
Get started now with
Microsoft’s new cross-platform plug-in

for rich internet applications

Christian Wenz

Silverlight
Essential

Covers 1.0 with

1.1 Preview

Essential Silverlight

Essential Silverlight

Christian Wenz

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Essential Silverlight
by Christian Wenz

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Copy Editor: Laurel R.T. Ruma
Production Editor: Laurel R.T. Ruma

Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:
September 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Essential Silverlight, the image of a shore bird, and related trade dress are trademarks
of O’Reilly Media, Inc.

Microsoft, MSDN, Windows, the .NET logo, Visual Studio, Visual C#, Visual Basic, IntelliSense, and
Silverlight are registered trademarks or trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of trade-
mark claims, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN-10: 0-596-51611-8
ISBN-13: 978-0-596-51611-6

http://safari.oreilly.com

Table of Contents

Preface . ix

Part I. Introduction

1. WPF Basics . 3
Of Vectors and Pixels 3
WPF 4
XAML 7
Further Reading 8

2. Getting Started With Silverlight . 9
About Silverlight 9
Setting Up a Silverlight Development System 11
A First Silverlight Example 14
Further Reading 25

3. Silverlight Tools . 27
Why Tools? 27
XML Editors 27
Vector Graphics Editors 28
Silverlight IDEs 29
Further Reading 30

Part II. Declarative Silverlight

4. XAML Basics . 37
XAML 37
Using Text 37
Using Shapes 43
Positioning Elements 50

v

Using Images 53
Using Brushes 54
For Further Reading 60

5. Interaction and Event Handling . 61
Interactive Silverlight 61
Events and Event Handlers 62
Mouse Events 66
Keyboard Events 74
For Further Reading 78

6. Transformations and Animations . 79
Transforming and Animating Content 79
Transformations 79
Animations 86
For Further Reading 102

7. Multimedia . 103
Silverlight’s Media Support 103
Preparing Multimedia Data 103
MediaElement 109
For Further Reading 129

Part III. Programmatic Silverlight

8. Accessing Silverlight Content From JavaScript 133
JavaScript, the Browser Language 133
Accessing the Plug-in 133
Communicating with the Plug-in 135
For Further Reading 145

9. Special Silverlight JavaScript APIs . 147
Advanced JavaScript APIs 147
Dynamically Downloading Content 147
Using Additional Fonts 152
Further Reading 156

10. ASP.NET 2.0, ASP.NET AJAX, and Silverlight 157
The ASP.NET Futures 157
Installing the ASP.NET Futures 157
Embedding XAML 158
Embedding Media Content 164

vi | Table of Contents

For Further Reading 168

11. Silverlight 1.1 Preview . 169
Silverlight’s Future 169
.NET Integration 170
Further New Features 174
Further Reading 175

Appendix: Silverlight JavaScript Reference 177

Table of Contents | vii

Preface

I would describe myself as a web guy. When I first accessed the World Wide Web
sometime around 1994, I immediately fell in love with the possibilities and technical
challenges. From then on, I almost exclusively worked on web projects and did very
little programming apart from that. In all those years since then, I have seen technol-
ogies come and go, but some of them stayed. For instance, I remember starting to work
with ASP and PHP simultaneously in about 1997 or 1998, and finally moving away
from ASP because it was so limited. I returned to the ASP world when the first betas of
ASP.NET were released, and my interest heightened when ASP.NET 2.0 came up, and
it was off to the races again. (Today, I am happily using both.) I appreciate that my
JavaScript knowledge is in demand again, thanks to one new term: Ajax.

One of the technologies I really developed a love/hate relationship with was Macro-
media Flash (now Adobe Flash). I really like that the technology can do so much more
than HTML and JavaScript, including everything you want to call “Ajax.” I am also
happy that the browser plugin has such an enormous market share. I really, really hate
the Flash editor. The designers I work with are very happy with it, but from a developer’s
perspective, I change into explicit lyrics mode whenever I have to use it. This is probably
no surprise: Flash is historically a designer’s tool and has just recently begun to appeal
to developers. I am a terrible designer, so probably I do not deserve better.

But still, Flash is a very nice technology, since it combines advanced graphical features
with powerful coding support. So I was more than happy when I heard that Microsoft
was working on a similar technology: Silverlight. (No one at Microsoft will ever tell you
that there is a connection between Silverlight and Flash, and that’s probably true, but
it serves to point out similarities and differences.) Knowing that Microsoft has always
been a very developer-friendly company, I expected the features of Flash, with a better
development experience (at least for me). And, to be honest, the first steps are really
promising. Most programming is done in trusted Visual Studio, and there are designer
tools as well. Microsoft has still a long way to go, both on the tool itself and also with
regards to the market share, but the first steps are done, and I am looking forward to
seeing the next steps.

ix

Who This Book Is For
There are two target audiences for this book: developers who would like to familiarize
themselves with the Silverlight technology, and designers who would like to see what
Silverlight has to offer. My focus, however, is on the developer’s side. This book does
not try to provide a complete reference to Silverlight. It is true to the concept of the
Essentials series: you will get Silverlight up and running soon, see the most important
concepts, and will find lots of code examples.

There are currently two Silverlight versions available, 1.0 (released on September 4,
2007), and 1.1 (currently a alpha version). This book covers Silverlight 1.0, and only
provides a short preview to the upcoming version (which will come out sometime in
2008). Knowledge of Windows Presentation Foundation (WPF) is not required, but if
you have already worked with it, you may already know some Silverlight basics. From
a programming point of view, JavaScript is the language of choice. If you have not
worked with that language before, refer to the O’Reilly catalog for some excellent
choices.

How This Book Is Organized
Part 1 contains background information on Silverlight and related technologies.

Chapter 1
Introduces Windows Presentation Foundation (WPF) and how it relates to Silver-
light.

Chapter 2
Goes through all required installation steps and creates your first Silverlight ap-
plication.

Chapter 3
Reviews software tools that facilitate creating Silverlight content.

Part 2 focuses on the results you can achieve with the declarative means of Silverlight;
but some JavaScript coding will also be covered.

Chapter 4
Features the most important elements of Microsoft’s WPF markup language.

Chapter 5
Explains how Silverlight applications may become interactive by processing events.

Chapter 6
Exposes two different approaches to making Silverlight animations dynamic.

Chapter 7
Shows how to use audio and video data in Silverlight applications, including Java-
Script access.

x | Preface

Part 3 focuses on development aspects.

Chapter 8
Describes how to access Silverlight content from JavaScript.

Chapter 9
Shows advanced JavaScript possibilities, including the ability to make HTTP re-
quests.

Chapter 10
Reviews how two technologies—ASP.NET AJAX and Silverlight—combine their
powers.

Chapter 11
Looks at the upcoming Silverlight version 1.1.

Appendix A
Provides a list of properties and methods the Silverlight plugin exposes.

What You Need to Use This Book
For developing Silverlight content, you only need a text editor. It is much more con-
venient is to use Visual Studio 2005 or the (free) Visual Web Developer Express Edition
2005. Chapter 3 covers these and additional tools. Chapter 2 guides you through all
necessary installation steps both for developing and for viewing Silverlight content.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Preface | xi

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Essential Silverlight by Christian Wenz.
Copyright 2007 O’Reilly Media, Inc., 978-0-596-516-116.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

xii | Preface

http://safari.oreilly.com

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596516116

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Re-
illy Network, see our web site at:

http://www.oreilly.com

Acknowledgments
I have expressed on various occasions that technical book authors should not thank
their partners/kids/dogs and pretend that writing a book put their private and social
life at risk. When reading prefaces of fiction or memoirs you never hear such com-
plaints, but in technical books they seem to be all too common. I have written several
dozens of those and always managed to juggle work and play.

This time, however, I understood. This book was written on an extremely tough sched-
ule so that it could be published in time with the Silverlight release. So, I had to work
crazy hours and neglect some things and some people. (Not that I haven’t done that in
the past, but this time it was worse than usual.) Therefore, thanks to all who suffered
in one way or another, you know who you are.

I also have to thank my editor at O’Reilly, John Osborn, for joining forces with me
again. Andrew Savikas got me set up with DocBook and also tried to convince me that
writing a book in XML is not too bad (I still want my word processor back). Keith
Fahlgren set up the Subversion repository, implemented the automated PDF build, and
also cleaned up my DocBook mess from time to time. Laurel Ruma copy edited the
text, and I don’t know what she cursed more: my writing or my XML. Yvonne Schimmer
provided me with video material for the chapter on multimedia and supported the rest
of the book as well.

Finally, I do have to thank my excellent technical reviewers: WPF guru Rouven Haban
and vector graphics and Flash expert Tobias Hauser. Thank you for your hard work,
and should you find any errors left, I introduced them intentionally right before the
book was sent to the printer.

Preface | xiii

http://www.oreilly.com/catalog/9780596516116
http://www.oreilly.com

PART I

Introduction

CHAPTER 1

WPF Basics

Of Vectors and Pixels
Most graphics nowadays are pixel-based. Every point in the graphic is represented by
one pixel. This is a really good solution for most scenarios, including digital photog-
raphy (where you really want to maintain every single information the camera is
“seeing”), but there are shortcomings too. For instance, have a look at Figure 1-1, where
you see a simple text created in Microsoft Paint. This text is pixel based. In Fig-
ure 1-2, you see the same text, but this time the image width and height have been
enlarged. Do you see the stairway effect? So when you make a pixel-based image larger,
you lose quality.

That’s obvious, of course. Imagine, for example, that an 100x100 pixel image is resized
to 200x200 pixels. Instead of 10,000 pixels, we how have 40,000 pixels. So, where we
had a 1x1 pixel in the original image, we now have 2x2 pixels. Paint is using a very
simple algorithm to resize images: if the graphic becomes larger, just clone the pixels.
This then creates the stairway effect.

Professional software like Adobe Photoshop comes with several quite
sophisticated algorithms to make the quality loss when resizing images
less severe (especially when making them smaller); however, there still
is a notable effect when increasing an image’s dimensions.

There is an alternative approach: vector-based images. Every element on an image is a
geometrical object: a line, a circle, a polygon, a curve, just to name a few. The main
advantage is that there is no quality loss when resizing the image: a circle just changes
its width, but that’s all. There is no stairway effect, since it is still a circle and not, as
with a pixel image, a set of pixel ordered in a circular fashion.

Obviously, not every image can be represented as vectors. Think again of photos―it is
theoretically possible to try to find geometrical elements and patterns in a portrait or
in a landscape (there even are algorithms for that!), but it is virtually impossible to create
an exact representation of a photo by just using vectors. However, in computing there

3

are several areas where vectors make real sense. One such area is fonts. See Fig-
ure 1-3 for a typical Windows font (coincidentally the same font used in Figure 1-1 and
Figure 1-2). Most fonts are vectors, so there is no quality difference whether you use
them in 8pt, 10pt, 12pt, or 100pt. If you type a letter in a word processor and then
change the font size to something really high, you still get smooth edges. Once you
paste a text into a pixel-based imaging software like Paint, you lose the vector infor-
mation and are back to pixels.

Another area prone for vector use is user interface (UI). The standardized UIs are, most
of the time, vector-compatible. Most of them need to be resizeable, so the content
should remain intact if the user chooses the width of the height of a window. However,
in reality, very few UIs have been really based on vectors.

WPF
Some time ago the folks at Microsoft sat down and designed the next generation of UI
technology for their Vista operating system (names were different back then, of course).
The system should be vector-based and use XML. The final system is called Windows
Presentation Foundation (WPF).

Figure 1-1. A text in Microsoft Paint

4 | Chapter 1: WPF Basics

Vector Graphics and XML
There were (and still are) several other projects trying to create vector graphics (and
maybe some animation or business logic support) using XML. One of the oldest is the
World Wide Web Consortium’s (W3C) Scalable Vector Graphics (SVG). SVG graphics
are created using XML, support scripting, and are supported by most modern browsers
except Internet Explorer. However, SVG has not reached mainstream market penetra-
tion yet, so it is only successful in some niche markets, including mobile phones and
cartography.

Another related approach comes from Adobe. Flex uses yet another XML dialect (called
MXML) to dynamically create Flash content.

WPF is an integral part of the .NET Framework 3.0, which is installed by default on
Windows Vista and is an additional download for Windows XP and Windows 2003.
Other acronyms that are part of .NET 3.0 include:

WCF (Windows Communication Foundation)
Communication subsystem

Figure 1-2. The same text, increased in size

WPF | 5

WCS (Windows CardSpace)
Digital identity subsystem

WF (Windows Workflow Foundation)
Workflow subsystem

WPF applications either run in the browser or as standalone desktop applications. Both
scenarios require that .NET Framework 3.0 or higher is available. Currently, most WPF
applications are standalone because Vista does not have a high market penetration
and .NET 3.0 is quite a hefty download. Therefore, Microsoft created a similar tech-
nology targeted at the browser world: Silverlight. Let’s first look at WPF to get some
more background information.

The main focus of WPF lies on vector graphics, but pixelated graphics are supported
as well. WPF also supports multimedia content in forms of audio and video data. One
of the highlight features is the support for text, which includes some typographical
specialities like justified text, kerning, and ligatures.

It is certainly no surprise that all coding (in terms of business logic) is done using .NET
languages like C# and Visual Basic. The .NET Framework—or to be exact, the CLR
(Common Language Runtime)—defines every possible type of element in a WPF ap-
plication and enables a good development experience in Visual Studio (think Intelli-

Figure 1-3. A vector-based Windows font

6 | Chapter 1: WPF Basics

Sense) and rapid prototyping. Also, the API access to XAML offers more than XAML
itself, so in order to get the most out of XAML/Silverlight, you need to familiarize
yourself with both markup and code.

There are already several WPF prototype applications, including several “virtual news-
papers” that showcase text flow, such as the Forbes.com reader (see Figure 1-4;
download it at http://www.forbes.com/partners/microsoft/newsreader/). The next ver-
sion of the Yahoo! messenger will also feature a slick WPF interface.

XAML
But didn’t the previous section just mention that the WPF content is created using
XML? Indeed, there is a special format (or XML dialect) for that purpose: XAML (eX-
tensible Application Markup Language). It is used for the UI markup in WPF applica-
tions. The WPF runtime then interprets this markup, displays the UI and also integrates
the additional business logic code (which is, as aforementioned, written in a .NET
language like C# or VB).

Microsoft also provides several tools to develop XAML content. You can use Visual
Studio, but for a more visual experience, Expression Blend (part of the Microsoft Ex-
pression Suite) is an interesting option. The .NET Framework 3.0 SDK also contains

Figure 1-4. The Forbes news reader uses WPF

XAML | 7

http://www.forbes.com/partners/microsoft/newsreader/

an application called XAMLPad that features a split view: You see both XAML markup
and the actual WYSIWYG appearance of the code at the same time. Figure 1-5 shows
XAMLPad in action.

When creating Silverlight content, you don’t have to worry about WPF because
the .NET Framework 3.0 is not required to develop or view Silverlight content. How-
ever, you should familiarize yourself a bit with XAML, since Silverlight supports a
subset of XAML to create the UI. Therefore, Chapter 4 will introduce you to the most
important XAML elements that are supported by Silverlight.

Further Reading
Programming WPF (http://www.oreilly.com/catalog/9780596510374/index.html) by
Chris Sells and Ian Griffith (O’Reilly)

Figure 1-5. XAMLPad shows both XAML and the visual output

8 | Chapter 1: WPF Basics

http://www.oreilly.com/catalog/9780596510374/index.html
http://www.oreilly.com/catalog/9780596510374/index.html

CHAPTER 2

Getting Started With Silverlight

About Silverlight
Some people refer to Microsoft’s Silverlight technology as a “Flash killer,” but I’m not
sure whether that is really true. However, the similarities are striking. Both Adobe Flash
(formerly Macromedia Flash) and Silverlight come as browser plugins. Both support
vector graphics, audio and video playback, animations, and scripting support.

The technology basis is different. Flash uses a semi-open binary format, Silverlight is
based on WPF. Before it was called Silverlight, the technology was codenamed WPF/
E (Windows Presentation Foundation Everywhere). And thanks to good browser sup-
port, Silverlight can really be run everywhere, at least in theory.

In practice, the penetration of the browser plugin is a key issue. At the time of this
writing, Silverlight plugins are available for the Windows platform (no surprise here)
and support the two big players, Microsoft Internet Explorer and Mozilla Firefox. Also,
a Mac OS X plugin exists that targets Safari and Mozilla Firefox on the Apple platform.
According to Microsoft, other platforms were investigated, but given that Windows
has such a high market share in terms of desktop operating systems and Mac OS X is
number two on that list, these browsers were given priority.

Silverlight needs Windows XP or higher to run; the 1.0 version might, at some point,
be updated to target Windows 2000. Opera support is also planned to be part of a
future release; it is currently the third most used browser and has a relatively small but
very loyal user base.

9

The Mono project (http://www.mono-project.com/), renowned for its
open source implementation of .NET, is working on an open source
Silverlight port that targets the Linux platform (and the Firefox browser
there). This project is called Moonlight (see http://www.mono-
project.com/Moonlight for a sneak peek). http://www.mono-project.com/
MoonlightShots also shows some up-to-date screenshots of those efforts
(see Figure 2-1). Microsoft has also announced that it is teaming with
Novell to support the Moonlight project and bring Silverlight to Linux.

But what exactly is Silverlight, apart from a browser plugin provider? The heart of the
plugin is the graphics subsystem, which supports a certain subset of WPF (see Chap-
ter 4 for details). It also includes the codes responsible for displaying audio and video
content (see Chapter 7 for more information on including multimedia content).

The architecture of Silverlight is quite complex (see http://msdn2.microsoft.com/en-us/
library/bb404713.aspx for an overview), but it can be broken down into big chunks.
The presentation system takes care of everything UI, including animation, text render-
ing, and audio/video playback. The plugin itself integrates into the browser so that the
content can be shown, as well as accessed using the JavaScript DOM. Finally, using
some JavaScript code (or, optimally, the ASP.NET AJAX framework), Silverlight ap-
plications can be enriched to access server APIs like web services. Figure 2-2 shows the

Figure 2-1. Some Moonlight screenshots

10 | Chapter 2: Getting Started With Silverlight

http://www.mono-project.com/
http://www.mono-project.com/Moonlight
http://www.mono-project.com/Moonlight
http://www.mono-project.com/MoonlightShots
http://www.mono-project.com/MoonlightShots
http://msdn2.microsoft.com/en-us/library/bb404713.aspx
http://msdn2.microsoft.com/en-us/library/bb404713.aspx

architecture. Silverlight 1.1 will further extend this and offer a partial .NET Framework
integration right into Silverlight.

Setting Up a Silverlight Development System
For the programming part of Silverlight, a text editor would suffice, actually, but it is
by far more productive if you use a “real” development environment. The most obvious
choice is to use some of Microsoft’s offerings. From a code perspective, Visual Studio
2005 is currently the best choice for developing Silverlight 1.0 content. Both the full
versions (Standard Edition, Professional Edition, or Team Suite) and the free Visual
Web Developer Express Edition work. If you can use a paid version, you will get project
template support, so that’s preferable. We will use Visual Studio 2005 Standard Edition
throughout this book. Whenever there are differences to the free Express Edition, this
will be especially noted so those users don’t miss out on any important information.

There are no special prerequisites for installing Visual Studio or Visual Web Developer
apart from using Windows XP or higher. You do not even need a web server, as the
IDE comes with one! However, if you can, you may want to install Microsoft’s IIS
(Internet Information Services). They are hidden in the control panel, under Software
(Vista: Programs), where you can turn Windows features on and off (see Figure 2-2).

When installing Visual Studio 2005, make sure that you select the
Visual Web Developer option (see Figure 2-3). Otherwise, the web editor will not be
part of your IDE, which you need to create web sites since Silverlight is a web technol-
ogy, whereas WPF is a desktop technology. If you want to use Visual Studio 2005
Express Edition, you can download a web-based installer at http://msdn.microsoft.com/
vstudio/express/vwd/download/.

Whatever version of Visual Studio you install, you should apply any available service
packs, right away. (As time of writing this, Service Pack 1 was the most current one.)
Windows Vista users must install a special Vista update patch as well. During instal-
lation, you’ll get a notice that there is a known problem with running the software on
Vista, and the solution is to install all available service packs and patches (see Fig-
ure 2-4).

Probably the most convenient way to get up-to-date regarding software patches for
Microsoft products is the built-in Windows Update mechanism. Microsoft Update is
an extended version of that service. Windows Update only gives you patches for Win-
dows and core Windows components like Internet Explorer, but Microsoft Update also
patches other Microsoft products, including Office, Visual Studio, and SQL Server (see
Figure 2-5).

Activating Microsoft Update depends on which Windows edition you are using. For
versions prior to Windows Vista, just go to the update web site (http://update.micro
soft.com/microsoftupdate/), which will install the feature. If you are using Windows
Vista, launch Windows Update from the start menu and then choose the

Setting Up a Silverlight Development System | 11

http://msdn.microsoft.com/vstudio/express/vwd/download/
http://msdn.microsoft.com/vstudio/express/vwd/download/
http://update.microsoft.com/microsoftupdate/
http://update.microsoft.com/microsoftupdate/

Get updates for more products link (see Figure 2-6). The next time you search for up-
dates, you will also get patches for Visual Studio (and other installed Microsoft
software).

After installing Visual Studio 2005 Service Pack 1, Vista users need to
run Microsoft Update again, to get a special Visual Studio update for
their operating system.

For Windows Vista users, this is unfortunately not the end of the work to get Visual
Studio running. When you launch the software (of course only after installing the up-
dates), you will get the notice from that warns you that you need administrator
privileges to have access to all Visual Studio features (see Figure 2-7). So if you can,
right-click on the start menu shortcut to Visual Studio and select
Run as Administrator (see Figure 2-8). If your system does not allow that or if you do

Figure 2-2. Installing IIS

12 | Chapter 2: Getting Started With Silverlight

not want to run software with full privileges, Visual Studio will still work, however
some features (including debugging) will not work.

Once the IDE is up and running, it is time to make it Silverlight-aware. For both Sil-
verlight 1.0 and 1.1, Microsoft is providing SDKs. We are using the 1.0 version here
(see Figure 2-9). The final version of SIlverlight 1.0 SDK is available in the Microsoft
download center at http://www.microsoft.com/downloads/details.aspx?Family
Id=C72F125F-A6F6-4F4E-A11D-6942C9BA1834&displaylang=en. It installs both
samples and documentation, and also offers to install a Visual Studio 2005 template.
If you accept that (which you really should do!), Visual Studio gets a new C# web site
project template section for Silverlight (see Figure 2-10). Starting with a template like
this really facilitates all subsequent steps, since a web site based on these templates
comes with a lot of helper code so you don’t have to type it all.

You need Visual Studio 2005 to install the templates. However, Visual
Web Developer cannot use them, but in Chapter 10 you will find an-
other convenient way that saves you quite some typing while setting up
a Silverlight page.

Figure 2-3. Make sure you install Visual Web Developer as part of Visual Studio 2005

Setting Up a Silverlight Development System | 13

http://www.microsoft.com/downloads/details.aspx?FamilyId=C72F125F-A6F6-4F4E-A11D-6942C9BA1834&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=C72F125F-A6F6-4F4E-A11D-6942C9BA1834&displaylang=en

Now you are ready to create Silverlight content, at least in a code editor. For some
other, more WYSIWYG choices, refer to Chapter 3.

If you are already using Visual Studio 2008 and want Silverlight Java-
Script IntelliSense, the CodePlex project (http://www.codeplex.com/in
tellisense) provides with that functionality.

A First Silverlight Example
First of all, we need to setup a Silverlight project. Thanks to the Silverlight SDK’s Visual
Studio template, this is a relatively easy step. If you are using Visual Web Developer
Express Edition, you don’t have the luxury to use a project, so you need to create all
files manually. Probably the best way is to download the book’s samples from http://
www.oreilly.com/catalog/9780596516116 and start off with the files there.

In Visual Studio, choose File/New Project (not File/New Web Site!), and open up the
Visual C# node (see Figure 2-10). There, you will find a
Silverlight Javascript Application entry (ignore that JavaScript is not capped correctly).

Figure 2-4. Running Visual Studio 2005 on Windows Vista requires some extra work

14 | Chapter 2: Getting Started With Silverlight

http://www.codeplex.com/intellisense
http://www.codeplex.com/intellisense
http://www.oreilly.com/catalog/9780596516116
http://www.oreilly.com/catalog/9780596516116

Throughout this book, the application that will be created here is the basis for all ex-
amples. We chose to call it Silverlight, you can of course also choose another name.
By default, the project uses the built-in development of Visual Studio and assigns a
random port. This port will be 12345 throughout the book, but all examples of course
also work on other free ports and also when using the IIS instead.

The web site that the Silverlight template creates initially consists of the following five
files:

Default.html
An HTML page that contains markup to load Silverlight content

Default.html.js
JavaScript code that loads Silverlight content

Silverlight.js
A JavaScript helper library that is used by the Default.html.js file

Scene.xaml
A sample XAML file

Figure 2-5. Switch to Microsoft Update to get more than just Windows updates

A First Silverlight Example | 15

Scene.xaml.js
JavaScript “code-behind” file for the XAML sample

On one of my systems, I kept getting strange error messages stating that
Visual Studio could not access the Default.html.js file. I later found out
that the guilty party was my antivirus software. By default, Windows
does not show file extensions, so Default.html.js shows as De
fault.html. Because a JavaScript file may contain malicious code (espe-
cially if run locally), some viruses use this technique and my antivirus
software wanted to protect me from that danger. All I could do at that
point was move my Silverlight development into a secured environment
and disable the resident shield of my antivirus software.

First of all, open the Default.html file and run the solutions (F5 for debugging mode,
Ctrl-F5 for release mode). A browser window will open, but instead of fancy Silverlight
content, you will get a message stating that Silverlight needs to be installed. (If you have
already installed Silverlight, you will directly see the content, of course.) Figure 2-11
shows how this looks, regardless of what supported browser and operating system you
are using.

Figure 2-6. Microsoft Update offers you more updates, including those for Visual Studio

16 | Chapter 2: Getting Started With Silverlight

The plugin comes as an installation program; Figure 2-12 shows the Windows version.
You may need to restart your browser afterward. After installing Silverlight, the content
will appear, as Figure 2-13 shows.

Before you dive deeper into the world of Silverlight, let’s have a closer look at the files
that came with the template. We will not look at the XAML file (and the associated
JavaScript script), because it contains quite a number of different techniques that will
all be covered throughout this book. Let’s indeed start with the Default.html file. It is
reprinted in Example 2-1.

Example 2-1. The sample HTML file (Default.html.js)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3c.org/TR/1999/REC-html401-19991224/loose.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Silverlight</title>

 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript" src="Default.html.js"></script>
 <script type="text/javascript" src="Scene.xaml.js"></script>
</head>

<body>
 <div id="SilverlightPlugInHost">
 <script type="text/javascript">
 createSilverlight();

Figure 2-7. Visual Studio prefers Administrator privileges

A First Silverlight Example | 17

 </script>
 </div>

Figure 2-8. Run Visual Studio as an Administrator

18 | Chapter 2: Getting Started With Silverlight

</body>
</html>

So quite a number of things happen in this file:

• The Silverlight.js helper library is loaded with a <script> element.

• The Default.html.js JavaScript file (the “code-behind” script of Default.html) is
loaded with a <script> element.

• The Scene.xaml.js JavaScript file (the “code-behind” script of the sample XAML
file) is loaded with a <script> element.

• The page contains a <div> element with ID “SilverlightPlugInHost”, which will
later hold the Silverlight content.

• The JavaScript function createSilverlight() (which, by the way, is defined in
Default.html.js) is executed.

You especially need to remember the ID of the <div> container because it will later hold
the Silverlight file. However, you need tell JavaScript (and the Silverlight) plugin ex-

Figure 2-9. The Silverlight SDK Installer

A First Silverlight Example | 19

plicitly where to put the content. This is done in the Default.html.js file, which is shown
in Example 2-2.

