

123

Art Lew
Holger Mauch

Dynamic Programming
A Computational Tool

With 55 Figures and 5 Tables

ISSN electronic edition: 1860-9503

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of tran

j py g gj py g g
slation, reprinting, reuse of illustrations, recita-

p

tion, broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
p y gp y g p gg

Duplication of this publication
g pg p

or parts thereof is permitted on
yy

ly under the provisions of the
y gy g

German Copyright Law of Septem
p pp

ber 9, 1965, in its current version, and permission for use
p pp y pp

must always be obtained from Springer-Verlag. Violations are liable to prosecution under the
py g ppy g pp

German Copyright Law.
y

Springer is a part of Springer Science+Business Media
springer.com

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from

g p gg p g pp

the relevant protective laws and regulations and therefore free for general use.
p y pp y p

5 4 3 2 1 0

Cover design: deblik, Berlin

ISSN print edition: 1860-949X

Typesetting by the authors and SPi
g

89/SPi

Library of Congress Control Number: 2006930743

ISBN-10 3-540-37013-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37013-0 Springer Berlin Heidelberg New York

Printed ddd on acid-ffree paper SPIN: 11550860

Prof. Art Lew
 Computer SciencesDepartment of Information

University of Hawaii at Manoa

96822 Honolulu, HI
USA
E-mail: artlew@hawaii.edu

Dr. Holger Mauch
Department of Computer Science

Natural Sciences Collegium

Eckerd College

USA
33711 Saint Petersburg, FL

E-mail: mauchh@eckerd.edu

©© Springer-Verlag Berlin Heidelberg 2007p gg gg

and

 4200, 54th Ave. S.
 1680 East-West Road

To the Bellman Continuum, in memory of Richard Bellman. A.L.

To my family. H.M.

Preface

Dynamic programming has long been applied to numerous areas in mathe-
matics, science, engineering, business, medicine, information systems, bio-
mathematics, artificial intelligence, among others. Applications of dynamic
programming have increased as recent advances have been made in areas such
as neural networks, data mining, soft computing, and other areas of compu-
tational intelligence. The value of dynamic programming formulations and
means to obtain their computational solutions has never been greater.

This book describes the use of dynamic programming as a computational
tool to solve discrete optimization problems.

(1) We first formulate large classes of discrete optimization problems in
dynamic programming terms, specifically by deriving the dynamic program-
ming functional equations (DPFEs) that solve these problems. A text-based
language, gDPS, for expressing these DPFEs is introduced. gDPS may be
regarded as a high-level specification language, not a conventional procedural
computer programming language, but which can be used to obtain numerical
solutions.

(2) We then define and examine properties of Bellman nets, a class of Petri
nets that serves both as a formal theoretical model of dynamic programming
problems, and as an internal computer data structure representation of the
DPFEs that solve these problems.

(3) We also describe the design, implementation, and use of a software tool,
called DP2PN2Solver, for solving DPFEs. DP2PN2Solver may be regarded as
a program generator, whose input is a DPFE, expressed in the input specifi-
cation language gDPS and internally represented as a Bellman net, and whose
output is its numerical solution that is produced indirectly by the generation
of “solver” code, which when executed yields the desired solution.

This book should be of value to different classes of readers: students, in-
structors, practitioners, and researchers. We first provide a tutorial intro-
duction to dynamic programming and to Petri nets. For those interested in
dynamic programming, we provide a useful software tool that allows them to
obtain numerical solutions. For researchers having an interest in the fields of

VIII Preface

dynamic programming and Petri nets, unlike most past work which applies
dynamic programming to solve Petri net problems, we suggest ways to apply
Petri nets to solve dynamic programming problems.

For students and instructors of courses in which dynamic programming
is taught, usually as one of many other problem-solving methods, this book
provides a wealth of examples that show how discrete optimization problems
can be formulated in dynamic programming terms. Dynamic programming
has been and continues to be taught as an “art”, where how to use it must
be learned by example, there being no mechanical way to apply knowledge
of the general principles (e.g., the principle of optimality) to new unfamiliar
problems. Experience has shown that the greater the number and variety
of problems presented, the easier it is for students to apply general concepts.
Thus, one objective of this book is to include many and more diverse examples.
A further distinguishing feature of this book is that, for all of these examples,
we not only formulate the DP equations but also show their computational
solutions, exhibiting computer programs (in our specification language) as well
as providing as output numerical answers (as produced by the automatically
generated solver code).

In addition, we provide students and instructors with a software tool
(DP2PN2Solver) that enables them to obtain numerical solutions of dynamic
programming problems without requiring them to have much computer pro-
gramming knowledge and experience. This software tool can be downloaded
from either of the following websites:

http://natsci.eckerd.edu/∼mauchh/Research/DP2PN2Solver
http://www2.hawaii.edu/∼icl/DP2PN2Solver

Further information is given in Appendix B. Having such software support
allows them to focus on dynamic programming rather than on computer pro-
gramming. Since many problems can be solved by different dynamic program-
ming formulations, the availability of such a computational tool, that makes it
easier for readers to experiment with their own formulations, is a useful aid
to learning.

The DP2PN2Solver tool also enables practitioners to obtain numerical
solutions of dynamic programming problems of interest to them without
requiring them to write conventional computer programs. Their time, of
course, is better spent on problem formulation and analysis than on program
design and debugging. This tool allows them to verify that their formulations
are correct, and to revise them as may be necessary in their problem solving
efforts. The main limitation of this (and any) dynamic programming tool for
many practical problems is the size of the state space. Even in this event,
the tool may prove useful in the formulation stage to initially test ideas on
simplified scaled-down problems.

As a program generator, DP2PN2Solver is flexible, permitting alternate
front-ends and back-ends. Inputs other than in the gDPS language are possi-
ble. Alternative DPFE specifications can be translated into gDPS or directly

Preface IX

into Bellman nets. Output solver code (i.e., the program that numerically
solves a given DPFE) may be in alternative languages. The solver code
emphasized in this book is Java code, largely because it is universally and
freely available on practically every platform. We also discuss solver codes for
spreadsheet systems and Petri net simulators. By default, the automatically
generated solver code is hidden from the average user, but it can be inspected
and modified directly by users if they wish.

Furthermore, this book describes research into connections between
dynamic programming and Petri nets. It was our early research into such
connections that ultimately lead to the concept of Bellman nets, upon which
the development of our DP2PN2Solver tool is based. We explain here the
underlying ideas associated with Bellman nets. Researchers interested in dy-
namic programming or Petri nets will find many open questions related to this
work that suggest avenues of future research. For example, additional research
might very likely result in improvements in the DP2PN2Solver tool, such as
to address the state-space size issue or to increase its diagnostic capabilities.
Every other aspect of this work may benefit from additional research.

Thus, we expect the DP2PN2Solver tool described in this book to un-
dergo revisions from time to time. In fact, the tool was designed modularly
to make it relatively easy to modify. As one example, changes to the gDPS
specification language syntax can be made by simply revising its BNF defi-
nition since we use a compiler-compiler rather than a compiler to process it.
Furthermore, alternate input languages (other than gDPS) and solver codes
(other than Java) can be added as optional modules, without changing the
existing modules. We welcome suggestions from readers on how the tool (or
its description) can be improved. We may be contacted at artlew@hawaii.edu
or mauchh@eckerd.edu. Updates to the software and to this book, including
errata, will be placed on the aforementioned websites.

Acknowledgements. The authors wish to thank Janusz Kacprzyk for
including this monograph in his fine series of books. His encouragement has
been very much appreciated.

Honolulu, June 2006, Art Lew
St. Petersburg, June 2006, Holger Mauch

Contents

Part I Dynamic Programming

1 Introduction to Dynamic Programming . 3
1.1 Principles of Dynamic Programming . 5

1.1.1 Sequential Decision Processes . 6
1.1.2 Dynamic Programming Functional Equations 9
1.1.3 The Elements of Dynamic Programming 11
1.1.4 Application: Linear Search . 12
1.1.5 Problem Formulation and Solution 14
1.1.6 State Transition Graph Model . 17
1.1.7 Staged Decisions . 19
1.1.8 Path-States . 21
1.1.9 Relaxation . 22
1.1.10 Shortest Path Problems . 23
1.1.11 All-Pairs Shortest Paths . 29
1.1.12 State Space Generation . 30
1.1.13 Complexity . 31
1.1.14 Greedy Algorithms . 32
1.1.15 Probabilistic DP . 32
1.1.16 Nonoptimization Problems . 33
1.1.17 Concluding Remarks . 34

1.2 Computational Solution of DPFEs . 34
1.2.1 Solution by Conventional Programming 35
1.2.2 The State-Decision-Reward-Transformation Table 36
1.2.3 Code Generation . 38
1.2.4 Spreadsheet Solutions . 38
1.2.5 Example: SPA . 40
1.2.6 Concluding Remarks . 42

1.3 Overview of Book . 42

XII Contents

2 Applications of Dynamic Programming . 45
2.1 Optimal Allotment Problem (ALLOT) . 49
2.2 All-Pairs Shortest Paths Problem (APSP) 50
2.3 Optimal Alphabetic Radix-Code Tree Problem (ARC) 51
2.4 Assembly Line Balancing (ASMBAL) . 52
2.5 Optimal Assignment Problem (ASSIGN) 54
2.6 Optimal Binary Search Tree Problem (BST) 55
2.7 Optimal Covering Problem (COV) . 57
2.8 Deadline Scheduling Problem (DEADLINE) 57
2.9 Discounted Profits Problem (DPP) . 58
2.10 Edit Distance Problem (EDP) . 59
2.11 Fibonacci Recurrence Relation (FIB) . 60
2.12 Flowshop Problem (FLOWSHOP) . 61
2.13 Tower of Hanoi Problem (HANOI) . 62
2.14 Integer Linear Programming (ILP) . 63
2.15 Integer Knapsack as ILP Problem (ILPKNAP) 64
2.16 Interval Scheduling Problem (INTVL) . 64
2.17 Inventory Problem (INVENT) . 66
2.18 Optimal Investment Problem (INVEST) 67
2.19 Investment: Winning in Las Vegas Problem (INVESTWLV) . . 68
2.20 0/1 Knapsack Problem (KS01) . 69
2.21 COV as KSINT Problem (KSCOV) . 70
2.22 Integer Knapsack Problem (KSINT) . 70
2.23 Longest Common Subsequence (LCS) . 71
2.24 Optimal Linear Search Problem (LINSRC) 73
2.25 Lot Size Problem (LOT) . 73
2.26 Longest Simple Path Problem (LSP) . 74
2.27 Matrix Chain Multiplication Problem (MCM) 75
2.28 Minimum Maximum Problem (MINMAX) 75
2.29 Minimum Weight Spanning Tree Problem (MWST) 77
2.30 The Game of NIM (NIM) . 78
2.31 Optimal Distribution Problem (ODP) . 80
2.32 Optimal Permutation Problem (PERM) 81
2.33 Jug-Pouring Problem (POUR) . 82
2.34 Optimal Production Problem (PROD) . 83
2.35 Production: Reject Allowances Problem (PRODRAP) 84
2.36 Reliability Design Problem (RDP) . 84
2.37 Replacement Problem (REPLACE) . 85
2.38 Stagecoach Problem (SCP) . 86
2.39 Seek Disk Scheduling Problem (SEEK) . 87
2.40 Segmented Curve Fitting Problem (SEGLINE) 88
2.41 Program Segmentation Problem (SEGPAGE) 91
2.42 Optimal Selection Problem (SELECT) . 94
2.43 Shortest Path in an Acyclic Graph (SPA) 95
2.44 Shortest Path in an Cyclic Graph (SPC) 95

Contents XIII

2.45 Process Scheduling Problem (SPT) . 97
2.46 Transportation Problem (TRANSPO) . 98
2.47 Traveling Salesman Problem (TSP) . 99

Part II Modeling of DP Problems

3 The DP Specification Language gDPS . 103
3.1 Introduction to gDPS . 103
3.2 Design Principles of gDPS . 105
3.3 Detailed Description of the gDPS Sections 106

3.3.1 Name Section . 106
3.3.2 General Variables Section . 106
3.3.3 Set Variables Section . 108
3.3.4 General Functions Section . 109
3.3.5 State Type Section . 110
3.3.6 Decision Variable Section . 110
3.3.7 Decision Space Section . 111
3.3.8 Goal Section . 111
3.3.9 DPFE Base Section . 112
3.3.10 DPFE Section . 113
3.3.11 Cost/Reward Function Section . 115
3.3.12 Transformation Function Section 115
3.3.13 Transition Weight Section . 116

3.4 BNF Grammar of the gDPS language . 117

4 DP Problem Specifications in gDPS . 125
4.1 gDPS source for ALLOT. 125
4.2 gDPS source for APSP . 128
4.3 gDPS source for ARC . 131
4.4 gDPS source for ASMBAL . 132
4.5 gDPS source for ASSIGN . 135
4.6 gDPS source for BST . 136
4.7 gDPS source for COV . 138
4.8 gDPS source for DEADLINE . 139
4.9 gDPS source for DPP . 140
4.10 gDPS source for EDP . 141
4.11 gDPS source for FIB . 144
4.12 gDPS source for FLOWSHOP . 144
4.13 gDPS source for HANOI . 145
4.14 gDPS source for ILP . 146
4.15 gDPS source for ILPKNAP . 148
4.16 gDPS source for INTVL . 150
4.17 gDPS source for INVENT. 154
4.18 gDPS source for INVEST . 156

XIV Contents

4.19 gDPS source for INVESTWLV . 157
4.20 gDPS source for KS01 . 158
4.21 gDPS source for KSCOV . 159
4.22 gDPS source for KSINT . 160
4.23 gDPS source for LCS . 161
4.24 gDPS source for LINSRC . 165
4.25 gDPS source for LOT . 167
4.26 gDPS source for LSP . 168
4.27 gDPS source for MCM . 170
4.28 gDPS source for MINMAX . 171
4.29 gDPS source for MWST . 173
4.30 gDPS source for NIM . 176
4.31 gDPS source for ODP . 176
4.32 gDPS source for PERM. 178
4.33 gDPS source for POUR . 179
4.34 gDPS source for PROD . 181
4.35 gDPS source for PRODRAP . 182
4.36 gDPS source for RDP . 184
4.37 gDPS source for REPLACE . 186
4.38 gDPS source for SCP . 187
4.39 gDPS source for SEEK . 189
4.40 gDPS source for SEGLINE . 190
4.41 gDPS source for SEGPAGE . 192
4.42 gDPS source for SELECT. 193
4.43 gDPS source for SPA . 194
4.44 gDPS source for SPC . 196
4.45 gDPS source for SPT . 199
4.46 gDPS source for TRANSPO . 200
4.47 gDPS source for TSP . 201

5 Bellman Nets: A Class of Petri Nets . 205
5.1 Petri Net Introduction . 205

5.1.1 Place/Transition Nets . 205
5.1.2 High-level Petri Nets . 207
5.1.3 Colored Petri Nets . 208
5.1.4 Petri Net Properties . 209
5.1.5 Petri Net Software . 210

5.2 Petri Net Models of Dynamic Programming 210
5.3 The Low-Level Bellman Net Model . 212

5.3.1 Construction of the Low-Level Bellman Net Model . . . 212
5.3.2 The Role of Transitions in the Low-Level Bellman

Net Model . 213
5.3.3 The Role of Places in the Low-Level Bellman Net

Model . 213

Contents XV

5.3.4 The Role of Markings in the Low-Level Bellman Net
Model . 214

5.3.5 Advantages of the Low-Level Bellman Net Model 214
5.4 Low-Level Bellman Net Properties . 214
5.5 The High-Level Bellman Net Model . 215
5.6 High-Level Bellman Net Properties . 219

6 Bellman Net Representations of DP Problems 221
6.1 Graphical Representation of Low-Level Bellman Net Examples222

6.1.1 Low-Level Bellman Net for BST 222
6.1.2 Low-Level Bellman Net for LINSRC. 222
6.1.3 Low-Level Bellman Net for MCM 224
6.1.4 Low-Level Bellman Net for ODP. 224
6.1.5 Low-Level Bellman Net for PERM 227
6.1.6 Low-Level Bellman Net for SPA 228

6.2 Graphical Representation of High-Level Bellman Net Examples228
6.2.1 High-Level Bellman Net for EDP 230
6.2.2 High-Level Bellman Net for ILP 230
6.2.3 High-Level Bellman Net for KS01 231
6.2.4 High-Level Bellman Net for LCS 231
6.2.5 High-Level Bellman Net for LINSRC 234
6.2.6 High-Level Bellman Net for LSP 235
6.2.7 High-Level Bellman Net for MCM 236
6.2.8 High-Level Bellman Net for RDP 238
6.2.9 High-Level Bellman Net for SCP. 238
6.2.10 High-Level Bellman Net for SPA 240
6.2.11 High-Level Bellman Net for SPC. 242

Part III Design and Implementation of DP Tool

7 DP2PN2Solver Tool . 247
7.1 Overview . 247
7.2 Internal Representation of Bellman Nets 251
7.3 Compiling and Executing DP Programs 252
7.4 The ILP2gDPS Preprocessor Module . 255

8 DP2PN Parser and Builder . 259
8.1 Design of the DP2PN modules . 259
8.2 Implementation of the DP2PN modules . 260
8.3 The Module LINSRCSMain . 263
8.4 Error Detection in DP2PN . 268

XVI Contents

9 The PN2Solver Modules . 271
9.1 The Solver Code Generation Process . 271
9.2 The PN2Java Module . 273

9.2.1 Java Solver Code Calculation Objects 274
9.2.2 Java Solver Code for LINSRCS . 276
9.2.3 Java Solver Code for LSP . 278
9.2.4 Java Solver Code for MCM . 278
9.2.5 Java Solver Code for SPA . 280

9.3 The PN2Spreadsheet Module . 281
9.3.1 PN2Spreadsheet Solver Code for LINSRCS 282
9.3.2 PN2Spreadsheet Solver Code for Other Examples 284

9.4 The PN2XML Module . 284
9.4.1 Petri Net Solver Code for LINSRCS 285
9.4.2 Petri Net Solver Code for SPA . 288

9.5 Conclusion . 289

Part IV Computational Results

10 Java Solver Results of DP Problems . 293
10.1 ALLOT Java Solver Output . 293
10.2 APSP Java Solver Output . 294
10.3 ARC Java Solver Output . 296
10.4 ASMBAL Java Solver Output . 296
10.5 ASSIGN Java Solver Output . 297
10.6 BST Java Solver Output . 297
10.7 COV Java Solver Output . 298
10.8 DEADLINE Java Solver Output . 298
10.9 DPP Java Solver Output . 299
10.10 EDP Java Solver Output . 299
10.11 FIB Java Solver Output . 299
10.12 FLOWSHOP Java Solver Output . 300
10.13 HANOI Java Solver Output . 300
10.14 ILP Java Solver Output . 301
10.15 ILPKNAP Java Solver Output . 301
10.16 INTVL Java Solver Output . 302
10.17 INVENT Java Solver Output . 303
10.18 INVEST Java Solver Output . 304
10.19 INVESTWLV Java Solver Output . 304
10.20 KS01 Java Solver Output . 305
10.21 KSCOV Java Solver Output . 306
10.22 KSINT Java Solver Output . 306
10.23 LCS Java Solver Output . 306
10.24 LINSRC Java Solver Output . 307
10.25 LOT Java Solver Output . 308

Contents XVII

10.26 LSP Java Solver Output . 308
10.27 MCM Java Solver Output . 308
10.28 MINMAX Java Solver Output . 309
10.29 MWST Java Solver Output . 309
10.30 NIM Java Solver Output . 309
10.31 ODP Java Solver Output . 312
10.32 PERM Java Solver Output . 312
10.33 POUR Java Solver Output . 312
10.34 PROD Java Solver Output . 313
10.35 PRODRAP Java Solver Output . 314
10.36 RDP Java Solver Output . 314
10.37 REPLACE Java Solver Output . 315
10.38 SCP Java Solver Output . 315
10.39 SEEK Java Solver Output . 315
10.40 SEGLINE Java Solver Output . 316
10.41 SEGPAGE Java Solver Output . 316
10.42 SELECT Java Solver Output . 317
10.43 SPA Java Solver Output . 317
10.44 SPC Java Solver Output . 318
10.45 SPT Java Solver Output . 318
10.46 TRANSPO Java Solver Output . 319
10.47 TSP Java Solver Output . 319

11 Other Solver Results . 321
11.1 PN2Spreadsheet Solver Code Output . 321

11.1.1 PN2Spreadsheet Solver Code for LINSRCS 321
11.1.2 PN2Spreadsheet Solver Code for LSP 322
11.1.3 PN2Spreadsheet Solver Code for MCM 322
11.1.4 PN2Spreadsheet Solver Code for SPA 323
11.1.5 Spreadsheet Output . 323

11.2 PN2XML Solver Code Output . 324
11.2.1 PN2XML Simulation Output for LINSRCS 325

12 Conclusions . 329
12.1 Applicability of DP and DP2PN2Solver . 329
12.2 The DP2PN2Solver Tool . 330
12.3 Research Directions . 332

12.3.1 User Functionality . 333
12.3.2 Reduction of Dimensionality . 334
12.3.3 Petri Net Modeling . 335

12.4 Summary . 336

XVIII Contents

A Supplementary Material . 339
A.1 Pseudocode of the DP2PN Module . 339

A.1.1 Main Class for LINSRCS . 339
A.1.2 State Class for LINSRCS . 342
A.1.3 Decision Class . 343
A.1.4 DPInstanceTableEntry Class . 344
A.1.5 DPInstance Class . 344
A.1.6 BellmanNet Class . 349

A.2 DP2PN System Files . 353
A.3 Output from PN2XML . 356

A.3.1 High-Level Bellman Net XML file for SPA1 356

B User Guide for DP2PN2Solver . 359
B.1 System Requirements for DP2PN2Solver 359

B.1.1 Java Environment . 359
B.2 Obtaining DP2PN2Solver . 360
B.3 Installation of DP2PN2Solver . 360

B.3.1 Deployment of the Files . 360
B.4 Running DP2PN2Solver . 361

B.4.1 The DP2PN Module . 361
B.4.2 The PN2Solver Module . 363

B.5 Creation of the gDPS Source File . 365
B.6 Debugging gDPS Code . 366

B.6.1 Omission of Base Cases . 366
B.6.2 Common Mistakes . 367

B.7 Error Messages of DP2PN2Solver . 368

References . 371

Index . 375

1

Introduction to Dynamic Programming

This book concerns the use of a method known as dynamic programming (DP)
to solve large classes of optimization problems. We will focus on discrete op-
timization problems for which a set or sequence of decisions must be made to
optimize (minimize or maximize) some function of the decisions. There are of
course numerous methods to solve discrete optimization problems, many of
which are collectively known as mathematical programming methods. Our ob-
jective here is not to compare these other mathematical programming methods
with dynamic programming. Each has advantages and disadvantages, as dis-
cussed in many other places. However, we will note that the most prominent
of these other methods is linear programming. As its name suggests, it has
limitations associated with its linearity assumptions whereas many problems
are nonlinear. Nevertheless, linear programming and its variants and exten-
sions (some that allow nonlinearities) have been used to solve many real world
problems, in part because very early in its development software tools (based
on the simplex method) were made available to solve linear programming
problems. On the other hand, no such tools have been available for the much
more general method of dynamic programming, largely due to its very gen-
erality. One of the objectives of this book is to describe a software tool for
solving dynamic programming problems that is general, practical, and easy
to use, certainly relative to any of the other tools that have appeared from
time to time.

One reason that simplex-based tools for solving linear programming
problems have been successful is that, by the nature of linear programming,
problem specification is relatively easy. A basic LP problem can be specified
essentially as a system or matrix of equations with a finite set of numeri-
cal variables as unknowns. That is, the input to an LP software tool can
be provided in a tabular form, known as a tableaux. This also makes it easy
to formulate LP problems as a spreadsheet. This led to spreadsheet system
providers to include in their product an LP solver, as is the case with Excel.

A software tool for solving dynamic programming problems is much more
difficult to design, in part because the problem specification task in itself

A. Lew and H. Mauch: Introduction to Dynamic Programming, Studies in Computational Intel-

ligence (SCI) 38, 3–43 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

4 1 Introduction to Dynamic Programming

presents difficulties. A DP problem specification is usually in the form of
a complex (nonlinear) recursive equation, called the dynamic programming
functional equation (DPFE), where the DPFE often involves nonnumerical
variables that may include sets or strings. Thus, the input to a DP tool must
necessarily be general enough to allow for complex DPFEs, at the expense
therefore of the simplicity of a simple table. The DP tool described in this
book assumes that the input DPFE is provided in a text-based specification
language that does not rely on mathematical symbols. This decision conforms
to that made for other mathematical programming languages, such as AMPL
and LINGO.

In this introductory chapter, we first discuss the basic principles underly-
ing the use of dynamic programming to solve discrete optimization problems.
The key task is to formulate the problem in terms of an equation, the DPFE,
such that the solution of the DPFE is the solution of the given optimization
problem. We then illustrate the computational solution of the DPFE for a spe-
cific problem (for linear search), either by use of a computer program written
in a conventional programming language, or by use of a spreadsheet system.
It is not easy to generalize these examples to solve DP problems that do not
resemble linear search. Thus, for numerous dissimilar DP problems, a signif-
icant amount of additional effort is required to obtain their computational
solutions. One of the purposes of this book is to reduce this effort.

In Chap. 2, we show by example numerous types of optimization problems
that can be solved using DP. These examples are given, first to demonstrate
the general utility of DP as a problem solving methodology. Other books
are more specialized in the kinds of applications discussed, often focusing on
applications of interest mainly to operations research or to computer science.
Our coverage is much more comprehensive. Another important reason for
providing numerous examples is that it is often difficult for new students of
the field to see from a relatively small sample of problems how DP can be
applied to other problems. How to apply DP to new problems is often learned
by example; the more examples learned, the easier it is to generalize. Each of
the sample problems presented in Chap. 2 was computationally solved using
our DP tool. This demonstrates the generality, flexibility, and practicality of
the tool.

In Part II of this book, we show how each of the DPFEs given in Chap. 2
can be expressed in a text-based specification language, and then show how
these DPFEs can be formally modeled by a class of Petri nets, called Bellman
nets. Bellman nets serve as the theoretical underpinnings for the DP tool we
later describe, and we describe our research into this subject area.

In Part III of this book, we describe the design and implementation of our
DP tool. This tool inputs DPFEs, as given in Part II, and produces numerical
solutions, as given in Part IV.

In Part IV of this book, we present computational results. Specifically, we
give the numerical solutions to each of the problems discussed in Chap. 2, as
provided by our DP tool.

1.1 Principles of Dynamic Programming 5

Appendix A of this book provides program listings for key portions of our
DP tool. Appendix B of this book is a User/Reference Manual for our DP
tool.

This book serves several purposes.

1. It provides a practical introduction to how to solve problems using DP.
From the numerous and varied examples we present in Chap. 2, we expect
readers to more easily be able to solve new problems by DP. Many other
books provide far fewer or less diverse examples, hoping that readers can
generalize from their small sample. The larger sample provided here should
assist the reader in this process.

2. It provides a software tool that can be and has been used to solve all
of the Chap. 2 problems. This tool can be used by readers in practice,
certainly to solve academic problems if this book is used in coursework,
and to solve many real-world problems, especially those of limited size
(where the state space is not excessive).

3. This book is also a research monograph that describes an important ap-
plication of Petri net theory. More research into Petri nets may well result
in improvements in our tool.

1.1 Principles of Dynamic Programming

Dynamic programming is a method that in general solves optimization prob-
lems that involve making a sequence of decisions by determining, for each
decision, subproblems that can be solved in like fashion, such that an optimal
solution of the original problem can be found from optimal solutions of sub-
problems. This method is based on Bellman’s Principle of Optimality, which
he phrased as follows [1, p.83].

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

More succinctly, this principle asserts that “optimal policies have optimal
subpolicies.” That the principle is valid follows from the observation that, if a
policy has a subpolicy that is not optimal, then replacement of the subpolicy
by an optimal subpolicy would improve the original policy. The principle
of optimality is also known as the “optimal substructure” property in the
literature. In this book, we are primarily concerned with the computational
solution of problems for which the principle of optimality is given to hold.
For DP to be computationally efficient (especially relative to evaluating all
possible sequences of decisions), there should be common subproblems such
that subproblems of one are subproblems of another. In this event, a solution
to a subproblem need only be found once and reused as often as necessary;
however, we do not incorporate this requirement as part of our definition
of DP.

6 1 Introduction to Dynamic Programming

In this section, we will first elaborate on the nature of sequential deci-
sion processes and on the importance of being able to separate the costs for
each of the individual decisions. This will lead to the development of a gen-
eral equation, the dynamic programming functional equation (DPFE), that
formalizes the principle of optimality. The methodology of dynamic program-
ming requires deriving a special case of this general DPFE for each specific
optimization problem we wish to solve. Numerous examples of such deriva-
tions will be presented in this book. We will then focus on how to numerically
solve DPFEs, and will later describe a software tool we have developed for
this purpose.

1.1.1 Sequential Decision Processes

For an optimization problem of the form optd∈∆{H(d)}, d is called the de-
cision, which is chosen from a set of eligible decisions ∆, the optimand H
is called the objective function, and H∗ = H(d∗) is called the optimum,
where d∗ is that value of d ∈ ∆ for which H(d) has the optimal (min-
imum or maximum) value. We also say that d∗ optimizes H, and write
d∗ = arg optd{H(d)}. Many optimization problems consist of finding a set
of decisions {d1, d2, . . . , dn}, that taken together yield the optimum H∗ of an
objective function h(d1, d2, . . . , dn). Solution of such problems by enumera-
tion, i.e., by evaluating h(d1, d2, . . . , dn) concurrently, for all possible combina-
tions of values of its decision arguments, is called the “brute force” approach;
this approach is manifestly inefficient. Rather than making decisions concur-
rently, we assume the decisions may be made in some specified sequence, say
(d1, d2, . . . , dn), i.e., such that

H∗ = opt(d1,d2,...,dn)∈∆{h(d1, d2, . . . , dn)}
= optd1∈D1

{optd2∈D2
{. . . {optdn∈Dn

{h(d1, d2, . . . , dn)}} . . .}}, (1.1)

in what are known as sequential decision processes, where the ordered set
(d1, d2, . . . , dn) belongs to some decision space ∆ = D1 × D2 × . . . × Dn, for
di ∈ Di. Examples of decision spaces include: ∆ = Bn, the special case
of Boolean decisions, where each decision set Di equals B = {0, 1}; and
∆ = Π(D), a permutation of a set of eligible decisions D. The latter illus-
trates the common situation where decisions di are interrelated, e.g., where
they satisfy constraints such as di �= dj or di + dj ≤ M . In general, each
decision set Di depends on the decisions (d1, d2, . . . , di−1) that are earlier
in the specified sequence, i.e., di ∈ Di(d1, d2, . . . , di−1). Thus, to show this
dependence explicitly, we rewrite (1.1) in the form

H∗ = opt(d1,d2,...,dn)∈∆{h(d1, d2, . . . , dn)}
= optd1∈D1

{optd2∈D2(d1){. . . {optdn∈Dn(d1,...,dn−1){h(d1, . . . , dn)}} . . .}}.
(1.2)

1.1 Principles of Dynamic Programming 7

This nested set of optimization operations is to be performed from inside-out
(right-to-left), the innermost optimization yielding the optimal choice for dn

as a function of the possible choices for d1, . . . , dn−1, denoted d∗n(d1, . . . , dn−1),
and the outermost optimization optd1∈D1{h(d1, d

∗
2, . . . , d

∗
n)} yielding the op-

timal choice for d1, denoted d∗1. Note that while the initial or “first” decision
d1 in the specified sequence is the outermost, the optimizations are performed
inside-out, each depending upon outer decisions. Furthermore, while the op-
timal solution may be the same for any sequencing of decisions, e.g.,

optd1∈D1
{optd2∈D2(d1){. . . {optdn∈Dn(d1,...,dn−1){h(d1, . . . , dn)}} . . .}}

= optdn∈Dn
{optdn−1∈Dn−1(dn){. . . {optd1∈D1(d2,...,dn){h(d1, . . . , dn)}} . . .}}

(1.3)

the decision sets Di may differ since they depend on different outer decisions.
Thus, efficiency may depend upon the order in which decisions are made.

Referring to the foregoing equation, for a given sequencing of decisions,
if the outermost decision is “tentatively” made initially, whether or not it is
optimal depends upon the ultimate choices d∗i that are made for subsequent
decisions di; i.e.,

H∗ = optd1∈D1
{optd2∈D2(d1){. . . {optdn∈Dn(d1,...,dn−1){h(d1, . . . , dn)}} . . .}}

= optd1∈D1{h(d1, d
∗
2(d1), . . . , d∗n(d1))} (1.4)

where each of the choices d∗i (d1) for i = 2, . . . , n is constrained by — i.e., is a
function of — the choice for d1. Note that determining the optimal choice d∗1 =
arg optd1∈D1

{h(d1, d
∗
2(d1), . . . , d∗n(d1))} requires evaluating h for all possible

choices of d1 unless there is some reason that certain choices can be excluded
from consideration based upon a priori (given or derivable) knowledge that
they cannot be optimal. One such class of algorithms would choose d1 ∈ D1

independently of (but still constrain) the choices for d2, . . . , dn, i.e., by finding
the solution of a problem of the form optd1∈D1

{H ′(d1)} for a function H ′ of
d1 that is myopic in the sense that it does not depend on other choices di.
Such an algorithm is optimal if the locally optimal solution of optd1

{H ′(d1)}
yields the globally optimal solution H∗.

Suppose that the objective function h is (strongly) separable in the sense
that

h(d1, . . . , dn) = C1(d1) ◦ C2(d2) ◦ . . . ◦ Cn(dn) (1.5)

where the decision-cost functions Ci represent the costs (or profits) associated
with the individual decisions di, and where ◦ is an associative binary opera-
tion, usually addition or multiplication, where optd{a◦C(d)} = a◦optd{C(d)}
for any a that does not depend upon d. In the context of sequential decision
processes, the cost Cn of making decision dn may be a function not only of
the decision itself, but also of the state (d1, d2, . . . , dn−1) in which the decision
is made. To emphasize this, we will rewrite (1.5) as

8 1 Introduction to Dynamic Programming

h(d1, . . . , dn) = C1(d1|∅) ◦ C2(d2|d1) ◦ . . . ◦ Cn(dn|d1, . . . , dn−1). (1.6)

We now define h as (weakly) separable if

h(d1, . . . , dn) = C1(d1) ◦ C2(d1, d2) ◦ . . . ◦ Cn(d1, . . . , dn). (1.7)

(Strong separability is, of course, a special case of weak separability.) If h is
(weakly) separable, we then have

optd1∈D1
{optd2∈D2(d1){. . . {optdn∈Dn(d1,...,dn−1){h(d1, . . . , dn)}} . . .}}

= optd1∈D1
{optd2∈D2(d1){. . . {optdn∈Dn(d1,...,dn−1){C1(d1|∅) ◦ C2(d2|d1) ◦ . . .

. . . ◦ Cn(dn|d1, . . . , dn−1)}} . . .}}
= optd1∈D1

{C1(d1|∅) ◦ optd2∈D2(d1){C2(d2|d1) ◦ . . .

. . . ◦ optdn∈Dn(d1,...,dn−1){Cn(dn|d1, . . . , dn−1)} . . .}}. (1.8)

Let the function f(d1, . . . , di−1) be defined as the optimal solution of the
sequential decision process where the decisions d1, . . . , di−1 have been made
and the decisions di, . . . , dn remain to be made; i.e.,

f(d1, . . . , di−1) = optdi
{optdi+1

{. . . {optdn
{Ci(di|d1, . . . , di−1) ◦

Ci+1(di+1|d1, . . . , di) ◦ . . . ◦ Cn(dn|d1, . . . , dn−1)}} . . .}}.
(1.9)

Explicit mentions of the decision sets Di are omitted here for convenience.
We have then

f(∅) = optd1
{optd2

{. . . {optdn
{C1(d1|∅) ◦ C2(d2|d1) ◦ . . .

. . . ◦ Cn(dn|d1, . . . , dn−1)}} . . .}}
= optd1

{C1(d1|∅) ◦ optd2
{C2(d2|d1) ◦ . . .

. . . ◦ optdn
{Cn(dn|d1, . . . , dn−1)} . . .}}

= optd1
{C1(d1|∅) ◦ f(d1)}. (1.10)

Generalizing, we conclude that

f(d1, . . . , di−1) = optdi∈Di(d1,...,di−1){Ci(di|d1, . . . , di−1) ◦ f(d1, . . . , di)}.
(1.11)

Equation (1.11) is a recursive functional equation; we call it a functional
equation since the unknown in the equation is a function f , and it is recursive
since f is defined in terms of f (but having different arguments). It is the
dynamic programming functional equation (DPFE) for the given optimization
problem. In this book, we assume that we are given DPFEs that are properly
formulated, i.e., that their solutions exist; we address only issues of how to
obtain these solutions.

1.1 Principles of Dynamic Programming 9

1.1.2 Dynamic Programming Functional Equations

The problem of solving the DPFE for f(d1, . . . , di−1) depends upon the sub-
problem of solving for f(d1, . . . , di). If we define the state S = (d1, . . . , di−1) as
the sequence of the first i−1 decisions, where i = |S|+1 = |{d1, . . . , di−1}|+1,
we may rewrite the DPFE in the form

f(S) = optdi∈Di(S){Ci(di|S) ◦ f(S′)}, (1.12)

where S is a state in a set S of possible states, S′ = (d1, . . . , di) is a next-
state, and ∅ is the initial state. Since the DPFE is recursive, to terminate the
recursion, its solution requires base cases (or “boundary” conditions), such as
f(S0) = b when S0 ∈ Sbase, where Sbase ⊂ S. For a base (or terminal) state
S0, f(S0) is not evaluated using the DPFE, but instead has a given numerical
constant b as its value; this value b may depend upon the base state S0.

It should be noted that the sequence of decisions need not be limited to
a fixed length n, but may be of indefinite length, terminating when a base
case is reached. Different classes of DP problems may be characterized by how
the states S, and hence the next-states S′, are defined. It is often convenient
to define the state S, not as the sequence of decisions made so far, with the
next decision d chosen from D(S), but rather as the set from which the next
decision can be chosen, so that D(S) = or d ∈ S. We then have a DPFE of
the form

f(S) = optd∈S{C(d|S) ◦ f(S′)}. (1.13)

We shall later show that, for some problems, there may be multiple next-
states, so that the DPFE has the form

f(S) = optd∈S{C(d|S) ◦ f(S′) ◦ f(S′′)} (1.14)

where S′ and S′′ are both next-states. A DPFE is said to be r-th order (or
nonserial if r > 1) if there may be r next-states.

Simple serial DP formulations can be modeled by a state transition system
or directed graph, where a state S corresponds to a node (or vertex) and a
decision d that leads from state S to next-state S′ is represented by a branch
(or arc or edge) with label C(di|S). D(S) is the set of possible decisions when
in state S, hence is associated with the successors of node S. More complex
DP formulations require a more general graph model, such as that of a Petri
net, which we discuss in Chap. 5.

Consider the directed graph whose nodes represent the states of the DPFE
and whose branches represent possible transitions from states to next-states,
each such transition reflecting a decision. The label of each branch, from S to
S′, denoted b(S, S′), is the cost C(d|S) of the decision d, where S′ = T (S, d),
where T : S × D → S is a next-state transition or transformation function.
The DPFE can then be rewritten in the form

10 1 Introduction to Dynamic Programming

f(S) = optS′{b(S, S′) + f(S′)}, (1.15)

where f(S) is the length of the shortest path from S to a terminal or
target state S0, and where each decision is to choose S′ from among all
(eligible) successors of S. (Different problems may have different eligibility
constraints.) The base case is f(S0) = 0.

For some problems, it is more convenient to use a DPFE of the “reverse”
form

f ′(S) = optS′{f ′(S′) + b(S′, S)}, (1.16)

where f ′(S) is the length of the shortest path from a designated state S0

to S, and S′ is a predecessor of S; S0 is also known as the source state,
and f(S0) = 0 serves as the base case that terminates the recursion for this
alternative DPFE. We call these target-state and designated-source DPFEs,
respectively. We also say that, in the former case, we go “backward” from
the target to the source, whereas, in the latter case, we go forward from the
“source” to the target.

Different classes of DP formulations are distinguished by the nature of the
decisions. Suppose each decision is a number chosen from a set {1, 2, . . . , N},
and that each number must be chosen once and only once (so there are N
decisions). Then if states correspond to possible permutations of the numbers,
there are O(N !) such states. Here we use the “big-O” notation ([10, 53]): we
say f(N) is O(g(N)) if, for a sufficiently large N , f(N) is bounded by a
constant multiple of g(N). As another example, suppose each decision is a
number chosen from a set {1, 2, . . . , N}, but that not all numbers must be
chosen (so there may be less than N decisions). Then if states correspond to
subsets of the numbers, there are O(2N) such states. Fortuitously, there are
many practical problems where a reduction in the number of relevant states is
possible, such as when only the final decision di−1 in a sequence (d1, . . . , di−1),
together with the time or stage i at which the decision is made, is significant, so
that there are O(N2) such states. We give numerous examples of the different
classes in Chap. 2.

The solution of a DP problem generally involves more than only computing
the value of f(S) for the goal state S∗. We may also wish to determine the
initial optimal decision, the optimal second decision that should be made in
the next-state that results from the first decision, and so forth; that is, we may
wish to determine the optimal sequence of decisions, also known as the optimal
“policy” , by what is known as a reconstruction process. To reconstruct these
optimal decisions, when evaluating f(S) = optd∈D(S){C(d|S)◦f(S′)} we may
save the value of d, denoted d∗, that yields the optimal value of f(S) at the
time we compute this value, say, tabularly by entering the value d∗(S) in
a table for each S. The main alternative to using such a policy table is to
reevaluate f(S) as needed, as the sequence of next-states are determined; this
is an example of a space versus time tradeoff.

1.1 Principles of Dynamic Programming 11

1.1.3 The Elements of Dynamic Programming

The basic form of a dynamic programming functional equation is

f(S) = optd∈D(S){R(S, d) ◦ f(T (S, d))}, (1.17)

where S is a state in some state space S, d is a decision chosen from a decision
space D(S), R(S, d) is a reward function (or decision cost, denoted C(d|S)
above), T (S, d) is a next-state transformation (or transition) function, and
◦ is a binary operator. We will restrict ourselves to discrete DP, where the
state space and decision space are both discrete sets. (Some problems with
continuous states or decisions can be handled by discretization procedures, but
we will not consider such problems in this book.) The elements of a DPFE
have the following characteristics.

State The state S, in general, incorporates information about the sequence
of decisions made so far. In some cases, the state may be the complete
sequence, but in other cases only partial information is sufficient; for ex-
ample, if the set of all states can be partitioned into equivalence classes,
each represented by the last decision. In some simpler problems, the length
of the sequence, also called the stage at which the next decision is to be
made, suffices. The initial state, which reflects the situation in which no
decision has yet been made, will be called the goal state and denoted S∗.

Decision Space The decision space D(S) is the set of possible or “eligible”
choices for the next decision d. It is a function of the state S in which
the decision d is to be made. Constraints on possible next-state transfor-
mations from a state S can be imposed by suitably restricting D(S). If
D(S) = ∅ , so that there are no eligible decisions in state S, then S is a
terminal state.

Objective Function The objective function f , a function of S, is the op-
timal profit or cost resulting from making a sequence of decisions when
in state S, i.e., after making the sequence of decisions associated with S.
The goal of a DP problem is to find f(S) for the goal state S∗.

Reward Function The reward function R, a function of S and d, is the
profit or cost that can be attributed to the next decision d made in state
S. The reward R(S, d) must be separable from the profits or costs that are
attributed to all other decisions. The value of the objective function for
the goal state, f(S∗), is the combination of the rewards for the complete
optimal sequence of decisions starting from the goal state.

Transformation Function(s) The transformation (or transition) function
T , a function of S and d, specifies the next-state that results from making
a decision d in state S. As we shall later see, for nonserial DP problems,
there may be more than one transformation function.

Operator The operator is a binary operation, usually addition or multiplica-
tion or minimization/maximization, that allows us to combine the returns
of separate decisions. This operation must be associative if the returns of
decisions are to be independent of the order in which they are made.

12 1 Introduction to Dynamic Programming

Base Condition Since the DPFE is recursive, base conditions must be spec-
ified to terminate the recursion. Thus, the DPFE applies for S in a state
space S, but

f(S0) = b,

for S0 in a set of base-states not in S. Base-values b are frequently zero
or infinity, the latter to reflect constraints. For some problems, setting
f(S0) = ±∞ is equivalent to imposing a constraint on decisions so as to
disallow transitions to state S0, or to indicate that S0 �∈ S is a state in
which no decision is eligible.

To solve a problem using DP, we must define the foregoing elements to
reflect the nature of the problem at hand. We give several examples below.
We note first that some problems require certain generalizations. For example,
some problems require a second-order DPFE having the form

f(S) = optd∈D(S){R(S, d) ◦ f(T1(S, d)) ◦ f(T2(S, d))}, (1.18)

where T1 and T2 are both transformation functions to account for the situation
in which more than one next-state can be entered, or

f(S) = optd∈D(S){R(S, d) ◦ p1.f(T1(S, d)) ◦ p2.f(T2(S, d))}, (1.19)

where T1 and T2 are both transformation functions and p1 and p2 are multi-
plicative weights. In probabilistic DP problems, these weights are probabilities
that reflect the probabilities associated with their respective state-transitions,
only one of which can actually occur. In deterministic DP problems, these
weights can serve other purposes, such as “discount factors” to reflect the
time value of money.

1.1.4 Application: Linear Search

To illustrate the key concepts associated with DP that will prove useful in
our later discussions, we examine a concrete example, the optimal “linear
search” problem. This is the problem of permuting the data elements of an
array A of size N , whose element x has probability px, so as to optimize the
linear search process by minimizing the “cost” of a permutation, defined as
the expected number of comparisons required. For example, let A = {a, b, c}
and pa = 0.2, pb = 0.5, and pc = 0.3. There are six permutations, namely,
abc, acb, bac, bca, cab, cba; the cost of the fourth permutation bca is 1.7, which
can be calculated in several ways, such as

1pb + 2pc + 3pa [using Method S]

and
(pa + pb + pc) + (pa + pc) + (pa) [using Method W].

1.1 Principles of Dynamic Programming 13

This optimal permutation problem can be regarded as a sequential decision
process where three decisions must be made as to where the elements of A are
to be placed in the final permuted array A′. The decisions are: which element
is to be placed at the beginning of A′, which element is to be placed in the
middle of A′, and which element is to be placed at the end of A′. The order in
which these decisions are made does not necessarily matter, at least insofar as
obtaining the correct answer is concerned; e.g., to obtain the permutation bca,
our first decision may be to place element c in the middle of A′. Of course, some
orderings of decisions may lead to greater efficiency than others. Moreover,
the order in which decisions are made affects later choices; if c is chosen in
the middle, it cannot be chosen again. That is, the decision set for any choice
depends upon (is constrained by) earlier choices. In addition, the cost of each
decision should be separable from other decisions. To obtain this separability,
we must usually take into account the order in which decisions are made. For
Method S, the cost of placing element x in the i-th location of A′ equals ipx

regardless of when the decision is made. On the other hand, for Method W, the
cost of a decision depends upon when the decision is made, more specifically
upon its decision set. If the decisions are made in order from the beginning
to the end of A′, then the cost of deciding which member di of the respective
decision set Di to choose next equals

∑
x∈Di

px, the sum of the probabilities
of the elements in Di = A − {d1, . . . , di−1}. For example, let di denote the
decision of which element of A to place in position i of A′, and let Di denote
the corresponding decision set, where di ∈ Di. If the decisions are made in the
order i = 1, 2, 3 then D1 = A,D2 = A−{d1},D3 = A−{d1, d2}. For Method S,
if the objective function is written in the form h(d1, d2, d3) = 1pd1+2pd2+3pd3 ,
then

f(∅) = min
d1∈A

{ min
d2∈A−{d1}

{ min
d3∈A−{d1,d2}

{1pd1 + 2pd2 + 3pd3}}}

= min
d1∈A

{1pd1 + min
d2∈A−{d1}

{2pd2 + min
d3∈A−{d1,d2}

{3pd3}}} (1.20)

For Method W, if the objective function is written in the form h(d1, d2,
d3) =

∑
x∈A px +

∑
x∈A−{d1} px +

∑
x∈A−{d1,d2} px, then

f(∅)
= min

d1∈A
{ min

d2∈A−{d1}
{ min

d3∈A−{d1,d2}
{
∑

x∈A

px +
∑

x∈A−{d1}
px +

∑

x∈A−{d1,d2}
px}}}

= min
d1∈A

{
∑

x∈A

px + min
d2∈A−{d1}

{
∑

x∈A−{d1}
px + min

d3∈A−{d1,d2}
{

∑

x∈A−{d1,d2}
px}}}.

(1.21)

However, if the decisions are made in reverse order i = 3, 2, 1, then D3 =
A,D2 = A − {d3},D1 = A − {d2, d3}, and the above must be revised accord-
ingly. It should also be noted that if h(d1, d2, d3) = 0+0+(1pd1 +2pd2 +3pd3),
where all of the cost is associated with the final decision d3, then

14 1 Introduction to Dynamic Programming

f(∅) = min
d1∈A

{0 + min
d2∈A−{d1}

{0 + min
d3∈A−{d1,d2}

{1pd1 + 2pd2 + 3pd3}}},

(1.22)

which is equivalent to enumeration. We conclude from this example that care
must be taken in defining decisions and their interrelationships, and how to
attribute separable costs to these decisions.

1.1.5 Problem Formulation and Solution

The optimal linear search problem of permuting the elements of an array A
of size N , whose element x has probability px, can be solved using DP in the
following fashion. We first define the state S as the set of data elements from
which to choose. We then are to make a sequence of decisions as to which
element of A should be placed next in the resulting array. We thus arrive at
a DPFE of the form

f(S) = min
x∈S

{C(x|S) + f(S − {x})}, (1.23)

where the reward or cost function C(x|S) is suitably defined. Note that S ∈
2A, where 2A denotes the power set of A. Our goal is to solve for f(A) given
the base case f(∅) = 0. (This is a target-state formulation, where ∅ is the
target state.)

This DPFE can also be written in the complementary form

f(S) = min
x�∈S

{C(x|S) + f(S ∪ {x})}, (1.24)

for S ∈ 2A, where our goal is to solve for f(∅) given the base case f(A) = 0.
One definition of C(x|S), based upon Method W, is as follows:

CW (x|S) =
∑

y∈S

py.

This function depends only on S, not on the decision x. A second definition,
based upon Method S, is the following:

CS(x|S) = (N + 1 − |S|)px.

This function depends on both S and x. These two definitions assume that
the first decision is to choose the element to be placed first in the array. The
solution of the problem is 1.7 for the optimal permutation bca. (Note: If we
assume instead that the decisions are made in reverse, where the first decision
chooses the element to be placed last in the array, the same DPFE applies but
with C ′

S(x|S) = |S|px; we will call this the inverted linear search problem. The
optimal permutation is acb for this inverted problem.) If we order S by de-
scending probability, it can be shown that the first element x∗ in this ordering

1.1 Principles of Dynamic Programming 15

of S (that has maximum probability) minimizes the set {C(x|S) + f(S −x)}.
Use of this “heuristic”, also known as a greedy policy, makes performing the
minimization operation of the DPFE unnecessary; instead, we need only find
the maximum of a set of probabilities {px}. There are many optimization
problems solvable by DP for which there are also greedy policies that reduce
the amount of work necessary to obtain their solutions; we discuss this further
in Sec. 1.1.14.

The inverted linear search problem is equivalent to a related problem as-
sociated with ordering the elements of a set A, whose elements have specified
lengths or weights w (corresponding to their individual retrieval or processing
times), such that the sum of the “sequential access” retrieval times is mini-
mized. This optimal permutation problem is also known as the “tape storage”
problem [22, pp.229–232], and is equivalent to the “shortest processing time”
scheduling (SPT) problem. For example, suppose A = {a, b, c} and wa = 2,
wb = 5, and wc = 3. If the elements are arranged in the order acb, it takes 2
units of time to sequentially retrieve a, 5 units of time to retrieve c (assum-
ing a must be retrieved before retrieving c), and 10 units of time to retrieve
b (assuming a and c must be retrieved before retrieving b). The problem of
finding the optimal permutation can be solved using a DPFE of the form

f(S) = min
x∈S

{|S|wx + f(S − {x})}, (1.25)

as for the inverted linear search problem. C(x|S) = |S|wx since choosing x
contributes a cost of wx to each of the |S| decisions that are to be made.

Example 1.1. Consider the linear search example where A = {a, b, c} and pa =
0.2, pb = 0.5, and pc = 0.3. The target-state DPFE (1.23) may be evaluated
as follows:

f({a, b, c}) = min{C(a|{a, b, c}) + f({b, c}), C(b|{a, b, c}) + f({a, c}),
C(c|{a, b, c}) + f({a, b})}

f({b, c}) = min{C(b|{b, c}) + f({c}), C(c|{b, c}) + f({b})}
f({a, c}) = min{C(a|{a, c}) + f({c}), C(c|{a, c}) + f({a})}
f({a, b}) = min{C(a|{a, b}) + f({b}), C(b|{a, b}) + f({a})}

f({c}) = min{C(c|{c}) + f(∅)}
f({b}) = min{C(b|{b}) + f(∅)}
f({a}) = min{C(a|{a}) + f(∅)}

f(∅) = 0

For Method W, these equations reduce to the following:

f({a, b, c}) = min{CW (a|{a, b, c}) + f({b, c}), CW (b|{a, b, c}) + f({a, c}),
CW (c|{a, b, c}) + f({a, b})}

= min{1.0 + f({b, c}), 1.0 + f({a, c}), 1.0 + f({a, b})}

16 1 Introduction to Dynamic Programming

= min{1.0 + 1.1, 1.0 + 0.7, 1.0 + 0.9} = 1.7
f({b, c}) = min{CW (b|{b, c}) + f({c}), CW (c|{b, c}) + f({b})}

= min{0.8 + f({c}), 0.8 + f({b})}
= min{0.8 + 0.3, 0.8 + 0.5} = 1.1

f({a, c}) = min{CW (a|{a, c}) + f({c}), CW (c|{a, c}) + f({a})}
= min{0.5 + f({c}), 0.5 + f({a})}
= min{0.5 + 0.3, 0.5 + 0.2} = 0.7

f({a, b}) = min{CW (a|{a, b}) + f({b}), CW (b|{a, b}) + f({a})}
= min{0.7 + f({b}), 0.7 + f({a})}
= min{0.7 + 0.5, 0.7 + 0.2} = 0.9

f({c}) = min{CW (c|{c}) + f(∅)} = min{0.3 + f(∅)} = 0.3
f({b}) = min{CW (b|{b}) + f(∅)} = min{0.5 + f(∅)} = 0.5
f({a}) = min{CW (a|{a}) + f(∅)} = min{0.2 + f(∅)} = 0.2

f(∅) = 0

For Method S, these equations reduce to the following:

f({a, b, c}) = min{CS(a|{a, b, c}) + f({b, c}), CS(b|{a, b, c}) + f({a, c}),
CS(c|{a, b, c}) + f({a, b})}

= min{1 × 0.2 + f({b, c}), 1 × 0.5 + f({a, c}), 1 × 0.3 + f({a, b})}
= min{0.2 + 1.9, 0.5 + 1.2, 0.3 + 1.6} = 1.7

f({b, c}) = min{CS(b|{b, c}) + f({c}), CS(c|{b, c}) + f({b})}
= min{2 × 0.5 + f({c}), 2 × 0.3 + f({b})}
= min{1.0 + 0.9, 0.6 + 1.5} = 1.9

f({a, c}) = min{CS(a|{a, c}) + f({c}), CS(c|{a, c}) + f({a})}
= min{2 × 0.2 + f({c}), 2 × 0.3 + f({a})}
= min{0.4 + 0.9, 0.6 + 0.6} = 1.2

f({a, b}) = min{CS(a|{a, b}) + f({b}), CS(b|{a, b}) + f({a})}
= min{2 × 0.2 + f({b}), 2 × 0.5 + f({a})}
= min{0.4 + 1.5, 1.0 + 0.6} = 1.6

f({c}) = min{CS(c|{c}) + f(∅)} = min{3 × 0.3 + f(∅)} = 0.9
f({b}) = min{CS(b|{b}) + f(∅)} = min{3 × 0.5 + f(∅)} = 1.5
f({a}) = min{CS(a|{a}) + f(∅)} = min{3 × 0.2 + f(∅)} = 0.6

f(∅) = 0

It should be emphasized that the foregoing equations are to be evaluated in
reverse of the order they have been presented, starting from the base case f(∅)
and ending with the goal f({a, b, c}). This evaluation is said to be “bottom-
up”. The goal cannot be evaluated first since it refers to values not available

1.1 Principles of Dynamic Programming 17

initially. While it may not be evaluated first, it is convenient to start at the
goal to systematically generate the other equations, in a “top-down” fashion,
and then sort the equations as necessary to evaluate them. We discuss such
a generation process in Sect. 1.2.2. An alternative to generating a sequence
of equations is to recursively evaluate the DPFE, starting at the goal, as
described in Sect. 1.2.1.

As indicated earlier, we are not only interested in the final answer (f(A) =
1.7), but also in “reconstructing” the sequence of decisions that yields that
answer. This is one reason that it is generally preferable to evaluate DPFEs
nonrecursively. Of the three possible initial decisions, to choose a, b, or c first
in goal-state {a, b, c}, the optimal decision is to choose b. Decision b yields the
minimum of the set {2.1, 1.7, 1.9}, at a cost of 1.0 for Method W or at a cost
of 0.5 for Method S, and causes a transition to state {a, c}. For Method W,
the minimum value of f({a, c}) is 0.7, obtained by choosing c at a cost of 0.5,
which yields the minimum of the set {0.8, 0.7}, and which causes a transition
to state {a}; the minimum value of f({a}) is 0.2, obtained by necessarily
choosing a at a cost of 0.2, which yields the minimum of the set {0.2}, and
which causes a transition to base-state ∅. Thus, the optimal policy is to choose
b, then c, and finally a, at a total cost of 1.0 + 0.5 + 0.2 = 1.7. For Method S,
the minimum value of f({a, c}) is 1.2, obtained by choosing c at a cost of 0.6,
which yields the minimum of the set {1.3, 1.2}, and which causes a transition
to state {a}; the minimum value of f({a}) is 0.6, obtained by necessarily
choosing a at a cost of 0.6, which yields the minimum of the set {0.6}, and
which causes a transition to base-state ∅. Thus, the optimal policy is to choose
b, then c, and finally a, at a total cost of 0.5 + 0.6 + 0.6 = 1.7.

1.1.6 State Transition Graph Model

Recall the directed graph model of a DPFE discussed earlier. For any state
S, f(S) is the length of the shortest path from S to the target state ∅. For
Method W, the shortest path overall has length 1.0 + 0.5 + 0.2 = 1.7; for
Method S, the shortest path overall has length 0.5 + 0.6 + 0.6 = 1.7. The
foregoing calculations obtain the answer 1.7 by adding the branches in the
order (1.0+(0.5+(0.2))) or (0.5+(0.6+(0.6))), respectively. The answer can
also be obtained by adding the branches in the reverse order (((1.0)+0.5)+0.2)
or (((0.5) + 0.6) + 0.6). With respect to the graph, this reversal is equivalent
to using the designated-source DPFE (1.16), or equivalently

f ′(S) = min
S′

{f ′(S′) + C(x|S′)}, (1.26)

where S′ is a predecessor of S in that some decision x leads to a transition
from S′ to S, and where f ′(S) is the length of the shortest path from the
source state S∗ to any state S, with goal f ′(∅) and base state S∗ = {a, b, c}.

Example 1.2. For the linear search example, the designated-source DPFE
(1.26) may be evaluated as follows:

18 1 Introduction to Dynamic Programming

f ′({a, b, c}) = 0
f ′({b, c}) = min{f ′({a, b, c}) + C(a|{a, b, c})}
f ′({a, c}) = min{f ′({a, b, c}) + C(b|{a, b, c})}
f ′({a, b}) = min{f ′({a, b, c}) + C(c|{a, b, c})}

f ′({c}) = min{f ′({b, c}) + C(b|{b, c}), f ′({a, c}) + C(a|{a, c})}
f ′({b}) = min{f ′({b, c}) + C(c|{b, c}), f ′({a, b}) + C(a|{a, b})}
f ′({a}) = min{f ′({a, c}) + C(c|{a, c}), f ′({a, b}) + C(b|{a, b})}

f ′(∅) = min{f ′({a}) + C(a|{a}), f ′({b}) + C(b|{b}),
f ′({c}) + C(c|{c})}

For Method W, these equations reduce to the following:

f ′({a, b, c}) = 0
f ′({b, c}) = min{f ′({a, b, c}) + CW (a|{a, b, c})} = min{0 + 1.0} = 1.0
f ′({a, c}) = min{f ′({a, b, c}) + CW (b|{a, b, c})} = min{0 + 1.0} = 1.0
f ′({a, b}) = min{f ′({a, b, c}) + CW (c|{a, b, c})} = min{0 + 1.0} = 1.0

f ′({c}) = min{f ′({b, c}) + CW (b|{b, c}), f ′({a, c}) + CW (a|{a, c})}
= min{1.0 + 0.8, 1.0 + 0.5} = 1.5

f ′({b}) = min{f ′({b, c}) + CW (c|{b, c}), f ′({a, b}) + CW (a|{a, b})}
= min{1.0 + 0.8, 1.0 + 0.7} = 1.7

f ′({a}) = min{f ′({a, c}) + CW (c|{a, c}), f ′({a, b}) + CW (b|{a, b})}
= min{1.0 + 0.5, 1.0 + 0.7} = 1.5

f ′(∅) = min{f ′({a}) + CW (a|{a}), f ′({b}) + CW (b|{b}),
f ′({c}) + CW (c|{c})}

= min{1.5 + 0.2, 1.7 + 0.5, 1.5 + 0.3} = 1.7

For Method S, these equations reduce to the following:

f ′({a, b, c}) = 0
f ′({b, c}) = min{f ′({a, b, c}) + CS(a|{a, b, c})} = min{0 + 0.2} = 0.2
f ′({a, c}) = min{f ′({a, b, c}) + CS(b|{a, b, c})} = min{0 + 0.5} = 0.5
f ′({a, b}) = min{f ′({a, b, c}) + CS(c|{a, b, c})} = min{0 + 0.3} = 0.3

f ′({c}) = min{f ′({b, c}) + CS(b|{b, c}), f ′({a, c}) + CS(a|{a, c})}
= min{0.2 + 1.0, 0.5 + 0.4} = 0.9

f ′({b}) = min{f ′({b, c}) + CS(c|{b, c}), f ′({a, b}) + CS(a|{a, b})}
= min{0.2 + 0.6, 0.3 + 0.4} = 0.7

f ′({a}) = min{f ′({a, c}) + CS(c|{a, c}), f ′({a, b}) + CS(b|{a, b})}
= min{0.5 + 0.6, 0.3 + 1.0} = 1.1

f ′(∅) = min{f ′({a}) + CS(a|{a}), f ′({b}) + CS(b|{b}),

1.1 Principles of Dynamic Programming 19

f ′({c}) + CS(c|{c})}
= min{1.1 + 0.6, 0.7 + 1.5, 0.9 + 0.9} = 1.7

Here, we listed the equations in order of their (bottom-up) evaluation,
with the base case f ′({a, b, c}) first and the goal f ′(∅) last.

1.1.7 Staged Decisions

It is often convenient and sometimes necessary to incorporate stage numbers as
a part of the definition of the state. For example, in the linear search problem
there are N distinct decisions that must be made, and they are assumed to
be made in a specified order. We assume that N , also called the horizon, is
finite and known. The first decision, made at stage 1, is to decide which data
item should be placed first in the array, the second decision, made at stage 2,
is to decide which data item should be placed second in the array, etc. Thus,
we may rewrite the original DPFE (1.23) as

f(k, S) = min
x∈S

{C(x|k, S) + f(k + 1, S − {x})}, (1.27)

where the state now consists of a stage number k and a set S of items from
which to choose. The goal is to find f(1, A) with base condition f(N+1, ∅) = 0.
Suppose we again define C(x|k, S) = (N + 1 − |S|)px. Since k = N + 1 − |S|,
we have C(x|k, S) = kpx. This cost function depends on the stage k and the
decision x, but is independent of S.

For the inverted linear search (or optimal permutation) problem, where the
first decision, made at stage 1, is to decide which data item should be placed
last in the array, the second decision, made at stage 2, is to decide which data
item should be placed next-to-last in the array, etc., the staged DPFE is the
same as (1.27), but where C(x|k, S) = kwx, which is also independent of S.
While this simplification is only a modest one, it can be very significant for
more complicated problems.

Incorporating stage numbers as part of the definition of the state may also
be beneficial in defining base-state conditions. We may use the base condition
f(k, S) = 0 when k > N (for any S); the condition S = ∅ can be ignored. It is
far easier to test whether the stage number exceeds some limit (k > N) than
whether a set equals some base value (S = ∅). Computationally, this involves
a comparison of integers rather than a comparison of sets.

Stage numbers may also be regarded as transition times, and DPFEs in-
corporating them are also called fixed-time models. Stage numbers need not
be consecutive integers. We may define the stage or virtual time k to be
some number that is associated with the k-th decision, where k is a sequence
counter. For example, adding consecutive stage numbers to the DPFE (1.25)
for the (inverted) linear search problem, we have

f(k, S) = min
x∈S

{|S|wx + f(k + 1, S − {x})}, (1.28)

20 1 Introduction to Dynamic Programming

where the goal is to find f(1, A) with base-condition f(k, S) = 0 when k > N .
We have C(x|S) = |S|wx since choosing x contributes a length of wx to each
of the |S| decisions that are to be made. Suppose we define the virtual time
or stage k as the “length-so-far” when the next decision is to be made. Then

f(k, S) = min
x∈S

{(k + wx) + f(k + wx, S − {x})}, (1.29)

where the goal is to find f(0, A) with base-condition f(k, S) = 0 when k =∑
x∈A wx or S = ∅. The cost of a decision x in state (k, S), that is C(x|k, S) =

(k + wx), is the length-so-far k plus the retrieval time wx for the chosen item
x, and in the next-state resulting from this decision the virtual time or stage
k is also increased by wx.

Example 1.3. For the linear search problem, the foregoing staged DPFE (1.28)
may be evaluated as follows:

f(1, {a, b, c}) = min{C(a|1, {a, b, c}) + f(2, {b, c}),
C(b|1, {a, b, c}) + f(2, {a, c}), C(c|1, {a, b, c}) + f(2, {a, b})}

= min{6 + 11, 15 + 7, 9 + 9} = 17
f(2, {b, c}) = min{C(b|2, {b, c}) + f(3, {c}), C(c|2, {b, c}) + f(3, {b})}

= min{10 + 3, 6 + 5} = 11
f(2, {a, c}) = min{C(a|2, {a, c}) + f(3, {c}), C(c|2, {a, c}) + f(3, {a})}

= min{4 + 3, 6 + 2} = 7
f(2, {a, b}) = min{C(a|2, {a, b}) + f(3, {b}), C(b|2, {a, b}) + f(3, {a})}

= min{4 + 5, 10 + 2} = 9
f(3, {c}) = min{C(c|3, {c}) + f(4, ∅)} = min{3 + 0} = 3
f(3, {b}) = min{C(b|3, {b}) + f(4, ∅)} = min{5 + 0} = 5
f(3, {a}) = min{C(a|3, {a}) + f(4, ∅)} = min{2 + 0} = 2

f(4, ∅) = 0

Example 1.4. In contrast, the foregoing virtual-stage DPFE (1.29) may be
evaluated as follows:

f(0, {a, b, c}) = min{(0 + 2) + f((0 + 2), {b, c}), (0 + 5) + f((0 + 5), {a, c}),
(0 + 3) + f((0 + 3), {a, b})}

= min{2 + 15, 5 + 17, 3 + 15} = 17
f(2, {b, c}) = min{(2 + 5) + f((2 + 5), {c}), (2 + 3) + f((2 + 3), {b})}

= min{7 + 10, 5 + 10} = 15
f(5, {a, c}) = min{(5 + 2) + f((5 + 2), {c}), (5 + 3) + f((5 + 3), {a})}

= min{7 + 10, 8 + 10} = 17
f(3, {a, b}) = min{(3 + 2) + f((3 + 2), {b}), (3 + 5) + f((3 + 5), {a})}

1.1 Principles of Dynamic Programming 21

= min{5 + 10, 8 + 10} = 15
f(7, {c}) = min{(7 + 3) + f((7 + 3), ∅)} = 10 + 0 = 10
f(5, {b}) = min{(5 + 5) + f((5 + 5), ∅)} = 10 + 0 = 10
f(8, {a}) = min{(8 + 2) + f((8 + 2), ∅)} = 10 + 0 = 10
f(10, ∅) = 0

1.1.8 Path-States

In a graph representation of a DPFE, we may let state S be defined as the
ordered sequence of decisions (d1, . . . , di−1) made so far, and represent it by a
node in the graph. Then each state S is associated with a path in this graph
from the initial (goal) state ∅ to state S. The applicable path-state DPFE,
which is of the form (1.24), is

f(S) = min
x�∈S

{C(x|S) + f(S ∪ {x})}. (1.30)

The goal is to solve for f(∅) given the base cases f(S0) = 0, where each
S0 ∈ Sbase is a terminal state in which no decision remains to be made.

Example 1.5. For the linear search example, the foregoing DPFE (1.30) may
be evaluated as follows:

f(∅) = min{C(a|∅) + f(a), C(b|∅) + f(b), C(c|∅) + f(c)}
f(a) = min{C(b|a) + f(ab), C(c|a) + f(ac)}
f(b) = min{C(a|b) + f(ba), C(c|b) + f(bc)}
f(c) = min{C(a|c) + f(ca), C(b|c) + f(cb)}

f(ab) = min{C(c|ab) + f(abc)}
f(ac) = min{C(b|ac) + f(acb)}
f(ba) = min{C(c|ba) + f(bac)}
f(bc) = min{C(a|bc) + f(bca)}
f(ca) = min{C(b|ca) + f(cab)}
f(cb) = min{C(a|cb) + f(cba)}

f(abc) = f(acb) = f(bac) = f(bca) = f(cab) = f(cba) = 0

where C(x|S) may be either the weak or strong versions. There are N ! individ-
ual bases cases, each corresponding to a permutation. However, the base-cases
are equivalent to the single condition that f(S) = 0 when |S| = N .

For this problem, the information regarding the ordering of the decisions
incorporated in the definition of the state is not necessary; we need only know
the members of the decision sequence S so that the next decision d will be
a different one (i.e., so that d �∈ S). If the state is considered unordered, the

22 1 Introduction to Dynamic Programming

complexity of the problem decreases from O(N !) for permutations to O(2N)
for subsets. For some problems, the state must also specify the most recent
decision if it affects the choice or cost of the next decision. In other problems,
the state need specify only the most recent decision.

We finally note that the equations of Example 1.5 can also be used to
obtain the solution to the problem if we assume that C(x|S) = 0 (as would
be the case when we cannot determine separable costs) and consequently the
base cases must be defined by enumeration (instead of being set to zero),
namely, f(abc) = 2.1, f(acb) = 2.3, f(bac) = 1.8, f(bca) = 1.7, f(cab) = 2.2,
and f(cba) = 1.9.

1.1.9 Relaxation

The term relaxation is used in mathematics to refer to certain iterative meth-
ods of solving a problem by successively obtaining better approximations xi

to the solution x∗. (Examples of relaxation methods are the Gauss-Seidel
method for solving systems of linear equations, and gradient-based methods
for finding the minimum or maximum of a continuous function of n variables.)

In the context of discrete optimization problems, we observe that the min-
imum of a finite set x∗ = min{a1, a2, . . . , aN} can be evaluated by a sequence
of pairwise minimization operations

x∗ = min{min{. . . {min{a1, a2}, a3}, . . .}, aN}.
The sequence of partial minima, x1 = a1, x2 = min{x1, a2}, x3 = min{x2, a3},
x4 = min{x3, a4}, . . ., is the solution of the recurrence relation xi =
min{xi−1, ai}, for i > 1, with initial condition x1 = a1. (Note that min{x1, a2}
will be called the “innermost min”.) Instead of letting x1 = a1, we may let
x1 = min{x0, a1}, where x0 = ∞. We may regard the sequence x1, x2, x3, . . .
as “successive approximations” to the final answer x∗. Alternatively, the re-
cursive equation x = min{x, ai} can be solved using a successive approxi-
mations process that sets a “minimum-so-far” variable x to the minimum of
its current value and some next value ai, where x is initially ∞. Borrowing
the terminology used for infinite sequences, we say the finite sequence xi, or
the “minimum-so-far” variable x, “converges” to x∗. {In this book, we restrict
ourselves to finite processes for which N is fixed, so “asymptotic” convergence
issues do not arise.} We will also borrow the term relaxation to characterize
such successive approximations techniques.

One way in which the relaxation idea can be applied to the solution of
dynamic programming problems is in evaluating the minimization operation
of the DPFE

f(S) = min
x∈S

{C(x|S) + f(S′
x)}

= min{C(x1|S) + f(S′
x1

),
C(x2|S) + f(S′

x2
), . . . ,

C(xm|S) + f(S′
xm

)}, (1.31)

1.1 Principles of Dynamic Programming 23

where S = {x1, x2, . . . xm} and S′
x is the next-state resulting from choosing

x in state S. Rather than computing all the values C(x|S) + f(S′
x), for each

x ∈ S, before evaluating the minimum of the set, we may instead compute
f(S) by successive approximations as follows:

f(S) = min{min{. . . {min{C(x1|S) + f(S′
x1

),
C(x2|S) + f(S′

x2
)}, . . .},

C(xm|S) + f(S′
xm

)}. (1.32)

In using this equation to compute f(S), the values of f(S′
xi

), as encountered
in proceeding in a left-to-right (inner-to-outer) order, should all have been
previously computed. To achieve this objective, it is common to order (topo-
logically) the values of S for which f(S) is to be computed, as in Example 1.6
of Sect. 1.1.10. An alternative is to use a staged formulation.

Consider the staged “fixed-time” DPFE of the form

f(k, S) = min
x

{C(x|k, S) + f(k − 1, S′
x)}, (1.33)

which, for each S, defines a sequence f(0, S), f(1, S), f(2, S), f(3, S), . . . of
successive approximations to f(S). The minimum member of the sequence
is the desired answer, i.e., f(S) = mink{f(k, S)}. {Here, we adopt the Java
“overloading” convention that f with one argument differs from f with two
arguments.} Note that f(k, S) is a function not of f(k − 1, S), but of f(k −
1, S′

x), where S′
x is the next-state; e.g., f(1, S) depends not on f(0, S) but on

f(0, S′). Since the sequence of values f(k, S) is not necessarily monotonic, we
define a new sequence F (k, S) by the “relaxation” DPFE

F (k, S) = min{F (k − 1, S),min
x

{C(x|k, S) + F (k − 1, S′
x)}}. (1.34)

In Example 1.9 of Sect. 1.1.10, we will see that this new sequence F (0, S),
F (1, S), F (2, S), F (3, S), . . . is monotonic, and converges to f(S).

1.1.10 Shortest Path Problems

In the solution to the linear search problem we gave earlier, we used a state
transition graph model and noted that solving the linear search problem was
equivalent to finding the shortest path in a graph. There are a myriad of other
problems that can be formulated and solved as graph optimization problems,
so such problems are of special importance. Some of the problems are more
complex, however, such as when the graph is cyclic.

For acyclic graphs, the shortest path from a source node s to a target node
t can be found using a DPFE of a (target-state) form similar to (1.15):

f(p) = min
q

{b(p, q) + f(q)}, (1.35)

24 1 Introduction to Dynamic Programming

where b(p, q) is the distance from p to q, and f(p) is the length of the shortest
path from node p to node t. We may either restrict node q ∈ succ(p) to be
a successor of node p, or let b(p, q) = ∞ if q /∈ succ(p). {For acyclic graphs,
we may also assume b(p, p) = ∞ for all p.} Our goal is to find f(s) with base
condition f(t) = 0. In this formulation, the state p is defined as the node in the
graph at which we make a decision to go some next node q before continuing
ultimately to the designated target.

Example 1.6 (SPA). As a numerical example, consider the graph in Fig. 1.1
with nodes {s, x, y, t} and branches {(s, x), (s, y), (x, y), (x, t), (y, t)} with
branch distances {3, 5, 1, 8, 5}, respectively. For illustrative purposes, we add
a “dummy” branch (s, t) having distance b(s, t) = ∞.

5

83

5

s

x

y

t

1
infty

Fig. 1.1. Shortest Path Problem in an Acyclic Graph

The DPFE for the shortest path from s to t yields the following equations:

f(s) = min{b(s, x) + f(x), b(s, y) + f(y), b(s, t) + f(t)},
f(x) = min{b(x, y) + f(y), b(x, t) + f(t)},
f(y) = min{b(y, t) + f(t)},
f(t) = 0.

Consider evaluating the minimizing value of f(s) by relaxation, i.e.,

f(s) = min{b(s, x) + f(x), b(s, y) + f(y), b(s, t) + f(t)},
= min{min{b(s, x) + f(x), b(s, y) + f(y)}, b(s, t) + f(t)}.

This is of the same form as (1.32). f(x) and f(y) in the innermost min should
be evaluated before f(t), but in fact both f(x) and f(y) depend upon f(t).
Thus, f(t) should be evaluated first.

1.1 Principles of Dynamic Programming 25

Substituting the above given branch distances into the foregoing equations,
we have

f(s) = min{3 + f(x), 5 + f(y),∞ + f(t)},
f(x) = min{1 + f(y), 8 + f(t)},
f(y) = min{5 + f(t)},
f(t) = 0.

If these equations are evaluated in “bottom-up” order, then we have f(t) = 0,
f(y) = 5, f(x) = 6, and f(s) = 9.

If the graph is acyclic, then the graph can be topologically sorted and
the DPFE can be evaluated for p in this order such that evaluation of f(p)
will always be in terms of previously calculated values of f(q). On the other
hand, if the graph is cyclic, so that for example p and q are successors of each
other, then f(p) may be defined in terms of f(q), and f(q) may be defined in
terms of f(p). This circular definition presents difficulties that require special
handling.

For convenience, we will assume that cyclic graphs do not contain self-
loops, i.e., branches from a node p to itself. For a graph having such a branch,
if b(p, p) is positive, that branch cannot be in the shortest path since its
omission would lead to a shorter path, hence we may omit the branch. On the
other hand, if b(p, p) is negative, the problem is not well-defined since there
is no shortest path at all. If b(p, p) = 0, the problem is also not well-defined
since a shortest path may have an infinite number of branches, hence we may
also omit the branch.

One way to handle cyclic graphs (having no self-loops), where f(q) may
depend on f(p), is to use relaxation to solve the DPFE

f(p) = min
q

{b(p, q) + f(q)}, (1.36)

where f(p) = ∞ for p �= t initially, and f(t) = 0.

Example 1.7 (SPC—successive approximations). To the preceding example,
suppose we add a branch (y, x) with distance b(y, x) = 2 (see Fig. 1.2).

The graph is then cyclic, and the equations obtained from the DPFE are
as follows:

f(s) = min{b(s, x) + f(x), b(s, y) + f(y), b(s, t) + f(t)
= min{3 + f(x), 5 + f(y),∞ + f(t)},

f(x) = min{b(x, y) + f(y), b(x, t) + f(t)} = min{1 + f(y), 8 + f(t)},
f(y) = min{b(y, x) + f(x), b(y, t) + f(t)} = min{2 + f(x), 5 + f(t)},
f(t) = 0.

We note that f(x) depends on f(y), and f(y) depends on f(x).

26 1 Introduction to Dynamic Programming

5

83

5

s

x

y

t

1
infty

2

Fig. 1.2. Shortest Path Problem in an Cyclic Graph

Solving these equations by relaxation, assuming f(s) = f(x) = f(y) = ∞
and f(t) = 0 initially, we have, as the first successive approximation

f(s) = min{3 + ∞, 5 + ∞,∞ + 0} = ∞,

f(x) = min{1 + ∞, 8 + 0} = 8,

f(y) = min{2 + ∞, 5 + 0} = 5,

f(t) = 0,

as the second successive approximation

f(s) = min{3 + 8, 5 + 5,∞ + 0} = 10,

f(x) = min{1 + 5, 8 + 0} = 6,

f(y) = min{2 + 8, 5 + 0} = 5,
f(t) = 0,

and as the third successive approximation

f(s) = min{3 + 6, 5 + 5,∞ + 0} = 9,

f(x) = min{1 + 5, 8 + 0} = 6,

f(y) = min{2 + 6, 5 + 0} = 5,

f(t) = 0.

Continuing this process to compute additional successive approximations will
result in no changes. In this event, we say that the relaxation process has
converged to the final solution, which for this example is f(s) = 9 (and f(x) =
6, f(y) = 5, f(t) = 0).

Another way to handle cyclic graphs is to introduce staged decisions, using
a DPFE of the same form as Eq. (1.33).

1.1 Principles of Dynamic Programming 27

f(k, p) = min
q

{b(p, q) + f(k − 1, q)}, (1.37)

where f(k, p) is the length of the shortest path from p to t having exactly k
branches. k, the number of branches in a path, ranges from 0 to N−1, where N
is the number of nodes in the graph. We may disregard paths having N or more
branches that are necessarily cyclic hence cannot be shortest (assuming the
graph has no negative or zero-length cycle, since otherwise the shortest path
problem is not well-defined). The base conditions are f(0, t) = 0, f(0, p) = ∞
for p �= t, and f(k, t) = ∞ for k > 0. We must evaluate mink{f(k, s)} for
k = 0, . . . , N − 1.

Example 1.8 (SPC-fixed time). For the same example as above, the staged
fixed-time DPFE (1.37) can be solved as follows:

f(k, s) = min{b(s, x) + f(k − 1, x), b(s, y) + f(k − 1, y), b(s, t) + f(k − 1, t)},
f(k, x) = min{b(x, y) + f(k − 1, y), b(x, t) + f(k − 1, t)},
f(k, y) = min{b(y, x) + f(k − 1, x), b(y, t) + f(k − 1, t)},
f(k, t) = 0.

Its solution differs from the foregoing relaxation solution in that f(0, t) = 0
initially, but f(k, t) = ∞ for k > 0. In this case, we have, as the first successive
approximation

f(1, s) = min{3 + f(0, x), 5 + f(0, y),∞ + f(0, t)} = ∞,

f(1, x) = min{1 + f(0, y), 8 + f(0, t)} = 8,

f(1, y) = min{2 + f(0, x), 5 + f(0, t)} = 5,

f(1, t) = ∞,

as the second successive approximation

f(2, s) = min{3 + f(1, x), 5 + f(1, y),∞ + f(1, t)} = 10,

f(2, x) = min{1 + f(1, y), 8 + f(1, t)} = 6,

f(2, y) = min{2 + f(1, x), 5 + f(1, t)} = 10,

f(2, t) = ∞,

and as the third and final successive approximation

f(3, s) = min{3 + f(2, x), 5 + f(2, y),∞ + f(2, t)} = 9,

f(3, x) = min{1 + f(2, y), 8 + f(2, t)} = 11,

f(3, y) = min{2 + f(2, x), 5 + f(2, t)} = 8,

f(3, t) = ∞.

Unlike the situation in the preceding example, the values of f(k, p) do not
converge. Instead, f(p) = mink{f(k, p)}, i.e.,

28 1 Introduction to Dynamic Programming

f(s) = min{∞,∞, 10, 9} = 9,

f(x) = min{∞, 8, 6, 11} = 6,

f(y) = min{∞, 5, 10, 8} = 5,

f(t) = min{0,∞,∞,∞} = 0.

We emphasize that the matrix f(k, p) must be evaluated rowwise (varying p
for a fixed k) rather than columnwise.

Example 1.9 (SPC-relaxation). Suppose we define F (k, p) as the length of the
shortest path from p to t having k or fewer branches. F satisfies a DPFE of
the same form as f,

F (k, p) = min
q

{b(p, q) + F (k − 1, q)}. (1.38)

The goal is to compute F (N − 1, s). The base conditions are F (0, t) = 0,
F (0, p) = ∞ for p �= t, but where F (k, t) = 0 for k > 0. In this formulation, the
sequence of values F (k, p), for k = 0, . . . , N−1, are successive approximations
to the length of the shortest path from p to t having at most N − 1 branches,
hence the goal can be found by finding F (k, s), for k = 0, . . . , N − 1. We
observe that the values of F (k, p) are equal to the values obtained as the k-th
successive approximation for f(p) in Example 1.7.

For a fixed k, if p has m successors q1, . . . , qm, then

F (k, p) = min
q

{b(p, q) + F (k − 1, q)}

= min{b(p, q1) + F (k − 1, q1), b(p, q2) + F (k − 1, q2), . . . ,
b(p, qm) + F (k − 1, qm)},

which can be evaluated by relaxation (as discussed in Sect. 1.1.9) by
computing

F (k, p) = min{min{. . . {min{b(p, q1) + F (k − 1, q1), b(p, q2) + F (k − 1, q2)},
. . .}, b(p, qm) + F (k − 1, qm)}. (1.39)

For each p, F (k, p) is updated once for each successor qi ∈ succ(p) of p,
assuming F (k − 1, q) has previously been evaluated for all q. We emphasize
that computations are staged, for k = 1, . . . , N − 1.

It should be noted that, given k, in solving (1.39) for F (k, p) as a function
of {F (k − 1, q)|q ∈ succ(p)}, if F (k, q) has been previously calculated, then it
may be used instead of F (k−1, q). This variation is the basis of the Bellman-
Ford algorithm [10, 13], for which the sequence F (k, p), for k = 0, . . . , N − 1,
may converge more rapidly to the desired solution F (N − 1, s).

We also may use the path-state approach to find the shortest path in a
cyclic graph, using a DPFE of the form

1.1 Principles of Dynamic Programming 29

f(p1, . . . , pi) = min
q �∈{p1,...,pi}

{b(pi, q) + f(p1, . . . , pi, q)}, (1.40)

where the state is the sequence of nodes p1, . . . , pi in a path S, and q is a
successor of pi that does not appear earlier in the path S. The next-state
S′ appends q to the path S. The goal is f(s) (where i = 1) and the base
condition is f(p1, . . . , pi) = 0 if pi = t. In Chap. 2, we show how this approach
can be used to find longest simple (acyclic) paths (LSP) and to find shortest
Hamiltonian paths, the latter also known as the “traveling salesman” problem
(TSP).

In the foregoing, we made no assumption on branch distances. If we re-
strict branch distances to be positive, the shortest path problem can be solved
more efficiently using some variations of dynamic programming, such as Dijk-
stra’s algorithm (see [10, 59]). If we allow negative branch distances, but not
negative cycles (otherwise the shortest path may be infinitely negative or un-
defined), Dijkstra’s algorithm may no longer find the shortest path. However,
other dynamic programming approaches can still be used. For example, for a
graph having negative cycles, the path-state approach can be used to find the
shortest acyclic path.

1.1.11 All-Pairs Shortest Paths

There are applications where we are interested in finding the shortest path
from any source node s to any target node t, i.e., where s and t is an arbitrary
pair of the N nodes in a graph having no negative or zero-length cycles and,
for the reasons given in the preceding section, having no self-loops. Of course,
the procedures discussed in Sect. 1.1.10 can be used to solve this “all-pairs”
shortest path problem by treating s and t as variable parameters. In prac-
tice, we would want to perform the calculations in a fashion so as to avoid
recalculations as much as possible.

