

HANDBOOK OF SENSOR
NETWORKS
ALGORITHMS AND ARCHITECTURES

Edited by

Ivan Stojmenović
University of Ottawa

A JOHN WILEY & SONS, INC., PUBLICATION

HANDBOOK OF SENSOR
NETWORKS

WILEY SERIES ON PARALLEL
AND DISTRIBUTED COMPUTING

Editor: Albert Y. Zomaya

A complete list of titles in this series appears at the end of this volume.

HANDBOOK OF SENSOR
NETWORKS
ALGORITHMS AND ARCHITECTURES

Edited by

Ivan Stojmenović
University of Ottawa

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright # 2005 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy

fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,

(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher

for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts

in preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be

suitable for your situation. You should consult with a professional where appropriate. Neither the

publisher nor author shall be liable for any loss of profit or any other commercial damages, including

but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our

Customer Care Department within the United States at (800) 762-2974, outside the United States at

(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may

not be available in electronic formats. For more information about Wiley products, visit our web site at

www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Handbook of sensor networks : algorithms and architectures / edited by Ivan Stojmenovic.

p. cm. --- (Wiley series on parallel and distributed computing)

Includes bibliographical references and index.

ISBN-13 978-0-471-68472-5 (cloth)

ISBN-10 0-471-68472-4 (cloth)

1. Sensor networks. I. Stojmenovic, Ivan.

TK7872.D48H358 2005

6810.2- -dc22
2005005155

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To my daughter Milica, son Milos, and wife Natasa, my personal sensor network.

To Val and Emily from Wiley, for their timely and professional cooperation.

&CONTENTS

Preface ix

Contributors xv

1. Introduction to Wireless Sensor Networking 1

Fernando Martincic and Loren Schwiebert

2. Distributed Signal Processing Algorithms for the

Physical Layer of Large-Scale Sensor Networks 41

An-swol Hu and Sergio D. Servetto

3. Energy Scavenging and Nontraditional Power

Sources for Wireless Sensor Networks 75

Shad Roundy and Luc Frechette

4. A Virtual Infrastructure for Wireless Sensor Networks 107
Stephan Olariu, Qingwen Xu, Ashraf Wadaa, and Ivan Stojmenović

5. Broadcast Authentication and Key Management

for Secure Sensor Networks 141
Peng Ning and Donggang Liu

6. Embedded Operating Systems for Wireless

Microsensor Nodes 173

Brian Shucker, Jeff Rose, Anmol Sheth, James Carlson,

Shah Bhatti, Hui Dai, Jing Deng, and Richard Han

7. Time Synchronization and Calibration in Wireless

Sensor Networks 199

Kay Römer, Philipp Blum, and Lennart Meier

8. The Wireless Sensor Network MAC 239

Edgar H. Callaway, Jr.

9. Localization in Sensor Networks 277

Jonathan Bachrach and Christopher Taylor

10. Topology Construction and Maintenance in Wireless

Sensor Networks 311
Jennifer C. Hou, Ning Li, and Ivan Stojmenović

vii

11. Energy-Efficient Backbone Construction, Broadcasting, and

Area Coverage in Sensor Networks 343

David Simplot-Ryl, Ivan Stojmenović, and Jie Wu

12. Geographic and Energy-Aware Routing in Sensor Networks 381

Hannes Frey and Ivan Stojmenović

13. Data-Centric Protocols for Wireless Sensor Networks 417
Ivan Stojmenović and Stephan Olariu

14. Path Exposure, Target Location, Classification, and

Tracking in Sensor Networks 457

Kousha Moaveni-Nejad and Xiang-Yang Li

15. Data Gathering and Fusion in Sensor Networks 493

Wei-Peng Chen and Jennifer C. Hou

Index 527

viii CONTENTS

&PREFACE

Recent technological advances have enabled the development of low-cost, low-

power, and multifunctional sensor devices. These nodes are autonomous devices

with integrated sensing, processing, and communication capabilities. A sensor is an

electronic device that is capable of detecting environmental conditions such as temp-

erature, sound, chemicals, or the presence of certain objects. Sensors are generally

equipped with data processing and communication capabilities. The sensing circuitry

measures parameters from the environment surrounding the sensor and transforms

them into electric signals. Processing such signals reveals some properties of objects

located and/or events happening in the vicinity of the sensor. The sensor sends such
sensed data, usually via a radio transmitter, to a command center, either directly or

through a data-collection station (a base station or a sink). To conserve the power,

reports to the sink are normally sent via other sensors in a multihop fashion. Retrans-

mitting sensors and the base station can perform fusion of the sensed data in order to

filter out erroneous data and anomalies, and to draw conclusions from the reported

data over a period of time. For example, in a reconnaissance-oriented network,

sensor data indicates detection of a target, while fusion of multiple sensor reports

can be used for tracking and identifying the detected target.

This handbook is intended for researchers and graduate students in computer

science and electrical engineering, and researchers and developers in the telecom-

munication industry. It provides an opportunity for researchers to explore the cur-

rently “hot” field of sensor networks. It is a problem-oriented book, with each

chapter discussing computing and communication problems and solutions that

arise in rapidly emerging wireless sensor networks. The main purpose of the book

is to review various algorithms and protocols that were developed in the area,

with the emphasis on the most recent ones.

The handbook is based on a number of stand-alone chapters that together cover the

subject matter in a fully comprehensive manner. Edited books are normally collec-

tions of chapters freely selected by invited authors. This handbook follows a different

approach. First, the sensor network arena was divided into meaningful units, reflect-

ing the state of the art, importance, amount of literature, and, above all, comprehen-

siveness. Then the most suitable author for each chapter was selected, considering

their expertise and presentation skills. The editor also considered the geographical

distribution of authors, and representations from industry and top research insti-

tutions. Among the authors are researchers from Motorola, Intel, and Fujitsu

laboratories, MIT, IIT, Cornell University, University of Illinois, all in the United

States, plus researchers from Switzerland, Germany, France, Australia, and Canada.

ix

Sensor networks are currently recognized as one of the priority research areas (for

example, a multidisciplinary program on sensors and sensor networks was launched

in 2003 at the U.S. National Science Foundation), and research activities recently

started booming. A number of ongoing projects are being funded in Europe, Asia,

and North America. Before Y2K, research on sensor networks was sporadic, and

were treated as a special case of emerging ad hoc networks. Sensor networks

were then quickly recognized as an independent topic, their name was added to

some event titles, and now events specializing in sensor networks have emerged

in the last two years. At least two new journals devoted exclusively to sensor

networks appeared in 2005.

As a result of the exponential growth in the number of researchers, publications,

conferences, and journals on sensor networks, a number of graduate courses fully or

partially concentrating on sensor networks have emerged recently. These courses are

mostly based on reading a selected set of recent articles, with the focus on certain

topics that reflect the interest of the instructor within the sensor networks domain.

It is expected that this book will provide a much needed textbook for such graduate

courses. Since the area is gaining popularity, a textbook is needed as a reference

source for use by students and researchers. The chapters cover subjects in a compre-

hensive manner, describing the state of the art and surveying important existing

solutions. They provide readable but informative content, with appropriate illus-

trations, figures, and examples. A number of chapters also provide some problems

and exercises for use in graduate courses.

This handbook is intended to cover a wide range of recognized problems in

sensor networks, striking a balance between theoretical and practical coverage.

The theoretical contributions are limited to the scenarios and solutions that are

believed to have practical relevance. The handbook content addresses the dynamic

nature of ad hoc and sensor networks. Due to frequent node addition and deletion

from networks (changes between active and inactive periods, done to conserve

energy, are one of the contributors to this dynamic) and possible node movement,

the algorithms that potentially can be used in real equipment must be localized

and must have minimal communication overhead. The overhead should take both

the construction and its maintenance for the structure used in solutions and ongoing

protocols into consideration. We believe that only this approach will eventually

lead to the design of protocols for real applications. We now explain our design

principles and priorities, used to cover the subject matter in this handbook.

A scalable solution is one that performs well in a large network. Sensor networks

may have hundreds or thousands of nodes. Priority is given to protocols that perform

well for small networks, and perform significantly better for large networks (more

precisely, are still working as opposed to crashing when other methods are applied).

In order to achieve scalability, new design paradigms must be applied. The main

paradigm shift is to apply localized schemes, in contrast with most existing proto-

cols, which require global information. In a localized algorithm, each node makes

protocol decisions solely based on the knowledge about its local neighbors. In

addition, the goal is to provide protocols that will minimize the number of messages

between nodes, because bandwidth and power are limited. Protocols should use a

x PREFACE

small constant number of messages, often even none beyond preprocessing “hello”

messages. Localized message-limited protocols provide scalable solutions. Typical

local information to be considered is one-hop or two-hop neighborhood information

(information about direct neighbors and possibly the neighbors of neighbors).

Nonlocalized distributed algorithms, on the other hand, typically require global

network knowledge, including information about the existence of every edge in

the graph. The maintenance of global network information, in the presence of

mobility or changes between sleep and active periods, imposes huge communication

overhead, which is not affordable for bandwidth and power-limited nodes. In

addition to being localized, protocols are also required to be simple, easy to under-

stand and implement, and to have good average-case performance. Efficient

solutions often require position information. It has been widely recognized that

sensor networks can function properly only if reasonably accurate position infor-

mation is provided to the nodes.

BRIEF OUTLINE CONTENT

This handbook consists of 15 chapters. It begins with an introductory chapter that

describes various scenarios where sensor networks may be applied, and various

application-layer tools for enabling such applications. Applications include habitat

monitoring, biomedical sensor engineering, monitoring environments, water and

waste management, and military applications. The second chapter is on physical

layer and signal processing in sensor networks.

In sensor networks with tiny devices, which are usually designed to run on

batteries, the replacement of depleted batteries is not practical. The goal of the

third chapter is to explore methods of scavenging ambient power for use by low-

power wireless electronic devices in an effort to make the wireless nodes and

resulting wireless sensor networks indefinitely self-sustaining.

Chapter 4 describes a vision to build ultra-low-power wireless sensor systems and

a self-contained, millimeter-scale sensing and communication platform for a mas-

sively distributed sensor network. This vision is based on realistic assumptions

about sensors, such as limited ability to provide accurate position information

(therefore proposing the concept of cluster position information rather than individ-

ual position information), and lack of individual sensor identities (the property

commonly recognized but often implicitly assumed in protocols).

The power, computation, and communication limitations of sensor networks

make the design and utilization of security and fault-tolerance schemes particularly

challenging. Chapter 5 is intended as a starting point for studying sensor network

security. It focuses on recent advances in broadcast authentication and key manage-

ment in sensor networks, which are foundational cryptographic services for sensor

network security. It describes random key predistribution techniques proposed for

establishing pairwise keys between resource-constrained sensor nodes. Attacks

against location discovery and some additional security problems in sensor networks

are also discussed.

PREFACE xi

Chapter 6 reviews research on operating systems and middleware issues in the

emerging area of embedded, networked sensors. Chapter 7 addresses the issue of

calibration and time synchronization in sensor networks and related problems,

such as temporal message ordering. Chapter 8 reviews various medium-access

schemes for sensor networks, and the power efficiency aspects of these schemes.

In the position-determination problem, each sensor should be designed to

decide about its geographic position based on several reference nodes in the

network, in case it has no direct position service such as global positioning

system (GPS) attached. The position needs to be determined in cooperation with

other sensors, based on hop counts to reference nodes or other information. Chapter

9 reviews triangulation, multilateration, diffusion, and other types of solutions for

this problem.

The problem of deciding the best transmission radius of each sensor, and the links

that are desirable to have, is a challenging one. For instance, it is known that the

probability that a random-unit graph is connected has a sharp transition from 0

to 1, meaning that it is difficult to decide the best uniform transmission radius for

network connectivity and congestion avoidance. On the other hand, efficient loca-

lized methods exist where each node is designed to decide its own transmission

radius and links. Chapter 10 reviews topology construction and maintenance

schemes under various sensor architectures.

In a broadcasting (also known as data dissemination) task, a message is sent from

one node, which could be a monitoring center, to all the nodes in the network. The

activity scheduling problem is one of deciding which sensors should be active and

which should go to sleep mode, so that the sensor network’s life is prolonged. The

best known solutions to these two problems are based on the concept of localized

connected dominating sets. Sensors that are randomly placed in an area should be

designed to decide which of them should be active and monitor an area, and

which of them may sleep and become active at a later time. The connectivity is

important so that the measured data can be reported to the monitoring center.

Sensors may also be placed deterministically in an area to optimize coverage and

reduce their power consumption. Chapter 11 reviews solutions to these three related

problems in sensor networks.

Position information enables development of localized routing methods (greedy

routing decisions are made at each node, based solely on knowledge of positions of

neighbors and destination, with considerable savings in communication overhead

and with guaranteed delivery, provided location update schemes are efficient for a

given movement pattern. Power consumption can be taken into account in the rout-

ing process. Chapter 12 surveys existing position based and power aware routing

schemes. It also reviews physical layer aspects of position based routing.

Chapter 13 covers the emerging topic of data-driven routing, for example,

directed diffusion. It also covers the emerging topics of constructing and maintain-

ing reporting trees, dynamic evolution of the monitoring region for moving targets,

various training options, and receiving reports from a particular area of interest, that

is, geocasting.

xii PREFACE

In order to monitor a region for traffic traversal, sensors can be deployed to

perform collaborative target detection. Such a sensor network achieves a certain

level of detection performance with an associated cost of deployment. Chapter 14

reviews solutions for the various path-exposure protocols and sensor deployment

for increased reliability of measurements. In the object-location problem, sensors

collaborate to detect the position of a mobile object. The goal is to derive the

location accurately, with a minimum number of sensors involved in the process.

This chapter also discusses sensor networks for target classification and tracking,

with respect to location-aware data routing to conserve system resources, such as

energy and bandwidth. Distributed classification algorithms exploit signals from

multiple nodes in several modalities and rely on prior statistical information about

target classes.

Data gathering in sensor networks differs from the general ad hoc network’s data

communication protocols. Sensors in general monitor or measure the same event or

data and report it to the monitoring center. Their data may be combined while being

routed (data fusion), to save energy and increase reliability of reports. Chapter 15

reviews protocols for data gathering and fusion in sensor networks. This chapter

also discusses the challenging problem of transport-layer protocols in sensor

networks. Due to severe power and computational limitations, providing quality

of service, delay, or jitter guarantees, in routing and data dissemination tasks by

sensors is a difficult problem. This chapter also reviews efficient sensor database

querying, for example, TinyDB. The sensor system should provide scalable, fault-

tolerant, flexible data access and intelligent data reduction, as its design involves

a confluence of novel research in database query processing, networking, algor-

ithms, and distributed systems.

ACKNOWLEDGMENTS

The editor is grateful to all the authors for their contribution to the quality of this

handbook. The assistance of reviewers for all chapters is also greatly appreciated.

The University of Ottawa (with the help of the National Science and Engineering

Research Council (NSERC) provided an ideal working environment for the

preparation of this handbook. This environment included computer facilities for

efficient Internet search, communication by electronic mail, and writing my own

contributions.

The editor is thankful to Dr. Albert Zomaya, editor of the Parallel and Distributed

Computing book series at Wiley, for his support and encouragement in publishing

this handbook at Wiley. Special thanks go to Richard Han and Krishna Sivalingam;

this book benefited greatly from their comments and suggestions. Val Moliere

(Editor, Wiley-Interscience), Emily Simmons, (Editorial Assistant), and Kirsten

Rohstedt (Editorial Program Coordinator) deserve special mention for their timely

and professional cooperation, and for their decisive support of this project.

PREFACE xiii

Finally, I thank my children Milos and Milica and my wife Natasa for their

encouragement, making this effort worthwhile, and for their patience during the

numerous hours at home that I spent in front of the computer.

I hope that the readers will find this handbook informative and worth reading.

Comments received by readers will be greatly appreciated.

IVAN STOJMENOVIĆ

School of Information

Technology and Engineering,

University of Ottawa, Ottawa,

Ontario, Canada

Ivan@site.uottawa.ca

www.site.uottawa.ca/�ivan

December 2004

xiv PREFACE

&CONTRIBUTORS

Jonathan Bachrach, Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, Cambridge, MA 02139, jrb@ai.mit.edu

Shah Bhatti, University of Colorado, Department of Computer Science, Engineer-

ing Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Philipp Blum, Computer Engineering and Networks Laboratory, Department of

Information Technology and Electrical Engineering, Swiss Federal Institute of

Technology (ETH) Zürich, CH-8092 Zurich, Switzerland

Edgar H. Callaway, Jr., Distinguished Member of the Technical Staff,

Florida Communication Research Lab, Motorola Labs, Plantation, FL 33322,

ed.callaway@motorola.com

James Carlson, University of Colorado, Department of Computer Science, Engin-

eering Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Wei-Peng Chen, IP Networking Research, Fujitsu Laboratories of America, Inc.,

1240 East Arques Avenue, Sunnyvale, CA 94085, wei-peng.chen@us.fujitsu.com

Hui Dai, University of Colorado, Department of Computer Science, Engineering

Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Jing Deng, University of Colorado, Department of Computer Science, Engineering

Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Luc Frechette, Universite de Sherbrooke, Faculty of Engineering, Department of

Mechanical Engineering, 2500 boul. Universite, Sherbrooke, Quebec J1H 2R1

Canada, Luc.Frechette@Usherbrooke.ca

Hannes Frey, University of Trier, System Software and Distributed Systems,

Behringstrasse 1, D-54286 Trier, Germany, frey@syssoft.uni-trier.de

Richard Han, University of Colorado, Department of Computer Science, Engin-

eering Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430,

rhan@cs.colorado.edu

Jennifer Hou, Department of Computer Science, University of Illinois, 3112 Seibel

Center, 201 N. Goodwin Avenue, Urbana, IL 61801-2302, jhou@cs.uiuc.edu

An-swol Hu, School of Electrical and Computer Engineering, 326 Rhodes Hall,

Cornell University, Ithaca, NY 14853-6701

xv

Ning Li, Department of Computer Science, University of Illinois, 3112 Seibel

Center, 201 N. Goodwin Avenue, Urbana, IL 61801-2302

XiangYang Li, Department of Computer Science, Illinois Institute of Technology,

Chicago, IL, 60616, xli@cs.iit.edu

Donggang Liu, Department of Computer Science, North Carolina State University,

Raleigh, NC 27695-8207

Fernando Martincic, Department of Computer Science, Wayne State University,

5143 Cass Avenue, 431 State Hall, Detroit, MI 48202

Lennart Meier, Computer Engineering and Networks Laboratory, Department

of Information Technology and Electrical Engineering, Swiss Federal Institute

of Technology (ETH) Zürich, CH-8092 Zurich, Switzerland

Kousha Moaveni-Nejad, Department of Computer Science, Illinois Institute of

Technology, Chicago, IL, 60616

Peng Ning, Department of Computer Science, Room 250 Venture III (inside Suite

243) North Carolina State University, Raleigh, NC 27695-8207, pning@

ncsu.edu

Stephan Olariu, Department of Computer Science, Old Dominion University,

Norfolk, VA 23529-0162, olariu@cs.odu.edu

Kay Römer, Institute for Pervasive Computing, Department of Computer

Science, Swiss Federal Institute of Technology (ETH) Zürich, CH-8092

Zurich, Switzerland, roemer@inf.ethz.ch

Jeff Rose, University of Colorado, Department of Computer Science, Engineering

Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Shad Roundy, LV Sensors, Inc., Emeryville, CA, sroundy@lvsensors.com

Loren Schwiebert, Department of Computer Science, Wayne State University,

5143 Cass Avenue, 431 State Hall, Detroit, MI 48202, loren@cs.wayne.edu

Sergio Servetto, School of Electrical and Computer Engineering, 326 Rhodes Hall,

Cornell University, Ithaca, NY 14853-6701, servetto@ece.cornell.edu

Anmol Sheth, University of Colorado, Department of Computer Science, Engin-

eering Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Brian Shucker, University of Colorado, Department of Computer Science, Engin-

eering Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

David Simplot-Ryl, IRCICA/LIFL, Univeriste Lille 1, CNRS UMR 8022, INRIA

Futurs, POPS research group, Bât. M3, Cité Scientifique, 59655 Villeneuve

d’Ascq Cedex, France, simplot@lifl.fr

Ivan Stojmenović, SITE, University of Ottawa, 800 King Edwards, Ottawa,

Ontario K1 N 6N5, Canada, ivan@site.uottawa.ca

xvi CONTRIBUTORS

Christopher Taylor, Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, Cambridge, MA 02139

Ashraf Wadaa, Intel Corporation, Hillsboro, OR

Jie Wu, Department of Computer Science and Engineering, Florida Atlantic

University, 777 Glades Road, Boca Raton, FL 33431-6498, jie@cse.fau.edu

Qingwen Xu, Department of Computer Science, Old Dominion University,

Norfolk, VA 23529-0162

CONTRIBUTORS xvii

&CHAPTER 1

Introduction to Wireless Sensor
Networking

FERNANDO MARTINCIC and LOREN SCHWIEBERT

Wayne State University, Detroit, Michigan

This chapter introduces the topic of wireless sensor networks from the applications

perspective. A wireless sensor network consists of a possibly large number of wire-

less devices able to take environmental measurements such as temperature, light,

sound, and humidity. These sensor readings are transmitted over a wireless channel

to a running application that makes decisions based on these sensor readings.

Authors describe some examples of proposed wireless sensor applications, and

consider the following two questions to motivate an application-based viewpoint.

What aspects of wireless sensors make the implementation of applications more

challenging, or at least different? One widely recognized issue is the limited

power available to each wireless sensor node, but there are other challenges such

as limited storage or processing. What services are required for a wireless sensor

network application to achieve its intended purpose? A number of widely applicable

services, such as time synchronization and location determination are briefly

discussed in this chapter. Other services are needed to support database require-

ments, such as message routing, topology management, and data aggregation and

storage. As most of these topics are covered in separate chapters, this chapter

serves to provide a broad framework to enable the reader to see how these different

topics tie together into a cohesive set of capabilities for building wireless sensor

network applications.

1.1 INTRODUCTION

A wireless sensor network consists of a possibly large number of wireless devices

able to take environmental measurements. Typical examples include temperature,

1

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

light, sound, and humidity. These sensor readings are transmitted over a wireless

channel to a running application that makes decisions based on these sensor read-

ings. Many applications have been proposed for wireless sensor networks, and

many of these applications have specific quality of service (QoS) requirements

that offer additional challenges to the application designer. In this chapter, we intro-

duce the topic of wireless sensor networks from the perspective of the application.

Along with some examples of proposed wireless sensor applications, we consider

two questions to motivate an application-based viewpoint:

1. What aspects of wireless sensors make the implementation of applications

more challenging, or at least different?

One widely recognized issue is the limited power available to each wire-

less sensor node, but other challenges such as limited storage or process-

ing capabilities play a significant role in constraining the application

development.

2. What services are required for a wireless sensor network application to

achieve its intended purpose?

A number of widely applicable services, such as time synchronization and

location determination are briefly discussed. Other services are needed to

support database requirements, such as message routing, topology manage-

ment, and data aggregation and storage.

Because some of these topics are covered in separate chapters, this discussion

serves to provide a broad framework to enable the reader to see how these different

topics tie together into a cohesive set of capabilities for building wireless sensor

network applications.

1.2 DESIGN CHALLENGES

Several design challenges present themselves to designers of wireless sensor net-

work applications. The limited resources available to individual sensor nodes

implies designers must develop highly distributed, fault-tolerant, and energy-

efficient applications in a small memory-footprint. Consider the latest-generation

MICAz [1,2] sensor node shown in Figure 1.1.

MICAz motes are equipped with an Atmel128L [4] processor capable of a maxi-

mum throughput of 8 millions of instructions per second (MIPS) when operating at

8 MHz. It also features an IEEE 802.15.4/Zigbee compliant RF transceiver, operat-

ing in the 2.4–2.4835-GHz globally compatible industrial scientific medical (ISM)

band, a direct spread-spectrum radio resistant to RF interference, and a 250-kbps

data transfer rate. The MICAz runs on TinyOS [5] (v1.1.7 or later) and is compatible

with existing sensor boards that are easily mounted onto the mote. A partial list of

specifications given by the manufacturers of the MICAz mote is presented in

Figure 1.2.

2 INTRODUCTION TO WIRELESS SENSOR NETWORKING

For wireless sensor network applications to have reasonable longevity, an aggres-

sive energy-management policy is mandatory. This is currently the greatest design

challenge in any wireless sensor network application. Considering that in the

MICAz mote the energy cost associated with transmitting a byte over the transceiver

is substantially greater than performing local computation, developers must leverage

local processing capabilities to minimize battery-draining radio communication.

Several key differences between more traditional ad hoc networks and wireless

sensor networks exist [6]:

. Individual nodes in a wireless sensor network have limited computational

power and storage capacity. They operate on nonrenewable power sources

and employ a short-range transceiver to send and receive messages.

. The number of nodes in a wireless sensor network can be several orders of mag-

nitude higher than in an ad hoc network. Thus, algorithm scalability is an

important design criterion for sensor network applications.

. Sensor nodes are generally densely deployed in the area of interest. This dense

deployment can be leveraged by the application, since nodes in close proximity

can collaborate locally prior to relaying information back to the base station.

. Sensor networks are prone to frequent topology changes. This is due to several

reasons, such as hardware failure, depleted batteries, intermittent radio inter-

ference, environmental factors, or the addition of sensor nodes. As a result,

applications require a degree of inherent fault tolerance and the ability to

reconfigure themselves as the network topology evolves over time.

Figure 1.1 MICAz sensor mote hardware. (Image courtesy of Crossbow Technology [3].)

1.2 DESIGN CHALLENGES 3

. Wireless sensor networks do not employ a point-to-point communication para-

digm because they are usually not aware of the entire size of the network and

nodes are not uniquely identifiable. Consequently, it is not possible to individu-

ally address a specific node. Paradigms, such as directed diffusion [7,8], employ

a data-centric view of generated sensor data. They identify information

produced by the sensor network as kattribute, valuel pairs. Nodes request

data by disseminating interests for this named data throughout the network.

Data that matches the criterion are relayed back toward the querying node.

Figure 1.2 MICAz mote specification [1].

4 INTRODUCTION TO WIRELESS SENSOR NETWORKING

Even with the limitations individual sensor nodes possess and the design

challenges application developers face, several advantages exist for instrumenting

an area with a wireless sensor network [9]:

. Due to the dense deployment of a greater number of nodes, a higher level of

fault tolerance is achievable in wireless sensor networks.

. Coverage of a large area is possible through the union of coverage of several

small sensors.

. Coverage of a particular area and terrain can be shaped as needed to overcome

any potential barriers or holes in the area under observation.

. It is possible to incrementally extend coverage of the observed area and density

by deploying additional sensor nodes within the region of interest.

. An improvement in sensing quality is achieved by combining multiple,

independent sensor readings. Local collaboration between nearby sensor

nodes achieves a higher level of confidence in observed phenomena.

. Since nodes are deployed in close proximity to the sensed event, this overcomes

any ambient environmental factors that might otherwise interfere with

observation of the desired phenomenon.

1.3 WIRELESS SENSOR NETWORK APPLICATIONS

Several applications have been envisioned for wireless sensor networks [6]. These

range in scope from military applications to environment monitoring to biomedical

applications. This section discusses proposed and actual applications that have been

implemented by various research groups.

1.3.1 Military Applications

Wireless sensor networks can form a critical part of military command, control,

communications, computing, intelligence, surveillance, reconnaissance, and target-

ing (C4ISRT) systems. Examples of military applications include monitoring of

friendly and enemy forces; equipment and ammunition monitoring; targeting; and

nuclear, biological, and chemical attack detection.

By equipping or embedding equipment and personnel with sensors, their con-

dition can be monitored more closely. Vehicle-, weapon-, and troop-status infor-

mation can be gathered and relayed back to a command center to determine the

best course of action. Information from military units in separate regions can also

be aggregated to give a global snapshot of all military assets.

By deploying wireless sensor networks in critical areas, enemy troop and vehicle

movements can be tracked in detail. Sensor nodes can be programmed to send

notifications whenever movement through a particular region is detected. Unlike

other surveillance techniques, wireless sensor networks can be programmed to be

completely passive until a particular phenomenon is detected. Detailed and timely

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 5

intelligence about enemy movements can then be relayed, in a proactive manner, to

a remote base station.

In fact, some routing protocols have been specifically designed with military

applications in mind [10]. Consider the case where a troop of soldiers needs to

move through a battlefield. If the area is populated by a wireless sensor network,

the soldiers can request the location of enemy tanks, vehicles, and personnel

detected by the sensor network (Fig. 1.3). The sensor nodes that detect the presence

of a tank can collaborate to determine its position and direction, and disseminate this

information throughout the network. The soldiers can use this information to strate-

gically position themselves to minimize any possible casualties.

In chemical and biological warfare, close proximity to ground zero is needed for

timely and accurate detection of the agents involved. Sensor networks deployed in

friendly regions can be used as early-warning systems to raise an alert whenever the

presence of toxic substances is detected. Deployment in an area attacked by chemi-

cal or biological weapons can provide detailed analysis, such as concentration levels

of the agents involved, without the risk of human exposure.

1.3.2 Environmental Applications

By embedding a wireless sensor network within a natural environment, collection of

long-term data on a previously unattainable scale and resolution becomes possible.

Applications are able to obtain localized, detailed measurements that are otherwise

more difficult to collect. As a result, several environmental applications have been

proposed for wireless sensor networks [6,9]. Some of these include habitat monitor-

ing, animal tracking, forest-fire detection, precision farming, and disaster relief

applications.

Figure 1.3 Enemy target localization and monitoring.

6 INTRODUCTION TO WIRELESS SENSOR NETWORKING

Habitat monitoring permits researchers to obtain detailed measurements of a par-

ticular environment in an unobtrusive manner. For example, applications such as the

wireless sensor network deployed on Great Duck Island [11] allow researchers to

monitor the nesting burrows of Leach’s Storm Petrels without disturbing these sea-

birds during the breeding season. Deployment of the sensor network occurs prior to

the arrival of these offshore birds. Monitoring of the birds can then proceed without

direct human contact. Similarly, the PODS project [12,13] at the University of

Hawaii uses wireless sensor networks to observe the growth of endangered species

of plants. Data collected by the sensor network is used to determine the environ-

mental factors that support the growth of these endangered plants. These two appli-

cations are discussed in detail in Sections 1.3.4 and 1.3.5.

Consider a scenario where a fire starts in a forest. A wireless sensor network

deployed in the forest could immediately notify authorities before it begins to

spread uncontrollably (see Fig. 1.4). Accurate location information [14] about the

fire can be quickly deduced. Consequently, this timely detection gives firefighters

an unprecedented advantage, since they can arrive at the scene before the fire

spreads uncontrollably.

Precision farming [15] is another application area that can benefit from wireless

sensor network technology. Precision farming requires analysis of spatial data to

determine crop response to varying properties such as soil type [16]. The ability

to embed sensor nodes in a field at strategic locations could give farmers detailed

soil analysis to help maximize crop yield or possibly alert them when soil and

crop conditions attain a predefined threshold. Since wireless sensor networks are

designed to run unattended, active physical monitoring is not required.

Figure 1.4 Forest-fire monitoring application.

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 7

Disaster relief efforts such as the ALERT flood-detection system [17] make use

of remote field sensors to relay information to a central computer system in real

time. Typically, an ALERT installation comprises several types of sensors, such

as rainfall sensors, water-level sensors, and other weather sensors. Data from each

set of sensors are gathered and relayed to a central base station.

1.3.3 Health Applications

Potential health applications abound for wireless sensor networks. Conceivably,

hospital patients could be equipped with wireless sensor nodes that monitor the

patients’ vital signs and track their location. Patients could move about more

freely while still being under constant supervision. In case of an accident—say,

the patient trips and falls—the sensor could alert hospital workers as to the patient’s

location and condition. A doctor in close proximity, also equipped with a wireless

sensor, could be automatically dispatched to respond to the emergency.

Glucose-level monitoring is a potential application suitable for wireless sensor

networks [18]. Individuals with diabetes require constant monitoring of blood

sugar levels to lead healthy, productive lives. Embedding a glucose meter within

a patient with diabetes could allow the patient to monitor trends in blood-sugar

levels and also alert the patient whenever a sharp change in blood-sugar levels is

detected. Information could be relayed wirelessly from the monitor to a wristwatch

display. It would then be possible to take corrective measures to normalize blood-

sugar levels in a timely manner before they get to critical levels. This is of particular

importance when the individual is asleep and may not be aware that their blood-

sugar levels are abnormal.

The Smart Sensors and Integrated Microsystems (SSIM) project at Wayne State

University and the Kresge Eye Institute are working on developing an artificial

retina [18]. One of the project goals is to build a chronically implanted artificial

retina that allows a visually impaired individual to “see” at an acceptable level.

Currently, smart sensor chips equipped with 100 microsensors exist that are used

in ex vivo retina testing. The smart sensor comprises an integrated circuit (with

transmit and receive capabilities) and an array of sensors. Challenges in this appli-

cation include establishing a communication link between the retinal implant and an

external computer to determine if the image is correctly seen. Regulating the amount

of power used by the system to avoid damage to the retina and surrounding tissue is

also a primary concern.

1.3.4 Habitat Monitoring on Great Duck Island

Leach’s Storm Petrel (Fig. 1.5) is a common elusive seabird in the western North

Atlantic. Most of their lives are spent off-shore, only to return to land during the

breeding season. During this time, they nest in burrows located in soft, peaty soil,

and are active predominantly at night. It is believed Great Duck Island, located

15 km off the coast of Maine, has one of the largest petrel breeding colonies in

the eastern United States.

8 INTRODUCTION TO WIRELESS SENSOR NETWORKING

Petrel activity monitoring is a delicate problem, since disturbance or interference

on the part of humans can lead to nest abandonment or increased predation on chicks

or eggs.

To circumvent this problem, in the spring of 2002, the Intel Research Laboratory at

Berkeley initiated a collaborationwith theCollege of theAtlantic in BarHarbor and the

University of California at Berkeley to deploy a series of wireless sensor networks on

the island [11,19,20]. By the summer of 2002, 43 sensor nodes were deployed on the

island. The primary purpose of the sensor network was tomonitor the microclimates in

and around nesting burrows used by the petrels. Thus, researchers could take multiple

measurements of biological parameters at frequent intervals, withminimal disturbance

to the breeding colony. It was necessary to enter the colony only at the beginning of the

study to insert sensor nodes into burrows and other areas of interest. Three major issues

explored in this experiment included:

1. Determination of the usage pattern of nesting burrows over the cycle when one

or both members of the breeding pair may alternate between incubation and

feeding.

2. Determination of changes in the environmental conditions of burrows and

surface areas throughout the course of the breeding season.

3. Measuring the differences in the microenvironments with and without large

numbers of nesting petrels.

By November 2002, 32 sensor nodes had collected over one million sensor read-

ings. For this particular application, the nodes were equipped with a separate

weather board that contained sensors to detect temperature, humidity, barometric

pressure, and midrange infrared. Motes periodically sampled and relayed their

sensor readings to different base stations located throughout the island. These

base stations provided researchers access to real-time environmental data gathered

by the sensor nodes via the Internet.

Figure 1.5 Leach’s Storm Petrel. (U.S. Geological Survey photo by J. A. Splendelow.)

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 9

In June 2003, a second-generation network comprising 56 nodes was deployed.

This network was further augmented in July 2003 with an additional 49 nodes.

Finally, in August 2003, over 60 additional burrow nodes and 25 weather-monitoring

nodes were deployed on the island.

1.3.4.1 Hardware The system designers employed Mica motes (Fig. 1.6),

which are small devices equipped with a microcontroller, low-power radio,

memory, and batteries. The motes are designed with a single-channel 916-MHz

radio that provides bidirectional communication at 40 kbps, an Atmel Atmega

103 microcontroller operating at 4 MHz, and 512 kB of nonvolatile storage.

Power to the mote is supplied by a pair of AA batteries and a DC boost converter.

To allow sampling of the environment, the Mica mote was equipped with a Mica

weather board that contains temperature, photoresistor, barometric pressure, humid-

ity, and passive infrared sensors [11]. To protect the motes from adverse weather

conditions, the sensor package was sealed in a 10-micron parylene sealant that pro-

tected the electrical contacts from water. The sensors themselves remained exposed

so as not to hinder their sensitivity. The coated sensor was then encased in a venti-

lated acrylic enclosure. The acrylic enclosure was radio and infrared transparent and

also elevated the mote off the ground.