Example 2-2. The JavaScript file that loads the Silverlight content (Default.html.js)
function createSilverlight()
{

Figure 2-10. The new Silverlight templates in Visual Studio

Figure 2-11. The plugin is missing (Safari on Mac OS X)

20 | Chapter 2: Getting Started With Silverlight

 var scene = new Silverlight.Scene();
 Silverlight.createObjectEx({
 source: 'Scene.xaml',
 parentElement: document.getElementById('SilverlightPlugInHost'),
 id: 'SilverlightPlugIn',
 properties: {
 width: '400',

Figure 2-12. The Silverlight installer for Windows

Figure 2-13. The Silverlight sample page

A First Silverlight Example | 21

 height: '400',
 background:'#ffffffff',
 isWindowless: 'false',
 version: '1.0'
 },
 events: {
 onError: null,
 onLoad: Silverlight.createDelegate(scene, scene.handleLoad)
 },
 context: null
 });
}

if (!window.Silverlight)
 window.Silverlight = {};

Silverlight.createDelegate = function(instance, method) {
 return function() {
 return method.apply(instance, arguments);
 }
}

As you can see, createSilverlight() is defined in Default.html.js. It first instantiates
the Silverlight.Scene object, which we do not need at the moment, then executes the
Silverlight.createObjectEx() method. This method is solely responsible for initializ-
ing and loading XAML content with the help of the browser plugin. The method expects
an object as an argument that holds all relevant information. The syntax of the object
notation used (JSON (JavaScript Object Notation) is part of the JavaScript language
syntax) is as follows:

{property1: "value1", property2: "value2", ...}

The following properties are essential:

parentElement
The ID of the <div> container where the Silverlight content will be shown on the
page

source
The URL of the XAML file to be loaded

id
An identification for Silverlight content that will later facilitate JavaScript access
to Silverlight

properties
A set of properties, including the dimensions of the content (width, height), and
the background color (background)

version
The Silverlight plugin version is at least required to run the example

The events property is used to wire up events, which will be covered in greater detail
in Chapter 5. However, you currently need the onError: null setting, which will avoid

22 | Chapter 2: Getting Started With Silverlight

a JavaScript error. Since this first example contains a bit too much complexity for a
simple “Hello World,” we will now create our own first Silverlight application. Create
a new XML file and call it HelloWorld.xaml. The root element of every Silverlight XAML
file is <Canvas> (may be compared to a <div> element in HTML or to ASP.NET’s
<asp:Panel>). In there, you will put an orange rectangle (<Rectangle>) element and a
text block (<TextBlock> element). In the end, your markup should look like Exam-
ple 2-3.

Example 2-3. A simple Hello World XAML file (HelloWorld.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />
</Canvas>

IntelliSense will help as you type along, as Figure 2-14 shows.

The next file to be created is Default.html.js, which will contain the createSilverlight
() function. You can use the Default.html.js file as a basis and remove all unnecessary
elements (for instance the extra JavaScript code related to the scene). Don’t forget to

Figure 2-14. IntelliSense supports Silverlight XAML markup

A First Silverlight Example | 23

provide the correct XAML URL in the source property. At the end, you should have
something similar to Example 2-4.

Example 2-4. A simple Hello World XAML file (HelloWorld.xaml)

function createSilverlight()
{
 Silverlight.createObjectEx({
 source: 'HelloWorld.xaml',
 parentElement: document.getElementById('SilverlightPlugInHost'),
 id: 'SilverlightPlugIn',
 properties: {
 width: '400',
 height: '300',
 background:'#ffffffff',
 isWindowless: 'false',
 version: '1.0'
 },
 events: {
 onError: null,
 }
 });
}

Running this example in the browser will work like a charm. If you still don’t have the
Silverlight plugin installed, you will be prompted to do so, and then you will see the
text and the orange rectangle, just as in Figure 2-15.

Figure 2-15. The Hello World Silverlight application in a web browser

24 | Chapter 2: Getting Started With Silverlight

The only file we haven’t looked at yet is Silverlight.js. This JavaScript library takes care
of several things: it tries to detect the web browser (unfortunately, it has the same habit
as ASP.NET AJAX and only accepts Firefox of all the Mozilla browsers, e.g., Netscape,
SeaMonkey, and others), provides the Silverlight.createObjectEx() method, and
helps access the Silverlight content using a JavaScript API (see Chapter 8 for more
information). Just copy the Silverlight.js file into all Silverlight applications to have this
functionality.

The adoption rate of new Silverlight versions should be quite high. By default, Silver-
light checks once a day to see whether there is a new version (as long as the user visits
a site with Silverlight content). If there is a new version, the user is prompted to down-
load and install the new plugin (see Figure 2-16 for the update dialog on Mac OS X);
depending on the operating system and configuration, this might even happen auto-
matically.

Further Reading
http://silverlight.net/GetStarted/

All the resources you need to get started with Silverlight

http://silverlight.net/quickstarts/
Silverlight quickstarts that touch upon many features

Figure 2-16. A new Silverlight version is available

Further Reading | 25

http://silverlight.net/GetStarted/
http://silverlight.net/quickstarts/

CHAPTER 3

Silverlight Tools

Why Tools?
As you have seen in the previous chapter, there is no kind of compilation or binary data
with Silverlight 1.0. All you need to create are the three kinds of files:

• XAML files with the Silverlight content

• JavaScript files with both additional code for the Silverlight content and with code
to control and access the Silverlight content

• HTML files to include the Silverlight content

So generally, an XML editor would be enough to create SIlverlight applications. But
that’s the same thing as saying “ASP.NET 2.0 applications can be created in Notepad.”
Of course that’s possible, but who would want to do that?

Therefore, we will introduce three kinds of editors in this chapter that should be helpful
to create Silverlight applications. For each kind of editor, we briefly introduce one
specific editor and also have a look at the competition, if there is any.

XML Editors
For editing XAML, a mighty XML editor would be good enough theoretically. And
there are many good XML editors out there, including <oXygen/> (http://www.oxy
genxml.com/) and XMLSpy (http://www.xmlspy.com/). Even Microsoft has a dedicated
XML editor now, XML Notepad 2007 (available at http://www.microsoft.com/down
loads/details.aspx?FamilyID=72d6aa49-787d-4118-ba5f-4f30fe913628&Display
Lang=en; see Figure 3-1). Thanks to the availability of an XML schema for XML, code-
completion is at least theoretically possible. As you have seen in the previous chapter,
Visual Studio 2005 offers IntelliSense, as well, and you get even more IntelliSense (in-
cluding JavaScript code) in Visual Studio 2008.

The one thing pure XML editors are always lacking is WYSIWYG functionality. Many
of them try to use CSS and/or XSLT to convert the XML into something viewable

27

http://www.oxygenxml.com/
http://www.oxygenxml.com/
http://www.xmlspy.com/
http://www.microsoft.com/downloads/details.aspx?FamilyID=72d6aa49-787d-4118-ba5f-4f30fe913628&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=72d6aa49-787d-4118-ba5f-4f30fe913628&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=72d6aa49-787d-4118-ba5f-4f30fe913628&DisplayLang=en

(including the XML editor I am writing this book in), but for Silverlight that’s not a
feasible option. An editor that does both is, of course, a better option. You may want
to have a look at Spket IDE from http://www.spket.com/. It is free for non-commercial
use and offers both JavaScript and XAML code completion. Figure 3-2 shows the XAML
editor of Spket IDE in action.

Vector Graphics Editors
Silverlight graphics are vector-based, compared to regular web sites where images are
usually pixel-based. In all fairness, Silverlight also supports pixelized graphics, but
vector graphics have some advantages: no quality loss when scaling, for instance. There
are several vector graphics editors, but very few of them currently support XAML.
Microsoft Design was one of the first to do so and it is part of the Microsoft Expression
Studio. At http://www.microsoft.com/expression/products/download.aspx?key=design
you will find more information about it and download a timebombed trial (60 days).
Microsoft Design can import a series of other formats and also export to a few, including
XAML, as Figure 3-3 shows.

Figure 3-1. XML Notepad 2007

28 | Chapter 3: Silverlight Tools

http://www.spket.com/
http://www.microsoft.com/expression/products/download.aspx?key=design

Silverlight IDEs
With Flash, the name refers to the browser plugin (and the associated file format) and
for the mighty editor or IDE that allows creation of these Rich Internet Applications
(RIAs). So it was just a matter of time until Microsoft would release a similar tool that
tries to join the bridge between designers and developers and appeals to both groups.

Microsoft Expression Blend is also part of the Microsoft Expression Studio. The first
version targeted WPF developers and did not offer anything for Silverlight developers
(or WPF/E developers, as they were called then). However, Expression Blend 2 changes
that. (It is, at the time of this writing, available as an August Preview at http://www.mi
crosoft.com/expression/products/download.aspx?key=blend2preview.)

When you set up a new project, one of the options is to create a Silverlight JavaScript
application (see Figure 3-4). If you closely look at the project structure in Figure 3-5,
you will see that it looks quite similar to the project based on the Silverlight Visual
Studio template you saw in Chapter 2.

Expression Blend 2 is somewhat integrated with Visual Studio. Double-clicking on a
JavaScript file in the project explorer opens it in Notepad (the Windows editor), but
when working with event handlers (see Chapter 5 for more technical information about

Figure 3-2. Spket IDE

Silverlight IDEs | 29

http://www.microsoft.com/expression/products/download.aspx?key=blend2preview
http://www.microsoft.com/expression/products/download.aspx?key=blend2preview

that), you can set how Visual Studio 2005 handles them, as Figure 3-6 shows. Alter-
natively, Expression Blend 2 can also provide the skeleton code for event handlers in
the clipboard, so that you can use them in any other arbitrary application. It might
possible that future versions of Expression Blend 2 will facilitate integrating external
applications.

Visual Web Developer 2005 Express Edition may also be used as event
handler code editor.

While Expression Blend 2 is still far from being perfect (Adobe Flash had several years
of time raising the bar), it is currently the best choice for Silverlight developers to get
some visual help developing their applications, especially from a designer perspective.

Further Reading
http://www.microsoft.com/expression/

An overview of Microsoft’s Expression line of products

Figure 3-3. Microsoft Expression Design

30 | Chapter 3: Silverlight Tools

http://www.microsoft.com/expression/

Figure 3-4. Creating a Silverlight JavaScript application within Blend 2

Further Reading | 31

Figure 3-5. Microsoft Expression Blend 2 (August Preview, your mileage may vary)

32 | Chapter 3: Silverlight Tools

Figure 3-6. Visual Studio 2005 can take over event handling code for Silverlight applications

Further Reading | 33

PART II

Declarative Silverlight

CHAPTER 4

XAML Basics

XAML
XAML is an XML dialect, so we will use a lot of angle brackets throughout this book.
In this chapter, we will have a look at the most important XAML elements. It is virtually
impossible to cover them all in a book of this size, but we will present as many as
possible to let you dive into XAML with maximum speed.

If you have already worked with XAML for WPF applications, you already know most
of what is covered in this chapter (and most of Chapter 6, as well). However, there are
some subtle differences: Silverlight does not support the full XAML format like WPF,
but only a subset. Future versions of Silverlight will increase the percentage of suppor-
ted elements and attributes, but some things just cannot work in a web browser as they
do in a desktop application.

The root element of every XAML file is <Canvas>, which defines the area that holds the
Silverlight content. “Positioning Elements will show other uses for the <Canvas> ele-
ment. For now, just remember to put this element at the beginning of each XAML file
and supply the correct namespaces as follows:

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 ...
</Canvas>

Using Text
The first example used for most technology is a variation of the Hello World example
(see Chapter 2 for such an example). This chapter will start with something like Hello
World as well: we will add text to the Silverlight content. The element used for this is
<TextBlock> (which you have already seen in Chapter 2), and there are two ways to
provide this text:

• Within the Text attribute of the element

37

• As a text node within the element

Example 4-1 uses the latter approach to output a simple text. Note that you will get a
notice in Visual Studio that using text within <TextBlock> is not allowed, but Fig-
ure 4-1 proves that it works.

Example 4-1. Using simple text, the XAML file (Text1.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <TextBlock>Silverlight</TextBlock>
</Canvas>

To repeat the structure of a Silverlight application from Chapter 2, you need two more
files to make this example work in a web browser. First, you need a helper JavaScript
file that initializes the Silverlight content, such as shown in Example 4-2. Since this
JavaScript file is tied to an HTML file, it is dubbed “HTML code-behind” throughout
this book. In any example captions, we refer to the file as the “HTML JavaScript file” (as
opposed to “XAML JavaScript files,” which will be introduced in the next chapter).

Example 4-2. Using simple text, the HTML JavaScript file (Text1.html.js)
function createSilverlight()
{
 Silverlight.createObjectEx({
 source: ‘Text1.xaml’,
 parentElement: document.getElementById(‘SilverlightPlugInHost’),
 id: ‘SilverlightPlugIn’,
 properties: {
 width: '400',
 height: '300',
 background:'#ffffffff',
 isWindowless: 'false',
 version: '1.0'
 },
 events: {
 onError: null,
 }
 });
}

Note the highlighted code elements:

• The source property must be filled with the URL of the XAML file

• The parentElement property must be filled with a reference to the DOM element
that will hold the Silverlight content

• The id property provides a value that JavaScript code may use to access the Sil-
verlight content (see Chapter 8 for details)

Second, an HTML file is used as the primary page to be loaded in the browser. This file
includes both the “HTML code-behind” file and the Silverlight.js helper file that is
installed as part of the Silverlight SDK Visual Studio plugin (and is also part of the

38 | Chapter 4: XAML Basics

downloads for this book , available at http://www.oreilly.com/catalog/
9780596516116). The HTML page needs to contain a <div> container with the same
ID that has been provided in the parentElement property. Finally, the page needs to call
the previously defined createSilverlight() function. Example 4-3 has the full code,
and Figure 4-1 shows the output―the text appears.

Example 4-3. Using simple text, the HTML file (Text1.html)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Silverlight</title>

 <script type="text/javascript” src="Silverlight.js"></script>
 <script type="text/javascript” src="Text1.html.js"></script>
</head>

<body>
 <div id="SilverlightPlugInHost”>
 <script type="text/javascript">
 createSilverlight();
 </script>
 </div>
</body>
</html>

Figure 4-1. The text is displayed

Using Text | 39

http://www.oreilly.com/catalog/9780596516116
http://www.oreilly.com/catalog/9780596516116

So, creating new Silverlight apps starts with copying and pasting most
of the time. When creating new content, you need copies of the HTML
file, the HTML JavaScript file, the XAML file, and, optionally, the
XAML JavaScript file. Then you just have to update all file names and
you are set. Therefore, we will only print the HTML file if it is beneficial
to better understand the concept of a given example. We will also avoid
reprinting the HTML JavaScript file if there is no special additional in-
formation in it. The code downloads for this book always come with
complete, running code.

Figure 4-1 shows the default layout for text: the text uses the Lucida font, has a size of
11 points, and is displayed in black. To make this possible, the font does not even have
to be installed on the client (or on the server), it is part of the plugin. Therefore, the
experience on Mac OS X is almost the same, as Figure 4-2 shows.

Apart from the Lucida font, several other fonts are also supported cross-platform:

• Arial

• Arial Black

• Comic Sans MS

• Courier New

• Georgia

• Times New Roman

• Trebuchet MS

• Verdana

Other fonts, even if they are installed on the client, are not supported; Silverlight uses
Lucida if the font name is invalid.

Figure 4-2. The same text on Mac OS X

40 | Chapter 4: XAML Basics

There are several ways to apply these fonts. First of all, some of the <TextBlock> attrib-
utes come in handy:

FontFamily
The font family name (e.g., Arial)

FontSize
The font size in points (e.g., 12)

FontWeight
How to display the font (e.g., Thin, ExtraLight, Light, Normal, Medium, SemiBold,
Bold, ExtraBold, Black, and ExtraBlack; unfortunately, IntelliSense provides you
with additional, invalid choices)

You can easily apply these attributes to a <TextBlock> element. However, if you would
like to use different formattings in one <TextBlock>, you have another option. Use the
<Run> element within <TextBlock> to provide inline formatting options. This concept
can be compared to HTML: imagine <TextBlock> as a <div> element and <Run> as a
 element within that <div> element. The styles of the <div> element provide the
basic layout of the text within, but styles may override <div> styles.

Example 4-4 shows some styling options. It also introduces one new XAML element:

The <LineBreak> element
This element defines, well, a line break.

The Foreground attribute
This defines the foreground (here it is text) color. You can either use a defined color
name (Red, Green, Blue, etc.), or an RGB tripled (#ff0000, #00ff00, #0000ff, ...), or
you use aRGB. The “a” stands for alphatransparency: Just provide a value between
0 (00) and 255 (ff) that defines the degree of the nontransparency. If you set it to
00, the element is fully transparent (e.g., the background is seen, the element is
not). If you set it to ff, the element is not transparent at all, so you do not see the
background. If you use a value in between, the background shines through at the
given degree. For instance, #7fffff00 is a yellow (ff0000) that is about 50 percent
transparent (7f is hex for 127).

You can also provide the background color for an element, using the
Background property.

Refer to Figure 4-3 for the output in the browser.

Example 4-4. Text styling options, the XAML file (Text2.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <TextBlock Foreground="Blue" FontFamily="Arial" FontSize="24" FontWeight="Bold">
 Arial, 24pt, Bold, Blue

Using Text | 41

 <LineBreak />
 <Run FontSize="36" FontWeight="Light">Arial, 36pt, Light, Blue</Run>
 <LineBreak />
 <Run FontFamily="Times New Roman" Foreground="#7fffff00">Times New Roman,
 24pt, Bold, Yellow</Run>
 </TextBlock>
</Canvas>

It is possible to load external OpenType or TrueType (TTF) fonts and
use them within a Silverlight application. Refer to Chapter 9 for details.

Wrapping Text
By default, the text contained in a <TextBlock> element does not wrap. However, by
setting the TextWrapping property to Wrap, you can instruct Silverlight to automatically
wrap the text for you. This of course makes most sends if you provide a fixed width for
the text. For example:

<TextBlock Width="200" TextWrapping="Wrap"
 Text="This text will not fit in one line." />

Setting the TextWrapping property to NoWrap would disabled text wrapping, which is the
default anyway.

Figure 4-3. Different text styling options

42 | Chapter 4: XAML Basics

Using Shapes
Most typical Silverlight visual elements are shapes: geometrical elements that make up
the visual experience of the application. This section will cover many of the available
options.

Before we dive into the different supported shapes, we examine formatting options.
There are several of them, and many of them are specific to certain shapes, but the
following three properties are shared among all shapes:

Fill
How to fill the inner area of a shape, e.g., by providing a color

Stroke
How to paint the outline of a shape, e.g., by providing a color

StrokeThickness
The width of the outline, in pixels (must not be an integral value)

We start with probably the easiest shape: a line, represented in XAML by the <Line>
element. You need to provide the start and end point of the line and use the Silverlight
coordinate system (which is pixel-based, the origin is in the top left corner). The asso-
ciated attribute names are X1, Y1, X2, and Y1. Example 4-5 paints a simple triangle, using
three lines, and Figure 4-4 shows the browser output. Note that thanks to the five pixel
width of the strokes, the corners of the triangle are not perfect.

Example 4-5. A triangle with three lines, the XAML file (Line.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Line Stroke="Red" StrokeThickness="5" X1="200" Y1="50" X2="350" Y2="250" />
 <Line Stroke="Green" StrokeThickness="5" X1="350" Y1="250" X2="50" Y2="250" />
 <Line Stroke="Blue" StrokeThickness="5" X1="50" Y1="250" X2="200" Y2="50" />
</Canvas>

If you want to create a closed shape, such as a triangle, rectangle, and so on, you would
be better off using the <Polygon> element, which combines all points. In the Points
property, you need to provide a list of points, using this format:

X1,Y1 X2,Y2 X3,Y3 ... Xn,Yn

The rendering algorithm is as follows: the first point is connected with the second one,
the second one with the third one, and so on; at some time point number n-1 is con-
nected with point n. Finally, Silverlight connects point n with the very first point.

If you want to omit the final step, e.g., if you create a shape that is not
closed because the last point is not connected with the first one, use
<Polyline> instead of <Polygon>.

Using Shapes | 43

Example 4-6 once again creates the same triangle as before, but this time the corners
are much better, as Figure 4-5 shows. Since we cannot used alternating edge colors
when using <Polygon>, we added an additional visual effect by setting the Fill property.

Example 4-6. A triangle as a polygon, the XAML file (Polygon.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Polygon Points="200,50 350,250 50,250"
 Stroke="Black" StrokeThickness="5" Fill="Orange" />
</Canvas>

A special case of a polygon is a rectangle, represented in Silverlight with the <Rectan
gle> element. Here you do not provide the coordinates of all corners (or of the top left
and bottom right corner), but have a different approach: you provide the width and
height of the rectangle in its Width and Height attributes. The actual position of the
rectangle is provided using the technique introduced in “Positioning Elements, so we
will omit this feature for now. However, we would like to showcase another feature of
<Rectangle>: rounded corners.

A rounder corner is actually an ellipsis (which will get coverage of its own in a minute).
You can now provide the radius of that ellipsis. If the horizontal and the vertical radius
are the same, you get a circle, which is the most common option for a rounded corner.
However, you can also provide different radius values to create a different visual effect.
The attributes you need to use are RadiusX and RadiusY.

Figure 4-4. The triangle in the browser

44 | Chapter 4: XAML Basics

Example 4-7 uses an ellipsis with an RadiusX:RadiusY ratio of 100:1. In Figure 4-6 you
see the result: The rounded corners overlap a bit the two horizontal edges of the rec-
tangle.

Example 4-7. A rectangle with rounded corners, the XAML file (Rectangle.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="200" Height="150"
 Stroke="Black" StrokeThickness="5" Fill="Orange"
 RadiusX="100" RadiusY="1"/>
</Canvas>

The final shape is also the most important one, especially if you have complex designs,
such as a path, or the <Path> element. Its most important property is Data, which con-
tains information defining the path. To tell the truth, it’s usually design tools that create
paths, since any shape, regardless of how complex it is, can be transformed into a path.
This section will provide you with a crash course of the path syntax.

A path consists of several painting instructions: moving the virtual “pen” to a certain
position, drawing certain shapes, and ending the drawing. Every instruction starts with
a (case-insensitive) letter that identifies the instruction and several parameters may
follow.

Figure 4-5. The (improved) triangle in the browser

Using Shapes | 45

The first part of a path is the so-called fill rule. This takes care of a special case: what
happens if elements in the path overlap. You may choose between the default value
F0 and F1:

F0
Stands for EvenOdd, meaning that points that have an even number of path segments
between them and the end of the canvas are considered outside the path; points
with an odd number are considered inside and would be filled.

F1
Stands for NonZero, meaning that all points where a line between the point and the
end of the canvas crosses the path from the left side as often as from the right side
are considered inside the path.

Generally, EvenOdd is what you will want, and since it is the default value, you do not
have to provide it at all.

Next up are the instructions. The first one is usually M, which stands for “move.” This
moves the virtual pen to a certain position but does not start drawing. The following
path would put the pen at the x coordinate 40 and the y coordinate 30:

M 40,30

Starting from that point, several shapes are possible. We will start once again with a
line, denoted by the L command. You only have to provide the end point of the
line―the starting point is defined by the current pen position! The following path would
therefore draw a line from (40,30) to (70,80):

Figure 4-6. The rectangle with the rounded corners

46 | Chapter 4: XAML Basics

M 40,30 L 70,80

Special cases of lines are horizontal lines (H command) and vertical lines
(V command). For horizontal lines you only need to provide the x co-
ordinate of the end point; for vertical lines you only need to provide the
y coordinate of the end point.

By using lines, you can create any geometric shape that does not have curves. For curves,
however, several options exits. The A command draws an elliptical arc. You need to
provide a set of parameters:

• The x and y radius of the ellipsis

• The rotation angle of the ellipsis (use degrees)

• Whether the angle is larger than 180 degrees (1) or not (0)

• Whether the arc is drawn in positive direction (1) or not (0)

• The end point of the arc

The following markup would create an arc from (50,50) to (100,50), using an x and y
radius of 75 each, with a 90 degrees rotation angle in positive direction:

M 50,50 A 50,50 90 0 1 100,50

A type of curve that is very common in the vector graphics field are Bézier curves, named
after French automobile designer Pierre Bézier. Assume that you have two points, A
and B. Bézier defined a couple of mathematical equations that define curves between
those points. The easiest one is a linear curve, but they are easy to draw without any
extra help from Silverlight. However, there are more complex variants. A quadratic
Bézier curve (called that because in the defining formula values are squared) uses a so-
called control point to shape the exact look of the curve. The associated Silverlight path
command, Q, provides the coordinates of this control point and also of the end point;
remember that the start point is again defined by the current position of the pen.

The following markup moves the pen to (125,125) and creates a Bézier curve to (175,
75), using (110, 60) as a control point:

M 125,125 Q 110,60 175,75

A cubic Bézier curve goes one step further and uses two control points. The associated
SIlverlight path command is C. Here is an example: the curve goes from (150,125) to
(50,100), using the two control points (125,175) and (20,125).

M 150,125 C 125,175 20,125 50,100

Using Shapes | 47

There are more advanced Bézier curves available, as well: They take the
previous point of the curve into account, making the curve look more
smooth. For “smooth,” sister of the quadratic Bézier curve uses the S
command, and the “smooth” cubic Bézier curve uses T. The syntax is
the same as with the Q and C commands.

One final command is missing, it is called Z and closes a path, meaning that the pen
draws a straight line to the beginning of the path.

Example 4-8 shows several of the previous path commands in action. In Figure 4-7,
working clockwise, you can see a straight line (red), an elliptic arc (yellow) to the right
of the straight line, a quadratic Bézier curve (green) to the right of the arc, and a cubic
Bézier (blue) curve. The control points for the Bézier curves have been marked with an
X so you can see which points the curves are approaching. These markers have been
also created using a path (drawing two crossing lines).

Example 4-8. Using Paths, the XAML file (Path.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Path Data="M 20,10 L 40,70"
 Stroke="Red" StrokeThickness="5" />

 <Path Data="M 50,50 A 50,50 90 0 1 100,50"
 Stroke="Yellow" StrokeThickness="5" />

 <Path Data="M 125,75 Q 200,100 175,125"
 Stroke="Green" StrokeThickness="5" />
 <Path Data="M 195,95 L 205,105 M 205,95 L 195,105"
 Stroke="Black" StrokeThickness="2" />

 <Path Data="M 150,125 C 125,175 20,125 50,100"
 Stroke="Blue" StrokeThickness="5" />
 <Path Data="M 120,170 L 130,180 M 130,170 L 120,180"
 Stroke="Black" StrokeThickness="2" />
 <Path Data="M 15,120 L 25,130 M 25,120 L 15,130"
 Stroke="Black" StrokeThickness="2" />

</Canvas>

As mentioned at the beginning of this section, creating a path manually can be painful,
so you should use a graphics software for that. However, you can now analyze and
understand paths that are created by vector graphic programs.

If you have used SVG before, this path syntax will be very similar to
what you are used to. Most vector formats use the same features for their
paths, so the syntaxes are very alike.

48 | Chapter 4: XAML Basics

One more shape should not be forgotten: An ellipse, represented by the <Ellipse>
element. The most important attributes are Width and Height, defining the size of the
ellipse. Example 4-9 shows such an ellipse, and Figure 4-8 has the browser output.

Example 4-9. Using an Ellipse, the XAML file (Ellipse.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Ellipse Width="400" Height="300"
 Stroke="Black" StrokeThickness="5" Fill="Orange" />
</Canvas>

When the ellipse has the same width and height, you get―a circle.

Geometry Elements
An alternative approach to drawing shapes is to use a so-called geometry element. It
can be compared to shapes (there are lines, rectangles, paths, etc.), but this element
doesn't draw itself. Instead, it can be used within other elements defining how they
look. For instance, the Clip property of an UI object can be set to a geometry element
defining a path. This path then defines the outer border of the UI object. Or, you could
use a geometry element as the Data property of a <Path> element, and, therefore, provide
the layout of the path.

Figure 4-7. Various paths

Using Shapes | 49

There are several geometry elements, including EllipseGeometry, LineGeometry, Path
Geometry, and RectangleGeometry. The following is an example that clips an image by
using a path (later, Example 4-16 will show a different approach to reach the same
effect):

<Image Source="image.png">
 <Image.Clip>
 <EllipseGeometry Center="150,75" RadiusX="300" RadiusY="150" />
 </ImageClip>
</Image>

Geometry elements may also be combined (grouped), by nesting them under the <Geo
metryGroup> element.

Positioning Elements
If you don’t specify the position of an element, it is positioned at the origin (0, 0) of the
display area. You can try this out yourself: Create a Silverlight XAML file and put some
<TextBlock> elements on it. The text contents within those elements will overlap, since
all text is displayed with the top left corner at (0, 0).

This can be changed for most elements by setting their Canvas.Top and Canvas.Left
properties. These properties denote the x and y coordinate of the element, respectively.