Relaxation. Using a staged formulation, let F (k, p, q) be defined as the
length of the shortest path from p to q having k or fewer branches. Then,
applying the relaxation idea of (1.34), the DPFE for the target-state formu-
lation is

F (k, p, q) = min{F (k − 1, p, q),min
r

{b(p, r) + F (k − 1, r, q)}}, (1.41)

for k > 0, with F (0, p, q) = 0 if p = q and F (0, p, q) = ∞ if p �= q. The
analogous DPFE for the designated-source formulation is

F ′(k, p, q) = min{F ′(k − 1, p, q),min
r

{F ′(k − 1, p, r) + b(r, q)}}. (1.42)

If we artificially let b(p, p) = 0 for all p (recall that we assumed there are no
self-loops), then the former (1.41) reduces to

F (k, p, q) = min
r

{b(p, r) + F (k − 1, r, q)}, (1.43)

30 1 Introduction to Dynamic Programming

where r may now include p, and analogously for the latter (1.42). The Bellman-
Ford variation, that uses F (k, r, q) or F ′(k, p, r) instead of F (k − 1, r, q) or
F ′(k − 1, p, r), respectively, applies to the solution of these equations. If the
number of branches in the shortest path from p to q, denoted k∗, is less than
N−1, then the goal F (N−1, p, q) = F (k∗, p, q) will generally be found without
evaluating the sequence F (k, p, q) for all k; when F (k + 1, p, q) = F (k, p, q)
(for all p and q), the successive approximations process has converged to the
desired solution.

Floyd-Warshall. The foregoing DPFE (1.41) is associated with a divide-
and-conquer process where a path from p to q (having at most k branches) is
divided into subpaths from p to r (having 1 branch) and from r to q (having
at most k − 1 branches). An alternative is to divide a path from p to q into
subpaths from p to r and from r to t that are restricted not by the number of
branches they contain but by the set of intermediate nodes r that the paths
may traverse. Let F (k, p, q) denote the length of the shortest path from p to
q that traverses (passes through) intermediate nodes only in the ordered set
{1, . . . , k}. Then the appropriate DPFE is

F (k, p, q) = min{F (k − 1, p, q), F (k − 1, p, k) + F (k − 1, k, q)}, (1.44)

for k > 0, with F (0, p, q) = 0 if p = q and F (0, p, q) = b(p, q) if p �= q. This
is known as the Floyd-Warshall all-pairs shortest path algorithm. Unlike the
former DPFE (1.41), where r may have up to N − 1 values (if p has every
other node as a successor), the minimization operation in the latter DPFE
(1.44) is over only two values.

We note that the DPFEs for the above two algorithms may be regarded as
matrix equations, which define matrices F k in terms of matrices F k−1, where
p and q are row and column subscripts; since p, q, r, and k are all O(N), the
two algorithms are O(N4) and O(N3), respectively.

1.1.12 State Space Generation

The numerical solution of a DPFE requires that a function f(S) be evaluated
for all states in some state space S. This requires that these states be generated
systematically. State space generation is discussed in, e.g., [12]. Since not all
states may be reachable from the goal S∗, it is generally preferable to generate
only those states reachable from the source S∗, and that this be done in a
breadth-first fashion. For example, in Example 1.1, the generated states, from
the source-state or goal to the target-state or base, are (in the order they are
generated):

{a, b, c}, {b, c}, {a, c}, {a, b}, {c}, {b}, {a}, ∅.
In Example 1.2, these same states are generated in the same order although,
since its DPFE is of the reverse designated-source form, the first state is the
base and the last state is the goal. In Example 1.3, the generated states, from
the source (goal) to the target (base), are:

1.1 Principles of Dynamic Programming 31

(1, {a, b, c}), (2, {b, c}), (2, {a, c}), (2, {a, b}), (3, {c}), (3, {b}), (3, {a}), (4, ∅).

In Example 1.4, the generated states, from the source (goal) to the target
(base), are:

(0, {a, b, c}), (2, {b, c}), (5, {a, c}), (3, {a, b}), (8, {c}), (5, {b}), (7, {a}), (10, ∅).

In Example 1.5, the generated states, from the source (goal) to the targets
(bases), are:

∅, a, b, c, ab, ac, ba, bc, ca, cb, abc, acb, bac, bca, cab, cba.

We note that this state space generation process can be automated for a
given DPFE, say, of the form (1.17),

f(S) = optd∈D(S){R(S, d) ◦ f(T (S, d))}, (1.45)

using T (S, d) to generate next-states starting from S∗, subject to constraints
D(S) on d, and terminating when S is a base state. This is discussed further
in Sect. 1.2.2.

1.1.13 Complexity

The complexity of a DP algorithm is very problem-dependent, but in general
it depends on the exact nature of the DPFE, which is of the general nonserial
form

f(S) = optd∈D(S){R(S, d) ◦ p1.f(T1(S, d)) ◦ p2.f(T2(S, d)) ◦ . . .}. (1.46)

A foremost consideration is the size or dimension of the state space, because
that is a measure of how many optimization operations are required to solve
the DPFE. In addition, we must take into account the number of possible
decisions for each state. For example, for the shortest path problem, assuming
an acyclic graph, there are only N states, and at most N − 1 decisions per
state, so the DP solution has polynomial complexity O(N2). We previously
gave examples of problems where the size hence complexity was factorial and
exponential. Such problems are said to be intractable. The fact that in many
cases problem size is not polynomial is known as the curse of dimensionality
which afflicts dynamic programming. For some problems, such as the traveling
salesman problem, this intractability is associated with the problem itself, and
any algorithm for solving such problems is likewise intractable.

Regardless of whether a problem is tractable or not, it is also of interest
to reduce the complexity of any algorithm for solving the problem. We noted
from the start that a given problem, even simple ones like linear search, can
be solved by different DPFEs. Thus, in general, we should always consider
alternative formulations, with the objective of reducing the dimensionality of
the state space as a major focus.

32 1 Introduction to Dynamic Programming

1.1.14 Greedy Algorithms

For a given state space, an approach to reducing the dimensionality of a DP
solution is to find some way to reduce the number of states for which f(S)
must actually be evaluated. One possibility is to use some means to determine
the optimal decision d ∈ D(S) without evaluating each member of the set
{R(S, d) ◦ f(T (S, d))}; if the value R(S, d) ◦ f(T (S, d)) need not be evaluated,
then f(S′) for next-state S′ = T (S, d) may not need to be evaluated. For
example, for some problems, it turns out that

optd∈D(S){R(S, d)} = optd∈D(S){R(S, d) ◦ f(T (S, d))}, (1.47)

If this is the case, and we solve optd∈D(S){R(S, d)} instead of optd∈D(S)

{R(S, d) ◦ f(T (S, d))}, then we only need to evaluate f(T (S, d)) for N states,
where N is the number of decisions. We call this the canonical greedy algo-
rithm associated with a given DPFE. A noncanonical greedy algorithm would
be one in which there exists a function Φ for which

optd∈D(S){Φ(S, d)} = optd∈D(S){R(S, d) ◦ f(T (S, d))}. (1.48)

Algorithms based on optimizing an auxiliary function Φ (instead of R ◦ f) are
also called “heuristic” ones.

For one large class of greedy algorithms, known as “priority” algorithms
[7], in essence the decision set D is ordered, and decisions are made in that
order.

Regrettably, there is no simple test for whether optimal greedy policies
exist for an arbitrary DP problem. See [38] for a further discussion of greedy
algorithms and dynamic programming.

1.1.15 Probabilistic DP

Probabilistic elements can be added to a DP problem in several ways. For
example, rewards (costs or profits) can be made random, depending for ex-
ample on some random variable. In this event, it is common to simply define
the reward function R(S, d) as an expected value. In addition, next-states can
be random. For example, given the current state is S and the decision is d,
if T1(S, d)) and T2(S, d)) are two possible next-states having probabilities p1

and p2, respectively, then the probabilistic DPFE would typically have the
form

f(S) = min
d∈D(S)

{R(S, d) + p1.f(T1(S, d)) + p2.f(T2(S, d))}. (1.49)

It is common for probabililistic DP problems to be staged. For finite hori-
zon problems, where the number of stages N is a given finite number, such
DPFEs can be solved just as any nonserial DPFE of order 2. In Chap. 2, we
give several examples. However, for infinite horizon problems, where the state

1.1 Principles of Dynamic Programming 33

space is not finite, iterative methods (see [13]) are generally necessary. We will
not discuss these in this book.

For some problems, rather than minimizing or maximizing some total re-
ward, we may be interested instead in minimizing or maximizing the proba-
bility of some event. Certain problems of this type can be handled by defining
base conditions appropriately. An example illustrating this will also be given
in Chap. 2.

1.1.16 Nonoptimization Problems

Dynamic programming can also be used to solve nonoptimization probems,
where the objective is not to determine a sequence of decisions that optimizes
some numerical function. For example, we may wish to determine any se-
quence of decisions that leads from a given goal state to one or more given
target states. The Tower of Hanoi problem (see [57, p.332–337] and [58]) is
one such example. The objective of this problem is to move a tower (or stack)
of N discs, of increasing size from top to bottom, from one peg to another peg
using a third peg as an intermediary, subject to the constraints that on any
peg the discs must remain of increasing size and that only “basic” moves of
one disc at a time are allowed. We will denote the basic move of a disc from
peg x to peg y by < x, y >. For this problem, rather than defining f(S) as
the minimum or maximum value of an objective function, we define F (S) as
a sequence of basic moves. Then F (S) is the concatenation of the sequence of
moves for certain subproblems, and we have

F (N,x, y) = F (N − 1, x, z)F (1, x, y)F (N − 1, z, y). (1.50)

Here, the state S = (N,x, y) is the number N of discs to be moved from peg
x to peg y using peg z as an intermediary. This DPFE has no min or max
operation. The value of F (S) is a sequence (or string), not a number. The idea
of solving problems in terms of subproblems characterizes DP formulations.

The DPFE (1.50) is based on the observation that, to move m discs from
peg i to peg j with peg k as an intermediary, we may move m− 1 discs from
i to k with j as an intermediary, then move the last disc from i to j, and
finally move the m − 1 discs on k to j with i as an intermediary. The goal is
F (N, i, j), and the base condition is F (m, i, j) =< i, j > when m = 1. These
base conditions correspond to basic moves. For example, for N = 3 and pegs
A, B,and C,

F (3, A,B) = F (2, A,C)F (1, A,B)F (2, C,B)
= <A,B><A,C ><B,C ><A,B><C,A><C,B><A,B> .

In this book, our focus is on numerical optimization problems, so we will
consider a variation of the Tower of Hanoi problem, where we wish to deter-
mine the number f(N) of required moves, as a function of the number N of
discs to be moved. Then, we have

34 1 Introduction to Dynamic Programming

f(N) = 2f(N − 1) + 1, (1.51)

The base condition for this DPFE is f(1) = 1. This recurrence relation and
its analytical solution appear in many books, e.g., [53].

It should be emphasized that the foregoing DPFE has no explicit opti-
mization operation, but we can add one as follows:

f(N) = optd∈D{2f(N − 1) + 1}, (1.52)

where the decision set D has, say, a singleton “dummy” member that is not
referenced within the optimand. As another example, consider

f(N) = optd∈D{f(N − 1) + f(N − 2)}, (1.53)

with base conditions f(1) = f(2) = 1. Its solution is the N -th Fibonacci
number.

In principle, the artifice used above, of having a dummy decision, allows
general recurrence relations to be regarded as special cases of DPFEs, and
hence to be solvable by DP software. This illustrates the generality of DP
and DP tools, although we are not recommending that recurrence relations
be solved in this fashion.

1.1.17 Concluding Remarks

The introduction to dynamic programming given here only touches the sur-
face of the subject. There is much research on various other aspects of DP,
including formalizations of the class of problems for which DP is applicable,
the theoretical conditions under which the Principle of Optimality holds, rela-
tionships between DP and other optimization methods, methods for reducing
the dimensionality, including approximation methods, especially successive
approximation methods in which it is hoped that convergence to the correct
answer will result after a reasonable number of iterations, etc.

This book assumes that we can properly formulate a DPFE that solves
a given discrete optimization problem. We say a DPFE (with specified base
conditions) is proper, or properly formulated, if a solution exists and can be
found by a finite computational algorithm. Chap. 2 provides many examples
that we hope will help readers develop new formulations for their problems
of interest. Assuming the DPFE is proper, we then address the problem of
numerically solving this DPFE (by describing the design of a software tool for
DP. This DP tool has been used for all of our Chap. 2 examples. Furthermore,
many of our formulations can be adapted to suit other needs.

1.2 Computational Solution of DPFEs

In this section, we elaborate on how to solve a DPFE. One way in which a
DPFE can be solved is by using a “conventional” procedural programming
language such as Java. In Sect. 1.2.1, a Java program to solve Example 1.1 is
given as an illustration.

1.2 Computational Solution of DPFEs 35

1.2.1 Solution by Conventional Programming

A simple Java program to solve Example 1.1 is given here. This program
was intentionally written as quickly as possible rather than with great care to
reflect what a nonprofessional programmer might produce. A central theme of
this book is to show how DP problems can be solved with a minimum amount
of programming knowledge or effort. The program as written first solves the
DPFE (1.23) [Method S] recursively. This is followed by an iterative procedure
to reconstruct the optimal policy. It should be emphasized that this program
does not generalize easily to other DPFEs, especially when states are sets
rather than integers.

class dpfe {

public static double[][] b= {
{ 999., .2, .5, .3, 999., 999., 999., 999.},
{ 999., 999., 999., 999., 1., .6, 999., 999.},
{ 999., 999., 999., 999., .4, 999., .6, 999.},
{ 999., 999., 999., 999., 999., .4, 1., 999.},
{ 999., 999., 999., 999., 999., 999., 999., .9},
{ 999., 999., 999., 999., 999., 999., 999., 1.5},
{ 999., 999., 999., 999., 999., 999., 999., .6},
{ 999., 999., 999., 999., 999., 999., 999., 999.}

} ; //branch distance array
public static int N = b.length; //number of nodes
public static int[] ptr = new int[N]; //optimal decisions

public static double fct(int s) {
double value=999.; ptr[s]=-1;
if (s==N-1) {value=0.0; } // target state
else
for (int d=s+1; d<N; d++) // for s>d
if (b[s][d]<999.) // if d=succ(s)

if (value>b[s][d]+fct(d)) // if new min
{ value=b[s][d]+fct(d); ptr[s]=d; } //reset

return value;
} //end fct

public static void main(String[] args) {
System.out.println("min="+fct(0)); //compute goal
int i=0; System.out.print("path:"+i);
while (ptr[i]>0) { //reconstruction
System.out.print("->"+ptr[i]);
i=ptr[i];

}
} // end main

} // end dpfe

36 1 Introduction to Dynamic Programming

A recursive solution of the DPFE was chosen because the DPFE itself is a
recursive equation, and transforming it to obtain an iterative solution is not
a natural process. Such a transformation would generally take a significant
amount of effort, especially for nonserial problems. On the other hand, a ma-
jor disadvantage of recursion is the inefficiency associated with recalculating
f(S) for states S that are next-states of many other states. This is analogous
to the reason it is preferable to solve the Fibonacci recurrence relation iter-
atively rather than recursively. Although finding an iterative solution for the
Fibonacci problem is easy, and it also happens to be easy for the linear search
problem, in general we cannot expect this to be the case for DP problems.

1.2.2 The State-Decision-Reward-Transformation Table

This book will describe an alternative to conventional programming, as illus-
trated above, based on the ability to automatically generate the state space
for a given DPFE. Recall that, for Example 1.1, the state space is the set

{{a, b, c}, {b, c}, {a, c}, {a, b}, {c}, {b}, {a}, ∅}

or

{{0, 1, 2}, {1, 2}, {0, 2}, {0, 1}, {2}, {1}, {0}, ∅}

if we give the decisions a, b, and c the numerical labels 0,1,2 instead.
The state space for a given DPFE can be generated in the process of pro-

ducing the State-Decision-Reward-Transformation (SDRT) table. The SDRT
table gives, for each state S and for each decision d in the decision space
D(S), the reward function R(S, d) and the transformation function(s) T (S, d)
for each pair (S, d), starting from the goal state S∗. T (S, d) allows us to gen-
erate next-states. For Example 1.1, the SDRT table is given in Table 1.1.

As each next-state S′ is generated, if it is not already in the table, it is
added to the table and additional rows are added for each of the decisions
in D(S′). If a base-state is generated, which has no associated decision, no
additional rows are added to the table.

Given the SDRT table, for a serial DPFE, we can easily construct a state
transition system model whose nodes are the states. For Example 1.1, the
(Boolean) adjacency matrix for this state transition model is as follows:

1.2 Computational Solution of DPFEs 37

Table 1.1. SDRT Table for Linear Search Example

state decision reward next-states

{0, 1, 2} d = 0 0.2 ({1, 2})
{0, 1, 2} d = 1 0.5 ({0, 2})
{0, 1, 2} d = 2 0.3 ({0, 1})
{1, 2} d = 1 1.0 ({2})
{1, 2} d = 2 0.6 ({1})
{0, 2} d = 0 0.4 ({2})
{0, 2} d = 2 0.6 ({0})
{0, 1} d = 0 0.4 ({1})
{0, 1} d = 1 1.0 ({0})
{2} d = 2 0.9 (∅)
{1} d = 1 1.5 (∅)
{0} d = 0 0.6 (∅)

1 2 3 4 5 6 7 8
1 0 1 1 1 0 0 0 0
2 0 0 0 0 1 1 0 0
3 0 0 0 0 1 0 1 0
4 0 0 0 0 0 1 1 0
5 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0

The weighted adjacency matrix whose nonzero elements are branch labels is

1 2 3 4 5 6 7 8
1 0 0.2 0.5 0.3 0 0 0 0
2 0 0 0 0 1.0 0.6 0 0
3 0 0 0 0 0.4 0 0.6 0
4 0 0 0 0 0 0.4 1.0 0
5 0 0 0 0 0 0 0 0.9
6 0 0 0 0 0 0 0 1.5
7 0 0 0 0 0 0 0 0.6
8 0 0 0 0 0 0 0 0

The row and column numbers or indices shown (1, . . . , 8) are not part of the
matrix itself; in programming languages, such as Java, it is common to start
indexing from zero (0, . . . , 7) instead of one.

Later in this book we show that nonserial DPFEs can be modeled in a
similar fashion using a generalization of state transition systems called Petri
nets.

38 1 Introduction to Dynamic Programming

1.2.3 Code Generation

The adjacency matrix obtained from the SDRT table associated with a DPFE,
as described in Sect. 1.2.2, provides the basis for a DP program generator,
i.e., a software tool that automatically generates “solver code”, specifically, a
sequence of assignment statements for solving a DPFE using a conventional
programming language such as Java. We illustrate this solver code generation
process in this section.

Given a weighted adjacency matrix, for example, the one given above, we
can obtain the numerical solution of the DPFE by defining an assignment
statement for each row of the matrix which sets a variable ai for row i equal
to the minimum of terms of the form ci,j + aj , where j is a successor of i.

a1=min{.2+a2,.5+a3,.3+a4}
a2=min{1.+a5,.6+a6}
a3=min{.4+a5,.6+a7}
a4=min{.4+a6,1.+a7}
a5=min{.9+a8}
a6=min{1.5+a8}
a7=min{.6+a8}
a8=0

These assignment statements can be used in a conventional nonrecursive
computer program (in any procedural programming language) to calculate
the values ai. The statements should be compared with the equations of
Example 1.1 [Method S]. As in that earlier example, evaluating the values
ai yields the following results: a8 = 0, a7 = 0.6, a6 = 1.5, a5 = 0.9, a4 =
min(1.9, 1.6) = 1.6, a3 = min(1.3, 1.2) = 1.2, a2 = min(1.9, 2.1) = 1.9, a1 =
min(2.1, 1.7, 1.9) = 1.7; note that a1 = 1.7 is the goal. These assignment state-
ments must of course be “topologically” reordered, from last to first, before
they are executed.

1.2.4 Spreadsheet Solutions

Above, we showed the basis for a DP program generator that automatically
generates a sequence of assignment statements for solving a DPFE using a
conventional programming language. We show in this section how a spread-
sheet that solves a DPFE can be automatically generated.

The assignment statements given Sect. 1.2.3 for the linear search problem
can also be rewritten in the form

=min(.2+A2,.5+A3,.3+A4)
=min(1.+A5,.6+A6)
=min(.4+A5,.6+A7)
=min(.4+A6,1.+A7)
=min(.9+A8)
=min(1.5+A8)

1.2 Computational Solution of DPFEs 39

=min(.6+A8)
0

which when imported into the first column of a spreadsheet will yield the same
results as before; cell A1 of the spreadsheet will have 1.7 as its computed an-
swer. One advantage of this spreadsheet solution is that “topological” sorting
is unnecessary.

In this spreadsheet program, only the lengths of the shortest paths are
calculated. To reconstruct the optimal policies, i.e. the sequence of decisions
that yield the shortest paths, more work must be done. We will not address
this reconstruction task further in this Chapter.

The foregoing spreadsheet has formulas that involve both the minimization
and addition operations. A simpler “basic” spreadsheet would permit formulas
to have only one operation. Suppose we define an intermediary variable ak for
each of the terms ci,j + aj . Then we may rewrite the original sequence of
statements as follows:

a1=min(a9,a10,a11)
a2=min(a12,a13)
a3=min(a14,a15)
a4=min(a16,a17)
a5=min(a18)
a6=min(a19)
a7=min(a20)
a8=0
a9=.2+a2
a10=.5+a3
a11=.3+a4
a12=1.+a5
a13=.6+a6
a14=.4+a5
a15=.6+a7
a16=.4+a6
a17=1.+a7
a18=.9+a8
a19=1.5+a8
a20=.6+a8

As above, we may also rewrite this in spreadsheet form:

=min(A9,A10,A11)
=min(A12,A13)
=min(A14,A15)
=min(A16,A17)
=min(A18)
=min(A19)
=min(A20)

40 1 Introduction to Dynamic Programming

0
=.2+A2
=.5+A3
=.3+A4
=1.+A5
=.6+A6
=.4+A5
=.6+A7
=.4+A6
=1.+A7
=.9+A8
=1.5+A8
=.6+A8

This basic spreadsheet is a tabular representation of the original DPFE, and
is at the heart of the software system we describe in this book. This software
automatically generates the following equivalent spreadsheet from the given
DPFE:

0
=B1+0.9
=MIN(B2)
=B3+1
=B3+0.4
=B1+1.5
=MIN(B6)
=B7+0.6
=B7+0.4
=MIN(B4,B8)
=B10+0.2
=B1+0.6
=MIN(B12)
=B13+0.6
=B13+1
=MIN(B5,B14)
=B16+0.5
=MIN(B9,B15)
=B18+0.3
=MIN(B11,B17,B19)

(Only Column B is shown here.) The different ordering is a consequence of
our implementation decisions, but does not affect the results.

1.2.5 Example: SPA

As another illustration, that we will use later in this book since it is a smaller
example that can be more easily examined in detail, we consider the shortest

1.2 Computational Solution of DPFEs 41

path in an acyclic graph (SPA) problem, introduced as Example 1.6 in
Sect. 1.1.10. The SDRT table is as follows:

StateDecisionRewardTransformationTable
(0) [d=1] 3.0 ((1)) ()
(0) [d=2] 5.0 ((2)) ()
(1) [d=2] 1.0 ((2)) ()
(1) [d=3] 8.0 ((3)) ()
(2) [d=3] 5.0 ((3)) ()

From this table, we can generate solver code as a sequence of assignment
statements as follows:

A1=min(A2+3.0,A3+5.0)
A2=min(A3+1.0,A4+8.0)
A3=min(A4+5.0)
A4=0.0

Simplifying the formulas, so that each has only a single (minimization or
addition) operation, we may rewrite the foregoing as follows:

A1=min(A5,A6)
A2=min(A7,A8)
A3=min(A9)
A4=0.0
A5=A2+3.0
A6=A3+5.0
A7=A3+1.0
A8=A4+8.0
A9=A4+5.0

As in the case of the preceding linear search example, these assignment
statements must be topologically sorted if they are to be executed as a conven-
tional sequential program. (This sorting is unnecessary if they are imported
into a Column A of a spreadsheet.) Rearranging the variables (letting B9=A1,
B7=A2, B4=A3, etc.), we have:

B1=0.0
B2=B1+8.0
B3=B1+5.0
B4=min(B3)
B5=B4+5.0
B6=B4+1.0
B7=min(B6,B2)
B8=B7+3.0
B9=min(B8,B5)

42 1 Introduction to Dynamic Programming

These assignment statements can be executed as a conventional sequen-
tial program. Alternatively, importing them into Column B, we arrive at the
following spreadsheet solver code:

=0.0
=B1+8.0
=B1+5.0
=min(B3)
=B4+5.0
=B4+1.0
=min(B6,B2)
=B7+3.0
=min(B8,B5)

1.2.6 Concluding Remarks

It is not easy to modify the above Java or spreadsheet “solver code” to solve
DP problems that are dissimilar to linear search or shortest paths. Conven-
tional programming and hand-coding spreadsheets, especially for problems of
larger dimension, are error-prone tasks. The desirability of a software tool
that automatically generates solver code from a DPFE is clear. That is the
focus of this book.

1.3 Overview of Book

In Chap. 2, we discuss numerous applications of DP. Specifically, we formu-
late a DPFE for each of these applications. For many applications, we provide
alternate formulations as well. This compendium of examples shows the gener-
ality and flexibility of dynamic programming as an optimization method and
of the DP2PN2Solver software tool described in this book for solving dynamic
programming problems.

In Chap. 3, we describe gDPS, a text-based specification language for
dynamic programming problems. gDPS serves as the input language for the
DP2PN2Solver tool. Its syntax is given in BNF form. In effect, a gDPS source
program is a transliteration of a DPFE.

In Chap. 4, we show how each of the DPFEs given in Chap. 2 can be
expressed in the gDPS language of Chap. 3. The result is a set of computer
programs for solving the DP problems given in Chap. 2.

In Chap. 5, we define Bellman nets, a class of Petri nets, which serve as a
useful model of DPFEs. Petri nets, hence also Bellman nets, may be regarded
as a class of directed graphs.

In Chap. 6, we show how the DPFEs in Chap. 2 or Chap. 4 can be repre-
sented as a Bellman net.

1.3 Overview of Book 43

In Chap. 7, we describe the overall structure of DP2PN2Solver, a “com-
piler” tool whose (source code) input is a DPFE and whose (object code) out-
put is “solver code”, i.e., a program which when executed solves the DPFE.
The first phase of this tool translates a DPFE into its Bellman net represen-
tation, and the second phase translates the Bellman net into solver code. In
Sect. 7.2, we show the internal Bellman net representations for the DPFEs in
Chap. 2. Unlike the graphical representation in Chap. 6, the internal repre-
sentation is tabular, well suited as an intermediary between Phases 1 and 2.

In Chap. 8, we describe Phase 1 of our DP tool, which parses DPFE
source code and outputs its Bellman net representation. This Bellman net is
produced indirectly: the parser generates intermediate “builder code” which
when executed outputs the Bellman net.

In Chap. 9, we describe Phase 2 of our DP tool, which inputs a Bellman net
and produces solver code which when executed outputs a numerical solution
of the associated DPFE. This solver code can be Java code, a spreadsheet, or
an XML-coded Petri net (using a Petri net simulation language). In the case
of Java code, the solver code produced does not directly calculate results, but
consists instead of calls to systems routines that perform the calculations.

In Chap. 10, we show the numerical outputs obtained by executing the
Java solver codes produced by Phase 2 from the Bellman nets for each of the
problems of Chap. 2 and Chap. 4.

In Chap. 11, we show the numerical outputs obtained by executing the
spreadsheet and XML solver codes produced by Phase 2 for some sample
Bellman nets.

Chapter 12 concludes the book with a brief summary and a discussion of
current research into ways to improve and extend our DP software tool.

Appendix A provides supplementary program listings that we include for
completeness, detailing key portions of our software tool, for example.

Appendix B is a User’s Guide for our tool, including downloading and
installation instructions.

2

Applications of Dynamic Programming

Dynamic programming has been applied to numerous areas in mathematics,
science, engineering, business, medicine, information systems, bioinformatics,
among others. There are few disciplines in which there are no optimization
problems to which DP has been applied. In this book, we focus on applications
to operations research and computer science. Most of these applications can
be classified into a few major groups: applications involving graph routing,
sequencing, selection, partitioning, production and distribution, divide-and-
conquer, probabilistic or weighted transitions, string processing, and nonop-
timization problems. These groups are neither disjoint nor complete; some
applications fit in more than one group, and others fit in none of them. (In
the following, the parenthesized labels identify specific problems we discuss in
this Chapter.)

1. Graph routing problems are associated with finding shortest (or longest)
paths in graphs. The problem is especially simple when the graph is
acyclic (SPA, Sect. 2.43). Special cases include graphs where the nodes are
grouped in stages (SCP, Sect. 2.38) or in separate lines (ASMBAL, Sect.
2.4). A more complicated problem allows the graph to be cyclic (SPC,
Sect. 2.44), and even have negative branch labels. For cyclic graphs, we
may wish to find longest simple paths (LSP, Sect. 2.26) or shortest Hamil-
tonian paths (TSP, Sect. 2.47). For some applications, neither the source
nor the target are specified; instead, we are to find the “all-pairs shortest-
paths” (APSP, Sect. 2.2) from each node p to each other node q, for
all pairs (p, q). The problem of finding a path whose maximal branch is
minimal (MINMAX, Sect. 2.28) is of special interest since it involves non-
additive costs. Many other classes of problems can be formulated as graph
routing problems whose branch distances must generally be derived rather
than being explicitly given in a distance array.

2. Sequencing problems are associated with finding the optimal ordering or
permutation of a set of objects. The set of objects may be data to be placed
in an array for linear searching (LINSRC, Sect. 2.24), a set of program

A. Lew and H. Mauch: Applications of Dynamic Programming, Studies in Computational Intel-

ligence (SCI) 38, 45–100 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

46 2 Applications of Dynamic Programming

files to be placed on a tape (PERM, Sect. 2.32), or a set of processes
to be scheduled. In scheduling problems, processes may be jobs to be
scheduled for execution on a CPU to minimize average turnaround time
(SPT, Sect. 2.45), or multitask jobs to be scheduled in flowshop fashion
(FLOWSHOP, Sect. 2.12), or disk file access requests to be scheduled to
minimize total seek times (SEEK, Sect. 2.39). Sequencing problems can
also viewed as a class of assignment problems where each object is assigned
to some position in the sequence (ASSIGN, Sect. 2.5).

3. Selection problems are associated with finding optimal (usually proper)
subsets of a given set of objects. One example is the problem of finding a
spanning tree of a graph that has minimum weight (MWST, Sect. 2.29);
this tree consists of a subset of branches with minimum total weight that
spans the graph while satisfying the eligibility constraint of acyclicness.
In knapsack problems, objects have values and weights, and the objective
is to select a subset with optimal total value such that the total weight
does not exceed the size of the knapsack, where there may be at most one
object of a given type (KS01, Sect. 2.20) or multiple objects of a given
type (KSINT, Sect. 2.22 and RDP, Sect. 2.36). In scheduling problems,
a subset of jobs to be executed is selected taking into account eligibility
constraints based upon, for example, deadlines (DEADLINE, Sect. 2.8)
or start and stop times (INTVL, Sect. 2.16). Integer linear programming
problems can be solved using the same DP approach adopted for knapsack
problems (ILP, Sect. 2.14), and in turn knapsack problems can be solved
by formulating them as integer linear programming problems (ILPKNAP,
Sect. 2.15). Some covering problems can also be formulated as a variation
of a knapsack problem (COV, Sect. 2.7; KSCOV, Sect. 2.21).

4. Partitioning or clustering problems are characterized by having a set S
of objects of size |S| = N that are to be grouped into disjoint subsets,
called a partition, in an optimal fashion. The rank K of the partition, i.e.,
the number of disjoint subsets or clusters (1 ≤ K ≤ N), either may be
given in advance or may be left to be optimally determined. A sequential
partitioning problem, also known as a segmentation problem, is one in
which S is considered an ordered sequence of objects, and nonadjacent
objects can only be in a cluster or segment if all intervening objects are
in the same segment. Examples of such segmentation problems include
curve fitting (SEGLINE, Sect. 2.41) and program pagination (SEGPAGE,
Sect. 2.41). A partitioning problem may also be viewed as that of assigning
each object to one of a given number of clusters. In one example of such
an assignment problem (ASSIGN, Sect. 2.5), we assume the special case
where K = N . It is more common, however, for K to be well less than N .
Some covering problems, as mentioned above, can also be formulated as
a variation of a partitioning problem.

5. Distribution problems are characterized by having a set of objects that
are to be distributed from a set of suppliers to a set of receivers in an opti-
mal fashion, where there are specified costs associated with destination y

2 Applications of Dynamic Programming 47

receiving objects from source x. In transportation problems, this is mod-
eled by having a flow from x to y (TRANSPO, Sect. 2.46). In some simpler
special cases, there is one source and multiple destinations, and distribu-
tion costs depend on the allotments, i.e. the number of objects allocated
to each destination (ALLOT, Sect. 2.1; ODP, Sect. 2.31). Another spe-
cial case is that of assignment problems where sources must be matched
(paired) with destinations (ASSIGN, Sect. 2.5). We also note that many
distribution problems can be modeled as integer linear programming prob-
lems, and handled as above. Furthermore, it is common for distribution
problems to have probabilistic elements as well, so that they must be
handled as below.

6. Production or inventory or replacement problems are characterized by
having a resource, units of which can be produced (by a supplier) or
demanded and consumed (by a receiver) at each of a series of stages,
where there are specified costs of producing or not producing additional
units of resource to replace consumed ones, or to add to existing inven-
tory to meet future demand (PROD, Sect. 2.34; INVENT, Sect. 2.17;
REPLACE, Sect. 2.37; LOT, Sect. 2.25). Investment problems (INVEST,
Sect. 2.18; INVESTWLV, Sect. 2.19) can be modeled in like fashion, where
the amount that can be invested corresponds to the inventory, and gains
and losses from investments correspond to demands.

7. Optimal binary tree problems are associated with situations where a de-
cision divides the original problem into two subproblems whose solutions
can be solved separately and combined to obtain the solution of the orig-
inal problem. This is similar to what are known as divide-and-conquer
algorithms. The main characteristic is that each decision leads to multiple
next-states rather than a single one. Examples include constructing an
optimal binary search tree (BST, Sect. 2.6), constructing an optimal al-
phabetic radix or prefix-code tree (ARC, Sect. 2.3), determining the best
way to multiply a chain of matrices (MCM, Sect. 2.27), and determining
the best way to obtain a set of order statistics (SELECT, Sect. 2.42). The
DPFEs for these problems are nonserial (second-order).

8. Probabilistic problems have probabilities associated with next-states. Un-
like the aforementioned divide-and-conquer problems, in probabilistic
problems each decision results in single next-state determined by chance
from a set of alternatives. The DPFEs for these problems (INVEST,
Sect. 2.18; INVESTWLV, Sect. 2.19; PROD, Sect. 2.34; PRODRAP,
Sect. 2.35) are nonserial. Many probabilistic problems are production or
investment problems, where the state is the current inventory or balance,
the decision is how much to produce or invest, and the next-states may
increase or decrease, sometimes based on random external factors such as
demand. We note that there are also serial DP problems where probabil-
ities are not associated with next-states, but instead are associated with
the reward function (RDP, Sect. 2.36); in the simplest case, the reward is
an expected value computed from given probabilities.

48 2 Applications of Dynamic Programming

9. Probabilistic problems are only one class of problems in which next-states
are weighted. Boolean weights are used, for example, for a scheduling prob-
lem (INTVL3, Sect. 2.16) and a routing problem (APSPFW, Sect. 2.2).
Such weights can also be based on “discounting” (DPP, Sect. 2.9).

10. Problems involving string processing are also of interest, especially in the
fields of text processing and computational biology. We discuss the prob-
lems of “editing” or transforming one string to another (EDP, Sect. 2.10)
and of finding “matching” subsequences (LCS, Sect. 2.23).

11. Nonoptimization problems, in the context of sequential decision processes,
are those where decisions are not made for the purpose of optimizing some
objective function. Instead, decisions are made only to satisfy certain con-
straints, especially so as to ensure that a specific base state is reached.
For example, DP can be used to solve recurrence relations, such as for the
Fibonacci sequence (FIB, Sect. 2.11) and for the Tower of Hanoi prob-
lem (HANOI, Sect. 2.13). In addition, DP can also be used to determine
sequences of moves that solve some problem, such as for certain puzzles
(HANOI, Sect. 2.13; NIM, Sect. 2.30; POUR, Sect. 2.33).

There are of course other ways to categorize the various applications.
One other way is by discipline. For example, applications covered in a typ-
ical operations research textbook are (SCP, ALLOT, ALLOTm, ILP, PRO-
DRAP, INVESTWLV) in [21, Chap. 11] or (NIM, POUR, SCP, INVENT,
ALLOTf, KSINT, REPLACE, DDP, TSP, MINMAX, ALLOTm, LOT) in
[63, Chap. 18]. Applications covered in a typical computer science textbook
[10, Chap. 15] include (ASMBAL, MCM, LSP, LCS, BST). In this book, we
treat all of these applications, among many others, to demonstrate the gener-
ality of our formalism and the utility of our DP software tool for solving DP
problems.

In this chapter, we show how each of the problems referred to here can
be solved using dynamic programming. Specifically, we formulate a DPFE
for each problem. In later chapters, these DPFEs are expressed in the text-
based language gDPS, which serves as the input source programs for our
DP software tool that translates them into object programs whose execution
solves the problems. We may view gDPS both as a mathematical specification
language and as a programming language.

It should be noted that a number of the problems included here can be
solved much more efficiently by greedy algorithms. In these cases, we present
less efficient DP solutions in part to demonstrate the generality of DP as a
method to solve optimization problems, and in part to provide a large sample
of DP formulations. Having such a large sample for reference, it should be
easier to formulate DP solutions to new problems. Furthermore, the set of
examples of the use of our software tool is therefore also large, which should
make it easier to learn to use this tool. Finally, it should be emphasized that
we often can modify DP to solve variations of problems for which greedy
algorithms are inapplicable.

2.1 Optimal Allotment Problem (ALLOT) 49

The following sections present the problems in alphabetical order of their
names.

2.1 Optimal Allotment Problem (ALLOT)

The optimal allotment problem is that of deciding how to distribute a limited
amount of resources to a set of users of these resources, where there are spec-
ified costs or profits associated with allotting units of the resource to users.
The optimal distribution problem ODP (Sect. 2.31) may be regarded as an
allotment problem. The problem may also be regarded as a variation of the
knapsack problem KSINT (Sect. 2.22).

Assume there are M total units of the resource, and let C(k, d) be the
cost or profit associated with allotting d units to user k, where d = 0, . . . ,M
and k = 1, . . . , N . Suppose we make the allotment decisions in stages, ini-
tially allotting d1 units to user 1, then d2 units to user 2, etc. This arbitrary
sequencing 1, 2, . . . , N can be assumed since only the quantities allotted mat-
ter, not the sequence in which they are made. We define the state (k,m) as
remaining number m of units of resource at stage k. The cost of deciding to
allot d units at stage k to user k is C(k, d). The next-state is (k + 1,m − d).
The DPFE is

f(k,m) = min
d∈{0,...,m}

{C(k, d) + f(k + 1,m − d)}. (2.1)

The goal is to find f(1,M) with base-conditions f(N +1,m) = 0 when m ≥ 0.
If we allow d > m (bounding d by M instead), we may use the additional base-
condition f(N + 1,m) = ∞ when m < 0 to prevent allotting more resources
than is available.

For instance, let M = 4, N = 3 and

(Ck,d)k∈{1,2,3};d∈{0,...,4} =

⎛

⎝
∞ 1.0 0.8 0.4 0.0
∞ 1.0 0.5 0.0 0.0
∞ 1.0 0.6 0.3 0.0

⎞

⎠ .

Then f(1,M) = 1.0 + 0.5 + 1.0 = 2.5 for the optimal sequence of allotments
d1 = 1, d2 = 2, d3 = 1.

This simple allotment problem can be generalized in several ways.

• In the ALLOTt problem, in [21, Example 3, pp.549–552], allotment deci-
sions and their costs are defined in separate tables. (ODP and ALLOTm
also have tabular costs.)

• In the ALLOTf problem, in [63, Example 5, pp.975–977], the costs are
defined nontabularly, i.e., by general functions.

• In the ALLOTm problem, in [63, Example 14, pp.998–999], costs are mul-
tiplicative rather than additive. (ALLOTt also has multiplicative costs.)

50 2 Applications of Dynamic Programming

There are also probabilistic DP problems where allotment costs are random
variables; for many such problems, we may simply use the expected values of
these costs in nonprobabilistic DPFEs.

2.2 All-Pairs Shortest Paths Problem (APSP)

In Sect. 1.1.11, we discussed the All-Pairs Shortest Paths (APSP) problem of
finding the shortest path from any node p to any other node q, where p and q
are arbitrary nodes in a set S. We may of course use any general designated-
source or target-state shortest path algorithm, such as (SPC, Sect. 2.44),
varying p and q repetitively. APSP algorithms can be more efficient since it
is possible to reuse calculations when shortest paths are computed in batches
rather than individually. Such reuse requires that calculations be suitably
ordered. (We do not address this efficiency issue here.) In our implementation,
specifically in our generation of the solution tree, subtrees are recalculated.

In the DPFEs given in Sect. 1.1.11, the goal is to compute F (k, p, q) which
is regarded as a matrix equation where p and q are row and column subscripts
for a matrix F (k). The DPFE gives F (k) in terms of the matrix F (k−1). The
relaxation DPFE (1.43) is:

F (k, p, q) = min
r∈S

{b(p, r) + F (k − 1, r, q)}, (2.2)

for k > 0, with F (0, p, q) = 0 if p = q and F (0, p, q) = ∞ if p �= q. Recall that
we assume here that b(p, p) = 0 for all p.

An alternative DPFE is the Floyd-Warshall DPFE (1.44):

F (k, p, q) = min{F (k − 1, p, q), F (k − 1, p, k) + F (k − 1, k, q)}, (2.3)

for k > 0, where k is the highest index of the set of nodes. The base cases are
F (0, p, q) = 0 if p = q and F (0, p, q) = b(p, q) if p �= q. Both DPFEs define
a matrix of values F (k), which is to be determined for one pair of subscripts
(p, q) at a time (rather than in a batch).

These two formulations differ is one significant way. In the former case
(APSP), the decision space is the set of nodes S. The problem can be solved
in much the same fashion as for SPC, except that the target is a parameter
rather than fixed. In the latter case (APSPFW), the decision space is Boolean,
reflecting whether or not a path shorter than the prior one has been found.
The Floyd-Warshall DPFE can be reformulated using transition weights as
follows:

F (k, p, q) = min
d∈{0,1}

{(1− d).F (k− 1, p, q)+ d.F (k− 1, p, k)+ d.F (k− 1, k, q)}.

(2.4)

For example, consider the graph whose adjacency matrix C, whose entries
are the branch distances b, is

2.3 Optimal Alphabetic Radix-Code Tree Problem (ARC) 51

C =

⎛

⎜
⎜
⎝

∞ 3 5 ∞
∞ ∞ 1 8
∞ 2 ∞ 5
∞ ∞ ∞ ∞

⎞

⎟
⎟
⎠

where C[p][q] = b(p, q) = ∞ if there is no branch from node p to node q.
This is the same example given in Sect. 1.1.10, and is also used for SPC, as
displayed in Fig. 2.8.

For APSP, which uses (2.2), assuming p = 0 and q = 3, we find that
F (3, 0, 3) = 9. From the solution obtained during the course of this calculation,
we also find that F (2, 1, 3) = 6 and F (1, 2, 3) = 5. However, some values such
as for F (3, 0, 2) = 4 must be found separately, such as by assuming p = 0 and
q = 2.

For APSPFW, which uses (2.4), assuming p = 0 and q = 3, we find that
F (3, 0, 3) = 9. From the solution obtained during the course of this calculation,
we also find that F (2, 0, 3) = 9 and F (1, 0, 3) = 11, among many other values.
However, some values such as for F (3, 1, 3) = 6 must be found separately,
such as by assuming p = 1 and q = 3.

2.3 Optimal Alphabetic Radix-Code Tree Problem
(ARC)

The optimal alphabetic radix code tree problem [23] is a variation of the
Huffman code tree problem. The Huffman code tree can be obtained by the
“greedy” heuristic of choosing to combine in a subtree the two nodes having
smallest weight, and replacing these two nodes a and b by a new node c having
a weight equal to the sum of the weights of nodes a and b. The alphabetic
variation constrains each choice to that of combining only adjacent nodes,
with each new node being placed in the same position as the nodes it replaces.
Given this constraint, the greedy heuristic is no longer necessarily optimal,
but the problem can be solved using DP. Since each tree can be represented
as a parenthesized list of its leaves in inorder, the problem is equivalent to
finding an optimal parenthesization, and can be solved in a fashion similar
to BST and MCM. How costs can be attributed separably to the individual
decisions is the key to solving this problem. We note that a Huffman tree may
be regarded as constructed from the bottom up, where the first decision is
to choose the leaves that should be initially combined. On the other hand,
the alphabetic radix code tree will be constructed from the top down, where
the first decision is to choose the root of the overall tree, which partitions the
leaves into left and right subsets. The main problem is to define separable
partitioning costs.

A radix code tree has one useful property that provides the key to solving
the optimization problem. The total cost of the tree is the sum of the costs of
the internal nodes, and the cost of an internal node is the sum of the leaves

52 2 Applications of Dynamic Programming

in the subtree rooted at that node. Internal nodes, of course, correspond to
decisions. Thus, we let the cost of an internal node of an alphabetic radix code
tree equal the sum of the leaves in the subtree rooted at that node. This cost
is the same regardless of how the leaves are to be partitioned. We may then
solve the constrained problem by using a DPFE of the same top-down form
as for MCM. Given S = (w0, w1, . . . , wn−1) is a list (i.e., an ordered sequence)
of weights associated with leaves, we define the state to be a pair (i, j), which
represents the list (wi, w2, . . . , wj). Then

f(i, j) = min
i≤d<j

{c(i, j, d) + f(i, d) + f(d + 1, j)} if i < j, (2.5)

where c(i, j, d) =
∑j

k=i wk. The goal is to find f(0, n− 1) with base condition
f(i, j) = 0 when i = j.

For example, if S = (1, 2, 3, 4) initially, the optimal tree is ((1, 2), 3), 4) and
f(S) = 3+6+10 = 19. From initial state (0, 3) representing the list (1, 2, 3, 4),
the initial decision is d = 2 which results in two next-states, state (0, 2)
representing the list (1, 2, 3) and state (3, 3) representing the list (4); the cost of
this decision is the sum 1+2+3+4 = 10. As a second example, if S = (2, 3, 3, 4)
initially, the optimal tree is ((2, 3), (3, 4)) and f(S) = 5 + 7 + 12 = 24.

2.4 Assembly Line Balancing (ASMBAL)

In what are known collectively as assembly line balancing problems, a product
can be assembled by going through a series of processing stations. There are
usually costs associated with processing step, and other costs associated with
going from one station to another. In general, it is desirable to “balance” the
workload among the processing stations in a fashion that depends upon how
the various costs are defined. We discuss here one simple example of such
assembly line balancing problems.

This “scheduling” example, described in [10, pp.324–331], may be regarded
as a variation of the shortest path problem for acyclic graphs (SPA, see
Sect. 2.43) or the staged version (SCP, see Sect. 2.38). In this problem, the
nodes of the graph are grouped into stages and also into lines. Transitions
can only be made from a node at stage k and line i to a node at stage k + 1
and line j, at a cost c(k, i, j). Usually, c(k, i, i) = 0, i.e. at any stage k there
is a cost associated with switching lines, but not for staying in the same line.
In addition to a transition cost c (associated with branches), there may be
another cost v (associated with nodes). An initial state s and terminal state
t are also defined; for simplicity, we adopt the convention that s and t are in
line 0, as opposed to a special third line. Then the initial decision is made
from s to enter line j at a cost c(0, 0, j), and a final decision is made from any
line j to enter t at a cost c(N, j, 0).

The graph associated with the assembly line balancing problem is acyclic,
so it can be topologically sorted by stages. We number the nodes in such a

2.4 Assembly Line Balancing (ASMBAL) 53

topological order from 0 to 13, with 0 as the initial state s, 13 as the terminal
state t. Assume the node costs for the 14 nodes are

v = (0, 7, 8, 9, 5, 3, 6, 4, 4, 8, 5, 4, 7, 0),

and the branch costs b are given by the following weighted adjacency matrix:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞ 2 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ 0 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ 2 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 0 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 1 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 0 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 3 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 4 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 0 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where b(i, j) = ∞ if there is no branch from node i to node j.
For 1 ≤ i ≤ 12, node i is the ((i + 1)/2)-th node in line 0 if i is odd,

whereas node i is the (i/2)-th node in line 1 if i is even. Note that there are
N = 6 stages (not counting s and t). Fig. 2.1 shows the assembly line instance
under consideration.

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

1

1

2

3

2

4

1

3

2

2

4

0 0 0 0 0

0 0 0 0 0

target t
node 13

source s
node 0

line 0

line 1

stage 2 stage 3 stage 4 stage 5 stage 6

node 3 node 5 node 7 node 9

node 4 node 6 node 8 node 10 node 12node 2

node 1 node 11

stage 1

Fig. 2.1. Instance of an Assembly Line Balancing Problem

Such assembly line balancing problems can be solved by a slight modifi-
cation to the solution to the stagecoach problem (SCP, Sect. 2.38). The main
change to SCP is that of adding each node-cost v to all of its outgoing (or al-
ternatively all of its incoming) branches. That is, we would define the net cost
or reward function by R(k, i, j) = v(k, i) + c(k, i, j). Furthermore, the next-
state function is T (k, i, j) = (k + 1, j). The goal is (0, 0). The base-condition
is f(k, i) = 0 when k > N . We note that in this staged formulation, only the

54 2 Applications of Dynamic Programming

non-infinite members of b need to be stored in an array. The successors of each
node are constrained to be nodes in the next stage, which can be determined
as a function of their subscripts as opposed to being specified in a table.

In the common case where there is a cost of zero for staying in the same
line, c(k, i, i) = 0, then only the nonzero costs have to be provided as part of
the problem data. A modified reward function R′(k, i, j) could test for whether
i = j and if so yield a value of 0, instead of looking up its value in a table or
array. Thus, this problem can be solved using the staged DPFE

f(k, i) = min
j

{R′(k, i, j) + f(k + 1, j)}, (2.6)

for f(0, 0) given the base condition f(N + 1, i) = 0. For the above example,
f(0, 0) = (0+2)+(7+2)+(5+1)+(3+1)+(4+0)+(5+1)+(4+3) = 38, for
the optimal sequence of line changes 0,1,0,1,1,0, not counting the convention
that we start and end in line 0.

The assembly line balancing problem can also be solved as an ordinary
shortest path in an acyclic graph (SPA, Sect. 2.43) problem, where the reward
function adds node-costs to branch-costs as above. In effect, we can simply
ignore stage numbers. For the above example, we would solve the DPFE

f(i) = min
j

{v(i) + b(i, j) + f(j)}, (2.7)

for f(s) given the base condition f(t) = 0. For the above example, we obtain
the goal f(0) = 38. The shortest path from s = 0 to t = 13 goes through the
sequence of nodes 0,1,4,5,8,10,11,13, and has length 38.

2.5 Optimal Assignment Problem (ASSIGN)

In an assignment or matching problem, each member of a set B must be
uniquely assigned (or “distributed”) to a member of a set A. If A is ordered,
then a matching may also be regarded as a permutation of A.

A permutation B = (b0, b1, . . . , bn−1) of A = (a0, a1, . . . , an−1) can be
obtained by deciding, for each member bi of B which member aj of A to assign
to it through a bijection {0, . . . , n − 1} → {0, . . . , n − 1}. These assignment
decisions can be made in any order, so we let i be a stage number and let
c(i, j) be the cost of assigning aj to bi at stage i. Since we require unique
assignments, at each stage we keep track of the members of A that have
not yet been assigned. This set S is incorporated into our definition of state.
Specifically, the state is (k, S) where k is a stage number and S is a set. A
decision in state (k, S) chooses a member d ∈ S, at a cost C(k, S, d) that in
general may also be a function of S. The next-state is (k + 1, S − {d}). The
DPFE is

f(k, S) = min
d∈S

{C(k, S, d) + f(k + 1, S − {d})}.

2.6 Optimal Binary Search Tree Problem (BST) 55

Within this framework, we can solve a variety of different assignment or
distribution problems by using different definitions of the cost function. For
example, let C(k, S, d) =

∑
i�∈S(wi) + wd. Then the optimal assignment cor-

responds to the solution of the SPT problem (see Sect. 2.45). (We note that∑
i�∈S(wi) = TTLWGT −

∑
i∈S(wi), where TTLWGT is the sum of all the

weights.) Thus, the optimization problem can be solved using the DPFE

f(k, S) = min
d∈S

{
∑

i�∈S

(wi) + wd + f(k + 1, S − {d})}. (2.8)

The base-condition is f(k, S) = 0 when k = n + 1 or S = ∅. The goal is find
f(1, S∗), where S∗ is the originally given set of N processes.

For instance, if S∗ = {0, 1, 2} with weights (w0, w1, w2) = (3, 5, 2), then
f(1, S∗) = 2 + 5 + 10 = 17 for the optimal sequence of assignment decisions
d1 = 2, d2 = 0, d3 = 1. Thus, the optimal permutation of A∗ = (3, 5, 2) is
B∗ = (2, 3, 5).

2.6 Optimal Binary Search Tree Problem (BST)

This problem is described in [10, pp.356–362]. Assume a set of n data items
X = {x0, . . . , xn−1} and a total order defined on these items is given. The
access probability of a data item xi is p(xi) or pi for short. (Note that
∑n−1

i=0 pi = 1.)
The task is to build a binary search tree that has minimal cost, where the

cost of the tree is defined as
n−1∑

i=0

(pilevel(xi))

and level(xi) denotes the level (depth) of the node corresponding to data item
xi in the tree. Note that items can be stored in internal nodes of the tree, not
only in leaves.

We give two alternative approaches to solve this problem using DP. In the
first formulation we define the state to be the set S of items to be arranged
in the tree. The DP functional equation can be expressed as

f(S) =

{
min
α∈S

{f(Sl) + f(Sr) + r(α, S)} if S �= ∅
0 if S = ∅,

(2.9)

where Sl = {x ∈ S : x < α} is the remaining set of items that are smaller than
the decision α (and thus appear to the left of α) and Sr = {x ∈ S : x > α}
is the remaining set of items that are larger than α (and thus appear to the
right of α) and the cost of the decision is defined as

r(α, S) =
∑

x∈S

p(x).

56 2 Applications of Dynamic Programming

Using an alternative base case the DP functional equation can be expressed
as

f(S) =

{
min
α∈S

{f(Sl) + f(Sr) + r(α, S)} if |S| > 1

p(x) if S = {x},

The goal is to compute f(X).
A second DP functional equation formulates the problem by defining a

state to be a pair of integers providing the start index and the end index of
the data items to be arranged (an approach similar to the DP model for the
MCM problem in Sect. 2.27.) For this formulation we require, without loss of
generality, that the data items X = (x0, . . . , xn−1) are already ordered. Then
the DP functional equation can be stated as

f(i, j) =

⎧
⎪⎨

⎪⎩

min
k∈{i,...,j}

{f(i, k − 1) + f(k + 1, j) +
j∑

l=i

pl} if i ≤ j

0 if i > j.

(2.10)

Using an alternative base case the DP functional equation can be expressed
as

f(i, j) =

⎧
⎪⎨

⎪⎩

min
k∈{i,...,j}

{f(i, k − 1) + f(k + 1, j) +
j∑

l=i

pl} if i < j

pi if i = j.

In this second model the goal is to compute f(0, n − 1).
We consider the following instance of this problem. We have the following

5 data items, listed in their lexicographical order: (A,B,C,D,E). Their re-
spective search probabilities are (0.25, 0.05, 0.2, 0.4, 0.1). The optimal value of
this instance is f(X) = 1.9 (in terms of the second DP model: f(0, 4) = 1.9),
which corresponds to the optimal binary search tree depicted in Fig. 2.2.

A E

D

C

B

Fig. 2.2. Optimal Binary Search Tree for the Example Instance

2.8 Deadline Scheduling Problem (DEADLINE) 57

This problem sometimes appears in the literature in slightly modified ver-
sions. One straightforward generalization introduces “dummy keys” represent-
ing values not in X, which takes care of unsuccessful searches [10, p.357]. A
second generalization considers arbitrary weights (e.g. real-valued weights) in-
stead of probabilities. Another variation is to require that data items only be
stored in the leaves of the tree, not in the internal nodes.

2.7 Optimal Covering Problem (COV)

This optimal covering problem is taken from [54, p.17]. Given are k different
sized shrubs that need to be protected from frost. Assume the shrubs are
sorted by size such that shrub 0 is the smallest, and shrub k−1 is the largest.
The cost to manufacture a cover for shrub size i is denoted ci. However, due
to manufacturing constraints, covers will be manufactured in no more than
n different sizes, where n ≤ k. Larger covers can protect smaller bushes. The
objective is to select the n sizes which enable one to cover all shrubs at least
cost.

Let j denote the number of cover sizes that have not been chosen yet and
let l denote the largest shrub of the ones which are still under consideration.
The DP functional equation for this problem can be expressed as

f(j, l) =

{
min

d∈{j−2,...,l−1}
{(l − d)cl + f(j − 1, d)} if j > 1

(l + 1)cl if j = 1.

The goal is to compute f(n, k − 1).
Consider an instance of this problem with k = 10 shrubs, cover size costs

(c0, . . . , c9) = (1, 4, 5, 7, 8, 12, 13, 18, 19, 21) and a manufacturing constraint of
n = 3 cover sizes. Then the optimal policy is to order the manufacturing of
cover sizes of 9, 6, and 4 (thus covering bushes 9, 8, and 7 with cover size 9,
covering bushes 6 and 5 with cover size 6, and covering bushes 4 through 0
with cover size 4) at a total cost of f(3, 9) = 129.

2.8 Deadline Scheduling Problem (DEADLINE)

The deadline scheduling problem (see [22, pp.206–212] and [10, pp.399–401])
is that of choosing the optimal subset of a set of unit-time processes to be
executed on a single processor, each process having a specified deadline and
profit, where its profit is earned if the process completes execution before its
deadline. The optimal subset is the one whose total earned profit is maximal.
The unit-time assumption means that each process completes execution one
time unit after it starts. This scheduling problem can be solved using a greedy
algorithm, but here we show that it can also be solved using DP in a fashion
similar to many other scheduling problems. The state (k, S) is a stage number

58 2 Applications of Dynamic Programming

k and a set S of processes that have not yet been considered. A decision d is a
member of S. The next-state is (k + 1, S −{d}). The cost of choosing process
d is either its profit or 0 depending upon whether its inclusion in the set of
scheduled processes yields a “feasible” set, i.e. a set in which each process
meets its deadline. This feasibility test is easier to implement if the set of
processes is given in increasing order of deadlines. Assuming this ordering by
deadlines, a chosen subset of processes would be executed in this sequential
order; since we assumed unit-time processes, the j-th scheduled process ter-
minates at time j. Thus, a sequence of processes S = {1, . . . , k} of size k is
feasible if j ≤ tj for 1 ≤ j ≤ k, in which case each process j in S can terminate
before its deadline time tj .

The optimization problem can be solved using the DPFE

f(k, S) = max
d∈S

{c(d|S) + f(k + 1, S − {d})}, (2.11)

where c(d|S) = wd if choosing to include d in the set of scheduled processes
is “feasible”, else c(d|S) = 0. Our goal is to solve for f(1, S∗) given the base
case f(k, S) = 0 for k = N + 1 or S = ∅.

Assume a set of jobs S∗ = {0, 1, 2, 3, 4} having profits p = {10, 15, 20, 1, 5}
and deadline times t = {1, 2, 2, 3, 3}. Then f(1, {0, 1, 2, 3, 4}) = 15 + 20 + 5 +
0 + 0 = 40 for the optimal sequence of decisions d1 = 1, d2 = 2, d3 = 4, d4 =
0, d5 = 3.

2.9 Discounted Profits Problem (DPP)

This Discounted Profits Problem (DPP) is described in [64, pp.779–780]. It
is an intertemporal optimization problem that can be solved with DP. By
incorporating the time value of money into the model, we get what is often
referred to as a “discounted” DP problem.

Assume we are given a lake with an initial population of b1 fish at the
beginning of year 1. The population at the beginning of year t is denoted
bt. By selling xt fish during year t a revenue r(xt) is earned. The cost of
catching these fish is c(xt, bt) and depends also on the number of fish in the
lake. Fish reproduce, and this is modeled by a constant reproduction rate
s — in [64, pp.779–780] it is assumed s = 1.2. That is, at the beginning of
a year there are 20% more fish in the lake than at the end of the previous
year. The finite planning horizon extends through the years 1, . . . , T during
which we assume a constant interest rate y. The decision variable xt denotes
the number of fish to be caught and sold in year t. The goal is to maximize
the net profit (in year 1 dollars) that can be earned during the years 1, . . . , T
within the planning horizon. Typically for this type of decision problem there
is a tradeoff of current benefits against future benefits.

A state in this DP model is a pair (t, b) representing the current year t
and the fish population b at the beginning of the year. The DP functional
equation becomes

2.10 Edit Distance Problem (EDP) 59

f(t, b) =

⎧
⎪⎨

⎪⎩

max
xt∈{0,...,b}

{ r(xt) − c(xt, b)

+ 1
1+y f(t + 1, �s(b − xt))} if t ≤ T

0 if t = T + 1.

and the goal is to compute f(1, b1).
For instance, let T = 2, y = 0.05, s = 2 (for sake of simplicity we use

s = 2 instead of s = 1.2) and set the initial fish population to b1 = 10
(to be interpreted in thousands). For simplicity, let the revenue function be
defined linearly as r(xt) = 3xt and let the cost function be defined linearly as
c(xt, bt) = 2xt. Then the maximal net profit (in year 1 dollars) is f(1, 10) ≈
19.05 resulting from the decisions x1 = 0 and x2 = 20 (i.e. no fish is harvested
in the first year, all the fish is harvested in the second year).

2.10 Edit Distance Problem (EDP)

The edit distance problem (EDP) is called “the most classic inexact matching
problem solved by dynamic programming” in [16, p.215]. It is also known as
the “string editing problem” [22, pp.284–286]. A variant of this problem is
described in [10, pp.364–367].

Let Σ be a finite alphabet. Given two strings x ∈ Σm and y ∈ Σn, say
x = x1 · · ·xm and y = y1 · · · yn. The task is to transform string x into string
y by using three elementary types of edit operations.

• A delete operation D deletes a single character from a string at a cost of
c(D).

• An insert operation I inserts a single character from Σ into a string at a
cost of c(I).

• A replacement (also called substitution) operation R replaces a single char-
acter of a string with a character from Σ at a cost of c(R). (Usually,
replacing with the same character gets assigned a cost of 0.)

The goal is to find an edit sequence, a sequence of edit operations that performs
the transformation from x to y at a minimal cost. The cost of an edit sequence
is defined as the sum of the cost of its edit operations.

The following recursive equation computes the minimal cost f(i, j) for Xi,
the length-i prefix substring of x, and Yj , the length-j prefix substring of y.

f(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

jD if i = 0
iI if j = 0
min{ f(i − 1, j) + c(D),

f(i, j − 1) + c(I),
f(i − 1, j − 1) + c(R)} if i > 0 and j > 0

where the cost function c might be defined as

60 2 Applications of Dynamic Programming

c(D) = cD for deleting any character, at any position
c(I) = cI for inserting any character, at any position

c(R) =
{

0 if xi = yj (matching characters)
cR if xi �= yj (a true replacement)

taking care of the fact that the replacement cost for matching characters
should be 0. A generalization of the EDP called “alphabet-weight edit dis-
tance” [16, 42] makes the cost of an edit operation dependent upon which
character from the alphabet gets deleted, inserted or replaced.

The recursive relationship can be restated as a DP functional equation
solving the EDP as follows.

f(Xi, Yj) =

⎧
⎪⎨

⎪⎩

jD if i = 0
iI if j = 0

min
d∈{D,I,R}

{f(t(Xi, Yj , d)) + c(d)} if i > 0 and j > 0.
(2.12)

where the transformation function is defined by

t(Xi, Yj ,D) = (Xi−1, Yj)
t(Xi, Yj , I) = (Xi, Yj−1)
t(Xi, Yj , R) = (Xi−1, Yj−1).

The goal is to compute f(x, y), the cost of a minimal cost edit sequence.
Consider the problem instance x = “CAN” and y = “ANN” with insertion

cost cI = 1, deletion cost cD = 1 and replacement cost cR = 1 from [16, p.223].
There are several minimal cost edit sequences with cost f(x, y) = 2, as can
be seen by considering the derivations

• CAN �R CNN �R ANN,
• CAN �D AN �I ANN,
• CAN �I CANN �D ANN.

This problem is closely related to the longest common subsequence (LCS)
problem of section 2.23.

2.11 Fibonacci Recurrence Relation (FIB)

A recurrence relation of the form f(i) = F (f(1), . . . , f(i − 1)) can be viewed
as a DPFE

f(i) = optd{F (f(1), . . . , f(i − 1))},
where F is independent of a decision d. For example, consider the recurrence
relation for the Fibonacci sequence, f(i) = f(i − 1) + f(i − 2), for i ≥ 3. Its
solution, the N -th Fibonacci number f(N) can be found by solving the DPFE

f(i) = optd∈S{f(i − 1) + f(i − 2)}, (2.13)

where S is a set having a singleton “dummy” value. The goal is f(N), and
the base cases are f(1) = f(2) = 1. For N = 7, f(7) = 13.

2.12 Flowshop Problem (FLOWSHOP) 61

2.12 Flowshop Problem (FLOWSHOP)

The flowshop problem (see [22, pp.301–306] and [4, pp.142–145]) is a process
scheduling problem where each process i has two tasks, A and B, that must
be performed in order, A before B. The tasks are performed on separate
processors, where the sequence chosen for the processes must also be the
sequence in which the individual tasks are performed. For example, assume
the execution times for the A tasks pi = {3, 4, 8, 10}, and the execution times
for the B tasks qi = {6, 2, 9, 15}, where i = {0, 1, 2, 3}. If the processes are
executed in the order given, then the start and completion times for the tasks
would be as shown in the time chart provided in Table 2.1.

Table 2.1. Time Chart for FLOWSHOP Instance

processor 1 A1: 0–3 A2: 3–7 A3: 7–15 A4: 15–25

processor 2 B1: 3–9 B2: 9–11 B3: 15–24 B4: 25–40

The two rows in Table 2.1 indicate, as a function of time, the tasks that
execute and their start and completion times. We emphasize that B3 was
delayed from time 11 when B2 completed because A3 completes at time 15.
The overall cost for a schedule is the time at which the last task completes,
which for the above example is 40. The flowshop problem is to find the schedule
that has minimum overall cost. We observe that the overall cost is the sum of
three times:

1. the execution times of all of the A tasks, denoted c1;
2. the execution time of the final B task that is executed, denoted c2;
3. any delay incurred for this final B task, denoted c3.

In the foregoing example, c1 = 25, c2 = 15, and c3 = 0, and their sum is 40.
To solve this problem by DP, we must define separable costs for each

decision. We do so by adopting a virtual stage approach. If task d is chosen
next, we define the cost of this decision as the execution time of its A task
pd; the execution time of its B task qd will be deferred by adding it to a
virtual-stage variable k. Specifically, we define the state as (k, S), where the
virtual-stage k is the time that would elapse between completion of the last
A and B tasks that have already been scheduled, and S is the set of processes
that have not yet been chosen. This elapsed time equals qd if there is no delay,
i.e., if k < pd. A decision d is a member of S. The cost of choosing process d
in state (k, S) is pd. The delay associated with decision d is max(k − pd, 0).
Thus, the next-state is (max(k − pd, 0) + qd, S − {d}). We conclude that the
problem can be solved using the DPFE

f(k, S) = min
d∈S

{pd + f(max(k − pd, 0) + qd, S − {d})}. (2.14)

62 2 Applications of Dynamic Programming

The goal is to find f(0, S∗), where S∗ is the originally given set of N processes.
The base-condition is f(k, S) = k when S = ∅. For the above example,
f(0, S∗) = 38 for the optimal sequence of decisions d1 = 0, d2 = 2, d3 =
3, d4 = 1.

2.13 Tower of Hanoi Problem (HANOI)

The Tower of Hanoi problem (discussed in Sect. 1.1.16) is that of moving
a tower of N discs, of increasing size from top to bottom, from one peg to
another peg using a third peg as an intermediary, where on any peg the discs
must remain of increasing size. The number of required basic moves (of a single
disc), f(N), is known to satisfy the recurrence relation f(i) = 2f(i − 1) + 1,
for i ≥ 2, where f(i) is the number of basic moves required to move i discs.
Thus, in a fashion analogous to the Fibonacci problem (FIB, Sect. 2.11), the
solution to the Tower of Hanoi problem can be found by solving the DPFE

f(i) = optd∈S{2f(i − 1) + 1}, (2.15)

where S is a set having a singleton dummy value. The goal is f(N), and the
base case is f(1) = 1. For N = 3, f(3) = 7.

The recurrence relation (2.15) gives the number of moves required to move
the given N discs according to the Tower of Hanoi rules. The actual sequence of
moves can also be found using a nonoptimization DP formulation, as discussed
in Sect. 1.1.16. The DPFE (1.50) given there, whose solution is a sequence of
moves, uses concatenation rather than addition. Therefore, it cannot be solved
directly by a numerical DP solver. However, the DPFE can be modified as
follows:

f(m, i, j, k) = optd∈S{f(m − 1, i, k, j) + f(1, i, j, k)
+ f(m − 1, k, j, i)}, (2.16)

where S is a set having a singleton dummy value. In this additive DPFE,
f(m, i, j, k) is the total number of basic moves required to move a tower of
m discs from i to j. We note that the preceding DPFE (2.15) can be derived
from this latter DPFE (2.16).

The DPFE (2.16) is based upon the observation that, to move m discs
from peg i to peg j with peg k as an intermediary, we may move m− 1 discs
from i to k with j as an intermediary, then move the last disc from i to j,
and finally move the m−1 discs on k to j with i as an intermediary. The goal
is f(N, 1, 2, 3), and the base condition is f(m, i, j, k) = 1 when m = 1. The
cost of each dummy decision is zero, but each of the basic moves, associated
with the base cases, contributes a cost of one to the overall total. For N = 3,
f(3, 1, 2, 3) = 7.

Since the basic moves (of a single disc) correspond to the base-states
f(1, i, j, k), it is possible to deduce the optimal sequence of these moves by

2.14 Integer Linear Programming (ILP) 63

examining the base-states that are reached. (This reconstruction process is
not simple, and will be omitted here.)

2.14 Integer Linear Programming (ILP)

A general problem statement of Integer Linear Programming (ILP) can be
found e.g. in [21, 49]. Here, we assume in addition that all entries of vec-
tors c and b and the matrix A are nonnegative integers, and we consider a
maximization problem with ‘≤’ constraints:

max cT x

s.t. Ax ≤ b

x1, . . . , xn ∈ N ∪ {0}

Such an ILP problem can be solved with DP in various ways. Two ap-
proaches are given here. For the first formulation, let a state be a set S of
index-value pairs. Each such pair represents the assignment (already made in
previous decisions) of an xj to a particular value [37, 40]. A decision is made
at stage j by assigning a value from a discrete set of feasible decisions D to
xj+1. The DP functional equation is

f(j, S) =

{
max

xj+1∈D
{cj+1xj+1 + f(j + 1, S ∪ {(j + 1, xj+1)})} if j < n

0 if j = n.
(2.17)

and the goal becomes to compute f(0, ∅).
The following second formulation of the ILP as a DP problem has the

advantage that there is a chance of overlapping subproblems to occur. Let a
state be a pair (j, (y1, . . . , ym)) of the index and an m-tuple representing the
slack yi for each of the constraints at the current state. As before, a decision
is made at stage j by assigning a value from a discrete set of feasible decisions
D to xj+1. The DP functional equation is

f(j, (y1, . . . , ym))

=

⎧
⎪⎨

⎪⎩

max
xj+1∈D

{cj+1xj+1

+f(j + 1, (y1 − a1,j+1xj+1, . . . , ym − am,j+1xj+1))} if j < n
0 if j = n.

(2.18)

and the goal becomes to compute f(0, (b1, . . . , bm)). The advantage of this
formulation is that different sequences of previous decisions might lead to a
common state with identical slack across all constraints. In this fortunate case
of an overlapping subproblem, we save the recomputation of that state.

For both DP formulations the set of feasible decisions D depends on the
current state and it is calculated by

64 2 Applications of Dynamic Programming

D = D(j, (y1, . . . , ym)) = {0, . . . ,min{� y1

a1,j
, . . . , � ym

am,j
}}

where a term yi

0 (with a zero in the denominator) should be interpreted as
∞, since in that case there is no upper bound for that particular variable-
constraint combination. (Note that for the first DP formulation the current
slack values yi can be computed from the assignment of values to the decision
variables made so far.) The assumption that the entries of A be nonnegative
is crucial and allows us to bound the set D from above. Otherwise, it does
not work; e.g. a constraint like 5x1 − 3x2 ≤ 35 does not imply a decision set
of {0, . . . , 7} for the x1 variable. Note that after assuming A ≥ 0 we must also
assume b ≥ 0 for the ILP problem to have feasible solutions.

Consider the following problem instance from [37, 40]. Let c = (3, 5),
b = (4, 12, 18), and

A =

⎛

⎝
1 0
0 2
3 2

⎞

⎠ .

Then the optimal solution is (x1, x2) = (2, 6) with maximal function value
f(0, 4, 12, 18) = 36.

2.15 Integer Knapsack as ILP Problem (ILPKNAP)

The integer knapsack problem can also be formulated as an ILP (Sect. 2.14).
For instance, let the capacity be 22, and let there be n = 3 classes of objects,
(A,B,C), with values (v0, v1, v2) = (15, 25, 24) and weights (w0, w1, w2) =
(10, 18, 15). This problem instance can be modeled using the objective func-
tion coefficients c = (15, 25, 24), the right hand side constraint vector b =
(22, 1, 1, 1), and the constraint matrix

A =

⎛

⎜
⎜
⎝

10 18 15
1 0 0
0 1 0
0 0 1

⎞

⎟
⎟
⎠

So we may use the ILP formulation to solve the knapsack problem. It is
optimal to pick object B once, and the optimal value of the knapsack is
f(0, 22, 1, 1, 1) = 25.

2.16 Interval Scheduling Problem (INTVL)

The interval scheduling problem [30, pp.116–121] (also known as the activity
selection problem [10, pp.371–378]) is that of choosing the optimal subset P ∗

of a set P = {0, . . . , N − 1} of N processes (or activities) to be executed on a

2.16 Interval Scheduling Problem (INTVL) 65

single processor, each process i having a specified interval (si, ti), consisting
of a start time si and a termination time ti, during which process i is eligible
to execute, and also having a weight wi that is the profit gained if this eligible
process is scheduled (selected) for processing. Since there is a single processor,
the intervals of the selected processes cannot overlap. This problem can be
solved using the nonserial DPFE

f(p, q) = max
d∈P

{f(p, sd) + c(d|p, q) + f(td, q)}, (2.19)

where c(d|p, q) = wd if d is “eligible”, i.e. p ≤ sd and td ≤ q; else c(d|p, q) = 0.
The goal is to solve for f(0, T) given the base cases f(p, q) = 0 for p ≥ q,
where T ≥ maxi{ti}.

Assume we are given a set of processes P = {0, 1, 2, 3, 4, 5} with start times
(s0, . . . , s5) = (9, 8, 3, 5, 2, 1), termination times (t0, . . . , t5) = (12, 11, 10,
7, 6, 4), and weights (w0, . . . , w5) = (1, 2, 7, 4, 4, 2). For T = 20, the goal is
f(0, 20) = 8, where the optimal decisions are to select processes 1, 3, and
5 to be included in P ∗. We note that the initial decision can be to choose
any one of these three processes; the other two processes would be chosen in
subsequent decisions.

For a given state (p, q), each process d in P is eligible for inclusion in
P ∗ if its start and termination times are within the interval (p, q). As an
alternative to defining the state as an interval and test d in P for eligibility,
we may instead incorporate in the definition of the state the set S ⊂ P of
eligible processes in the interval. This yields the nonserial (“INTVL2”) DPFE

f(S, p, q) = max
d∈S

{f(SL, p, sd) + c(d|p, q) + f(SR, td, q)}, (2.20)

where SL and SR are the subsets of S consisting of the eligible processes in
the respective left and right subintervals. The goal is to solve for f(P, 0, T) for
T ≥ maxi{ti}, given the base cases f(S, p, q) = 0 when p ≥ q or when S = ∅.

For the preceding problem, the goal is f({0, 1, 2, 3, 4, 5}, 0, 20) = 8, where
the optimal decisions again are to select processes 1, 3, and 5 to be included
in P ∗. For the initial decision d to choose process 1 with start time 8 and
termination time 11, the left next-state is ({3, 4, 5}, 0, 8), since processes 3,
4, and 5 terminate before time sd = 8, and the right next-state is (∅, 11, 20),
since no processes start after time td = 11. If in state ({3, 4, 5}, 0, 8), the next
decision is to choose process 3 with start time 5 and termination time 7, and
the next-states are ({5}, 0, 5) and (∅, 7, 8).

As previously noted, processes 1, 3, and 5 are all included in the final set
P ∗ of scheduled processes, but they can be selected in any order. Therefore, if
j and k are both in P ∗, with j < k, we may arbitrarily choose to always select
process k first. If we do so, then although the foregoing DPFE is nonserial,
the processes that are selected for inclusion in P ∗ can be made serially in
decreasing order of their index positions in the set P .

Suppose we consider the processes in the increasing order 0,1,2,3,4,5. For
each process i, we make a boolean decision di = 1 if we include i in P ∗, or

66 2 Applications of Dynamic Programming

di = 0 if not. Then the optimal sequence of decisions is d0 = 0, d1 = 1, d2 =
0, d3 = 1, d4 = 0, d5 = 1, i.e., processes 1, 3, and 5 are selected, resulting in a
total cost of w1 + w3 + w5 = 2 + 4 + 2 = 8.

One alternate formulation assumes that the set P is sorted in increasing
order of termination time and decisions are made in reverse of this ordering. If
the decision is made to include process i in P ∗, then processes that terminate
after si are ineligible and may be disregarded. It is thus useful to precalculate
the set Ei = {j | tj ≤ si} of eligible processes that terminate before process i
and let π(i) = max(Ei), which is equal to zero if Ei is empty.

Assume we are given a set of processes P = {0, 1, 2, 3, 4, 5} with start
times (s0, . . . , s5) = (1, 2, 5, 3, 8, 9), termination times (t0, . . . , t5) = (4, 6, 7, 10,
11, 12), and weights (w0, . . . , w5) = (2, 4, 4, 7, 2, 1). (The processes are the
same as given in the prior example.) Since P is sorted by termination times,
we may use π(i) to eliminate many ineligible decisions. For this example,
π = {0, 0, 1, 0, 3, 3}.

The interval scheduling problem can then be solved using the serial
(“INTVL1”) DPFE

f(k) = max{wk−1 + f(π(k − 1)), f(k − 1)}, (2.21)

where π(i) is as defined above. In this DPFE, at each stage k, process k is
considered, and the decision whether to schedule (select) the process or not
is Boolean; the cost of a decision equals the process weight if a process is
selected, or equals zero if not. (Note the subscripts used for w and π are k− 1
since we assume these arrays are indexed from zero.) The goal is to solve for
f(N) given the base case f(0) = 0.

Solving the DPFE, we have f(6) = f(5) = 8, f(5) = 2 + f(3) = 8, f(3) =
4 + f(1) = 6, and f(1) = 2 + f(0) = 2. The sequence of optimal decisions are
d1 = 0, d2 = 1, d3 = 1, d4 = 1, so we conclude that process 5 is not included
in P ∗, but processes 4, 2, and 0 are.

We note in conclusion that, using transition weights, the foregoing is equiv-
alent to the (“INTVL3”) DPFE

f(k) = max
d∈{0,1}

{d · (wk−1 + f(π(k − 1))) + (1 − d) · f(k − 1)}, (2.22)

The numerical solution is the same as before.

2.17 Inventory Problem (INVENT)

In an inventory problem, there is a product that can be acquired (either
produced or purchased) at some specified cost per unit, and that is consumed
based upon demands at specified times. There is also an inventory “holding”
cost for storing products that are not consumed, and a penalty cost in case the
demand cannot be satisfied. We may formulate such an inventory problem as

2.18 Optimal Investment Problem (INVEST) 67

an N -stage sequential decision process, where at each stage k a decision must
be made to acquire x units at an acquisition cost C(k, x), that may depend
on the stage k and on the number of units acquired x. The state is (k, s),
where k is the stage number and s is the size of the inventory, i.e. how many
units of the product are available at the start of the stage. The demand D(k)
generally depends on the stage. If the decision in state (k, s) is to acquire x
units, the next-state (k′, s′) is (k + 1, s + x−D(k)). The cost associated with
this state transition is the acquisition cost C(k, x) plus the inventory holding
cost I(k, s, x) for s > 0. C(k, x) often includes an overhead or setup cost if
x > 0, in addition to a per-unit cost. I(k, s, x) for s < 0 represents a penalty
for not satisfying a demand of size s. Restrictions on capacity CAP (how many
units may be acquired or produced in each stage) and an inventory limit LIM
(how large the inventory may be in each stage) may also be imposed.

For some inventory problems, such as probabilistic production problems
as discussed in Sect. 2.34, demand is assumed to be random. In this section,
we consider inventory problems where it is assumed that the future sequence
of demands (D0, . . . , DN−1) is fixed and known in advance. The DPFE for
such a problem is

f(k, s) = min
x

{C(k, x) + I(k, s, x) + f(k + 1, s + x − D(k))}.

with base condition f(k, s) = 0 when k = N . We may combine C and I to
obtain a reward function R(k, s, x) = C(k, x) + I(k, s, x). The goal is to find
f(0, s0), where s0 is the initial inventory.

If we also assume that enough must be acquired to always meet demand,
or equivalently that the penalty for not satisfying the demand (resulting in
a negative inventory) is infinite, then in state (k, s) the amount chosen to be
acquired x must be such that the inventory to be held s′ = s + x − D(k)
is nonnegative. Thus, at the k-th stage, we require that x ≥ D(k) − s. This
constraint may be incorporated into how the decision space is defined. The
DPFE for such an inventory problem is

f(k, s) = min
x≥D(k)−s

{C(k, x) + I(k, s, x) + f(k + 1, s + x − D(k))}.

An instance of such an inventory problem is described in [64, pp.758–
763], where it is assumed that N = 4, C(k, x) = 3 + x for x > 0, C(k, 0) =
0, CAP = 5, I(k, s, x) = (s + x − D(k))/2 for s ≥ 0, LIM = 4,D(0) =
1,D(1) = 3,D(2) = 2,D(3) = 4, and s0 = 0. The goal is to find f(0, s0)
with base condition f(N, s) = 0. The solution is f(0, 0) = 20. The optimal
decisions are x1 = 1, x2 = 5, x3 = 0, and x4 = 4.

2.18 Optimal Investment Problem (INVEST)

There are many examples of investment or “gambling” problems (such as
INVESTWLV, Sect. 2.19), where at each state a decision is made to invest a

68 2 Applications of Dynamic Programming

certain amount from one’s “bankroll”, and whether the next-state is a gain or
loss is probabilistically determined. Such investment problems may be treated
as production problems (such as PROD, Sect. 2.34), where the inventory s is
one’s bankroll, and the next-state — say, s′ = s + d or s′ = s − d for a gain
or loss, respectively — is probabilistically determined. Of course, the gains
can reflect favorable odds, e.g., s′ = s + 2d, and the losses can be modified,
e.g., s′ = s − d + 1. Furthermore, the gain and loss probabilities may be
functions of the size of the investment i. Formulated as a production problem,
the production and inventory costs would be zero.

For one such investment problem [8, problem 19.29], the DPFE is

f(k, s) = max
i

{pif(k + 1, s + i) + (1 − pi)f(k + 1, s − i + 1)}. (2.23)

Given an initial amount of s0, the goal is to compute f(1, s0) with base-
condition f(k, s) = s when k = N .

For instance, assume gain probabilities pi of 1, 0.2, 0.4 for a decision i = 0,
1, and 2, respectively. Then for s0 = 2 and N = 4, we have f(1, 2) = 2.6 where
the optimal initial decision is to invest 1 unit.

2.19 Investment: Winning in Las Vegas Problem
(INVESTWLV)

The winning in Las Vegas problem as described in [20, p.423] is a probabilistic
DP problem (see Sect. 1.1.15). Each round of a game involves betting xn chips
and then either, with a probability of p, winning an additional xn chips, or,
with a probability of 1 − p, losing the bet. Given the time to play R rounds,
starting with s1 chips, and a target amount of t chips the objective is to find
a policy that maximizes the probability of holding at least t chips after R
rounds of betting. The decision variable xn represents the number of chips to
bet in round n where n ∈ {1, . . . , R}.

The DP model for this problem defines a state as a pair (n, sn) consisting
of the round number (i.e. the stage) and the number of chips in hand sn to
begin round n of play. The DP functional equation is

f(n, sn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
xn∈{0,...,sn}

{ (1 − p)f(n + 1, sn − xn)

+pf(n + 1, sn + xn)} if n ≤ R
0 if n > R and sn < t
1 if n > R and sn ≥ t

and the goal of the computation is f(1, s1).
Consider the following problem instance from [20, p.423]. Let p = 2/3, R =

3, s1 = 3 and t = 5. Then the optimal policy has a probability of f(1, 3) =
20/27 ≈ 0.7407 for reaching the target of 5 chips within 3 rounds when starting
with 3 chips. The optimal policy is to bet x1 = 1 chip in round 1. Then

2.20 0/1 Knapsack Problem (KS01) 69

• if round 1 is won, bet x2 = 1 in round 2, then
– if round 2 is won, bet x3 = 0 in round 3
– if round 2 is lost, bet x3 = 2 or x3 = 3 in round 3

• if round 1 is lost, bet x2 = 1 or x2 = 2 in round 2, then
– if round 2 is won,

· bet x3 = 2 or 3 (for x2 = 1)
· bet x3 = 1, 2, 3 or 4 (for x2 = 2)

– if round 2 is lost, the target cannot be reached any more.

2.20 0/1 Knapsack Problem (KS01)

Given a knapsack capacity c ∈ N and n objects A = {a0, . . . , an−1}, each
having a nonnegative value v(ai) ∈ {x ∈ R : x ≥ 0} and a weight w(ai) ∈ N,
the 0/1 knapsack problem (KS01) asks to pack the knapsack with a subset of
objects from A, such that the sum of the weight of the chosen objects does
not exceed the capacity c, and such that the sum of the values of the chosen
objects is maximal. Let xi denote the binary decision variable of whether to
include (i.e. xi = 1) object ai, or not (i.e. xi = 0). For brevity, we write vi

for v(ai) and wi for w(ai). KS01 can also be formally stated as an integer LP
problem:

max z =
∑n−1

i=0 vixi

s.t.
∑n−1

i=0 wixi ≤ c

xi ∈ {0, 1} ∀i ∈ {0, . . . , n − 1}.

The KS01 problem can be interpreted as a multistage decision problem in
a straightforward manner. For each object ai, a decision xi has to be made
whether to include ai, or not. Let the stage number i denote the index of
the object currently under consideration and let w denote the space currently
available in the knapsack. The DP functional equation is

f(i, w) =

⎧
⎪⎨

⎪⎩

0 if i = −1 and 0 ≤ w ≤ c
−∞ if i = −1 and w < 0
max

xi∈{0,1}
{xivi + f(i − 1, w − xiwi)} if i ≥ 0.

(2.24)
The goal is to compute f(n− 1, c). The above DP functional equation can be
slightly improved by introducing a decision set

D = D(i, w) =
{
{0} if wi > w
{0, 1} if wi ≤ w.

that disallows infeasible decisions instead of punishing illegal states with a
−∞ assignment. Replacing the static decision set {0, 1} used in (2.24) we get

70 2 Applications of Dynamic Programming

f(i, w) =

{
0 if i = −1 and 0 ≤ w ≤ c
max
xi∈D

{xivi + f(i − 1, w − xiwi)} if i ≥ 0. (2.25)

For instance, let c = 22, n = 3, A = (a0, a1, a2), (v0, v1, v2) = (25, 24, 15),
and (w0, w1, w2) = (18, 15, 10). Then it is optimal to pick only object a0, in
the final (i = 0) stage, and the optimal value of the knapsack is f(2, 22) = 25.

