protocol)

G

-g option (GCC compiler), 11

g++ (C++ compiler), 7

GCC (C compiler), 6-7
assembly code, 189-190

asm syntax, 191-194
conversion of asm, 191
maintenance and portability, 196
optimization, 196
versus C code performance, 194-196
when to use, 190

linking object files, 8-9
options for source file compilation, 7-8
-pedantic option, 260
-Wall option, 260

GDB (GNU Debugger), 11
commands

break, 12
next, 13
print, 12
run, 12
step, 13
up, 12
where, 12

compiling with, 11
running, 11-13

get-exe-path.c (program executable
path), listing 7.5, 155-156

get-pid.c (process ID from /proc/self),
listing 7.2, 151-152

getcwd system call, 296

getegid system call, 200

getenv function, 26

geteuid function, 200

gethostbyname function, 123

getline function, buffer overruns, 212

getopt_long function, 20-23

getopt_long.c (getopt_long function),
listing 2.2, 21-23

getpagesize function, 97, 178

getrlimit system call, 174-175

getrusage system call, 175-176

gets function, buffer overruns, 212

gettimeofday system call, 176-177
sample application program, 239

GID (group ID), 198

GNU Coding Standards, 19

GNU Debugger. See GDB

GNU General Public License, 309-316

GNU Make. See make

GNU/Linux distribution information,
sample application program, 240, 242

GNU/Linux online resources, list of,
303-304

gprof (profiling) development tool,
269-270

calculator program example, 270-280
collecting information, 271, 273
displaying data, 271-273

grep-dictionary.c (word search),
listing 10.6, 216-217

group ID (GID), 198

groups
process group IDs, 199-200
UID (user ID) and GID (group ID), 198

H

hard limit, defined, 174

hardware devices
block devices, list of, 133-134
character devices

accessing, 134-135
list of, 134

header files, 15

hello.c (Hello World), listing A.1, 260

hexdump.c (print a hexadecimal file
dump), listing B.4, 287-288

highlighting source files with Emacs, 5

HOME environment variable, 25

hostname command, 168

hostnames
/proc/sys/kernel/hostname, 160
conversion, 123

htons function, 123

HTTP (Hypertext Transport Protocol),
125, 221

21 0430 index 5/22/01 2:27 PM Page 325

326 -I option (GCC compiler)

I

-I option (GCC compiler), 7

I/O (input/output)
FIFO access, 115-116
input/output and error streams, 23-24
mmap function, 109
redirection with pipes, 112-113

I/O functions, low-level. See low-level
I/O functions

id command, 198

IDE (Integrated Development
Environment), 9

IDE device information,
/proc/ide, 162

idle time information, /proc/uptime,
165-166

Info documentation system, 14-15, 256

init process, 59

initialization, semaphores
(processes), 102

inline assembly code. See
assembly code

input operands, asm syntax, 193

input. See I/O (input/output)

Integrated Development Environment
(IDE), 9

Intel x86 architectures, register
letters, 193

Internet Protocol (IP), 123

Internet-domain sockets, 123-125

interprocess communication (IPC)
defined, 95
mapped memory, 105

example programs, 106-108
mmap function, 105-109
private mappings, 109
shared file access, 108-109

pipes, 110
creating, 110
FIFOs, 114-116
parent-child process communication,

110-112
popen and pclose functions, 114
redirection, 112-113

semaphores, 101
allocation and deallocation, 101
debugging, 105
initialization, 102
wait and post operations, 103-104

shared memory, 96
access speed, 96-97
advantages and disadvantages, 101
allocation, 97-98
attachment and detachment, 98-99
deallocation, 99
debugging, 100
example program, 99-100
memory model, 97

sockets, 116
connect function, 118
creating, 118
destroying, 118
functions, list of, 117
Internet-domain sockets, 123-125
local sockets, 119-123
send function, 118
servers, 118-119
socket pairs, 125-126
terminology, 117

interval timers, setting, 185-186

ioctl system call, 144

IP (Internet Protocol), 123

IPC. See interprocess communication

ipcrm command, 100

ipcrm sem command, 105

ipcs -s command, 105

ipcs command, 100

issue.c (GNU/Linux distrubution
information), listing 11.7, 240-242

issue.so module (sample application
program), 240-242

itemer.c (interval timers), listing 8.11,
185-186

J-K

-j option (ps command), 47

job control notification, in shell, 93

job-queue1.c (thread race conditions),
listing 4.10, 78

21 0430 index 5/22/01 2:27 PM Page 326

327listings

job-queue2.c (mutexes), listing 4.11,
80-81

job-queue3.c (semaphores),
listing 4.12, 84-86

joinable threads, defined, 68

joining threads, 65-66

kernel, /proc file system. See
/proc file system

keys (thread-specific data), creating, 73

kill system call, 47, 55

killing processes, 47

L

-L option (GCC compiler), 9

-l option (ps command), 47

LD_LIBRARY_PATH environment
variable, 40

ldd command, 39-41

libraries, linking to, 8, 36-37
archives (static libraries), 37-38
dynamic runtime loading, 42-43
library dependencies, 40-41
shared libraries, 38-40

versus archives, 41-42
standard libraries, 40

library functions, defined, 167

limit-cpu.c (resource limits),
listing 8.4, 175

linking
to libraries, 8, 36-37

archives (static libraries), 37-38
dynamic runtime loading, 42-43
library dependencies, 40-41
shared libraries, 38-40
shared libraries versus archives, 41-42
standard libraries, 40

object files, 8-9

links, symbolic
reading, 182-183
stat function, 292

listdir.c (printing directory listings),
listing B.8, 297-299

listen function, 119

listings
app.c (program with library

functions), 37
arglist.c (argc and argv parameters),

18-19
better_sleep.c (high-precision sleep), 182
bit-pos-loop.c (bit position with loop),