Figure 4-8. The ellipse

50 | Chapter 4: XAML Basics

The following text block would be shown 50 pixels to the right, 100 pixels to the
bottom:

<TextBlock Canvas.Left="50" Canvas.Top="100" Text="Silverlight" />

However, there is more to positioning and here the <Canvas> element comes into play
again. A canvas can also have a position:

<Canvas Canvas.Left="50" Canvas.Top="100">
...
</Canvas>

The clue is that all elements within the canvas are positioned relative to the surrounding
canvas. Have a look at Example 4-10, for instance. It contains several canvases, each
have (except for the outer one) Canvas.Top="50" and Canvas.Top="50". Inside the in-
nermost <Canvas> element resides a <TextBlock> element with Canvas.Left="50" and
Canvas.Top="50" as well. Each of those indentations always refer to the parent canvas
and are no absolute coordinates. Therefore, each canvas starts 50 pixels to the right
and 50 pixels to the bottom from where its parent canvas starts. The Canvas.Left and
Canvas.Top properties are also called dependency properties: they depend on their pa-
rent <Canvas> element. Likewise, <Canvas> elements may be called dependency objects.
Figure 4-9 shows the browser output.

Example 4-10. Nested, positioned canvases in the XAML file (Canvas.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="500" Height="500" Background="Red">
 <Canvas Canvas.Left="50" Canvas.Top="50" Background="Green"
 Width="400" Height="400">
 <Canvas Canvas.Left="50" Canvas.Top="50" Background="Yellow"
 Width="300" Height="300">
 <Canvas Canvas.Left="50" Canvas.Top="50" Background="Blue"
 Width="200" Height="200">
 <TextBlock Canvas.Left="50" Canvas.Top="50" FontSize="20"
 Text="Silverlight"/>
 </Canvas>
 </Canvas>
 </Canvas>
</Canvas>

Only <Canvas> elements that have a fixed width and height show their
background color. If you omit this information, the background remains
the default, which in our example is white.

Of course these canvases overlap each other. Silverlight uses the following approach:
All elements are stacked onto each other, so there is a (virtual) third dimension. There-
fore, the text from Example 4-10 resides on top of all canvases, since this element comes
last in the document. This is the reason why the text can be seen at all. In CSS, there

Positioning Elements | 51

is a property called z-index that assigns the “z coordinate” of an element: the higher
the value, the further up on the stack it is.

Silverlight uses the same principle. You may assign a z-index by setting the Canvas.ZIn
dex property. Note that you can also nest z-index values; however, these values are only
compared on the same element level. Assume that you have a canvas with z-index 3
that contains two rectangles with z-index 2 and z-index 1. The rectangle with the
higher z-index is placed above the one with the lower z-index. However, the outer
canvas will not overlap the rectangles, although its z-index is higher.

Example 4-11 is a variation of Example 4-10: everything except the outer canvas is
gone, but we added rectangles. Usually they would overlap similar to Figure 4-9, but
this time we set Canvas.ZIndex so that the “inner” elements have a lower z-index.
Therefore, the first rectangle is drawn over the second one, the second one is drawn
over the third one, and so on. The lowest z-index is assigned to the text block. This
text block is now overlapped by the blue rectangle. Therefore, the text itself is not
visible, as Figure 4-10 shows.

Example 4-11. Setting the z-index, the XAML file (ZIndex.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Figure 4-9. The nested canvases

52 | Chapter 4: XAML Basics

 Width="500" Height="500" Background="White">
 <Rectangle Canvas.Left="50" Canvas.Top="50" Fill="Red"
 Width="200" Height="200" Canvas.ZIndex="5”/>
 <Rectangle Canvas.Left="100" Canvas.Top="100" Fill="Green"
 Width="200" Height="200" Canvas.ZIndex="4”/>
 <Rectangle Canvas.Left="150" Canvas.Top="150" Fill="Yellow"
 Width="200" Height="200" Canvas.ZIndex="3”/>
 <Rectangle Canvas.Left="200" Canvas.Top="200" Fill="Blue"
 Width="200" Height="200" Canvas.ZIndex="2”/>
 <TextBlock Canvas.Left="250" Canvas.Top="250" FontSize="20"
 Text="Silverlight" Canvas.ZIndex="1”/>
</Canvas>

Using Images
Although Silverlight is a vector-based technology, pixel images are supported too. The
XAML element is (conveniently) named <Image>. Apart from the default properties,
such as Canvas.Left, Canvas.Top, Height, and Width, <Image> needs to know which
graphics to show. This information is provided in the Source property. You can use

Figure 4-10. Overlapping rectangles with z-index

Using Images | 53

both local and remote URLs, and you can use two supported graphics formats: JPEG
and PNG. Example 4-12 has the code, and Figure 4-11 shows the associated output.

Example 4-12. Using an image, the XAML file (Image.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Image Source="silverlight.png" />
</Canvas>

When using images, you can also track the data transfer using Java-
Script, as Chapter 9 shows.

Using Brushes
The final basic XAML elements used to design a static (i.e., non-moving) UI are brushes.
A brush is used just like a “real” brush―you can paint. However, Silverlight brushes
offer more: you can paint with color, you can paint gradients, you can paint images,
you can even paint videos.

Figure 4-11. The pixel image within the Silverlight content

54 | Chapter 4: XAML Basics

Brushes can be used as alternatives to attributes such as Background, Fill, or Stroke.
However, you need to alter your syntax a bit. Instead of using the attribute, you use a
sub element, <ElementYouWantToBrush.OldAttribute>. For example, filling a rectangle
would look as follows:

<Rectangle>
 <Rectangle.Fill>
 <!-- brushes go here -->
 </Rectangle.Fill>
</Rectangle>

The “easiest” brush is called SolidColorBrush because it only uses one solid color, there
are no changes within the color or gradients. Actually, when using attributes like Back
ground or Fill or Stroke as we have done so far in this book, we were implicitly using
a SolidColorBrush. However, the alternative syntax works as well. Example 4-13 has
the same output as Example 4-11 (Figure 4-10), but is using the <SolidColorBrush>
element. Note how the color used by the brush is defined by its Color attribute.

Example 4-13. Using a solid color brush, the XAML file (SolidColorBrush.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="500" Height="500" Background="White">
 <Rectangle Canvas.Left="50" Canvas.Top="50" Width="200" Height="200"
 Canvas.ZIndex="5">
 <Rectangle.Fill>
 <SolidColorBrush Color="Red" />
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle Canvas.Left="100" Canvas.Top="100" Width="200" Height="200"
 Canvas.ZIndex="4">
 <Rectangle.Fill>
 <SolidColorBrush Color="Green" />
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle Canvas.Left="150" Canvas.Top="150" Width="200" Height="200"
 Canvas.ZIndex="3">
 <Rectangle.Fill>
 <SolidColorBrush Color="Yellow" />
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle Canvas.Left="200" Canvas.Top="200" Width="200" Height="200"
 Canvas.ZIndex="2">
 <Rectangle.Fill>
 <SolidColorBrush Color="Blue" />
 </Rectangle.Fill>
 </Rectangle>
 <TextBlock Canvas.Left="250" Canvas.Top="250" FontSize="20"
 Text="Silverlight" Canvas.ZIndex="1"/>
</Canvas>

Brushes can do unique things. The most typical example is gradients. A common form
of a gradient is a radial gradient: The gradient starts at a given origin (quite often the
center of an object) and then goes radially to the borders of the object. You can define

Using Brushes | 55

an arbitrary number of stop points: these are points where a certain color must be
matched. So, all you need to do is to define the stop points and associated colors;
Silverlight automatically calculates and draws all colors in between. The XAML element
for the brush is <RadialGradientBrush>.

There are a few parameters that must be defined for this gradient:

Center
The center of the object. You need to provide values between 0 and 1 for both the
x and the y coordinate. Silverlight then calculates the actual coordinates based on
the dimension of the target object.

GradientOrigin
The center of the gradient. Again, provide values between 0 and 1 for both coor-
dinates.

RadiusX, RadiusY
The x and y radius of the gradient, again as values between 0 and 1

Stop colors are defined using the <GradientStop> element. You need to provide the color
(Color attribute), and the offset (Offset attribute, value between 0 and 1). Exam-
ple 4-14 shows a radial gradient with thee stop colors, and Figure 4-12 has the output.

Example 4-14. Using a radial gradient, the XAML file (RadialGradientBrush.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="600" Height="600">
 <Ellipse Width="600" Height="600" Stroke="Black">
 <Ellipse.Fill>
 <RadialGradientBrush Center="0.5 0.5" GradientOrigin="0.33 0.67"
 RadiusX="0.5" RadiusY="0.5">
 <GradientStop Color="Red" Offset="0"/>
 <GradientStop Color="Green" Offset="0.33"/>
 <GradientStop Color="Blue" Offset="0.67"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
</Canvas>

The other form of gradient is a linear gradient: The color change does not happen
radially, but instead along a gradient axis. In the associated XAML element, <Linear
GradialBrush>, you need to assign a start point and an end point, once again using
values between 0 and 1, which are then mapped to the actual coordinates. Exam-
ple 4-15 shows <LinearGradialBrush> in action, and also includes a line and markers
that represent the radial axis and the stop points (trust me with the values), as you can
see in Figure 4-13.

Example 4-15. Using a linear gradient, the XAML file (LinearGradientBrush.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="600" Height="600">

56 | Chapter 4: XAML Basics

 <Rectangle Width="600" Height="600" Stroke="Black">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0.1 0.9" EndPoint="0.9 0.1">
 <GradientStop Color="Red" Offset="0"/>
 <GradientStop Color="Green" Offset="0.33"/>
 <GradientStop Color="Blue" Offset="0.67"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Path Stroke="Black" Data="M 55 535 L 65 545 M 65 535 L 55 545" />
 <Path Stroke="Black" Data="M 215 375 L 225 385 M 225 375 L 215 385" />
 <Path Stroke="Black" Data="M 375 215 L 385 225 M 385 215 L 375 225" />
 <Line X1="60" Y1="540" X2="540" Y2="60" Stroke="#7f000000" />
</Canvas>

A final brush option is to use a special “filling” for a brush: an image or a video file. So
when you have an image to fill an object, Silverlight can automatically stretch the con-
tent so that it fits. You could also play a video as a background for a rectangle or within
an ellipsis, just to give you a few ideas.

Using both brushes, ImageBrush and VideoBrush, is quite similar. You have to provide
the name of the source file in an associated attribute, which is called ImageSource for
<ImageBrush> and SourceName for <VideoBrush>. You can instruct Silverlight on how to

Figure 4-12. The radial gradient. Do you see the center and the stop colors?

Using Brushes | 57

stretch the content so that it fits using the Stretch attribute, assigning one of these
values:

None
Content size remains the original one

Fill
The content fills up the whole available area, loosing its aspect ratio

Uniform
The content size is increased, maintaining the aspect ratio, until either the content
has the width or the height of the display area

UniformToFill
The content size is increased, maintaining the aspect ratio, until the content width
and height are both greater or equal than the width and height of the display area.
If necessary, parts of the content are cropped.

Example 4-16 shows an image that is used to fill an ellipsis. You can see in Fig-
ure 4-14 that this works as expected and that you can display rectangular image and

Figure 4-13. The linear gradient, with highlighted gradient axis and stop points

58 | Chapter 4: XAML Basics

video content and use other shapes. More information on using video in general can
be found in Chapter 7.

Example 4-16. Using an image brush, the XAML file (ImageBrush.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="300" Height="300">
 <Ellipse Canvas.Top="75" Width="300" Height="150" Stroke="Black">
 <Ellipse.Fill>
 <ImageBrush ImageSource="silverlight.png" />
 </Ellipse.Fill>
 </Ellipse>
</Canvas>

An alternative approach to define the outline of an object is to use the
Clip property and provide a Geometry object as its value, which will de-
fine the desired shape. Refer to the Silverlight SDK for more information
(the topic is called “Silverlight Geometries Overview”).

There are many shapes in XAML, almost too many to keep track of, but we covered
the most important ones. And, honestly, usually the UI comes out of a design tool; as
a programmer, you just have to add functionality and we’ll start right away with that
in the next chapter!

Figure 4-14. The ellipsis is filled with the image brush

Using Brushes | 59

For Further Reading
XAML in a Nutshell (http://www.oreilly.com/catalog/xamlian/) by Lori A. MacVittie
(O’Reilly)

A good introduction into XAML

60 | Chapter 4: XAML Basics

http://www.oreilly.com/catalog/xamlian/
http://www.oreilly.com/catalog/xamlian/

CHAPTER 5

Interaction and Event Handling

Interactive Silverlight
The declarative means of XAML provide quite a number of possibilities, including
creating all kinds of shapes (see Chapter 4), animating element (see Chapter 6), and
playing audio and video data (see Chapter 7). However, you can only unleash the real
power of Silverlight if you add a bit of JavaScript into the mix. JavaScript itself is a
powerful language, but Silverlight also exposes a JavaScript API to developers. The
third section of this book, especially Chapter 8, will cover the JavaScript access in
greater detail. Although this book part focuses on declarative XAML, we cannot do
without a certain amount of scripting.

This chapter explains the Silverlight event handling. Specifically, what events are and
how to intercept and process them. Most of the event handling code will be in the
“XAML code-behind” file (the Filename.xaml.js file). Technically, the JavaScript code
could be placed in any JavaScript file, as long as it is referenced by a <script> tag in the
main HTML file. However, it makes applications easier to comprehend and to develop
if we stick JavaScript code that is triggered from XAML into the .xaml.js file and Java-
Script code triggered by the HTML page in the .html.js file.

Most listings consist of at least three files―the HTML file, the XAML file, and one or
more JavaScript files. Some of the information in those files is always very similar, for
instance the code for the createSilverlight() function. In the next example we are
adapting the reference to the embedded XAML file. Therefore, createSilverlight()
will not be reprinted here. As long as there are no big surprises in the HTML file, it will
not always be printed either. However, in the code archive for this book (see http://
www.oreilly.com/catalog/9780596516116), you will have the complete set of samples.

When in doubt regarding the roles of the HTML, XAML, and JavaScript
files, reviewChapter 2 where the basic concepts are explained.

61

http://www.oreilly.com/catalog/9780596516116
http://www.oreilly.com/catalog/9780596516116

Events and Event Handlers
A Silverlight event is something that occurs while a Silverlight application is running.
This “something” could be a mouse click, a mouse movement, keyboard input, the
application receiving or losing the focus, the application being fully loaded, or some-
thing else altogether. All events are tied to an object, so it makes a difference whether
the mouse click occurs while the mouse pointer is, say, over a given rectangle or text
block.

Silverlight currently supports more than two dozen events, and future releases may
have even more. This chapter focuses on the most important ones, and provides the
background knowledge you’ll need to work with previously unknown events.

An event handler is a piece of code that is executed once an event occurs or is fired. The
concept of both events and event handlers is very similar to the concept of JavaScript
events in HTML.

Declarative Event Handlers
There are two ways of assigning an event handler to an event―using declarative means
or using code. Let’s start with the first option and use mouse events. Silverlight supports
several mouse events, and one of them is MouseLeftButtonDown, which is when a user
clicks down the left mouse button (this event occurs before the mouse button is re-
leased!).

In our first example, the “Hello World” sample file from Chapter 2 resurfaces. It con-
tains three elements, the surrounding <Canvas>, a <Rectangle>, and a <TextBlock>. We
are adding event handlers to these three elements. Adding an event handler is easy:
assign an attribute that has the same name as the event (so, in this example, LeftMou
seButtonDown, not OnLeftMouseButtonDown as you would do in JavaScript). The value of
the attribute is a JavaScript function name. This function gets called once the event is
fired. Example 5-1 shows the XAML file including the three event handlers:

Example 5-1. Using event handlers, the XAML file (MouseClick.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 MouseLeftButtonDown="mouseClick”>
 <Rectangle Width="200" Height="75" Stroke="Orange" StrokeThickness="15"
 MouseLeftButtonDown="mouseClick” />
 <TextBlock FontFamily="Arial" FontSize="32" Canvas.Left="30" Canvas.Top="20"
 Foreground="Black" Text="Silverlight"
 MouseLeftButtonDown="mouseClick” />
</Canvas>

The JavaScript event handler function, residing in the MouseClick.js.xaml file, auto-
matically receives two arguments, just as ASP.NET event handler functions do:

62 | Chapter 5: Interaction and Event Handling

sender
A reference to the object that has received the event and is therefore calling the
event handler

eventArgs
Information about the event; for example, you get the current mouse position when
handling a mouse event

All that our simple event handling function does is to display which element fired the
event. In order to do this, the string representation of the sender argument is used. For
instance, if the <TextBlock> element fired the event, sender.toString() is TextBlock.
Example 5-2 has the code in the “XAML code-behind”, as I am referring to
the .xaml.js files.

Example 5-2. Using event handlers, the XAML JavaScript file (MouseClick.xaml.js)
function mouseClick(sender, eventArgs) {
 alert('Ouch, says ' + sender.toString() + '!');
}

When you now click on the text block, two JavaScript pop-ups appear: One for the
text block, and one for the canvas (see Figure 5-1). This is called event bubbling.
Whenever an element receives an event, it then passes the event up to its next parent
node (in our example, <TextBlock> passes the event to <Canvas>). If the parent node
itself has a parent node as well, the event is passed further up. This mechanism, which
is similar to the JavaScript event mechanism in Internet Explorer, is quite useful if you
have a nested XAML structure and need to handle events for several objects. The setup
in Example 5-1 is of course rather rare, usually you assign an event handler to just one
element.

The sender property assigned to the event handler functions is also very convenient
when you want to change the object that fired the event. A general rule of thumb is that
every property (e.g., Foreground for a <Rectangle> object) is also exposed to JavaScript.
Actually, Silverlight intercepts all JavaScript attempts to access properties and is trans-
forms the request so that the correct Silverlight property is set to get. This is imple-
mented in such a way that the access is case-insensitive; you could use both
Foreground and foreground. The convention used in this book is to lower camelcase the
properties: Foreground becomes foreground, FontSize becomes fontSize. Have a look
at where two more mouse events are introduced: MouseHover (when the mouse pointer
is over the display area of an element) and MouseLeave (when the mouse pointer leaves
the display area of an element). Example 5-3 sets up a XAML file with these two events
and also a specific foreground color.

Example 5-3. Changing event target properties, the XAML file (MouseHover.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="200" Height="75" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="32" Text="Silverlight"
 Canvas.Left="30" Canvas.Top="20"

Events and Event Handlers | 63

 Foreground="LightGray” MouseEnter="high” MouseLeave="low”/>
</Canvas>

The “XAML code-behind” JavaScript file (see Example 5-4) accesses the sender argu-
ment and then just sets the foreground property. As an effect, the text is displayed in a
light gray at first, but when the mouse hovers over it, it is colored with a full black.
Once the mouse pointer leaves the display area of the text, it goes back to light gray
again. Figure 5-2 shows both states of the text.

Example 5-4. Changing event target properties, the XAML JavaScript file (MouseHover.xaml.js)

function high(sender, eventArgs) {
 sender.Foreground = 'Black';
}
function low(sender, eventArgs) {
 sender.Foreground = 'LightGray';
}

Event Listeners
The second, and programmatic, approach to assign event handling code to an event is
to use event listeners. You assign a piece of code that “listens” whether an event occurs.
If it does, it is handled properly. The main advantage over declarative event handlers
is that it is quite easy to remove an event listener. The disadvantage is that event listeners

Figure 5-1. One, no, two pop-ups appear

64 | Chapter 5: Interaction and Event Handling

are not as intuitive, especially for developers with a strong HTML background. But
once you have seen it, getting it to work in your own applications is not hard at all.

Let’s start with the XAML code. As you see, there is no attribute event handler for the
click event. Well, there is one for another important event: Loaded. The Loaded event is
fired once an element or, as in Example 5-5, the whole XAML file has been fully loaded.
We use this event to set up the actual event listeners.

Example 5-5. Using event listeners, the XAML file (MouseClickListener.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="canvasLoaded”>
 <Rectangle Width="200" Height="75" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="32" Canvas.Left="30" Canvas.Top="20"
 Foreground="Black" Text="Silverlight"
 x:Name="ClickTarget” />
</Canvas>

Setting Up Event Listeners
Timing is everything. Let’s have a look at the following JavaScript code to set up event
listeners:

window.onload = function() {
 // set up event listeners here
}

The page’s load event is fired once the complete HTML markup of the page is fully
loaded. Of course, that does not mean that all referenced files, including the JavaScript
libraries and the XAML file, have already been fully loaded. When testing this on your

Figure 5-2. The initial (left) and hover (right) state of the text

Events and Event Handlers | 65

local machine, it may not be an issue because the files were loaded from the fast hard
drive. However, on the Internet there may be a significant lag, so you cannot rely on
this approach. This is one of the reasons why the root element’s Loaded event is a popular
option for initializing a Silverlight application.

But now onto the event listeners themselves. First, you have to find the element you
would like to attach the event listener to. As you may have noticed in Example 5-5, the
<TextBlock> element received a name attribute (x:Name, to be exact). The Silverlight
JavaScript API can find elements by their name, you just have to use the findName()
method, which every element in a XAML file supports.

So we have to get access to an element within the XAML. Remember that event handler
functions automatically receive a reference to the sender as their first argument. So we
can use the sender and its findName() method to access the text block:

function canvasLoaded(sender, eventArgs) {
 var textblock = sender.findName('ClickTarget');

Once we have the text block (or any other element), we can assign an event handler to
it. The method for this task is called addEventListener(), and it expects two arguments:

1. The name of the event

2. The event handler, either as a reference to a function, or as an anonymous function

textblock.addEventListener(
 'MouseLeftButtonDown',
 mouseClick);

All that’s left to be implemented is the actual event handler, which outputs both the
element that fired it and also its name. Example 5-6 shows the complete code for the
JavaScript file, and Figure 5-3 depicts the output in the browser.

Example 5-6. Using event listeners, the XAML JavaScript file (MouseClickListener.xaml.js)
function canvasLoaded(sender, eventArgs) {
 var textblock = sender.findName('ClickTarget');
 textblock.addEventListener(
 'MouseLeftButtonDown',
 mouseClick);
}

function mouseClick(sender, eventArgs) {
 alert('Ouch, says ' + sender.toString() + ' “‘ + sender.name + ’”!');
}

Removing event listeners will be covered in section “Mouse Position.

Mouse Events
Silverlight 1.0 supports these five mouse events, three of which you have already seen:

66 | Chapter 5: Interaction and Event Handling

MouseEnter
The mouse pointer entering the display area of an object

MouseLeave
The mouse pointer leaving the display area of an object

MouseMove
The mouse pointer moving

MouseLeftButtonDown
The left mouse button being clicked down

MouseLeftButtonUp
The left mouse button being clicked and released

The events themselves are self-explanatory, but the difference between MouseLeftBut
tonDown and MouseLeftButtonUp should probably be discussed. When a user clicks on
an element, first MouseLeftButtonDown occurs, then MouseLeftButtonUp. So a mouse click
is actually only complete when MouseLeftButtonUp has been fired. In the real world, the
distinction only makes sense in one special case: the user hovers the mouse over an
element, clicks the button, holds the button, and then moves the mouse away again.
When you use MouseLeftButtonUp, it isn’t fired over the target object, which is desirable
in some scenarios (think buttons) and undesirable in other scenarios (think drag and
drop).

The mouse event handling mechanism of the vector graphics format
SVG, for instance, supports three mouse events: button pressed, button
released, and a completed mouse click.

Figure 5-3. The event listener has been programmatically assigned

Mouse Events | 67

Mouse Position
When you capture a mouse event, you want to know where the mouse pointer currently
is. The “where” question has previously been answered with “on this object.” More
specifically is the question “At which position?” This is where the second argument
passed to event handler functions, eventArgs, comes into play. It provides access to this
very information, by supporting the getPosition() method.

The getPosition() method supports an optional argument, which is any XML element.
If this is set, getPosition() retrieves the relative position of the mouse to the given
element. Otherwise, you get the absolute coordinates (i.e., if you do not provide an
argument or if you provide null).

The return value of a getPosition() call is an object with the two properties x and y,
which of course contain the horizontal and vertical positions of the mouse pointers. As
always with the Web, the origin is in the top left corner.

Example 5-7 contains the XAML markup to track mouse movements. Note how the
<TextBlock> property is used to display the location of the mouse pointer. Also, note
that the main canvas’ Loaded event executes a function called canvasLoaded().

Example 5-7. Determining the Mouse Position, the XAML file (MousePosition.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="canvasLoaded”>
 <Rectangle Width="200" Height="75" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="28" Canvas.Left="25" Canvas.Top="25"
 Foreground="Black"
 Text="X: ?? Y: ??” x:Name="MousePosition” />
</Canvas>

The task of the JavaScript code is to determine and output the current mouse pointer
position whenever the mouse is moving. The associated event name is MouseMove, and
an event listener is ideal for this:

function canvasLoaded(sender, eventArgs) {
 sender.addEventListener(
 'MouseMove',
 // event listener reference or code
);
}

All that’s left to do is to write the event listener, so we will use an anonymous function
here. The code determines the current mouse position using getPosition() and writes
it into the text box. Refer to Example 5-8 for the complete JavaScript code, and to
Figure 5-4 to see how this sample looks in the browser.

Example 5-8. Determining the mouse position, the XAML JavaScript file (MousePosition.xaml.js)
function canvasLoaded(sender, eventArgs) {
 sender.addEventListener(
 'MouseMove',

68 | Chapter 5: Interaction and Event Handling

 function(sender, eventArgs) {
 var x = eventArgs.getPosition(null).x;
 var y = eventArgs.getPosition(null).y;
 sender.findName('MousePosition').text =
 'X: ' + x + ' Y: ' + y;
 }
);
}

As mentioned before, you can also remove event listeners. To do this, you have to call
the removeEventListener() method on the object the event listener has been attached
to. The first argument is the event again, but the second argument may come as a
surprise―it is a reference to the event listener (since you can attach more than one event
listener to one single event). You generate this reference by saving the return value of
the associated addEventListener() call.

To demonstrate this mechanism, we implement the hover effect again, but this time it
can be enabled and disabled by clicking on the text. We start with the previous XAML
markup from Example 5-7, but call the file MousePositionToggle.xaml. The JavaScript
code, however, changes quite a bit. At first, we define two global variables. One will
be used to save the attached event handler, and the other one is a Boolean value that
tells the script whether we currently want to trace the mouse or not.

var traceMouse = false;
var handler = null;

Assigning the event handler to the canvas’ Loaded event changes a bit, too: We assign
a new function called toggle() to it:

function canvasLoaded(sender, eventArgs) {
 sender.addEventListener(

Figure 5-4. The current mouse position is displayed

Mouse Events | 69

 'MouseLeftButtonDown',
 toggle);
}

The toggle() function first needs to check whether the mouse pointer coordinates are
traced or not. If not, tracing must be enabled (since we want to toggle the behavior).
We use the same code as before: whenever the mouse pointer moves, the new coordi-
nates are displayed. Notice how the return value of the addEventListener() is saved in
the global handler variable:

function toggle(sender, eventArgs) {
 if (!traceMouse) {
 handler = sender.addEventListener(
 'MouseMove',
 function(sender, eventArgs) {
 var x = eventArgs.getPosition(null).x;
 var y = eventArgs.getPosition(null).y;
 sender.findName('MousePosition').text =
 'X: ' + x + ' Y: ' + y;
 }
);

If the mouse has been traced before (traceMouse equals to true), it must be deactivated;
also, the event listener must be removed. A call to removeEventListener() takes care of
that; remember that you have to use the addEventListener() return values as the second
argument!

 } else {
 sender.removeEventListener('MouseMove', handler);
 }

Don’t forget to toggle the traceMode variable: from true to false, from false to true:

 traceMouse = !traceMouse;
}

Example 5-9 contains the complete code of the XAML JavaScript file. If you run this
example in the browser, you will need to click on the text to start seeing the mouse
pointer coordinates. Again clicking on the text stops this.

Example 5-9. Adding and removing event listeners, the XAML JavaScript code
(MousePositionToggle.xaml.js)

var traceMouse = false;
var handler = null;

function canvasLoaded(sender, eventArgs) {
 sender.addEventListener(
 'MouseLeftButtonDown',
 toggle);
}

function toggle(sender, eventArgs) {
 if (!traceMouse) {
 handler = sender.addEventListener(

70 | Chapter 5: Interaction and Event Handling

 'MouseMove',
 function(sender, eventArgs) {
 var x = eventArgs.getPosition(null).x;
 var y = eventArgs.getPosition(null).y;
 sender.findName('MousePosition').text =
 'X: ' + x + ' Y: ' + y;
 }
);
 } else {
 sender.removeEventListener('MouseMove', handler);
 }
 traceMouse = !traceMouse;
}

Drag and Drop
One of the most difficult JavaScript effects is implementing drag and drop. Not only
can it be hard to control individual elements on the page, but browser incompatibilities
ultimately break the developer’s neck. Silverlight does not come with built-in drag-and-
drop support, but it is possible to implement this with rather little effort. If you plan it
appropriately, the code will come together quickly.