Due to the longevity of the proposed application, battery life was budgeted care-

fully. A conservative estimate of 2200 mAh total capacity was utilized. For illustra-

tive purposes, Table 1.1 lists the costs associated with performing basic Mica mote

operations and Table 1.2 lists the costs associated with basic sensor operations [21].

For the habitat monitoring application, an application lifetime of 9 months was

desired. Thus, with 2200 mAh of total power available, the sensor motes were

Figure 1.6 Mica sensor node (left) with the Mica Weather Board (right).

10 INTRODUCTION TO WIRELESS SENSOR NETWORKING

budgeted at 8.148 mAh of power consumption daily. However, sensor motes con-

sume 30 mA in their sleep state [21]. This reduced the daily energy budget to

6.9 mAh available for sensing, communicating, and processing operations. The

application was responsible for determining how this energy budget was to be allo-

cated. Without any energy budgeting, a sensor mote operating at a 100% duty cycle

can only operate for 7 days [21].

1.3.4.2 Architecture The wireless sensor network architecture is divided into

distinct tiers (Fig. 1.7). The lowest level consists of autonomous motes, equipped

with various sensors, that perform basic networking, computing, and sensing

tasks. They are organized into a local one-hop network and collectively identified

as a sensor patch. One of the sensor motes within the sensor patch serves as a gate-

way between the sensor patch and the base station. It differs from other motes in that

it is equipped with a high-gain antenna able to transmit data over a 350-foot link to

the base station. The gateway node is also equipped with a solar panel and recharge-

able battery in order to be able to operate with a 100% duty cycle. Data relayed to

the base station are stored in a database and made available over the Internet.

TABLE 1.1 Mica Mote Power Requirements for

Different Operations

Operation nAh

30-byte packet transmission 20.000

30-byte packet reception 8.000

1 ms radio listening 1.250

Sensor analog sample 1.080

Sensor digital sample 0.347

Reading sample from ADC 0.011

Flash read data 1.111

4-byte flash write/erase data 83.333

TABLE 1.2 Individual Sensor Characteristics

Sensor Accuracy Changeability

Max Rate

(Hz)

Start-Up Time

(ms)

Current

(mA)

Photoresistor N/A 10% 2000 10 1.235

I2C temperature 1 K 0.20 K 2 500 0.150

Barometric pressure 1.5 mbar 0.5% 28 35 0.010

Barometric pressure

temperature

0.8 K 0.24 K 28 35 0.010

Humidity 2% 3% 500 500–30,000 0.775

Thermopile 3 K 5% 2000 200 0.170

Thermistor 5 K 10% 2000 10 0.126

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 11

These collected data are also relayed, via satellite transceiver, to an off-site research

facility located in Berkeley, California.

Periodically, motes took readings from each of their sensors. The data were

time-stamped and kept in flash memory. Readings were then transmitted in a

single 36-byte data packet. After successful transmission, motes entered their

lowest power state for the next 70 seconds. The duty cycle was an expected 1.7%

for the application. Each sensor mote was powered by two AA batteries with an esti-

mated 2200 mAh capacity.

Several key application requirements identified by the system designers

included Internet access, organization of the network as a hierarchy, sensor network

longevity, the ability to operate off the grid, remote sensor network management,

inconspicuous operation, in situ interaction, sensors and sampling, and data archiv-

ing capabilities.

1.3.4.3 Results Since this is one of the first long-term deployments of the Mica

mote platform, it was interesting to see how the wireless sensor network performed.

Ironically, although the readings collected by the wireless sensor network proved to

be unusable to researchers for making scientific conclusions, the fidelity of the

acquired sensor readings gave insight into overall network behavior.

Over 1.1 million readings were collected in a time span of 123 days. During

this period, abnormal operation was detected among the sensor node population.

Typical problems included nodes generating sensor readings that were outside

their predefined range, unreliable and erratic packet delivery, and system node

failure.

Figure 1.7 System architecture for habitat monitoring.

12 INTRODUCTION TO WIRELESS SENSOR NETWORKING

1.3.5 PODS Project

Rare and endangered species of plants are threatened because they grow in limited

select locations. Evidently, these locations have special properties that sustain and

support their growth. The PODS project [12,13,22], located at Hawaii Volcanoes

National Park, consists of a wireless sensor network deployed to perform long-

term studies of these rare and endangered species of plants and their environment.

In Hawaii, the weather gradients are very sharp. In fact, regions of the island

exist where rain forests and deserts are located less than 10 miles apart. Thus, it

is not surprising that endangered species of plants are restricted to very small

areas. Unfortunately, weather stations located throughout the island provide insuffi-

cient information for the areas where these endangered plants exist. Consequently,

deploying a very dense wireless sensor network in the area of interest allows fine-

grained temperature, humidity, rainfall, wind, and solar radiation information to

be obtained by researchers.

In this particular wireless sensor network application, two types of data are col-

lected: weather data, which are collected every 10 minutes, and high-resolution

images, which are collected every hour. The data repository is a central server

located on a different island than where observations are made. Weather measure-

ments are maintained in a database and the high-resolution images are stored as indi-

vidual files.

Exception reporting is the type of monitoring of interest to the biological problem

studied on the island. Baseline information is developed that describes the expected

environmental conditions on the island. This baseline information is reported,

including periods during which the environment properly reflects it. The other infor-

mation gathered are the time periods and degree of variance from the baseline

model. These are the periods of most interest, because those intervals are when

significant changes to the organisms under observation are likely to occur. Data

summarization techniques are employed for these categorized data.

The high-resolution images collected every hour have a resolution of

1600 � 1200 pixels and serve several important interpretive functions. Images

permit casual observations during periods where environmental conditions are

reported as normal. During exceptional periods, when the environmental conditions

deviate from the norm, images provide an important visual check on the conditions

and permit a quick analysis of how the various types of vegetation under observation

are responding. Most images are taken close to the endangered plant species. This

permits observations of flowering, fruit set, fruit disappearance, leaf flushes, leaf

loss, and other significant events. Since the images are stored as individual files,

it is a simple matter to review them to confirm observations or review periods

that were not being monitored. The data measurements collected are generally

unfeasible to obtain via conventional monitoring techniques.

The type of deployable equipment allowed for research in the national park is

limited. As a minimum criterion, the equipment cannot pose a threat to any species.

Furthermore, it must not interfere or be a distraction to visitors. This is of particular

concern since some areas of the island are visited by a large number of tourists.

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 13

In some parts of the island, little can be done to hide the instrumentation. Therefore,

rocks were chosen as containers that camouflage and house the computer, sensing

instruments, and batteries. The availability of small trees along other parts of the

island expands the options for concealing sensor nodes. In some cases, short

hollow structures, designed to look like branches, were also used to house the sen-

sing equipment.

Upon initial deployment, the wireless sensor network engages in a neighborhood

discovery process. This gives each node information about which sensor nodes it can

communicate with directly. Next, the sensor network executes a routing protocol so

that senders are able to send messages to their desired destination. For this particular

application, requirements determine the functionality expected of the underlying

routing protocol. Since nodes both send and receive messages, the protocol must

provide nodes with routing information so that nodes can send messages specifically

to other nodes. Adaptability to changing network topologies is required, as sensor

nodes may be added, moved, or become depleted. Finally, the routing protocol

needs to be designed such that network connectivity is maintained even when

nodes are powered down to conserve battery life. As a result, Geometric Routing

Protocol [13] and Multi-path On-Demand Routing Protocol [13] were developed

for this particular application.

1.4 SERVICES

Most large-scale wireless sensor network applications share common character-

istics. Services such as time synchronization, location discovery, data aggregation,

data storage, topology management, and message routing are employed by these

applications. Each is briefly described in this section.

1.4.1 Time Synchronization

Time synchronization is an essential service in wireless sensor networks [23]. In

order to properly coordinate their operations to achieve complex sensing tasks,

sensor nodes must be synchronized. A globally synchronized clock allows sensor

nodes to correctly time-stamp detected events. The proper chronology, duration,

and time span between these events can then be determined. Incorrect time

stamps, due to factors such as hardware clock drift, can cause the reported events

relayed back to the base station to be assembled in incorrect chronological order.

Time synchronization is crucial for efficient maintenance of low-duty power

cycles. Sensor nodes can conserve battery life by powering down. When properly

synchronized, nodes are able to turn themselves on simultaneously. When powered

up, sensor nodes can relay messages to the base station and subsequently power

down again to conserve energy. Unsynchronized nodes result in increased delays

while they wait for neighboring nodes to turn their radios on, and in the worst

case, messages transmitted can be lost altogether.

14 INTRODUCTION TO WIRELESS SENSOR NETWORKING

1.4.1.1 Design Challenges Several common challenges exist for the design

of time synchronization protocols [23]. In order to perform synchronization,

nodes exchange messages with each other. However, factors in the network can

cause delays in message delivery. Four sources of error in network time synchroni-

zation can be identified. The first factor is send time, which includes the amount of

time required to construct and transmit a message from the sender. The second factor

is access time, which includes the delay experienced at the MAC layer, such as

waiting for the channel to become idle. The third factor is propagation time,

which includes the amount of time spent relaying the message across the various

network interfaces between the sender and the receiver. Finally, the fourth source

of delay is receive time, which includes the amount of time required by the receiver

to accept and decode the message and transfer it to the host.

1.4.1.2 Design Metrics A broad set of design metrics for time synchroniza-

tion protocols exist [23]. Factors such as energy efficiency, scalability, precision,

robustness, lifetime, and scope must all be taken into consideration. As with all pro-

tocols designed for wireless sensor networks, energy efficiency is a chief concern.

Protocols must be scalable, since sensor networks can potentially contain a very

large number of sensor nodes. The precision required may vary depending on the

type of sensor network application. For example, in some cases, an ordering of

detected events may be required so that a chronology of events can be assembled.

In other cases, it may be necessary to time-stamp events at finer resolution. For

example, real-time applications, such as target tracking, may require tight synchro-

nization between sensor nodes as they follow the object’s movements. Finally, since

sensor networks are generally left unattended for long periods of time, time synchro-

nization protocols must be fault-tolerant and adaptive to changing network topolo-

gies. For example, as new nodes are introduced and other nodes die, sensor nodes

must be able to synchronize themselves seamlessly with their neighbors.

1.4.1.3 Protocols Much work has gone into solving the problem of time syn-

chronization among sensor nodes. At a rudimentary level, where a simple causality

relationship [24,25] between detected events is desired, even traditional approaches

employed in other types of distributed systems, such as vector clocks [26,27], are

generally not practical for wireless sensor networks.

Vector clocks are not scalable in resource-constrained sensor networks with an

unknown or large number of nodes. The additional overhead required to transmit

vector time stamps with each message would quickly deplete a node’s battery, ren-

dering it useless. Furthermore, vector clocks are abstract in nature and do not indi-

cate the duration of an event in physical time measurements, such as minutes or

seconds. Other complex protocols, such as the network time protocol (NTP) [28],

are unsuitable for wireless sensor networks because of their computational

requirements.

Protocols such as TSync [29] and reference-broadcast system (RBS) [30] exploit

the broadcast nature of wireless sensor networks in order to achieve global time syn-

chronization with a high degree of accuracy.

1.4 SERVICES 15

In refs. [31] and [30], Elson et al. propose RBS, a time synchronization technique

that uses a third party to perform synchronization among nodes. Individual nodes

send reference beacons to their neighbors. The beacon’s time of arrival is used by

receiving nodes as a reference point for comparing local clocks. Since a reference

broadcast arrives at all receivers at essentially the same time, propagation error is

minimal. In the simplest form of RBS, a node broadcasts a single pulse to two recei-

vers. Upon receiving the reference broadcast, the receivers exchange their receiving

times and attempt to estimate their relative phase offsets. Through simulation, it has

been shown that 30 reference broadcasts improves the precision from 11 ms to

1.6 ms when synchronizing a pair of nodes.

In ref. [32], the authors propose a networkwide time synchronization protocol

called Timing-Sync Protocol for Sensor Networks (TPSN). The protocol has two

phases: level discovery and synchronization. The level-discovery phase is initiated

when the sensor network is deployed. A node is elected as the root node (level 0)

and initiates the level-discovery phase by transmitting a level-discovery message,

which contains the node ID and level of the sender. Upon receiving this message,

a node assigns itself a level that is one level higher than the incoming level-

discovery message. Subsequent level-discovery messages received are discarded.

This broadcast phase continues until all nodes are assigned a level. The synchroni-

zation phase of the algorithm involves a two-way message exchange between a pair

of nodes. The authors assume that clock drift and propagation delay (in both direc-

tions) between a pair of nodes is constant in the period of time between a single

message exchange.

A node initiates synchronization by sending a pulse message that includes the

node’s level and local time. A node that receives the pulse message responds with

an acknowledgment that includes the original time stamp received, the relative

clock drift between both nodes, and the propagation delay. The node that initiated

the pulse calculates the actual ensuing clock drift and propagation delay, and syn-

chronizes itself with the receiving node. The synchronization phase is initiated by

the root node. Nodes at the level below the root node exchange messages with the

root node and adjust their clocks accordingly. Other nodes at lower levels, upon

overhearing that nodes at levels above them are performing time synchronization,

also initiate time synchronization. The authors report that their time synchronization

protocol is precise within 6.5 ms when implemented on Compaq IPAQs running the

Linux operating system. On Mica motes, they report their time synchronization

protocol achieves an accuracy of 29.13 ms.
In ref. [33] the authors describe two lightweight synchronization algorithms

called Tiny-Sync and Mini-Sync. Both techniques employ the conventional two-

way messaging scheme to determine the relative clock drift and offset between

the clocks of two sensor nodes.

In ref. [34], the authors describe lightweight tree-based synchronization (LTS),

which attempts to minimize the underlying complexity of the time synchronization

process, rather than attempting to maximize accuracy. Two approaches are pre-

sented in LTS. Both of them require sensor nodes to synchronize their clocks to a

reference point. The first approach given is a centralized algorithm that uses the

16 INTRODUCTION TO WIRELESS SENSOR NETWORKING

edges of the spanning broadcast to perform pairwise synchronization. The root of the

spanning tree is responsible for initiating synchronization. Under the assumption

that clock drift is bounded and given the required degree of precision, the reference

node calculates the time period a synchronization step is valid.

The second approach presented by the authors is completely distributed. Indivi-

dual sensor nodes request synchronization with other nodes as needed. When a node

decides it is necessary to synchronize its clock with another node, it sends a synchro-

nization request to the closest reference node. As a result, all nodes along the path

from the reference node and the node requesting synchronization must have their

clocks synchronized for the requesting node to synchronize its local clock properly.

1.4.2 Location Discovery

Location discovery involves sensor nodes deriving their positional information,

expressed as global coordinates or within an application-defined local coordinate

system. The importance of location discovery is widely recognized [35–40]. It

serves as a fundamental basis for additional wireless sensor network services

where location awareness is required, such as message routing. Furthermore, in

applications such as fire detection, it is generally not sufficient to determine if a

fire is present, but more importantly, where. A brief review of three proposed

solutions to location discovery are presented.

1.4.2.1 Multilateration by Distance Measurements Meguerdichian et al.

[35] describe a localized algorithm that uses multilateration for solving the problem

of location discovery. A node determines its location based on its distance from

neighboring nodes that serve as beacons. Beacons are nodes that are location-

aware and broadcast their location information periodically. They acquire their

location from multilateration procedures or other sources such as GPS. Distances

between neighboring nodes are estimated using received signal strength indication

(RSSI) or ultrasound techniques. Thus, a node requires only local neighbor infor-

mation to determine its position.

1.4.2.2 Ad Hoc Positioning System Niculescu and Nath [38] propose their

ad hoc positioning system (APS), whereby nodes determine their location in refer-

ence to landmarks that are location aware. Landmarks can be other sensor nodes,

base stations, or beacons that have positional information. Unlike GPS, where

direct line of sight is required with a series of satellites in order to triangulate a

location, landmark information is propagated through the wireless sensor network

in a multihop fashion.

When an arbitrary node in the wireless sensor network has distance estimates to

three or more landmarks, it computes its own position in the plane. The node utilizes

the centroid of the landmarks as its location estimate. Nodes in direct communi-

cation with a landmark infer their distance from it based on the received signal

strength of the landmark.

1.4 SERVICES 17

Through message propagation, nodes two hops away from a landmark estimate

their distance based on the distance estimates of nodes located next to the landmark.

The propagation schemes proposed by the authors eventually flood the entire net-

work until all nodes are able to determine their coordinates.

1.4.2.3 APS using Angle of Arrival In ref. [39], Niculescu and Nath present

two algorithms, DV-Bearing and DV-Radial, that allow sensor nodes to get a bearing

and a radial in relation to a landmark using angle of arrival (AoA) to derive position

information. The term “bearing” refers to an angle measurement with respect to

another object. A “radial” refers to a reverse bearing which is simply the angle at

which an object is seen from another location. The term “heading” refers to the

sensor node’s bearing with respect to true north and represents its absolute orientation.

AoA sensing requires sensor nodes to be equipped with an antenna array or sev-

eral ultrasound receivers. This equipment is currently available in small package for-

mats for wireless sensor network nodes such as the one developed for the Cricket

Compass Project [41,42]. The theory of operation is based on time difference of

arrival (TDoA) and phase difference of arrival. If a node sends an RF signal and

an ultrasound signal at about the same time, the receiving node can infer the distance

between the sender and itself by measuring the time difference between the arrival of

the RF signal and the ultrasound signal. To derive the angle of arrival of the signal,

the receiving sensor node uses two ultrasound receivers placed at a known distance

from each other.

1.4.3 Data Aggregation

Data aggregation and query dissemination are important issues in wireless sensor

networks [43]. Sensor nodes are typically energy constrained. Therefore, it is desir-

able to minimize the number of messages relayed, because radio transmissions can

quickly consume battery power. A naive approach to reporting sensed phenomena is

one where all (raw) sensor readings are relayed to a base station for off-line analysis

and processing. However, since sensor nodes within the same vicinity often detect

the same, common phenomena, it is likely some redundancy in sensor readings

will occur [44]. Local collaboration allows nearby sensor nodes to filter and process

sensor readings before transmitting them to a base station. Consequently, this pro-

cess can reduce the number of messages relayed to the base station.

Figure 1.8 represents an animal-tracking application where several sensor nodes

are randomly deployed in a forest. When an animal, represented by the solid square,

passes through the area being monitored, individual sensor nodes detect the presence

of the animal and relay their findings, in a multihop fashion, to the base station

located some distance away. In sufficiently dense sensor networks, overlapping

areas of coverage are possible. Thus, the animal may be detected by several sensors.

In the scenario presented in Figure 1.8, nodes A, B, C,D, and E sense the presence

of a nearby animal. Nodes B–E each send a message to node A with their observed

sensor data. Node A forwards the received messages, along with its own set of sensor

readings, to the next node along the path to the base station. Thus, nodeA sends a total

18 INTRODUCTION TO WIRELESS SENSOR NETWORKING

of 5 messages, which are all subsequently relayed from node to node, until they reach

the base station. In total, 29 messages are transmitted throughout the network.

A reduction in communication and energy costs is possible if collected sensor

data is aggregated prior to relaying. Figure 1.9 is similar to Figure 1.8, except

that node A collects sensor readings from nodes B–E and itself, applies an aggrega-

tion function f, and then relays the aggregated data. Results are compressed into a

single message, which is subsequently transmitted, in a multihop fashion, for further

analysis by the base station.

Various types of data aggregation are possible, depending on the level of refine-

ment desired. In-network processing can be designed to perform one or more of the

following operations:

. Aggregate the data into a single binary value. A Boolean (i.e., true or false)

value would be sufficient to indicate if an animal was detected or not.

. Aggregate the data readings into an area. Coordinates of a bounding box can

be given that defines the area where the sensor readings are observed. Nodes,

Figure 1.8 Event detection and reporting without data aggregation.

Figure 1.9 Event detection and reporting with data aggregation.

1.4 SERVICES 19

upon receiving this area information, dynamically adjust the size of the bound-

ing box to accommodate their sensor readings before retransmitting.

. Aggregate the collected data by applying an application-specific aggregation

or filtering function. As an example, the average, maximum, minimum, or

sum of sensor values could be calculated en route prior to forwarding any

received information.

Energy conservation, as a result of data aggregation, is of particular concern for

sensor nodes close to the base station. Without any form of data aggregation, a

greater number of messages are transmitted. As a result, their batteries are depleted

quickly. Eventually, when nodes that communicate directly with the base station die,

the sensor network is rendered unusable, regardless of the remaining power of other

nodes (see Fig. 1.10), since no messages can reach the base station.

Data aggregation seeks to combine data arriving from different sources en route.

In [44], the authors study the energy savings and latency trade-offs caused by data

aggregation and how factors such as source (i.e., event) and sink (i.e., base station)

placements and network density affect this trade-off. A complexity analysis of optimal

data aggregation in sensor networks is also performed, and although it is shown that

optimal data aggregation is NP-hard, polynomial-time solutions exist for certain cases.

The work presented in [45] continuously computes aggregates of wireless sensor

network monitoring functions. Aggregates computed include sums, averages, and

counts. Network properties considered include loss rates, energy levels, and

packet counts. A novel tree construction algorithm is proposed to enable energy-

efficient computation of some classes of aggregates, and it is demonstrated, through

actual implementation and experiments, that wireless communication artifacts and

packet loss significantly impact the computation of these aggregate properties.

During experiments conducted on a test bed of 26 sensor nodes, packet loss for

each link was measured every minute for two hours under various topology settings.

Figure 1.10 Event detection and reporting with data aggregation.

20 INTRODUCTION TO WIRELESS SENSOR NETWORKING

Although the majority of links were good, 10% of the nodes exhibited a packet rate

loss greater than 50%. As a result, the value of the COUNT aggregate, which reports

the total number of active sensor nodes in the network, fluctuated greatly over time.

The infrastructure presented for wireless sensor network monitoring consists of

three classes of software [45]:

1. The first component consists of a tool such as dump that is used to collect

detailed information about the system state. This is used to provide debugging

information about the sensor nodes and also report any logged information

kept by the nodes over a period of time.

2. The second category of tool is referred to as scans. These constitute a global,

albeit aggregated view, of the wireless sensor network and report metrics such

as overall resource consumption. An example of a scan is an escan whereby a

special user-gateway node initiates state information collection from the entire

system. However, instead of all nodes relaying their power level information,

data collected is aggregated en route in order to minimize the amount of infor-

mation propagated throughout the network.

3. The final category of tool is referred to as digests, which are simply aggregates

of some network property. Digests span the entire network, but unlike scans,

they are computed continuously. Computed information is propagated

throughout the network by piggybacking digests onto regular messages trans-

mitted throughout the sensor network. Clearly, the energy savings achieved is

offset by the increased latency.

The second contribution entails the design of protocols to enable computation of

network digests. Values such as node energy level, degree of connectivity, and

volume of traffic, are considered. Decomposable functions (i.e., functions that can

be expressed in terms of another function) such as sum, min, max, average, and

count are applied to these analyzed values. Digest computation is accomplished

using digest diffusion, which implicitly builds a broadcast tree where computed

partial results of decomposable functions are propagated toward the root.

For example, assume a connected homogeneous wireless sensor network exists

where all nodes are equipped with thermal sensors that record the ambient tem-

perature. Initially, every node assumes it has observed the highest temperature

reading and exchanges this information with its immediate neighbors. A node,

upon receiving a temperature measurement from a neighboring node, adjusts the

source of the highest reading, if necessary, and propagates this information

throughout the broadcast tree. Eventually, all nodes converge on the same maximal

temperature reading.

Broadcast tree maintenance is required as nodes fail over the lifetime of the

wireless sensor network. Thus, a node periodically broadcasts messages to maintain

the digest. Nodes use a time-out value to determine if a neighboring node is no

longer transmitting messages to it. Thus, a node may switch to a different parent

node when it is no longer receiving messages from its existing parent node.

1.4 SERVICES 21

1.4.4 Data Storage

Data storage presents a unique challenge to developers. Event information collected

by individual nodes must be stored at some location, either in situ or externally.

In some cases, where an off-line storage area is not available, data must be stored

within the wireless sensor network. Ratnasamy et al. [46,47] describe three data-

storage paradigms employable in wireless sensor networks:

1. External Storage. In this model, when a node detects an event, the corre-

sponding data are relayed to some external storage located outside the net-

work, such as a base station. The advantage of this approach is that queries

posed to the network incur no energy expenditure since all data are already

stored off-line.

2. Local Storage. In this model, when a node detects an event, event information

is stored locally at the node. The advantage of this approach is that no initial

communication costs are incurred. Queries posed to the wireless sensor net-

work are flooded to all nodes. The nodes with the desired information relay

their data back to the base station for further processing.

3. Data-Centric Storage. In this model, event information is routed to a prede-

fined location, specified by a geographic hash function (GHT), within the

wireless sensor network. Queries are directed to the node that contains the

relevant information, which relays the reply to the base station for further

processing.

For wireless sensor network applications that are envisioned to be long-lived,

even optimized communication schedules can deplete a node’s battery within a rela-

tively short period of time (i.e., a couple of months). Consider an environmental

application, such as microclimate monitoring, where individual sensor nodes period-

ically sample their local environment to measure temperature, light, precipitation,

pressure, and humidity levels. Over time, the amount of data generated by the

sensor network can be substantial. This is particularly true if individual sensor

nodes take samples at short regular intervals, such as every 30 minutes.

Ganesan et al. [48] look to provide a distributed, progressively degrading

storage model. This is achieved by constructing local, multiresolution summaries

of observed sensor data stored hierarchically throughout the wireless sensor net-

work. Queries on summary information are performed in a drill-down fashion:

coarse, highly compressed data are stored in nodes at the highest levels in the

hierarchy. As more detailed information is required, nodes at lower levels in the

hierarchy, with more detailed event information, are queried.

Summary information is created by employing a wavelet-based compression

technique, which offers the following advantages:

. A compact representation of data is produced that highlights interesting fea-

tures in the accumulated data, such as long-term trends, edges, and significant

anomalies.

22 INTRODUCTION TO WIRELESS SENSOR NETWORKING

. Spatiotemporal queries can be satisfied with little communication overhead by

employing drill-down querying. Basic information from the wireless sensor

network is gathered from nodes at the highest level in the hierarchy. As more

detailed spatiotemporal information is required, nodes further down the

hierarchy are queried for the relevant data.

. Aging, and subsequently discarding summaries selectively, gracefully degrades

query performance over time. Since wireless sensor networks are typically

resource-constrained, nodes discard older data in favor of newly gathered

sensor readings.

1.4.5 Topology Management and Message Routing

Wireless sensor networks can possibly contain hundreds or thousands of nodes.

Routing protocols must be designed to achieve an acceptable degree of fault toler-

ance in the presence of sensor node failures, while minimizing energy consumption.

Furthermore, since channel bandwidth is limited, routing protocols should be

designed to allow for local collaboration to reduce bandwidth requirements.

Observations made in ref. [49] show that, although intuitively it appears a denser

deployment of sensor nodes renders a more effective wireless sensor network, if the

topology is not carefully managed, this can lead to a greater number of collisions and

potentially congest the network. As a result, there is an increased amount of latency

when reporting results and a reduction in the overall energy efficiency of the net-

work. Furthermore, as the number of reported data measurements increases, the

accuracy requirements of the application may be surpassed. This increase in the

reporting rate by the deployed sensor nodes can actually harm the wireless sensor

network performance, rather than prove beneficial.

Message-routing algorithms in ad hoc networks can be separated into two broad

categories: greedy algorithms and flooding algorithms [50]. Greedy algorithms

apply a greedy path-finding heuristic that may not guarantee a message reaches its

intended receiver. One example of greedy routing, proposed by Finn in 1987, is for-

warding to a neighbor that is closest to the destination. Additional steps are required to

ensure the message is received by its intended recipient. Flooding algorithms employ

a controlled packet duplication mechanism to ensure every node receives at least one

copy of the message. For these algorithms to terminate, nodes in the sensor network

must remember which messages have been previously received.

In ref. [50], the authors present two distributed routing protocols, face routing and

greedy-face-greedy (GFG). Both algorithms guarantee packet delivery as long as the

wireless sensor network remains connected and static while the message is relayed

from sender to receiver. The medium access is ideal since it guarantees message

transmission between two neighbors in a finite time. The communication graph is

the unit graph where two nodes can communicate if and only if the distance between

them is at most R, where R is the transmission radius of all nodes.

Both algorithms require messages to carry some overhead information. However,

sensor nodes themselves do not need to maintain additional routing information.

1.4 SERVICES 23

The algorithms first construct a connected planar subgraph, called a Gabriel graph,

of the underlying wireless sensor network in a distributed fashion. Edge e is in the

Gabriel graph if and only if the circle with edge e as the diameter contains no other

nodes inside it. The Gabriel graph partitions the graph into faces that are bound by

polygons and make up the edges of the graph.

In the face-routing algorithm [50], the boundary of the face is traversed in a

counterclockwise fashion until an edge is found that intersects with the line that con-

nects the source and destination. The algorithm then continues to scan the next

adjoining face in a similar manner. The entire process iterates until the destination

is reached.

In the GFG algorithm [50], greedy routing (i.e., forwarding to the neighbor node

closest to the destination) is applied as long as the node currently holding the packet

has a neighbor closer to the destination node than itself. When current node A does

not have such a neighbor, face routing is applied until a node B, closer to the desti-

nation node than node A, is encountered. Node B then reverts back to greedy

forwarding. This reversal of modes can be repeated until the packet is delivered

to its intended destination. Greedy perimeter stateless routing (GPSR) [51] is a

routing protocol similar to GFG [50] that incorporates medium-access-layer and

mobility considerations.

Greedy routing algorithms have been found to work well in wireless sensor net-

works due to their efficiency and scalability [52]. Greedy forwarding techniques

offer several advantages over naive routing techniques (i.e., flooding):

. Nodes need to maintain only local topology information. This makes the

protocol highly scalable, since routing information to all destinations is not

maintained locally. Such a routing table would quickly grow in size, consuming

the node’s limited memory.

. The protocol is adaptable to frequent topology changes, since the routing

path can be dynamically adjusted based on the current one-hop neighborhood

of a node.

. Since only local information is used, nodes need not be aware of the topology of

the entire wireless sensor network.

Network self-organization can be extended further than simple topology manage-

ment. Assigning roles to sensor nodes based on their physical connectivity and

sensing capabilities is proposed in [53]. Metrics, such as sensing proximity value,

cumulative sensing degree, and other intermediate sensing parameters, allow the

wireless sensor network to be partitioned into distinct sensing zones. Sensing

zones are a collection of sensor nodes with a common sensing objective and a specific

sensing quality of service (sQoS). Coordinators are elected to act as leaders within a

sensing zone and are responsible for coordinating sensing-zone members and per-

forming network reorganization maintenance. This approach is an improvement

over other types of topology management schemes, such as hierarchical topologies,

since they may be too rigid for a particular wireless sensor network application.

24 INTRODUCTION TO WIRELESS SENSOR NETWORKING

1.5 WIRELESS SENSOR AND ACTOR NETWORKS

Wireless sensor and actor networks (WSANs) [54] can be considered as an exten-

sion of traditional wireless sensor networks. They consist of two major components:

sensor nodes and actor nodes. Sensor nodes are low-cost, low-power devices with

limited sensing, computational, and communication capabilities. Actor nodes are

resource-rich nodes equipped with more powerful processors, longer-range radio

transceivers, and longer-lasting, or possibly renewable, power sources. They may

also be able to navigate throughout the area covered by the sensor nodes. The

number of sensor nodes generally outnumbers the number of actor nodes by a

sizable quantity.

There are several defining characteristics of WSANs. These include:

. Real-Time Requirements. Depending on the application, it may be necessary

for nodes within the sensor network to respond quickly to detected events.

For example, in an environmental monitoring application, if a fire is detected,

some sort of corrective action should be initiated as quickly as possible. The

data collected by the wireless sensor and actor network must be timely and cur-

rent when the corrective action is taken.

. Coordination. In a wireless sensor network, the process of data collection is

coordinated by a central entity, such as a base station. In a wireless sensor

and actor network, sensor–sensor coordination, actor–sensor coordination,

and actor–actor coordination are required. Sensor nodes report detected

events to actor nodes, which in turn, take some appropriate action. This may

include coordinating response activities with other actor nodes, providing

additional instructions to nearby sensor nodes, or processing sensed event infor-

mation to relay back to a central base station.

The roles of sensor nodes and actor nodes are to collect data from the environ-

ment and react appropriately to sensed events. The sensor–actor field defines the

area where sensor nodes and actor nodes are distributed. A central base station,

sometimes referred to as a sink, monitors and coordinates overall network activity.

When a sensor node observes a particular phenomenon, it transmits its findings to

a nearby actor node. The actor node processes all incoming data and initiates an

appropriate response or processes and relays the information to the sink. The

sink can then further process the received information and subsequently issue

additional commands to the actor nodes to gather more information, or react to,

the detected event.

1.5.1 Architecture

There are two possible types of architectures possible in WSANs:

1. Semiautomated Architecture. This architecture bears similarities to the

architecture in most wireless sensor networks. A central base station is used

1.5 WIRELESS SENSOR AND ACTOR NETWORKS 25

to coordinate the efforts of the actor node and sensor nodes. Queries are issued

to the network and results are relayed to the base station for further processing.

2. Automated Architecture. This architecture does not require a central base

station to coordinate efforts. Actors are programmed to work autonomously

and respond to detected events appropriately. This architecture has a few

advantages over the semiautomated architecture: it exhibits a lower latency,

since sensed information is only relayed to actor nodes; and it has a longer

overall network lifetime, since event information is only relayed to the

actor node within one hop of the sensor nodes that detected the phenomenon.

Aside from communication between actor nodes and sensor nodes, communi-

cation between actor nodes must be coordinated as well in order to achieve the appli-

cation objectives. Actor nodes, being resource-rich nodes with high transmission

power, can transmit information over long distances, unlike sensor nodes. Further-

more, since the number of actor nodes in a wireless sensor and actor network is

typically small, communication among actor nodes is analogous to an ad hoc

sensor network.

The most crucial aspect of sensor–actor communication is low communication

delay due to the proximity between sensor nodes and actor nodes. Other issues to

consider include:

. What are the communication requirements between actor nodes and sensor

nodes? These requirements include factors such as ensuring communication

between actor nodes and sensor nodes consume minimal energy, the latency

in reporting sensed event information to the actor node(s), and ensuring a

proper ordering of event information.

. Which sensors transmit to which actors? If an event is detected by multiple

sensor nodes, the sensor node may decided to relay information to a single

actor node, or perhaps, to a series of actor nodes. Both approaches have their

advantages and disadvantages. For example, information sent to a single

actor node consumes less overall energy since fewer messages are relayed

throughout the wireless sensor and actor network. However, relaying sensed

event information to multiple actor nodes provides an increased level of redun-

dancy. This may be a necessity if the network is deployed in a hostile environ-

ment where nodes are prone to failure.

. What is the arrival time of messages? Consider a hypothetical security appli-

cation whereby actor nodes are deployed to monitor and patrol an art gallery.

If an intruder is detected, one objective of the actor nodes may be to surround

and immobilize the intruder. This requires that actor nodes receive notification

from sensor nodes that detect the intruder in a timely (i.e., relatively simul-

taneously) fashion in order to coordinate their movements.

As a consequence, the set of communication protocols for wireless sensor and

actor networks should provide real-time services within a specified upper bound

26 INTRODUCTION TO WIRELESS SENSOR NETWORKING

for delay, relay messages in an energy-efficient manner among sensor nodes and

actor nodes, ensure the proper ordering of events, provide synchronization between

sensor nodes reporting an activity to multiple actor nodes, and allow messages to be

routed to arbitrary actor nodes.

Depending on the quality of service requirements of the wireless sensor and actor

network application, coverage of a sensed event is partitioned into four cases:

1. A minimal set of actor nodes cover the event region

2. A minimum set of sensor nodes cover the event region

3. A minimum set of actor nodes and sensor nodes cover the event region

4. The entire set of actor nodes and sensor nodes in the event region monitor the

phenomenon

Thefirst three cases are aimed at reducing the level of redundancy,while the last case

aims to provide maximal coverage of a detected event. There are trade-offs with both

approaches. The amount of energy consumed in the network is reduced in the first three

cases, at the expense ofmore intense coverage. The last case affordsmaximal coverage

of the detected phenomenon, but at the expense of higher energy consumption.