The integer knapsack problem (KSINT, see Sect. 2.22), a variation of KS01
that allows integral decision variables xi, can be reduced to KS01, and vice
versa.

2.21 COV as KSINT Problem (KSCOV)

Covering problems, such as COV (see Sect. 2.7), can also be formulated as an
integer knapsack problem, and solved by a variation of KSINT (see Sect. 2.22)
where the weights are all equal to 1. The objective is to include in the knapsack
the cover size chosen for each of a set of n different object (shrub) sizes,
numbered consecutively from 1 to n, where there may be only M different
cover sizes, each size having a different weight (or cost). For example, given
n = 10, we may choose 3 covers of size 10, which covers objects of sizes
8,9, and 10, then choose 2 covers of size 7, which covers objects of sizes 6
and 7, and, assuming only M = 3 cover sizes are allowed, finally choose 5
covers necessarily of size 5, which covers the remaining objects of sizes 1 to
5. If the weights of the n = 10 cover sizes are (1, 4, 5, 7, 8, 12, 13, 18, 19, 21),
in increasing order of size, then the decisions to include 3 covers of size 10, 2
covers of size 7, and 5 covers of size 5 in the knapsack have a total weight of
63 + 26 + 40 = 129.

Let the state be defined as (k, s), where k is a stage number and s is the
largest remaining object to cover. The decision d must be a number between
1 and s. We have d = 1 if only one object size is to be covered by the choice
d, and d = s if all of the remaining objects are to be covered by the choice d.
The cost of this decision is d · weights. The next-state is (k + 1, s − d). The
DPFE for this problem is

f(k, s) = min
d∈{1,...,s}

{d · weights + f(k + 1, s − d)}. (2.26)

The goal is f(1, n). The base-conditions are f(k, s) = 0 when s = 0, and
f(k, s) = ∞ when k > M and s > 0. For the above example, f(1, 10) = 129
for the optimal sequence of decisions d1 = 3, d2 = 2, and d3 = 5.

2.22 Integer Knapsack Problem (KSINT)

The integer knapsack problem (KSINT) is a generalization of the 0-1 knapsack
problem (KS01, see Sect. 2.20) where multiple objects of the same “class”

2.23 Longest Common Subsequence (LCS) 71

(weight and cost) can be included in the knapsack. The problem can be solved
by a slight variation of KS01. Specifically, instead of defining the decision space
D(S) as the set {0, 1}, we would define D(S) as the set {0, 1, . . . ,m} where
m can be a fixed constant, or m can be a function of the state S, or of the
capacity c, or both. For example, mk = �c/wk constitutes an upper bound
on the number of objects of class k that can be included.

Assume there are n classes numbered 0, 1, ..., n − 1. If the objects are
considered in a fixed order, in stages according to the class number of the
objects, and the decision at each stage k is that of choosing how many of each
object of class k to include in the knapsack, then the associated DPFE is

f(k,w) = max
xk∈{0,...,mk}

{xkvk + f(k − 1, w − xkwk)}, (2.27)

where k is the stage number (starting at k = n − 1 and ending at k = 0),
w is remaining capacity of the knapsack at stage k, xk is the number of
objects of class k to include in the knapsack, xkvk is the value (or profit)
for including these objects, and w − xkwk is the next remaining capacity; in
general, nonnegative integer xk may be bounded by mk. The base cases are
f(k,w) = 0 for k = −1 or w < 0. Our goal is to solve for f(n − 1, c), where c
is the capacity of the knapsack.

For example, let capacity c = 22, n = 3, values (v0, v1, v2) = (24, 15, 25)
and weights (w0, w1, w2) = (15, 10, 18). Then f(2, 22) = 30 for decisions x2 =
0, x1 = 2, x0 = 0.

2.23 Longest Common Subsequence (LCS)

The longest common subsequence (LCS) problem is discussed in [10, pp.350–
356] and in [16, p.227], where it is treated as a special case of a weighted
optimal alignment or string similarity problem.

Definition 2.1 (subsequence). Given a sequence x = (x1, x2, . . .) and a
strictly monotonically increasing indexing sequence i = (i1, i2, . . .) of natural
numbers. Then the sequence (xi1 , xi2 , . . .) is called a subsequence of x.

Note that a subsequence is not the same as a substring, where it is required
that the characters must be contiguous.

Given two finite sequences x = (x1, . . . , xm) and y = (y1, . . . , yn) the goal
is to find a subsequence z = (z1, . . . , zl) of both x and y (called common
subsequence) that is of maximum length.

Let Xi denote the length-i prefix substring of x and let Yj denote the
length-j prefix substring of y. In [10, p.352] the following “recursive formula”
is given to solve the problem, where f(i, j) is the length of an LCS of Xi

and Yj .

72 2 Applications of Dynamic Programming

f(i, j) =

⎧
⎨

⎩

0 if i = 0 or j = 0
f(i − 1, j − 1) + 1 if i and j > 0 and xi = yj

max{f(i, j − 1), f(i − 1, j)} if i and j > 0 and xi �= yj .
(2.28)

When interpreting equation (2.28) as a DP functional equation two short-
comings can be seen. First, the way it is formulated, it is not clear at all what
the decision space is, and how decisions are made at each stage. Second, it is
somehow hidden implicitly how Xi and Yj are part of the current state.

A more precise formulation requires a clear definition of a state and the
introduction of a decision space. A state in the LCS problem is actually
the pair (Xi, Yj). The short notation of (i, j) declaring a pair of indices as
the state as used in equation (2.28) implicitly assumes the global presence
of the referenced input strings x and y. This becomes obvious when we define
the current decision set D as a function of the current state and when we
define the transformation function and the reward function as a function of
the current state and the decision d taken. Observe that the decision space
D = {d1, d2, d12} consists of the following 3 decisions:

1. d1 = chop last character from Xi only
2. d2 = chop last character from Yj only
3. d12 = chop last character from both Xi and Yj

Depending on the current state (Xi, Yj) the current decision set D is defined
as

D(Xi, Yj) =
{
{d1, d2} if last char. of (Xi, Yj) don’t match (xi �= yj)
{d12} if last characters of (Xi, Yj) match (xi = yj).

The transformation function is defined by

t(Xi, Yj , d1) = (Xi−1, Yj)
t(Xi, Yj , d2) = (Xi, Yj−1)

t(Xi, Yj , d12) = (Xi−1, Yj−1).

The reward function is defined by

r(Xi, Yj , d1) = 0
r(Xi, Yj , d2) = 0

r(Xi, Yj , d12) = 1.

Now the DP functional equation can be expressed as

f(Xi, Yj) =

{
0 if Xi = ε or Yj = ε

max
d∈D(Xi,Yj)

{f(t(Xi, Yj , d)) + r(Xi, Yj , d)} otherwise,

(2.29)
where ε denotes the empty string.

2.25 Lot Size Problem (LOT) 73

An alternative DP functional equation is given in [16, pp.227–228]. Using
our notation it can be expressed as

f(Xi, Yj) =

⎧
⎨

⎩

0 if Xi = ε or Yj = ε
max{ f(Xi−1, Yj−1) + δxi,yj

,
f(Xi−1, Yj), f(Xi, Yj−1)} otherwise,

(2.30)

where

δx,y =
{

1 if x = y
0 if x �= y

denotes Kronecker’s delta.
The DP functional equation (2.29) is slightly more efficient than the DP

functional equation (2.30) because not all entries of the matrix

[f(Xi, Yj)]0≤i≤m,0≤j≤n

are computed. The time complexity is still O(mn) however. In any case, the
goal is to compute f(x, y) = f(Xm, Yn).

Consider the following instance of this problem. Let x = X7 = (a, b, c, b, d,
a, b) and y = Y6 = (b, d, c, a, b, a). Then the maximum length of a common sub-
sequence is f(X7, Y6) = 4 and the LCS’s are (b, d, a, b), (b, c, a, b) and (b, c, b, a).

2.24 Optimal Linear Search Problem (LINSRC)

The optimal linear search problem is that of determining the optimal per-
mutation of a set of data having specified probabilities so as to minimize the
expected linear search time. It was discussed extensively in Sects. 1.1.4 and
1.1.5 of Chap. 1 to illustrate the basic concepts of dynamic programming.

One of many DPFEs to solve this problem is (1.23).

2.25 Lot Size Problem (LOT)

In a variation of inventory or production problems (Sects. 2.17 and 2.34),
called the “lot size” problem in [61], rather than allow the amount acquired
x to be equal to any integer from D(k) − s up to, say, the sum of all of the
remaining demands,

∑N−1
j=k D(j), instead x can be restricted to be equal to a

partial sum
∑m

j=k D(j) for some m. This restriction significantly reduces the
size of the decision space, hence also the state space, while still guaranteeing
optimality.

An instance of this problem is described in Winston [63, pp.1001–1005],
where it is assumed that N = 5, C(k, x) = 250 + 2x for x > 0, C(k, 0) =
0, I(k, s) = s for s ≥ 0,D(0) = 220,D(1) = 280,D(2) = 360,D(3) = 140, and
D(3) = 270. The goal is to find f(1) with base condition f(k) = 0 when k > N .
The solution is f(1) = 3680. The optimal decisions are x1 = 0, x2 = 0, x3 = 1,
and x4 = 0.

74 2 Applications of Dynamic Programming

2.26 Longest Simple Path Problem (LSP)

Given a directed weighted graph G = (V,E), a start vertex s ∈ V and a target
vertex t ∈ V . The task is to find a simple path (i.e. all vertices in the path are
distinct) from s to t having maximal length. The reason the problem asks for
a simple path is that there does not exist a maximal length nonsimple path
from s to t if a positive length cycle is reachable from s. Let the edges be
given in the form of an adjacency matrix C = (ci,j); an entry of −∞ indicates
that there is no edge. The DP functional equation can be expressed as

f(S, v) =

{
max
d/∈S

{f(S ∪ {d}, d) + cv,d} if v �= t

0 if v = t

where the length of a maximal length path is computed as f({s}, s). In the
above DP functional equation, a state is a pair (S, v) where S can be inter-
preted as the set of vertices already visited and v as the current vertex. A
minor improvement is to disallow decisions that lead to a −∞-weighted edge
by pruning the decision set accordingly (instead of punishing f with a −∞
value.)

Consider the problem instance from [10, p.343] of finding the longest path
from node 0 to node 3 in the graph of figure 2.3 defined by the weighted
adjacency matrix

C =

⎛

⎜
⎜
⎝

−∞ 1 −∞ 1
1 −∞ 1 −∞

−∞ 1 −∞ 1
1 −∞ 1 −∞

⎞

⎟
⎟
⎠

1

1

11

0

1 2

3

Fig. 2.3. A Longest Simple Path Problem Instance

The longest simple path has length f({0}, 0) = 3 and the path is (0, 1, 2, 3).
In [10, p.343], the LSP problem was cited as an example of one that lacked

the optimal substructure property, hence could not be solved by DP, at least
using the same formulation as for SPC. However, we showed above that the

2.28 Minimum Maximum Problem (MINMAX) 75

LSP problem can be solved by DP using the “path-state” approach. One of
the virtues of DP, as has been shown in numerous other cases (such as for
INTVL), is that there may be many different ways to formulate the solution
of a problem, and if one formulation is problemmatical there may be other
formulations that are not.

2.27 Matrix Chain Multiplication Problem (MCM)

This problem is described in [10, pp.331–338].
Given a product A1A2 · · ·An of matrices of various (but still compatible)

dimensions, the goal is to find a parenthesization, which minimizes the number
of componentwise multiplications. The dimensions of Ai are denoted by di−1

and di. The DP functional equation can be expressed as

f(i, j) =

{
min

k∈{i,...,j−1}
{f(i, k) + f(k + 1, j) + di−1dkdj} if i < j

0 if i = j.

The total number of componentwise multiplications is computed as f(1, n).
For instance, let n = 4 and (d0, d1, d2, d3, d4) = (3, 4, 5, 2, 2). Apply the

DP functional equation in a bottom up fashion to compute f(1, 4) = 76. By
keeping track which arguments minimize the min-expressions in each case,
one arrives at the optimal parenthesization ((A1(A2A3))A4).

2.28 Minimum Maximum Problem (MINMAX)

Given an acyclic graph with weighted branches, the shortest path problem is
to find the path from source s to target t whose (weighted) length is minimal.
Each path is a sequence of branches, and its length is the sum of the weights
of the branches in the path. The maximal link in any path is the maximum
of the weights of the branches in the path. The MINMAX problem is that of
finding the path from s to t whose maximal link is minimal. To use DP to solve
this problem, ordinarily we would construct the MINMAX path by making a
sequence of decisions for the branches in the path, and attribute to each of
these decisions a separable cost. However, for this problem these cost are not
additive (or multiplicative, as for RDP), as is usually the case. Despite this,
the problem can still be solved using DP.

One way to solve this MINMAX problem using DP is by adopting a path-
state formulation, letting the cost C of each decision be zero, and deferring
to the base case for each path the determination of the maximal link in the
path. That is, we would use the DPFE

f(p1, . . . , pi) = min
q �∈{p1,...,pi}

{f(p1, . . . , pi, q)},

76 2 Applications of Dynamic Programming

with base conditions f(p1, . . . , pi) = maxlink(p1, . . . , pi) when pi = t, where
maxlink(P) is the maximum weight among the branches connecting the nodes
in the set P = {p1, . . . , pi}. Rather than letting the cost C of each decision
equal 0 and including these costs in the base-condition, we may add a stage
number k to the state and define the cost of a decision in path-state S to be
zero except in the last stage when the cost is set equal to the maximal link.
This, of course, is an inefficient enumerative approach. However, it illustrates
the generality and flexibility of DP as an optimization methodology.

Since we are only interested in the maximal link in a path rather than the
sequencing of the branches in the path, in the above DPFE, the path-state
can be represented as an unordered set of nodes, together with the last node
pi in the path; the latter is needed to restrict the decision set to successors q
of pi. By so doing, we arrive at the DPFE

f(k, {p1, . . . , pi}, pi) = min
q �∈{p1,...,pi}

{C(k, {p1, . . . , pi}, pi)

+ f(k + 1, {p1, . . . , pi, q}, q)}, (2.31)

where C(k, {p1, . . . , pi}, pi) = 0, as defined above. The base condition is
f(k, {p1, . . . , pi}, pi) = maxlink(p1, . . . , pi) when pi = t. The maximal link
can be calculated given an unordered set of nodes in a path since, if the graph
is topologically sorted, there can be only one sequencing of the nodes in the
path.

0

1

2

3

4

5

8

7

6

7

9

9

8

13

8

stage 5

7

6

7

8

10

stage 3

9

7

11

stage 2

7

10

6

stage 1 stage 4

source target

Fig. 2.4. Instance of a MINMAX Problem

For instance, consider the acyclic graph shown in Fig. 2.4, which is from
[64, p.786]. Here, the nodes have been renumbered to start from 0. This graph
can be represented by the following weighted adjacency matrix.

2.29 Minimum Weight Spanning Tree Problem (MWST) 77

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞ 10 7 6 ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 9 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 7 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 11 7 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 8 7 10 ∞
∞ ∞ ∞ ∞ ∞ ∞ 8 6 7 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 8
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The solution is f(1, 0, {0}) = 8. One sequence of nodes in an optimal path is
(0, 2, 4, 7, 9). Another one is (0, 3, 5, 7, 9).

In conclusion, we note that the MINMAX problem, in principle, can also
be solved in a nonenumerative fashion, using a staged DPFE of the form

f(k, i) = min
j

{max(b(i, j), f(k + 1, j))},

for f(1, 0) with base-condition f(N − 1, i) = b(i,N). However, this uses a
nonadditive cost function.

2.29 Minimum Weight Spanning Tree Problem (MWST)

The minimum weighted spanning tree (MWST) problem is to find, among all
spanning trees of an undirected graph having numerically weighted branches,
the one having minimum weight, i.e. whose sum of branch weights in the tree
is minimal. By definition, a subgraph of G is a spanning tree T if T spans G
(connects all the nodes in G) and is acyclic. A graph G having N nodes must
necessarily have at least N −1 branches in order for G to be connected, hence
for it to have a spanning tree at all. Spanning trees can always be constructed
by choosing one of its branches at a time from G to include in the tree-so-far,
starting from the empty state, until exactly N −1 branches have been chosen;
a subgraph of G having fewer branches would not span the graph, and one
having more branches would be cyclic. Thus, this problem may be regarded
as a multistage decision process where exactly N − 1 decisions must be made.

It should be noted that although a tree, as a special case of a graph, is most
commonly represented by an adjacency matrix, for the MWST application it
is more convenient to represent a tree by a vector. If G consists of an ordered
set of N branches B, then a spanning tree or a partially constructed “tree-so-
far” T of G consists of a subset of B. The characteristic vector representation
of T has the form (t1, t2, . . . , tN), where ti = 1 if the i-th branch of B is in T ,
else ti = 0.

To solve the minimum weighted spanning tree problem by DP, we define
the state as (S, k), where S is the set of branches of G that have not been

78 2 Applications of Dynamic Programming

chosen for inclusion in T and k is a stage number that counts how many
branches have been chosen for inclusion in T . The complement of S is the
tree-so-far, and k is its size. A decision d is a member of S, subject to the
“eligibility” constraint that adding d to the tree-so-far does not create a cycle.
The cost C(S, d) of choosing branch d either equals the weight of the branch
wd, or equals ∞ if the branch is ineligible. The next-state is (S − {d}, k + 1).
Thus, the DPFE is

f(S, k) = min
d∈S

{C(S, d) + f(S − {d}, k + 1)}. (2.32)

The base-condition is f(S,N − 1) = 0 for any S. The goal is to find f(S∗, 0)
for S∗ equal to the set of all of the branches of G.

For example, consider the graph of Fig. 2.5 with branches 0,1,2,3,4 having
weights 5,4,3,2,1, respectively, whose weighted adjacency matrix is

⎛

⎜
⎜
⎝

∞ 1 3 ∞
1 ∞ 2 4
3 2 ∞ 5
∞ 4 5 ∞

⎞

⎟
⎟
⎠

Then f({0, 1, 2, 3, 4}, 0) = 4 + 2 + 1 = 7 for the optimal sequence of decisions
d1 = 1, d2 = 3, and d3 = 4.

In conclusion, we note that the eligibility test can be implemented by de-
termining “connected components” (cf. [29]) after each decision. Alternatively,
eligibility can be tested by predetermining all cycles. Furthermore, other eli-
gibility constraints, such as on the degree of each node in the spanning tree,
as might arise for a networking application, can be accommodated by this DP
formulation. (If such generalizations were not a consideration, the optimal
decision can be made using a greedy policy, such as that of Kruskal or Prim,
as described for example in [29].)

2.30 The Game of NIM (NIM)

In most applications of dynamic programming, our objective is to make an
optimal sequence of decisions. In any given state, our immediate objective is to
make the optimal current decision, after which some next-state(s) is entered.
In many “games”, some adversary may make the next decision, which may
affect the state in which we make our subsequent decision. Numerous board
games, such as checkers and chess, are examples of such games, have been
tackled using DP, as mentioned in [3]. A far simpler example is NIM, well
known in artificial intelligence literature; for a survey, see [5]. The game of
NIM is also described in [63, Chap. 18].

In NIM, the state s is the number of objects, say, matchsticks, that are
present. A decision, when it is our turn to play, is that of removing a certain

2.30 The Game of NIM (NIM) 79

41

3

0

1

2

3

5

2

Fig. 2.5. Instance of a MWST Problem

number of matchsticks, from 1 to some limit (say) 3. After our turn, our
adversary also has the option of removing 1, 2, or 3 matchsticks, after which
we make another decision. The player who removes the last matchstick is
considered either the winner or the loser. We assume the latter. Thus, if the
state is 2, 3, or 4 when it is our turn to play, the optimal (winning) decision
is to remove 1, 2, or 3, resp., leaving our adversary with a state of 1, a losing
position. When it is our turn, if s = 1, we necessarily must remove the one
remaining matchstick, hence lose, gaining no reward; if s = 0, we win and gain
a reward of one “unit”. The optimization problem is that of deciding what
our decision should be in an arbitrary state s > 0 to maximize our reward.

For s > 1, we proceed to formulate a DPFE by first observing that in state
s, if our decision is to remove d, then the next-state for our adversary will
be s − d. The next-state when it is our turn to make a decision again will be
s−d−1, s−d−2, or s−d−3, depending upon the decision of our adversary.
The decision of our adversary is unknown, but must also be 1, 2 or 3.

One way to proceed is to assume our adversary’s decision is made ran-
domly, in which case we may use a probabilistic DP formulation of the form

f(s) = max
d∈{1,2,3}

{p1.f(s − d − 1) + p2.f(s − d − 2) + p3.f(s − d − 3)}.

(If these decisions are equally likely, the probabilities may be factored out and
cancelled, leaving a nonprobabilistic DPFE.) If our adversary plays optimally,
we make the worst-case assumption that, whatever our decision, our adversary
will act to minimize our reward, leading us to the DPFE

f(s) = max
d∈{1,2,3}

{min(f(s − d − 1), f(s − d − 2), f(s − d − 3))}. (2.33)

This formulation is analogous to that for MINMAX (Sect. 2.28), but since
the values of f are Boolean (so a MIN operation is equivalent to an AND
operation), we use a multiplicative DPFE instead, as we show below.

80 2 Applications of Dynamic Programming

Let f(s) denote the maximum achievable reward if it is our turn to make a
decision in state s. Then, as base conditions, we let f(0) = 1 and f(1) = 0 to
indicate winning (gaining one unit) and losing (gaining no units), respectively.
For s ≥ 2, we use the multiplicative DPFE

f(s) = max
d∈{1,2,3}

{f(s − d − 1)f(s − d − 2)f(s − d − 3)} (2.34)

with additional base conditions f(s) = 1 for s < 0; these are added in lieu of
the restriction d < s. The goal is to find f(M) for some initial number M of
matchsticks; the value of d that yields the optimal value of f(M) corresponds
to what our decision should be if it is our turn to play when in state M .

For instance, for M = 9, f(9) = 0, which means that 9 is a losing position
in that if our adversary plays optimally, we cannot win regardless of our next
decision. However, for M = 10, f(10) = 1, which means that 10 is a winning
position in that we are guaranteed to win regardless of how our adversary plays
provided we play optimally ourselves; the optimal initial decision is d = 1, so
that our adversary is placed in the losing position 9. Our next decision would
depend on that of our adversary, i.e., on whether M is 6, 7, or 8 in our next
turn. Similarly, for larger M , say, M = 29 and M = 30, we have f(29) = 0
and f(30) = 1.

2.31 Optimal Distribution Problem (ODP)

Distribution problems are related to the “allotment” problem (see Sect. 2.1).
For illustrative purposes we use the following simple problem instance from
[43]. (This instance is tabular, like ALLOTt.) Suppose we need to borrow $ 6
million in t = 0. Each of our creditors gives us several financing alternatives,
as shown in Table 2.2. It is not possible to negotiate other options, e.g. to
request intermediate amounts not mentioned in the table. It is not possible to
choose two alternatives from the same creditor. Alternative 0 is to not borrow
from that creditor. Creditor 0 considers larger credit amounts as more risky
and charges more interest. Creditor 1 has excessive amounts of cash to invest
and gives us incentives to borrow larger amounts. Creditor 2 only deals with
large amounts. The goal is to minimize the net present value (NPV) of our
total future payments.

We present the DP approach to this problem for illustrative purposes. It is
a 3-stage decision process, since we have to choose exactly one alternative ai

where i = 0, 1, 2 from each of the three creditors. Define the state x at stage
i as the amount of money secured so far from creditors 0 through i − 1. Let
yi(ai) denote the NPV of the future payments to creditor i under alternative
ai. Let ci(ai) denote the principal amount of the loan from creditor i under
alternative ai. For i = 0, 1, 2 the DP functional equation is

f(i, x) = min
ai

{yi(ai) + f(i + 1, x + ci(ai))}.

2.32 Optimal Permutation Problem (PERM) 81

Table 2.2. A financing problem

cash flow NPV of future
in t = 0 payments

ci(ai) yi(ai)

creditor 0

alternative 0 0 0
alternative 1 1 4
alternative 2 2 12
alternative 3 3 21

creditor 1

alternative 0 0 0
alternative 1 1 6
alternative 2 2 11
alternative 3 3 16
alternative 4 4 20

creditor 2

alternative 0 0 0
alternative 1 3 16
alternative 2 4 22

The base case is

f(3, x) =
{
∞ if x < 6
0 if x ≥ 6.

which assigns a penalty of ∞ if our decisions lead to a total principal amount
that is less than the required $ 6 million. An alternative base case

f(2, x) =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if 0 ≤ x ≤ 1
22 if x = 2
16 if 3 ≤ x ≤ 5
0 if 6 ≤ x ≤ 7.

terminates the recursion one stage earlier. As an alternative to having infinite
values as penalty terms we could prune the current decision set by applying
constraints that prevent total principal amounts of less than $ 6 million.

The optimal total NPV associated with our problem instance can be com-
puted as f(0, 0) = 31, which is associated with the decisions to choose alter-
native 1 from creditor 0, alternative 2 from creditor 1, and alternative 1 from
creditor 2.

2.32 Optimal Permutation Problem (PERM)

This permutation or ordering problem is described in [22, pp.229–232]. It
is equivalent to the optimal linear search problem. For the simple problem

82 2 Applications of Dynamic Programming

instance discussed here, we assume that there are 3 programs {p0, p1, p2} of
length {5, 3, 2}, respectively, which are to be stored sequentially as files on
a single tape. Assume all programs are retrieved equally often and the tape
head is positioned at the front of the tape before each retrieval operation. The
goal is to minimize the mean retrieval time.

There is a greedy algorithm that easily leads to the optimal storage order.
We present the DP approach to this problem. Define a state S as the subset
of all programs that still need to be stored, and let l(x) denote the length of
program x. One approach leads to the DP functional equation

f(S) = min
x∈S

{l(x) · |S| + f(S − {x})}

with the base case f(∅) = 0.
The optimal total cost associated with our problem instance can be

computed as f({p0, p1, p2}) = 17, which corresponds to the program order
(p2, p1, p0) on the tape.

2.33 Jug-Pouring Problem (POUR)

A “jug pouring” problem [3] can be solved using DP. In the simplest version
of this problem, there are two jugs A and B of different capacities P and Q,
respectively, and the problem is to obtain in one of the jugs T units (say,
ounces). Assume we have a third jug C of capacity R = P + Q, which is
initially full, whereas the original two jugs are empty. There are six possible
decisions: (1) fill A from C, (2) fill B from C, (3) empty A into C, (4) empty
B into C, (5) transfer A to B, and (6) transfer B to A. In the latter two cases,
the transferring operation terminates when one of the jugs is empty or full,
whichever occurs first.

This problem can be formulated as a sequential decision process; in each
state, one of the six decisions is made. We define the state as (s, i, j, k), where
s is a stage number and i, j, and k are the contents of jugs A, B, and C, re-
spectively. The initial goal state is (1, 0, 0, R) and the base states are (n, i, j, k)
when i = T or j = T . While we are interested in any sequence of decisions
that transforms the system from the goal state to a base state, it is just as
convenient to find the shortest such sequence, i.e., the sequence having the
fewest number of decisions. Letting the cost of a decision equal 1, the problem
can be solved using the DPFE

f(s, i, j, k) = min
d

{1 + f(s + 1, i′, j′, k′)}, (2.35)

where d is one of the six possible decisions, and i′, j′, and k′ are the contents
of the jugs if decision d is made in state (s, i, j, k).

For example, let P = 9, Q = 4, and T = 6. Then the goal is f(1, 0, 0, 13)
and the base condition is f(n, i, j, k) when i or j equals 6. In this event,

2.34 Optimal Production Problem (PROD) 83

f(1, 0, 0, 13) = 8 and the terminating state is (9, 6, 4, 3) following a sequence
of 8 decisions.

We note in conclusion that this formulation permits cycling, e.g., we can
pour back and forth between jugs. Rather than deriving a more complicated
formulation to avoid this cycling, either we can impose constraints on possible
decisions, or we can set an upper limit on the stage number to terminate the
recursion.

2.34 Optimal Production Problem (PROD)

In a production problem, there is a product which can be produced at some
specified cost and which can be consumed based upon user demand. There
may also be an inventory cost for storing products that are not consumed, and
a penalty cost in case the demand cannot be satisfied. The optimal production
problem is an N -stage sequential decision process, where at each stage k a
decision must be made to produce i units at a production cost C(k, i), that
may depend on the stage k and on the number of units produced i. The state
is (k, s), where k is the stage number and s is the size of the inventory, i.e.
how many units of the product are available at the start of the stage. The
demand D(k) generally depends on the stage. If the decision in state (k, s) is
to produce i units, the next-state is (k + 1, s + i−D(k)). The cost associated
with this state transition is the production cost C(k, i) plus the inventory cost
I(k, s) for s > 0. I(k, s) for s < 0 represents a penalty for not satisfying a
demand of size s.

The DPFE for this production problem is

f(k, s) = min
i
{C(k, i) + I(k, s) + f(k + 1, s + i − D(k))},

with base condition f(k, s) = I(k, s) if k > N . We may combine C and I
to obtain a reward function R(k, s, i) = C(k, i) + I(k, s). The goal is to find
f(1, s0), where s0 is the initial inventory.

It is common for the demand to be random. For example [8, problem 19.14],
for all k, let D(k) = 1 with probability p and D(k) = 2 with probability 1−p.
The DPFE is then probabilistic,

f(k, s) = min
i
{C(k, i) + I(k, s) + p · f(k + 1, s + i − 1)

+ (1 − p) · f(k + 1, s + i − 2)}. (2.36)

For the above probabilistic assumption, also assume that the production cost,
for i, limited to 0, 1, or 2, is given by C(k, 0) = 0, C(k, 1) = 10, and C(k, 2) =
19, for all k, and that the inventory/penalty function is I(i) = 1.1i for i > 0
and I(i) = −1.5i for i < 0. If p = 0.6, then f(1, 0) = 42.244 where the
optimal initial decision is to produce 2 units, leading to next-states (2, 1)
and (2, 0) for demands 1 and 2, respectively. (Continuing, f(2, 1) = 19.9 and
f(2, 0) = 28.26.)

84 2 Applications of Dynamic Programming

2.35 Production: Reject Allowances Problem
(PRODRAP)

The reject allowances problem (PRODRAP) as described in [20, p.421] is a
probabilistic DP problem (see Sect. 1.1.15). It is an extension of production
problems (see Sect. 2.34), where here it is also assumed that in order to
produce an item that meets stringent quality standards a manufacturer may
have to produce more than one item to obtain an acceptable item. The number
of extra items produced in a production run is called the reject allowance.
Any item produced will be defective with probability p (and acceptable with
probability 1−p). In a production run, up to lot size L items can be produced.
There is only time for R production runs. Let cm be the marginal production
cost per item, let cs be the fixed setup cost for a production run, and let
cp denote the penalty costs if the manufacturer cannot deliver an acceptable
item. The decision variable xn denotes the number of items produced during
production run n. The goal becomes to minimize the total expected cost.

A DP model of this problem consists of a state (n) representing the pro-
duction run number. Contrary to [20, p.421] we do not include the number of
acceptable items still needed into the state, since it is unnecessary as we are
only looking for a single acceptable item.

The DP functional equation becomes

f(n) =

{
min

xn∈{0,...,L}
{K(xn) + cmxn + pxnf(n + 1)} if n ≤ R

cp if n = R + 1.

where the function

K(xn) =
{

0 if xn = 0
cs if xn > 0

describes the fact that there is no setup cost if no items are to be produced
in a production run.

The problem instance from [20, p.421] lets p = 0.5, L = 5, R = 3, cm =
1, cs = 3, cp = 16. The minimal total expected cost is f(1) = 6.75 and stems
from the following policy for the decisions xn. Produce x1 = 2 items on the
first production run; if none is acceptable, then produce either x2 = 2 or x2 = 3
items on the second production run; if none is acceptable, then produce either
x3 = 3 or x3 = 4 items on the third production run.

2.36 Reliability Design Problem (RDP)

The reliability design problem (RDP) problem appears in [1, p.113] as an
exercise; the example instance used here is from [22, pp.295–298]. Given a set
D = {d0, . . . , dn−1} of n device types for n corresponding stages, the task
is to design a system that consists of n stages connected to each other in a
serial fashion. If one or more stages of the system fail, then the system as a

2.37 Replacement Problem (REPLACE) 85

whole fails. Thus the reliability of the system as a whole is the product of the
reliabilities of the individual stages. A reliability r and a discretized cost c is
assigned to each device type according to

r : D → [0; 1]
di �→ r(di)

and
c : D → N

di �→ c(di)

and for shorter notation we write ri instead of r(di) and ci instead of c(di).
To improve the reliability of a particular stage, components can be duplicated
and arranged in a parallel fashion. Now, as long as at least one component
of that stage is working, the stage is considered working. The reliability of a
stage becomes 1− (1− ri)mi , where the integer decision variables mi denotes
the number of components di allocated to stage i. How many devices should
be allocated to each stage in order to maximize the reliability of the system,
but still stay within a given budget b ∈ N ?

Let x ∈ N be the amount of money left to spend. The DP functional
equation for this problem can be expressed as

f(i, x) = max
mi∈M(i,x)

{(1 − (1 − ri)mi) · f(i − 1, x − cimi)}

with the base cases f(−1, x) = 1.0 where x ≤ b. The goal is to compute the
maximum reliability of the system as f(n− 1, b). Note that the DPFE of this
problem is not additive, but multiplicative.

The decision space M(i, x) for a decision variable mi has the lower bound
of 1, since the system needs at least 1 device at each stage; it also has the
upper bound of

u(i, x) = �
x −

∑i−1
j=0 cj

ci

which can be justified by the fact that we have to reserve
∑i−1

j=0 cj to cover
the cost of at least 1 device for the stages we have yet to decide on. Thus,
M(i, x) = {1, . . . , u(i, x)}. The upper bound u(i, x) is an improvement to
the one given in [22, p.297], which is static and does not take into account
previously made decisions.

Given a problem instance with n = 3 stages, costs (c0, c1, c2) = (30, 15, 20),
reliabilities (r0, r1, r2) = (0.9, 0.8, 0.5) and a budget b = 105, the optimal
sequence of decisions is m2 = 2, m1 = 2, m0 = 1, resulting in a system with
reliability f(2, 105) = 0.648.

2.37 Replacement Problem (REPLACE)

A replacement problem (REPLACE) is similar to production or inventory
problems, where objects that are demanded must be replaced whether by

86 2 Applications of Dynamic Programming

producing them or purchasing them, at a given replacement or acquisition cost
C. We also associate with objects that are not replaced a total maintenance
cost tm(d), that depends on its “usage” time (i.e. the number of stages d
between its acquisition and its replacement), and we associate with objects
that are replaced a salvage value v(d), that also depends on its usage time d.
Note that the total maintenance cost tm(d) for an object that is maintained
for d stages is

∑d
i=1 mi, where mi is the incremental cost for the i-th stage.

To formulate this replacement problem using DP, we define the state to be
the time or stage number k at which a replacement is made, where the initial
state is 0. A fixed number of stages N is assumed. If at stage k it is decided
to make the next replacement at stage k′, then the usage time is d = k′ − k.
The DPFE for such a replacement problem is

f(k) = min
d

{C + tm(d) + v(d) + f(k + d)},

where the next-state is k + d resulting from a decision d > 0. The goal is to
find f(0). The base conditions are f(k) = 0 for all k ≥ N .

An instance of such a replacement problem is described in [64, p.774–777],
where it is assumed that N = 5, C = 1000,m(1) = 60,m(2) = 80,m(3) =
120, v(1) = 800, v(2) = 600, v(3) = 500. From the incremental maintenance
costs m, the total maintenance costs are tm(1) = 60, tm(2) = 140, tm(3) =
260. It is also assumed that the lifetime of an object is L = 3, after which its
maintenance cost is infinite and its salvage value is zero; i.e. tm(4) = ∞ and
v(4) = 0. This is equivalent to restricting the decision space for d to range from
1 to L, subject to the constraint k + d ≤ N . The solution is f(0) = 1280. One
sequence of optimal decisions is d1 = 1, d2 = 1, and d3 = 3 with next-states
1, 2, and 5.

2.38 Stagecoach Problem (SCP)

The stagecoach problem (SCP) is a special case of the problem of finding the
shortest path in an acyclic graph (SPA) (see Sect. 2.43). It is also known as
the “multistage graph problem” [22, p.257].

Definition 2.2 (Multistage Graph). A multistage graph G = (V,E) is a
directed graph, in which the vertices are partitioned into k ≥ 2 disjoint sets
V0, . . . , Vk−1 and the following two properties hold.

• If (u, v) is an edge in E and u ∈ Vi then v ∈ Vi+1.
• |V0| = |Vk−1| = 1.

According to [20, p.398]

The stagecoach problem is a literal prototype of dynamic program-
ming problems. In fact, this example was purposely designed to pro-
vide a literal physical interpretation of the rather abstract structure
of such problems.

2.39 Seek Disk Scheduling Problem (SEEK) 87

The stagecoach problem is to find a shortest path in a weighted multistage
graph from the single-source node s ∈ V0 (i.e. located at stage 0), to the
single-target node t ∈ Vk−1 (i.e. located at stage k − 1). By definition, there
cannot be cycles in a multistage graph. Without loss of generality, assume
that V = {0, . . . , n−1}, s = 0, and t = n−1. The edges are given in the form
of an adjacency matrix C = (ci,j).

For illustrative purposes, this problem can also be solved with a DP ap-
proach slightly different from that for the SPA problem. The difference is that
the stage number g together with the node number x serves as the state de-
scription (g, x), whereas in the SPA problem the node number alone serves as
the state description (because there are no explicit stage numbers). A decision
d is the next node to go to, and the cost (reward) of the decision is cx,d. The
DP functional equation reads

f(g, x) =

{
min

d∈Vg+1
{f(g + 1, d) + cx,d} if x < n − 1

0 if x = n − 1.
(2.37)

Here f(g, x) is the length of the shortest path from a node x ∈ Vg, located at
stage g, to the target node n − 1. The goal is to compute f(0, 0).

Consider the following problem instance, taken from [64, p.753], of finding
the shortest path from node 0 to node 9 in the graph of Fig. 2.6 defined by
the weighted adjacency matrix

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞ 550 900 770 ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 680 790 1050 ∞ ∞ ∞
∞ ∞ ∞ ∞ 580 760 660 ∞ ∞ ∞
∞ ∞ ∞ ∞ 510 700 830 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 610 790 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 540 940 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 790 270 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1030
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1390
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The shortest path length is computed as f(0, 0) = 2870 and the shortest
path is (0, 1, 4, 7, 9).

2.39 Seek Disk Scheduling Problem (SEEK)

Assume that a disk scheduler is to handle file data requests A, B, and C
to tracks (or cylinders) 100, 50, and 190, respectively, and that the disk
read/write head is initially at track 140. Assume it takes 1 time-unit for
the disk to seek (move) a distance of one track. If the file data requests
are handled in first-come-first-serve order (A,B,C), then the total seek time

88 2 Applications of Dynamic Programming

0

1

2

3

4

5

8

9 sinksource

680

790

900

770

550
580

760

1050

660

510

700

830
6

7

610

790

540

940

790

270

1030

1390

stage 3 stage 4stage 2stage 1stage 0

Fig. 2.6. Instance of a Stagecoach Problem

is 40+50+140=230 time-units. Suppose the requests S are to be serviced
in the order which minimizes total seek time instead. This problem can
be solved using DP as follows. Associate with each request s ∈ S for file
data the position or track number ts where the data resides. For instance,
(tA, tB , tC) = (100, 50, 190). Let the state (S, x) be the set of requests S that
remain to be scheduled, together with the present position x of the disk head.
A decision d is a member of S. The cost R(S, x, d) is the seek distance from
x to td, which equals |x− td|. The next-state T (S, x, d) is (S − {x}, td). Then
the DPFE for this problem is

f(S, x) =

{
min
d∈S

{f(S − {x}, td) + |x − td|} if S �= ∅
0 if S = ∅.

In the example instance, the goal is to compute the minimal seek time
f({A,B,C}, 140) = 190, which can be achieved by the order (C,A,B).

2.40 Segmented Curve Fitting Problem (SEGLINE)

In (SEGPAGE, Sect. 2.41), given an ordered set S = {s1, s2, . . . , sN} of size N ,
we define a segment of S to be a nonempty subset of S containing only adja-
cent members of S, {si, . . . , sj} for 1 ≤ i ≤ j ≤ N . Letting S = {A,B,C,D}
be denoted by (ABCD), its segments are (A), (B), (C), (D), (AB), (BC),
(CD), (ABC), (BCD), and (ABCD). The possible partitions or cluster-
ings or segmentations of S are: {ABCD}, {A,BCD}, {ABC,D}, {AB,CD},
{AB,C,D}, {A,BC,D}, {A,B,CD}, and {A,B,C,D}. These segmentations
can be found by scanning the string “ABCD” from left to right, and decid-
ing whether or not to insert a breakpoint (denoted by a comma in between
characters) at each stage of the scan.

2.40 Segmented Curve Fitting Problem (SEGLINE) 89

In a variation of this comma-inserting process, suppose during a scan of
a string that we decide whether or not each character (rather than location
between characters) is to be a breakpoint. Each such breakpoint marks the
end of one segment and the beginning of the next segment, with the character
placed in both segments. For the string “ABCD”, segment breakpoints can
occur for character ‘B’ or ‘C’ or both or neither, and the respective segmen-
tations of S are: {AB,BCD}, {ABC,CD}, {AB,BC,CD}, and {ABCD}.
We have then a sequential decision process where the state s is the set of
locations or “breakpoints” already chosen, and where a decision d chooses
where the next breakpoint is to be. The corresponding DPFE for this optimal
segmentation problem has the general form

f(s) = min
d

{c(d, s) + f(s + d)},

where c(d, s) is the cost of placing the next breakpoint at d when in state s.
As an example, consider the problem of fitting a curve y = f(x) of a spec-

ified type (such as polynomial) through a given data-set S of N data-points
{(xi, yi)}. In general, we would like f(xi) to be as close to yi as possible, for
each value of xi; each difference ei = f(xi)−yi is an approximation error. It is
common to wish to minimize the maximum magnitudes of the approximation
errors, or to minimize the mean of the sum of the squared errors. The latter
are known as the least-squares errors (lse). Polynomial approximation to ob-
tain least-squares errors is also known as the regression problem, discussions
of which can be found in many books, such as [35]. For simplicity, we assume
here that the curve is a straight line y = mx + b, where m is the slope of the
line and b is the y-intercept. The least-squares or regression line has slope and
y-intercept given by the formulas:

m =
1
N

∑
xiyi − 1

N

∑
xi

1
N

∑
yi

1
N

∑
x2

i −
(

1
N

∑
xi

)2 (2.38)

b =
1
N

∑
yi − m

1
N

∑
xi (2.39)

For instance, let S = {(0, 0), (1, 1), (2, 3), (3, 0)}. Then the regression line is
y = 0.2x + 0.7, for which the error is lse(0, 3) = 1.45. Furthermore, for S =
{(0, 0), (1, 1), (2, 3)}, the regression line is y = 1.5x − 0.1667, for which the
error is lse(0, 2) = 0.0556, and for S = {(1, 1), (2, 3), (3, 0)}, the regression
line is y = −0.5x + 2.3333, for which the error is lse(1, 3) = 1.3889. For
S = {(0, 0), (1, 1)}, S = {(1, 1), (2, 3)}, and S = {(2, 3), (3, 0)}, the regression
line is y = x, y = 2x− 1, and y = −3x + 9, respectively, for each of which the
errors are lse(0, 1) = lse(1, 2) = lse(2, 3) = 0.

Since N = 4, we know that a least-squares cubic polynomial (of degree
3) is “interpolating”, i.e., it passes exactly through the four points, so that
the error is 0. However, cubic polynomials are more complex than quadratic
(degree 2) or linear (degree 1) ones. So which is preferable depends upon what
cost we attach to the degree.

90 2 Applications of Dynamic Programming

Alternatively, there may well be circumstances where we may prefer to
fit a polygonal rather than polynomial curve through a given set of data. A
“polygonal” curve of “degree” i is a sequence of i straight lines. One such
polygonal curve is the sequence of three lines that connects (0,0) to (1,1),
(1,1) to (2,3), and (2,3) to (3,0). It also is interpolating. However, just as
in the case of polynomials, polygonal curves, as defined here, need not pass
through any of the data points, in general; furthermore, we do not require
continuity, i.e., the lines need not meet.

In addition to the polygonal curve of degree 1 with error 1.45, and the
polygonal curve of degree 3 with error 0, there are also polygonal curves of
degree 2 that may or may not be preferable. Which is preferable again depends
upon what cost we attach to the degree. Here, we will assume that this degree
cost is a constant K times the degree; equivalently, we assume each break has
a cost of K.

Determining the optimal polygonal curve is a segmentation problem of the
type described above, and can be solved using DP [2]. Given an ordered set
of N data points, say, S = (A,B,C,D), we may scan the sequence S from
left to right, and at each stage decide whether to end a segment and start a
new segment. For example, at stage B, we must decide whether to end the
first segment, by fitting a line between A and B, and then considering the
remainder (B,C,D), or alternatively to not end the first segment at B; in
the latter event, at the next stage C, we must decide whether or not to end
the segment, by fitting a line through A, B, and C, and then considering the
remainder (C,D). The cost of deciding to end a segment is the least-squares
error associated fitting a line through the points in that segment, found using
regression formulas, plus the cost of a break K.

The DPFE is

f(s) = min
d∈{s+1,...,N−1}

{lse(s, d) + K + f(d)}, (2.40)

The goal is to find f(0). The base-condition is f(N − 1) = 0.
Consider the above problem instance, with error-cost matrix lse as given.

lse =

⎛

⎜
⎜
⎝

∞ 0 0.0556 1.45
∞ ∞ 0 1.3889
∞ ∞ ∞ 0
∞ ∞ ∞ ∞

⎞

⎟
⎟
⎠

For K = 10, f(0) = K + 1.45 = 11.45; there is only one segment, the single
regression line having error 1.45. For K = 1, f(0) = 2K + 0.556 = 2.0556;
there are two segments, one the regression line passing through (0, 0), (1, 1),
and (2, 3) having error 0.0556, and the other the line connecting (2, 3) and
(3, 0) having error 0.0. For K = 0.01, f(0) = 3K + 0 = 0.03; there are three
segments, the interpolating polygonal curve having error 0.0.

In the above formulation, the number of segments is not specified in ad-
vance. For a given breakcost K, the optimal number of segments is determined

2.41 Program Segmentation Problem (SEGPAGE) 91

as part of the problem solution. In some situations, the number of segments
may be constrained by some limit regardless of K; the problem is to find
the best polygonal curve having exactly (or at most) LIM segments, where
K may or may not be also specified (as some nonzero constant). Let f(i, s)
denote the optimal cost of a polygonal curve having i segments (or less). The
DPFE is

f(i, s) = min
d∈{s+1,...,N−1}

{lse(s, d) + K + f(i − 1, d)}, (2.41)

The goal is to find f(LIM, 0). The base-conditions are f(i, s) = 0.0 when
i = 0 and s = N − 1, and f(i, s) = ∞ when i = 0 and s < N − 1. In addition,
f(i, s) = ∞ when i > 0 and s = N−1 if LIM is an exact limit; or f(i, s) = 0.0
when i > 0 and s = N − 1 if LIM is an upper limit. (This former uses the
“fixed-time” approach, whereas the latter uses “relaxation”.)

For the above example, for an exact limit LIM=2 and K = 10, the solution
is f(2, 0) = 20.0556; there are two segments (with cost 2K = 20.0), one the
regression line passing through (0, 0), (1, 1), and (2, 3) having error 0.0556,
and the other the line connecting (2, 3) and (3, 0) having error 0.0. If the
limit LIM=2 is just an upper bound instead, the solution is f(2, 0) = 11.45
since the single-segment curve has lower cost. The three-segment interpolating
curve is precluded regardless of its cost since it violates the limit.

There are numerous other variations of this segmentation problem. For
example, other error criteria (besides least-squares) would simply change how
the error cost matrix is calculated. Furthermore, rather than segmented lines,
we may use segmented parabolas. For some applications, it is desirable for the
segmented curve to be continuous and differentiable. In fact, we may require
the lines to not only meet at the breakpoints, but to meet “smoothly” (i.e.,
so that the slopes and perhaps higher derivatives at the breakpoints match).
This is related to what is known as spline approximation. However, we will
not discuss these variations any further here.

2.41 Program Segmentation Problem (SEGPAGE)

Given an ordered set S = {s1, s2, . . . , sN} of size N , we define a segment of
S to be a nonempty subset of S satisfying the “linearity” constraint that it
may contain only adjacent members of S, {si, . . . , sj} for 1 ≤ i ≤ j ≤ N .
Letting S = {A,B,C,D} be denoted more simply by (ABCD), its segments
are (A), (B), (C), (D), (AB), (BC), (CD), (ABC), (BCD), and (ABCD).
As a counterexample, (BD) and (ABD) are not segments, because they both
lack an intervening member of S, namely, C.

There are numerous ways to partition an ordered set S = (ABCD) into
disjoint segments depending on the size (or “rank”) K of the partition P .

92 2 Applications of Dynamic Programming

1. If K = 1, then all the members of S must be in the same and only
segment, so that there is a single partition P which has this one segment:
P = {ABCD}.

2. If K = 2, then either one segment has one member of S and the other
segment has the remaining three members, or each of the two segments
have two members of S. In the former case, there are two possible par-
titions P1 = {A,BCD}, P2 = {ABC,D}, and in the latter case there is
only possible partition: P3 = {AB,CD}.

3. If K = 3, then two members of S must be in one segment and the remain-
ing two members of S must be in their own segments, so that there are a
total of three segments. There are three ways to choose two adjacent mem-
bers of S to be in the same segment, so there are three possible partitions
for K = 3: P1 = {AB,C,D}, P2 = {A,BC,D}, P3 = {A,B,CD}.

4. If K = 4, then each member of S must be in its own segment, so that
there is a single partition P which has a total of four segments: P =
{A,B,C,D}.

(For a general N , the number of possible partitions in each of these cases can
be determined by combinatorial analysis; see [53], for example.) The optimal
segmentation problem is that determining which of all the possible partitions
minimizes or maximizes some objective.

We observe that each of the partitions or segmentations given above can
be represented as an ordered list of the members of S separated by zero or
more commas. Thus, a partition of S into segments can be done by making
a sequence of decisions on where these commas should be placed. Since only
the locations of the commas are significant, rather than the timings of their
placements, we arbitrarily assume the commas are placed from left to right.
(We also assume “dummy” commas or breakpoints at the beginning and end
of S.) We have then a sequential decision process where the state s is the set
of locations or “breakpoints” at which there are already commas, and where
a decision d chooses where the next breakpoint is to be. The corresponding
DPFE for the optimal segmentation problem has the general form

f(s) = min
d

{c(d, s) + f(s + d)},

where c(d, s) is the cost of adding the next breakpoint at d when in state s.
As an example, consider the pagination problem that arises in virtual

memory systems. A program consists of a sequence of program blocks, which
must be partitioned into pages so as to minimize interpage references (i.e.,
references between program blocks in one page to program blocks in another
page). There must be a page size limit m, which restricts how many program
blocks can fit into a single page; otherwise, if all blocks were placed in the
same page, there would be no interpage references at all. If it is assumed, for
simplicity, as in [28], that the partitioning is sequential, then this pagination
problem is equivalent to the segmentation problem, and it is solvable using
a DPFE of the foregoing form where the cost function c must be suitably

2.41 Program Segmentation Problem (SEGPAGE) 93

defined. If the program is scanned sequentially, say, from left to right, we may
define the state simply as the location of the prior break; at each stage of the
scan, we decide whether or not to add another break. If the program consists
of N blocks, there are N + 1 stages or locations (in between and before and
after these blocks) where breaks may be located. The cost C(p, q) of adding
a break at stage q given that the prior break was at stage p can be calculated
from knowledge of reference patterns between program blocks. Specifically,
the entries in this cost matrix, which are associated with branch execution
frequencies, can be derived from a Markov chain model of the program, as
mentioned in [28], from which the following example is taken.

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞ 0 2 82 82 82 82 2 202 202 2 42 42 2 2 0 0
∞ ∞ 2 82 82 82 82 2 202 202 2 42 42 2 2 0 0
∞ ∞ ∞ 82 82 82 82 2 202 202 2 42 42 2 2 0 0
∞ ∞ ∞ ∞ 42 82 82 2 202 202 2 42 42 2 2 0 0
∞ ∞ ∞ ∞ ∞ 42 42 2 202 202 2 42 42 2 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ 41 1 201 201 2 42 42 2 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 201 201 2 42 42 2 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 201 201 2 42 42 2 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 101 2 42 42 2 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 42 42 2 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 42 42 2 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 22 2 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Given this cost matrix, the optimal segmentation problem can be solved
using the DPFE

f(p) = min
p+1≤q≤p+m

{C(p, q) + f(q)}. (2.42)

The goal is to find f(0). The base-condition is f(N) = 0 where N = 16. The
solution is f(0) = 87. An optimal sequence of decisions for the breakpoints
is d1 = 1, d2 = 5, d3 = 7, d4 = 10, d5 = 13, and d6 = 15. (There are also
dummy breakpoints at d0 = 0 and d7 = 16.) The optimal segmentation of
(s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15) is
(s1s2s3s4, s5s6, s7s8s9, s10s11s12, s13s14, s15).

In conclusion, we note that since the cost matrix is triangular, the pagi-
nation problem is equivalent to that of finding the shortest path in an acyclic
graph (SPA). This is a consequence of our linearity constraint. Without this
linearity assumption, the general partitioning or clustering problem would
have exponential complexity since there are (O(2N)) subsets of a set of size
N , each subset being possibly in the optimal partition.

94 2 Applications of Dynamic Programming

2.42 Optimal Selection Problem (SELECT)

The (single) “selection” problem is that of finding the k-th smallest member
(also known as the k-th “order statistic”) of an unordered set A of size N .
(The choice k = N selects the largest member and k = N/2 selects the me-
dian.) Assuming “random access” memory, if A is an ordered array, selection
takes constant O(1) time, since it requires an amount of time independent of
N to perform what would in essence be a subscripting operation. However, to
achieve constant-time selection may require additional time to sort A, usually
O(N log N) or O(N2). On the other hand, it has been shown that a selec-
tion algorithm for unsorted data can be designed (using a divide-and-conquer
strategy [10, Chap. 9]) that takes only linear O(N) time.

Consider the set selection problem where we wish to find the set S ⊂ A of
the k1-th, k2-th, ..., km-th smallest members of a given unordered set A. We
may of course use the linear-time selection algorithm m different times, which
requires O(mN) time. We observe that once we find the kd-th member x of
A, we can partition A − {x} into two subsets, A1 and A2, consisting of those
members of A less than x and greater than x, respectively. This selection and
partitioning can be done in O(N) time. Thus we can recursively perform set
selection for left and right subsets A1 and A2, both of which have sizes less
than N ; A1 has size kd − 1, and A2 has size N − kd. The ki-th smallest of A
(of size N) for i < d is the ki-th smallest of A1 (of size kd − 1), whereas the
ki-th smallest of A for i > d is the (ki −kd)-th smallest of A2 (of size N −kd).
Thus, making a decision d, to find the kd-th member x of A, also partitions
S into subsets S1 = {k1, . . . , kd−1} and S2 = {kd+1, . . . , km} associated with
A1 and A2, respectively.

The optimal set selection problem is that of deciding the optimal way
to find the m different values of A for a given S. (Note that finding the
actual values in A is not part of this problem.) The optimal solution can be
represented as a binary tree whose root is the optimal initial choice of d, and
whose subtrees are the optimal trees for the left and right subproblems. This
resembles other optimal binary tree problems (e.g., BST and MCM), as noted
by Brown [9]. The DPFE is

f({ki, . . . , kj}|p, q) = min
kd∈{ki,...,kj}

{(q − p + 1) + f({ki, . . . , kd−1}|p, kd − 1)

+ f({kd+1, . . . , kj}|kd + 1, q)}.

The goal is to find f(S|1, N) with base condition f(S|p, q) = 0 if |S| = 0. If the
set {ki, . . . , kj} is represented by the pair (i, j), the DPFE can be rewritten
in the form

f((i, j)|p, q) = min
i≤d≤j

{(q − p + 1) + f((i, d − 1)|p, kd − 1)

+ f((d + 1, j)|kd + 1, q)}. (2.43)

The goal is to find f((1,m)|1, N) with base condition f((i, j)|p, q) = 0 if i > j.

2.44 Shortest Path in an Cyclic Graph (SPC) 95

Let S = {3, 6, 8, 10} and N = 10. The optimal tree has 6 at the root, {3}
in its left subtree, and {8, 10} is its right subtree. The cost of the decision to
choose 6 as the overall root is equal to the cost of selecting the 6-th smallest
of a set {1, . . . , 10} of size 10, which equals 10. The cost of the decision to
choose 3 as the root of the left subtree is equal to the cost of selecting the 3-rd
smallest of a set {1, . . . , 5} of size 5, which equals 5. The cost of the decision
to choose 8 as the root of the right subtree is equal to the cost of selecting
the 2-nd smallest of a set {7, . . . , 10} of size 4, which equals 4, plus the cost of
the decision to choose 10 as the root of the right subtree of the right subtree;
this final quantity is equal to the cost of selecting the 2-nd smallest of a set
{9, 10} of size 2, which equals 2. Thus, the overall cost is 10 + 5 + 4 + 2 = 21.

2.43 Shortest Path in an Acyclic Graph (SPA)

The problem of finding a shortest path from a single-source s to a single-target
t in a weighted, directed graph G = (V,E) with no cycles is considered here.
This problem is discussed in detail in Chap. 1. Without loss of generality,
assume that V = {0, . . . , n− 1}, s = 0, and t = n− 1. The edges are given in
the form of an adjacency matrix C = (ci,j).

By modeling a state x as the current node, a decision d is the next-state,
and the cost (reward) of the decision is cx,d the DP functional equation can
be expressed as

f(x) =

{
min
d∈V

{f(d) + cx,d} if x < n − 1

0 if x = n − 1.
(2.44)

In this formulation f(x) is the length of the shortest path from a node x ∈ V
to the target node n − 1. The goal becomes to compute f(0).

Consider the following problem instance of finding the shortest path from
node 0 to node 3 in the graph of figure 2.7 defined by the weighted adjacency
matrix

C =

⎛

⎜
⎜
⎝

∞ 3 5 ∞
∞ ∞ 1 8
∞ ∞ ∞ 5
∞ ∞ ∞ ∞

⎞

⎟
⎟
⎠

The shortest path length is computed as f(0) = 9 and the shortest path
is (0, 1, 2, 3). Note that a large class of optimization problems can be solved
by formulating them in terms of finding shortest paths.

2.44 Shortest Path in an Cyclic Graph (SPC)

In this variant of the shortest path problem there may be cycles in the graph.
Also, it is permissible to have edges with negative weights. However, in order

96 2 Applications of Dynamic Programming

5

8

1

3

5

0

1

2

3

Fig. 2.7. Shortest Path Problem in an Acyclic Graph

for the problem to remain well defined there must not be a negative-weight
cycle reachable from the source s. Methods for solving such problems are
discussed in Chap. 1.

Without loss of generality, assume that V = {0, . . . , n − 1}, s = 0, and
t = n− 1. The edges are given in the form of an adjacency matrix C = (ci,j).
We will give two different DP models along with their DP functional equation
that solve this problem. Note that the DPFE (2.44) that we used in the acyclic
case in Sect. 2.43 no longer works if there are cycles in the graph.

The first model utilizes the approach taken for TSP (section 2.47) and
codes a state as a pair (x, S) where x is the current vertex and S is the set of
vertices already visited.

f(x, S) =

{
min
d/∈S

{f(d, S ∪ {d}) + cx,d} if x < n − 1

0 if x = n − 1.
(2.45)

The length of the shortest path is computed as f(0, {0}).
The second model utilizes the “relaxation approach” discussed in Chap. 1,

and codes a state as a pair (x, i) where x is the current vertex and i is an
integer upper bound for the number of edges on the path to the target node.

f(x, i) =

⎧
⎨

⎩

min
d

{f(d, i − 1) + cx,d} if x < n − 1 and i > 0

∞ if x < n − 1 and i = 0
0 if x = n − 1.

(2.46)

Since during the course of the computation f(x, i) gives the length of the
shortest path from vertex x to the target node n − 1 having at most i edges,
the length of the shortest path from the source to the target node is computed
as f(0, n − 1). Note that the shortest path consists of at most n − 1 edges,
because n or more path segments would imply a circuit in the path and since
this circuit has by assumption nonnegative length, the path could be improved

2.45 Process Scheduling Problem (SPT) 97

by cutting out the circuit (or at least simplified in case the circuit length
is 0).

Consider the following problem instance [35, p.335] of finding the shortest
path from node 0 to node 3 in the graph of Fig. 2.8 defined by the weighted
adjacency matrix ⎛

⎜
⎜
⎝

∞ 3 5 ∞
∞ ∞ 1 8
∞ 2 ∞ 5
∞ ∞ ∞ ∞

⎞

⎟
⎟
⎠

5

83

5

21 3

2

1

0

Fig. 2.8. Shortest Path Problem in a Cyclic Graph

In the first model, the shortest path length is computed as f(0, {0}) = 9, in
the second model it is computed as f(0, 3) = 9. The shortest path is (0, 1, 2, 3).

2.45 Process Scheduling Problem (SPT)

Suppose we have a set of processes whose weights are their processing or
execution times, 3, 5, and 2, respectively. If the processes are executed in that
given order (on a single processor), they would complete execution at times
3, 8, and 10, respectively, for a total of 21. If the processes are executed in
shortest-processing-time (SPT) order, 2,3,5, they would complete execution at
times 2,5,10, for a total of 17. The optimal process scheduling problem is that
of determining the optimal sequence in which processes should be executed on
a single processor so as to minimize the total (or average) of the completion
times for a given set of processes. This problem is equivalent to the linear
search problem (LINSRC) and related permutation problems.

One way to solve this problem is to use a staged formulation, or what we
called virtual-stages in Chap. 1. Observe that the cost of the next decision is
the sum of the costs of the earlier decisions plus the individual cost for this

98 2 Applications of Dynamic Programming

next decision. Thus, we define the state as (k, S) where k is the stage number
and S is the set of processes that have not yet been scheduled. A decision
d is a member of S. The cost of choosing d in state (k, S) is the sum of the
execution times

∑
i�∈S wi of processes already executed (i.e., for processes not

in S) plus the execution time wd of process d. The sum
∑

i�∈S wi can also be
incorporated into the definition of state by introducing it as a virtual stage
parameter k. Then

f(k, S) = min
d∈S

{(k + wd) + f(k + wd, S − {d})}. (2.47)

The base-condition is f(k, S) = 0 when S = ∅. The goal is find f(0, S∗), where
S∗ is the originally given set of N processes.

For instance, if S∗ = {0, 1, 2} and W ∗ = {3, 5, 2}, then f(0, S∗) = 2 + 5 +
10 = 17 for the optimal sequence of decisions d1 = 2, d2 = 0, d3 = 1. This
corresponds to deciding based upon the shortest-processing time (SPT) (or
shortest-job-first (SJF)) greedy policy.

2.46 Transportation Problem (TRANSPO)

Transportation problems are characterized by having a set of objects that are
to be distributed from a set of suppliers to a set of receivers in an optimal
fashion, where there are specified costs associated with destination q receiv-
ing objects from source p. In a graph model, suppliers and receivers would be
represented by nodes, and a flow by a branch from p to q, with a label that
specifies the cost c(p, q, i) of transporting i objects from p to q. A transporta-
tion problem is equivalent to finding a minimum cost flow in this graph, but
can be solved by formulating it as a production problem.

For example, the transportation problem of [8, problem 19.22] can be for-
mulated as a production problem where the production costs C (per unit)
are, for three stages

C =

⎛

⎝
0.0 35.0 74.0 113.0 ∞ ∞ ∞
0.0 43.0 86.0 133.0 180.0 ∞ ∞
0.0 40.0 80.0 120.0 165.0 210.0 ∞

⎞

⎠

the inventory cost I is 3 per unit, the demand D is 2 in all stages, and the
production capacity (i.e. the maximum number that can be produced in a
stage) is 6. The DPFE is of the same form as (2.36) and reads

f(k, s) = min
x

{C(k, x) + I(k, s) + f(k + 1, s + x − D(k))}, (2.48)

where k is the stage number, s is the current inventory, and the decision x is
the amount to produce.

The goal is to find f(0, 0) with base condition f(k, s) = 0 when k = n.
For the given example, for initial stage k = 0 and initial inventory s = 0,

2.47 Traveling Salesman Problem (TSP) 99

f(0, 0) = minx{C(0, x) + I(0, 0) + f(1, x − D(0))}. C(0, x) is given by the
zero-th row of the cost matrix, I(0, 0) = 0, and D(0) = 2; the decision x is
constrained by the capacity, x ≤ 6, but must also be great enough to meet
the initial demand (minus the initial inventory), x ≥ 2. Continuing these
calculations, we have f(0, 0) = 239, and x1 = 3, x2 = 1, and x3 = 2.

2.47 Traveling Salesman Problem (TSP)

Given a complete weighted directed graph G = (V,E) with distance matrix
C = (ci,j) the optimization version of the traveling saleman problem asks
to find a minimal Hamiltonian cycle (visiting each of the n = |V | vertices
exactly once). Without loss of generality assume V = {0, . . . , n− 1}. The DP
functional equation can be expressed as

f(v, S) =

{
min
d/∈S

{f(d, S ∪ {d}) + cv,d} if |S| < n

cv,s if |S| = n
(2.49)

where the length of the minimal cycle is computed as f(s, {s}) where s ∈ V .
(The choice of the starting vertex s is irrelevant, since we are looking for a
cycle, so arbitrarily pick s = 0.) In the above DP functional equation (2.49),
a state is a pair (v, S) where v can be interpreted as the current vertex and
S as the set of vertices already visited.

In contrast, the following equivalent DP functional equation (2.50) main-
tains S as the set of vertices not yet visited.

f(v, S) =

{
min
d∈S

{f(d, S − {d}) + cv,d} if |S| > 1

cv,s if S = ∅
(2.50)

The length of the minimal cycle is computed as f(s, V − {s}) where s ∈ V .
For instance, let

C =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 8 9 60
2 0 12 3 50
7 11 0 6 14
10 4 5 0 15
61 51 13 16 0

⎞

⎟
⎟
⎟
⎟
⎠

This instance is shown in Fig. 2.9.
We apply the DP functional equation (2.49) to compute f(0, {0}) = 39 or

we apply the DP functional equation (2.50) to compute f(0, {1, 2, 3, 4}) = 39.
By keeping track of which arguments minimize the min-expressions in each
case, we find that the minimal cycle is (0, 1, 3, 4, 2).

We remark in conclusion that TSP is one of many “intractable” problems
that cannot be solved efficiently (see Sect. 1.1.13) using any known algorithm,
using DP or otherwise, at least for large n. On the other hand, for small n,

100 2 Applications of Dynamic Programming

0

1

4

15

2

12

3

10
9

1

2

3 4

6

561

60

14 13

16

11

7

8

5051

Fig. 2.9. Instance of a TSP Problem

TSP can be solved in practice using the above DP formulation and using our
software tool. (In this book, we have emphasized generality, not necessarily
practicality.)

3

The DP Specification Language gDPS

This chapter gives an overview of the “general DP specification” (gDPS)
language as the result of our design efforts for the DP2PN2Solver software
[44, 45]. Section 3.1 gives a brief introduction to gDPS. In Sect. 3.2 we de-
scribe the design principles of gDPS. Section 3.3 describes the syntactical
details of gDPS. The grammar of gDPS is given in Sect. 3.4.

3.1 Introduction to gDPS

The gDPS source language combines features of common computer program-
ming languages, such as Java, C++, and Visual Basic, and of mathemati-
cal programming languages, such as AMPL, GAMS, and LINGO. We note
that the latter are verbal (text-based) languages, which are commonly con-
sidered more “user-friendly” than symbolic languages such as APL [56]. Such
text-based languages have been more readily accepted in the mathematical
programming community, and it is our model for gDPS as well.

We view gDPS as a specification rather than procedural language, although
it has optional procedural elements that allow users the flexibility to code their
own “subroutines” to handle unusual cases. For these procedural elements, we
adopt Java syntax for specificity, since some choice had to be made in order
to implement an actual software tool. We chose Java in large measure because
of its universal availability, at no cost in all major platforms, and also because
of its suitability for a web-based package (see http://java.sun.com). Brief
introductions to Java can be found in numerous books, such as [5].

A gDPS source consists of several structured sections, which reflect the
standard parts of every DP problem. To increase writability, additional in-
formation such as helper functions that ease the DP model formulation can
be included into a gDPS source. Of particular importance are the following
sections.

• The optional GENERAL_VARIABLES section allows the definition of variables
(e.g. of type int, double, or String) in a Java syntax.

A. Lew and H. Mauch: The DP Specification Language gDPS, Studies in Computational Intel-

ligence (SCI) 38, 103–123 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

104 3 The DP Specification Language gDPS

• The optional SET_VARIABLES section allows the definition of variables of
type Set (who can take on a set of integers as value) in a convenient enu-
merative fashion the way it is written in mathematics. Ellipsis is supported
with a subrange syntax.

• The optional GENERAL_FUNCTIONS section allows the definition of arbitrary
functions in a Java style syntax. For set types the use of type NodeSet
(which is subclassed from java.util.TreeSet) is recommended in order
to be most compatible with sets specified elsewhere in the gDPS source.

• The mandatory STATE_TYPE section. A state in a DP problem can be
viewed as an ordered tuple of variables. The variables can be of heteroge-
neous types. The “stage” of a DP problem would, as an integer coordinate
of its state, be one part of the ordered tuple.

• The mandatory DECISION_VARIABLE and DECISION_SPACE sections de-
clare the type of a decision and the set of decisions from which to choose
(the space of alternatives), which is given as a function of the state.

• The mandatory DP functional equation (DPFE). The recursive equation
is described in the DPFE section and its base cases must either be expressed
in conditional fashion in the DPFE_BASE_CONDITIONS or in a enumerative
way in the DPFE_BASE section.

• The computational goal of the DP instance is given in the mandatory GOAL
section.

• The reward function (cost function) is given as a function of the state and
the decision in the mandatory REWARD_FUNCTION section.

• The transformation functions (one or more) are given as functions of the
state and the decision in the mandatory TRANSFORMATION_FUNCTION sec-
tion.

• Probabilistic DP problems (see Sect. 2.35 and Sect. 2.19 for examples)
require a probability weight to be multiplied to every recursive functional
in the DPFE. Discounted DP problems (see Sect. 2.9 for an example) re-
quire a discount factor to be multiplied to every recursive functional in the
DPFE. Since these weights (or discount factors) can be arbitrary functions
of the state and the decision taken, the optional TRANSITION_WEIGHTS
section provides the means to specify these weights that are used during
the transition from one state to the next. If the weights are simply con-
stants, this is expressed by defining constant functions independent of the
state and the decision taken. Transition weights can also be used to model
a 0-1-binary choice (see the intvl3 formulation of the INTVL problem
(Sect. 2.16)).

Set theoretic features in the gDPS language simplify the specification and
improve its readability. A variable of the type Set can be declared in the
SET_VARIABLES section. Such variables and set literals (described using com-
plete enumeration, or a subrange syntax) can be operands of set theoretic
operations like SETUNION, SETINTERSECTION or SETMINUS and it is possible to
compare sets for equality using the keyword SETEQUALS.

3.2 Design Principles of gDPS 105

Since the GENERAL_VARIABLES section allows the definition of arbitrary
variables and the GENERAL_FUNCTIONS section allows the definition of arbi-
trary functions in a Java style syntax, the gDPS language is powerful and
flexible. Despite this power and flexibility, the other sections require a very
structured format, which makes a gDPS very readable and produces a speci-
fication that resembles the mathematical formulation closely. The hybrid ap-
proach of flexible Java style elements and strictly structured sections makes
it easy to learn the gDPS language.

A gDPS source file is a plain text file ending in the suffix .dp. It can be
created and modified with a simple text editor. Throughout a gDPS source it
is legal to document it using Java style block comments (between /* and */)
and line comments (starting with //).

3.2 Design Principles of gDPS

DP problems can take on various forms and shapes. This is why it is hard
to specify a strict and fixed specification format as can be done for LP. But
there are common themes across all DP problems and those are captured in
the gDPS language.

A special purpose language should allow both a convenient description of
a DP problem instance and efficient parsing of the specification. The gDPS
language has been designed as a general source language that can describe a
variety of DP problems. It offers the flexibility needed for the various types
of DP problems that arise in reality. All sample problems from Chapter 2
have been successfully modelled with gDPS and solved by DP2PN2Solver.
Sources (and snippets of sources) in gDPS for some of these sample problems
are presented in this chapter with the purpose of illustrating special features
of gDPS. For a complete listing of all gDPS sources, the reader is referred to
Chapter 4.

Input data that is specific to a DP instance is hardcoded into the gDPS
source in order to have a single gDPS source file that contains the complete
specification of the DP instance. If it seems more desirable to keep separate
files for the instance specific data and the problem specific data, this would
require a conceptually straightforward modification (which we leave as a future
extension).

In the worst-case it is necessary that the decision variable loops over all
values of the current decision set [48, p.70]. Thus in the DECISION_SPACE
section the current decision set (which is dependent on the current state)
needs to be defined as a set-valued function.

Reward and transformation functions are expressed either in closed-form
expressions or as tabular data [48, p.48,67]. The same applies to transi-
tion weight functions. When a closed-form expression exists, it can usually
be expressed directly within the REWARD_FUNCTION, the TRANSFORMATION_
FUNCTION, or the TRANSITION_WEIGHTS section. If these functions are given as

106 3 The DP Specification Language gDPS

tabular data (as is frequently the case in real-world problems) then the table
can be stored as an array in the GENERAL_VARIABLES section and table entries
can be referred to as array entries (using the usual Java style syntax) from
the REWARD_FUNCTION, TRANSFORMATION_FUNCTION and TRANSITION_WEIGHTS
sections. If necessary, helper functions for table access can be defined in the
GENERAL_FUNCTIONS section using Java syntax.

3.3 Detailed Description of the gDPS Sections

This section focuses on the details of how to generate a specification file in
the “general DP specification” (gDPS) language. Such a file constitutes one
possible input format for the DP2PN2Solver software. Section 3 already gave
an overview of the gDPS language. Here we examine each language construct
in more detail. A gDPS source file always begins with key word BEGIN and
ends with the keyword END and its body consists of several structured sections,
each of which we will consider in more detail now.

At any point in the body of the gDPS file, one may have block comments
that start with /* and end with */ and one-line comments that start with
// and extend to the end of the line. Comments and white-space characters
such as blanks, tabs and newlines (CR and LF) do not have any functionality
associated with them, except that they act as token separators for the parser
of the DP2PN module.

3.3.1 Name Section

The mandatory Name section begins with the keyword NAME followed by the
name you would like to assign to your particular model, followed by a semi-
colon. This is a logical name, which does not have to match the file name of
your gDPS source; however it seems good practice to match them. For exam-
ple, you might have a gDPS file named tsp2005.dp and your name section
might read

NAME TravelingSalesperson;

Since the logical model name is used for naming intermediate files and output
files, it is prudent to use only names that do not cause trouble for your oper-
ating system’s file name conventions (i.e. avoid special symbols and blanks).

3.3.2 General Variables Section

The optional General Variables section begins with the keyword GENERAL_
VARIABLES_BEGIN and ends with the keyword GENERAL_VARIABLES_END. It
allows the definition of variables and constants in a C++/Java style syntax.

3.3 Detailed Description of the gDPS Sections 107

A legal variable name starts with a character from the alphabet {a, . . . , z,
A, . . . , Z} and may be followed by any number of alphanumerical charac-
ters from the alphabet {a, . . . , z, A, . . . , Z, 0, 1, . . . , 9}. Variable names are case
sensitive.

As a general rule, if a variable definition is legal in Java, then it is also
legal in gDPS. In order to emphasize the global scope of the variables defined
in this section, we adopted the Java convention to declare variables as static,
and in order to emphasize that the variables defined in this section are to be
accessed exclusively within a gDPS file, we adopted the convention to declare
variables as private. Constants carry the qualifier final.

Integer Type

In order to define and initialize a variable of integral type, the int keyword is
used, followed by a legal variable name, the equation (or equal-sign) character,
an integer literal and a semicolon. For example,

private static int n=5;

defines an integer variable n which is initialized to the value 5.
Constants of Java classes can be used as well, as can be seen in the example

private static final int infty=Integer.MAX_VALUE;

where we define an infinity constant infty to be the maximally representable
integer as provided in java.lang.Integer.MAX_VALUE.

Floating Point Type

In order to define and initialize a variable of floating point type, the double
keyword is used, followed by a legal variable name, the equal-sign character,
a floating point literal and a semicolon. For example,

private static double x3=3.14;

defines a floating point variable x3 which is initialized to the value 3.14.

String Type

In order to define and initialize a variable of String type, the String keyword
is used, followed by a legal variable name, the equal-sign character, a string
literal (in quotes) and a semicolon. For example,

private static String s="Hello";

defines a string variable s which is initialized to “Hello”.

108 3 The DP Specification Language gDPS

Array Types

Array variables can be defined and initialized by placing a pair of brackets for
each dimension after the type declaration, and by using (nested) lists, enclosed
in braces, for initialization purposes. For example,

private static double[][] myMatrix=
{
{ -2.5, 13 , -0.2 },
{ 3 , 4.0, 1.234},

};

defines and initializes a 2-dimensional array of doubles, representing a 2 × 3
matrix. We can reference the value 1.234 via myMatrix[1][2] in the usual way.
As is typical for Java arrays, the index count or subscript in each dimension
starts with 0, not 1.

The length of an array dimension can be determined using the length con-
struct. Thus, the number of rows and columns of myMatrix can be determined
as follows:

private static int m=myMatrix.length; //m=2
private static int n=myMatrix[0].length; //n=3

3.3.3 Set Variables Section

The optional Set Variables section begins with the keyword SET_VARIABLES_
BEGIN and ends with the keyword SET_VARIABLES_END. It provides a compact
and flexible way to define and initialize set variables and constants.

A legal set variable name follows the same rules as a general variable
name, it cannot start with a numerical chracter. Set definitions do not take
private and static modifiers. Those are added internally by the compiler,
which generates NodeSet objects for each variable or constant defined as Set
in this section. The NodeSet type is a subclass of java.util.TreeSet; we
discuss this further in the next section.

A variable or constant defined in this section starts with the keyword Set,
an equals character, and then a variety of notations are available to specify
the set.

1. To resemble the common mathematical notation, all elements may be
enumerated within braces. Duplicate elements are ignored. The order in
which elements are enumerated is irrelevant.

2. Ellipsis is supported with the following subrange syntax: an opening brace,
followed by the smallest element to be in the set, followed by two dots,
followed by the largest element to be in the set, followed by a closing
brace.

3. The empty set ∅ is defined as {}.

3.3 Detailed Description of the gDPS Sections 109

4. If s1 and s2 are correctly defined sets, then the set union s1 ∪ s2 is ex-
pressed using the keyword SETUNION instead of the mathematical symbol
∪.

5. If s1 and s2 are correctly defined sets, then the set intersection s1 ∩ s2 is
expressed using the keyword SETINTERSECTION instead of the mathemat-
ical symbol ∩.

6. If s1 and s2 are correctly defined sets, then the set difference s1 − s2
is expressed using the keyword SETMINUS instead of the mathematical
symbol −.

7. The binary set operators mentioned above can be nested, the default hi-
erarchy (set difference has highest priority, then set intersection, then set
union) can be overridden by using parenthesization.

All sets are assumed to contain a finite number of integer typed elements.
Each set variable definition is terminated with a semicolon. For example,

Set enumeratedSet={5,2,2,3,7,2};

defines and initializes the set {2, 3, 5, 7}.
In another example,

Set subrangeSet={1,..,n};

defines and initializes a set that contains all positive integers up to (and
including) n, where n must be defined in the General Variables section.

3.3.4 General Functions Section

The optional General Functions section begins with the keyword GENERAL_
FUNCTIONS_BEGIN and ends with the keyword GENERAL_FUNCTIONS_END. It
provides a flexible way to define functions in Java syntax.

As a general rule, if a function (method) definition is legal in Java, then
it is also legal in gDPS. In order to emphasize the global, non-object oriented
character of the functions defined in this section, we adopted the Java con-
vention to declare functions as “static”, and in order to emphasize that the
functions defined in this section are to be accessed exclusively within a gDPS
file, we adopted the convention to declare functions as “private”.

For set types the use of class type NodeSet (which is subclassed from
the standard Java class java.util.TreeSet and named so for legacy rea-
son) is recommended in order to be most compatible with sets specified in
the set variables section. Since java.util.TreeSet implements the stan-
dard Java interface java.util.SortedSet all sets are actually understood
as sorted sets, which is sometimes advantageous. For instance, in the gDPS
source of the BST problem (Sect. 2.6) we can conveniently split a set using the
headSet() method. Additional useful methods such as tailSet(), subSet(),
etc., are documented in the Java 2 SDK 1.4.2 API specification (available at
http://java.sun.com).

110 3 The DP Specification Language gDPS

For example, assume we are given the adjacency matrix distance[][] of
a directed graph in the general variables section, where ∞-entries represent
edges that are not present in the graph. Given a node node we can compute
the set of adjacent nodes using the function

private static NodeSet possibleNextNodes(int node) {
NodeSet result = new NodeSet();
for (int i=0; i<distance[node].length; i++) {

if (distance[node][i]!=infty) {
result.add(new Integer(i));

}
}
return result;

}

where infty is a constant declared in the general variables section. This
function uses a conventional Java for-loop and an if-statement to detect
whether an index should be included in the resulting set result which is
eventually returned. The NodeSet object result inherits the methods from
java.util.TreeSet, so we use the add() method to add integers to the re-
sulting set result. Since in Java sets are containers of objects, we need to
wrap the primitive int type into an Integer object.

3.3.5 State Type Section

The mandatory State Type section begins with the keyword STATE_TYPE,
followed by a colon, the parameter list, and ends with a semicolon. For our
definition of DP, a state is considered to be an ordered, fixed-length tuple of
parameters. Each parameter has a type and a name. Permissible parameter
types are int and Set. The parameter list is enclosed in a pair of parenthe-
ses and parameters are separated by commas; this resembles the Java style
parameter list for functions. For example,

STATE_TYPE: (int stage, Set s1, int x, Set s2);

defines a DP problem where a state is an ordered quadruple (stage, s1, x, s2)
consisting of an integer, a set, an integer, and another set, respectively.

3.3.6 Decision Variable Section

The mandatory Decision Variable section begins with the keyword DECISION_
VARIABLE, followed by a colon, the decision variable type, the decision variable
name, and ends with a semicolon. All decisions are considered to be choices
from a finite set, so at this point we can assume without loss of generality
that the decision variable type be int. The decision variable name follows the
usual requirement for Java identifiers (cannot start with a digit). For example,

DECISION_VARIABLE: int d;

declares the decision variable for this DP problem to be d.

3.3 Detailed Description of the gDPS Sections 111

3.3.7 Decision Space Section

The mandatory Decision Space section begins with the keyword DECISION_
SPACE, followed by a colon, the decision set function name and parameter list,
the equal-sign symbol, the decision set (which can expressed in various ways),
and ends with a semicolon. Since the current decision set under consideration
depends on the current state, the parameter list is populated with precisely
those variables that make up a state (see state type section). The decision
set is the space of alternatives, one of which gets to be chosen to be in the
optimal policy; it has to be of type Set and can be expressed in one of the
following ways.

1. Explicitly build a set using complete enumeration or subrange syntax,
possibly using variables from the parameter list. For example, if a state is
a pair of integers, then

DECISION_SPACE: decisionSet(i,j)={i,..,j - 1};

characterizes the decision set as the set containing all integers between
the first index i and the second index j, including i but excluding j.

2. Delegate the task of building the decision set, or parts of it, to a function
specified in the general functions section, which provides a set-typed re-
turn value. For example, if a state consists of a single integer representing
the current node, then

DECISION_SPACE: possibleAlternatives(currentNode)
=possibleNextNodes(currentNode);

delegates the task of computing the decision set possibleAlternatives
to the function possibleNextNodes() defined in the General Functions
section.

3. If S1 and S2 are correctly defined sets, it is possible to form the union
S1 ∪ S2, the intersection S1 ∩ S2 and the set difference S1 − S2 using the
keywords SETUNION, SETINTERSECTION and SETMINUS, respectively, as was
the case in the Set Variables section.

3.3.8 Goal Section

The mandatory Goal section describes the computational goal of the DP in-
stance at hand. It begins with the keyword GOAL, followed by a colon, the
identifier of the DPFE functional, and then, within parentheses, a goal state
is declared by providing a suitable value for each parameter of the state. This
can be done by either providing an explicit numerical value, or by providing
a symbolic variable or constant defined in the general variables section. The
section ends with a semicolon. For example, if a state is a triple consisting of
two integers, followed by a set, then

GOAL: f(7,n,goalSet);

112 3 The DP Specification Language gDPS

assumes that n is predefined integer variable or constant and that goalSet is
a predefined set variable or constant. The goal of our computation has been
reached once we have evaluated f(7, n, goalSet).

3.3.9 DPFE Base Section

The mandatory DPFE Base section is used to define base cases or conditions
to terminate the recursive evaluation of a DPFE. There are two alternative
ways of specifying the base of a DPFE. Exactly one of these two possibilities
must be present in a gDPS file.

The first possibility is to express the base cases in a conditional fashion.
The section begins with the keyword DPFE_BASE_CONDITIONS, followed by a
colon, followed by one or more base condition statements. Each base condition
statement starts with the DPFE functional and its parameter list (see DPFE
section), followed by an equal-sign character and an arithmetic expression
that evaluates to a floating point number (see the reward function section for
details about arithmetic expressions). This is followed by the keyword WHEN,
a conditional expression in parentheses and a semicolon, which designates the
end of a base condition statement. The conditional expression may consist
of numerical conditions involving Java style operators to compare numbers
(or numerical variables or constants), such as <, <=, >, >=, !=, ==. Sets (or
set variables) can be compared for equality using the keyword SETEQUALS.
Atomic conditions can be combined using the logical boolean operators &&
(“and”), || (“or”), ! (“not”); conditions can be nested, if desired, and the
default hierarchy for evaluating the logical operations can be influenced by
using parentheses. Every conditional expression evaluates to either “true” or
“false”. For example, if a state is a pair of integers, then

DPFE_BASE_CONDITIONS:
f(i,j)=0.0 WHEN (i==j);
f(i,j)=1.0 WHEN (i>j) && (i<9) && (j>5);

designates states such as (1, 1), (2, 2), etc. as base states which get assigned the
value 0.0 (by the first base condition statement). The second base condition
statement designates the states (8, 6), (8, 7), and (7, 6) as base states, which
get assigned the value 1.0. If a state is a set, then

DPFE_BASE_CONDITIONS:
f(currentSet)=4.0 WHEN (currentSet SETEQUALS {3,4});
f(currentSet)=8.0 WHEN (currentSet SETEQUALS {5,..,8});

designates the state ({3, 4}) as a base state, which gets assigned the value 4.0
and designates the state ({5, 6, 7, 8}) as a base state, which gets assigned the
value 8.0.