Drag and drop always consists of three phases, which can be directly mapped on Sil-
verlight mouse events:

MouseLeftButtonDown
User clicks on draggable element and application enters drag mode.

MouseMove
User moves the mouse, while the mouse button remains clicked. Selected object
changes position according to the current position of mouse pointer.

MouseLeftButtonUp
User releases the mouse button; application leaves drag mode.

Actually, this is about 50 percent of the solution. The other half comes from a different
challenge. Let’s assume that the draggable element is a 10 pixel by 10 pixel square. The
user clicks somewhere on the square and drags it. Let’s further assume the user releases
the square at some position, for instance at (50,40) so the x-coordinate is 50 pixels and
the y-coordinate is 40 pixels. Where should the JavaScript code now put the square?
At (50,40)? This would place the top left corner of the square, so the position would
only be correct if the user initially dragged the square by clicking exactly on the top left
corner. This is rarely the case, of course.

So working with the absolute position is not a good solution. Instead, we will work
with deltas: how far did the user move the mouse? In the first phase of drag and drop,
JavaScript records the current position of the mouse pointer. Whenever the mouse is
moved, the new position of the mouse pointer is retrieved. Based on these two values,
JavaScript can calculate by how many pixels the mouse has been moved, for example
15 pixels to the right and 20 pixels to the bottom. These delta values can then be applied

Mouse Events | 71

to the actual object that shall be moved: it also must be moved 15 pixels to the right
and 20 pixels to the bottom. (In reality, these pixel values are usually much smaller,
since the MouseMove event is fired so often.)

This algorithm is the missing half of drag and drop. Writing the code is no big challenge
any more. We start with the XAML code in Example 5-10. We once again have the
surrounding rectangle and a black circle that will serve as the draggable object. Notice
how the circle uses attributes to handle the three relevant mouse events.

Example 5-10. Drag and drop, the XAML file (DragDrop.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <Ellipse Width="50" Height="50" Fill="Black" Canvas.Left="20" Canvas.Top="20"
 MouseLeftButtonDown="mouseInit”
 MouseLeftButtonUp="mouseRelease”
 MouseMove="mouseMove” />
</Canvas>

We can now start to implement the actual drag and drop. Before we do that, one word
of caution. Remember the event bubbling mechanism? If the draggable object has pro-
cessed a mouse event, it hands it over to its parent element. And even worse, other
elements further down in the object chain could process and act upon this event, as
well (this may also be called “event tunneling”). Therefore, other elements could work
with those events too, which is usually undesirable in this scenario. So, Silverlight pro-
vides a captureMouse() method. If an object calls this method, all mouse events are
directly routed to the object; other objects do not receive them any longer. When the
left mouse button is pressed down (MouseLeftButtonDown event), the initial position of
the draggable object is retained and the mouse capturing mode is activated. The (global)
moving variable remembers whether the application is in drag and drop mode (true) or
not (false).

function mouseInit(sender, eventArgs) {
 sender.captureMouse();
 lastX = eventArgs.getPosition(null).x;
 lastY = eventArgs.getPosition(null).y;
 moving = true;
}

If the mouse is moving, the position of the draggable object needs to be updated prop-
erly, according to the algorithm we designed at the beginning of this section. Remem-
ber, the current mouse position is determined, then the script code calculates the delta
between the current and the last known position. The position of the draggable object
is updated accordingly. Finally, the variables holding the last known coordinates are
updated.

If you are updating the circle’s position, you have to take care of one special issue: the
property names you need to set are represented by the Canvas.Left and Canvas.Top
attributes. However, JavaScript does not allow dots in property names, so object

72 | Chapter 5: Interaction and Event Handling

name.Canvas.Left would not work. You can use JavaScript’s array syntax instead:
objectname['Canvas.Left']. Now all you have to remember is that the first argument
of the event handler function is the object firing the event, in this case the element we
want to position. Then the rest of the code is easy:

function mouseMove(sender, eventArgs) {
 if (moving) {
 var x = eventArgs.getPosition(null).x;
 var y = eventArgs.getPosition(null).y;
 sender['Canvas.Left'] += x - lastX;
 sender['Canvas.Top'] += y - lastY;
 lastX = x;
 lastY = y;
 }
}

You now see why we needed the moving variable. Mouse moving events
happen all of the time, but you only want the circle to move if the user
is dragging it!

The final step happens when the user releases the mouse button (LeftMouseButtonUp
event). You can reset moving to false and unlock access to mouse events for other
elements on the page by calling the releaseMouseCapture() method. We will implement
one additional feature here. As you have seen, there is an orange rectangle in the XAML
file. This serves as the barrier for the draggable element: The element must not touch
or even leave this border.

We need to define a couple of variables that provide us with the minimum and maxi-
mum coordinates where the circle is allowed:

var minX = 15;
var maxX = 235;
var minY = 15;
var maxY = 85;

We will also save the position of the circle when the user starts a drag and drop oper-
ation (this code obviously belongs in the mouseInit() function):

startX = sender['Canvas.Left'];
startY = sender['Canvas.Top'];

Finally, when the user releases the mouse button, the current position is determined
and checked against the valid coordinates. If the position is out of bounds, the draggable
object is placed at the position it had at the beginning of the drag and drop operation:

var x = sender['Canvas.Left'];
var y = sender['Canvas.Top'];
if (x < minX || x > maxX || y < minY || y > maxY) {
 sender['Canvas.Left'] = startX;
 sender['Canvas.Top'] = startY;
}

Mouse Events | 73

Example 5-11 sums up the complete JavaScript code. Figure 5-5 shows the example in
action: If the user releases the mouse button now, the circle would jump back to its
original position.

Example 5-11. Drag and drop, the XAML JavaScript file (DragDrop.xaml.js)
var startX, startY, lastX, lastY;
var minX = 15;
var maxX = 235;
var minY = 15;
var maxY = 85;

var moving = false;

function mouseInit(sender, eventArgs) {
 sender.captureMouse();
 startX = sender['Canvas.Left'];
 startY = sender['Canvas.Top'];
 lastX = eventArgs.getPosition(null).x;
 lastY = eventArgs.getPosition(null).y;
 moving = true;
}

function mouseRelease(sender, eventArgs) {
 sender.releaseMouseCapture();
 moving = false;
 var x = sender['Canvas.Left'];
 var y = sender['Canvas.Top'];
 if (x < minX || x > maxX || y < minY || y > maxY) {
 sender['Canvas.Left'] = startX;
 sender['Canvas.Top'] = startY;
 }
}

function mouseMove(sender, eventArgs) {
 if (moving) {
 var x = eventArgs.getPosition(null).x;
 var y = eventArgs.getPosition(null).y;
 sender['Canvas.Left'] += x - lastX;
 sender['Canvas.Top'] += y - lastY;
 lastX = x;
 lastY = y;
 }
}

Keyboard Events
Using keyboard events on the Web is always a thankless task. It’s not impossible, it’s
just very hard to get it right, and there are many factors that come into play. Different
browsers have different approaches on how to determine keyboard input. Once a user
types a key, you get the information that a key was pressed, but only the numeric value
of that key. This works beautifully for easy characters like letters and numbers, but gets

74 | Chapter 5: Interaction and Event Handling

harder when you have special keys, or even operating system specific keys. And if you
have combination of keys, you are totally lost. For instance, Shift+9 usually types an
opening parenthesis. However, with the keyboard layout I am using right now, Shift
+9 creates a closing parenthesis.

Silverlight tries to amend this situation a little bit by providing two key codes in Java-
Script:

• A nonplatform-specific key code

• A platform-specific key code

A general rule of thumb is that platform-specific key codes are close to ASCII codes
(see http://www.asciitable.com/ for a good list), whereas the nonplatform specific key
codes work better for special characters.

When capturing keyboard events, the eventArgs argument (the second one passed to
the event handling function) provides the following properties:

key
The non platform specific key code

platformKey
The platform specific key code

ctrl
Whether the Ctrl key (on Mac: the Apple key) has been pressed

shift
Whether the Shift key has been pressed

Figure 5-5. Drag and drop with Silverlight

Keyboard Events | 75

http://www.asciitable.com/

At this time, Silverlight does not provide support for the Alt (Mac: Op-
tion) key. However, this key is rarely useful, since you need it for
accessing browser menus (e.g., Alt + F for the File menu). Don’t think
that you just have to avoid the shortcut keys for your browser, because
there are other browsers and other languages that use different short-
cuts.

Another noteworthy point about Silverlight keyboard events is that you can only cap-
ture these events for the root element of your XAML file, the outer <Canvas>. We will
now create a text input field that displays the text we entered, but need to attach the
event to the <Canvas> element, as Example 5-12 shows. Such a text input field is not
part of Silverlight 1.0, but is planned to be included in Silverlight 1.1.

Example 5-12. Capturing keyboard events, the XAML file (TextInput.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 KeyDown="keyPressed”>
 <Rectangle Width="200" Height="75" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="32" Canvas.Left="30" Canvas.Top="20"
 Foreground="Black" Text="" x:Name="InputBox” />
</Canvas>

In the JavaScript code we will need to determine which key has been pressed and then
display it. Given that different keyboard layouts lead to different results, we make some
very specific assumptions and:

• Target our code at the ASCII characters

• Allow only letters and numbers and the space character

• Allow only the backspace key to delete characters (this is more a feature than an
assumption)

The ASCII table returns these key code ranges for the supported characters (except for
the backspace key, which we will tackle upon in a bit):

• The space character has code 32

• The numbers run from 48 to 57

• The upper case letters run from 65 to 90, lower case letters run from 97 to 122

When pressing the a key, for instance, we get the key code of the capital A, 65. So if
the Shift key has not been pressed, we need to add 32 to the key code to get the lower
case letter’s code (97 in this example). When the Space key is pressed, it does not matter
whether Shift has been pressed or not. If a number key has been pressed, Shift must
not be pressed (remember the Shift+9 example from the introduction of this section?).

So if one valid key or key combination has been pressed, we have a valid key code. The
(built-in) JavaScript method String.fromCharCode() converts this information into the

76 | Chapter 5: Interaction and Event Handling

“real” character, which allows the script to write the new character into the text field.
To do this, the findName() method has once again to be used:

if (eventArgs.Ctrl) {
 return;
}
var keyCode = eventArgs.platformKeyCode;
if (keyCode == 32 || //space
 (keyCode >= 48 && keyCode <= 57 && !eventArgs.shift) || //numbers
 (keyCode >= 65 && keyCode <= 90)) { //letters
 if ((keyCode >= 65 && keyCode <= 90) && !eventArgs.shift) {
 keyCode += 32;
 }
 sender.findName('InputBox').text += String.fromCharCode(keyCode);
}

Onto the backspace key. Here the best option is to use the nonplatform-specific key
code, which is easy to remember: 1. If this key is pressed, the last character of the current
input is removed. This is implemented with the JavaScript substring() method for
strings:

if (eventArgs.key == 1) {
 var text = sender.findName('InputBox').text;
 sender.findName('InputBox').text = text.substring(0, text.length - 1);
}

Example 5-13 contains the complete JavaScript code. The application then uses letters,
numbers, space characters and Backspace, and displays what you write (see Fig-
ure 5-6). If you want to complicate the code a little bit, you can add further characters
and also experiment with the nonplatform-specific key codes to create a user experience
that is as platform agnostic as possible.

Example 5-13. Capturing keyboard events, the XAML JavaScript file (TextInput.xaml.js)
function keyPressed(sender, eventArgs) {
 if (eventArgs.Ctrl) {
 return;
 }
 var keyCode = eventArgs.platformKeyCode;
 if (keyCode == 32 || //space
 (keyCode >= 48 && keyCode <= 57 && !eventArgs.shift) || //numbers
 (keyCode >= 65 && keyCode <= 90)) { //letters
 if ((keyCode >= 65 && keyCode <= 90) && !eventArgs.shift) {
 keyCode += 32;
 }
 sender.findName('InputBox').text += String.fromCharCode(keyCode);
 } else if (eventArgs.key == 1) {
 var text = sender.findName('InputBox').text;
 sender.findName('InputBox').text = text.substring(0, text.length - 1);
 }
}

Keyboard Events | 77

When you run this example in the browser, you first need to click the
Silverlight display area to activate the keyboard event handling. This is
actually a security feature, otherwise plugins might capture keyboard
input that a user was unwittingly entering while the browser had the
focus. This is the same reason Silverlight’s keyboard event handling does
not work in full-screen mode. You may want to prompt users to click
within the Silverlight content area prior to typing, either by specifically
instructing them or by adding a button that needs to be clicked at the
beginning.

Silverlight’s event handling is not rocket science: You can use attributes to assign event
handlers, or you write some code to attach (and maybe remove) event listeners. For
keyboard and mouse events, the eventArgs event handler argument provides additional
information about the event. There are other types of events too and the most inter-
esting ones will be covered in the next chapters (e.g., media events in Chapter 7).

For Further Reading
http://www.asciitable.com/

The ASCII table

http://msdn2.microsoft.com/en-us/library/ms645540.aspx
Windows-specific key codes

http://developer.apple.com/documentation/carbon/reference/keyboardlayoutservices/
KeyboardLayoutReference.pdf

Mac-specific key codes

Figure 5-6. Keyboard input is displayed in the text field

78 | Chapter 5: Interaction and Event Handling

http://www.asciitable.com/
http://msdn2.microsoft.com/en-us/library/ms645540.aspx
http://developer.apple.com/documentation/carbon/reference/keyboardlayoutservices/KeyboardLayoutReference.pdf
http://developer.apple.com/documentation/carbon/reference/keyboardlayoutservices/KeyboardLayoutReference.pdf

CHAPTER 6

Transformations and Animations

Transforming and Animating Content
Silverlight applications can be dynamic even if they do not use JavaScript. The content
can be transformed and animated, both which will be covered in this chapter. The
transformation is nothing that you can watch, it is more or less a calculation that takes
effect when the Silverlight content is rendered by the plug-in. For example, you can
rotate or skew elements. An animation, on the other hand, can really change the visual
appearance of the applications: elements may move or change their color. As always,
you will find many small and self-contained examples that showcase the most inter-
esting and important Silverlight options.

Transformations
A transformation is technically only a change of one or more values. For instance, if an
element is rotated, its position and the location of all the drawing points of the element
change. If an element is moved to another position (that’s a transformation, as well),
basically the positions of all corners of the element change (if we leave fillings aside).
Silverlight supports five transformations:

TranslateTransform
Changes the position of an element

ScaleTransform
Scales an element by multiplying its dimension horizontally and vertically

SkewTransform
Skews an element by using a horizontal and a vertical angle

RotateTransform
Rotates an element by using a angle

MatrixTransform
Multiplies all points of an element by a given matrix,and uses the result as the new
value

79

Let’s start with the <TranslateTransform> element, which as just changes the position
of an element, much like setting a related property like Canvas.Left or Canvas.Top would
do.

To execute a transformation, you have to use the <Element.RenderTransform> element.
The term needs to be replaced with the type of object you want to transform. For
instance, if you want to transform a <Rectangle> object, use <Rectangle.RenderTrans
form>. If you want to transform a <TextBlock> object, use <TextBlock.RenderTransform>.

Within the <Element.RenderTransform> element, you need to put the transformation
element; in this example it is <TranslateTransform>. This element expects two attrib-
utes, X and Y, denoting the new x and y coordinate of the associated element’s left
corner, as you can see here:

<TextBlock Text="...">
 <TextBlock.RenderTransform>
 <TranslateTransform X="10" Y="20" />
 </TextBlock.RenderTransform>
</TextBlock>

Example 6-1 starts with the Hello World example from Chapter 2 and translates both
a rectangle and a text block. In the end result you will see both the original elements
and the translated ones (Figure 6-1) .

Example 6-1. Translating elements, the XAML file (TranslateTransform.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />

 <Rectangle Width="300” Height="150” Stroke="Orange” StrokeThickness="15">
 <Rectangle.RenderTransform>
 <TranslateTransform X="350” Y="175” />
 </Rectangle.RenderTransform>
 </Rectangle>
 <TextBlock FontFamily="Arial” FontSize="56” Canvas.Left="25” Canvas.Top="40”
 Foreground="Black” Text="Silverlight">
 <TextBlock.RenderTransform>
 <TranslateTransform X="350” Y="175” />
 </TextBlock.RenderTransform>
 </TextBlock>
</Canvas>

Element scaling can be done using <ScaleTransform>. You can scale both horizontally
(ScaleX attribute) and vertically (ScaleY attribute), and may also provide the center
coordinates (CenterX and CenterY attributes). The scaling value is actually a factor. For
instance, a scaling value of 2 doubles the horizontal or vertical size, wheres a factor of
0.5 halves it. Example 6-2 scales both ways, as Figure 6-2 shows.

80 | Chapter 6: Transformations and Animations

Example 6-2. Scaling elements, the XAML file (ScaleTransform.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />

 <Rectangle Canvas.Left="350" Canvas.Top="175"
 Width="300" Height="150" Stroke="Orange" StrokeThickness="15">
 <Rectangle.RenderTransform>
 <ScaleTransform ScaleX="1.5” ScaleY="0.5” />
 </Rectangle.RenderTransform>
 </Rectangle>
 <TextBlock FontFamily="Arial" FontSize="56"
 Canvas.Left="375" Canvas.Top="215" Foreground="Black"
 Text="Silverlight">
 <TextBlock.RenderTransform>
 <ScaleTransform ScaleX="1.5” ScaleY="0.5” />
 </TextBlock.RenderTransform>
 </TextBlock>
</Canvas>

The next transformation effect on our list is skewing, represented in Silverlight using
the <SkewTransform> element. Skewing can be done using an horizontal angle (AngleX)
and a vertical angle (AngleY). Again, you can provide the center of the transformation
by setting the CenterX and CenterY attributes. The code in Example 6-3 uses a horizontal

Figure 6-1. The original (left) and the translated (right) elements

Transformations | 81

skewing of 45 degrees, and a vertical skewing of -30 degrees (which is the same as 330
degrees, because 360 degrees is a full circle). Figure 6-3 shows the result.

Example 6-3. Skewing elements, the XAML file (SkewTransform.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />

 <Rectangle Canvas.Left="350" Canvas.Top="175"
 Width="300" Height="150" Stroke="Orange" StrokeThickness="15">
 <Rectangle.RenderTransform>
 <SkewTransform CenterX="50” CenterY="25” AngleX="45” AngleY="-30” />
 </Rectangle.RenderTransform>
 </Rectangle>
 <TextBlock FontFamily="Arial" FontSize="56"
 Canvas.Left="375" Canvas.Top="215" Foreground="Black"
 Text="Silverlight">
 <TextBlock.RenderTransform>
 <SkewTransform CenterX="50” CenterY="25” AngleX="45” AngleY="-30” />
 </TextBlock.RenderTransform>
 </TextBlock>
</Canvas>

Figure 6-2. The original (left) and the scaled (right) elements

82 | Chapter 6: Transformations and Animations

The final “simple” transformation is rotation, or <RotateTransform> in Silverlight. All
you need to provide is the rotation angle (in degrees) in the Angle property. By default
the element rotates around its top left corner, i.e., the relative coordinates (0,0). You
can define this rotation point yourself by using the CenterX and CenterY attributes.

In Example 6-4, the <Rectangle> element is rotated by 45 degrees, around the point
(150,50). To appropriately rotate the <TextBlock> element by the same degree, you need
to take into account that the text block is translated 25 pixels to the right and 40 pixels
to the bottom compared to the rectangle. This needs to be compensated in the rotation
point, so we get (150-25,50-r0), or (125,10). As Figure 6-4 shows, the relative position
of the text block within the rectangle remains intact this way.

Example 6-4. Rotating elements, the XAML file (RotateTransform.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />

 <Rectangle Canvas.Left="350" Canvas.Top="175"
 Width="300" Height="150" Stroke="Orange" StrokeThickness="15">
 <Rectangle.RenderTransform>
 <RotateTransform Angle="-45” CenterX="150” CenterY="50” />

Figure 6-3. The original (left) and the skewed (right) elements

Transformations | 83

 </Rectangle.RenderTransform>
 </Rectangle>
 <TextBlock FontFamily="Arial" FontSize="56"
 Canvas.Left="375" Canvas.Top="215" Foreground="Black"
 Text="Silverlight">
 <TextBlock.RenderTransform>
 <RotateTransform Angle="-45” CenterX="125” CenterY="10” />
 </TextBlock.RenderTransform>
 </TextBlock>
</Canvas>

To use more transformations at one time, you have to group them (the Silverlight object
model and the XAML syntax do not allow multiple transform elements directly un-
derneath <Element.RenderTransform>). But this limitation does not lead to an enormous
extra effort, instead you just have to put an <TransformGroup> element within the
<Element.RenderTransform> element and put your transformations in there. Exam-
ple 6-5 shows such a transformation. As you can see in Figure 6-5, the code just
translates the elements and skews them (you will notice that in contrast to previous
listings, there are no Canvas.Left and Canvas.Top properties set for the transformed
objects).

Example 6-5. Grouping transformations, the XAML file (TransformGroup.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

Figure 6-4. The original (left) and the rotated (right) elements

84 | Chapter 6: Transformations and Animations

 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />

 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="350" Y="175" />
 <SkewTransform CenterX="425" CenterY="265" AngleX="45" AngleY="-30" />
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <TextBlock FontFamily="Arial" FontSize="56" Foreground="Black"
 Text="Silverlight">
 <TextBlock.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="375" Y="215" />
 <SkewTransform CenterX="425" CenterY="265" AngleX="45" AngleY="-30" />
 </TransformGroup>
 </TextBlock.RenderTransform>
 </TextBlock>
</Canvas>

The complex calculations that are the basis for all Silverlight transformations can be
further generalized. Every point (x,y) is multiplied with a 3x3 matrix to calculate its
new coordinates. Since Silverlight only supports 2D, the third column of this matrix is

Figure 6-5. The original (left) and the transformed (right) elements

Transformations | 85

always (0,0,1), because we cannot use a z coordinate. However, the other two columns
are used by the previously shown transformations. For instance, the first two values in
the first two rows are used to scale and skew elements; the first two values in the third
row of the matrix provide the value that an element is translated to. By setting all values
at once, you can combine translating, skewing, and scaling transformations.

The math behind these calculations is beyond the scope of this book, but we will show
you how this is done in markup. You need to use the <MatrixTransform> element; its
Matrix property expects the first two values of each of the three matrix rows to be a
comma separated list. Have a look at the code in Example 6-6 and then try to figure
out what effect these values will have. The solution is shown in Figure 6-6.

Example 6-6. Transforming using a matrix, the XAML file (MatrixTransform.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />

 <Rectangle Canvas.Left="300"
 Width="300" Height="150" Stroke="Orange" StrokeThickness="15">
 <Rectangle.RenderTransform>
 <MatrixTransform Matrix="1,1.5,1.25,1.25,1.5,1” />
 </Rectangle.RenderTransform>
 </Rectangle>
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="325"
 Foreground="Black" Text="Silverlight">
 <TextBlock.RenderTransform>
 <MatrixTransform Matrix="1,1.5,1.25,1.25,1.5,1” />
 </TextBlock.RenderTransform>
 </TextBlock>
</Canvas>

Transformations
UI elements aren’t the only things that can be transformed. Brushes support transfor-
mations as well, using the <NameOfBrush.Transform> and <NameOfBrush.RelativeTrans
form> subelement (the latter element transforms using relative values). Also, geometry
elements (used for shapes) support a <NameOfGeometry.Transform> subelement and can
have transformations applied to them (see Chapter 4).

Animations
Animations are usually just a cheap visual effect, which is based on an element’s prop-
erties being changed. So for instance, if an element moves from the top left to the bottom
right corner of the canvas, its Canvas.Left and Canvas.Top properties are changed a few
times a second. If an element fades in from out of nowhere, its Opacity value is animated,

86 | Chapter 6: Transformations and Animations

from 100 percent to 0 percent. So theoretically, you could rely solely on JavaScript and
its access to Silverlight elements’ properties to create animations. Of course, it is much
more convenient to use the built-in animation support. Setting up an animation re-
quires quite a number of steps, but the result can be very rewarding.

Setting Up an Animation
Creating an animation consists of several steps and a couple of lines of markup, so
IntelliSense is really handy here. For example, to smoothly move an element to another
position you need to animate the element. For reasons that will become clear in a
minute, you should name that element.

<TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" x:Name="MyTextBlock">
...
</TextBlock>

Within this element, define a trigger using a <TextBlock.Triggers> element (if you were
to animate a rectangle, you would use <Rectangle.Triggers>, and so on). An actual
trigger (represented by <EventTrigger>) is activated when an event is fired. This event
is provided in the RoutedEvent attribute of <EventTrigger>. Currently, Silverlight only

Figure 6-6. The original (left) and the transformed (right) elements

Animations | 87

supports one event, Element.Loaded, where Element is the name of the object that con-
tains the trigger (here it is TextBlock).

<TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" x:Name="MyTextBlock">
 <TextBlock.Triggers>
 <EventTrigger RoutedEvent="TextBlock.Loaded">
 ...
 </EventTrigger>
 </TextBlock.Triggers>
</TextBlock>

Within the event trigger, a storyboard is created. You need two elements <BeginStory
board> and <Storyboard>. A storyboard is a set of one or more animations. You can try
to compare what a storyboard does for animations to what the <TransformGroup> ele-
ment does to transformations, which is group several of them together. An animation
can consist of several individual animations, but more on that in a minute.

<TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" x:Name="MyTextBlock">
 <TextBlock.Triggers>
 <EventTrigger RoutedEvent="TextBlock.Loaded">
 <BeginStoryboard>
 <Storyboard>
 ...
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </TextBlock.Triggers>
</TextBlock>

Silverlight supports several animations, and they will all be covered in the next section.
To complete the current example, let’s introduce the most common animations: <Dou
bleAnimation>. This animation “animates” a value from a start value to an end value,
for instance from 1 to 10. Every animation runs a certain amount of time. Within that
interval, the associated animation value is gradually changed, from the start value to
the end value. When the value goes from 1 to 10, these values might be 1, 1.1, 1.2, and
so on until 10, depending on the duration of the animation. If the value that is animated
is the x coordinate of the element to be animated, this creates the visual effect of the
element smoothly moving from one point to another.

When using an animation, you will usually need several of these properties:

AutoReverse
Reverses the animation if it has ended (i.e., moves the element back to where it
started)

Duration
The duration of an animation, using the syntax hh:mm:ss (hours, minutes, seconds)

From
The start value for the animation

88 | Chapter 6: Transformations and Animations

To
The end value for the animation

By
A relative value by how much to change the animation (alternative approach for
using To)

RepeatBehavior
What to do if the animation has ended (and optionally be reversed); you can pro-
vide a (total) duration, a number of times to repeat, or Forever if the animation
should endlessly repeat

Storyboard.TargetName
The name of the element that needs to be animated (therefore we needed to assign
a name)

Storyboard.TargetProperty
The property of the element that needs to be animated

The value of Storyboard.TargetProperty is the name of the property that
receives the animated values. If the property includes a dot (such as in
Canvas.Left or Canvas.Top), you need to enclose the complete property
name in parentheses, e.g., (Canvas.Left)or(Canvas.Top).

Adding a <DoubleAnimation> concludes the code, which is shown in Example 6-7. Both
the rectangle and the text are moved 300 pixels to the right, using the default animation
duration (here it is one second). Figure 6-7 has the output.

Example 6-7. Using <DoubleAnimation>, the XAML file (DoubleAnimation.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15"
 x:Name="MyRectangle">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 From="0” To="300.456”
 Storyboard.TargetName="MyRectangle”
 Storyboard.TargetProperty="(Canvas.Left)” />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" x:Name="MyTextBlock">
 <TextBlock.Triggers>
 <EventTrigger RoutedEvent="TextBlock.Loaded">
 <BeginStoryboard>

Animations | 89

 <Storyboard>
 <DoubleAnimation
 From="25” To="325.456”
 Storyboard.TargetName="MyTextBlock”
 Storyboard.TargetProperty="(Canvas.Left)” />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </TextBlock.Triggers>
 </TextBlock>
</Canvas>

If you set up an animation that way, it will start immediately after the trigger has been
activated. Silverlight allows you to change this behavior. Every animation also supports
the BeginTime attribute, where you define the time (again using the hh:mm:ss syntax)
when the animation starts. The code from Example 6-8 combines two <DoubleAnima
tion> elements: The first one moves the element to the right, the second one moves it
to the bottom. The second animation starts after three seconds, which happens to be
exactly the time when the first animation has ended. Figure 6-8 shows the second phase
of the storyboard: the element is moving down.