Aside from communicating with sensor nodes, actor nodes can communicate

directly with each other. Communication between actors can occur under various

circumstances. For example, an actor node that receives information from a

nearby sensor node requires the assistance of additional actor nodes in order to com-

plete its task. Similarly, if multiple actors receive the same event information, the

actor nodes can communicate with each other to coordinate their efforts.

1.5.2 Protocol Stack

As of the time of this writing, a de facto protocol stack for wireless sensor networks

or wireless sensor and actor networks did not exist [54]. Unfortunately, there is no

general consensus within the wireless sensor network research community about the

layer structure in wireless sensor networks. It is argued that strict layering guaran-

tees controlled interaction among layers, whereas a cross-layer design can produce

spaghetti-like code that is difficult to maintain because modifications must be propa-

gated across all protocols [55]. Furthermore, cross-layer designs can produce unin-

tended interactions among protocols that result in performance degradation.

Other researchers are in favor of adopting a cross-layer design to overcome

potential performance problems. The authors in [55] introduce a layered architecture

where protocols in different layers cooperate by sharing network-status information

while still maintaining separation between various layers. Despite the potential

ptifalls, several motivations for employing a cross-layering approach exist [56]:

. Optimization can be achieved in several layers. The optimization goals at a

particular layer can be designed to work with the optimization goals of other

layers above and below.

1.5 WIRELESS SENSOR AND ACTOR NETWORKS 27

. Optimization in one level can require cooperation from other levels to show its

effects. Consider the case where the underlying routing protocol is designed to

select the shortest route possible. Although this optimization results in smaller

hop distances requiring less energy to transmit message packets, the larger

number of messages transmitted can result in a greater amount of contention.

If the medium-access control (MAC) layer is not optimized accordingly, the

routing protocol may suffer as a consequence.

. There are possible conflicts between optimization goals in distinct layers. Some

optimization solutions at distinct layers are orthogonal in design. For example, at

the network layer, it may be desirable to reduce the amount of overhead main-

tained at individual nodes. However, this may result in a lower quality of service

at the transport layer since less information is broadcast with individual packets.

Similarly, employing data-compression techniques may interfere with latency

requirements imposed by the application, as the nodes must wait to accumulate

and aggregate received information.

. Some scenarios do not require support from all layers. Consider a multihop

local positioning system (LPS) based on hop-by-hop distance measurements

to estimate the relative distance between an arbitrary node and an anchor

node. The network layer and transport layer, used to handle the end-to-end

data transmissions, are not required in this application. Consequently, these

layers can be omitted.

The authors in [54] suggest the protocol stack for sensor nodes and actor nodes

consist of three planes:

1. Communication Plane. This plane enables the exchange of information

between the various nodes within the wireless sensor and actor network. It

receives commands from the coordination plane and provides the appropriate

link relations between various nodes. The functionality of the communication

plane is contained within the constituent transport layer, routing layer, and

MAC layer.

(a) Transport Layer. Aside from providing the traditional reliability require-

ments, the transport-layer protocol is responsible for providing the real-

time requirements of the WSAN. For example, if the transport protocol

utilized in sensor–actor communication detects a low level of reliability,

the transport protocol employed in communication can notify other actors

of this situation.

(b) Routing Layer. Sensor nodes that detect an event have to select which

actor node(s) will receive the gathered sensor information. This poses a

challenge due to the existence of several actor nodes in the network.

Once a decision is made, the data are relayed to the appropriate node.

The routing protocol is responsible for determining the path messages

will take, performing any in-network data aggregation to reduce the

28 INTRODUCTION TO WIRELESS SENSOR NETWORKING

number of messages relayed throughout the network, and supporting any

real-time communication requirements imposed.

(c) MAC Layer. To effectively transmit event information from a large

number of sensor nodes to actor nodes, a MAC protocol is essential. In

some applications, actor nodes may be mobile. Consequently, actor

nodes may leave the transmission area of some sensor nodes. One of

the functions of the MAC layer is to ensure connectivity between

sensor nodes and actor nodes. Contention-based protocols are generally

not suitable for real-time communication between sensor nodes and

actor nodes due to the latency imposed by handshaking. Exploiting the

periodic nature of sensor network traffic allows for the development of

collision-free real-time scheduling algorithms. These are more suitable

for wireless sensor and actor networks, since they can reduce the overall

delay and provide real-time guarantees.

2. Coordination Plane. Data received along the communication plane is for-

warded to the coordination plane, which processes the received information

and decides on an appropriate action. This enables nodes to collaborate and

achieve a higher-level objective. Issues such as sensor–sensor coordination

are addressed. These include decisions as to which sensor nodes will relay

information to the corresponding actor nodes, how routing of messages in a

multihop fashion is handled, how in-network data aggregation is performed,

and actor node selection.

3. Management Plane. This plane is responsible for monitoring and controlling

node functions. This includes functions such as node power management fea-

tures, node mobility management, and node fault management.

1.6 SENSOR QUERYING AND DATABASE SYSTEMS

Users of wireless sensor network applications are typically interested in continuous

streams of information [17] that represent the evolving status of the area under

observation as time progresses [57]. Query processing systems such as TinyDB

[58], Directed Diffusion [7,8], and Cougar [59] provide users of wireless sensor

network applications with a high-level interface for performing queries. This

relieves the user from writing complex code to gather information from the

sensor network.

Part of the ongoing research into sensor database systems includes distributed

query processing [60] and storage mechanisms [48] in sensor networks. The need

for scalable self-organized data retrieval and in-network processing is clear. A uni-

fied query processing/networking system involves an additional challenge to

designers of wireless sensor networks. Different applications have varying require-

ments in terms of information transfer rates, latency, coverage, and storage. The

trade-off between optimizing the network topology and performing efficient query

processing is an issue that needs to be resolved.

1.6 SENSOR QUERYING AND DATABASE SYSTEMS 29

In TinyDB [58], users specify a set of declarative queries that define the infor-

mation to be gathered from the wireless sensor network. Queries indicate the type

of readings to be obtained, including the subset of nodes the user is interested in,

and any simple transformations to be performed over the collected data. They are

specified using a language like a structured query language (SQL). A sample

query could be expressed as follows:

SELECT AVG(temp)

FROM sensors

WHERE location in (0,0,100,100) AND light . 1000 lux

SAMPLE_PERIOD 10 seconds

TinyDB queries are generally specified on a PC and then distributed throughout

the sensor network by a query executor. The query is disseminated and results are

returned in an energy-efficient manner using a variety of in-network processing tech-

niques and cross-layer optimizations. For example, in the preceding sample query,

the query executor is responsible for determining which predicate to evaluate first in

the sensor network: the temp predicate or light predicate.

Queries in TinyDB are disseminated through the entire network and collected via

a routing tree. The root node of the routing tree is end point of the query, which is

generally where the user that issued the query is located. Nodes within the routing

tree maintain a parent–child relationship in order to properly propagate results to the

root. Research into query processing techniques include the design of an acquisi-

tional query processor for data collection in wireless sensor networks. Information

such as where, when, and how often data are physically collected and delivered, can

be leveraged to significantly reduce the overall power consumption in the sensor

network [61].

Directed diffusion [7,8] employs a different approach to query processing. Rather

than utilizing a specific query language, an application specifies a named interest,

which is used to query the sensor network. Interests contain the query particulars,

expressed through a sequence of attribute/value pairs. For example, an interest

expressed as:

location ¼ [(100,100), (10,200)]

temperature ¼ [10,20]

would report the temperature readings from all nodes located within the specified

location whose temperature is within the specified limits. The interest is initiated

by a sink node and flooded throughout the sensor network. A node that lacks data

matching an interest forwards it to its neighbor node. The decision as to which

node to forward the interest to is based on the contents of the interest. The notion

that cues can be embedded within the query itself is one of the core principles

behind data-centric routing. As the interest is propagated, nodes build routing

tables that are used to return matching data to the sink.

30 INTRODUCTION TO WIRELESS SENSOR NETWORKING

1.7 SENSOR NETWORK RELIABILITY

Several applications of wireless sensor networks exist where reliability of data deliv-

ery is critical. For example, consider a security application where sensors are

required to detect and identify the presence of intruders. Given the critical nature

of the application, when an intruder is detected, messages must reach the base station

in a timely and reliable manner. Three unique issues must be addressed when dis-

cussing data-delivery reliability in wireless sensor networks [62]:

1. Environmental Considerations. Wireless sensor networks can be deployed in

harsh environments. However, the limited lifetime of individual sensor nodes,

low bandwidth, and the size of the sensor network must be considered.

2. Message Considerations. Messages relayed throughout a wireless sensor net-

work are generally small compared to ad hoc networks. For example, a simple

query that requests information from a specific region of interest might be

flooded throughout the sensor network. The reduced message size affects

the type of loss–recovery scheme employed in the wireless sensor network.

3. Reliability Considerations. Traditional notions of reliability are concerned

with reception of 100% of all messages transmitted. However, in a wireless

sensor network, reliability may be expressed in terms of data gathered from

a particular subregion within the network, or as the fidelity of partial,

aggregated results.

1.7.1 PicoRadio Network

The authors in [63] present experimental measurements of radio energy consump-

tion and packet reliability for their prototype PicoRadio network that is composed

of PicoNodes [64]. Energy consumption is categorized by the energy consumed

when the radio is in different states (i.e., idle, transmitting, or receiving). Packet

delivery reliability is measured from a network and link perspective.

1.7.1.1 Hardware The prototype PicoNode consists of a StrongARM SA-1100

microprocessor, a Xilinx C4929XKA field-programmable gate array (FPGA), an

Ericsson PBA-313-01/2 Bluetooth radio, 4 MB of DRAM, 4 MB of flash memory,

and one of two possible custom sensor boards. The first board is configured with sen-

sors that obtain light, sound, temperature, and humidity measurements. The second

possible sensor board is configured with an accelerometer and magnetometer.

1.7.1.2 Protocol Stack The protocol stack utilized by each PicoNode in the

sensor network test bed includes [63]:

1. Physical Layer. Each PicoNode employs a 100-mW Bluetooth radio that sup-

ports 79 channels in the 2.4-GHz ISM frequency band with a maximum data

1.7 SENSOR NETWORK RELIABILITY 31

rate of 1 Mbps. The radios employ Gaussian frequency shift keying modu-

lation with 1 MHz channel spacing.

2. Data Link Layer. The data-link layer consists of three major components: the

transmit controller and data path (TCD), the receive controller and data path

(RCD), and the medium-access control (MAC). The TCD and RCD are

responsible for packet buffering, serialization, deserialization, cyclic redun-

dancy checking, and line balancing.

The MAC uses carrier sense multiple access (CSMA) with preamble

sampling (PS) for infrequent message broadcasts. For unicast traffic, a variant

of spatial time-division multiple-access (S-TDMA), referred to as on-demand

S-TDMA, is employed. Packet headers and payloads use an 8-bit cyclic redun-

dancy check (CRC) and a data acknowledgment retransmission scheme with

time-outs to help ensure packet reliability.

3. Network Layer. The network layer consists of four major components:

energy-aware routing (EAR) protocol, location service, neighbour list service

(NLS), and queuing service.

(a) EAR is a destination-initiated reactive routing protocol designed to

increase the survivability of the sensor network. Routing paths are

chosen in a probabilistic fashion where the probability of selecting a

route is inversely proportional to the average energy cost of that particular

route. This achieves an even energy depletion of the sensor network.

(b) The location service is called hop-terrain and makes use of a combination

of RSSI and hop counts from reference nodes in order to triangulate a

location.

(c) The NLS maintains a table that maps neighbor-node MAC IDs to network

addresses. Each entry in the table contains a link cost metric and a status

indicator. The cost metric indicates the average energy required to

perform a unicast transmission along a particular link.

(d) Finally, the queuing service manages the timing of events during node

initialization, neighbor discovery, location discovery, and MAC ID

assignment.

4. Application Layer. The application layer consists of a standard sensor board,

an optional sensor board, and the required application drivers that provide the

interface between adjacent layers. The initial target application for the Pico-

Radio project was indoor building monitoring. The test bed comprises of

three different types of nodes. The first type is sensor nodes that obtain

measurements. The second are controller nodes that issue queries to the net-

work. Finally, anchor nodes provide a location reference by periodically

broadcasting their locations to other nodes in the sensor network.

1.7.1.3 Packet Reliability Empirical data about energy consumption and

packet reliability of the PicoRadio network was gathered. Three configurations

with varying parameters were executed and the results were collected. The first

32 INTRODUCTION TO WIRELESS SENSOR NETWORKING

configuration is a baseline configuration. The subsequent two configurations,

denoted case 1 and case 2, have varying parameters. The configurations are summar-

ized in Table 1.3.

The sensor network consisted of 25 PicoNodes placed in an approximately

rectangular grid. Spacing between nodes varied from 3 to 7 m, with all nodes

placed at roughly the same elevation. At the beginning of each experiment, a con-

troller node broadcasted a query requesting all sensor nodes to relay 200 temperature

measurements at intervals of 5 s. T denotes the time period between samples, and N

denotes the total number of samples to be taken. These parameters are specified in

the query disseminated to each node.

The baseline configuration utilizes CSMA without any preamble sampling. The

radio is constantly on, even when the node is not transmitting or the channel is idle.

The size of the frame is denoted by Tf , the number of slots within the frame is

denoted by Ns, and the size of the slot spacing is denoted by S.

Nodes transmit their data packets during their designated time slots, and data

packets acquired from neighboring nodes are forwarded during the designated

frame using CSMA. Both case 1 and case 2 utilize CSMA with preamble sampling.

Nodes wake up every Tp seconds to sense the channel. If no preamble is detected

within the time period denoted by Ts, the node goes back to sleep.

1.7.1.4 Results For the baseline configuration, the end-to-end packet loss ratio

(PLR) of individual sensor nodes varied from 0 to 0.2, with an overall average PLR

of 0.04 for the entire sensor network. The nodes with the best reliability were those

placed closest to the controller. Nodes located farthest from the controller and along

the edges of the sensor network exhibited the most packet loss. The hop count for

messages to reach the destination varied from a minimum of 1 hop to a maximum

of 8 hops.

For case 1, the variation in the PLR was lower, but the overall PLR for the net-

work remained the same. This is because for a given slot spacing, the preamble

sampling had a negligible impact on end-to-end packet reliability. In case 2, the

PLR ranged from 0 to 0.88, with an overall network average of 0.36. The higher

PLR was caused by more packet collisions due to the smaller frame size and slot

spacing.

TABLE 1.3 PicoNode Experiment Configurations

System Description

Baseline CSMA and on-demand S-TDMA with

Tf ¼ T, S ¼ 20 ms, and Ns ¼ 9

Case 1 CSMA-PS with Tp ¼ 512 ms and Ts ¼ 5 ms
On-demand S-TDMA with Tf ¼ 256 ms, S ¼ 20 ms, and Ns ¼ 9

Case 2 CSMA-PS with Tp ¼ 512 ms and Ts ¼ 5 ms

On-demand S-TDMA with Tf ¼ 90 ms, S ¼ 10 ms, and Ns ¼ 9

1.7 SENSOR NETWORK RELIABILITY 33

1.8 SENSOR OPERATING SYSTEMS

TinyOS is an open-source operating system designed for wireless embedded sensor

networks [5,65]. It features a component-based architecture that enables implemen-

tation of sensor network applications. TinyOS features a component library that

includes network protocols, distributed services, sensor drivers, and data-acquisition

tools. TinyOS features an event-driven execution model and enables fine-grained

power management. It has been ported to several platforms with support for various

sensor boards.

Currently, over 500 research groups and companies use TinyOS and the sensor

motes developed by Crossbow [66]. A partial list of research projects [67] currently

under way is presented in Table 1.4. A partial list of companies [67] that use TinyOS

in commercial developments is provided in Table 1.5.

TABLE 1.4 TinyOS Research Projects

Project Description

Calamari [68] Localization solutions for sensor networks

CotsBots [69] Inexpensive and modular mobile robots built using off-

the-shelf components to investigate distributed sensing

and cooperation algorithms in large (.50) robot

networks

Firebug [70] Berkeley civil engineering project for the design and

construction of a wildfire instrumentation system using

networked sensors

galsC [71] Language and compiler designed for use with the

TinyGALS [72] programming model

Great Duck Island [19] Remote habitat monitoring of Leach’s Storm Petrel

Mate [73] Application-specific virtual machines for TinyOS networks

PicoRadio [74] Development of mesoscale low-cost transceivers for

ubiquitous wireless data acquisition that minimizes

power/energy dissipation

Sensing Structural

Integrity [75]

Reporting the location and kinematics of damage during and

after an earthquake

Telegraph [76] Study of various technologies for adaptive data flow such as

streaming data from sensors, logs, and peer-to-peer

systems

TinyDB [77] Query processing system for extracting information from a

network of TinyOS sensors

TinyGALS [72] Globally asynchronous and locally synchronous model for

programming event-driven embedded systems

XYZ On A Chip [78] Research focused on airflow measurement technology and

the use of sensor networks for controlling indoor

temperature

34 INTRODUCTION TO WIRELESS SENSOR NETWORKING

1.9 SUMMARY

This chapter outlined some envisioned, as well as implemented, wireless sensor

network applications. A brief overview of the various types of services required

by wireless sensor network applications was also presented. Although advances in

technology have increased the processing, storage, and communication capabilities

of sensor nodes, the main obstacle yet to be overcome is the limited power available

to sensor nodes. As battery technology and energy-harvesting techniques improve,

wireless sensor network applications will continue to flourish.

As wireless sensor network applications become increasingly more powerful and

proliferate, additional services that support their increased functionality will also be

required. Several research groups have begun to develop middleware to provide

needed services to support wireless sensor networks. Ideally, deployed wireless

sensor networks should configure, adjust, and heal themselves automatically with

minimal user intervention. Information sharing among independent sensor net-

works, deployed within the same region, even though they are distinct, is another

desirable quality. However, before these scenarios become a reality, much research

remains to be done.

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation under Grant

ANI-0086020.

TABLE 1.5 TinyOS Commercial Research Projects

Project Description

Digital Sun’s S. Sense [79] Soil-moisture sensor system for sprinkler systems to keep

grass green while conserving water

Dust Networks [80] Manufacturers of resilient, self-healing wireless mesh

networks optimized for low data-rate applications

Crossbow [66] Manufacturer of wireless sensor networks and wireless data

loggers that use TinyOS

Ember [81] Developer of wireless semiconductor systems that consist of

chips embedded with networking software and low-

frequency radio transmitter technology that support

wireless mesh monitoring and low-power autohealing

management networks

Sensicast [82] Provider of end-to-end intelligent wireless sensor network

solutions to original equipment manufacturers (OEMs)

and system integrators

Sensit [83] Developers of the most highly used wind-eroding mass

sensor worldwide

ACKNOWLEDGMENTS 35

REFERENCES

1. Crossbow Technology MPR2400 MICAz, from http://www.xbow.com/products/
product_pdf_files/wireless_pdf/6020-0060-01_a_micaz.pdf/, December 2004.

2. See at http://www.xbow.com/products/productsdetails.aspx?sid¼101.

3. Crossbow Technology’s MicaZ sensor mote, from http://gyro.xbow.com/other/micaz_

new.jpg, December 2004.

4. See at http://www.atmel.com.

5. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture

directions for network sensors. In Proceedings of the 9th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS-

IX), pages 93–104, Cambridge, Massachusetts, November 2000.

6. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:

A survey. Computer Networks, March 2002.

7. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust

communication paradigm for sensor networks. In Proceedings of the 6th Annual Inter-

national Conference on Mobile Computing and Networking, pages 56–67, ACM Press,

2000.

8. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed

diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking,

11(1):2–16, 2003.

9. J. Agre and L. Clare. An integrated architecture for cooperative sensing networks. IEEE

Computer, pages 106–108, May 2000.

10. F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model for

large-scale wireless sensor networks. In Proceedings of the 8th Annual International

Conference on Mobile Computing and Networking, pages 148–159, ACM Press, 2002.

11. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor

networks for habitat monitoring. In Proceedings of the 1st ACM International Workshop

on Wireless Sensor Networks and Applications, pages 88–97, ACM Press, 2002.

12. E. Biagioni. PODS: Interpreting spatial and temporal environmental information. In

Usability Evaluation and Interface Design: Cognitive Engineering, Intelligent Agents,

and Virtual Reality, Volume I of the Proceedings of HCI International 2001, the

9th International Conference on Human-Computer Interaction, pages 317–321,

New Orleans, Louisiana, August 2001.

13. E. Biagioni and K. Bridges. The application of remote sensor technology to assist

the recovery of rare and endangered species special issue on distributed sensor

networks. International Journal of High Performance Computing Applications, 16(3),

August 2002.

14. D. Niculescu and B. Nath. Ad hoc positioning system (APS), In Proceedings of GLOBE-

COM’01 (IEEE), pages 2926–2931, San Antonio, Texas, November 2001.

15. K. A. Sudduth. Engineering technologies for precision farming. Presented at the Inter-

national Seminar on Agricultural Mechanization Technology for Precision Farming,

Suwon, Korea, May 1999.

16. C. R. Locke, G. J. Carbone,A.M. Filippi, E. J. Sadler, B.K.Gerwig, andD. E. Evans. Using

remote sensing andmodeling tomeasure crop biophysical variability. InProceedings of the

5th International Precision Agriculture Conference, Minneapolis, Minnesota, July 2000.

36 INTRODUCTION TO WIRELESS SENSOR NETWORKING

17. P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. IEEE Personal

Communications, 7:10–15, October 2000.

18. L. Schwiebert, S. Gupta, and J. Weinmann. Research challenges in wireless networks of

biomedical sensors. In Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking, pages 151–165, ACM Press, 2001.

19. Habitat monitoring on great duck island, from http://www.greatduckisland.net/,
November 2004.

20. R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a sensor network

expedition. In Proceedings of the 1st European Workshop on Wireless Sensor Networks

(EWSN ’04), January 2004.

21. J. Polastre. Design and Implementation of Wireless Sensor Networks for Habitat

Monitoring. Master’s thesis, University of California, Berkeley, May 2003.

22. See at http://www.botany.hawaii.edu/pods/.

23. F. Sivrikaya and B. Yener. Time synchronization in sensor networks: a survey. IEEE

Network, 18(4):45–50, July/August 2004.

24. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-

cations of the ACM, July 1978.

25. K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of

distributed systems. ACM Transactions on Computer Systems, February 1985.

26. C. J. Fidge. Partial orders for parallel debugging. In ACM SIGPLAN/SIGOPS Workshop

on Parallel 4 Distributed Debugging, 1985.

27. F. Mattern. Virtual time and global states of distributed systems. In International

Workshop on Parallel and Distributed Algorithms, 1989.

28. D. L. Mills. Internet time synchronization: The network time protocol. In Global States

and Time in Distributed Systems, Zhonghua Yang and T. Anthony Marsland (eds.),

pages 91–102, IEEE Computer Society Press, 1994.

29. H. Dai and R. Han. Tsync: A lightweight bidirectional time synchronization service

for wireless sensor networks. Mobile Computing and Communications Review,

8(1):125–139, 2004.

30. J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using

reference broadcasts. In Proceedings of 5th Symposium on Operating Systems Design

and Implementation (OSDI), pages 147–163, December 2002.

31. J. Elson and D. Estrin. Time synchronization for wireless sensor networks. In Proceed-

ings of the 2001 International Parallel and Distributed Processing Symposium

(IPDPS), Workshop on Parallel and Distributed Computing Issues in Wireless and

Mobile Computing, April 2001.

32. S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor net-

works. In Proceedings of the 1st International Conference on Embedded Networked

Sensor Systems (SenSys), pages 138–149, ACM Press, 2003.

33. M. L. Sichitiu and C. Veerarittiphan. Simple, accurate time synchronization for wireless

sensor networks. In Proceedings of the IEEE Wireless Communications and Networking

Conference (WCNC 2003), Volume 2, pages 1266–1273, New Orleans, Louisiana,

March 2003.

34. J. van Greunen and J. Rabaey. Lightweight time synchronization for sensor networks. In

Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and

Applications, pages 11–19, ACM Press, 2003.

REFERENCES 37

35. S. Meguerdichian, S. Slijepcevic, V. Karayan, and M. Potkonjak. Localized algorithms in

wireless ad-hoc networks: Location discovery and sensor exposure. In Proceedings of the

2nd ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages

106–116, ACM Press, 2001.

36. A. Savvides, C. Han, and M. B. Strivastava. Dynamic fine-grained localization in ad-hoc

networks of sensors. In Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking, pages 166–179, ACM Press, 2001.

37. A. Savvides, H. Park, andM. B. Srivastava. The bits and flops of the n-hop multilateration

primitive for node localization problems. In Proceedings of the 1st ACM International

Workshop on Wireless Sensor Networks and Applications, pages 112–121, ACM

Press, 2002.

38. D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proceedings of GLOBE-

COM’01 (IEEE), pages 2926–2931, San Antonio, Texas, November 2001.

39. D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In Proceedings

of IEEE INFOCOM 2003—The Conference on Computer Communications, 22(1):

1734–1743, March 2003.

40. D. Niculescu and B. Nath. Localized positioning in ad hoc networks. In Proceedings of

the 1st IEEE International Workshop on Sensor Network Protocols and Applications,

Anchorage, Alaska, April 2003.

41. N. B. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The cricket compass for context-

aware mobile applications. In Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking, pages 1–14, ACM Press, 2001.

42. Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket location-

support system. In Proceedings of the 6th Annual International Conference on Mobile

Computing and Networking, pages 32–43, ACM Press, 2000.

43. J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan.

Building efficient wireless sensor networks with low-level naming. In Proceedings of

the 18th ACM Symposium on Operating Systems Principles, pages 146–159, ACM

Press, 2001.

44. B. Krishnamachari, D. Estrin, and S. Wicker. Impact of data aggregation in wireless

sensor networks. In International Workshop of Distributed Event Based Systems

(DEBS), July 2002.

45. J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wireless

sensor networks. In Proceedings of the 1st IEEE International Workshop on Sensor

Network Protocols and Applications, May 2003.

46. S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. Ght: A

Geographic hash table for data-centric storage. In Proceedings of the 1st ACM Inter-

national Workshop on Wireless Sensor Networks and Applications, pages 78–87,

ACM Press, 2002.

47. S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu. Data-

centric storage in sensornets with ght, a geographic hash table. Mobile Networks and

Applications, 8(4):427–442, 2003.

48. D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann. An evaluation

of multi-resolution storage for sensor networks. In Proceedings of the 1st International

Conference on Embedded Networked Sensor Systems, pages 89–102, ACM Press,

2003.

38 INTRODUCTION TO WIRELESS SENSOR NETWORKING

49. S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. Infrastructure tradeoffs for sensor

networks. In Proceedings of the 1st ACM International Workshop on Wireless Sensor

Networks and Applications, pages 49–58, ACM Press, 2002.

50. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in

ad hoc wireless networks. Wireless Networking, 7(6):609–616, 2001.

51. B. Karp and H. T. Kung. Gpsr: Greedy perimeter stateless routing for wireless networks.

In Proceedings of the 6th Annual International Conference on Mobile Computing and

Networking, pages 243–254, ACM Press, 2000.

52. G. Xing, C. Lu, R. Pless, and Q. Huang. On greedy geographic routing algorithms in

sensing-covered networks. In Proceedings of the 5th ACM International Symposium on

Mobile Ad Hoc Networking and Computing, pages 31–42, ACM Press, 2004.

53. M. Kochhal, L. Schwiebert, and S. Gupta. Role-based hierarchical self organization for

wireless ad hoc sensor networks. In Proceedings of the 2nd ACM International Confer-

ence on Wireless Sensor Networks and Applications, pages 98–107, ACM Press, 2003.

54. I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks: Research

challenges. Ad Hoc Networks, 2(4):351–367, October 2004.

55. M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-layering in mobile ad hoc network

design. Computer (IEEE), 37(2):48–51, February 2004.

56. Y. Zhang and L. Cheng. Cross-layer optimization for sensor networks. New York Metro

Area Networking Workshop 2003, New York, New York, September 2003.

57. A. Woo, S. Madden, and R. Govindan. Networking support for query processing in sensor

networks. Communications of the ACM, 47(6):47–52, 2004.

58. S. Madden, W. Hong, J. Hellerstein, and M. Franklin. Tinydb: A declarative database for

sensor networks, from http://telegraph.cs.berkeley.edu/tinydb.

59. Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor net-

works. ACM SIGMOD Record, 31(3):9–18, 2002.

60. X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries in sensor

networks. In Proceedings of the 1st International Conference on Embedded Networked

Sensor Systems, pages 63–75, ACM Press, 2003.

61. S. Madden, M. J. Franklin, J. M. Hellerstein, andW. Hong. The design of an acquisitional

query processor for sensor networks. In Proceedings of the 2003 ACM SIGMOD Inter-

national Conference on Management of Data, pages 491–502, ACM Press, 2003.

62. S. J. Park, R. Vedantham, R. Sivakumar, and I. F. Akyildiz. A scalable approach for

reliable downstream data delivery in wireless sensor networks. In Proceedings of the

5th ACM International Symposium on Mobile Ad Hoc Networking and Computing,

pages 78–89, ACM Press, 2004.

63. J. M. Reason and J. M. Rabaey. A study of energy consumption and reliability in a

multi-hop sensor network. Mobile Computing and Communications Review, 8(1):

84–97, 2004.

64. J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, and S. Roundy. Picoradio supports

ad hoc ultra-low power wireless networking. Computer (IEEE), 33(7):42–48, July 2000.

65. TinyOS Community Forum, from http://www.tinyos.net/, November 2004.

66. Crossbow Technology Inc., from http://www.xbow.com, November 2004.

67. TinyOS Community Forum related work, from http://www.tinyos.net/related.html,

November 2004.

REFERENCES 39

68. Calamari: a sensor field localization system, from http://www.cs.berkeley.edu/kamin/
calamari/, November 2004.

69. CotsBots, from http://www-bsac.eecs.berkeley.edu/projects/cotsbots/, November

2004.

70. FireBug, from http://firebug.sourceforge.net/, November 2004.

71. galsC: A language for event-driven embedded systems, from http://galsc.sourceforge.
net/, November 2004.

72. TinyGALS: A programming model for event driven embedded systems, from

http://ptolemy.eecs.berkeley.edu/papers/03/tinygals/, November 2004.

73. Mate, from http://www.cs.berkeley.edu/pal/mate-web/, November 2004.

74. PicoRadio, from http://bwrc.eecs.berkeley.edu/research/pico radio/, November 2004.

75. S. D. Glaser, from http://www.ce.berkeley.edu/glaser/curee.pdf, November 2004.

76. The Telegraph Project at UC Berkeley, from http://telegraph.cs.berkeley.edu/,
November 2004.

77. TinyDB: A declarative database for sensor networks, from http://telegraph.cs.berkeley.
edu/tinydb/, November 2004.

78. XYZ on a chip: Integrated wireless sensor networks for the control of the indoor environ-

ment in buildings, from http://www.cbe.berkeley.edu/research/briefs-wirelessxyz.htm,

November 2004.

79. Digital Sun, from http://www.digitalsun.com/, November 2004.

80. Dust networks, from http://www.dust-inc.com/products/main.shtml, November 2004.

81. Ember, from http://www.ember.com/index.html, November 2004.

82. Sensicast, from http://www.sensicast.com/, November 2004.

83. Sensit Company, from http://www.sensit.com/, November 2004.

40 INTRODUCTION TO WIRELESS SENSOR NETWORKING

&CHAPTER 2

Distributed Signal Processing
Algorithms for the Physical Layer
of Large-Scale Sensor Networks

AN-SWOL HU and SERGIO D. SERVETTO

Cornell University, Ithaca, New York

The ability to move the sensed data out of the network (the reachback communi-

cation) is one of the basic communication primitives that must be supported by

every sensor network. This is most commonly achieved by routing of information

through the network to some central data collection point that will act on the

sensed information. Authors propose an approach to this problem by developing

a method to allow all nodes in the network to cooperatively generate a strong infor-

mation bearing signal to communicate with a distant data collection point. Such a

solution would be extremely robust to the failure of nodes in the network and

would allow for the deployment of a homogeneous network of extremely small,

low-power nodes for a variety of applications. This approach to the sensor reach-

back problem is called cooperative reachback. In this chapter two aspects of the

cooperative reachback problem are considered: time synchronization and reach-

back modulation schemes. Time synchronization facilitates the design of coopera-

tive reachback modulation schemes. A system model that will apply to both the

time synchronization problem and reachback communication is described. Authors

then study the properties of waveforms generated by asymptotically dense networks

and then move into the development of a time synchronization mechanism for dense

networks using these waveform properties. In the asymptotic regime, this time

synchronization framework can keep the synchronization mean squared error

from increasing with distance from the ideal time source. Next, authors study the

performance of this asymptotically optimal scheme for networks of finite size.

They then develop a modulation scheme for reachback communication again

using these waveform properties and study its performance using simulations.

41

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

2.1 INTRODUCTION

2.1.1 Reachback Communication and Cooperative Reachback

In the deployment of every sensor network, the ability to move the sensed data out of

the network is absolutely essential. We call this communication requirement reach-

back communication. This is most commonly achieved through the routing of infor-

mation through the network to some central data collection point that will act on the

sensed information. The scenario implies that the data collection point is within the

transmission range of one of the sensor nodes. However, this assumption may not

always be desired or practical. Potential applications of sensor networks range

from target tracking and classification [1,2] to habitat monitoring [3,4]. With such

a varying range of potential applications, the requirement that the data collection

node be within the transmission range of a sensor node is quite restricting.

Consider the dense aerial deployment of 100,000 cubic millimeter nodes in the

Amazon rain forest for habitat and environmental monitoring. Due to the low-

power nature of these sensor nodes, the communication range of each node may

only be on the order of meters. No one single node can communicate with a data

collection point that may be located on a low-flying aircraft, and thus the conven-

tional manner of routing information to the data collection point for reachback com-

munication will fail. In such a scenario, it is possible to deploy a tiered network

where a few more powerful nodes are included for reachback communication pur-

poses. However, such a solution means that the functionality of the network is

entirely dependent on the performance of these few communication nodes.

Our approach to this problem is to develop a method to allow all nodes in the

network to cooperatively generate a strong information-bearing signal to communi-

cate with a distant data collection point. Such a solution would be extremely robust

to the failure of nodes in the network and would allow for the deployment of a

homogeneous network of extremely small, low-power nodes for a variety of appli-

cations. We call this approach to the sensor reachback problem cooperative reach-

back. The avenue we explore in the development of algorithms for reachback is

motivated by recent work on the sensor broadcast problem [5a, 5b], where nodes

are able to agree on a common stream of bits to transmit.

2.1.2 Large-Scale Dense Sensor Networks

We consider the problem of cooperative reachback in the context of extremely dense

large-scale networks. In fact, the approach we take to studying these networks is to

assume that the number of nodes in a finite-area network grows unbounded. That is,

we consider an asymptotically dense network as a close approximation for realistic

large-scale dense networks.

Whereas infinitely large networks consisting of nodes with zero mass are clearly

not realizable by physical devices, there is a trend toward miniaturization of

these devices. For example, in recent work, a hardware simulation and deployment

platform for wireless sensor networks capable of simulating networks with on the

42 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

order of 100,000 nodes was developed [6]. In addition, for many years now the Smart

Dust project has been seeking to build cubic-millimetermotes for awide range of appli-

cations [7]. Furthermore, there is a trend toward the miniaturization of power sources

[8]. With large numbers and small nodes, we face a situation involving networks oper-

ating at high densities. This implies the need for cooperative reachback capabilities and

asymptotic behaviors provide a method to develop these abilities. Techniques devel-

oped in the asymptotic regime will have favourable scaling laws, and thus perform

well in practical situations with a large, but still finite, numbers of nodes.

2.1.3 Time Synchronization

In this chapter we consider two aspects of the cooperative reachback problem: time

synchronization and reachback modulation schemes. We study time synchronization

because it allows us to characterize a synchronized network. Once we have such an

understanding, we can apply this understanding to the design of cooperative

reachback modulation schemes. In fact, it would be ideal to design a mechanism

that can achieve cooperative reachback communication and network time synchro-

nization simultaneously.