194-195
bit-pos-asm.c (bit position with

bsrl), 195
calculator.c (main calculator program),

274-275
cdrom-eject.c (ioctl example), 144
check-access.c (file access

permissions), 170
cleanup.c (cleanup handlers), 75-76
client.c (network client program), 26
clock-speed.c (cpu clock speed from

/proc/cpuinfo), 149
common.c (utility functions), 223-225
condvar.c (condition variables), 90-91
copy.c (sendfile system call), 184
create-file.c (create a new file), 284
critical-section.c (critical sections), 71
cxx-exit.cpp (C++ thread cleanup),

76-77
definitions.h (header file for calculator

program), 280
detached.c (creating detached

threads), 69
diskfree.c (free disk space information),

242-243
dup2.c (output redirection), 113
fork.c (fork function), 49
fork-exec.c (fork and exec functions), 51
get-exe-path.c (program executable

path), 155-156
getopt_long.c (getopt_long function),

21-23
get-pid.c (process ID from /proc/self),

151-152
grep-dictionary.c (word search), 216-217
hello.c (Hello World), 260
hexdump.c (print a hexadecimal file

dump), 287-288
issue.c (GNU/Linux distribution

information), 240, 242
itemer.c (interal timers), 185-186
job-queue1.c (thread race conditions), 78
job-queue2.c (mutexes), 80-81

21 0430 index 5/22/01 2:27 PM Page 327

328 listings

job-queue3.c (semaphores), 84-86
limit-cpu.c (resource limits), 175
listdir.c (printing directory listings),

297-299
lock-file.c (write locks), 171-172
lseek-huge.c (creating large files),

289-290
main.c (C source file), 6
main.c (main server program), 235-238
Makefile (Makefile for sample

application program), 252-253
malloc-use.c (dynamic memory

allocation), 267-269
mmap-read.c (mapped memory), 107
mmap-write.c (mapped memory), 106
module.c (loading server modules),

226-227
mprotect.c (memory access), 180-181
number.c (unary number

implementation), 276-278
open-and-spin.c (opening files), 157
pam.c (PAM example), 209
pipe.c (parent-child process

communication), 111
popen.c (popen command), 114
primes.c (prime number computation in

a thread), 67
print-arg-list.c (printing process

argument lists), 153
print-cpu-times.c (process statistics), 176
print_env.c (printing execution

environment), 26
print-environment.c (process

environment), 154-155
print-pid.c (printing process IDs), 46
print-symlink.c (symbolic links), 183
print-time.c (date/time printing), 177
print-uname (version number and

hardware information), 188
print-uptime.c (system uptime and idle

time), 165-166
processes.c (summarizing running

processes), 244-250
random_number.c (random number

generation), 138-139
readfile.c (resource allocation during

error checking), 35-36
read-file.c (reading files into buffers),

292-293

reciprocal.cpp (C++ source file), 6
reciprocal.hpp (header file), 7
sem_all_deall.c (semaphore allocation

and deallocation), 102
sem_init.c (semaphore initialization), 102
sem_pv.c (semaphore wait and post

operations), 104
server.c (server implementation),

228-233
server.h (function and variable

declarations), 222-223
setuid-test.c (setuid programs), 207
shm.c (shared memory), 99-100
sigchld.c (cleaning up child

processes), 60
sigusr1.c (signal handlers), 54
simpleid.c (printing user and

group IDs), 200
socket-client.c (local sockets), 121
socket-inet.c (Internet-domain

sockets), 124
socket-server.c (local sockets), 120
spin-condvar.c (condition variables), 87
stack.c (unary number stack), 279-280
stat-perm.c (viewing file permissions

with stat system call), 202
sysinfo.c (system statistics), 187
system.c (system function), 48
temp_file.c (mkstemp function), 28-29
temp-file.c (temporary file creation),

214-215
test.c (library contents), 37
thread-create.c (creating threads), 63
thread-create2 (creating two threads),

64-65
thread-create2.c (revised main

function), 65
thread-pid (printing thread

process IDs), 92
tifftest.c (libtiff library), 40
time.c (show wall-clock time), 239-240
timestamp.c (append a timestamp), 285
tsd.c (thread-specific data), 73-74
write-all.c (write all buffered data), 286
write-args.c (writev function), 294-295
write_journal_entry.c (data buffer

flushing), 173
zombie.c (zombie processes), 58

21 0430 index 5/22/01 2:27 PM Page 328

329maps process entry

loading server modules (sample
application program), 226-227

local sockets, 119
example program, 120-123

localtime function, 176

lock-file.c (write locks), listing 8.2,
171-172

locking
physical memory, 177-179
threads

nonblocking mutex tests, 83
with mutexes, 79-83

locks, fcntl system call, 171-172

locks information, /proc/locks,
164-165

long form (command-line options), 19

loopback devices, 139-142

low-level I/O functions, 281-282
chdir, 296
closing file descriptors, 284-285
file descriptors, 282
getcwd, 296
mkdir, 296
moving file descriptors, 288-290
opening files, 282-284
reading data from file descriptors,