Example 6-8. Combining animations and starting them later, the XAML file
(DoubleAnimations.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15"
 x:Name="MyRectangle">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">

Figure 6-7. The elements are animated to the right (although it can’t be seen in print)

90 | Chapter 6: Transformations and Animations

 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 From="0" To="300.456" Duration="0:0:3”
 Storyboard.TargetName="MyRectangle"
 Storyboard.TargetProperty="(Canvas.Left)" />
 <DoubleAnimation
 From="0" To="150" BeginTime="0:0:3” Duration="0:0:3"
 Storyboard.TargetName="MyRectangle"
 Storyboard.TargetProperty="(Canvas.Top)" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" x:Name="MyTextBlock">
 <TextBlock.Triggers>
 <EventTrigger RoutedEvent="TextBlock.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 From="25" To="325.456" Duration="0:0:3”
 Storyboard.TargetName="MyTextBlock"
 Storyboard.TargetProperty="(Canvas.Left)" />
 <DoubleAnimation
 From="40" To="190" BeginTime="0:0:3” Duration="0:0:3"
 Storyboard.TargetName="MyTextBlock"
 Storyboard.TargetProperty="(Canvas.Top)" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </TextBlock.Triggers>
 </TextBlock>
</Canvas>

If you omit the BeginTime attribute in Example 6-8, both animations run
at the same time, making the elements move diagonally.

Animation Types
Apart from <DoubleAnimation>, Silverlight also comes with support for two additional
animations with a more specific purpose:

• ColorAnimation (animates a color value, e.g., Orange)

• PointAnimation (animates a point, e.g., 0,0)

Animating a color works wherever you have a Color property. That means that you can
not animate, say, the Stroke property. However, you can use a SolidColorBrush and
animate the Color property there.

Animations | 91

The rest is easy. Use the <ColorAnimation> element, set a From and a To color, and Sil-
verlight takes care of the rest, as Example 6-9 shows (see Figure 6-9 for the browser
output).

Example 6-9. Animating a color, the XAML file (ColorAnimation.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" StrokeThickness="15" x:Name="MyRectangle">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation
 From="Green” To="Orange” Duration="0:0:5”
 Storyboard.TargetName="MyBrush”
 Storyboard.TargetProperty="Color” />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
 <Rectangle.Stroke>
 <SolidColorBrush x:Name="MyBrush” />
 </Rectangle.Stroke>
 </Rectangle>
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />
</Canvas>

Figure 6-8. The elements first move to the right, then to the bottom

92 | Chapter 6: Transformations and Animations

Internally, Silverlight is using the RGB values of the colors used and then
animates these values. This is why you only get shades of grey when
animating black (RGB values 0, 0, 0) to white (RGB values 255, 255,
255), since the colors “between” these two values have the same amount
of red, green, and blue.

A point animation (<PointAnimation> in Silverlight’s XAML) animates a point from a
starting point to an end point (or by a certain distance in the coordinate system using
By). To use it, you need to animate a property that requires a point as a value. One
example for that is the <LinearGradientBrush>: its StartPoint and EndPoint attributes
are both points. So, let’s assume we have such a brush:

<LinearGradientBrush StartPoint="0,0” EndPoint="1,1” x:Name="MyGradient">
 <GradientStop Color="Red" Offset="0.0" />
 <GradientStop Color="Green" Offset="0.5" />
 <GradientStop Color="Blue" Offset="1.0" />
</LinearGradientBrush>

To animate this brush’s StartPoint property, a <PointAnimation> element like the fol-
lowing would do:

<PointAnimation
 From="0,0" To="1,0" Duration="0:0:4"
 Storyboard.TargetName="MyGradient"
 Storyboard.TargetProperty="StartPoint" />

Figure 6-9. The stroke of the rectangle changes from green to orange

Animations | 93

The code in Example 6-10 combines two animations: the start point of the gradient is
moved from the top left to the top right corner and the end point of the gradient is
moved from the bottom right to the bottom right corner. Figure 6-10 shows the Sil-
verlight application in the browser during this animation: the gradient is moving.

Example 6-10. Animating a point, the XAML file (PointAnimation.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" StrokeThickness="15" x:Name="MyRectangle">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <PointAnimation
 From="0,0” To="1,0” Duration="0:0:4”
 Storyboard.TargetName="MyGradient”
 Storyboard.TargetProperty="StartPoint” />
 <PointAnimation
 From="1,1” To="0,1” Duration="0:0:4”
 Storyboard.TargetName="MyGradient”
 Storyboard.TargetProperty="EndPoint” />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
 <Rectangle.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1" x:Name="MyGradient">
 <GradientStop Color="Red" Offset="0.0" />
 <GradientStop Color="Green" Offset="0.5" />
 <GradientStop Color="Blue" Offset="1.0" />
 </LinearGradientBrush>
 </Rectangle.Stroke>
 </Rectangle>
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />
</Canvas>

Key Frame Animations
All of the animations so far were quite flexible in terms of the beginning and end time,
but there was one severe restriction: every animation only took care of exactly one value
that was animated. A bit more complex, but also a bit more flexible are so-called key
frame animations. The term “key frame” is heavily used in Adobe Flash and identifies
a frame during the course of a Flash movie where a certain state in the application must
be reached (e.g., objects need to have specific positions). Silverlight only uses key frames
as part of special animations, but the approach is comparable: when a key frame is
reached, a certain object value must be met.

All three animation types we know so far (<DoubleAnimation>, <ColorAnimation>, and
<PointAnimation>) can also be used with key frames. Then the names of the elements

94 | Chapter 6: Transformations and Animations

change (to <DoubleAnimationUsingKeyFrames>, <ColorAnimationUsingKeyFrames>, and
<PointAnimationUsingKeyFrames>). Within each element, you provide the number of
key frames. Every key frame needs at least two values, or attributes:

KeyTime

The time when the key frame will come into effect

Value

The value that needs to be reached at the given time

When you have one key frame after 2 seconds (providing a value of 10), and another
one after 4 seconds (providing a value of 20), the value that you assign in these two
frames will be animated between them. How this value is animated from 10 to 20 will
be defined by the second key frame. There are different ways to interpolate the value,
and the second key frame needs to confirm which of these methods is used. Three
methods are currently supported by Silverlight:

Linear
The value is linearly interpolated

Discrete
There are no values between start and end value; when the next key frame is
reached, the new value will be assigned

Spline
The values will be animated along a cubic Bézier curve (the two control points are
then provided in the KeySpline attribute

Figure 6-10. The gradient in the rectangle’s stroke is changing

Animations | 95

Every key frame can come in different flavors: different type of value that is animated
(Double, Color, Point) and different type of interpolation method (Linear, Discrete,
Spline). The name of the key frame element in XAML is the concatenation of interpo-
lation type, value type, and KeyFrame. Therefore, a key frame that uses a spline
interpolation of colors would be represented by the <SplineColorKeyFrame> element.

Apart from that, key frame animations just work as animations without key frames. So
without further ado, have a look at Example 6-11 where the rectangle and the text block
are moved around the canvas. The animations for the x and the y coordinate consist
of four subanimations each. We are using a splined animation each time. Figure 6-11
shows the application in the animations.

Example 6-11. Animating using key frames, the XAML file (KeyFrameAnimation.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15"
 x:Name="MyRectangle">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="MyRectangle”
 Storyboard.TargetProperty="(Canvas.Left)”
 Duration="0:0:8">
 <SplineDoubleKeyFrame Value="300” KeyTime="0:0:2”
 KeySpline="0.25,0.75 0.75,0.25” />
 <SplineDoubleKeyFrame Value="100” KeyTime="0:0:4”
 KeySpline="0.75,0.25 0.25,0.75” />
 <SplineDoubleKeyFrame Value="50” KeyTime="0:0:6”
 KeySpline="0.25,0.75 0.75,0.25” />
 <SplineDoubleKeyFrame Value="200” KeyTime="0:0:8”
 KeySpline="0.75,0.25 0.25,0.75” />
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="MyRectangle”
 Storyboard.TargetProperty="(Canvas.Top)”
 Duration="0:0:8">
 <SplineDoubleKeyFrame Value="50” KeyTime="0:0:2”
 KeySpline="0.25,0.75 0.75,0.25” />
 <SplineDoubleKeyFrame Value="250” KeyTime="0:0:4”
 KeySpline="0.75,0.25 0.25,0.75” />
 <SplineDoubleKeyFrame Value="50” KeyTime="0:0:6”
 KeySpline="0.25,0.75 0.75,0.25” />
 <SplineDoubleKeyFrame Value="100” KeyTime="0:0:8”
 KeySpline="0.75,0.25 0.25,0.75” />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>
 <Canvas Canvas.Left="25" Canvas.Top="40">

96 | Chapter 6: Transformations and Animations

 <TextBlock FontFamily="Arial" FontSize="56" Foreground="Black"
 Text="Silverlight" x:Name="MyTextBlock">
 <TextBlock.Triggers>
 <EventTrigger RoutedEvent="TextBlock.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="MyTextBlock”
 Storyboard.TargetProperty="(Canvas.Left)”
 Duration="0:0:8">
 <SplineDoubleKeyFrame Value="300” KeyTime="0:0:2”
 KeySpline="0.25,0.75 0.75,0.25” />
 <SplineDoubleKeyFrame Value="100” KeyTime="0:0:4”
 KeySpline="0.75,0.25 0.25,0.75” />
 <SplineDoubleKeyFrame Value="50” KeyTime="0:0:6”
 KeySpline="0.25,0.75 0.75,0.25” />
 <SplineDoubleKeyFrame Value="200” KeyTime="0:0:8”
 KeySpline="0.75,0.25 0.25,0.75” />
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="MyTextBlock”
 Storyboard.TargetProperty="(Canvas.Top)”
 Duration="0:0:8">
 <SplineDoubleKeyFrame Value="50” KeyTime="0:0:2”
 KeySpline="0.25,0.75 0.75,0.25” />
 <SplineDoubleKeyFrame Value="250” KeyTime="0:0:4”
 KeySpline="0.75,0.25 0.25,0.75” />
 <SplineDoubleKeyFrame Value="50” KeyTime="0:0:6”
 KeySpline="0.25,0.75 0.75,0.25” />
 <SplineDoubleKeyFrame Value="100” KeyTime="0:0:8”
 KeySpline="0.75,0.25 0.25,0.75” />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </TextBlock.Triggers>
 </TextBlock>
 </Canvas>
</Canvas>

ScriptingAnimation
The final example in this chapter will show you how animations are exposed in the
JavaScript code. This allows you to control animations from script code and will also
provide a means to overcome the limitation of animations always starting when the
XAML files were loaded. The example will start the animation when the mouse hovers
over the elements on the canvas, pause it when the mouse leaves the canvas, and resume
it again when the mouse pointer is back.

Since we need JavaScript code in the example, we create a “XAML code-behind” Java-
Script file. Make sure that you include this file when implementing this example (see

Animations | 97

Example 6-12), otherwise the effects will not work (you will probably guess why I am
including this here).

Example 6-12. Scripting animations, the HTML file (AnimationResources.html)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Silverlight</title>

 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript" src="AnimationResources.html.js"></script>
 <script type="text/javascript” src="AnimationResources.xaml.js"></script>
</head>

<body>
 <div id="SilverlightPlugInHost">
 <script type="text/javascript">
 createSilverlight();
 </script>
 </div>
</body>
</html>

Figure 6-11. The elements move around the canvas, along Bézier curves

98 | Chapter 6: Transformations and Animations

To access an animation, you need to provide a name for the <Storyboard> element,
because you can only control the playing state of storyboards, not individual anima-
tions. The code in this example introduces a new element, <Canvas.Resources>, which
is not required for the example, but shows a nice way to separate animations from the
elements that are animated. <Canvas.Resources> contains resources, which are elements
that are referenced or used elsewhere in the Silverlight application. In this example, we
just put two (named!) storyboards in there. Each storyboard contains a <DoubleAnima
tion> element that runs forever and we have also set AutoReverse to True.

<Canvas.Resources>
 <Storyboard x:Name="MyRectangleStoryboard">
 <DoubleAnimation
 From="0" To="300.456"
 Storyboard.TargetName="MyRectangle"
 Storyboard.TargetProperty="(Canvas.Left)"
 AutoReverse="True" RepeatBehavior="Forever"/>
 </Storyboard>
 <Storyboard x:Name="MyTextBlockStoryboard">
 <DoubleAnimation
 From="0" To="300.456"
 Storyboard.TargetName="MyTextBlock"
 Storyboard.TargetProperty="(Canvas.Left)"
 AutoReverse="True" RepeatBehavior="Forever"/>
 </Storyboard>
</Canvas.Resources>

As you can see, the two animations change the x coordinate of a rectangle (MyRectan
gle) and a text block (MyTextBlock).

Separating a storyboard from the animated element using <Can
vas.Resources> can be taken one step further by omitting the Story
board.TargetName property and setting dynamically from JavaScript.
However, you can only do that if the animation has not yet started.

Example 6-13 shows the complete XAML markup. Note that there are two mouse event
handlers in the <Canvas> element, but no triggers on the page.

Example 6-13. Scripting animations, the XAML file (AnimationResources.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 MouseEnter="beginAnimation” MouseLeave="pauseAnimation”>
 <Canvas.Resources>
 <Storyboard x:Name="MyRectangleStoryboard">
 <DoubleAnimation
 From="0" To="300.456"
 Storyboard.TargetName="MyRectangle"
 Storyboard.TargetProperty="(Canvas.Left)"
 AutoReverse="True" RepeatBehavior="Forever"/>
 </Storyboard>
 <Storyboard x:Name="MyTextBlockStoryboard">
 <DoubleAnimation

Animations | 99

 From="0" To="300.456"
 Storyboard.TargetName="MyTextBlock"
 Storyboard.TargetProperty="(Canvas.Left)"
 AutoReverse="True" RepeatBehavior="Forever"/>
 </Storyboard>
 </Canvas.Resources>
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15"
 x:Name="MyRectangle"/>
 <Canvas Canvas.Left="25" Canvas.Top="40">
 <TextBlock FontFamily="Arial" FontSize="56" Foreground="Black"
 Text="Silverlight" x:Name="MyTextBlock"/>
 </Canvas>
</Canvas>

Accessing such a storyboard is easy, just use the well-known findName() method in-
troduced in Chapter 5 and provide the name of the <Storyboard> element. You can then
control the animations using these five methods:

begin()
Starts an animation at the beginning

pauses()
Pauses an animation

resume()
Resumes a paused animation

stop()
Stops an animation

seek(offset)
Jumps to a given position (using the hh:mm:ss syntax) in the animation

We now need to work on the event handlers. When the mouse leaves the canvas, we
pause the animations using the pause() method. Here is the code:

function pauseAnimation(sender, eventArgs) {
 var storyboard1 = sender.findName('MyRectangleStoryboard');
 storyboard1.pause();
 var storyboard2 = sender.findName('MyTextBlockStoryboard');
 storyboard2.pause();
}

Starting the animations is a bit more complicated because the begin() method starts
an animation (or a storyboard, to be exact) at the very beginning, but does not resume
paused animations at their current position. On the other hand, the resume() method
resumes a paused animation, but does not start a stopped one. Therefore, the JavaScript
variable needs to remember whether the animation has already been started or not.
Once an animation has been started, it will not be stopped (only eventually paused),
since RepeatBehavior has been set to Forever. This allows us to implement the MouseH
over event handler. Example 6-14 shows the complete code.

100 | Chapter 6: Transformations and Animations

Example 6-14. Scripting animations, the XAML JavaScript file (AnimationResources.xaml.js)
var hasBegun = false;

function beginAnimation(sender, eventArgs) {
 var storyboard1 = sender.findName('MyRectangleStoryboard');
 var storyboard2 = sender.findName('MyTextBlockStoryboard');
 if (hasBegun) {
 storyboard1.resume();
 storyboard2.resume();
 } else {
 storyboard1.begin();
 storyboard2.begin();
 hasBegun = true;
 }
}

function pauseAnimation(sender, eventArgs) {
 var storyboard1 = sender.findName('MyRectangleStoryboard');
 storyboard1.pause();
 var storyboard2 = sender.findName('MyTextBlockStoryboard');
 storyboard2.pause();
}

Figure 6-12 shows the application in action (but you get the real experience when you
try the code on your own). When the mouse hovers over the canvas, the animation
starts. If you move the mouse pointer off the canvas, the animation stops, but if the
mouse pointer returns, the animation continues at the same position it previously
stopped.

Transformations and animations are quite different concepts, but both can achieve
impressive effects with little efforts. With bigger projects, you will probably resort to

Figure 6-12. The mouse controls the animation

Animations | 101

Microsoft Expression Blend 2 to get these effects up and running, but this chapter also
showed you how to use scripting to provide additional functionality. And, by the way,
you can also combine the two techniques presented in this chapter―transformations
can be animated too.

For Further Reading
http://silverlight.net/quickstarts/silverlight10/animations.aspx

Microsoft quickstart on Silverlight 1.0 animations

102 | Chapter 6: Transformations and Animations

http://silverlight.net/quickstarts/silverlight10/animations.aspx

CHAPTER 7

Multimedia

Silverlight’s Media Support
Adobe Flash has made a remarkable transition in the last years. The market penetration
of the Flash player (the plug-in) has always been very high, but whenever a new player
version came out, it took several months for it to reach a good-sized audience. However,
in the last few months, this has sped up significantly. There may be many reasons for
this, but one of the most compelling is that recent Flash versions have much better
video support. Given that video sites like YouTube are extremely popular at the mo-
ment, they prompt users to install the latest player to see the content.

Multimedia support is a key feature of many browser plugins, and Silverlight clearly
does not want to disappoint its users here. For obvious reasons, the supported media
formats are biased toward Microsoft’s offerings. Silverlight supports Windows Media
Audio (WMA) and Windows Media Video (WMV) files, version 7 through 9. Also
WMVA and WMVC1, two rather new video formats by Microsoft, are supported. The
only external format Silverlight can process is the very popular MP3 audio format.

There is a reason for this bias, however. The plug-in plays content in these formats
without the help of any other software or player. So, it is not necessary to have an MP3
player or even Windows Media Player to play supported multimedia content in Silver-
light. This applies to both the Windows and Mac platforms.

Silverlight also supports streaming, either in the form of Windows Media Server
streaming data, or ASX files. Note, however, that the stream support has some limita-
tions: the content may not be paused and not all ASX features are supported. Refer to
the Silverlight SDK for a list of restrictions when using streamed multimedia data.

Preparing Multimedia Data
Ideally, you already have your audio or video data in the correct format and can directly
embed it into your Silverlight application (see “Embedding Multimedia for details).
However, there is usually at least one step left to do―converting the audio data. For

103

example, the audio data could be in the wrong format, the video data might be too big
for reasonable web playback, or you would like to add some markers to a video pre-
sentation. Some helpful tools can be used to get your multimedia data into the right
format.

Converting Data
Starting with Windows XP, Microsoft began bundling a simple but reasonable video
editing tool: the Windows Movie Maker. If you are using Windows XP and don’t see it
in your Start menu, you might want to visit Windows Update (menu entry in Internet
Explorer’s Tools menu) and install it from there. Windows Vista users will find the
Windows Movie Maker in their Start menu. However, there is a catch; if you have an
outdated video card, its hardware acceleration may not be good enough for Windows
Movie Maker (see Figure 7-1). Also, some editions of Windows don’t come with Win-
dows Movie Maker. If this is the case, there is one more option: an older Windows
Movie Maker version, 2.6, has been made available for Windows Vista. You can down-
load it from http://www.microsoft.com/downloads/details.aspx?Family
ID=d6ba5972-328e-4df7-8f9d-068fc0f80cfc&DisplayLang=en. Note that Windows
Movie Maker needs some libraries installed by Windows Media Player. Some Windows
editions (the ones whose names are ending in “N”, e.g., Vista Business N) do not come
with Windows Media Player, but you can download it, too: http://www.microsoft.com/
downloads/details.aspx?FamilyID=1d224714-e238-4e45-8668-5166114010ca&Dis
playLang=en. Do not let the name of the download page confuse you: Although it says
that you get “Windows Media Player 11 for Windows XP,” it also runs under Windows
Vista and restores the Windows Media components there, as you can see in Figure 7-2.

Make sure that you visit Windows Update after installing Windows
Media Player, since there have been some security updates for this prod-
uct recently.

You can import a number of formats into Windows Movie Maker, including AVI.
Within the software, you can also cut the video and add special effects, including ro-
tating effects (see Figure 7-3). For instance, the sample video used in this chapter was
originally recorded in portrait mode, but cameras usually default to landscape mode.
Windows Movie Maker provided an easy way to get the video into the right orientation.

After editing the video, you can export it using File/Save Movie File. You can tune the
output format quite a bit (see Figure 7-4). If you optimize it for web play, you have a
lower quality but the file size can get drastically smaller. If you want to retain reasonable
video and audio quality, the trade off may be a big file size. Experiment a bit with the
settings to find a good compromise between size and quality.

Another video editing option is a tool from the Microsoft Expression offerings (Chap-
ter 3 introduced other tools from that product line): the Microsoft Expression Media

104 | Chapter 7: Multimedia

http://www.microsoft.com/downloads/details.aspx?FamilyID=d6ba5972-328e-4df7-8f9d-068fc0f80cfc&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d6ba5972-328e-4df7-8f9d-068fc0f80cfc&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=1d224714-e238-4e45-8668-5166114010ca&DisplayLang=en.
http://www.microsoft.com/downloads/details.aspx?FamilyID=1d224714-e238-4e45-8668-5166114010ca&DisplayLang=en.
http://www.microsoft.com/downloads/details.aspx?FamilyID=1d224714-e238-4e45-8668-5166114010ca&DisplayLang=en.

Encoder (see Figure 7-5). As of time of writing, a time-limited trial version is available
for download from http://www.microsoft.com/downloads/details.aspx?Family
ID=ba187636-abb6-4e55-9706-5bd346e39ea9&DisplayLang=en (the full version can
be purchased). The Expression Media Encoder installs special profiles for generating
Silverlight content.

Figure 7-1. The graphics card is not good enough for Windows Movie Maker

Figure 7-2. “N” editions of Windows XP and Windows Vista can get Windows Media Player and
Windows Movie Maker, too

Preparing Multimedia Data | 105

http://www.microsoft.com/downloads/details.aspx?FamilyID=ba187636-abb6-4e55-9706-5bd346e39ea9&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=ba187636-abb6-4e55-9706-5bd346e39ea9&DisplayLang=en

A third option, only available for Windows versions 2000 and XP, is the Windows
Media Encoder 9 series, available at http://www.microsoft.com/downloads/details.aspx?
FamilyID=5691ba02-e496-465a-bba9-b2f1182cdf24&DisplayLang=en. Figure 7-6
shows the software in action.

Adding Markers
An advanced multimedia feature that can be really convenient especially with video
data is the marker support. This lets you mark special points within a media file. You
can compare this to the chapters of a movie on DVD, where you can jump between
chapters to reach a certain point in the movie.

The same things are valid for markers. You can define markers, either within the media
file (covered in this section) or also, temporarily, within the Silverlight application
(covered in section “Working with Markers). Silverlight provides a JavaScript API that
can access markers and also determine when a marker has been reached.

The Windows Media File Editor component of the Windows Media Encoder allows
markers to be inserted into Microsoft’s video formats. Figure 7-7 shows what this looks
like. Just navigate to certain positions in the file, provide a name, and you have a marker.

Figure 7-3. Windows Movie Maker

106 | Chapter 7: Multimedia

http://www.microsoft.com/downloads/details.aspx?FamilyID=5691ba02-e496-465a-bba9-b2f1182cdf24&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=5691ba02-e496-465a-bba9-b2f1182cdf24&DisplayLang=en

Microsoft Expression Media Encoder also allows setting markers in the UI. The marker
editor resides by default in the top right corner and is displayed in Figure 7-8.

Streaming Video
When you convert media data into one of the supported formats, the whole file will
then be loaded from the Silverlight plug-in and play. A much better option of course is
to use streaming. With streaming, the file resides at a (usually fast) remote server, the
amount of data transferred can be adapted to the connection speed of the current user,
and it is impossible to directly download the media file. Various streaming options
exist, but for Silverlight users, the Windows Media Server is a good choice. Microsoft

Figure 7-4.

Preparing Multimedia Data | 107

has recently started offering more or less free Silverlight streaming. “More or less free”
means that there are some restrictions, but for many scenarios, they do not hurt the
application. Currently, the maximum speed for streaming is 700 kbps, and the streamed
files may be add up to 4 GB of space. The streaming service is currently in alpha and
later versions will add additional restrictions, but plans include 1 million minutes of
streaming per month or unlimited streaming if you agree to have advertisements shown.

The streaming service’s home page, http://silverlight.live.com/, contains up-to-date in-
formation about the streaming service itself and also on the current restrictions.

There are two ways to use the streaming service. You can either host your complete
Silverlight application on the streaming server, or just put your video file up on the
server and reference it in your locally hosted Silverlight application. At the time of this
writing, the service and API are frequently changing, so we will only briefly discuss it.

Figure 7-9 shows the streaming site, and Figure 7-10 shows how you can upload your
own files and applications to the service. More information can be found in the web-
based Silverlight streaming SDK at http://dev.live.com/silverlight/.

Figure 7-5. Microsoft Expression Media Encoder

108 | Chapter 7: Multimedia

http://silverlight.live.com/
http://dev.live.com/silverlight/

If you are using Microsoft Expression Media Encoder, the application
already comes with suitable Silverlight profiles for exporting content.
However, when you want to use the Windows Media Encoder, you can
find Silverlight profiles at http://dev.live.com/silverlight/downloads/pro
files.zip.

MediaElement
Regardless whether you want to use video or audio data, you only need to know about
one element: <MediaElement>. It takes care of playing the media content, as long as the
format is supported.

Embedding Multimedia
<MediaElement> supports a number of attributes, some of them are general, some of
them are media-specific. For example, the NaturalVideoWidth and NaturalVideo

Figure 7-6. Windows Media Encoder

MediaElement | 109

http://dev.live.com/silverlight/downloads/profiles.zip
http://dev.live.com/silverlight/downloads/profiles.zip

Height properties/attributes determine the size of a video. Obviously, this does not
make sense for audio content because these two properties have the value 0.

The most important attribute is Source. It provides the URL of the audio or video data
to play. Since audio data is just a special case of video data (no visual output), we will
focus on video in this chapter. Example 7-1 shows the most simple Silverlight video
player imaginable. Figure 7-11 shows the output in the browser.

Example 7-1. A simple video player (Player.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Canvas.Left="25" Canvas.Top="25">
 <MediaElement Source="video.wmv"/>
</Canvas>

What's missing in Figure 7-11? The UI for using the player. This is not shipped as part
of JavaScript; however, Silverlight provides a powerful JavaScript API for controlling
multimedia content which will be discussed in “Controlling Multimedia.

Figure 7-7. Setting markers in Windows Media File Editor

110 | Chapter 7: Multimedia

We will now successively add features to the player. The file names
remain the same, but the number of features grows. In the downloadable
code for this book you get the final version (see http://www.oreilly.com/
catalog/9780596516116).

The Silverlight SDK contains a complete list of <MediaElement> attributes. A number of
them will be introduced throughout the remainder of this chapter, but some of them
are of general interest and will be discussed here:

Figure 7-8. Setting markers in Expression Media Encoder

MediaElement | 111

http://www.oreilly.com/catalog/9780596516116
http://www.oreilly.com/catalog/9780596516116

AutoPlay
By default, referenced media files are played as soon as the application has been
fully loaded. You can disable this behavior by setting the attribute/property to
False.

Balance
Provides the audio volume ratio between left and right speaker. -1 means that all
audio is played in the left speaker only, 1 means that all audio is played in the right
speaker only. The default value of 0 means that the audio is evenly shared between
the left and the right speaker. You can choose any float values in between.

IsMuted
Boolean value that depends on whether the audio output by the <MediaElement> is
muted (True) or not (False).

NaturalDuration
Duration of the media file; can only be read, not set

NaturalVideoHeight
Height of the video, 0 for audio files; can only be read, not set

NaturalVideoWidth
Width of the video, 0 for audio files; can only be read, not set

Figure 7-9. Streaming for Silverlight

112 | Chapter 7: Multimedia

Stretch
Stretches the media if the display area is greater than the video size; the following
options are available:

None
Video size remains the original one

Fill
The video fills up the whole available area, loosing its aspect ratio

Uniform
The video size is increased, maintaining the aspect ratio, until either the video
has the width or the height of the display area

UniformToFill
The video size is increased, maintaining the aspect ratio, until the video width
and height are both greater or equal than the width and height of the display
area. If necessary, parts of the video are cropped.