The second possibility is to express the base cases in an enumerative way.
The section begins with the keyword DPFE_BASE, followed by a colon, followed
by one or more DPFE base statements. A DPFE base statement can be an

3.3 Detailed Description of the gDPS Sections 113

assignment statement, or a block of possibly nested for-loops that contain as-
signment statements within its body. Each assignment statement starts with
the DPFE functional and an argument list, enclosed in parentheses, that pro-
vides suitable values for each of the components that make up a state. This
is followed by an equal-sign symbol, an expression that evaluates to a floating
point number, and a semicolon, which designates the end of an assignment
statement. For example, assuming the set variable setOfAll defined in the
set variables section is valued {0, 1, 2, 3} and the array distance is defined
and initialized in the general variables section with distance[1][0] equaling
7.5, then

DPFE_BASE:
f(0,setOfAll)=0.0 ;
f(1,setOfAll)=distance[1][0];

designates the state (0, {0, 1, 2, 3}) to be a base state, which gets assigned the
value 0.0 (by the first assignment statement). The second assignment state-
ment designates the state (1, {0, 1, 2, 3}) as a base state, which gets assigned
the value 7.5.

The for-loop notation allows a convenient shortcut when consecutive inte-
gers are involved in assignment statements:

DPFE_BASE:
FOR(i=2;i<=10;i++) {

f(emptySet,i)=0.0;
}

In a DP model, one has to be careful to make sure that every DPFE base
case that can occur during the computation is actually covered in this section.
No damage is done, if a base case is covered more than once, provided that
the same value is assigned.

3.3.10 DPFE Section

The mandatory DPFE section describes the recursive equation that is at the
center of a DP model. It begins with the keyword DPFE, followed by a colon,
the DP functional name and parameter list which is populated with precisely
those variables that make up a state (see state type section). Then there is an
equal-sign symbol, followed by either the MAX_ or MIN_ operator indicating the
direction of optimization, followed by an opening brace, the decision variable
as defined in the decision variable section, the keyword IN, the decision set
identifier as defined in the decision space section, followed by a closing brace.
Then, within the next pair of braces, will be the DP functional, possibly more
than once, performing the recursive call(s) after applying a transformation
function to it, and also the call to the reward function. All these function-
als must be connected by either the addition or multiplication operator. The
parameter lists of the transformation functions and of the reward function is

114 3 The DP Specification Language gDPS

populated with precisely those variables that make up a state (see state type
section) and in addition with the decision variable, since the transformation
function value and the reward function value are in general dependent on both
the state and the decision. The DPFE section ends with a semicolon. Option-
ally, each recursively invoked functional may be multiplied with a weight,
which must itself be expressed as a function in the transition weight section.
The multiplication symbol for these weights is “.” (dot), to distinguish it from
the “*” (star) symbol used in other contexts.

As a first example, if a state consists of a pair (i, j) of integers, then

DPFE: f(i,j)
=MIN_{k IN decisionSet}

{ f(t1(i,j,k))
+f(t2(i,j,k))
+r(i,j,k)

};

specifies a DPFE whose functional is named f . There are two recursive calls
via the two transformation functions t1 and t2. The reward function is named
r, and all functionals are connected by “+” resulting in an additive DPFE.

In the following example

DPFE: fun(a,b)
=MAX_{m IN myAlternatives}

{ fun(t(a,b,m))
*cost(a,b,m)

};

there is only a single recursive call to fun via the transformation function t.
It is connected to the reward functional cost by the multiplication operator
“*” resulting in a multiplicative DPFE.

Assuming there are transition weights p1 and p2 specified in the transition
weight section, the following example

DPFE: f(i,j)
=MAX_{d IN decisionSet}

{ p1.f(t1(i,j,d))
+p2.f(t2(i,j,d))
+r(i,j,d)

};

shows an additive DPFE with two recursive calls via the transformation func-
tions t1 and t2 the result of each of which is weighted with the floating point
values p1 and p2 respectively. For details about the calculation of the weights,
please refer to the Transition Weight section.

3.3 Detailed Description of the gDPS Sections 115

3.3.11 Cost/Reward Function Section

The mandatory Reward Function section defines the cost or profit function
referenced in the DPFE. If a DP model does not need a reward function,
it can be defined to be a constant function, equaling the identity element
of addition (i.e. 0) or multiplication (i.e. 1), depending on whether we have
an additive or multiplicative DPFE. The section begins with the keyword
REWARD_FUNCTION, followed by a colon, the identifier of the reward function as
used in the DPFE section and the parameter list which contains the identifiers
of the state components, and the decision variable. Then there is an equal-sign
symbol followed by an arithmetic expression that evaluates to a floating point
number. This expression may involve the parameters. A semicolon denotes
the end of the Reward Function section. For example, in

REWARD_FUNCTION: rew(i,j,k)
=myArr[i]*myArr[j]*myArr[k];

the reward function is named rew and the expression it evaluates to is a
product of three array variables from the array myArr.

In addition to the usual arithmetic operators such as addition (+), sub-
traction (-), multiplication (*), integer or real-vauled division (/), and integer
remainder (%) there is the possibility to delegate more complicated arithmetic
to a helper function defined in the general functions section. For example, in

REWARD_FUNCTION: r(stage,remainingMoney,m)
=reliabilityOfStage(stage,m);

the calculation of the reward is performed by a helper function named
reliabilityOfStage, which happens to require only two of the three pa-
rameters as arguments (i.e. the reward is independent of the parameter
remainingMoney). The helper function is assumed to return a floating-point
value of type double.

3.3.12 Transformation Function Section

The mandatory Transformation Function section defines the one or more next-
state transformation (or transition) functions referenced in the DPFE. It be-
gins with the keyword TRANSFORMATION_FUNCTION, followed by a colon, and
a semicolon separated list of function definitions.

Since a transformation function computes the next-state when provided
with the current state and the decision taken, a suitable definition starts
with the function identifier as used in the DPFE section and the parameter
list, which contains the identifiers of the state components and the decision
variable. Then there is an equal-sign symbol followed by a parenthesized list
of expressions, each of which evaluates to an integer or to a set, depending
on the definition of what constitutes a state. Any expression may involve
the parameters. A semicolon denotes the end of a transformation function
definition. In the example

116 3 The DP Specification Language gDPS

TRANSFORMATION_FUNCTION: t1(i,j,k)
=(i,k);
t2(i,j,k)
=(k+1,j);

there are two transformation functions t1 and t2, each of which maps a state,
represented by a pair of integers (i, j) and a decision k to a new state. The
new state is (i, k) in case of t1 and it is (k + 1, j) in case of t2. The arithmetic
operators +,-,*,/,% can be used for state components that are integers.

For state components that are sets it is possible to use the set operator
keywords SETUNION, SETINTERSECTION and SETMINUS. For example, if the
state is a pair of an integer x and a set nSet, and y is the decision variable,
then

TRANSFORMATION_FUNCTION: t(x,nSet,y)
=(y, nSet SETUNION {y});

defines the transformation function t in the following way: the new state’s first
component is the integer y and the second component is the set that results
from adding the element y to the set nSet. More complex transformation
functions may require use of helper functions. For example, exponentiation,
maximization, minimization, etc. have to be delegated to a helper function in
the General Functions section. There, methods of java.lang.Math such as
abs(), ceil(), floor(), exp(), max(), min(), pow(), etc., can be used.

3.3.13 Transition Weight Section

The optional Transition Weight section describes the transition weights that
may precede the recursive function calls in the DPFE. It is assumed that the
number of transition weights and the order in which the transition weights
are defined in this section matches the number and order of the corresponding
transformation functions, according to the DPFE.

The section begins with the keyword TRANSITION_WEIGHTS, followed by a
colon, and a semicolon separated list of real-valued transition weight function
definitions.

A transition weight function definition begins with the identifier of the
transition weight as used in the DPFE section, followed by the parameter list
which contains the identifiers of the state components, and the decision vari-
able. Then there is an equal-sign symbol followed by an arithmetic expression
that evaluates to a floating point number (see the reward function section for
details about legal arithmetic expressions). A semicolon denotes the end of
the transition weight function definition. For example,

TRANSITION_WEIGHTS: p1(n,sn,xn)=1.0-winProbability;
p2(n,sn,xn)=winProbability;

defines the two transition weight functions p1 and p2 which in this case are
both constant functions independent of the state and the decision.

3.4 BNF Grammar of the gDPS language 117

In the example

TRANSITION_WEIGHTS: p(x,y,d)=myProbFunction(x,d);

the computation of the transition weight p is delegated to the helper func-
tion myProbFunction which returns a floating-point value of type double and
which is defined in the general functions section. The function myProbFunction
happens to require only two of the three parameters as arguments (i.e. the
transition weight is independent of the state component y).

3.4 BNF Grammar of the gDPS language

The Backus-Naur form (BNF) for the gDPS language is given in this section.
The extended form is used, where “*” denotes “zero or more occurence”,
“+” denotes “one or more occurence”, and “?” denotes “zero or one occurence
(option).” Terminal symbols are delimited by an opening angled bracket (“<”)
and a closing angled bracket (“>”).

dpSpecification ::= <BEGIN> sectionList <END> <EOF>
sectionList ::= nameSection (generalVariablesSection)?

(setVariablesSection)? (generalFunctionsSection)?
stateTypeSection decisionVariableSection
decisionSpaceSection goalSection
(dbfeBaseConditionsSection | dpfeBaseSection) dpfeSection
rewardFunctionSection transformationFunctionSection
(transitionWeightSection)?

nameSection ::= <NAME> <IDENTIFIER> <SEMICOLON>
generalVariablesSection ::= <GENERAL_VARIABLES>
setVariablesSection ::= <SET_VARIABLES_BEGIN>

(setVariableAssignment)* <SET_VARIABLES_END>
setVariableAssignment ::= <SET> <IDENTIFIER> <EQUALS>

setUnionExpression <SEMICOLON>
setUnionExpression ::= setIntersectionExpression

(<SETUNION> setIntersectionExpression)*
setIntersectionExpression ::= setDifferenceExpression

(<SETINTERSECTION> setDifferenceExpression)*
setDifferenceExpression ::= setPrimaryExpression

(<SETMINUS> setPrimaryExpression)*
setPrimaryExpression ::= setGlobalFunctional
| setArrayVariable
| explicitSet
| <LPAREN> setUnionExpression <RPAREN>
setGlobalFunctional ::= <IDENTIFIER> <LPAREN>

setGlobalFunctionalArgumentList <RPAREN>
setGlobalFunctionalArgumentList ::= (globalFunctionalArgument

118 3 The DP Specification Language gDPS

(<COMMA> globalFunctionalArgument)*)?
setArrayVariable ::= <IDENTIFIER>

(<LBRACKET> additiveExpression <RBRACKET>)*
explicitSet ::= explicitSetInDoubleDotNotation
| explicitSetEnumeration
explicitSetInDoubleDotNotation ::= <LBRACE> additiveExpression

<COMMA> <DOUBLEDOT> <COMMA> additiveExpression <RBRACE>
explicitSetEnumeration ::= <LBRACE> (additiveExpression

(<COMMA> additiveExpression)*)? <RBRACE>
additiveExpression ::= multiplicativeExpression

((<PLUS> | <MINUS>) multiplicativeExpression)*
multiplicativeExpression ::= primaryExpression

((<MULT> | <DIV> | <MOD>) primaryExpression)*
primaryExpression ::= globalFunctional
| arrayVariable
| <INTEGER_LITERAL>
| <LPAREN> additiveExpression <RPAREN>
globalFunctional ::= <IDENTIFIER> <LPAREN>

globalFunctionalArgumentList <RPAREN>
globalFunctionalArgumentList ::= (globalFunctionalArgument

(<COMMA> globalFunctionalArgument)*)?
globalFunctionalArgument ::= arrayVariable
arrayVariable ::= <IDENTIFIER> (<LBRACKET> additiveExpression

<RBRACKET>)*
generalFunctionsSection ::= <GENERAL_FUNCTIONS>
stateTypeSection ::= <STATE_TYPE> <COLON>

stateTypeParameterList <SEMICOLON>
stateTypeParameterList ::= <LPAREN> stateTypeFormalParameter

(<COMMA> stateTypeFormalParameter)* <RPAREN>
stateTypeFormalParameter ::= stateTypeType

stateTypeVariableDeclaratorId
stateTypeType ::= <INT> | <SET>
stateTypeVariableDeclaratorId ::= <IDENTIFIER>
decisionVariableSection ::= <DECISION_VARIABLE> <COLON>

decisionVariableType <IDENTIFIER> <SEMICOLON>
decisionVariableType ::= <INT> | <STRING>
decisionSpaceSection ::= <DECISION_SPACE> <COLON> <IDENTIFIER>

<LPAREN> argumentList <RPAREN> <EQUALS>
decisionSetUnionExpression <SEMICOLON>

argumentList ::= <IDENTIFIER> (<COMMA> <IDENTIFIER>)*
decisionSetUnionExpression ::= decisionSetIntersectionExpression

(<SETUNION> decisionSetIntersectionExpression)*
decisionSetIntersectionExpression ::=

decisionSetDifferenceExpression (<SETINTERSECTION>
decisionSetDifferenceExpression)*

3.4 BNF Grammar of the gDPS language 119

decisionSetDifferenceExpression ::= decisionSetPrimaryExpression
(<SETMINUS> decisionSetPrimaryExpression)*

decisionSetPrimaryExpression ::= decisionSetGlobalFunctional
| decisionSetArrayVariable
| decisionSetExplicit
| <LPAREN> decisionSetUnionExpression <RPAREN>
decisionSetGlobalFunctional ::= <IDENTIFIER> <LPAREN>

decisionSetGlobalFunctionalArgumentList <RPAREN>
decisionSetGlobalFunctionalArgumentList ::=

(decisionSetGlobalFunctionalArgument (<COMMA>
decisionSetGlobalFunctionalArgument)*)?

decisionSetGlobalFunctionalArgument ::= <IDENTIFIER>
decisionSetArrayVariable ::= <IDENTIFIER> (<LBRACKET>

decisionAdditiveExpression <RBRACKET>)*
decisionSetExplicit ::= decisionSetExplicitInDoubleDotNotation
| decisionSetExplicitEnumeration
decisionSetExplicitInDoubleDotNotation ::= <LBRACE>

decisionAdditiveExpression <COMMA> <DOUBLEDOT> <COMMA>
decisionAdditiveExpression <RBRACE>

decisionSetExplicitEnumeration ::= <LBRACE>
decisionAdditiveExpression (<COMMA>
decisionAdditiveExpression)* <RBRACE>

decisionAdditiveExpression ::= decisionMultiplicativeExpression
((<PLUS> | <MINUS>) decisionMultiplicativeExpression)*

decisionMultiplicativeExpression ::= decisionPrimaryExpression
((<MULT> | <DIV> | <MOD>) decisionPrimaryExpression)*

decisionPrimaryExpression ::= decisionArrayVariable
| <INTEGER_LITERAL>
| <LPAREN> decisionAdditiveExpression <RPAREN>
decisionArrayVariable ::= <IDENTIFIER> (<LBRACKET>

decisionAdditiveExpression <RBRACKET>)*
goalSection ::= <GOAL> <COLON> <IDENTIFIER> <LPAREN>

primaryExpression (<COMMA> primaryExpression)* <RPAREN>
<SEMICOLON>

singleState ::= <LPAREN> numberOrConstant (<COMMA>
numberOrConstant)* <RPAREN>

numberOrConstant ::= <INTEGER_LITERAL> | <IDENTIFIER>
dbfeBaseConditionsSection ::= <DPFE_BASE_CONDITIONS> <COLON>

(dpfeBaseConditionStatement)+
dpfeBaseConditionStatement ::= <IDENTIFIER> <LPAREN>

argumentList <RPAREN> <EQUALS>
rewardFunctionAdditiveExpression <WHEN> <LPAREN>
conditionalOrCExpression <RPAREN> <SEMICOLON>

conditionalOrCExpression ::= conditionalAndCExpression
(<COND_OR> conditionalAndCExpression)*

120 3 The DP Specification Language gDPS

conditionalAndCExpression ::= equalityCExpression
(<COND_AND> equalityCExpression)*

equalityCExpression ::= setEqualityCExpression
| numericalEqualityCExpression
setEqualityCExpression ::=

transformationFunctionSetUnionExpression <SETEQUALS>
transformationFunctionSetUnionExpression

numericalEqualityCExpression ::= relationalCExpression
((<EQ> | <NE>) relationalCExpression)*

relationalCExpression ::= negatingCExpression
((<LT> | <GT> | <LTE> | <GTE>) negatingCExpression)*

negatingCExpression ::= (<EXCLAMATION_MARK>)?
primaryCExpression

primaryCExpression ::= transformationFunctionAdditiveExpression
| <LPAREN> conditionalOrCExpression <RPAREN>
dpfeBaseSection ::= <DPFE_BASE> <COLON> (dpfeBaseStatement)+
dpfeBaseStatement ::= dpfeBaseBlock
| dpfeBaseForStatement
| dpfeBaseAtomicStatement
dpfeBaseBlock ::= <LBRACE> (dpfeBaseStatement)* <RBRACE>
dpfeBaseForStatement ::= <FOR> <LPAREN> <IDENTIFIER> <EQUALS>

numberOrConstant <SEMICOLON> <IDENTIFIER>
(<LT> | <LTE> | <GT> | <GTE>) numberOrConstant <SEMICOLON>
<IDENTIFIER> (<INC> | <DEC>) <RPAREN> dpfeBaseStatement

dpfeBaseAtomicStatement ::= <IDENTIFIER> singleState <EQUALS>
rewardFunctionAdditiveExpression <SEMICOLON>

dpfeSection ::= <DPFE> <COLON> <IDENTIFIER> <LPAREN>
argumentList <RPAREN> <EQUALS> dpfeMinOrMax dpfeDecisionLoop
dpfeExpression <SEMICOLON>

dpfeMinOrMax ::= <MIN_> | <MAX_>
dpfeDecisionLoop ::= <LBRACE> <IDENTIFIER> <IN> <IDENTIFIER>

<RBRACE>
dpfeExpression ::= <LBRACE> (dpfeAdditiveExpression |

dpfeMultiplicativeExpression) <RBRACE>
dpfeAdditiveExpression ::= dpfeFunctional

(<PLUS> dpfeFunctional)+
dpfeMultiplicativeExpression ::= dpfeFunctional

(<MULT> dpfeFunctional)+
dpfeFunctional ::= dpfeFunctionalAtom
| dpfeDoublyNestedFunctional
dpfeFunctionalAtom ::= <IDENTIFIER> <LPAREN> argumentList

<RPAREN>
dpfeDoublyNestedFunctional ::= (<IDENTIFIER> <DOT>)?

<IDENTIFIER> <LPAREN> <IDENTIFIER> <LPAREN> argumentList
<RPAREN> <RPAREN>

3.4 BNF Grammar of the gDPS language 121

rewardFunctionSection ::= <REWARD_FUNCTION> <COLON>
<IDENTIFIER> <LPAREN> argumentList <RPAREN> <EQUALS>
rewardFunctionBody <SEMICOLON>

rewardFunctionBody ::= rewardFunctionAdditiveExpression
rewardFunctionAdditiveExpression ::=

rewardFunctionMultiplicativeExpression ((<PLUS> | <MINUS>)
rewardFunctionMultiplicativeExpression)*

rewardFunctionMultiplicativeExpression ::=
rewardFunctionPrimaryExpression ((<MULT> | <DIV> | <MOD>)
rewardFunctionPrimaryExpression)*

rewardFunctionPrimaryExpression ::=
rewardFunctionGlobalFunctional

| rewardFunctionArrayVariable
| rewardFunctionLiteral
| <LPAREN> rewardFunctionAdditiveExpression <RPAREN>
rewardFunctionGlobalFunctional ::= <IDENTIFIER> <LPAREN>

rewardFunctionGlobalFunctionalArgumentList <RPAREN>
rewardFunctionGlobalFunctionalArgumentList ::=

(rewardFunctionGlobalFunctionalArgument (<COMMA>
rewardFunctionGlobalFunctionalArgument)*)?

rewardFunctionGlobalFunctionalArgument ::= <IDENTIFIER>
rewardFunctionArrayVariable ::= <IDENTIFIER> (<LBRACKET>

rewardFunctionAdditiveExpression <RBRACKET>)*
rewardFunctionLiteral ::= <INTEGER_LITERAL>
| <FLOATING_POINT_LITERAL>
transformationFunctionSection ::= <TRANSFORMATION_FUNCTION>

<COLON> (<IDENTIFIER> <LPAREN> argumentList <RPAREN>
<EQUALS> transformationFunctionNewState <SEMICOLON>)+

transformationFunctionNewState ::= <LPAREN>
transformationFunctionNewStateCoordinateList <RPAREN>

transformationFunctionNewStateCoordinateList ::=
transformationFunctionNewStateCoordinate (<COMMA>
transformationFunctionNewStateCoordinate)*

transformationFunctionNewStateCoordinate ::=
transformationFunctionAdditiveExpression

| transformationFunctionSetUnionExpression
transformationFunctionAdditiveExpression ::=

transformationFunctionMultiplicativeExpression
((<PLUS> | <MINUS>)
transformationFunctionMultiplicativeExpression)*

transformationFunctionMultiplicativeExpression ::=
transformationFunctionPrimaryExpression
((<MULT> | <DIV> | <MOD>)
transformationFunctionPrimaryExpression)*

transformationFunctionPrimaryExpression ::=

122 3 The DP Specification Language gDPS

transformationFunctionGlobalFunctional
| transformationFunctionArrayVariable
| <INTEGER_LITERAL>
| <LPAREN> transformationFunctionAdditiveExpression <RPAREN>
transformationFunctionGlobalFunctional ::= <IDENTIFIER> <LPAREN>

transformationFunctionGlobalFunctionalArgumentList <RPAREN>
transformationFunctionGlobalFunctionalArgumentList ::=

(transformationFunctionGlobalFunctionalArgument (<COMMA>
transformationFunctionGlobalFunctionalArgument)*)?

transformationFunctionGlobalFunctionalArgument ::= <IDENTIFIER>
transformationFunctionArrayVariable ::= <IDENTIFIER>

(<LBRACKET> transformationFunctionAdditiveExpression
<RBRACKET>)*

transformationFunctionSetUnionExpression ::=
transformationFunctionSetIntersectionExpression (<SETUNION>
transformationFunctionSetIntersectionExpression)*

transformationFunctionSetIntersectionExpression ::=
transformationFunctionSetDifferenceExpression
(<SETINTERSECTION>
transformationFunctionSetDifferenceExpression)*

transformationFunctionSetDifferenceExpression ::=
transformationFunctionSetPrimaryExpression (<SETMINUS>
transformationFunctionSetPrimaryExpression)*

transformationFunctionSetPrimaryExpression ::=
transformationFunctionSetGlobalFunctional

| transformationFunctionSetArrayVariable
| transformationFunctionExplicitSet
| <LPAREN> transformationFunctionSetUnionExpression <RPAREN>
transformationFunctionSetGlobalFunctional ::= <IDENTIFIER>

<LPAREN>
transformationFunctionSetGlobalFunctionalArgumentList
<RPAREN>

transformationFunctionSetGlobalFunctionalArgumentList ::=
(transformationFunctionSetGlobalFunctionalArgument (<COMMA>
transformationFunctionSetGlobalFunctionalArgument)*)?

transformationFunctionSetGlobalFunctionalArgument ::=
<IDENTIFIER>

transformationFunctionSetArrayVariable ::= <IDENTIFIER>
(<LBRACKET> transformationFunctionAdditiveExpression
<RBRACKET>)*

transformationFunctionExplicitSet ::=
transformationFunctionExplicitSetInDoubleDotNotation

| transformationFunctionExplicitSetEnumeration
transformationFunctionExplicitSetInDoubleDotNotation ::=

<LBRACE> transformationFunctionAdditiveExpression <COMMA>

3.4 BNF Grammar of the gDPS language 123

<DOUBLEDOT> <COMMA> transformationFunctionAdditiveExpression
<RBRACE>

transformationFunctionExplicitSetEnumeration ::= <LBRACE>
(transformationFunctionAdditiveExpression (<COMMA>
transformationFunctionAdditiveExpression)*)? <RBRACE>

transitionWeightSection ::= <TRANSITION_WEIGHTS> <COLON>
(<IDENTIFIER> <LPAREN> argumentList <RPAREN> <EQUALS>
rewardFunctionAdditiveExpression <SEMICOLON>)+

4

DP Problem Specifications in gDPS

In this chapter, gDPS source files for all of the DP examples from Chap. 2 are
listed. We elaborate on some of the files to illustrate some of the finer points
on how to code with gDPS.

4.1 gDPS source for ALLOT

In the ALLOTt problem allotment decisions and their costs are defined in
separate tables.

BEGIN
NAME ALLOTt; //Optimal Allotment Problem (multiplicative)

// cost defined by tables
// REF: Hillier,pp.549-552

GENERAL_VARIABLES_BEGIN
private static final int num=3; //no.of items
private static final int lim=2; //capacity
private static final double infty=Double.MAX_VALUE;
private static int[][] allotment =
{ {0,1,2},
{0,1,2},
{0,1,2}

};
private static double [][] probFail =
{ {.40,.20,.15},
{.60,.40,.20},
{.80,.50,.30}

};
GENERAL_VARIABLES_END

A. Lew and H. Mauch: DP Problem Specifications in gDPS, Studies in Computational Intel-

ligence (SCI) 38, 125–203 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

126 4 DP Problem Specifications in gDPS

STATE_TYPE: (int stage, int total);

DECISION_VARIABLE: int d;

DECISION_SPACE: decisionSet(stage,total)={0,..,lim};

GOAL: f(0,0);

DPFE_BASE_CONDITIONS:
f(stage,total)=infty WHEN ((stage==num)&&(total>lim));
f(stage,total)=1.00 WHEN ((stage==num)&&(total<=lim));

DPFE:
f(stage,total)=MIN_{d IN decisionSet}

{cost(stage,total,d) * f(t(stage,total,d))};

REWARD_FUNCTION:
cost(stage,total,d)=probFail[stage][d];

TRANSFORMATION_FUNCTION:
t(stage,total,d)=(stage+1,total+allotment[stage][d]);

END

In the ALLOTf problem the costs are defined nontabularly, i.e., by general
functions.

BEGIN
NAME ALLOTf; // Optimal Allotment Problem (additive)

// cost defined by function
// REF: Winston04,pp.975-977

GENERAL_VARIABLES_BEGIN
private static int N = 3; // no. of users
private static int MAX = 6; // max amt of resourse
private static final double negInfty=Double.MIN_VALUE;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static double cost(int k, int d) {

double result=negInfty;
if (d==0) {
result=0.0;

}
else {
switch(k) {

4.1 gDPS source for ALLOT 127

case 1: {
result=7.0*d+2.0;
break;

}
case 2: {
result=3.0*d+7.0;
break;

}
case 3: {
result=4.0*d+5.0;
break;

}
default: {
result=negInfty;
break;

}
}

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int k, int m); //k=stage; m=remaining

DECISION_VARIABLE: int d; //amt allotted to user k

DECISION_SPACE: decisionSet(k,m)={0,..,m};

GOAL: f(1,MAX);

DPFE_BASE_CONDITIONS:
f(k,m)=0.0 WHEN ((k>N)&&(m>=0));

DPFE: f(k,m)=MAX_{d IN decisionSet}
{ r(k,m,d) + f(t(k,m,d)) };

REWARD_FUNCTION: r(k,m,d)=cost(k,d);

TRANSFORMATION_FUNCTION: t(k,m,d)=(k+1,m-d);

END

In the ALLOTm problem costs are multiplicative rather than additive.

BEGIN
NAME ALLOTm; // Optimal Allotment Problem--multiplicative

128 4 DP Problem Specifications in gDPS

// REF: Winston04,pp.998-999

GENERAL_VARIABLES_BEGIN
private static double[][] cost={

{0.6, 0.8, 0.85},
{0.5, 0.7, 0.85},
{0.3, 0.55, 0.7}

};
private static int N = 3; // no. of users
private static int MAX = 2; // max amt of resourse

GENERAL_VARIABLES_END

STATE_TYPE: (int k, int m); //k=stage; m=remaining

DECISION_VARIABLE: int d; //amt allotted to user k

DECISION_SPACE: decisionSet(k,m)={0,..,m};

GOAL: f(1,MAX);

DPFE_BASE_CONDITIONS:
f(k,m)=1.0 WHEN ((k>N)&&(m>=0));

DPFE: f(k,m)=MAX_{d IN decisionSet}
{ r(k,m,d) * f(t(k,m,d)) };

REWARD_FUNCTION: r(k,m,d)=cost[k - 1][d];

TRANSFORMATION_FUNCTION: t(k,m,d)=(k+1,m-d);

END

4.2 gDPS source for APSP

The first DP model uses the relaxation approach from (2.2).

BEGIN
NAME APSP;

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
private static int[][] distance =
{

{infty, 3, 5, infty},

4.2 gDPS source for APSP 129

{infty, infty, 1, 8},
{infty, 2, infty, 5},
{infty, infty, infty, infty}

};
private static int N=distance.length; // number of nodes
private static int N1=N-1;
private static int s=0; // source
private static int t=3; // target

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int cost(int p, int q) {
if (p==q) {
return 0;

}
else {
return distance[p][q];

}
}

GENERAL_FUNCTIONS_END

STATE_TYPE: (int k, int p, int q);

DECISION_VARIABLE: int d;
DECISION_SPACE: possibleSuccessors(k,p,q)={0,..,N1};

GOAL: f(N1,s,t); //at most N1=N-1 edges in solution path

DPFE_BASE_CONDITIONS:
f(k,p,q)=0.0 WHEN ((k==0)&&(p==q));
f(k,p,q)=infty WHEN ((k==0)&&(p!=q));

DPFE: f(k,p,q)
=MIN_{d IN possibleSuccessors}

{ r(k,p,q,d) + f(t(k,p,q,d))};

REWARD_FUNCTION: r(k,p,q,d)=cost(p,d);

TRANSFORMATION_FUNCTION: t(k,p,q,d)=(k - 1, d, q);

END

The second DP model uses the Floyd-Warshall DPFE (2.4).

BEGIN
NAME APSPFW; //Floyd-Warshall

130 4 DP Problem Specifications in gDPS

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
private static int[][] distance =
{
{infty, 3, 5, infty},
{infty, infty, 1, 8},
{infty, 2, infty, 5},
{infty, infty, infty, infty}
};

private static int maxNodeIndex=distance.length-1;
GENERAL_VARIABLES_END

STATE_TYPE: (int k, int p, int q);

DECISION_VARIABLE: int d;
DECISION_SPACE: possibleSuccessors(k,p,q)={0,1};

GOAL: f(maxNodeIndex,0,3); //maxNodeIndex=3,
//source=0, target=3

DPFE_BASE_CONDITIONS:
f(k,p,q)=0.0 WHEN ((k==0)&&(p==q));
f(k,p,q)=distance[p][q] WHEN ((k==0)&&(p!=q));

DPFE: f(k,p,q)
=MIN_{d IN possibleSuccessors}
{ r(k,p,q,d) + p1.f(t1(k,p,q,d))

+ p2.f(t2(k,p,q,d)) + p3.f(t3(k,p,q,d)) };

REWARD_FUNCTION: r(k,p,q,d)=0;

TRANSFORMATION_FUNCTION:
t1(k,p,q,d)=(k - 1, p, q);
t2(k,p,q,d)=(k - 1, p, k);
t3(k,p,q,d)=(k - 1, k, q);

TRANSITION_WEIGHTS:
p1(k,p,q,d)=1-d;
p2(k,p,q,d)=d;
p3(k,p,q,d)=d;

END

4.3 gDPS source for ARC 131

4.3 gDPS source for ARC

BEGIN
NAME ARC; //alphabetic radix code;

//uses top-down formulation as for MCM

GENERAL_VARIABLES_BEGIN
//one instance:
//private static double[] weight = {1, 2, 3, 4};
//another instance:
private static double[] weight = {2, 3, 3, 4};
//N is the no. of partition points:
private static int N = weight.length-1;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static double sum(int p, int q) {
double result=0.0;
for (int k=p; k<=q; k++) {
result+=weight[k];

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int firstIndex, int secondIndex);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(firstIndex,secondIndex)

={firstIndex,..,secondIndex - 1};

GOAL: f(0,N);

DPFE_BASE_CONDITIONS:
f(firstIndex,secondIndex)=0.0

WHEN (firstIndex==secondIndex);

DPFE: f(firstIndex,secondIndex)
=MIN_{d IN decisionSet}
{ f(t1(firstIndex,secondIndex,d))
+f(t2(firstIndex,secondIndex,d))
+r(firstIndex,secondIndex,d)
};

REWARD_FUNCTION: r(firstIndex,secondIndex,d)

132 4 DP Problem Specifications in gDPS

=sum(firstIndex,secondIndex);

TRANSFORMATION_FUNCTION: t1(firstIndex,secondIndex,d)
=(firstIndex,d);
t2(firstIndex,secondIndex,d)
=(d+1,secondIndex);

END

4.4 gDPS source for ASMBAL

We present two solutions, corresponding to the two different DPFEs given
in Sect. 2.4. The first formulation uses the staged DPFE (2.6). The arccost
function is used to set the cost to zero for staying in the same line, as opposed
to adding such zero costs to the cost array.

BEGIN
NAME asmbals; //assembly line balancing problem

//staged version

GENERAL_VARIABLES_BEGIN
private static int[][] cost = // (stage,line)
{
{2,4}, // to next line
{2,2},{1,3},{2,1},{2,3},{1,4}, // to next line
{3,2} // from line
};

private static int[][] vertexcost = // (stage,line)
{
{0,0}, {7,8},{9,5},{3,6},{4,4},{8,5},{4,7}
};
private static int N = vertexcost.length-1;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int arccost(int g, int x, int d) {
if (g==0) return cost[g][d]; // to next line d
else if (g==N) return cost[g][x]; // from line x
else if (x==d) return 0; // stay same line
else return cost[g][d]; // to next line d

}
GENERAL_FUNCTIONS_END

4.4 gDPS source for ASMBAL 133

STATE_TYPE: (int g, int x); // g is stage, x is line

DECISION_VARIABLE: int d; // d is next line

DECISION_SPACE: possibleSuccessors(g,x)={0,1}; // line numbers

GOAL: f(0,0);

DPFE_BASE_CONDITIONS: f(g,x)=0.0 WHEN (g>N);

DPFE: f(g,x) = MIN_{d IN possibleSuccessors}
{ r(g,x,d) + f(t(g,x,d)) };

REWARD_FUNCTION:
r(g,x,d) = vertexcost[g][x] + arccost(g,x,d);

TRANSFORMATION_FUNCTION: t(g,x,d) = (g+1,d);

END

The second formulation uses the DPFE (2.7). To represent infinity entries
in a matrix, we may use

private static final int infty=Integer.MAX_VALUE;

where Integer.MAX_VALUE is the largest representable integer.

BEGIN
NAME asmbala; //assembly line balancing problem

//(based upon SPA)

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
private static int[][] arccost =
{
{infty, 2, 4, infty, infty, infty, infty,
infty, infty, infty, infty, infty, infty, infty},
{infty, infty, infty, 0, 2, infty, infty,
infty, infty, infty, infty, infty, infty, infty},
{infty, infty, infty, 2, 0, infty, infty,
infty, infty, infty, infty, infty, infty, infty},
{infty, infty, infty, infty, infty, 0, 3,
infty, infty, infty, infty, infty, infty, infty},
{infty, infty, infty, infty, infty, 1, 0,
infty, infty, infty, infty, infty, infty, infty},
{infty, infty, infty, infty, infty, infty, infty,

0, 1, infty, infty, infty, infty, infty},

134 4 DP Problem Specifications in gDPS

{infty, infty, infty, infty, infty, infty, infty,
2, 0, infty, infty, infty, infty, infty},

{infty, infty, infty, infty, infty, infty, infty,
infty, infty, 0, 3, infty, infty, infty},
{infty, infty, infty, infty, infty, infty, infty,
infty, infty, 2, 0, infty, infty, infty},
{infty, infty, infty, infty, infty, infty, infty,
infty, infty, infty, infty, 0, 4, infty},
{infty, infty, infty, infty, infty, infty, infty,
infty, infty, infty, infty, 1, 0, infty},
{infty, infty, infty, infty, infty, infty, infty,
infty, infty, infty, infty, infty, infty, 3},
{infty, infty, infty, infty, infty, infty, infty,
infty, infty, infty, infty, infty, infty, 2},
{infty, infty, infty, infty, infty, infty, infty,
infty, infty, infty, infty, infty, infty, infty}

};
private static int[] vertexcost =

{ 0, 7, 8, 9, 5, 3, 6,
4, 4, 8, 5, 4, 7, 0};

//max value of subscript for 0-indexing:
private static int N = vertexcost.length-1;

GENERAL_VARIABLES_END

STATE_TYPE: (int x);

DECISION_VARIABLE: int d;

DECISION_SPACE: possibleSuccessors(x)={x+1,..,N};

GOAL: f(0);

DPFE_BASE: f(N)=0.0;

DPFE: f(x) = MIN_{d IN possibleSuccessors}
{ cost(x,d) + f(t(x,d)) };

REWARD_FUNCTION: cost(x,d) = vertexcost[x] + arccost[x][d];

TRANSFORMATION_FUNCTION: t(x,d) = (d);

END

4.5 gDPS source for ASSIGN 135

4.5 gDPS source for ASSIGN

This program can be modified to solve the linear search (LINSRC) prob-
lem and other permutation problems (PERM, SPT) by simply changing the
cost function. It is easy to loop over all elements in a set, as is done in the
sumofwgts functions using an Iterator object.

BEGIN
NAME assign; // Optimal Assignment Problem

GENERAL_VARIABLES_BEGIN
private static int[] weight = {3,5,2};
private static int ttlwgt = 10;
private static int N = weight.length;

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllItems={0,..,N - 1};
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int sumofwgts(SortedSet items) {
int result=0;
Iterator i=items.iterator();
while(i.hasNext()) {
int j=((Integer) i.next()).intValue();
result+=weight[j];

}
return result;

}
private static int cost(SortedSet items, int k, int d) {
//return k*weight[d]; //LINSRCS: min at end;

//k=N+1-size => 1..N
//return sumofwgts(items); //LINSRCW: max at front; sum(S)
//return items.size()*weight[d]; //PERM: min at front;

//size => N..1

return (ttlwgt-sumofwgts(items)+weight[d]);
// SPT: min at front; sum(~S)+nextitem
// ttlwgt-sumofwgts(itemsToBeChosen)
// =sumofwgts(itemsChosenSoFar)=sum(~S)

}
GENERAL_FUNCTIONS_END

136 4 DP Problem Specifications in gDPS

STATE_TYPE: (Set items, int k);

DECISION_VARIABLE: int d;

DECISION_SPACE: decisionSet(items, k)=items;

GOAL: f(setOfAllItems, 1);

DPFE_BASE_CONDITIONS: f(items,k)=0.0 WHEN (k>N);

DPFE: f(items,k)=MIN_{d IN decisionSet}
{ r(items,k,d) + f(t(items,k,d)) };

REWARD_FUNCTION: // cost of ASSIGNing item d at stage k
r(items,k,d) = cost(items,k,d);

TRANSFORMATION_FUNCTION: // omit item in next stage
t(items,k,d) = (items SETMINUS {d},k+1);

END

4.6 gDPS source for BST

BEGIN
NAME BST; //OptimalBinarySearchTree;

GENERAL_VARIABLES_BEGIN
//assume the n data items are the ints {0,1,..,n-1}
//this instance: n=5, i.e. { 0 , 1 , 2 , 3 , 4 }
//corresponding to strings { "A", "B", "C", "D", "E"}
//now specify the probabilities of access:
private static double[] probability

= {0.25, 0.05, 0.2, 0.4, 0.1};
private static int n = probability.length; //n=5 data items

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllItems={0,..,n - 1};
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static double sumOfProbabilitiesOfItems

(SortedSet items) {

4.6 gDPS source for BST 137

double result=0.0;
for (int i=((Integer) items.first()).intValue();

i<=((Integer) items.last()).intValue();
i++) {

result+=probability[i];
}
return result;

}
private static NodeSet setOfItemsLessThanPivot

(NodeSet items, int alpha) {
//conveniently use method headSet() from SortedSet
//headSet() DOES NOT include alpha
return new NodeSet(items.headSet(new Integer(alpha)));

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (Set items);

DECISION_VARIABLE: int splitAtAlpha;
DECISION_SPACE: decisionSet(items)

=items;

GOAL: f(setOfAllItems);
DPFE_BASE:

f(emptySet)=0.0 ;

DPFE: f(items)
=MIN_{splitAtAlpha IN decisionSet}

{ f(tLeft(items,splitAtAlpha))
+f(tRight(items,splitAtAlpha))
+cost(items,splitAtAlpha)
};

REWARD_FUNCTION: cost(items,splitAtAlpha)
=sumOfProbabilitiesOfItems(items);

TRANSFORMATION_FUNCTION:
tLeft(items,splitAtAlpha)

=(setOfItemsLessThanPivot(items,splitAtAlpha));
tRight(items,splitAtAlpha)

=((items SETMINUS {splitAtAlpha}) SETMINUS
setOfItemsLessThanPivot(items,splitAtAlpha));

END

138 4 DP Problem Specifications in gDPS

4.7 gDPS source for COV

BEGIN
NAME COV; //optimal COVering problem

GENERAL_VARIABLES_BEGIN
//cost of cover sizes 0,1,..,9 in dollar
private static int[] cost

= {1, 4, 5, 7, 8, 12, 13, 18, 19, 21};
GENERAL_VARIABLES_END

STATE_TYPE: (int numberOfCoverSizes, int largestSize);
//numberOfCoverSizes denotes the stage number in this problem

DECISION_VARIABLE: int nextCoverSize;
DECISION_SPACE: decisionSet(numberOfCoverSizes,largestSize)

={numberOfCoverSizes - 2,..,largestSize - 1};

GOAL: f(3,9); //choose 3 cover sizes to cover
//shrubs sized 0 through 9

DPFE_BASE_CONDITIONS:
f(numberOfCoverSizes,largestSize)

=(largestSize+1)*cost[largestSize]
WHEN (numberOfCoverSizes==1);

DPFE:
f(numberOfCoverSizes,largestSize)
= MIN_{nextCoverSize IN decisionSet}

{ f(t(numberOfCoverSizes,largestSize,nextCoverSize))
+r(numberOfCoverSizes,largestSize,nextCoverSize)
};

REWARD_FUNCTION:
r(numberOfCoverSizes,largestSize,nextCoverSize)
=(largestSize - nextCoverSize)*cost[largestSize];

TRANSFORMATION_FUNCTION:
t(numberOfCoverSizes,largestSize,nextCoverSize)
=(numberOfCoverSizes - 1, nextCoverSize);

END

4.8 gDPS source for DEADLINE 139

4.8 gDPS source for DEADLINE

BEGIN
NAME deadline; //deadline scheduling of unit-time jobs

GENERAL_VARIABLES_BEGIN
private static int[] profit = {10,15,20,1,5};
private static int[] deadline = {1,2,2,3,3}; //sorted
private static int N = profit.length; //no.of jobs

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllJobs={0,..,N - 1};
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static boolean feasible(Set jobs, int k, int d) {
int j=0;
for (int i=0; i<N; i++) {
if (!(jobs.contains(new Integer(i)))||i==d) {
//if i already chosen or next (and is j-th),
//does it meet its deadline?

if (deadline[i]<++j) {
return false;

}
}

}
return true;

}
private static int cost(SortedSet jobs, int k, int d) {
if (feasible(jobs,k,d)) {
return profit[d];

}
else {
return 0;

}
}

GENERAL_FUNCTIONS_END

STATE_TYPE: (Set jobs, int k);
//jobs not yet chosen at stage k

DECISION_VARIABLE: int d; //next job

140 4 DP Problem Specifications in gDPS

DECISION_SPACE: decisionSet(jobs,k)=jobs;

GOAL: f(setOfAllJobs, 1);

DPFE_BASE_CONDITIONS: f(jobs,k)=0.0 WHEN (k>N);

DPFE: f(jobs,k)=MAX_{d IN decisionSet}
{ r(jobs,k,d) + f(t(jobs,k,d)) };

REWARD_FUNCTION: r(jobs,k,d) = cost(jobs,k,d);

TRANSFORMATION_FUNCTION: t(jobs,k,d)=(jobs SETMINUS {d},k+1);

END

4.9 gDPS source for DPP

BEGIN
NAME DPP; //Discounted Profits Problem
//A discounted DP problem from Winston/Venkataramanan
//pp.779--780
//Used a reproductionFactor of 2 instead of 1.2 so number of
//fish takes on integral values, without the need to use a
//round or a floor function.

GENERAL_VARIABLES_BEGIN
private static int T=2; //planning horizon T=2 years
private static double interestRate=0.05; //assume 5%

//interest rate
private static int initialFishAmount=10; //initially 10,000

//fish in lake
private static int reproductionFactor=2; //in 1 year 100%

//more fish
GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static double revenue(int xt) {
//simply assume that the sale price
//is $3 per fish, no matter what
return 3.0*xt;

}
private static double cost(int xt, int b) {
//simply assume that it costs $2 to catch (and process)
//a fish, no matter what

4.10 gDPS source for EDP 141

return 2.0*xt;
}

GENERAL_FUNCTIONS_END

STATE_TYPE: (int t, int b);
//t is stage number, each stage represents one year
//b is current number of fish in lake (scaled to thousands)

DECISION_VARIABLE: int xt;
//xt is the number of fish to catch and sell
//during year t

DECISION_SPACE: decisionSet(t,b)={0,..,b};
//can’t sell more than what is in lake

GOAL: f(1,initialFishAmount);

DPFE_BASE_CONDITIONS:
f(t,b)=0.0 WHEN (t==T+1); //T+1 is outside planning horizon

DPFE: f(t,b)
=MAX_{xt IN decisionSet}

{ yearlyNetProfit(t,b,xt)
+beta.f(trans(t,b,xt))
};

REWARD_FUNCTION: yearlyNetProfit(t,b,xt)
= revenue(xt) - cost(xt,b);

TRANSFORMATION_FUNCTION: trans(t,b,xt)
=(t+1,reproductionFactor*(b-xt));

TRANSITION_WEIGHTS:
beta(t,b,xt)=1/(1+interestRate); //discount factor

END

4.10 gDPS source for EDP

BEGIN
NAME EDPalt; //EditDistanceProblem;

GENERAL_VARIABLES_BEGIN
//example from Gusfield p.223

142 4 DP Problem Specifications in gDPS

private static String s1 = "CAN";
private static String s2 = "ANN";

private static final int insertionCost=1;
private static final int deletionCost=1;
private static final int replacementCost=1;

//it is useful to have the string lengths as
//symbolic constants
private static int s1Length = s1.length();
private static int s2Length = s2.length();

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
//costOfOperation()
//returns 0 if the specified characters in the 2 strings
// match and the decision is to perform
// "replacement" operation for matching chars
// (whose cost is usually defined as 0)
//returns 1 otherwise (if delete, insert, or a real

replacement operation happens)
private static int costOfOperation(int i, int j, int dec) {
if(dec==12) { //dec==12 means decision is to replace
if (s1.charAt(i-1) //note: subtract 1 because array

// starts at index 0
==s2.charAt(j-1)) { //matching chars, cost is 0

return 0;
}
else { //real replacement

return replacementCost; //cost of real replacement
}

}
if(dec==1) { //dec==1 means decision is to delete
return deletionCost;

}
//otherwise it must be that dec==2, decision to insert
return insertionCost;

}
private static int s1Adjustment(int dec) {
if(dec==2) { //insert
return 0;

}
return 1;

}
private static int s2Adjustment(int dec) {

4.10 gDPS source for EDP 143

if(dec==1) { //delete
return 0;

}
return 1;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int i, int j);

DECISION_VARIABLE: int dec;

DECISION_SPACE: decisionSet(i,j)
={1,2,12};

//The decision space is constant in this example.
//It does not depend on the current state.
//We chose to code the 3 allowed operations
//as follows:
//1 stands for delete
//2 stands for insert
//12 stands for replace

GOAL: d(s1Length,s2Length);
//the lengths of s1 and s2, respectively

DPFE_BASE_CONDITIONS:
d(i,j)=j WHEN (i==0);
d(i,j)=i WHEN (j==0);

DPFE: d(i,j)
=MIN_{dec IN decisionSet}

{ d(t(i,j,dec))
+r(i,j,dec)
};

REWARD_FUNCTION: r(i,j,dec)
=costOfOperation(i,j,dec);

TRANSFORMATION_FUNCTION: t(i,j,dec)
=(i-s1Adjustment(dec),

j-s2Adjustment(dec));

END

144 4 DP Problem Specifications in gDPS

4.11 gDPS source for FIB

BEGIN
NAME FIB; //Fibonacci numbers

//Interesting feature: The size of the Bellman Net for this
//example is linear, but the size of the solution tree output
//for this example (something we are not interested anyway)
//is exponential.
//A PN simulator or a spreadsheet solver is more suitable
//than the Java Solver!

STATE_TYPE: (int m);

DECISION_VARIABLE: int dummy;
DECISION_SPACE: dummyDecisionSet(m)

={777}; //any singleton works

GOAL: f(7); //calculate 7th Fibonacci number

DPFE_BASE_CONDITIONS:
f(m)=1.0 WHEN ((m==1)||(m==2));

DPFE: f(m)
=MIN_{dummy IN dummyDecisionSet}

{ f(t1(m,dummy))
+f(t2(m,dummy))
+r(m,dummy)
};

REWARD_FUNCTION: r(m,dummy)=0.0;

TRANSFORMATION_FUNCTION: t1(m,dummy)
=(m - 1);
t2(m,dummy)
=(m - 2);

END

4.12 gDPS source for FLOWSHOP

BEGIN
NAME FLOWSHOP; //Flowshop Problem

4.13 gDPS source for HANOI 145

GENERAL_VARIABLES_BEGIN
private static int[] first = {3,4,8,10}; //sum=25
private static int[] second = {6,2,9,15}; //sum=32
//upper bound on final completion time is 25+32:
private static int sum=57;
private static int m=first.length;

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllItems={0,..,m - 1};
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int fct(int t, int d) {
return Math.max(t - first[d],0) + second[d] ;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (Set S, int t);

DECISION_VARIABLE: int d;
DECISION_SPACE: decset(S,t) = S;

GOAL: f(setOfAllItems,0);

DPFE_BASE_CONDITIONS:
f(S,t)=t WHEN (S SETEQUALS emptySet);

DPFE: f(S,t) = MIN_{d IN decset} {cost(S,t,d) + f(g(S,t,d))};

REWARD_FUNCTION: cost(S,t,d) = first[d];

TRANSFORMATION_FUNCTION: g(S,t,d)
= (S SETMINUS {d}, fct(t,d));

END

4.13 gDPS source for HANOI

BEGIN
NAME hanoi; //tower of hanoi problem

//Compute the number of moves when the recursive
//strategy is used. Shows that DP2PN2Solver can be used to

146 4 DP Problem Specifications in gDPS

//solve basic recurrences that do not require optimization.
//Model does not return the sequence of moves.

STATE_TYPE: (int m, int i, int j, int k);
//m: number of disks to move
//i: index of source tower
//j: index of destination tower
//k: index of temporary tower

DECISION_VARIABLE: int dummy;
DECISION_SPACE: dummyDecisionSet(m)

={-1}; //any singleton works

GOAL: f(3,1,2,3); //move 3 disks from tower 1 to tower 2
//using tower 3 as temporary storage

DPFE_BASE_CONDITIONS:
f(m,i,j,k)=1.0 WHEN (m==1); // counts actual moves

DPFE: f(m) = MIN_{dummy IN dummyDecisionSet}
{ f(t1(m,i,j,k,dummy))
+ f(t2(m,i,j,k,dummy))
+ f(t3(m,i,j,k,dummy))
+ r(m,i,j,k,dummy)
};

REWARD_FUNCTION:
r(m,i,j,k,dummy) = 0.0; // cost deferred to base case

TRANSFORMATION_FUNCTION:
t1(m,i,j,k,dummy) = (m - 1, i, k, j);
t2(m,i,j,k,dummy) = (1 , i, j, k);
t3(m,i,j,k,dummy) = (m - 1, k, j, i);

END

4.14 gDPS source for ILP

BEGIN
NAME ILP; //IntegerLinearProgramming;

GENERAL_VARIABLES_BEGIN
// max c’x=c1*x1+..+cn*xn
// s.t. Ax<=b

4.14 gDPS source for ILP 147

// xi>=0 and integer
// For this problem formulation,
// must assume A,b,c have all nonnegative integer entries.
// E.g. if a constraint like 3x1-2x2<=18 were allowed,
// we could NOT limit the decision set for variable x1
// to be {0,..,6}.

//objective function coefficients
private static int[] c = {3, 5};
//right hand side of constraints vector
private static int[] b = {4, 12, 18};
//constraint matrix
private static int[][] a=
{
{ 1, 0},
{ 0, 2},
{ 3, 2}
};

private static int n = c.length;
private static int m = b.length;
private static final int infty=Integer.MAX_VALUE;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet calculateDecisionSet(int stage,

int y1, int y2, int y3) {
NodeSet result = new NodeSet();
//maxPossibleChoiceBecauseOfResourceiRestriction, i=1,2,3
int mpc1=infty;
int mpc2=infty;
int mpc3=infty;
if(a[0][stage]!=0){
mpc1=y1/a[0][stage];

}
if(a[1][stage]!=0){
mpc2=y2/a[1][stage];

}
if(a[2][stage]!=0){
mpc3=y3/a[2][stage];

}
for (int i=0; i<=Math.min(mpc1,Math.min(mpc2,mpc3)); i++){
result.add(new Integer(i));

}
return result;

}

148 4 DP Problem Specifications in gDPS

GENERAL_FUNCTIONS_END

//here: yi denotes how much of resource i is still available,
//(in other words how much slack is still available)
STATE_TYPE: (int stage, int y1, int y2, int y3);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(stage,y1,y2,y3)

=calculateDecisionSet(stage,y1,y2,y3);

GOAL: f(0,b[0],b[1],b[2]);
//convenient notation for f(0,4,12,18)

DPFE_BASE_CONDITIONS:
f(stage,y1,y2,y3)=0.0 WHEN (stage == n);

DPFE: f(stage,y1,y2,y3)
=MAX_{d IN decisionSet}

{ f(t1(stage,y1,y2,y3,d))
+r(stage,y1,y2,y3,d)
};

REWARD_FUNCTION: r(stage,y1,y2,y3,d)
=c[stage]*d;

TRANSFORMATION_FUNCTION: t1(stage,y1,y2,y3,d)
=(stage+1,

y1-a[0][stage]*d,
y2-a[1][stage]*d,
y3-a[2][stage]*d);

END

4.15 gDPS source for ILPKNAP

BEGIN
NAME ILPKNAP; //IntegerLinearProgramming formulation

//of 0-1 Knapsack problem;
// max c’x=c1*x1+..+cn*xn
// s.t. Ax<=b
// xi>=0 and integer

GENERAL_VARIABLES_BEGIN

4.15 gDPS source for ILPKNAP 149

//objective function coefficients:
private static int[] c = {15, 25, 24};
//right hand side constraint vector:
private static int[] b = {22, 1, 1, 1};
//constraint matrix:
private static int[][] a =
{
{ 10, 18, 15},
{ 1, 0, 0},
{ 0, 1, 0},
{ 0, 0, 1},
};

private static int n = c.length;
private static int m = b.length;
private static final int infty=Integer.MAX_VALUE;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet calculateDecisionSet(int stage,

int y1, int y2, int y3, int y4) {
NodeSet result = new NodeSet();
//maxPossibleChoiceBecauseOfResourceiRestriction,i=1,2,3,4
int mpc1=infty;
int mpc2=infty;
int mpc3=infty;
int mpc4=infty;
if(a[0][stage]!=0){ mpc1=y1/a[0][stage]; }
if(a[1][stage]!=0){ mpc2=y2/a[1][stage]; }
if(a[2][stage]!=0){ mpc3=y3/a[2][stage]; }
if(a[3][stage]!=0){ mpc4=y4/a[3][stage]; }
for (int i=0;

i<=Math.min(mpc1,Math.min(mpc2,Math.min(mpc3,mpc4)));
i++) {

result.add(new Integer(i));
}
return result;

}
GENERAL_FUNCTIONS_END

// the "slack" yi denotes how much of resource i is still
// available
STATE_TYPE: (int stage, int y1, int y2, int y3, int y4);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(stage,y1,y2,y3,y4)

150 4 DP Problem Specifications in gDPS

=calculateDecisionSet(stage,y1,y2,y3,y4);

GOAL: f(0,b[0],b[1],b[2],b[3]);

DPFE_BASE_CONDITIONS:
f(stage,y1,y2,y3,y4)=0.0 WHEN (stage == n);

DPFE: f(stage,y1,y2,y3,y4) = MAX_{d IN decisionSet}
{ f(t1(stage,y1,y2,y3,y4,d)) + r(stage,y1,y2,y3,y4,d) };

REWARD_FUNCTION: r(stage,y1,y2,y3,y4,d)=c[stage]*d;

TRANSFORMATION_FUNCTION: t1(stage,y1,y2,y3,y4,d)
=(stage+1,

y1-a[0][stage]*d,
y2-a[1][stage]*d,
y3-a[2][stage]*d,
y4-a[3][stage]*d);

END

4.16 gDPS source for INTVL

The interval scheduling problem can be solved by the following program, which
uses DPFE (2.21).

BEGIN
NAME INTVL1; //interval scheduling or

//activity selection problem;

GENERAL_VARIABLES_BEGIN
private static int[] begintime = {1, 2, 5, 3, 8, 9};
private static int[] endtime = {4, 6, 7,10,11,12};

//endtime sorted!!
private static int[] weight = {2, 4, 4, 7, 2, 1};
private static int[] pred = {0, 0, 1, 0, 3, 3};
private static int N = weight.length;
private static int L = 20; //>= max endtime

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int cost(int k, int d) {
if (d==1) {
return weight[k-1];

4.16 gDPS source for INTVL 151

}
else {
return 0;

}
}
private static int next(int k, int d) {

if (d==1) {
return pred[k-1];

}
else {
return k-1;

}
}

GENERAL_FUNCTIONS_END

STATE_TYPE: (int k); //stage number

DECISION_VARIABLE: int d; //decision is whether to
//include k-th or not

DECISION_SPACE: decisionSet(k)={1,0}; //boolean values
//(1=include k-th)

GOAL: f(N);

DPFE_BASE: f(0)=0.0;

DPFE: f(k) = MAX_{d IN decisionSet} { r(k,d) + f(t(k,d)) };

REWARD_FUNCTION: r(k,d) = cost(k,d);

TRANSFORMATION_FUNCTION: t(k,d) = (next(k,d));

END

An alternate version, which illustrates use of nonprobabilistic transition
weights, which uses DPFE (2.22), is as follows.

BEGIN
NAME INTVL3; //interval scheduling or

//activity selection problem;
//reformulation of INTVL1

GENERAL_VARIABLES_BEGIN
private static int[] begintime = {1, 2, 5, 3, 8, 9};
private static int[] endtime = {4, 6, 7,10,11,12};

152 4 DP Problem Specifications in gDPS

//endtime sorted!!
private static int[] weight = {2, 4, 4, 7, 2, 1};
private static int[] pred = {0, 0, 1, 0, 3, 3};
private static int N = weight.length;
private static int L = 20; //>= max endtime

GENERAL_VARIABLES_END

STATE_TYPE: (int k); //stage number

DECISION_VARIABLE: int d; //decision is whether to
//include k-th or not

DECISION_SPACE: decisionSet(k)={0,1};
//boolean values: (1=include k-th), (0=don’t include)

GOAL: f(N);

DPFE_BASE: f(0)=0.0;

DPFE: f(k) = MAX_{d IN decisionSet}
{ r(k,d) + p1.f(takeItTrans(k,d))

+ p2.f(leaveItTrans(k,d))};

REWARD_FUNCTION: r(k,d) = d*weight[k - 1];

TRANSFORMATION_FUNCTION:
takeItTrans(k,d) = (pred[k - 1]);
leaveItTrans(k,d) = (k - 1);

TRANSITION_WEIGHTS:
p1(k,d)=d;
p2(k,d)=1-d;

END

The problem can also be solved by the following nonserial version, which
uses DPFE (2.20).

BEGIN
NAME INTVL2; //weighted interval scheduling

//or activity selection problem;

GENERAL_VARIABLES_BEGIN
private static int[] begintime = { 9, 8, 3,5,2,1};
private static int[] endtime = {12,11,10,7,6,4};

//unordered!

4.16 gDPS source for INTVL 153

private static int[] weight = { 1, 2, 7,4,4,2};
private static int L = 20; // L >= max endtime
private static int N = weight.length; //N=no. of activities

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllJobs={0,..,N - 1};
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static boolean feasible(int i, int j, int d) {

// activity d in interval (i,j) ?
if (i<=begintime[d] && endtime[d]<=j)
return true;

else
return false;

}
private static int cost(int i, int j, int d) {

// return weight if activity d in interval (i,j)
if (feasible(i,j,d)) return weight[d];
else return 0;

}
private static NodeSet leftFeasibles(NodeSet S, int i,

int j, int d) {
NodeSet result = new NodeSet();
int j2=begintime[d];
// only add those activities of S that fit into
// interval [i,j2]
Iterator iter=S.iterator();
while(iter.hasNext()) {
Integer element=(Integer) iter.next();
if ((feasible(i,j2,element.intValue()))) {

result.add(element);
}

}
return result;

}
private static NodeSet rightFeasibles(NodeSet S, int i,

int j, int d) {
NodeSet result = new NodeSet();
int i2=endtime[d];
// only add those activities of S that fit into
// interval [i2,j]
Iterator iter=S.iterator();

154 4 DP Problem Specifications in gDPS

while(iter.hasNext()) {
Integer element=(Integer) iter.next();
if ((feasible(i2,j,element.intValue()))) {

result.add(element);
}

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (Set S, int i, int j);
// S=decision set; (i,j)=time interval

DECISION_VARIABLE: int d;

DECISION_SPACE: decisionSet(S,i,j)=S;

GOAL: f(setOfAllJobs,0,L);

DPFE_BASE_CONDITIONS:
f(S,i,j)=0.0 WHEN (i>=j);
f(S,i,j)=0.0 WHEN (S SETEQUALS emptySet);

DPFE: f(S,i,j) = MAX_{d IN decisionSet}
{ r(S,i,j,d) + f(tLeft(S,i,j,d))

+ f(tRight(S,i,j,d)) };

REWARD_FUNCTION: r(S,i,j,d) = cost(i,j,d);

TRANSFORMATION_FUNCTION:
tLeft(S,i,j,d) = (leftFeasibles(S,i,j,d), i, begintime[d]);
tRight(S,i,j,d) = (rightFeasibles(S,i,j,d), endtime[d], j);

END

4.17 gDPS source for INVENT

BEGIN
NAME INVENT; // Inventory Production Problem;

// Winston02, p.758--763

GENERAL_VARIABLES_BEGIN
private static int[] demand={1,3,2,4};
private static int N=demand.length; //no. of stages

4.17 gDPS source for INVENT 155

private static final int CAP= 5; // production capacity
private static final int LIM= 4; // inventory limit

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static double holdcost(int k, int s, int x) {
return 0.5*(s+x-demand[k]); // holding cost

}
private static double prodcost(int x) {
if (x==0) {
return 0.0; //no production cost for 0 production

}
else {
return 3.0+x; //production cost

}
}
private static NodeSet possibleDecisions(int k, int s) {
NodeSet result = new NodeSet();
int p=Math.max(0, demand[k] - s);
int q=Math.min(LIM + demand[k] - s, CAP);
for (int i=p; i<=q; i++) {
result.add(new Integer(i));

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int k, int s); //stage k, inventory s

DECISION_VARIABLE: int x; //amount to produce

DECISION_SPACE: decisionSet(k,s) = possibleDecisions(k,s);

GOAL: f(0,0);

DPFE_BASE_CONDITIONS: f(k,s) = 0. WHEN (k == N);

DPFE: f(k,s) = MIN_{x IN decisionSet}
{ r(k,s,x) + f(t(k,s,x)) };

REWARD_FUNCTION: r(k,s,x) = prodcost(x) + holdcost(k,s,x);

TRANSFORMATION_FUNCTION: t(k,s,x) = (k+1,s+x-demand[k]);

END

156 4 DP Problem Specifications in gDPS

4.18 gDPS source for INVEST

BEGIN
NAME INVEST; // Bronson97 Investment Problem 19.29;

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
private static double[] prob
= {1.0, 0.2, 0.4}; // gain prob. as fct of decision

private static int n=4; //time limit
private static int bankroll=2; //initial amount

GENERAL_VARIABLES_END

STATE_TYPE: (int g, int s);

DECISION_VARIABLE: int d;

DECISION_SPACE: decisionSet(g,s)={0,..,2};

GOAL: f(1,bankroll);

DPFE_BASE_CONDITIONS:
f(g,s)=s WHEN (g==n);

DPFE: f(g,s)
=MAX_{d IN decisionSet}

{ p1.f(t1(g,s,d)) //gain
+p2.f(t2(g,s,d)) //loss
+cost(g,s,d)
};

REWARD_FUNCTION: cost(g,s,d)=0.0;

TRANSFORMATION_FUNCTION: t1(g,s,d)
=(g+1,s+d);
t2(g,s,d)
=(g+1,s-d+1);

TRANSITION_WEIGHTS: p1(g,s,d)=prob[d];
p2(g,s,d)=1.0-prob[d];

END

4.19 gDPS source for INVESTWLV 157

4.19 gDPS source for INVESTWLV

The INVESTWLV problem instance from Section 2.19 illustrates the use of
probability weights in the DPFE section and shows how these weights are
defined as functions in the TRANSITION_WEIGHTS section. For INVESTWLV
there are two probability weights p1 and p2 within the DPFE section. They
are both defined in the TRANSITION_WEIGHTS section, in this case simply as
constants. The following gDPS source code shows these gDPS features.

BEGIN
NAME INVESTWLV; //INVESTment : Winning in LV;
//probabilistic problem from Hillier/Lieberman p.423

GENERAL_VARIABLES_BEGIN
private static int startAmount=3; //start with 3 chips
private static int targetAmount=5; //need 5 chips
private static int maxNumberOfPlays=3;
private static double winProbability=2.0/3.0;

GENERAL_VARIABLES_END

STATE_TYPE: (int n, int sn);
//n is stage number, sn is number of chips

DECISION_VARIABLE: int xn; //xn is number of chips
//to bet at stage n

DECISION_SPACE: decisionSet(n,sn)={0,..,sn};

GOAL: f(1,startAmount);

DPFE_BASE_CONDITIONS:
f(n,sn)=0.0 WHEN ((n>maxNumberOfPlays)&&(sn<targetAmount));
f(n,sn)=1.0 WHEN ((n>maxNumberOfPlays)&&(sn>=targetAmount));

DPFE: f(n,sn)
=MAX_{xn IN decisionSet}

{ p1.f(t1(n,sn,xn))
+p2.f(t2(n,sn,xn))
+r(n,sn,xn)
};

REWARD_FUNCTION: r(n,sn,xn)=0;

158 4 DP Problem Specifications in gDPS

TRANSFORMATION_FUNCTION: t1(n,sn,xn)
=(n+1,sn-xn);
t2(n,sn,xn)
=(n+1,sn+xn);

TRANSITION_WEIGHTS: p1(n,sn,xn)=1.0-winProbability;
p2(n,sn,xn)=winProbability;

END

4.20 gDPS source for KS01

BEGIN
NAME KS01; //Knapsack01Problem;

GENERAL_VARIABLES_BEGIN
private static int knapsackCapacity = 22;
private static int[] value = {25, 24, 15};
private static int[] weight = {18, 15, 10};
private static int n = value.length; //number of objects n=3
private static int highestIndex=n-1; //items are indexed

//from 0 through n-1
GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllNodes={0,..,highestIndex};
Set emptySet={};
Set goalSet={0};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet calculateDecisionSet(int objInd,

int w) {
NodeSet decSet = new NodeSet();
decSet.add(new Integer(0)); //decision to not take object

//is always feasible
if(w>=weight[objInd]) { //check if there is enough space

//to take object
decSet.add(new Integer(1));

}
return decSet;

}
GENERAL_FUNCTIONS_END

4.21 gDPS source for KSCOV 159

STATE_TYPE: (int currentObjectIndex, int weightToGive);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(currentObjectIndex,weightToGive)

=calculateDecisionSet(currentObjectIndex, weightToGive);

GOAL:
f(highestIndex, knapsackCapacity); //f(2,22)

DPFE_BASE_CONDITIONS:
f(currentObjectIndex,weightToGive)=0.0

WHEN (currentObjectIndex == -1);

DPFE: f(currentObjectIndex,weightToGive)
=MAX_{d IN decisionSet}

{ profit(currentObjectIndex,weightToGive,d)
+f(t(currentObjectIndex,weightToGive,d))};

REWARD_FUNCTION: profit(currentObjectIndex,weightToGive,d)
=d*value[currentObjectIndex];

TRANSFORMATION_FUNCTION: t(currentObjectIndex,weightToGive,d)
=(currentObjectIndex - 1,
weightToGive - d*weight[currentObjectIndex]);

END

4.21 gDPS source for KSCOV

BEGIN
NAME KSCOV; // Integer Knapsack model for COV problem;

GENERAL_VARIABLES_BEGIN
private static int[] value = {1,4,5,7,8,12,13,18,19,21};
private static int n = value.length; //number of objects
private static int M = 3; //number of stages
private static final double infty=Double.MAX_VALUE;

GENERAL_VARIABLES_END

//state=(stage,remaining largest object)
STATE_TYPE: (int k, int s);

DECISION_VARIABLE: int d; //d=number of objects covered

160 4 DP Problem Specifications in gDPS

DECISION_SPACE: decisionSet(k,s) = {1,..,s}; //cover 1 to all

GOAL: f(1,n);

DPFE_BASE_CONDITIONS:
f(k,s)=0.0 WHEN (s==0);
f(k,s)=infty WHEN ((k>M)&&(s>0));

DPFE: f(k,s) = MIN_{d IN decisionSet}
{ r(k,s,d) + f(t(k,s,d)) };

REWARD_FUNCTION: r(k,s,d) = d*value[s - 1];

TRANSFORMATION_FUNCTION: t(k,s,d) = (k + 1, s - d);

END

4.22 gDPS source for KSINT

BEGIN
NAME KSINT; // Integer Knapsack Problem;

GENERAL_VARIABLES_BEGIN
private static int cap = 22;
private static int[] value = {24, 15, 25};
private static int[] weight = {15, 10, 18};
private static int n = value.length; //number of objects
private static int highestIndex=n-1; //items indexed

//from 0 to n-1
GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllNodes={0,..,highestIndex};
Set emptySet={};
Set goalSet={0};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet calculateDecisionSet(int objInd,

int w) {
NodeSet decSet = new NodeSet();
int limit=w/weight[objInd];
for (int i=0; i<=limit; i++)
decSet.add(new Integer(i));

4.23 gDPS source for LCS 161

return decSet;
}

GENERAL_FUNCTIONS_END

STATE_TYPE: (int currentObjectIndex, int weightToGive);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(currentObjectIndex,weightToGive)

=calculateDecisionSet(currentObjectIndex, weightToGive);

GOAL:
f(highestIndex, cap); //f(n-1,cap)

DPFE_BASE_CONDITIONS:
f(currentObjectIndex,weightToGive)=0.0

WHEN (currentObjectIndex == -1);

DPFE: f(currentObjectIndex,weightToGive)
=MAX_{d IN decisionSet}

{ profit(currentObjectIndex,weightToGive,d)
+f(t(currentObjectIndex,weightToGive,d))};

REWARD_FUNCTION: profit(currentObjectIndex,weightToGive,d)
=d*value[currentObjectIndex];

TRANSFORMATION_FUNCTION: t(currentObjectIndex,weightToGive,d)
=(currentObjectIndex - 1,
weightToGive - d*weight[currentObjectIndex]);

END

4.23 gDPS source for LCS

Two different gDPS sources are given. The first one is for the DP functional
equation (2.30).

BEGIN
NAME LCSalt;
//alternative formulation using indices
//into global strings
//DPFE based on Gusfield, p.227,228
GENERAL_VARIABLES_BEGIN

//the 2 globally defined input strings
private static String x = "abcbdab";

162 4 DP Problem Specifications in gDPS

private static String y = "bdcaba";
//it is useful to have the string lengths
//as symbolic constants
private static int xLength = x.length(); //here = 7
private static int yLength = y.length(); //here = 6

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
//returns 1 if the specified characters in the 2 strings
// match and the decision is to prune both strings
//returns 0 otherwise
private static int matchingCharactersAndPruneBoth

(int xIndex, int yIndex, int d) {
if((d==12) && //d=12 means decision is to prune both

(x.charAt(xIndex-1)==y.charAt(yIndex-1))) {
//above, subtract 1 because array starts at index 0
return 1;

}
return 0;

}
private static int xAdjustment(int d) {
if(d==2) {
return 0;

}
return 1;

}
private static int yAdjustment(int d) {
if(d==1) {
return 0;

}
return 1;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int xIndex, int yIndex);

DECISION_VARIABLE: int pruneD;

DECISION_SPACE: decisionSet(xIndex,yIndex)
={1,2,12};

//The decision space is constant in this example
//It does not depend on the current state.
//1 stands for x is pruned and y is unchanged
//2 stands for x is unchanged and y is pruned
//12 stands for prune both x and y

4.23 gDPS source for LCS 163

GOAL: f(xLength,yLength);
//the lengths of x and y, respectively

DPFE_BASE_CONDITIONS:
f(xIndex,yIndex)=0.0 WHEN ((xIndex==0)||(yIndex==0));

DPFE: f(xIndex,yIndex)
=MAX_{pruneD IN decisionSet}

{ f(t(xIndex,yIndex,pruneD))
+r(xIndex,yIndex,pruneD)
};

REWARD_FUNCTION: r(xIndex,yIndex,pruneD)
=matchingCharactersAndPruneBoth(xIndex,yIndex,pruneD);

TRANSFORMATION_FUNCTION: t(xIndex,yIndex,pruneD)
=(xIndex-xAdjustment(pruneD),

yIndex-yAdjustment(pruneD));

END

The second one is the improved model based on the DP functional equa-
tion (2.29) that produces fewer states is given in the following.

BEGIN
NAME LCSaltShort;
//alternative formulation using indices
//into global strings
//try to capture the shorter version
//from Cormen et al., p.354
GENERAL_VARIABLES_BEGIN

//the 2 globally defined input strings
private static String x = "abcbdab";
private static String y = "bdcaba";
//the string lengths as symbolic constants
private static int xLength = x.length(); //here = 7
private static int yLength = y.length(); //here = 6

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet calculateDecisionSet(int xIndex,

int yIndex) {
NodeSet result = new NodeSet();

164 4 DP Problem Specifications in gDPS

//subtract 1 because array starts at index 0
if(x.charAt(xIndex-1)==y.charAt(yIndex-1)) {
//characters match, so the only decision possible is to
//prune both
result.add(new Integer(12));

}
else {
//characters do not match, so either prune x or prune y
result.add(new Integer(1));
result.add(new Integer(2));

}
return result;

}

private static int calculateReward(int d) {
if(d==12) { //decision==prune both
return 1;

}
//other decisions have a reward of 0
return 0;

}

//shorter alternatives:
private static int xAdjustment(int d) {
if(d==2) {
return 0;

}
return 1;

}
private static int yAdjustment(int d) {
if(d==1) {
return 0;

}
return 1;

}

GENERAL_FUNCTIONS_END

//a state is a vector/list of primitive or Set types
STATE_TYPE: (int xIndex, int yIndex);

DECISION_VARIABLE: int d;

//the set of alternatives is a function of the state
DECISION_SPACE: decisionSet(xIndex,yIndex)

4.24 gDPS source for LINSRC 165

=calculateDecisionSet(xIndex,yIndex);
//The decision space is calculated by
//a global function here.
//1 stands for x is pruned and y is unchanged
//2 stands for x is unchanged and y is pruned
//12 stands for prune both x and y

GOAL: f(xLength,yLength); //the lengths of x, y, respectively

DPFE_BASE_CONDITIONS:
f(xIndex,yIndex)=0.0 WHEN ((xIndex==0)||(yIndex==0));

DPFE: f(xIndex,yIndex)
=MAX_{d IN decisionSet}

{ f(t(xIndex,yIndex,d))
+r(xIndex,yIndex,d)
};

REWARD_FUNCTION: r(xIndex,yIndex,d)
=calculateReward(d);

TRANSFORMATION_FUNCTION: t(xIndex,yIndex,d)
=(xIndex-xAdjustment(d),

yIndex-yAdjustment(d));

END

4.24 gDPS source for LINSRC

Two different gDPS sources, both using DPFE (1.23), are given. The difference
is in the formulation of the cost function. The first model uses method W (see
Sects. 1.1.4 and 1.1.5).

BEGIN
NAME LINSRCW; //OptimalLinearSearch-W;

GENERAL_VARIABLES_BEGIN
private static double[] prob= {.2,.5,.3};
private static int n = prob.length;

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllItems={0,..,n - 1};
Set emptySet={};

166 4 DP Problem Specifications in gDPS

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static double sumOfProbabilities(SortedSet items) {
SortedSet iter=items;
double result=0.0; int j;

int n=items.size();
for (int i=0; i<=n-1; i++) {
j=((Integer) iter.first()).intValue();
result+=prob[j];
iter.remove(iter.first());

}
return result;

}

GENERAL_FUNCTIONS_END

STATE_TYPE: (Set items);

DECISION_VARIABLE: int d; // item to place next AT FRONT

DECISION_SPACE: decisionSet(items)=items;

GOAL: f(setOfAllItems);

DPFE_BASE: f(emptySet)=0.0 ;

DPFE: f(items)=MIN_{d IN decisionSet}
{ cost(items,d)+f(t(items,d))};

REWARD_FUNCTION: cost(items,d) = sumOfProbabilities(items);

TRANSFORMATION_FUNCTION: t(items,d)=(items SETMINUS {d});

END

The second model uses method S (see Sects. 1.1.4 and 1.1.5).

BEGIN
NAME LINSRCS; //OptimalLinearSearch-S;

GENERAL_VARIABLES_BEGIN
private static double[] prob= {.2,.5,.3};
private static int N = prob.length;

GENERAL_VARIABLES_END

4.25 gDPS source for LOT 167

SET_VARIABLES_BEGIN
Set setOfAllItems={0,..,N - 1};
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int size(Set items) {
return items.size();

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (Set items);

DECISION_VARIABLE: int d; // item to place next at front

DECISION_SPACE: decisionSet(items)=items;

GOAL: f(setOfAllItems);

DPFE_BASE: f(emptySet)=0.0 ;

DPFE: f(items)=MIN_{d IN decisionSet}
{ cost(items,d)+f(t(items,d))};

REWARD_FUNCTION: cost(items,d) = (N+1-size(items)) * prob[d];
// N+1-size = no. compares to find item (=1 if at front)

// Note: cost=size*prob if d is item to place next AT END!

TRANSFORMATION_FUNCTION: t(items,d)=(items SETMINUS {d});

END

4.25 gDPS source for LOT

BEGIN
NAME LOT; // Lot Size Problem (Wagner-Whitin);

// Winston04, example 15

GENERAL_VARIABLES_BEGIN
private static double[] demand={220,280,360,140,270};
private static int N=demand.length; //N=5

GENERAL_VARIABLES_END

168 4 DP Problem Specifications in gDPS

GENERAL_FUNCTIONS_BEGIN
private static double prodcost(int k, int x) {
double kFix = 250.0;
double c = 2.0;
double ttl=0.0;
for (int i=k; i<=k+x; i++) {
ttl=ttl+demand[i - 1];

}
return kFix+c*ttl;

}
private static double holdcost(int g, int x) {
double h = 1.0;
double ttl=0.0;
for (int i=x; i>=1; i--) {
ttl=ttl+i*demand[g + i - 1];

}
return h*ttl;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int k); //stage

DECISION_VARIABLE: int x;

DECISION_SPACE: decisionSet(k) = {0,..,N - k};

GOAL: f(1);

DPFE_BASE_CONDITIONS: f(k)=0.0 WHEN (k>N);

DPFE: f(k) = MIN_{x IN decisionSet}
{ f(t(k,x)) + r(k,x) };

REWARD_FUNCTION: r(k,x) = prodcost(k,x) + holdcost(k,x);

TRANSFORMATION_FUNCTION: t(k,x) = (k+x+1);

END

4.26 gDPS source for LSP

BEGIN
NAME LSP;

4.26 gDPS source for LSP 169

GENERAL_VARIABLES_BEGIN
private static final int negInfty=Integer.MIN_VALUE;
//adjacency matrix of graph from CLRS01, p.343
private static int[][] distance =
{
{negInfty, 1, negInfty, 1},
{ 1, negInfty, 1, negInfty},
{negInfty, 1, negInfty, 1},
{ 1, negInfty, 1, negInfty}
};

//note: negInfty entry represents the fact that there is no
// edge between nodes
// (negative infinity, since we are maximizing...)

private static int n = distance.length;//number of nodes n=4
GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set goalSet={0};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet possibleNextNodes(int node,

NodeSet dummy) {
NodeSet result = new NodeSet();
for (int i=0; i<distance[node].length; i++) {
if (distance[node][i]!=negInfty) {

result.add(new Integer(i));
}

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (Set nodesVisited, int currentNode);

DECISION_VARIABLE: int alpha;
DECISION_SPACE: decisionSet(currentNode,nodesVisited)

= possibleNextNodes(currentNode,nodesVisited)
SETMINUS nodesVisited;

GOAL:
f(goalSet,0); //that is f({0},0);

170 4 DP Problem Specifications in gDPS

DPFE_BASE_CONDITIONS:
f(nodesVisited,currentNode)=0.0 WHEN (currentNode==3);

DPFE: f(nodesVisited,currentNode)
=MAX_{alpha IN decisionSet}

{ cost(nodesVisited,currentNode,alpha)
+f(t(nodesVisited,currentNode,alpha))};

REWARD_FUNCTION: cost(nodesVisited,currentNode,alpha)
=distance[currentNode][alpha];

TRANSFORMATION_FUNCTION:
t(nodesVisited,currentNode,alpha)
=(nodesVisited SETUNION {alpha}, alpha);

END

4.27 gDPS source for MCM

The MCM problem instance from section 2.27 can be coded in gDPS as
follows.

BEGIN
NAME MCM; //MatrixChainMultiplication;

GENERAL_VARIABLES_BEGIN
//dimensions in MatMult problem
private static int[] dimension = {3, 4, 5, 2, 2};
private static int n = dimension.length-1; //n=4 matrices

GENERAL_VARIABLES_END

STATE_TYPE: (int firstIndex, int secondIndex);

DECISION_VARIABLE: int k;
DECISION_SPACE: decisionSet(firstIndex,secondIndex)

={firstIndex,..,secondIndex - 1};

GOAL: f(1,n);

DPFE_BASE_CONDITIONS:
f(firstIndex,secondIndex)=0.0
WHEN (firstIndex==secondIndex);

DPFE: f(firstIndex,secondIndex)

4.28 gDPS source for MINMAX 171

=MIN_{k IN decisionSet}
{ f(t1(firstIndex,secondIndex,k))
+f(t2(firstIndex,secondIndex,k))
+r(firstIndex,secondIndex,k)
};

REWARD_FUNCTION: r(firstIndex,secondIndex,k)
=dimension[firstIndex - 1]
*dimension[k]*dimension[secondIndex];

TRANSFORMATION_FUNCTION: t1(firstIndex,secondIndex,k)
=(firstIndex,k);
t2(firstIndex,secondIndex,k)
=(k+1,secondIndex);

END

The MCM problem exemplifies that the TRANSFORMATION_FUNCTION sec-
tion allows the definition of an arbitrary number of successor states. Here,
MCM has two successor states, computed by t1 and t2.

4.28 gDPS source for MINMAX

BEGIN
NAME minmax;

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MIN_VALUE;
private static int[][] distance =
{ // 0 1 2 3 4 5
// 6 7 8 9
{infty, 10, 7, 6,infty,infty,
infty,infty,infty,infty}, //0
{infty,infty,infty,infty, 9,infty,
infty,infty,infty,infty}, //1
{infty,infty,infty,infty, 7,infty,
infty,infty,infty,infty}, //2
{infty,infty,infty,infty, 11, 7,
infty,infty,infty,infty}, //3
{infty,infty,infty,infty,infty,infty,

8, 7, 10,infty}, //4
{infty,infty,infty,infty,infty,infty,

8, 6, 7,infty}, //5
{infty,infty,infty,infty,infty,infty,

172 4 DP Problem Specifications in gDPS

infty,infty,infty, 13}, //6
{infty,infty,infty,infty,infty,infty,
infty,infty,infty, 8}, //7
{infty,infty,infty,infty,infty,infty,
infty,infty,infty, 9}, //8
{infty,infty,infty,infty,infty,infty,
infty,infty,infty,infty} //9

};
private static int numStages=5; // number of stages

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set goalSet={0}; //0 is start node

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet possibleNextNodes(int node) {
NodeSet result = new NodeSet();
for (int i=0; i<distance[node].length; i++) {
if (distance[node][i]!=infty) {

result.add(new Integer(i));
}

}
return result;

}

// maxlink finds maximum branch label in path connecting
// given set of nodes.
// Assumes nodes in path are topologically ordered.
private static int maxlink(SortedSet nodes) {

int result=Integer.MIN_VALUE;
int p=0;
Iterator i=nodes.iterator();
while (i.hasNext()) {
int q=((Integer) i.next()).intValue();
result=Math.max(result,distance[p][q]);
p=q;

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int stage, Set nodesVisited, int currentNode);

DECISION_VARIABLE: int alpha;

4.29 gDPS source for MWST 173

DECISION_SPACE:
possibleSuccessors(stage, nodesVisited, currentNode)
= possibleNextNodes(currentNode) SETMINUS nodesVisited;

GOAL: f(1,goalSet,0);

DPFE_BASE_CONDITIONS:
f(stage,nodesVisited,currentNode) = maxlink(nodesVisited)

WHEN (stage>=numStages); //base-condition cost
//is attached to final decision

DPFE: f(stage,nodesVisited,currentNode)
=MIN_{alpha IN possibleSuccessors}

{ r(stage,nodesVisited,currentNode,alpha)
+f(t(stage,nodesVisited,currentNode,alpha)) };

REWARD_FUNCTION:
r(stage,nodesVisited,currentNode,alpha)=0.0;
//decision-cost=0

TRANSFORMATION_FUNCTION:
t(stage,nodesVisited,currentNode,alpha)
=(stage + 1,nodesVisited SETUNION {alpha},alpha);

END

4.29 gDPS source for MWST

BEGIN
NAME mwst; //minimum weight spanning tree

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
private static int[][] w = // weighted adjacency matrix of

// graph (not used)
{
{infty, 1, 3, infty},
{ 1, infty, 2, 4},
{ 3, 2, infty, 5},
{infty, 4, 5, infty}
};

private static int N = 4; // no. of nodes in graph
private static int B = 5; // no. of branches in graph

174 4 DP Problem Specifications in gDPS

private static int[] wgt = {5,4,3,2,1};
// branch weights, unsorted

private static int N1 = N-1;
// no. of branches in spanning tree

private static int[][] cycle = // set of basic cycles
// (len<=N-1)

{ {0,0,1,1,1},{1,1,0,1,0} }; // 321, 542
private static int NC = 2; // no. of basic cycles

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllbranches={0,..,B - 1};
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static boolean match(int[] a, int[] b, int n) {
for (int i=0; i<n; i++){
if (a[i]!=b[i]) {
return false;

}
}
return true;
}
private static int[] invertvec(int[] a, int n) {
int[] vec = new int[n];
for (int i=0; i<n; i++) {
vec[i]=1-a[i];

}
return vec;

}
private static int[] characteristicVector(Set s, int n) {
int [] vec = new int[n];
for (int i=0; i<n; i++) {
if (s.contains(new Integer(i))) {

vec[i]=1;
}
else {

vec[i]=0;
}

}
return vec;

}
private static int cost(Set branches, int k, int d) {

4.29 gDPS source for MWST 175

//char.vector, dim=B
int [] vec = characteristicVector(branches, B);
vec=invertvec(vec,B); //TreeSoFar=branches not in state
vec[d]=1; //vec=TSF+d
//use given cycles, vs. computing cycles from d
for (int j=0; j<=NC-1; j++) {
if (match(vec,cycle[j],B)) { //TreeSoFar is cyclic!

return(infty);
}

}
//cost=wgt[d] of adding branch d to tree at stage k
return wgt[d];

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (Set branches, int k); //branches to choose from
//(=~TSF) at stage k

DECISION_VARIABLE: int d; //choice of k-th branch
//to add to TreeSoFar

DECISION_SPACE: decisionSet(branches, k)=branches;

GOAL: f(setOfAllbranches, 0); //TreeSoFar (TSF) initially
//empty, at stage 0

DPFE_BASE_CONDITIONS: f(branches,k)=0.0 WHEN (k==N1);
//since no. of branches in sp.tree=N-1

DPFE: f(branches,k)=MIN_{d IN decisionSet}
{ r(branches,k,d) + f(t(branches,k,d)) };

REWARD_FUNCTION:
r(branches,k,d) = cost(branches,k,d);
//cost of adding branch d to TSF at stage k

TRANSFORMATION_FUNCTION:
t(branches,k,d) = (branches SETMINUS {d},k+1);
//omit branch d in next stage

END

176 4 DP Problem Specifications in gDPS

4.30 gDPS source for NIM

BEGIN
NAME NIM;

GENERAL_VARIABLES_BEGIN
private static int m = 10; //a winning state (small example)
//private static int m = 9; //a losing state (small example)
//private static int m = 30; //winning state (large example)
//private static int m = 29; //losing state (large example)

GENERAL_VARIABLES_END

STATE_TYPE: (int s);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(d)={1,..,3};

GOAL: f(m);

DPFE_BASE_CONDITIONS:
f(s) = 1.0 WHEN (s<0); //win!