287-288
relationship with C library functions,

295-296
rename, 296
rmdir, 296
stat (file status information), 291-293
unlink, 296
vector reads, 295
vector writes, 293-295
writing data to file descriptors, 285-286

ls command, 299
displaying device entries, 132
viewing permission bits, 201

lseek system call, 288-290

lseek-huge.c (creating large files),
listing B.5, 289-290

lstat system call, 292
race conditions, 214

M

macros
assert (error checking), 30-31
on GCC command line, 8
NDEBUG, 30

main function
argc and argv parameters, 18-19
interaction with operating

environment, 17
waiting for threads to exit, 65

main server program (sample
application program), 235-239

main.c (C source file), listing 1.1, 6

main.c (main server program),
listing 11.5, 235-238

maintenance, assembly code, 196

major device numbers, defined,
130-131

make, compiling source files, 9-11

Makefile, 10-11
sample application program,

listing 11.10, 252-253

malloc (dynamic memory allocation),
262-263

comparison with other dynamic
memory allocation tools, 262

malloc-use.c (dynamic memory
allocation), listing A.2, 267-269

MALLOC_CHECK environment
variable, 263

MALLOC_TRACE environment
variable, 264

man command, 14, 255

man pages, 14
writing, 255

mapped memory, 105
example programs, 106-108
mmap function, 105-106, 109
private mappings, 109
shared file access, 108-109

maps process entry, 150

21 0430 index 5/22/01 2:27 PM Page 329

330 memory

memory
dynamic allocation, 261-262

ccmalloc, 264-265
Electric Fence, 265-266
malloc, 262-263
mtrace, 263-264
sample program, 267-269
selecting development tools, 266-267

mapped memory, 105
example programs, 106-108
mmap function, 105-106, 109
private mappings, 109
shared file access, 108-109

page-aligned memory, allocating, 179
pages, 178
physical memory, locking, 177-179
shared memory, 96

access speed, 96-97
advantages and disadvantages, 101
allocation, 97-98
attachment and detachment, 98-99
deallocation, 99
debugging, 100
example program, 99-100
memory model, 97

thrashing, defined, 178

memory allocation
error-checking functions, 225
page-aligned memory, 179

memory buffers. See disk buffers

memory model, shared memory, 97

memory permissions, setting, 179-181

memory statistics, processes, 158

memory usage of kernel,
/proc/meminfo, 161

minor device numbers, defined,
130-131

mkdir system call, 296

mke2fs command, 140

mkfifo command, 115

mknod system call, creating device
entries, 131-132

mkstemp function, 28-29
race conditions, 213

mlock system calls, 177-179

mlockall system call, 178

mmap system call, 105-106, 109, 179

mmap-read.c (mapped memory),
listing 5.6, 107

mmap-write.c (mapped memory),
listing 5.5, 106

mode. See permission bits

module.c (loading server modules),
listing 11.3, 226-227

modules, sample application
program, 239

diskfree.so, 242-244
issue.so, 240, 242
loading server modules, 226-227
processes.so, 244-252
time.so, 239-240

mount system call, 141, 147

mount descriptors, 163-164

mounted file system information,
/proc/mounts, 163-164

moving file descriptors, low-level I/O
functions, 288-290

mprotect system call, 179-181

mprotect.c (memory access),
listing 8.7, 180-181

msync system call, 108

mtrace (dynamic memory allocation),
263-264

comparison with other dynamic
memory allocation tools, 262

multiple threads, deadlocks on, 91

munlock system call, 178

munlockall system call, 178

munmap system call, 106

mutexes
with condition variables, 88
locking threads, 79-82

deadlocks, 82-83
nonblocking tests, 83

mutual exclusion locks. See mutexes

N

named pipes. See FIFOs

nanosleep system call, 181-182

21 0430 index 5/22/01 2:27 PM Page 330

331PIC (position-independent code)

NDEBUG macro, 8, 30

network byte order (sockets), 123

Network File System (NFS), 172

newline character, reading
DOS/Windows text files, 287

next command, GDB, 13

NFS (Network File System), 172

nice system call, scheduling
processes, 52

niceness values, processes, 52

nonblocking mode (wait functions), 59

nonblocking mutex tests (threads), 83

NUL versus NULL, 152

null device, 136

number.c (unary number
implementation), listing A.4, 276-278

O

-o option
GCC compiler, 8
ps command, 47

-O2 option (GCC compiler), 8

object files, linking, 8-9

online resources, list of, 303-304

Open Publication License Version 1.0,
305-308

open system call, 282-284

open-and-spin.c (opening files),
listing 7.6, 157

opendir function, 297

opening
files

accessing devices by, 133
low-level I/O functions, 282-284

source files with Emacs, 4

optimization. See also performance
assembly code, 196
GCC compiler options, 8
gprof (profiling) development tool,

