

Building
a Web Site
with Ajax

Visual QuickProject Guide

by Larry Ullman

Visual QuickProject Guide
Building a Web Site with Ajax
Larry Ullman

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2008 by Larry Ullman

Editor: Rebecca Gulick
Copy Editor: Liz Welch
Production Editors: Lisa Brazieal and Tracey Croom
Compositor: Roberta Great
Indexers: Ron Strauss and Ann Rogers
Technical Reviewer: Arpad Ray
Cover photo: Quigley Photography/iStockphoto.com

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting
permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken
in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book
or by the computer software and hardware products described in it.

Trademarks
Visual QuickProject Guide is a registered trademark of Peachpit Press, a division of Pearson Education. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear as requested by the
owner of the trademark. All other product names and services identifi ed throughout this book are used in editorial fashion
only and for the benefi t of such companies with no intention of infringement of the trademark. No such use, or the use of
any trade name, is intended to convey endorsement or other af liation with this book.

ISBN-13: 978-0-321-52441-6
ISBN-10: 0-321-52441-1

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

To Zoe Isabella and Sam Atticus

Special Thanks to...
Rebecca Gulick, the best editor in
the land, without whom this book
would not exist.

Everyone else at Peachpit Press who
help make a “book” an actual book:
Lisa Brazieal, Tracey Croom, Roberta
Great, Liz Welch, Glenn Bisignani,
Ron Strauss, and Ann Rogers.

Arpad Ray, who performed a top-
notch technical review.

Jessica, for everything and every-
thing and everything.

Nicole, for helping with the kids so
I could actually get some work done
(even if I didn’t want to).

introduction ix

how Ajax works x
what you’ll learn xi
how this book works xii

required tools xiii
companion web site xvi
the next step xvii

 1. access MySQL 1

access MySQL 2
make the database 3
make the tables 5

populate the tables 7
extra bits 9

 2. browsing employees 11

what we’ll do 12
create an HTML page 13
add the HTML form 14
start a PHP page 15
print the employees 16
report on any errors 17

connect to the database 18
create a style sheet 19
use the style sheet 20
test the pages 21
extra bits 22

contents

v

contents
 3. browsing using Ajax 25

what we’ll do 26
make a function 27
check for Ajax support 28
call the function 29
set up the Ajax 30
begin the PHP page 32

print the employees 33
handle the response 35
display the results 36
modify the HTML 37
test the Ajax layer 38
extra bits 39

 4. adding records 43

what we’ll do 44
start the HTML page 45
add the form 46
add the form elements 47
start a PHP page 49

validate the form data 50
update the database 53
report any errors 54
test the non-Ajax version 55
extra bits 57

 5. adding records via Ajax 59

what we’ll do 60
add the Ajax elements 62
apply the Ajax layer 63
set up the Ajax 64
prepare the form data 65
complete the function 66
prepare for HTML 67
validate the form data 68

update the database 72
complete the XML 73
handle the response 75
prepare the page 76
handle the XML 77
display the results 79
test the Ajax layer 80
extra bits 82

vi contents

 6. creating a search 87

what we’ll do 88
start the HTML page 89
add the form 91
start a PHP page 92
query the database 93

print the results 94
report any errors 95
test the non-Ajax version 96
extra bits 97

 7. enabling an Ajax search 99

what we’ll do 100
add the Ajax elements 102
apply the Ajax layer 103
set up the Ajax 105
complete the function 106
prepare for XML 107
query the database 108
fetch the results 109
complete the PHP 110
handle the response 111

prepare the page 112
handle the XML 113
display the results 114
handle the name 116
handle the department 117
handle the email 119
display no results 121
complete the function 122
test the Ajax layer 123
extra bits 124

appendix 129

Ajax issues 130
Ajax alternatives 131
introducing JSON 132
sending JSON 134
accessing JSON data 136
using JSON data 137

web resources 139
JavaScript frameworks 140
PHP-Ajax frameworks 141
debugging JavaScript 142
extra bits 146

index 149

viicontents

This page intentionally left blank

introduction
The Visual QuickProject Guide you hold in your hands off ers a unique way to
learn about new technologies. Instead of drowning you in theoretical possbili-
ties and lengthy explanations, this Visual QuickProject Guide uses big illustra-
tions coupled with clear, concise step-by-step instructions to show you how to
complete a specifi c project in a matter of hours.

This particular book in the Visual QuickProject series teaches you how to
“roll your own” Ajax-enabled application. The specifi c example will involve
managing employees in a company, organized by departments into a type of
address book. But the actual example is secondary to the technologies and
ideas being taught. By the end of this book, you’ll have a nice, working
example; tons of usable code; and an education in Ajax that you can apply
to your own projects.

ix

how Ajax works
Normally, when
a client—the
user and their
Web browser—
requests a Web
page, the server
handles the
request, sending
the data back to
the client. The
client loads the
data, redrawing
the browser with
the requested page. For each request, this process is repeated.

Ajax is one way to create Rich Internet Applications (RIAs): Web sites that
behave more like desktop applications. With an Ajax-enabled application,
after the initial loading of the page, subsequent requests can be handled
behind the scenes. Then the Web browser can be updated without the user
being aware
of the server
requests, the
downloading
of data, and so
on. In short,
Ajax provides
a nicer experi-
ence for the
end user.

request

request request
response

response
response

response

responseresponse
request

request

request

Ajax

<script
 var a=
 var xl
 if(xls

x introduction

what you’ll learn
Ajax isn’t really a “thing” in its own right so much as the combination of many
technologies. In this book, those are (X)HTML, CSS, JavaScript, XML, PHP,
MySQL, and SQL. The heart of an Ajax application is JavaScript and, in particu-
lar, a little thing called an XMLHttpRequest object. The XMLHttpRequest object
wraps up all the functionality required to circumvent the old-fashioned client-
server process.

However, this book won’t teach you how to create just an Ajax-enabled appli-
cation. You’ll see how to create a Web site that also works for those users who
can’t take advantage of Ajax (because their browser doesn’t support JavaScript
and XMLHttpRequest). Creating an Ajax-enabled application that will still func-
tion for non-Ajax-enabled browsers is a two-step process.

In one chapter, you’ll create
a non-Ajax version of some
feature. The non-Ajax ver-
sion will work for any user
and show you, the developer,
what this part of the site
should do.

The second step is to add the
Ajax layer on top of the non-
Ajax version. The intent of the
Ajax layer will be the same as
the non-Ajax layer, but all the
steps will take place in a more
sophisticated way for the end
user.

request

request
response response

request

request

request

response
response

response
Ajax

<script
 var a=
 var xl
 if(xls

xiintroduction

how this book works
The title of each section
explains what idea is covered
on that page.

Code blocks show what
should be put in the various
HTML, CSS, JavaScript, and
PHP fi les. Sometimes code
will appear in boldface to
indicate that it is being
added to existing code.

Captions explain what you’re
doing and why.

Numbered steps indicate the
order in which some things
must occur.

Screenshots show how the
code looks or what it does
upon execution.

An ellipsis (…) in a code block
indicates that there is more
code than is being shown.
Normally the omitted code
has been generated on the previous pages.

Important pieces of code, such as variables,
functions, and commands, as well as con-
cepts, are emphasized.

print the employees
The PHP page prints the list of employees in the given department. To do so,
a database query is required. (See extra bits on page 41.)

 3 Fetch any returned records and print them with a little
bit of HTML and CSS formatting.

 1 Include the database connection script (written in
the previous chapter).

 2 Query the database, looking for employees in the
given department.

browsing using Ajax 33

xii introduction

prepare the form data p. 65

• When a form is submitted using
the method, you’ll see the
form data in the URL, with
a syntax of

. This is the
same syntax used by , but
the data isn’t sent in the URL
and you don’t need the question
mark.

• All of the form data needs to be
run through the

 function to make it safe
to send to the PHP page. Rather
than apply that function to each
value separately, using a for loop
on an array of form elements lets
us accomplish the same thing
with less code.

• The plus sign in JavaScript
is used to perform concatena-
tion: appending one string onto
another. In PHP, the period does
the same thing.

• If you wanted to send XML data
to the PHP script, you would set
the to .

complete the function p. 66

• When using the GET method, use
the value null as the only argu-
ment when calling . Any
data sent over GET is appended
to the URL itself. When using
POST, you need to provide the
data when you call , as it’s
not sent in the URL.

prepare for XML p. 67

• The PHP script sends its response
as XML data, not as a normal
Web page. Everything PHP will
print will be part of this XML.

• The XML data being created is
really like the data in an HTML
page, where there’s one root ele-
ment and any number of nested
subelements. For this example,
the root element will be called

 and there will be two
subelements. There can be zero
or more elements called
and there will always be exactly
one element called . In
comparison, an HTML page has
a root element called , two
subelements named and

, and more subelements
within those.

extra bits (cont.)

adding records via Ajax 83

The extra bits section at the
end of each chapter contains
tips and tricks that you might
like to know. The heading for
each group of tips matches
the section title. The page
number next to the heading
makes it easy to fi nd the sec-
tion to which the tips belong.

introduction xiii

required tools
This book covers the basics of Ajax but not of Web development. The assumption
is that you already have, and know how to use, certain tools and technologies.

A text editor, integrated development environment (IDE), or What You
See Is What You Get (WYSIWYG) editor is a must. This might be BBEdit
on the Macintosh (my personal favorite text editor), Notepad on Windows,
Eclipse (a popular, open source IDE), or Dreamweaver (a popular, commercial
WYSIWYG app). It doesn’t matter what you use as long as it’s something in
which you can create and edit plain-text fi les.

The second requirement is a Web browser, but if you have a computer, you
have one of these. Because Ajax can have browser-specifi c issues, you’ll want
to have many different browsers on many diff erent operating systems, if at
all possible. I tested the book’s examples using Internet Explorer and Firefox
on Windows (XP) and using Safari, Firefox, and Opera on Mac OS X.

xiv introduction

I highly recommend that you use Firefox for development and initial
testing purposes, as it’s far less quirky than Internet Explorer and has many
great debugging tools.

The most advanced requirement is a PHP-enabled Web server. You’ll need
to run PHP through Apache, Microsoft’s Internet Information Server, or some
other Web server. This can be on your own computer or on a hosted server. If
you don’t know what PHP is, you should probably check out one of my PHP
books before cracking this one (see “the next step” for recommendations).

introduction xv

If you’re using a hosted server, you’ll need to have an FTP (File Transfer Pro-
tocol) application or similar option for uploading fi les to the server from your
computer.

Finally, you’ll need MySQL or another database application. This should be on
the same computer as PHP. If you don’t know what MySQL is, again see “the
next step” to check out one of my MySQL books. If you want to use a diff erent
database application, you’ll need to change some of the PHP code, and possibly
the SQL commands, accordingly.

required tools (cont.)

xvi introduction

companion web site
The companion Web site for this book can be found at
www.DMCInsights.com/ajax/.

Head to the downloads area to get all of the book’s code so you don’t have to
type it yourself.

After reading the book, check out the extras section for more information,
alternative versions of the examples, and more.

If you have questions or need any assistance, head to the forum.

introduction xvii

www.DMCInsights.com/ajax/

the next step
The focus in this book is creating a very good and usable Ajax-enabled applica-
tion. There are a lot of technologies involved, the most important of which is
JavaScript.

For more discussion of PHP, MySQL, SQL, and XML, see some of my other
books. A basic introduction to PHP can be found in my PHP for the World
Wide Web, 2nd Edition: Visual QuickStart Guide (ISBN 0-321-24565-2).
I provide thorough coverage of SQL and MySQL in MySQL, Second Edition:
Visual QuickStart Guide (ISBN 0-321-37573-4). All of this information, and
much more, is put together in my PHP and MySQL for Dynamic Web Sites,
Second Edition: Visual QuickPro Guide (ISBN 0-321-33657-7). And I discuss
XML in one chapter of my PHP 5 Advanced: Visual QuickPro Guide
(ISBN 0-321-37601-3).

For more information on (X)HTML and CSS, see Elizabeth Castro’s excellent
HTML, XHTML, and CSS, Sixth Edition: Visual QuickStart Guide (ISBN
0-321-43084-0).

xviii introduction

The Ajax-enabled Web site we’ll be creating in this book uses a database on
the server to store all of the content: a list of employees, along with some per-
tinent sample information about them. To begin, we need to create and popu-
late this database. For the example, I’ll be using MySQL, a popular open-source
database application.

This chapter covers what you need to know to create the database but assumes
that you have access to a MySQL installation. I’ll demonstrate the steps in this
chapter using two diff erent interfaces: the command-line mysql client and
the Web-based phpMyAdmin. If you have any questions or problems with
this chapter’s instructions, see my book MySQL, Second Edition: Visual
QuickStart Guide (ISBN 0-321-37573-4) or search the Web.

1. creating the database

1

access MySQL
If you’re running MySQL on your own computer, or have command-line
access to your server, log into the mysql client. You’ll need to enter a
username and password combination. These values must already be
established in MySQL in order to work. (See extra bits on page 9.)

If you’re running MySQL on a remote server, or you just prefer not to go
command-line, use phpMyAdmin in a Web browser. It must already be
preconfi gured to access MySQL.

2 creating the database

make the database
 1 On the command line, using the mysql client, type CREATE DATABASE
ajax, followed by a semicolon (;), and press Enter or Return. If you’ve
accessed MySQL as a user with permission to create databases, you’ll see a
message saying that the query was OK and that one row was aff ected.

 2 Type USE ajax, followed by
a semicolon, and press Enter or
Return.

creating the database 3

make the database (cont.)

 1 If you are using phpMyAdmin, type the name of the database—I’m using
the name ajax—in the Create new database box, and then click Create. (You
can ignore the Collation menu; see extra bits on page 9.)

The resulting page should
show that the database was
created.

 2 If phpMyAdmin did not automatically
select the new database for you, use the
drop-down menu on the left to select it.
(phpMyAdmin will likely have already
selected that database for you.)

4 creating the database

make the tables
If you are using the
command-line mysql cli-
ent, create the tables in
the database by running
two CREATE TABLE
commands. (See extra
bits on page 10.)

CREATE TABLE departments (
 department_id TINYINT UNSIGNED NOT NULL AUTO_INCREMENT
PRIMARY KEY,
 department VARCHAR(30) NOT NULL,
 UNIQUE (department)
);

CREATE TABLE employees (
 employee_id INT UNSIGNED NOT NULL AUTO_INCREMENT
PRIMARY KEY,
 department_id TINYINT UNSIGNED NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 last_name VARCHAR(40) NOT NULL,
 email VARCHAR(60) NOT NULL,
 phone_ext SMALLINT UNSIGNED NOT NULL,
 INDEX (department_id),
 INDEX (last_name),
 UNIQUE (email)
);

creating the database 5

make the tables (cont.)

If you are using phpMyAdmin, you can run your commands in the
SQL pop-up window or through the SQL tab.

6 creating the database

populate the tables
Finally, populate the tables in
the database by running these
two INSERT commands in the
mysql client, if you’re using it.
(See extra bits on page 10.)

INSERT INTO departments (department) VALUES
(‘Human Resources’),
(‘Accounting’),
(‘Marketing’),
(‘Redundancy Department’);

INSERT INTO employees (department_id, first_name,
last_name, email, phone_ext) VALUES
(1, ‘Laila’, ‘Smith’, ‘l.smith@thiscompany.com’, 234),
(1, ‘Laverne’, ‘Green’, ‘l.green@thiscompany.com’, 235),
(1, ‘Cal’, ‘Perez’, ‘c.perez@thiscompany.com’, 230),
(1, ‘Brian’, ‘Rogers’, ‘brianr@thiscompany.com’, 231),
(1, ‘Carla’, ‘Cox’, ‘cc@thiscompany.com’, 233),
(2, ‘Ezra’, ‘Howard’, ‘e.howard@thiscompany.com’, 122),
(2, ‘Gideon’, ‘Gray’, ‘g.gray@thiscompany.com’, 128),

continues

creating the database 7

populate the tables (cont.)

If using phpMyAdmin, you can run your commands in the
SQL pop-up window or through the SQL tab.