Volume
The audio volume as a value between 0 (muted) and 1 (maximum volume made
available by the operating system). The default value is 0.5.

Figure 7-10. You may upload both full-blown applications and individual media content

MediaElement | 113

When (programmatically) assigning a value to Volume, make sure that
you always provide a string value. JavaScript can usually automatically
convert numbers into strings, but the Silverlight API will complain.

Controlling Multimedia
<MediaElement> plays a media file. If it is audio, the sound is played. If it is video, the
video is shown (and if there is sound within the video, the sound is played too). Apart
from that, <MediaElement> does not have any kind of output or UI. Instead you need to
create your own UI. Figure 7-12 shows a simple UI for our Silverlight media player. It
was initially created in Expression Design, exported as XAML, imported into Expres-
sion Blend 2, and then tweaked and tuned. To keep the code size maintainable and
printable, very basic structures were used to create the UI.

The UI consists of several buttons and other elements:

• A play and pause button (depending on the state of the media content)

• A button to jump to the previous marker

• A button to jump to the next marker

• Buttons to increase and decrease the volume

• A text containing the current volume level

Figure 7-11. The (spartan) video player

114 | Chapter 7: Multimedia

• A timeline that serves as a progress bar for the media playback, including a pointer

• A text field which will later show the name of any marker (not visible at the mo-
ment)

The XAML file is structured so that every button (including <Path> elements on the
button) is grouped in a <Canvas> element. We use attributes to assign event handlers.
Example 7-2 shows the complete XAML markup for the UI. Don’t worry whether the
meaning of all the event handlers is obvious at the moment, here is a list of all of the
assigned handler functions:

playOrPause()
Called when the play/pause button is pressed; needs to play or pause the media
content

gotoPrevioiusMarker()
Called when the previous marker button is pressed; needs to seek to the position
of the previous marker, if available

gotoNextMarker()
Called when the next marker button is pressed; needs to seek to the position of the
next marker, if available

Figure 7-12. The SIlverlight player UI (loaded in Expression Blend 2)

MediaElement | 115

volumeUp()
Called when the upper volume button is pressed; needs to increase the volume by
0.1, if possible

volumeDown()
Called when the lower volume button is pressed; needs to decrease the volume by
0.1, if possible

showMarker()
Called when a marker is reached; needs to display the name of that marker

initVideo()
Called when the video header has been loaded; needs to initialize the application
and also start updating the progress bar pointer’s position

More details on these event handlers will be covered when we write the associated code.

Example 7-2. The Silverlight media player, the XAML file (Player.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Canvas.Left="25" Canvas.Top="25">
 <Canvas x:Name="PlayerControls">
 <Canvas x:Name="PlayPause" MouseLeftButtonUp="playOrPause”>
 <Rectangle Width="122.014" Height="91.0105"
 Canvas.Left="-0.50001" Canvas.Top="-0.5"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FF000000"/>
 <Path x:Name="Path" Width="53.5274" Height="58.6534"
 Canvas.Left="13.9888" Canvas.Top="17.1706"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFFFFFFF"
 Data="F1 M 67.0161,47.9973L 14.4888,17.6706L 14.4888,75.324L
67.0161,47.9973 Z"/>
 <Rectangle Width="12.9994" Height="46.9976"
 Canvas.Left="73.5164" Canvas.Top="24.5136"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFFFFFFF"/>
 <Rectangle Width="12.9994" Height="46.9976"
 Canvas.Left="91.5155" Canvas.Top="24.5138"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFFFFFFF"/>
 </Canvas>
 <Canvas x:Name="Marker">
 <Canvas x:Name="PrevMarker" MouseLeftButtonDown="gotoPreviousMarker”>
 <Rectangle Width="122.014" Height="91.0105"
 Canvas.Left="149.003" Canvas.Top="-0.5"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FF000000"/>
 <Rectangle Width="12.9994" Height="46.9976"
 Canvas.Left="170.511" Canvas.Top="24.5139"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFFFFFFF"/>
 <Path Width="53.5274" Height="58.6534"
 Canvas.Left="191.245" Canvas.Top="17.6856"

116 | Chapter 7: Multimedia

 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFFFFFFF"
 Data="F1 M 191.745,45.5123L 244.273,75.839L 244.273,18.1856L
191.745,45.5123 Z "/>
 </Canvas>
 <Canvas x:Name="NextMarker" MouseLeftButtonDown="gotoNextMarker”>
 <Rectangle Width="122.014" Height="91.0105"
 Canvas.Left="301.486" Canvas.Top="-0.5"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FF000000"/>
 <Path Width="53.5273" Height="58.6534"
 Canvas.Left="327.24" Canvas.Top="17.6856"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFFFFFFF"
 Data="F1 M 380.267,48.5123L 327.74,18.1856L 327.74,75.8391L
380.267,48.5123 Z "/>
 <Rectangle Width="12.9994" Height="46.9976"
 Canvas.Left="387.502" Canvas.Top="24.5138"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFFFFFFF"/>
 </Canvas>
 <TextBlock x:Name="MarkerName" FontFamily="Segoe UI" FontSize="24"
 Foreground="#FF000000" Canvas.Left="50" Canvas.Top="150" />
 </Canvas>
 <Canvas x:Name="Volume">
 <Canvas x:Name="Up" MouseLeftButtonDown="volumeUp”>
 <Rectangle Width="122.014" Height="43.0129"
 Canvas.Left="452.987" Canvas.Top="-0.5"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FF000000"/>
 <Path Width="88.9956" Height="24.0292"
 Canvas.Left="468.496" Canvas.Top="8.87177"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFFFFFFF"
 Data="F1 M 512.994,9.37177L 468.996,32.401L 556.992,32.401L
512.994,9.37177 Z "/>
 </Canvas>
 <Canvas x:Name="Down" MouseLeftButtonDown="volumeDown”>
 <Rectangle Width="122.014" Height="43.0128"
 Canvas.Left="452.987" Canvas.Top="46.5052"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FF000000"/>
 <Path Width="88.9955" Height="24.0292"
 Canvas.Left="467.497" Canvas.Top="55.9971"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFFFFFFF"
 Data="F1 M 511.995,79.5264L 555.992,56.4971L 467.997,56.4971L
511.995,79.5264 Z "/>
 </Canvas>
 <TextBlock x:Name="VolumeText" FontFamily="Segoe UI" FontSize="48"
 Text="0.5" Foreground="#FF000000"
 Canvas.Left="590" Canvas.Top="10" />
 </Canvas>
 <Canvas x:Name="Position">
 <Rectangle x:Name="Timeline" Width="669.987" Height="12.9994"

MediaElement | 117

 Canvas.Left="-0.5" Canvas.Top="119.509"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FF000000"/>
 <Rectangle x:Name="Pointer" Width="32.0184" Height="36.9982"
 Canvas.Left="-0.5" Canvas.Top="105.51"
 Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FFA01F1F"/>
 </Canvas>
 </Canvas>
 <Canvas x:Name="Player" Canvas.Top="200">
 <MediaElement x:Name="Video" Source="video.wmv" AutoPlay="False"
 MarkerReached="showMarker” MediaOpened="initVideo”/>
 </Canvas>
</Canvas>

Play and Pause

The application needs permanent access to the embedded video file. The best way to
achieve this is to save a reference in a global variable whenever the first event handler
fires. This will be the handler for the MediaOpened event (if a user clicks a button before
the video has been loaded, the user’s request cannot be fulfilled at that time). In the
handler function, the global video variable will be filled:

var video = null;

function initVideo(sender, eventArgs) {
 if (video == null) {
 video = sender;
 }
 // ...
}

Silverlight supports several methods for controlling whether a given media content is
played or not:

pause()
Pauses the media content

play()
Plays the media content if it is stopped, or resumes it if it is paused

stop()
Stops the media content

Conveniently, you will not get any JavaScript errors if you try an invalid
operation like playing media content that is already playing, or pausing
stopped media content. So you do not need any error handling in that
respect.

The current state of the movie can be determined by accessing its currentState prop-
erty. The following values are possible:

118 | Chapter 7: Multimedia

Buffering
Video is loading, but not enough data has been streamed yet, so the control is
buffering the data

Closed
Video has been closed

Error
There has been an error loading (or playing) the video

Opening
The video is currently being opened

Paused
The video is paused

Playing
The video is being played

Stopped
The video has been stopped

If the video is paused or stopped, JavaScript tries to play it; otherwise, JavaScript tries
to pause it:

function playOrPause(sender, eventArgs) {
 if (video.currentState == 'Paused' ||
 video.currentState == 'Stopped') {
 video.play();
 } else {
 video.pause();
 }
}

And indeed, if you include this code in your “XAML code-behind” JavaScript file (and
also provide empty shells for the other event handler functions), a click on the movie
will play it (note that it does not start automatically, thanks to AutoPlay="False”), a
second click will pause it, and a third click will resume it.

Setting the Volume

The volume of a media file is available using the aforementioned volume property (re-
member that JavaScript properties are identical to XAML attributes, but lower camel-
case by convention). So when a user clicks on the upper volume button, increase the
volume by 0.1; clicking on the lower button decreases the volume by 0.1. In theory,
that’s easy, but you do have to take some extra precautions. First of all, you need to
make sure that the new volume is within the valid interval (from 0 through 1). Silverlight
is not very forgiving when you supply invalid values here. Therefore, make sure first
that the value is correct. For instance, when increasing the volume, determine the old
volume, add 0.1, and then check whether this is greater than 1.0 or not, like this:

var newVolume = Math.min(1.0, video.volume + 0.1);

MediaElement | 119

Then you have values like 0.5, 0.6, 0.7, or not. JavaScript is not very exact when it
comes to floating point values, so you will rather get values like 0.5, 0.60000002,
0.69999986, and so on. To avoid any ugly values being used (and displayed), we round
it to the first decimal value:

newVolume = Math.round(10 * newVolume) / 10;

Now we can set the new volume:

video.volume = newVolume.toString()

Finally, we display the new volume in the text field. To get rid of any extraneous decimal
digits, we cut off everything after the first decimal digit:

sender.findName('VolumeText').text = newVolume.toString().substring(0, 3);

Here is the complete code for both the volumeUp() and the volumeDown() functions:

function volumeUp(sender, eventArgs) {
 var newVolume = Math.min(1.0, video.volume + 0.1);
 newVolume = Math.round(10 * newVolume) / 10;
 video.volume = newVolume.toString()
 sender.findName('VolumeText').text = newVolume.toString().substring(0, 3);
}

function volumeDown(sender, eventArgs) {
 var newVolume = Math.max(0.0, video.volume - 0.1);
 newVolume = Math.round(10 * newVolume) / 10;
 video.volume = newVolume.toString()
 sender.findName('VolumeText').text = newVolume.toString().substring(0, 3);
}

When you run the code in the browser, you will actually hear that your code works
when clicking on the volume buttons, and you will also see the new volume values, as
Figure 7-13 shows.

Determining the Media Position

So, playing and pausing a video is relatively trivial, but determining its current position
requires an extra step. There is indeed a property that exposes this information: posi
tion. However, this property is of type TimeSpan, and the string representation is some-
thing like 12:34:56 (12 hours, 34 minutes, 56 seconds). This data has two disadvan-
tages:

• It is hard to calculate, e.g., What percentage of the movie has already been played?

• You cannot create TimeSpan values with JavaScript, so you cannot directly set the
position property.

There is a good workaround for both issues. A sub-property of any TimeSpan value is
seconds, which converts the TimeSpan value into a float value, the number of seconds
(not necessarily integral). You can read out this value and set it, which is covered in
“Working with Markers.

120 | Chapter 7: Multimedia

But before that, we will tackle the progress bar. We need to look up the current position
of the media with isvideo.position.seconds. Then we need to determine the length of
the media with video.currentPosition.seconds. The currentPosition property also re-
turns a TimeSpan value, so accessing the seconds subproperty yields the desired result.

By dividing the current position by the length of the media, we have a percentage of
how much has already been played, say, 30 percent. Consequently, we need to put the
progress bar pointer at 30 percent of the progress bar length! Or, to be exact, the center
of the progress bar pointer needs to be at 30 percent. If the pointer has a width of 30
pixels, we need to place it at 30 percent of the progress bar and then move it 15 pixels
(half the length) to the left. Generally speaking, this code calculates the correct position
of the pointer, relative to the progress bar:

var currentPosition = video.position.seconds;
var length = video.naturalDuration.seconds;
var progressBar = video.findName('Timeline');
var progressPointer = video.findName('Pointer');
var relativePosition = (currentPosition/length) * progressBar.width -
 (progressPointer.width / 2);

The relative position needs to be converted into an absolute position within the sur-
rounding <Canvas> element. The easiest way to achieve this is to determine the position
of the progress bar and then just add the relativePosition value:

Figure 7-13. The Silverlight media player can now control the volume

MediaElement | 121

progressPointer['Canvas.Left'] = progressBar['Canvas.Left'] + relativePosition;

We need to make sure that the position is updated again (and again and again). There-
fore, we create a JavaScript timeout that calls the function again in one second (a
thousand milliseconds). Here is the complete code for this function:

function updatePosition(sender, eventArgs) {
 var currentPosition = video.position.seconds;
 var length = video.naturalDuration.seconds;
 var progressBar = video.findName('Timeline');
 var progressPointer = video.findName('Pointer');
 var relativePosition = (currentPosition/length) * progressBar.width -
 (progressPointer.width / 2);
 progressPointer['Canvas.Left'] = progressBar['Canvas.Left'] + relativePosition;
 setTimeout(updatePosition, 1000);
}

In the initVideo() function, updatePosition() is then called for the first time.

You may want to shorten the interval in which the pointer position is
updated, so that the pointer moves smoothly over the progress bar.

Figure 7-14 shows the result. The progress pointer is moving as the movie is playing
along.

Working with Markers

A marker defines a certain spot within a media file. There are at least two UI approaches
for markers. One is to notify the user when a marker has been reached, and the other
is to offer to let the user to jump between markers. Let’s start with the first one. The
MediaElement element supports the MarkerReached event. When, during playing a media
file, a marker is reached this event is fired. As always, the event handling function passes
two arguments, the sending object (the MediaElement) and event information. The latter
argument is of great interest here: its marker property provides three fields from the
marker:

text
The name of the marker

time
The time of the marker (again as a TimeSpan value)

type
The type of the marker (depending on which marker types are supported by the
format used)

The XAML file already contains a text field (named MarkerName) for the name of the
marker. Whenever a marker is reached, its name is written into that field:

122 | Chapter 7: Multimedia

function showMarker(sender, eventArgs) {
 sender.findName('MarkerName').text = eventArgs.marker.text;
 ...
}

However, it would be a bad idea usability-wise to let this information stay where it is.
A few seconds later, the name of the marker is maybe not suitable any more. Therefore,
we remove this text after two seconds by using a JavaScript timeout:

markerTimeout = setTimeout(
 function() {
 video.findName('MarkerName').text = '';
 markerTimeout = null;
 }, 2000);

What happens if there are two markers within less than two seconds? Imagine that
there is one marker at 00:00:02, and one at 00:00:03. The appearance of the first marker
sets a timeout that will be fired at 00:00:04; the second marker sets a timeout that will
be fired at 00:00:05 (after two seconds each). However, the 00:00:04 timeout will empty
the text field, which has just been populated by the second marker at 00:00:03! There-
fore, we need to check first whether there is a pending timeout. If so, we have to delete
it (the timeout, not the text field), using the clearTimeout() JavaScript method:

Figure 7-14. The movie's progress is displayed

MediaElement | 123

if (markerTimeout != null) {
 clearTimeout(markerTimeout);
}

Here is the complete code for the showMarker() function:

function showMarker(sender, eventArgs) {
 sender.findName('MarkerName').text = eventArgs.marker.text;
 if (markerTimeout != null) {
 clearTimeout(markerTimeout);
 }
 markerTimeout = setTimeout(
 function() {
 video.findName('MarkerName').text = '';
 markerTimeout = null;
 }, 2000);
}

As Figure 7-15 shows, the marker names are displayed once a marked position in the
movie has been reached.

The final item on our to do list is also related to markers: remember that we still have
functionless buttons that allow users to jump to the next or previous marker? To im-
plement this functionality, we first have to determine all the markers. We could also
look up all markers once one of the buttons is pressed, but then we would repeat our

Figure 7-15. A marker has been reached

124 | Chapter 7: Multimedia

efforts. Therefore, the markers are retrieved once the movie has started loading. Once
the MediaOpened event has been fired, we have access to all markers. The embedded
media’s markers property provides us with a collection of all markers. Such a collection
has a number of value properties, and we need the following ones:

count
The number of items in the collection

getItem()
Returns the collection item with the given position

Every collection item is a marker with the aforementioned properties text, time, and
type. We are just interested in the marker time and save this information in a global
JavaScript array. At the end, we numerically sort the array, just to make sure that the
marker times are in the correct position:

var markerTimes = [];

function loadMarkers(sender, eventArgs) {
 for (var i = 0; i < video.markers.count; i++) {
 markerTimes[markerTimes.length] = video.markers.getItem(i).time;
 }
 markerTimes.sort(function(a, b) { return a.seconds - b.seconds; });
}

The loadMarkers() function is called in the MediaOpened event handler, the initVideo
() function.

First we tackle the goNextMarker() function. We determine the current position of the
clip and then go through all the markers. If we find a marker that is later than the current
media position (assuming that all markers are sorted by their time), we use this marker
and immediately leave the function. Here is the code:

function gotoNextMarker(sender, eventArgs) {
 var currentTime = video.position.seconds;
 for (var i = 0; i < markerTimes.length; i++) {
 if (markerTimes[i].seconds > currentTime) {
 video.position = markerTimes[i];
 break;
 }
 }
}

The function gotoPreviousMarker() is implemented in analogous fashion. Make sure
you start searching from the end. We go through the markers starting with the last one,
until we find one that is earlier than the current media position:

function gotoPreviousMarker(sender, eventArgs) {
 var currentTime = video.position.seconds;
 for (var i = markerTimes.length - 1; i >= 0; i--) {
 if (markerTimes[i].seconds < currentTime) {
 video.position = markerTimes[i];
 break;
 }

MediaElement | 125

 }
}

If you run this example in the browser, you will notice that the player jumps to the
appropriate position in the clip (see Figure 7-16), but only if the media format supports
jumping to markers. If not, you conveniently do not get an error message.

In the current Silverlight version, a (possible) bug prevents setting
video.position.seconds (setting the value has no effect). In our special
example, we can avoid this issue since we save the TimeSpan marker
values in an array and can then assign the TimeSpan values back to
video.position when jumping to a marker.

Every feature implemented in this chapter has not been extraordinarily difficult to un-
derstand and if you combine them, you will get a very functional application.
Example 7-3 contains the complete JavaScript code for the Silverlight media player.

Example 7-3. The SIlverlight media player, the XAML JavaScript file (Player.xaml.js)

var video = null;
var markerTimes = [];
var markerTimeout = null;

Figure 7-16. Clicking on the button jumps to the next marker

126 | Chapter 7: Multimedia

function playOrPause(sender, eventArgs) {
 if (video.currentState == 'Paused' ||
 video.currentState == 'Stopped') {
 video.play();
 } else {
 video.pause();
 }
}

function gotoPreviousMarker(sender, eventArgs) {
 var currentTime = video.position.seconds;
 for (var i = markerTimes.length - 1; i >= 0; i--) {
 if (markerTimes[i].seconds < currentTime) {
 video.position = markerTimes[i];
 break;
 }
 }
}

function gotoNextMarker(sender, eventArgs) {
 var currentTime = video.position.seconds;
 for (var i = 0; i < markerTimes.length; i++) {
 if (markerTimes[i].seconds > currentTime) {
 video.position = markerTimes[i];
 break;
 }
 }
}

function volumeUp(sender, eventArgs) {
 var newVolume = Math.min(1.0, video.volume + 0.1);
 newVolume = Math.round(10 * newVolume) / 10;
 video.volume = newVolume.toString()
 sender.findName('VolumeText').text = newVolume.toString().substring(0, 3);
}

function volumeDown(sender, eventArgs) {
 var newVolume = Math.max(0.0, video.volume - 0.1);
 newVolume = Math.round(10 * newVolume) / 10;
 video.volume = newVolume.toString()
 sender.findName('VolumeText').text = newVolume.toString().substring(0, 3);
}

function showMarker(sender, eventArgs) {
 sender.findName('MarkerName').text = eventArgs.marker.text;
 if (markerTimeout != null) {
 clearTimeout(markerTimeout);
 }
 markerTimeout = setTimeout(
 function() {
 video.findName('MarkerName').text = '';
 markerTimeout = null;
 }, 2000);
}

MediaElement | 127

function initVideo(sender, eventArgs) {
 if (video == null) {
 video = sender;
 }
 loadMarkers(sender, eventArgs);
 updatePosition(sender, eventArgs);
}

function loadMarkers(sender, eventArgs) {
 for (var i = 0; i < video.markers.count; i++) {
 markerTimes[markerTimes.length] = video.markers.getItem(i).time;
 }
 markerTimes.sort(function(a, b) { return a.seconds - b.seconds; });
}

function updatePosition(sender, eventArgs) {
 var currentPosition = video.position.seconds;
 var length = video.naturalDuration.seconds;
 var progressBar = video.findName('Timeline');
 var progressPointer = video.findName('Pointer');
 var relativePosition = (currentPosition/length) * progressBar.width -
 (progressPointer.width / 2);
 progressPointer['Canvas.Left'] = progressBar['Canvas.Left'] + relativePosition;
 setTimeout(updatePosition, 1000);
}

Storing Markers
Usually markers are stored within a media file. However, you can also temporarily
create markers. Chapter 10 will show you how this can be done using the ASP.NET
Futures. You can also use JavaScript by dynamically adding <TimelineMarker> elements
to the <MediaElement> element (you cannot do this via regular markup). The trick is to
dynamically create a XAML object with the createFromXaml() method, and then add
this to the markers collection of the media content. This is how the code could look like:

function initVideo(sender, eventArgs) {
 var timeLineMarker = sender.getHost().content.createFromXaml(
 '<TimelineMarker Time="12:34:56" Text="Olympic Stadium" />');
 sender.markers.add(timeLineMarker);
}

Chapter 8 will provide you with more information on how to use JavaScript to access
Silverlight content embedded in a page.

Using audio and video from Silverlight is quite convenient. Just convert your content
into a supported file format and use <MediaElement> markup. With a little bit of Java-
Script you can turn your UI into a full-fledged media player; but, obviously, if it came
out of the box that way it would be even more convenient.

128 | Chapter 7: Multimedia

For Further Reading
http://www.microsoft.com/expression/products/overview.aspx?key=encoder

Information on the Microsoft Expression Encoder

For Further Reading | 129

http://www.microsoft.com/expression/products/overview.aspx?key=encoder

PART III

Programmatic Silverlight

CHAPTER 8

Accessing Silverlight Content From
JavaScript

JavaScript, the Browser Language
The first parts of this book were called “Declarative Silverlight,” but they contained a
lot of JavaScript code, like all event handlers. Our focus shifted to add JavaScript to the
XAML, which is why most JavaScript files are called <something>.xaml.js.

This chapter introduces a different approach. We will create a number of <some
thing>.html.js files, code-behind JavaScript files for the HTML document containing
the Silverlight content, so to speak. The JavaScript code in there will access the Silver-
light content, add new Silverlight elements, and read information about the plug-in or
the content of the XAML file.

Accessing the Plug-in
To access Silverlight content embedded on a page, you first need to access the plug-in.
There are two ways to retrieve this information: access the plug-in from within the
XAML event handler code or use the JavaScript DOM (Document Object Model). Let’s
start with the latter option and look at the, by now, well-known JavaScript code to load
Silverlight content:

function createSilverlight()
{
 Silverlight.createObjectEx({
 source: 'Info.xaml',
 parentElement: document.getElementById('SilverlightPlugInHost'),
 id: ‘SilverlightPlugIn',
 properties: {
 width: '400',
 height: '300',
 background:'#ffffffff',
 isWindowless: 'false',
 version: '1.0'

133

 },
 events: {
 onError: null,
 }
 });
}

Note the id property. This provides the DOM ID JavaScript can use to access the plugin:

var plugin = document.getElementById('SilverlightPlugIn');

If you are using ASP.NET AJAX, you can, of course, save some typing and use $get()
instead of document.getElementById().

It is tempting to use the ID of the <div> element holding the Silverlight
content (in all of this book’s examples: SilverlightPlugInHost), but this
will not access the plug-in itself.

Then, starting with the plugin variable, you can access quite a number of data on the
plug-in and its contents, but we will come back to that in a minute. First we will have
a look at the other option to access the plug-in, from within the XAML event handling
code.

Every object in the XAML has a (JavaScript) method called getHost() that also returns
a reference to the plug-in. Assume that the eventHandler() function handles any event
for the XAML file, then this code would appropriately fill the plugin variable:

function eventHandler(sender, eventArgs) {
 var plugin = sender.getHost();
}

One you have accessed the plug-in, you can go further. The Silverlight plug-in exposes
three kinds of information to JavaScript:

General plug-in information
These are accessible as direct properties or methods of the plug-in object. Examples
are source (the XAML source code), initParams (the set of options used when
initializing the Silverlight plug-in in the createSilverlight() function), and onEr
ror (the event handler that handles errors).

Plug-in settings information
These are accessible using plugin.settings.<property>. Examples are background
(the background color of the current Silverlight content) and maxFrameRate (the
maximum frame rate in frames per second).

Plug-in content information
These are accessible using plugin.content.<property>. Examples are findName()
(the already known method to find XAML elements by their names), fullScreen
(whether to display the content in full screen), and root (the root canvas element
of the Silverlight content).

134 | Chapter 8: Accessing Silverlight Content From JavaScript

This chapter will showcase some of the most interesting options. For a complete list of
the APIs, refer to Appendix A.

Communicating with the Plug-in
Once your JavaScript code has access to the plug-in, you can find details about the
plug-in and its configuration and also relatively flexible access to the Silverlight content
too. This section features some scenarios and examples.

Determining Plug-in Settings
The first example will determine some of the plug-in’s settings. It will also feature both
access methods by using the JavaScript DOM and the JavaScript code in the XAML
code-behind. First, we need the containing HTML page, where we load the Silverlight
content. A button on the page will be used to trigger the retrieval and display of plug-
in information. Example 8-1 shows the code.

Example 8-1. Displaying plug-in information, the HTML file (Info.html)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Silverlight</title>

 <script type="text/javascript” src="Silverlight.js"></script>
 <script type="text/javascript” src="Info.html.js"></script>
 <script type="text/javascript” src="Info.xaml.js"></script>
</head>

<body>
 <div id="SilverlightPlugInHost">
 <script type="text/javascript">
 createSilverlight();
 </script>
 </div>
 <div>
 <form action="">
 <input type="button” value="Show plugin info” onclick="showInfoJS();” />
 </form>
 </div>
</body>
</html>

In the “HTML code-behind” Info.html.js, the showInfoJS() function accesses the plug-
in using the DOM, and then calls another function called showInfo(). This latter
function will be implemented later on.

function showInfoJS() {
 var plugin = document.getElementById('SilverlightPlugIn');

Communicating with the Plug-in | 135

 showInfo(plugin);
}

Example 8-2 shows the XAML file, without any complicated XAML markup, but there
is an event handler for the left mouse button attached to the canvas.

Example 8-2. Displaying plug-in information, the XAML file (Info.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 MouseLeftButtonDown="showInfoXaml”>
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock FontFamily="Arial" FontSize="56" Canvas.Left="25" Canvas.Top="40"
 Foreground="Black" Text="Silverlight" />
</Canvas>

The JavaScript file associated to the XAML file, displayed in Example 8-3, determines
the plug-in and submits it as an argument to showInfo(), which is the same function
that Info.html.js is using.

Although we are always referring to the JavaScript files as “XAML code-
behind” and “HTML code-behind” to make a clear distinction, there is
no difference between them from a browser’s point of view. Both kinds
of JavaScript files are loaded and executed; thus, code from one file may
call code from another file.

Example 8-3. Displaying plug-in information, the XAML JavaScript file (Info.xaml.js)

function showInfoXaml(sender, eventArgs) {
 var plugin = sender.getHost();
 showInfo(plugin);
}

Finally, the showInfo() function needs to be implemented. It takes the plug-in reference,
accesses two information points, and outputs them using the JavaScript alert() func-
tion. Example 8-4 has the code and when you click on either the Silverlight content or
the HTML button, you will get an output similar to the one in Figure 8-1.