269-270
calculator program example, 270-271,

274-280
collecting information, 271, 273
displaying data, 271-273

output from /proc file system,
148-150. See also I/O (input/output)

output operands, asm syntax, 192-193

owners of files, 200

P

packets, 117

page-aligned memory, allocating, 179

pages, copy-on-write, 178

pages of memory, 178
shared memory, 97

PAM (Pluggable Authentication
Modules), 209-211

pam.c (PAM example), listing 10.4, 209

parent process ID (ppid), 46

parent processes, 49
communication with child processes,

110-112

partition (partition device
information), 163

passing data to threads, 64-65

passwords, user authentication, 208-209

PATH environment variable, 25

PCI bus information, /proc/pci, 159

pclose function, 114

-pedantic option (GCC compiler), 260

performance, assembly code versus
C code, 194-196. See also optimization

permission bits
changing with chmod function, 203
umasks, 283
viewing, 201

permissions
directories, 203

sticky bits, 204-205
file permissions, 200-204

verifying, 169-170
warning about execute permissions, 204

memory permissions, setting, 179-181

perror function, 33

physical memory, locking, 177-179

PIC (position-independent code), 38

21 0430 index 5/22/01 2:27 PM Page 331

332 pid (process ID)

pid (process ID), 46

pipe system call, 110

pipe symbol (|), 110

pipe.c (parent-child process
communication), listing 5.7, 111

pipes, 110
creating, 110
FIFOs, 114-115

accessing, 115-116
creating, 115
versus Win32 named pipes, 116

parent-child process communcation,
110-112

popen and pclose functions, 114
redirection, 112-113

Pluggable Authentication Modules
(PAM), 209-211

popen command, 114
security holes, 216-218

popen.c (popen command),
listing 5.9, 114

port numbers
sockets, 123
standard, 125

portability, assembly code, 196

position-independent code (PIC), 38

post operation (semaphores), 83,
103-104

postfix notation, defined, 270

ppid (parent process ID), 46

primes.c (prime number computation
in a thread), listing 4.4, 67

print command, GDB, 12

print-arg-list.c (printing process
argument lists), listing 7.3, 153

print-cpu-times.c (process statistics),
listing 8.5, 176

print-environment.c (process
environment), listing 7.4, 154-155

print_env.c (printing execution
environment), listing 2.3, 26

print-pid.c (printing process IDs),
listing 3.1, 46

print-symlink.c (symbolic links),
listing 8.9, 183

print-time.c (date/time printing),
listing 8.6, 177

print-uname (version number
and hardware information),
listing 8.13, 188

print-uptime.c (system uptime and
idle time), listing 7.7, 165-166

printenv program, 25

printf function, 282

printing the environment, 25

private mappings, mapped
memory, 109

process group IDs, 199-200

process IDs, 46

process semaphores. See semaphores
(processes)

process statistics, 175-176

process user IDs, 199-200

processes. See also interprocess
communication (IPC)

/proc file system directories, 150-151
/proc/self, 151-152
argument list, 152-154
child, 49
creating

with fork and exec functions, 48-51
with system function, 48

defined, 45
environment, 154-155
executable files, 155-156
file descriptors, 156-158
implementing threads as, 92-93

clone system call, 93-94
signal handling, 93

init process, 59
memory statistics, 158
parent, 49
process IDs, 46
relationship with threads, 61-62
scheduling, 52
signals, 52-54
statistics, 158

21 0430 index 5/22/01 2:27 PM Page 332

333PTYs (pseudo-terminals)

terminating, 47, 55-56
cleaning up child processes, 59-60
wait functions, 56-57
zombie processes, 57-59

versus threads, when to use, 94
viewing active, 46-47

processes.c (summarizing running
processes), listing 11.9, 244-250

processes.so module (sample
application program), 244-252

profiling programs, gprof development
tool, 269-270

calculator program example, 270-271,
274-280

collecting information, 271, 273
displaying data, 271-273

program listings. See listings

programs
argument list, 18-19
command-line options, 19

getopt_long function, 20-23
development tools. See

development tools
environment, 25-27
error checking, 30

assert macro, 30-31
resource allocation, 35-36
system call failures, 32-35

exit codes, 24-25
interaction with operating

environment, 17
linking to libraries, 36-37

archives (static libraries), 37-38
dynamic runtime loading, 42-43
library dependencies, 40-41
shared libraries, 38-40
shared libraries versus archives, 41-42
standard libraries, 40

sample application program. See sample
application program

standard I/O, 23-24
temporary files, 27

mkstemp function, 28-29
tmpfile function, 29

protocols
associations with standard port

numbers, 125
HTTP (Hypertext Transport

Protocol), 125

IP (Internet Protocol), 123
sockets, 117
TCP (Transmission Control

Protocol), 123

ps command
displaying terminal devices, 143
viewing active processes, 46-47

pseudo-terminals (PTYs), 142-144

pseudorandom numbers, 137

pthread functions, 62

pthread_attr_setdetachstate
function, 69

pthread_cancel function, 69

pthread_cleanup_pop function, 75

pthread_cleanup_push function, 75

pthread_cond_broadcast function, 89

pthread_cond_init function, 89

pthread_cond_signal function, 89

pthread_cond_wait function, 89

pthread_create function, 62

pthread_detach function, 69

pthread_equal function, 68

pthread_exit function, 63, 69
thread cleanup in C++, 76

pthread_join function, 65

pthread_key_create function, 73

pthread_mutexattr_destroy function, 82

pthread_mutexattr_init function, 82

pthread_mutexattr_setkind_np
function, 82

pthread_mutex_init function, 79

pthread_mutex_lock function, 80

pthread_mutex_trylock function, 83

pthread_mutex_unlock function, 80

pthread_self function, 68

pthread_setcancelstate function, 71

pthread_setcanceltype function, 70

pthread_setspecific function, 73

pthread_testcancel function, 70

PTYs (pseudo-terminals), 142-144

21 0430 index 5/22/01 2:27 PM Page 333

334 race conditions (security hole)