One reason the time synchronization for large-scale dense networks is such a dif-

ficult problem is because of scalability issues. As the area of the network and the

number of nodes increase, multihop communication will most likely be required

for communication between nodes. This also means that timing information will

need to be distributed throughout the network in multiple hops, resulting in an

accumulation of timing error. For example, with reference-broadcast synchroniza-

tion (RBS) [9], which performs well for multi-hop synchronization, the average

path error still grows as
ffiffiffi
n

p
, where n is the number of hops. This problem of

timing error accumulation over multiple hops presents a significant problem for

large-scale wireless sensor networks since these networks have a large number of

nodes spread out over a wide area. However, the source of this problem may also

provide us with a solution. We ask the question: Given an extremely dense network

of nodes spread out over a finite area, can we use the large number of nodes to

improve synchronization performance?

2.1.4 Related Work

Due to the high level of interest in sensor networks, much recent work has been done

in the area of distributed signal processing for sensor and ad hoc networks. This

work covers topics ranging from cooperative routing, reachback communication,

to time synchronization. First of all, there has been much progress made in taking

a cross-layer approach to developing more efficient cooperative and distributed mul-

ticasting [10–12] and routing [13,14] techniques. The authors take a new perspec-

tive on the problems of routing and multicasting by jointly considering the network

layer and the physical layer.

In the area of reachback communication, there has been three significant direc-

tions of particular interest. One area is the use of cooperative diversity where

2.1 INTRODUCTION 43

nodes achieve uplink transmit diversity by relaying each other’s messages. This idea

was introduced by Sendonaris et al. in refs. [15] and [16] and extended by Laneman

et al. in refs. [17] and [18]. A variation on the concept of cooperative diversity,

called coded cooperation, was considered in refs. [19] and [20]. The second direc-

tion of research has been the use of radar concepts for the upload of information

from sensor networks. This idea has been studied in refs. [21] and [22], where

synthetic aperture radar (SAR) techniques were employed.

The third direction of research regarding reachback communication has been the

study of cooperative reachback. This area of research employs the idea of having

nodes in the network cooperatively generate a signal that can more reliably transmit

information to a far receiver. In ref. [23], the authors consider the problem of distrib-

uted beamforming while accounting for phase errors arising from errors in node pla-

cement. It is shown that the expected received signal power grows linearly with the

number of nodes in the network, as does the variance of the received power. They

conclude that there are large potential gains from distributed beamforming as long as

the node placement errors are small compared to the carrier wavelength. In ref. [24],

the problem of coherent cooperative transmission from multiple antennas is con-

sidered. The authors present a system architecture for such a distributed transmission

array and analyze its performance. Another cooperative transmission scheme of

interest is presented in ref. [25]. The proposed “opportunistic large arrays” consider

the situation where there is one source of information and the remaining nodes act as

repeaters. The accumulation of energy as the repeater nodes relay the signal sent by

the leader node acts as a physical layer flooding algorithm and a method for reach-

back communication.

In the area of time synchronization for sensor networks, a great deal of work has

been done [9,26–31]. In this work however, we seek to address not only the time

synchronization of large-scale sensor networks but also the issue of cooperative

reachback. In fact, we propose a method that can maintain time synchronization

and reachback communication simultaneously for asymptotically dense networks.

A recent piece of work by Hong and Scaglione [32] also deals specifically with

the time synchronization problem for large-scale sensor networks and addresses

the reachback communication issue. In ref. [32], the authors model the sensor

nodes as pulse-coupled oscillators and apply the results of Mirollo and Strogatz

[33], who show that a network of pulse-coupled oscillators will converge toward

synchrony under the assumptions of no delays, a noise-free environment, identical

oscillators, and all-to-all coupling. In ref. [32], the authors extend the theoretical

results of Mirollo and Strogatz for better implementation in a wireless sensor net-

work and analyze the system through simulations. In this chapter we use a different

system model and analytically prove synchronization before evaluating the results

through simulations.

2.1.5 Chapter Organization

The chapter is organized as follows. In Section 2.2 we set up the system model that

will apply to both the time synchronization problem and reachback communication.

44 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

We study the properties of waveforms generated by asymptotically dense networks

in Section 2.3, and then move into the development of a time synchronization mech-

anism for dense networks in Section 2.4 using these waveform properties. In the

asymptotic regime, this time synchronization framework can keep the synchroniza-

tion-mean-squared error from increasing with distance from the ideal time source. In

Section 2.5 we study the performance of this asymptotically optimal scheme for

networks of finite size. We then develop a modulation scheme for reachback

communication again using these waveform properties in Section 2.6, and study

its performance using simulations in Section 2.7. Concluding remarks are presented

in Section 2.8.

2.2 SYSTEM MODEL

As will become apparent later in the chapter, our methods for time synchronization

and cooperative reachback modulation are intimately related. In fact, the modulation

scheme can best be understood as an extension to the synchronization method. As a

result, the system model is set up mostly in the context of the time synchronization

problem.

2.2.1 Clock Model

We consider a sensor network with N nodes. The clock of one particular node in the

network will serve as the ideal time, and to this clock we wish to synchronize all

other nodes. This node can be any arbitrary node in the network and is not special

in any way. The system is defined relative to the clock of this arbitrary node. The

synchronization methods presented here synchronize the clocks of all nodes in a

network to the clock of one particular node. This is done to make the synchroniza-

tion scheme self-contained when the only clocks that the network has access to are

the clocks of its nodes. If we want the network synchronized to “real time,” then the

node initiating synchronization would need to have access to it. According to the

recommendations of Elson and Römer [26], we allow the local clock of each

node to be free-running. We never adjust the local clock frequency or offset, but

instead we seek to construct an “operational” clock on top of the free-running

local clock. The operational clock of each node will be synchronized to the ideal

clock, and it will be defined in terms of that node’s local clock.

We will call the node with the ideal clock node 1, and without loss of generality

we assume it lies in the center of the network. The clock of node 1, c1, will be

defined as c1,t ¼ t, and we also define the counter c1(t) ¼ btc where t [½0,1).

Note that c1,t is continuous while c1(t) takes only integer values. At any time to,

c1(to) is the number of ticks the counter of node 1 has made. From the expression

for c1(t), we can easily see that the counter of node 1 ticks on integer values of t.

We define the counter c1(t) to simplify the description of the synchronization

procedure, since all synchronization pulses are sent at integer values of t.

2.2 SYSTEM MODEL 45

Taking c1 to be the ideal clock, we now define the clock of any other arbitrary

node i as ci. We define ci as

ci,t ¼ ai(t � �Di)þCi(t) (2:1)

where

�Di is an unknown constant modeling the fact that it is not known when ci is

started relative to c1.

ai . 0 is a constant and for each i, ai [½alowbound ,aupbound� where

aupbound ,alowbound . 0 are finite. This bound on ai means that the frequency

offsets between any two nodes cannot be unbounded. We assume that a

known function fa(s) with s [½alowbound,aupbound� gives the percentage of

nodes with any given a value. Thus, the fraction of nodes with a values in

the range s0 to s1 can be found by integrating fa(s) from s0 to s1. We also

assume that j fa(s)j , Ga , for some constant Ga . We keep this function

constant as we increase the number of nodes in the network.

Ci(t) is a zero mean Gaussian process with samples Ctj � N (0,s 2), for j [N,

independent and identically distributed. We assume s 2 , 1 and note that s 2

is defined in terms of the clock of node i. We assume that Ci(t) is Gaussian

since the root-mean-square (RMS) jitter is characterized by the Gaussian

distribution [34].

Thus, this model assumes that there is a bounded constant frequency offset between

the oscillators of any two nodes as well as some random frequency jitter.

The reasoning behind the clock model in equation (2.1) comes from the following

oscillator model for the instantaneous frequency f (t),

f (t) ¼ f0 þ Df þ fr(t) (2:2)

where f0 is the nominal frequency in hertz, Df models the frequency accuracy in

hertz, and fr(t) models the short-term stability of the oscillator in hertz. Note that

we ignore frequency drift, because we assume that it is negligible for short periods

of time, say, on the order of 100 s. From approximate long-term stability numbers

plotted in ref. [35], we find that the frequency offset over 100 s is on the order

1� 10�11, which is two orders of magnitude less than the short-term frequency

stability standard deviation (1� 10�9) and over five orders of magnitude less than

the frequency accuracy of the SPK-SPG series of oscillators manufactured by

SPK Electronics Company (www.spkecl.com). Note that the frequency stability

and offset values are given by the formula foffset ¼ (fmeasured � f0)=f0. In our clock

model, we assume that the oscillator of c1 is running at f0 even though f0 may

be varying with time. The oscillators of ci are then defined relative to that

of c1 by equation (2.2). We assume that ci,t increments an integer value each

time the oscillator of node i completes a complete cycle. Thus, we have that

46 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

ai ¼ 1þ ðDf =f0Þ and s 2 ¼ (sfr=f0)
2, where sfr is the standard deviation of fr(t)

given in hertz.

As mentioned, the clocks c1 and ci, for all i will be free-running clocks that will

have a synchronized “operational” counter built on top of them. This operational

counter is set up in the following manner. We first assume that node 1 at time te deci-

des it needs to synchronize the remaining N � 1 nodes. Recall that node 1 is any

arbitrary node. Any one random node can detect an event and decide to synchronize

the network. In this case, that node will effectively be node 1. Node 1 will increment

its operational counter to a value of 1 at the next integer time t. That is to say, the

operational counter of node 1, denoted by s1(t), will be s1(t) ¼ bt � noc, where
no ¼ btec. Our goal, ideally, will then be to construct an identical operational coun-

ter si(t) ¼ bt � noc at node i. We want the operational counter at the ith node to

increment at integer values of t and hold a value equal to s1(t).

2.2.2 Observation Model

Synchronization will be achieved by the transmission and observation of pulses. We

first make the following assumptions about pulse transmission and reception:

. No Propagation Delay. We assume no delay between the time a pulse is trans-

mitted and the time it is seen by other nodes. Under certain conditions this may

be reasonable, since the propagation time of radio waves traveling at the speed

of light over small transmission distances is negligible. However, in general

time delays need to be explicitly considered. We leave the rigorous analysis

of time delay for future work.

. No TransmissionDelay or Time-StampingError. Weassume that a pulse is trans-

mitted at exactly the time the node intends to transmit it.Wemake this assumption

since there will be no delay in message construction or access time [9], since our

nodes broadcast the same simple pulse without worrying about collisions. Also,

when a node receives a pulse it can determine its clock reading without delay,

since any time-stamping error is small and can be absorbed into the random jitter.

Because pulses are exchanged among many different nodes, to clearly describe

transmission and reception times in relation to different clocks, we define the

following notation (illustrated in Fig. 2.1):

. tckj,i is the time, with respect to clock ck, that the ith node sees its jth pulse.

. sckn,i is the time of the nth transition of the operational counter si(t) with

respect to ck.

. Let us also say that, in general, any value or variable Xcj means that we are

considering the value of X in terms of the timescale of cj.

To use pulse transmission and reception times to do accurate synchronization, we

need to model the relationship between transmissions and receptions. We only

2.2 SYSTEM MODEL 47

describe this relationship for a node iwithin the broadcast domain of node 1 since, as

we later show, this is the only important case.

We recall that by definition, sc1n0,1 will be an integer and at this time a pulse will be

transmitted. Because node i is in the broadcast domain of node 1, we can describe

the pulse receive time at node i, with respect to the clock of node i, in terms of

the pulse transmission time (or equivalently, the time at which the operational

clock of node 1 increments) as the state equations

sc1n0þ1,1 ¼ sc1n0,1 þ 1

tcin,i ¼ ai(s
c1
n0,1 � �Di)þCi(s

c1
n0,1) (2:3)

The first equation of equation (2.3) simply says that if the n0th pulse of node 1 is

transmitted at integer sc1n0,1 in the time scale of node 1, then the (n0 þ 1) pulse will

be sent at sc1n0,1 þ 1, in the time scale of node 1. The second equation of equation

(2.3) makes use of the clock model of node i(2.1) to tell us the time at clock ci of

a pulse transmission by node 1 at sc1n0,1, where sc1n0,1 is in the timescale of c1. This

second equation effectively converts the time of a pulse transmission from the time-

scale of c1 to that of ci. Under the assumption that node i is in the broadcast domain

of node 1, n0 ¼ n. However, this does not hold in general because in the multihop

0

0 1 2 3 4 5

1 2 3 4 5 6 7

s1(t) = 1

s1(t) = 2

s1(t) = 3

s1(t) = 4
s1(t)

c1

c3

c1 starts 1.5 time units before c3 starts

Figure 2.1 This figure illustrates c1 and c3 as well as the operational counter of node 1, s1(t).

We assume node 3 is in the broadcast domain of node 1. In this illustration we assumeC3(t) ¼
0 (no random clock jitter), a3 ¼ 1, and �D3 ¼ 1:5. If we assume a pulse is transmitted by node

1 each time s1(t) increments, the second pulse will be transmitted at sc12,1 ¼ 4. Since node 3 can

hear the pulses of node 1, this pulse will be the second pulse heard by node 3. This occurs at

tc32,3 ¼ 2:5 ¼ sc32,1.

48 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

case the nth pulse observed by the jth node does not necessarily correspond to the nth

pulse transmitted by node 1. So, in general, if we assume n0 � n ¼ k, where k [N,

then the expression is saying that the pulse seen by node j at t
cj
n, j is occurring at s

cj
nþk,1.

2.2.3 Propagation Model

To model signal amplitude loss, we assume a general model K(d), where 0 �
K(d) � 1 for all d. Here K(d) is a fraction of the transmitted magnitude seen at dis-

tance d from the transmitter. For example, if the receiver node j is at distance d from

node i, and node i transmits a signal of magnitude A, then node j will hear a signal of

magnitude AK(d). We derive K(d) from a power path-loss model since any

path-loss model captures the average received power at a given distance from the

transmitter. This average received power is perfect for modeling received signal

magnitudes in our problem setup, since we are considering asymptotically dense

networks. Due to the large number of nodes at any given distance d from the

receiver, using the average received magnitude at distance d as the contribution

from each node at that distance will give a good modeling of the amplitude of the

aggregate waveform. An example of K(d) is given in Section 2.5.

This K(d) is good for modeling aggregate signal-propagation distances, but to

model the magnitude of the aggregate signal at a given node j we choose to use a

random variable Kj,i with the following properties:

. For a given j, Kj,i are independent identically distributed (iid) for all i.

. Kj,i is independent from Cl,t for all j, i, l, and t.

. 0 � Kj,i � 1, 0 , E(Kj,i) � 1, and Var(Kj,i) � 1.

Note that the requirements on the random variable Kj,i places restrictions on the

model K(d). Any function K(d) that yields a Kj,i with the preceding requirements

can be used to model path loss.

To understand how Kj,i and K(d) are related and where the properties of Kj,i come

from, we give an intuitive explanation of the meaning of Kj,i: PrðKj,i [ðk; k þ DÞÞ is
the fraction of nodes at distances d from node j such that K(d) [ðk; k þ DÞ;where D
is a small constant. This means that, roughly speaking, for any given scaling factor

Kj,i ¼ k, fKj
ðkÞD is the fraction of received signals with magnitude scaled by approxi-

mately k. Thus, if we scale the transmit magnitude A from every node i by an inde-

pendent Kj,i, then as the number of nodes, N, gets large, node j will see NfKj
(k)D

signals of approximate magnitude Ak for all possible scaling factors Kj,i ¼ k. This

is because taking a large number of independent samples from a distribution results

in a good approximation of the distribution. Thus, for large N, this intuition tells us

that by scaling the magnitude of the signal transmitted from every node i by an inde-

pendent sample of the random variable Kj,i gives an aggregate signal at node j that is

the same magnitude as if we generated the signal using K(d) directly.

For cooperative reachback, we assume that all nodes are equidistant from the far

receiver. This approximation holds for receivers that are far from the network. As a

2.2 SYSTEM MODEL 49

result, we assume that (1) the propagation delay is the same for each node, and (2)

the path loss is the same for each node. Thus, for cooperative reachback we do not

need to use Kj,i and can work directly with K(d).

2.2.4 Synchronization and Communication Pulses

Each node will periodically transmit a scaled version of the pulse p(t) to achieve and

maintain synchronization. We call the interval of time during which a synchronization

pulse is transmitted a synchronization phase. Pulses are only transmitted during the

synchronization phases, and at other times the nodes can be dedicated to other

tasks. Thus, the smaller the synchronization phase, the better. The actual process of

synchronization is described in Section 2.4. We assume that p(t) takes on the shape

p(t) ¼
1 �tnz , t , 0

0 t ¼ 0, t � �tnz, t � tnz
�1 0 , t , tnz

8<
: (2:4)

for some tnz . 0, and tnz is expressed in terms of c1.

The term tnz should be chosen large compared to maxi s
2,c1
i , where s 2,c1

i is the

value of s 2 translated from the timescale of ci to c1, that is, s
2,c1
i � tnz. This way,

over each synchronization phase, with high probability a zero-crossing will occur.

For each node, the duration in terms of c1 of a synchronization phase will be 2tnz.
Note that we assume tnz is a value that is constant in any consistent timescale.

This means that even though nodes have different clocks, identical pulses are trans-

mitted by all nodes. We assume that p(t) is generated by a circuit in each node that

emits identical pulses. Each node knows only when to initiate the pulse so that it is

sent at the time the node intends it to be sent. We define a pulse to be transmitted

at time t if the pulse makes a zero-crossing at time t. Similarly, we define the pulse

receive time for a node as the time when the observed waveform first makes a

zero-crossing. A zero-crossing is defined for signals that have a positive amplitude

and then transition to a negative amplitude. It is the time that the signal first reaches

zero. Note that in this work we study the problem in baseband and do not consider the

effects of the carrier. For the exchange of synchronization pulses, we assume that

nodes can transmit pulses and receive signals at the same time. This simplifying

assumption is not required for the ideas presented here to hold.

For cooperative reachback communication, we modify the type of pulses being

transmitted by each node. The modification will fundamentally preserve the zero-

crossing property of p(t), and it will be discussed in detail in Section 2.6.

2.2.5 Signal-Reception Model

The aggregate waveform seen by node j at any time t is

Ac1
j,hk

(t) ¼
Xhk

i¼1

kAmaxKj,i

hk

p(t � to � Ti) (2:5)

50 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

where Ac1
j,hk

(t) is the waveform seen at node j written in the timescale of c1 and hk is

the number of nodes contributing to the signal, as it may be possible that only a

subset of nodes is transmitting (hk goes to infinity as N goes to infinity). The term

k is a scaling factor to ensure proper reception of the aggregate waveform by all

nodes in the network, and Ti is the random timing jitter suffered by the ith node.

We will see that Ti is Gaussian since Ci(t) is a Gaussian process, and Ti �
N (0, �s2

i) will have �s2
i , B for all i and a constant B . 0. If, on the other hand,

we assume that node j is receiver Rx a distance do from the network, then the aggre-

gate waveform will be modeled as

Ac1
Rx,N(t) ¼

XN
i¼1

kAmaxK(do)

N
p(t � to � Ti) (2:6)

Note that each node can be told the values of N and hk before deployment. Assuming

the system designer knows the area over which the network will be deployed, the

values of hk can be approximated during the design of the network. Note that an

approximation of hk will not affect any of the analytical results; it is only important

that hk is the correct order of magnitude.

To model the quality of the reception of Ac1
j,hk

(t) by node j, we model the

reception of a signal by defining a threshold g. The g is the minimum received

maximum signal magnitude required for nodes to perfectly resolve the pulse

arrival time. If the maximum received signal magnitude is less than g, then

the node does not make any observations and ignores the received signal wave-

form. We assume that g , Amax, where Amax is the maximum transmit magnitude

of a node.

2.2.6 Synchronization Pulse Trains

In equation (2.5) and in the preceding discussions, we have focused on

characterizing the aggregate waveform for any one synchronization phase.

That is, equation (2.5) is the waveform seen by any node j for the synchroni-

zation phase centered around node 1’s transmission at t ¼ t0, where t0 is a

positive integer. We can, however, describe a synchronization pulse train in

the following form:

�A
c1
j,hk

(t) ¼
X1
q¼1

Xhk,q

i¼1

kAmaxKj,i

hk,q

p(t � tq � Ti,q) (2:7)

where hk,q is the number of contributing nodes at the qth synchronization phase,

tq is the integer value of t at the qth synchronization phase, and Ti,q is the jitter

suffered by the ith node in the qth synchronization phase. We seek to create this

pulse train with equispaced zero-crossings and use each zero-crossing as a syn-

chronization event.

2.2 SYSTEM MODEL 51

2.3 STRUCTURAL PROPERTIES OF LARGE COLLECTIONS OF
RANDOMLY SHIFTED PULSES

2.3.1 The Structure of A1(t)

The aggregate waveform seen at each node j in the network and at the receiver Rx

described in Section 2.2.5 both have the form

AN(t) ¼ 1

N

XN
i¼1

CKi p(t � t0 � Ti) (2:8)

where C is a constant. As we let the number of nodes grow unbounded, N ! 1, the

properties of this limit waveform can be characterized by Theorem 2.1.

Theorem 2.1 Let p(t) be as defined in equation (2.4), Ti � N (0, �s2=a2
i) with

�s2=a2
i , B , 1 for all i, and Ki satisfying the conditions in Section 2.2.3. Then,

limN!1 AN(t) ¼ A1(t) has the properties

. A1(t) is odd about t0, i.e. A1ðt0 � 1Þ ¼ �A1ðt0 þ 1Þ; for some 1 . 0:

. A1(t) is continuous

. A1(t0) ¼ 0

. A1(t) . 0 for t [(t0 � t, t0), and A1(t) , 0 for t [(t0, t0 þ t) for

some t , tnz

The properties outlined in Theorem 2.1 will be key to the synchronization mech-

anism and cooperative reachbackmodulation scheme that we propose. One important

issue to note is that Theorem 2.1 holds for any odd-shaped pulse (i.e., p(2t) ¼ 2p(t))

with compact support. Thus, the generation of rectangular pulses is not required. This

fact can be seen from the proof of Theorem2.1,which is left for ref. [36]. However, we

develop and motivate a few important related lemmas in the next section.

2.3.2 The Polarity and Continuity of A1(t)

At time t ¼ t1 = t0, we have that

AN(t1) ¼
XN
i¼1

CKi

N
p(t1 � t0 � Ti)

¼
XN
i¼1

1

N
�Mi(t1)

where �Mi(t1)¼4 CKip(t1 � t0 � Ti). We have the mean of �Mi(t1) being

E(�Mi(t1)) ¼ CE(Ki)

ð
p(t1 � t0 � c)fTi(c) dc (2:9)

52 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

where fTi(c) is the Gaussian probability density function (pdf)

fTi(c) ¼
1

ð �s=aiÞ
ffiffiffiffiffiffi
2p

p exp � (c� t0)
2

2ð �s2=a2
i Þ

� �

It is clear that the �Mi(t1)’s, for different i’s, do not have the same mean and do

not have the same variance since the two quantities depend on the ai value. For

generality of notation with fa(s) from Section 2.2.1, we write the Gaussian distri-

bution for T as

fT (c, s) ¼ 1

ð �s=sÞ ffiffiffiffiffiffi
2p

p exp � (c� t0)
2

2ð �s2=s2Þ
� �

;

and define the notation Miðt1; sÞ ¼4 Miðt1Þ: We use the results of Lemma 2.1 and a

corresponding lemma for t1 . t0 to prove the polarity result for A1(t) in ref. [36].

Lemma 2.1 Given the sequence of independent random variables �Mi(t1) with

t1 , t0, E(�Mi(t1)) ¼ mi, and Var(�Mi(t1)) ¼ s2
i . Then, for all i,

g2 . mi . g1 . 0 (2:10)

s2
i , g3 , 1 (2:11)

for some constants g1, g2, and g3, and

lim
N!1

1

N

XN
i¼1

�Mi(t1) ¼ h(t1) . 0

almost surely, where

h(t1) ¼ CE(Ki)

ðaupbound

alowbound

ð1
1
p(t1 � t0 � c) fT (c, s) dc fa(s) ds

¼
ðaupbound

alowbound

EðMiðt1; sÞÞfaðsÞ ds

The results of Lemma 2.1 and the corresponding lemma for t1 . t0 are intuitive,
since given that p(t) is odd, it makes sense for A1(t) to have properties similar to an

odd waveform. The proofs are left for the reader and can be found in ref. [36].

Knowing only the polarity of A1(t) is not entirely satisfying, since we would also
expect that the limiting waveform be continuous. This, in fact is true, and we see it in

the following lemma. Once again, the proof can be found in ref. [36].

Lemma 2.2

A1(t) ¼ lim
N!1

1

N

XN
i¼1

CKip(t � t0 � Ti) ¼ lim
N!1

1

N

XN
i¼1

�Mi(t) ¼ h(t)

is a continuous function of t.

2.3 RANDOMLY SHIFTED PULSES 53

2.4 PHYSICAL-LAYER TIME SYNCHRONIZATION

2.4.1 A Synchronization Protocol

We consider a network of N nodes, uniformly distributed over the ½0, 1� � ½0, 1�
plane. We describe the mechanism for synchronizing this network to the clock of

node 1, which is assumed to be at the center of the network. In Section 2.4.3 we

explain why this mechanism is asymptotically optimal and good for the synchroni-

zation of dense networks.

Synchronization will be achieved in the following manner. Node 1 will start

transmitting pulses and continue to transmit pulses every time the counter s1(t)

increments. After the initial m pulses, the set of nodes in the broadcast domain of

1, not including node 1, will make an optimal estimate of the location of the

(mþ 1)th pulse and transmit at that time. We will call the set of nodes in the

broadcast domain of node 1 R2. The nodes in R2 will then use their most recent m

observations to optimally estimate the time of pulse mþ 2. The R2 nodes will con-

tinue in this manner. The nodes that can hear the aggregate transmissions from R2

and node 1, the R3 nodes, will begin their own predictions and transmissions after

observing m pulses. This propagation will then continue until all nodes in the net-

work hear signals. Figure 2.2 illustrates this propagation.

Node 1 will initially transmit with magnitude Amax. Once theR2 nodes begin trans-

mitting, node 1 will scale its transmissions along with the other nodes. The R2 nodes

and node 1 will each transmit with magnitude (Amaxk/h1), where h1 is the number of

nodes in < 2
i¼1Ri , whereR1 is node 1, and k is a constant that ensures that all nodes in

the network will be synchronized after a finite number of hops out from node 1. This

trend will continue so that the nodes in < i¼1
k Ri will transmit with magnitude

ðAmaxkÞ=hk�1, where hk�1 is the number of nodes transmitting. Once all nodes in

the network are transmitting, the nodes will be transmitting with magnitude

(Amaxk)/N. Note that each node’s knowledge of hk will be gained from information

that is exchanged. The information that needs to be distributed is detailed in ref. [37].

The preceding mechanism is designed for asymptotically dense networks. In

applying it to finite-sized (N , 1) networks, we introduce a small amount of

feedback into the system to prevent small errors from accumulating. Node 1 is

the only node in the network that can observe the aggregate waveform and have

access to the ideal clock. We define a tolerance factor, @, such that if node 1’s

observed zero-crossing is more than @ from the ideal zero-crossing, then it informs

all nodes in the network to adjust their estimate. Tolerance factor @ is defined as

@ ¼ Maximum allowed distance between ideal and observed zero-crossing

Time between synchronization pulses

where all times are defined in terms of c1. It is clear that @ is defined in the design of

the system so each node knows its value.

When node 1 notices that @ has been exceeded, it sends a 1-bit feedback to all

nodes. That bit will tell nodes whether the observed zero-crossing occurred before

54 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

or after the ideal zero-crossing location. If the observed zero-crossing occurred

before the ideal, then each node will delay all m of its observations by an adjustment

factor. If the observed zero-crossing occurred after the ideal, each node will shift all

of its observations back in time by an adjustment factor. This means that if, for

example, the observed zero-crossing occurred early, then by having each node

delay its set of m observations, the next estimate made by each node will occur

later. Since all nodes are making a later estimate, the next aggregate waveform

zero-crossing should be delayed as well, bringing it closer to the ideal zero-crossing

time. For each node i the adjustment factor is calculated as

Node i adjustment factor ¼
@� jDifference between most recent two observation timesj

Note that these calculations are all done by node i in terms of its own timescale.

It is important to stress two things. First, this added feedback does not in any way

affect the asymptotic optimality of the synchronization mechanism. In an asympto-

tically dense network, the extra feedback and correction mechanism will simply not

N nodes in unit area

Node 1

Rk nodes

R2 nodes

R3 nodes

R4 nodes

Figure 2.2 This figure illustrates the propagation of the synchronization pulses starting from

node 1 at the center of a unit area square with N nodes uniformly distributed over the area. The

R2 nodes hear the pulses from node 1, and the R3 nodes hear the aggregate signal from node 1

and the nodes in R2. This propagation continues beyond the Rk nodes until all nodes in the

finite area can hear synchronization pulses.

2.4 PHYSICAL-LAYER TIME SYNCHRONIZATION 55

be needed. It is added only to make the asymptotically optimal synchronization

mechanism robust for networks of finite size. Second, the reliance on node 1 to

initiate the feedback does not make the synchronization mechanism less robust

because node 1 is arbitrary. If this node 1 fails, then the synchronization mechanism

can simply be reinitiated using another node as node 1. Thus, the failure of node 1

does not prevent the network from synchronizing.

2.4.2 Optimality Conditions

The reason we propose the synchronization mechanism outlined in Section 2.4.1 is

that it does well in an asymptotically dense network. In fact, it is optimal in a manner

described in this section. The problem of synchronization is the challenge of having

the ith node accurately and precisely predict when node 1 increments its operational

counter. In our setup, the reception of a pulse by node i tells it of such an event.

Recalling that Ci(s
c1
n0, 1) � N (0,s 2), from equation (2.3) we see that the pulse

receive time at node i, tcin,i, is a Gaussian random variable whose mean is parameter-

ized by the unknown vector q ¼ ½ai, s
c1
n0,1,

�Di�. Thus, to achieve synchronization node
i will try to estimate the random variable tcin,i using a series of m pulse receive times

as observations (recall that m is known). Note the observations are also random vari-

ables with distributions parameterized by q. We define optimal synchronization as

node i making an estimate of tcin,i, denoted t̂cin,i(t
ci
n�1,i, t

ci
n�2,i, . . . , t

ci
n�m,i), which is a

function of past observations tcin�1,i, t
ci
n�2,i, . . . , t

ci
n�m,i, that meets the following optim-

ality criteria:

Eq(t̂
ci
n,i(t

ci
n�1,i, t

ci
n�2,i , . . . , t

ci
n�m,i)) ¼ Eq(t

ci
n,i) (2:12)

argmint̂ci
n,i
Eq(kt̂cin,i(tcin�1,i, t

ci
n�2,i , . . . , t

ci
n�m,i)� tcin,ik2) (2:13)

for all q. The subscript q means that the expectation is taken over the distributions

involved given any possible q. The first optimality condition comes from the fact

that given a finite m, it is reasonable to want the expected value of the estimate to

be the expected value of the random variable being estimated for all q. As in the

justification for unbiased estimators, this condition eliminates unreasonable estima-

tors so that the chosen estimator will perform well, on average, for all values of q.
The second condition is the result of seeking to minimize the mean-squared error

between the estimate and the random variable being estimated for all q.
However, for optimal synchronization it seems reasonable to require that the

mean-squared error of a particular node placed in the broadcast domain of node 1

be same as when that node was placed far away from node 1. Thus, we go

beyond the preceding conditions and define an optimally synchronized network as

one where all nodes in the network can achieve the optimality conditions of

equations (2.12) and (2.13) and the mean-squared error achieved in equation

(2.13) for each node is the smallest possible mean-squared error achievable for

that node over the area of the network. Thus, the optimality condition for an

56 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

optimally synchronized network is

Eq(kt̂cjn0,j(tcjn�1,j, t
cj
n�2,j , . . . , t

cj
n�m,j)� t

cj
n0,jk2)

¼ min
A

Eq(kt̂c jn0,j(tc jn�1,j, t
cj
n�2,j , . . . , t

cj
n�m,j)� t

cj
n0,jk2) for all j,q (2:14)

This means that in order for the network with node j to be optimally synchronized at a

given timewhen s1(t) increments node jmust have itsminimumpossiblemean-squared

error over the area of the entire network (A). Thus, we see that an optimally synchro-

nized network is defined only for a given synchronization mechanism. Once a mech-

anism is determined, the mechanism will achieve optimal synchronization if each

node in the network is synchronizedwith the smallest possibleminimummean-squared

error the mechanism can achieve for that node placed anywhere in the network.

2.4.3 One-Hop Synchronization and Multihop Synchronization

Optimal one-hop synchronization can be achieved by designing an optimal estima-

tor (optimal in the sense of equations (2.12) and (2.13)) for estimating the next pulse

arrival given m arrivals. This is because the one-hop nodes are within the broadcast

domain of node 1 and are able to observe the exact time node 1 increments its oper-

ational counter and thus make the best estimate.

We show in ref. [38] that for any m consecutive observations, we have the

linear model

Y ¼ HuþW (2:15)

where

Y ¼ ½ y1 y2 � � � ym�T ¼ ½tcin�m,i tcin�mþ1,i � � � tcin�1,i�T

u ¼ u1

u2

� �
¼ ai(s

c1
n00 ,1 � �Di)

ai

" #

H ¼ 1 1 1 � � � 1

0 1 2 � � � m� 1

� �T

withW ¼ ½w1 � � �wm�T . sc1n00,1 is some unknown integer. Based on our assumption that

Ci(t) is a Gaussian noise process with independent samples, W � N (0,S) with
S ¼ s2I. What equation (2.15) fundamentally models is the fact that the vector of

pulse reception times of node i, given by ½ y1 y2 � � � ym�T , will have a mean that

grows linearly.

With the observation model equation (2.15), we want to estimate the next pulse

arrival time ymþ1, which is jointly distributed with Y as

Y

ymþ1

� �
� N M

u1 þ mu2

� �
,

S 0

0 s 2

� �� �

2.4 PHYSICAL-LAYER TIME SYNCHRONIZATION 57

The optimal estimator for ymþ1 will be a uniformly minimum variance unbiased

(UMVU) estimator of u1 þ mu2. As shown in ref. [38], this can be found as

f̂ML ¼ û1ML þ mû2ML, where

ûML ¼ (HTS
�1
H)�1HTS

�1
Y ¼ (HTH)�1HTY

We also show that f̂ML is Gaussian with Eu(f̂ML) ¼ u1 þ mu2 and

Varu(f̂ML) ¼ Cs2(HTH)�1CT ¼ 2s2(2mþ 1)

m(m� 1)

Please also note that the preceding optimal estimation is carried out by node i

according to ci. Intuitively, it is most important to realize that the mean of f̂ML trans-

lated to the timescale of c1 is an integer value. This means that E(f̂ML) is when s1(t)

increments.

To see how f̂ML is related to Ti from Theorem 2.1, start by seeing that

f̂ML � N ai(s
c1
n00,1 � �Di)þ mai,

2s2(2mþ 1)

m(m� 1)

� �

Using equation (2.1), we can translate f̂ML into the time scale of c1 as

f̂c1
ML ¼ (f̂ML �Ci)

ai

þ �Di

This means that

f̂c1
ML � N sc1n00 ,1 þ m,

s2

a2
i

1þ 2(2mþ 1)

m(m� 1)

� �� �

Since sc1n00 ,1 þ m is the ideal crossing time in the timescale of c1, it is t0. Thus,

f̂c1
ML ¼ t0 þ Ti

Therefore, we see that

Var(Ti) ¼ s 2

a2
i

1þ 2(2mþ 1)

m(m� 1)

� �
¼ �s 2

a2
i

(2:16)

where �s2 from Theorem 2.1 is

�s 2 ¼ s 2 1þ 2(2mþ 1)

m(m� 1)

� �

For multihop synchronization, we first note that an optimally synchronized net-

work would be possible if every node in the network, no matter its distance from

58 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

node 1, could somehow hear the synchronization pulses emitted by node 1. This

means that our goal for multihop synchronization would be to somehow allow the

nodes outside the broadcast domain of node 1 to observe node 1’s synchronization

pulses. We find that this is possible, as N ! 1, by considering the zero-crossing of

the aggregate waveform generated by all nodes in the network.

Recall from Section 2.2.5 that the aggregate waveform observed by any node j is

Ac1
j,hk

(t) ¼
Xhk

i¼1

kAmaxKj,i

hk

p(t � to � Ti)

where hk was defined in Section 2.4.1. Note that the variance of Ti in the timescale

of c1 is in the form required by Theorem 2.1. Also, the variance is upper bounded by

some constant, since ai is lower bounded by alowbound . Thus, the properties of A
c1
j,1(t)

are characterized by Theorem 2.1. Figure 2.3 illustrates the properties.