(2, ‘Penelope’, ‘Brooks’, ‘pb@thiscompany.com’, 129),
(2, ‘Olive’, ‘Kelly’, ‘olive@thiscompany.com’, 120),
(2, ‘Justine’, ‘Sanders’, ‘j.sanders@thiscompany.com’,
 123),
(2, ‘Zoe’, ‘Ford’, ‘zoe@thiscompany.com’, 125),
(3, ‘Sam’, ‘Fisher’, ‘sam@thiscompany.com’, 385),
(3, ‘Henry’, ‘Barnes’, ‘henry@thiscompany.com’, 386),
(3, ‘Eleanor’, ‘Wood’, ‘eleanor@thiscompany.com’, 387),
(4, ‘Emmet’, ‘Humphries’, ‘e.humphries@thiscompany.
 com’, 401),
(4, ‘Conrad’, ‘Madsen’, ‘conrad@thiscompany.com’, 410),
(4, ‘Maude’, ‘Ernst’, ‘m.ernst@thiscompany.com’, 409),
(4, ‘Stella’, ‘Redding’, ‘s.redding@thiscompany.com’,
 408),
(4, ‘Nat’, ‘Fugate’, ‘nat@thiscompany.com’, 407),
(4, ‘Hazel’, ‘Hay’, ‘h.hay@thiscompany.com’, 402);

continued

8 creating the database

extra bitsextra bits

access MySQL p. 2

• You can use pretty much any
database application for your
Web sites, not just MySQL. If
there’s one you’re more comfort-
able with, feel free to switch.
(Note that you would also need
to change the PHP code in
the rest of the book.)

• The mysql client can be tricky
if you’re not used to it. If you
have any problems, check out
the MySQL manual, a book on
MySQL, or this book’s support
site at www.dmcinsights.com/
ajax/. Many people fi nd phpMy-
Admin, also used in this chapter,
to be an easier option.

make the database p. 4

• If you’re using MySQL on a
hosted Web site, your host will
likely provide you with phpMy-
Admin access. They may or may
not let you create databases,
though. If not, just use the data-
base you have already (assum-
ing it does not have tables called
departments and employees).

• A database’s collation refers to
the types of language charac-
ters the database will support. If
you don’t specify a collation, the
MySQL default collation will be
used. This is normally fi ne.

creating the database 9

www.dmcinsights.com/ajax
www.dmcinsights.com/ajax

make the tables p. 5

• Both tables are defi ned in a
minimalist way. You can add
columns if you’d like, but you’ll
need to change the INSERT
commands (later in the chapter)
accordingly.

• The SQL commands in this chap-
ter, and all of the book’s code,
can be downloaded from www.
dmcinsights.com/ajax/.

• The departments table has a
unique index on the department
column, ensuring that each
department is listed only once.

• There is a one-to-many relation-
ship between the two tables.
Each employee can be in only
one department but each depart-
ment can have many employees.
This relationship is represented
by the department_id column,
which is in both tables.

• You can create tables in php-
MyAdmin using either of the
SQL text areas as shown in
the examples or by using the
create table prompt. To use the
prompt, provide phpMyAdmin
with the name of the table and
the number of fi elds, and it will
create a form where you can
enter all of the column defi nitions.

populate the tables p. 7

• The data being inserted isn’t
important, so long as you popu-
late the tables with some infor-
mation. You can make up your
own records or download the
SQL commands from the book’s
corresponding Web site at www.
dmcinsights.com/ajax/.

• The department_id value for
each employee must correspond
to an actual department_id
from the departments table.

extra bits (cont.)

10 creating the database

www.dmcinsights.com/ajax
www.dmcinsights.com/ajax
www.dmcinsights.com/ajax
www.dmcinsights.com/ajax

This book’s example contains three facets: browsing employees by department,
adding employees, and searching for employees by last name. For each sec-
tion, we’ll create a non-Ajax version, and then apply the Ajax elements on top.
In this chapter, we’ll make a non-Ajax way to browse employees. To do so, we’ll
create one HTML page, two PHP scripts, and a CSS style sheet.

The non-Ajax pages can act as a model for how the Ajax layer should behave,
and more importantly, if anyone accessing this site cannot use the Ajax-enabled
pages, the site will still be fully functional for them. Also, two of the fi les gen-
erated in this chapter—one PHP script and the CSS document—will be used by
all of this book’s examples, Ajax and non-Ajax alike.

You may fi nd it easiest to follow along by fi rst downloading all the code from
the book’s corresponding Web site (www.dmcinsights.com/ajax/).

2. browsing employees

11

www.dmcinsights.com/ajax

what we’ll do
 1 First, on pages 13-14, we’ll create a simple HTML form.

The HTML form will have a drop-down menu listing the depart-
ments. These values will match those inserted into the database in
Chapter 1, “creating the database.”

When the user clicks GO, the
form will be submitted to a
PHP script.

 2 On pages 15-17, the PHP script that
handles the HTML form will be written.

The script shows the employees for
the department selected in the HTML
form. These employees come from the
database created in Chapter 1.

 3 Because the PHP page’s results come
from a database, a special PHP script
will be written on pages 18 solely
for the purpose of connecting to the
database.

 4 On pages 19-20, a very simple style
sheet will be made and added to the HTML page, giving the Web pages a
slightly (but only slightly) more attractive appearance.

 5 As a last step, we’ll test what we’ve built to make sure it all works.

At the end of this chapter, in the extra bits section, you’ll fi nd more informa-
tion, tips, and recommendations regarding all of these steps.

12 browsing employees

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//
EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:
lang=”en” lang=”en”>
<head>
 <meta http-equiv=”content-type” content=”text/html;
charset=utf-8” />
 <title>Employees by Department</title>
</head>
<body>
<!-- dept_form.html -->
</body>
</html>

create an HTML page
The very fi rst step in the Ajax application is a basic HTML form. Use any
text editing application to make a new HTML document. (See extra bits
on page 22.)

All this jibberish is just the framework of an
HTML page. The only bit of text here that will
be apparent to the end user is the <title>
value, which shows up in the top of the user’s
Web browser (see the fi gure on page 12).

Save this fi le as dept_form.html and place it in
a directory on your Web server.

browsing employees 13

…
<body>
<!-- dept_form.html -->
<p>Select a department and click ‘GO’ to see the

employees in that department.</p>

<form action=”dept_results.php” method=”get” id=”dept_

 form”>

 <p>

 <select id=”did” name=”did”>

 <option value=”1”>Human Resources</option>

 <option value=”2”>Accounting</option>

 <option value=”3”>Marketing</option>

 <option value=”4”>Redundancy Department</option>

 </select>

 <input name=”go” type=”submit” value=”GO” />

 </p>

</form>

</body>
</html>

add the HTML form
Just before the form, add instructions for the user.

The value for the form’s action should be the name of the PHP
script that will handle this form. Set the method as get. Give
the form a meaningful id value. (See extra bits on page 22.)

The form contains a select menu, listing the departments. The value
of each option is the department number from the database. The name
and id of this form element must be did (short for department ID).

The form needs a submit button, too.

14 browsing employees

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//
EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:
lang=”en” lang=”en”>
<head>
 <meta http-equiv=”content-type” content=”text/html;
charset=utf-8” />
 <title>Employees by Department</title>
</head>
<body>
<h1>Department Employees</h1>
<?php # dept_results.php
?>
</body>
</html>

start a PHP page
The main PHP page handles the form submission. It should also be a valid
HTML document, so start with those tags. (See extra bits on page 22.)

All of the page’s functionality will go in between the PHP tags.

This fi le must be saved as dept_results.php and placed in the
same directory as dept_form.html.

browsing employees 15

…

<?php # dept_results.php

$did = 0;
if (isset($_GET[‘did’])) {
 $did = (int) $_GET[‘did’];
}
if ($did > 0) {
 require_once(‘mysql.inc.php’);
 $q = “SELECT * FROM employees WHERE department_
id=$did ORDER BY last_name, first_name”;
 $r = mysql_query($q, $dbc);
 if (mysql_num_rows($r) > 0) {
 while ($row = mysql_fetch_array($r, MYSQL_ASSOC))
{
 echo “<p>{$row[‘last_
name’]}, {$row[‘first_name’]}

 Email: {$row[‘email’]}

 Phone Extension: {$row[‘phone_
ext’]}
 </p>\n”;
 }

print the employees
 1 Within the PHP tags, start by making sure that a valid depart-
ment ID was received. The department ID must be an integer
greater than 0. (See extra bits on page 23.)

 2 Then include the database connection script (to be written next).

 3 Query the database, looking for employees in the given department.

 4 Fetch any returned records and print them with a little bit of
HTML and CSS formatting.

16 browsing employees

…

</p>\n”;

 }

} else {
 echo ‘<p class=”error”>There are no employees
listed for the given department.</p>’;
 }
} else {
 echo ‘<p class=”error”>Please select a valid
department from the drop-down menu in order to view
its employees.</p>’;
}
?>

…

report on any errors
The PHP script should let the user know if an error occurred. Complete the
two IF conditionals created in the previous steps.

 1 The fi rst else clause will apply
if the database query didn’t
return any results.

 2 The second else clause will
apply if the PHP script did not
receive a valid department ID.

browsing employees 17

<?php # mysql.inc.php
$dbc = @mysql_connect (‘localhost’, ‘username’,
‘password’);
if (!$dbc OR !mysql_select_db (‘ajax’)) {
 echo ‘<p class=”error”>The site is currently
experiencing technical difficulties. We apologize for any
inconvenience.</p>’;
 exit();
}
?>

connect to the database
Create a new, blank PHP script that connects to the database. This script does
not require the basic HTML tags. (See extra bits on page 23.)

 1 The script fi rst tries to connect to MySQL. The username and pass-
word values must match an existing MySQL user. Change these values
in this code to match the appropriate user for your MySQL server.

 2 The script then attempts to select the ajax database. This is the
name of the database created in Chapter 1.

 3 Error messages are
printed if either attempt
fails. If so, the script then
terminates because there’s
no need to go on without a
database connection.

 4 Save this fi le as mysql.
inc.php and place it in the
same directory on your Web
server as dept_form.html.

18 browsing employees

body {
 font-family: sans-serif;
}
.name {
 font-weight: bold;
 text-transform: uppercase;
 color: #009;
}
.error {
 font-weight: bold;
 color: #C00
}
#results {
 border: medium solid #390;
 display: none;
 padding-left: 10px;
 width: 300px;
}

create a style sheet
The CSS style sheet is a separate document that dictates how the pages look. Create a
new fi le in your test editor or IDE, containing this code. (See extra bits on page 24.)

The body section sets the default font for the entire HTML page.

The second section formats text with a class value of name. That would
be the employee’s name in the listing of results in dept_results.php.

The third section applies some formatting to any errors (which will have
a class value of error), like those created in both PHP scripts.

The fi nal section applies to any block with an id value of results. You’ll use
this when adding the Ajax layer in the next chapter.

Save this fi le as style.css and place it in the same directory on your Web
server as every other fi le.

browsing employees 19

…
<title>Employees by Department</title>
 <style type=”text/css” media=”all”>@import “style.

css”;</style>

</head>
<body>
…

use the style sheet
For the style sheet to be used, it must be referenced in the HTML and
PHP pages. Do so by adding a line to the <head> section of both fi les:

The style sheet is mostly
cosmetic. The non-Ajax
layer will work perfectly
fi ne without it, but it won’t
look as nice.

20 browsing employees

test the pages
 1 Load the HTML page in your Web
browser to test what we’ve created so far.

The address must begin with http:// for
this to work. (See extra bits on page 24.)

 2 Select a department and click GO.

 3 The PHP page
should show the
results.

browsing employees 21

create an HTML page p. 13

• HTML, JavaScript, CSS, and
PHP can be written in nearly
any application. I prefer to use
a simple text editor (specifi -
cally, BBEdit on Mac OS X), but
use what you like. People who
focus on Web development
often like a WYSIWYG (What
You See Is What You Get) tool
like Dreamweaver. PHP develop-
ers sometimes lean toward IDEs
(integrated development enviro-
ments) like Eclipse, NuSphere’s
PhpED, or Zend Studio.

• For the HTML in this book, I’ll
be using the XHTML 1.0 Strict
standard. For more information
on this, see a dedicated HTML
resource, like Elizabeth Castro’s
most excellent HTML, XHTML,
& CSS: Visual QuickStart Guide,
Sixth Edition (ISBN-13: 978-
0321430847).

• Both the Ajax and non-Ajax ver-
sions of this example use PHP,
which means that you must
have a PHP-enabled Web
server to test the examples on.
This can be your own computer,
if you’ve installed PHP, or a
remotely hosted Web site, if you
have one of those.

• For the sake of simplicity, every
fi le created in this book will just
go in the same folder on the
server.

add the HTML form p. 14

• When it comes to handling
HTML forms, the action and
the method are the two most
important considerations. The
action tells the browser to
what page the form data should
be sent. The method tells the
browser how that data should be
sent. The get method sends the
data in the URL.

• Normally I would have PHP
dynamically generate any drop-
down menu that corresponds to
a database table. I’m saving steps
by not doing so here.

start a PHP page p. 15

• PHP is a server-side language
used to dynamically gener-
ate HTML code (among other
purposes). Anything within the
PHP tags—<?php and ?>—will
be treated as PHP code. Any-
thing outside of those tags will
immediately be sent to the Web
browser and treated as HTML.

extra bits

22 browsing employees

extra bits

print the employees p. 16

• When it comes time to test this
part of the Web site, if you have
problems with this page you’ll
need to employ some standard
PHP-database debugging tech-
niques. Begin by printing out
the query being run (add echo
$q; after the query is created).
Then run the query using another
interface, like the command-line
mysql client or the Web-based
phpMyAdmin. These two steps
will confi rm what the query’s
results are.

• Another useful debugging tech-
nique for any PHP script is to
view the dynamically-generated
HTML source code in your Web
browser. Sometimes the problem
can be hidden there.

• For more information on PHP
and PHP-MySQL interactions,
see my book PHP and MySQL
for Dynamic Web Sites:
Visual QuickPro Guide, Sec-
ond Edition (ISBN-13: 978-
0321336576) or search the Web.

connect to the database p. 18

• As many PHP scripts in this
application will use the database,
it’s best to create one script that
establishes that connection.
Every page that requires a data-
base connection will then include
this fi le.

• The mysql.inc.php script can
be a likely cause of problems. To
guarantee that it works when
it comes time to test the site,
make sure you are using a user-
name and password combi-
nation that has access to the
ajax database. If you have any
problems, check out the MySQL
manual, a book on MySQL (like
my MySQL, Second Edition:
Visual QuickStart Guide
(ISBN-13: 978-0321375735), or
this book’s support Web site at
www.dmcinsights.com/ajax/.

browsing employees 23

www.dmcinsights.com/ajax/

extra bits

create a style sheet p. 19

• I’m making only minimal use of
CSS (Cascading Style Sheets) in
this book, but CSS is defi nitely
part of Rich Internet Applications
(RIA), like the one being created.
For more information on this
subject, search the Web or check
out Elizabeth Castro’s HTML,
XHTML, & CSS: Visual QuickStart
Guide, Sixth Edition (ISBN-13:
978-0321430847).

• The most interesting of the style
defi nitions is the one for items
with an id value of results. Such
items will not be displayed when
the page is fi rst loaded. Then,
when appropriate, the JavaScript
will fi ll that section with results
and make it visible. This all takes
place in the Ajax layer, created in
the next chapter.

test the pages p. 21

• All PHP pages must be run
through a URL in order to work.
Therefore, the HTML form
must also be run through a URL
(the address must begin with
http://). If the address begins
with file://, the PHP script
handling the form won’t do its
thing.

• Getting these components to
work is a perfect fi rst step in
creating an Ajax-enabled layer.
It’s easier to debug these pages
than it will be once JavaScript
and other technologies are added
to the mix.

• Debugging PHP may be the
hardest skill for the beginner to
learn—unfortunately, the begin-
ner will end up doing the most
debugging (it’s a “trial by fi re”
situation). If you have problems
getting these pages to work,
see the book’s Web site at
www.dmcinsights.com/ajax/,
for assistance.

extra bits (cont.)

24 browsing employees

www.dmcinsights.com/ajax/

In the previous chapter, we created the non-Ajax parts of the employee brows-
ing pages. Although the focus in this book is on Ajax, it’s very important to
have working, non-Ajax components in place for those who can’t take advan-
tage of the lovely Ajax interface. In this chapter we’ll place the Ajax layer on
top of the existing one.

The Ajax components consist of three fi les: one JavaScript fi le that will pro-
vide all-purpose, browser-safe Ajax functionality; another JavaScript
fi le that will provide page-specifi c functionality; and one PHP script that
will handle the server-side needs of the Ajax layer. To make these additions
active, the main HTML form will be slightly modifi ed as a last step.