Q-R

race conditions (security hole), 213-216

race conditions (threads), 78-79
avoiding with mutexes, 79-82

deadlocks, 82-83

random number devices, 137-139

random_number.c (random number
generation), listing 6.1, 138-139

read system call, 287-288

read-file.c (reading files into buffers),
listing B.6, 292-293

readdir system call, 297

readfile.c (resource allocation during
error checking), listing 2.6, 35-36

reading
data from file descriptors, low-level I/O

functions, 287-288
directory contents, 296-297, 299
DOS/Windows text files, 287
symbolic links, 182-183

readlink system call, 182-183

readv system call, 295

real user IDs, versus effective user IDs,
205-206

setuid programs, 206-208

reciprocal.cpp (C++ source file),
listing 1.2, 6

reciprocal.hpp (header file),
listing 1.3, 7

recursive mutexes, locking, 82

recv function, 119

redirecting I/O and error streams, 23

redirection with pipes, 112-113

register letters, Intel x86
architectures, 193

registering cleanup handlers, 75

removing device entries, 132

rename system call, 296

renice command, scheduling
processes, 52

resource allocation, error checking,
35-36

resource limits, setting, 174-175

return values (threads), 66-67

rm command, removing device
entries, 132

rmdir system call, 296

root process entry, 150

root user account, 199
permissions, 204
setuid programs, 206-208

rules (make), 9

run command, GDB, 12

runnable tasks, defined, 165

running processes, summarizing
(sample application program), 244-252

running the server (sample application
program), 254-255

runtime checks, assert macro, 30-31

runtime loading, shared libraries, 42-43

runtime tools. See development tools

S

sample application program, 219
building, 254
common functions, 223-224, 226
documentation, 255-256
implementation, 221, 223
loading server modules, 226-227
main server program, 235-239
Makefile, 252-253
modules, 239

diskfree.so, 242-244
issue.so, 240, 242
processes.so, 244-252
time.so, 239-240

overview, 219-221
running the server, 254-255
server implementation, 228-235

scheduling processes, 52

SCSI device information,
/proc/scsi/scsi, 163

security
authentication, 208-209, 211
directory permissions, 203

sticky bits, 204-205
file permissions, 200-204

warning about execute permissions, 204

21 0430 index 5/22/01 2:27 PM Page 334

335shmat function

GID (group ID), 198
holes in, 211

buffer overruns, 211-213
executing programs with the shell,

216-218
race conditions, 213-216

permission bits, umasks, 283
process group IDs, 199-200
process user IDs, 199-200
root user account, 199

permissions, 204
user IDs (UID), 198

real versus effective IDs, 205-208

segments (shared memory), 97
advantages and disadvantages, 101
allocation, 97-98
attachment and detachment, 98-99
deallocation, 99
debugging, 100
example program, 99-100

selecting dynamic memory allocation
tools, 266-267

semaphores (processes), 101
allocation and deallocation, 101
debugging, 105
initialization, 102
versus condition variables, 91
wait and post operations, 103-104

semaphores (threads), 83-86

semctl function, 101-102

semget function, 101

semop function, 103

sem_all_deall.c (semaphore allocation
and deallocation), listing 5.2, 102

sem_destroy function, 84

sem_getvalue function, 84

sem_init function, 84

sem_init.c (semaphore initialization),
listing 5.3, 102

sem_post function, 84

sem_pv.c (semaphore wait and post
operations), listing 5.4, 104

sem_trywait function, 84

sem_wait function, 84

send function, 118

sendfile system call, 183-185

serial port information,
/proc/tty/driver/serial, 159-160

server implementation (sample
application program), 228-235

server modules, loading (sample
application program), 226-227

server.c (server implementation),
listing 11.4, 228-233

server.h (function and variable
declarations), listing 11.1, 222-223

servers
defined, 118
running (sample application program),

254-255
sockets, 118-119

setenv function, 26

seteuid function, 206

setitimer system call, 185-186

setreuid system call, 206

setrlimit system call, 174-175

setuid programs, 206-208

setuid-test.c (setuid programs),
listing 10.3, 207

shared file access, memory mapping,
108-109

shared libraries, 38-40
versus archives, 41-42

shared memory, 96
access speed, 96-97
advantages and disadvantages, 101
allocation, 97-98
attachment and detachment, 98-99
deallocation, 99
debugging, 100
example program, 99-100
memory model, 97

shared objects. See shared libraries

shell
executing programs within (security

holes), 216-218
job control notification, 93

shm.c (shared memory), listing 5.1,
99-100

shmat function, 98-99

21 0430 index 5/22/01 2:27 PM Page 335

336 shmctl function

shmctl function, 99

shmdt function, 99

shmget function, 97-98

short form (command-line
options), 19

SIGABRT signal, 302

sigaction system call (signal
dispositions), 53

SIGALRM signal, 302

SIGCHLD signal, 302

sigchld.c (cleaning up child processes),
listing 3.7, 60

SIGFPE signal, 302

SIGHUP signal, 301

SIGILL signal, 302

SIGINT signal, 302

SIGKILL signal, 302

signal handling (threads), 93

signal-handler functions, 53-54

signals, 52-54
cleaning up child processes, 59-60
table of, 301-302
terminating processes, 55