//(adversary removed last sticks)
f(s) = 0.0 WHEN (s==1); //loss!

//(my turn with one remaining stick)
//Note: much time can be saved by adding f(2)=f(3)=f(4)=1.0

DPFE: f(s)
=MAX_{d IN decisionSet}

{ r(s,d) * f(t1(s,d)) * f(t2(s,d)) * f(t3(s,d)) };

REWARD_FUNCTION: r(s,d)=1.0;

TRANSFORMATION_FUNCTION:
t1(s,d) = (s - d - 1);
t2(s,d) = (s - d - 2);
t3(s,d) = (s - d - 3);

END

4.31 gDPS source for ODP

BEGIN
NAME ODP; //Optimal Distribution Problem;

4.31 gDPS source for ODP 177

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
private static int[][] cashFlow =
{ {0,1,2,3}, //creditor 0
{0,1,2,3,4}, //creditor 1
{0,3,4} //creditor 2

};
private static int[][] netPresentValue =
{ {0,4,12,21}, //creditor 0
{0,6,11,16,20}, //creditor 1
{0,16,22} //creditor 2

};
GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
//create the index set of possible alternatives
//which may vary from stage to stage
private static NodeSet possibleAlternatives(int stage) {
NodeSet result = new NodeSet();
for (int i=0; i<cashFlow[stage].length; i++) {
result.add(new Integer(i));

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int stage, int moneySecured);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(stage,moneySecured)

=possibleAlternatives(stage);

GOAL:
f(0,0); //stage 0, no money secured

DPFE_BASE_CONDITIONS:
f(stage,moneySecured)=0.0
WHEN ((stage==3)&&(moneySecured>=6));

f(stage,moneySecured)=infty
WHEN ((stage==3)&&(moneySecured<6));

DPFE: f(stage,moneySecured)
=MIN_{d IN decisionSet}

{ futureNPV(stage,moneySecured,d)
+f(t(stage,moneySecured,d))};

178 4 DP Problem Specifications in gDPS

REWARD_FUNCTION: futureNPV(stage,moneySecured,d)
=netPresentValue[stage][d];

TRANSFORMATION_FUNCTION:
t(stage,moneySecured,d)
=(stage+1,moneySecured+cashFlow[stage][d]);

END

4.32 gDPS source for PERM

BEGIN
NAME PERM; //optimal PERMutation problem;

GENERAL_VARIABLES_BEGIN
private static int[] programLength = {5,3,2};
private static int n = programLength.length;
//n=number of programs

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllItems={0,..,n - 1}; //the n programs are indexed

//from 0 to n-1
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
//need a function that returns the cardinality of a set
private static int cardinality(Set items) {
return items.size();
//size() method from java.util.Set interface

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (Set items);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(items)

=items;

GOAL: f(setOfAllItems);

DPFE_BASE: f(emptySet)=0.0;

4.33 gDPS source for POUR 179

DPFE: f(items) = MIN_{d IN decisionSet}
{ cost(items,d)
+f(t(items,d))};

REWARD_FUNCTION:
cost(items,d) = cardinality(items)*programLength[d];

TRANSFORMATION_FUNCTION:
t(items,d) = (items SETMINUS {d});

END

4.33 gDPS source for POUR

BEGIN
NAME pour; //"wine pouring" example

//Winston02 pp.750--751, example 2

GENERAL_VARIABLES_BEGIN
private static int P = 9; //capacity of I
private static int Q = 4; //capacity of J
private static int TGT = 6; //target amount
private static int R = P+Q;
//private static int LIM = (P+1)*(Q+1); //bound on no.stages
private static int LIM = R; //LIM is used to prevent

//out-of-memory error
GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int nexti(int i, int j, int k, int d) {
if (d==1) return P; //fill i
else if (d==2) return i; //fill j
else if (d==3) return 0; //empty i
else if (d==4) return i; //empty j
else if (d==5) return Math.max(0,i - (Q - j)); //i2j
else return Math.min(P,i+j); //j2i

}
private static int nextj(int i, int j, int k, int d) {
if (d==1) return j; //fill i
else if (d==2) return Q; //fill j
else if (d==3) return j; //empty i
else if (d==4) return 0; //empty j
else if (d==5) return Math.min(i+j,Q); //i2j
else return Math.max(0,j - (P - i)); //j2i

180 4 DP Problem Specifications in gDPS

}
private static int nextk(int i, int j, int k, int d) {
if (d==1) return k - (P - i); //fill i
else if (d==2) return k - (Q - j); //fill j
else if (d==3) return k+i; //empty i
else if (d==4) return k+j; //empty j
else if (d==5) return k; //i2j
else return k; //j2i

}
private static NodeSet possibleDec(int i, int j, int k) {
NodeSet result = new NodeSet();
for (int d=1; d<=6; d++) {
result.add(new Integer(d));

}
//// NOTE: The following constraints can be added to reduce
//// the size of the decision set, but are unnecessary.

if (i==0) result.remove(new Integer(3)); //empty i
if (i==0) result.remove(new Integer(5)); //i2j
if (j==0) result.remove(new Integer(4)); //empty j
if (j==0) result.remove(new Integer(6)); //j2i
if (i==P) result.remove(new Integer(1)); //fill i
if (i==P) result.remove(new Integer(6)); //j2i
if (j==Q) result.remove(new Integer(2)); //fill j
if (j==Q) result.remove(new Integer(5)); //i2j
if (k==0) result.remove(new Integer(1)); //fill i
if (k==0) result.remove(new Integer(2)); //fill j
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int s, int i, int j, int k);
//s: stage number
//i: amount in glass 1
//j: amount in glass 2
//k: amount in carafe

DECISION_VARIABLE: int d;
//d=1: fill i (from k)
//d=2: fill j (from k)
//d=3: empty i (into k)
//d=4: empty j (into k)
//d=5: i2j (pour contents from i to j)
//d=6: j2i (pour contents from j to i)

DECISION_SPACE: decSet(s,i,j,k) //={1,..,6};

4.34 gDPS source for PROD 181

=possibleDec(i,j,k); //use possibleDec if you want to
//prune the decision set

GOAL: f(1,0,0,R); //initial state

DPFE_BASE_CONDITIONS:
f(s,i,j,k)=0.0 WHEN (i==TGT); //target state
f(s,i,j,k)=0.0 WHEN (j==TGT); //target state
f(s,i,j,k)=999.0 WHEN (s>LIM); //cycle!

DPFE: f(s,i,j,k) = MIN_{d IN decSet}
{ r(s,i,j,k,d) + f(t(s,i,j,k,d)) };

REWARD_FUNCTION: r(s,i,j,k,d) = 1.0;

TRANSFORMATION_FUNCTION: t(s,i,j,k,d)
= (s+1, nexti(i,j,k,d), nextj(i,j,k,d), nextk(i,j,k,d));

END

4.34 gDPS source for PROD

BEGIN
NAME PROD; // Production Problem Bronson97 19.14;

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
private static double prob = .6;
private static int n=5;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static double p(int amount) {
double[] productioncost = {0.0,10.0,19.0};
if (amount<0) return infty;
else return productioncost[amount];

}
private static double q(int inventory) {
if (inventory<0) return -1.5 * inventory;
else return 1.1 * inventory;

}
GENERAL_FUNCTIONS_END

//g: stage number; s: size of inventory

182 4 DP Problem Specifications in gDPS

STATE_TYPE: (int g, int s);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(g,s)={0 - s,..,2};

//s=-1 or s=-2 denotes a shortfall in inventory
//which must be made up!

GOAL: f(1,0);

DPFE_BASE_CONDITIONS:
f(g,s)=0.0 WHEN (g==n);

DPFE: f(g,s)
=MIN_{d IN decisionSet}

{ p1.f(t1(g,s,d))
+p2.f(t2(g,s,d))
+cost(g,s,d)
};

REWARD_FUNCTION: cost(g,s,d) = p(d)+q(s);

TRANSFORMATION_FUNCTION: t1(g,s,d)
=(g+1,s+d - 1);
t2(g,s,d)
=(g+1,s+d - 2);

TRANSITION_WEIGHTS: p1(g,s,d)=prob;
p2(g,s,d)=1.0-prob;

END

4.35 gDPS source for PRODRAP

The PRODRAP problem instance from Section 2.35 illustrates the use of prob-
ability weights in the DPFE section and shows how these weights are defined
as functions in the TRANSITION_WEIGHTS section.

For PRODRAP there appears only a single probability weight p1 within
the DPFE section. Note that in order to assign a weight to a functional the
dot notation “.” is used as the multiplication symbol, so it can easily be
distinguished by the parser and the modeler from the star notation “*” which
is used for multiplicative DP problems like the RDP problem from section 2.36.
The probability weight p1 is then defined in the TRANSITION_WEIGHTS section,
where the helper function probabilityThatAllDefect is used, since only

4.35 gDPS source for PRODRAP 183

the basic arithmetic operators (but not exponentiation) can be used in the
TRANSITION_WEIGHTS section.

BEGIN
NAME PRODRAP; //PRODuction --- Reject Allowance Problem
//probabilistic problem from Hillier/Lieberman p.421

GENERAL_VARIABLES_BEGIN
private static double defectProbability=0.5;
private static int productionRuns=3;
private static double marginalProductionCost=1.0;
private static double setupCost=3.0;
private static double penaltyCosts=16.0;
private static int maxLotSize=5;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
//calculate probability that all xn items
//produced are defect
private static double probabilityThatAllDefect(int xn) {
return Math.pow(defectProbability,xn);

}
//function K calculates the setup cost
private static double K(int xn) {
if (xn==0) { //if nothing is produced
return 0; //there is no setup cost

}
//otherwise we encounter a fix setup cost of $300
return setupCost;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int n); //n is stage number
//(production run number)

DECISION_VARIABLE: int xn; //xn is lot size for stage n
//Hillier/Lieberman do not explicitly set an upper bound for
//the lot size in the general problem formulation. However in
//the example instance they use an upper bound of 5, making
//the decision set {0,..,5}
DECISION_SPACE: decisionSet(n)={0,..,maxLotSize};

GOAL: f(1);

DPFE_BASE_CONDITIONS:

184 4 DP Problem Specifications in gDPS

f(n)=penaltyCosts WHEN (n==productionRuns+1);
//penalty of $1600 if no acceptable item after
//3 production runs

DPFE: f(n) = MIN_{xn IN decisionSet}
{ r(n,xn)
+p1.f(t1(n,xn))
};

REWARD_FUNCTION: r(n,xn)=xn*marginalProductionCost+K(xn);

TRANSFORMATION_FUNCTION: t1(n,xn)
=(n+1);

TRANSITION_WEIGHTS: p1(n,xn)=probabilityThatAllDefect(xn);

END

4.36 gDPS source for RDP

BEGIN
NAME RDP; //ReliabilityDesignProblem
GENERAL_VARIABLES_BEGIN

//cost for each device type
//(we can use ints instead of doubles)
private static int[] cost = {30, 15, 20};
//reliability of each device type
private static double[] reliability = {0.9, 0.8, 0.5};
//total budget
private static int budget = 105;
//This instance has 3 stages. Number them 0, 1 and 2.
private static int numberOfStages=reliability.length;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
//calculate reliability of stage i given the number of
//components m_i
private static double reliabilityOfStage(int stage,

int noOfComponents) {
return 1-Math.pow(1-reliability[stage],noOfComponents);

}

//calculate upper bound for number of components
//(Horowitz p.297 introduces a different attempt for this)

4.36 gDPS source for RDP 185

//the following improved version disallows that we run out
//of funds too early
private static int upperBoundForNumberOfComponents

(int stage,int remainingMoney) {
int totalCostForOneDeviceAtEachLowerStage=0;
for(int i=0; i<stage; i++) {
totalCostForOneDeviceAtEachLowerStage+=cost[i];

}
//note: integer division makes the floor superfluous
//in the following equation
int result =

(remainingMoney-totalCostForOneDeviceAtEachLowerStage)
/cost[stage];

return result;
}

//produce the set {1,..,upperBoundForNumberOfComponents}
private static NodeSet calculateDecisionSet(int stage,

int remainingMoney) {
NodeSet result = new NodeSet();
int upperBound
= upperBoundForNumberOfComponents(stage,remainingMoney);

for(int i=1; i<=upperBound; i++) {
result.add(new Integer(i));

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int stage, int remainingMoney);

DECISION_VARIABLE: int m;
DECISION_SPACE: decisionSet(stage,remainingMoney)

=calculateDecisionSet(stage,remainingMoney);

GOAL: f(2,budget);

DPFE_BASE_CONDITIONS:
f(stage,remainingMoney)=1.0 WHEN (stage== -1);

DPFE: f(stage,remainingMoney)
=MAX_{m IN decisionSet}

{ f(t(stage,remainingMoney,m))
*r(stage,remainingMoney,m)
};

186 4 DP Problem Specifications in gDPS

REWARD_FUNCTION: r(stage,remainingMoney,m)
=reliabilityOfStage(stage,m);

TRANSFORMATION_FUNCTION: t(stage,remainingMoney,m)
=(stage - 1,remainingMoney - m*cost[stage]);

END

4.37 gDPS source for REPLACE

BEGIN
NAME replace; // Replacement Problem;

GENERAL_VARIABLES_BEGIN
private static double priceOfNewMachine=1000.0;
private static int[] tm={60,140,260}; //total maintenance

//cost for d stages
private static int[] v={800,600,500}; //salvage value

//after d stages
private static int L=tm.length; //max. lifetime
private static int N=5; //no. of stages
private static double infty=Double.MAX_VALUE;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static double cost(int d) {
if (d>L) {
return infty;

}
else {
return priceOfNewMachine + tm[d - 1] - v[d - 1];

}
}

GENERAL_FUNCTIONS_END

STATE_TYPE: (int k); // stage number

DECISION_VARIABLE: int d;
//d = no. of stages before replacement = usage time

DECISION_SPACE: decisionSet(k) = {1,..,L};

GOAL: f(0);

4.38 gDPS source for SCP 187

DPFE_BASE_CONDITIONS:
f(k) = 0.0 WHEN (k>=N);

DPFE: f(k) = MIN_{d IN decisionSet}
{ r(k,d) + f(trans(k,d)) };

REWARD_FUNCTION: r(k,d) = cost(d);

TRANSFORMATION_FUNCTION:
trans(k,d) = (k+d); //stage of next replacement

END

4.38 gDPS source for SCP

BEGIN
NAME SCPwS; //StagecoachProblem with explicit stages;
//uses explicit stages numbered 0 through 4 in DPFE

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
//adjacency matrix for stagecoach problem (Winston03, p.753)
//The 10 nodes are numbered from 0 through 9 here,
//not 1 to 10.
private static int[][] distance =
{
{infty, 550, 900, 770,infty,
infty,infty,infty,infty,infty},
{infty,infty,infty,infty, 680,

790, 1050,infty,infty,infty},
{infty,infty,infty,infty, 580,

760, 660,infty,infty,infty},
{infty,infty,infty,infty, 510,

700, 830,infty,infty,infty},
{infty,infty,infty,infty,infty,
infty,infty, 610, 790,infty},
{infty,infty,infty,infty,infty,
infty,infty, 540, 940,infty},
{infty,infty,infty,infty,infty,
infty,infty, 790, 270,infty},
{infty,infty,infty,infty,infty,
infty,infty,infty,infty, 1030},

188 4 DP Problem Specifications in gDPS

{infty,infty,infty,infty,infty,
infty,infty,infty,infty, 1390},
{infty,infty,infty,infty,infty,
infty,infty,infty,infty,infty}

};
GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet possibleNextNodes(int node) {
NodeSet result = new NodeSet();
for (int i=0; i<distance[node].length; i++) {
if (distance[node][i]!=infty) {

result.add(new Integer(i));
}

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int g, int x);
//g is stage number, x is current node

DECISION_VARIABLE: int d;
//the set of alternatives is a function of the state
DECISION_SPACE: possibleSuccessors(g,x)

=possibleNextNodes(x);

GOAL:
f(0,0); //We start from node number zero in stage 0, so

//the goal is to compute f(0).

DPFE_BASE_CONDITIONS: f(g,x)=0.0 WHEN (x==9);
DPFE: f(g,x)=MIN_{d IN possibleSuccessors}

{ cost(g,x,d)
+f(t(g,x,d))};

REWARD_FUNCTION: cost(g,x,d)=distance[x][d];

TRANSFORMATION_FUNCTION: t(g,x,d)=(g+1,d);

END

4.39 gDPS source for SEEK 189

4.39 gDPS source for SEEK

BEGIN
NAME seek; // optimal total file seek time

GENERAL_VARIABLES_BEGIN
private static int[] track= {100,50,190};
private static int start = 140;
private static int N = track.length;

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllItems={0,..,N - 1};
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int cost(int x, int d) {

return Math.abs(x-track[d]);
}

GENERAL_FUNCTIONS_END

STATE_TYPE: (Set items, int x);

DECISION_VARIABLE: int d;

DECISION_SPACE: decisionSet(items, x)=items;

GOAL: f(setOfAllItems,start);

DPFE_BASE_CONDITIONS:
f(items, x)=0.0 WHEN (items SETEQUALS emptySet);

DPFE: f(items,x)=MIN_{d IN decisionSet}
{ r(items,x,d)+f(t(items,x,d)) };

REWARD_FUNCTION: r(items,x,d) = cost(x,d);

TRANSFORMATION_FUNCTION: t(items,x,d)
=(items SETMINUS {d}, track[d]);

END

190 4 DP Problem Specifications in gDPS

4.40 gDPS source for SEGLINE

Two different gDPS sources are given. The first model uses the DP functional
equation (2.40).

BEGIN

NAME SEGline; // segmented curve fitting

GENERAL_VARIABLES_BEGIN
private static double[][] e = // least-squares error
{
{ 9999., 0.0, 0.0556, 1.45},
{ 9999., 9999., 0.0, 1.3889},
{ 9999., 9999., 9999., 0.0},
{ 9999., 9999., 9999., 9999.}

};
private static int N1 = e.length-1;
// no. of partitions (segments)

//private static double K = 10.0;
// segmentation cost => 1 part

private static double K = 1.0;
// segmentation cost => 2 parts

//private static double K = 0.01;
// segmentation cost => 3 parts

GENERAL_VARIABLES_END

STATE_TYPE: (int s); // s=state=current break location

DECISION_VARIABLE: int d; // d=decision=next break location
DECISION_SPACE: decisionSet(s)={s+1,..,N1};

// d = current+1,..,end

GOAL: f(0); // initial break at location 0

DPFE_BASE: f(N1)=0.0; // final break at location N-1
DPFE: f(s) = MIN_{d IN decisionSet} { r(s,d) + f(t(s,d)) };

REWARD_FUNCTION:
r(s,d) = e[s][d] + K; // cost of line + cost of segment

TRANSFORMATION_FUNCTION:
t(s,d) = (d); // set current state to d

END

4.40 gDPS source for SEGLINE 191

The second model is an alternative formulation using the DP functional
equation (2.41).

BEGIN

NAME SEGlineAlt; // segmented curve fitting
// with LIMit on no. of segments

GENERAL_VARIABLES_BEGIN
private static double[][] e = // least-squares error
{
{ 9999., 0.0, 0.0556, 1.45},
{ 9999., 9999., 0.0, 1.3889},
{ 9999., 9999., 9999., 0.0},
{ 9999., 9999., 9999., 9999.}

};
private static int N1 = e.length-1;

// max. no. of partitions (segments)
private static double K = 10.0;

// segmentbreak cost (0.01,..,10.0)
private static int LIM = 2;

// constraint on no. of segments (1..N1)
GENERAL_VARIABLES_END

STATE_TYPE: (int i, int s);
// i=no. segmentbreaks allowed, s=current break location

DECISION_VARIABLE: int d; // d=decision=next break location
DECISION_SPACE: decisionSet(i,s)={s+1,..,N1};

// d = current+1,..,end

GOAL: f(LIM,0); // initial break at location 0
// up to LIM segmentbreaks

DPFE_BASE_CONDITIONS:
f(i,s)=0.0 WHEN ((i==0)&&(s==N1));

// final break at location N-1
f(i,s)=9999.9 WHEN ((i==0)&&(s<N1));//no more breaks allowed
//f(i,s)=0.0 WHEN ((i>0)&&(s==N1));// no. breaks .le. LIM
f(i,s)=9999.9 WHEN ((i>0)&&(s==N1));// no. breaks .eq. LIM

DPFE: f(i,s) = MIN_{d IN decisionSet}
{ r(i,s,d) + f(t(i,s,d)) };

REWARD_FUNCTION:

192 4 DP Problem Specifications in gDPS

r(i,s,d) = e[s][d] + K; // cost of line + cost of break

TRANSFORMATION_FUNCTION:
t(i,s,d) = (i - 1, d); // one fewer break for next segment

END

4.41 gDPS source for SEGPAGE

BEGIN
NAME SEGPAGE;

GENERAL_VARIABLES_BEGIN
private static final int inf=Integer.MAX_VALUE; //infinity
private static int[][] distance =
{
{inf, 0, 2, 82, 82, 82, 82, 2, 202,
202, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, 2, 82, 82, 82, 82, 2, 202,
202, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, 82, 82, 82, 82, 2, 202,
202, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, inf, 42, 82, 82, 2, 202,
202, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, 42, 42, 2, 202,
202, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, inf, 41, 1, 201,
201, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, inf, inf, 1, 201,
201, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, inf, inf, inf, 201,
201, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, inf, inf, inf, inf,
101, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, inf, inf, inf, inf,
inf, 2, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, 42, 42, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, inf, 22, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, inf, inf, 2, 2, 0, 0},
{inf, inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, inf, inf, inf, 2, 0, 0},

4.42 gDPS source for SELECT 193

{inf, inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, inf, inf, inf, inf, 0, 0},
{inf, inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, inf, inf, inf, inf, inf, 0},
{inf, inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, inf, inf, inf, inf, inf, inf}

};
private static int N1=distance.length-1;
private static final int m=4; // page size

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int cost(int p, int d) {
if (d-p>m) { // check page size
return inf;

}
else {
return distance[p][d];

}
}

GENERAL_FUNCTIONS_END

STATE_TYPE: (int p);

DECISION_VARIABLE: int d;

DECISION_SPACE: decisionSet(p)={p+1,..,N1};

GOAL: f(0);

DPFE_BASE_CONDITIONS:
f(p)=0.0 WHEN (p==N1);

DPFE: f(p) = MIN_{d IN decisionSet} { r(p,d) + f(t(p,d))};

REWARD_FUNCTION: r(p,d) = cost(p,d);

TRANSFORMATION_FUNCTION: t(p,d) = (d);

END

4.42 gDPS source for SELECT

BEGIN

194 4 DP Problem Specifications in gDPS

NAME select; // optimal selection problem

GENERAL_VARIABLES_BEGIN
private static int N = 10; //size of data to select from
private static int[] item= {3,6,8,10};

//select k-th out of N {1<=k<=N}
private static int M = item.length; //M=4 items to select

GENERAL_VARIABLES_END

STATE_TYPE: (int i, int j, int p, int q);
//(i,j)=subset of items

DECISION_VARIABLE: int k;
DECISION_SPACE: decisionSet(i,j,p,q)={i,..,j};

GOAL: f(1,M,1,N);

DPFE_BASE_CONDITIONS: f(i,j,p,q)=0.0 WHEN (i>j);
DPFE: f(i,j,p,q)=MIN_{k IN decisionSet}

{ r(i,j,p,q,k) + f(tLeft(i,j,p,q,k))
+ f(tRight(i,j,p,q,k)) };

REWARD_FUNCTION: r(i,j,p,q,k) = q-p+1;

TRANSFORMATION_FUNCTION:
//Note: subscript is k-1 for zero-indexing
tLeft(i,j,p,q,k) = (i,k - 1,p,item[k - 1] - 1);
tRight(i,j,p,q,k) = (k+1, j, item[k - 1]+1, q);

END

4.43 gDPS source for SPA

The SPA problem instance from section 2.43 can be coded in gDPS as follows.

BEGIN
NAME SPA; //ShortestPathAcyclic;

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
//adjacency matrix for acyclic shortest path (Lew85, p.337)
//The nodes (s,x,y,t) are coded as (0,1,2,3)
private static int[][] distance =
{

4.43 gDPS source for SPA 195

{infty, 3, 5, infty},
{infty, infty, 1, 8},
{infty, infty, infty, 5},
{infty, infty, infty, infty}
};

//Note: infty entry represents the fact that there is no
// edge between nodes.

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet possibleNextNodes(int node) {
NodeSet result = new NodeSet();
for (int i=0; i<distance[node].length; i++) {
if (distance[node][i]!=infty) {

result.add(new Integer(i));
}

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int currentNode);

DECISION_VARIABLE: int d;
DECISION_SPACE: possibleSuccessors(currentNode)

=possibleNextNodes(currentNode);

GOAL:
f(0); //We start from node number zero, so

//the goal is to compute f(0).

DPFE_BASE_CONDITIONS:
f(currentNode)=0.0 WHEN (currentNode==3);

DPFE: f(currentNode)
=MIN_{d IN possibleSuccessors}

{ cost(currentNode,d)
+f(t(currentNode,d))};

REWARD_FUNCTION: cost(currentNode,d)
=distance[currentNode][d];

TRANSFORMATION_FUNCTION: t(currentNode,d)
=(d);

196 4 DP Problem Specifications in gDPS

END

Note the flexibility offered by the optional GENERAL_FUNCTIONS section
that allows one to efficiently define the current decision set via the function
possibleNextNodes(). By eliminating nodes connected to the current node
by infinitely weighted edges from the decision set we can reduce the complexity
of the problem somewhat.

4.44 gDPS source for SPC

Two different gDPS sources are given. The first model is based on the DP
functional equation (2.45) that keeps track of the set of nodes already visited.

BEGIN
NAME SPCalt; //ShortestPathCyclicAlt;
//single source shortest path, cycles allowed,
//no negative weights allowed
//DPFE chosen here: set approach similar to TSP problem

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
//adjacency matrix for cyclic shortest path (Lew85, p.337)
//The nodes (s,x,y,t) are coded as (0,1,2,3)
private static int[][] distance =
{
{infty, 3, 5, infty},
{infty, infty, 1, 8},
{infty, 2, infty, 5},
{infty, infty, infty, infty}
};

//Note: infty entry represents the fact that there is no
// edge between nodes

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set goalSet={0};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet possibleNextNodes(int node) {
NodeSet result = new NodeSet();
for (int i=0; i<distance[node].length; i++) {
if (distance[node][i]!=infty) {

result.add(new Integer(i));
}

4.44 gDPS source for SPC 197

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int currentNode, Set nodesVisited);

DECISION_VARIABLE: int alpha;
DECISION_SPACE: possibleSuccessors(currentNode, nodesVisited)

= possibleNextNodes(currentNode) SETMINUS nodesVisited;

GOAL:
f(0,goalSet); //that is: (0,{0});

DPFE_BASE_CONDITIONS:
f(currentNode,nodesVisited)=0.0
WHEN (currentNode==3);

DPFE: f(currentNode,nodesVisited)
=MIN_{alpha IN possibleSuccessors}

{ cost(currentNode,nodesVisited,alpha)
+f(t(currentNode,nodesVisited,alpha))};

REWARD_FUNCTION: cost(currentNode,nodesVisited,alpha)
=distance[currentNode][alpha];

TRANSFORMATION_FUNCTION: t(currentNode,nodesVisited,alpha)
=(alpha, nodesVisited SETUNION {alpha});

END

The second model is based on the DP functional equation (2.46) that uses
the “relaxation” approach, as discussed in Sect. 1.1.9.

BEGIN
NAME SPC; //ShortestPathCyclic;
//single source shortest path, cycles allowed,
//no negative weights allowed

GENERAL_VARIABLES_BEGIN
private static final int infty=Integer.MAX_VALUE;
//adjacency matrix for cyclic shortest path (Lew85, p.337)
//The nodes (s,x,y,t) are coded as (0,1,2,3)
private static int[][] distance =
{
{infty, 3, 5, infty},

198 4 DP Problem Specifications in gDPS

{infty, infty, 1, 8},
{infty, 2, infty, 5},
{infty, infty, infty, infty}
};

//Note: infty entry represents the fact that there is no
// edge between nodes

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static NodeSet possibleNextNodes(int node) {
NodeSet result = new NodeSet();
for (int i=0; i<distance[node].length; i++) {
if (distance[node][i]!=infty) {

result.add(new Integer(i));
}

}
return result;

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int currentNode, int noOfEdgesToTarget);

DECISION_VARIABLE: int d;
DECISION_SPACE:

possibleSuccessors(currentNode, noOfEdgesToTarget)
= possibleNextNodes(currentNode);

GOAL: f(0,3);
//We start from node number zero, and with a total of 4
//nodes in the graph, we do not need more than 3 edges to
//the target, otherwise there is a (nonegative cycle)
//that could be eliminated and the path shortened.

DPFE_BASE_CONDITIONS:
f(currentNode,noOfEdgesToTarget)=0.0
WHEN (currentNode==3);

f(currentNode,noOfEdgesToTarget)=infty
WHEN ((noOfEdgesToTarget==0)&&(currentNode!=3));

DPFE: f(currentNode,noOfEdgesToTarget)
=MIN_{d IN possibleSuccessors}

{ cost(currentNode,noOfEdgesToTarget,d)
+f(t(currentNode,noOfEdgesToTarget,d))};

REWARD_FUNCTION: cost(currentNode,noOfEdgesToTarget,d)

4.45 gDPS source for SPT 199

=distance[currentNode][d];

TRANSFORMATION_FUNCTION: t(currentNode,noOfEdgesToTarget,d)
=(d, noOfEdgesToTarget - 1);

END

4.45 gDPS source for SPT

BEGIN
NAME SPT; //SPT Scheduling;

GENERAL_VARIABLES_BEGIN
private static int[] proctime = {3,5,2};
//number of processes:
private static int n = proctime.length;
//total of proc times:
private static int ttl = 10;

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllItems={0,..,n - 1};
Set emptySet={};

SET_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static int size(Set items) {
return items.size();

}
GENERAL_FUNCTIONS_END

STATE_TYPE: (int k,Set items);

DECISION_VARIABLE: int d;
DECISION_SPACE: decisionSet(k,items)=items;

GOAL: f(0,setOfAllItems);

DPFE_BASE_CONDITIONS:
f(k,items)=0.0 WHEN (items SETEQUALS emptySet);

DPFE: f(k,items)=MIN_{d IN decisionSet}
{ cost(k,items,d) + f(t(k,items,d)) };

200 4 DP Problem Specifications in gDPS

REWARD_FUNCTION: cost(k,items,d) = k + proctime[d];

TRANSFORMATION_FUNCTION: t(k,items,d)
=(k + proctime[d],items SETMINUS {d});

END

4.46 gDPS source for TRANSPO

BEGIN
NAME transpo; // TransportationFlow-Production Problem

// Bronson97 Problem 19.22;

GENERAL_VARIABLES_BEGIN
private static final double infty=Integer.MAX_VALUE;

//production per unit cost:
private static double[][] C = {

{0.0,35.0,74.0,113.0,infty,infty,infty},
{0.0,43.0,86.0,133.0,180.0,infty,infty},
{0.0,40.0,80.0,120.0,165.0,210.0,infty}

};
//max no. units produced:
private static int m=6;
//no. of time stages
private static int n=3;
//demand
private static int[] D = {2,2,2};
//inventory perunitcost:
private static double Icost = 3.0;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN
private static double I(int s) {
if (s < 0) return infty;
else return Icost*s; //inventory cost

}
private static double costfct(int g, int s, int x) {
//produce enough to meet demand?
if (s + x < D[g]) return infty;
else return C[g][x]+I(s);

}
GENERAL_FUNCTIONS_END

4.47 gDPS source for TSP 201

// g=stage, s=inventory
STATE_TYPE: (int g, int s);

DECISION_VARIABLE: int x; // x=amt produced

DECISION_SPACE: decisionSet(g,s) = {0,..,m};

GOAL: f(0,0);

DPFE_BASE_CONDITIONS: f(g,s)=0.0 WHEN (g==n);

DPFE: f(g,s)
=MIN_{x IN decisionSet}

{ f(t(g,s,x))
+c(g,s,x)
};

REWARD_FUNCTION: c(g,s,x) = costfct(g,s,x);

TRANSFORMATION_FUNCTION: t(g,s,x) = (g+1,s+x - D[g]);

END

4.47 gDPS source for TSP

Two different gDPS sources are given. The first model uses the DP functional
equation (2.49) keeping the set of nodes visited as a part of the state.

BEGIN
NAME TSP; //TravelingSalesmanProblem;

GENERAL_VARIABLES_BEGIN
//adjacency matrix for TSP.
private static int[][] distance =
{
{ 0, 1, 8, 9, 60},
{ 2, 0, 12, 3, 50},
{ 7, 11, 0, 6, 14},
{10, 4, 5, 0, 15},
{61, 51, 13, 16, 0}
};

private static int n = distance.length;
//number of nodes n=5. Nodes are named starting

202 4 DP Problem Specifications in gDPS

//at index 0 through n-1.
GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfAllNodes={0,..,n - 1};
Set goalSet={0};

SET_VARIABLES_END

STATE_TYPE: (int currentNode, Set nodesVisited);

DECISION_VARIABLE: int alpha;
DECISION_SPACE: nodesNotVisited(currentNode,nodesVisited)

=setOfAllNodes SETMINUS nodesVisited;

GOAL:
f(0,goalSet); //that is: (0,{0});

DPFE_BASE_CONDITIONS:
f(currentNode, nodesVisited)
=distance[currentNode][0]

WHEN (nodesVisited SETEQUALS setOfAllNodes);

DPFE: f(currentNode,nodesVisited)
=MIN_{alpha IN nodesNotVisited}

{ cost(currentNode,nodesVisited,alpha)
+f(t(currentNode,nodesVisited,alpha))};

REWARD_FUNCTION: cost(currentNode,nodesVisited,alpha)
=distance[currentNode][alpha];

TRANSFORMATION_FUNCTION: t(currentNode,nodesVisited,alpha)
=(alpha, nodesVisited SETUNION {alpha});

END

The second model is an alternative formulation using the DP functional
equation (2.50) that keeps the set of nodes not yet visited as a part of the
state.

BEGIN
NAME TSPalt; //TravelingSalesmanProblem;

GENERAL_VARIABLES_BEGIN
//adjacency matrix for TSP
private static int[][] distance =
{

4.47 gDPS source for TSP 203

{ 0, 1, 8, 9, 60},
{ 2, 0, 12, 3, 50},
{ 7, 11, 0, 6, 14},
{10, 4, 5, 0, 15},
{61, 51, 13, 16, 0}
};

private static int n = distance.length;
//number of nodes n=5. Nodes are named
//starting at index 0 through n-1.

GENERAL_VARIABLES_END

SET_VARIABLES_BEGIN
Set setOfOtherNodes={1,..,n - 1};
Set emptySet={};

SET_VARIABLES_END

STATE_TYPE: (int currentNode, Set nodesToBeVisited);

DECISION_VARIABLE: int alpha;
DECISION_SPACE: nodesNotVisited(currentNode,nodesToBeVisited)

=nodesToBeVisited;

GOAL: f(0,setOfOtherNodes);
//start from node 0 (any other node would do)

DPFE_BASE_CONDITIONS:
f(currentNode, nodesToBeVisited)
=distance[currentNode][0]

WHEN (nodesToBeVisited SETEQUALS emptySet);

DPFE: f(currentNode,nodesToBeVisited)
=MIN_{alpha IN nodesNotVisited}

{ cost(currentNode,nodesToBeVisited,alpha)
+f(t(currentNode,nodesToBeVisited,alpha))};

REWARD_FUNCTION: cost(currentNode,nodesToBeVisited,alpha)
=distance[currentNode][alpha];

TRANSFORMATION_FUNCTION: t(currentNode,nodesToBeVisited,alpha)
=(alpha, nodesToBeVisited SETMINUS {alpha});

END

Note the convenient use of variables and literals of the type Set in both
formulations.

5

Bellman Nets: A Class of Petri Nets

This chapter reviews fundamental Petri net concepts. Prior work on relation-
ships between DP and Petri nets has dealt with using DP to solve optimization
problems arising in Petri net models. Among the few who used a Petri net
model to solve an optimization problem are [36, 46, 52]. Lew [36] explored in-
terconnections between DP, Petri nets, spreadsheets, and dataflow and other
nondeterministic computer architectures. Mikolajczak and Rumbut [46] gave
a Petri net model for the MCM problem. Richard [52] showed that an integer
linear program (ILP) can be associated with a certain PN class.

We introduce Bellman nets as a very specialized class of Petri nets that
can be associated with dynamic programming. Petri nets are generalizations of
directed graphs. Briefly, a directed graph is a mathematical model consisting
of a set of objects, called nodes (or vertices), together with another set of
objects, called branches (or arcs or edges), that connect pairs of nodes. A
directed graph is a useful model of state transition systems, where states are
modeled by nodes and transitions between states and next-states are modeled
by branches. However, an ordinary directed graph cannot be used to model
more complex systems, such as where there may be parallel next-states or
concurrent transitions. Petri nets, on the other hand, can be used for this
purpose.

5.1 Petri Net Introduction

Petri Nets are named for Prof. Dr. Carl Adam Petri, University of Hamburg,
Germany, who developed schemata that allowed the modeling of parallel and
independent events in an illustrative manner.

Detailed introductions to PNs are [51] and [47]. For colored PNs, see [27].

5.1.1 Place/Transition Nets

The following formal definitions follow the notation used in [51].

A. Lew and H. Mauch: Bellman Nets: A Class of Petri Nets, Studies in Computational Intel-

ligence (SCI) 38, 205–220 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

206 5 Bellman Nets: A Class of Petri Nets

The first definition describes the basic syntactic properties that a net, as
used in the following, should have.

Definition 5.1 (Net). A triple N = (S, T, F) is called a finite net iff

1. S and T are disjoint finite sets and
2. F ⊆ (S × T) ∪ (T × S) is a binary relation called the flow relation of N.

Elements of F are also called arcs.

Mathematically speaking our notion of a net is a directed bipartite graph.
The nodes are partitioned into two sets S and T , with arcs connecting only
nodes in different sets. For convenience we use the following notation.

Definition 5.2 (Preset and Postset). Let N = (S, T, F) be a net. For
x ∈ S ∪ T
•x = {y|(y, x) ∈ F} is called the preset of x,
x• = {y|(x, y) ∈ F} is called the postset of x.
This notation extends to sets. For X ⊂ S ∪ T define

•X = ∪x∈X • x

and
X• = ∪x∈Xx • .

In this book we use a low-level PN class called place/transition nets to
define low-level Bellman nets.

Definition 5.3 (Place/Transition Net). Let N denote the set of non-
negative integers, and let ω denote an infinite capacity. A 6-tuple N =
(S, T, F,K,M,W) is called a place/transition net iff

1. (S, F, T) is a finite net,
2. K : S → N ∪ {ω} gives a (possibly unlimited) capacity for each place,
3. W : F → N − {0} attaches a weight to each arc of the net, and
4. M : S → N ∪ {ω} is the initial marking where all the capacities are

respected, i.e. M(s) ≤ K(s) for all s ∈ S.

Elements of S are called places, elements of T are called transitions.

Graphically, places will be represented by circles; transitions will be rep-
resented by rectangles. The marking of a place corresponds to the number of
tokens in that place. If p ∈ S is a place, then the fact that p contains k tokens
is represented by writing the number k inside p’s circle. The weighted arcs
of the flow relation are represented by weighted directed arcs in the bipartite
graph.

The dynamic behavior of a place/transition net is described in the follow-
ing definitions.

Definition 5.4. Let N = (S, T, F,K,M,W) be a place/transition net. A tran-
sition t ∈ T is activated (or enabled) if

5.1 Petri Net Introduction 207

1. for every place p in the preset •t the number of tokens at p is greater than
or equal to the weight W (p, t) of the arc from p to t and

2. for every place p in the postset t• the number of tokens at p plus the weight
W (t, p) of the arc from t to p does not exceed the capacity K(p) of p.

Definition 5.5. Let N = (S, T, F,K,M,W) be a place/transition net. An
activated transition t ∈ T may fire by

1. decreasing the number of tokens for all p ∈ •t by W (p, t) and
2. increasing the number of tokens for all p ∈ t• by W (t, p).

5.1.2 High-level Petri Nets

The place/transition nets introduced in Sect. 5.1.1 are considered “low-level”
PNs. In this section we describe the basic properties of high-level PNs. The
distinction is similar to that between low-level programming languages such
as assembler languages and high-level programming languages such as Java.
High-level PNs facilitate modeling on a different level of abstraction. Arcs
and nodes are annotated by a special inscription language. Tokens are more
complex data items, and nodes are inscribed with more complex symbolic
expressions than low-level PNs. The most prominent examples of high-level
PNs are colored PNs ([25, 26, 27], see Sect. 5.1.3 for a brief formal overview)
and predicate/transition nets [14, 15].

In this section we will informally describe the basic common properties of
high-level PNs. We use the terminology that describes the Petri net markup
language (PNML) [6, 62], the emerging XML-based interchange format for
PNs. PNML is flexible enough to integrate different types of high-level PNs
and is open for future extensions. For our purpose it is sufficient to introduce
the meta model of basic PNML — the features belonging to structured PNML
are not needed.

In its most general definition a high-level PN is considered as a labeled
graph. All additional information can be stored in labels that can be attached
to the net itself, to the nodes of the net or to its arcs [6]. A PN type definition
determines the legal labels for a particular high-level PN type.

Definition 5.6. A high-level PN N = (O,LN), when described in basic
PNML, consists of a set O of objects and a set of labels LN attached to the net.
Every object o ∈ O is associated with a set of labels Lo. The set O = N ∪A is
partitioned into the nodes N and the arcs A. The set N = P ∪T is partitioned
into the set of places P and the set of transitions T . An arc connects a source
node to a target node.

The PNML meta model defines high-level PNs in a very general way; for
example it does not even forbid arcs between nodes of the same kind, which
are apparently allowed in some more exotic PN types.

There are two types of labels, namely annotations and attributes. Anno-
tations are typically displayed as text near the corresponding object. Object

208 5 Bellman Nets: A Class of Petri Nets

names, markings of places by tokens, arc inscriptions, and transition guards
are examples of annotations. Attributes specify graphical properties of an
object.

The label set LN that is associated with the net N itself could for example
consist of the declarations of functions and variables that are used in the arc
inscriptions.

5.1.3 Colored Petri Nets

In 1981 Jensen introduced colored Petri nets (CPN) in [25]. At the same time
Genrich and Lautenbach introduced predicate/transition Nets (PrTN) in [15].
The common idea is to allow distinguishable typed individuals as tokens. In
CPNs this is achieved by attaching a “color” (commonly a numerical value)
to each token in the net. Lautenbach and Pagnoni [34] showed in 1985 the
duality of CPNs and PrTNs. The following definition follows [27].

Definition 5.7 (Colored Petri Net). A 9-tuple N = (Σ,P, T, F,Q,C,
G,E, I) is called a colored Petri net (CPN) iff

1. Σ is a finite set of non-empty types, called color sets, which determine the
types, operations and functions that can be used in the net inscriptions,

2. (P, T, F) is a finite net,
3. Q : F → P × T ∪ T × P is the node function, which is similar to the

flow relation F , but allows multiple arcs between the same ordered pair of
nodes,

4. C : P → Σ is the color function, which means that each token on a place
p must have a color token that belongs to the type C(p),

5. G is a guard function that maps each transition t to a suitable boolean
predicate, also known as the inscription of the transition (note that the
types of the variables in the predicate must be a subset of Σ, i.e. the
variables must have legal types),

6. E is an arc expression function that maps each arc into an expression of
appropriate type, also known as the inscription of the arc (note that types
must match), and

7. I is the initialization function, which maps each place p ∈ P into a suit-
able closed expression (i.e. an expression without variables) which must
be a multi-set over the type C(p). The initial marking M0 is obtained by
evaluating the initialization expressions [27, p.74].

The dynamic behavior of a CPN is described in the following definitions.

Definition 5.8. Let N = (Σ,P, T, F,Q,C,G,E, I) be a CPN. A transition
t ∈ T is activated (or enabled) if

1. for every place p in the preset •t there is a suitable binding of a token in
p to the arc expression E(p, t) and

5.1 Petri Net Introduction 209

2. for every place p in the postset t• there is a suitable binding to the arc
expression E(t, p) and

3. its guard expression G(t) evaluates to true under the chosen binding.

Definition 5.9. Let N = (Σ,P, T, F,Q,C,G,E, I) be a CPN. An activated
transition t ∈ T may fire (or occur) by

1. removing tokens, which are determined by the arc expressions, evaluated
for the occuring bindings, from the input places and

2. adding tokens, which are determined by the arc expressions, evaluated for
the occuring bindings, to the output places.

5.1.4 Petri Net Properties

The following definitions are based on [47].

Definition 5.10. A marking M is said to be reachable from an initial mark-
ing M0 if there exists a sequence of firings that transforms M0 to M .

Definition 5.11. The submarking reachability problem for a Petri net is the
question of whether or not a subset of the places can have a certain marking,
reachable from the initial marking.

Definition 5.12. A Petri net is k-bounded if the number of tokens in each
place does not exceed a finite number k ∈ N for any marking reachable from
its initial marking. A Petri net is safe if it is 1-bounded.

Definition 5.13. A transition t in a Petri net is L1-live (potentially firable)
if t can be fired at least once in some firing sequence from the initial mark-
ing. A Petri net is L1-live if every transition in the net is L1-live. (Stronger
definitions of liveness specify that a transition can be fired more than once.)

Definition 5.14. A transition t in a Petri net is dead if t can never be fired.
A Petri net is dead if every transition in the net is dead.

We say that a Petri net is deadlocked if no transition is activated; i.e.
according to the previous definition if it is in a state (to be interpreted as the
initial marking) where it is dead. Note that a Petri net might not be dead
in its initial marking, but it might become deadlocked at some later point in
time.

Definition 5.15. A Petri net is persistent if, for any two enabled transitions,
the firing of one transition will not disable the other one.

Definition 5.16. A Petri net is acyclic if it has no directed circuit.

Note that the nodes of an acyclic Petri net can be topologically sorted.

210 5 Bellman Nets: A Class of Petri Nets

Fig. 5.1. Screenshot of Renew Tool

5.1.5 Petri Net Software

Petri Nets are supported by numerous software tools, which allow the creation
of PNs with graphical editors, simulate the dynamic behavior of PNs, ani-
mate the “token game” to visually display movements of tokens, and perform
an analysis of PNs for net theoretic properties. In 1998 a study [60] evalu-
ated 91 existing Petri Net tools. The website at http://www.daimi.au.dk/
PetriNets/tools/ contains a more recent searchable database of currently
available tools.

Throughout this book the Renew tool [32, 33], which is freely available and
open source, was used to import PNs in the XML-based PNML standard,
to modify or create PN figures and to simulate the execution of Petri net
models of dynamic programming problems. Renew is based on a high-level PN
model called “reference nets” [31] which is compatible with both the LLBNs
and HLBNs introduced in Sect. 5.2. Figure 5.1 shows a screenshot of Renew
(version 1.6).

5.2 Petri Net Models of Dynamic Programming

A basic introduction to both low-level and high-level PNs is given in Sect. 5.1.
The following sections discuss two special purpose PN models, which are suit-
able to represent and solve DP problem instances. We refer to PNs that are

5.2 Petri Net Models of Dynamic Programming 211

capable of representing and solving DP problems as Bellman nets, in honor
of Richard E. Bellman, who established the fundamentals of DP. The de-
tails of two different Bellman net models are discussed. First, a low-level
Bellman net (LLBN) model based on place/transition nets, as introduced
in [43], is described. Second, high-level Bellman Nets (HLBN) [37, 40, 41]
based on the high-level PN concepts of colored Petri nets (CPN) [25, 26, 27]
or predicate/transition nets (PrTN) [14, 15] are introduced. For the purpose
of defining HLBNs it makes no difference whether we use CPNs or PrTNs as
the underlying concept. We only use features that appear in both CPNs and
PrTNs, and the subtle differences between CPNs and PrTNs do not come
into play. We actually go one step further and describe HLBNs based on the
emerging PN standard PNML, which is so general that it allows for future
extensions of the HLBN model without having to worry about conforming to
either CPNs or PrTNs. There is software support for both LLBNs and HLBNs
(see Sect. 5.1.5).

Why use a PN model at all? For problems where a decision d leads from one
state s to K > 1 successor states s(1), . . . , s(K) (e.g. MCM, BST have K = 2
successor states) a weighted directed graph representation is not sufficient.
These problems have solutions which are represented as K-ary trees (rather
than paths) in the PN, since after each decision exactly K successor states
need to be evaluated.

The DP state graph representation where there is one arc for each decision-
(next-state) pair (d, s(k)) is not suitable, because attaching a weight to an arc
according to the reward of the decision involved would model multiple identical
rewards for a single decision, which is incorrect.

So why not use a tree model? First, we have the same dilemma as before
that one state is associated with K successor states per decision, but is also
associated with exactly one arc weight representing the reward of the decision
taken (see Fig. 5.2). Second, we want to take advantage of overlapping sub-
problems, which should only be solved once instead of multiple times. A tree
model, e.g. a parse tree model with functions like addition and minimization
as interior nodes and terminals as leaves, would not allow for such a topo-
logy — nodes that hold the result of overlapping subproblems would appear
multiple times and not just once, which results in an inefficient model.

A PN model overcomes all these problems in an elegant and natural way.
While it is easier to transform HLBNs to executable code, the LLBN model

from Sect. 5.3 is easier to examine with respect to consistency, and other net
theoretic issues. For certain DP problem classes equivalence between the two
models can be proven to exist and the proof is a constructive one. A practical
transformation algorithm between the two models is possible [44], so we can
take advantage of the benefits of both models.

212 5 Bellman Nets: A Class of Petri Nets

state

succesor state 1

successor state 2

reward of decision

Fig. 5.2. Dilemma when a state has two successor states

5.3 The Low-Level Bellman Net Model

The details of the suggested LLBN model (see [43]) for DP problems are
discussed in this section.

Definition 5.17. A low-level Bellman net (LLBN) is a place/transition net
that has the special structure described in Sects. 5.3.1 through 5.3.4.

Note that a LLBN is indeed a place/transition net with places and transi-
tions that adhere to the low-level PN conventions. When we introduce several
types of places and transitions in the following, it is important to keep in
mind that these types only help us with the interpretation of their function-
ality. Their semantics is exactly the semantics described for place/transition
nets in Sect. 5.1.1.

5.3.1 Construction of the Low-Level Bellman Net Model

Suppose a discrete optimization problem can be solved by an integer dynamic
programming equation of the form

f(s) = min
d∈D(s)

{r(s, d) +
K∑

k=1

f(s(k))}, (5.1)

with nonnegative integral base cases values f(s0) given.
Here s denotes a state, f is the recursion functional, d is the decision

variable that chooses from alternatives feasible in state s, r is the reward
function with nonnegative integral values, s(k) are the K next-states, and s0

are base case (initial condition) states. The LLBN model corresponding to
this DP problem has

1. a state place ps for each state s, that has, except for the base case state
places, a unique minimization transition in its preset,

5.3 The Low-Level Bellman Net Model 213

2. a min-in place pm for each decision d, that has a minimization transition
in its postset, and whose initial marking equals r(s, d) ∈ N,

3. a minimization transition associated with each state place ps, except for
the base case state places, that has in its preset the min-in places for each
decision a,

4. a copy transition that transfers tokens from the state place associated
with s(k) to those min-in places whose decision d involves the summand
f(s(k)).

5.3.2 The Role of Transitions in the Low-Level Bellman Net Model

Transitions serve two different purposes in the model.

• Processing Transitions: Transitions can be considered as elements process-
ing the arithmetic functions required for the evaluation of the DP func-
tional equation. So far, only minimization transitions are used. They have
the advantage that they conform to the standard place/transition net
semantics described in Sect. 5.1.1.
Since place/transition nets, extended with inhibitor arcs, constitute a
Turing-complete model of computation [47] there is the potential to de-
sign processing subnets for more complex operations such as maximization,
multiplication, etc. (See e.g. [24] for the concept of a “weak PN computer”.)
In other words, it would be possible to have meta-transitions (subnets) rep-
resenting arbitrary functions f . More formally, let t be a meta-transition
representing the function f . Then its preset •t = {p1, . . . , pn} consists
of places representing the function variables {x1, . . . , xn}. The postset t•
consists of exactly one place representing the function value f(x1, . . . , xn).
In this book we only consider LLBNs with minimization transitions. The
summation operation can be trivially achieved, since it is the default se-
mantics of place/transition nets to accumulate (black) tokens in a place.
More complex meta-transitions are possible, but will not be discussed here.

• Copy Transitions: Another purpose of transitions is to make the results
of solved subproblems available to the superproblems requesting these re-
sults. Each of these special “copy transitions” distributes a result from one
“state place” to multiple “min-in places”.

5.3.3 The Role of Places in the Low-Level Bellman Net Model

There are two types of places in the LLBN model.

• State Places: Such a place represents a state encountered during the solu-
tion process of a DP problem. Except for the base case state places, state
places are the output places for minimization transitions.

• Min-in Places: These are the input places for minimization transitions.
They are also the output places for copy transitions.

214 5 Bellman Nets: A Class of Petri Nets

5.3.4 The Role of Markings in the Low-Level Bellman Net Model

• Marking of State Places: Let ps be a state place. Immediately after all
minimization transition in its preset •ps have fired, but just before firing
any of the copy transitions in its postset ps•, the marking of a state place
ps representing state s contains f(s) tokens, where f(s) equals the optimal
value of the subproblem associated with state s. Base case state places are
initially marked with an appropriate number of tokens as specified in the
base cases of the DP functional equation. That is, a base case state place
associated with a base case state s0 is initially marked with f(s0) tokens.
All other state places are initially marked with no tokens.

• Marking of Min-in Places: Let pm be a min-in place. After all transitions
in its preset •pm have fired, but just before firing any transitions in its
postset pm•, the marking of these places corresponds to the values to be
minimized by a minimization transition. Min-in places are initially marked
with r(d) tokens, so the reward of a decision gets added implicitly.

5.3.5 Advantages of the Low-Level Bellman Net Model

The main features of the suggested LLBN model are:

• The standard place/transition net semantics are used.
• There are no conflicts in the net. The order in which transitions fire is not

relevant for the value of the final result (i.e. the final marking of the goal
state place). However, the marking of an intermediate state place during
execution is only meaningful, if a “controlled” firing order is used.

• The optimal policy can easily be reconstructed from the final marking. We
may just trace the tree from the final state place back to the base case
state places following empty min-in places.

5.4 Low-Level Bellman Net Properties

In this section we describe net theoretic properties of LLBNs. We assume here
that these LLBNs are “legal” or “proper” in the sense that they represent
correctly specified DP problems. Of course, if a DP formulation is not correct,
e.g. if a base condition is omitted, neither is its associated LLBN.

• LLBNs are pure (there are no double arcs).
• LLBNs are ordinary (all arc weights are 1).
• LLBNs are not state machines, since typically minimization transitions

have more than one incoming arc, and copy transitions more than one
outgoing arc.

• LLBNs are not marked graphs, since min-in places might have more than
one incoming arc.

• Every LLBN is a free-choice net, since |p • | ≤ 1 for all places p.

5.5 The High-Level Bellman Net Model 215

• LLBNs are conflict-free. Every LLBN is a forward-conflict-free net, since
each place has at most one outgoing arc.

• LLBNs allow the concurrent firing of transitions.
• LLBNs represent a dataflow model of computation [47, p.545].
• The reachability graph of a LLBN is acyclic and has exactly one sink

node, referred to as the final marking (in which the net is dead). The final
marking can be reached from any marking in the reachability graph.

• Let M(p) denote the marking of a place p. For every non-base state place
ps in a LLBN M(ps) ≤ f(s), i.e. ps is f(s)-bounded. Every LLBN is struc-
turally bounded, since if in its initial marking M0 it holds that M0(p) < ∞
for all places p then the LLBN is bounded.

• LLBNs are persistent — for any two enabled transitions the firing of one
transition will not disable the other.

• LLBNs are acyclic.
• LLBNs do not have isolated places or transitions.
• Every LLBN has exactly one sink place, the goal state place.
• Every LLBN has one or more source places, the base state places.

5.5 The High-Level Bellman Net Model

Lew introduces in [37] another PN model, which is suitable as an interme-
diate DP problem representation: high-level Bellman nets (HLBN). HLBNs
can model DP problems with DP functional equations of the general form as
described in Chap. 1. In contrast to the LLBN model described earlier, these
are high-level PNs with numerically-colored tokens. For all places the color set
from which tokens are picked is the set of real numbers. Special types of tran-
sitions are introduced — M-transitions for minimization/maximization and
E-transitions for expression evaluation. In the original definition input tokens
are not removed when firing a transition. To allow for standard PN seman-
tics [40] modifies the HLBN model, such that input tokens are removed unless
they are replaced using double arcs, as is the case for E-transitions. In [41] two
additional types of transitions (to allow for comparisons and multiplexing) are
introduced for HLBNs.

HLBNs are the underlying logical structure used in DP2PN2Solver. They
are described in detail in [37, 40, 41, 45]. The notation used here is based on
[41].

Definition 5.18 (High-level Bellman net). A high-level Bellman net
(HLBN) is a high-level Petri net as defined in Sect. 5.1.2, with a set of place
nodes P , a set of transition nodes T , and a set of arcs A. The place nodes
P can be partitioned P = S ∪ I ∪ E, where S denote state places, I de-
note intermediate places and E denote enabling places. Furthermore, there
is a special goal place g ∈ S that describes the computational goal of the
DPFE, and there is a set of base state places B ⊆ S. Tokens are of the type

216 5 Bellman Nets: A Class of Petri Nets

“real number” (for state places and intermediate places) or “black” (for en-
abling places). The base state places B are initially marked with a single real-
valued token (according to the initial conditions in the DPFE); all enabling
places E are initially marked with a single black token; all other places do not
have any token in their initial marking. The transition nodes of HLBNs are
B-transitions, which are governed by the following rules.

1. Each B-transition has one unique designated output place p ∈ S ∪ I.
2. Every B-transition is labeled with an annotation describing a function f as

defined below. In addition to the function type (e.g. “min”,“max”,“+”,“*”)
the annotation can optionally contain a constant value c ∈ R or other in-
formation that is essential for computing the function f . When firing, the
value of its output token is the function value using the value of its input
tokens as arguments.

3. Every B-transition t can fire only once. To be consistent with standard
Petri net semantics this is ensured by having an enabling place p for every
B-transition t along with a connecting arc from p to t. Sometimes we will
not show the enabling place and the connecting arc explicitly, but rather
implicitly assume their presence to simplify the drawing of HLBNs.

4. When a B-transition fires, the input tokens are returned unchanged back to
their respective input places (exception: enabling places), which is modeled
by adding reverse arcs. All its input places (its preset) with the exception
of enabling places are connected to the B-transition with double arcs, i.e.,
a symmetric pair of arcs (from a place to a transition and a reverse one
from the transition to the place, also called a self-loop in Murata [47]).
While, formally, these input places serve also as output places, in essence
f only has an effect on the designated output place.

The arcs A connect place nodes with B-transitions and vice versa. In HLBNs,
arcs are not labeled. Having said this, to make the graphical representation of
HLBNs more readable, we inscribe arcs for illustrative purposes only; labels
“x1, . . . , xn” denote arcs delivering the input values to a B-transition, whereas
an arc labeled “y” originates from a B-transition and ends at the designated
output place.

We now define two “basic” types of B-transitions: E-transitions (for
arithmetic expression evaluation) and M-transitions (for minimization or
maximization). What distinguishes these B-transitions is the nature of the
function f .

Definition 5.19. An E-transition outputs a token to its designated output
place having a numerical value determined by evaluating a simple arithmetic
(+, ∗) function of the values of its input tokens and of its associated constant
value c. Specifically, they can compute functions f : Rn → R of the form

f(x1, . . . , xn) = c +
n∑

i=1

xi

5.5 The High-Level Bellman Net Model 217

or

f(x1, . . . , xn) = c

n∏

i=1

xi

It is possible to define E-transitions in a more general way, e.g. by allow-
ing other arithmetic operators. However, for all DP examples considered, the
above definition proved to be sufficiently general.

Definition 5.20. An M-transition compares the numerical values of its input
tokens and outputs a token with value equal to the minimum (or maximum).
That is, they can compute functions f : Rn → R of the form

f(x1, . . . , xn) = min(x1, . . . , xn)

or
f(x1, . . . , xn) = max(x1, . . . , xn)

For M-transitions the reverse arcs and the enabling places will be omitted
in our drawings of HLBNs to simplify the figures; also, when firing, the tokens
in the preset of M-transitions will be consumed rather than be preserved.

The two types of B-transitions may be regarded as special cases of transi-
tions with the function f defined appropriately. More specific transition types
can be defined. An A-transition is the special case of an E-transition where the
function is addition. M-transitions must have at least one input; the minimum
(or maximum) of a set of size 1 is the value in the set. Rather than generaliz-
ing the types of B-transitions that a HLBN can have, we will limit ourselves
to those transition types that are sufficient to handle all of the example DP
problems solved in this book, which are M-transitions and E-transitions.

To summarize, a HLBN is a special high-level colored Petri net with the
following properties.

1. The color type is numerical in nature, tokens are real numbers. In addition,
single black tokens, depicted [] in the figures of Sect. 6.2 are used to
initialize enabling places, which are technicalities that prevent transitions
from firing more than once.

2. The postset of a transition contains exactly one designated output place,
which contains the result of the computational operation performed by
the transition. (In the example HLBNs for the MCM problem shown in
Fig. 6.25 and 6.26 designated output places are labeled (1,4), (1,3),
(2,4), (1,2), (2,3), (3,4) and p1 through p10; base state places are
labeled (1,1), (2,2), (3,3) and (4,4), and enabling places are labeled
starting with the prefix ep. In all examples of Sect. 6.2 base state places
are labeled with the base state they represent.)

3. A place contains at most one token at any given time. This follows since
each transition can only contribute a new token to its only designated
output place once.

218 5 Bellman Nets: A Class of Petri Nets

4. There are two different types of transitions, M-transitions and
E-transitions. An M-transition performs a minimization or maximization
operation using the tokens of the places in its preset as operands and
puts the result into its designated output place. An E-transition evalu-
ates a basic arithmetic expression (involving operators like addition or
multiplication) using fixed constants and tokens of the places in its pre-
set as operands and puts the result into its designated output place. (In
the example HLBNs for the MCM problem shown in Fig. 6.25 and 6.26
M-transitions are labeled mt1 through mt6, E-transitions are labeled st1
through st10. The other HLBN figures of Sect. 6.2 are labeled similarly.)

5. There are double arcs between an E-transition and all places (exception:
enabling places) in its preset. Their purpose is to conserve operands serv-
ing as input for more than one E-transition.

A numerical token as the marking of a place in a HLBN can be interpreted
as an intermediate value that is computed in the course of calculating the
solution of a corresponding DP problem instance. To clarify the concept of a
HLBN, numerous examples are given in Sect. 6.2.

The following two theorems put HLBNs in context with the two most
prevalent high-level PN models.

Theorem 5.21. Every HLBN is a colored Petri net (as defined in [27].)

Proof. A constructive sketch of a proof is given. Given a HLBN an equivalent
CPN is constructed.

The only variables used in arc expressions and transition guards are the
real-valued variables x1, x2, . . . , xn, y.

The places, transitions and arcs of a HLBN are mapped canonically to
places, transitions and arcs of a CPN, which automatically defines the node
function of the CPN.

What is left to show is that the labeling of objects and the special func-
tionality of a HLBN can be achieved with a CPN.

The color sets used in the CPN are Σ = {R, {black}}.
The color function C is defined as follows. The color set of the enabling

places E is the singleton {black} (i.e. C(p) = {black} for all p ∈ E); the color
set of the other places S ∪ I equals R (i.e. C(p) = R for all p ∈ S ∪ I).

The guard function G is defined as follows. If a B-transition in a HLBN
computes the function f(x1, x2, . . . , xn) then the corresponding transition t
in the CPN has the guard y = f(x1, x2, . . . , xn) inscribed. This has the effect
that t only fires after the guard evaluates to true, which is the case after the
variable y is bound to the real value f(x1, x2, . . . , xn).

The arc expression function is defined as follows. Let At,in be the set of
n = |At,in| arcs entering a transition t. Inscribe an arc ai ∈ At,in with the
variable expression xi for all i ∈ {1, . . . , n}. An arc leaving t is inscribed
with the variable expression y. Arcs from enabling places to transitions are
inscribed with the constant expression “black”.

5.6 High-Level Bellman Net Properties 219

The initialization function is defined as follows. For the CPN’s initial mark-
ing, every enabling place gets a single black token and every base case state
place gets the same constant real-valued token as in the HLBN. All other
places do not have an initial marking. ��

Note that the CPN constructed in the previous proof was built such that
it resembles the HLBN in the most natural way. In particular the transition
labels of the HLBN reappear as guard inscriptions in the CPN. It should be
pointed out that there is an alternative way of constructing a CPN from a
HLBN that avoids transcription inscriptions completely and uses more com-
plex arc inscriptions instead. An arc entering a transition would still have
the same variable expression xi inscribed, but the arc leaving the transition
would be inscribed with f(x1, x2, . . . , xn) and the variable y would no longer
be used.

Theorem 5.22. Every HLBN is a predicate/transition net (as defined in [14,
p.216].)

Proof. Due to the similarity of CPNs and PrTNs the proof is almost anal-
ogous to that of theorem 5.21. Given a HLBN an equivalent strict PrTN is
constructed. Strict means that multiple occurences of tuples (i.e. tokens) on
places are not allowed.

The places, transitions and arcs of a HLBN are mapped canonically to the
directed net underlying the PrTN definition.

The variables used in the first-order language are the real-valued variables
x1, x2, . . . , xn, y. Terms are built from the variables and of n-ary operators
f , which correspond to the functions associated with B-transitions in the
HLBN. Atomic formulas of the form y = f(x1, x2, . . . , xn) can be built from
terms. These are the formulas annotating the transitions in the PrTN. The
predicates annotating the places are unary and real-valued (exception: the
enabling places are treated as 0-ary predicates). The arcs are annotated by
unary predicates (exception: arcs from enabling places are annotated by a
zero-tuple indicating a no-argument predicate). The initial marking of the
PrTN consists of exactly one real-valued constant for each base state place
and of exactly one zero-tuple per enabling place. ��

5.6 High-Level Bellman Net Properties

The data model of computation [47, p.545] is used.
HLBNs are not state machines, since transitions can have more than one

incoming or outgoing arcs.
HLBNs are not marked graphs, since places usually have more than one

incoming or outgoing arcs.
Certain transitions/events in a HLBN are concurrent, but there are no

true conflicts.

220 5 Bellman Nets: A Class of Petri Nets

While, strictly speaking, HLBNs do contain conflicts, these are mere tech-
nicalities. A state place node can have two or more output transitions; however
these are connected with double arcs, so there is no true representation of de-
cisions. The nondeterminism merely expresses the order in which transitions
fires. But the order in which transitions fire is irrelevant in a HLBN; the final
marking will always be the same.

Synchronization is implicit in HLBNs. An M-transition has to wait until
all its operands are computed and available before it can fire.

Theorem 5.23. Every HLBN is safe.

Proof. In its initial marking a HLBN N contains by definition exactly one
token in each of its base state places B and enabling places E; all other places
do not contain any token. Enabling places have an empty preset (•e = ∅ for
all e ∈ E), so they are safe. Base state places B have E-transitions in their
preset, however connected via double arcs (implying no net gain of tokens),
so they are safe. The other state places S −B also have E-transitions in their
preset, also connected via double arcs (implying no net gain of tokens) and
in addition they have a single M-transition in their preset; but since each M-
transition fires at most once, they are safe. Intermediate places have a single
E-transition in their preset, and since each E-transition may fire at most once,
they are safe. ��

Theorem 5.24. Every HLBN is persistent.

Proof. In a HLBN, any two enabled transitions either have disjoint presets
(all transitions in a HLBN have disjoint postsets), or the places which lie in
the intersection of the presets are connected to the transition with double
arcs. So in no case will the firing of one enabled transition disable the other
one. ��

6

Bellman Net Representations of DP Problems

In Chap. 1, we showed how the following spreadsheet can be generated from
and essentially represent the DPFE for SPA.

A1: =min(A5,A6)
A2: =min(A7,A8)
A3: =min(A9)
A4: 0.0
A5: =A2+3.0
A6: =A3+5.0
A7: =A3+1.0
A8: =A4+8.0
A9: =A4+5.0

This spreadsheet model may also be interpreted as a tabular representation
of a Petri net where the formula cells in the spreadsheet correspond (1) to
transition nodes in the Petri net, to be evaluated, and (2) to place nodes in
the Petri net that hold the computed values of the transition-formulas. That
is, cell A1 corresponds to a transition that computes the minimum of the
values in cells A5 and A6; cell A5 corresponds to a transition that computes
the sum of the value in cell A2 plus the constant 3.0. In the Petri net, when
these transitions fire, their computed values are placed in their respective
place nodes, for possible use by other transition-formulas; e.g., the computed
value of A5 is used to compute the value of A1. In this chapter, we show how
all of the DP problems solved in this book (in Chap. 2), or to be more precise,
how the DPFEs that solve these DP problems, can be modeled and solved
using Petri nets. Specifically, we show use of both the special classes of Petri
nets, called Bellman nets, which were designed expressly for DP problems and
defined in Chap. 5.

A. Lew and H. Mauch: Bellman Net Representations of DP Problems, Studies in Computational

Intelligence (SCI) 38, 221–244 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

222 6 Bellman Net Representations of DP Problems

6.1 Graphical Representation of Low-Level Bellman Net
Examples

In this section, several example DP problems are discussed. They were chosen
to illustrate the basic ideas, and are not meant to reflect the class of prob-
lems that can be handled. Some problems (e.g. PERM) are easier than other
problems (e.g. MCM) in the sense that an optimal solution is represented as
a path in the PN, since after each decision exactly one successor state needs
to be evaluated. For these kinds of problems a weighted directed graph rep-
resentation, where states are nodes and branch weights represent the cost of
a decision, would be sufficient.

Other problems (e.g. MCM, BST) have solutions which are represented
as (binary) trees in the PN, since after each decision exactly two successor
states need to be evaluated. For these problems a weighted directed graph
representation as mentioned before is obviously no longer sufficient, since we
have the dilemma that one state is associated with two successor states, but
is also associated with exactly one branch weight (see Fig. 5.2.)

Problems with a more complex state space, such as the TSP, can be
handled as well with the LLBN model.

6.1.1 Low-Level Bellman Net for BST

The LLBN model of the BST instance (Sect. 2.6), in its initial marking, is
depicted in Fig. 6.1 — however this figure is simplified since the base case
state place ∅, which never contains any tokens, is left out, as well as the copy
transition belonging to it. Furthermore the trivial minimalization transitions
in the presets of the places denoted {A}, {B}, {C}, {D} and {E} are left out
because they minimize over a single input. Instead these places are initialized
with an appropriate number of tokens. In order to get integral values for
tokens, probability values are scaled, i.e. multiplied by 100. E.g. the initial
marking of state {A} is 25 instead of 0.25. These simplifications are equivalent
to using

f(S) = p(x) if S = {x}
as the base case in DPFE (2.9).

To obtain the final marking of the PN we fire transitions until the net is
dead. The PN, in its final marking, is depicted in Fig. 6.2. We can see that
the final state place {A,B,C,D,E} contains f({A,B,C,D,E}) = 190 tokens
now, corresponding to the optimal unscaled value of 1.9 using probability
values.

6.1.2 Low-Level Bellman Net for LINSRC

The LLBN model of the LINSRCS version of the LINSRC instance (Sect. 2.24),
in its initial marking, is depicted in Fig. 6.3. In order to get integral values

6.1 Graphical Representation of Low-Level Bellman Net Examples 223

{A}

{B}

{C}

{D}

{E}

{A,B,C,D,E}

min

{A,B,C,D}

{B,C,D,E}

{A,B,C}

{B,C,D}

{C,D,E}

{A,B}

{B,C}

{C,D}

{D,E}

min

min

min

min

min

min

min

min

min

25

5

20

10

90

90

90

90

75

75

75

75

45

45

50

50

50

70

70

70

30

30

25

25

60

60

50

50

100

100

100

100

100

40

45

Fig. 6.1. Low-level Bellman net in its initial marking for BST

{A}

{B}

{C}

{D}

{E}

{A,B,C,D,E}

min

{A,B,C,D}

{B,C,D,E}

{A,B,C}

{B,C,D}

{C,D,E}

{A,B}

{B,C}

{C,D}

{D,E}

min

min

min

min

min

min

min

min

min

190

5

30

35

25

60

15

50

15

5

50

30

20

15

20

30

25

35

5

75

Fig. 6.2. Low-level Bellman net in its final marking for BST

for tokens, fractions are scaled, i.e. multiplied by 10 for this instance. E.g. a
value of 1.5 is represented by 15 black tokens.

To obtain the final marking of the PN fire transitions until the net is
dead. The PN, in its final marking, is depicted in Fig. 6.4. We can see that
the final state place {0, 1, 2} contains 17 tokens now, corresponding to the
optimal unscaled value of f({0, 1, 2}) = 1.7. The actual solution can easily
be constructed from the final marking. Just trace the path from the final
state place {0, 1, 2} back to the base case state place ∅ following empty min-in
places.

224 6 Bellman Net Representations of DP Problems

min

min

min

min

{}

{2}

{1}

{0}

{1,2}

{0,2}

{0,1}

copy

copy

copy
copy

copy

copy

copy

{0,1,2}

3

2

5

6

4

4

9

6

10

6

15

10

Fig. 6.3. Low-level Bellman net in its initial marking for LINSRCS

min

min

min

min

{}

{2}

{1}

{0}

{1,2}

{0,2}

{0,1}

copy

copy

copy
copy

copy

copy

copy

{0,1,2}

2

4

2

3

1

17

Fig. 6.4. Low-level Bellman net in its final marking for LINSRCS

6.1.3 Low-Level Bellman Net for MCM

The LLBN model of the MCM instance (Sect. 2.27), in its initial marking, is
depicted in Fig. 6.5.

To obtain the final marking of the PN we fire transitions until the net is
dead. The PN in its final marking is depicted in Fig. 6.6. We can see that
the final state place (1, 4) contains f(1, 4) = 76 tokens now, the correct value
indeed.

Note that the order in which transitions fire is not relevant for the value
of the final result f(1, 4). However values of intermediate states, e.g. f(1, 3),
are only meaningful, if a “controlled” firing order is used.

The optimal policy can easily be reconstructed from the final marking.
Just trace the tree from the goal state place (1, 4) back to the base case state
places following empty min-in places.

6.1.4 Low-Level Bellman Net for ODP

The LLBN model of the ODP instance (Sect. 2.31), in its initial marking,
is depicted in Fig. 6.7. In order to avoid too many details in this figure we

6.1 Graphical Representation of Low-Level Bellman Net Examples 225

min

copy

min

(1,1)

(2,2)

(3,3)

(4,4)

min

copy

copy

copy

copy

(1,4)

(2,4)

(1,3)copy

copy

copy

copy

(1,2)

(2,3)

(3,4)

min

min

min

60

30

16

20

30
40

24

12

40

24

Fig. 6.5. Low-level Bellman net in its initial marking for MCM

min

copy

min

(1,1)

(2,2)

(3,3)

(4,4)

min

copy

copy

copy

copy

(1,4)

(2,4)

(1,3)copy

copy

copy

copy

(1,2)

(2,3)

(3,4)

min

min

min

34

26

4

4

76

Fig. 6.6. Low-level Bellman net in its final marking for MCM

simplified it in the following way. Base case state places at stage 3, which
contain either 0 or infinitely many tokens, are left out, as well as the copy
transitions which belong to these places. Furthermore the minimization tran-
sitions in the presets of the stage 2 places are left out. Instead the stage 2
states are initialized with an appropriate number of tokens. That is,

f(2, x) =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if 0 ≤ x ≤ 1
22 if x = 2
16 if 3 ≤ x ≤ 5
0 if 6 ≤ x ≤ 7.

226 6 Bellman Net Representations of DP Problems

(2,1)

infty

(2,0)

infty

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

min

min

min

min

(1,0)

(1,1)

(1,2)

(1,3)

(0,0)

min

11

11

20

1121

16

16

11

12

6

16

16

6

6

6
16

20

4

20

16
16

20

22

Fig. 6.7. Low-level Bellman net in its initial marking for ODP

To obtain a final marking of the PN we fire transitions until the net is dead
(i.e. no transition can fire any more), or if there are places with infinitely many
tokens (which is the case here) until only the copy transitions in the postset
of these places are activated, and no other transitions are activated.

The PN, in its final marking, is depicted in Fig. 6.8. We can see that at
stage 0 the goal state place associated with x = 0 contains f(0, 0) = 31 tokens
now, the correct value indeed. The actual solution, i.e. the decision to make
at each stage can easily be constructed from the final marking. Just trace
the path from the goal state place back to the base case state place following
empty min-in places.

6.1 Graphical Representation of Low-Level Bellman Net Examples 227

(2,1)

infty

(2,0)

infty

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

min

min

min

min

(1,0)

(1,1)

(1,2)

(1,3)

(0,0)

min

31

38

1

1

6

5

2

4

12

7

37

2

1

9

6

30

4

11

1

Fig. 6.8. Low-level Bellman net in its final marking for ODP

6.1.5 Low-Level Bellman Net for PERM

The LLBN model of the PERM instance (Sect. 2.32), in its initial marking,
is depicted in Fig. 6.9.

To obtain the final marking of the PN fire transitions until the net is dead.
The PN, in its final marking, is depicted in Fig. 6.10. We can see that the final
state place {p0, p1, p2} contains f({p0, p1, p2}) = 17 tokens now, the correct
value indeed. The actual solution, i.e. the order of the programs on the tape
can easily be constructed from the final marking. Just trace the path from
the final state place {p0, p1, p2} back to the base case state place ∅ following
empty min-in places.

228 6 Bellman Net Representations of DP Problems

min

min

min

min

{p0,p1,p2}
{}

{p2}

{p1}

{p0}

{p1,p2}

{p0,p2}

{p0,p1}

copy

copy

copy
copy

copy

copy

copy

6

10

6

6

9
 3

15

4

5

10

4

2

Fig. 6.9. Low-level Bellman net in its initial marking for PERM

min

min

min

min

{p0,p1,p2}
{}

{p2}

{p1}

{p0}

{p1,p2}

{p0,p2}

{p0,p1}

copy

copy

copy
copy

copy

copy

copy

1

3

1

5

2

 17

Fig. 6.10. Low-level Bellman net in its final marking for PERM

6.1.6 Low-Level Bellman Net for SPA

The LLBN model of the SPA instance (Sect. 2.43), in its initial marking, is
depicted in Fig. 6.11.

To obtain the final marking of the PN fire transitions until the net is dead.
The PN in its final marking is depicted in Fig. 6.12. We can see that the final
state place (0) contains f(0) = 9 tokens now, indeed the correct length of the
shortest path from node 0 to node 3. The actual solution, i.e. shortest path
itself, can easily be constructed from the final marking. Just trace back the
path from the final state place (0) to the base case state place (3) following
empty min-in places, which yields the shortest path (0, 1, 2, 3).

6.2 Graphical Representation of High-Level Bellman Net
Examples

In the following examples, note how the intermediate HLBN representation
gives an illustrative graphical representation of the problem instance.

6.2 Graphical Representation of High-Level Bellman Net Examples 229

(0)

(1)

(2)

(3)

copy

min

min

min

copy

copy

5

5

3

1

8

Fig. 6.11. Low-level Bellman net in its initial marking for SPA

(0)

(1)

(2)

(3)

copy

min

min

min

copy

copy

2

1

9

Fig. 6.12. Low-level Bellman net in its final marking for SPA

230 6 Bellman Net Representations of DP Problems

p1

p2

ep2

p3

ep3

p4

ep4

p5

ep5

p6

ep6

p7

ep7

p8

ep8

p9

ep9

p10

ep10

p11

ep11

p12

p13

ep13

p14

ep14

p15

ep15

p16

ep16

p17

ep17

p18

ep18

p19

ep19

p20

ep20

p21

ep21

p22

ep22

p23

ep23

ep24

p25

ep25

p26

ep26

p27

ep27

y=x1+1.0

y=x1+0.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=x1+1.0

y

x1

x1

yx1

y

x1

y

x1

x1

x2

yx1

y

x1

x1

x1

x2

yx1

y

x1

y

x1

x2

yx1

x3

y

y

x1

x1

x2

y

x3

y

x1

y

x1

x1

x2

yx1

x3

y

x1

y

x1

x1

x2

yx1

y

x1

y

x1

x1

yx1

x3

y

x1

x1

yx1

x3

y

x1

x2

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3)) y=Math.min(x1,Math.min(x2,x3))

x2

x3

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=x1+1.0

y=x1+1.0

x1

y=x1+0.0

y=x1+1.0
ep1

y=x1+1.0

y

y=Math.min(x1,Math.min(x2,x3))

y=x1+0.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

mt6 mt5mt9

mt2

y=x1+1.0

mt8

x3

y=x1+1.0

ep12

mt4

mt3 mt1

st20 st2

st23 st11 st5

st21

st19

st9

st7 st1

st4

st6

st10

st12

st22

st24

st3

x1
x1

x2

x3

y

x1

st13

x3

st17st26 st14

st8

mt7

st16

p24

st25

st27 st18 st15

y y y

y y y

y y y

(3,0) (3,1) (3,2) (3,3)

(2,0) (2,1) (2,2) (2,3)

(1,0) (1,1) (1,2) (1,3)

(0,0) (0,1) (0,2) (0,3)

[]

[] []

[]

2.0

3.0

[]

3.0

[]

0.0

[]

[]

[]

[]

[]

2.0

[]

[]

[]

[]

[]

[]

1.0

[]

[] [][]

[] []

[]

[]

1.0

[]

[]

Fig. 6.13. High-level Bellman net in its initial marking for EDP

6.2.1 High-Level Bellman Net for EDP

The HLBN of the EDP problem instance from Sect. 2.10 using the DP func-
tional equation (2.12), in its initial marking, is depicted in Fig. 6.13.

To obtain the final marking of the HLBN, fire transitions until the net is
dead. The net in its final marking is depicted in Fig. 6.14. Note that the goal
state place (3,3) contains a token with value f(X3, Y3) = 2 now, indeed the
minimal cost for an edit sequence.

6.2.2 High-Level Bellman Net for ILP

The HLBN of the ILP problem instance from Sect. 2.14 in its initial marking,
is depicted in Fig. 6.15.

To obtain the final marking of the HLBN, fire transitions until the net is
dead. The net in its final marking is depicted in Fig. 6.16. Note that the goal
state place (0,4,12,18) contains a token with value f(0, (4, 12, 18)) = 36
now, indeed the maximum value of the ILP problem instance.

6.2 Graphical Representation of High-Level Bellman Net Examples 231

p1

p2

ep2

p3

ep3

p4

ep4

p5

ep5

p6

ep6

p7

ep7

p8

ep8

p9

ep9

p10

ep10

p11

ep11

p12

p13

ep13

p14

ep14

p15

ep15

p16

ep16

p17

ep17

p18

ep18

p19

ep19

p20

ep20

p21

ep21

p22

ep22

p23

ep23

ep24

p25

ep25

p26

ep26

p27

ep27

y=x1+1.0

y=x1+0.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=x1+1.0

y

x1

x1

yx1

y

x1

y

x1

x1

x2

yx1

y

x1

x1

x1

x2

yx1

y

x1

y

x1

x2

yx1

x3

y

y

x1

x1

x2

y

x3

y

x1

y

x1

x1

x2

yx1

x3

y

x1

y

x1

x1

x2

yx1

y

x1

y

x1

x1

yx1

x3

y

x1

x1

yx1

x3

y

x1

x2

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3)) y=Math.min(x1,Math.min(x2,x3))

x2

x3

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

y=x1+1.0

y=x1+1.0

x1

y=x1+0.0

y=x1+1.0
ep1

y=x1+1.0

y

y=Math.min(x1,Math.min(x2,x3))

y=x1+0.0

y=Math.min(x1,Math.min(x2,x3))

y=x1+1.0

mt6 mt5mt9

mt2

y=x1+1.0

mt8

x3

y=x1+1.0

ep12

mt4

mt3 mt1

st20 st2

st23 st11 st5

st21

st19

st9

st7 st1

st4

st6

st10

st12

st22

st24

st3

x1
x1

x2

x3

y

x1

st13

x3

st17st26 st14

st8

mt7

st16

p24

st25

st27 st18 st15

y y y

y y y

y y y

(3,0) (3,1) (3,2) (3,3)

(2,0) (2,1) (2,2) (2,3)

(1,0) (1,1) (1,2) (1,3)

(0,0) (0,1) (0,2) (0,3)2.0

2.0

3.0

3.00.0

2.0

1.0 2.0

2.0

2.0

3.01.0

1.0

1.0

3.0

1.0

Fig. 6.14. High-level Bellman net in its final marking for EDP

6.2.3 High-Level Bellman Net for KS01

The HLBN of the KS01 problem instance from Sect. 2.20 in its initial marking,
is depicted in Fig. 6.17.

To obtain the final marking of the HLBN, fire transitions until the net is
dead. The net in its final marking is depicted in Fig. 6.18. Note that the goal
state place (2,22) contains a token with value f(2, 22) = 25 now, indeed the
maximum value of a knapsack.

6.2.4 High-Level Bellman Net for LCS

The HLBN of the LCS problem instance from Sect. 2.23 using the DP func-
tional equation (2.29), in its initial marking, is depicted in Fig. 6.19.

To obtain the final marking of the HLBN, fire transitions until the net is
dead. The net in its final marking is depicted in Fig. 6.20. Note that the goal
state place (7,6) contains a token with value f(X7, Y6) = 4 now, indeed the
correct length of an LCS.