The result of Theorem 2.1 has significant implications for synchronization. First

note that since N ! 1, Ac1
j,hk

(to) ! 0, node j sees a zero crossing that occurs at an

integer value in the time scale of c1 (as N ! 1, we have hk ! 1). Now following

our synchronization mechanism outlined in Section 2.4.1, we know that when the R2

nodes start transmitting synchronization pulses, the pulse transmission time

(t0 þ Ti) for any node i in R2 will satisfy the requirements of Theorem 2.1. This

is because node i is in the broadcast domain of node 1, and from earlier in this sec-

tion we know that its optimal estimate of the next pulse arrival time is a finite-mean

Gaussian random variable. Furthermore, the mean is the exact time node 1 incre-

ments its operational counter. Thus, we can apply Theorem 2.1 to the transmissions

of the R2 nodes and any node l in R2 < R3 will see a received signal A
c1
l,h2

(t1) ¼ 0 for

N ! 1, where t1 is the time when node 1 next increments s1(t). Since a node i in R3

can effectively see the exact time the pulse from node 1 makes a zero-crossing, its

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Time

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

p(t)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Time

N = 400

Figure 2.3 The pulse p(t) is shown on the left figure, with t0 ¼ 1 and Amax ¼ 1. On the right

we have a realization of AN(t) (N ¼ 400), and we assume that Kj,i ¼ 1 (no path loss) and Ti �
N (0, 0:01) for all i. As expected from Theorem 2.1, we notice that the zero-crossing of the

simulated waveform is almost exactly at t ¼ 1.

2.4 PHYSICAL-LAYER TIME SYNCHRONIZATION 59

estimate t̂cin,i will have a minimummean-squared error equal to if it were in the broad-

cast domain of node 1. This is the minimum mean-squared error for all nodes in the

network that is achievable by the synchronization mechanism. This is why the only

optimal estimator needed was the estimator outlined earlier in this section for nodes

in the broadcast domain of node 1. Now because the estimate made by node i in R3 is

the same as if it would have made in the broadcast domain of node 1, the pulse trans-

mission time for node i again satisfies the requirements of Theorem 2.1. Hence,

again Theorem 2.1 can be applied. This cycle will then repeat until all nodes are syn-

chronized, and then the cycle will continue to keep the nodes synchronized. It is

important to note that with this dense network, the network is optimally synchro-

nized at each step of the synchronization process since every node has access to

the transition times of node 1.

2.5 TIME SYNCHRONIZATION SIMULATION

2.5.1 Simulator Implementation

As mentioned, we study the synchronization problem in the asymptotically dense

regime, since it closely approximates the behavior of networks with large, but

still finite, densities. As a result, an obvious question is how well the limiting

regime actually approximates finite-density networks. In an effort to answer this

question, we implement a simulator to study the performance of our synchronization

mechanism on finite-density networks. This is a key step toward building a

massively distributed software radio. Note that the simulation results are presented

in time units that are unspecified. The reason for this is that any time units can be

used and the results will still hold. What is most important to note in the simulations

is that even with a finite number of nodes, the synchronization error closely approxi-

mates the limiting results presented in Section 2.4.3 thus showing that the limit

regime gives us analytical results that closely model finite-sized networks.

The time synchronization simulator is implemented in MATLAB, and the N

nodes are uniformly distributed over a circle with area 30. The node parameters

are independently and randomly generated using �Di � N (0,0:1) and ai ¼ jXj,
where X � N (1,0:01). The jitter variance is set to be Var(Ci) ¼ 0.01 for all i. In

the generation of the aggregate waveform we use the following parameters:

tn,z ¼ 0:2 Amax ¼ 1 k ¼ 8 Kj,i ¼ 1

In determining the transmission range of the aggregate waveform, we assume

K(d) to be

K(d) ¼
1 d , effiffiffiffiffi
eb

db

r
d � e

8<
: (2:17)

Recall that K(d) models the signal amplitude loss, thus it is clear that equation (2.17)

is derived from the standard path-loss model where signal power decays as 1/d b

60 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

for 2 � b � 4. For simulations we use

b ¼ 2 e ¼ 0:1 g ¼ 0:2

Last, for simulations we set the tolerance factor to be @ ¼ 0.05. The details of the

simulator implementation can be found in ref. [37].

2.5.2 Simulation Results

Before presenting the results of the simulations, we first describe how we measure

the performance of the synchronization mechanism. Recall that ideally we would

want all nodes to transmit a synchronization pulse at the exact same time. This

means that in the ideal situation, when we translate each node i’s estimate of the

next zero-crossing location into the timescale of node 1, it should be the next integer

value of t. In reality, this is not the case and we use a measure, which we call the

average squared distance (ASD), to quantify the average distance of the nodes’ esti-

mates from the ideal integer time of c1. The ASD is calculated as follows:

ASD ¼ 1

�N

X�N

i¼1

(t̂c1i � t0)
2

where �N � N is the number of nodes currently making estimates, t0 is the integer

value of t where node 1 will next increment its operational counter, and t̂c1i is the

ith estimating node’s estimate of t0 in the timescale of c1.

The first simulation result that we present in Figure 2.4 serves as motivation for

the modified synchronization mechanism that includes feedback. We see in the first

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

A
v
e
ra

g
e
 s

q
u
a
re

d
 d

is
ta

n
c
e
 (

A
S

D
)

ASD vs. time (density=400)

m= 10
m= 15
m= 20

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

A
v
e
ra

g
e
 s

q
u
a
re

d
 d

is
ta

n
c
e
 (

A
S

D
)

ASD vs. time (density=400)

m= 10
m= 15
m= 20

Figure 2.4 Left: A plot of ASD versus time for the synchronization mechanism without

feedback. The results were averaged over 10 runs. We see that synchronization is held for

a period of time, but not indefinitely. Right: A plot of ASD versus time for the

synchronization mechanism with feedback. We note that ASD is bounded and

synchronization can be maintain indefinitely.

2.5 TIME SYNCHRONIZATION SIMULATION 61

panel of Figure 2.4 that for m ¼ 10, 15, 20, synchronization is maintained over a

period of time. In fact, for m ¼ 20, synchronization is maintained for over 70

time units. On average, as seen in the first panel of Figure 2.4, the larger the m

value, the longer synchronization can be maintained. However, in all cases synchro-

nization is eventually lost. This is due to the fact that small errors in the aggregate

waveform zero-crossing location accumulate. For example, if an observed zero-

crossing arrives late, then the next aggregate waveform zero-crossing may arrive

late as well, since all nodes are making an estimate using the delayed zero-

crossing. Thus, these errors accumulate and eventually the aggregate waveform

zero-crossing might be delayed so much that the nodes can no longer observe the

zero-crossing. We also note that the length of time synchronization can be main-

tained may vary a great deal and is difficult to predict from run to run. As a

result, by introducing feedback we can correct this drifting zero-crossing. An illus-

tration of ASD versus time for the mechanism with feedback is presented in the

right-hand panel of Figure 2.4. There we run the simulation once and notice that

in all cases the ASD is bounded and synchronization is maintained indefinitely.

Figure 2.5 is a close-up of the right-hand panel of Figure 2.4, showing the “saw-

tooth” waveform for m ¼ 10 and m ¼ 15. Each “tooth” coincides with one time

that the feedback triggered by node 1 adjusted each node’s observations. In fact,

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time

A
v
e

ra
g

e
 s

q
u

a
re

d
 d

is
ta

n
c
e

 (
A

S
D

)

ASD vs. time (density=400)

m=10
m=15
m=20

Figure 2.5 A plot of ASD versus time for the synchronization mechanism with feedback.

We see a “sawtooth” waveform for m ¼ 10, 15, and each “tooth” occurs at a time where a

correction was made.

62 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

the simulator tells us that for m ¼ 10, there were six corrections, m ¼ 15 had four,

and m ¼ 20 so far did not require any corrections to the node observations.

Another key property of the synchronization mechanism with feedback is that it

performs well for a wide range of network sizes. In Figure 2.6 we plot the ASD

versus time for network sizes varying from N ¼ 300 (density ¼ 10, area ¼ 30) to

N ¼ 18,300 (density ¼ 610, area ¼ 30). In steady state all nodes are transmitting,

and we notice that the ASD curve for the 300-node network is at most 0.0005 greater

than the ASD curve for the 18,300-node network. This means that on average the

ASD varies only by at most 0:0005 for network sizes in this range, and thus the

mechanism is well suited for network sizes as small as a few hundred nodes. Of

course, as expected, the mechanism must make more active corrections based on

feedback from the network. In fact, we find that the average number of corrections

made for the 150 time units of the simulation was 18.2 for N ¼ 300 and 2.9 for

N ¼ 18,300. As a result, even though the mechanism performs well for networks

of only a few hundred nodes, it does require more active adjustments on the part

of the mechanism. Such a result is in line with our comment at the end of Section

2.4.1 since in the limit as N ! 1 the feedback and correction mechanism will

not be needed.

0 50 100 150
0.011

0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

Time

A
v
e
ra

g
e
 s

q
u
a
re

d
 d

is
ta

n
c
e
 (

A
S

D
)

ASD vs. time (m = 15)

density = 10

density = 210

density = 410

density = 610

Figure 2.6 A plot of ASD versus time for the synchronization mechanism with feedback for

different network sizes. Each plot was averaged over 500 runs. In steady state we see that the

mechanism performs well for a wide range of network sizes since the difference in ASD for a

network of N ¼ 300 nodes and a network of 18,300 nodes is at most 0.0005.

2.5 TIME SYNCHRONIZATION SIMULATION 63

Before concluding this simulation section, we connect the simulation results to the

analytical results presented in Section 2.4.3. From equation (2.16), we see that

variance of the time estimate in terms of c1 should be the jitter variance s
2 multiplied

by a function of m and ai. Since the ASD approximates this synchronization error

averaged over all nodes, we would expect the simulation results to closely approxi-

mate the analytical value. Using m ¼ 10, ai ¼ 1, and using the simulation value

s2 ¼ Var(Ci) ¼ 0:01, equation (2.16) gives us a value of about 0.01467. From the

right panel of Figure 2.4 we see that the ASD for m ¼ 10 is consistently less than

0.02. Thus, even for a finite number of nodes, the synchronization mechanism gives

us a synchronization error that closely approximates the limiting analytical results.

Last, to better understand the simulation results in terms of some realistic num-

bers, we consider a system that uses a 1-MHz oscillator and sends a synchronization

pulse every microsecond. Using an oscillator from the SPK-SPG series of oscil-

lators, we have f0 ¼ 1� 106 Hz and Df ¼ +100Hz. Using a figure from ref. [35]

we take the standard deviation of fr(t) to be 0.001 Hz. For our clock model this trans-

lates into ai [(1� 100� 10�6, 1þ 100� 10�6), s2 ¼ 1� 10�18, and ci(t) is

counting in microseconds. This means that our ASD value will be on the order of

1 � 10218 ms, which translates into a timing jitter standard deviation of about 1 ps.

2.6 DISTRIBUTED FREQUENCY SHIFT KEYING

The time synchronization mechanism described in Section 2.4 forms the core on top

of which distributed frequency shift keying (dFSK) is built. In this section, we first

show how an aggregate waveform suitable now for both synchronization and

communication is generated, and then show how bits are modulated onto this new

waveform.

2.6.1 Waveform Generation

We observe that synchronization is achieved and maintained based solely on every

node i’s ability to observe a zero-crossing that occurs at the exact time s1(t) incre-

ments. It is possible to retain this property while generating an aggregate waveform

that is suitable for reachback communication.

Consider a network that has already been synchronized and is simply maintaining

synchronization. If instead of cooperatively generating a pulse train with zero-

crossings at integer values of t, the nodes generate an aggregate waveform similar

to that illustrated in Figure 2.7, time synchronization can still be maintained since

the waveform in Figure 2.7 has zero-crossings at integer values. Clearly, this

waveform can be easily generated, since each node can simply make a step in

its transmission waveform at the time it normally would have sent a pulse. Thus,

this waveform can be used for time synchronization and is generated simply by

modifying the type of waveform transmitted by each node.

From Figure 2.7, we see an interval between two transitions where the signal is

effectively flat with a magnitude of E(Ki,n)Amax. Let us call the transitions that

64 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

occur at the times where synchronization pulses would have occurred the primary

transitions. This flat interval between two primary transitions comes from the assump-

tion that the time between two synchronization pulses is long relative to the synchro-

nization pulse duration. From the figure we see that by putting extra transitions

between the primary transitions, it is possible to modulate information onto the aggre-

gate waveform. This idea is illustrated in Figure 2.8. For use with the synchronization

technique, we would like the waveform to be smooth at symbol boundaries. As a

result, we choose to have the waveform always transition from negative to positive

at the primary transitions. Because of this requirement, we must have the number of

zero-crossings, R, between t ¼ t0 and t ¼ t0 þ 1 take on the form R ¼ 2qþ 1,

where q is a nonnegative integer. Here t0 is any integer value of t. Note that the

time it takes the aggregate waveform to make a primary transition will limit the

maximum value of R. The details of this relationship can be found in ref. [39].

2.6.2 Modulation Scheme

To study exactly how this modulation scheme would work, we focus on one interval

between t ¼ to and t ¼ to þ 1. We consider the case where this cooperative

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

A
m

p
lit

u
d

e

Aggregate waveform at node i

Figure 2.7 This figure illustrates the aggregate waveform with N ¼ 200 nodes seen at node

i. In this example Amax ¼ 1, and we assume that the jitter variance of every node is the same in

the timescale of c1 with standard deviation 0.05. For illustration purposes, we take Ki,n to be

exponentially distributed with l ¼ 2. Notice that even with only N ¼ 200 nodes the zero-

crossings occur almost exactly in the correct place.

2.6 DISTRIBUTED FREQUENCY SHIFT KEYING 65

reachback communication system will do M-ary signaling. This means that q [
{0, 1, . . . ,M � 1} and R ¼ 2qþ 1 [{1, 3, . . . , 2M � 1}. Symbol Sqo is a symbol

waveform with 2qo þ 1 zero-crossings between t ¼ to and t ¼ to þ 1. Figure 2.8

illustrates an example of a waveform modulated in this manner.

An important point to note is that each node i looks for a zero-crossing only in a

small interval around its estimate of where the primary zero-crossing should be. As a

result, when other zero-crossings are placed between t ¼ to þ k and t ¼ to þ k þ 1,

node i still only observes the zero-crossings at t ¼ to þ k and t ¼ to þ k þ 1. Thus,

the same synchronization properties are still maintained using the zero-crossings at

t ¼ to þ k for to, k [Z, while the other zero-crossings are used for communicating

with the far receiver.

2.7 dFSK RECEIVER SIMULATION

An interesting question regarding the design of a receiver for the dFSK waveforms

described in Section 2.6 is how the number of nodes, N, in the network affects the

performance. The dFSK waveforms were generated by infinitely dense networks,

and hence the waveforms were limiting waveforms. How would the probability of

bit error change if we instead had a finite number of nodes generating a waveform

that is only a crude approximation of the limiting waveform?We look for the answer

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time

A
m

p
lit

u
d

e

Reachback communication waveform

Figure 2.8 This figure illustrates 5 symbol periods, with R ¼ 1, 3, 3, 1, 1, respectively. For

example, such a waveform could be used to send the bit stream 01100.

66 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

by designing an optimal receiver for the limiting waveform and then using this recei-

ver to decode signals generated by networks of finite size.

We consider binary signaling using two waveforms s0(t) and s1(t). As outlined in

Section 2.6.2, s0(t) has one extra zero-crossing and s1(t) has three. We will design an

optimal receiver for detecting s(t) [{s0(t), s1(t)} when the received signal is

r(t) ¼ s(t)þ N(t)

where N(t) is zero-mean white Gaussian noise with power spectral density No=2. We

assume that s0(t) and s1(t) are sent with equal probability.

Two sets of waveforms s0(t) and s1(t) will be used for the simulations. The first

set of limiting waveforms shown in Figure 2.9 (a and b) are generated using

N ¼ 4000 Ki ¼ 1 Amax ¼ 1 Ti � N (0, 0:0025)

for all i, while the second set in Figure 2.9 (c and d) is generated using

N ¼ 4000 Ki ¼ 1 Amax ¼ 1 Ti � N (0, 0:0225)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Time

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

s0(t) and a0(t)

s1(t) and a1(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Time

(a)

(b)

Figure 2.9 (a) The limit waveform s0(t) and its approximation a0(t) generated by N ¼ 20

nodes using Ti � N (0, 0:0025). (b) The limit waveform s1(t) and its approximation a1(t)

generated by N ¼ 20 nodes using Ti � N (0, 0:0025). (c) The limit waveform s0(t) and

its approximation a0(t) generated by N ¼ 20 nodes using Ti � N (0, 0:0225). (d) The

limit waveform s1(t) and its approximation a1(t) generated by N ¼ 20 nodes using

Ti � N (0, 0:0225).

2.7 dFSK RECEIVER SIMULATION 67

The difference between these two sets of waveforms is the variance of the jitter Ti.

We would like to determine if jitter variance has an impact on the performance of the

reciever. Note that for simulation purposes we assume that the limit waveforms are

generated by N ¼ 4000 nodes, since these waveforms are indeed close to the limit

waveform under the simulation parameters. In Figure 2.9 we also show the wave-

forms a0(t) and a1(t), which are approximations of s0(t) and s1(t), respectively, gen-

erated by much smaller networks. We will analyze the performance of the optimal

detector when the signals generated by the network are not si(t), but instead are ai(t),

for i ¼ 0, 1.

We first follow standard communication theory to design the optimal detector for

two known signals s0(t) and s1(t) corrupted by additive white Gaussian noise. A

detailed reference to this approach can be found in ref. [40]. We find that the optimal

detector is illustrated in Figure 2.10, where that orthonormal basis functions are

f0(t) and f1ðtÞ, and �s0 and �s1 are the signal space representations for s0(t) and

s1(t), respectively.

The probability of bit error can be calculated as

Pe ¼ Q
D

2
ffiffiffiffiffiffiffiffiffiffi
N0=2

p
� �

¼ Q

ffiffiffiffiffiffiffiffi
D2

2N0

s0
@

1
A

where D ¼ k�s0 � �s1k and Q is the standard Q-function. Recall that this is assuming

s(t) [{s0(t), s1(t)}, so the actual limit waveform is sent and that each waveform is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1

1.5

Time

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1.5

Time

s0(t) and a0(t)

s1(t) and a1(t)

(c)

(d)

Figure 2.9 Continued.

68 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

sent with probability 0.5. We plot this probability of error as a function of Eb=N0 in

Figure 2.11 for the two different sets of s0(t) and s1(t) where

Eb ¼
Ð
s20(t) dt þ

Ð
s21(t) dt

2

is the average energy per bit. That is, we plot

Pe ¼ Q

ffiffiffiffiffiffiffiffiffiffi
K
Eb

N0

r� �
(2:18)

where K ¼ D2=(2Eb) by varying N0.

The remaining curves in Figure 2.11 are simulations of the probability of error

when we send a(t) [{a0(t), a1(t)} instead of s(t) [{s0(t), s1(t)}. We generate

a(t) with networks of varying size, N. We use the same detector illustrated in

Figure 2.10, but this time r(t) ¼ a(t)þ N(t), where a(t) [{a0(t), a1(t)}. Recall

that ai(t) is an approximation of si(t), where i ¼ 0, 1, that is generated using finite

N. In the simulations of Figure 2.11 we use N ¼ 10, 40, 70, 100. In the left panel

we use Ti � N (0, 0:0025), and it is clear that using smaller N does not significantly

impact the bit error rate of the detector. In fact, the Pe versus Eb=N0 plots for N ¼ 10,

40, 70, and 100 are almost completely on top of each other and they coincide with

the theoretical bit-error-rate plot generated from equation (2.18). What this means is

that for the coherent detection of dFSK signals with small jitter variance, N does not

have a significant impact on Pe and signals generated from very small networks can

be detected using the detector shown in Figure 2.10. However, in the right figure of

Figure 2.11 we use Ti � N (0, 0:0225) and notice that for N ¼ 10 the Pe is higher

than the theoretical rate. We see that as N increases, the Pe approaches the theoreti-

cal rate and at N ¼ 100 the two are very close. Thus, for larger jitter variance, the

value of N has a more significant impact on the probability of bit error. This is

expected since with larger jitter variance, ai(t) will be more corrupted for a given

φ (t)
0

φ (t)
1

s = {s , s }
0 1

argmin || r − s ||− ŝr(t)

r

r

0

1

−

Figure 2.10 A diagram for the optimal detector, where r(t) is received and projected onto

the two orthonormal basis functions to get the signal space representation �r ¼ ½r0 r1�. We

then decode to 0 or 1, depending if �r is closer to �s0 or �s1, respectively.

2.7 dFSK RECEIVER SIMULATION 69

N. This can be seen in Figure 2.9. Note, however, that increased jitter variance does

not always negatively impact the system. From Figure 2.11 we also notice that for

Ti � N (0, 0:0225) the theoretical Pe curve actually gives a lower probability of bit

error for a given signal-to-noise ratio Eb=N0.

2.8 CONCLUSION

In this chapter we have presented the framework for a cooperative reachback

system. A synchronization mechanism designed specifically for large-scale dense

sensor networks was presented first. The mechanism generates an aggregate

waveform with equispaced zero-crossings that can be observed by all nodes in the

network, and the zero-crossings are used as synchronization events. The choice of

using zero-crossings for synchronization was motivated by the fact that low-

power zero-crossing detector circuits can be constructed. The performance of this

method of synchronization scales well with the number of nodes in the network.

A key feature is that it eliminates the error accumulation that occurs with most

traditional synchronization methods that route timing information throughout the

network. Simulation results show that through a minor modification to the synchro-

nization mechanism developed for asymptotically dense networks, the synchroniza-

tion ideas can be effectively applied to networks of finite size.

Using the waveform properties that were studied, we were able to modify the

pulse shapes emitted by the nodes in the network to create a waveform suitable

for reachback communication. The waveform encodes data in the frequency of

the zero-crossings, and hence we call the method distributed frequency shift

2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

Eb /N0(dB) Eb /N0(dB)

P
ro

b
a

b
ili

ty
 o

f
b

it
 e

rr
o

r

P
ro

b
a

b
ili

ty
 o

f
b

it
 e

rr
o

r

Probability of bit error with changing N

Theoretical error
N = 10
N = 40
N = 70
N = 100

2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1 Probability of bit error with changing N

Theoretical error
N = 10
N = 40
N = 70
N = 100

Figure 2.11 We illustrate the theoretical bit-error-rate curve generated by equation (2.18).

We also plot the Pe versus Eb=N0 curves for networks of size N ¼ 10, 40, 70, 100. Left: We

note that with Ti � N (0, 0:0025) all four curves nearly fall right on top of each other,

showing that N does not significantly affect Pe. These curves were generated from 500,000

runs. Right: Here we plot using Ti � N (0, 0:0225), and we notice that for small N, the

probability of error is noticeably worse than the theoretical error curve. As we increase N,

the Pe curves approach the theoretical values. These curves were generated from 800,000 runs.

70 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

keying. The important feature of dFSK is that it perfectly complements the time syn-

chronization method, since the network is able to do time synchronization and reach-

back communication simultaneously without extraneous computation. We also see

that a receiver designed to detect the limiting dFSK waveforms can be effectively

employed to detect waveforms generated by networks of finite size.

Note that the theory presented for the generation of waveforms for dFSK can be

applied directly to time synchronization as well. That is, it is possible to start the

synchronization processes by sending a continuous waveform instead of a series

of pulses. This allows for passband time synchronization with the center frequency

limited only by hardware performance and the magnitude of the timing jitter.

Future extensions to this work involve the consideration of nonzero signal-

propagation times. There is a need to consider time delays in sending signals

between nodes in the network and the different propagation delays in sending

information to the far receiver. Once we have explicitly considered the issue of

propagation delay, then these concepts can be implemented in our acoustic sensor

network test bed. We will seek to validate the simulation results for the synchroni-

zation of a finite sized network.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation, under awards CCR-0238271

(CAREER), CCR-0330059, and ANR-0325556.

REFERENCES

1. X. Wang and H. Qi. Acoustic target classification using distributed sensor arrays. In Pro-

ceedings of the International Conference on Acoustic, Speech, and Signal Processing

(ICASSP), Orlando, Florida, 2002.

2. Y. Tian and H. Qi. Target detection and classification using seismic signal processing in

unattended ground sensor systems. In Proceedings of the International Conference on

Acoustic, Speech, and Signal Processing (ICASSP), Orlando, Florida, 2002.

3. H. Wang, D. Estrin, and L. Girod. Preprocessing in a tiered sensor network for habitat

monitoring. EURASIP Journal on Applied Signal Processing, 4:392–401, 2003.

4. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat monitoring:

Application driver for wireless communications technology. In Proceedings of the 1st

ACM SIGCOMM Workshop on Data Communications in Latin America and the

Caribbean, San Jose, Costa Rica, 2001.

5a. S. D. Servetto. Sensing Lena—Massively distributed compression of sensor images. In

Proceedings of IEEE International Conference on Image Processing (ICIP), Barcelona,

Spain, September 2003.

5b. S. D. Servetto. Distributed signal proccessing algorithms for the sensor broadcast

problem. In Proceedings of the 37th Annual Conference on Information Sciences and

Systems (CISS), Baltimore, MD, March 2003.

6. C. Kelly IV, V. Ekanayake, and R. Manohar. SNAP: A sensor network asynchronous

processor. In Proceedings of the 9th International Symposium on Asynchronous Circuits

and Systems, Vancouver, BC, 2003.

REFERENCES 71

7. B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart dust: Communicating with a

cubic-millimeter computer. Computer (IEEE), 34(1):44–51, 2001.

8. H. Li, A. Lal, J. Blanchard, and D. Henderson. Self-reciprocating radioisotope-powered

cantilever. Journal of Applied Physics, 92(2):1122–1127, 2002.

9. J. Elson, L. Girod, and D. Estrin. Fine-grained network time syncrhonization using refer-

ence broadcasts. In Proceedings of the 5th Symposium Operating Systems Design and

Implementation (OSDI), Boston, Massachusetts, 2002.

10. J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Algorithms for energy-efficient

multicasting in static ad hoc wireless networks. Mobile Networks and Applications,

6:251–263, 2001.

11. J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Energy-efficient broadcast and

multicast trees inwireless networks.Mobile Networks andApplications, 7:481–492, 2002.

12. I. Maric and R. D. Yates. Cooperative multihop broadcast for wireless networks. IEEE

Journal on Selected Areas in Communications, 22(7):1080–1088.

13. A. E. Khandani, J. Abounadi, E. Modiano, and L. Zheng. Cooperative routing in wireless

networks. In Proceedings of the Allerton Conference on Communications, Control and

Computing, 2003.

14. A. Srinivas and E. Modiano. Finding minimum energy disjoint paths in wireless ad-hoc

networks. ACM Wireless Networks, forthcoming.

15. A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity—part I: System

description. IEEE Transactions on Communications, 51(11):1927–1938, 2003.

16. A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity—Part II: Implemen-

tation aspects and performance analysis. IEEE Transactions on Communications,

51(11):1939–1948, 2003.

17. J. N. Laneman, G. W. Wornell, and D. Tse. An efficient protocol for realizing cooperative

diversity in wireless networks. In Proceedings of the IEEE International Symposium on

Information Theory (ISIT), Washington, D.C., 2001.

18. J. N. Laneman, D. Tse, and G. W. Wornell. Cooperative diversity in wireless networks:

Low-complexity protocols and outage behavior. IEEE Transactions on Information

Theory, forthcoming.

19. M. Janani, A. Hedayat, T. Hunter, and A. Nosratinia. Coded cooperation in wireless com-

munications: Space-time transmission and iterative decoding. IEEE Transactions on

Signal Processing, 52(2):362–371, 2004.

20. T. Hunter and A. Nosratinia. Coded cooperation under slow fading, fast fading, and

power control. In Proceedings of the 36th Asilomar Conference on Signals, Systems

and Computers, 2002.

21. B. Ananthasubramaniam and U. Madhow. Virtual radar imaging for sensor networks. In

Proceedings of the International Conference on Information Processing in Sensor

Networks (IPSN), Berkeley, California, 2004.

22. L. R. Varshney and S. D. Servetto. A Distributed Transmitter for the Sensor Reachback

Problem Based on Radar Signals. Paper presented at the NSF-RPI Workshop on Perva-

sive Computing and Networking, Troy, New York, April 2004.

23. G. Barriac, R. Mudumbai, and U. Madhow. Distributed beamforming for information

transfer in sensor networks. In Proceedings of the 3rd International Conference on

Information Processing for Sensor Networks (IPSN), pages 81–88, Berkeley, California,

2004.

72 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

24. Y.-S. Tu and G. J. Pottie. Coherent cooperative transmission from multiple adjacent

antennas to a distant stationary antenna through AWGN channels. In Proceedings of

the IEEE 55th Vehicular Technology Conference, Birmingham, Alabama, 2002.

25. A. Scaglione and Y. Hong. Opportunistic large arrays: Cooperative transmission in

wireless multihop ad hoc networks to reach far distances. IEEE Transactions on Signal

Processing, 51(8):2082–2092, 2003.

26. J. Elson and K. Römer. Wireless sensor networks: A new regime for time

synchronization. In Proceedings of the 1st Workshop on Hot Topics in Networks

(HotNets-I), Princeton, New Jersey, 2002.

27. S. Ganeriwal, R. Kumar, S. Adlakha, and M. B. Srivastava. Network-Wide Time Synchro-

nization in Sensor Networks. Technical Report NESL 01-01-2003, University of

California, Los Angeles, 2003.

28. K. Römer. Time synchronization in ad hoc networks. In Proceedings of the 2nd ACM

International Symposium on Mobile Ad Hoc Networking and Computing, 2001.

29. R. Karp, J. Elson, D. Estrin, and S. Shenker. Optimal and Global Time Synchronization

in Sensornets. CENS Technical Report 0012, Center for Embedded Network Sensing,

April 2003.

30. J. V. Greunen and J. Rabaey. Lightweight time synchronization for sensor networks.

In Proceedings of the 2nd ACM International Workshop on Sensor Networks and Appli-

cations (WSNA), pages 11–19, San Diego, California, 2003.

31. S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor

networks. In Proceedings of the ACM SenSys’03, Los Angeles, California, 2003.

32. Y. Hong and A. Scaglione. A scalable synchronization protocol for large scale sensor net-

works and its applications. IEEE Journal on Selected Areas in Communications,

forthcoming.

33. R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators.

SIAM Journal on Applied Mathematics, 50(6):1645–1662, 1990.

34. N. Roberts. Phase noise and jitter: A primer for digital designers, from http://
www.eedesign.com/showArticle.jhtml?articleID¼16501598, 2003.

35. Fundamentals of Quartz Oscillators, Application Note 200-2, Electronic Counters Series,

Hewlett Packaging, 1997.

36. A. Hu and S. D. Servetto. On the Scalability of Cooperative Time Synchronization in

Pulse-Connected Networks. Submitted for publication.

37. A. Hu and S. D. Servetto. Algorithmic aspects of the time synchronization problem in

large-scale sensor networks. Mobile Networks and Applications, forthcoming.

38. A. Hu and S. D. Servetto. Asymptotically optimal time synchronization in dense sensor

networks. In Proceedings of the 2nd ACM International Workshop on Sensor Networks

and Applications (WSNA), San Diego, California, 2003.

39. A. Hu and S. D. Servetto. dFSK: Distributed frequency shift keying modulation in dense

sensor networks. In Proceedings of the IEEE International Conference on Communi-

cation (ICC), Paris, France, June 2004.

40. S. G. Wilson. Digital Modulation and Coding. Prentice-Hall, 1996.

41. S. D. Servetto. Lattice quantization with side information: Codes, asymptotics, and appli-

cations in sensor networks. IEEE Transactions on Information Theory, forthcoming.

(Available from http://cn.ece.cornell.edu/.)

REFERENCES 73

&CHAPTER 3

Energy Scavenging and
Nontraditional Power Sources for
Wireless Sensor Networks

SHAD ROUNDY

LV Sensors, Inc., Emeryville, California

LUC FRECHETTE

Universite de Sherbrooke, Sherbrooke, Canada

Wireless sensor networks are poised to become a very significant enabling technol-

ogy in many sectors. While there has been a significant research effort in this area

for a number of years, only more recently have companies begun to offer standard

wireless sensor platforms and customized wireless sensor network solutions. Almost

all of the available platforms are designed to run on batteries that have a very lim-

ited lifetime. However, longer lifetimes are necessary if wireless sensor networks

are to become a ubiquitous part of our environment. While progress can be made

by reducing the power consumption, eventually alternative power sources will

need to be employed. This chapter reviews many potential power sources for wire-

less sensor nodes. Traditional power sources, such as batteries, are reviewed along

with emerging technologies and currently untapped sources. Potential power

sources are classified as energy reservoirs, power-distribution methods, or

power-scavenging methods, which enable wireless nodes to be completely self-

sustaining. Several power sources capable of providing power on the order of

100 mW/cm3 for very long lifetimes are feasible. It is the authors’ opinion that no

single power source will suffice for all applications, and that the choice of a

power source needs to be considered on an application-by-application basis.

75

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

3.1 INTRODUCTION

The last several years have witnessed a large research effort based around the vision

of ubiquitous networks of wireless sensor and communication nodes [1–3]. As the

size and cost of such wireless sensor nodes continue to decrease, the likelihood of

their use becoming widespread in buildings, industrial environments, automobiles,

aircraft, and so forth, increases. However, as their size and cost decrease, and as

their prevalence increases, effective power supplies become a larger problem.

The scaling down in size and cost of complementary metal-oxide semiconductor

(CMOS) electronics has far outpaced the scaling of energy density in batteries,

which are by far the most prevalent power sources currently used. Therefore, the

power supply is quickly becoming the largest and most expensive component of

the emerging wireless sensor nodes being proposed and designed. The cost of bat-

teries is compounded by the fact that batteries must be either replaced or recharged

on a regular basis. This regular maintenance could easily become the single greatest

cost of installing a wireless sensor network for many applications. If wireless sensor

networks are to truly become ubiquitous, replacing batteries in every device every

year or two is simply cost prohibitive.

The purpose of this chapter, then, is to review existing and potential power

sources for wireless sensor networks. Current state-of-the-art, ongoing research,

and theoretical limits for many potential power sources are discussed. One can clas-

sify possible methods of providing power for wireless nodes into three groups: store

energy on the node (i.e., a battery), distribute power to the node (i.e., a wire), and

scavenge available ambient power at the node (i.e., a solar cell). Power sources

that fall into each of these three categories are reviewed. Of course, combinations

of the three methods are also possible. In fact, even in an energy-scavenging

method some onboard energy storage must be available.

A direct comparison of vastly different types of power source technologies is

difficult. For example, comparing the efficiency of a solar cell to that of a battery

is not very useful. However, in an effort to provide a general understanding of a

wide variety of power sources, the following metrics will be used for comparison:

power density, energy density (where applicable), and average power density over

a year of use. Additional considerations are the complexity of the power electronics

needed and whether secondary energy storage is needed.

3.2 POWER CONSUMPTION

Before considering power sources, it is useful to consider the power demand of a

typical wireless sensor node. Assuming that the radio transmitter operates at

approximately 0 dBm (which would roughly correspond to an average distance of

10 m between nodes), the peak power consumption of the radio transmitter will

be around 2–3 mW, depending upon its efficiency. Using low-power techniques

[4], the receiver should not consume more than 1 mW. Including the dissipation

of the sensors and peripheral circuitry, a maximum peak power of 5 mW is quite

76 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

reasonable. Given a maximum data rate for the radio of 100 kbit/s, and an average

traffic load per node of 1 kbit/s (these numbers are based on real radio prototypes

and a realistic smart home scenario), every node operates at a duty cycle of approxi-

mately 1%. During the remaining 99%, the only activities taking place in a node are

a number of background tasks: low-speed timers, channel monitoring, and node syn-

chronization. The latter actually is the dominant power-consuming source of the

node if not handled appropriately. Using advanced “wake-up radio techniques” or

semi-asynchronous beaconing techniques; the average “standby” power of the

node can be limited to 50 mW or lower. Combining peak and standby power dissi-

pation leads to an average power dissipation of approximately 100 mW.