Example 8-4. Displaying plug-in information, the HTML JavaScript file (Info.html.js; excerpt)

function showInfoJS() {
 var plugin = document.getElementById('SilverlightPlugIn');
 showInfo(plugin);
}

function showInfo(plugin) {
 var s = 'Background: ' + plugin.settings.background;
 s += '\nMaxFrameRate: ' + plugin.settings.maxFrameRate;
 alert(s);
}

136 | Chapter 8: Accessing Silverlight Content From JavaScript

Modifying XAML Content
The plug-in’s source property (plugin.content.source, to be exact) not only retrieves
the XAML markup of the currently loaded Silverlight content, but also sets this infor-
mation. This allows us to create a sample application with a similar concept as the WPF
content viewer XAMLPad mentioned in Chapter 1. An HTML text box enables users
to enter XAML markup; JavaScript code then tries to load this markup into the Silver-
light plug-in. Let’s start with the HTML and the input field, as shown in Example 8-5.

Example 8-5. SilverlightPad, the HTML file (SilverlightPad.html)
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Silverlight</title>

 <script type="text/javascript” src="Silverlight.js"></script>
 <script type="text/javascript” src="SilverlightPad.html.js"></script>
</head>

<body>
 <div>
 <div id="SilverlightPlugInHost">
 <script type="text/javascript">

Figure 8-1. Displaying plug-in information

Communicating with the Plug-in | 137

 createSilverlight();
 </script>
 </div>
 <div id="InputHost">
 <textarea id="XamlMarkup” style="width:600px;” rows="10"></textarea>

 <input type="button” value="Update!” onclick="update();” />
 </div>
 </div>
</body>
</html>

The initial XAML markup is quite simple. In this example, it is the task of the user to
provide some fancy Silverlight content after all. Example 8-6 has the code.

Example 8-6. SilverlightPad, the XAML markup (SilverlightPad.xaml)
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="600" Height="200" Stroke="Orange" StrokeThickness="15" />
 <Canvas Canvas.Left="30" Canvas.Top="30" x:Name="XamlOutput">
 <TextBlock FontFamily="Arial" FontSize="32" Foreground="Black"
 Text="Enter data below ..."/>
 </Canvas>
</Canvas>

The most sophisticated part of this example is certainly the JavaScript code. However,
once you know how to do it, you just need a couple of lines. First, convert the XAML
string provided by the user into a XAML JavaScript object that can work with the
Silverlight plug-in. The plug-in.content.createFromXaml() method does exactly that:

var plugin = document.getElementById('SilverlightPlugIn');
var obj = plugin.content.createFromXaml(
 document.getElementById('XamlMarkup').value);

If the XAML is not valid, obj is null, so we can act accordingly. If on the other hand
obj is not null, the user-supplied XAML is valid and can be applied to the page.

If you have a look back at Example 8-6 you will see that there is a second <Canvas>
element within the root <Canvas>. The idea is that the outer (orange) border will always
be there, whereas the content of that rectangle may be changed by the user. Therefore,
the JavaScript code first needs to access the inner <Canvas>. This can be done by using
findName():

var XamlOutput = plugin.content.findName('XamlOutput');

XamlOutput―and any other XAML JavaScript object―does not support the HTML
DOM, but a similar API accesses all child elements: XamlOutput.children. The follow-
ing properties and methods exist:

add()
Adds a child to the end of the list

clear()
Empties the children list

138 | Chapter 8: Accessing Silverlight Content From JavaScript

count
Provides the number of children

getItem()
Retrieves the child with a given index

getValue()
Retrieves the value of a given property

insert()
Inserts a child (second argument) at a given index (first argument)

name
Displays the name of the child (if available)

remove()
Removes a given child from the list

removeAt()
Removes a child with a given index

setValue()
Sets the value of a given property

For this example, we only need to do two things: delete all children of the inner <Can
vas> element (imagine that a user has already submitted XAML that has been rendered
in the plug-in) and add the XAML JavaScript object (obj) to the children list:

 if (obj != null) {
 XamlOutput.children.clear();
 XamlOutput.children.add(obj);
} else {
 alert('Error! XAML might not be valid.');
}

Example 8-7 shows the complete JavaScript code (as always, minus the createSilver
light() function), and Figure 8-2 presents SilverlightPad in action. The XAML entered
in the text field is displayed within the orange border.

Example 8-7. SilverlightPad, the HTML JavaScript file (SilverlightPad.html.js; excerpt)

function update() {
 var plugin = document.getElementById('SilverlightPlugIn');
 with (plugin.content) {
 var XamlOutput = findName('XamlOutput');
 var obj = createFromXaml(
 document.getElementById('XamlMarkup').value);
 }
 if (obj != null) {
 XamlOutput.children.clear();
 XamlOutput.children.add(obj);
 } else {
 alert('Error! XAML might not be valid.');
 }
}

Communicating with the Plug-in | 139

There is a simpler implementation. Instead of using the pseudo DOM
of Silverlight, you can just set the source property of the plug-in.

Dumping Content Information
As a final sample application for this chapter, we will create a development helper tool
that dumps information about a given Silverlight application. The sample features both
dynamic loading of Silverlight content and also recursively accessing all elements. As
usual, we start with the HTML file (see Example 8-8). But there is a surprise―there is
no createSilverlight() call, only the empty <div> container SilverlightPlugInHost.
Additionally, there are three more HTML UI widgets on the page:

• A text field (XamlFile) where users may enter the path to a XAML file

• A button that triggers loading the file

Figure 8-2. SilverlightPad

140 | Chapter 8: Accessing Silverlight Content From JavaScript

• A button that triggers dumping the file’s contents. This button is initially disabled
(why dump data when no data has been loaded yet?)

The page also contains a yet empty <div> element called OutputDiv where the “data
dump” will be later displayed.

Example 8-8. Dumping Silverlight content, the HTML file (SilverlightDumper.html)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Silverlight</title>

 <script type="text/javascript” src="Silverlight.js"></script>
 <script type="text/javascript” src="SilverlightDumper.html.js"></script>
</head>

<body>
 <form action="">
 <div>
 <div id="SilverlightPlugInHost">
 </div>
 <div id="LoadXamlFile">
 <input type="text” name="XamlFile” />
 <input type="button” value="Load file” onclick="loadFile(this.form);” />
 —
 <input type="button” id="DumpButton” value="Dump XAML” onclick="dump();”
 disabled="disabled” />
 </div>
 <div id="OutputDiv">
 </div>
 </div>
 </form>
</body>
</html>

In the “JavaScript code-behind,” the loadFile() function is responsible for loading the
XAML file the user has previously selected. First of all, the file name needs to be de-
termined:

function loadFile(f) {
 var filename = f.elements['XamlFile'].value);
 ...
}

Communicating with the Plug-in | 141

Note that in Example 8-8, the text field does not have an id attribute,
but just a name attribute. Therefore, you cannot use document.getEle
mentById() to access the form element. However, you can use the Java-
Script document.forms[0].elements array to read out the name. In this
special case, we saved some typing. When we called loadFile
(this.form) from the HTML page, a reference to the current form was
submitted to loadFile(). Therefore, f.elements['XamlFile'] grants ac-
cess to the form field, and the value property contains the field’s
contents.

This file name is then provided to the well-known createSilverlight() function. Ac-
tually, it is provided to a modified createSilverlight() function. The modified version
accepts the XAML file name to load as a parameter, allowing the application to dy-
namically load XAML files. The loadFile() function also enables the button that takes
care of the (not yet implemented) dumping of Silverlight contents.

function loadFile(f) {
 createSilverlight(f.elements['XamlFile'].value);
 document.getElementById('DumpButton').disabled = false;
}

Figure 8-3 shows that the code so far already works. Enter a (relative) file path to an
XAML file, and click the first button. The XAML content is displayed above the form.

Figure 8-3. Dynamically loading a XAML file

142 | Chapter 8: Accessing Silverlight Content From JavaScript

The next step in our application is also the final one: dumping the contents of the
currently loaded XAML file. In order to implement this, the code first needs to access
the plug-in, as always:

var plugin = document.getElementById('SilverlightPlugIn');

We want to dump all elements, so we have to start at the top. The root property provides
us with a reference to the root (<Canvas>) node:

var rootNode = plugin.content.root;

All that’s left to do is to recursively dump the contents starting with the root node, and
then display this information in the output <div>:

var html = dumpNode(rootNode);
document.getElementById('OutputDiv').innerHTML = html;

Admitted, that’s cheating, since we did not implement the dumpNode() function yet. But
it’s not that hard: dumpNode() expects a node as its first argument. The function then
notes the string representation of the node (for instance, <Canvas> has the string rep-
resentation Canvas). If the node has a name, the name is remembered, as well:

function dumpNode(node) {
 var html = node.toString();
 if (node.name) {
 html += ' (' + node.name + ')';
 }

Now comes the tricky part. What if the node has child nodes? In that case, recursion
comes into play: For every child node, dumpNode() calls dumpNode() again, so that every
child node is dumped, as well. In order to visualize the hierarchy of the document, all
child nodes are indented, using the <blockquote> HTML element.

There is one catch, however: If a node does not have children, accessing node.chi
dren will result in a JavaScript error. Therefore, we need to use a try...catch statement
instead:

 try {
 if (node.children.count > 1) {
 html += '<blockquote>';
 for (var i = 0; i < node.children.count; i++) {
 html += dumpNode(node.children.getItem(i));
 }
 html += '</blockquote>';
 }
 } catch (ex) {
 }

Finally, the dumpNode() function adds a line break at the end and returns the HTML
markup:

 html += '
';
 return html;
}

Communicating with the Plug-in | 143

For security reasons, you may want to HTML escape the element names
by getting rid of &, <, >, ', and ", replacing it with &, <, >,
', and " (in that specific order!).

Refer to Example 8-9 for the complete JavaScript code. Figure 8-4 shows the data
dumped for a simple Hello World file.

Example 8-9. Dumping Silverlight content, the JavaScript file (SilverlightDumper.html.js)
function createSilverlight(XamlFile)
{
 Silverlight.createObjectEx({
 source: XamlFile,
 parentElement: document.getElementById('SilverlightPlugInHost'),
 id: 'SilverlightPlugIn',
 properties: {
 width: '600',
 height: '300',
 background:'#ffffffff',
 isWindowless: 'false',
 version: '1.0'
 },
 events: {
 onError: null,
 }
 });
}

function loadFile(f) {
 createSilverlight(f.elements['XamlFile'].value);
 document.getElementById('DumpButton').disabled = false;
}

function dump() {
 var plugin = document.getElementById('SilverlightPlugIn');
 var rootNode = plugin.content.root;
 var html = dumpNode(rootNode);
 document.getElementById('OutputDiv').innerHTML = html;
}

function dumpNode(node) {
 var html = node.toString();
 if (node.name) {
 html += ' (' + node.name + ')';
 }
 try {
 if (node.children.count > 1) {
 html += '<blockquote>';
 for (var i = 0; i < node.children.count; i++) {
 html += dumpNode(node.children.getItem(i));
 }
 html += '</blockquote>';
 }

144 | Chapter 8: Accessing Silverlight Content From JavaScript

 } catch (ex) {
 }
 html += '
';
 return html;
}

There are many scenarios where combining HTML, JavaScript, and Silverlight makes
sense. For instance remember that Silverlight does not offer a text input control yet,
but HTML has that. So you could use HTML to enter data, and Silverlight to process it.

For Further Reading
JavaScript, The Definite Guide (http://www.oreilly.com/catalog/jscript5/index.html) by
David Flanagan (O’Reilly)

The must-have book on JavaScript

Figure 8-4. Dumping Silverlight data

For Further Reading | 145

http://www.oreilly.com/catalog/jscript5/index.html
http://www.oreilly.com/catalog/jscript5/index.html

CHAPTER 9

Special Silverlight JavaScript APIs

Advanced JavaScript APIs
This chapter is a mix of the Silverlight JavaScript capabilities introduced in the second
part of this book and the JavaScript access to Silverlight content presented in Chap-
ter 8. This chapter features some JavaScript APIs that are part of the Silverlight features
but provide advanced possibilities. To be exact, Silverlight exposes a JavaScript API
that lets developers download resources. While these resources are being downloaded,
the download progress may be seen and you can process the downloaded data.

Dynamically Downloading Content
The technical background for Silverlight’s downloader API is the XMLHttpRequest Java-
Script object, which fuels everything Ajax. The Silverlight API does not copy the
XMLHttpRequest API, but provides its own interfaces. You can trigger the API from
both “XAML code-behind” and “HTML code-behind” JavaScript code, but generally
you will want to start off from XAML.

When downloading content from within Silverlight, you usually have to follow these
steps:

1. Initialize the downloader object by using the plugin’s createObject() method

2. Add event listeners to the object to react upon important “happenings”

3. Configure the downloader object by providing information about the resource to
download (HTTP verb, URL)

4. Send the HTTP request

5. Handle any occurring events

Let’s go through these steps step by step. But first we need some XAML backing, so
that we can wire up the whole code. Example 9-1 shows a suggestion.

147

Example 9-1. Downloading content, the XAML file (Download.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="loadFile”>
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock x:Name="DownloadText" FontSize="52"
 Canvas.Left="25" Canvas.Top="35" Foreground="Black"
 Text="loading ..."/>
</Canvas>

Once the XAML has been loaded (Loaded event in the <Canvas> element), we start
working on the download. Step 1 is creating the downloader object. For that, we first
need to access the plugin (see Chapter 8 for details) and then call the method:

function loadFile(sender, eventArgs) {
 var plugin = sender.getHost();
 var d = plugin.createObject('downloader');

Step 2 is setting up event listeners. There are three events available:

Completed
Download has been completed

DownloadFailed
Download failed, for instance because the URL does not exist or there was an
internal server error or security restrictions prevented the download

DownloadProgressChanged
Another chunk of data has been downloaded from the server; there may be more
to come

For this example, the Completed event is what we want:

 d.addEventListener('completed', showText);

Step 3 is configuring the downloader object, which is done by using the open() method
(this does not actually open the connection, but just configures the object). Provide the
HTTP verb (usually ‘GET’), and the URI to request.

 d.open('GET', 'Download.txt');

Step 4 is easy. The send() method does what exactly what it says―it sends the HTTP
request.

 d.send();

Finally, in step 5, you need to implement the event handlers; in our case, there’s just
one. The first argument for that event handler (we call it sender, as always) is conven-
iently the downloader object. It provides you with two options to access the data
returned from the server:

responseText
This property contains the response as a string

148 | Chapter 9: Special Silverlight JavaScript APIs

getResponseText(id)
This method returns one specific part of a response. If you download a ZIP file,
you can provide the file name of the file inside the archive that you want.

In this example we use the former option and output the text:

function showText(sender, eventArgs) {
 var textBlock = sender.findName('DownloadText');
 textBlock.text = sender.responseText;
}

Now all you need is a file called Download.txt (see the open() method call for the file
name) residing in the same directory as your application, and you can download the
file. After a (very) short while, you will see the content in the <TextBlock> element.
Example 9-2 contains the complete “XAML code-behind” JavaScript code, and Fig-
ure 9-1 shows the output. If you are using a tracing tool like Firebug (see Figure 9-2),
you will see that the text file is actually downloaded.

Example 9-2. Downloading content, the XAML JavaScript file (Download.xaml.js)

function loadFile(sender, eventArgs) {
 var plugin = sender.getHost();
 var d = plugin.createObject('downloader');
 d.addEventListener('completed', showText);
 d.open('GET', 'Download.txt');
 d.send();
}

function showText(sender, eventArgs) {
 var textBlock = sender.findName('DownloadText');
 textBlock.text = sender.responseText;
}

Downloading only works using the HTTP protocol, you cannot use the
file: protocol (which means that you have to run these examples using
a web server, even if it is a local one). You also have to adhere to the
same-origin policy of the browser security system. The URL you are re-
questing must reside on the same domain, use the same port, and the
same protocol.

It’s a good idea to provide the user with information on how long downloading big files
will take. The DownloadProgressChanged event is an excellent choice to implement this.
We start off again with a simple XAML file (see Example 9-3) that both starts JavaScript
code once the canvas has been loaded and includes a text block that will hold the
progress information.

Example 9-3. Displaying the download progress, the XAML file (DownloadProgress.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="loadFile”>

Dynamically Downloading Content | 149

 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock x:Name="ProgressMeter” FontSize="64"
 Canvas.Left="60" Canvas.Top="35" Foreground="Black"
 Text="0 %"/>
</Canvas>

The best way to simulate a big file is to write a script that does not return that much
data, but takes some time to run. The ASP.NET code from Example 9-4 just sends a
bit over 1,000 bytes, but takes a break every few dozen bytes. Therefore, the script is
continuously sending data, but taking a few seconds to finish.

Figure 9-1. The content is downloaded

Figure 9-2. Firebug unveils the HTTP traffic, including the request to the text file

150 | Chapter 9: Special Silverlight JavaScript APIs

Example 9-4. Displaying the download progress, the ASP.NET file simulating a big or slow download
(DownloadProgress.aspx)

<%@ Page Language="C#" %>

<script runat="server">
void Page_Load() {
 Response.Clear();
 Response.BufferOutput = false;
 Response.AddHeader("Content-Length", "1003");
 for (int i = 0; i < 17; i++)
 {
 Response.Write(
 "AAA");
 System.Threading.Thread.Sleep(500);
 }
 Response.End();
}
</script>

It is very important that the script, in whatever language it is written,
does not use output buffering and also sends the correct Content-
Length HTTP header. Otherwise Silverlight cannot know how many
bytes the server will send in its response, and thus cannot determine
how many percent of the data have already been sent.

Now to the JavaScript part. The beginning is easy: create a downloader object and send
an HTTP request. Only this time, we are listening to the DownloadProgressChanged
event:

function loadFile(sender, eventArgs) {
 var plugin = sender.getHost();
 var d = plugin.createObject('downloader');
 d.addEventListener('DownloadProgressChanged', showProgress);
 d.open('GET', 'DownloadProgress.aspx');
 d.send();
}

The downloader object exposes a property called downloadProgress, which returns a
value between 0 and 1, which is a percentage of how much data has already been
transferred. Multiplied by 100 (and rounded), you get a nice percentage value that can
be displayed in the <TextBlock> element. Without further ado: Example 9-5 contains
the complete JavaScript code.

Example 9-5. Displaying the download progress, the XAML JavaScript file
(DownloadProgress.xaml.js)

function loadFile(sender, eventArgs) {
 var plugin = sender.getHost();
 var d = plugin.createObject('downloader');
 d.addEventListener('DownloadProgressChanged', showProgress);
 d.open('GET', 'DownloadProgress.aspx');
 d.send();
}

Dynamically Downloading Content | 151

function showProgress(sender, eventArgs) {
 var progress = sender.downloadProgress;
 var textBlock = sender.findName('ProgressMeter');
 textBlock.text = Math.round(100 * progress) + ' %';
}

Figure 9-3 shows the result―the file is loading, and loading, and loading.

Using Additional Fonts
One of the font support limitations mentioned in Chapter 4 is that there are only a
handful of fonts supported, but at least they work on all supported browsers and op-
erating systems. With the downloader object and some JavaScript code, additional
fonts can be used, as long as they are TrueType (TTF) or OpenType fonts. Another
limitations: they need to use the .TTF file extension.

Figure 9-3. The loading file

152 | Chapter 9: Special Silverlight JavaScript APIs

Probably the biggest limitation of them all is a legal one: You have to
make the TTF files available to Silverlight so that the application may
download them. If the application can download the fonts, then any
user can. So you need to make sure that you are allowed to distribute
the fonts you are using. For this very reason, the book downloads do
not come with the fonts mentioned in this chapter―you need to use your
own. For registered Visual Studio 2005 users, there is a font download
(see the “Further Reading section) that you might want to experiment
with. (But again, you are not licensed to distribute this font to others.)

As usual, we start with a simple XAML file that will be enriched with JavaScript code.
Example 9-6 contains a rectangle (for visual reasons) and a <TextBlock>. The text block
uses the Lucida font by default (see Chapter 4). We want to change this using JavaScript,
therefore we set up an event handler for the Loaded event so that we can load a font
once the XAML has been loaded.

Example 9-6. Loading a font, the XAML file (TrueTypeFont.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="loadFont”>
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock x:Name="FancyText" FontSize="64" Canvas.Left="20" Canvas.Top="35"
 Foreground="Black" Text="Silverlight" />
</Canvas>

Loading the font starts the same as loading any file using the downloader object, it
makes an HTTP request and sets up a Completed event handler. Make sure that you
have the CALIBRI.TTF (the Calibri font installed as part of Office 2007 and Windows
Vista) file available or use another font file and change the code accordingly.

function loadFont(sender, eventArgs) {
 var plugin = sender.getHost();
 var d = plugin.createObject('downloader');
 d.addEventListener('Completed', displayFont);
 d.open('GET', ‘CALIBRI.TTF’);
 d.send();
}

In the event handler function, we cannot use the HTTP response as a string. However,
the <TextBlock> object supports a method called setFontSource(). If you provide the
downloader object as an argument, you can use the font you just downloaded!

function displayFont(sender, eventArgs) {
 var textBlock = sender.findName('FancyText');
 textBlock.setFontSource(sender);

Remember that the download object is automatically the event sender and, therefore,
the first argument for any event handler function attached to the object.

The rest is easy: you can now set the fontSize property of the <TextBlock> element to
the name of the downloaded font:

Using Additional Fonts | 153

 textBlock.fontFamily = ‘Calibri’;
}

Example 9-7 contains the complete code, and you can see the result in Figure 9-4.

Example 9-7. Loading a font, the XAML JavaScript file (TrueTypeFont.xaml.js)

function loadFont(sender, eventArgs) {
 var plugin = sender.getHost();
 var d = plugin.createObject('downloader');
 d.addEventListener('Completed', displayFont);
 d.open('GET', 'CALIBRI.TTF');
 d.send();
}

function displayFont(sender, eventArgs) {
 var textBlock = sender.findName('FancyText');
 textBlock.setFontSource(sender);
 textBlock.fontFamily = 'Calibri';
}

But that’s not all! You can even download a ZIP file containing several font files, and
use every font in there. The XAML files does not change from that in Example 9-6,
except for one thing: clicking on the canvas executes an event handler. The application
will change the currently displayed font whenever the user clicks on it. See Exam-
ple 9-8 for the code.

Example 9-8. Loading multiple fonts, the XAML file (TrueTypeFonts.xaml)

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="loadFont” MouseLeftButtonDown="displayFont”>
 <Rectangle Width="300" Height="150" Stroke="Orange" StrokeThickness="15" />
 <TextBlock x:Name="FancyText" FontSize="64" Canvas.Left="20" Canvas.Top="35"
 Foreground="Black" Text="Silverlight" />
</Canvas>

Figure 9-4. The text now uses the Calibri font, which is on all supported systems

154 | Chapter 9: Special Silverlight JavaScript APIs

Now create a ZIP file containing several TTF files; we are using Consolas and Calibri
here. Then load the ZIP file as usual, in the loadFont() function. The displayFont()
function will now be called on two occasions: when the font ZIP file has been loaded
and when the user clicks on the rectangle. In the former case, the font source of the
text box needs to be set to the downloader object. This only works if the event sender
(first argument of the event handler function) is the downloader object, and not the
<Canvas> element (when the user clicks it). A try...catch block avoids any JavaScript
errors:

function displayFont(sender, eventArgs) {
 var textBlock = sender.findName('FancyText');
 try {
 textBlock.setFontSource(sender);
 } catch (ex) {
 }
 //...
}

The rest is easy. Once the font source is set, you can set the TextBlock element’s font
Family property to the name of any font within the ZIP file. Example 9-9 shows the
complete code, which also sets the correct font size depending on the font being used.
You can see in Figure 9-5 that the application now also uses the Consolas font.

Example 9-9. Loading multiple fonts, the XAML JavaScript file (TrueTypeFonts.xaml.js)
var font = 'Calibri';

function loadFont(sender, eventArgs) {
 var plugin = sender.getHost();
 var d = plugin.createObject('downloader');
 d.addEventListener('Completed', displayFont);
 d.open('GET', 'fonts.zip');
 d.send();
}

function displayFont(sender, eventArgs) {
 var textBlock = sender.findName('FancyText');
 try {
 textBlock.setFontSource(sender);
 } catch (ex) {
 }
 if (font == 'Calibri') {
 font = 'Consolas';
 var fontSize = '40';
 } else {
 font = 'Calibri';
 var fontSize = '64';
 }
 textBlock.fontFamily = font;
 textBlock.fontSize = fontSize;
}

So the downloader class can not only be used to download text information, but also
to provide dynamic resources like TrueType/OpenType fonts.

Using Additional Fonts | 155

Loading Images
You can also use the downloader class to load images that are then loaded into an
<Image> or <ImageBrush> element. The object method is called setSource() again, but
this time expects two arguments:

• The downloader object

• The filename of the image to use, if you downloaded a ZIP with multiplied images
inside. If you directly downloaded just one image, use an empty string as the second
method argument.

When downloading big images, you can also track the download progress of those
images.

Further Reading
http://www.microsoft.com/downloads/details.aspx?Family
ID=22e69ae4-7e40-4807-8a86-b3d36fab68d3&DisplayLang=en

Consolas font (for registered Visual Studio 2005 users)

Figure 9-5. Clicking on the canvas changes the font

156 | Chapter 9: Special Silverlight JavaScript APIs

http://www.microsoft.com/downloads/details.aspx?FamilyID=22e69ae4-7e40-4807-8a86-b3d36fab68d3&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=22e69ae4-7e40-4807-8a86-b3d36fab68d3&DisplayLang=en

CHAPTER 10

ASP.NET 2.0, ASP.NET AJAX, and
Silverlight

The ASP.NET Futures
The ASP.NET Futures is a collection of controls and features that did not make it in
the release version of ASP.NET 2.0 but may be subject to further inclusion (or may be
eternally doomed). It offers a sneak peek at what Microsoft is working on or planning,
and is subject to frequent change. The ASP.NET Futures are released in form of Com-
munity Technology Previews (CTPs); this chapter is based on the July 2007 CTP.

Probably the best-known part of the ASP.NET Futures are the ASP.NET AJAX Futures,
a set of add-ons for the ASP.NET AJAX Extensions. Most elements in the ASP.NET
AJAX Futures are features that were part of pre-release versions of ASP.NET AJAX
(then codenamed Atlas), but were removed from the core and shelved in the Futures
project.

Beginning with the May 2007 CTP, the ASP.NET Futures included special ASP.NET
2.0 web controls that facilitate embedding Silverlight XAML and media content into
ASP.NET pages. This chapter will help you set up the ASP.NET Futures on your de-
velopment machine and then have a look at these two controls.

Installing the ASP.NET Futures
Before you can install the ASP.NET Futures, you need to get the ASP.NET AJAX Ex-
tensions first, since the Futures is an add-on to Microsoft’s AJAX framework. You can
go to Microsoft’s ASP.NET AJAX homepage, http://www.asp.net/ajax/, to get the
ASP.NET AJAX Extensions. The direct download link is http://www.microsoft.com/
downloads/details.aspx?FamilyID=ca9d90fa-e8c9-42e3-aa19-08e2c027f5d6&display
lang=en.

The installer copies the ASP.NET AJAX files to your machine, including the server
assembly (which will be installed in the Global Assembly Cache, or GAC), and the

157

http://www.asp.net/ajax/
http://www.microsoft.com/downloads/details.aspx?FamilyID=ca9d90fa-e8c9-42e3-aa19-08e2c027f5d6&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=ca9d90fa-e8c9-42e3-aa19-08e2c027f5d6&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=ca9d90fa-e8c9-42e3-aa19-08e2c027f5d6&displaylang=en

client script libraries. It also integrates into Visual Studio and Visual Web Developer
Express Edition, providing a new web site template. If you are using Visual Studio 2008,
ASP.NET AJAX is already included in all .NET Framework 3.5 web sites, so you can
skip this step.

The July CTP is available for download in the Microsoft download center at http://
www.microsoft.com/downloads/details.aspx?FamilyId=A5189BCB-EF81-4C12-9733-
E294D13A58E6&displaylang=en.

If there is a more recent release when you are reading this, there may be a link to the
latest bits on that page. Another way to get to the newest release is to go to http://asp.net/
ajax/downloads/ and click on the “Download the Futures” link there. Since the
ASP.NET AJAX Futures are part of the ASP.NET Futures, you will automatically get
to the correct page. Note, however, that this chapter is based on the July CTP, so there
is no guarantee that it will still work with following CTPs (but the odds are that it will
continue to work).

The ASP.NET Futures installer (see Figure 10-1) copies all important files, including
some documentation, to your machine. It also registers with Visual Studio 2005 (in-
cluding the free Visual Web Developer Express Edition). When setting up a new web
site, you have two new templates: ASP.NET Futures Web Site and
ASP.NET Futures AJAX Web Site (see Figure 10-2). The latter is a web site with addi-
tional ASP.NET AJAX components, and the former is what we want.