232 6 Bellman Net Representations of DP Problems

(0,4,12,18)

p1

ep1

(1,4,12,18)

p2

ep2

(1,3,12,15)

p3

ep3

(1,2,12,12)

p4

ep4

(1,1,12,9)

p5

ep5

(1,0,12,6)

p6

ep6

(2,4,12,18)

p7

ep7

(2,4,10,16)

p8

ep8

(2,4,8,14)

p9

ep9

(2,4,6,12)

p10

ep10

(2,4,4,10)

p11

ep11

(2,4,2,8)

p12

ep12

(2,4,0,6)

p13

ep13

(2,3,12,15)

p14

ep14

(2,3,10,13)

p15

ep15

(2,3,8,11)

p16

ep16

(2,3,6,9)

p17

ep17

(2,3,4,7)

p18

ep18

(2,3,2,5)

p19

ep19

(2,3,0,3)

p20

ep20

(2,2,12,12)

p21

ep21

(2,2,10,10)

p22

ep22

(2,2,8,8)

p23

ep23

(2,2,6,6)

p24

ep24

(2,2,4,4)

p25

ep25

(2,2,2,2)

p26

ep26

(2,2,0,0)

p27

ep27

(2,1,12,9)

p28

ep28

(2,1,10,7)

p29

ep29

(2,1,8,5)

p30

ep30

(2,1,6,3)

p31

ep31

(2,1,4,1)

p32

ep32

(2,0,12,6)

p33 (2,0,10,4)

p34

ep34

(2,0,8,2)

p35

ep35

(2,0,6,0)

y=x1+0.0

y=x1+3.0

y=x1+6.0

y=x1+9.0

y=x1+12.0

y=x1+0.0

y=x1+15.0

y=x1+25.0

y=x1+30.0

y=x1+5.0

y=x1+10.0

y=x1+15.0

y=x1+25.0

y=x1+0.0

y=x1+5.0

y=x1+20.0

y=x1+25.0

y=x1+30.0

y=x1+5.0

y=x1+10.0

y=x1+15.0

y=x1+0.0

y=x1+5.0

y=x1+10.0

y=x1+15.0

x1

y x1

x2

y x1

x3

y x1

x4 y x1

x5

y x1

x6

y x1

x7

y x1

x1

y x1

x2

y x1

x3

y x1

x4 y x1

x5

y x1

y x1

x7

y x1

x1

y x1

x2

y x1

x3

y x1

x4 y x1

x5

y x1

x6

y x1

x7

y x1

x1

y x1

x2

y x1

x3 y x1

x4

y x1
x5

y x1

x1

y x1

x2
y x1

x3
y x1

x4

y x1

y=Math.max(x1,
Math.max(x2,
Math.max(x3,
Math.max(x4,
Math.max(x5,

Math.max(x6,x7))))))

mt2

y=Math.max(x1,
Math.max(x2,
Math.max(x3,

Math.max(x4,x5))))

mt1
y=Math.max(x1,
Math.max(x2,
Math.max(x3,
Math.max(x4,
Math.max(x5,

Math.max(x6,x7))))))

mt4

y=Math.max(x1,
Math.max(x2,
Math.max(x3,

Math.max(x4,x5))))

mt5

mt6

y=Math.max(x1,
Math.max(x2,

Math.max(x3,x4)))

y=Math.max(x1,
Math.max(x2,
Math.max(x3,
Math.max(x4,
Math.max(x5,

Math.max(x6,x7))))))

mt3

x6

y=x1+20.0

y=x1+5.0

y=x1+10.0

y=x1+10.0

y=x1+15.0

y=x1+0.0

y=x1+20.0

y=x1+20.0

y=x1+0.0

y=x1+30.0

st18

st17

st16

st15

st14

st13

st2

st8

st12

st11

st7

st1

st10

st6

st9

st22

st26

st23

st20

st24

st21

st25

st3

st31

st30

st4

st28

st27

st29

st35

st34

st33

st32

st5

st19

ep33

x1

x2

x3y

x4

x5

y x1 y

y x1 y

y x1 y

yx1y

yx1y

0.0

0.0

[]

0.0

[]

[]

[]

0.0

0.0

[]

0.0

[]

0.0

[]

0.0

[]

0.0

[]

[]

[]

[]

[]

[]

0.0

0.0

[]

0.0

0.0
[]

[]

0.0

0.0

[]

[]

0.0

[]

[]

0.0

0.0

0.0

0.0

[]

[]

[] []

[]

0.0

[]

[]

0.0

[]

0.0

0.0

0.0

0.0

[]

0.0

[]

0.0

[]

0.0

0.0

[]

[]

[]

Fig. 6.15. High-level Bellman net in its initial marking for ILP

6.2 Graphical Representation of High-Level Bellman Net Examples 233

(0,4,12,18)

p1

ep1

(1,4,12,18)

p2

ep2

(1,3,12,15)

p3

ep3

(1,2,12,12)

p4

ep4

(1,1,12,9)

p5

ep5

(1,0,12,6)

p6

ep6

(2,4,12,18)

p7

ep7

(2,4,10,16)

p8

ep8

(2,4,8,14)

p9

ep9

(2,4,6,12)

p10

ep10

(2,4,4,10)

p11

ep11

(2,4,2,8)

p12

ep12

(2,4,0,6)

p13

ep13

(2,3,12,15)

p14

ep14

(2,3,10,13)

p15

ep15

(2,3,8,11)

p16

ep16

(2,3,6,9)

p17

ep17

(2,3,4,7)

p18

ep18

(2,3,2,5)

p19

ep19

(2,3,0,3)

p20

ep20

(2,2,12,12)

p21

ep21

(2,2,10,10)

p22

ep22

(2,2,8,8)

p23

ep23

(2,2,6,6)

p24

ep24

(2,2,4,4)

p25

ep25

(2,2,2,2)

p26

ep26

(2,2,0,0)

p27

ep27

(2,1,12,9)

p28

ep28

(2,1,10,7)

p29

ep29

(2,1,8,5)

p30

ep30

(2,1,6,3)

p31

ep31

(2,1,4,1)

p32

ep32

(2,0,12,6)

p33 (2,0,10,4)

p34

ep34

(2,0,8,2)

p35

ep35

(2,0,6,0)

y=x1+0.0

y=x1+3.0

y=x1+6.0

y=x1+9.0

y=x1+12.0

y=x1+0.0

y=x1+15.0

y=x1+25.0

y=x1+30.0

y=x1+5.0

y=x1+10.0

y=x1+15.0

y=x1+25.0

y=x1+0.0

y=x1+5.0

y=x1+20.0

y=x1+25.0

y=x1+30.0

y=x1+5.0

y=x1+10.0

y=x1+15.0

y=x1+0.0

y=x1+5.0

y=x1+10.0

y=x1+15.0

x1

y x1

x2

y x1

x3

y x1

x4 y x1

x5

y x1

x6

y x1

x7

y x1

x1

y x1

x2

y x1

x3

y x1

x4 y x1

x5

y x1

y x1

x7

y x1

x1

y x1

x2

y x1

x3

y x1

x4 y x1

x5

y x1

x6

y x1

x7

y x1

x1

y x1

x2

y x1

x3 y x1

x4

y x1
x5

y x1

x1

y x1

x2
y x1

x3
y x1

x4

y x1

y=Math.max(x1,
Math.max(x2,
Math.max(x3,
Math.max(x4,
Math.max(x5,

Math.max(x6,x7))))))

mt2

y=Math.max(x1,
Math.max(x2,
Math.max(x3,

Math.max(x4,x5))))

mt1
y=Math.max(x1,
Math.max(x2,
Math.max(x3,
Math.max(x4,
Math.max(x5,

Math.max(x6,x7))))))

mt4

y=Math.max(x1,
Math.max(x2,
Math.max(x3,

Math.max(x4,x5))))

mt5

mt6

y=Math.max(x1,
Math.max(x2,

Math.max(x3,x4)))

y=Math.max(x1,
Math.max(x2,
Math.max(x3,
Math.max(x4,
Math.max(x5,

Math.max(x6,x7))))))

mt3

x6

y=x1+20.0

y=x1+5.0

y=x1+10.0

y=x1+10.0

y=x1+15.0

y=x1+0.0

y=x1+20.0

y=x1+20.0

y=x1+0.0

y=x1+30.0

st18

st17

st16

st15

st14

st13

st2

st8

st12

st11

st7

st1

st10

st6

st9

st22

st26

st23

st20

st24

st21

st25

st3

st31

st30

st4

st28

st27

st29

st35

st34

st33

st32

st5

st19

ep33

x1

x2

x3y

x4

x5

y x1 y

y x1 y

y x1 y

yx1y

yx1y

0.0

0.0

0.0

36.0

0.0

0.0

0.0

0.0

0.0

0.0

30.0

0.0

0.0

0.0

0.0

30.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

15.0

20.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

30.0

0.0

0.0

Fig. 6.16. High-level Bellman net in its final marking for ILP

234 6 Bellman Net Representations of DP Problems

(2,22)

p1 (1,22)

p2

ep2

(1,12)

p3

ep3

(0,22)

p4

ep4

(0,7)

p5

ep5

(0,12)

p6

ep6

(-1,22)

p7

ep7

(-1,4)

p8

ep8

(-1,7)

p9

ep9

(-1,12)

y=Math.max(x1,x2)

y=x1+0.0

y=x1+15.0

y=x1+0.0

y=x1+24.0

y=x1+0.0

y=Math.max(x1,x2)

y=x1 y=x1+0.0

y=x1+0.0

y

x1

y x1

x2

y x1

y

x1

y x1

x2

y x1

x1 y x1

y

x1

y x1

x2

y x1

y x1 y x1

y x1 y x1y=x1

y=Math.max(x1,x2)

y

ep1

y=x1

st3

st4

st5

st1

st2

y=x1+0.0

y=x1+25.0

st9

st8

st7

st6

mt1

mt2

mt3

mt4

mt5

mt6

0.0

[]

0.0

[]

[]

0.0

0.0

[]

[]

[]

[]

[]

[]

Fig. 6.17. High-level Bellman net in its initial marking for KS01

(2,22)

p1 (1,22)

p2

ep2

(1,12)

p3

ep3

(0,22)

p4

ep4

(0,7)

p5

ep5

(0,12)

p6

ep6

(-1,22)

p7

ep7

(-1,4)

p8

ep8

(-1,7)

p9

ep9

(-1,12)

y=Math.max(x1,x2)

y=x1+0.0

y=x1+15.0

y=x1+0.0

y=x1+24.0

y=x1+0.0

y=Math.max(x1,x2)

y=x1 y=x1+0.0

y=x1+0.0

y

x1

y x1

x2

y x1

y

x1

y x1

x2

y x1

x1 y x1

y

x1

y x1

x2

y x1

y x1 y x1

y x1 y x1y=x1

y=Math.max(x1,x2)

y

ep1

y=x1

st3

st4

st5

st1

st2

y=x1+0.0

y=x1+25.0

st9

st8

st7

st6

mt1

mt2

mt3

mt4

mt5

mt6

0.00.0

0.0

0.0

0.0

0.00.0

25.0

25.0

25.0

Fig. 6.18. High-level Bellman net in its final marking for KS01

Had we used the DP functional equation (2.30) the resulting HLBN would
have been larger with a total 8 · 7 = 56 state places (Xi, Yj) where 0 ≤ i ≤ 7
and 0 ≤ j ≤ 6. Note that such a Bellman net would resemble an “alignment
graph” as described in [16, p.228] where the task is to compute the longest
path from (0, 0) to (7, 6).

6.2.5 High-Level Bellman Net for LINSRC

The HLBN of the LINSRC problem instance from Sect. 2.24, in its initial
marking, is depicted in Fig. 6.21.

To obtain the final marking of the HLBN, fire transitions until the net
is dead. The net in its final marking is depicted in Fig. 6.22. Note that the
goal state place ({0,1,2}) contains a token with value f({0, 1, 2}) = 1.7 now,
indeed the correct value.

6.2 Graphical Representation of High-Level Bellman Net Examples 235

(7,6)

p1

ep1

(6,6)

p2

ep2

(7,5)

p3
ep3

(5,5)

p4

ep4

(6,4)

p5

ep5

(4,5)

p6

ep6

(5,4)

p7
ep7

(5,3)

p8

ep8

(3,4)

p9

ep9

(4,4)

p10

ep10

p11

ep11

(4,3)

p12

ep12

(5,2)

p13

(2,4)

p14

ep14

(3,3)

p15

ep15

p16

ep16

p17

ep17

p18

ep18

(4,2)

p19
ep19

(4,1)

p20

ep20

(1,4)

p21

ep21

(2,3)

p22

ep22

(2,2)

p23

ep23

(3,2)

p24

ep24

p25

ep25

(3,0)

p26ep26

p27

ep27

(1,3)

p28

ep28

p29

ep29

(1,2)

p30

ep30

(2,1)

p31

ep31

p32(3,1)

p33

ep33

p34

ep34

p35

ep35

p36

ep36

(1,1)

p37

ep37

(1,0)

p38

ep38

p39

ep39

p40

ep40

p41

ep41

y=Math.max(x1,x2)

y=x1+0.0

y=Math.max(x1,x2)

st5
y=x1+0.0

y=x1+0.0

y=x1+1.0

y=x1

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+0.0y=x1+0.0

y=x1

y=x1+0.0

y=x1+0.0

y=x1+1.0

y=x1+0.0

y=x1+0.0

y=x1

y=x1+1.0

y=Math.max(x1,x2)

y=x1+0.0

y=x1+0.0

y=Math.max(x1,x2)

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+1.0

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+0.0

y

x1

y

x2

yx1

y

x1

y

x1

y

x1

y

y

x1

x2

yx1

x1

y

x1

y

x1

y

x1

y

x1

x2

yx1

y

x1

x2

yx1

y

x1

x2

yx1

y

x1

y

x2

x1

y

x2

yx1

x1

y

x1

y

x1

y

x2
yx1

y

x1

y

x1

y

x1

y

x1

y

x1

y

y

x1

y

x1

yx1
y

x1

y

x1

x2
yx1

y

x1

x2

y

y

x1

x2

yx1

y

x1

x2

yx1

y

x1

y

x1

y

x1

x2
yx1

y

x1

x2

yx1

y=Math.max(x1,x2)

mt25

st41

(0,1) (0,2) (0,3)

y=Math.max(x1,x2)

y=x1+0.0

st36

y=x1+0.0st40 st35

x1

y=Math.max(x1,x2)

mt22

st34

y=x1

y=x1+0.0

mt19

st30

y=x1+0.0

y=Math.max(x1,x2)

ep32

y st2

x1

y=x1

y

y=Math.max(x1,x2)

y=x1+0.0

y=Math.max(x1,x2)

mt20mt24

st32

y=x1+1.0

y=x1

y=Math.max(x1,x2)
mt18

st27

st28

x1

mt13

st21

y=Math.max(x1,x2)

mt15

y

y
x1

x1

y=x1

y
ep13

y=Math.max(x1,x2)

st14

mt9

st29
st20

st13

y

y=x1+0.0

y=Math.max(x1,x2)

y

mt11

st18
x2

x1
st24

y=x1+1.0
st19

y=x1+0.0

y=Math.max(x1,x2)

mt10

st16

x1

y=Math.max(x1,x2)

mt8

y=x1+0.0
st12

st9

mt7

st10

x1
mt4

st6

y=x1

y=x1+1.0

y=x1

mt1

y=x1+1.0

y=x1+0.0

x1

st17

x1

st1

st39

y=x1+1.0

x1

y

y

x1

x1

mt5

mt3

mt2

mt6

mt12

mt16

mt14

mt23

mt17

y

x1

st33

x1

st26

mt21

y
y

x1

st37

st38

st22

x1

st31

y

x1

y

x1

st23
st25

st8st15

x1

y

st11

y

st3

st7

st4

x2

[]

[]

0.0

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

0.0

[]

[]

[]

[]

0.0

0.0

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

0.0

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

Fig. 6.19. High-level Bellman net in its initial marking for LCS

6.2.6 High-Level Bellman Net for LSP

The HLBN of the LSP problem instance from Sect. 2.26, in its initial marking,
is depicted in Fig. 6.23.

To obtain the final marking of the HLBN, fire transitions until the net
is dead. The net in its final marking is depicted in Fig. 6.24. Note that the
goal state place ({0},0) contains a token with value f({0}, 0) = 3 now,
indeed the maximum length of a simple path from node 0 to node 3. Also,
the marking of an intermediate state place represents the optimal value for
the associated subproblem. For example, the value of the intermediate state
place ({0,1,2},2) is f({0, 1, 2}, 2) = 1 which is the maximum length of a
path from node 2 to node 3 given that nodes 0,1,2 have already been visited.
Without this precondition the longest path from node 2 to node 3 would be
(2, 1, 0, 3) and have length 3.

236 6 Bellman Net Representations of DP Problems

(7,6)

p1

ep1

(6,6)

p2

ep2

(7,5)

p3
ep3

(5,5)

p4

ep4

(6,4)

p5

ep5

(4,5)

p6

ep6

(5,4)

p7
ep7

(5,3)

p8

ep8

(3,4)

p9

ep9

(4,4)

p10

ep10

p11

ep11

(4,3)

p12

ep12

(5,2)

p13

(2,4)

p14

ep14

(3,3)

p15

ep15

p16

ep16

p17

ep17

p18

ep18

(4,2)

p19
ep19

(4,1)

p20

ep20

(1,4)

p21

ep21

(2,3)

p22

ep22

(2,2)

p23

ep23

(3,2)

p24

ep24

p25

ep25

(3,0)

p26ep26

p27

ep27

(1,3)

p28

ep28

p29

ep29

(1,2)

p30

ep30

(2,1)

p31

ep31

p32(3,1)

p33

ep33

p34

ep34

p35

ep35

p36

ep36

(1,1)

p37

ep37

(1,0)

p38

ep38

p39

ep39

p40

ep40

p41

ep41

y=Math.max(x1,x2)

y=x1+0.0

y=Math.max(x1,x2)

st5
y=x1+0.0

y=x1+0.0

y=x1+1.0

y=x1

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+0.0y=x1+0.0

y=x1

y=x1+0.0

y=x1+0.0

y=x1+1.0

y=x1+0.0

y=x1+0.0

y=x1

y=x1+1.0

y=Math.max(x1,x2)

y=x1+0.0

y=x1+0.0

y=Math.max(x1,x2)

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+1.0

y=x1+0.0

y=x1+0.0

y=x1+0.0

y=x1+0.0

y

x1

y

x2

yx1

y

x1

y

x1

y

x1

y

y

x1

x2

yx1

x1

y

x1

y

x1

y

x1

y

x1

x2

yx1

y

x1

x2

yx1

y

x1

x2

yx1

y

x1

y

x2

x1

y

x2

yx1

x1

y

x1

y

x1

y

x2
yx1

y

x1

y

x1

y

x1

y

x1

y

x1

y

y

x1

y

x1

yx1
y

x1

y

x1

x2
yx1

y

x1

x2

y

y

x1

x2

yx1

y

x1

x2

yx1

y

x1

y

x1

y

x1

x2
yx1

y

x1

x2

yx1

y=Math.max(x1,x2)

mt25

st41

(0,1) (0,2) (0,3)

y=Math.max(x1,x2)

y=x1+0.0

st36

y=x1+0.0st40 st35

x1

y=Math.max(x1,x2)

mt22

st34

y=x1

y=x1+0.0

mt19

st30

y=x1+0.0

y=Math.max(x1,x2)

ep32

y st2

x1

y=x1

y

y=Math.max(x1,x2)

y=x1+0.0

y=Math.max(x1,x2)

mt20mt24

st32

y=x1+1.0

y=x1

y=Math.max(x1,x2)
mt18

st27

st28

x1

mt13

st21

y=Math.max(x1,x2)

mt15

y

y
x1

x1

y=x1

y
ep13

y=Math.max(x1,x2)

st14

mt9

st29
st20

st13

y

y=x1+0.0

y=Math.max(x1,x2)

y

mt11

st18
x2

x1
st24

y=x1+1.0
st19

y=x1+0.0

y=Math.max(x1,x2)

mt10

st16

x1

y=Math.max(x1,x2)

mt8

y=x1+0.0
st12

st9

mt7

st10

x1
mt4

st6

y=x1

y=x1+1.0

y=x1

mt1

y=x1+1.0

y=x1+0.0

x1

st17

x1

st1

st39

y=x1+1.0

x1

y

y

x1

x1

mt5

mt3

mt2

mt6

mt12

mt16

mt14

mt23

mt17

y

x1

st33

x1

st26

mt21

y
y

x1

st37

st38

st22

x1

st31

y

x1

y

x1

st23
st25

st8st15

x1

y

st11

y

st3

st7

st4

x2

3.0

2.0

0.0

0.0 0.0

1.0 1.0

4.0

2.0

1.0

1.0

2.0

1.0

1.0

0.0

2.0

3.0

1.0

0.0

2.0

3.0

0.0

0.0

1.0

4.0

4.0

2.0

1.0 2.0

0.0

Fig. 6.20. High-level Bellman net in its final marking for LCS

6.2.7 High-Level Bellman Net for MCM

The HLBN of the MCM problem instance from Sect. 2.27, in its initial mark-
ing, is depicted in Fig. 6.25.

To obtain the final marking of the HLBN, fire transitions until the net is
dead. The net in its final marking is depicted in Fig. 6.26. Note that the goal
state place (1,4) contains a token with value f(1, 4) = 76 now, the correct
value indeed. Also, the marking of every state place represents the optimal
value for the associated subproblem. For example, the value of the state place
(2,4) is f(2, 4) = 56 which is the number of componentwise multiplications
for the optimally parenthesized matrix product A2 · · ·A4.

6.2 Graphical Representation of High-Level Bellman Net Examples 237

({1,2})

({0,2})

({0,1})

p4

p5

p9

p10

p11

p12

y=x1+0.2

st3

mt2
y=Math.min(x1,x2)

st4

mt3
y=Math.min(x1,x2)

st7

mt4
y=Math.min(x1,x2)

st8
y=x1+0.4

st9
y=x1+1.0

mt5
y=x1

st10
y=x1+0.9

mt6
y=x1

st11
y=x1+1.5

mt7
y=x1

st12
y=x1+0.6

y

x1

x2

x3

y x1

y x1

y x1

y

x1

x2

y

x1

y

x1

y

x1

x2

x1

y

y

x1

y

x1

x2

x1

y

x1

y

y x1 y

x1

y x1 x1y

y x1

x1

y

y=Math.min(x1,
Math.min(x2,x3))

mt1

y=x1+0.5

y=x1+0.3

st5
y=x1+0.6

st6
y=x1+0.4

y=x1+0.6

({0,1,2}) p2

p1

p3

ep2

st1

st2

ep1

ep3

ep4

ep5

ep6

ep7

ep9

y=x1+1.0

ep8

p8

p7

p6

ep10

ep11

ep12

({1})

({2})

({0})

({})

[]

[]

[]

[]

[]

[]

0.0
[]

[]

[][]

[]

[]

Fig. 6.21. High-level Bellman net in its initial marking for LINSRCS

({1,2})

({0,2})

({0,1})

p4

p5

p9

p10

p11

p12

y=x1+0.2

st3

mt2
y=Math.min(x1,x2)

st4

mt3
y=Math.min(x1,x2)

st7

mt4
y=Math.min(x1,x2)

st8
y=x1+0.4

st9
y=x1+1.0

mt5
y=x1

st10
y=x1+0.9

mt6
y=x1

st11
y=x1+1.5

mt7
y=x1

st12
y=x1+0.6

y

x1

x2

x3

y x1

y x1

y x1

y

x1

x2

y

x1

y

x1

y

x1

x2

x1

y

y

x1

y

x1

x2

x1

y

x1

y

y x1 y

x1

y x1 x1y

y x1

x1

y

y=Math.min(x1,
Math.min(x2,x3))

mt1

y=x1+0.5

y=x1+0.3

st5
y=x1+0.6

st6
y=x1+0.4

y=x1+0.6

({0,1,2}) p2

p1

p3

ep2

st1

st2

ep1

ep3

ep4

ep5

ep6

ep7

ep9

y=x1+1.0

ep8

p8

p7

p6

ep10

ep11

ep12

({1})

({2})

({0})

({})

1.6

1.7

1.9

1.5 0.0

0.9

0.6

1.2

Fig. 6.22. High-level Bellman net in its final marking for LINSRCS

238 6 Bellman Net Representations of DP Problems

({0},0)

p1

ep1

({0,1},1)

p2

ep2

({0,3},3)

p3

ep3

({0,1,2},2) p4

ep4

({0,1,2,3},3)

mt1

y=x1+1.0

y=x1+1.0

mt2
y=x1+1.0

mt3
y=x1 y=x1+1.0

y

x1

y x1

x2
y x1

y x1 y x1 y x1 y x1

y=Math.max(x1,x2)

y=x1
st1 st3 st4

st2
0.0

[]

[]

[]

0.0

[]

Fig. 6.23. High-level Bellman net in its initial marking for LSP

({0},0)

p1

ep1

({0,1},1)

p2

ep2

({0,3},3)

p3

ep3

({0,1,2},2) p4

ep4

({0,1,2,3},3)

mt1

y=x1+1.0

y=x1+1.0

mt2
y=x1+1.0

mt3
y=x1 y=x1+1.0

y

x1

y x1

x2
y x1

y x1 y x1 y x1 y x1

y=Math.max(x1,x2)

y=x1
st1 st3 st4

st2
0.0

3.0

0.01.02.0

Fig. 6.24. High-level Bellman net in its final marking for LSP

p1

p2

p3

p4

(1,2)

(1,1)

(2,2)

(3,3)

(4,4)

mt1

y=Math.
min(x1,Math.
min(x2,x3))

y=Math.
min(x1,x2)

mt5

y=Math.
min(x1,x2)

mt2

y=x1+x2+24

y=x1+x2+30

y=x1+x2+12

st8
y=x1+x2+24

y=x1+x2+30
st9

st4
y=x1+x2+40

st5

y=x1+x2+16

mt3

mt4

mt6

st6

y=x1+x2+40

st7
y=x1+x2+20

y

y

y

x3

x2

x1

y

y

y

x1

x2

x1

x2

y

y

y

x

x

x

y

y

y

x

x

x

x1

x1
x1

x2

x1

x2

x1

x2

x1

x1

x2

x2

x2

x1

x2

x2

x2
x1

x2

x1

y

(2,4)

(2,3)

p5

p8

p9

st1

st2

st3

(3,4)

p7

p10

p6
y=x1+x2+60

(1,4)

(1,3)

ep1

ep2

ep3

st10

0

[]

[]

[]

[]

[]

[]

0

0

[]
0

[]

[]

[]

Fig. 6.25. High-level Bellman net in its initial marking for MCM

6.2.8 High-Level Bellman Net for RDP

The HLBN of the RDP problem instance from Sect. 2.36, in its initial marking,
is depicted in Fig. 6.27.

To obtain the final marking of the HLBN, fire transitions until the net
is dead. The net in its final marking is depicted in Fig. 6.28. Note that the
goal state place (2,105) contains a token with value f(2, 105) = 0.648 now,
indeed the correct value for a system with maximal reliability.

6.2.9 High-Level Bellman Net for SCP

The HLBN of the SCP problem instance from Sect. 2.38, in its initial marking,
is depicted in Fig. 6.29.

6.2 Graphical Representation of High-Level Bellman Net Examples 239

p1

p2

p3

p4

(1,2)

(1,1)

(2,2)

(3,3)

(4,4)

mt1

y=Math.
min(x1,Math.
min(x2,x3))

y=Math.
min(x1,x2)

mt5

y=Math.
min(x1,x2)

mt2

y=x1+x2+24

y=x1+x2+30

y=x1+x2+12

st8
y=x1+x2+24

y=x1+x2+30
st9

st4
y=x1+x2+40

st5

y=x1+x2+16

mt3

mt4

mt6

st6

y=x1+x2+40

st7
y=x1+x2+20

y

y

y

x3

x2

x1

y

y

y

x1

x2

x1

x2

y

y

y

x

x

x

y

y

y

x

x

x

x1

x1
x1

x2

x1

x2

x1

x2

x1

x1

x2

x2

x2

x1

x2

x2

x2
x1

x2

x1

y

(2,4)

(2,3)

p5

p8

p9

st1

st2

st3

(3,4)

p7

p10

p6
y=x1+x2+60

(1,4)

(1,3)

ep1

ep2

ep3

st10

0

56

40

0

0

6064

76

20

0

Fig. 6.26. High-level Bellman net in its final marking for MCM

ep1 ep2 ep3

ep4 ep5 ep6 ep7 ep8 ep9

ep10

(-1,40)

ep11

(-1,10)

(-1,25)

ep13

ep14

(-1,20)

ep15 ep16

y=x1*0.8

y=x1

y=Math.max(x1,Math.max(x2,x3))

y=x1*0.5

y=x1*0.96

y=Math.max(x1,Math.max(x2,x3))

y=Math.max(x1,x2)

y=x1*0.75

p1 p2

y=Math.max(x1,x2)

st15

(-1,5)

st5

p5p4 p6

(0,55)

y=x1mt6

p12

st12

st4

(0,70)

p11p10

y=x1*0.9st10

y=x1*0.99

mt5

st13 y=x1*0.9

p13

y=x1mt7

y=x1*0.992st6

mt4

(1,45)

p9

y=x1*0.8st9

(0,30)

mt9

p15

y=x1*0.8st7

p7 p8

(0,50)

y=x1mt8

p14

st14

st8

y=x1*0.875st3st2st1

mt10

p16

y=x1*0.9st16

p3

st11

(1,85) (1,65)

(2,105)

y

x1 x3

y y y

y=x1mt3mt2

y=x1*0.96

ep12

(0,40) (0,35)

y=x1

y=x1*0.9 y=x1*0.9 y=x1*0.9

(-1,0)

mt1

x2

x1

y y

x1 x1

y

x1 x2 x3 x1 x2 x1

y y y y y y

x1 x1

y y

x1

y

x1

y

x1

y

x1

y

x1 x2 x1 x1 x1 x1 x1

y y

y

y y y

y

x1 x1

x1x1

x1 x1 x1

1.0

[]

[]

[]

[]

[][]

1.0

[]

[]

[]

1.0

[]

1.01.0

[]

[]

[]

[]

[]

[]

1.0

Fig. 6.27. High-level Bellman net in its initial marking for RDP

240 6 Bellman Net Representations of DP Problems

ep1 ep2 ep3

ep4 ep5 ep6 ep7 ep8 ep9

ep10

(-1,40)

ep11

(-1,10)

(-1,25)

ep13

ep14

(-1,20)

ep15 ep16

y=x1*0.8

y=x1

y=Math.max(x1,Math.max(x2,x3))

y=x1*0.5

y=x1*0.96

y=Math.max(x1,Math.max(x2,x3))

y=Math.max(x1,x2)

y=x1*0.75

p1 p2

y=Math.max(x1,x2)

st15

(-1,5)

st5

p5p4 p6

(0,55)

y=x1mt6

p12

st12

st4

(0,70)

p11p10

y=x1*0.9st10

y=x1*0.99

mt5

st13 y=x1*0.9

p13

y=x1mt7

y=x1*0.992st6

mt4

(1,45)

p9

y=x1*0.8st9

(0,30)

mt9

p15

y=x1*0.8st7

p7 p8

(0,50)

y=x1mt8

p14

st14

st8

y=x1*0.875st3st2st1

mt10

p16

y=x1*0.9st16

p3

st11

(1,85) (1,65)

(2,105)

y

x1 x3

y y y

y=x1mt3mt2

y=x1*0.96

ep12

(0,40) (0,35)

y=x1

y=x1*0.9 y=x1*0.9 y=x1*0.9

(-1,0)

mt1

x2

x1

y y

x1 x1

y

x1 x2 x3 x1 x2 x1

y y y y y y

x1 x1

y y

x1

y

x1

y

x1

y

x1

y

x1 x2 x1 x1 x1 x1 x1

y y

y

y y y

y

x1 x1

x1x1

x1 x1 x1

0.9

1.0

0.9

0.864

1.0

0.90.9

1.0

0.648

1.01.0

0.99 0.9

0.8928 0.7200000000000001

1.0

Fig. 6.28. High-level Bellman net in its final marking for RDP

To obtain the final marking of the HLBN, fire transitions until the net is
dead. The net in its final marking is depicted in Fig. 6.30. Note that the goal
state place (0,0) contains a token with value f(0, 0) = 2870 now, indeed the
correct value for a shortest path from node 0 at stage 0 to node 9 at stage 4.
Also, the marking of an intermediate state place represents the optimal value
for the associated subproblem. For example, the value of the intermediate
state place (1,1) is f(1, 1) = 2320 which is the length of the shortest path
from node 1 at stage 1 to node 9 at stage 4.

6.2.10 High-Level Bellman Net for SPA

The HLBN of the SPA problem instance from Sect. 2.43, in its initial marking,
is depicted in Fig. 6.31.

To obtain the final marking of the HLBN, fire transitions until the net
is dead. The net in its final marking is depicted in Fig. 6.32. Note that the
goal state place (0) contains a token with value f(0) = 9 now, indeed the
correct value for a shortest path from node 0 to node 3. Also, the marking
of an intermediate state place represents the optimal value for the associated
subproblem. For example, the value of the intermediate state place (1) is
f(1) = 6 which is the length of the shortest path from node 1 to node 3.

6.2 Graphical Representation of High-Level Bellman Net Examples 241

ep1

p2

ep2

(1,2)

p3

ep3

(1,3)

p4
ep4

p5

ep5
p6

ep6

p7 ep7

p8

ep8

p9

ep9

p10 ep10

p11

ep11

p12

ep12

p13

ep13

p14

ep14

p15

p16

ep16

p17

ep17

p18

ep18

p19

ep19

p20 ep20

y=x1+550.0

y=x1+900.0

y=x1+680.0

y=x1+660.0

y=x1+700.0

y=x1+830.0

y=Math.min(x1,x2)

y=x1+610.0

y=x1+790.0

y=Math.min(x1,x2)

y=x1+540.0

y=x1+940.0

y=Math.min(x1,x2)

y=x1+790.0

y=x1+270.0

y=x1

y

x1

y

x1

x2 y x1

x3

x1

y

x1

y

x2 y

x3

y

y

x1

y

x2 y

x3

y

y

x1

y

x2 y

x3

y

y

x1

y

y

y

x1

y

x2

y

x1

y

x2

y

y

x1

y

x1

y

x1

y

x1

y=x1+1030.0

y=x1+1390.0

y=x1

y=Math.min(
x1,Math.min(

x2,x3))

mt4

y=Math.min(
x1,Math.min(

x2,x3))

mt1

y

mt3

y=Math.min(
x1,Math.min(

x2,x3))

mt2

y=Math.min(
x1,Math.min(

x2,x3))

y=x1+510.0

st8

x2

ep15

st16

st13

st14

st15

st17

st18

y=x1+580.0

st7

st10

st12

st5

st4

st1

y=x1+1050.0

st6

y=x1+770.0

y=x1+760.0

st2

y=x1+790.0

x1

(1,1)
(2,4)

(2,5)

(2,6)

(3,8)

(3,7)

mt5

mt6

mt7

y

mt8

mt9

st20

(4,9)

st19

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

st9

st11

x1

x1

x1

(0,0)

p1

st3

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

0.0

[]

[]
[]

[]

[]

[]

[]

[]

[]

Fig. 6.29. High-level Bellman net in its initial marking for SCP

ep1

p2

ep2

(1,2)

p3

ep3

(1,3)

p4
ep4

p5

ep5
p6

ep6

p7 ep7

p8

ep8

p9

ep9

p10 ep10

p11

ep11

p12

ep12

p13

ep13

p14

ep14

p15

p16

ep16

p17

ep17

p18

ep18

p19

ep19

p20 ep20

y=x1+550.0

y=x1+900.0

y=x1+680.0

y=x1+660.0

y=x1+700.0

y=x1+830.0

y=Math.min(x1,x2)

y=x1+610.0

y=x1+790.0

y=Math.min(x1,x2)

y=x1+540.0

y=x1+940.0

y=Math.min(x1,x2)

y=x1+790.0

y=x1+270.0

y=x1

y

x1

y

x1

x2 y x1

x3

x1

y

x1

y

x2 y

x3

y

y

x1

y

x2 y

x3

y

y

x1

y

x2 y

x3

y

y

x1

y

y

y

x1

y

x2

y

x1

y

x2

y

y

x1

y

x1

y

x1

y

x1

y=x1+1030.0

y=x1+1390.0

y=x1

y=Math.min(
x1,Math.min(

x2,x3))

mt4

y=Math.min(
x1,Math.min(

x2,x3))

mt1

y

mt3

y=Math.min(
x1,Math.min(

x2,x3))

mt2

y=Math.min(
x1,Math.min(

x2,x3))

y=x1+510.0

st8

x2

ep15

st16

st13

st14

st15

st17

st18

y=x1+580.0

st7

st10

st12

st5

st4

st1

y=x1+1050.0

st6

y=x1+770.0

y=x1+760.0

st2

y=x1+790.0

x1

(1,1)
(2,4)

(2,5)

(2,6)

(3,8)

(3,7)

mt5

mt6

mt7

y

mt8

mt9

st20

(4,9)

st19

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

st9

st11

x1

x1

x1

(0,0)

p1

st3

1640.0

1660.0

0.02870.0 2220.0 1570.0

1390.0

2150.0

2320.0

1030.0

Fig. 6.30. High-level Bellman net in its final marking for SCP

242 6 Bellman Net Representations of DP Problems

(0)

p1 ep1

(1)

p2

(2)

ep3

p4

ep4

(3)

p5
st2 y=x1

y=x1+5.0

y=Math.min(x1,x2)

y=x1+3.0

ep2

st1

mt2

y=x1+1.0

p3

st3

y=x1+5.0

st4

st5

ep5

y

x1

x2

y

y

x1

y
x1

y

x1

x1

yx2

y

x1

y

mt1

mt3

y=x1+8.0y=Math.min(x1,x2)

x1

x1

[]

[]

0.0

[]

[]

[]

Fig. 6.31. High-level Bellman net in its initial marking for SPA

(0)

p1 ep1

(1)

p2

(2)

ep3

p4

ep4

(3)

p5
st2 y=x1

y=x1+5.0

y=Math.min(x1,x2)

y=x1+3.0

ep2

st1

mt2

y=x1+1.0

p3

st3

y=x1+5.0

st4

st5

ep5

y

x1

x2

y

y

x1

y
x1

y

x1

x1

yx2

y

x1

y

mt1

mt3

y=x1+8.0y=Math.min(x1,x2)

x1

x1

6.0

9.0

5.0

0.0

Fig. 6.32. High-level Bellman net in its final marking for SPA

6.2.11 High-Level Bellman Net for SPC

In Sect. 2.44 two different DP formulations of the SPC problem were given.
These result in the two different HLBNs shown in this section.

The HLBN corresponding to the DP functional equation (2.45) of the SPC
problem instance, in its initial marking, is depicted in Fig. 6.33.

To obtain the final marking of the HLBN corresponding to the DP func-
tional equation (2.45), fire transitions until the net is dead. The net in its
final marking is depicted in Fig. 6.34. Note that the goal state place (0,{0})
contains a token with value f(0, {0}) = 9 now, indeed the correct value for a
shortest path from node 0 to node 3.

The HLBN corresponding to the DP functional equation (2.46) of the SPC
problem instance, in its initial marking, is depicted in Fig. 6.35.

6.2 Graphical Representation of High-Level Bellman Net Examples 243

(0,{0})

p1

ep1

(1,{0,1})

p2

ep2

(2,{0,2})

ep3

(2,{0,1,2})

p4

ep4

(3,{0,1,3})

ep5

p6

ep6

(3,{0,2,3})

p7

p8

ep8

y=Math.min(x1,x2)

y=x1+3.0

y=x1+5.0

y=Math.min(x1,x2) y=x1+8.0

mt3
y=Math.min(x1,x2)

y=x1+2.0

mt4
y=x1 y=x1+5.0

mt5
y=x1 y=x1+8.0

y

x1

y x1

x2

y x1

y

x1

y

x1

x2 y x1

y

x1

y

x1

x2 y x1

y x1 y

x1

y x1 y

x1

y=x1+5.0

y=x1+1.0

st2

st1

st3

st5

st7

st8

st6

mt1

ep7

(3,{0,1,2,3})

p5

p3

mt2

(1,{0,1,2})

st4

[][]

[]

0.0

[]

[]

0.0

[]

[]

0.0

[]

Fig. 6.33. High-level Bellman net for DPFE (2.45) in its initial marking for SPC

(0,{0})

p1

ep1

(1,{0,1})

p2

ep2

(2,{0,2})

ep3

(2,{0,1,2})

p4

ep4

(3,{0,1,3})

ep5

p6

ep6

(3,{0,2,3})

p7

p8

ep8

y=Math.min(x1,x2)

y=x1+3.0

y=x1+5.0

y=Math.min(x1,x2) y=x1+8.0

mt3
y=Math.min(x1,x2)

y=x1+2.0

mt4
y=x1 y=x1+5.0

mt5
y=x1 y=x1+8.0

y

x1

y x1

x2

y x1

y

x1

y

x1

x2 y x1

y

x1

y

x1

x2 y x1

y x1 y

x1

y x1 y

x1

y=x1+5.0

y=x1+1.0

st2

st1

st3

st5

st7

st8

st6

mt1

ep7

(3,{0,1,2,3})

p5

p3

mt2

(1,{0,1,2})

st4

8.0

0.0

0.0

9.0

5.0

5.0

0.0

6.0

Fig. 6.34. High-level Bellman net for DPFE (2.45) in its final marking for SPC

244 6 Bellman Net Representations of DP Problems

(0,3)

ep1

(1,2)

p2

ep2

(2,2)

ep3

(2,1)

p4

ep4

(3,1)

ep5

p6

ep6

ep7

p8

ep8

(3,0)

p9

ep9

(2,0)

p10

ep10

y=Math.min(x1,x2)

y=x1+3.0

y=x1+5.0

mt2
y=Math.min(x1,x2)

y=x1+1.0

y=x1+8.0

mt3
y=Math.min(x1,x2)

y=x1+2.0

y=x1+5.0

mt4
y=Math.min(x1,x2)

y=x1+2.0

y=x1+5.0

y=x1+1.0

y=x1+8.0

y

x1

y x1

x2

y x1

y

x1

y

x1

x2 y

x1

y

x1

y

x1

x2 y

x1

y

x1

y

x1

x2 y

x1

y

x1

y

x1

x2 y

x1

y=Math.min(x1,x2)

st2

st1 st4

st5

st9

st10

st6

st8

st3

st7

(1,0)

(1,1)

p1

p3

mt5

p7p5

mt1

2.147483647E9

[]

[]

2.147483647E9

[]

[]

[]

0.0

[]

0.0

[]

[]

[]

[]

Fig. 6.35. High-level Bellman net for DPFE (2.46) in its initial marking for SPC

(0,3)

ep1

(1,2)

p2

ep2

(2,2)

ep3

(2,1)

p4

ep4

(3,1)

ep5

p6

ep6

ep7

p8

ep8

(3,0)

p9

ep9

(2,0)

p10

ep10

y=Math.min(x1,x2)

y=x1+3.0

y=x1+5.0

mt2
y=Math.min(x1,x2)

y=x1+1.0

y=x1+8.0

mt3
y=Math.min(x1,x2)

y=x1+2.0

y=x1+5.0

mt4
y=Math.min(x1,x2)

y=x1+2.0

y=x1+5.0

y=x1+1.0

y=x1+8.0

y

x1

y x1

x2

y x1

y

x1

y

x1

x2 y

x1

y

x1

y

x1

x2 y

x1

y

x1

y

x1

x2 y

x1

y

x1

y

x1

x2 y

x1

y=Math.min(x1,x2)

st2

st1 st4

st5

st9

st10

st6

st8

st3

st7

(1,0)

(1,1)

p1

p3

mt5

p7p5

mt1

2.147483647E9

5.0

2.147483647E9

6.0

5.0

0.00.0

8.0

9.0

Fig. 6.36. High-level Bellman net for DPFE (2.46) in its final marking for SPC

To obtain the final marking of the HLBN corresponding to the DP func-
tional equation (2.46), fire transitions until the net is dead. The net in its
final marking is depicted in Fig. 6.36. Note that the goal state place (0,3)
contains a token with value f(0, 3) = 9 now, indeed the correct value for a
shortest path from node 0 to node 3.

7

DP2PN2Solver Tool

This chapter gives an overview of the DP2PN2Solver Software. After describ-
ing the general architecture in Sect. 7.1 we focus on the file representation
of Bellman nets (Sect. 7.2). Section 7.3 shows how DP2PN2Solver compiles
and executes DP programs. For integer linear programming (ILP) problems,
a gDPS source can be generated automatically (Sect. 7.4).

7.1 Overview

The DP2PN2Solver software system we have developed [44, 45] and describe
in this book is a general, flexible, and expandable software tool that solves
DP problems. It consists of modules that may be grouped into two phases.
Phase One modules (gDPS2PN, bDPS2PN, etc.) take the specification of a
discrete DP problem instance as input and produce an intermediate Petri
net representation, the high-level Bellman net as defined in Chap. 5, as out-
put. This Bellman net concisely captures all the essential elements of a DP
problem instance in a standardized and mathematically precise fashion. Phase
Two modules (PN2Java, PN2XML, PN2Spreadsheet, etc.) take the interme-
diate Bellman net representation as input and produce as output “executable”
solver code, that is, any kind of code from which the numerical solution can be
obtained by executing a “solver” system. For example, a Java system could
compile and interpret solver code in the form of a Java source program, a
spreadsheet application could open a spreadsheet file and calculate all cells,
or a Petri net tool could simulate a Bellman net provided in a standard XML-
based Petri net file interchange format.

Software tools that allow a user to conveniently solve arbitrary DP prob-
lems using the terminology and techniques that have been established in the
DP field are not well developed. Early tools (such as DYNACODE [18]) were
characterized as too problem specific by Sniedovich [57, p.193], who concluded
that “no general-purpose dynamic progamming computer codes seem to be
available commercially.” Over the years this situation has not changed much,

A. Lew and H. Mauch: DP2PN2Solver Tool, Studies in Computational Intelligence (SCI) 38,

247–257 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

248 7 DP2PN2Solver Tool

arguably because others did not focus on DP alone. Currently available soft-
ware systems can only solve a narrow class of DP problems having relatively
simple DP functional equations. The solver software DP2PN2Solver presented
in this book is intended to fill this gap.

One of the difficulties in designing a DP solver system is to come up with
a specification language that is on one hand general enough to capture the
majority of DP problems arising in practice, and that is on the other hand
simple enough to be user-friendly and to be parsed efficiently. For linear pro-
gramming (LP) problems, it is very easy to achieve both of these goals (using
the canonical, standard, or general form of LP [49, p.27]); for DP problems,
however, it is much harder to satisfy these conflicting goals. The general DP
specification language gDPS (see Chap. 3) was designed with this in mind.
It allows users to program the solution of DP problems by simply specifying
its DPFE in a text-based source language. Users would not need to be aware
of the internal Bellman net model that was adopted as an internal computer
representation of the DP functional equations specified in their gDPS source
programs. They need only perform the DP modeling to construct the DP
functional equation required by DP2PN2Solver.

DP2PN2Solver’s architecture is expandable and open to use of alternative
source DP specification languages (see Fig. 7.1). For example, if the user de-
sires to solve only very basic DP problems that involve only integer types as
states or decisions, so that declarations (or general functions and set variables)
are not necessary, then a much simpler language, say, a basic DP specifica-
tion (bDPS) language, is sufficient. By adding a compiler to DP2PN2Solver
that translates bDPS into the Bellman net representation, it becomes possi-
ble to use the other parts of the DP2PN2Solver system without any further
changes. Even compilers for established mathematical programming languages
like AMPL, GAMS, OPL, or other languages can be envisioned. Alternative
compilers may translate into gDPS source instead of translating directly into
internal Bellman net representations. Such compilers could easily be inte-
grated into DP2PN2Solver (even though their development might require a
substantial initial implementation effort), so that users can write the DP spec-
ification in their favorite language.

The software tool we have developed is only applicable to “discrete” opti-
mization problems for which a DP functional equation with a finite number
of states and decisions can be obtained. Therefore, continuous DP problems
cannot be solved with DP2PN2Solver. (Some continuous DP problems may be
solved approximately by discretization.) When the number of states is exces-
sive, it is common to resort to approximation or search techniques to solve DP
problems. While sometimes useful, in general such techniques cannot guaran-
tee that an exact optimal solution will be found, hence will not be considered
further in this book. We have surveyed currently existing software supporting
the exact optimal solution of DP problems, and have found no system that
can apply DP to the wide variety of problems treated in this book. Other op-
timization software systems can only solve narrower classes of DP problems

7.1 Overview 249

with simpler DP functional equations. Thus, the value of the DP2PN2Solver
system for DP problems is apparent.

The design of DP2PN2Solver is illustrated by typical DP problems.
DP2PN2Solver can be used to solve problems which are more complicated
than finding, say, the shortest path in a multistage graph. The matrix chain
multiplication (MCM) problem, for example, is nonserial, i.e., there is not
only one, but two successor states in its DP functional equation that have
to be evaluated. The traveling salesman problem (TSP) can be formulated
with a DP functional equation that requires the use of set theoretic opera-
tors. Solving integer linear programming (ILP) problems with DP2PN2Solver
illustrates that this important class of problems, which appears frequently
in real-world applications, can also be handled. Other examples show that
DP2PN2Solver can successfully solve probabilistic DP problems (PROD, IN-
VEST) and discounted DP problems (DPP), and nonoptimization problems
(POUR, HANOI) as well.

Figure 7.1 gives an overview of the architecture of the DP2PN2Solver
software tool (in the form of a Petri net). The static components such as input
files, intermediate representations, and output files are depicted as places.
The dynamic components such as compilers and code generators are shown
as transitions. Solid arcs connect fully working components while dotted arcs
connect components that have not been implemented but should be available
in future versions of DP2PN2Solver.

To alleviate the task of having to specify problems in gDPS for which
a standardized format exists, as is the case for ILP problems which can be
described in a tableau format, a preprocessor module can save a great amount
of work. Currently we have implemented a preprocessor module “ILP2gDPS”,
described later (see Sect. 7.4), that takes an ILP tableau as input and outputs
the gDPS source specification.

To summarize, the following are the steps that need to be performed to
solve a DP problem instance; only step 1 is performed by the human DP mod-
eler whereas all other steps are automatically performed by the DP2PN2Solver
system.

1. Model the real-world problem by formulating a DPFE that solves it, and
for this formulation create the DP specification file represented, for exam-
ple, as a textfile in the gDPS language (see Chap. 3). A graphical input
mask, or some other “intelligent” front-end could be useful to simplify
this task. For problems that have a standard specification such as ILP, a
preprocessor module can automatically derive the DP model.

2. Use the gDPS2PN compiler (see Chap. 8) to produce the intermediate
Bellman net representation (see Sect. 5.5) as a .csv file (see Sect. 7.2).

3. Use one of the PN2Solver modules (see Chap. 9) to produce runnable Java
code, or a spreadsheet, or another form of executable solver code, which
is capable of solving the problem instance.

250 7 DP2PN2Solver Tool

gDPS source
(.dp suffix)

bDPS source AMPL source

Java solver
code (.java)

PNML standard
file (.xrn)

ILP tableau
(.csv spreadsheet)

spreadsheet
file (.csv)

solution of
DP instance

solution of
DP instance

solution of
DP instance

ILP2gDPS
preprocessor

gDPS2PN
compiler

bDPS2PN
compiler

b2gDPS
transformer

PN2Java
module

PN2XML
module

PN2Spreadsheet
module

Java Runtime
Environment (JRE)

PN simulator
spreadsheet
application

internal
Bellman net

representation (.csv)

Fig. 7.1. Architecture of the DP2PN2Solver Tool

7.2 Internal Representation of Bellman Nets 251

4. Run the resulting executable solver code and output the solution of the
problem instance (see Chap. 10 for the output of the Java solver).

One distinguishing characteristic of our design is that the gDPS2PN compiler
is generated in part by a compiler-compiler rather than being directly coded.
This provides the system with added flexibility.

7.2 Internal Representation of Bellman Nets

Section 6.2 displayed HLBNs in their graphical representation. The graphi-
cal representation is most readable and understandable for humans. However,
when a computer reads or writes a Bellman net it relies on a file representa-
tion. This section describes the file representation used in the DP2PN2Solver
software.

Our design of the file format is based on a matrix representation of Bellman
nets. Since a Bellman net is a class of directed graphs, it can be represented
in adjacency or incidence matrix form. Since the graph is bipartite, we let the
rows of the matrix correspond to place nodes of the Bellman net, and let the
columns of the matrix correspond to transition nodes. Columns are labeled
with the transition names (which should be quoted) and rows are labeled with
the place names (which also should be quoted). An arc from a transition j to
a place i is represented by a matrix entry ai,j = 1, whereas an arc from place
i to transition j is represented by a matrix entry ai,j = −1. If there is no arc
in either direction between i and j, then ai,j = 0.

There are two columns with additional information about the places. One
column is labeled PLACETYPES and takes entries from the set {i,s} designating
each place as either an intermediate place or as a state place, respectively.
Another column labeled INIT/DEC serves two purposes, depending on the type
of the place. It stores the initial marking, if any, as a floating-point number
for a state place. (There is an initial marking if and only if the place is a base
state place.) It also stores (as a quoted string) the decision, if any, that is
associated with an intermediate place.

There are two rows with additional information about the transitions. The
row labeled TRANSTYPE takes entries from the set {min,max,+,*} designat-
ing a transition as a minimization, maximization, addition, or multiplication
transition, respectively. The former two operations declare the transition to be
a M-transition, the latter two make it an E-transition. Another row labeled
ETRANSCONST contains floating-point number entries that are the constant
summands or factors associated with E-transitions; for M-transitions these
entries are left blank.

Note that reverse arcs cannot be coded with an incidence matrix, and in
the case of HLBNs they do not have to — since every arc originating from a
state place is a double arc, and since all other arcs are ordinary arcs, we can
implicitly deduce this information from the type of the place from which the
arc originates.

252 7 DP2PN2Solver Tool

Enabling places and the arcs that connect them to E-transitions are also
pieces of information not explicitly represented in the tabular file format;
they are simply left out to keep the table small. The rule is that for every
E-transition, one should implicitly assume the presence of an enabling place,
initially marked with a single black token. An enabling place is connected
to its E-transition by means of an ordinary arc. Formally, double arcs and
enabling places are associated with M-transitions also, but for simplicity of
presentation we omit them in our examples.

The resulting incidence matrix can be represented as a spreadsheet and
saved as an unformatted text file in .csv form, where each row of the matrix
has comma separated values listing the values in the columns. The HLBN
file for the SPA problem instance from Sect. 2.43, named SPABN.csv, is given
below.
PLACETYPES,PNAMES\TNAMES,"mt1","st1","st2","mt2","st3","st4","mt3","st5",INIT/DEC

s,"(0)",1,0,0,0,0,0,0,0,

i,"p1",-1,1,0,0,0,0,0,0,"d=1"

s,"(1)",0,-1,0,1,0,0,0,0,

i,"p2",-1,0,1,0,0,0,0,0,"d=2"

s,"(2)",0,0,-1,0,-1,0,1,0,

i,"p3",0,0,0,-1,1,0,0,0,"d=2"

i,"p4",0,0,0,-1,0,1,0,0,"d=3"

s,"(3)",0,0,0,0,0,-1,0,-1,0.0

i,"p5",0,0,0,0,0,0,-1,1,"d=3"

,TRANSTYPE,min,+,+,min,+,+,min,+,

,ETRANSCONST,,3.0,5.0,,1.0,8.0,,5.0,

7.3 Compiling and Executing DP Programs

In this section, we summarize the process of solving (compiling and executing)
a DP problem that has a given DPFE formulation expressed as a gDPS pro-
gram. Additional details are provided in subsequent chapters. For specificity,
we trace the process for the linear search (LINSRCS) example.

The tool starts by invoking the compiler, which reads the linear search
specification file linsrcs.dp as input, and produces a (High-Level) Bell-
man net representation LINSRCSBN.csv as output. It does this indirectly
by first generating the program LINSRCSMain.java based upon the ele-
ments of the linear search DPFE as extracted from linsrcs.dp; when
LINSRCSMain.class, the compiled LINSRCSMain.java, is executed, the SDRT
table is generated and then from this table the Bellman net is constructed. A
trace of this process is provided in the output file buildBNlog.txt, as shown
below.
Starting...

Goal State:

({0,1,2})

Base States with values:

({}) 0.0

Operator associated with transitions:

+

Direction of optimization:

min

StateDecisionRewardTransformationTable:

({0,1,2}) [d=0] 0.2 (({1,2})) ()

7.3 Compiling and Executing DP Programs 253

({0,1,2}) [d=1] 0.5 (({0,2})) ()

({0,1,2}) [d=2] 0.3 (({0,1})) ()

({1,2}) [d=1] 1.0 (({2})) ()

({1,2}) [d=2] 0.6 (({1})) ()

({0,2}) [d=0] 0.4 (({2})) ()

({0,2}) [d=2] 0.6 (({0})) ()

({0,1}) [d=0] 0.4 (({1})) ()

({0,1}) [d=1] 1.0 (({0})) ()

({2}) [d=2] 0.8999999999999999 (({})) ()

({1}) [d=1] 1.5 (({})) ()

({0}) [d=0] 0.6000000000000001 (({})) ()

Make a place for the goal state ({0,1,2})

Make a min transition mt1

make an arc from mt1 to state({0,1,2})

Make an intermediate place p1 (for decision d=0)

make an arc from p1 to mt1

make a + transition st1 with value 0.2

make an arc from st1 to p1

make an enabling place ep1 containing 1 black token

make an an arc from ep1to st1

Make a place for the state ({1,2})

Make an arc from state ({1,2}) to + transition st1 and a return arc.

Make an intermediate place p2 (for decision d=1)

make an arc from p2 to mt1

make a + transition st2 with value 0.5

make an arc from st2 to p2

make an enabling place ep2 containing 1 black token

make an an arc from ep2to st2

Make a place for the state ({0,2})

Make an arc from state ({0,2}) to + transition st2 and a return arc.

Make an intermediate place p3 (for decision d=2)

make an arc from p3 to mt1

make a + transition st3 with value 0.3

make an arc from st3 to p3

make an enabling place ep3 containing 1 black token

make an an arc from ep3to st3

Make a place for the state ({0,1})

Make an arc from state ({0,1}) to + transition st3 and a return arc.

Make a min transition mt2

make an arc from mt2 to state({1,2})

Make an intermediate place p4 (for decision d=1)

make an arc from p4 to mt2

make a + transition st4 with value 1.0

make an arc from st4 to p4

make an enabling place ep4 containing 1 black token

make an an arc from ep4to st4

Make a place for the state ({2})

Make an arc from state ({2}) to + transition st4 and a return arc.

Make an intermediate place p5 (for decision d=2)

make an arc from p5 to mt2

make a + transition st5 with value 0.6

make an arc from st5 to p5

make an enabling place ep5 containing 1 black token

make an an arc from ep5to st5

Make a place for the state ({1})

Make an arc from state ({1}) to + transition st5 and a return arc.

Make a min transition mt3

make an arc from mt3 to state({0,2})

Make an intermediate place p6 (for decision d=0)

make an arc from p6 to mt3

make a + transition st6 with value 0.4

make an arc from st6 to p6

make an enabling place ep6 containing 1 black token

make an an arc from ep6to st6

Make an arc from state ({2}) to + transition st6 and a return arc.

Make an intermediate place p7 (for decision d=2)

make an arc from p7 to mt3

make a + transition st7 with value 0.6

make an arc from st7 to p7

make an enabling place ep7 containing 1 black token

make an an arc from ep7to st7

Make a place for the state ({0})

Make an arc from state ({0}) to + transition st7 and a return arc.

Make a min transition mt4

make an arc from mt4 to state({0,1})

Make an intermediate place p8 (for decision d=0)

make an arc from p8 to mt4

make a + transition st8 with value 0.4

make an arc from st8 to p8

make an enabling place ep8 containing 1 black token

make an an arc from ep8to st8

Make an arc from state ({1}) to + transition st8 and a return arc.

Make an intermediate place p9 (for decision d=1)

make an arc from p9 to mt4

make a + transition st9 with value 1.0

make an arc from st9 to p9

make an enabling place ep9 containing 1 black token

make an an arc from ep9to st9

254 7 DP2PN2Solver Tool

Make an arc from state ({0}) to + transition st9 and a return arc.

Make a min transition mt5

make an arc from mt5 to state({2})

Make an intermediate place p10 (for decision d=2)

make an arc from p10 to mt5

make a + transition st10 with value 0.8999999999999999

make an arc from st10 to p10

make an enabling place ep10 containing 1 black token

make an an arc from ep10to st10

Make a place for the state ({})

Make an arc from state ({}) to + transition st10 and a return arc.

Make a min transition mt6

make an arc from mt6 to state({1})

Make an intermediate place p11 (for decision d=1)

make an arc from p11 to mt6

make a + transition st11 with value 1.5

make an arc from st11 to p11

make an enabling place ep11 containing 1 black token

make an an arc from ep11to st11

Make an arc from state ({}) to + transition st11 and a return arc.

Make a min transition mt7

make an arc from mt7 to state({0})

Make an intermediate place p12 (for decision d=0)

make an arc from p12 to mt7

make a + transition st12 with value 0.6000000000000001

make an arc from st12 to p12

make an enabling place ep12 containing 1 black token

make an an arc from ep12to st12

Make an arc from state ({}) to + transition st12 and a return arc.

Add a token with value 0.0 into state ({})

End.

The constructed incidence matrix representation of the Bellman net for
the linear search example can be represented as a spreadsheet (in .CSV form)
and is saved as LINSRCSBN.csv as follows.
PLACETYPES,PNAMES\TNAMES,"mt1","st1","st2","st3","mt2","st4","st5","mt3","st6","st7","mt4","st8","st9","mt5","st10","mt6",

"st11","mt7","st12",INIT/DEC

s,"({0,1,2})",1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

i,"p1",-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"d=0"

s,"({1,2})",0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

i,"p2",-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"d=1"

s,"({0,2})",0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,

i,"p3",-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"d=2"

s,"({0,1})",0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

i,"p4",0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,"d=1"

s,"({2})",0,0,0,0,0,-1,0,0,-1,0,0,0,0,1,0,0,0,0,0,

i,"p5",0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,"d=2"

s,"({1})",0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,1,0,0,0,

i,"p6",0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,"d=0"

i,"p7",0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,"d=2"

s,"({0})",0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,1,0,

i,"p8",0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,"d=0"

i,"p9",0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,"d=1"

i,"p10",0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,"d=2"

s,"({})",0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,-1,0.0

i,"p11",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,"d=1"

i,"p12",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,"d=0"

,TRANSTYPE,min,+,+,+,min,+,+,min,+,+,min,+,+,min,+,min,+,min,+,

,ETRANSCONST,,0.2,0.5,0.3,,1.0,0.6,,0.4,0.6,,0.4,1.0,,0.8999999999999999,,1.5,,0.6000000000000001,

The LINSRCSBN.csv file given above is the internal representation of the
HLBN for the linear search DPFE. We emphasize that this spreadsheet is a
description of the DPFE rather than an executable program that computes
its solution. The remaining problem is to obtain the numerical solution of
the DPFE from this Bellman net specification. This can be done in at least
three ways. One option is to use a Petri net simulator. Our Petri net solver
code module converts our internal HLBN representation to that required by
a standard Petri net tool; we discuss this in Chap. 11. A second option is to
produce an executable spreadsheet that performs the operations of the M-
transition and E-transition nodes. Our spreadsheet solver module generates
such a spreadsheet; we also discuss this in Chap. 11.

7.4 The ILP2gDPS Preprocessor Module 255

A third option is to generate solver code in a conventional procedural
programming language, such as Java. For the linear search example, the fol-
lowing excerpt from the Java solver code, LINSRCSJavaSolver.java, would
be generated. This is discussed in greater detail in Chap. 9. Here, we simply
note that the firing E- or M-transitions is accomplished by means of “Calcu-
lationObjects”, one for each transition.
public class linsrcsJavaSolver {

public static void main(String[] args) throws IOException {

final String subDirName="linsrcsSolverCode";

String currentWorkingDir=System.getProperty("user.dir");

if(!currentWorkingDir.endsWith(subDirName)) {

currentWorkingDir=currentWorkingDir+"/"+subDirName;

}

Out.pw=new PrintWriter(new FileWriter(

new File(currentWorkingDir+"/"+"linsrcsSolutionTree.txt")));

List argumentList; //reusable temporary variable used for min/max

List operandList; //reusable temporary variable for eval. (Etransitions)

//code to initialize base state place variables

CalculationObject I35 = new CalculationObject("({})",0.0);

//code that simulates the transitions firing

operandList=new ArrayList();

operandList.add(I35);

ECalculationObject I33 = new ECalculationObject(

"d=2",

I35.getValue()+0.8999999999999999,

operandList);

...

argumentList=new ArrayList();

argumentList.add(I3);

argumentList.add(I7);

argumentList.add(I11);

MCalculationObject I1 = new MCalculationObject("({0,1,2})");

I1.performMinimization(argumentList);

//code that gives us the final answer

Out.put("The optimal value is: ");

Out.putln(I1.getValue());

Out.putln("The solution tree is: ");

Out.putln(I1.predecessorSubtree(0));

Out.pw.close(); //close the output stream

} //end of main()

} //end of class

When the program LINSRCSJavaSolver.class (obtained by compiling
LINSRCSJavaSolver.java) is executed, the numerical solution is placed in
the output file LINSRCSSolutionTree.txt, which is as follows.
The optimal value is: 1.7000000000000002

The solution tree is:

State ({0,1,2}) has optimal value: 1.7000000000000002

Decision d=1

State ({0,2}) has optimal value: 1.2000000000000002

Decision d=2

State ({0}) has optimal value: 0.6000000000000001

Decision d=0

Base state ({}) has initial value: 0.0

The optimal solution is 1.7 obtained by making the sequence of decisions
1, 2, and 0, with costs 0.5, 0.6, and 0.6, respectively.

7.4 The ILP2gDPS Preprocessor Module

Our DP software tool allows additional modules to be added that permits users
to provide inputs in other than the gDPS source language, and to produce

256 7 DP2PN2Solver Tool

solver code output in other than Java. We give an example of the former in
this section.

Integer linear programs can be defined in a standard fashion using a
tableau. This tableau is identical to the tableau specification of LP prob-
lems for use in LP solver software. For example, in order to use a simplex LP
solver, the user would specify a “simplex tableau”.

It is possible to support the DP modeler who wishes to solve integer linear
programs satisfying the nonnegativity assumptions of the ILP problem (r, b
and A have nonnegative entries, as defined in section 2.14) by providing a pre-
processor tool that automatically generates the gDPS source from the tableau.
Such a preprocessor has been implemented and has been named “ILP2gDPS”.
The gDPS source code produced follows the DP functional equation (2.18)
described in section 2.14. This illustrates the generality and flexibility of our
approach, not necessarily its practicality. In the following we describe the
details of ILP2gDPS.

The user of DP2PN2Solver might possess a spreadsheet file containing the
tableau for an ILP problem instance. The tableau in .csv format (commas
separate the values) serves as the input for the ILP2gDPS preprocessor. The
input file for the example instance from section 2.14 would read as follows.

3,5,
1,0,4
0,2,12
3,2,18

The first line must contain the coefficients of the objective function (i.e.
representing the r vector). Each following line represents a constraint. For
constraint i it is given by the constraint coefficients of the left-hand side (i.e.
row i of the matrix A), followed by the right-hand side value (i.e. the bi entry
of the b vector). Values must be separated by commas and the end of a line is
indicated by carriage return and/or line feed. Empty lines are not permitted
since they would be interpreted as constraints with an insufficient number of
values.

The ILP2gDPS preprocessor is called by
java ILPpreprocessor input.csv output.dp
or simply by
java ILPpreprocessor file.csv
in which case the gDPS output file is named file.dp automatically.

The gDPS output for the sample ILP instance is given next.
//This gDPS code was generated by the ILPpreprocessor

BEGIN

NAME ilpAuto;

GENERAL_VARIABLES_BEGIN

//Must assume a,b,c have all pos. int. entries.

//objective function coefficients:

private static int[] c = {3, 5};

//right hand side of constraints vector:

private static int[] b = {4, 12, 18};

//constraint matrix:

private static int[][] a=

{

7.4 The ILP2gDPS Preprocessor Module 257

{1, 0},

{0, 2},

{3, 2}

};

private static int n = c.length;

private static int m = b.length;

private static final int infty=Integer.MAX_VALUE;

GENERAL_VARIABLES_END

GENERAL_FUNCTIONS_BEGIN

private static NodeSet calculateDecisionSet(int stage,

int y1,

int y2,

int y3) {

NodeSet result = new NodeSet();

int maxpc=infty; //max. possible choice

if(a[0][stage]!=0){

maxpc=Math.min(maxpc, y1/a[0][stage]);

}

if(a[1][stage]!=0){

maxpc=Math.min(maxpc, y2/a[1][stage]);

}

if(a[2][stage]!=0){

maxpc=Math.min(maxpc, y3/a[2][stage]);

}

for (int i=0; i<=maxpc; i++) {

result.add(new Integer(i));

}

return result;

}

GENERAL_FUNCTIONS_END

STATE_TYPE: (int stage,

int y1,

int y2,

int y3);

DECISION_VARIABLE: int d;

DECISION_SPACE: decisionSet(stage,y1,y2,y3)

=calculateDecisionSet(stage,y1,y2,y3);

GOAL: f(0,b[0],b[1],b[2]);

DPFE_BASE_CONDITIONS:

f(stage,y1,y2,y3)=0.0 WHEN (stage == n);

DPFE: f(stage,y1,y2,y3)

=MAX_{d IN decisionSet}

{ f(t(stage,y1,y2,y3,d))

+r(stage,y1,y2,y3,d)

};

REWARD_FUNCTION: r(stage,y1,y2,y3,d)=c[stage]*d;

TRANSFORMATION_FUNCTION: t(stage,y1,y2,y3,d)

=(stage+1,

y1-a[0][stage]*d,

y2-a[1][stage]*d,

y3-a[2][stage]*d);

END

Now this gDPS code can be used as the input for the DP2PN2Solver
software in the same way a gDPS source hand-crafted by the modeler would
be used.

8

DP2PN Parser and Builder

As introduced in Chap. 7.1 the gDPS2PN compiler performs the tasks of
parsing the DP specification file and of building an internal Bellman net rep-
resentation. Figure 8.1 shows the design overview of the gDPS2PN compiler
in form of a Petri net. The compiler consists of a parser module and a builder
module. The following sections describe the design, implementation, and test
of these modules in more detail.

8.1 Design of the DP2PN modules

The complete grammar of the gDPS language in Backus-Naur form (BNF)
is given in Sect. 3.4 and is incorporated into the parser specification file
DPspecificationParser.jj. From this input, JavaCC 3.2 [tm], a compiler-
compiler that facilitates both the lexical analysis and the parsing of the gram-
mar (i.e. it has the same functionality as the C-language based “Lex” and
“Yacc” combined, but can be integrated seamlessly into a Java environment),
is used to obtain a DP2PN parser that is written completely in Java.

Execution of the DP2PN parser module results in the generation of the
main part of the DP2PN builder module. The DP2PN parser module remains
fixed for a chosen source language (in this case the source language is gDPS)
and does not need to be recompiled unless changes to the source language
are desired. The DP2PN builder module needs to be recompiled and then
executed for every new gDPS input. All steps can be automated in a single
batch file, so these intermediate steps are hidden from the user. From the user’s
perspective, if a gDPS source file is provided as input, then the gDPS2PN
compiler produces a Bellman net as output (and also a log file documenting
errors encountered during this process).

A. Lew and H. Mauch: DP2PN Parser and Builder, Studies in Computational Intelligence (SCI)

38, 259–269 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

260 8 DP2PN Parser and Builder

gDPS source
XXX.dp

Initiate parsing of DP specification
java DPspecificationParser XXX.dp

State.java
Other resource files

(Decision.java, DPInstance.java, etc.)

Bellman Net
XXXBN.csv

Log file
DP2PNlog.txt

Initiate building of PN
(via state-decision-reward-transformation table)

javac *.java
java XXXMain

Output in directory
DP2PNXXX/XXXBN

DPspecificationParser.jj

Build Parser with JavaCC 3.2
javacc DPspecificationParser.jj

javac *.java

Other resource files
(Main1.txt, Main2.txt, Main3.txt)

DP2PN Parser Module

DPspecificationParser.class
(and other .class files)

DP2PN Builder Module

In directory DP2PNXXX XXXMain.java

Fig. 8.1. Overview of the gDPS2PN Compiler

8.2 Implementation of the DP2PN modules

After parsing the gDPS source, the DP2PN parser module generates two
problem dependent Java classes. The class State in State.java is the data
structure for the heterogeneous state vector with the appropriate number of
components as discussed in Chapter 1. The class XXXMain in XXXMain.java
contains the main procedure that builds the Bellman net (i.e. the desired out-
put of the DP2PN builder module) where XXX is to be read as the problem
name under consideration. Internal details of this procedure are described
next. For a more comprehensive listing of the pseudocode of DP2PN see
Appendix A.1.

The idea is to construct a state-decision-reward-transformation table
(SDRT table, see Sect. 1.2.2) that captures almost all of the essential charac-
teristics of a DP instance. It only lacks the direction of optimization (mini-
mization or maximization) and the information about base states, goal state,

8.2 Implementation of the DP2PN modules 261

and the mathematical operation that is to be applied to “connect” the reward
value and the next-state functionals. This additional information is stored in
appropriate data structures and functions in an obvious way. The SDRT table
is built in a top-down manner by exploring newly found states in a breadth-
first fashion. Starting from the goal state, as defined in the GOAL section of
the gDPS source, all reachable states are generated; for every decision in the
decision set, a set of successor states unfolds. Newly discovered states are put
into a queue that determines which states are created next. In order to avoid
duplication of states in the queue over time, some bookkeeping is necessary
in the form of maintaining a set of the states that have already been seen.

The following algorithm generates the SDRT table for a DP problem in-
stance. This algorithm is incorporated within the main method of the PN
builder module, e.g. XXXMain.java, as discussed further in the next section.
(Note: The step numbers given here are used in our later discussion.)

// SDRT generation algorithm:

[STEP 1] initialize the set statesSeen to contain the goal state

[STEP 2] initialize the queue stateQueue to contain the goal state

[STEP 3] while stateQueue not empty

[STEP 4] currentState:=dequeue state from stateQueue

[STEP 5] if currentState is not a base state

[STEP 6] loop over all possible decisions

[STEP 7] generate table entry (a row for the

state-decision-reward-transformation-table)

[STEP 8] enqueue those next states which are not in statesSeen

into the stateQueue and also add them to statesSeen

For the linear search example, whose gDPS source is LINSRCS.dp, the
SDRT table that is built is as follows:

StateDecisionRewardTransformationTable:
({0,1,2}) [d=0] 0.2 (({1,2})) ()
({0,1,2}) [d=1] 0.5 (({0,2})) ()
({0,1,2}) [d=2] 0.3 (({0,1})) ()
({1,2}) [d=1] 1.0 (({2})) ()
({1,2}) [d=2] 0.6 (({1})) ()
({0,2}) [d=0] 0.4 (({2})) ()
({0,2}) [d=2] 0.6 (({0})) ()
({0,1}) [d=0] 0.4 (({1})) ()
({0,1}) [d=1] 1.0 (({0})) ()
({2}) [d=2] 0.8999999999999999 (({})) ()
({1}) [d=1] 1.5 (({})) ()
({0}) [d=0] 0.6000000000000001 (({})) ()

As a second example, where there are multiple next states, specifically
for the MCM problem instance of Sect. 2.27, the SDRT table is shown in
Table 8.1.

262 8 DP2PN Parser and Builder

Table 8.1. State-Decision-Reward-Transformation-Table for MCM instance

state decision reward next states

(1,4) k=1 24.0 ((1,1), (2,4))
(1,4) k=2 30.0 ((1,2), (3,4))
(1,4) k=3 12.0 ((1,3), (4,4))
(2,4) k=2 40.0 ((2,2), (3,4))
(2,4) k=3 16.0 ((2,3), (4,4))
(1,3) k=1 24.0 ((1,1), (2,3))
(1,3) k=2 30.0 ((1,2), (3,3))
(1,2) k=1 60.0 ((1,1), (2,2))
(2,3) k=2 40.0 ((2,2), (3,3))
(3,4) k=3 20.0 ((3,3), (4,4))

Probabilistic and discounted DP problem instances have an additional
“weight” column which accounts for the list of probability or discount weights
associated with each successor state. For the PRODRAP problem (Sect. 2.35)
the result is shown in Table 8.2.

Table 8.2. State-Decision-Reward-Transformation-Table for PRODRAP instance

state decision reward next states weights

(1) xn=0 0.0 ((2)) (1.0)
(1) xn=1 4.0 ((2)) (0.5)
(1) xn=2 5.0 ((2)) (0.25)
(1) xn=3 6.0 ((2)) (0.125)
(1) xn=4 7.0 ((2)) (0.0625)
(1) xn=5 8.0 ((2)) (0.03125)
(2) xn=0 0.0 ((3)) (1.0)
(2) xn=1 4.0 ((3)) (0.5)
(2) xn=2 5.0 ((3)) (0.25)
(2) xn=3 6.0 ((3)) (0.125)
(2) xn=4 7.0 ((3)) (0.0625)
(2) xn=5 8.0 ((3)) (0.03125)
(3) xn=0 0.0 ((4)) (1.0)
(3) xn=1 4.0 ((4)) (0.5)
(3) xn=2 5.0 ((4)) (0.25)
(3) xn=3 6.0 ((4)) (0.125)
(3) xn=4 7.0 ((4)) (0.0625)
(3) xn=5 8.0 ((4)) (0.03125)

Following the building of the state-decision-reward-transformation-table
for the linear search example, the Bellman net representation (as described
in Sect. 7.2) is then constructed. A trace of this construction process was
given in Sect. 7.3. We emphasize that the building of the SDRT table and

8.3 The Module LINSRCSMain 263

the construction of the Bellman net are done indirectly. They are gene-
rated not by the DP2PN compiler itself, but by a generated Java program,
LINSRCSMain.java, which when executed as LINSRCSMain.class produces
the desired results. In the next section, we indicate how LINSRCSMain.java
can be produced from LINSRCS.dp.

8.3 The Module LINSRCSMain

A pseudocode listing of LINSRCSMain.java is given in App. A.1.1. In this
section, we relate the statements in LINSRCS.dp to certain generated state-
ments in LINSRCSMain.java to better explain the design of our system. This
is meant to give interested readers the information needed to decipher the
details provided in our appended listings.

• The name declaration in the LINSRCS.dp source program is used to
generate the name that is inserted into the header portion of the
LINSRCSMain.java object program. Specifically, the source statement

NAME LINSRCS; //OptimalLinearSearch-S;

yields the following object statements.

//This is the file LINSRCSMain.java which has been

//automatically generated by the DPspecificationParser

//and its helper CodeCreator

import java.io.*;

import java.util.*;

import bellman_net.*;

public class LINSRCSMain {

public static String problemName="LINSRCS";

• The source statements in the GENERAL_VARIABLES section, namely,

private static double[] prob= {0.2,0.5,0.3};

private static int N = prob.length;

are inserted directly, without any modifications, into the object program.
• The source statements in the SET_VARIABLES section, namely,

Set setOfAllItems={0,..,N - 1};

Set emptySet={};

are parsed, and the set variables, setOfAllItems and emptySet, are de-
clared and initialized accordingly in the object program:

private static NodeSet setOfAllItems = _make_setOfAllItems();

private static NodeSet _make_setOfAllItems(){

NodeSet _setInDDN0=new NodeSet();

{ //extra block so _i reusable

for (int _i=0;_i<=N-1;_i++) {

264 8 DP2PN Parser and Builder

_setInDDN0.add(new Integer(_i));

}

} //close extra block

return _setInDDN0;

}

private static NodeSet emptySet = _make_emptySet();

private static NodeSet _make_emptySet(){

NodeSet _setExplicit1=new NodeSet();

return _setExplicit1;

}

• The source statements in the GENERAL_FUNCTIONS section, namely,

private static int size(Set items)

return items.size();

}

are inserted directly, without any modifications, into the object program.
• The object program then includes statements that prepare the output

files. These statements are copied from the system file named Main1.txt.
A complete listing of Main1.txt is given in Appendix A.2.

///

//beginning of the fixed code Main1.txt for Main.java

public static void main(String[] args) throws IOException{

String outputFileName="buildBNlog.txt";

final String subDirName="DP2PN"+problemName;

String currentWorkingDir=System.getProperty("user.dir");

if(!currentWorkingDir.endsWith(subDirName)) {

currentWorkingDir=currentWorkingDir+"/"+subDirName;

}

//create an output directory for the Bellman net

File newDir=new File(currentWorkingDir+"/"+problemName+"BN");

newDir.mkdir(); //make the directory

Out.pw=new PrintWriter(new FileWriter(

new File(currentWorkingDir+"/"+problemName+"BN"+"/"

+outputFileName)));

Out5.pw=new PrintWriter(new FileWriter(

new File(currentWorkingDir+"/"+problemName+"BN"+"/"

+problemName+"BN.csv")));

Out.putln("Starting...");

//end of the fixed code Main1.txt for Main.java

//

• The GOAL section of the source program

GOAL: f(setOfAllItems);

is then parsed, resulting in the placement of a statement in the ob-
ject program that creates the goalState object and initializes it to the
setOfAllItems. (Note: the State class is discussed at the end of this
section.)

8.3 The Module LINSRCSMain 265

State goalState = new State(setOfAllItems);

• The DPFE_BASE section of the source program

DPFE_BASE: f(emptySet)=0.0 ;

is then parsed, resulting in the placement of statements in the object pro-
gram that define a mapping of base states to their base state values. In this
example, there is only one entry in the baseStatesWithValues map — the
base-state (∅) maps to the initial value 0.0.

StateValueMap baseStatesWithValues = new StateValueMap();

baseStatesWithValues.put(new State(emptySet),new Double(0.0));

• Now, the DPInstance object that will hold all the information of a DP
instance is created:

DPInstance theInstance

= new DPInstance(goalState,baseStatesWithValues);

• The DPFE section of the source program

DPFE: f(items)=MIN_{d IN decisionSet}

{ cost(items,d)+f(t(items,d)) };

is then parsed. The minimization and addition operators are extracted,
resulting in the initialization of the appropriate instance variables of the
DPInstance object theInstance.

theInstance.setTransitionOperator("+");
theInstance.setMinOrMax("min");

This information is used later.
• The code for the algorithm for building the SDRT table is then inserted.

The first portion is copied from the system file Main2.txt. A complete
listing of Main2.txt is given in Appendix A.2. The step numbers added
here are from the above pseudocode.

///

//beginning of the fixed code Main2.txt for Main.java

// make table entries automatically

StateSet statesSeen =new StateSet();

//add goal state to statesSeen

[Step 1] statesSeen.add(goalState);

LinkedList stateQueue = new LinkedList();

//initialize queue with the goal state

[Step 2] stateQueue.addLast(goalState);

//loop as long as there is something in the queue

[Step 3] while (stateQueue.size()>0) {

//dequeue the first state and make it the current state

[Step 4] State currentState=(State) stateQueue.removeFirst();

//check whether the current state is a base state as

//defined in DPFE_BASE_CONDITIONS section; if so, add it

//and its value to baseStatesWithValues

266 8 DP2PN Parser and Builder

[Step 5] if (determineWhetherBaseState(currentState)==true) {

baseStatesWithValues.put(currentState,

new Double(determineBaseStateValue(currentState)));

}

//if current state is not a base state...

if (!baseStatesWithValues.containsKey(currentState)) {

//now loop over all possible decisions

//end of the fixed code Main2.txt for Main.java

//

At this point, information about the decision set and decision variable is
needed.

• The decision set is obtained from the DECISION_SPACE section.

DECISION_SPACE: decisionSet(items)=items;

For this source statement, the following statements are inserted into the
object program.

//create the decision set

NodeSet items=((NodeSet) ((NodeSet)

currentState.getCoordinate(0)).clone());

NodeSet decisionSet=items;

//loop over all decisions now

[Step 6] for (Iterator it=decisionSet.iterator();it.hasNext();) {

Integer currentDecisionCandidate = (Integer) it.next();

Decision d

= new Decision(currentDecisionCandidate.intValue());

• The decision variable is obtained from the DECISION_VARIABLE section.

DECISION_VARIABLE: int d;

For this source statement, the following statement is inserted into the
object program. Its purpose is to provide labels for the decisions by setting
an instance variable of the Decision object d. These labels are attached
to decision arcs in the resulting Bellman net, and in the final SolverCode
output.

d.setDecisionPrefix("d=");

• The remainder of the SDRT generation algorithm is from Main3.txt (see
Appendix A.2).

///

//beginning of the fixed code Main3.txt for Main.java

//determine the successor states of current state

StateList successorStates

=calculateTransformation(currentState,d);

//determine the transition weights given the current state

ArrayList transitionWeights

=calculateTransitionWeights(currentState,d);

8.3 The Module LINSRCSMain 267

//generate table entry

[Step 7] DPInstanceTableEntry entry = new DPInstanceTableEntry(

currentState,

d,

calculateReward(currentState,d),

successorStates,

transitionWeights);

theInstance.addTableEntry(entry);

//enqueue unseen destination states by iterating

//over successorStates

[Step 8] for(Iterator it2=successorStates.iterator();

it2.hasNext();) {

State currentSuccessor = (State) it2.next();

if(!statesSeen.contains(currentSuccessor)) {

stateQueue.addLast(currentSuccessor);

statesSeen.add(currentSuccessor);//mark state as seen

}

}

} //end of for loop over the decisions

} //end of if

else { //base state

//do nothing

}

} //end of loop once queue is empty

[...]

//build the Bellman PN from the instance

[...]

BellmanNet bn=theInstance.buildBellmanPNTopDown(problemName);

//write the BellmanNet as incidence matrix

Out5.putln(bn.toIncidenceMatrix());

[...]

//end of the fixed code Main3.txt for Main.java

//

• From the REWARD_FUNCTION section,

REWARD_FUNCTION: cost(items,d) = (N+1-size(items)) * prob[d];

the function calculateReward() is generated in the object program, as
follows.

public static double calculateReward(State s, Decision d) {

double result;

result=(N+1

-size(((NodeSet) ((NodeSet) s.getCoordinate(0)).clone())))

*prob[d.getDecision()];

return result;

}

• From the TRANSFORMATION_FUNCTION section,

268 8 DP2PN Parser and Builder

TRANSFORMATION_FUNCTION: t(items,d)=(items SETMINUS {d});

the function calculateTransformation() is generated in the object pro-
gram, as follows.

private static StateList calculateTransformation(State s,

Decision d) {

StateList result=new StateList();

{

NodeSet items=((NodeSet) ((NodeSet) s.getCoordinate(0)).clone());

NodeSet _setExplicit2=new NodeSet();

_setExplicit2.add(new Integer(d.getDecision()));

items.removeAll(_setExplicit2);

result.add(new State(items));

}

return result;

}

This function returns a list of states, since for some DP problems such as
MCM we have multiple successor states.

• Source code for the methods defined in earlier steps (determineWhether
BaseState, determineBaseStateValue, and calculateTransitionWeights if
used) are inserted at the end of LINSRCSMain.java.

• The state type declaration in the gDPS source is handled is a spe-
cial way. For design reasons this declarative information is incorporated
into a separate State class in the Java file State.java rather than in
LINSRCSMain.java. For example, in LINSRCS.dp, the source statement

STATE_TYPE: (Set items);

results in a specialized, problem-specific constructor for State objects in
State.java as follows:

public State(NodeSet items) {

theState=new ArrayList();

theState.add(items);

} //end of constructor

8.4 Error Detection in DP2PN

The parser module of DP2PN using gDPS as the source language has been
tested and is capable of detecting the following syntactical errors in the DP
specification.

• No goal state provided – the modeler did not specify what the goal of the
computation is for the given instance of the DP problem.

• No or illegal DP functional equation provided.
• No base case for the DP functional equation provided.
• No decision variable for the DP functional equation provided.
• No decision set for the DP functional equation provided.

8.4 Error Detection in DP2PN 269

• No reward function provided. (If the DP functional equation does not
contain a reward function, it is still necessary to define a reward function
in gDPS, e.g. the constant function r(s, d) = 0.0 for additive DP functional
equations, or r(s, d) = 1.0 for multiplicative DP functional equations.)

• No transformation function provided.

If a “syntax” error is detected the DP2PN module will report an error
message and will not attempt to produce the intermediate PN representation.
No attempt of error recovery is made. All syntax errors lead to the termination
of DP2PN.