Several small low-power wireless platforms are currently available commer-

cially. Companies providing wireless sensor platforms include Dust Networks [5],

Crossbow [6], Xsilogy [7], Ember [8], and Millenial Net [9]. The power needed

to operate these platforms depends on how and where they are used. Based on the

authors’ investigations, they generally require an average power consumption of

about one order of magnitude higher than the 100 mW proposed earlier (generally

one to several mW). However, research projects have demonstrated that a wide

range of applications is possible within a power budget of approximately

100 mW. For the purposes of this discussion, it will be assumed that a rough standard

of acceptability for a power source is its ability to provide 100 mW within the size

constraints of the application for a lifetime prescribed by the application. For pur-

poses of comparison, it is necessary to normalize the power potential of the different

technologies that will be discussed. While each application will have different

constraints on the overall size of the wireless sensor, a standard volume of 1 cm3

has been chosen as a reasonable size constraint for many applications. Therefore,

power (or energy) per cm3 will be used as a primary metric of comparison.

3.3 ENERGY RESERVOIRS

Energy storage, in the form of electrochemical energy stored in a battery, is the pre-

dominant means of providing power to wireless devices today. Batteries are

probably the easiest power solution for wireless electronics because of their versa-

tility. However, several other forms of energy storage may be useful for wireless

sensor nodes. Regardless of the form of the energy storage, the lifetime of the

node will be determined by the fixed amount of energy stored on the device.

While it is cost effective in some applications to repeatedly change or recharge bat-

teries, if wireless sensor nodes are to become a ubiquitous part of the environment, it

will no longer be cost effective. The primary metric of interest for all forms of

energy storage will be usable energy per unit volume (J/cm3) and the closely related

average power per unit volume per unit time (mW/cm3/year) of operation. An

additional issue is that the instantaneous power that an energy reservoir can

supply is usually dependent on its size. Therefore, in some cases, such as micro-

batteries, the maximum instantaneous power density (mW/cm3) is also an issue

for energy reservoirs.

3.3 ENERGY RESERVOIRS 77

3.3.1 Macroscale Batteries

Electrochemical batteries have been the dominant form of power storage and deliv-

ery for electronic devices for decades, thus their consideration for use in wireless

sensor networks is natural. Primary batteries are perhaps the most versatile of all

small power sources. Table 3.1 shows the energy density for a few common primary

battery chemistries. Figure 3.1 shows the average power available from these battery

chemistries versus lifetime. Figure 3.1 includes leakage and shelf-life effects. Note

that while zinc–air batteries have the highest energy density, their lifetime is very

short.

Because batteries have a fairly stable voltage, electronic devices can often be run

directly from the battery without any intervening power electronics. While this may

not be the most robust method of powering the electronics, it is often used and is

advantageous in that it avoids the extra power consumed by power electronics.

Macroscale secondary (rechargeable) batteries are commonly used in consumer

electronic products such as cell phones, personal digital assistants (PDAs), and note-

book computers. Table 3.2 gives the energy density of a few common rechargeable

battery chemistries.

It should be remembered that rechargeable batteries are a secondary power

source. Therefore, in the context of wireless sensor networks, another primary

power source must be used to charge them. In most cases it would be cost prohibitive

to manually recharge each device. More likely, an energy-scavenging source on the

node itself, such as a solar cell, would be used to recharge the battery. One item to

TABLE 3.1 Energy Density of Three Primary Battery Chemistries

Chemistry Zinc–Air Lithium Alkaline

Energy (J/cm3) 3780 2880 1200

0

1

10

100

1000

0 1 2 3 4 5

Years

µW

 c

m
3

Lithium

Alkaline
Zinc–air

Figure 3.1 Continuous power per cm3 vs. lifetime for three primary battery chemistries.

78 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

consider when using rechargeable batteries is that electronics to control the charging

profile must often be used. These electronics add to the overall power dissipation of

the device. However, like primary batteries, the output voltages are stable and power

electronics between the battery and the load electronics can often be avoided.

3.3.2 Microscale Batteries

Microscale batteries could be grouped into two categories. The first includes extre-

mely thin (and often flexible) batteries that can be used in very small assembled

devices. The second includes thin-film batteries that are fabricated on a wafer

substrate (often silicon) and have the potential of being monolithically integrated

with electronics. Examples of the first kind include the products of Paper Power

[10] and Cymbet [11]. Research on thin-film batteries of the second kind are

included in the following discussion.

One of the main stumbling blocks to reducing the size of microbatteries is power

output due to surface area limitations of microscale devices. This is true for either

type of microbatteries, as classified here. However, it is even more acute for

on-chip microbatteries. For low-power sensor nodes, maximum power output is

generally not an issue. Therefore, the capacity, or energy density, of the battery dom-

inates its consideration for use. However, the maximum current output of a battery

depends on the surface area of the electrodes. Because microbatteries are so small,

the electrodes have a small surface area, and their maximum current output is also

very small. This problem can be alleviated to a certain degree by placing a large

capacitor in parallel with the battery capable of providing short bursts of current.

However, the capacitor itself consumes additional volume, and therefore may not

be desirable in many applications.

The challenge of maintaining (or increasing) performance of on-chip micro-

batteries while decreasing size is being addressed on multiple fronts. Bates et al.

at Oak Ridge National Laboratory have created a process by which a primary

thin-film lithium battery can be deposited onto a chip [12]. The thickness of the

entire battery is on the order of tens of mm, but the areas studied are in the cm2

range. This battery is in the form of a traditional Volta pile, with alternating

layers of lithium manganese oxide (or lithium cobalt oxide), lithium phosphate

oxynitride, and lithium metal. Maximum potential is rated at 4.2 V with

continuous/max current output on the order of 1 mA/cm2 and 5 mA/cm2 for the

LiCoO2–Li-based cell.

Work is being done on thick-film batteries with a smaller surface area by Harb

et al. [13], who have developed microbatteries of Ni/Zn with an aqueous NaOH

electrolyte. Thick films are on the order of 0.1 mm, but overall thicknesses are

TABLE 3.2 Energy Density of Three Secondary Battery Chemistries

Chemistry Lithium NiMHd NiCd

Energy (J/cm3) 1080 860 650

3.3 ENERGY RESERVOIRS 79

minimized by use of three-dimensional (3D) structures. While each cell is only rated

at 1.5 V, geometries have been duty-cycle optimized to give acceptable power out-

puts at small overall theoretical volumes (4 mm by 1.5 mm by 0.2 mm), with good

durability demonstrated by the electrochemical components of the battery. The main

challenges lie in maintaining a microfabricated structure that can contain an aqueous

electrolyte.

Radical 3D structures are also being investigated to maximize power output. Hart

et al. [14] have theorized a 3D battery made of series alternating cathode and anode

rods suspended in a solid electrolyte matrix. Theoretical power outputs for a 3D

microbattery are shown to be many times larger than a two-dimensional (2D) battery

of equal size (with far lower ohmic ionic transport distances, thus lower ohmic

losses).

For example, a 1-cm2 thin film with each electrode having a thickness of 22 mm
and a 5-mm electrolyte would have a maximum current density on the order of 5 mA.

If the battery is restructured to have the same total volume, with square packing

electrode rods (as Hart et al. have proposed) with a 5-mm radius and a 5-mm
surface-to-surface distance, geometry dictates that the energy capacity is reduced

to 39% of the thin-film capacity (due to a higher volume percentage of electrode

material for the standard thin-film battery). However, while the energy density is

lower for the 3D battery, the power density is higher due to a higher surface area.

In fact, the 3D battery would have a total electrode area of 3.5 cm2, an increase of

350%. The increase in surface area alone improves the current density to

17.5 mA. Moreover, the ionic transport scale in the 2D structure is about 350%

longer than the 3D case because the electrodes for the 3D case are much thinner.

Therefore, decreased ohmic losses could further improve the maximum throughput

to 20 mA at 4.2 V. However, the inherent nonuniformities in current distribution in

3D batteries (exacerbated by the particular complexity of this cell) may lead to

difficulties with regard to device reliability on primary battery systems and cycle

life in secondary battery systems.

3.3.3 Ultracapacitors

Ultracapacitors represent a compromise of sorts between rechargeable batteries and

standard capacitors. Capacitors can provide significantly higher power densities than

batteries; however, their energy density is lower by about two orders of magnitude.

Ultracapacitors (also called supercapacitors or electrochemical capacitors) achieve

significantly higher energy density than standard capacitors, but retain many of

the favorable characteristics of capacitors, such as long life, high current density,

and short charging time.

Rather than just storing charge across a dielectric material, as capacitors do, ultra-

capacitors store ionic charge in an electric double layer to increase their effective

capacitance. The energy density of commercially available ultracapacitors is

about one order of magnitude higher than standard capacitors and about one

order of magnitude lower than rechargeable batteries (or about 50 to 100 J/cm3).

Because of their increased lifetimes, short charging times, and high power densities,

80 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

ultracapacitors could be very attractive as a secondary power source in place of

rechargeable batteries in some wireless sensor node applications. Corporations

working on such ultracapacitors include NEC [15] and Maxwell [16].

3.3.4 Microfuel Cells

Hydrocarbon-based fuels have very high energy densities compared to batteries. For

example, methanol has an energy density of 17.6 kJ/cm3, which is about six times

that of a lithium battery. Therefore, fuel cells are potentially very attractive for wire-

less sensor nodes. Like batteries, fuel cells produce electrical power from a chemical

reaction. A standard fuel cell uses hydrogen atoms as fuel. A catalyst promotes the

separation of the electron in the hydrogen atom from the proton. The proton diffuses

through an electrolyte (often a solid membrane), while the electron is available for

use by an external circuit. The protons and electrons recombine with oxygen atoms

on the other side (the oxidant side) of the electrolyte to produce water molecules.

This process is illustrated in Figure 3.2. While pure hydrogen can be used as a

fuel, other hydrocarbon fuels are often used. For example, in direct methanol fuel

cells (DFMC) the anode catalyst draws the hydrogen atoms out from the methanol.

Most single fuel cells tend to output open-circuit voltages around 1.0–1.5 V. Of

course, like batteries, the cells can be placed in series for higher voltages. The vol-

tage is quite stable over the operating lifetime of the cell, but it does fall off with

increasing current draw. Figure 3.3 shows the voltage versus current load for a typi-

cal fuel cell. Notice that as the current density increases, the dominant loss mechan-

ism also changes. Because the voltage drops with current, it is likely that some

additional power electronics will be necessary if replacing a battery with a fuel cell.

Large-scale fuel cells have been used as power supplies for decades. For

example, the Apollo spacecraft used alkaline fuel cells for electricity. More recently,

Figure 3.2 Illustration of how a standard hydrogen fuel cell works.

3.3 ENERGY RESERVOIRS 81

fuel cells have been developed as alternative power supplies for automobiles. Cells

using a variety of fuels and electrolytes have been successfully used at the macro-

scale. Recently, fuel cells have gained favor as a replacement for consumer batteries

[17]. Small, but still macroscale, fuel cells are likely to soon appear in the market as

battery rechargers and battery replacements [18].

The research trend is toward microfuel cells that could possibly be closely inte-

grated with wireless sensor nodes. Like microbatteries, a primary metric of compari-

son in microfuel cells is power density in addition to energy density. As with

microbatteries, the maximum continuous current output is dependent on the elec-

trode surface area. Microfabricated fuel cells offer an advantage in surface-to-

volume ratio, thereby giving them a higher power density. Likewise microfabricated

features can potentially improve gas diffusion and lower the internal resistance [19],

both of which improve efficiency.

Fuel cells tend to operate better at higher temperatures, which are more difficult

to maintain for microfuel cells. Efficiencies of large-scale fuel cells have reached

approximately 45% electrical conversion efficiency and nearly 90% if cogeneration

is employed [20]. Efficiencies for microscale fuel cells will certainly be lower. The

maximum obtainable efficiency for a microfuel cell is still uncertain. Demonstrated

efficiencies are generally below 1% [21].

Many research groups are working on microfabricated partial systems that typi-

cally include an electrolyte membrane, electrodes, and channels for fuel and oxidant

flow. Recent examples include the hydrogen-based fuel cells developed by Hahn

et al. [22] and Lee et al. [23]. Both systems implement microfabricated electrodes

and channels for fuel and oxidant flow. The system by Hahn et al. produces

power on the order of 100 mW/cm2 from a device 0.54 cm2 in size. The system

0

0.2

0.4

0.6

0.8

1.0

1.2

0 200 400 600 800 1000

I (mA/cm2)

V

Ideal voltage

Activation
loss region Resistance

loss region
Transport
loss region

Figure 3.3 Typical voltage vs. current curve for a fuel cell.

82 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

by Lee et al. produces 40 mW/cm2. It should be noted that the fundamental charac-

teristic here is power per unit area rather than power per unit volume, because the

devices are fundamentally planar. Complete fuel storage systems are not part of

their studies, and therefore an energy or power per unit volume metric is not

appropriate. Fuel-conversion efficiencies are not reported.

Hydrogen storage on a small scale is a difficult problem that has not yet been

solved. It is primarily for this reason that methanol-based microfuel cells are also

being investigated by numerous groups. Holloday et al. [21] have demonstrated a

research methanol fuel processor with a total size on the order of several mm3.

This fuel processor has been combined with a thin fuel cell, 2 cm2 in area, to produce

roughly 25 mA at 1-V with 0.5% overall efficiency. They are targeting a 5% efficient

cell. Additionally, Mench et al. [24] have proposed a complete 3D methanol fuel cell

with a volume of 1 cm3. The system would contain all necessary elements except a

methanol reservoir. The projected power output is 1 W/cm3 at a projected efficiency

of 30%; however, to the authors’ knowledge, this has not been demonstrated. It

should be noted that this is a stacked fuel cell and that if fuel volume were included,

the power density would be lower.

Given the energy density of fuels such as methanol, fuel cells need to reach effi-

ciencies of at least 20% in order to be more attractive than primary batteries. Never-

theless, at the microscale, where battery efficiencies are also lower, a lower

efficiency fuel cell could still be attractive. Finally, providing for sufficient fuel

and oxidant flows is a very difficult task in microfuel cell development. The ability

to microfabricate electrodes and electrolytes does not guarantee the ability to realize

a microfuel cell. The problem of microfabricating the fuel reservoir and all of the

plumbing is arguably a more difficult task than the microfabrication of electrodes.

To the authors’ knowledge, a self-contained on-chip fuel cell has yet to be

demonstrated.

3.3.5 Micro-Heat Engines

At large scales, fossil fuels are the dominant source of energy used for electric-

power generation, mostly due to the low cost per joule, high energy density, abun-

dant availability, storability, and ease of transport. Power plants typically convert

the chemical energy of the fuel into thermal energy through combustion, then

convert thermal to mechanical power by driving a heat engine that implements a

thermodynamic cycle (such as gas turbines or internal combustion engines). The

engine then entrains a magnetic generator to produce the electrical power. To

date, the complexity and multitude of components involved in such a process

have hindered the miniaturization of heat engines and power generation approaches

based on combustion of hydrocarbon fuels. As the scale of a mechanical system is

reduced, the tolerances must reduce accordingly, and the assembly process becomes

increasingly challenging. This results in increasing costs per unit power and/or
deteriorated performance.

The extension of silicon microfabrication technology from microelectronics to

microelectromechanical systems (MEMS) is changing this paradigm. Complex

3.3 ENERGY RESERVOIRS 83

microsystems that integrate mechanical, chemical, thermal, fluidic, and electro-

magnetic functions on-chip can be batch fabricated with micron-scale precision

using photolithography, etching, and other microfabrication techniques. In the

mid-1990s, Epstein et al. proposed that microengines, that is, dime-size heat

engines, for portable power generation and propulsion could be fabricated using

MEMS technology [25]. The initial concept consisted of using silicon deep reactive

ion etching, fusion wafer bonding, and thin-film processes to microfabricate and

integrate high-speed turbomachinery, with bearings, a generator, and a combustor

within a cubic-centimeter volume. An application-ready power supply would also

require auxiliary components, such as a fuel tank, engine and fuel controller,

electrical power conditioning with short-term storage, thermal management and

packaging. Expected performance is 10–20 W of electrical power output at thermal

efficiencies on the order of 5–20%. Figure 3.4 shows a microturbine test device used

for turbomachinery and air bearing development.

Multiple research groups across the globe have also undertaken the development

of various micro-heat engine–based power-generation approaches. Ongoing micro-

engine projects include microgas turbine engines [25,26], Rankine steam turbines

[27], rotary Wankel internal combustion engines [28], free and spring-loaded

piston internal combustion engines [29,30], and thermal-expansion–actuated piezo-

electric power generators [31,32], to name a few. In addition, various static

Figure 3.4 Microturbine development device, which consists of a 4-mm-diameter single-

crystal silicon rotor enclosed in a stack of five bonded wafers used for microair bearing

development.

84 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

approaches to convert heat into electricity are in development for small scales,

including thermoelectric [33,34], thermionic [35], and thermophotovoltaic [36]

components coupled with a heat source.

Most of these and similar efforts are at initial stages of development, and perform-

ance has not been demonstrated. However, predictions range from 0.1 to 10 W of

electrical power output, with typical masses�1–5 g and volumes�1 cm3.Microen-

gines are not expected to grow smaller in size due to manufacturing and efficiency

constraints. At small scales, viscous drag on moving parts and heat transfer to the

ambient air and between components increase, which adversely impacts efficiency.

The main system level parameter that emerges for wireless sensor applications is

the energy-conversion efficiency, h (ratio of output electrical power to what is avail-

able from the fuel). For a duration, t, and average power level, P, the mass of fuel

required is simply the product of duration and average power level, divided by

the fuel heating value, hfuel, and efficiency: mfuel ¼ (t�P)=(hfuel�h). Typical values
of expected fuel requirements are presented in Table 3.3 for a 10-year mission con-

suming an average power of 1 mW (efficiency of 10% is assumed). The fuel require-

ment tends to dominate the envelope of the complete system, given the small engine

size and mass. If refueling is possible during the mission, then the overall size of the

power supply is dramatically reduced, and tends toward the size of the engine and

auxiliary components for short autonomous periods.

Alternatively, if high-quality (temperature) heat is available from the surround-

ings, the engine could scavenge it instead of burning fuel. Examples of such sources

include waste heat from large engines and solar irradiation. Lower efficiencies are,

however, expected if the heat-source temperatures are lower than those created by

combustion products (1000–1500 K). This situation is considered further in the

Section 3.5 on power scavenging.

Given the relatively large power level, a single microengine would only need to

operate at low duty cycles (less than 1% of the time) to periodically recharge a bat-

tery. The total operating time is therefore on the order of hundreds of hours, which

alleviates lifetime issues for the engine. It should also be noted that the inefficiency

of a heat engine will result in heat discharge to its surroundings. For example, an

engine with 1-W output power operating at 10% efficiency is consuming 10 W

from the fuel and discharging 9 W of heat during periods of operation. Specific

applications must allow release of this heat. Combining micro-heat engines with

TABLE 3.3 Fuel for 10-Year Mission at 1-mW Average Power Provided by a 10%

Efficient Micro-Heat Engine

Fuel

Net Specific Energy (hfuel
�h)

(Wh/kg) Fuel Mass (g) Fuel Volume (cm3)

Gasoline 1324 66 94

Butane 1270 69 99

Hydrogen 3337 26 972

3.3 ENERGY RESERVOIRS 85

thermoelectrics that convert some of this waste heat would lead to greater overall

efficiency, but with a cost and size penalty for adding such components.

Overall, the greatest benefits of micro-heat engines are their high power density

(0.1–2 W/g, without fuel) and their use of fuels allowing high-density energy

storage for compact, long-duration power supplies. For long missions, the power

density is not as important as efficiency. Microengines will therefore require

many years of development before reaching the expected efficiencies and being

applicable for real-life applications.

3.3.6 Radioactive Power Sources

Some radioactive materials contain extremely high-energy densities. As with hydro-

carbon fuels, energy derived from radioactive materials has been used on a much

larger scale for decades. However, it has not been exploited on a small scale, as

would be necessary to power wireless sensor networks. The use of radioactive

materials can pose a serious health hazard, and is a highly political and controversial

topic. It should, therefore, be noted that the goal here is neither to promote nor to

discourage investigation into radioactive power sources, but to present their poten-

tial, and the research being done in the area.

The most probable method of generating power from radioactive materials on a

small scale is to make use of their natural decay. The total energy emitted by radio-

active decay of a material can be expressed as in equation (3.1).

Et ¼ AcEeT (3:1)

where Et is the total emitted energy, Ac is the activity, Ee is the average energy of

emitted particles, and T is the time period over which power is collected.

Table 3.4 lists several potential radioisotopes, their half-lives, specific activities,

and energy densities based on radioactive decay. It should be noted that materials

with lower activities and longer half-lives will produce lower power levels for

more time than materials with comparatively short half-lives and high specific

activities. The half-life of the material has been used as the time over which

power would be collected. Only alpha and beta emitters have been included, because

TABLE 3.4 Comparison of Radioisotopes

Material

Half-Life

(years)

Activity Volume Density

(Ci/cm3)

Energy Density

(J/cm3)

238U 4.5 � 109 6.34 � 1026 2.23 � 1010

63Ni 100.2 506 1.6 � 108

32Si 172.1 151 3.3 � 108

90Sr 28.8 350 3.7 � 108

32P 0.04 5.2 � 105 2.7 � 109

86 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

of the heavy shielding needed for gamma emitters. Finally, uranium-238 is included

for purposes of comparison only.

While the energy density numbers reported for radioactive materials are extremely

attractive, it must be remembered that in most cases the energy is being emitted over a

very long period of time. Second, efficient methods of converting this power to electri-

city at small scales do not exist. Therefore, efficiencies would likely be extremely low.

Li and Lal [37] have used the 63Ni isotope to actuate a conductive cantilever. As

the beta particles (electrons) emitted from the 63Ni isotope collect on the conductive

cantilever, there is an electrostatic attraction. At some point, the cantilever contacts

the radioisotope and discharges, causing the cantilever to oscillate. Up to this point,

the research has only demonstrated the actuation of a cantilever, and not electric

power generation. However, electric power could be generated from an oscillating

cantilever. The reported power output, defined as the change over time in the

combined mechanical and electrostatic energy stored in the cantilever, is 0.4 pW

from a 4 mm � 4 mm thin film of 63Ni. This power level is equivalent to

0.52 mW/cm3. However, it should be noted that using 1 cm3 of 63Ni is impractical.

The reported efficiency of the device is 4 � 1026.

3.4 POWER DISTRIBUTION

In addition to storing power on a wireless node, in certain circumstances power can

be distributed to the node from a nearby energy-rich source. It is difficult to charac-

terize the effectiveness of power-distribution methods by the same metrics (power or

energy density), because in most cases the power received at the node is more a

function of how much power is emitted rather than the size of the power receiver

at the node. Nevertheless, an effort is made to characterize the effectiveness of a

few power distribution methods as they apply to wireless sensor networks.

3.4.1 Electromagnetic (RF) Power Distribution

The most common method (other than wires) of distributing power to embedded

electronics is through the use of RF radiation. Many passive electronic devices,

such as electronic ID tags and smart cards, are powered by a nearby energy-rich

source that transmits RF energy to the passive device. The device then uses that

energy to run its electronics [38,39]. This solution works well, as evidenced by

the wide variety of applications where it is used, if there is a high-power scanner

or other source in very close proximity to the wireless device. It is, however, less

effective in dense ad hoc networks where a large area must be flooded with RF radi-

ation to power many wireless sensor nodes.

Using a very simple model and neglecting any reflections or interference, the

power received by a wireless node can be expressed by equation (3.2) [40]:

Pr ¼ P0l
2

4pR2
(3:2)

3.4 POWER DISTRIBUTION 87

where P0 is the transmitted power, l is the wavelength of the signal, and R is the dis-

tance between transmitter and receiver. Assume that the maximum distance between

the power transmitter and any sensor node is 5 m, and that the power is being trans-

mitted to the nodes in the 2.4–2.485-GHz frequency band, which is the unlicensed

industrial, scientific, and medical band in the United States. Federal regulations

limit ceiling-mounted transmitters in this band to 1 W or lower. Given a 1-W trans-

mitter, and a 5-m maximum distance, the power received at the node would be

50 mW, which is probably on the borderline of being useful for wireless sensor net-

works. However, in reality the power transmitted will fall off at a rate faster than

1/R 2 in an indoor environment. A more likely figure is 1/R 4. While the 1-W limit

on a transmitter is by no means general for indoor use, it is usually the case that

some sort of safety limitation would need to be exceeded in order to flood a room

or other area with enough RF radiation to power a dense network of wireless devices.

3.4.2 Wires, Acoustic Emitters, Light, and More

Other means of transmitting power to wireless sensor nodes might include wires,

acoustic emitters, and light or lasers. However, none of these methods seem appro-

priate for wireless sensor networks. Running wires to a wireless communications

device defeats the purpose of wireless communications. Energy in the form of acous-

tic waves has a far lower power density than is sometimes assumed. A sound wave of

100 dB in sound level only has a power level of 0.96 mW/cm2. One could also ima-

gine using a laser or other focused light source to direct power to each of the nodes in

the sensor network. However, to do this in a controlled way, distributing light energy

directly to each node, rather than just flooding the space with light, would likely be

too complex and not cost effective. If an entire space is flooded with light, then this

source of power becomes attractive. However, this situation has been classified as

“power scavenging” and will be discussed in the following section.

3.5 POWER SCAVENGING

Unlike power sources that are fundamentally energy reservoirs, power-scavenging

(also referred to as energy scavenging or energy harvesting) sources are usually charac-

terized by their power density rather than energy density. Energy reservoirs have a

characteristic energy density, and how much average power they can provide is

then dependent on the lifetime over which they are operating. In contrast, power-

scavenging sources have a characteristic power density, and the total amount of energy

they provide depends on how long the source is in operation. Therefore, the primary

metric for comparison of scavenged sources is power density, not energy density.

3.5.1 Photovoltaics (Solar Cells)

At midday on a sunny day, the incident light on the Earth’s surface has a power den-

sity of roughly 100 mW/cm2. Single-crystal silicon solar cells exhibit efficiencies of

88 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

15%–20% [41] under high light conditions, as one would find outdoors. Common

indoor lighting conditions have far lower power density than outdoor conditions.

Common office lighting provides about 100 mW/cm2 at the surface of a desk.

Single-crystal silicon solar cells are better suited to high light conditions and the

spectrum of light available outdoors [41]. Thin-film amorphous silicon or cadmium

telluride cells offer better efficiency indoors because their spectral response more

closely matches that of artificial indoor light. Still, these thin-film cells only offer

about 10% efficiency. Therefore, the power available from photovoltaics ranges

from about 15 mW/cm2 outdoors to about 10 mW/cm2 indoors. Table 3.5 shows

the measured power outputs from a cadmium telluride solar cell (Panasonic

BP-243318) at varying distances from a 60-W incandescent bulb.

A single solar cell has an open circuit voltage of about 0.6 V. Individual cells are

easily placed in series, especially in the case of thin-film cells, to get almost any

desired voltage needed. A current vs. voltage (I–V) curve for a typical five cell

array (wired in series) is shown below in Figure 3.5. Unlike the voltage, current

densities are directly dependent on the light intensity.

Solar cells provide a fairly stable DC voltage through much of their operating

space. Therefore, they can be used to directly power electronics in cases where

the current load is such that it allows the cell to operate on high voltage side of

the “knee” in the I–V curve and where the electronics can tolerate some deviation

in source voltage. More commonly, solar cells are used to charge a secondary bat-

tery. Solar cells can be connected directly to rechargeable batteries through a simple

TABLE 3.5 Power from a Cadmium Telluride Solar Cell at Various Distances from a

60 W Incandescent Bulb and Under Standard Office Lighting Conditions

Distance 8 in. 12 in. 18 in. Office Light

Power (mW/cm2) 503 236 111 7.2

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Volts

m
A

Figure 3.5 Typical I–V curve from a cadmium telluride solar array (Panasonic BP-243318).

3.5 POWER SCAVENGING 89

series diode to prevent the battery from discharging through the solar cell. This

extremely simple circuit does not ensure that the solar cell will be operating at its

optimal point (which is at the knee in the I–V curve), and so power production

will be lower than the maximum possible. Second, rechargeable batteries will

have a longer lifetime if a more controlled charging profile is employed. However,

controlling the charging profile and the operating point of the solar cell both require

more electronics, which use power themselves. An analysis needs to be done for

each individual application to determine what level of power electronics would

provide the highest net level of power to the load electronics. Longevity of the

battery is another issue to be considered in this analysis.

3.5.2 Temperature Gradients

Naturally occurring temperature variations can also provide a means by which

energy can be scavenged from the environment. The maximum efficiency of

power conversion from a temperature difference is equal to the Carnot efficiency,

which is given as equation (3.3):

h ¼ Thigh � Tlow

Thigh
(3:3)

Assuming a room temperature of 208C, the efficiency is 1.6% from a source 58C
above room temperature and 3.3% for a source 108C above room temperature.

A reasonable estimate of the maximum amount of power available can be made,

assuming heat conduction through silicon material. Convection and radiation would

be quite small compared to conduction at small scales and low temperature differ-

entials. The amount of heat flow (power) is given by equation (3.4):

q0 ¼ k
DT

L
(3:4)

where k is the thermal conductivity of the material and L is the length of the material

through which the heat is flowing. The conductivity of silicon is approximately

140 W/mK. Assuming a 58C temperature differential and a length of 1 cm, the

heat flow is 7 W/cm2. If Carnot efficiency could be obtained, the resulting power

output would be 117 mW/cm3. While this is an excellent result compared with

other power sources, one must realize demonstrated efficiencies are well below

the Carnot efficiency. This is particularly true of microscale devices.

A number of researchers have developed systems to convert power from tempera-

ture differentials to electricity. The most common method is through thermoelectric

generators that exploit the Seebeck effect to generate power. For example, Stordeur

and Stark [42] have demonstrated a microthermoelectric generator capable of

generating 15 mW/cm2 from a 108C temperature differential. Furthermore, they

report a technology limit of about 30 mW/cm2 for the technology used. The first

wristwatches powered by body heat have been manufactured by Seiko and Citizen.

90 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

The energy consumption of the Seiko watch is specified at 1 mW, with a driving vol-

tage of 1.5 V [43]. Citizen [44] employs a thermoelectric generator with a contact

area of 0.7 cm � 0.7 cm and a height of 1.5 mm that generates a voltage of 0.5 V

and has a power output of 13.8 mW under load at a temperature difference of 1 K.

Additionally, Applied Digital Solutions has developed a thermoelectric generator

soon to be marketed as a commercial product. The generator is reported to be

able to produce 40 mW of power from a 58C temperature differential using a

device 0.5 cm2 in area and a few millimeters thick [45]. The output voltage of the

device is approximately 1 V. Finally, the thermal-expansion–actuated piezoelectric

generator referred to earlier [31] has also been proposed as a method to convert

power from ambient temperature gradients to electricity. While all of these devices

exhibit efficiencies well below the theoretical maximum efficiency, power densities

in the range of 50 to 100 mW/cm2 of device area have been demonstrated. This level

of power could be enough to power a wireless sensor in an environment where ther-

mal gradients of 18C to 58C are common.

3.5.3 Human Power

An average human body burns about 10.5 MJ of energy per day. (This corresponds

to an average power dissipation of 121 W.) Starner has proposed tapping into some

of this energy to power wearable electronics [46]. For example, wristwatches are

powered using both the kinetic energy of a swinging arm and the heat flow away

from the surface of the skin [47].

The conclusion of studies undertaken at MIT suggests that the most energy-rich

and most easily exploitable source occurs at the foot during heel strike and in the

bending of the ball of the foot [48]. This research has led to the development of

piezoelectric shoe inserts capable of producing an average of 330 mW/cm2 while

a person is walking. The shoe inserts have been used to power a low-power wireless

transceiver mounted to the shoes. While this power source is of great use for a wire-

less node worn on a person’s foot, the problem of how to get the power from the shoe

to any other point of interest still remains.

The sources of powermentioned earlier are passive power sources in that the human

does not need to do anything other than what he or she would normally do to generate

power. There is also a class of power generators that could be classified as active human

power in that they require the human to perform an action that theywould not normally

perform. For example, Freeplay [49] markets a line of products that are powered by a

constant-force spring that the user must wind up. While these types of products are

extremely useful, they are not very applicable to wireless sensor networks, because

it would be impractical and not cost efficient to individually wind up every node.

3.5.4 Wind/Airflow

Wind power has been used on a large scale as a power source for centuries. Large

windmills are still common today. The potential power from moving air is quite

3.5 POWER SCAVENGING 91

easily calculated, as shown in equation (3.5):

P ¼ 1

2
rAn3 (3:5)

where P is the power, r is the density of air, A is the cross sectional area, and n is the
air velocity. At standard atmospheric conditions, the density of air is approximately

1.22 kg/m3. Figure 3.6 shows the power per square centimeter versus air velocity.

Large-scalewindmills operate atmaximumefficiencies of about 40%.The theoretical

maximumefficiency is 59%. Efficiency is dependent onwind velocity for a given design,

and average operating efficiencies are usually about 20%. Windmills are generally

designed such that maximum efficiency occurs at wind velocities around 8 m/s (or

about 18 mph). At low air velocity, efficiency can be significantly lower than 20%.

Figure 3.6 also shows power output assuming 20% and 5% efficiency in conversion.

The authors are aware of only one project to generate power from airflow at small

scales for use by wireless sensors. Federspiel and Chen [50] used a small (about

10 cm in diameter) airflow turbine to generate power intended for use by a Mica

Mote [6]. The reported power output and efficiency values are shown in

Table 3.6. The reported values in Table 3.6, taken together with the calculation in

Figure 3.6 indicate that power densities from air velocity are quite promising. As

there are many possible applications in which a fairly constant airflow of a few

meters per second exists, it seems that research leading to the development of

devices to convert airflow to electrical power at small scales is warranted.

3.5.5 Pressure Variations

Variations in pressure can also be used to generate power. For example, one could

imagine a closed volume of gas that undergoes pressure variation as the daily

0.1

1

10

100

1000

10,000

100,000

0 2 4 6 8 10 12

m/s

µW

cm
2

Max power

20% Efficiency
5% Efficiency

Figure 3.6 Maximum power density from airflow. Power densities assuming 20% and 5%

conversion efficiencies are also shown.

92 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

temperature changes. Likewise, atmospheric pressure varies throughout the day. The

change in energy for a fixed volume of ideal gas due to a change in pressure is simply

given by

DE ¼ DPV (3:6)

where DE is the change in energy, DP is the change in pressure, and V is the volume.

A quick survey of atmospheric conditions around the world reveals that an average

atmospheric pressure change over 24 hours is about 0.2 in. Hg or 677 Pa, which cor-

responds to an energy change of 677 mJ/cm3. If the pressure cycles through 0.2 in.

Hg once per day, for a frequency of 1.16 � 1025, the power density would then be

7.8 nW/cm3.

An average temperature variation over a 24-h period would be about 108C. The
change in pressure to a fixed volume of ideal gas from a 108C change in temperature

is given by

DP ¼ mRDT

V
(3:7)

where m is mass of the gas, R is gas constant, and DT is the change in temperature.

If 1 cm3 of helium gas were used, a 108C temperature variation would result in a

pressure change of 1.4 MPa. The corresponding change in energy would be 1.4 J

per day, which corresponds to 17 mW/cm3. While this is a simplistic analysis and

assumes 100% conversion efficiency to electricity, it does give an idea of what

might be theoretically expected from naturally occurring pressure variations.

To the authors’ knowledge, there is no research underway to exploit naturally occur-

ring pressure variations to generate electricity. Some clocks, such as the “Atmos

clock,” are powered by an enclosed volume of fluid that undergoes a phase change

under normal daily temperature variations. The volume and pressure change corre-

sponding to the phase change of the fluid mechanically actuates the clock. However,

this is on a large scale, and no effort is made to convert the power to electricity.

3.5.6 Time-Varying Structural Strain

Power can be scavenged from a surface undergoing a time-varying strain in a

number of ways. The most straightforward method is to attach a smart material

TABLE 3.6 Air Speed, Power, and Efficiency Values

Reported by Federspiel and Chen [50]

Air Velocity (m/s) Power (mW/cm2) Efficiency (%)

2.5 100 5

4 215 5.5

5 350 11

3.5 POWER SCAVENGING 93

element to the surface that is undergoing strain. A number of smart materials exist,

including piezoelectric, magnetostrictive, and electroactive materials. However,

although there are many possible solutions, piezoelectric materials are by far the

most common. Because they have been widely used for a long time, available piezo-

electric materials exhibit very good electromechanical coupling. Furthermore,

piezoelectric materials can directly produce voltages on the right order of magnitude

for circuit applications. They are, therefore, the natural choice to pursue for strain-

induced energy-scavenging solutions.