SIGPIPE signal, 302

SIGSEGV signal, 302

SIGTERM signal, 302

SIGUSR1 signal, 302

sigusr1.c (signal handlers),
listing 3.5, 54

SIGUSR2 signal, 302

SIGVTALRM signal, 302

SIGXCPU signal, 302

simpleid.c (printing user and
group IDs), listing 10.1, 200

sleep function, 181-182

socket addresses, 117

socket function, 118

socket-client.c (local sockets),
listing 5.11, 121

socket-inet.c (Internet-domain
sockets), listing 5.12, 124

socket-server.c (local sockets),
listing 5.10, 120

socketpair function, 125-126

sockets, 116
connect function, 118
creating, 118
destroying, 118
functions, list of, 117
Internet-domain sockets, 123-125
local sockets, 119

example program, 120-123
send function, 118
servers, 118-119
socket pairs, 125-126
terminology, 117

soft limit, defined, 174

sort command, 113

sound files, playing, 135

source code. See source files

source code listings. See listings

source files
compiling

GCC options, 7-8
linking object files, 8-9
with debugging information, 11
with make, 9-11

debugging, 11
running GDB, 11-13

formatting with Emacs, 5
opening with Emacs, 4
sample application program, 221, 223
syntax highlighting with Emacs, 5
as technical support, 15

special devices, 136
/dev/full, 137
/dev/zero, 136
loopback devices, 139-142
null device, 136
random number devices, 137-139

speed of access, shared memory, 96-97

spin-condvar.c (condition variables),
listing 4.13, 87

sscanf command, 149

stack.c (unary number stack),
listing A.5, 279-280

standard libraries, linking to, 40

21 0430 index 5/22/01 2:27 PM Page 336

337system calls

standard port numbers, 125

stat process entry, 151

stat system call, 291-293
viewing permission bits, 201-202

stat-perm.c (viewing file permissions
with stat system call), listing 10.2, 202

static libraries. See archives

static linking (libraries), 36

static program analysis tools, 259-260

statistics
memory statistics, processes, 158
processes, 158, 175-176
system statistics, retrieving, 186-187

statm process entry, 151, 158

status process entry, 151, 158

stderr (error stream), 23-24

stdin (input stream), 23-24

stdout (output stream), 23-24

step command, GDB, 13

sticky bits (security), 204-205

strace command, 168-169

streams, redirection with pipes,
112-113

strerror function, 33

strftime function, 176-177

structures. See data structures

su program, 207-208

superuser. See root user account

symbolic links
race conditions (security hole), 213-216
reading, 182-183
stat function, 292

synchronizing threads
condition variables, 86-91
deadlocks, 82-83

on multiple threads, 91
mutexes, 79-82
nonblocking mutex tests, 83
race conditions, 78-79
with semaphores, 83-86

synchronously cancelable threads, 70

syntax highlighting with Emacs, 5

sysinfo system call, 166, 186-187

sysinfo.c (system statistics),
listing 8.12, 187

system call failures, 32
error codes, 33-35

system calls. See also commands;
functions

access, 169-170
alarm, 185
chdir, 296
chmod, changing permission bits, 203
close, 118, 284
debugging, strace command, 168-169
defined, 167-168
dup2, 112-113
execve, 168
exit, terminating processes, 55-56
fcntl, 164, 171-172
fdatasync, 173-174
flock, 172
fork, creating processes, 48-51
fstat, 292
fsync, 173-174
getcwd, 296
getegid, 200
geteuid, 200
getrlimit, 174-175
getrusage, 175-176
gettimeofday, 176-177, 239
ioctl, 144
kill, 47, 55
list of, 168
lseek, 288-290
lstat, 292

race conditions, 214
mkdir, 296
mknod, creating device entries, 131-132
mlock, 177-179
mlockall, 178
mmap, 105-106, 109, 179
mount, 141, 147
mprotect, 179-181
msync, 108
munlock, 178
munlockall, 178
munmap, 106
nanosleep, 181-182
nice, scheduling processes, 52
open, 282-284
pipe, 110
read, 287-288