3. browsing using Ajax

25

what we’ll do
 1 First, on pages 27-28, we’ll create a JavaScript fi le that makes a browser-
specifi c supported Ajax object. That object will be used by any page requiring
Ajax functionality.

 2 On pages 29-31, a second JavaScript fi le that defi nes the functionality
specifi c to the employee-browsing aspect of the example will be started.

 3 A new PHP script will be written on pages 32-34. This script will return the
results of the Ajax request to the JavaScript.

 4 On pages 35 and 36, the second JavaScript page will be completed, han-
dling the PHP request and updating the HTML page.

 5 Next, the HTML page will be modifi ed to include the Ajax layer on page 37.

 6 As a last step, on page 38 we’ll test what we’ve built to make sure it all works.

At the end of this chapter, in the extra bits section, you’ll fi nd more
information, tips, and recommendations regarding all of these steps.

26 browsing using Ajax

make a function
One JavaScript fi le will contain all of the code for establishing generic Ajax
functionality. Use any text editing application to make a new JavaScript docu-
ment. (See extra bits on page 39.)

 1 The JavaScript function is called
getXMLHttpRequestObject() (it’s
a long but descriptive name). This
function creates a browser-specifi c
XMLHttpRequest object, stored in
the variable ajax.

 2 The function assumes no Ajax
support to start (the ajax vari-
able is initialized with the Boolean
value of false). In the rest of the
function, browsers have to “prove”
they can take advantage of the Ajax
functionality.

function getXMLHttpRequestObject() {
 var ajax = false;
}

browsing using Ajax 27

check for Ajax support
Within the function, check what kind of XMLHttpRequest object the browser
supports. If a browser supports a specifi c type of XMLHttpRequest object, make
the ajax variable an object of that type. (See extra bits on page 39.)

 2 Older versions of Internet Explorer (that have
ActiveX enabled) should get an XMLHttpRequest
object from one of these two lines.

function getXMLHttpRequestObject() {
 var ajax = false;
 if (window.XMLHttpRequest) {

 ajax = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 try {

 ajax = new ActiveXObject(“Msxml2.XMLHTTP”);

 } catch (e) {

 try {

 ajax = new ActiveXObject(“Microsoft.XMLHTTP”);

 } catch (e) { }

 }

 }

 return ajax;

}

 1 Most Web browsers—Apple’s Safari 1.2 and later, Mozilla
and Firefox, Opera 8 and later, and newer versions of Internet
Explorer—should meet this fi rst condition.

 3 Finally, this function returns the ajax variable.

 4 Save this fi le as ajax.js and place it in the
same directory on your Web server as every
other fi le.

28 browsing using Ajax

call the function
The ajax.js fi le defi nes a function that creates an XMLHttpRequest object, but
it doesn’t actually use that object. Another JavaScript fi le will do that for each
specifi c instance, like the HTML form already created. Use any text editing
application to make a new JavaScript document. (See extra bits on page 40.)

 1 The fi rst line tells the Web browsers to
run the init() function after loading the
entire page. The init() function sets up
all the Ajax activity.

 2 The init() function calls the
getXMLHttpRequestObject()
function to get a valid, browser-
specifi c object.

 3 The init() function
then checks to see if the
ajax variable has a valid
value. With supported
browsers, ajax will be an
XMLHttpRequest object.
With nonsupported
browsers, ajax will have
a value of false, and this
conditional will be false.

window.onload = init;
function init() {
 var ajax = getXMLHttpRequestObject();
 if (ajax) {
 } // End of ajax IF.
} // End of init() function.

browsing using Ajax 29

set up the Ajax
Now the JavaScript should
tell the browser what actions
should be taken when certain
events occur. (See extra bits
on page 40.)

 1 The init() function next checks
to see if the browser supports the
Document Object Model (DOM)
and, specifi cally, if the page has an
element with an id of results.

 2 If the browser supports it, an
onsubmit() event is attached
to the form (which has an id
value of dept_form). In other
words, when the form is sub-
mitted, do the following…

…
 if (ajax) {
 if (document.getElementById(‘results’)) {

 document.getElementById(‘dept_form’).onsubmit =

function() {

 var did = document.getElementById(‘did’).

value;

30 browsing using Ajax

 3 Provide to the ajax object the name of the page that should be sent
the request. This is dept_results_ajax.php, to be written next. The
request will be made using the get method.

 4 As part of that request, the department ID value (from the form) will
be passed along in the URL.

 5 When the ajax object’s readyState value changes, the
handleResponse() function should be called, passing that
function this same ajax object.

 6 Then the actual Ajax request is made.

 7 Finally, the function returns a value of false to tell the
Web browser not to actually submit the form (since the Ajax is
handling the form submission).

 8 Save this fi le as dept.js and place it in the same directory
on your Web server as every other fi le.

 ajax.open(‘get’, ‘dept_results_ajax.php?did=’

+ encodeURIComponent(did));

 ajax.onreadystatechange = function() {

 handleResponse(ajax);

 }

 ajax.send(null);

 return false;

 } // End of anonymous function.

 } // End of DOM check.

 } // End of ajax IF.
…

browsing using Ajax 31

begin the PHP page
A new PHP script will handle the Ajax request. It works exactly like
dept_results.php (which we created in the previous chapter) except
that it doesn’t need to print the opening and closing HTML tags. Use
any text editing application to make a new PHP document.

 1 The page starts by making sure that it receives a valid
department ID in the URL. For security purposes, assume
we don’t have a valid department ID.

 2 If a department ID was passed to this page in the URL,
type-cast it (force it to be an integer).

 3 If the result is a positive integer, we can go ahead and
query the database.

 4 If the result isn’t a positive integer, print an error
message instead.

<?php # dept_results_ajax.php

$did = 0;

if (isset($_GET[‘did’])) {

 $did = (int) $_GET[‘did’];

}

if ($did > 0) {

} else { // Invalid department ID!

 echo ‘<p class=”error”>Please select a valid department

from the drop-down menu in order to view its employees.</

p>’;

}

?>

32 browsing using Ajax

print the employees
The PHP page prints the list of employees in the given department. To do so,
a database query is required. (See extra bits on page 41.)

 3 Fetch any returned records and print them with a little
bit of HTML and CSS formatting.

 1 Include the database connection script (written in
the previous chapter).

 2 Query the database, looking for employees in the
given department.

…

if ($did > 0) {

 require_once(‘mysql.inc.php’);

 $q = “SELECT * FROM employees WHERE department_

id=$did ORDER BY last_name, first_name”;
 $r = mysql_query($q, $dbc);

 while ($row = mysql_fetch_array($r, MYSQL_ASSOC)) {

 echo “<p>{$row[‘last_name’]},

{$row[‘first_name’]}

 Email: {$row[‘email’]}

 Phone Extension: {$row[‘phone_ext’]}

 </p>\n”;

 } // End of WHILE loop.

browsing using Ajax 33

 } else { // No employees.

 echo ‘<p class=”error”>There are no employees listed

for the given department.</p>’;

 }

 mysql_close($dbc);

} else { // Invalid department ID!

…

 4 Print an error if no employees were
found in the given department.

print the employees (cont.)

 5 Close the database connection.

 6 Save this fi le as dept_results_ajax.php
and place it in the same directory on your Web
server as every other fi le.

34 browsing using Ajax

handle the response
The PHP page prints out the employees, but since Ajax is being used, this
printout will actually be returned to the original JavaScript. Add this new
function to the dept.js JavaScript fi le. (See extra bits on page 41.)

 1 This JavaScript function is called
when the ajax object’s readyState
value changes (see the init() func-
tion). The function receives the Ajax
object when called.

 3 If the status code is equal to
either 200 or 304, the returned
results should be fi ne to use.

 4 If we didn’t get a valid status
code back from the Ajax request,
we should formally submit the
form to the handling PHP page
(as if the Ajax layer didn’t exist
at all).

function handleResponse(ajax) {
 if (ajax.readyState == 4) {
 if ((ajax.status == 200) || (ajax.status == 304))
{
 } else {
 document.getElementById(‘dept_form’).submit();
 }
 }
}

 2 The function shouldn’t do
anything until readyState has
a value of 4, meaning that the
Ajax transaction is complete.

browsing using Ajax 35

display the results
The fi nal step in the Ajax process is to display the results by putting what
the PHP page returned on the HTML page. This code completes the han-
dleResponse() function. (See extra bits on page 41.)

 1 The results variable now
refers to a specifi c area in the
DOM of the HTML page.

 2 The text in the results area
is set to the returned response
from the Ajax request. In this
case, that’s whatever the PHP
page printed out.

 3 The results area of the
HTML page is not initially
displayed, so it needs to have
its display style changed.

…
if ((ajax.status == 200) || (ajax.status == 304)) {
 var results = document.getElementById(‘results’);

 results.innerHTML = ajax.responseText;

 results.style.display = ‘block’;

} else {
…

36 browsing using Ajax

modify the HTML
The fi nal step is to modify the HTML form
page so that the JavaScript will work.

 1 Include the two JavaScript
pages in this page.

 2 Create a div section with an id
of results. The results returned by
the Ajax request will go here.

…
 <title>Employees by Department</title>
 <script src=”ajax.js” type=”text/javascript”></

script>

 <script src=”dept.js” type=”text/javascript”></

script>

 <style type=”text/css” media=”all”>@import “style.
css”;</style>
</form>
…

...
</form>
<div id=”results”></div>

</body>
</html>

browsing using Ajax 37

test the Ajax layer
Now that all of the work is done, it’s time to see how things
turned out. (See extra bits on page 42.)

 1 Load the HTML
page in your Web
browser.

The address must
begin with http://
for this to work.

 2 Select a depart-
ment and click GO.

 3 The HTML page
should show the
results without
going to a new
page or reloading
this page.

38 browsing using Ajax

extra bits

make a function p. 27

• JavaScript, like most languages,
allows you to defi ne your own
functions. Start with the word
function, followed by the
name of the function, followed
by parentheses. The function’s
body goes between curly braces.
The function’s name can contain
only letters, numbers, and the
underscore. It cannot begin with
a number, and it also can’t be the
same as an existing keyword in
JavaScript.

• Variables declared in a function
using the keyword var are local
to that function. This is to say,
the variables only exist within
that function.

• If a function takes arguments—
values passed to the function
when it’s called—those would go
between the parentheses.

check for Ajax support p. 28

• The ajax.js fi le, which defi nes the
getXMLHttpRequestObject()
function, is the most important
script in any Ajax application. The
function returns either a valid,
browser-safe XMLHttpRequest
object or the value false. If it
returns the object, that object con-
tains all the functionality required
to perform an Ajax transaction.

• The latest versions of most
browsers support the
XMLHttpRequest object. Due
to its increasing popularity, this
should remain so, even though
it’s not part of any standard at
the time of this writing.

• Internet Explorer versions 5
and 6 didn’t support a Java-
Script XMLHttpRequest ob-
ject. Instead they supported an
ActiveX object of type XMLHTTP.
Unfortunately, if users with one
of these versions of Internet
Explorer have disabled ActiveX
support (enabling it is a secu-
rity risk), they cannot use Ajax-
enabled applications like these.

browsing using Ajax 39

extra bits

set up the Ajax p. 30

• The JavaScript refers to the Docu-
ment Object Model to access
elements in the HTML page. The
DOM is a map of every item in a
browser document. It can be used
and manipulated in limitless ways.

• The getElementById() function
allows you to access a DOM ele-
ment by referring to its ID value. So
a form with an ID of dept_form
can be accessed via document.
getElementById(‘dept_form’).

• Remember that the ajax variable
is an object of XMLHttpRequest
type. One of its functions is
open(). Provide this function
with the name of the page where

the request should be sent and
the method that should be used.

• Because the PHP script that han-
dles the request expects to receive
a department ID in the URL, the
value selected in the HTML form
must be passed along with the
request. You can access that value
using the DOM.

• The encodeURIComponent()
function ensures that the selected
form value is safe to send in a URL.

• In this JavaScript code there are
two anonymous functions.
These are functions not given a
name when defi ned. Anonymous
functions are used when it’s nec-
essary to encapsulate a chunk of
code but it’s not necessary to call
that code like a standard function.

• The XMLHttpRequest readyState
value stores the current Ajax
transaction state, on a scale from
0 to 4. The most important of
these is 4, which means that the
transaction is complete.

extra bits (cont.)

call the function p. 29

• The window.onload property
tells the JavaScript the name of
the function to call once the page
has completely loaded. In this
case that’s init, short for
initialize (i.e., set things up).

• The benefi t of calling the initializa-
tion function in this way (rather
than just calling it directly) is that
the downloading and drawing of
the page in the Web browser won’t
have to wait for the JavaScript to
do its thing. In a slight way, this
makes for a better user experience.

40 browsing using Ajax

extra bits

display the results p. 36

• Once again, the Document
Object Model allows you to eas-
ily access individual elements in
a page. The code document.
getElementById(‘results’)
refers to a div in the HTML page
that has an id of results.

• The Cascading Style Sheet
style.css sets the display
attrbute of items with an id of
results to none. The net eff ect
will be that such elements are
not visible when a page is fi rst
loaded. This is desired because
such items have a solid green
border around them and it’d be
distracting to see that prior to
actually retrieving the results.

For the purposes of these exam-
ples, we’ll assume it means the
response was fi ne.

• By referring to the Document
Object Model, we can forcibly
submit the form. The document.
getElementById(‘dept_
form’) code refers to the form
(which has an id value of dept_
form). The .submit() part of
the code submits it.

print the employees p. 33

• This PHP script is almost exactly
like dept_results.php from
Chapter 2. The main diff erence
is that it does not include the
opening and closing <html>,
<head>, and <body> tags, nor
does it include most of the stuff
that goes within those tags. The
reason why is that all of this
page’s results will be inserted into
the HTML page via JavaScript.
That page already has the proper
HTML tags.

handle the response p. 35

• In the init() function, we tell
the JavaScript to call a func-
tion called handleResponse()
whenever the readyState
value changes. This value will
change multiple times during an
Ajax request, so this function will
be called multiple times.

• The XMLHttpRequest status
attribute stores the HTTP status
code returned by the server-side
page. There are dozens of status
codes from 200, meaning that
everything was OK, to values
over 500, which are normally
server errors. A status code of
304 indicates that the page was
found but had not been modi-
fi ed since a certain date and time.

browsing using Ajax 41

• The process of hiding, then show-
ing the results area using CSS and
JavaScript is intended to make it
more obvious when the HTML
page is updated.

• Referring to an element’s
innerHTML value is a quick way
to place next text on a page. An
alternative is to add nodes to the
DOM. You’ll see this in Chapter 7,
“enabling an Ajax search.”

test the Ajax layer p. 38

• Debugging Ajax applications can
be particularly tricky because
there are so many technologies
involved: HTML, DOM, CSS,
JavaScript, PHP, SQL, and MySQL.
See Appendix A, “where to go
from here,” for debugging tips.

• You’ll want to test any Ajax appli-
cation in as many Web browsers
on as many operating systems
as possible. By knowing how the
application behaves under mul-
tiple settings, you do your best to
avoid exluding any users.

• Firefox is, in my opinion, the best
browser to test Ajax applications
in. It has a JavaScript console
that opens in another window
for displaying JavaScript errors.
This alone can be a great help.

extra bits (cont.)

42 browsing using Ajax

In the fi rst chapter we created the database structure for this employee list-
ing Web site. In the previous two chapters, we developed an Ajax as well as a
non-Ajax approach for browsing the employees by department. In this chapter,
let’s create a way to add employees to the database. Naturally we’ll start with
the non-Ajax version, for universal accessiblity, and then add the Ajax-enabled
version in the next chapter.

To begin, we’ll start by creating the HTML form that takes all the requisite
data. Then we’ll write the PHP script that handles the form submission in a
non-Ajax way. This will all be fairly basic PHP form handling.

4. adding records

43

what we’ll do
 1 First, on pages 45-48, we’ll
create an HTML page with a
form.

The form has elements
representing all of the data
that’s stored in the database
for each employee.

On non-Ajax-enabled browers,
when the user clicks Add,
the form will be submitted
to a PHP script.

 2 On pages 49-54, the PHP
script that handles the HTML
form will be written. The script
validates the form data and
reports on the results.

If any fi elds weren’t properly
fi lled out, the PHP script prints
an error message.

 3 Naturally, we’ll test what
we’ve built to make sure it all
works.

At the end of this chapter, in the
extra bits section, you’ll fi nd more
information, tips, and recommen-
dations regarding all these steps.