Create a web site based on the ASP.NET Futures Web Site template and call it
SilverlightFutures (you don’t have to, but this project name is used throughout this
chapter). The first thing you will notice is that the web site’s Bin directory is filled with
a bunch of DLLs (see Figure 10-3). These provide the additional functionality of the
ASP.NET Futures, including the two controls we will cover in the following section.

Embedding XAML
One control provided by the ASP.NET Futures that is relevant to Silverlight is
<asp:Xaml>. This control lets you embed XAML content into an ASP.NET page. We
will have a look at what the client-side HTML output is in a second; but before that,
here are the most important attributes of <asp:Xaml>:

XamlURL
The URL of the Silverlight XAML file to include.

MinimumSilverlightVersion
The minimum version of Silverlight that needs to be checked for. If you are dis-
playing Silverlight 1.1 content, set this property to “1.1”.

158 | Chapter 10: ASP.NET 2.0, ASP.NET AJAX, and Silverlight

http://www.microsoft.com/downloads/details.aspx?FamilyId=A5189BCB-EF81-4C12-9733-E294D13A58E6&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=A5189BCB-EF81-4C12-9733-E294D13A58E6&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=A5189BCB-EF81-4C12-9733-E294D13A58E6&displaylang=en
http://asp.net/ajax/downloads/
http://asp.net/ajax/downloads/

ScaleMode
How to scale the embedded media. Possible values are ScaleMode.None (no scaling),
ScaleMode.Stretch (stretch without keeping the aspect ratio), and Scale
Mode.Zoom (stretch and keep the aspect radio).

Width
The width (in pixels) of the Silverlight control.

Height
The height (in pixels) of the Silverlight control.

Here is an example:

<asp:Xaml ID="Xaml1" runat="server" XamlURL="Logo.xaml"
 MinimumSilverlightVersion="1.0" Width="250" Height="250" />

It is also possible to load JavaScript files that are used by the XAML content. This is
done exactly like the ASP.NET AJAX ScriptManager web control does it, by using the
<Script> sub element:

<asp:Xaml ID="Xaml1" runat="server" XamlURL="Logo.xaml"
 MinimumSilverlightVersion="1.0">
 <Scripts>

Figure 10-1. The ASP.NET Futures installer

Embedding XAML | 159

 <asp:ScriptReference Path="myLibrary.js" />
 </Scripts>
</asp:Xaml>

Talking about the ScriptManager: This is the web control that comes with ASP.NET
AJAX. It is responsible for setting up a web page to use ASP.NET AJAX effects. In order
to use <asp:Xaml>, you do need the ScriptManager on the page:

<asp:ScriptManager id="ScriptManager1" runat="server" />

Example 10-1 contains the complete code:

Example 10-1. The XAML control (Xaml.aspx)
<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Silverlight</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:Xaml ID="Xaml1" runat="server" XamlUrl="Logo.xaml"
 MinimumSilverlightVersion="1.0" Width="250" Height="250">

Figure 10-2. The ASP.NET Futures install new Visual Studio templates

160 | Chapter 10: ASP.NET 2.0, ASP.NET AJAX, and Silverlight

Figure 10-3. The web site based on the Futures template comes with several assemblies

Embedding XAML | 161

 <Scripts>
 <asp:ScriptReference Path="myLibrary.js" />
 </Scripts>
 </asp:Xaml>
 </div>
 </form>
</body>
</html>

Let’s have a look at the output of this code which reaches the client browser:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head><title>
 Silverlight
</title></head>
<body>
 <form name="form1" method="post" action="Xaml.aspx" id="form1">
<div>
<input type="hidden" name="__EVENTTARGET" id="__EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" id="__EVENTARGUMENT" value="" />
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDwUBMGRkCBGFCdJgCnCCrZD2vBQzbiHmKxE=" />
</div>

<script type="text/javascript">
<!--
var theForm = document.forms['form1'];
if (!theForm) {
 theForm = document.form1;
}
function __doPostBack(eventTarget, eventArgument) {
 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
}// -->

</script>

<script src="/SilverlightFutures/WebResource.axd?d=S-kP903jYyiEziOKSNtZnQ2&
t=633197198135937500" type="text/javascript"></script>

<script src="/SilverlightFutures/ScriptResource.axd?d=DN0eWsX-g6VyC5Xz7xk7W
vgFhN4SHCwrIK-9ncFuYLMubPrRGYGCb2rOhd6nkacvx5L46hlWVnzQwttRkL70PA9Mmwzt7BPN
wOJnraQhQxo1&t=633223480818281250" type="text/javascript"></script>
<script src="/SilverlightFutures/ScriptResource.axd?d=DN0eWsX-g6VyC5Xz7xk7W
vgFhN4SHCwrIK-9ncFuYLMubPrRGYGCb2rOhd6nkacvx5L46hlWVnzQwttRkL70PJuhioH-svy4
FH67UeRRAC8JoJigfq1BpYHExTBWbq960&t=633223480818281250"
type="text/javascript"></script>
<script src="/SilverlightFutures/ScriptResource.axd?d=serzne1tmmxXTszmVvgl8

162 | Chapter 10: ASP.NET 2.0, ASP.NET AJAX, and Silverlight

B8VX5vGO5GTdxLZnG1P9TxLuzI_yuYj39p1RZqIcJNt0&t=633210654600000000"
type="text/javascript"></script>
<script src="myLibrary.js" type="text/javascript"></script>
 <script type="text/javascript">
//<![CDATA[
Sys.WebForms.PageRequestManager._initialize('ScriptManager1',
document.getElementById('form1'));
Sys.WebForms.PageRequestManager.getInstance()._updateControls([], [], [], 90);
//]]>

</script>

 <div>
 <object id="Xaml1" type="application/x-silverlight">

</object>
 </div>

<script type="text/javascript">
<!--
Sys.Application.initialize();
Sys.Application.add_init(function() {
 $create(Sys.Preview.UI.Xaml.Control, {"minimumSilverlightVersion":"1.0",
"xamlSource":"Logo.xaml","width":"250","height":"250"}, null, null,
$get("Xaml1"));
});
// -->
</script>
</form>
</body>
</html>

This is quite a lot of code (compare that to the markup we have in the Xaml.aspx file!),
so we will break it down into individual parts. The hidden form fields are added by
ASP.NET, so nothing new or surprising here. This also includes the first <script> ele-
ment.

However, the next four <script> elements are automatically added by Silverlight. One
accesses WebResource.axd, the next three access ScriptResource.axd. These <script>
elements load JavaScript resources that are embedded in the ASP.NET Futures assem-
blies. This includes the ASP.NET AJAX client script libraries and also special JavaScript
code used to check for the Silverlight plug-in and to initialize the Silverlight content on
the page, similar to the code first introduced in Chapter 2.

The next <script> element loads myLibrary.js, the file we provided in the <Scripts>
section of <asp:Xaml>, using <asp:ScriptReference>. The remaining <script> sections
on the page initialize both ASP.NET AJAX and the XAML control on the page. The
XAML control is embedded using the <object> HTML tag:

<object id="Xaml1" type="application/x-silverlight"></object>

Embedding XAML | 163

So, what we are basically getting here is similar output to the one created by the Sil-
verlight project template. The XAML file is put into an <object> tag and a JavaScript
library takes care of initializing the XAML content and checking for the correct plug-
in. The markup created by <asp:Xaml> is a bit longer than our “hand-coded” markup,
but it is also a bit faster to create in the IDE, because we don’t have to write any Java-
Script code ourselves anymore.

Make absolutely sure that you set the Width and Height properties, not all browsers
figure that out automatically. Figure 10-4 shows what happens if you omit these two
attributes. Internet Explorer shows the content (at least most of it), Firefox does not.

Embedding Media Content
If you only want to use media on your Silverlight page, i.e., movie and audio data, you
can even avoid creating the necessary XAML yourself. The ASP.NET Futures contains
a special web control called <asp:Media> that takes care of both setting up the required
XAML and embedding it into the web page (like <asp:Xaml> does). The web control
supports several properties, and the following is a list of the most interesting ones, apart
from the mandatory Width and Height:

MediaUrl
The URL of the video or audio file to embed

Figure 10-4. The browser output of the XAML control, if Height and Width are omitted

164 | Chapter 10: ASP.NET 2.0, ASP.NET AJAX, and Silverlight

AutoPlay
Whether the media shall be played automatically once the page has been loaded
(true) or not (false)

Muted
Whether the audio shall be off (probably no bad idea for commercial web sites)

PlaceholderImageUrl
The URL of an image that is displayed as a placeholder while the media content is
loaded

ScaleMode
How to scale the content; choose from ScaleMode.None (no scaling), Scale
Mode.Stretch (stretch without keeping the aspect ratio), and ScaleMode.Zoom
(stretch and keep the aspect radio)

Volume
The volume of the audio portion of the media

As with <asp:Xaml>, <asp:Media> also requires a ScriptManager control to be present.
Example 10-2 shows a page with an embedded WMV video. No XAML or JavaScript
is to be seen.

Example 10-2. Embedding media content (Media.aspx)

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Media.aspx.vb"
 Inherits="Media" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Silverlight</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:Media ID="Media1" runat="server"
 MediaUrl="video.wmv" AutoPlay="true"
 Width="320" Height="240" />
 </div>
 </form>
</body>
</html>

The client output of the preceding code is very similar to the one <asp:Xaml> was cre-
ating in the previous section. However there are two obvious changes:

<div>
 <object id="Media1" type="application/x-silverlight">

</object>
 </div>

Embedding Media Content | 165

<script type="text/javascript">
<!--
Sys.Application.initialize();
Sys.Application.add_init(function() {
 $create(Sys.Preview.UI.Xaml.Media.Player, {"autoPlay":true,
"mediaUrl":"video.wmv","xamlSource":"/SilverlightFutures/WebResource.axd?d=
sIeXERCMlip1T8Xs8cc4lW872Ud9pErpWxrM2m2F_njre91sMOp-VS2I6MLtkdb1TXexyE7xlx9IdA
Iqyh66CyPBfuxgQSv7XtVtkFAxaM2-y2k5P0y9hKqj4noBBzKi0&t=633210654600000000",
"width":"320","height","240"}, null, null, $get("Media1"));
});
// -->
</script>

So the media is embedded using the <object> HTML element. This is no surprise, since
<asp:Media> is creating XAML markup to embed the video or audio content. However,
the initialization of this <object> element, in the <script> section, is different. The
xamlSource property is set to this URL (the exact name will vary on your system, because
the current time is embedded in the URL):

/SilverlightFutures/WebResource.axd?d=sIeXERCMlip1T8Xs8cc4lW872Ud9pErpWxrM2m2F_
njre91sMOp-VS2I6MLtkdb1TXexyE7xlx9IdAIqyh66CyPBfuxgQSv7XtVtkFAxaM2-y2k5P0y9hKqj
4noBBzKi0&t=633210654600000000

So there is no static XAML file that is sent down to the browser; instead the ASP.NET
Futures creates a handler that will return dynamically generated XAML content. In case
you are curious, use a tool like Firebug (http://www.getfirebug.com/) to sniff incoming
traffic and have a look at the dynamic XAML. Figure 10-5 shows the result; as you can
see, that’s quite a lot of markup, since the output not only shows the media file, but
also includes a visual user interface for it. How lucky we are that we did not have to
create that ourselves.

The Media control also supports sub elements. One is <Scripts>, which allows you to
load JavaScript libraries you need in that movie. Another one is <Chapters>. This allows
you to use markup to add chapters to a movie (see Chapter 7 on how to do that man-
ually). For each chapter marker, you need an <asp:MediaChapter> element and the
following properties:

TimeIndex
The start time of the chapter

Title
The title of the chapter

ImageUrl
The image that marks the chapter

Example 10-3 shows how this can look like, and Figure 10-6 the output in the web
browser; when you hover over the video, all markers are shown. Clicking on one of
them jumps to the appropriate position in the video.

166 | Chapter 10: ASP.NET 2.0, ASP.NET AJAX, and Silverlight

http://www.getfirebug.com/

Example 10-3. Adding chapters to a video (MediaChapter.aspx)
<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Silverlight</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:Media ID="Media1" runat="server"
 MediaUrl="video.wmv" AutoPlay="true"
 Width="320" Height="240">
 <Chapters>
 <asp:MediaChapter TimeIndex="13.200" Title="Junction"
 ImageUrl="marker1.png" />
 <asp:MediaChapter TimeIndex="26.300" Title="Olympic Stadium"
 ImageUrl="marker2.png" />
 <asp:MediaChapter TimeIndex="48.0" Title="Olympic Tower"
 ImageUrl="marker3.png" />
 </Chapters>
 </asp:Media>

Figure 10-5. Firebug shows the XAML that was dynamically generated on the server

Embedding Media Content | 167

 </div>
 </form>
</body>
</html>

For Further Reading
Programming ASP.NET AJAX (http://www.oreilly.com/catalog/9780596514242/in
dex.html) by Christian Wenz (O’Reilly)

All you need to know about ASP.NET AJAX and its related projects, including the
ASP.NET AJAX Futures

Figure 10-6. Chapters in a video

168 | Chapter 10: ASP.NET 2.0, ASP.NET AJAX, and Silverlight

http://www.oreilly.com/catalog/9780596514242/index.html
http://www.oreilly.com/catalog/9780596514242/index.html
http://www.oreilly.com/catalog/9780596514242/index.html

CHAPTER 11

Silverlight 1.1 Preview

Silverlight’s Future
This book is about Silverlight 1.0. The first release of the Silverlight technology contains
quite a number of useful features, as the previous 10 chapters have shown. However,
Microsoft is already working on future versions.

Unfortunately, the versioning system is really odd. The Silverlight 1.0 version comes
as a small download with a nice but manageable feature set. The next version of Sil-
verlight will add many additional feature, be a much bigger download, currently
clocking in at about 4.5 MB on Windows (in contrast: Silverlight 1.0 is less than 1.4
MB). Mac OS X file sizes are bigger (for instance, Silverlight 1.1 currently comes in at
almost 10 MB). So, you would expect that the new version number would be 1.5 at
least, or maybe 2.0.

However, the next Silverlight version is called 1.1. This marginal increase of version
number is not reflected in the feature set, which is vastly revamped and extended. It is
also not clear what happens if there is a bugfix release or security update for Silverlight
1.0. Will the new version number be 1.0.1? Or, as Sun Microsystems is doing with Java,
Silverlight 1.0 Update 1?

Apart from those irritating version numbering schemes, Silverlight 1.1 is really some-
thing to look forward to. This chapter touches very briefly on some of the upcoming
features. As of time of writing, Silverlight 1.1 was still in alpha state, so investing too
much time into the new version could be dangerous, as APIs can (and will!) change.

Currently, you can download both Silverlight versions (1.0 and 1.1)
from the download page at http://www.microsoft.com/silverlight/down
loads.aspx. The recommended development platform for Silverlight 1.1
content will be Visual Studio 2008; for its beta 2 release, Microsoft is
providing add-ins that install templates and IntelliSense support at
http://www.microsoft.com/downloads/details.aspx?family
id=B52AEB39-1F10-49A6-85FC-A0A19CAC99AF&displaylang=en.

169

http://www.microsoft.com/silverlight/downloads.aspx
http://www.microsoft.com/silverlight/downloads.aspx
http://www.microsoft.com/downloads/details.aspx?familyid=B52AEB39-1F10-49A6-85FC-A0A19CAC99AF&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=B52AEB39-1F10-49A6-85FC-A0A19CAC99AF&displaylang=en

.NET Integration
JavaScript is, at least in my opinion, an underestimated language. It provides most
features you need to enrich Silverlight content. However, to tell the truth, many de-
velopers ignored the language for a couple of years, at least until Ajax came up. And
since Silverlight is targeted to WPF users, i.e., desktop developers, not all of them are
familiar for JavaScript, since this language has been almost exclusively used for web
applications.

A .NET developer’s dream would be to use a .NET language in the Web―on the client
side. Microsoft works hard to make this dream come true. Silverlight 1.1 comes with
a stripped-down (but still very functional) version of the .NET Framework. That means
that you can use a supported .NET language like C# or Visual Basic to create the
“XAML code-behind” code. No need to use JavaScript any more! Of course, the brows-
ers don’t just start supporting .NET, the plug-in takes care of that. A special highlight
is that this .NET support will also be available for the Mac OS X platform and a kind
of .NET runtime will be included into the plug-in for the Apple operating system. This
also means that Windows users do not have to have .NET Framework 3.0 or even 3.5
on their machines, everything that is required comes as part of the plug-in. (If not, the
plug-in would probably not reach a high market share at all.)

Before you start developing content, you first need to install Silverlight 1.1 on your
machine (see Figure 11-1). If the installer does not run, Visual Studio 2008 will not
compile Silverlight content, since the compiler requires the Silverlight classes to be
present.

We will demonstrate using a simple example. You will see that in the end, the code
may be a bit more complex than before, but the possibilities are virtually endless. We
will use Visual Studio 2008 (currently in Beta 2), and base the sample on the C# Sil-

Figure 11-1. Silverlight 1.1 must be present when you want to develop content for it

170 | Chapter 11: Silverlight 1.1 Preview

verlight project sample (see Figure 11-2). Make sure that you choose .NET Framework
version 3.5, otherwise you will not see the project sample.

The project template installs these files:

Page.xaml
A rudimentary XAML page.

Page.xaml.cs
C# code-behind file, may be compared to the “XAML code-behind” JavaScript
files we used throughout this book. If you use Visual Basic as the project language,
the file will of course be called Page.xaml.vb.

Silverlight.js
The well-known helper file used by the client.

TestPage.html
A HTML test page prepared for displaying the content from Page.xaml.

TestPage.html.js
JavaScript code used by TestPage.html to load the XAML content from Page.xaml.

The sample application will output the current time in the Silverlight content (an ad-
vanced version of Hello World, so to speak). We will not need to touch the .html
and .html.js pages but directly start with the XAML file. Example 11-1 shows the file
after some elements were added.

Figure 11-2. The Silverlight project templates in Visual Studio 2008

.NET Integration | 171

Example 11-1. Using .NET in Silverlight, the XAML file (Page.xaml)

<Canvas x:Name="parentCanvas"
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="Page_Loaded"
 x:Class="Silverlight1._.Page;assembly=ClientBin/Silverlight1.1.dll"
 Width="640"
 Height="480"
 Background="White"
 >
 <Rectangle Width="450” Height="150” Stroke="Orange” StrokeThickness="15” />
 <TextBlock x:Name="MyText” FontFamily="Verdana” FontSize="56”
 Canvas.Left="30” Canvas.Top="40” Foreground="Black”
 Text="Silverlight” />
</Canvas>

Note the additional attributes the template has already included. Of special interest is
x:Class, where the name of the code-behind class for the current XAML page and the
file name of the associated project assembly is provided.

For this example, we have used the project name Silverlight1.1. In the
current (alpha) version of the template, this confuses the template be-
cause there is a special character (the dot) in the project name. This dot
is escaped in the class name, which is indeed Silverlight1._.Page.
However the assembly name is, according to the template, Silverlight.
1._.dll. As you can see in Example 11-1, this had to be changed to the
actual name, Silverlight.1.1.dll, otherwise you’d get a JavaScript error
message (if you see AG_E_RUNTIME_MANAGED_ASSEMBLY_DOWNLOAD, your as-
sembly name is quite certainly wrong).

The code-behind file is now a real code-behind file, no JavaScript file that just happens
to be called similarly to the XAML file. The Loaded event calls the Page_Loaded() meth-
od, which is now written in C#. As usual, it receives two arguments: the object that
fired the event and event-specific arguments. First of all, the well-known Initialize
Component() method needs to be called, as usual in .NET:

public void Page_Loaded(object o, EventArgs e)
{
 // Required to initialize variables
 InitializeComponent();

We then need to access the <TextBlock> element on the page. Remember what we did
with JavaScript in such a scenario? Indeed, we called the findName() method of the
<Canvas> element, which happened to be the sender (first argument of the event han-
dling method). This works with C# as well, we just have to take be careful about type
casting because C# is strongly-typed. Another limitation is that C# is case-sensitive
and uses camelcase, so we need to call FindName() instead of findName().

Canvas can = o as Canvas;
TextBlock textBlock = (TextBlock)can.FindName("MyText");

172 | Chapter 11: Silverlight 1.1 Preview

Finally, the Text property (not text!) of the text block can be set. As a value we have
access to most of what the .NET class library is offering, including DateTime values.

textBlock.Text = DateTime.Now.ToLongTimeString();

Example 11-2 contains the complete code for the XAML code-behind, and Fig-
ure 11-3 depicts the output.

Example 11-2. Using .NET in Silverlight, the XAML code-behind file (Page.xaml.cs)
using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace Silverlight1._
{
 public partial class Page : Canvas
 {
 public void Page_Loaded(object o, EventArgs e)
 {
 // Required to initialize variables
 InitializeComponent();

 Canvas can = o as Canvas;
 TextBlock textBlock = (TextBlock)can.FindName("MyText");

 textBlock.Text = DateTime.Now.ToLongTimeString();
 }
 }
}

If you look at the HTML source code of this example, you will see that there are no
surprises (which itself is no surprise, since the HTML file is static and only uses a bit
of JavaScript). So the whole magic of running the .NET code is done by the Silverlight
plug-in. If you have a look at the output of a tracing tool like Firebug (see Fig-
ure 11-3), you will see that the .dll assembly is loaded from the server and then
processed.

Example 11-3. Using .NET in Silverlight, the HTML file (TestPage.html)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Silverlight</title>

 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript" src="TestPage.html.js"></script>
 <style type="text/css">

.NET Integration | 173

 .silverlightHost { width: 640px; height: 480px; }
 </style>
</head>

<body>
 <div id="SilverlightControlHost" class="silverlightHost" >
 <script type="text/javascript">
 createSilverlight();
 </script>
 </div>
</body>
</html>

Further New Features
The .NET Framework subset supported by Silverlight 1.1 also includes some of the
new additions in .NET Framework 3.5. One of the highlights is LINQ, a new way of
querying data using an SQL-like syntax, but directly within the code (think SQL merg-
ing into C# and Visual Basic). Silverlight 1.1 will also come with a class library that
contains additional features, like calling .NET Web Services. Further Silverlight 1.1
features include several additional controls, support for a new form of data web service
Microsoft is currently working on (code-named Astoria), and much more. Make sure
you visit http://www.silverlight.net/ to stay up-to-date.

As Silverlight 1.1 evolves, this book will evolve, too; subsequent editions will focus on
Silverlight 1.1. Microsoft hints that Silverlight 1.0 applications might still run with the

Figure 11-3. The current time appears in the Silverlight (1.1) content

174 | Chapter 11: Silverlight 1.1 Preview

http://www.silverlight.net/

Silverlight 1.1 plug-in, but you never know what will happen. Therefore, this edition
on the book focuses on what is there and (quite) stable. This chapters provided a sneak
peek at the―possible―future.

Further Reading
http://www.microsoft.com/downloads/details.aspx?FamilyID=54b85d84-604d-43db-
bcfe-7afd278208d8&DisplayLang=en

The Silverlight 1.1 Alpha SDK

http://www.microsoft.com/downloads/details.aspx?FamilyID=811d8ad6-8d48-4684-
b08c-686462d58a56&DisplayLang=en

A print-quality reference poster showing the (current) Silverlight 1.1 architecture

http://www.microsoft.com/silverlight/downloads.aspx
Microsoft Silverlight downloads

Further Reading | 175

http://www.microsoft.com/downloads/details.aspx?FamilyID=54b85d84-604d-43db-bcfe-7afd278208d8&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=54b85d84-604d-43db-bcfe-7afd278208d8&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=811d8ad6-8d48-4684-b08c-686462d58a56&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=811d8ad6-8d48-4684-b08c-686462d58a56&DisplayLang=en
http://www.microsoft.com/silverlight/downloads.aspx

APPENDIX

Silverlight JavaScript Reference

Using the Silverlight Plug-in
There are two ways to access the Silverlight plug-in. Use the HTML DOM and the
document.getElementById() method, and provide the ID used in the createSilverlight
() function. Or intercept any Silverlight event and access the plug-in in the following
fashion:

function eventHandler(sender, eventArgs) {
 var plugin = sender.getHost();
}

From the plug-in, you have access to the following properties and methods:

content.accessibility
Accessibility information of the Silverlight content (read-only)

content.actualHeight
The height of the Silverlight content (read-only)

content.actualWidth
The width of the Silverlight content (read-only)

content.createFromXaml(xamlContent, nameScope)
Creates a Silverlight object with the given XAML content; if nameScope is set to
true, a unique x:Name attribute is assigned.

content.createFromXamlDownloader(downloader, part)
Creates a Silverlight object from the given downloader object; if the downloaded
content is a ZIP archive, part defines the name of the file to use

content.findName(objectName)
Returns a reference to the object with the given name

content.fullScreen
Whether the Silverlight plug-in is in full-screen mode (read and write)

content.onFullScreenChange
Event handler that is fired when the application enters or leaves full-screen mode

177

content.onResize
Event handler that is fired if the Silverlight content area is resized

createObject(objectType)
Creates and returns an object with the given type

initParams
The initialization parameters provided for the Silverlight content (read-only after
the initialization)

isLoaded
Whether the Silverlight plug-in and its XAML content are fully loaded (read-only)

isVersionSupported(versionString)
Whether the current Silverlight plug-in supports content with the given version
number

onError
Event handler that is fired if an error occurs within the Silverlight application

root
The root element of the Silverlight content (read-only)

settings.background
The background color of the Silverlight content area (read and write)

settings.enabledFramerateCounter
Whether the current frame rate is displayed in the browser's status bar or not (read
and write; note that not all browser allow changing the content of the status bar)

settings.enableRedrawRegions
Whether the regions of the Silverlight content that are redrawn are highlighted
(read and write; only useful during development)

settings.enableHtmlAccess
Whether to allow Silverlight content may access the HTML DOM (read-only)

settings.maxFrameRate
The maximum frame rate (number of frames) of the Silverlight content (read and
write)

settings.windowless
Whether the Silverlight application runs in windowsless mode or not (then the
background may use alphatransparency and can let the background on the HTML
page shine through), set in the initialization phase (read-only afterwards)

source
The XAML source code of the Silverlight content (read and write)

178 | Appendix: Silverlight JavaScript Reference

	Essential Silverlight
	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Introduction
	Chapter 1. WPF Basics
	Of Vectors and Pixels
	WPF
	XAML
	Further Reading

	Chapter 2. Getting Started With
 Silverlight
	About Silverlight
	Setting Up a Silverlight Development System
	A First Silverlight Example
	Further Reading

	Chapter 3. Silverlight Tools
	Why Tools?
	XML Editors
	Vector Graphics Editors
	Silverlight IDEs
	Further Reading

	Part II. Declarative Silverlight
	Chapter 4. XAML Basics
	XAML
	Using Text
	Using Shapes
	Positioning Elements
	Using Images
	Using Brushes
	For Further Reading

	Chapter 5. Interaction and Event Handling
	Interactive Silverlight
	Events and Event Handlers
	Declarative Event Handlers
	Event Listeners

	Mouse Events
	Mouse Position
	Drag and Drop

	Keyboard Events
	For Further Reading

	Chapter 6. Transformations and Animations
	Transforming and Animating Content
	Transformations
	Animations
	Setting Up an Animation
	Animation Types
	Key Frame Animations
	ScriptingAnimation

	For Further Reading

	Chapter 7. Multimedia
	Silverlight’s Media Support
	Preparing Multimedia Data
	Converting Data
	Adding Markers
	Streaming Video

	MediaElement
	Embedding Multimedia
	Controlling Multimedia
	Play and Pause
	Setting the Volume
	Determining the Media Position
	Working with Markers

	For Further Reading

	Part III. Programmatic Silverlight
	Chapter 8. Accessing Silverlight Content From JavaScript
	JavaScript, the Browser Language
	Accessing the Plug-in
	Communicating with the Plug-in
	Determining Plug-in Settings
	Modifying XAML Content
	Dumping Content Information

	For Further Reading

	Chapter 9. Special Silverlight JavaScript APIs
	Advanced JavaScript APIs
	Dynamically Downloading Content
	Using Additional Fonts
	Further Reading

	Chapter 10. ASP.NET 2.0, ASP.NET AJAX, and Silverlight
	The ASP.NET Futures
	Installing the ASP.NET Futures
	Embedding XAML
	Embedding Media Content
	For Further Reading

	Chapter 11. Silverlight 1.1 Preview
	Silverlight’s Future
	.NET Integration
	Further New Features
	Further Reading

	Appendix. Silverlight JavaScript
 Reference
	Using the Silverlight Plug-in