21 0430 index 5/22/01 2:27 PM Page 337

338 system calls

readdir, 297
readlink, 182-183
readv, 295
rename, 296
rmdir, 296
sendfile, 183-185
setitimer, 185-186
setreuid, 206
setrlimit, 174-175
sigaction (signal dispositions), 53
stat, 291-293
sysinfo, 166, 186-187
time, 195
ulimit, 174
uname, 169, 187
unlink, 28, 119, 296
write, 169, 285-286
writev, 293-295

system function
creating processes, 48
security holes, 216-218

system information, uname system
call, 187

system load information,
/proc/loadavg, 165

system statistics, retrieving, 186-187

system uptime information,
/proc/uptime, 165-166

System V semaphores. See semaphores
(processes)

system.c (system function),
listing 3.2, 48

T

targets (make), 9

TCP (Transmission Control
Protocol), 123

technical support, 13
header files, 15
Info documentation system, 14-15
man pages, 14
source code, 15

temp-file.c (temporary file creation),
listing 10.5, 214-215

temporary files, 27
deleting, 28
mkstemp function, 28-29
tmpfile function, 29

temp_file.c (mkstemp function),
listing 2.5, 28-29

terminals
accessing, 135
PTYs (pseudo-terminals), 142-144

terminating processes, 55-56
cleaning up child processes, 59-60
wait functions, 56-57
zombie processes, 57-59

test.c (library contents), listing 2.7, 37

thrashing, defined, 178

thread arguments
defined, 62
passing data, 64-65

thread attributes
customized, 68-69
defined, 62

thread functions, defined, 62

thread IDs, 62
uses for, 68

thread-create.c (creating threads),
listing 4.1, 63

thread-create2 (creating two threads),
listing 4.2, 64-67, 69, 72

thread-create2.c (revised main
function), listing 4.3, 65

thread-pid (printing thread
process IDs), listing 4.15, 92

thread-specific data, 72-74

threads
atomic operations, defined, 79
canceling, 69-70

asynchronously cancelable and
synchronously cancelable threads, 70

uncancelable threads, 71-72
when to use, 72

cleanup handlers, 75-76
in C++, 76-77

creating, 62-63
debugging, 77-78
defined, 61

21 0430 index 5/22/01 2:27 PM Page 338

339vector reads

detach state, defined, 68
detached threads

creating, 69
defined, 68

exiting, 63, 69
implementing as processes, 92-93

clone system call, 93-94
signal handling, 93

joinable threads, defined, 68
joining, 65-66
passing data to, 64-65
pthread functions, 62
relationship with processes, 61-62
return values, 66-67
synchronizing

condition variables, 86-91
deadlocks, 82-83
deadlocks on multiple threads, 91
mutexes, 79-82
nonblocking mutex tests, 83
race conditions, 78-79
semaphores, 83-86

thread IDs, uses for, 68
thread-specific data, 72-74
versus processes, when to use, 94

tifftest.c (libtiff library), listing 2.9, 40

time system call, 195

time information, gettimeofday system
call, 176-177

time.c (show wall-clock time),
listing 11.6, 239-240

time.so module (sample application
program), 239-240

timers, setting interval timers, 185-186

timestamp.c (append a timestamp),
listing B.2, 285

tmpfile function, 29

tools. See development tools

top command, 179

transferring data, sendfile system call,
183-185

Transmission Control Protocol
(TCP), 123

troff, formatting man pages, 255

troubleshooting. See error checking

tsd.c (thread-specific data), listing 4.7,
73-74

U

UID (user ID), 198

ulimit system call, 174

umasks, permission bits, 283

uname system call, 169, 187

unary numbers, defined, 270

uncancelable threads, 71-72
defined, 70

UNIX epoch, defined, 176

UNIX-domain sockets. See local
sockets

unlink system call, 28, 119, 296

unsetenv function, 26

up command, GDB, 12

uptime command, 166

uptime information, /proc/uptime,
165-166

user authentication, 208-209, 211

USER environment variable, 25

user IDs (UID), 198
real versus effective IDs, 205-206

setuid programs, 206-208

usernames, UID (user ID), 198

users
process user IDs, 199-200
root, 199
UID (user ID) and GID (group ID), 198

V

variables
condition variables, synchronizing

threads, 86-91
environment variables, 25-27

accessing, 26
clearing, 26
as configuration information, 26-27
enumerating all, 26
setting, 26

errno, 33
thread-specific data, 72-74

vector reads, low-level I/O
functions, 295

21 0430 index 5/22/01 2:27 PM Page 339

340 vector writes

vector writes, low-level I/O functions,
293-295

version number of kernel,
/proc/version, 148, 160

virtual file systems
copying from devices, 142
creating, 140-142
defined, 139

W-Z

wait functions, terminating processes,
56-57

wait operation (semaphores), 83,
103-104

-Wall option (GCC compiler), 260

Web sites, list of online resources,
303-304

where command, GDB, 12

whoami command, 207

Win32 named pipes, versus FIFOs, 116

Windows text files, reading, 287

write system call, 169, 285-286

write-all.c (write all buffered data),
listing B.3, 286

write-args.c (writev function),
listing B.7, 294-295

writev system call, 293-295

write_journal_entry.c (data buffer
flushing), listing 8.3, 173

writing
data to file descriptors, low-level I/O

functions, 285-286
man pages, 255

zombie processes, 57-59

zombie.c (zombie processes),
listing 3.6, 58

21 0430 index 5/22/01 2:27 PM Page 340

V
O

I
C

E
S

T

H
A

T

M
A

T
T

E
R

H O W T O C O N T A C T U S

V I S I T O U R W E B S I T E

On our Web site, you’ll find information about our other books, authors, tables of
contents, and book errata.You will also find information about book registration and how
to purchase our books, both domestically and internationally.