In the next chapter, we’ll add the
Ajax layer to these pages.

44 adding records

start the HTML page
Start by creating a new HTML page in your HTML editor.

The title will refl ect what this page is for.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//
EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:
lang=”en” lang=”en”>
<head>
 <meta http-equiv=”content-type” content=”text/html;
charset=utf-8” />
 <title>Add an Employee</title>
 <style type=”text/css” media=”all”>@import “style.
css”;</style>
</head>
<body>
</body>
</html>

The style sheet will give this
page the same look as the other
pages in the site.

adding records 45

add the form
 1 Add a message indicating what the
form is for and how it should be used.

 2 For non-Ajax-enabled browsers,
the form will be submitted to add_employee.php,
to be written next.

 3 The form uses the POST
method, not GET. (See extra
bits on page 57.)

 4 For the Ajax layer, the
form’s id value of emp_form
will be important.

…
<body>
<p>Use this form to add an employee (all fields are

required):</p>

<form action=”add_employee.php” method=”post” id=”emp_

form”>

</form>

</body>
…

46 adding records

add the form elements
 1 Text inputs take the employee’s fi rst
name, last name, and email address.

…
<form action=”add_employee.php” method=”post” id=”emp_
form”>
<p><label class=”title” id=”first_name_label”>First Name
<input type=”text” id=”first_name” name=”first_name”
/></label> </p>
<p><label class=”title” id=”last_name_label”>Last Name
<input type=”text” id=”last_name” name=”last_name” /></
label> </p>
<p><label class=”title” id=”email_label”>Email Address
<input type=”text” id=”email” name=”email” /></label>
</p>

adding records 47

add the form elements

 4 Labels are added to indicate
what each element is for. (See
extra bits on page 57.)

 5 The submit button has a value
of Add.

 6 Save this fi le as add_employee.
html and place it in the same direc-
tory as all the other site pages.

<p><label class=”title” id=”department_id_

label”>Department <select id=”department_id”

name=”department_id”>

 <option value=”1”>Human Resources</option>

 <option value=”2”>Accounting</option>

 <option value=”3”>Marketing</option>

 <option value=”4”>Redundancy Department</option>
</select></label> </p>

 2 A drop-down menu will allow the user to select the employee’s department.

<p><label class=”title” id=”phone_ext_label”>Phone

Extension <input type=”text” id=”phone_ext” name=”phone_

ext” /></label> </p>

<p><input name=”add” type=”submit” value=”Add” /></p>

</form>
…

 3 Another text input is for the employee’s phone extension.

48 adding records

start a PHP page
The fi rst PHP page handles the non-Ajax form submission. It should also be a
valid HTML document, so start with those tags.

All of the page’s functionality will go in between the PHP tags.

This page will need to communicate with MySQL, so the
mysql.inc.php script must be included.

The MySQL connection is closed before the script
terminates.

This fi le must be saved as add_employee.php and placed in the
same directory as add_employee.html.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”
lang=”en”>
<head>
 <meta http-equiv=”content-type” content=”text/html;
charset=utf-8” />
 <title>Add an Employee</title>
 <style type=”text/css” media=”all”>@import “style.
css”;</style>
</head>
<body>
<h1>Add an Employee</h1>
<?php # add_employee.php
require_once(‘mysql.inc.php’);
mysql_close($dbc);
?>
</body>
</html>

adding records 49

validate the form data
The form data must be validated prior to using it in a query. Add this code to
the PHP page:

 1 The $errors array will store any errors encountered while
validating the form.

 2 Text inputs will be validated by confi rming that they aren’t empty.
(See extra bits on page 57.)

…

require_once(‘mysql.inc.php’);
$errors = array();

if (!empty($_POST[‘first_name’])) {

 $fn = mysql_real_escape_string($_POST[‘first_name’],

$dbc);

} else {

 $errors[] = ‘first name’;

}

if (!empty($_POST[‘last_name’])) {
 $ln = mysql_real_escape_string($_POST[‘last_name’],
$dbc);
} else {
 $errors[] = ‘last name’;
}

50 adding records

 3 To make sure the data is safe to use in
a query, text inputs are run through the
mysql_real_escape_string() function.

if (!empty($_POST[‘email’])) {
 $e = mysql_real_escape_string($_POST[‘email’],
$dbc);
} else {
 $errors[] = ‘email address’;
}

adding records 51

if (isset($_POST[‘phone_ext’]) && is_numeric($_
POST[‘phone_ext’]) && ($_POST[‘phone_ext’] > 0)) {
 $ext = (int) $_POST[‘phone_ext’];
} else {
 $errors[] = ‘phone extension’;
}
mysql_close($dbc);
…

 4 Numeric values, like the department ID and the phone
extension, must be positive numbers.

validate the form data (cont.)

 5 To make them safe to use in a query, numeric
values are type-cast as integers.

 6 Any failed validation routine results in an element
being added to the $errors array.

if (isset($_POST[‘department_id’]) && is_numeric($_
POST[‘department_id’]) && ($_POST[‘department_id’] >
0)) {
 $did = (int) $_POST[‘department_id’];
} else {
 $errors[] = ‘department’;
}

52 adding records

update the database
Assuming that the form data passed all the validation routines, an INSERT
query should be run.

 1 If there were no errors, this conditional will be true (because the
$errors variable will be empty).

 2 The INSERT query adds the new employee to the database using the
purifi ed data from the validation routines. (See extra bits on page 58.)

 3 The mysql_affected_
rows() function returns the
number of, well, aff ected
rows. For this script’s query,
the number of aff ected rows
should be 1, as one new
record should be added.

 4 The results are reported
to the user.

…
 $errors[] = ‘phone extension’;
}
if (!$errors) {

 $q = “INSERT INTO employees VALUES (NULL, $did,

‘$fn’, ‘$ln’, ‘$e’, $ext)”;

 $r = mysql_query($q, $dbc);

 if (mysql_affected_rows($dbc) == 1) {

 echo ‘<p>The employee has been added.</

strong></p>’;

mysql_close($dbc);
…

adding records 53

report any errors

 1 The fi rst else clause applies if the query did not result in one aff ected
row. This would normally be the result of a syntax error. (See extra bits
on page 58.)

 2 The second else clause
applies if the data didn’t pass
all the validation tests.

 3 Because the errors are
stored in an array, looping
through them is the easiest
way to access them all.

…

 echo ‘<p>The employee has been added.</
strong></p>’;
 } else { // Query failure.

 echo ‘<p class=”error”>The employee could not be

added due to a system error.</p>’;

 }

} else { // Errors!

 echo ‘<p>The following errors occurred:</p><ul

class=”error”>’;

 foreach ($errors as $e) {

 echo “Please enter a valid $e.\n”;

 }

 echo ‘’;

}

mysql_close($dbc);
…

Finally, indicate to the user what problems occurred, if applicable.

54 adding records

test the non-Ajax version
 1 Load the HTML page in your Web browser to test what we’ve
created so far.

The address must begin with http://
for this to work.

 3 The PHP page should show the results.

 2 Fill out the form incompletely and
click Add.

adding records 55

 4 Go back to the form, fi ll it out
completely, and click Add.

 5 Again, the PHP page shows the results.

test the non-Ajax version

56 adding records

extra bits

add the form p. 46

• The POST method should gen-
erally be used when the form’s
submission should have an eff ect
on the site. For example, using
the Add an Employee form adds
another record to the database.

• The GET method should gener-
ally be used when requesting
information. For example, you
should apply it when request-
ing the employees in a specifi c
department.

add the form elements p. 47

• The form’s labels will serve two
purposes. First, they indicate to
the user what each form element
is for. Second, they’ll be modi-
fi ed, using JavaScript, to indicate
an error in the Ajax-enabled ver-
sion of this form.

validate the form data p. 50

• How you validate form data
depends on the data’s type (num-
bers, strings, etc.) and expected
values (positive number, email
address, and so on). For validat-
ing a person’s name, it’s often
suffi cient to make sure that some
value is entered.

• A more thorough validation of an
email address would be to con-
fi rm that it matches a regular
expression pattern. You can do
this with email addresses more so
than names because they must
abide by strict rules.

• You could improve the security
of this system by applying PHP’s
strip_tags() function to the
text inputs. That function can
help prevent cross-site scripting
attacks (XSS).

• The mysql_real_escape_
string() function provides
language-specifi c protection on
text used in queries.

adding records 57

report any errors p. 54

• To debug any PHP–MySQL prob-
lems, you’ll need to print out the
query to inspect its syntax. You
should also invoke the mysql_
error() function to see what
problems the database reports.

• Live sites should never provide
detailed behind-the-scenes
errors, such as the queries being
run or the MySQL errors. Use this
information for debugging pur-
poses, and then hide that infor-
mation in the live version (which,
we hope, shouldn’t encounter
such errors).

extra bits (cont.)

update the database p. 53

• A more precise way to write the
INSERT query would be to use
the syntax where you specify the
columns involved. For this query,
that would be INSERT INTO
employees (department_id,
first_name, last_name,
email, phone_ext) VAL-
UES ($did, ‘$fn’, ‘$ln’,
‘$e’, $ext).

58 adding records

In the previous chapter, we created a way to add employees to the database.
That process required one HTML form and one PHP script that handled the
form. It all works fi ne but in the old-fashioned, client-server kind of way.

In this chapter, let’s set an Ajax layer on top of those scripts so that, for the
browsers that support it, our form for adding employees can behave more like a
desktop application. To do so, we’ll need to slightly modify the HTML page.
Then we’ll create one JavaScript fi le that has the page-specifi c Ajax function-
ality. Finally, a new PHP script will be written that handles the Ajax request.

This example will also introduce two new techniques: sending an Ajax request
using the POST method and working with XML data. This Ajax example is
a little more complicated than the previous one, but it should all make sense by
the end of the chapter.

5. adding records
via Ajax

59

what we’ll do
 1 First, on pages 62, we’ll modify the HTML page to
include the necessary Ajax pieces.

 2 On Ajax-enabled browers, when the user clicks
Add, the page-specifi c JavaScript will read in all the
form data and submit it to a new PHP script. On pages
63-66, we’ll begin the JavaScript fi le that starts this
process.

 3 The PHP script, written on pages 67-74, will vali-
date all the data and report on the results. Its response
will be returned as XML.

 4 The JavaScript will take the XML returned by the
PHP script and use it to update the HTML page. We’ll
complete this fi le on pages 75-79.

 5 Naturally, we’ll test what we’ve built to make sure
it all works.

 6 At the end of this chapter, in the extra bits section,
you’ll fi nd more information, tips, and recommenda-
tions regarding all of these steps.

60 adding records via Ajax

HTML page

Form data

XML data

adding records via Ajax 61

add the Ajax elements
 1 Include the generic Ajax JavaScript fi le by adding the
right code to the HTML head. (See extra bits on page 82.)

 2 Include the page-specifi c Ajax JavaScript fi le by adding
that code to the HTML head. We’ll start making this script
next.

 3 Add a DIV to the HTML page to report upon the results.

 4 Save the fi le (it will continue to use the name add_employee.html).

…
<title>Add an Employee</title>
<script src=”ajax.js” type=”text/javascript”></script>

<script src=”add_employee.js” type=”text/

javascript”></script>

<style type=”text/css” media=”all”>@import “style.
css”;</style>
…

…
<p>Use this form to add an employee (all fields are
required):</p>
<div id=”results”></div>

<form action=”add_employee.php” method=”post” id=”emp_
form”>
…

62 adding records via Ajax

apply the Ajax layer

 1 The fi rst line tells the Web browser to run the init() function after
loading the entire page. The init() function sets up all the Ajax activity.

 2 The function calls the getXML-
HttpRequestObject() function
to get a valid, browser-specifi c
object. This function is defi ned in
ajax.js, which will have already
been included by the HTML page.

 3 The function then checks to
see if the ajax variable has a valid
value. With supported browsers,
ajax will be an XMLHttpRequest
object. With nonsupported brows-
ers, ajax will have a value of
false, and this conditional will
be false.

 4 Next, the function checks to
see if the browser supports the
document object model (DOM)
and, specifi cally, if the page has an
element with an id of results.

 5 Finally, an onsubmit() event
is attached to the form (which has
an id value of emp_form). In other
words, when the form is submit-
ted, do the following….

window.onload = init;
function init() {
 var ajax = getXMLHttpRequestObject();

 if (ajax) {
 if (document.getElementById(‘results’)) {
 document.getElementById(‘emp_form’).onsubmit =
function() {

Create a new JavaScript fi le that starts with the following code (see extra bits
on page 82):

adding records via Ajax 63

set up the Ajax

 1 Tell the ajax object that you
want to use the POST method.
(See extra bits on page 82.)

 2 Provide to the ajax object
the name of the page that
should be sent the request. This
is add_employee_xml.php, to
be written next.

 3 When the ajax object’s readyState value
changes, the handleResponse() function should be
called, passing that function this same object.

…
document.getElementById(‘emp_form’).onsubmit =
function() {
 ajax.open(‘post’, ‘add_employee_xml.php’);

 ajax.onreadystatechange = function() {

 handleResponse(ajax);

 }

64 adding records via Ajax

prepare the form data
 1 The fi elds variable is an array of the form elements whose values
need to be sent to the PHP page.

 2 Loop through each element in the array.

 3 In the loop, each array element will be turned into a string in the for-
mat name=value. So the fi rst array element, first_name, will be turned
into something like first_name=Larry. (See extra bits on page 83.)

 4 In the loop, each form element’s value is retrieved using
the Document Object Model. The value is run through the
encodeURIComponent() function for security purposes.

 5 Outside of the loop, all of the array elements (the name=value pairs)
are joined together with ampersands. The end result is a string like
first_name=Larry&last_name=Ullman&…

 6 The Content-Type header indicates what kind of information is
about to be sent. The value application/x-www-form-urlencoded
means that the content is encoded form data.

…
 handleResponse(ajax);
}
var fields = [‘first_name’, ‘last_name’, ‘email’,

‘department_id’,‘phone_ext’];

for (var i = 0; i < fields.length; i++) {

 fields[i] = fields[i] + ‘=’ +

encodeURIComponent(document.getElementById(fields[i]).

value);

}

var values = fields.join(‘&’);

ajax.setRequestHeader(‘Content-Type’, ‘application/x-

www-form-urlencoded’);

adding records via Ajax 65

complete the function
 1 After all the data handling, the actual
Ajax request is made. The form data, rep-
resented by the variable values, is used as
the only argument to the send() method.
(See extra bits on page 83.)

 2 Finally, the function returns a value of false to
tell the Web browser not to actually submit the form
(since Ajax is handling the form submission).

Save this fi le as add_employee.js
and place it in the same directory on
your Web server as every other fi le.

…
 ajax.setRequestHeader(‘Content-Type’,
‘application/x-www-form-urlencoded’);
 ajax.send(values);

 return false;

 } // End of anonymous function.

 } // End of DOM check.

 } // End of ajax IF.

} // End of init() function.

66 adding records via Ajax

prepare for XML
A new PHP script will do the same thing as add_employee.php, only it will
return all of its results as XML data. This data will be handled by the JavaScript
in the Web browser. Start a new PHP script in your text-editing application.

 1 This PHP page will not be viewed in the Web browser, so it
begins with the opening PHP tag, not with HTML. (See extra
bits on page 83.)

 2 The header() function is used to send meta-information
(i.e., not actual data). Here the header() function sends a
Content-Type of text/xml. In layman’s terms, this is a way of
saying that XML data should be expected to follow.

 3 XML data begins wth the declaration.

 4 All XML documents have one root element. This can be
a made-up value, like response here.

<?php # add_employee_xml.php
header(“Content-Type: text/xml”);
echo ‘<?xml version=”1.0” encoding=”utf-8”
standalone=”yes” ?>
<response>
‘;

adding records via Ajax 67

validate the form data
The form data must be validated prior to using it in a query. Add this code to
the PHP page.

 2 Text inputs will be validated by confi rming that they aren’t empty.
(See extra bits on page 84.)

…
<response>
‘;
require_once(‘mysql.inc.php’);

$error = false;

if (!empty($_POST[‘first_name’])) {

 1 The $error variable will be a fl ag, indicating if an error occurred.

68 adding records via Ajax

 $fn = mysql_real_escape_string($_POST[‘first_name’],
$dbc);
} else {
 $error = true;
 echo ‘<error>first_name</error>
‘;
}
if (!empty($_POST[‘last_name’])) {
 $ln = mysql_real_escape_string($_POST[‘last_name’],

 3 To make sure the data is safe to use in a query, text inputs are
run through the mysql_real_escape_string() function.

adding records via Ajax 69

validate the form data (cont.)