“Semantical” errors cannot be detected by the DP2PN module. Some
might be detectable subsequently by checking certain net theoretic properties
(such as cyclicness and deadlock) of the resulting PN. For all gDPS examples
tested so far, the following general observations have been made.

Note 8.1. Given a syntactically correct gDPS source representing a proper DP
problem formulation, the DP2PN module produces a PN that is correct in the
sense that it produces the optimal objective function value as output.

Note 8.2. Given a syntactically correct but semantically improper gDPS
source, the DP2PN module produces a PN that is incorrect in the sense that
it does not necessarily produce the optimal objective function value as output.

Some examples of specific errors detectable by an analysis of net prop-
erties are the existence of circular definitions and incorrect or omitted base
conditions. Certain transformation function errors are also detectable since
they lead to cyclicness or deadlock.

9

The PN2Solver Modules

The general terminology “PN2Solver” is used to describe a software compo-
nent that produces a solver code from the internal Bellman net representa-
tion. In Sect. 9.2 we describe PN2Java, one of three components that have
been implemented to produce solver code. PN2Java produces solver code in
the general programming language Java. Later we describe PN2Spreadsheet
(Sect. 9.3), which produces a spreadsheet to be used by spreadsheet appli-
cations, and PN2XML (Sect. 9.4), which produces a file in the standardized
Petri net exchange format PNML.

As an alternative to the presented PN2Solver modules one could envision
a module that transforms the Bellman net directly into machine code (for
applications that require the utmost performance at the expense of machine
independence). Computations that can take place concurrently are identified
by transitions that are enabled concurrently; these computations could be
assigned to parallel processors for a further gain in performance.

9.1 The Solver Code Generation Process

In Chap. 8, we showed how a Bellman net representation of a dynamic pro-
gramming problem can be obtained. In this chapter, we show how we can
automatically generate code that numerically solves the problem. We will as-
sume here that we are given the Bellman net representation of a dynamic pro-
gramming problem in the form of the incidence matrix descibed in Sect. 7.2.
For example, for the linear search example, this matrix representation was
given as the following LINSRCSBN.csv file, shown here aligned in columns.

We emphasize that this matrix is a description of the DPFE rather than
an executable code that computes its solution. The remaining problem is to
numerically solve the DPFE given this Bellman net specification.

TNAMES

PT PNAMES mt1 st1 st2 st3 mt2 st4 st5 mt3 st6 st7 mt4 st8 st9 mt5 st10mt6 st11mt7 st12INIT/DEC

s ({0,1,2}) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i p1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d=0

A. Lew and H. Mauch: The PN2Solver Modules, Studies in Computational Intelligence (SCI)

38, 271–289 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

272 9 The PN2Solver Modules

s ({1,2}) 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i p2 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d=1

s ({0,2}) 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

i p3 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d=2

s ({0,1}) 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

i p4 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 d=1

s ({2}) 0 0 0 0 0 -1 0 0 -1 0 0 0 0 1 0 0 0 0 0

i p5 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 d=2

s ({1}) 0 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 1 0 0 0

i p6 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 d=0

i p7 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 d=2

s ({0}) 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 1 0

i p8 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 d=0

i p9 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 d=1

i p10 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 d=2

s ({}) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0

i p11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 d=1

i p12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 d=0

TRANSTYPE min + + + min + + min + + min + + min + min + min +

ETRANSCONST 0.2 0.5 0.3 1 0.6 0.4 0.6 0.4 1 0.9 1.5 0.6

We start by first topologically sorting this Bellman net, resulting in the
following list of states.

(base-state,st10,mt5,st4,st6,st11,mt6,st5,st8,mt2,st1,st12,
mt7,st7,st9,mt3,st2,mt4,st3,mt1).

Note that the base state is first and the goal state is last. Permuting the
rows and columns of the incidence matrix in this topological order, we obtain
the following equivalent matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PT PN \ TN INIT/DEC st10 mt5 st4 st6 st11 mt6 st5 st8 mt2 st1 st12 mt7 st7 st9 mt3 st2 mt4 st3 mt1

1 s ({}) 0 -1 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

2 i p10 d=2 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 s ({2}) 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 i p4 d=1 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

5 i p6 d=0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

6 i p11 d=1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 s ({1}) 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0

8 i p5 d=2 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0

9 i p8 d=0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0

10 s ({1,2}) 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0

11 i p1 d=0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1

12 i p12 d=0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0

13 s ({0}) 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0

14 i p7 d=2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0

15 i p9 d=1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0

16 s ({0,2}) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0

17 i p2 d=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1

18 s ({0,1}) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0

19 i p3 d=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

20 s ({0,1,2}) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

TRANSTYPE + min + + + min + + min + + min + + min + min + min

ETRANSCONST 0.9 1 0.4 1.5 0.6 0.4 0.2 0.6 0.6 1 0.5 0.3

Note that the connectivity portion of the matrix has an upper triangular
form. Solver code can be generated for each transition by processing the matrix
columnwise from left to right, generating either a minimization operation if
the transition type is a min (i.e. an M-transition) or an addition operation if
the transition type is a + (i.e. an E-transition), as specified in the next-to-last
row. The input operands of this operation are indicated by a -1 entry in the
column, whereas the output result operand is indicated by a +1 entry; an
addition operation also has an input operand that is found in the last row of
the matrix. Each transition operation can have several inputs but only one
output.

Following the above procedure, we can generate solver code in the form of
the following sequence of assignment statements. (The reason for naming the

9.2 The PN2Java Module 273

temporary variables “Bi” will be made clear later.) Each statement evaluates a
transition (mininimization or expression) operation, or initializes a base-state.
B1 = 0

B2 = B1+0.9

B3 = min(B2)

B4 = B3+1.0

B5 = B3+0.4

B6 = B1+1.5

B7 = min(B6)

B8 = B7+0.6

B9 = B7+0.4

B10 = min(B4,B8)

B11 = B10+0.2

B12 = B1+0.6

B13 = min(B12)

B14 = B13+0.6

B15 = B13+1.0

B16 = min(B5,B14)

B17 = B16+0.5

B18 = min(B9,B15)

B19 = B18+0.3

B20 = min(B11,B17,B19)

It should be emphasized that the upper triangular form of the Bellman net
matrix (based on the topological ordering) ensures that the generated Java
code evaluates the expressions in a correct order, so that each statement only
involves variables of prior statements. We note also that, as a consequence,
the resulting code computes overlapping subproblems exactly once. Execution
of this solver code using a conventional programming language, such as Java,
will result in the final variable B20 being set equal to the desired goal (of 1.7).
However, since we are generally interested in intermediate results, including
knowledge of what the optimal decisions are, we will generate solver code in
a different form. Details of this are discussed in the next section.

9.2 The PN2Java Module

At the end of Sect. 9.1, we showed how a simple Java program can be auto-
matically generated from a Bellman net. Execution of that Java program will
result in the computation of the goal, i.e., the value of the optimal solution,
but reconstruction of the optimal policy, i.e., the series of optimal decisions
leading to the goal, is not automated. Therefore, rather than generating the
foregoing Java program, we generate a Java program that invokes specially
designed routines, called by CalculationObjects, that perform the same op-
erations but save sufficient information so that when the goal is reached, the
reconstruction process automatically occurs and is recorded in a solution file.

The PN2Java module of DP2PN2Solver takes a Bellman Net as its input,
and produces Java code as its output. The Java code efficiently produces the
optimal solution to the underlying DP problem instance, along with optimal
policy. Note the use of the term “efficient” in this context. If the underlying
DP problem is inefficient (or intractable) — as in the TSP example — then
PN2Java will produce an output inefficiently.

The selection of Java as the output solver code is somewhat arbitrary. Any
other solver code that can be made to execute on a computer would serve as
well. Our choice of Java takes advantage of the ubiquitous and free availability

274 9 The PN2Solver Modules

of the Java compile and run-time system. PN2Java also ensures that the
produced code is well commented and human-readable, so it is possible to
verify its correctness, or use the code as a building block for a larger software
development project.

9.2.1 Java Solver Code Calculation Objects

The PN2Java module produces Java source code that solves the modeled DP
problem instance. The automatically produced source code for some of the
problem instances is listed in this section. In addition, the following rudi-
mentary Java classes have been designed and implemented to support the
automatically produced sources.

• Out merely facilitates simultaneous output to screen and file.
• CalculationObject represents the values associated with places encoun-

tered in the course of the computation. This class has the following sub-
classes.
– ECalculationObject for computing the value of intermediate places
– MCalculationObject for computing the value of state places that have

a MTransition in their preset.
Note that for base state places, we directly use CalculationObject
instances.

For example, if state #36 is a base state with label “({})” and initial value
0.0, the following statement would be generated.

CalculationObject I36 = new CalculationObject("({})",0.0);

If a transition is an additive E-transition, whose (in this case, single) input
is state #13, whose constant value is 0.3, whose output (successor) is state
#11, and which is associated with a decision with label “d=2”, the following
statements would be generated.

operandList=new ArrayList();
operandList.add(I13);
ECalculationObject I11 = new ECalculationObject(

"d=2", I13.getValue()+0.3, operandList);

If a transition is a minimizing M-transition, whose inputs are states #3,
#7 and #11, whose output (successor) is state #1, and which has the label
“({0,1,2})”, the following statements would be generated.

argumentList=new ArrayList();
argumentList.add(I3);
argumentList.add(I7);
argumentList.add(I11);
MCalculationObject I1 = new MCalculationObject("({0,1,2})");
I1.performMinimization(argumentList);

9.2 The PN2Java Module 275

For the nonserial MCM problem (Sect. 2.27), there are multiple next-
states. The following excerpt from the automatically produced Java code
illustrates this generalization.

List argumentList; //reusable temporary variable
//used for min/max

List operandList; //reusable temporary variable
//for eval. (Etransitions)

//code to initialize base state place variables
CalculationObject I5 = new CalculationObject("(1,1)",0.0);
CalculationObject I20 = new CalculationObject("(4,4)",0.0);
CalculationObject I25 = new CalculationObject("(2,2)",0.0);
CalculationObject I36 = new CalculationObject("(3,3)",0.0);

//code that simulates the transitions firing
operandList=new ArrayList();
operandList.add(I5);
operandList.add(I25);
ECalculationObject I32 = new ECalculationObject(

"k=1",
I5.getValue()+I25.getValue()+60.0,
operandList);

argumentList=new ArrayList();
argumentList.add(I32);
MCalculationObject I12 = new MCalculationObject("(1,2)");
I12.performMinimization(argumentList);

For the INVEST problem (section 2.18), transition weights appear as fac-
tors in the construction of ECalculationObjects. The following excerpt from
the automatically produced Java code illustrates this generalization.

operandList=new ArrayList();
operandList.add(I27);
ECalculationObject I25 = new ECalculationObject(

"null",
I27.getValue()*0.6,
operandList);

operandList=new ArrayList();
operandList.add(I21);
operandList.add(I25);
ECalculationObject I19 = new ECalculationObject(

"d=2",
I21.getValue()+I25.getValue()+0.0,
operandList);

276 9 The PN2Solver Modules

9.2.2 Java Solver Code for LINSRCS

For the linear search example, for which the topologically sorted Bellman
net matrix was given in Sect. 9.1, the following Java solver code would be
generated and saved in a file with name LINSRCSJavaSolver.java.
//This file is automatically produced

//using the method toJava() from class BellmanNet

import pn2java.*;

import java.io.*;

import java.util.*;

public class linsrcsJavaSolver {

public static void main(String[] args) throws IOException {

final String subDirName="LINSRCSSolverCode";

String currentWorkingDir=System.getProperty("user.dir");

if(!currentWorkingDir.endsWith(subDirName)) {

currentWorkingDir=currentWorkingDir+"/"+subDirName;

}

Out.pw=new PrintWriter(new FileWriter(

new File(currentWorkingDir+"/"

+"LINSRCSSolutionTree.txt")));

List argumentList; //reusable temporary variable

//used for min/max

List operandList; //reusable temporary variable

//for eval. (Etransitions)

//code to initialize base state place variables

CalculationObject I35 = new CalculationObject("({})",0.0);

//code that simulates the transitions firing

operandList=new ArrayList();

operandList.add(I35);

ECalculationObject I33 = new ECalculationObject(

"d=2", I35.getValue()+0.8999999999999999, operandList);

argumentList=new ArrayList();

argumentList.add(I33);

MCalculationObject I17 = new MCalculationObject("({2})");

I17.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I17);

ECalculationObject I15 = new ECalculationObject(

"d=1", I17.getValue()+1.0, operandList);

operandList=new ArrayList();

operandList.add(I17);

ECalculationObject I23 = new ECalculationObject(

"d=0", I17.getValue()+0.4, operandList);

operandList=new ArrayList();

operandList.add(I35);

ECalculationObject I38 = new ECalculationObject(

"d=1", I35.getValue()+1.5, operandList);

argumentList=new ArrayList();

argumentList.add(I38);

MCalculationObject I21 = new MCalculationObject("({1})");

I21.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I21);

ECalculationObject I19 = new ECalculationObject(

"d=2", I21.getValue()+0.6, operandList);

operandList=new ArrayList();

operandList.add(I21);

ECalculationObject I29 = new ECalculationObject(

"d=0", I21.getValue()+0.4, operandList);

argumentList=new ArrayList();

argumentList.add(I15);

argumentList.add(I19);

MCalculationObject I5 = new MCalculationObject("({1,2})");

I5.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I5);

ECalculationObject I3 = new ECalculationObject(

"d=0", I5.getValue()+0.2, operandList);

operandList=new ArrayList();

operandList.add(I35);

ECalculationObject I40 = new ECalculationObject(

"d=0", I35.getValue()+0.6000000000000001, operandList);

9.2 The PN2Java Module 277

argumentList=new ArrayList();

argumentList.add(I40);

MCalculationObject I27 = new MCalculationObject("({0})");

I27.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I27);

ECalculationObject I25 = new ECalculationObject(

"d=2", I27.getValue()+0.6, operandList);

operandList=new ArrayList();

operandList.add(I27);

ECalculationObject I31 = new ECalculationObject(

"d=1", I27.getValue()+1.0, operandList);

argumentList=new ArrayList();

argumentList.add(I23);

argumentList.add(I25);

MCalculationObject I9 = new MCalculationObject("({0,2})");

I9.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I9);

ECalculationObject I7 = new ECalculationObject(

"d=1", I9.getValue()+0.5, operandList);

argumentList=new ArrayList();

argumentList.add(I29);

argumentList.add(I31);

MCalculationObject I13 = new MCalculationObject("({0,1})");

I13.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I13);

ECalculationObject I11 = new ECalculationObject(

"d=2", I13.getValue()+0.3, operandList);

argumentList=new ArrayList();

argumentList.add(I3);

argumentList.add(I7);

argumentList.add(I11);

MCalculationObject I1 = new MCalculationObject("({0,1,2})");

I1.performMinimization(argumentList);

//code that gives us the final answer

Out.put("The optimal value is: ");

Out.putln(I1.getValue());

Out.putln("The solution tree is: ");

Out.putln(I1.predecessorSubtree(0));

Out.pw.close(); //close the output stream

} //end of main()

} //end of class

When the program LINSRCSJavaSolver.java is compiled to
LINSRCSJavaSolver.class and executed, the output is placed in the output
file LINSRCSSolutionTree.txt, which is as follows.

The optimal value is: 1.7000000000000002
The solution tree is:
State ({0,1,2}) has optimal value: 1.7000000000000002
Decision d=1
State ({0,2}) has optimal value: 1.2000000000000002
Decision d=2
State ({0}) has optimal value: 0.6000000000000001
Decision d=0
Base state ({}) has initial value: 0.0

The optimal solution is 1.7 obtained by making the sequence of decisions
1, 2, and 0, with costs 0.5, 0.6, and 0.6, respectively.

278 9 The PN2Solver Modules

9.2.3 Java Solver Code for LSP

//This file is automatically produced.

//using the method toJava() from class BellmanNet

import pn2java.*;

import java.io.*;

import java.util.*;

public class LSPJavaSolver {

public static void main(String[] args) throws IOException {

//Out writes to screen and file at the same time

Out.pw=new PrintWriter(new FileWriter(new File("LSPSolutionTree.txt")));

List argumentList; //reusable temporary variable used for min/max

List operandList; //reusable temporary variable for eval. (Etransitions)

//code to initialize base state place variables

CalculationObject I9 = new CalculationObject("({0,3},3)",0.0);

CalculationObject I18 = new CalculationObject("({0,1,2,3},3)",0.0);

//code that simulates the transitions firing

operandList=new ArrayList();

operandList.add(I9);

ECalculationObject I7 = new ECalculationObject(

"alpha=3",

I9.getValue()+1.0,

operandList);

operandList=new ArrayList();

operandList.add(I18);

ECalculationObject I16 = new ECalculationObject(

"alpha=3",

I18.getValue()+1.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I16);

MCalculationObject I14 = new MCalculationObject("({0,1,2},2)");

I14.performMaximization(argumentList);

operandList=new ArrayList();

operandList.add(I14);

ECalculationObject I12 = new ECalculationObject(

"alpha=2",

I14.getValue()+1.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I12);

MCalculationObject I5 = new MCalculationObject("({0,1},1)");

I5.performMaximization(argumentList);

operandList=new ArrayList();

operandList.add(I5);

ECalculationObject I3 = new ECalculationObject(

"alpha=1",

I5.getValue()+1.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I3);

argumentList.add(I7);

MCalculationObject I1 = new MCalculationObject("({0},0)");

I1.performMaximization(argumentList);

//code that gives us the final answer

Out.put("The optimal value is: ");

Out.putln(I1.getValue());

Out.putln("The solution tree is: ");

Out.putln(I1.predecessorSubtree(0));

Out.pw.close(); //close the output stream

} //end of main()

} //end of class

9.2.4 Java Solver Code for MCM

//This file is automatically produced.

//using the method toJava() from class BellmanNet

import pn2java.*;

import java.io.*;

import java.util.*;

public class MCMJavaSolver {

public static void main(String[] args) throws IOException {

//Out writes to screen and file at the same time

Out.pw=new PrintWriter(new FileWriter(new File("MCMSolutionTree.txt")));

List argumentList; //reusable temporary variable used for min/max

9.2 The PN2Java Module 279

List operandList; //reusable temporary variable for eval. (Etransitions)

//code to initialize base state place variables

CalculationObject I5 = new CalculationObject("(1,1)",0.0);

CalculationObject I20 = new CalculationObject("(4,4)",0.0);

CalculationObject I25 = new CalculationObject("(2,2)",0.0);

CalculationObject I36 = new CalculationObject("(3,3)",0.0);

//code that simulates the transitions firing

operandList=new ArrayList();

operandList.add(I5);

operandList.add(I25);

ECalculationObject I32 = new ECalculationObject(

"k=1",

I5.getValue()+I25.getValue()+60.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I32);

MCalculationObject I12 = new MCalculationObject("(1,2)");

I12.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I20);

operandList.add(I36);

ECalculationObject I34 = new ECalculationObject(

"k=3",

I20.getValue()+I36.getValue()+20.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I34);

MCalculationObject I14 = new MCalculationObject("(3,4)");

I14.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I12);

operandList.add(I14);

ECalculationObject I10 = new ECalculationObject(

"k=2",

I12.getValue()+I14.getValue()+30.0,

operandList);

operandList=new ArrayList();

operandList.add(I14);

operandList.add(I25);

ECalculationObject I23 = new ECalculationObject(

"k=2",

I14.getValue()+I25.getValue()+40.0,

operandList);

operandList=new ArrayList();

operandList.add(I12);

operandList.add(I36);

ECalculationObject I41 = new ECalculationObject(

"k=2",

I12.getValue()+I36.getValue()+30.0,

operandList);

operandList=new ArrayList();

operandList.add(I25);

operandList.add(I36);

ECalculationObject I43 = new ECalculationObject(

"k=2",

I25.getValue()+I36.getValue()+40.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I43);

MCalculationObject I30 = new MCalculationObject("(2,3)");

I30.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I20);

operandList.add(I30);

ECalculationObject I28 = new ECalculationObject(

"k=3",

I20.getValue()+I30.getValue()+16.0,

operandList);

operandList=new ArrayList();

operandList.add(I5);

operandList.add(I30);

ECalculationObject I39 = new ECalculationObject(

"k=1",

I5.getValue()+I30.getValue()+24.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I23);

280 9 The PN2Solver Modules

argumentList.add(I28);

MCalculationObject I8 = new MCalculationObject("(2,4)");

I8.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I5);

operandList.add(I8);

ECalculationObject I3 = new ECalculationObject(

"k=1",

I5.getValue()+I8.getValue()+24.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I39);

argumentList.add(I41);

MCalculationObject I18 = new MCalculationObject("(1,3)");

I18.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I18);

operandList.add(I20);

ECalculationObject I16 = new ECalculationObject(

"k=3",

I18.getValue()+I20.getValue()+12.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I3);

argumentList.add(I10);

argumentList.add(I16);

MCalculationObject I1 = new MCalculationObject("(1,4)");

I1.performMinimization(argumentList);

//code that gives us the final answer

Out.put("The optimal value is: ");

Out.putln(I1.getValue());

Out.putln("The solution tree is: ");

Out.putln(I1.predecessorSubtree(0));

Out.pw.close(); //close the output stream

} //end of main()

} //end of class

9.2.5 Java Solver Code for SPA

//This file is automatically produced.

//using the method toJava() from class BellmanNet

import pn2java.*;

import java.io.*;

import java.util.*;

public class SPAJavaSolver {

public static void main(String[] args) throws IOException {

//Out writes to screen and file at the same time

Out.pw=new PrintWriter(new FileWriter(new File("SPASolutionTree.txt")));

List argumentList; //reusable temporary variable used for min/max

List operandList; //reusable temporary variable for eval. (Etransitions)

//code to initialize base state place variables

CalculationObject I15 = new CalculationObject("(3)",0.0);

//code that simulates the transitions firing

operandList=new ArrayList();

operandList.add(I15);

ECalculationObject I13 = new ECalculationObject(

"d=3",

I15.getValue()+8.0,

operandList);

operandList=new ArrayList();

operandList.add(I15);

ECalculationObject I18 = new ECalculationObject(

"d=3",

I15.getValue()+5.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I18);

MCalculationObject I9 = new MCalculationObject("(2)");

I9.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I9);

ECalculationObject I7 = new ECalculationObject(

"d=2",

I9.getValue()+5.0,

operandList);

9.3 The PN2Spreadsheet Module 281

operandList=new ArrayList();

operandList.add(I9);

ECalculationObject I11 = new ECalculationObject(

"d=2",

I9.getValue()+1.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I11);

argumentList.add(I13);

MCalculationObject I5 = new MCalculationObject("(1)");

I5.performMinimization(argumentList);

operandList=new ArrayList();

operandList.add(I5);

ECalculationObject I3 = new ECalculationObject(

"d=1",

I5.getValue()+3.0,

operandList);

argumentList=new ArrayList();

argumentList.add(I3);

argumentList.add(I7);

MCalculationObject I1 = new MCalculationObject("(0)");

I1.performMinimization(argumentList);

//code that gives us the final answer

Out.put("The optimal value is: ");

Out.putln(I1.getValue());

Out.putln("The solution tree is: ");

Out.putln(I1.predecessorSubtree(0));

Out.pw.close(); //close the output stream

} //end of main()

} //end of class

9.3 The PN2Spreadsheet Module

Spreadsheet formats are quite popular in the OR community and in manage-
ment science. In this section, we describe the code generator PN2Spreadsheet
that produces solver code in a spreadsheet language. Numerical solutions can
then be obtained by use of any spreadsheet system, such as Excel.

For a small problem of fixed size, for which a program consisting of a
sequence of assignment statements that solve a DP problem can be given, it
is easy to express this program in spreadsheet form instead. For example, for
the linear search problem of size N = 3, as given in Sect. 2.24, the following
spreadsheet solves the problem.

| A | B | C | D | E

---+------------------------+-------------------+------------+----+---

1 |=min(A5+B1,A6+B2,A7+B3) |=min(B5+C1,B6+C2) |=min(C5+D1) |0 |

2 | |=min(B7+C1,B8+C3) |=min(C6+D1) | |

3 | |=min(B9+C2,B10+C3) |=min(C7+D1) | |

4 | | | | |

5 |.2 |1. |.9 | |

6 |.5 |.6 |1.5 | |

7 |.3 |.4 |.6 | |

8 | |.6 | | |

9 | |.4 | | |

10 | |1. | | |

11 | | | | |

When N is a variable, or is just a large constant, a spreadsheet solution is
much more complex than for this simple example. Examples of such spread-
sheets are given in operations research textbooks. Essentially, so that the
formulas in all of the cells do not have to be entered individually, copying of
formulas from one set of cells to another, possibly modified, may be necessary.

282 9 The PN2Solver Modules

Furthermore, use of table lookup facilities (HLOOKUP and VLOOKUP) may
also be necessary. For example, the following formula appears in [21]:

=HLOOKUP(I$17,$B$1:$H$4,$A18+1)
+HLOOKUP(I$66-I$17,B10:H14,#A18+1)

More complicated examples are given in [21, 63]; see also [50].
Because composing spreadsheets with such formulas is a complicated task,

and is an extremely error-prone process with no easy way to debug the result,
using spreadsheets to solve DP problems is not likely to become very useful
in practice unless the spreadsheet generation process can be automated. We
discuss how our software tool based on Bellman nets can be used to achieve
such automation.

Spreadsheet solver code can be generated by following the procedure to
obtain the sequence of assignment statements given at the end of Sect. 9.1.
The righthand sides of these assignment statements would become the second
column of a spreadsheet. The first column may contain declarative informa-
tion that is not used in the numerical solution, such as a textstring copy of
the formulas in the second column, as shown here. (The formulas are shown
quoted, but these quotes may be omitted.)

| A | B

---+-------------------------+------

1 "0" =0

2 "B1+0.9" =B1+0.9

3 "min(B2)" =min(B2)

4 "B3+1.0" =B3+1.0

5 "B3+0.4" =B3+0.4

6 "B1+1.5" =B1+1.5

7 "min(B6)" =min(B6)

8 "B7+0.6" =B7+0.6

9 "B7+0.4" =B7+0.4

10 "min(B4,B8)" =min(B4,B8)

11 "B10+0.2" =B10+0.2

12 "B1+0.6" =B1+0.6

13 "min(B12)" =min(B12)

14 "B13+0.6" =B13+0.6

15 "B13+1.0" =B13+1.0

16 "min(B5,B14)" =min(B5,B14)

17 "B16+0.5" =B16+0.5

18 "min(B9,B15)" =min(B9,B15)

19 "B18+0.3" =B18+0.3

20 "min(B11,B17,B19)" =min(B11,B17,B19)

In our implementation of a spreadsheet solver code generator, we essen-
tially produce the second column as shown above, but produce in the first
column some information that relates the spreadsheet to its associated Bell-
man net. This spreadsheet solver code is placed in a .csv file.

9.3.1 PN2Spreadsheet Solver Code for LINSRCS

The PN2Spreadsheet module produces a .csv spreadsheet file from the Bell-
man net representation. Column A contains the descriptive names of the places
of the PN. Since descriptions may contain commas, which can lead to a con-
fusion with the comma separator, the descriptions are quoted. Column B
contains the initial values for base state places as constants and cell formu-
las for the other places. In particular, minimization/maximization expressions
(quoted since they might contain commas) appear for non-base state places

9.3 The PN2Spreadsheet Module 283

to compute the output of M-transitions, and evaluation expressions appear
for intermediate places to compute the output of E-transitions.

The .csv output LINSRCS.csv for the LINSRCS instance from Sect. 2.24
is shown below, listed as a text file. Each line of this text file corresponds
to one of the place nodes of the Bellman net, and becomes a row of the
spreadsheet. It includes a declaration (including a place node label), followed
by either a constant for base-state places or an expression for the output places
of transitions. The righthand sides of the assignment statements generated as
described in the prior section simply become the second column (Column B,
hence our use of the variable names Bi in the above) of the spreadsheet. The
declarative place node information is not used in the numerical solution. (It
contains labels used in the Petri net solver code.)
"statePlaceI35 ({})" ,0.0

"intermediatePlaceI33 p10" ,=B1+0.8999999999999999

"statePlaceI17 ({2})" ,"=min(B2)"

"intermediatePlaceI15 p4" ,=B3+1.0

"intermediatePlaceI23 p6" ,=B3+0.4

"intermediatePlaceI38 p11" ,=B1+1.5

"statePlaceI21 ({1})" ,"=min(B6)"

"intermediatePlaceI19 p5" ,=B7+0.6

"intermediatePlaceI29 p8" ,=B7+0.4

"statePlaceI5 ({1,2})" ,"=min(B4,B8)"

"intermediatePlaceI3 p1" ,=B10+0.2

"intermediatePlaceI40 p12" ,=B1+0.6000000000000001

"statePlaceI27 ({0})" ,"=min(B12)"

"intermediatePlaceI25 p7" ,=B13+0.6

"intermediatePlaceI31 p9" ,=B13+1.0

"statePlaceI9 ({0,2})" ,"=min(B5,B14)"

"intermediatePlaceI7 p2" ,=B16+0.5

"statePlaceI13 ({0,1})" ,"=min(B9,B15)"

"intermediatePlaceI11 p3" ,=B18+0.3

"statePlaceI1 ({0,1,2})" ,"=min(B11,B17,B19)"

The first column contains (e.g., statePlaceI35 or intermediatePlaceI33)

followed by a node label (e.g., a state description like ({}) for state places or
a name like p10 for intermediate places). Place ID numbers (e.g., 35 and 33)
are internal sequence numbers; place labels (e.g., ({}) or p10) correspond to
those in the LINSRCSBN.csv file.

The second column contains the formulas associated with the operations
of the M-transition and E-transition nodes of the Bellman net. Evaluation of
the formulas in Column B of the LINSRCS.csv file, by importing the file into
a spreadsheet application, yields the following numerical solution.

| A | B

---+-------------------------+------

1 statePlaceI35 ({}) 0

2 intermediatePlaceI33 p10 0.9

3 statePlaceI17 ({2}) 0.9

4 intermediatePlaceI15 p4 1.9

5 intermediatePlaceI23 p6 1.3

6 intermediatePlaceI38 p11 1.5

7 statePlaceI21 ({1}) 1.5

8 intermediatePlaceI19 p5 2.1

9 intermediatePlaceI29 p8 1.9

10 statePlaceI5 ({1,2}) 1.9

11 intermediatePlaceI3 p1 2.1

12 intermediatePlaceI40 p12 0.6

13 statePlaceI27 ({0}) 0.6

14 intermediatePlaceI25 p7 1.2

15 intermediatePlaceI31 p9 1.6

16 statePlaceI9 ({0,2}) 1.2

17 intermediatePlaceI7 p2 1.7

18 statePlaceI13 ({0,1}) 1.6

19 intermediatePlaceI11 p3 1.9

20 statePlaceI1 ({0,1,2}) 1.7

284 9 The PN2Solver Modules

A screenshot of the execution of this spreadsheet is shown in Fig. 11.1.
The final answer, i.e., the goal, is in cell B20 and has value 1.7. We discuss
how the optimal decisions can be found in Chap. 11.

In addition to the LINSRCS example, we provide the PN2Spreadsheet
solver code for some other sample problems in the following sections.

9.3.2 PN2Spreadsheet Solver Code for Other Examples

The output file for the LSP instance from section 2.26 is as follows.
"statePlaceI9 ({0,3},3)" ,0.0

"statePlaceI18 ({0,1,2,3},3)" ,0.0

"intermediatePlaceI7 p2" ,=B1+1.0

"intermediatePlaceI16 p4" ,=B2+1.0

"statePlaceI14 ({0,1,2},2)" ,"=max(B4)"

"intermediatePlaceI12 p3" ,=B5+1.0

"statePlaceI5 ({0,1},1)" ,"=max(B6)"

"intermediatePlaceI3 p1" ,=B7+1.0

"statePlaceI1 ({0},0)" ,"=max(B8,B3)"

The output file for the MCM instance from section 2.27 is as follows.
"statePlaceI5 (1,1)" ,0.0

"statePlaceI20 (4,4)" ,0.0

"statePlaceI25 (2,2)" ,0.0

"statePlaceI36 (3,3)" ,0.0

"intermediatePlaceI32 p6" ,=B1+B3+60.0

"statePlaceI12 (1,2)" ,"=min(B5)"

"intermediatePlaceI34 p7" ,=B2+B4+20.0

"statePlaceI14 (3,4)" ,"=min(B7)"

"intermediatePlaceI10 p2" ,=B6+B8+30.0

"intermediatePlaceI23 p4" ,=B8+B3+40.0

"intermediatePlaceI41 p9" ,=B6+B4+30.0

"intermediatePlaceI43 p10" ,=B3+B4+40.0

"statePlaceI30 (2,3)" ,"=min(B12)"

"intermediatePlaceI28 p5" ,=B2+B13+16.0

"intermediatePlaceI39 p8" ,=B1+B13+24.0

"statePlaceI8 (2,4)" ,"=min(B10,B14)"

"intermediatePlaceI3 p1" ,=B1+B16+24.0

"statePlaceI18 (1,3)" ,"=min(B15,B11)"

"intermediatePlaceI16 p3" ,=B18+B2+12.0

"statePlaceI1 (1,4)" ,"=min(B17,B9,B19)"

The output file for the SPA instance from section 2.43 is as follows.
"statePlaceI15 (3)" ,0.0

"intermediatePlaceI13 p4" ,=B1+8.0

"intermediatePlaceI18 p5" ,=B1+5.0

"statePlaceI9 (2)" ,"=min(B3)"

"intermediatePlaceI7 p2" ,=B4+5.0

"intermediatePlaceI11 p3" ,=B4+1.0

"statePlaceI5 (1)" ,"=min(B6,B2)"

"intermediatePlaceI3 p1" ,=B7+3.0

"statePlaceI1 (0)" ,"=min(B8,B5)"

9.4 The PN2XML Module

Current standardization efforts [6, 62] introduce the Petri Net Markup Lan-
guage (PNML) as an XML-based interchange format for PNs (the PNML stan-
dard is still undergoing changes). DP2PN2Solver contains a module PN2XML
that is capable of producing a standard file format from a Bellman net. By
importing the standard file into a PN simulator like Renew (see Sect. 5.1.5)
this opens up the possibility to simulate the Bellman net with external PN

9.4 The PN2XML Module 285

systems (see Sect. 11.2). The shortcomings of solving DP problems in this way
are performance penalties due to the overhead of the PN simulation system,
and the fact that only the optimal value of the solution is directly observable,
but not the decisions leading to the optimum (i.e. the optimal policy). The
PN2Java module of DP2PN2Solver discussed in Sect. 9.2 does not have these
problems.

The PNML representation of a Bellman net is simply a list of its place
nodes, transition nodes, and arcs, together with associated labels. Labels can
be text labels, graphical display information (collectively known as annota-
tions) or labels can be attributes. (We will not discuss the display details
here.) Place nodes are objects, and as such contain an internal ID; place node
annotations include an external label, and an optional initial marking. Tran-
sition nodes are objects, and as such contain an internal ID; transition node
annotations include a textual annotation, and an expression.

An arc has exactly one source and exactly one target node associated with
it; these two references are represented by the source and target node ID. Arcs
are considered Objects, which may have labels associated with them. In our
implementation, labels to be displayed are given their own individual internal
ID numbers.

Details are provided in the next section.

9.4.1 Petri Net Solver Code for LINSRCS

To illustrate the solver code generation process, we consider the linear search
example. We assume we are given the following matrix representation of the
Bellman net LINSRCSBN.csv.

The solver code consists of a prologue

<?xml version="1.0"?>

<!DOCTYPE net SYSTEM "http://www.renew.de/xrn1.dtd">

<net id="N" type="hlnet">

and an epilogue

<annotation id="A1" type="name">

<text>LINSRCS</text>

</annotation>

</net>

in between which declarations for place nodes, transition nodes, and arcs
are given. We note that the name of the Petri net (LINSRCS) appears in the
epilogue. For the linear search examples, the generated solver code would have
the following skeletal form.
<?xml version="1.0"?>

<!DOCTYPE net SYSTEM "http://www.renew.de/xrn1.dtd">

<net id="N" type="hlnet">

<place id="I1">

<annotation id="I2" type="name"> <text>({0,1,2})</text> </annotation>

286 9 The PN2Solver Modules

</place>

<place id="I3">

<annotation id="I4" type="name"> <text>p1</text> </annotation>

</place>

<place id="I5">

<annotation id="I6" type="name"> <text>({1,2})</text> </annotation>

</place>

...

<place id="I35">

<annotation id="I36" type="name"> <text>({})</text> </annotation>

<annotation id="I37" type="initialmarking"> <text>0.0</text> </annotation>

</place>

...

<place id="I40">

<annotation id="I41" type="name"> <text>p12</text> </annotation>

</place>

<place id="I48">

<annotation id="I49" type="name"> <text>ep1</text> </annotation>

<annotation id="I50" type="initialmarking"> <text>[]</text> </annotation>

</place>

...

<transition id="I42">

<annotation id="I43" type="name"> <text>mt1</text> </annotation>

<annotation id="I44" type="expression"> <text>y=Math.min(x1,Math.min(x2,x3))</text> </annotation>

</transition>

<transition id="I45">

<annotation id="I46" type="name"> <text>st1</text> </annotation>

<annotation id="I47" type="expression"> <text>y=x1+0.2</text> </annotation>

</transition>

...

<transition id="I140">

<annotation id="I141" type="name"> <text>st12</text> </annotation>

<annotation id="I142" type="expression"> <text>y=x1+0.6000000000000001</text> </annotation>

</transition>

...

<arc id="I51" source="I48" target="I45" type="ordinary"> </arc>

...

<arc id="I146" source="I143" target="I140" type="ordinary"> </arc>

<arc id="I147" source="I42" target="I1" type="ordinary">

<annotation id="I148" type="expression"> <text>y</text> </annotation>

</arc>

<arc id="I149" source="I3" target="I42" type="ordinary">

<annotation id="I150" type="expression"> <text>x1</text> </annotation>

</arc>

<arc id="I151" source="I7" target="I42" type="ordinary">

<annotation id="I152" type="expression"> <text>x2</text> </annotation>

</arc>

...

<arc id="I155" source="I45" target="I3" type="ordinary">

<annotation id="I156" type="expression"> <text>y</text> </annotation>

</arc>

<arc id="I157" source="I5" target="I45" type="double">

<annotation id="I158" type="expression"> <text>x1</text> </annotation>

</arc>

...

<arc id="I229" source="I35" target="I140" type="double">

<annotation id="I230" type="expression"> <text>x1</text> </annotation>

</arc>

<arc id="I231" source="I140" target="I40" type="ordinary">

<annotation id="I232" type="expression"> <text>y</text> </annotation>

</arc>

<annotation id="A1" type="name">

<text>linsrcs</text>

</annotation>

</net>

The place nodes are specified first, in the row-order in which they appear
in the LINSRCSBN.csv input file. Each place node is given an internal ID
number and its textual label is attached as an annotation. These annotations
are given internal ID numbers as well. The text for a place label annotation
is obtained from the second column of the input file. Place nodes that are
initially marked, which correspond to base-states, have a second annotation
giving these base-condition values. Following these place nodes are the en-
abling place nodes (ep) for each transition; these nodes are initially marked
with the value “[]” in a second annotation. (The token “[]” represents a
single black token in Renew.) The transition nodes are then specified, in the
column-order in which they appear in LINSRCSBN.csv. Each transition node

9.4 The PN2XML Module 287

is given an internal ID number and its textual label is attached as an anno-
tation. These annotations are given internal ID numbers as well. The text for
a transition label annotation is obtained from the top row of the input file.
Each transition also has a second annotation giving the minimization or addi-
tion expression that the transition is to evaluate. This expression, given as a
text string annotation, is of the form y=Math.min(x1,...) for M-transitions
(y=x1 in the special case where the minimization is over only a single value),
or y=x1+..+const for E-expressions. The constant is obtained from the bot-
tom row of the input file. Finally, the arcs are specified. Each arc identifies a
source and a target, an arc type (ordinary or double, the latter for arcs from
state places to E-transitions, so that a state place maintains its numerical
token — once it has one — throughout the course of the simulation), and a
label that is attached as an annotation. (In our current implementation, labels
associated with decision arcs are of the form xi; the labels given in the last
column of the input file are not used.)

For example, consider the excerpt given above.

• The goal-state place has ID=I1.
• The base-state place has ID=I35; note its initial marking.
• An example of an enabling place node has ID=I48.
• An example of an M-transition has ID=I42.
• An example of an E-transition has ID=I45.
• Examples of arcs have ID=I229 and ID=I231.

To graphically display the Petri net, graphical information must also be
included. The latter give screen size, location, and color attributes for the
nodes, arcs, and labels. Examples of this are shown in the following excerpt.

<place id="I1">

<graphics>

<size w="20" h="20"/>

<offset x="30" y="150"/>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I2" type="name">

<text>({0,1,2})</text>

<graphics>

<size w="20" h="16"/>

<textsize size="12"/>

<offset x="0" y="15"/>

<fillcolor><transparent/></fillcolor>

<pencolor><transparent/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

</annotation>

</place>

<arc id="I231" source="I140" target="I40" type="ordinary">

<graphics>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I232" type="expression">

<text>y</text>

</annotation>

</arc>

<transition id="I42">

<graphics>

<size w="20" h="20"/>

<offset x="120" y="60"/>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

288 9 The PN2Solver Modules

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I43" type="name">

<text>mt1</text>

<graphics>

<size w="20" h="16"/>

<textsize size="12"/>

<offset x="0" y="15"/>

<fillcolor><transparent/></fillcolor>

<pencolor><transparent/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

</annotation>

<annotation id="I44" type="expression">

<text>y=Math.min(x1,Math.min(x2,x3))</text>

</annotation>

</transition>

The complete PNML code for LINSRCS.xrn is very long, so it will be
omitted. For completeness, however, we show the PNML code for SPA1.xrn,
a small version of SPA. It is listed in App. A.3 and described in the next
section.

9.4.2 Petri Net Solver Code for SPA

For illustrative purposes, we show the Petri net solver code for a small exam-
ple, SPA, for a single branch graph.

For the shortest path in an acyclic single-branch graph problem (SPA1),
suppose there is a single branch connecting two nodes, a single source 0 (the
goal state) and a single target 1, where this branch has weight d(0, 1) = 3.
The DPFE is f(0) = min{d(0, 1)+f(1)}, with base case f(1) = 0. This DPFE
can be represented by a HLBN having two transitions: an E-transition that
computes p1 = d(0, 1) + f(1), or p1 = 3 + f(1); and an M-transition that
computes p0 = min{p1}, or more simply p0 = p1 (since the minimum is over
a set having only one member). The E-transition st1 has input place (1) and
output place p1; the M-transition mt1 has input place p1 and output place
(0). The E-transition st1 also has an enabling place ep1. A HLBN can be
specified by listing the places p, transitions t, and their connecting arcs as
pairs of nodes (p, t) or (t, p). For example, the HLBN for the single-branch
SPA example can be represented by the following text file SPA1.xrn (shown
here reformatted, with graphics information omitted):
<?xml version="1.0"?>

<!DOCTYPE net SYSTEM "http://www.renew.de/xrn1.dtd">

<net id="N" type="hlnet">

<place id="I1">

<annotation id="I2" type="name"> <text>(0)</text> </annotation>

</place>

<place id="I3">

<annotation id="I4" type="name"> <text>p1</text> </annotation>

</place>

<place id="I5">

<annotation id="I6" type="name"> <text>(1)</text> </annotation>

<annotation id="I7" type="initialmarking"> <text>0.0</text> </annotation>

</place>

<place id="I14">

<annotation id="I15" type="name"> <text>ep1</text> </annotation>

<annotation id="I16" type="initialmarking"> <text>[]</text> </annotation>

</place>

<transition id="I8">

<annotation id="I9" type="name"> <text>mt1</text> </annotation>

<annotation id="I10" type="expression"> <text>y=x1</text> </annotation>

</transition>

<transition id="I11">

9.5 Conclusion 289

<annotation id="I12" type="name"> <text>st1</text> </annotation>

<annotation id="I13" type="expression"> <text>y=x1+3.0</text> </annotation>

</transition>

<arc id="I17" source="I14" target="I11" type="ordinary">

</arc>

<arc id="I18" source="I8" target="I1" type="ordinary">

<annotation id="I19" type="expression"> <text>y</text> </annotation>

</arc>

<arc id="I20" source="I3" target="I8" type="ordinary">

<annotation id="I21" type="expression"> <text>x1</text> </annotation>

</arc>

<arc id="I22" source="I11" target="I3" type="ordinary">

<annotation id="I23" type="expression"> <text>y</text> </annotation>

</arc>

<arc id="I24" source="I5" target="I11" type="double">

<annotation id="I25" type="expression"> <text>x1</text> </annotation>

</arc>

<annotation id="A1" type="name">

<text>spa1</text>

</annotation>

</net>

In this representation of the HLBN, the four places and two transitions,
and their five connecting arcs are given internal ID numbers as follows: (0)=I1,
p1=I3, (1)=I5, ep1=I14, mt1=I8, st1=I11, (I14,I11)=I17, (I8,I1)=I18,
(I3,I8)=I20, (I11,I3)=I22, (I5,I11)=I24; the last of these arcs is a bidi-
rectional “double” arc, i.e. it includes (I11,I5). The base state place I5 is
initially marked with a token having value 0.0, and the enabling place I14
is initially marked with a black token (denoted “[]”). E-transition I11 com-
putes the expression I3=I5+3.0, and M-transition I8 computes the expression
I1=I3.

To draw this HLBN (using circles for places, rectangles for transitions, and
lines for arcs), “graphics” information, including size, position, and color, must
be provided for each of these elements. In addition, any of the places, transi-
tions, and arcs may have an “annotation” if these elements are to be drawn
with a label (given in the specified “text”); “graphics” information for these
labels must then also be provided. (In the example, only arc (ep1,st1) has
no label.) For completeness, we provide the entire SPA1.xrn file in App. A.3.

9.5 Conclusion

In this book, we included Petri nets as a third type of solver code (in addition
to java programs and spreadsheets). For the purpose of obtaining numerical
solutions, the other two types are likely to be more useful. However, Petri-
net solver code has one significant advantage: it is in a form for which many
software tools exist that in principle permits analysis of theoretical properties
DP formulations. There may also be circumstances where it may be useful to
visualize solutions graphically. This is the subject of future research.

10

Java Solver Results of DP Problems

The Java code obtained from the PN2Java module (see Chap. 9) can be used
as the base building block for a solver function within a larger software com-
ponent. Just executing the bare Java code without any further modifications
leads to the output of the following solution trees for the examples introduced
in Chap. 2. Each output gives both the optimal objective function value and
also the optimal decision policy for every problem.

10.1 ALLOT Java Solver Output

The solution to the ALLOTt problem where allotment decisions and their
costs are defined in separate tables:

The optimal value is: 0.06
The solution tree is:
State (0,0) has optimal value: 0.06
Decision d=1
State (1,1) has optimal value: 0.3
Decision d=0
State (2,1) has optimal value: 0.5
Decision d=1
Base state (3,2) has initial value: 1.0

The solution to the ALLOTf problem where the costs are defined by
general functions:

The optimal value is: 49.0
The solution tree is:
State (1,6) has optimal value: 49.0
Decision d=4
State (2,2) has optimal value: 19.0

A. Lew and H. Mauch: Java Solver Results of DP Problems, Studies in Computational Intel-

ligence (SCI) 38, 293–320 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

294 10 Java Solver Results of DP Problems

Decision d=1
State (3,1) has optimal value: 9.0
Decision d=1
Base state (4,0) has initial value: 0.0

The solution to the ALLOTm problem where the costs are multiplicative
rather than additive:

The optimal value is: 0.23099999999999998
The solution tree is:
State (1,2) has optimal value: 0.23099999999999998
Decision d=0
State (2,2) has optimal value: 0.385
Decision d=1
State (3,1) has optimal value: 0.55
Decision d=1
Base state (4,0) has initial value: 1.0

10.2 APSP Java Solver Output

For APSP we used two different DP models. The solution using the relaxation
DP functional equation (2.2) is:

The optimal value is: 9.0
The solution tree is:
State (3,0,3) has optimal value: 9.0
Decision d=1
State (2,1,3) has optimal value: 6.0
Decision d=2
State (1,2,3) has optimal value: 5.0
Decision d=3
Base state (0,3,3) has initial value: 0.0

The solution using the Floyd-Warshall DP functional equation (2.4) is:

The optimal value is: 9.0
The solution tree is:
State (3,0,3) has optimal value: 9.0
Decision d=0

State (2,0,3) has optimal value: 9.0
Decision d=1
State (1,0,3) has optimal value: 11.0
Decision d=1

10.2 APSP Java Solver Output 295

Base state (0,0,3) has initial value: 2.147483647E9
Base state (0,0,1) has initial value: 3.0
Base state (0,1,3) has initial value: 8.0

State (1,0,2) has optimal value: 4.0
Decision d=1
Base state (0,0,2) has initial value: 5.0
Base state (0,0,1) has initial value: 3.0
Base state (0,1,2) has initial value: 1.0

State (1,2,3) has optimal value: 5.0
Decision d=0
Base state (0,2,3) has initial value: 5.0
Base state (0,2,1) has initial value: 2.0
Base state (0,1,3) has initial value: 8.0

State (2,0,3) has optimal value: 9.0
Decision d=1
State (1,0,3) has optimal value: 11.0
Decision d=1
Base state (0,0,3) has initial value: 2.147483647E9
Base state (0,0,1) has initial value: 3.0
Base state (0,1,3) has initial value: 8.0

State (1,0,2) has optimal value: 4.0
Decision d=1
Base state (0,0,2) has initial value: 5.0
Base state (0,0,1) has initial value: 3.0
Base state (0,1,2) has initial value: 1.0

State (1,2,3) has optimal value: 5.0
Decision d=0
Base state (0,2,3) has initial value: 5.0
Base state (0,2,1) has initial value: 2.0
Base state (0,1,3) has initial value: 8.0

State (2,3,3) has optimal value: 0.0
Decision d=0
State (1,3,3) has optimal value: 0.0
Decision d=0
Base state (0,3,3) has initial value: 0.0
Base state (0,3,1) has initial value: 2.147483647E9
Base state (0,1,3) has initial value: 8.0

State (1,3,2) has optimal value: 2.147483647E9
Decision d=0
Base state (0,3,2) has initial value: 2.147483647E9
Base state (0,3,1) has initial value: 2.147483647E9
Base state (0,1,2) has initial value: 1.0

State (1,2,3) has optimal value: 5.0
Decision d=0
Base state (0,2,3) has initial value: 5.0

296 10 Java Solver Results of DP Problems

Base state (0,2,1) has initial value: 2.0
Base state (0,1,3) has initial value: 8.0

10.3 ARC Java Solver Output

For S = (2, 3, 3, 4), the solution is:

The optimal value is: 24.0
The solution tree is:
State (0,3) has optimal value: 24.0
Decision d=1
State (0,1) has optimal value: 5.0
Decision d=0
Base state (0,0) has initial value: 0.0
Base state (1,1) has initial value: 0.0

State (2,3) has optimal value: 7.0
Decision d=2
Base state (3,3) has initial value: 0.0
Base state (2,2) has initial value: 0.0

10.4 ASMBAL Java Solver Output

For ASMBAL we came up with two different DP models. The solution using
the staged DP functional equation (2.6) is:

The optimal value is: 38.0
The solution tree is:
State (0,0) has optimal value: 38.0
Decision d=0
State (1,0) has optimal value: 36.0
Decision d=1
State (2,1) has optimal value: 27.0
Decision d=0
State (3,0) has optimal value: 21.0
Decision d=1
State (4,1) has optimal value: 17.0
Decision d=1
State (5,1) has optimal value: 13.0
Decision d=0
State (6,0) has optimal value: 7.0
Decision d=0

10.6 BST Java Solver Output 297

Base state (7,0) has initial value: 0.0

The solution using the DP functional equation (2.7) is:

The optimal value is: 38.0
The solution tree is:
State (0) has optimal value: 38.0
Decision d=1
State (1) has optimal value: 36.0
Decision d=4
State (4) has optimal value: 27.0
Decision d=5
State (5) has optimal value: 21.0
Decision d=8
State (8) has optimal value: 17.0
Decision d=10
State (10) has optimal value: 13.0
Decision d=11
State (11) has optimal value: 7.0
Decision d=13
Base state (13) has initial value: 0.0

10.5 ASSIGN Java Solver Output

The optimal value is: 17.0
The solution tree is:
State ({0,1,2},1) has optimal value: 17.0
Decision d=2
State ({0,1},2) has optimal value: 15.0
Decision d=0
State ({1},3) has optimal value: 10.0
Decision d=1
Base state ({},4) has initial value: 0.0

10.6 BST Java Solver Output

The optimal value is: 1.9
The solution tree is:
State ({0,1,2,3,4}) has optimal value: 1.9
Decision splitAtAlpha=3

298 10 Java Solver Results of DP Problems

State ({0,1,2}) has optimal value: 0.8
Decision splitAtAlpha=0
Base state ({}) has initial value: 0.0
State ({1,2}) has optimal value: 0.3
Decision splitAtAlpha=2
Base state ({}) has initial value: 0.0
State ({1}) has optimal value: 0.05
Decision splitAtAlpha=1
Base state ({}) has initial value: 0.0

State ({4}) has optimal value: 0.1
Decision splitAtAlpha=4
Base state ({}) has initial value: 0.0

10.7 COV Java Solver Output

The optimal value is: 129.0
The solution tree is:
State (3,9) has optimal value: 129.0
Decision nextCoverSize=6
State (2,6) has optimal value: 66.0
Decision nextCoverSize=4
Base state (1,4) has initial value: 40.0

10.8 DEADLINE Java Solver Output

The optimal value is: 40.0
The solution tree is:
State ({0,1,2,3,4},1) has optimal value: 40.0
Decision d=1
State ({0,2,3,4},2) has optimal value: 25.0
Decision d=2
State ({0,3,4},3) has optimal value: 5.0
Decision d=4
State ({0,3},4) has optimal value: 0.0
Decision d=0
State ({3},5) has optimal value: 0.0
Decision d=3
Base state ({},6) has initial value: 0.0

10.11 FIB Java Solver Output 299

10.9 DPP Java Solver Output

The optimal value is: 19.047619047619047
The solution tree is:
State (1,10) has optimal value: 19.047619047619047
Decision xt=0

State (2,20) has optimal value: 20.0
Decision xt=20
Base state (3,0) has initial value: 0.0

10.10 EDP Java Solver Output

The optimal value is: 2.0
The solution tree is:
State (3,3) has optimal value: 2.0
Decision dec=2
State (3,2) has optimal value: 1.0
Decision dec=12
State (2,1) has optimal value: 1.0
Decision dec=12
Base state (1,0) has initial value: 1.0

10.11 FIB Java Solver Output

The optimal value is: 13.0
The solution tree is:
State (7) has optimal value: 13.0
Decision dummy=777
State (6) has optimal value: 8.0
Decision dummy=777
State (5) has optimal value: 5.0
Decision dummy=777
State (4) has optimal value: 3.0
Decision dummy=777
State (3) has optimal value: 2.0
Decision dummy=777
Base state (2) has initial value: 1.0
Base state (1) has initial value: 1.0

Base state (2) has initial value: 1.0
State (3) has optimal value: 2.0
Decision dummy=777

300 10 Java Solver Results of DP Problems

Base state (2) has initial value: 1.0
Base state (1) has initial value: 1.0

State (4) has optimal value: 3.0
Decision dummy=777
State (3) has optimal value: 2.0
Decision dummy=777
Base state (2) has initial value: 1.0
Base state (1) has initial value: 1.0

Base state (2) has initial value: 1.0
State (5) has optimal value: 5.0
Decision dummy=777
State (4) has optimal value: 3.0
Decision dummy=777
State (3) has optimal value: 2.0
Decision dummy=777
Base state (2) has initial value: 1.0
Base state (1) has initial value: 1.0

Base state (2) has initial value: 1.0
State (3) has optimal value: 2.0
Decision dummy=777
Base state (2) has initial value: 1.0
Base state (1) has initial value: 1.0

10.12 FLOWSHOP Java Solver Output

The optimal value is: 38.0
The solution tree is:
State ({0,1,2,3},0) has optimal value: 38.0
Decision d=0
State ({1,2,3},6) has optimal value: 35.0
Decision d=2
State ({1,3},9) has optimal value: 27.0
Decision d=3
State ({1},15) has optimal value: 17.0
Decision d=1
Base state ({},13) has initial value: 13.0

10.13 HANOI Java Solver Output

The number of moves is calculated, but not the sequence of moves. However,
the set of moves is given in the base states; more work is needed to reconstruct
the correct sequence, if desired.

10.15 ILPKNAP Java Solver Output 301

The optimal value is: 7.0
The solution tree is:
State (3,1,2,3) has optimal value: 7.0
Decision dummy=-1
State (2,1,3,2) has optimal value: 3.0
Decision dummy=-1
Base state (1,1,2,3) has initial value: 1.0
Base state (1,1,3,2) has initial value: 1.0
Base state (1,2,3,1) has initial value: 1.0

Base state (1,1,2,3) has initial value: 1.0
State (2,3,2,1) has optimal value: 3.0
Decision dummy=-1
Base state (1,1,2,3) has initial value: 1.0
Base state (1,3,1,2) has initial value: 1.0
Base state (1,3,2,1) has initial value: 1.0

10.14 ILP Java Solver Output

The optimal value is: 36.0
The solution tree is:
State (0,4,12,18) has optimal value: 36.0
Decision d=2
State (1,2,12,12) has optimal value: 30.0
Decision d=6
Base state (2,2,0,0) has initial value: 0.0

10.15 ILPKNAP Java Solver Output

The optimal value is: 25.0
The solution tree is:
State (0,22,1,1,1) has optimal value: 25.0
Decision d=0
State (1,22,1,1,1) has optimal value: 25.0
Decision d=1
State (2,4,1,0,1) has optimal value: 0.0
Decision d=0
Base state (3,4,1,0,1) has initial value: 0.0

302 10 Java Solver Results of DP Problems

10.16 INTVL Java Solver Output

The solution tree based on intvl1.dp, which uses DPFE (2.21) is as follows.

The optimal value is: 8.0
The solution tree is:
State (6) has optimal value: 8.0
Decision d=0
State (5) has optimal value: 8.0
Decision d=1
State (3) has optimal value: 6.0
Decision d=1
State (1) has optimal value: 2.0
Decision d=1
Base state (0) has initial value: 0.0

The solution tree based on intvl3.dp, which uses DPFE (2.22) is as
follows.

The optimal value is: 8.0
The solution tree is:
State (6) has optimal value: 8.0
Decision d=0

State (3) has optimal value: 6.0
Decision d=1
State (1) has optimal value: 2.0
Decision d=1
Base state (0) has initial value: 0.0
Base state (0) has initial value: 0.0

State (2) has optimal value: 4.0
Decision d=1
Base state (0) has initial value: 0.0
State (1) has optimal value: 2.0
Decision d=1
Base state (0) has initial value: 0.0
Base state (0) has initial value: 0.0

State (5) has optimal value: 8.0
Decision d=1
State (3) has optimal value: 6.0
Decision d=1
State (1) has optimal value: 2.0
Decision d=1
Base state (0) has initial value: 0.0
Base state (0) has initial value: 0.0

State (2) has optimal value: 4.0

10.17 INVENT Java Solver Output 303

Decision d=1
Base state (0) has initial value: 0.0
State (1) has optimal value: 2.0
Decision d=1
Base state (0) has initial value: 0.0
Base state (0) has initial value: 0.0

State (4) has optimal value: 7.0
Decision d=1
Base state (0) has initial value: 0.0
State (3) has optimal value: 6.0
Decision d=1
State (1) has optimal value: 2.0
Decision d=1
Base state (0) has initial value: 0.0
Base state (0) has initial value: 0.0

State (2) has optimal value: 4.0
Decision d=1
Base state (0) has initial value: 0.0
State (1) has optimal value: 2.0
Decision d=1

Base state (0) has initial value: 0.0
Base state (0) has initial value: 0.0

The solution tree based on intvl2.dp, which uses DPFE (2.20) is as
follows.

The optimal value is: 8.0
The solution tree is:
State ({0,1,2,3,4,5},0,20) has optimal value: 8.0
Decision d=1
State ({3,4,5},0,8) has optimal value: 6.0
Decision d=3
State ({5},0,5) has optimal value: 2.0
Decision d=5
Base state ({},0,1) has initial value: 0.0
Base state ({},4,5) has initial value: 0.0

Base state ({},7,8) has initial value: 0.0
Base state ({},11,20) has initial value: 0.0

10.17 INVENT Java Solver Output

The optimal value is: 20.0
The solution tree is:

304 10 Java Solver Results of DP Problems

State (0,0) has optimal value: 20.0
Decision x=1
State (1,0) has optimal value: 16.0
Decision x=5
State (2,2) has optimal value: 7.0
Decision x=0
State (3,0) has optimal value: 7.0
Decision x=4
Base state (4,0) has initial value: 0.0

10.18 INVEST Java Solver Output

The optimal value is: 2.6000000000000005
The solution tree is:
State (1,2) has optimal value: 2.6000000000000005
Decision d=1

State (2,3) has optimal value: 3.4000000000000004
Decision d=1
State (3,4) has optimal value: 4.2
Decision d=1
Base state (4,5) has initial value: 5.0
Base state (4,4) has initial value: 4.0

State (3,3) has optimal value: 3.2
Decision d=1
Base state (4,4) has initial value: 4.0
Base state (4,3) has initial value: 3.0

State (2,2) has optimal value: 2.4000000000000004
Decision d=1
State (3,3) has optimal value: 3.2
Decision d=1
Base state (4,4) has initial value: 4.0
Base state (4,3) has initial value: 3.0

State (3,2) has optimal value: 2.2
Decision d=1
Base state (4,3) has initial value: 3.0
Base state (4,2) has initial value: 2.0

10.19 INVESTWLV Java Solver Output

Since INVESTWLV is a probabilistic DP problem, the solution tree should
be read as a decision tree where after each decision, chance plays a role in

10.20 KS01 Java Solver Output 305

which state we enter next. Values associated with a state must be interpreted
as expected values.

The optimal value is: 0.7407407407407407
The solution tree is:
State (1,3) has optimal value: 0.7407407407407407
Decision xn=1

State (2,2) has optimal value: 0.4444444444444444
Decision xn=1
State (3,1) has optimal value: 0.0
Decision xn=0
Base state (4,1) has initial value: 0.0
Base state (4,1) has initial value: 0.0

State (3,3) has optimal value: 0.6666666666666666
Decision xn=2
Base state (4,1) has initial value: 0.0
Base state (4,5) has initial value: 1.0

State (2,4) has optimal value: 0.8888888888888888
Decision xn=1
State (3,3) has optimal value: 0.6666666666666666
Decision xn=2
Base state (4,1) has initial value: 0.0
Base state (4,5) has initial value: 1.0

State (3,5) has optimal value: 1.0
Decision xn=0
Base state (4,5) has initial value: 1.0
Base state (4,5) has initial value: 1.0

10.20 KS01 Java Solver Output

The optimal value is: 25.0
The solution tree is:
State (2,22) has optimal value: 25.0
Decision d=0
State (1,22) has optimal value: 25.0
Decision d=0
State (0,22) has optimal value: 25.0
Decision d=1
Base state (-1,4) has initial value: 0.0

306 10 Java Solver Results of DP Problems

10.21 KSCOV Java Solver Output

The optimal value is: 129.0
The solution tree is:
State (1,10) has optimal value: 129.0
Decision d=3
State (2,7) has optimal value: 66.0
Decision d=2
State (3,5) has optimal value: 40.0
Decision d=5
Base state (4,0) has initial value: 0.0

10.22 KSINT Java Solver Output

The optimal value is: 30.0
The solution tree is:
State (2,22) has optimal value: 30.0
Decision d=0
State (1,22) has optimal value: 30.0
Decision d=2
State (0,2) has optimal value: 0.0
Decision d=0
Base state (-1,2) has initial value: 0.0

10.23 LCS Java Solver Output

For LCS we came up with two different DP models. One uses the DP functional
equation (2.30), the other uses the improved DP functional equation (2.29)
that produces fewer states. The fact that the DP2PN2JavaSolver produces
two identical solution trees for both approaches shows the versatility of our
software and increases the confidence in the correctness of our models (and
our software!). The solution for both model reads as follows.

The optimal value is: 4.0
The solution tree is:
State (7,6) has optimal value: 4.0
Decision pruneD=1
State (6,6) has optimal value: 4.0
Decision pruneD=12
State (5,5) has optimal value: 3.0
Decision pruneD=1

10.24 LINSRC Java Solver Output 307

State (4,5) has optimal value: 3.0
Decision pruneD=12
State (3,4) has optimal value: 2.0
Decision pruneD=2
State (3,3) has optimal value: 2.0
Decision pruneD=12
State (2,2) has optimal value: 1.0
Decision pruneD=2
State (2,1) has optimal value: 1.0
Decision pruneD=12
Base state (1,0) has initial value: 0.0

10.24 LINSRC Java Solver Output

For LINSRC we came up with two different DP models. The first one uses
method W as a cost function and produces the following output.

The optimal value is: 1.7
The solution tree is:
State ({0,1,2}) has optimal value: 1.7
Decision d=1
State ({0,2}) has optimal value: 0.7
Decision d=2
State ({0}) has optimal value: 0.2
Decision d=0
Base state ({}) has initial value: 0.0

The second one uses method W as a cost function and produces the
following output.

The optimal value is: 1.7000000000000002
The solution tree is:
State ({0,1,2}) has optimal value: 1.7000000000000002
Decision d=1
State ({0,2}) has optimal value: 1.2000000000000002
Decision d=2
State ({0}) has optimal value: 0.6000000000000001
Decision d=0
Base state ({}) has initial value: 0.0

308 10 Java Solver Results of DP Problems

10.25 LOT Java Solver Output

The optimal value is: 3680.0
The solution tree is:
State (1) has optimal value: 3680.0
Decision x=0
State (2) has optimal value: 2990.0
Decision x=0
State (3) has optimal value: 2180.0
Decision x=1
State (5) has optimal value: 790.0
Decision x=0
Base state (6) has initial value: 0.0

10.26 LSP Java Solver Output

The optimal value is: 3.0
The solution tree is:
State ({0},0) has optimal value: 3.0
Decision alpha=1
State ({0,1},1) has optimal value: 2.0
Decision alpha=2
State ({0,1,2},2) has optimal value: 1.0
Decision alpha=3
Base state ({0,1,2,3},3) has initial value: 0.0

10.27 MCM Java Solver Output

The optimal value is: 76.0
The solution tree is:
State (1,4) has optimal value: 76.0
Decision k=3
State (1,3) has optimal value: 64.0
Decision k=1
Base state (1,1) has initial value: 0.0
State (2,3) has optimal value: 40.0
Decision k=2
Base state (2,2) has initial value: 0.0
Base state (3,3) has initial value: 0.0

Base state (4,4) has initial value: 0.0

10.30 NIM Java Solver Output 309

10.28 MINMAX Java Solver Output

The optimal value is: 8.0
The solution tree is:
State (1,{0},0) has optimal value: 8.0
Decision alpha=2
State (2,{0,2},2) has optimal value: 8.0
Decision alpha=4
State (3,{0,2,4},4) has optimal value: 8.0
Decision alpha=7
State (4,{0,2,4,7},7) has optimal value: 8.0
Decision alpha=9
Base state (5,{0,2,4,7,9},9) has initial value: 8.0

10.29 MWST Java Solver Output

The optimal value is: 7.0
The solution tree is:
State ({0,1,2,3,4},0) has optimal value: 7.0
Decision d=1
State ({0,2,3,4},1) has optimal value: 3.0
Decision d=3
State ({0,2,4},2) has optimal value: 1.0
Decision d=4
Base state ({0,2},3) has initial value: 0.0

10.30 NIM Java Solver Output

The following output gives the strategy if we are in a winning state.

The optimal value is: 1.0
The solution tree is:
State (10) has optimal value: 1.0
Decision d=1
State (8) has optimal value: 1.0
Decision d=3
State (4) has optimal value: 1.0
Decision d=3
State (0) has optimal value: 1.0
Decision d=1
Base state (-2) has initial value: 1.0

310 10 Java Solver Results of DP Problems

Base state (-3) has initial value: 1.0
Base state (-4) has initial value: 1.0

Base state (-1) has initial value: 1.0
Base state (-2) has initial value: 1.0

State (3) has optimal value: 1.0
Decision d=2
State (0) has optimal value: 1.0
Decision d=1
Base state (-2) has initial value: 1.0
Base state (-3) has initial value: 1.0
Base state (-4) has initial value: 1.0

Base state (-1) has initial value: 1.0
Base state (-2) has initial value: 1.0

State (2) has optimal value: 1.0
Decision d=1
State (0) has optimal value: 1.0
Decision d=1
Base state (-2) has initial value: 1.0
Base state (-3) has initial value: 1.0
Base state (-4) has initial value: 1.0

Base state (-1) has initial value: 1.0
Base state (-2) has initial value: 1.0

State (7) has optimal value: 1.0
Decision d=2
State (4) has optimal value: 1.0
Decision d=3
State (0) has optimal value: 1.0
Decision d=1
Base state (-2) has initial value: 1.0
Base state (-3) has initial value: 1.0
Base state (-4) has initial value: 1.0

Base state (-1) has initial value: 1.0
Base state (-2) has initial value: 1.0

State (3) has optimal value: 1.0
Decision d=2
State (0) has optimal value: 1.0
Decision d=1
Base state (-2) has initial value: 1.0
Base state (-3) has initial value: 1.0
Base state (-4) has initial value: 1.0

Base state (-1) has initial value: 1.0
Base state (-2) has initial value: 1.0

State (2) has optimal value: 1.0
Decision d=1
State (0) has optimal value: 1.0

10.30 NIM Java Solver Output 311

Decision d=1
Base state (-2) has initial value: 1.0
Base state (-3) has initial value: 1.0
Base state (-4) has initial value: 1.0

Base state (-1) has initial value: 1.0
Base state (-2) has initial value: 1.0

State (6) has optimal value: 1.0
Decision d=1
State (4) has optimal value: 1.0
Decision d=3
State (0) has optimal value: 1.0
Decision d=1
Base state (-2) has initial value: 1.0
Base state (-3) has initial value: 1.0
Base state (-4) has initial value: 1.0

Base state (-1) has initial value: 1.0
Base state (-2) has initial value: 1.0

State (3) has optimal value: 1.0
Decision d=2
State (0) has optimal value: 1.0
Decision d=1
Base state (-2) has initial value: 1.0
Base state (-3) has initial value: 1.0
Base state (-4) has initial value: 1.0

Base state (-1) has initial value: 1.0
Base state (-2) has initial value: 1.0

State (2) has optimal value: 1.0
Decision d=1
State (0) has optimal value: 1.0
Decision d=1
Base state (-2) has initial value: 1.0
Base state (-3) has initial value: 1.0
Base state (-4) has initial value: 1.0

Base state (-1) has initial value: 1.0
Base state (-2) has initial value: 1.0

The output for m = 10 is shown. The optimal value of 1.0 indicates that a
win is guaranteed with optimal play; the optimal next play is that of removing
d = 1 matchsticks. If the optimal value is 0.0, such as for m = 9, our adversary
has a guaranteed win provided it plays optimally regardless of our next play
(chosen arbitrarily to be d = 1).

The solution tree is very large for larger values of m since, as is also the case
for the recursive solution of Fibonacci numbers (FIB). Although overlapping

312 10 Java Solver Results of DP Problems

substates are only calculated once, common subtrees reappear over and over
again in the output tree.

10.31 ODP Java Solver Output

The optimal value is: 31.0
The solution tree is:
State (0,0) has optimal value: 31.0
Decision d=1
State (1,1) has optimal value: 27.0
Decision d=2
State (2,3) has optimal value: 16.0
Decision d=1
Base state (3,6) has initial value: 0.0

10.32 PERM Java Solver Output

The optimal value is: 17.0
The solution tree is:
State ({0,1,2}) has optimal value: 17.0
Decision d=2
State ({0,1}) has optimal value: 11.0
Decision d=1
State ({0}) has optimal value: 5.0
Decision d=0
Base state ({}) has initial value: 0.0

10.33 POUR Java Solver Output

The optimal value is: 8.0
The solution tree is:
State (1,0,0,13) has optimal value: 8.0
Decision d=1
State (2,9,0,4) has optimal value: 7.0
Decision d=5
State (3,5,4,4) has optimal value: 6.0
Decision d=4
State (4,5,0,8) has optimal value: 5.0
Decision d=5
State (5,1,4,8) has optimal value: 4.0

10.34 PROD Java Solver Output 313

Decision d=4
State (6,1,0,12) has optimal value: 3.0
Decision d=5
State (7,0,1,12) has optimal value: 2.0
Decision d=1
State (8,9,1,3) has optimal value: 1.0
Decision d=5
Base state (9,6,4,3) has initial value: 0.0

10.34 PROD Java Solver Output

The optimal value is: 42.244
The solution tree is:
State (1,0) has optimal value: 42.244
Decision d=2

State (2,1) has optimal value: 19.900000000000002
Decision d=0
State (3,0) has optimal value: 14.600000000000001
Decision d=1
State (4,0) has optimal value: 0.0
Decision d=0
Base state (5,-1) has initial value: 0.0
Base state (5,-2) has initial value: 0.0

State (4,-1) has optimal value: 11.5
Decision d=1
Base state (5,-1) has initial value: 0.0
Base state (5,-2) has initial value: 0.0

State (3,-1) has optimal value: 25.1
Decision d=2
State (4,0) has optimal value: 0.0
Decision d=0
Base state (5,-1) has initial value: 0.0
Base state (5,-2) has initial value: 0.0

State (4,-1) has optimal value: 11.5
Decision d=1
Base state (5,-1) has initial value: 0.0
Base state (5,-2) has initial value: 0.0

State (2,0) has optimal value: 28.26
Decision d=2
State (3,1) has optimal value: 5.700000000000001
Decision d=0
State (4,0) has optimal value: 0.0
Decision d=0

314 10 Java Solver Results of DP Problems

Base state (5,-1) has initial value: 0.0
Base state (5,-2) has initial value: 0.0

State (4,-1) has optimal value: 11.5
Decision d=1
Base state (5,-1) has initial value: 0.0
Base state (5,-2) has initial value: 0.0

State (3,0) has optimal value: 14.600000000000001
Decision d=1
State (4,0) has optimal value: 0.0
Decision d=0
Base state (5,-1) has initial value: 0.0
Base state (5,-2) has initial value: 0.0

State (4,-1) has optimal value: 11.5
Decision d=1
Base state (5,-1) has initial value: 0.0
Base state (5,-2) has initial value: 0.0

10.35 PRODRAP Java Solver Output

Since PRODRAP is a probabilistic DP problem, the solution tree should be
read as a decision tree where after each decision, chance plays a role in whether
the decision process terminates or not. Values associated with a state must
be interpreted as expected values.

The optimal value is: 6.75
The solution tree is:
State (1) has optimal value: 6.75
Decision xn=2

State (2) has optimal value: 7.0
Decision xn=2
State (3) has optimal value: 8.0
Decision xn=3
Base state (4) has initial value: 16.0

10.36 RDP Java Solver Output

The optimal value is: 0.648
The solution tree is:
State (2,105) has optimal value: 0.648
Decision m=2
State (1,65) has optimal value: 0.864

10.39 SEEK Java Solver Output 315

Decision m=2
State (0,35) has optimal value: 0.9
Decision m=1
Base state (-1,5) has initial value: 1.0

10.37 REPLACE Java Solver Output

The optimal value is: 1280.0
The solution tree is:
State (0) has optimal value: 1280.0
Decision d=1
State (1) has optimal value: 1020.0
Decision d=1
State (2) has optimal value: 760.0
Decision d=3
Base state (5) has initial value: 0.0

10.38 SCP Java Solver Output

The optimal value is: 2870.0
The solution tree is:
State (0,0) has optimal value: 2870.0
Decision d=1
State (1,1) has optimal value: 2320.0
Decision d=4
State (2,4) has optimal value: 1640.0
Decision d=7
State (3,7) has optimal value: 1030.0
Decision d=9
Base state (4,9) has initial value: 0.0

10.39 SEEK Java Solver Output

The optimal value is: 190.0
The solution tree is:
State ({0,1,2},140) has optimal value: 190.0
Decision d=2
State ({0,1},190) has optimal value: 140.0
Decision d=0

316 10 Java Solver Results of DP Problems

State ({1},100) has optimal value: 50.0
Decision d=1
Base state ({},50) has initial value: 0.0

10.40 SEGLINE Java Solver Output

For SEGLINE, we gave two different DP models. One used the DP functional
equation (2.40), the other used the DP functional equation (2.41).

For the former, no limit on the number of segments was assumed. For a
segment cost K = 1, we obtain the following solution.

The optimal value is: 2.0556
The solution tree is:
State (0) has optimal value: 2.0556
Decision d=2
State (2) has optimal value: 1.0
Decision d=3
Base state (3) has initial value: 0.0

In an alternate model, an upper or exact limit LIM on the number of
segments was assumed. For K = 10 and an exact LIM = 2, we obtain the
following solution.

The optimal value is: 20.0556
The solution tree is:
State (2,0) has optimal value: 20.0556
Decision d=2
State (1,2) has optimal value: 10.0
Decision d=3
Base state (0,3) has initial value: 0.0

10.41 SEGPAGE Java Solver Output

The optimal value is: 87.0
The solution tree is:
State (0) has optimal value: 87.0
Decision d=1
State (1) has optimal value: 87.0
Decision d=5
State (5) has optimal value: 5.0
Decision d=7

10.43 SPA Java Solver Output 317

State (7) has optimal value: 4.0
Decision d=10
State (10) has optimal value: 2.0
Decision d=13
State (13) has optimal value: 0.0
Decision d=15
State (15) has optimal value: 0.0
Decision d=16
Base state (16) has initial value: 0.0

10.42 SELECT Java Solver Output

The optimal value is: 21.0
The solution tree is:
State (1,4,1,10) has optimal value: 21.0
Decision k=2
State (1,1,1,5) has optimal value: 5.0
Decision k=1
Base state (1,0,1,2) has initial value: 0.0
Base state (2,1,4,5) has initial value: 0.0

State (3,4,7,10) has optimal value: 6.0
Decision k=3
State (4,4,9,10) has optimal value: 2.0
Decision k=4
Base state (5,4,11,10) has initial value: 0.0
Base state (4,3,9,9) has initial value: 0.0

Base state (3,2,7,7) has initial value: 0.0

10.43 SPA Java Solver Output

The optimal value is: 9.0
The solution tree is:
State (0) has optimal value: 9.0
Decision d=1
State (1) has optimal value: 6.0
Decision d=2
State (2) has optimal value: 5.0
Decision d=3
Base state (3) has initial value: 0.0

318 10 Java Solver Results of DP Problems

10.44 SPC Java Solver Output

For SPC we came up with two different DP models. One used the DP func-
tional equation (2.45), the other used the DP functional equation (2.46). For
the former, we get the following solution.

The optimal value is: 9.0
The solution tree is:
State (0,{0}) has optimal value: 9.0
Decision alpha=1
State (1,{0,1}) has optimal value: 6.0
Decision alpha=2
State (2,{0,1,2}) has optimal value: 5.0
Decision alpha=3
Base state (3,{0,1,2,3}) has initial value: 0.0

For the latter, we get the following solution.

The optimal value is: 9.0
The solution tree is:
State (0,3) has optimal value: 9.0
Decision d=1
State (1,2) has optimal value: 6.0
Decision d=2
State (2,1) has optimal value: 5.0
Decision d=3
Base state (3,0) has initial value: 0.0

One can easily verify that the two decision trees are equivalent, they only
differ in the way the states are named.

10.45 SPT Java Solver Output

The optimal value is: 17.0
The solution tree is:
State (0,{0,1,2}) has optimal value: 17.0
Decision d=2
State (2,{0,1}) has optimal value: 15.0
Decision d=0
State (5,{1}) has optimal value: 10.0
Decision d=1
Base state (10,{}) has initial value: 0.0

10.47 TSP Java Solver Output 319

10.46 TRANSPO Java Solver Output

The optimal value is: 239.0
The solution tree is:
State (0,0) has optimal value: 239.0
Decision x=3
State (1,1) has optimal value: 126.0
Decision x=1
State (2,0) has optimal value: 80.0
Decision x=2
Base state (3,0) has initial value: 0.0

10.47 TSP Java Solver Output

For TSP we came up with two different DP models. The first model keeps the
set of nodes visited as a part of the state. The second model is an alternative
formulation that keeps the set of nodes not yet visited as a part of the state.
For the former, we get the following solution.

The optimal value is: 39.0
The solution tree is:
State (0,{0}) has optimal value: 39.0
Decision alpha=1
State (1,{0,1}) has optimal value: 38.0
Decision alpha=3
State (3,{0,1,3}) has optimal value: 35.0
Decision alpha=4
State (4,{0,1,3,4}) has optimal value: 20.0
Decision alpha=2
Base state (2,{0,1,2,3,4}) has initial value: 7.0

For the latter, we get the following solution.

The optimal value is: 39.0
The solution tree is:
State (0,{1,2,3,4}) has optimal value: 39.0
Decision alpha=1
State (1,{2,3,4}) has optimal value: 38.0
Decision alpha=3
State (3,{2,4}) has optimal value: 35.0
Decision alpha=4
State (4,{2}) has optimal value: 20.0
Decision alpha=2

320 10 Java Solver Results of DP Problems

Base state (2,{}) has initial value: 7.0

One can easily verify that the two decision trees are equivalent, they only
differ in the way the states are named.

11

Other Solver Results

This chapter shows numerical output for the spreadsheet and PNML solver
codes, as generated by PN2Solver in the fashion described in Chap. 9. Recall
that this solver code can be automatically obtained from the internal Bellman
net representation. In this exposition, we focus on the linear search example.

11.1 PN2Spreadsheet Solver Code Output

11.1.1 PN2Spreadsheet Solver Code for LINSRCS

The spreadsheet solver code for LINSRCS is in the LINSRCS.csv file, as given
in Sect. 9.3.1. We show this file again here, adding in an adjoining third column
the formulas that are in Column B. When this LINSRCS.csv file is imported
into a spreadsheet application, the formulas in Column B are evaluated; a
screenshot of this is shown in Fig. 11.1. The result looks like this:

| A | B

---+-------------------------+------

1 statePlaceI35 ({}) 0

2 intermediatePlaceI33 p10 0.9 B1+0.8999999999999999

3 statePlaceI17 ({2}) 0.9 min(B2)

4 intermediatePlaceI15 p4 1.9 B3+1.0

5 intermediatePlaceI23 p6 1.3 B3+0.4

6 intermediatePlaceI38 p11 1.5 B1+1.5

7 statePlaceI21 ({1}) 1.5 min(B6)

8 intermediatePlaceI19 p5 2.1 B7+0.6

9 intermediatePlaceI29 p8 1.9 B7+0.4

10 statePlaceI5 ({1,2}) 1.9 min(B4,B8)

11 intermediatePlaceI3 p1 2.1 B10+0.2

12 intermediatePlaceI40 p12 0.6 B1+0.6000000000000001

13 statePlaceI27 ({0}) 0.6 min(B12)

14 intermediatePlaceI25 p7 1.2 B13+0.6

15 intermediatePlaceI31 p9 1.6 B13+1.0

16 statePlaceI9 ({0,2}) 1.2 min(B5,B14)

17 intermediatePlaceI7 p2 1.7 B16+0.5

18 statePlaceI13 ({0,1}) 1.6 min(B9,B15)

19 intermediatePlaceI11 p3 1.9 B18+0.3

20 statePlaceI1 ({0,1,2}) 1.7 min(B11,B17,B19)

Columns 1 and 4 are not part of the file; column 4 has been added to the
figure to explicitly show the formulas in column B for expositional purposes.
This redundant information makes it easier to interpret the spreadsheet.
A. Lew and H. Mauch: Other Solver Results, Studies in Computational Intelligence (SCI) 38,

321–327 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

322 11 Other Solver Results

In the given spreadsheet, the final answer, i.e., the goal, is in cell B20
and has value 1.7. To determine the decisions that result in this solution, we
note that 1.7 is the minimum of B11, B17, and B19, with in turn have values
2.1, 1.7, and 1.9, respectively. Thus, the optimal initial decision is to choose
the middle one B17, which equals B16+0.5; the cost of the decision is 0.5.
The value 1.2 in cell B16 is the minimum of B5 and B14, which in turn have
values 1.3 and 1.2, respectively. Thus, the optimal next decision is to choose
the latter one B14, which equals B13+0.6; the cost of the decision is 0.6. The
value 0.6 in cell B13 is the minimum of B12, which in turn has value B1+0.6;
the cost of the decision is 0.6. Thus, the optimal last (and in this example
the only possible) decision is to choose B1, which corresponds to a base-state
with value 0. We conclude that the “solution tree” is as follows:
The optimal value is: 1.7

The solution tree is:

State ({0,1,2}) has optimal value: 1.7

Decision d=1 {choose middle one, at cost 0.5}

State ({0,2}) has optimal value: 1.2

Decision d=2 {choose latter one, at cost 0.6}

State ({0}) has optimal value: 0.6

Decision d=0 {make only choice, at cost 0.6}

Base state ({}) has initial value: 0.0

In summary, the output produced by the PN2Spreadsheet module (see
section 9.3) can be imported into a spreadsheet application. After the spread-
sheet application has updated all the cells to its correct value, the user can
obtain the optimal objective function value from the cell representing the goal
state place. The reconstruction of the optimal policy within the spreadsheet
application is not automated, and must be done “by hand”. For future im-
provements, a graphically appealing output of the optimal decisions within a
spreadsheet should be a valuable tool for decision makers.

In addition to the LINSRCS example given in the preceding section, we
provide the PN2Spreadsheet solver code for some other sample problems in
the following sections.

11.1.2 PN2Spreadsheet Solver Code for LSP

The output file for the LSP instance from section 2.26 is as follows.
"statePlaceI9 ({0,3},3)" ,0.0

"statePlaceI18 ({0,1,2,3},3)" ,0.0

"intermediatePlaceI7 p2" ,=B1+1.0

"intermediatePlaceI16 p4" ,=B2+1.0

"statePlaceI14 ({0,1,2},2)" ,"=max(B4)"

"intermediatePlaceI12 p3" ,=B5+1.0

"statePlaceI5 ({0,1},1)" ,"=max(B6)"

"intermediatePlaceI3 p1" ,=B7+1.0

"statePlaceI1 ({0},0)" ,"=max(B8,B3)"

11.1.3 PN2Spreadsheet Solver Code for MCM

The output file for the MCM instance from section 2.27 is as follows.

11.1 PN2Spreadsheet Solver Code Output 323

"statePlaceI5 (1,1)" ,0.0

"statePlaceI20 (4,4)" ,0.0

"statePlaceI25 (2,2)" ,0.0

"statePlaceI36 (3,3)" ,0.0

"intermediatePlaceI32 p6" ,=B1+B3+60.0

"statePlaceI12 (1,2)" ,"=min(B5)"

"intermediatePlaceI34 p7" ,=B2+B4+20.0

"statePlaceI14 (3,4)" ,"=min(B7)"

"intermediatePlaceI10 p2" ,=B6+B8+30.0

"intermediatePlaceI23 p4" ,=B8+B3+40.0

"intermediatePlaceI41 p9" ,=B6+B4+30.0

"intermediatePlaceI43 p10" ,=B3+B4+40.0

"statePlaceI30 (2,3)" ,"=min(B12)"

"intermediatePlaceI28 p5" ,=B2+B13+16.0

"intermediatePlaceI39 p8" ,=B1+B13+24.0

"statePlaceI8 (2,4)" ,"=min(B10,B14)"

"intermediatePlaceI3 p1" ,=B1+B16+24.0

"statePlaceI18 (1,3)" ,"=min(B15,B11)"

"intermediatePlaceI16 p3" ,=B18+B2+12.0

"statePlaceI1 (1,4)" ,"=min(B17,B9,B19)"

11.1.4 PN2Spreadsheet Solver Code for SPA

The output file for the SPA instance from section 2.43 is as follows.
"statePlaceI15 (3)" ,0.0

"intermediatePlaceI13 p4" ,=B1+8.0

"intermediatePlaceI18 p5" ,=B1+5.0

"statePlaceI9 (2)" ,"=min(B3)"

"intermediatePlaceI7 p2" ,=B4+5.0

"intermediatePlaceI11 p3" ,=B4+1.0

"statePlaceI5 (1)" ,"=min(B6,B2)"

"intermediatePlaceI3 p1" ,=B7+3.0

"statePlaceI1 (0)" ,"=min(B8,B5)"

11.1.5 Spreadsheet Output

The solver codes given above are shown in text format. When imported into
a spreadsheet application, the formulas are evaluated. Screenshots of some
examples are given here.