E M A I L U S

Contact us at: nrfeedback@newriders.com

• If you have comments or questions about this book
• To report errors that you have found in this book
• If you have a book proposal to submit or are interested in writing for New Riders
• If you are an expert in a computer topic or technology and are interested in being a

technical editor who reviews manuscripts for technical accuracy

Contact us at: nreducation@newriders.com

• If you are an instructor from an educational institution who wants to preview New
Riders books for classroom use. Email should include your name, title, school, depart-
ment, address, phone number, office days/hours, text in use, and enrollment, along
with your request for desk/examination copies and/or additional information.

Contact us at: nrmedia@newriders.com
• If you are a member of the media who is interested in reviewing copies of New

Riders books. Send your name, mailing address, and email address, along with the
name of the publication or Web site you work for.

B U L K P U R C H A S E S / C O R P O R AT E S A L E S

If you are interested in buying 10 or more copies of a title or want to set up an
account for your company to purchase directly from the publisher at a substantial
discount, contact us at 800-382-3419 or email your contact information to
corpsales@pearsontechgroup.com.A sales representative will contact you with
more information.

W R I T E TO U S

New Riders Publishing
201 W. 103rd St.
Indianapolis, IN 46290-1097

C A L L / FA X U S

Toll-free (800) 571-5840
If outside U.S. (317) 581-3500
Ask for New Riders
FA X : (317) 581-4663

W W W . N E W R I D E R S . C O M

W W W . N E W R I D E R S . C O M

35710430BM 5/22/01 1:39 PM Page 341

ISBN 073570970X
500 pages
US $39.99

ISBN: 073570998X
Available Summer 2001
US $39.99

ISBN: 0735710317
400 pages
US $39.99

ISBN: 0735710201
1152 pages
US $49.99ISBN: 0735710643

Available Summer 2001
US $49.99

Embedded Linux

John Lombardo

Embedded Linux provides the
reader the information needed
to design, develop, and debug an
embedded Linux appliance. It
explores why Linux is a great
choice for an embedded
application and what to look
for when choosing hardware.

Berkeley DB

Sleepycat Software

This book is a tutorial on using
the Berkeley DB, covering meth-
ods, architecture, data applica-
tions, memory, and configuring
the APIs in Perl, Java, and Tcl,
etc. The second part of the
book is a reference section of
the various Berkeley DB APIs.

Networking Linux: A
Practical Guide to TCP/IP

Pat Eyler

This book goes beyond the
conceptual and shows the neces-
sary know-how to Linux TCP/IP
implementation step-by-step. It is
ideal for programmers and net-
working administrators who are
in need of a platform-specific
guide in order to increase their
knowledge and overall efficiency.

Inside XML

Steven Holzner

Inside XML is a foundation book
that covers both the Microsoft
and non-Microsoft approach to
XML programming. It covers in
detail the hot aspects of XML,
such as DTD’s vs. XML Schemas,
CSS, XSL, XSLT, Xlinks,
Xpointers, XHTML, RDF, CDF,
parsing XML in Perl and Java, and
much more.

PHP Functions Essential
Reference

The PHP Functions Essential
Reference is a simple, clear, and
authoritative function reference
that clarifies and expands upon
PHP's existing documentation. It
will help the reader write effec-
tive code that makes full use of
the rich variety of functions avail-
able in PHP.

T O P S E L L I N G B O O K S F R O M N E W R I D E R S

35710430BM 5/22/01 1:39 PM Page 342

New Riders has partnered with

InformIT.com to bring technical

information to your desktop.

Drawing on New Riders authors

and reviewers to provide additional

information on topics you’re

interested in, InformIT.com has

free, in-depth information you

won’t find anywhere else.

As an InformIT partner, New Riders
has shared the wisdom and knowledge
of our authors with you online.
Visit InformIT.com to see what
you’re missing.

Solutions from experts you know and trust.

www.informit.com

www.informit.com � www.newriders.com

OPERATING SYSTEMS

WEB DEVELOPMENT

PROGRAMMING

NETWORKING

CERTIFICATION

AND MORE…

Expert Access.
Free Content.

� Master the skills you need,
when you need them

� Call on resources from
some of the best minds in
the industry

� Get answers when you need
them, using InformIT’s
comprehensive library or
live experts online

� Go above and beyond what
you find in New Riders
books, extending your
knowledge

35710430BM 5/22/01 1:39 PM Page 343

Colophon

The ruins of the Stabian Baths in Pompeii, captured by photographer Mel Curtis, are featured on
the cover of this book. Said to be the largest and oldest of the baths, the Stabian baths also offered
massages and poetry readings. Residents of Pompeii visited these public baths daily.The baths are
named for their location on Stabian Street.

This book was written and edited in LaTeX, and then converted to Microsoft Word by New Riders
and laid out in QuarkXPress.The font used for the body text is Bembo and MCPdigital. It was
printed on 50# Husky Offset Smooth paper at R.R. Donnelley & Sons in Crawfordsville, Indiana.
Prepress consisted of PostScript computer-to-plate technology (filmless process).The cover was
printed at Moore Langen Printing in Terre Haute, Indiana, on Carolina, coated on one side.

35710430BM 5/22/01 1:39 PM Page 344