It is useful to develop a simple analytical model for strain-based power gener-

ation in order to generate rough estimates of power generation and gain design

insight. If we assume, as is common, that the maximum power output available

from a piezoelectric element occurs when operating at one half its open-circuit

voltage and one half its closed-circuit current, we can develop a very simple

expression for maximum output power.

The established constitutive equations for a linear piezoelectric material in

reduced-matrix form are

{S} ¼ ½sE�{T}þ ½d �t{E} (3:8)

{D} ¼ ½d �{T}þ ½1T �{E} (3:9)

where {S} is the six-dimensional (6D) strain vector, {T} is the vector of stresses,

{D} is the 3D electric displacement vector, {E} is the electric-field vector, [s E]

is the six-by-six compliance matrix evaluated at constant electric field, [d] is

the three-by-six matrix of piezoelectric strain coefficients, and [1T] is the three-

by-three dielectric-constant matrix evaluated at constant stress. In many appli-

cations, the dominant stress state is one dimensional (1D), allowing equations 3.8

and 3.9 to be expressed as simple scalar equations. This simplification will be

used in the following discussion.

The open-circuit voltage (Voc) resulting from a strain (S) is given by

equation (3.10):

Voc ¼ �dtpY

(1þ k2)1
S (3:10)

where tp is the thickness of the piezoelectric element, Y is the elastic constant of the

material (Young’s modulus, Y ¼ 1/s), and k is the piezoelectric coupling coefficient
(k ¼ d2Y/1).

The short-circuit current developed is given by equation (3.11):

Isc ¼ fdAYS (3:11)

where f is the frequency of the periodic strain, and A is the area of the piezoelectric

patch.

94 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

Using the assumption made earlier, the maximum output power (P) is then given

by equation (3.12):

P ¼ 1

2
Voc

� �
1

2
Isc

� �
¼ fk2nY

4(1þ k2)
S2 (3:12)

where n is the volume of the piezoelectric element (v ¼ tpA). Note that the actual

power output will simply be the value calculated by equation (3.12) multiplied by

the efficiency of the power conditioning for the load.

As shown by equation (3.12), the power output is directly proportional to the

volume of piezoelectric material used. Not surprisingly, the power output is very

sensitive to both the coupling coefficient and the magnitude of the strain.

Figure 3.7 contains constant power-density contours calculated using the basic

model shown in equation (3.12). As such, they represent the maximum power

output possible from a surface undergoing a periodic strain at a given magnitude

and frequency. The calculations shown in Figure 3.7 assume a reasonable coup-

ling coefficient (k31) of 0.3, a piezoelectric patch of 1 mm in thickness, and a

Young’s modulus of 52 GPa (PZT-5H). As can be seen from the graph, power

outputs on the order of 100 mW are possible given high enough strains and

frequencies.

Strain-based power generation has made its way into both the research and

commercial sectors. Elvin et al. [51] have reported producing a self-powered wire-

less strain sensor; however, the power production from the sensor is well below the

maximum values shown in Figure 3.7. MicroStrain Inc. is also marketing a wireless

sensor that incorporates strain-based power harvesting [52].

1.E−01

1.E+00

1.E+01

1.E+02

1.E+03

1.0E−04 1.0E−03

Strain

H
z

10 µW/cm2

50 µW/cm2

100 µW/cm2

500 µW/cm2

1 µW/cm2

Figure 3.7 Power profiles vs. strain and frequency for a piezoelectric strain-based generator.

3.5 POWER SCAVENGING 95

3.5.7 Vibrations

Low-level mechanical vibrations are present in many environments. Examples include

automobiles, manufacturing and assembly equipment, aircraft, trains, heating, venti-

lation, and air-conditioning (HVAC)ducts, exteriorwindows, and small household appli-

ances. Table 3.7 shows results of measurements on several different vibration sources

performed by the authors. It will be noticed that the primary frequency of all sources

is between 60 and 200 Hz. Acceleration amplitudes range from about 1 to 10 m/s2.
A simple general model for power conversion from vibrations has been presented

by Williams and Yates [53]. Note that this model is limited to generators containing

a sprung proof mass and assumes that the force exerted on that mass by the electro-

mechanical coupling is proportional to the velocity of the proof mass. The second

assumption is quite valid for electromagnetic generators, but less so for piezoelectric

and electrostatic generators. Other researchers are attempting to remedy these short-

comings developing technology-independent models that are not subject to these

assumptions [54,55]. Nevertheless, the model proposed by Williams and Yates

has been widely accepted and used in the research community. Furthermore, the

model can be used to quickly obtain rough estimates for potential power output

based on a given vibration source. Therefore, despite the fact that the model may

lack accuracy for some types of generators, it will be used here as a basis to estimate

the potential power output from common vibration sources. The final equation for

power output from this model is shown here as equation (3.13):

P ¼
mze

v

vn

� �3

A2

v 2ðze þ zmÞ
v

vn

� �2

þ 1� v

vn

� �2
 !2

2
4

3
5

(3:13)

TABLE 3.7 Summary of Several Vibration Sources

Vibration Source

Peak Acceleration

(m/s2)
Frequency

(Hz)

Base of 3-axis machine tool 10 70

Kitchen blender casing 6.4 121

Clothes dryer 3.5 121

Door frame just as door closes 3 125

Small microwave oven 2.25 121

HVAC vents in office building 0.2–1.5 60

Wooden deck with foot traffic 1.3 385

Breadmaker 1.03 121

External windows next to a busy street 0.7 100

Notebook computer while CD is being read 0.6 75

Washing machine 0.5 109

Second story floor of a wood-frame office building 0.2 100

Refrigerator 0.1 240

96 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

where P is the power output, m is the oscillating proof mass, A is the acceleration

magnitude of the input vibrations, v is the frequency of the driving vibrations, vn

is the resonance frequency of the generator, zm is the mechanical damping ratio,

and ze is an electrically induced damping ratio. The primary idea behind this

model is that the energy removed from the oscillating proof mass by the electro-

mechanical coupling behaves as a linear viscous damper with damping ratio ze.
The mechanical damping ratio (zm) represents the viscous loss in the system. The

power output of the system as calculated by equation (3.13) is highly dependent

on the resonance frequency of the system. Figure 3.8 shows the power output for

a converter with a proof mass of 8.5 g (0.5 cm3 of tungsten alloy), damping ratios

of 0.015 (for both ze and zm), and resonance frequency of 100 Hz. An input vibration

source of 2.25 m/s2 in magnitude was used.

If it is assumed that the resonance frequency of the generator is either designed or

tuned to match the dominant frequency of the input vibrations, equation (3.13)

reduces to the expression in equation (3.14):

P ¼ mzeA
2

4v(ze þ zm)
2

(3:14)

Three interesting relationships are evident from this model.

1. Power output is proportional to the oscillating mass of the system.

2. Power output is proportional to A2/v.

3. Power is maximized for ze ¼ zm.

10
3

10
2

10
1

10
1

10
2

10
3

10
0

10
−1

10
−2

Hz

M
ic

ro
W

at
ts

Figure 3.8 Power output vs. frequency of input vibrations. Proof mass is 8.5 g, damping

ratios are 0.015, and magnitude of input vibrations is 2.25 m/s2.

3.5 POWER SCAVENGING 97

Point two indicates that the generator should be designed to resonate at the lowest

frequency peak in the vibrations spectrum provided that higher frequency peaks do

not have a higher acceleration magnitude. Many spectra measured by Roundy et al.

[56] verify that generally the lowest frequency peak has the highest acceleration

magnitude. The equivalent electrical damping ratio (ze) is dependent on both

design parameters and the specific load circuit applied. Point 3 indicates that

there is an optimal level of electrically induced damping, and that this optimal

level is equal to the amount of mechanical damping or pure loss. Therefore, to maxi-

mize the power output, the designer should try to minimize the mechanical damping

(zm) and design the overall system such that the level of damping seen by the gen-

erator as a result of the electromechanical coupling matches the level of damping

attributable to pure loss. This principle will have slightly different implications

for different types of generators (e.g., piezoelectric, electromagnetic, electrostatic).

Figures 3.9 and 3.10 provide a range of power densities that can be expected from

vibrations similar to those listed previously in Table 3.7. The data shown in the

figures are based on calculations from the model of Williams and Yates, and do

not consider the technology that is used to convert the mechanical kinetic energy

to electrical energy. As with the calculations in Figure 3.9, a proof mass of 8.5 g

and damping ratios of 0.015 were used.

Several researchers have developed devices to scavenge power from vibrations.

Devices include electromagnetic [57–59], electrostatic [60–62], and piezoelectric

[63–65] methods to convert mechanical motion into electricity. Furthermore,

there are now a number of companies beginning to offer generators based on scaven-

ging power from vibrations [66–68]. Each approach offers benefits and drawbacks.

In general, electrostatic converters suffer from the necessity to reliably maintain

very small air gaps and generally exhibit lower power density, electromagnetic

converters often suffer from low output voltages, and piezoelectric converters

10

100

1000

10,000

1 10

m s2

µW
 c

m
3

50 Hz

150 Hz

300 Hz

Figure 3.9 Power density vs. vibration amplitude for three frequencies.

98 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

usually rely on relatively brittle ceramics. Based on theory, simulations, and exper-

iments, the opinion expressed by the authors is that piezoelectric generators offer the

best long-term solution for most applications. An example of a wireless transceiver

and piezoelectric vibration–based generator that powers the transceiver is shown in

Figure 3.11 [69]. The generator has a size of 1 cm3 and produces 200 mW from input

vibrations of 2.25 m/s2 at 120 Hz. The transmit power of the wireless transceiver

is 0 dBm.

Although quite a number of vibration-based generators have been demonstrated

in the literature, a number of research issues remain to be explored further. Under

many circumstances, the driving frequency will be known before the device is

designed and fabricated, and the appropriate resonance characteristics can thus be

“built in.” In other situations, however, this frequency will not be known a priori,

or it may change over time. It is also relevant to consider the mass fabrication of

such devices for use by other investigators. It would clearly be advantageous to

create a single design that operates effectively over a range of vibration frequencies.

Thus methods to improve the bandwidth of a generator without sacrificing the peak

1

10

100

1000

10,000

50 100 150 200 250

Hz

µW
/c

m
3

0.5 m/s2

2.5 m/s2

5 m/s2

Figure 3.10 Power density vs. frequency of vibration input for three amplitudes.

Figure 3.11 Piezoelectric generator, power circuit, and radio powered from vibrations of

2.25 m/s2 at 120 Hz.

3.5 POWER SCAVENGING 99

power output or methods to actively tune the resonance frequency of the generator

are important research areas. With few exceptions, researchers have focused on a

very limited set of potential geometries for analysis. A broader study of potential

design geometries for each of the three fundamental types of generators would be

beneficial. Finally, the transmission of power from the generator to the sensor

node is of critical importance. While a few researchers have studied this problem

[53,56,60], further optimization of power circuits is possible and will yield improved

power output.

3.6 SUMMARY

An effort has been made to give an overview of the many potential alternative power

sources for wireless sensor networks. Traditional power sources, such as batteries,

have been considered along with potential sources on which little or no work has

been done. Because some sources are fundamentally characterized by energy

density (such as batteries), while others are characterized by power density (such

as solar cells), a direct comparison with a single metric is difficult. Adding to this

difficulty is the fact that some power sources do not make much use of the third

dimension (such as solar cells), so their fundamental metric is power per square

centimeter rather than power per cubic centimeter. Nevertheless, in an effort to com-

pare all possible sources, a summary table is shown below as Table 3.8. Note that

power density is listed as mW/cm3; however, it is understood that in certain

instances the number reported really represents mW/cm2. Such values are marked

with a superscript a. Note also that with only two exceptions, values listed are num-

bers that have been demonstrated or are based on experiments rather than theoretical

optimal values. The authors were not able to find demonstrated or experimental

values for strain-induced generators or air pressure–induced generators. Therefore

theoretical values have been used, and these values are italicized. In many other

cases the theoretical best values are explained in the chapter text.

Almost all wireless sensor nodes currently available are powered by batteries.

This situation presents a substantial roadblock to the widespread deployment of

wireless sensor networks, because the replacement of batteries is cost prohibitive.

Furthermore, a battery that is large enough to last the lifetime of the device

would dominate the overall system size and cost, and thus is not very attractive.

It is therefore essential that alternative power sources be considered and developed.

This chapter has attempted to characterize a wide variety of such sources. It is the

authors’ opinion that no single alternative power source will solve the problem for

all, or even a large majority of cases. However, many attractive and creative sol-

utions do exist that can be considered on an application-by-application basis.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the helpful input of Dan Steingart, Prof. Paul Wright, and

Prof. Jan Rabaey. Dan was particularly helpful in doing background research for the

100 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

microbatteries section. Professors Wright and Rabaey were actively involved with and

have greatly supported the vibration-based energy-scavenging work for a number of years.

REFERENCES

1. J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T. Tuan. Picoradios for

wireless sensor networks: The next challenge in ultra-low-power design. In Proceedings

of the International Solid-State Circuits Conference, San Francisco, California, February

2002.

2. B. Warneke, B. Atwood, and K. S. J. Pister. Smart dust mote forerunners. In Proceedings

of the 14th Annual International Conference on Microelectromechanical Systems (MEMS

2001), pages 357–360, Interlaken, Switzerland, January 2001.

3. J. Hill and D. Culler. Mica: A wireless platform for deeply embedded networks, IEEE

Micro, 22(6):12–24, 2002.

TABLE 3.8 Comparison of Various Potential Power Sources for Wireless Sensor

Networks

Power Source

P/cm3

(mW/cm3)

E/cm3

(J/cm3)

P/cm3/yr
(mW/cm3/Y)

Secondary

Storage

Needed

Voltage

Regulation

Comm.

Available

Primary battery — 2880 90 No No Yes

Secondary

battery

— 1080 34 — No Yes

Microfuel cell — 3500 110 Maybe Maybe No

Ultracapacitor — 50–100 1.6–3.2 No Yes Yes

Heat engine — 3346 106 Yes Yes No

Radioactive

(63Ni)

0.52 1640 0.52 Yes Yes No

Solar (outside) 15,000a — — Usually Maybe Yes

Solar (inside) 10a — — Usually Maybe Yes

Temperature 40a,b — — Usually Maybe Limited

Human Power 330 — — Yes Yes No

Air flow 350c — — Yes Yes No

Pressure

Variation

17d — — Yes Yes No

Vibrations 200 — — Yes Yes Limited

Strain induced 200 — — Yes Yes Limited

Note: Values shown are actual demonstrated numbers except in two cases, which have been italicized.
aDenotes sources whose fundamental metric is power per square centimeter rather than per cubic centi-

meter.
bDemonstrated from a 58C temperature differential.
cBased on reported values at an air velocity of 5 m/s and 11% conversion efficiency.
dBased on a 1-cm3 closed volume of helium undergoing a 108C temperature change once per day.

REFERENCES 101

4. B. Otis and J. Rabaey. A 300 mW 1.9 GHz oscillator utilizing micro-machined resona-

tors. In IEEE Proceedings of the 28th European Solid State Circuits Conference,

vol. 28, September 2002.

5. See at http://www.dust-inc.com, 2004.

6. See at http://www.xbow.com, 2004.

7. See at http://www.xsilogy.com, 2004.

8. See at http://www.ember.com, 2004.

9. See at http://www.millenial.net, 2004.

10. See at http://www.paperpower.com, 2004.

11. See at http://cymbet.com, 2004.

12. J. Bates, N. Dudney, B. Neudecker, A. Ueda, and C. D. Evans. Thin-film lithium and

lithium-ion batteries. Solid State Ionics, 135:33–45, 2000.

13. J. N. Harb, R. M. LaFollete, R. H. Selfridge, and L. L. Howell. Mircobatteries

for self-sustained hybrid micropower supplies. Journal of Power Sources, 104:46–51,

2002.

14. R. W. Hart, H. S. White, B. Dunn, and D. R. Rolison. 3-D microbatteries. Electro-

chemistry Communications, 5:120–123, 2003.

15. See at http://www.nec-tokin.com/english/product/product_list.html, 2004.

16. See at http://www.maxwell.com/ultracapacitors/, 2004.

17. A. Heinzel, C. Hebling, M. Muller, M. Zedda, and C. Muller. Fuel cells for low power

applications. Journal of Power Sources, 105:250–255, 2002.

18. See at http://www.toshiba.co.jp/about/press/2003_03/pr0501.htm, 2003.

19. S. Kang, S.-J. J. Lee, and F. B. Prinz. Size does matter: The pros and cons of miniatur-

ization. ABB Review, 2:54–62, 2001.

20. K. Kordesh and G. Simader. Fuel Cells and Their Applications. VCH Publishers, 2001.

21. J. D. Holloday, E. E. Jones, M. Phelps, and J. Hu. Microfuel processor for use in a min-

iature power supply. Journal of Power Sources, 108:21–27, 2002.

22. See at http://www.pb.izm.fhg.de/hdi/040_groups/group4/fuelcell_micro.html.

23. S. J. Lee, A. Chang-Chien, S. W. Cha, R. O’Hayre, Y. I. Park, Y. Saito, and F. B. Prinz.

Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. Journal

of Power Sources, 112:410–418, 2002.

24. M. M. Mench, Z. H. Wang, K. Bhatia, and C. Y.Wang. Design of a micro direct methanol

fuel cell (mDMFC). In Proceedings of the ASME International Mechanical Engineering

Congress and Exposition (IMECE), New York, November 2001.

25. A. H. Epstein et al. Micro-Heat Engine, Gas Turbine, and Rocket Engines—The MIT

Microengine Project. Paper AIAA 97-1773, presented at the 28th AIAA Fluid Dynamics

Conference, Snowmass Village, Colorado, June 1997.

26. K. Isomura, M. Murayama, H. Yamaguchi, N. Ijichi, H. Asakura, N. Saji, O. Shiga,

K. Takahashi, S. Tanaka, T. Genda, and M. Esashi. Development of Microturbocharger

and Microcombustor for a Three-Dimensional Gas Turbine at Microscale. Paper GT-

2002-30580, presented at the ASME-IGTI 2002 TURBO EXPO, Amsterdam,

Netherlands, June 2002.

27. C. Lee, S. Arslan, Y.-C. Liu, and L. G. Fréchette. Design of a microfabricated Rankine

cycle steam turbine for power generation. In Proceedings of the ASME International

102 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

Mechanical Engineering Congress and Exhibition (IMECE), Washington, D.C.,

November 2003.

28. K. Fu, A. J. Knobloch, F. C. Martinez, D. C. Walther, C. Fernandez-Pello, A. P. Pisano,

and D. Liepmann. Design and fabrication of a silicon-based MEMS rotary engine. In Pro-

ceedings of the ASME International Mechanical Engineering Congress and Exhibition

(IMECE), New York, November 2001.

29. L. M. Matta, M. Nan, S. P. Davis, D. V. McAllister, B. T. Zinn, and M. G. Allen.

Miniature Excess Enthalpy Combustor for Microscale Power Generation. AIAA Paper

2001-0978, presented at the 39th Aerospace Sciences Meeting and Exhibit, Reno,

Nevada, January 2001.

30. T. Toriyama, K. Hashimoto, and S. Sugiyama. Design of a resonant micro recipro-

cating engine for power generation. In Proceedings of Transducers’03, the 12th

International Conference on Solid-State Sensors and Actuators, Boston, Massachusetts,

June 2003.

31. S. Whalen, M. Thompson, D. Bahr, C. Richards, and R. Richards. Design, fabrication

and testing of the P3 micro heat engine. Sensors and Actuators, 104(3):200–208,

2003.

32. D. Santavicca, K. Sharp, J. Hemmer, B. Mayrides, D. Taylor, and J. Weiss. A solid piston

micro-engine for portable power generation. In Proceedings of the ASME International

Mechanical Engineering Congress and Exhibition (IMECE), Washington, D.C.,

November 2003.

33. S. B. Schaevitz, A. J. Franz, K. F. Jensen, and M. A. Schmidt. A combustion-based

MEMS thermoelectric power generator. In Proceedings of Transducers’01 the 11th

International Conference on Solid-State Sensors and Actuators, pages 30–33, Munich,

Germany, June 2001.

34. L. Sitzki, K. Borer, S. Wussow, E. Schuster, P. D. Ronney, and A. Cohen. Combustion in

Microscale Heat Recirculating Burners. Paper No. 2001-1087, presented at the 39th

AIAA Aerospace Sciences Meeting, Reno, Nevada, January 2001.

35. C. Zhang, K. Najafi, L. P. Bernal, and P. D. Washabaugh. Micro combustion-thermionic

power generation: Feasibility, design and initial results. In Proceedings of Trans-

ducers’03, the 12th International Conference on Solid-State Sensors and Actuators,

Boston, Massachusetts, June 2003.

36. O. M. Nielsen, L. R. Arana, C. D. Baertsch, K. F. Jensen, and M. A. Schmidt. A thermo-

photovoltaic micro-generator for portable power applications. In Proceedings of Trans-

ducers’03, the 12th International Conference on Solid-State Sensors and Actuators,

Boston, Massachusetts, June 2003.

37. H. Li and M. Lal. Self-reciprocating radio-isotope powered cantilever. Journal of Applied

Physics, 92(2):1122–1127, 2002.

38. D. Friedman, H. Heinrich, and D.-W. Duan. A low-power CMOS integrated circuit for

field-powered radio frequency identification. In Proceedings of the 1997 IEEE Solid-

State Circuits Conference, pages 294–295, 474, 1997.

39. See at http://www.hitachi.co.jp/Prod/mu-chip/, 2003.

40. A. A. Smith. Radio Frequency Principles and Applications: The Generation, Propa-

gation, and Reception of Signals and Noise. IEEE Press, 1998.

41. J. F. Randall. On Ambient Energy Sources for Powering Indoor Electronic Devices. Ph.D.

thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, May 2003.

REFERENCES 103

42. M. Stordeur and I. Stark. Low power thermoelectric generator—self-sufficient energy

supply for micro systems. In Proceedings of the 16th International Conference on

Thermoelectrics, pages 575–577, 1997.

43. M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, and

S. Yamamoto. Microthermoelectric modules and their application to wristwatches as

an energy source. In Proceedings of the 18th International Conference on Thermoelec-

trics (ICT), pages 301–307, Baltimore, Maryland, August 1999.

44. Citizen Eco-Drive Thermo. Citizen press release, Basel, March 2003.

45. D. Pescovitz. The power of small tech. Smalltimes, 2(1):21–31, 51–54, 2002.

46. T. Starner. Human-powered wearable computing. IBM Systems Journal, 35(3):618–629,

1996.

47. See at http://www.seikowatches.com, 2004.

48. N. S. Shenck and J. A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics.

IEEE Micro, 21:30–41, 2001.

49. See at http://www.freeplay.net, 2004.

50. C. C. Federspiel and J. Chen. Air-powered sensor. In Proceedings of IEEE Sensors 2003,

Toronto, October 2003.

51. N. G. Elvin, A. A. Elvin, and M. Spector. A self-powered mechanical strain energy

sensor. Smart Materials and Structures, 10:293–299, 2001.

52. See at http://www.microstrain.com/white_strain_energy_harvesting.htm, 2004.

53. C. B. Williams and R. B. Yates. Analysis of a micro-electric generator for microsystems.

In Proceedings of Transducers 95/Eurosensors IX, pages 369–372, 1995.

54. P. D. Mitcheson, T. C. Green, E. M. Yeatman, and A. S. Holmes. Architectures for

vibration-driven micropower generators. Journal of Microelectromechanical Systems,

13(3):1–12, 2004.

55. S. Roundy. On the effectiveness of vibration based energy harvesting. Journal of Intelli-

gent Material Systems, forthcoming.

56. S. Roundy, P. K. Wright, and J. Rabaey. A study of low level vibrations as a power source

for wireless sensor nodes. Computer Communications, 26(11):1131–1144, 2003.

57. R. Amirtharajah and A. P. Chandrakasan. Self-powered signal processing using

vibration-based power generation. Journal of Solid-State Circuits, 33(5):687–695, 1998.

58. M. El-hami, P. Glynne-Jones, N. W. White, M. Hill, S. Beeby, E. James, A. D. Brown,

and J. N. Ross. Design and fabrication of a new vibration-based electromechanical

power generator. Sensors and Actuators A (physical), 92:335–342, 2001.

59. N. N. H. Ching, H. Y. Wong, W. J. Li, P. H. W. Leong, and Z. Wen. A laser-

micromachined multi-modal resonating power transducer for wireless sensing systems.

Sensors and Actuators A (physical), 97–98:685–690, 2002.

60. S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan, and J. H. Lang.

Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 9:64–76, 2001.

61. M. Miyazaki, H. Tanaka, G. Ono, T. Nagano, N. Ohkubo, T. Kawahara, and K. Yano.

Electric-energy generation using variable-capacitive resonator for power-free LSI:

Efficiency analysis and fundamental experiment. In Proceedings of the 2003

International Symposium on Low Power Electronics and Design (ISLPED 2003),

pages 193–198, Seoul, Korea, August 2003.

104 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

62. P. D. Mitcheson, P. Miao, B. H. Stark, E. M. Yeatman, A. S. Holmes, and T. C. Green.

MEMS electrostatic micropower generator for low frequency operation. Sensors and

Actuators A (physical), forthcoming.

63. P. Glynne-Jones, S. P. Beeby, E. P. James, and N. M. White. The modelling of a piezo-

electric vibration powered generator for microsystems. In Proceedings of Transducers

’01, the 11th International Conference on Solid-State Sensors and Actuators, Munich,

Germany, June 2001.

64. G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre. Optimized piezoelectric energy

harvesting circuit using step-down converter in discontinuous conduction mode. IEEE

Transactions on Power Electronics, 18(2):696–703, 2003.

65. S. Roundy and P. K. Wright. A piezoelectric vibration based generator for wireless

electronics. Smart Materials and Structures, 13:1131–1142, 2004.

66. See at http://www.ferrosi.com, 2004.

67. See at http://www.continuumcontrol.com, 2004.

68. See at http://www.intellisense.com, 2004.

69. S. Roundy, B. Otis, Y.-H. Chee, J. Rabaey, and P. K. Wright. A 1.9 GHz transmit beacon

using environmentally scavenged energy. In Proceedings of the 2003 International

Symposium on Low Power Electronics and Design (ISPLED 2003), Seoul, Korea,

August 2003.

REFERENCES 105

&CHAPTER 4

A Virtual Infrastructure for Wireless
Sensor Networks

STEPHAN OLARIU and QINGWEN XU

Old Dominion University, Norfolk, Virginia

ASHRAF WADAA

Intel Corporation, Hillsboro, Oregon

IVAN STOJMENOVIĆ

University of Ottawa, Ontario, Canada

Overlaying a virtual infrastructure over a physical network is a time-honored

strategy for conquering scale. There are, essentially, two approaches for building

such an infrastructure. The first is to design the virtual infrastructure in support

of a specific protocol, routing, for example. However, more often than not, the

resulting infrastructure is not useful for other purposes. The alternative approach

is to design the general-purpose virtual infrastructure with no particular protocol

in mind. The challenge, of course, is to design the virtual infrastructure in such a

way that it can be leveraged by a multitude of different protocols.

The main goal of this chapter is to propose a lightweight and robust virtual infra-

structure for a network, consisting of tiny energy-constrained commodity sensors

massively deployed in an area of interest. In addition, we present evidence that

the proposed virtual infrastructure can be leveraged by a number of protocols ran-

ging from routing to data aggregation.

4.1 INTRODUCTION

Recent advances in nanotechnology have made it possible to develop a large variety

of microelectromechanical systems (MEMS), miniaturized low-power devices that

integrate sensing, special-purpose computing, and wireless communications

107

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

capabilities [1–5]. It is expected that these small devices, referred to as sensors, will

be mass-produced, making their production cost-negligible. Individual sensors have

a small, nonrenewable energy supply and, once deployed, must work unattended.

For most applications, we envision a massive deployment of sensors, perhaps in

the thousands or even tens of thousands [6–9].

Aggregating sensors into sophisticated computational and communication infra-

structures, called wireless sensor networks, will have a significant impact on a wide

array of applications, ranging from military, to scientific, to industrial, to health care,

to domestic, establishing ubiquitous wireless sensor networks that will pervade

society, redefining the way in which we live and work [10–13]. The novelty of wire-

less sensor networks and their tremendous potential for relevance to a multitude of

application domains has triggered a flurry of activity in both academia and industry.

We refer the reader to refs. [7,14–19] for a summary of recent applications of wire-

less sensor networks.

The fundamental goal of a sensor network is to produce, over an extended period

of time, globally meaningful information from raw local data obtained by individual

sensors. Importantly, this goal must be achieved in the context of prolonging as

much as possible the useful lifetime of the network and ensuring that the network

remains highly available and continues to provide accurate information in the

face of security attacks and hardware failure. The sheer number of sensors in a

sensor network combined with the unique characteristics of their operating environ-

ment (anonymity of individual sensors, limited energy budget, and a possibly hostile

environment), pose unique challenges to the designers of protocols. For one thing,

the limited energy budget at the individual sensor level mandates the design of ultra-

lightweight data gathering, aggregation, and communication protocols. An import-

ant guideline in this direction is to perform as much local data processing at the

sensor level as possible, avoiding the transmission of raw data through the sensor

network.

Recent advances in hardware technology are making it plain that the biggest

challenge facing the wireless sensor network community is the development of

ultralightweight communication protocols ranging from training, to self-organiz-

ation, to network maintenance and governance, to security, to data collection and

aggravation, to routing [12,20,21].

4.1.1 The Name of the Game: Conquering Scale

Overlaying a virtual infrastructure over a physical network is a time-honored strat-

egy for conquering scale. There are, essentially, two approaches to this exercise. The

first is to design the virtual infrastructure in support of a specific protocol. However,

more often than not, the resulting infrastructure is not useful for other purposes. The

alternate approach is to design a general-purpose virtual infrastructure with no par-

ticular protocol in mind. The challenge, of course, is to design the virtual infrastruc-

ture in such a way that it can be leveraged by a multitude of different protocols [22].

To the best of our knowledge, research studies addressing wireless sensor net-

works have thus far taken only the first approach. To wit, in ref. [15] a set of

108 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

paths is dynamically established as a result of the controlled diffusion of a query

from a source node into the network. Relevant data are routed back to the source

node, and possibly aggregated, along these paths. The paths can be viewed as a

form of data-dissemination and aggregation infrastructure. However, this infrastruc-

ture serves the sole purpose of routing and data aggregation, and it is not clear how it

can be leveraged for other purposes. A similar example is offered by ref. [23], where

sensors use a discovery procedure to dynamically establish secure communications

links to their neighbors; collectively, these links can be viewed as a secure com-

munications infrastructure. As before, it is not clear that the resulting infrastructure

can be leveraged for other purposes.

We view the principal contribution of this chapter at the conceptual level. Indeed,

we introduce a simple and natural general-purpose virtual infrastructure for wireless

sensor networks, consisting of a massive deployment of anonymous sensors. The

proposed infrastructure consists of a dynamic coordinate system and a companion

clustering scheme. We also show that the task of endowing the wireless sensor net-

work with the virtual infrastructure—a task that we shall refer to as training—can be

performed by a protocol that is at the same time lightweight and secure. In addition,

we show that a number of fundamental tasks, including routing and data aggre-

gation, can be performed efficiently once the virtual infrastructure is in place.

The remainder of this chapter is organized as follows: Section 4.2 discusses the

sensor model used throughout the work. Section 4.3 discusses wireless sensor

networks, as a conglomerate of individual sensors that have to self-organize and

self-govern. In particular, we discuss interfacing wireless sensor networks with

the outside world, as well as a brief preview of the training process. Next, Section

4.4 offers a brief overview of location awareness in wireless sensor networks. We

also provide a lightweight protocol allowing the sensors to acquire fine-grain

location information. Section 4.5 presents an overview of the general-purpose

virtual infrastructure for wireless sensor networks. Specifically, Subsection 4.5.1

discusses the details of our dynamic coordinate system, the key component of our

general-purpose virtual infrastructure; and Subsection 4.5.2 discusses the clustering

scheme induced by the dynamic coordinate system. Section 4.6 is the backbone of

the entire chapter, presenting the theoretical underpinnings of the training process.

Section 4.8 proposes routing and data-aggregation algorithms in a trained wireless

sensor network. Section 4.9 takes a close look at the problem of energy expenditure

related to routing data in a wireless sensor network. Finally, Section 4.10 offers con-

cluding remarks and maps out areas for future investigations.

4.2 THE SENSOR MODEL

We assume a sensor to be a device that possesses three basic capabilities: sensory,

computation, and wireless communication. The sensory capability is necessary to

acquire data from the environment; the computational capability is necessary for

aggregating data, processing control information, and managing both sensory and

communication activity. Sensor clocks drift at a bounded rate allowing only

4.2 THE SENSOR MODEL 109

short-lived and group-based synchronization, where a group is loosely defined as the

collection of sensors that collaborate to achieve a given task. The details of a light-

weight synchronization protocol for wireless sensor networks will be the subject of

another chapter in this book.

We assume that individual sensors operate subject to the following fundamental

constraints:

. Sensors are anonymous—they do not have fabrication-time identities.

. Sensors are tiny, commodity devices that are mass-produced in an environment

where testing is a luxury.

. Each sensor has a nonrenewable energy budget; when the on-board energy

supply is exhausted, the sensor becomes nonoperational.

. In order to save energy, each sensor is in sleep mode most of the time, waking

up at random points in time for short intervals under the control of an internal

timer.

. Each sensor has a modest transmission range, perhaps a few meters. This

implies that outbound messages sent by a sensor can reach only the sensors

in its proximity, typically a small fraction of the sensors deployed.

. Once deployed, the sensors must work unattended, it is either infeasible or

impractical to devote attention to individual sensors.

At any point in time, a sensor, will be engaged in performing one of a finite set of

possible operations, or will be asleep. Example operations are sensing (data acqui-

sition), routing (data communication; sending or receiving), and computing (e.g.,

data aggregation). We assume each operation performed by a sensor consumes a

known fixed amount of energy and that a sleeping sensor performs no operation

and consumes essentially no energy.

It is worth mentioning that while the energy budget can supply short-term appli-

cations, sensors dedicated to work over years may need to scavenge energy from the

ambient environment. Indeed, it was shown recently that energy scavenging from

vibration, kinetics, magnetic fields, seismic tremors, pressure, and so on, will

become reality in the near future [24,25].

4.2.1 Genetic Material

We assume that just prior to deployment (perhaps onboard the aircraft that drops

them in the terrain) the sensors are injected with the following genetic material:

. A standard public-domain pseudorandom number generator

. A set of secret seeds to be used as parameters for the random number generator

. A perfect hash function f

. An initial time, at which point all the clocks are synchronous; later, synchroni-

zation is lost due to clock drift

110 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

The way in which this genetic material is used by individual sensors will be dis-

cussed in detail later in the chapter. For a more detailed discussion and applications

to securing sensor networks we refer the interested reader to refs. [26] and [27].

4.3 STRUCTURE AND ORGANIZATION OF A WIRELESS
SENSOR NETWORK

We envision a massive deployment of sensors, perhaps in the thousands or even tens

of thousands. The sensors are aggregated into sophisticated computational and com-

munication infrastructures, called wireless sensor networks, whose goal is to pro-

duce globally meaningful information from data collected by individual sensors.

However, the massive deployment of sensors, combined with anonymity of individ-

ual sensors, limited energy budget and, in many applications, a hostile environment,

pose daunting challenges to the design of protocols for wireless sensor networks. For

one thing, the limited energy budget at the individual sensor level mandates the

design of ultralightweight communication protocols. Likewise, issues concerning

how the data collected by individual sensors could be queried and accessed, and

how concurrent sensing tasks could be executed internally, are of particular signifi-

cance. An important guideline in this direction is to perform as much local data pro-

cessing as possible at the sensor level, avoiding the transmission of raw data through

the network. Indeed, it is known that it costs 3 J of energy to transmit 1 kb of data a

distance of 100 m. Using the same amount of energy, a general-purpose processor

with the modest specification of 100 million instructions/watt executes 300 million

instructions [20,21].