} else {
 $error = true;
 echo ‘<error>last_name</error>
‘;
}
if (!empty($_POST[‘email’])) {
 $e = mysql_real_escape_string($_POST[‘email’],
$dbc);
} else {
 $error = true;
 echo ‘<error>email</error>
‘;
}

70 adding records via Ajax

 4 Numeric values, like the department ID and the phone extension,
must be positive numbers.

 5 To make them safe to use in a query, numeric values are type-cast
as integers.

 6 Any failed validation routine results in the $error variable being set
to true.

 7 To report the error back to the JavaScript, an XML element is created
with a name of error. The value of the XML element is the name of the
form element improperly fi lled out.

if (isset($_POST[‘department_id’]) && is_numeric($_
POST[‘department_id’]) && ($_POST[‘department_id’] >
0)) {
 $did = (int) $_POST[‘department_id’];
} else {
 $error = true;
 echo ‘<error>department_id</error>
‘;
}
if (isset($_POST[‘phone_ext’]) && is_numeric($_
POST[‘phone_ext’]) && ($_POST[‘phone_ext’] > 0)) {
 $ext = (int) $_POST[‘phone_ext’];
} else {
 $error = true;
 echo ‘<error>phone_ext</error>
‘;
}

adding records via Ajax 71

update the database
Assuming that the form data passed all the validation
routines, an INSERT query should be run.

 1 If there were no errors, then this conditional will be true
(because the $error variable will be false).

 2 The INSERT query adds the new employee to the database
using the purifi ed data from the validation routines.

 3 The mysql_affected_rows() function returns the
number of, well, aff ected rows. This should be 1, as one
new record should be added.

 4 The results are added to the XML output,
using an element name of result.

…
echo ‘<error>phone_ext</error>
‘;
}
if (!$error) {

 $q = “INSERT INTO employees VALUES (NULL, $did,

‘$fn’, ‘$ln’, ‘$e’, $ext)”;

 $r = mysql_query($q, $dbc);

 if (mysql_affected_rows($dbc) == 1) {

 echo ‘<result>The employee has been added.</result>’;

72 adding records via Ajax

complete the XML
 1 The fi rst else clause applies
if the query did not result in one
aff ected row. A syntax error
would typically be the cause.
(See extra bits on page 84.)

…
 echo ‘<result>The employee has been added.</
result>’;
 } else { // Query failure.

 echo ‘<result>The employee could not be added due

to a system error.</result>

‘;

 }

} else { // Errors!

 echo ‘<result>Please correct problems with the

highlighted field(s) below.</result>

‘;

}

 2 The second else clause
applies if the data didn’t
pass all the validation tests.

adding records via Ajax 73

 3 For both else clauses, an appropriately
descriptive message is included in the XML
output, within an element called result.

 4 Close the root XML element to complete
the XML output. No need to use closing
HTML tags!

mysql_close($dbc);
echo ‘</response>’;
?>

complete the XML (cont.)

74 adding records via Ajax

handle the response
The PHP page sends back XML data, which must be handled by
the JavaScript. Add this new function to the add_employee.js
JavaScript fi le. (See extra bits on page 85.)

 1 This JavaScript function is called when the
ajax object’s readyState value changes (see
the init() function). The function receives
the ajax object when called.

 2 The function shouldn’t do anything until
readyState has a value of 4, meaning that
the Ajax transaction is complete.

 3 If the status code is equal to either 200 or
304, we can use the returned results.

function handleResponse(ajax) {
 if (ajax.readyState == 4) {
 if ((ajax.status == 200) || (ajax.status == 304))
{

adding records via Ajax 75

prepare the page
 1 The results variable now refers to
a specifi c area in the DOM (Document
Object Model) of the HTML page.

 2 Each of the form’s labels should have
its class reset to the default class of
title. (See extra bits on page 85.)

…
if ((ajax.status == 200) || (ajax.status == 304)) {
 var results = document.getElementById(‘results’);

 document.getElementById(‘first_name_label’).

className = ‘title’;

 document.getElementById(‘last_name_label’).className

= ‘title’;

 document.getElementById(‘email_label’).className =

‘title’;

 document.getElementById(‘department_id_label’).

className = ‘title’;

 document.getElementById(‘phone_ext_label’).className

= ‘title’;

76 adding records via Ajax

handle the XML
 1 The XML data returned by the PHP script can be accessed via ajax.
responseXML, which we assign to a variable called data. (See extra
bits on page 86.)

 2 The variable message will refer to the XML element with a tag
name of result.

 3 The variable errors will
refer to every XML element
with a tag name of error.

…
document.getElementById(‘phone_ext_label’).className =
‘title’;
var data = ajax.responseXML;

var message = data.getElementsByTagName(‘result’);

var errors = data.getElementsByTagName(‘error’);

var temp = false;

adding records via Ajax 77

 6 The error value is used
to change the class of the
corresponding form label.

for (var i = 0; i < errors.length; i++) {
 temp = errors[i].firstChild.nodeValue;
 document.getElementById(temp + ‘_label’).className =
‘error’;
}

 5 A temporary variable will
be assigned the value of the
error from the XML data.

handle the XML (cont.)

 4 Loop through the errors array to access every one.

78 adding records via Ajax

display the results
The fi nal step in the Ajax process is to display the results message
by placing that message on the HTML page. This code completes
the handleResponse() function. (See extra bits on page 86.)

 3 If we didn’t get a valid status code back
from the Ajax request, we should formally
submit the form to the handling PHP page
(as if the Ajax layer didn’t exist at all).

…
document.getElementById(temp + ‘_label’).className =
‘error’;
 }
 results.innerHTML = message[0].firstChild.

nodeValue;

 results.style.display = ‘block’;

 } else {

 document.getElementById(‘emp_form’).submit();

 }

 } // End of readyState IF.

} // End of handleResponse() function.

 2 Because the results
area is initially invisible, we
need to make it visible now
that we have some results
to display.

 1 The text in the results area is set to the
returned response from the Ajax request.

adding records via Ajax 79

test the Ajax layer
 1 Load the HTML page in your
Web browser.

The address must begin with
http:// for this to work.

 2 Fill out the form incompletely or
improperly and click Add.

 3 The HTML page should show
the results without reloading the
page or going to a new page.

80 adding records via Ajax

 4 Fill out the form completely and click Add.

 5 Again, the HTML page shows the results.

adding records via Ajax 81

extra bits

add the Ajax elements p. 62

• The ajax.js fi le, written in Chap-
ter 3, “browsing using Ajax,”
defi nes a function that returns a
browser-specific XMLHttpRe-

quest object. This fi le is needed
by any page that performs any
Ajax operations.

• Because the DIV, where the
results will be reported, has an
id value of results, it will be
formatted according to the rules
dictated in style.css. This is
the same as the results DIV in
dept_form.html. For starters, the
DIV will be hidden when the page
is fi rst viewed.

apply the Ajax layer p. 63

• Most of this code is exactly like
that in dept.js. You’ll fi nd that
to be the case with a good Ajax
base, like the one we’ve devel-
oped in this book. The only
change in this fi rst bit of code is
the reference to emp_form. It’s
in the rest of the code—what
should be done when the form is
submitted—that the big diff er-
ences can be found.

set up the Ajax p. 64

• The POST method should gener-
ally be used when the form’s
submission should have an eff ect
on the site. For example, using
the add-an-employee form adds
another record to the database.

• The GET method should gener-
ally be used when requesting
information—for example, when
requesting the employees in a
specifi c department.

82 adding records via Ajax

prepare the form data p. 65

• When a form is submitted using
the GET method, you’ll see the
form data in the URL, with
a syntax of page.php?this_
item=this_value&that_

item=that_value. This is the
same syntax used by POST, but
the data isn’t sent in the URL
and you don’t need the question
mark.

• All of the form data needs to be
run through the encodeURICom-
ponent() function to make it safe
to send to the PHP page. Rather
than apply that function to each
value separately, using a for loop
on an array of form elements lets
us accomplish the same thing
with less code.

• The plus sign in JavaScript
is used to perform concatena-
tion: appending one string onto
another. In PHP, the period does
the same thing.

• If you wanted to send XML data
to the PHP script, you would set
the Content-Type to text/xml.

complete the function p. 66

• When using the GET method, use
the value null as the only argu-
ment when calling send(). Any
data sent over GET is appended
to the URL itself. When using
POST, you need to provide the
data when you call send(), as it’s
not sent in the URL.

prepare for XML p. 67

• The PHP script sends its response
as XML data, not as a normal
Web page. Everything PHP will
print will be part of this XML.

• The XML data being created is
really like the data in an HTML
page, where there’s one root ele-
ment and any number of nested
subelements. For this example,
the root element will be called
response and there will be two
subelements. There can be zero
or more elements called error
and there will always be exactly
one element called result. In
comparison, an HTML page has
a root element called html, two
subelements named head and
body, and more subelements
within those.

adding records via Ajax 83

extra bits

complete the XML p. 73

• To debug any PHP-MySQL prob-
lems, you’ll need to print out the
query to inspect its syntax. You
should also invoke the mysql_
error() function to see what
problems the database reports.

• A useful debugging technique
when working with XML data is
to verify that your PHP script is
returning valid XML. To see the
result of the PHP page, either
use JavaScript to access ajax.
responseText (in the handle-
Response() function) or
submit your form to the PHP
page directly (without using
JavaScript).

• For directly viewing XML in your
Web browser, you’ll want to
use a browser that supports the
format. At the time of this writ-
ing, this includes recent versions
of Internet Explorer and Firefox,
but not Safari.

extra bits (cont.)

validate the form data p. 68

• For more information on the
form validation routines, see the
extra bits section for Chapter 4,
“adding records.”

• The XML data will have zero or
more elements called error. Any
failed validation will result in
another error element, whose
value will match the name of the
corresponding form fi eld. The
point of this XML data is to indi-
cate which form fi elds weren’t
properly fi lled out. If all of the
validation tests were passed,
there will be none of these
elements.

• If the PHP page does not use the
header() function to set the
Content-Type, the JavaScript
that receives this response will
not recognize it as XML.

• You don’t have to fully under-
stand XML to do this example
or to use XML in general. But
should you want to better under-
stand the subject, search the
Web for more information.

84 adding records via Ajax

handle the response p. 75

• In the init() function, we tell
the JavaScript to call a func-
tion called handleResponse()
whenever the readyState value
changes. This value will change
multiple times during an Ajax
request, so this function will be
called multiple times.

• The XMLHttpRequest status
attribute stores the HTTP status
code returned by the server-side
page. There are dozens of status
codes—from 200, meaning that
everything was OK, to values
over 500, which are normally
server errors. A status code of
304 indicates that the page was
found but had not been modifi ed
since a certain date and time.

prepare the page p. 76

• One of the new tricks in this
chapter’s example is that the
form elements’ labels will be
changed to indicate errors. Spe-
cifi cally, any problematic fi eld
will have its label class switched
from the default title to error.
Upon a resubmission of the form,
the labels should have their class
values reset so that they can
refl ect the new results.

adding records via Ajax 85

extra bits (cont.)

display the results p. 79

• The message variable refers to
every XML element with a name
of result (see the code earlier
in the function). Even though
the XML data will only ever have
one such element, an array is
still returned. So the text itself is
accessed via the unwieldy mes-
sage[0].firstChild.nodeValue.

• As with the previous Ajax exam-
ple, the innerHTML property is
used to put a message within the
results DIV.

• To indicate a problem with a
form element, its correspon-
ding label will have its class
changed from title to error.
Using the Document Object
Model, document.getElement-
ById(temp + ‘_label’) will
refer to the label (where temp
stores the name of the form ele-
ment). Then .className lets you
change its class.

handle the XML p. 77

• The server’s response is avail-
able in two attributes of the
XMLHttpRequest object. It
can be found as plain text in
responseText or as XML data
in responseXML.

• The XML data can be accessed
just like an HTML page, using
the Document Object Model. So
data.getElementsByTagName

(‘error’) refers to every item
in the XML data with a name of
error.

• The syntax of the for loop is a
common way to access every
item found in an array. Within
the loop, the specifi c array item
is accessed via arrayname[i].

• The error elements in the XML
data have the names of the
problematic form elements as
their values. To access these val-
ues, refer to the error element,
which is errors[i] within the
loop, followed by .firstChild.
nodeValue. It’s a rather com-
plex syntax but it works. More
information on a child and a
node can be found in Chapter 7,
“enabling an Ajax search.”

86 adding records via Ajax

Thus far in the book we’ve made two aspects of an employee-directory site.
First, we created a way to browse employees by department. Then we made it
possible to add employees to the database. Let’s put in one last logical feature:
the ablity to search for employees by last name.

In keeping with this book’s approach, we’ll start, in this chapter, with the non-Ajax
version. These fi les will work for all users and give us a sense of what the process
should entail. To create the search, we only need to put together two fi les: one
HTML form and one PHP script that handles the form. Should be a snap!

6. creating a search

87

what we’ll do
 1 First, on pages 89-91, we’ll create an HTML page with a form.

The form has only one
input: a text box where an
employee’s last name, or part
thereof, can be entered.

On non-Ajax-enabled browers, when the user clicks GO,
the form will be submitted to a PHP script.

 2 On pages 92-95, the PHP script that handles the HTML form will be
written. The script uses the form data to perform a search on the database,
printing the results.

If no employees match
the search term, the PHP
script prints a message
saying as much.

Naturally, we’ll test what we’ve built to make sure it all works.

At the end of this chapter, in the extra bits section, you’ll fi nd more informa-
tion, tips, and recommendations regarding all of these steps.

In the next chapter, we’ll add the Ajax layer to these pages.

88 creating a search

start the HTML page
Start by creating a new HTML page in your text editor.

The title refl ects what this page is for.

The style sheet will give this page the same look as the other pages in the
site.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//
EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:
lang=”en” lang=”en”>
<head>
 <meta http-equiv=”content-type” content=”text/html;
charset=utf-8” />
 <title>Search for Employees by Name</title>
<style type=”text/css” media=”all”>@import “style.
css”;</style>
</head>
<body>
<!-- search_form.html -->
</body>
</html>

creating a search 89

start the HTML page (cont)

Save the page as search_form.html and place it in the same
directory as all the other fi les from this book.

90 creating a search

add the form
 1 Add a message indicating what the form is for and
how it should be used. (See extra bits on page 97.)

 4 For the Ajax layer, the form’s id value of search_form
will be important.

…
<!-- search_form.html -->
<p>Enter the first letter or two of an employee’s last

name and click ‘GO’ to find matching employees.</p>

 2 For non-Ajax-enabled browsers, the form will be submitted to
search_results.php, to be written next.

 3 The form uses the GET method, like dept_form.html.

<form action=”search_results.php” method=”get”

id=”search_form”>

<p><input =”last_name” id=”last_name” type=”text”

size=”5” maxlength=”30” />

<input name=”go” type=”submit” value=”GO” />

</p>

</form>

</body>
</html>

creating a search 91

start a PHP page
The fi rst PHP page handles the non-Ajax form submission. It should also be a
valid HTML document, so start with those tags.

All of the page’s functionality will
go in between the PHP tags.

This fi le must be saved as search_results.php and
placed in the same directory as search_form.html.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//
EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:
lang=”en” lang=”en”>
<head>
 <meta http-equiv=”content-type” content=”text/html;
charset=utf-8” />
 <title>Search for Employees by Name</title>
 <style type=”text/css” media=”all”>@import “style.
css”;</style>
</head>
<body>
<h1>Employee Search Results</h1>
<?php # search_results.php
?>
</body>
</html>

92 creating a search

query the database
 1 We make sure that some value was submitted for the
last name or else there’s no need to query the database.

 2 The MySQL connection script is included.

 3 The query
will return every
employee’s name,
email address,
and department
whose last name
begins with the
submitted letters.
(See extra bits on page 97.)

 4 The mysql_real_escape_string() function
makes it safe to use the submitted value in a query.

…
<?php # search_results.php
if (!empty($_GET[‘last_name’])) {

 require_once(‘mysql.inc.php’);

 $q = “SELECT CONCAT(last_name, ‘, ‘, first_name),

email, department FROM employees LEFT JOIN departments

USING (department_id) WHERE last_name LIKE ‘” . mysql_

real_escape_string($_GET[‘last_name’]) . “%’ ORDER BY

last_name, first_name”;

 $r = mysql_query($q, $dbc);

?>
…

creating a search 93

print the results
 1 Check that at least one record was returned.