Spreadsheet Output for LINSRCS

For the LINSRCS problem, the optimal objective function value of
f({0, 1, 2}) = 17.0 appears in cell B20 in the spreadsheet in Fig. 11.1.

Spreadsheet Output for LSP

The optimal objective function value of f({0}, 0) = 3.0 appears in cell B9 in
the spreadsheet in Fig. 11.2.

Spreadsheet Output for MCM

The optimal objective function value of f(1, 4) = 76.0 appears in cell B20 in
the spreadsheet in Fig. 11.3.

324 11 Other Solver Results

Fig. 11.1. Screenshot after importing LINSRCS.csv into Microsoft Excel

Spreadsheet Output for SPA

The optimal objective function value of f(0) = 9.0 appears in cell B9 in the
spreadsheet in Fig. 11.4.

11.2 PN2XML Solver Code Output

The Petri net markup language solver code for LINSRCS was excerpted in
Sect. 9.4.1. Because of its size, much of which is associated with specifying
how to draw the graph, the complete PNML code for a much smaller example
(SPA.xrn) is listed in App. A.3.

Since the PN2XML module produces standardized XML code that can
readily be imported into PN simulators like Renew (see Sect. 5.1.5), one can
use the simulator as a solver. The user can watch how a DP problem instance is
solved in an illustrative graphical fashion by observing the simulation progress.
Starting with the initial marking we fire transitions until the net is dead. Such
a net is said to be in its final marking. The solution to the problem instance
can be obtained by inspecting the net in its final marking. The graphical
results of this simulation approach are documented for various examples in
Sect. 6.2. For the LINSRCS example, the initial and final nets are shown in

11.2 PN2XML Solver Code Output 325

Fig. 11.2. Screenshot after importing LSP.csv into Microsoft Excel

Figs. 6.21 and 6.22. These figures depict what appears on the screen using
Renew. For legibility reasons, we show in this book (in Fig. 5.1) only a single
screenshot, for a smaller example (LSP.xrn); Figure 5.1 should be compared
with Fig. 6.23.

11.2.1 PN2XML Simulation Output for LINSRCS

For the initial net shown in Fig. 6.21, the only initially marked place (ignoring
the enabling places) is the base-state place, marked with the value 0.0. For
the final net shown in Fig. 6.22, the goal-state place is marked with the result
1.7. The final markings in the intermediate places can be used to reconstruct
the optimal policy in a fashion similar to that used in the spreadsheet case.
However, use of a Petri net simulation tool (such as Renew) which permits
animation that can be paused, the optimal policy can also be determined by
single stepping through the simulation process. We will not describe all of the
details here since we are constrained to the printed page. To illustrate the
basic idea, we do so tabularly rather than graphically.

We show in the following table a sequence of changes in markings, start-
ing from the initial one in column 0, and ending with the final marking in
column 6. The rows of the table correspond to the place nodes of the Bell-
man net, and the columns specify their markings as a function of time. The

326 11 Other Solver Results

Fig. 11.3. Screenshot after importing MCM.csv into Microsoft Excel

leftmost column gives the place node id and label for each of the state and
intermediate place nodes in the net, whose marking is determined by evaluat-
ing the transition expression given in the rightmost column. Column 1 shows
that places I33, I38, and I40 can change their markings after the firing of their
associated E-transitions in any order; each of these E-transitions are initially
enabled since they depend only on the base-state place I35 which is initially
marked. Column 6 shows that the goal place I1 can change its marking af-
ter the firing of its associated M-transition, which is only enabled after place
nodes I3, I6, and I11 have all had their markings changed from their initial
empty state.
place node | 0 | 1 | 2 | 3 | 4 | 5 | 6

------------+-----+-----+-----+-----+-----+-----+-----+

I35 ({}) : 0

I33 p10 : 0.9 I35+0.9

I38 p11 : 1.5 I35+1.5

I40 p12 : 0.6 I35+0.6

I17 ({2}) : 0.9 min(I33)

I21 ({1}) : 1.5 min(I38)

I27 ({0}) : 0.6 min(I40)

I15 p4 : 1.9 I17+1.0

I23 p6 : 1.3 I17+0.4

I19 p5 : 2.1 I21+0.6

I29 p8 : 1.9 I21+0.4

I25 p7 : 1.2 I27+0.6

I31 p9 : 1.6 I27+1.0

I5 ({1,2}) : 1.9 min(I15,I19)

I9 ({0,2}) : 1.2 min(I23,I25)

I13 ({0,1}) : 1.6 min(I29,I31)

I3 p1 : 2.1 I5+0.2

I7 p2 : 1.7 I9+0.5

I11 p3 : 1.9 I13+0.3

11.2 PN2XML Solver Code Output 327

Fig. 11.4. Screenshot after importing SPA.csv into Microsoft Excel

I1 ({0,1,2}): 1.7 min(I3,I7,I11)

12

Conclusions

In this book, we discussed dynamic programming as a general method for
solving discrete optimization problems. This book is distinguished from many
others, such as [1, 12, 13, 57], by its restriction to discrete problems and by its
pragmatic approach. Here, we emphasize computational aspects rather than,
say, theoretical aspects such as conditions under which problems are solvable
by DP. The key to the use of DP is the formulation of a problem as a sequential
decision process, where separable costs can be attached to each decision. For a
multitude of problems, we derive such formulations, in the form of a dynamic
programming functional equation that solves the problem. We assume these
DPFEs are “proper” (in the sense that their solutions exist in theory), and
focus on the computational problem of numerically obtaining these solutions.

It would be ideal if there existed a mechanical procedure to derive a DPFE
from a description of a problem. Unfortunately, no such procedure exists for
arbitrary problems. Thus, in the first part of this book, we provide an exten-
sive catalogue of DP formulations. Numerous examples from a wide range of
application areas are given. Exposure to these examples should make it easier
to apply DP to new problems. The remainder of the book is devoted to the
problem of obtaining the numerical solutions of these and other DPFEs. We
specifically discuss the design and implementation of a computational tool
(DP2PN2Solver) that yields these solutions.

12.1 Applicability of DP and DP2PN2Solver

In order to demonstrate the generality and flexibility of DP as a method to
solve optimization problems and of the DP2PN2Solver tool for numerically
solving these DP problems, we included numerous applications in Chap. 2. In
addition to choosing examples from an exceptionally large variety of sources,
we also chose to implement all (with a few exceptions, as noted below) of the
examples found in the DP chapters of several major textbooks in the fields of
operations research and computer science.

A. Lew and H. Mauch: Conclusions, Studies in Computational Intelligence (SCI) 38, 329–337

(2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

330 12 Conclusions

• The following examples appear in the operations research book by Hillier
and Liebermann [21, Chap. 11]: Ex.1: SCP; Ex.2: ALLOT; Ex.3: AL-
LOTm; Ex.5: ILP; Ex.6: PRODRAP; Ex.7: INVESTWLV. (Example 4
was skipped since it involves a continuous decision set. In principle, dis-
cretization could be used for such examples.)

• The following examples appear in the operations research book by Winston
[63, Chap. 18]: Ex.1: NIM; Ex.2: POUR; Ex.3: SCP; Ex.4: INVENT; Ex.5:
ALLOTf; Ex.6: KSINT; Ex.7: REPLACE; Ex.8: DDP; Ex.12: TSP; Ex.13:
MINMAX; Ex.14: ALLOTm; Ex.15: LOT. (Examples 9–11 were skipped
since they were only sketched in the book, and thus lack specificity.)

• The following examples appear in the computer science algorithms book
by Cormen, et al. [10, Chap. 15]: Sect. 1: ASMBAL; Sect. 2: MCM; Sect. 3:
LSP; Sect. 4: LCS; Sect. 5: BST.

• The following examples appear in the computer science algorithms book
by Horowitz, et al. [22, Chap. 5]: Sect. 1: KS01; Sect. 2: SCP; Sect. 3:
APSPFW; Sect. 4: SPC; Sect. 5: BST; Sect. 6: EDP; Sect. 7: KS01; Sect. 8:
RDP; Sect. 9: TSP; Sect. 10: FLOWSHOP. (KS01 was treated twice, the
second time in greater depth.)

The two operations research books also contain a chapter illustrating the
application of DP to Markovian decision processes. Iterative methods to solve
such problems are not discussed in this book. The two computer science books
also discuss “all-pairs shortest-path” algorithms, where a matrix of values
rather than a single value is computed, such as for APSPFW. For these and
some related algorithms, the order in which calculations are performed affect
efficiency. In this book, we have neglected these concerns, but of course the
utility of DP and of our DP tool depends very much on efficiency. We address
this issue later in this chapter.

12.2 The DP2PN2Solver Tool

A problem that has existed for over fifty years is the development of general-
purpose computer software for solving large classes of DP problems, compa-
rable to what has long existed for linear programming (LP). The problem for
LP is much simpler, in part because the linearity assumption for objective
functions and constraints can easily be represented in a standard form. For
example, a large class of LP problems can be represent in a tabular or matrix
form known as a “simplex tableaux”, and early linear programming software
were matrix based. It was natural for more recently developed spreadsheet sys-
tems to incorporate simplex algorithms in “add-in” solvers for LP problems.
However, an analogous general-purpose solver for DP has been sorely lacking.
Some attempts have been made over the years, such as by Hastings [19] and
by Sarmiento [55], but have not been successful, at least as measured by their
recognization in the community of scholars and practitioners. For example, in

12.2 The DP2PN2Solver Tool 331

operations research textbooks, such as those of Hillier and Lieberman [21] or
Winston [63], there are many examples of computer solutions of LP problems,
generally using Excel or Lingo, but there are no comparable examples for DP.
This is largely because other optimization software systems were not designed
expressly for, hence are not especially well suited for, solving DP problems in
general.

A software system for automating the computational solution of an opti-
mization problem having a given DP formulation is described in this book.
This system, called DP2PN2Solver, was designed expressly for solving DP
problems. A DP specification source language (gDPS) was first designed, gen-
eral enough to accommodate a very large class of problems, but simple enough
for nonprogrammers to learn with a minimum of effort. In essence, this DP
specification language is a transliteration of the DPFE. For flexibility, the
DP2PN2Solver system permits other specification languages to be used as
an alternative, such as a basic language for simpler problems, or perhaps
more complex mathematical programming languages. The design of transla-
tors from any specification language to a common intermediate representation
is then discussed. Rather than implementing different compilers for different
source languages, it may be advantageous for specifications in other source
languages to instead be translated (say, using a macro processor) into gDPS.

A key decision was the adoption of an intermediate representation, called
a Bellman net, based upon Petri net models. A solver code generator was
then designed to translate a Bellman net into computer object code (in, say, a
programming language such as Java) from which an object code compiler can
be used to produce the numerical solution of the original DP problem. This
task is complicated by the desire to produce as answers not only optimal values
but also “reconstructed” optimal policies. The Bellman net representation of
a DP problem facilitates this solver code generation process for a variety of
different object languages. As an illustration of the flexibility of this system,
it is also shown how a spreadsheet language or a Petri net simulator can be
used an alternative to Java as an object language.

Our Bellman net model was designed to suit the needs of both the trans-
lator and the solver code generator. Furthermore, to allow the use of Petri net
theory in the analysis of DP problems, the Bellman net model was defined in a
manner consistent with high-level Petri net conventions. Certain DP problems
can also be modeled using a subclass of low-level Petri nets. High-level colo-
red Petri nets allow for more generality, and low-level place/transition nets
allow for easier automated analyses of structural or behavioral properties of
the model. Consistency with Petri net conventions also allows Bellman nets
to be processed using standardized Petri net software, such as Renew.

DP2PN2Solver guarantees that the optimal solution to a properly formu-
lated DP instance will be found, provided of course that the DPFE is correct
and its solution does exist. Many other optimization software systems incor-
porate search mechanisms. This can in the best case be very efficient, but in
the worst case not lead to the optimal solution at all.

332 12 Conclusions

In summary, this book describes the design and implementation of a soft-
ware system DP2PN2Solver that includes a DP specification language, the
Bellman net representation, a translator between the two, and a solver code
generator that produces executable code which in turn yields numerical solu-
tions. Numerous examples are given to demonstrate the general applicability
of this software system to the solution of a wide variety of DP problems.

The DP2PN2Solver system addresses the main shortcomings of other DP
software tools. It can be used for a myriad of problems, it does not require pro-
gramming expertise, and it does not require proprietary commercial systems
(neither special-purpose ones, nor office packages such as Excel). Further-
more, the modular structure of the DP2PN2Solver system allows for changes
in the input source specification languages and for alternative output solu-
tion solvers. In the worst case, it is conceivable that if a DP problem involves
features unanticipated by our choice of source syntax, the associated Bellman
net can be manually constructed. Furthermore, the production of an interme-
diate Bellman net representation as a text file also allows for analysis or other
processing of DP formulations by independently developed tools.

12.3 Research Directions

There are numerous extensions of the work reported in this book that are
currently the subject of current research. Some extensions relate to extending
the applicability of our software tool DP2PN2Solver, especially so as to:

• solve continuous problems (by automating discretization procedures, for
example).

• solve problems with more complex state types, e.g., matrices, strings,
multisets (sets with nonunique elements).

• solve iterative problems associated with Markovian decision processes.

While any restriction is one too many, the variety of applications that can be
solved using our current tool, as presented in Chapter 2, is quite large indeed.
Nevertheless, we continue to explore methods of extending the class of DP
problems that can be automatically solved. These extensions relate to:

• methods of improving the user interfaces to make the tool easier and more
productive to use.

• methods of solving large-scale problems, including those with larger state
spaces, and with larger solution trees.

• methods of modeling DP problems using other classes of Petri nets, that
may have better diagnostic or efficiency advantages, for example.

We mention here a few areas in which we have a special interest.

12.3 Research Directions 333

12.3.1 User Functionality

The utility of a software tool for solving DP problems, as with other prob-
lems, depends largely upon its functionality, which loosely speaking is what it
outputs (the more the better) for various inputs (the less the better). Ideally,
users should be able to provide a DPFE as input easily and naturally, and
the system should automatically produce the computational solution to the
DPFE in a form that is easy to interpret.

User Interfaces

As noted previously, changes to gDPS to improve its utility are relatively
easy to make, since we used a compiler-compiler to parse gDPS programs. We
discuss language extensions below. In addition, alternate front-ends (source
languages and compilers) and back-ends (solver code generators and execu-
tion systems) can also be incorporated as part of the DP2PN2Solver tool.
Thus, alternatives that would make our tool more convenient to use are being
explored.

• Provide a windows-based rather than command-line environment.
• Add a graphical or tabular user interface to input DP specifications and

extend ways to produce and output optimal policies.
• Reconstruct the solution in the spreadsheet solver output.
• Incorporate more complex layout algorithms to improve the graphical

display of Bellman nets.
• Extend the error checking capabilities of the proposed system.

The latter is of course of special value, and will be discussed further below.

Language Extensions

Language extensions range from simple syntax refinements to changes that
require significant redesign efforts.

• Only additive and multiplicative DPFEs, where decision costs or rewards
are combined by addition or multiplication operations, are currently per-
mitted in gDPS. Permitting the minimum and maximum operations as
well is one extension. (This would simplify the solution of the MINMAX
problem.) In general, any binary operation that is associative, commuta-
tive, and has an identity element, is a reasonable candidate for inclusion
in gDPS.

• In our current implementation of gDPS, data is hard-coded into the
GENERAL_VARIABLES section. Thus, to solve a problem with varying values
of data, the gDPS source program must be repeatedly recompiled. Allow-
ing for data to be input from a file (or as a command-line argument) would
be a convenient extension.

334 12 Conclusions

• gDPS is basically a “specification” language rather than a “procedural”
language in that, except for in the GENERAL_FUNCTIONS section, no (con-
trol) sequence of assignment, alternation, or iteration statements are
allowed. One extension is to remove the procedural elements in the
GENERAL_FUNCTIONS section, perhaps by having general functions ex-
pressed in, say, a functional language [17] or an abstract relational lan-
guage [11].

Error Diagnostics

In Sect. 8.4, we described the error diagnostics capabilities of DP2PN2Solver.
Diagnostic error messages are given in App. B.7. Improvements in diagnostics
is one area of continuing research.

Of special theoretical interest is the investigation of methods of testing
whether a DPFE is proper based upon Petri net analysis techniques. For
example, as we noted previously (in Sect. 8.4), certain errors, such as the
existence of circular definitions and incorrect or omitted base conditions, are
detectable by an analysis of net properties such as cyclicness and deadlock.
Much more along these lines remains to be done.

One important class of errors occurs when memory size limitations are
exceeded. This may be due to the state space being too large. Even when
the size of the state space is modest, since the DPFE is solved recursively,
the solution tree (such as for the Fibonacci example) may become too large.
Methods of reducing size are discussed in the next section.

12.3.2 Reduction of Dimensionality

One limitation of our tool (and every tool) is on the size or dimensionality
of the problems that can be solved. Thus, means to reduce dimensionality, of
both the state space and the size of the solution tree, is an important objective.
As suggested in the preceding section, one avenue of future research is the
automation of means to convert recursion to iteration whenever possible.

Time and Space Complexity

The computational requirements of DP2PN2Solver are asymptotically the
same as the requirements for other DP codes implementing the DP functional
equation directly, since the intermediate PN model may be regarded as just
another representation of a DP functional equation. For example, since a DP
solution of the traveling-salesman problem is inefficient (exponential-time), so
is a PN modeled solution. Nevertheless, small instances of such “intractable”
problems can still be handled using DP, and methods that expand these
instances are being investigated.

The space requirements of DP2PN2Solver are dominated by the space re-
quirements needed to store the intermediate PN representation. This could

12.3 Research Directions 335

become a problem for larger instance sizes that deplete the space resources.
One technique that alleviates this problem is to reallocate those parts of the
memory that are no longer needed in the course of the computation of the cur-
rent instance being solved. Applying this technique to DP2PN2Solver means
that a state-decision-reward-transformation-table like Table 8.1 is no longer
constructed in its entire size. Rather, parts of the intermediate PN represen-
tation are put together in a bottom-up fashion starting with the base place
states (as opposed to the current top-down build starting with the goal place
state). Whenever a state place has served all transitions in its postset, it and
its remaining predecessor subtree can be deleted. That the Bellman net is
in essence an acyclic graph ensures that deleted portions will not be needed
again. The space freed in this way can then be recycled. Implementing this
technique into DP2PN2Solver is one avenue of future research.

Potential for Parallelization

DP2PN2Solver’s use of a PN representation has the potential for paralleliza-
tion. Computations that can take place concurrently are identified by transi-
tions that are enabled concurrently. In theory, the PN’s intrinsic concurrency
allows the distribution of the computational load encountered when solving
a single DP problem instance to several computational units. This opens up
various possibilities for machines with multiple parallel processors.

Rather than use existing parallel processing systems, a special-purpose
system may be designed expressly to solve DP problems. That DP problems
can be represented by Bellman nets suggests the adaptation of dataflow com-
puter architectures long associated with Petri nets. For example, a dataflow
architecture proposed for spreadsheets ([39]) may prove especially useful for
the execution of DP problems.

12.3.3 Petri Net Modeling

The adoption of Petri nets in our tool has the advantage that there is an abun-
dance of theoretical results in the PN literature, some of which may be useful
in analyzing DP models. Consistency checks such as a test for circularity, a
test whether the net is dead before a proper final marking is reached and tests
whether there are unmarked source state places are obvious examples. It will
be a part of future research to find additional examples.

Additional research into our underlying Petri net models may also prove
helpful:

• Develop software for automated translation between LLBN and HLBN
model.

• Extend the LLBN model to allow more general DP functional equations,
e.g. involving multiplication.

• Extend the HLBN model to allow more general E-transitions.

336 12 Conclusions

• In the HLBN drawings, maintain the preset of M-transitions (using self-
loops), so that the optimal solution can be reconstructed from the drawing.

• Examine whether it is worthwhile to simulate PNs directly, i.e. solve the
problem on the PN level, instead of transforming it to a high-level general
purpose programming language such as JAVA? The advantage is that the
graphical representation of a PN allows the user to visually follow the
solution process. The disadvantage is that the PN simulator might cause
additional overhead with respect to time complexity. If HLBNs are used,
then there are two more disadvantages. First a specialized PN simulator
capable of simulating HLBNs needs to be used. Second, the reconstruction
of the optimal policy is difficult, since only the optimal objective function
value is computed directly. (This poses no problem for LLBNs, the tree
obtained by following empty min-in places represents the optimal policy.)

• Improve the suggested Bellman net models. Develop more theory about
Bellman nets. How do they compare to the standard PN model with
respect to static and dynamic properties?

• Consider ways to model other DP solution methodologies, including itera-
tive ones. This may ultimately lead to ways to handle Markovian decision
processes.

With respect to iterative approaches, we are investigating an “iterative
Bellman net” model in which a Petri net automatically restarts with final
markings used to determine new initial markings.

12.4 Summary

In this book, we described the solution of discrete optimization problems using
dynamic programming, emphasizing the design and use of a computational
tool named DP2PN2Solver for numerically solving these problems. We formu-
lated and numerically solved about 50 different problems from a wide variety
of application areas. We also described:

• the design and implementation of specification source languages (gDPS,
bDPS, ilpDPS) that express given DPFEs for solving a myriad of DP
problems, all of which were implemented in gDPS;

• Bellman-net models of DPFEs and a suitable internal computer represen-
tation for these Bellman nets;

• a compiler (gDPS2PN) that translates from gDPS source to Bellman nets;
• code-generators (PN2Java, PN2SS, PN2XML) that translate from Bell-

man nets to object code that can be executed by “solver” systems so as
to obtain the numerical solutions to the given DPFEs (in Java or Excel or
Renew);

• and the overall structure of the DP2PN2Solver system.

Central to the design of this system is the Bellman net model, whose defi-
nition had to satisfy the requirements of generality, so that large classes of

12.4 Summary 337

DPFEs can be so modeled, and of standardization, i.e. adherence to Petri net
conventions, so that Petri net theories can be applied to the analysis of the
Bellman nets. Standardization also permits the option of using Petri tools for
the graphical display of Bellman net models as well as for object-code execu-
tion. The choice of internal representation for Bellman nets was also of great
practical importance because of how it affects the design of compilers and
code-generators, certainly with respect to efficiency.

DP2PN2Solver should be useful as an educational tool for teaching DP in a
practical hands on approach where students can work on case studies, model
the underlying DP problem, and obtain an actual solution to the problem
without concern about the solution process itself. Practitioners should also
find DP2PN2Solver useful, certainly for problems (perhaps scaled down) sim-
ilar to those solved in this book. Researchers should find the task of extending
this work in various ways a rich source of interesting problems.

A

Supplementary Material

A.1 Pseudocode of the DP2PN Module

This section shows the individual components of the DP2PN module in a
Java inspired pseudocode style notation. The problem specific Main and State
classes are generated automatically by JavaCC. They are shown here for the
LINSRCS problem. All other classes are problem independent; they represent
general data structures and functions needed across all DP problems. Classes
that are rather trivial extensions of basic structures (StateList extends List,
StateSet extends Set, and NodeSet extends Set, StateValueMap extends
Map) are not shown here.

A.1.1 Main Class for LINSRCS

//This Main class has been
//automatically generated by the DPspecificationParser
//for the problem: LINSRCS

public class LINSRCSMain {
String problemName="LINSRCS";
private static double[] prob= {.2,.5,.3};
private static int N = prob.length;

void main() {

State goalState = new State(setOfAllItems);
StateValueMap baseStatesWithValues = new StateValueMap();
baseStatesWithValues.put(new State(emptySet),

new Double(0.0));

DPInstance theInstance
= new DPInstance(goalState,baseStatesWithValues);

340 A Supplementary Material

theInstance.setTransitionOperator("+");
theInstance.setMinOrMax("min");

//make table entries automatically
StateSet statesSeen =new StateSet(); //keep track for which

//states table entries
//have been made

//add goal state to statesSeen
statesSeen.add(goalState);
LinkedList stateQueue = new LinkedList();
//initialize queue with the goal state
stateQueue.addLast(goalState);
//loop as long as there is something in the queue
while (stateQueue.size()>0) {
//dequeue the first state and make it the current state
State currentState=(State) stateQueue.removeFirst();
//check whether the current state is a base state as
//defined in DPFE_BASE_CONDITIONS section; if so, add
//it and its value to baseStatesWithValues
if (determineWhetherBaseState(currentState)==true) {
baseStatesWithValues.put(currentState,

new Double(determineBaseStateValue(currentState)));
}

//if current state is not a base state...
if (!baseStatesWithValues.containsKey(currentState)) {
//create the decision set
NodeSet _setInDDN0=new NodeSet();
{ //extra block so _i reusable

for (int _i=((Integer)
currentState.getCoordinate(0)).intValue();

_i<=((Integer)
currentState.getCoordinate(1)).intValue()-1;

_i++) {
_setInDDN0.add(new Integer(_i));

}
} //close extra block
NodeSet decisionSet=_setInDDN0;
//loop over all decisions now
for (Iterator it=decisionSet.iterator();it.hasNext();) {

Integer currentDecisionCandidate = (Integer)it.next();
Decision d
= new Decision(currentDecisionCandidate.intValue());

d.setDecisionPrefix("k=");
//determine the successor states of current state

A.1 Pseudocode of the DP2PN Module 341

StateList successorStates
= calculateTransformation(currentState,d);

//determine the transition weights given the
//current state
ArrayList transitionWeights

= calculateTransitionWeights(currentState,d);
//generate table entry
DPInstanceTableEntry entry = new DPInstanceTableEntry(

currentState,
d,
calculateReward(currentState,d),
successorStates,
transitionWeights);

theInstance.addTableEntry(entry);
//enqueue unseen destination states by iterating
//over successorStates
for(Iterator it2=successorStates.iterator();

it2.hasNext();) {
State currentSuccessor = (State) it2.next();
if(!statesSeen.contains(currentSuccessor)) {
stateQueue.addLast(currentSuccessor);
//mark state as seen
statesSeen.add(currentSuccessor);

}
}

} //end of for loop over the decisions
} //end of if

} //end of loop once queue is empty

//Build the BellmanNet from the instance.
BellmanNet bn

= theInstance.buildBellmanPNTopDown(problemName);
//Output the BellmanNet as incidence matrix.
bn.toIncidenceMatrix();

}//end of main() method

double calculateReward(State s, Decision d) {
double result;
result = (N+1-size(((NodeSet)

((NodeSet) s.getCoordinate(0)).clone())))
*prob[d.getDecision()];

return result;
}

342 A Supplementary Material

StateList calculateTransformation(State s, Decision d) {
StateList result=new StateList();
NodeSet items=((NodeSet)

((NodeSet) s.getCoordinate(0)).clone());
NodeSet _setExplicit2=new NodeSet();
_setExplicit2.add(new Integer(d.getDecision()));
items.removeAll(_setExplicit2);
result.add(new State(items));
return result;

}

double determineBaseStateValue(State s) {
if(s.getCoordinate(0)==s.getCoordinate(1)) return 0.0;
return Double.NaN; //NaN denotes: not a base state

}

boolean determineWhetherBaseState(State s) {
if (Double.isNaN(determineBaseStateValue(s))) {
return false;

}
return true;

}

}//end of MCMMain class

A.1.2 State Class for LINSRCS

//This State class has been
//automatically generated by the DPspecificationParser
//for the problem: LINSRCS

class State {

List theState;

//Constructor for State class
State(NodeSet items) {

theState=new ArrayList();
theState.add(items);

} //end of constructor

//Detemine the lexicographical order of two states.
//Iterate over instance variable theState
//and compare each coordinate with state2.

A.1 Pseudocode of the DP2PN Module 343

int compareTo(Object state2) {
if states are equal return 0;
if theState<state2 return -1;
if theState>state2 return 1;

}

//Returns the i-th coordinate of this state
Object getCoordinate(int i) {

return theState.get(i);
}

//Set i-th coordinate in the state to object o
public void setCoordinate(int i, Object o) {

theState.set(i,o);
}

}//end of State class

A.1.3 Decision Class

//For most DP problems a decision is essentially an int
//plus a String prefix like "k=" or "goto"

public class Decision {

private String decisionPrefix;
private int decision;

//constructor
Decision(int d) {

decision=d;
decisionPrefix="";

}

//accessor method for the int core of the decision
//without the prefix
int getDecision() {

return decision;
}

//accessor method to set the decisionPrefix
void setDecisionPrefix(String s) {

decisionPrefix=s;
}

344 A Supplementary Material

}//end of class

A.1.4 DPInstanceTableEntry Class

//Represents info for the DPInstance class
//format:
// state--decision--reward--List of nextStates--List of weights

class DPInstanceTableEntry {

State state;
Decision decision;
double reward;
StateList nextStates;
ArrayList transitionWeights;

//constructor and basic accessor methods not shown here

}//end of class

A.1.5 DPInstance Class

//DP instance represents all the information necessary to
//build a complete state diagram for the DP instance

public class DPInstance {

ArrayList stateDecisionRewardTransformationTable;
private String operatorForTransition;

//e.g. "+" for sum transition, or "*" for mult transition
private String minOrMax; //min or max problem?
private State goalState;
private StateValueMap baseStatesWithValues;//store base states

//along with values

//The constructor creates a DP instance with no table entries.
//Add entries with add() method.
public DPInstance(State goal, StateValueMap bases) {
...
}

//Accessor methods not shown
...

void addTableEntry(DPInstanceTableEntry e){

A.1 Pseudocode of the DP2PN Module 345

stateDecisionRewardTransformationTable.add(e);
}

//The following is the central method where the BellmanNet
//is built and returned.
BellmanNet buildBellmanPNTopDown(String netName) {

//initialize place and transition counters
int sp=0; //for state places (not used for naming,

//only for graphical layout)
int ip=0; //for intermediate places (i.e. places

//not associated with a state)
int ep=0; //for enabling places(allow eval

//transitions to only fire once)
int st=0; //for evaluation transitions

//the type of operator ("+","*") is specified
//in the instance variable operatorForTransition

int mt=0; //for min transitions

StateSet statesBuilt = new StateSet();
//to keep track which states are already built
//in the Bellman Net

//create an empty Bellman net
BellmanNet bn=new BellmanNet(netName);

//build the goal state
Place goalPlace=new StatePlace(goalState.toString());
bn.addPlace(goalPlace);
statesBuilt.add(goalState);

LinkedList stateQueue = new LinkedList();
//initialize queue with the goal state
stateQueue.addLast(goalState);

//loop as long as there is something in the queue
while (stateQueue.size()>0) {
//dequeue the first state and make it the current state
//(it has already been built when it was discovered)
State currentState=(State) stateQueue.removeFirst();
if (!baseStatesWithValues.containsKey(currentState)) {

//regular state?
//count how many times currentState appears on left
//hand side of the table now
int stateAppearanceInTableCounter=0;
for(Iterator i

346 A Supplementary Material

=stateDecisionRewardTransformationTable.iterator();
i.hasNext();) {

DPInstanceTableEntry anEntry
= (DPInstanceTableEntry) i.next();

if (anEntry.getState().equals(currentState)) {
stateAppearanceInTableCounter++;

}
}//end of for
if (stateAppearanceInTableCounter>0) {

// Making sure that current state
// has successors. Flawed BellmanNets might have
// states that do not have successor states,
// but are not base states either.

mt++; //update the counter for min/max transitions
MTransition newMinMaxTransition

= new MTransition("mt"+mt,minOrMax);
newMinMaxTransition.setNumberOfArguments

(stateAppearanceInTableCounter);
newMinMaxTransition.addInscription();
bn.addTransition(newMinMaxTransition);

Arc arcFromMinMaxTransToState
=new Arc(newMinMaxTransition,

bn.getPlace(currentState.toString()),
"ordinary");

arcFromMinMaxTransToState.addInscription("y");
//y is output var. of min/max transition

bn.addArc(arcFromMinMaxTransToState);
}//end of if block making sure that currentState
//has successor states

}//end of if block making sure that currentState
//is not a base state
else { //currentState is a base state
double tokenValue

= (baseStatesWithValues.get(currentState));
//get a reference for the place:
Place basePlace=bn.getPlace(currentState.toString());
basePlace.addToInitialMarking(tokenValue);

}
//loop through through the left column of the table
int inputArcForMinMaxTransCounter=0;

//counter to label the arcs x1,x2,etc.
for(Iterator i

=stateDecisionRewardTransformationTable.iterator();
i.hasNext();) {

A.1 Pseudocode of the DP2PN Module 347

DPInstanceTableEntry currentEntry
=(DPInstanceTableEntry) i.next();

if (currentEntry.getState().equals(currentState)) {
//found the current state in the left column
ip++; //update counter for intermediate places
Place intermedPlace = new IntermediatePlace("p"+ip,

currentEntry.getDecision().toString());
bn.addPlace(intermedPlace);

Arc arcFromIntermedPlaceToMinMaxTrans
=new Arc(intermedPlace, //bn.getPlace("p"+ip),

bn.getTransition("mt"+mt),
"ordinary");

inputArcForMinMaxTransCounter++; //update arc counter
arcFromIntermedPlaceToMinMaxTrans.addInscription(

"x"+inputArcForMinMaxTransCounter);
bn.addArc(arcFromIntermedPlaceToMinMaxTrans);

st++; //update counter for E(val)-transition
ETransition evalTrans

=new ETransition("st"+st,
operatorForTransition,
currentEntry.getReward());

bn.addTransition(evalTrans);

Arc arcFromETransToIntermedPlace
=new Arc(evalTrans, //bn.getTransition("st"+st),

intermedPlace, //bn.getPlace("p"+ip),
"ordinary");

arcFromETransToIntermedPlace.addInscription("y");
//y is output var. of eval. transition

bn.addArc(arcFromETransToIntermedPlace);

//now make enabling places with a single black token
//as initial marking to allow eval transitions to
//only fire once
ep++; //update counter for enabling places
Place enablingPlace=new EnablingPlace("ep"+ep);
bn.addPlace(enablingPlace);

Arc arcFromEnablingPlaceToEvalTrans
=new Arc(enablingPlace,

evalTrans,
"ordinary");

bn.addArc(arcFromEnablingPlaceToEvalTrans);

348 A Supplementary Material

//make placeS for the newly found stateS and enqueue
//THEM, if THEY do not already exist
StateList destinationStates

= currentEntry.getNextStates();
State currentDestination;
//loop over all destination states now
int inputArcForEtransCounter=0;

//counter to label the arcs x1,x2,etc.
for(Iterator i2=destinationStates.iterator();

i2.hasNext();) {
currentDestination=(State) i2.next();
if(!statesBuilt.contains(currentDestination)) {
sp++; //update counter for state places
Place statePlace

=new StatePlace(currentDestination.toString());
bn.addPlace(statePlace);
statesBuilt.add(currentDestination);
//now enqueue it
stateQueue.addLast(currentDestination);

}
//make an arc (regardless whether state
//is new or not)
Arc doubleArcBetweenStateAndEtrans

=new Arc(
bn.getPlace(currentDestination.toString()),
evalTrans,
"double");

inputArcForEtransCounter++;
doubleArcBetweenStateAndEtrans.addInscription(

"x"+inputArcForEtransCounter);
bn.addArc(doubleArcBetweenStateAndEtrans);

}//end of for loop over destination states
//At the end of the above for-loop we know how many
//arcs go into the ETransition, so we can build its
//inscription now
evalTrans.setNumberOfVariables(

inputArcForEtransCounter);
evalTrans.addInscription();

}//end of if
}//end of for-loop over table entries

}//end of while

return bn;
}//end of buildBellmanPNTopDown() method

A.1 Pseudocode of the DP2PN Module 349

}//end of class

A.1.6 BellmanNet Class

class BellmanNet {

String title; //holds the title of the net
ArrayList placeList; //a list of Place objects
ArrayList transitionList; //a list of Transition objects
ArrayList arcList; //a list of Arc objects

//useful to have is an adjacency matrix. It can be calculated
//using the method calculateAdjacencyMatrix()
//the indices run from:
// 0,..,|transitionList|-1,|transitionList|,..,
// |transitionList|+|placeList|-1
//adjacencyMatrix[x][y]=1 means that there is an arc
//from x to y
int[][] adjacencyMatrix;

//An incidence matrix is used for the file I/O of Bellman nets
//(for output via the method toIncidenceMatrix())
//We use the instance variable incidenceMatrix to store the
//mere numbers. It can be calculated using the method
//calculateIncidenceMatrix()
//Columns are labeled with transitions, rows with places
int[][] incidenceMatrix;

ArrayList topologicallySortedTransitionList;

//constructor creates an initially empty BellmanNet
BellmanNet(String title) {}

//add a place
void addPlace(Place p) {

placeList.add(p);
}

//add a transition
void addTransition(Transition t) {

transitionList.add(t);
}

//add an arc

350 A Supplementary Material

void addArc(Arc a) {
arcList.add(a);

}

//get a place by index
Place getPlace(int index) {

return placeList.get(index);
}

//get a transition by index
Transition getTransition(int index) {

return transitionList.get(index);
}

//get a place by name
Place getPlace(String placeName) {

//iterate through placeList
for(Iterator i=placeList.iterator(); i.hasNext();){
Place currentPlace=(Place) i.next();
if (currentPlace.getName().equals(placeName)) {
return currentPlace;

}
}
return null; //not found

}

//get a transition by name
Transition getTransition(String transitionName) {

//iterate through transitionList
for(Iterator i=transitionList.iterator(); i.hasNext();){
Transition currentTransition=(Transition) i.next();
if (currentTransition.getName().equals(transitionName)) {
return currentTransition;

}
}
return null; //not found

}

//this helper method topologically sorts all the transitions
//from transitionList and puts the sorted list into
//topologicallySortedTransitionList.
void topologicallySortTransitions() {...}

void calculateAdjacencyMatrix() {...}

A.1 Pseudocode of the DP2PN Module 351

void calculateIncidenceMatrix() {...}

ArrayList getPresetIgnoreSelfLoopsAndEnablingPlaces
(NetNode node) {...}

ArrayList getPostsetIgnoreSelfLoops(NetNode node) {...}

//Convert the BellmanNet to a comma separated
//exportable format based on the incidence matrix.
String toIncidenceMatrix() {

calculateIncidenceMatrix(); //update the instance variable
//incidenceMatrix

String result;
//make the first line with transition names
for (Iterator j=transitionList.iterator(); j.hasNext();) {
result.append(j.next().getName());

}
//outer loop iterates over the places
for (Iterator i=placeList.iterator(); i.hasNext();) {
Place currentPlace= i.next();
if(!(currentPlace instanceof EnablingPlace)) {

//ignore enabling places
if(currentPlace instanceof StatePlace) {

result.append("s,");
}
else { //currentPlace is intermediate place

result.append("i,");
}
result.append(currentPlace.getName()); //append place

//name
//inner loop iterates over the transitions
for(int j=0; j<transitionList.size(); j++) {

result.append(incidenceMatrix
[placeList.indexOf(currentPlace)][j]);

}////end of inner for loop over the transitions
if(currentPlace instanceof StatePlace) {

//make the init entry for INIT/DEC column
//if currentPlace is a base state
if(currentPlace.getInitialMarking()!=null) {
result.append(currentPlace.getInitialMarking());

}
}
else { //currentPlace is intermediate place

//make the DEC entry for INIT/DEC column
//if cip has a decision entry

352 A Supplementary Material

if(currentPlace.getDecision()!=null) {
result.append(currentPlace.getDecision());

}
}

}//end of if
}//end of outer for loop over the places
//second to last line produces the transition types
for (Iterator j=transitionList.iterator(); j.hasNext();) {
Transition currentTransition=j.next();
if(currentTransition instanceof MTransition) {
result.append(currentTransition.getMinOrMaxDesignator());
}
else { //ETransition
result.append(currentTransition.getArithmeticOperator());
}

}
//last line produces the constants for ETransitions
for (Iterator j=transitionList.iterator(); j.hasNext();) {
Transition currentTransition=j.next();
if(currentTransition instanceof MTransition) {
//MTransitions do not have constants, leave blank

}
else { //ETransition
result.append(currentTransition.getConstantValue());

}
}
return result;

}

}//end of class

A.2 DP2PN System Files 353

A.2 DP2PN System Files

The system file Main1.txt is as follows.

///

//beginning of the fixed code Main1.txt for Main.java

///

public static void main(String[] args) throws IOException{

//set default value for name of logfile that records details

//about how the Bellman net is built

String outputFileName="buildBNlog.txt";

//determine the correct current working directory,

//so that it works for

//case 1: if this class is launched directly with "java" from within

//this directory (and therefore currentWorkingDir==user.dir)

//case 2: if this class is launched with

// ’java -cp thisDir classname’ from its parent directory

// or with

// ’rt.exec(java -cp thisDir classname)’ from a class located in

// the parent directory

final String subDirName="DP2PN"+problemName;

//needs to be hardcoded, no way to find out

//this name here, if called from parent dir

String currentWorkingDir=System.getProperty("user.dir");

//now append subDirName, if launched from parent dir

//which is (most likely) the case if currentWorkingDir does not end in

//subDirName

if(!currentWorkingDir.endsWith(subDirName)) {

currentWorkingDir=currentWorkingDir+"/"+subDirName;

}

//create an output directory for the Bellman net

File newDir=new File(currentWorkingDir+"/"+problemName+"BN");

newDir.mkdir(); //make the directory

//Out writes to screen and file at the same time

//to create a log file

Out.pw=new PrintWriter(new FileWriter(

new File(currentWorkingDir+"/"+problemName+"BN"+"/"

+outputFileName)));

//Out5 writes to file

//to create the incidence matrix of the Bellman net in .CSV format

//the file is written into the subdirectory "PN2Java"+problemName

Out5.pw=new PrintWriter(new FileWriter(

new File(currentWorkingDir+"/"+problemName+"BN"+"/"

+problemName+"BN.csv")));

Out.putln("Starting...");

//

//end of the fixed code Main1.txt for Main.java

//

The system file Main2.txt is as follows.

///

//beginning of the fixed code Main3.txt for Main.java

///

//determine the successor states of current state

StateList successorStates=calculateTransformation(currentState,d);

//determine the transition weights given the current state

ArrayList transitionWeights

=calculateTransitionWeights(currentState,d);

//generate table entry

DPInstanceTableEntry entry = new DPInstanceTableEntry(

currentState,

d,

calculateReward(currentState,d),

successorStates,

transitionWeights);

theInstance.addTableEntry(entry);

//enqueue unseen destination states by iterating over successorStates

//for TSP only one iteration in the following loop

//for MatMul two iterations

for(Iterator it2=successorStates.iterator(); it2.hasNext();) {

State currentSuccessor = (State) it2.next();

if(!statesSeen.contains(currentSuccessor)) {

354 A Supplementary Material

stateQueue.addLast(currentSuccessor);

statesSeen.add(currentSuccessor);//mark state as seen

}

}

} //end of for loop over the decisions

} //end of if

else { //base state

//do nothing

}

} //end of loop once queue is empty

//print the instance

theInstance.print();

Out.putln();

//build the Bellman PN from the instance

//if there are no transition weights, use the ordinary method

if(!(theInstance.hasTransitionWeights())) {

BellmanNet bn=theInstance.buildBellmanPNTopDown(problemName);

Out5.putln(bn.toIncidenceMatrix()); //write the BellmanNet as incidence

//matrix.

}

else { //there are transition weights, use the newly crafted method

BellmanNet bn=theInstance.buildBellmanPNTopDownWithWeights(problemName);

Out5.putln(bn.toIncidenceMatrix()); //write the BellmanNet as incidence

//matrix.

}

//finish the output files

Out.putln("End.");

Out.pw.close(); //close the output stream (the log file)

Out5.pw.close(); //close the 5th output stream (the BellmanNet

//incidence matrix in .CSV)

}//end of main() method

//

//end of the fixed code Main3.txt for Main.java

//

The system file Main3.txt is as follows.

///

//beginning of the fixed code Main3.txt for Main.java

///

//determine the successor states of current state

StateList successorStates=calculateTransformation(currentState,d);

//determine the transition weights given the current state

ArrayList transitionWeights

=calculateTransitionWeights(currentState,d);

//generate table entry

DPInstanceTableEntry entry = new DPInstanceTableEntry(

currentState,

d,

calculateReward(currentState,d),

successorStates,

transitionWeights);

theInstance.addTableEntry(entry);

//enqueue unseen destination states by iterating over successorStates

//for TSP only one iteration in the following loop

//for MatMul two iterations

for(Iterator it2=successorStates.iterator(); it2.hasNext();) {

State currentSuccessor = (State) it2.next();

if(!statesSeen.contains(currentSuccessor)) {

stateQueue.addLast(currentSuccessor);

statesSeen.add(currentSuccessor);//mark state as seen

}

}

} //end of for loop over the decisions

} //end of if

else { //base state

//do nothing

}

} //end of loop once queue is empty

//print the instance

theInstance.print();

Out.putln();

//build the Bellman PN from the instance

//if there are no transition weights, use the ordinary method

if(!(theInstance.hasTransitionWeights())) {

BellmanNet bn=theInstance.buildBellmanPNTopDown(problemName);

Out5.putln(bn.toIncidenceMatrix()); //write the BellmanNet as incidence

//matrix.

A.2 DP2PN System Files 355

}

else { //there are transition weights, use the newly crafted method

BellmanNet bn=theInstance.buildBellmanPNTopDownWithWeights(problemName);

Out5.putln(bn.toIncidenceMatrix()); //write the BellmanNet as incidence

//matrix.

}

//finish the output files

Out.putln("End.");

Out.pw.close(); //close the output stream (the log file)

Out5.pw.close(); //close the 5th output stream (the BellmanNet

//incidence matrix in .CSV)

}//end of main() method

//

//end of the fixed code Main3.txt for Main.java

//

356 A Supplementary Material

A.3 Output from PN2XML

In this section, the XML output from the PN2XML module is shown. In
the form presented, such files (with the suffix .xrn) can be imported into
the PN software system Renew version 1.6 [32]. Renew has the capabilities
to display PNs (and thus the Bellman nets produced) graphically and also
to simulate PNs. Unfortunately, the graphical layout is not optimized and
looks rather crude for large PNs. Very often however, Renew’s automatic net
layout feature (when choosing the Automatic Net Layout option of the Layout
menu) rearranges the nodes of a PN nicely, especially for smaller nets. For
space reasons, we include only the XML file for SPA1 (see Sect. 9.4.2).

A.3.1 High-Level Bellman Net XML file for SPA1

<?xml version="1.0"?>

<!DOCTYPE net SYSTEM "http://www.renew.de/xrn1.dtd">

<net id="N" type="hlnet">

<place id="I1">

<graphics>

<size w="20" h="20"/>

<offset x="30" y="150"/>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I2" type="name">

<text>(0)</text>

<graphics>

<size w="20" h="16"/>

<textsize size="12"/>

<offset x="0" y="15"/>

<fillcolor><transparent/></fillcolor>

<pencolor><transparent/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

</annotation>

</place>

<place id="I3">

<graphics>

<size w="20" h="20"/>

<offset x="30" y="240"/>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I4" type="name">

<text>p1</text>

<graphics>

<size w="20" h="16"/>

<textsize size="12"/>

<offset x="0" y="15"/>

<fillcolor><transparent/></fillcolor>

<pencolor><transparent/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

</annotation>

</place>

<place id="I5">

<graphics>

<size w="20" h="20"/>

<offset x="30" y="330"/>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I6" type="name">

<text>(1)</text>

<graphics>

<size w="20" h="16"/>

<textsize size="12"/>

<offset x="0" y="15"/>

<fillcolor><transparent/></fillcolor>

<pencolor><transparent/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

</annotation>

A.3 Output from PN2XML 357

<annotation id="I7" type="initialmarking">

<text>0.0</text>

</annotation>

</place>

<place id="I14">

<graphics>

<size w="15" h="15"/>

<offset x="210" y="30"/>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I15" type="name">

<text>ep1</text>

<graphics>

<size w="20" h="16"/>

<textsize size="12"/>

<offset x="0" y="15"/>

<fillcolor><transparent/></fillcolor>

<pencolor><transparent/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

</annotation>

<annotation id="I16" type="initialmarking">

<text>[]</text>

</annotation>

</place>

<transition id="I8">

<graphics>

<size w="20" h="20"/>

<offset x="120" y="60"/>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I9" type="name">

<text>mt1</text>

<graphics>

<size w="20" h="16"/>

<textsize size="12"/>

<offset x="0" y="15"/>

<fillcolor><transparent/></fillcolor>

<pencolor><transparent/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

</annotation>

<annotation id="I10" type="expression">

<text>y=x1</text>

</annotation>

</transition>

<transition id="I11">

<graphics>

<size w="20" h="20"/>

<offset x="210" y="60"/>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I12" type="name">

<text>st1</text>

<graphics>

<size w="20" h="16"/>

<textsize size="12"/>

<offset x="0" y="15"/>

<fillcolor><transparent/></fillcolor>

<pencolor><transparent/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

</annotation>

<annotation id="I13" type="expression">

<text>y=x1+3.0</text>

</annotation>

</transition>

<arc id="I17" source="I14" target="I11" type="ordinary">

<graphics>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

</arc>

<arc id="I18" source="I8" target="I1" type="ordinary">

<graphics>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I19" type="expression">

<text>y</text>

</annotation>

358 A Supplementary Material

</arc>

<arc id="I20" source="I3" target="I8" type="ordinary">

<graphics>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I21" type="expression">

<text>x1</text>

</annotation>

</arc>

<arc id="I22" source="I11" target="I3" type="ordinary">

<graphics>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I23" type="expression">

<text>y</text>

</annotation>

</arc>

<arc id="I24" source="I5" target="I11" type="double">

<graphics>

<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>

<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>

<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>

</graphics>

<annotation id="I25" type="expression">

<text>x1</text>

</annotation>

</arc>

<annotation id="A1" type="name">

<text>spa1</text>

</annotation>

</net>

B

User Guide for DP2PN2Solver

B.1 System Requirements for DP2PN2Solver

The DP2PN2Solver tool should run on any computer system on which a java
compiler and runtime systems (javac and java) is installed. (We have only
tested the tool using JDK 1.4.2 and JDK 1.5.) To obtain numerical solutions
in a spreadsheet or graphically, a spreadsheet system (such as Excel) or a
Petri net tool (such as Renew) is also required.

B.1.1 Java Environment

Make sure that JDK 1.4.2 or 1.5 is installed on your system. (DP2PN2Solver
might also work with earlier and later versions, but this has not been tested.)
You may download it for free from http://www.java.sun.com

DP2PN2Solver needs the compiler “javac”, so having merely a Java Run-
time Environment (JRE) installed will not be sufficient. The compiler “javac”
should be universally accessible, so make sure to include the directory where
the binary of “javac” resides to your current path.

For example, on Windows XP you might add the following to your path
by going through the sequence “Start—Control Panel—System—Advanced—
Environment Variables” and then under “System variables” (or “User vari-
ables” if you are not the admin), edit the variable “path” by prepending the
prefix c:\j2sdk1.4.2_01\bin; to the path. (We assumed that the binary
javac.exe is located in c:\j2sdk1.4.2_01\bin.)

You can easily check whether the compiler “javac” is universally accessible
by typing javac on the command line from any directory of your choice; if you
always get a response that explains the usage of “javac” then the path is set
correctly; if you get a response that “javac” is not recognized as a command,
then the path is not set correctly.

360 B User Guide for DP2PN2Solver

B.2 Obtaining DP2PN2Solver

The DP2PN2Solver software can be downloaded from the following websites:

http://natsci.eckerd.edu/~mauchh/Research/DP2PN2Solver

http://www2.hawaii.edu/~icl/DP2PN2Solver

free of charge. Version 6 of the software comes as a zipped file named
DP2NP2SolverV6.zip. (Over time, the version numbers may have progressed.)

When unzipped, the folder will contain:

1. four folders (named bellman net, BN2SolverV6, DP2PNv6, and pn2java)
that contain the software and sample programs,

2. a read me file that contains special notices (regarding rights, disclaimers,
etc.), including a reference to the book, and

3. a UserGuide that provides usage and reference information, explaining
how to install and use the DP2PN2Solver tool and giving some imple-
mentation details.

The UserGuide includes instructions for compiling gDPS source programs into
Bellman nets and for obtaining numerical solutions form these Bellman nets.
Suggestions for debugging gDPS programs using the tool, as well as a list of
diagnostic error messages, are also included.

(Note: This Appendix duplicates what is in the UserGuide.)

B.3 Installation of DP2PN2Solver

This section describes how and where to deploy the files to your computer.

B.3.1 Deployment of the Files

Take the downloaded ZIP file and unzip it into a directory of your choice
(the installation directory). Make sure that when you unzip and extract, you
preserve the pathname information for the files (check your zip utility for
that) — what you definitely do not want to happen is that after unzipping
all files are in a single flat directory.

B.4 Running DP2PN2Solver 361

Throughout these instructions let us assume that the installation direc-
tory that contains the software is named DP2PN2Solver. (You may pick an-
other name if you wish.) In Windows systems, the software might have been
installed to C:\Program Files\DP2PN2Solver, for example. Note that this
manual also applies to UNIX-like systems; the DOS/Windows specific sepa-
ration character ’\’ (backslash) will have to be read as ’/’ (slash) instead,
and the DOS/Windows typical path separation character ’;’ (semicolon) has
to be read as ’:’ (colon).

After the unzip is completed the directory DP2PN2Solver contains the
following four subdirectories

bellman_net
BN2SolverV5
DP2BNv5
pn2java

The directories bellman_net and pn2java are Java packages that contain
parts of the implementation. While they might be of interest to developers,
they need not concern ordinary users of DP2PN2Solver.

The directory DP2BNv5 contains the software for the module DP2PN; this
is also the directory where you have to place your gDPS source files.

The directory BN2SolverV5 contains the software for the module
PN2Solver; this is also the directory where you have to place your Bellman
net source file, which you probably created using the DP2PN module.

B.4 Running DP2PN2Solver

This section describes how to invoke DP2PN2Solver’s two major modules
DP2PN and PN2Solver.

B.4.1 The DP2PN Module

Preparations

Switch to the directory

DP2PN2Solver\DP2BNv5

Make sure you have your gDPS source file ready to be parsed in this direc-
tory. Remember, the gDPS source file is the one that contains all the informa-
tion of your DP problem instance. Usually it needs to be created manually by
the DP modeler. (With the exception of integer linear programming problems,
for which a preprocessor exists.) You will notice that there are already some
example gDPS source files present in this directory, ending with the suffix
“.dp”, e.g.

362 B User Guide for DP2PN2Solver

act.dp
...
tspAlt.dp

For details on how to create a gDPS source file, please refer to Chap. 3
and Chap. 4.

The following other files in this directory (ending in .class and in .txt)
make up the DP parser and should not be modified:

Main1.txt
Main2.txt
Main3.txt
State.txt
CodeCreator.class
DPFEdata.class
DPspecificationParser$1.class
DPspecificationParser$JJCalls.class
DPspecificationParser$LookaheadSuccess.class
DPspecificationParser.class
DPspecificationParserConstants.class
DPspecificationParserTokenManager.class
FileCopy.class
Out.class
Out2.class
Out3.class
ParseException.class
SimpleCharStream.class
StreamGobbler.class
SymbolTableEntry.class
Token.class
TokenMgrError.class

Invocation of DP2PN

The gDPS2BN parser is invoked as follows, where the name of the gDPS
source specification file (e.g. mcm.dp) is provided as a command line argument;
optionally, a name for the parser log file can be specified.

java DPspecificationParser mcm.dp [parserLogFileName]

As an alternative, on DOS/Windows systems the batch file DP2BN.bat can
simplify the invocation:

DP2BN mcm.dp [parserLogFileName]

B.4 Running DP2PN2Solver 363

Consequences of Invocation

This will create a directory for your problem instance, named DP2PNXXX
where XXX is the name given in the “NAME” section of the gDPS specifica-
tion, e.g. BST, MCM, etc. The contents of this new directory are explained
below; we will from now on assume that the name of the problem instance is
MCM.

Note that the name of the gDPS source specification file does not neces-
sarily need to match the name given in the “NAME” section of this gDPS
specification (e.g. MCM), but it seems good practice to match them anyway.

The parser log file is stored by default in

DP2PN2Solver\DP2BNv5\dpParserLog.txt

but the log file name can be changed to something else by specifying
[parserLogFileName] in the invocation launch.

Now look at the directory

DP2PN2Solver\DP2BNv5\DP2PNMCM

which contains some intermediate data files that might be useful for debug-
ging, if you encountered a problem parsing or compiling your gDPS source
file. Otherwise they are of no further interest to the normal user. If the gDPS
source is parsed, compiled, and successfully translated into a Bellman net,
then the subdirectory MCMBN (XXXBN in general) will hold the output, i.e. the
Bellman net, and a log file of the Bellman net building process in:

DP2PN2Solver\DP2BNv5\DP2PNMCM\MCMBN
MCMBN.csv
DP2PNlog.txt

The first file MCMBN.csv is the desired Bellman net, which can be fed into
the PN2Solver software module.

This concludes the use of the DP2PN module. Starting from a gDPS
source, we have produced a Bellman net. The next section deals with the
use of the PN2Solver module, that automatically produces solver code from
a Bellman net.

B.4.2 The PN2Solver Module

Preparations

The output of DP2PN can and should be used as the input for PN2Solver,
so now manually copy or move the Bellman net you just produced (e.g.
MCMBN.csv) to the directory

DP2PN2Solver\BN2SolverV5

364 B User Guide for DP2PN2Solver

which already contains twelve .class files that make up the Bellman net
parser. So before you invoke the Bellman net parser, the directory will look
like this:

DP2PN2Solver\BN2SolverV5
BNspecificationParser.class
BNspecificationParserConstants.class
BNspecificationParserTokenManager.class
Out.class
Out2.class
Out3.class
Out4.class
Out6.class
ParseException.class
SimpleCharStream.class
Token.class
TokenMgrError.class
MCMBN.csv

In our distribution, there may already be additional sample Bellman net
files in the directory, all having a name of the form XXXBN.csv.

Invocation of PN2Solver

After establishing the Bellman net file MCMBN.csv in

DP2PN2Solver\BN2SolverV5

and changing to this directory we are ready to invoke the BN2Solver module;
we provide the name of the Bellman net file MCMBN.csv as a command line
argument as follows (do not omit the classpath information, otherwise you
will get an error message):

java -classpath .;.. BNspecificationParser MCMBN.csv

As an alternative, on DOS/Windows systems the batch file BN2Solver.bat
can simplify the invocation:

BN2Solver MCMBN.csv

Consequences of Invocation

This produces a directory named MCMSolverCode that contains three solvers
where each solver uses a different technology to produce a final result. In

DP2PN2Solver\BN2SolverV5\MCMSolverCode

the first solver is

MCM.csv

B.5 Creation of the gDPS Source File 365

This is the speadsheet solver; load this file into a spreadsheet application
such as Microsoft Excel, update the cells, and you get the solution to the DP
problem instance.

The second solver is

MCM.xrn

This is the Petri net solver; import this file (which is in PNML standard
format) into a PN application such as Renew, simulate the net, and you get
the solution to the DP problem instance.

The third solver is the Java solver

MCMJavaSolver.java

The Java Solver file is automatically compiled to

MCMJavaSolver.class

and executed by the invocation from Section B.4.2 and the resulting solution
tree of the problem instance can be found in the file

MCMSolutionTree.txt

This file is the desired output providing not only the optimal function value
but also the optimal decision policy for the DP problem instance.

The file

PN2SolverLog.txt

contains a log of the transformation process from a Bellman net to the solver
files.

If for some reason you would like to trace the automated compilation and
execution of the JavaSolver, see the file

runJavaSolver.bat

which contains the necessary steps to compile and launch the JavaSolver:

javac -classpath ..\.. MCMJavaSolver.java
rem for running, do not forget to include the current directory
java -classpath .;..\.. MCMJavaSolver

B.5 Creation of the gDPS Source File

A gDPS source file is a plain text file ending in the suffix .dp. It can be
created and modified with a simple text editor. Details on how to create a
gDPS source files are given in Chapter 3. Numerous gDPS examples are shown
in Chapter 4. We refer the reader to these chapters.

366 B User Guide for DP2PN2Solver

B.6 Debugging gDPS Code

B.6.1 Omission of Base Cases

Suppose in INTKSSCA, instead of correctly specifying the base cases as

DPFE_BASE_CONDITIONS:
f(k,s) = 0.0 WHEN (s==0);
f(k,s) = 99990.0 WHEN ((k==M1)&&(s>0));

we accidentally omit the base cases (2, 0) and (3, 0) by specifying

DPFE_BASE_CONDITIONS:
f(k,s) = 0.0 WHEN ((k==M1)&&(s==0));
f(k,s) = 99990.0 WHEN ((k==M1)&&(s>0));

then there is no feasible decision to take from the states (2, 0) and (3, 0) and
hence the recursive process terminates, yet (2, 0) and (3, 0) are not declared
as base states.

The DP2PN module will not report an error in this case, and produce a
PN. (This is not a bug of the DP2PN module, which has performed its job of
translating the gDPS source into a PN — the error becomes apparent after
performing consistency checks on the PN.) In the resulting PN, the states
(2, 0) and (3, 0) are source places without a proper initial marking.

One way to detect this, would be to examine the intermediate PN produced
by the DP2PN module.

Another way of getting valuable hints for debugging is to examine the
file buildBNlog.txt which is located in the same directory as the resulting
Bellman net. The file contains the base states and their initial values and also
the state-decision-reward-transformation-table, which shows the states (2, 0)
and (3, 0) appearing as successor states in the transformation column, but not
as states from which transformations originate (i.e. they do not appear in the
state-column). It also shows that the states (2, 0) and (3, 0) are not among
the base states.

If it is attempted to invoke BN2Solver upon the flawed PN, for the Java
solver we get a bunch of error messages, e.g.

errStream>intKSscaSolverCode\intKSscaJavaSolver.java:44:
cannot resolve symbol

errStream>symbol : variable I41
errStream>location: class intKSscaJavaSolver
errStream> operandList.add(I41);
errStream> ^
errStream>intKSscaSolverCode\intKSscaJavaSolver.java:47:

cannot resolve symbol
errStream>symbol : variable I41
errStream>location: class intKSscaJavaSolver
errStream> I41.getValue()+210.0,
errStream> ^

B.6 Debugging gDPS Code 367

These error messages do not provide a good starting point for debug-
ging. The debugging process should be initiated one step earlier, as mentioned
above.

B.6.2 Common Mistakes

Space Before Minus

The DP2PN module’s lexicographical analysis scans negative numbers as to-
kens, which sometimes leads to an ambiguity when subtraction expressions
are desired and there is no whitespace between the minus operator and the
expression to be subtracted. In this case an error is reported. For example,

TRANSFORMATION_FUNCTION: t1(m,dummy)
=(m-1);

causes an error that looks something like:

Exception in thread "main" ParseException:
Encountered "-1" at line 29, column 32.

Was expecting one of:
")" ...
"[" ...
"," ...
"+" ...
"-" ...
"*" ...
"/" ...
"%" ...
"(" ...

Avoid this error by adding a space after the minus sign, as in

TRANSFORMATION_FUNCTION: t1(m,dummy)
=(m- 1);

and now it works.

Forgotten Braces in Singleton

If a set expression involves a singleton, it is easy to forget the curly braces
around the single element. But those are necessary to correctly identify the
expression as a set. For example, with the integer decision variable d,

TRANSFORMATION_FUNCTION:
tLeft(k,S,i,j,d) = (k+1, S SETMINUS d, i, begintime[d]);
tRight(k,S,i,j,d) = (k+1, S SETMINUS d, endtime[d], j);

368 B User Guide for DP2PN2Solver

causes the following error when attempting to construct the Bellman net:

errStream>DP2PNact2\act2Main.java:239: cannot resolve symbol
errStream>symbol : constructor NodeSet (Decision)
errStream>location: class NodeSet
errStream> NodeSet _globalSet2=new NodeSet(d);
errStream> ^
errStream>DP2PNact2\act2Main.java:246: cannot resolve symbol
errStream>symbol : constructor NodeSet (Decision)
errStream>location: class NodeSet
errStream> NodeSet _globalSet3=new NodeSet(d);
errStream> ^
errStream>[total 1502ms]
errStream>2 errors

The error is not caught by the syntax parser, because if d were a set
variable, syntactically there would be nothing wrong. The correct formulation
would be:

TRANSFORMATION_FUNCTION:
tLeft(k,S,i,j,d) = (k+1, S SETMINUS {d}, i, begintime[d]);
tRight(k,S,i,j,d) = (k+1, S SETMINUS {d}, endtime[d], j);

B.7 Error Messages of DP2PN2Solver

In addition to obvious syntax errors, the following error messages are reported
by the DP2PN module.

• Illegal type in state section. This error is reported if a component of the
state is not of type int or Set.

• Illegal type of decisionSetGlobalFunctionalArgument. This error is reported
if a variable used in the decision set is not of type int or Set.

• A DPFE_BASE_CONDITION functional does not match the one declared in
GOAL section. This error is reported if there is a mismatch of the func-
tional name used in the goal statement and the one used in a base condi-
tion.

• Base section functional does not match the one declared in GOAL section.
This error is reported if there is a mismatch of the functional name used
in the goal statement and the one used in a base statement.

• DPFE functional does not match the one declared in GOAL section. This
error is reported if there is a mismatch of the functional name used in the
goal statement and the one used in the DPFE.

• Decision variable in DPFE does not match the one declared after
DECISION_VARIABLE. This error is reported if there is a mismatch of the
decision variable name declared in the decision variable section and the
one used in the DPFE.

B.7 Error Messages of DP2PN2Solver 369

• Decision set identifier in DPFE does not match the one declared after
DECISION_SPACE. This error is reported if there is a mismatch of the de-
cision set identifier used in the decision space section and the one used in
the DPFE.

• More than one reward functional in DPFE. The current version of
DP2PN2Solver requires exactly one reward functional to present in the
DPFE. This error is reported if there is more than one reward functional.

• Recursive functional mismatch in DPFE. There must be exactly one name
that is used as the functional in the recurrence relation. This error is
reported if there is a mismatch of the functional names used within the
DPFE.

• In REWARD_FUNCTION section, functional identifier does not match the one
in DPFE. This error is reported if there is a mismatch of the functional
name used for the reward function in the DPFE and the one used in the
reward function section.

• Illegal type of rewardFunctionGlobalFunctionalArgument. This error is
reported if a variable used in the reward function section is not of type
int or Set.

• In TRANSFORMATION_FUNCTION a functional appears that is not present in
DPFE. This error is reported if a functional name is used in the transfor-
mation function section, but not in the DPFE.

• Illegal type of transformationFunctionGlobalFunctionalArgument. This
error is reported if a variable used in the transformation function section
is not of type int or Set.

• Illegal type of transformationFunctionSetGlobalFunctionalArgument. This
error is reported if a variable used in the transformation function section
is a state coordinate of illegal type.

• In TRANSITION_WEIGHTS a functional appears that is not present in DPFE.
All weight functions defined in the transition weight section must be used
in the DPFE.

References

1. Richard E. Bellman. Dynamic Programming. Princeton University Press,
Princeton, New Jersey, 1957.

2. Richard E. Bellman. On the approximation of curves by line segments using
dynamic programming. Communications of the ACM, 4(6):284, 1961.

3. Richard E. Bellman. An Introduction to Artificial Intelligence: Can Computers
Think? Boyd and Fraser, San Francisco, California, 1978.

4. Richard E. Bellman and Stuart E. Dreyfus. Applied Dynamic Programming.
Princeton University Press, Princeton, New Jersey, 1962.

5. Alan W. Biermann and Dietolf Ramm. Great Ideas in Computer Science with
Java. MIT Press, Cambridge, MA, 2001.

6. Jonathan Billington, Søren Christensen, Kees van Hee, Ekkart Kindler, Olaf
Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber.
The Petri net markup language: Concepts, technology, and tools. In W.M.P.
van der Aalst and E. Best, editors, Proceedings of the 24th International Con-
ference on Applications and Theory of Petri Nets (ICATPN 2003), Eindhoven,
The Netherlands, June 23-27, 2003 — Volume 2679 of Lecture Notes in Com-
puter Science / Wil M. P. van der Aalst and Eike Best (Eds.), volume 2679 of
LNCS, pages 483–505. Springer-Verlag, June 2003.

7. Allan Borodin, Morten N. Nielsen, and Charles Rackoff. (Incremental) priority
algorithms. In Proc. 13th Annual ACM-SIAM Symp. on Discrete Algorithms,
San Francisco, pages 752–761, 2002.

8. Richard Bronson and Govindasami Naadimuthu. Schaum’s Outline of Theory
and Problems of Operations Research. McGraw-Hill, New York, New York, 2nd
edition, 1997.

9. Kevin Q. Brown. Dynamic programming in computer science. Technical Report
CMU-CS-79-106, Carnegie-Mellon University, February 1979.

10. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. McGraw-Hill Book Company, Boston, 2nd edition,
2001.

11. Sharon Curtis. A relational approach to optimization problems. Technical
monograph PRG-122, Oxford University Computing Laboratory, 1996.

12. Eric V. Denardo. Dynamic Programming — Models and Applications. Prentice
Hall, Englewood Cliffs, New Jersey, 1982.

372 References

13. Stuart E. Dreyfus and Averill M. Law. The Art and Theory of Dynamic Pro-
gramming. Academic Press, New York, 1977.

14. Hartmann J. Genrich. Predicate/transition nets. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, Part I, Proceedings of an Advanced Course, Bad
Honnef, Germany, September 8–19, 1986, volume 254 of LNCS, pages 207–247,
Bad Honnef, Germany, 1987. Springer-Verlag.

15. Hartmann J. Genrich and K. Lautenbach. System modelling with high-level
Petri nets. Theoretical Computer Science, 13:109–136, 1981.

16. Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1st edition, 1997.

17. Rachel Harrison and Celia A. Glass. Dynamic programming in a pure functional
language. In Proceedings of the 1993 ACM/SIGAPP Symposium on Applied
Computing, pages 179–186. ACM Press, 1993.

18. N.A.J. Hastings. Dynamic Programming with Management Applications.
Butterworths, London, England, 1973.

19. N.A.J. Hastings. DYNACODE Dynamic Programming Systems Handbook. Man-
agement Center, University of Bradford, Bradford, England, 1974.

20. Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations
Research. McGraw-Hill Publishing Company, New York, 5th edition, 1990.

21. Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations
Research. McGraw-Hill Publishing Company, Boston, 7th edition, 2001.

22. Ellis Horowitz, Sartaj Sahni, and Sanguthevar Rajasekaran. Computer Algo-
rithms/C++. Computer Science Press, New York, New York, 1996.

23. T.C. Hu. Combinatorial Algorithms. Addison-Wesley, Reading, 1982.
24. Matthias Jantzen. Complexity of place/transition nets. In W. Brauer, W. Reisig,

and G. Rozenberg, editors, Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, Part I, Proceedings of an Advanced Course, Bad
Honnef, Germany, September 8–19, 1986, volume 254 of LNCS, pages 413–434,
Bad Honnef, Germany, 1987. Springer-Verlag.

25. Kurt Jensen. Coloured Petri nets and the invariant-method. Theoretical Com-
puter Science, 14:317–336, 1981.

26. Kurt Jensen. Coloured Petri nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, Advances in Petri Nets
1986, Part I, Proceedings of an Advanced Course, Bad Honnef, Germany, Sep-
tember 8–19, 1986, volume 254 of LNCS, pages 248–299, Bad Honnef, Germany,
1987. Springer-Verlag.

27. Kurt Jensen. Coloured Petri Nets, Vol. 1. Springer-Verlag, Berlin, Germany,
1992.

28. Brian W. Kernighan. Optimal sequential partitions of graphs. Journal of the
ACM, 18(1):34–40, 1971.

29. Jeffrey H. Kingston. Algorithms and Data Structures: Design, Correctness,
Analysis. Addison Wesley Longman, Harlow, England, 2nd edition, 1998.

30. Jon Kleinberg and Éva Tardos. Algorithm Design. Pearson Addison-Wesley,
Boston, 2006.

31. Olaf Kummer. Introduction to Petri nets and reference nets. Sozionik aktuell,
1:7–16, 2001.

32. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew User Guide
Release 1.6. Department of Informatics, University of Hamburg, Hamburg,
Germany, 2002.

References 373

33. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael
Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An Extensible Editor
and Simulation Engine for Petri Nets: Renew. In Jordi Cortadella and Wolfgang
Reisig, editors, Applications and Theory of Petri Nets 2004. 25th International
Conference, ICATPN 2004, Bologna, Italy, June 2004. Proceedings, volume 3099
of Lecture Notes in Computer Science, pages 484–493, Heidelberg, June 2004.
Springer.

34. K. Lautenbach and A. Pagnoni. Invariance and duality in predicate/transition
nets. Arbeitspapier der GMD 132, Gesellschaft für Math. und Datenverar-
beitung mbH, Bonn, Germany, February 1985.

35. Art Lew. Computer Science: A Mathematical Introduction. Prentice-Hall Inter-
national, Englewood Cliffs, New Jersey, 1985.

36. Art Lew. N degrees of separation: Influences of dynamic programming on com-
puter science. J. Math. Analysis and Applications, 249(1):232–242, 2000.

37. Art Lew. A Petri net model for discrete dynamic programming. In Proceedings
of the 9th Bellman Continuum: International Workshop on Uncertain Systems
and Soft Computing, Beijing, China, July 24–27, 2002, pages 16–21, 2002.

38. Art Lew. Canonical greedy algorithms and dynamic programming. Journal of
Control and Cybernetics, 2006.

39. Art Lew and R. Halverson, Jr. A FCCM for dataflow (spreadsheet) programs.
In Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM ’95). IEEE Computer Society, 1995.

40. Art Lew and Holger Mauch. Solving integer dynamic programming using Petri
nets. In Proceedings of the Multiconference on Computational Engineering in
Systems Applications (CESA), Lille, France, July 9–11, 2003, 2003.

41. Art Lew and Holger Mauch. Bellman nets: A Petri net model and tool for
dynamic programming. In Le Thi Hoai An and Pham Dinh Tao, editors,
Proceedings of Modelling, Computation and Optimization in Information Sys-
tems and Management Sciences (MCO), Metz, France, July 1–3, 2004, pages
241–248, Metz, France, 2004. Hermes Science Publishing Limited.

42. William J. Masek and Michael S. Paterson. A faster algorithm computing string
edit distances. Journal of Computer and System Sciences, 20:18–31, 1980.

43. Holger Mauch. A Petri net representation for dynamic programming problems
in management applications. In Proceedings of the 37th Hawaii International
Conference on System Sciences (HICSS2004), Waikoloa, Hawaii, January 5–8,
2004, pages 72–80. IEEE Computer Society, 2004.

44. Holger Mauch. Automated Translation of Dynamic Programming Problems to
Java code and their Solution via an Intermediate Petri Net Representation. PhD
thesis, University of Hawaii at Manoa, 2005.

45. Holger Mauch. DP2PN2Solver: A flexible dynamic programming solver software
tool. Journal of Control and Cybernetics, 2006.

46. Boleslaw Mikolajczak and John T. Rumbut, Jr. Distributed dynamic program-
ming using concurrent object-orientedness with actors visualized by high-level
Petri nets. Computers and Mathematics with Applications, 37(11–12):23–34,
1999.

47. Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

48. G. L. Nemhauser. Introduction to Dynamic Programming. Wiley, New York,
1966.

374 References

49. Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

50. John F. Raffensperger and Pascal Richard. Implementing dynamic programs in
spreadsheets. INFORMS Transactions on Education, 5(2), January 2005.

51. Wolfgang Reisig. Petri Nets: an Introduction. Springer-Verlag, Berlin, Germany,
1985.

52. P. Richard. Modelling integer linear programs with Petri nets. RAIRO -
Recherche Opérationnelle - Operations Research, 34(3):305–312, Jul-Sep 2000.

53. Kenneth H. Rosen. Discrete Mathematics and Its Applications. WCB/McGraw-
Hill, Boston, MA, fourth edition, 1999.

54. William Sacco, Wayne Copes, Clifford Sloyer, and Robert Stark. Dynamic Pro-
gramming — An Elegant Problem Solver. Janson Publications, Inc., Providence,
Rhode Island, 1987.

55. Alfonso T. Sarmiento. P4 dynamic programming solver. http://www.geocities.
com/p4software/.

56. Moshe Sniedovich. Use of APL in operations research: An interactive dynamic
programming model. APL Quote Quad, 12(1):291–297, 1981.

57. Moshe Sniedovich. Dynamic Programming. Marcel Dekker, Inc., New York,
New York, 1992.

58. Moshe Sniedovich. OR/MS games: 2. the tower of hanoi problem. INFORMS
Transactions on Education, 3(1):34–51, 2002.

59. Moshe Sniedovich. Dijkstra’s algorithm revisited: the DP connexion. Journal
of Control and Cybernetics, 2006.

60. Harald Störrle. An evaluation of high-end tools for Petri nets. Technical Report
9802, Institute for Computer Science, Ludwig-Maximilians-University Munich,
Munich, Germany, 1998.

61. Harvey M. Wagner and Thomson M. Whitin. Dynamic version of the economic
lot size model. Management Science, 5(1):89–96, October 1958.

62. Michael Weber and Ekkart Kindler. The Petri net markup language. In Hartmut
Ehrig, Wolfgang Reisig, Grzegorz Rozenberg, and Herbert Weber, editors, Petri
Net Technology for Communication Based Systems, volume 2472 of LNCS, pages
124–144. Springer-Verlag, November 2003.

63. Wayne L. Winston. Operations Research: Applications and Algorithms. Brooks/
Cole — Thomson Learning, Pacific Grove, CA, 4th edition, 2004.

64. Wayne L. Winston and Munirpallam Venkataramanan. Introduction to Math-
ematical Programming: Applications and Algorithms. Brooks/Cole – Thomson
Learning, Pacific Grove, CA, 4th edition, 2002.

Index

activated transition, 206, 208
Activity Selection Problem, 64
acyclic Petri net, 209
add-in, 330
all-pairs shortest paths, 29, 50
ALLOT, 49
allotment, 47, 80
Alphabetic Radix-Code Tree Problem,

51
AMPL, 4
annotation, 207, 285
APSP, 50
APSPFW, 50
ARC, 51
arc, 9
artificial intelligence, 78
ASMBAL, 52
Assembly Line Balancing, 52
ASSIGN, 54
assignment problem, 46, 47, 54
attribute, 207, 285

B-transition, 216
Backus-Naur form, 117
base case, 9
base condition, 12
base state, 9
base state place, 215
Bellman, 5
Bellman net, 4, 205, 211, 247

high-level, 215, 251, 288
low-level, 212

Bellman-Ford algorithm, 28, 30

big-O, 10
binary search tree, 55
binary tree, 47, 94
bioinformatics, 48
black token, 216
BNF, 117
boundary condition, 9
bounded Petri net, 209
branch, 9
BST, 55
buildBNlog.txt, 252
builder module, 259

Calculation Object, 255
characteristic vector, 77
clustering problem, 46
code generation, 38
color, 208
colored Petri net, 207, 208
comma separated values, 252
comment, in gDPS, 106
complexity, 22, 31
convergence, 22
cost, 11
COV, 57
COV as KSINT Problem, 70
covering, 57, 70
covering problem, 46
CPN, 208
CSV, 252
curse of dimensionality, 31
curve fitting, 88

dataflow architecture, 335

376 Index

dead, 209
dead Petri net, 209
dead transition, 209
DEADLINE, 57
Deadline Scheduling Problem, 57
deadlocked Petri net, 209
decision, 3, 5, 6, 11
decision cost, 11
decision space, 11
designated-source DPFE, 10
Dijkstra’s algorithm, 29
dimensionality, 31, 32, 334
directed graph, 9, 17, 205
Discounted Profits Problem, 58
distribution, 80
distribution problem, 46, 55
divide-and-conquer, 47
double arc, 216
DP, 3
DP2PN, 259, 339, 353
DP2PN2Solver, 103, 247, 329, 359
DPFE, 4, 8, 11

nonserial, 47
proper, 34, 329
second-order, 47

DPP, 58
dynamic programming, 3, 5
dynamic programming functional

equation, 4, 8

E-transition, 216
edge, 9
Edit Distance Problem, 59
EDP, 59
enabled transition, 206, 208
enabling place, 215
enumeration, 6, 22
Excel, 281, 321, 331

FIB, 60
Fibonacci, 62
Fibonacci Recurrence Relation, 60
Fibonnacci, 34, 36
fire, transition, 207, 209
fixed-time model, 23
fixed-time models, 19
FLOWSHOP, 61
Flowshop Problem, 61
Floyd-Warshall algorithm, 30

functional equation, 8

game, 78
gDPS, 103

BNF, 117
Decision Space Section, 111
Decision Variable Section, 110
DPFE Base Section, 112
DPFE Section, 113
General Functions Section, 109
General Variables Section, 106
Goal Section, 111
Name Section, 106
Reward Function Section, 115
Set Variables Section, 108
State Type Section, 110
Transformation Function Section, 115
Transition Weight Section, 116

gDPS2PN, 247, 259
general DP specification, see gDPS
generation, 17, 30
generation of code, 38
goal place, 215
goal state, 11
graph, 9, 17, 23, 205
greedy, 15, 48, 51, 78
greedy algorithm, 32

canonical, 32
noncanonical, 32

HANOI, 62
Hanoi, 33
heuristic, 15, 32
high-level Bellman net, 215, 251, 288
high-level Petri net, 207
HLBN, 215, 251, 288
horizon, 19
Huffman code tree, 51

ILP, 63
ILPKNAP, 64
incidence matrix, 251, 252, 254, 271
Integer Knapsack as ILP Problem, 64
Integer Knapsack Problem, 70
Integer Linear Programming, 63, 255

Preprocessor, 255
integer linear programming, 47
intermediate place, 215
intertemporal optimization problem, 58

Index 377

Interval Scheduling Problem, 64
intractable, 31
intractable problem, 99, 334
INTVL, 64
INVENT, 66
inventory, 66, 83
Inventory Problem, 66
inventory problem, 47
inverted linear search, 14
INVEST, 67
investment, 67
investment problem, 47
INVESTWLV, 68

Java, 103, 106
Jug-Pouring Problem , 82

k-bounded Petri net, 209
knapsack, 46
Knapsack Problem, 69
KS01, 69
KSCOV, 70
KSINT, 49, 70

label, 285
LCS, 71
least squares, 89
linear programming, 3, 46, 47
linear search, 12, 14, 81
LINGO, 4
LINSRC, 73
live Petri net, 209
live transition, 209
LLBN, 212
Longest Common Subsequence, 71
Longest Simple Path, 74
LOT, 73
Lot Size Problem, 73
low-level Bellman net, 212
low-level Petri net, 206
LSP, 74

M-transition, 217
marking, 206

reachable, 209
markup language, 207
matching problem, 54
Matrix Chain Multiplication, 75
maximal link, 75

MCM, 75
Method S, 12, 13
Method W, 13
Minimum Maximum Problem, 75
Minimum Weight Spanning Tree

Problem, 77
MINMAX, 75, 79
multiplicative DP, 80
multistage decision process, 69, 77
multistage graph, 86
MWST, 77

net, 206
next-state, 9, 11, 115, 205, 261, 275
NIM, 78
node, 9
NodeSet, 108
nonoptimization, 48, 62
nonoptimization problems, 33
nonserial, 65
nonserial DPFE, 9, 47

O (big-O), 10
objective function, 6, 11
occur, transition, 209
ODP, 49, 80
operator, 11
Optimal Allotment Problem, 49
Optimal Assignment Problem, 54
Optimal Binary Search Tree, 55
Optimal Covering Problem, 57
Optimal Distribution Problem, 80
Optimal Investment Problem, 67
Optimal Linear Search Problem, 12, 73
Optimal Permutation Problem, 81
Optimal Production Problem, 83
Optimal Selection Problem, 94
optimal substructure property, 5, 74
optimization problem, 6
optimum, 6
order, of DPFE, 9

pagination, 92
parser module, 259
partitioning problem, 46
path state, 21
path-state, 75
PERM, 81
permutation, 13, 45, 54, 81

378 Index

persistent Petri net, 209
Petri net, 4, 5, 37, 205

colored, 207, 208
high-level, 207
low-level, 206
markup language, 207
place/transition net, 206
predicate/transition net, 207, 208
tool, 210

place, 206
place/transition net, 206
PN2Java, 247
PN2Spreadsheet, 247
PN2XML, 247
PNML, 207
policy, 10
postset, 206
POUR, 82
pouring, 82
predicate/transition net, 207, 208
preset, 206
Principle of Optimality, 5
priority algorithm, 32
probabilistic DP, 32, 47, 50, 68, 79, 83,

84
Process Scheduling Problem, 97
PROD, 83
PRODRAP, 84
production, 68, 83, 84
production problem, 47
profit, 11
Program Segmentation Problem, 91
proper DPFE, 34, 329, 334
proper LLBN, 214
PrTN, 208

radix code tree, 51
rank, of partition, 46
RDP, 84
reachable marking, 209
reconstruction, 10, 17
recurrence relation, 22, 34, 48, 60, 62
recursion, 36
recursive functional equation, 8
regression, 89
Reject Allowances Problem, 84
relaxation, 22, 29
reliability, 84
Reliability Design Problem, 84

Renew, 210, 324
REPLACE, 85
replacement, 85
Replacement Problem, 85
replacement problem, 47
reverse arc, 216
reward function, 11, 115
routing, 45

safe Petri net, 209
scheduling, 46, 57, 61, 64, 87, 97
scheduling problem, 46
SCP, 86
SDRT, 36
second-order DPFE, 47
SEEK, 87
Seek Disk Scheduling Problem, 87
SEGLINE, 88
Segmented Curve Fitting , 88
SEGPAGE, 91
SELECT, 94
selection problem, 46
self-loop, in graph, 25
self-loop, in Petri net, 216
separable function, strongly, 7
separable function, weakly, 8
sequencing, 45
sequencing problem, 46
set notation, in gDPS, 108
set selection problem, 94
shortest path, 17
shortest path problem, 23
Shortest Path, Acyclic Graph, 95
Shortest Path, Cyclic Graph, 95
shortest processing time, 15
simplex, 3, 330
solution tree, 277, 293, 322
solver code, 38, 42
SPA, 24, 45, 95
spanning tree, 46, 77
SPC, 95

fixed time, 27
relaxation, 28
successive approximation, 25

spreadsheet, 38, 281, 321, 335
SPT, 15, 97
stage, 19
Stagecoach Problem, 86
state, 11

Index 379

state place, 215
state space, 11
state transition system, 9
State-Decision-Reward-Transformation

Table, 36
string processing, 48
strongly separable function, 7
successive approximation, 22

tableaux, 3
tape storage, 82
tape storage problem, 15
target-state DPFE, 10
temporal, 58
terminal state, 9, 11
text processing, 48
token, 206
tool, Petri net, 210
tower, 62
Tower of Hanoi, 33
Tower of Hanoi Problem, 62
transformation function, 11, 115
transition, 206

activated, 206, 208
enabled, 206, 208
fire, 207, 209
occur, 209

transition function, 11, 115

transition weights, 66
TRANSPO, 98
transportation, 98
Transportation Problem, 98
transportation problem, 47
Traveling Salesman Problem, 29, 31, 99
tree

binary, 47, 94, 222
binary search, 55
Huffman code, 51
K-ary, 211
radix code, 51
spanning, 46, 77

TreeSet, 108
TSP, 99

user guide, 359

vertex, 9
virtual time, 19, 20

weakly separable function, 8
weights, 48
weights, of transition, 12
Winning in Las Vegas, 68

XML, 207, 324
XRN, 288, 324

0000
0000