 2 Fetch all the records and
print them out.

 3 The employee’s name will be
formatted using a CSS class.

 4 The employee’s email address
will be linked so that clicking on
it begins an email to that person.

…
$r = mysql_query($q, $dbc);

if (mysql_num_rows($r) > 0) {

 while ($row = mysql_fetch_array($r, MYSQL_NUM)) {

 echo “<p>$row[0]

 Department: $row[2]

 $row[1]

 </p>\n”;

 } // End of WHILE loop.

?>
…

94 creating a search

report any errors
 1 The fi rst else clause applies if the query ran
just fi ne but didn’t return any results.

 2 The MySQL connection is closed.

 3 The second else clause applies if
the form was not properly fi lled out.

 } // End of WHILE loop.
 } else { // No employees.

 echo ‘<p class=”error”>No employees were a

match.</p>’;

 }

 mysql_close($dbc);

} else { // Invalid form data!

 echo ‘<p class=”error”>Please enter at least a couple

of characters in the employee\’s last name.</p>’;

}

?>
…

creating a search 95

test the non-Ajax version
 1 Load the HTML page in your
Web browser to test what we’ve
created so far.

The address must begin with
http:// for this to work.

 2 Type a letter or two and click GO.

 3 The PHP page should show the results.

 4 Go back to the form, and
repeat Steps 2 and 3 until your
heart’s content.

96 creating a search

extra bits

add the form p. 91

• In this example, I suggest that
users only enter a couple of let-
ters because the database only
has 20 records in it. With the
employees entered in Chapter 1,
“creating the database,” Gr will
return two records but Gre only
one. If your database had more
names in it, entering longer val-
ues would be appropriate.

• The GET method is normally used
with searches. The next time you
use Google or some other search
engine, notice that the search
terms are passed along in the
URL.

query the database p. 93

• This is the most complicated
query in the book. It performs
a JOIN across two tables:
employees and departments,
which are linked through the
department_id columns. The
search feature is possible thanks
to a LIKE clause, asking for
records where the employee’s
last name begins with whatever
letters were entered in the form.

• Running a dynamically generated
query through another inter-
face, like the mysql client in
the image, is a great debugging
technique. Doing so will confi rm
what a query is, if it works, and
what its results are.

creating a search 97

This page intentionally left blank

As the last piece in this book’s project, let’s take the search created in the previ-
ous chapter and give it the old Ajax treatment. As in other chapters, we’ll add
an Ajax layer on top of what we’ve already created. Browsers that are Ajax-
supportive will see the search results without reloading the page; every other
browser will use the system already in place.

Accomplishing this will require modifying the HTML page. Then we’ll need
to make a new JavaScript fi le that contains all the functionality for this
specifi c example. And a new PHP script will be written that returns the search
results, in XML format, to the JavaScript. Unlike the other Ajax examples in this
book, we won’t use the innerHTML attribute in our JavaScript to update the
Web page. Here, we’ll add nodes to the Document Object Model as a way of
manipulating the page’s content.

7. enabling an
Ajax search

99

what we’ll do
 1 First, on page 102, we’ll modify the HTML page
to include the necessary Ajax pieces.

 2 The user enters the fi rst couple of letters of the
employee’s last name and clicks GO. (See extra bits
on page 124.)

 3 On Ajax-enabled browers, the page-specifi c Java-
Script will read in what the user typed and submit
that to a new PHP script. On pages 103-106, we’ll
begin the JavaScript fi le that starts this process.

 4 The PHP script, written on pages 107-110, will
search the database for employees whose name
begins with the provided letters. It will return any
matched records as XML data.

 5 The JavaScript will take the XML returned by
the PHP script and use it to update the HTML page.
We’ll complete this JavaScript fi le on pages 111-122.

 6 Naturally, we’ll test what we’ve built on page 123
to make sure it all works.

 7 At the end of this chapter, in the extra bits sec-
tion, you’ll fi nd more information, tips, and recom-
mendations regarding all of these steps.

100 enabling an Ajax search

HTML page

Form data

XML data

enabling an Ajax search 101

add the Ajax elements
 1 Include the generic Ajax JavaScript fi le by adding the right code to the
HTML head. (See extra bits on page 124.)

 2 Include the page-specifi c Ajax JavaScript fi le by adding that code to the
HTML head. We’ll start making this script next.

 3 Add a DIV to the HTML page to report on the results.

 4 Save the fi le (it will continue to use the name search_form.html).

…
<title>Search for Employees by Name</title>
 <script src=”ajax.js” type=”text/javascript”></
script>

 <script src=”search.js” type=”text/javascript”></
script>

 <style type=”text/css” media=”all”>@import “style.
css”;</style>
…

…
</form>
<div id=”results”></div>

</body>
…

102 enabling an Ajax search

apply the Ajax layer

 1 The fi rst line tells the Web browsers to run the init() function after
loading the entire page. The init() function sets up all the Ajax activity.

 2 The function calls the
getXMLHttpRequestObject()
function to get a valid, browser-
specifi c object. This function is
defi ned in ajax.js, which will
have already been included by
the HTML page.

 3 The function then checks to see if
the ajax variable has a valid value.
With supported browsers, ajax will
be an XMLHttpRequest object. With
nonsupported browsers, ajax will
have a value of false, and this con-
ditional will be false.

window.onload = init;
function init() {
 var ajax = getXMLHttpRequestObject();
 if (ajax) {

Create a new JavaScript fi le that starts with the following code (see extra bits
on page 124):

enabling an Ajax search 103

 4 Next, the function checks to see if the browser supports
the Document Object Model (DOM) and, specifi cally, if the
page has an element with an id of results.

 5 Finally, an onsubmit() event is attached to the form
(which has an id value of search_form). In other words,
when the form is submitted, do the following…

 if (document.getElementById(‘results’)) {
 document.getElementById(‘search_form’).onsubmit
= function() {

apply the Ajax layer (cont.)

104 enabling an Ajax search

set up the Ajax
 1 Provide to the ajax object the name of the page that should be
sent the request. This is search_results_xml.php, to be written
next. The request will be made using the get method.

 2 As part of that request, the last_name
value (the letters the user entered in the
form) will be passed along in the URL. (See
extra bits on page 124.)

 3 When the ajax object’s readyState
value changes, the handleResponse()
function should be called, passing that
function this same object.

…
document.getElementById(‘search_form’).onsubmit =
function() {
 var last_name = document.getElementById(‘last_

name’).value;

 ajax.open(‘get’, ‘search_results_xml.php?last_name=’

+ encodeURIComponent(last_name));

 ajax.onreadystatechange = function() {

 handleResponse(ajax);

 }

enabling an Ajax search 105

complete the function
 1 The actual Ajax request is made.

 2 Finally, the function returns a value of false to tell the Web
browser not to actually submit the form (since the Ajax is handling
the form submission).

Save this fi le as
search.js and
place it in the same
directory on your
Web server as
every other fi le.

…
 handleResponse(ajax);
 }
 ajax.send(null);

 return false;

 } // End of anonymous function.

 } // End of DOM check.

 } // End of ajax IF.

} // End of init() function.

106 enabling an Ajax search

prepare for XML
A new PHP script will do the same thing as search_results.php, only it will
return all of its results as XML data. This data will be handled by the JavaScript
in the Web browser. Start a new PHP script in your text editor or IDE.

 1 This PHP page will not
be viewed in the Web
browser, so it begins with
the opening PHP tag, not
any HTML. (See extra
bits on page 125.)

 3 XML data begins wth
the declaration.

 4 All XML documents have one
root element. This can be a made-up
value, like employees here.

<?php # search_results_xml.php
header(“Content-Type: text/xml”);
echo ‘<?xml version=”1.0” encoding=”utf-8”
standalone=”yes” ?>
<employees>
‘;

 2 The header() function is used
to send meta-information (i.e., not
actual data). Here the header()
function sends a Content-Type of
text/xml. In layman’s terms, this
is a way of saying that XML data
should be expected to follow.

enabling an Ajax search 107

query the database
 1 We make sure that some
value was submitted for the
last name or else there’s no
need to query the database.

 2 The MySQL connection
script is included.

 3 The query will return every
employee’s name, email,
address, and department
whose last name begins with
the submitted letters. (See
extra bits on page 125.)

 4 The mysql_real_escape_
string() function makes it
safe to use the submitted value
in a query.

…
<employees>
‘;
if (!empty($_GET[‘last_name’])) {
 require_once(‘mysql.inc.php’);
 $q = “SELECT CONCAT(last_name, ‘, ‘, first_name),
email, department FROM employees LEFT JOIN departments
USING (department_id) WHERE last_name LIKE ‘” .
mysql_real_escape_string($_GET[‘last_name’]) . “%’
ORDER BY last_name, first_name”;
 $r = mysql_query($q, $dbc);

108 enabling an Ajax search

fetch the results
 1 Check that at least one
record was returned.

 2 Fetch all the records and
print them out as XML data.

 3 The newline character (\n) makes sure that whatever is
printed next will go on the following line (like hitting Enter or
Return on your keyboard).

…
$r = mysql_query($q, $dbc);
if (mysql_num_rows($r) > 0) {

 while ($row = mysql_fetch_array($r, MYSQL_NUM)) {

 echo “<employee>

<name>$row[0]</name>

<department>$row[2]</department>

<email>$row[1]</email>

</employee>\n”;

 } // End of WHILE loop.

} // End of IF.

enabling an Ajax search 109

complete the PHP
 1 Close the database connection
(not required, but good form).

 2 Close the root XML element
to complete the XML output. No
need to use closing HTML tags!

 3 Save this fi le as search_
results_xml.php and place it in
(you guessed it) the same direc-
tory as everything else.

…
 } // End of IF.
 mysql_close($dbc);

} // End of $_GET[‘last_name’] IF.

// Complete the XML document.

echo ‘</employees>’;

?>

110 enabling an Ajax search

handle the response
The PHP page sends back XML data, which must be handled by the JavaScript.
Add this new function to the search.js JavaScript fi le. (See extra bits on
page 126.)

 1 This JavaScript function is called
when the ajax object’s readyState
value changes (see the init() func-
tion). The function receives the ajax
object when called.

 2 The function shouldn’t do
anything until readyState has
a value of 4, meaning that the
Ajax transaction is complete.

 3 If the status code is equal
to either 200 or 304, every-
thing worked fi ne and we can
use the returned results.

function handleResponse(ajax) {
 if (ajax.readyState == 4) {
 if ((ajax.status == 200) || (ajax.status == 304))
{

enabling an Ajax search 111

prepare the page
 1 The results variable now refers to a specifi c area in the
DOM of the HTML page.

 2 The results area of the
HTML page is initially invisible,
so it needs to be made visible.

 3 We remove every node that
might exist within results.
(See extra bits on page 126.)

…
if ((ajax.status == 200) || (ajax.status == 304)) {
 var results = document.getElementById(‘results’);

 results.style.display = ‘block’;

 while (results.hasChildNodes()) {

 results.removeChild(results.lastChild);

 }

112 enabling an Ajax search

handle the XML
 1 The data variable now
stores the PHP page’s response
as XML data. (See extra bits on
page 126.)

 2 The names variable is now
an array of every element in
the XML data with a tag name
of name. If four names were
returned, then names would
now have four elements in it.

 3 The departments variable is
now an array of every element
in the XML result with a tag
name of department. Because
of the way the PHP script
generates the XML data, there
should be one department for
each name.

 4 The emails variable is now
an array of every element in the
XML result with a tag name of
email. Again, there’ll be one
email address for each name.

…
 results.removeChild(results.lastChild);
}
var data = ajax.responseXML;

var names = data.getElementsByTagName(‘name’);

var departments = data.getElementsByTagName(‘departmen

t’);

var emails = data.getElementsByTagName(‘email’);

enabling an Ajax search 113

display the results
The results should be displayed like they are in the non-Ajax version. This is the
generated HTML from that page, which should be replicated. (See extra bits
on page 127.)

 1 Before attempting to print the employees, we should confi rm that some
were returned by the PHP page. If at least one employee was returned in the
XML data, then names will have more than 0 elements in it. You can count
the number of elements in an array by referring to its length.

 2 We’ll need a slew of variables to add the values to the DOM.

…
var emails = data.getElementsByTagName(‘email’);
if (names.length > 0) {

 var employee, span, name_node, dept_node, dept_

label, br, strong, a, email;

114 enabling an Ajax search

 3 The for loop will access every item in the
names array. It counts from 0 (the fi rst item
in an array is at 0) to one less than the num-
ber of items in the array. With each iteration
of the loop, the counter, i, is incremented.

 4 Each employee returned by the PHP
page will be put within an HTML paragraph
(see the HTML source code on the previous
page). So, within the loop, the fi rst step is
to create a new element of type p. This step
adds a paragraph to the DOM, although the
paragraph doesn’t yet have anything in it,
nor has it been placed on the page.

 for (var i = 0; i < names.length; i++) {
 employee = document.createElement(‘p’);

enabling an Ajax search 115

The employee’s name should be put within a span whose class attribute is
name. This should be followed by a break.

 1 Another element, of type
span, is created. (See extra
bits on page 127.)

 2 The class attribute of the
span is given a value of name.
So the text put within the span
(see the next two steps) will be
formatted as a name.

 3 A diff erent kind of node, a text
node, is created. The value of
the text node (which is to say the
actual text) will be the value of the
name returned in the XML data.

 4 The text node is made a child
of the span node. Therefore, the
text node (which is the employee’s
name) is within the span.

 5 The span is attached to
the paragraph, created as
employee.

Actual Name

…
employee = document.createElement(‘p’);
span = document.createElement(‘span’);

span.setAttribute(‘class’, ‘name’);

name_node = document.createTextNode(names[i].

firstChild.nodeValue);

span.appendChild(name_node);

employee.appendChild(span);

br = document.createElement(‘br’);

employee.appendChild(br);

 6 A break element is added to the
paragraph so that the pieces to fol-
low will begin on the next line.

handle the name

116 enabling an Ajax search

handle the department
The department has a little more formatting. It starts with the word
Department with strong emphasis, followed by a colon and the actual
department. There’s another break at the end.

 1 Another element, of type strong, is created.

 2 A text node with the value Department is created.

 3 The text node is made a child of the strong node. This places
the text Department between the strong tags.

Department: Department Name

…
employee.appendChild(br);
strong = document.createElement(‘strong’);

dept_label = document.createTextNode(‘Department’);

strong.appendChild(dept_label);

employee.appendChild(strong);

enabling an Ajax search 117

dept_node = document.createTextNode(‘: ‘ +

departments[i].firstChild.nodeValue);

employee.appendChild(dept_node);

br = document.createElement(‘br’);

employee.appendChild(br);

 4 Another text node is generated, with a value of the
colon, followed by a space, followed by the name of
the department from the XML data.

 5 This latest text node is attached to the paragraph,
which is employee.

 6 A break element is added to the paragraph so
that the pieces to follow will begin on the next line.

handle the department (cont)

118 enabling an Ajax search

handle the email
The email address is tricky because it should be linked so that clicking on the
email address creates an email to that person.

 1 Another element, of type a, is created. This type
of element is for any link.

 2 The href attribute of the a element is given a
value of mailto: plus the person’s email address
from the XML data.

address@example.
com

…
 employee.appendChild(br);
 a = document.createElement(‘a’);

 a.setAttribute(‘href’, ‘mailto:’ + emails[i].

firstChild.nodeValue);

enabling an Ajax search 119

 3 A text node is created with a value of the
employee’s email address from the XML data.

 4 The text node is made a child of the a node.
Therefore, the text node (which is the employee’s
email address) is within the a.

 5 The a element is attached to the paragraph.

 6 The entire paragraph, which represents all of
the employee’s data, is made a child of the results
DIV. (See extra bits on page 128.)

 email = document.

createTextNode(emails[i].firstChild.nodeValue);

 a.appendChild(email);

 employee.appendChild(a);

 results.appendChild(employee);

} // End of FOR loop.

handle the email (cont.)

120 enabling an Ajax search

display no results
If the PHP page returned no results, a message should be displayed
saying as much.

 1 A new element of type p is created.

 2 The class attribute of the paragraph is given a value of error.

 3 A text node is created with a value of
No employees were a match.

 4 The text node is made a child of the paragraph node.

 5 The paragraph is made a child of the results DIV,
thereby putting the paragraph onto the page.

…
 } // End of FOR loop.
} else { // No employees, print a message.

 var node1 = document.createElement(‘p’);

 node1.setAttribute(‘class’, ‘error’);

 var node2 = document.createTextNode(‘No employees

were a match.’);

 node1.appendChild(node2);

 results.appendChild(node1);

}

enabling an Ajax search 121

complete the function
If we didn’t get a valid status code back from the Ajax request, we should
formally submit the form to the handling PHP page (as if the Ajax layer
didn’t exist at all).

…
 results.appendChild(node1);
 }
 } else { // Bad status code, submit the form.

 document.getElementById(‘search_form’).submit();

 }

 } // End of readyState IF.

} // End of handleResponse() function.

122 enabling an Ajax search

test the Ajax layer
 1 Load the HTML page in your Web browser.

The address must begin with http:// for this to work.

 2 Enter a letter or two
and click GO.

 3 The HTML page should show the results without
reloading the page or going to a new page.

 4 Enter invalid letters and
click GO to see the result if no
employees in the database
matched the search term.

enabling an Ajax search 123

extra bits

what we’ll do p. 100

• In this example, I suggest
that users enter only a couple
of letters because the data-
base has only 20 records in it.
With the employees entered
in chapter 1, “creating the
database,” Gr will return two
records but Gre only one.
If your database had more
names in it, entering longer
values would be appropriate.

add the Ajax
elements p. 102

• The ajax.js fi le, written in
chapter 3, “browsing using
Ajax,” defi nes a function that
returns a browser-specifi c
XMLHttpRequest object. This
fi le is needed by any page that
performs any Ajax operations.

• Because the DIV, where the
results will be reported, has
an id value of results, it’ll
be formatted according to
the rules dictated in style.
css. This is the same as the
results DIV in dept_form.
html and in add_employee.
html. For starters, the DIV will
be invisible when the page is
fi rst viewed.

set up the Ajax p. 105

• The encodeURIComponent()
function makes it safe to pass
in the URL whatever value the
user entered in the form.

• By passing the form data in
the URL, we ensure that the
Ajax request will be made
to search_results_xml.
php?last_name=XXX, where
XXX represents what the user
typed in the text box.

apply the Ajax
layer p. 103

• Most of this code is exactly
like that in dept.js and add_
employee.js. The big diff er-
ence at fi rst is the name of the
form being referenced. It’s in
the rest of the code—what
should be done when the form
is submitted—that the big dif-
ferences can be found.

124 enabling an Ajax search

prepare for XML p. 107

• The PHP script sends its
response as XML data, not as a
normal Web page. Everything
PHP will print will be part of
this XML and there will be no
HTML output.

• The XML data being created
is really like the data in an
HTML page, where there’s one
root element and any number
of nested subelements. For
this example, the root element
will be called employees and
there will be zero or more sub-
elements called employee.

• If the PHP page does not use
the header() function to
set the Content-Type, the
JavaScript that receives this
response will not recognize it
as XML.

query the
database p. 108

• To debug any PHP-MySQL
problems, you’ll need to print
out the query to inspect its
syntax. You should also invoke
the mysql_error() func-
tion to see what problems the
database reports.

• A useful debugging technique
when working with XML data
is to verify that your PHP
script is returning valid XML.
To see the result of the PHP
page, either use JavaScript to
access ajax.responseText
(in the handleResponse()
function) or submit your
form to the PHP page directly
(without using JavaScript).

• For directly viewing XML in
your Web browser, you’ll
want to use a browser that
supports the format. At the
time of this writing, this
includes recent versions of
Internet Explorer and Firefox,
but not Safari.

enabling an Ajax search 125

prepare the page p. 112

• The new trick in this specifi c
example is the use of nodes
as the way of manipulating
the page’s content. If you
think of the Document Object
Model as a tree, then a node
is a branch on that tree; each

branch has a parent (which is
either another branch or the
tree trunk) and some have
children (more branches). To
place content on the page,
we’ll add branches to the
results section. So to pre-
pare the page for the XML
data, we need to clear out any
existing nodes in results.
We do so by applying the
removeChild() function to
results, removing the last
node, until there are no more
nodes left.

handle the XML p. 113

• The server’s response is avai-
labe in two attributes of the
XMLHttpRequest object. It
can be found as plain text in
responseText or as XML data
in responseXML.

• The XML data can be ac-
cessed just like elements on
an HTML page, using the
Document Object Model. So
data.getElementsByTagName
(‘name’) refers to every item
in the XML data with a name
of name.

handle the
response p. 111

• In the init() function, we tell
the JavaScript to call a func-
tion called handleResponse()
whenever the readyState
value changes. This value will
change multiple times during
an Ajax request, so this func-
tion will be called multiple
times.

• The XMLHttpRequest status
attribute stores the HTTP
status code returned by the
server-side page. There are
dozens of status codes from
200, meaning that everything
was OK, to values over 500,
which are normally server
errors. A status code of 304
indicates that the page was
found but had not been modi-
fi ed since a certain date and
time.

extra bits (cont.)

126 enabling an Ajax search

display the
results p. 114

• This example, which uses both
nodes in the DOM and XML
data from PHP, is the most
complicated in the book. The
idea is simple, though: take
the HTML code generated by
the non-Ajax PHP script and
duplicate it using Ajax. So
everything in the last half of
this chapter is just a matter
of using nodes, the DOM, and
XML to that end.

• So many JavaScript variables
are declared because creating
nodes in the DOM is a multi-
step process, as you’ll see in
this chapter. And since each
employee’s record has multiple
elements—one paragraph,
one span, two breaks, one a
link, one strong, plus three
pieces of text (the name, the
department, and the email
address)—it’ll be easiest to
follow using many diff erent
variables.

• The syntax of the for loop
is a common way to access
every item found in an array.
Within the loop, the specifi c
array item is accessed via
arrayname[i].

• The createElement() function
is the most important for adding
nodes to the DOM. It makes the
element, but you then have to
add it to the page using append-
Child().

handle the name p. 116

• The setAttribute() func-
tion takes two arguments:
the name of the attribute to
set and the value it should be
given.

• To get the values from
the XML data, refer to
arrayname[i].first-
Child.nodeValue. The
arrayname[i] refers to a
specifi c element in the array;
firstChild refers to the fi rst
branch of that element (which
we know is the only node each
element has); and nodeValue
refers to the actual content
found there (which is the
text).

• The appendChild() function
adds the element in paren-
theses to the element named
before the period.

enabling an Ajax search 127

handle the email p. 120

• It isn’t until the employee
element, with all its subele-
ments (or nodes), is appended
to the results DIV that the
employee data will appear on
the HTML page.

• If the PHP script returns fi ve
employee records, then the
results DIV will end up
having fi ve child nodes. Each
of these nodes will be a para-
graph element, within which
are the span for the name,
the strong element and other
department text, the a ele-
ment for the email address,
and the two breaks.

extra bits (cont.)

128 enabling an Ajax search

This book provides all the code and knowledge required to add Ajax function-
ality to a Web site. But, as with most things, there’s a lot more to be learned.
This appendix will steer you in other useful directions and provide the occas-
sional code snippet as alternatives to the code used elsewhere in the book.

appendix
where to go from here

129

Ajax issues
Ajax is a wonderful technology that can greatly enhance a user’s
Web experience, but it’s not perfect. In particular, you should be
aware of the following limitations:

 1 If a user’s browser does not support JavaScript, Ajax is useless.
(See extra bits on page 146.)

 2 The results of Ajax-enabled pages cannot be bookmarked
without taking extra steps.

 3 The user cannot use the back button or their browser’s his-
tory to review previous results (again without taking extra steps).

 4 Search engines cannot index Ajax pages.

 5 Ajax applications can be more demanding of the browser.

 6 Because Ajax pages change the standard client-server relation-
ship, their use may be confusing for the end user.

 7 Ajax requires that the user be online the entire time.

130 Appendix

Ajax alternatives
It may seem strange to discuss other options in a book
about Ajax, but you can get a better understanding of
a thing by knowing what the alternatives are. What
can be accomplished via Ajax may also be possible
using:

 1 iFrames: While not as powerful as Ajax, iFrames
are well supported by most browsers. iFrames often
still make use of JavaScript; therefore, they can have
some of the same issues as Ajax.

 2 Flash: This is an extremely useful technology but
requires that the user install the Flash plug-in for
their browser.

 3 Java applets: Like Flash, Java applets have a
wide range of uses and abilities but require installed
browser support.

Appendix 131

introducing JSON
JSON (JavaScript Simple Object Notation) provides an alternative
to XML for transmittng data. Here is some sample XML data from
Chapter 7, “enabling an Ajax search”:

<employees>
 <employee>
<name>Gray, Gideon</name>
<department>Accounting</department>
<email>g.gray@thiscompany.com</email>
</employee>
 <employee>
<name>Green, Laverne</name>
<department>Human Resources</department>
<email>l.green@thiscompany.com</email>
</employee>
</employees>

132 Appendix

Here’s how that same data would look in JSON format (actually, all the data
would be on one line, without spaces, but I’ve spaced it out for clarity):

Because JSON data is JavaScript, it’s arguably easier to work with than
XML. And the same data will likely be smaller in JSON than in XML (meaning a
smaller transfer size from the server to the client). See extra bits on page 146
for why you shouldn’t use JSON.

[
{“name”:”Gray, Gideon”,”department”:”Accounting”,”emai
l”:”g.gray@thiscompany.com”},
{“name”:”Green, Laverne”,”department”:”Human
Resources”,”email”:”l.green@thiscompany.com”}
]

Appendix 133

sending JSON
Here’s how the search_results_xml.php script from Chapter 7 would
be rewritten to send JSON data instead of XML:

 1 The content-type header indicates what type of data is
being sent by this script.

<?php # search_results_json.php
header(“Content-type: application/json”);
if (!empty($_GET[‘last_name’])) {
 require_once(‘mysql.inc.php’);
 $q = “SELECT CONCAT(last_name, ‘, ‘, first_name),
email, department FROM employees LEFT JOIN departments
USING (department_id) WHERE last_name LIKE ‘” . mysql_
real_escape_string($_GET[‘last_name’]) . “%’ ORDER BY
last_name, first_name”;
 $r = mysql_query($q, $dbc);
 if (mysql_num_rows($r) > 0) {

134 Appendix

 2 Initialize an array that will store the results.

 3 Add each record as a new item in the $data array.

 4 Use a library to turn the array into JSON format, and
print the results. (See extra bits on page 146.)

 $data = array();
 while ($row = mysql_fetch_array($r, MYSQL_NUM)) {
 $data[] = array (‘name’ => $row[0],
 ‘department’ => $row[2],
 ‘email’ => $row[1]);
 } // End of WHILE loop.
 echo json_encode($data) . “\n”;
 }
 mysql_close($dbc);
} // End of $_GET[‘last_name’] IF.
?>

Appendix 135

accessing JSON data
To fi nish changing the search from Chapter 7 to use JSON, you must alter the
search.js fi le. All of the relevant changes go within the handleResponse()
function (although you also have to change the reference to the search_
results_xml.php script earlier in the JavaScript fi le, if you rename that fi le):

 1 Retrieve the data in ajax.responseText.

 2 Convert the data to an object using eval().

 3 Check that some records were returned by looking at the array’s size.

…
while (results.hasChildNodes()) {
results.removeChild(results.lastChild);
}
var data = eval(‘(‘ + ajax.responseText + ‘)’);
if (data.length > 0) {
…

136 Appendix

using JSON data
To update the DOM using the JSON data, complete the modifi cation of the
handleResponse() function:

 1 Access every returned record using a loop.

…
if (data.length > 0) {
 var employee, span, name_node, dept_node, dept_
label, br, strong, a, email;
 for (var i = 0; i < data.length; i++) {
 employee = document.createElement(‘p’);
 span = document.createElement(‘span’);
 span.setAttribute(‘class’, ‘name’);

Appendix 137

using JSON data (cont.)

 2 Access the individual elements using dot syntax.

 name_node = document.createTextNode(data[i].name);
 span.appendChild(name_node);
 employee.appendChild(span);
 br = document.createElement(‘br’);
 employee.appendChild(br);
 strong = document.createElement(‘strong’);
 dept_label = document.createTextNode(‘Department’)
;
 strong.appendChild(dept_label);
 employee.appendChild(strong);
 dept_node = document.createTextNode(‘: ‘ +
data[i].department);
 employee.appendChild(dept_node);
 br = document.createElement(‘br’);
 employee.appendChild(br);
 a = document.createElement(‘a’);
 a.setAttribute(‘href’, ‘mailto:’ + data[i].email);
 email = document.createTextNode(data[i].email);
 a.appendChild(email);
 employee.appendChild(a);
 results.appendChild(employee);
 } // End of FOR loop.
} else { // No employees, print a message.
…

138 Appendix

web resources
Along with the frameworks sites listed on the following pages, you might fi nd
these Ajax-specifi c sites worth your time (I’ve whittled the hundreds and hun-
dreds of Ajax sites down to a good starting handful):

 1 Ajax Patterns (www.ajaxpatterns.org) has tons of Ajax resources (in pro-
gramming, a pattern is a best practice for solving problems).

 2 AJAX Matters (www.ajaxmatters.com) has a lot of articles on various Ajax-
related subjects.

 3 Ajaxian (www.ajaxian.com) has been around since the beginning of Ajax
and has articles covering a range of Ajax-based topics.

 4 Douglas Crockford’s Wrrrld Wide Web (www.crockford.com) is short on
frills but long on usefulness. Crockford is a prominent JavaScript developer and
one of the people behind JSON.

 5 You can fi nd the fi rst coining of the word Ajax at
http://adaptivepath.com/publications/essays/archives/000385.php.

Appendix 139

www.ajaxpatterns.org
www.ajaxmatters.com
www.ajaxian.com
www.crockford.com
http://adaptivepath.com/publications/essays/archives/000385.php

JavaScript frameworks
A framework is an established library of code that can be used
to more easily do the things you’d otherwise program by hand (as
I do in this book). Here are a handful of the dozens and dozens of
frameworks available. (See extra bits on page 147.)

Name URLURL
Prototype www.prototypejs.org

Rico www.openrico.org

Dojo Toolkit www.dojotoolkit.org

jQuery http://jquery.com

Sarissa http://dev.abiss.gr/sarissa/

script.aculo.us http://script.aculo.us

mootools www.mootools.net

Yahoo! User Interface Library http://developer.yahoo.com/yui/

Spry http://labs.adobe.com/technologies/
spry/

140 Appendix

www.prototypejs.org
www.openrico.org
www.dojotoolkit.org
http://jquery.com
http://dev.abiss.gr/sarissa/
http://script.aculo.us
www.mootools.net
http://developer.yahoo.com/yui/
http://labs.adobe.com/technologies/spry
http://labs.adobe.com/technologies/spry

PHP-Ajax frameworks
Instead of using a JavaScript-specifi c framework, you could use
one that helps with both the JavaScript and the PHP. The two
most popular are:

 1 SAJAX (Simple Ajax Toolkit): www.modernmethod.com/sajax/

 2 xajax: www.xajaxproject.org

 3 PEAR::HTML_AJAX: http://pear.php.net/package/.HTML_AJAX

Appendix 141

www.modernmethod.com/sajax/
www.xajaxproject.org
http://pear.php.net/package/.HTML_AJAX

debugging JavaScript
Mastering the art of debugging is crucial when using any programming lan-
guage, and Ajax/JavaScript is no exception. I could write an entire book, or at
least a full chapter, on the subject, but you’ll fi nd this short list of the best tools
and techniques helpful:

 1 A JavaScript console: Firefox has a JavaScript console built in.
It’ll print errors and other necessary messages to aid your debug-
ging. If an Ajax page doesn’t work as expected, this is the fi rst place
you should look.

142 Appendix

alert(‘Inside the handleResponse() function.’);
alert(ajax.responseText);

 2 JavaScript alerts: I recommend using alerts to confi rm what
functions are executed and what the values of variables are.

Appendix 143

debugging JavaScript (cont.)

 3 A DOM inspector: Because most Ajax applications change a page’s content
dynamically, just looking at the source of the page won’t be of use. Instead, use
a DOM inspector to see the modifi ed page content. Firefox has one built in (on
Windows, you’ll need to do a custom install of Firefox to add the inspector).
You can also fi nd and install DOM inspectors that work with Internet Explorer
and Safari, but why bother when Firefox’s already exists?

144 Appendix

 4 The Venkman JavaScript Debugger
(www.mozilla.org/projects/venkman):
This is a sophisticated JavaScript debugger
that can be used through Firefox.

 5 JSLint (www.jslint.com): This pro-
gram performs basic syntax checks on
JavaScript. Just paste your JavaScript in
the box on the JSLint Web site and click
the JSLint button.

 6 Firebug (www.getfirebug.com): This
FireFox extension provides a wealth of
debugging tools, covering HTML, CSS,
JavaScript, and the DOM.

 7 Firefox Firefox Firefox: In case it’s
not clear from this list (where Firefox is
singled out four times), Firefox is clearly
the best browser for debugging Ajax
applications (it may be the best browser
period). You’ll need to test your Ajax
scripts on other browsers to verify sup-
port, but when it comes to debugging,
use Firefox fi rst!

Appendix 145

www.mozilla.org/projects/venkman
www.jslint.com
www.getfirebug.com

extra bits

Ajax issues p. 130

• With the code in this book, every
example will work whether or
not the user’s browser supports
Ajax. The examples were pur-
posefully designed this way, so
that if the nice Ajax layer won’t
work, the user isn’t left behind.
This is an approach you should
maintain as much as possible.

• Ajax pages cannot be book-
marked, recorded in the brows-
er’s history, or listed in search
engines because the changes
aren’t refl ected in a URL. By
taking some extra steps, it’s pos-
sible to overcome some of these
limitations. Search the Web for
techniques.

• It’s important to give obvious
clues to the user when something
is happening or has happened. In
this book, I use an overt format-
ting of Ajax results to make the
changes apparent.

introducing JSON p. 132–133

• The biggest concern with using
JSON is that there are some
security risks involved. The
eval() function actually runs
the received text as JavaScript
code, meaning that the Ajax pro-
cess could be hacked if the data
could be manipulated. Search the
Web for more on this subject and
for possible safeguards.

• Another issue with JSON is that
the syntax is very, very particu-
lar, much more so than XML.
Using a library to create the
JSON data will give more reliable
results.

sending JSON p. 134–135

• Instead of trying to create the
exact JSON syntax programmati-
cally, I think it’s best to use an
external library that will do this
for you. In this script, I’m mak-
ing use of the PECL JSON class
(which must be installed; see
http://pecl.php.net—it’s
enabled by default as of PHP
5.2).

• Alternatively, see the offi cial
JSON Web site (www.json.org)
for includable PHP libraries that
can perform the conversion of an
array to JSON.

146 Appendix

www.json.org
http://pecl.php.net

JavaScript frameworks p. 140

• There are three main downsides
to using frameworks. The fi rst is
that they require some effort to
learn how to use them. The sec-
ond is that they normally greatly
increase the amount of data
that a user must download from
your site (which is to say, frame-
works are almost inherently
bloated). Finally, you must pay
attention to new releases of a
framework, as they might patch
security holes.

• In choosing a framework, factor
in how many and what brows-
ers it supports, how large it is
(in terms of fi le size that the user
will end up downloading), and
how well documentated it is.

Appendix 147

This page intentionally left blank

index

SYMBOLS

$error variable, 68, 71, 72
$errors array, 50, 52
... (ellipses), in code blocks, xii
\n (newline character), 109
+ (plus sign), in JavaScript, 83
<title> values, 13

 A
adding employees, 43–58

HTML pages, creating, 44, 45–48
PHP scripts, creating, 44, 49–54
testing, 54–56

adding employees (using Ajax), 59–86
Ajax, setting up, 64, 82
database, updating, 72
form data, preparing, 65–66, 83
form data, validating, 68–71, 84
HTML pages, modifying, 62, 82
HTML pages, updating, 75–79, 85
JavaScript files, creating, 62–63, 83
overview of, 60–61
PHP scripts, new, 67, 83
testing, 80–81
XML, completing, 73–74

Ajax
Ajax layer, applying, 63, 103–104
alternatives to, 131

basics of, x–xi
checking for support of, 28
elements, adding, 62, 102
frameworks, listed, 141
indexing Ajax pages, 130
limitations of, 130, 146
setting up, 30, 64, 105
testing, and Firefox, 42

alerts, JavaScript, 143
appendChild() function, 127

 B
back buttons, 130
bookmarking, 130, 146
browsing employees, 11–24

CSS style sheets and, 12, 19–20, 24
databases, connecting to, 12, 18, 23
HTML pages, creating, 12, 13–14, 22
PHP scripts, writing, 12, 15–17,
22–23

testing pages, 12, 21, 24
browsing employees (using Ajax),

25–42
functions, calling, 29–31, 35–36,
40, 41–42

functions, making, 27–28, 39
HTML pages, modifying, 37
PHP scripts, writing, 32–34, 41
testing, 38, 42

149

index
 C
Castro, Elizabeth, xviii, 22, 24
code in this book
downloading, xii

JSON alternative to XML, 134–138
collation (database), defined, 9
columns
adding to tables, 9

column definitions, 10
INSERT query and, 58

concatenation, defined, 83
createElement() function, 127
CSS style sheets
creating, 12, 19–20, 24

page appearance and, 45, 89
using, 20

 D
databases

adding records to, 53
collation, defined, 9
connecting to, 12, 18, 23
querying, 108
updating, 72

databases, creating, 1–10
basics of, 3–4, 9
MySQL, accessing, 2, 9
tables, creating, 5–6, 9
tables, populating, 7–8, 10

debugging
Ajax applications, 42
Firebug and, 145
Firefox and, 15, 145
JavaScript, 142–145

MySQL client and, 97
PHP scripts and, 23, 24
PHP-MySQL, 58, 84, 125
running mysql client and, 97
Venkman JavaScript Debugger, 145
XML, 84, 125

departments
department column, 9
department IDs and PHP pages,
15, 16

department_id value, 10
departments table, 9, 10
departments variable, 113
drop-down list of, 12, 48
GET method and, 57, 82
in searches, 117–118
select menu of, 14

Document Object Model (DOM)
inspectors, 144

dot syntax, JSON, 138

 E
ellipses (...), in code blocks, xii
else clauses
when adding records, 54, 73, 74

when browsing, 17
when searching, 95

email addresses
querying, 93, 108
searching and, 94, 119–120, 128
validating, 57

emails variable, 113
employees

information on, 108
printing list of, 16

index150

employees, adding, 43–58
HTML pages, creating, 44, 45–48
PHP scripts, creating, 44, 49–54
testing, 54–56

employees, adding (using Ajax),
59–86
Ajax, setting up, 64, 82
databases, updating, 72
form data, preparing, 65–66, 83
form data, validating, 68–71, 84
HTML pages, modifying, 62, 82
HTML pages, updating, 75–79, 85
JavaScript files, creating, 62–63, 83
overview of, 60–61
PHP scripts, new, 67, 83
testing, 80–81
XML, completing, 73–74

employees, browsing, 11–24
CSS style sheets and, 12, 19–20, 24
databases, connecting to, 12, 18, 23
HTML pages, creating, 12, 13–14, 22
PHP scripts, writing, 12, 15–17,
22–23

testing pages, 12, 21, 24
employees, browsing (using Ajax),

25–42
functions, calling, 29–31, 35–36,
40, 41–42

functions, making, 27–28, 39
HTML pages, modifying, 37
PHP scripts, writing, 32–34, 41
testing, 38, 42

employees, searching for, 87–97
HTML pages, creating, 88, 89–91, 97
PHP scripts, writing, 88, 92–95, 97
testing, 96

employees, searching for (Ajax-
enabled), 99–128
Ajax elements, adding, 102, 124
display no results, 121
employee information, 116–120,
127–128

generated HMTL, 114–115, 127
JavaScript files, adding functions,
111, 126

JavaScript files, creating, 103–
106, 124

overview of, 100–101, 124
PHP scripts, writing, 107–110, 125
testing, 123
XML, handling, 113, 126

encodeURIComponent() function
when adding records, 83
when searching, 124

errors
databases, connecting to and, 18
error elements, 84
reporting, 17, 54

errors variable, 77
eval() function, 146

 F
Firebug, 145
Firefox

debugging and, 15, 145
JavaScript and, 142
as required tool, xiv–xv
testing Ajax applications and, 42
viewing XML and, 84, 125

Flash, 131
for loop, 115, 127

index 151

index
form data

preparing, 65–66, 83
validating, 50–52, 57, 68–71, 84

forms. see also HTML pages
elements, adding, 47–48, 57

form’s action values, 14
frameworks

JavaScript, 140, 147
PHP-Ajax, 141

functions
calling, 35–36, 40
making, 27–28, 39

 G
GET method

when adding records, 57, 82, 83
when browsing, 22
when searching, 91, 97,
105getXMLHttp
RequestObject() function

when adding records, 63
when browsing, 27, 28, 29, 39
when searching, 103

 H
handleResponse() function

JSON and, 136, 137
when adding records, 64, 79, 84
when searching, 105, 111, 125

header() function
preparing for XML and, 67, 84
when searching, 107, 125

href attribute, 119

HTML
generated when searching,
114–115

relationship to Ajax, xi
HTML, XHTML, and CSS, Sixth

Edition: Visual QuickStart
Guide, xviii, 24

HTML pages. see also testing
creating, 22, 24
creating, when adding records,
45–48

creating, when browsing, 12, 13–
14, 22

creating, when searching, 88, 89–
91, 97

modifying when adding records,
62, 82

modifying when browsing, 37
modifying when searching, 102
style sheets and, 20
testing, when adding records, 54–
56, 80–81

testing, when browsing, 21, 24, 38
testing, when searching, 96, 123

HTTP status code, 126

 I
IDE (integrated development

environment), xiv
iFrames, 131
indexing Ajax pages, 130
init() function

adding records and, 63, 75, 85
when searching, 126

index152

innerHTML, 99
INSERT query, 53, 58
inspectors, (DOM), 144
integrated development environment

(IDE), xiv

 J
Java applets, 131
JavaScript

adding functions to files, 111
Ajax functionality and, 27, 39
alerts, 143
browser support and, 130
debugging, 142–145
files, creating, 62–63, 103–106
Firefox and, 142
frameworks, 140, 147
plus sign (+) in, 83
relationship to Ajax and, xi

JSON (JavaScript Simple Object
Notation), 132–138, 146

 L
labels, 48, 57, 76, 78, 85
layers (Ajax), applying, 63, 103–104
LIKE clauses, 97
login, mysql client, 2

 M
message variable, 86
modifying HTML pages

when adding records, 62, 82
when browsing, 37
when searching, 102

MySQL. see also mysql client
accessing, 2, 9
connection script, 108
creating databases and, 1, 3

MySQL, Second Edition: Visual
QuickStart Guide, xviii, 1, 23

mysql client
debugging and, 97
logging in, 2
tables, creating with, 5–6, 9
tables, populating with, 7–8

mysql_affected_rows() function, 53
mysql_error() function, 58, 84, 125
mysql_real_escape_string() function

when adding records, 51, 57, 69–70
when searching, 93, 108

 N
name class attribute, 116
names, in searches, 116, 127
names variable, 113, 114
newline character (\n), 109
nodes

to manipulate content, 112, 126
strong node, 117
text nodes, 116, 120

numeric values, adding to forms,
52, 71

 O
onsubmit() event, 104

index 153

index
 P
pages, bookmarking, 130, 146
passwords, PHP scripts and, 23
PECL JSON class, 146
phone extensions, adding, 48, 52, 71
PHP

defined, 22
frameworks, listed, 141
Web site for libraries, 146

PHP 5 Advanced: Visual QuickPro
Guide, xviii

PHP and MySQL for Dynamic Web
Sites, Second Edition: Visual
QuickPro Guide, xviii, 23

PHP for the World Wide Web,
Second Edition: Visual
QuickStart Guide, xviii

PHP scripts
connecting to databases with, 18
PHP defined, 22
style sheets and, 20
writing, when adding records, 44,
49–54, 67–74, 83–84

writing, when browsing, 12, 15–17,
22–23, 32–34

writing, when searching, 88, 92–95,
107–110

phpMyAdmin, 1, 4, 8, 10
PHP-MySQL, debugging, 58, 84
plus sign (+), in JavaScript, 83
POST method, 46, 57, 64, 82, 83
printing employees list, 16

 R
records, adding. see employees,

adding; employees, adding (using
Ajax)

removeChild() function, 126
responseText, 126
responseXML, 126
Rich Internet Applications (RIAs), x

 S
searching for employees, 87–97

HTML pages, creating, 88, 89–91, 97
PHP scripts, writing, 88, 92–95, 97
testing, 96

searching for employees (Ajax-
enabled), 99–128
Ajax elements, adding, 102, 124
display no results, 121
employee information, 116–120,
127–128

generated HMTL, 114–115, 127
JavaScript files, adding functions,
111, 126

JavaScript files, creating,
103–106, 124

overview of, 100–101, 124
PHP scripts, writing, 107–110, 125
testing, 123
XML, handling, 113, 126

security
frameworks and, 147
risks with JSON, 146

send() method, 66, 83
setAttribute() function, 127
span nodes, 116

index154

SQL
creating tables and, 6, 8
downloading commands, 9, 10

strip_tags() function, 57
strong node, 117
style sheets, CSS

creating, 12, 19–20, 24
page appearance and, 45, 89
using, 20

 T
tables

creating, 5–6, 9
populating, 7–8, 10

testing
when adding, 54–56, 80–81
when browsing, 21, 24, 38
when searching, 96, 123

text editors
HTML pages and, 22
necessity for, xiv

text nodes, 116, 120
<title> values, 13

 U
user names, PHP scripts and, 23

 V
validating form data, 50–52, 57,

68–70, 84
values

<title> values, 13
adding numeric values to forms, 52

Venkman JavaScript Debugger, 145

 W
Web browsers

Ajax basics and, x, 13
examples in this book and, xiv

testing Ajax and, 42
using phpMyAdmin and, 2
XML support and, 84, 125
XMLHttpRequest object and, 28

Web resources
companion site to this book, xvii
for further information, 139
JSON Web site, 146
PECL JSON class, 146
PHP libraries, 146

What You See Is What You Get
(WYSIWYG), xiv

 X
XML

completing when adding records,
73–74, 84

debugging, 84, 125
Firefox and, 84, 125

handling when adding records, 77
handling when searching, 113
header() function and, 67, 84
JSON as alternative to, 132–138
preparing for when adding records,
67, 83

preparing for when searching, 107
XMLHttpRequest object

browser-specific, 82
importance of in Ajax, xi
when adding records, 44
when searching, 103, 124

index 155

	Building a Web Site with Ajax
	contents
	introduction
	how Ajax works
	what you’ll learn
	how this book works
	required tools
	companion web site
	the next step

	1. access MySQL
	access MySQL
	make the database
	make the tables
	populate the tables
	extra bits

	2. browsing employees
	what we’ll do
	create an HTML page
	add the HTML form
	start a PHP page
	print the employees
	report on any errors
	connect to the database
	create a style sheet
	use the style sheet
	test the pages
	extra bits

	3. browsing using Ajax
	what we’ll do
	make a function
	check for Ajax support
	call the function
	set up the Ajax
	begin the PHP page
	print the employees
	handle the response
	display the results
	modify the HTML
	test the Ajax layer
	extra bits

	4. adding records
	what we’ll do
	start the HTML page
	add the form
	add the form elements
	start a PHP page
	validate the form data
	update the database
	report any errors
	test the non-Ajax version
	extra bits

	5. adding records via Ajax
	what we’ll do
	add the Ajax elements
	apply the Ajax layer
	set up the Ajax
	prepare the form data
	complete the function
	prepare for HTML
	validate the form data
	update the database
	complete the XML
	handle the response
	prepare the page
	handle the XML
	display the results
	test the Ajax layer
	extra bits

	6. creating a search
	what we’ll do
	start the HTML page
	add the form
	start a PHP page
	query the database
	print the results
	report any errors
	test the non-Ajax version
	extra bits

	7. enabling an Ajax search
	what we’ll do
	add the Ajax elements
	apply the Ajax layer
	set up the Ajax
	complete the function
	prepare for XML
	query the database
	fetch the results
	complete the PHP
	handle the response
	prepare the page
	handle the XML
	display the results
	handle the name
	handle the department
	handle the email
	display no results
	complete the function
	test the Ajax layer
	extra bits

	appendix
	Ajax issues
	Ajax alternatives
	introducing JSON
	sending JSON
	accessing JSON data
	using JSON data
	web resources
	JavaScript frameworks
	PHP-Ajax frameworks
	debugging JavaScript
	extra bits

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