As a consequence, the wireless sensor network must be multihop, and only a lim-

ited number of the sensors count the sink among their one-hop neighbors. For reasons

of scalability, it is assumed that no sensor knows the topology of the network.

4.3.1 Interfacing Wireless Sensor Networks

We assume that the wireless sensor network is connected to the outside world (e.g.,

point of command and control, the Internet, etc.) through a sink. The sink may or

may not be collocated with the sensors in the deployment area. In case of a noncol-

located sink, the interface with the outside world may be achieved by a vehicle driv-

ing by the area of deployment, or a helicopter, aircraft, or low earth orbit (LEO)

satellite overflying the sensor network, and collecting information from a select

group of reporting nodes. In such scenarios communication between individual sen-

sors is by radio, while the reporting nodes are communicating with the noncollo-

cated sink by radio, infrared, or laser [8,9]. One can easily contemplate a

collection of mobile sinks for fault tolerance.

When the sink is collocated with the wireless sensor network, it can also be in

charge of performing any necessary training and maintenance operations. Through-

out this chapter we shall assume that the sink is collocated with the sensors, and we

shall refer to it occasionally as training agent (TA, for short), especially in contexts

4.3 STRUCTURE AND ORGANIZATION OF A WIRELESS SENSOR NETWORK 111

where the sink engages in training operations. Moreover, we shall assume that the

sink is centrally placed in the deployment area. This is for convenience only; it

will be clear that the virtual infrastructure induced by the sink is topologically invar-

iant to translating the sink out of its central position. A corollary of this is that our

approach works equally well with eccentric sinks as well as with moving ones. We

shall not elaborate this point further in this chapter.

4.3.2 Synchronization

The problem of synchronizing sensors has deep implications on the types of appli-

cations for which wireless sensor networks are a suitable platform. Not surprisingly,

the synchronization problem has received a good deal of well-deserved attention in

the recent literature [28,29]. To the best of our knowledge, all the synchronization

strategies used are active in the sense that time awareness is propagated from

sensor to sensor in the network. Our strategy is passive in the sense that the sensors

synchronize to a master clock running at the sink. In addition to being simpler, our

method promises to be far more accurate as we avoid the snowballing effect of errors

inherent to active propagation.

Using the genetic material, each sensor can generate (pointers into) three

sequences of random numbers as follows:

1. A sequence t1, t2, . . . , ti, . . . of time-epoch lengths

2. A sequence n1, n2, . . . , ni, . . . of frequency sets drawn from a huge universe,

for example, the industrial, scientific, medical (ISM) band

3. For every i (i � 1), a permutation f i1, f
i
2, . . . of frequencies from ni

The interpretation of these sequences is: time is ruled into epochs: during the ith

time epoch, of length ti, frequency set ni is used, subject to the hopping sequence

f i1, f
i
2, Thus, as long as a sensor is synchronous to the TA, it knows the current

time epoch, the offset into the epoch, the frequencies, and the hopping pattern for

that epoch.

Suppose that the TA dwells t microseconds on each frequency in the hopping

sequence. For every i (i � 1), we let li stand for ti=t (assumed to be an integer);

thus, epoch ti involves a hopping sequence of length li. Think of epoch ti as being

partitioned into li slot, each slot using its own frequency selected by the hopping pat-

tern from the set ni. We refer the reader to Figure 4.1 where some of these ideas are

illustrated. For example, time epoch ti�1 uses a set of frequencies

ni�1 ¼ {1, 3, 4, 5, 12, 13, 14, 15, 16}. Similarly, ti uses the set of frequencies

ni ¼ {2, 3, 6, 7, 10, 11, 12, 14}, while epoch tiþ1 uses niþ1 ¼ {4, 5, 8, 9, 13, 16}.

The figure also illustrates the specific frequencies used in each slot.

It is clear that determining the epoch and the offset of the TA in the epoch is

sufficient for synchronization. Our synchronization protocol is predicated on the

assumption that sensor clock drift is bounded. Specifically, assume that whenever

a sensor wakes up and its local clock shows epoch ti, the master clock at the TA

112 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

is in one of the time epochs ti�1, ti, or tiþ1. Using its genetic information, the

sensor knows the last frequencies li�1, li, and liþ1 on which the TA will

dwell in the time epochs ti�1, ti, and tiþ1, respectively. Its strategy, therefore, is

to tune in, cyclically, to these frequencies, spending t=3 time units on each of

them. It is clear that eventually the sensor meets the TA on one of these frequen-

cies. Assume, without loss of generality, that the sensor meets the TA on fre-

quency l in some (unknown) slot s of one of the epochs ti�1, ti, or tiþ1. To

verify the synchronization, the sensor will attempt to meet the TA in slots

sþ 1, sþ 2, and sþ 3 at the start of the next epoch. If a match is found, the

sensor declares itself synchronized. Otherwise, the sensor will repeat the process

just delineated.

It is important to understand that the synchronization protocol outlined is prob-

abilistic: even if a sensor declares itself synchronized, there is a slight chance that

it is not. However, a missynchronization will be discovered quickly and the

sensor will reattempt to synchronize.

4.4 LOCATION AWARENESS IN WIRELESS SENSOR NETWORKS

Consider a circular deployment area along with a centrally placed TA equipped with

a long-range radio and a steady energy supply, that can communicate with the sen-

sors in the deployment area. Recall that, as noted before, the role of the TA is played

by the collocated sink.

It was recognized that some applications require that the collected sensory data

be supplemented with location information, encouraging the development of

t1 t3t2 t i−1 ti ti+1

Sl
ot

 1
Sl

ot
 2

Sl
ot

 3
Sl

ot
 4

Sl
ot

 5
Sl

ot
 6

Sl
ot

 7
Sl

ot
 8

Sl
ot

 9
Sl

ot
 1

0
Sl

ot
 1

Sl
ot

 2
Sl

ot
 3

Sl
ot

 4
Sl

ot
 5

Sl
ot

 6
Sl

ot
 7

Sl
ot

 8
Sl

ot
 1

Sl
ot

 2
Sl

ot
 3

Sl
ot

 4
Sl

ot
 5

Sl
ot

 6

Freq 2
Freq 1

Freq 3
Freq 4
Freq 5
Freq 6
Freq 7
Freq 8
Freq 9
Freq 10
Freq 11
Freq 12
Freq 13
Freq 14

Freq 16
Freq 15

Time epochs

Figure 4.1 Sensor synchronization.

4.4 LOCATION AWARENESS IN WIRELESS SENSOR NETWORKS 113

communication protocols that are location-aware and perhaps location-dependent

[7,30–33]. The practical deployment of many wireless sensor networks results in

sensors initially unaware of their location: they must acquire this information post-

deployment. Further, due to limitations in form factor, cost per unit and energy

budget, individual sensors are not expected to be global positioning system

(GPS)-enabled. Moreover, in many probable application environments, including

those inside buildings, hangars, or warehouses, satellite access is drastically limited.

The location awareness problem, then, is for individual sensors to acquire

location information either in absolute form (e.g., geographic coordinates) or rela-

tive to a reference point. The localization problem is for individual sensors to deter-

mine, as closely as possible, their geographic coordinates in the area of deployment.

Prominent solutions to the localization problem are based on multilateration or

multiangulation [30–36]. Most of these solutions assume the existence of several

anchors that are aware of their location (perhaps by endowing them with a GPS-

like device). Sensors receiving location messages from at least three sources can

approximate their own locations. For a good survey of localization protocols for

wireless sensor networks, we refer the reader to ref. [37].

For the sake of completeness, we now outline a very simple localization protocol

for wireless sensor networks that does not rely on multiple anchors.

4.4.1 A Simple Localization Protocol for Wireless Sensor Networks

The task of localization is performed immediately after deployment. If the sensors

are considered stationary, localization is a one-time operation.1 Unlike the vast

majority of existing protocols that rely heavily on multilateration or multiangulation

and on the existence of a minimum of three anchors with known geographic pos-

ition, our protocol only requires one anchor—the TA—whose role can be played

by a collocated sink. The key idea of our protocol is to allow each sensor to deter-

mine its position in a polar coordinate system centered at the TA. In particular, each

sensor determines its polar angle with respect to a standard polar axis as well as a

polar distance to the TA.

Referring to Figure 4.2, assume without loss of generality that the TA is centrally

located.2 The TA knows its own geographic coordinates, is not energy constrained

and it has (highly) directional transmission capabilities.

For some predetermined time, the TA transmits a rotating beacon, as illustrated in

Figure 4.2. The rotation is uniform with a period of T time units, known to all the

sensors in the deployment area. Every time the beacon coincides with the polar

axis the TA transmits a synchronization signal on a channel l, known to the sensors.
In outline, the protocol is as follows. A generic sensor a wakes up according to its

internal clock. It listens to channel l for T time units. Let t0 be the moment at which

1In fact, even if the sensors are stationary, they may move from their original deployment position due to

such factors as wind, rain, and small ground tremors.
2The reader should have no difficulty confirming that this is assumed for convenience and the eccentric

TA case is perfectly similar.

114 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

it hears the synchronization beacon. At that point it switches to channel m, on which
the rotating beacon is transmitted. Assume that the rotating beacon is received by

sensor a at time t1. The polar angle u corresponding to a is

u ¼ 2p (t1 � t0)

T
(4:1)

Similarly, the polar distance r can be determined by using the well-known

formula

r ¼ PT

cPR

� �1=a

(4:2)

where

PT and PR represent, respectively, the transmitted and received energy levels

c and a are constants that depend on the atmospheric conditions at the moment

when the localization takes place. These values may be passed on by the TA,

along with PT .

It is worth noting that a sensor may perform several determinations of u and r and
use averages to improve the accuracy of the localization. Indeed, once t1 is known,

the sensor can go to sleep until time t1 þ T , at which it knows that it needs to wake

up to receive the beacon again.

In some other applications, exact geographic location is not necessary: all that

individual sensors need is coarse-grain location awareness. There is an obvious

trade-off: coarse-grain location awareness is lightweight, but the resulting accuracy

is only a rough approximation of the exact geographic coordinates. In this chapter

TA

d

x

ω

Figure 4.2 The localization protocol.

4.4 LOCATION AWARENESS IN WIRELESS SENSOR NETWORKS 115

we show that sensors acquire coarse-grain location awareness by the training

protocol that imposes a coordinate system onto the network. An interesting by-

product of our training protocol is that it provides a partitioning into clusters and

a structured topology with natural communication paths. The resulting topology

will make it simple to avoid collisions between transmissions of nodes in different

clusters, between different paths and also between nodes on the same path. This is in

contrast with the majority of papers that assume routing along spanning trees with

frequent collisions.

4.5 THE VIRTUAL INFRASTRUCTURE

The main goal of this section is to present a broad overview of the main compo-

nents of the proposed general-purpose virtual infrastructure for wireless sensor

networks.

4.5.1 A Dynamic Coordinate System

To help with organizing the virtual infrastructure we assume a centrally placed TA,

equipped with a long-range radio and a steady energy supply, that can communicate

with both the sink and the sensors in the deployment area.

Referring to Figure 4.3(a) the coordinate system divides the wireless sensor

network area into equiangular wedges. In turn, these wedges are divided into sectors

by means of concentric circles or coronas centered at the TA (sink). As will be

discussed in Subsection 4.5.2, the sensors in a given sector map to a cluster, the

4

3

1

2

S1

S2
(a) (b)

Figure 4.3 Different perspectives of the dynamic coordinate system: (a) the dynamic

system, and (b) routing in a wireless sensor network.

116 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

mapping between clusters and sectors being one-to-one. The task of training a

wireless sensor network involves establishing:

Coronas. The deployment area is covered by k coronas determined by k con-

centric circles of radii 0 , r1 , r2 , � � � , rk � tx centered at the sink.

Wedges. The deployment area is ruled into a number of angular wedges centered

at the sink.

As illustrated in Figure 4.3(a), at the end of the training period each sensor has

acquired two coordinates: the identity of the corona in which it lies, as well as the

identity of the wedge to which it belongs. It is important to note that the locus of

all the sensors that have the same coordinates determines a cluster.

4.5.2 The Cluster Structure

Clustering was proposed in large-scale networks as a means of achieving scalability

through a hierarchical approach. For example, at the medium access layer, clustering

helps increase system capacity by promoting the spatial reuse of the wireless chan-

nel; at the network layer, clustering helps reducing the size of routing tables and

striking a balance between reactive and proactive routing. It is intuitively clear

that wireless sensor networks benefit a great deal from clustering; indeed, separating

concerns about intercluster management and the intracluster management can sub-

stantially decrease and load balance the management overhead. Given the import-

ance of clustering, a number a clustering protocols for wireless sensor networks

have been proposed in the recent literature [38–40]. However, virtually all cluster-

ing protocols for wireless sensor networks assume tacitly or explicitly that individ-

ual sensors have identities.

The dynamic coordinate system suggests a simple and robust clustering scheme:

a cluster is the locus of all sensors having the same coordinates. It is important to

note that clustering is obtained for free once the coordinate system is established.

Also, our clustering scheme does not assume synchronization and accommodates

sensor anonymity: sensors need not know the identity of the other sensors in their

cluster. For an illustration, refer again to Figure 4.3(a). Each sector in the dynamic

coordinate system represents a cluster; indeed, as is easily visible, the sensors in a

sector share the same coordinates: the same corona number and the same wedge

number.

Recently Olariu et al. [27] showed that one can augment the virtual infrastructure

with a task-based management system where clusters are tasks with sensing, routing,

or collective data storage.

4.6 THE LIGHTWEIGHT TRAINING PROTOCOL

The model for a wireless sensor network that we adopt assumes that after deploy-

ment the sensors must be trained before they can be operational. Recall that sensors

4.6 THE LIGHTWEIGHT TRAINING PROTOCOL 117

do not have identities and are initially unaware of their location. It follows that

untrained nodes are not addressable and cannot be targeted to do work in the net-

work. The main goal of this section is to present, in full detail, our lightweight,

highly scalable training protocol for wireless sensor networks. The key advantage

of this protocol is that each sensor participating in the training incurs an energy

cost that is logarithmic in the number of clusters and wedges defined by the protocol.

Being energy-efficient, this training can be repeated on a scheduled or ad hoc basis,

providing robustness and dynamic reorganization.

After deployment the individual sensors sleep until wakened by their individual

timers. Thus, each sensor sleeps for a random period of time, wakes up briefly, and if

it hears no messages of interest, selects a random number x and returns to sleep x

time units. Clocks are not synchronized, but over any time interval ½t, t þ Dt� a per-
centage directly proportional to Dt of the nodes are expected to wake up briefly.

During this time interval the sink continuously repeats a call to training, specifying

the current time and a rendezvous time. Thus, in a probabilistic sense a certain per-

centage of the sensor population will be selected for training. The time interval Dt
can be adjusted to control the percentage of sensors that is selected. Using the

synchronization protocol described in Subsection 4.3.2 the selected sensors reset

their clocks and set their timer appropriately before returning to sleep.

4.6.1 The Corona Training Protocol

The main goal of this subsection is to present the details of the corona training pro-

tocol. The wedge training protocol being quite straightforward will not be discussed

further in this chapter.

Let k be an integer3 known to the sensors and let the k coronas be determined by

concentric circles of radii 0 , r1 , r2 , � � � , rk � tx centered at the sink.

The idea of the corona training protocol is for each individual sensor to learn the

identity of the corona to which it belongs. For this purpose, each sensor learns a

string of log k bits, from which the corona number can be determined easily. To

see how this is done, it is useful to assume time ruled into slots s1, s2, . . . , sk�1

and that the sensors synchronize to the master clock running at the sink, as discussed

in Subsection 4.3.2.

In time slot s1 all the sensors are awake and the sink uses a transmission range of

rk=2. As a net effect, in the first slot the sensors in the first k=2 coronas will receive

the message above a certain threshold, while the others will not. Accordingly, the

sensors that receive the signal set b1 ¼ 0, the others set b1 ¼ 1.

Consider a k-leaf binary tree T and refer to Figure 4.4. In the figure the leaves are

represented by boxes numbered left to right from 1 to k. It is very important to note

that the intention here is for the k boxes to represent, in left-to-right order, the k cor-

onas. The training protocols is for individual sensors to determine the “box” (i.e., the

corona) to which they belong.

3For simplicity, we shall assume that k is a power of 2.

118 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

The edges of T are labeled by 0s and 1s in such a way that an edge leading to a left

subtree is labeled by a 0 and an edge leading to a right subtree is labeled by a 1. Let l

(1 � l � k) be an arbitrary leaf, and let b1, b2, . . . , blog k be the edge labels of the

unique path leading from the root to l. It is both well known and easy to prove by

a standard inductive argument that

l ¼ 1þ
Xlog k
j¼1

bj
k

2 j
(4:3)

As an illustration, applying equation (4.3) to leaf 7, we have 7 ¼ 1þ 0 � 23þ
1 � 22 þ 1 � 21 þ 0 � 20.
Referring again to Figure 4.4, let the interior nodes of T be numbered in pre-

order from 1 to k � 1, and let T 0 be the tree consisting of the interior nodes

only.4 Let u be an arbitrary node in T 0, and let b1, b2, . . . , bi�1 be the edge

labels on the unique path from the root to u. We take note of the following tech-

nical result.

Lemma 4.1: Let p(u) be the preorder number of u in T 0. Then, we have

p(u) ¼ 1þ
Xi�1

j¼1

cj

1211

10

9

7

6

54

3

2

1

13

0 1

16151413121110987654321

8
1

1

0

1514

Figure 4.4 Corona training.

4In other words, T 0 is the tree obtained from T by ignoring the last level (i.e., the “boxes”).

4.6 THE LIGHTWEIGHT TRAINING PROTOCOL 119

where

cj ¼
1 if bj ¼ 0

k

2j
if bj ¼ 1

8<
:

Proof: The proof is by induction on the depth i of node u in T 0. To settle the basis,

note that for i ¼ 1, u must be the root and p(u) ¼ 1, as expected.

For the inductive step, assume the statement true for all nodes in T 0 of depth less

that u. Indeed, let v be the parent of u and consider the unique path of length i� 1

joining the root to u. Clearly, nodes u and v share b1, b2, . . . , bi�2 and, thus,

c1, c2, . . . , ci�2. By the inductive hypothesis,

p(v) ¼ 1þ
Xi�2

j¼1

cj (4:4)

On the other hand, since v is the parent of u, we can write

p(u) ¼ p(v)þ
1 if u is the left child of v

k

2i�1
otherwise

8<
: (4:5)

Notice that if u is the left child of vwe have bi�1 ¼ 0 and ci�1 ¼ 1; otherwise, bi�1 ¼
1 and ci�1 ¼ k=2i�1. This observation, along with equations (4.4) and (4.5) com-

bined, allows us to write

p(u) ¼ 1þ
Xi�2

j¼1

cj þ ci�1 ¼ 1þ
Xi�1

j¼1

cj

completing the proof of the lemma. B

Let u be an arbitrary node of T 0 and let n(u) denote its inorder number in T 0. Let m be

the left-to-right rank among the leaves of T of the rightmost leaf of the left subtree of

T rooted at u.

Lemma 4.2: n(u) ¼ m.

Proof: We proceed by induction on the inorder number of a node in T 0. Indeed, if
n(u) ¼ 1, then umust be the leftmost leaf in T 0 and, thus, its left subtree in T consists

of the leftmost leaf of T 0, settling the base case.

Assume that the statement is true for all nodes of T 0 with inorder number smaller

than that of u. we shall distinguish between the following two cases:

Case 1: v is an ancestor of u in T 0. Let T 0(v) be the subtree of T 0 rooted at v. In this

case, umust be the leftmost leaf in the right subtree of T 0(v). Let q be the left-to-right

120 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

rank among the leaves of T of the rightmost leaf of the left subtree of T 0(v). By the

inductive hypothesis, n(v) ¼ q. Since u is a leaf in T 0, it has exactly two children in

T, namely, the leaves of ranks qþ 1 and qþ 2. Thus, in this case,

n(u) ¼ n(v)þ 1 ¼ qþ 1, as claimed.

Case 2: u is an ancestor of v in T 0. Let T 0(u) be the subtree of T 0 rooted at u. In this

case, v must be the rightmost leaf in the left subtree of T 0(u). Assume that n(v) ¼ r.

Observe that v has exactly two leaf children T. By the induction hypothesis, these

children have ranks r and r þ 1. Thus, in this case, n(u) ¼ n(v)þ 1 ¼ r þ 1, as

claimed.

This completes the proof of the lemma. B

To illustrate Lemma 4.2, refer again to Figure 4.4 and let u be the internal node

labeled “6.” Recall that the tree T 0 consists of the tree T with the level removed. It is

easy to verify that “6” is, in fact, the inorder number of u in T 0. By Lemma 4.2 this

coincides with the label of the box that is the leftmost leaf in the right subtree of

T 0(v) rooted at u.

With these technicalities out of the way, we now return to the corona training pro-

tocol. In our setting, the preorder and inorder numbers of internal nodes in T corre-

spond, respectively, to time slots in the training protocol and to the transmission

ranges used by the sink. More precisely, consider an arbitrary integer i,

(2 � i � log k � 1), and assume that at the end of time slot s a sensor has learned

the leftmost i� 1 bits b1, b2, . . . , bi�1. The following important result is implied

by Lemma 4.1 and Lemma 4.2.

Theorem 4.1: Having learned bits b1, b2, . . . , bi�1, a sensor must wake up in time

slot z ¼ 1þPi�1
j¼1 cj to learn bit bi. Moreover in time slot z the sink uses a trans-

mission range of rinorder(z).

To illustrate Theorem 4.1, refer again to Figure 4.4 where the internal nodes are

labeled by their preorder numbers. Consider the node labeled 2. It is easy to

verify that its inorder number is 4. Thus, all the nodes in the subtree rooted at 2

will be awake in slot 2 and the sink will transmit with a transmission range of r4.

Consequently, the sensors at a distance from the sink not exceeding r4 will receive

the signal, while the others will not.

It is also worth noting that only the sensors that need to be awake in a given time

slot will stay awake; the others will sleep, minimizing the energy expenditure. Yet

another interesting feature of the training protocol we just described is that individ-

ual sensors sleep for as many contiguous slots as possible before waking up, thus

avoiding repeated wake–sleep transitions that are likely to waste energy.

At the same time, in case the corona training process has to be aborted before it is

complete, Theorem 4.1 guarantees that if the training process restarts at some later

point, every sensor knows the exact time slots when it has to wake up in order to

learn its missing bits.

4.6 THE LIGHTWEIGHT TRAINING PROTOCOL 121

Making the training protocol secure is especially important, since training is a

prerequisite for subsequent network operations. Recently, Jones et al. [26] and

Wadaa et al. [41,42] have shown that the training protocol described earlier can

be made secure.

4.7 TASK-BASED DATA PROCESSING AND COMMUNICATION

The goal of this section is to describe a task-based data-processing and communi-

cation system for wireless sensor networks that exploits the virtual infrastructure

introduced in this chapter. For this purpose, we shall adopt the view that the wireless

sensor network performs tasks mandated by a remote end user. The end user issues

queries expressed in terms of high-level abstractions, to be answered by the network.

The middleware, running at the sink, provides the interface between the application

layer (where the end user resides) and the wireless sensor network. Specifically, the

sink parses the queries from the application layer, considers the current capabilities

of the network including the remaining energy budget and negotiates a contract with

the application layer before committing the network [42]. After a contract has been

agreed upon, the middleware translates the corresponding query into low-level tasks,

assigned to individual clusters. The clusters must then perform these tasks and send

the aggregated data back to the sink for consolidation. The consolidated information

is then passed on to the application layer.

4.7.1 Associating Sensors with Tasks

For our purposes a task is a tuple T(A, S, E), where

. A describes the action to be performed (i.e., detecting physical intrusion into the

deployment area).

. S specifies the identity of the cluster tasked with data collection (sensing).

. E specifies the minimum energy level required of sensors participating in the

task.

The suitably aggregated data collected by the sensors is to be routed to the sink

before being uploaded to the end user. In addition to the sensors in cluster S, a

number of sensors are selected to act as routers, relaying the data collected to the

sink. Collectively, these sensors are the workforce W(T) associated with T.

The process by whichW(T) is selected follows. During a time interval of length D
the sink issues a call for work containing the parameters of T. The sensors in the

same wedge as S and with corona numbers smaller than that of S that happen to

be awake during the interval D and that satisfy the conditions specified (membership

in S and energy level) stay awake and constitute W(T). It is intuitively clear that by

knowing the number of sensors, the density of deployment and the expected value of

sleep periods, one can fine-tune D in such a way thatW(T) is commensurate with the

122 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

desired grade of service. It is extremely important to note that, as discussed in

Subsection 4.3.2, a by-product of the call for work is that all the sensors in W(T)

are synchronized for the duration of the task.

For an illustration of the concepts discussed in this subsection, we refer to

Figure 4.3(b). In the figure two tasks are in progress. One of these tasks has man-

dated sensors in cluster S1 to collect data in support of a query. The sensors associ-

ated with this task as routers are those in the outlined sets in the same wedge as S1.

Since the width of each corona does not exceed the maximum transmission range tx,

communication between sensors in adjacent coronas is assumed. Also note that the

sensors that constitute the workforce of this transaction are synchronized. As for the

transmission of data, all the sensors in the same sector transmit at the same time. As

will be discussed in detail in Subsection 4.8.2, one of the benefits of our scheme is

that data aggregation can be accomplished in a straightforward manner.

The figure features a second task that involves data collection in a cluster S2 along

with its workforce. As will be discussed in the next subsection, there is no collision

between the two tasks, as they use a different set of frequencies.

4.7.2 Task-Based Synchronization

The generic synchronization protocol discussed earlier in this chapter can be used as

a building block for a more sophisticated task-based synchronization protocol. The

motivation is to support multitasking. Indeed, it is often desirable for the sensors in a

cluster to perform several tasks in parallel.5 However, any attempt at synchroni-

zation using the generic synchronization protocol will result in all the concurrent

tasks using exactly the same frequency set and the same hopping sequence, creating

frequent collisions and the need for subsequent retransmission.

Suppose that we wish to synchronize the workforce W(T) of a task T that uses

some color class c and that the generic synchronization protocol would show that

the actual time epoch is ti. The idea is to use the perfect hash function f to compute

a virtual time epoch tj with j ¼ f(i, k(c), T) to be used by W(T). Therefore, the

sensors in W(T) will act as if the real time were tj, using the frequency set nj and

the frequency hopping sequence f
j
1, f

j
2, Thus, different concurrent tasks will

employ different frequency sets and hopping sequences minimizing the occurrence

of collisions.

4.8 ROUTING AND DATA AGGREGATION

The main goal of this section is to show that once a wireless sensor network has been

trained, both routing and data aggregation become easy and straightforward.

5However, the sets of sensors allocated to these tasks must be disjoint.

4.8 ROUTING AND DATA AGGREGATION 123

4.8.1 Routing

The routing problem in sensor networks differs rather substantially from routing in

other types of wireless networks. For one thing, individual sensors are anonymous,

lacking identities; thus, standard addressing methods do not work directly. For

another reason, the stringent energy limitations present in the sensor network

render the vast majority of conventional routing protocols impractical.

Given the importance of routing, it is not surprising to see that a number of rout-

ing protocols specifically designed for wireless sensor networks were proposed in

the literature [15,43–46]. For example, in ref. [15] Intanagonwiwat et al. describe

directed diffusion and a companion routing protocol based on interest tables at the

expense of maintaining a cache of information indexed by interest area at each

node. Shah and Rabaey [46] responds to client requests by selecting paths that maxi-

mize the longevity of the network rather than minimize total energy consumed by a

path with path options established by local flooding. Other routing protocols include

rumor routing [43], and multipath routing [44], among others. As we are about to

demonstrate, our training protocol provides a novel solution to the routing problem

by yielding energy-efficient paths-based routing.

Recall that sensor networks are multihop. Thus, in order for the sensing infor-

mation to be conveyed to the sink, routing is necessary. Our cluster structure

allows a very simple routing process, as described in the following paragraphs.

The idea is that the information is routed within its own wedge along a virtual

path joining the outermost sector to the sink, as illustrated in Figure 4.3(b). The col-

lection of all the virtual paths (one per wedge) defines a tree. In this tree, each

internal node, except for the root, has exactly one child, eliminating medium

access control (MAC)–level contention in sending sensor information to the sink.

Recently, a number of MAC-layer protocols for wireless sensor networks have

been proposed in the literature [47–49]. In fact, in our routing scheme by appropri-

ately staggering transmissions in neighboring wedges, collision and, therefore, the

need for retransmissions is completely eliminated. Thus, our training protocol

implies an efficient MAC protocol as well.

4.8.2 Data Aggregation

Once sensory data is collected by a multitude of sensors, the next important task is to

consolidate the data in order to minimize the amount of traffic to the sink. We place

the presentation in the context of our work model. To be more specific, we assume

that the cluster identified by (i, j)—that is, the set of sensors located in sector Ai, j—

are tasked to perform a certain task T . A number of sensors in sectors

Ai, 1,Ai, 2, . . . , Ai�1, j are selected to act as routers of the data collected by the sensors

in Ai, j to the sink. Collectively, these sensors are the support sensors of task T .

It is, perhaps, of interest to describe the process by which the sensors associated

with T are selected. To begin, during a time interval of length D the sink will issue a

call for work specifying the identity j of the wedge in which the task is to be per-

formed, as well as the identity i of the corona in which data are to be collected.

124 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

The sensors in wedge j that happen to wake up during the interval D and that have an

appropriate energy level stay awake and will participate in the task either as data

collectors or as routers, depending on their respective position within the wedge.

It is intuitively clear that by knowing the number of sensors, the density of deploy-

ment and the expected value of sleep periods, one can fine-tune D in such a way that

a suitable number of routers will be awake in wedge j in support of T . Likewise, we

can select the set D of data collecting sensors in Ai, j. Let S denote the set of support

sensors for T . It is appropriate to recall that a by-product of the call for work is that

all the sensors in S are synchronized. In order to make the task secure the sensors in

S will share a secret key that allows them access to a set of time epochs, a set of

frequencies to be used in each time epoch, and a hopping sequence to be used

within each epoch. For details, we refer the reader to Section 4.2.

Assume that the results of the data collection specific to task T can be partitioned

into 2m, (m � 0), disjoint groups. Thus, each sensor performing data collection will

encode its data in a string of m bits.

Since, typically,D contains a large number of sensors, it is important to fuse indi-

vidual results into a final result that will be sent to the sink. We now outline a poss-

ible solution to the data-aggregation problem. Using the algorithms of Nakano and

Olariu [50,51] which do not require sensors to have identities, the sensors in D
acquire temporary identities ranging from 1 to jDj. Using their newly acquired iden-
tities, individual data values are being transmitted to the sensor whose identity is 1,

which will perform data aggregation and will send the final result to the sink. The

advantage of this data-aggregation scheme is that there is no data loss and all the

collected values will be correctly fused. There are, however, many disadvantages.

For one thing, the initialization algorithm of [50] requires every sensor in D to

expend an amount of energy proportional with log jDj. For another, the final

result of the data collection is concentrated in a single sensor (i.e., the sensor with

temporary identity 1), which is a single point of failure.

We now propose amuch simpler data-aggregation scheme that involves some data

loss, but that is fault tolerant and does not require the sensors in D to have unique

identities. The idea is that the sensors inD transmit the data collected bit by bit, start-

ing, say, left to right, as follows: a value of 0 is not transmitted, while a 1 will be trans-

mitted. The sensors in Ai�1, j that have been elected as routers in support of task T
pick up the values transmitted. The following disambiguation scheme is used:

. No bit is received—in this case, a 0 is recorded.

. A bit of 1 is received—in this case, a 1 is recorded.

. A collision is recorded—in this case a 1 is recorded.

It is clear that as a result of this disambiguation scheme, every sensor in Ai�1, j that

is in support of T stores the logical OR of the values stored by sensors in D. Note

also that while there was loss of information in the process of fusing data, no further

loss can occur in traversing the path from Ai�1, j to the sink: this is because all routers

in Ai�1, j transmit the same bit string.

4.8 ROUTING AND DATA AGGREGATION 125

4.8.3 An Example

For an example of data aggregation consider a wireless sensor network that is tasked

to monitor and report the temperature in cluster Ai, j. Referring to Table 4.1, for the

application at hand temperatures below 1118F are considered to be noncritical, and if

such a temperature is reported, no specific action is to be taken. By contrast, temp-

eratures above 1118F are considered to be critical, and they trigger a further moni-

toring action. The encoding featured in Table 4.1 is specifically designed to reflects

the relative importance of various temperature ranges. For example, the temperature

ranges in the noncritical zone are twice as large as those in the critical zone. Also,

notice that the leftmost bit differentiates critical from noncritical temperatures.

Thus, if the sink receives a reported temperature whose leftmost bit is a 1, then

further action is initiated; if, on the other hand, the leftmost bit is 0, then no special

action is necessary.

Let us see how our data aggregation works in this context. Referring to Figure 4.5,

assume that a group of three sensors in Ai, j have collected data and are about to trans-

mit them to the sensors in Ai�1, j. The values collected are encoded, respectively, as

0110, 0101, and 0110. Thus, none of the values indicates a critical situation. After

transmission and disambiguation, the sensors in Ai�1, j will store 0111, which is

the logical OR of the values transmitted. Notice that although the data-aggregation

process involves loss of information, we do not loose critical information. This

is because the logical OR of noncritical temperatures must remain noncritical.

Conversely, if the logical OR indicates a critical temperature, one of the fused temp-

eratures must have been critical, and thus action must be initiated. It is also interest-

A
i−1, j

A
i−2, j

A i, j

(0110)
(0101)

(0110)

(0111) (0111)

(0111) (0111)

Figure 4.5 Data aggregation.

126 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

T
A
B
L
E
4
.1

T
em

p
er
a
tu
re

R
a
n
g
es

a
n
d
T
h
ei
r
E
n
co
d
in
g

T
em

p
er
at
u
re

5
1
–
6
0

6
1
–
7
0

7
1
–
8
0

8
1
–
9
0

9
1
–
1
0
0

1
0
1
–
1
1
0

1
1
1
–
1
1
5

1
1
6
–
1
2
0

1
2
1
–
1
2
5

1
2
6
–
1
3
0

1
3
1
–
1
3
5

1
3
6
–
1
4
0

1
4
1
–
1
4
5

1
4
6
–
1
5
0

C
o
d
e

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

127

ing to note that when the sensors in Ai�1, j transmit to those in Ai�2, j, no further loss

of information occurs.

4.8.4 Lossless Aggregation

It is worth noting that there is an interesting interplay between the amount of loss in

data aggregation and the amount of energy expended to effect it. As we are about to

show, if we are willing to expend slightly more energy, lossless data aggregation can

be achieved.

The corresponding trade-off is interesting in its own right, being characteristic of

choices that present themselves in the design of protocols for wireless sensor net-

works. For illustration purposes, assume that it is necessary to determine the maxi-

mum of the bit codes stored by the sensors in Ai, j and refer to Figure 4.6.

To solve this problem, all the sensors in Ai, j that have collected relevant

information engage in the following protocol, which is guaranteed to aggregate

the values into the maximum. Assume that each sensor stores a d-bit code for the

range.

e(0101)
a(0101)

c(0101)b(1000)
d(1010)

f(1011)

BA

j(1011)
i(1011)

h(1111)

d(1010)

g(1101)

e(0101)
a(0101)

b(1000) c(0101)

(a)

(b)

f (1011)

h(1010)

g(1000)

BA

j(1011)
i(1011)

i−1, j
A

A

i, jA

i−1, j

i, jA

Figure 4.6 Lossless data aggregation.

128 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

Protocol (Correct_Maximum): For every position p starting with the most signifi-

cant bit to the least:

1. Sensors in Ai, j that have a 0 in position p listen for two time slots; if in any of

these slots a 1 or a collision message is received, they terminate their partici-

pation in the protocol.

2. Sensors that have a 1 in position p transmit in the first time slot and sleep in the

second.

3. Sensors in Ai�1, j do the following:

3.1. Any sensor that has received a 1 or a collision in the first time slot, echoes

a 1 in the second.

3.2. Any sensor that has not received a transmission in the first slot sleeps in

the second slot.

To see why the two time slots for transmitting a single bit are necessary consider

the situation depicted in Figure 4.6(a) and the following simple “algorithm”:

Protocol (Incorrect_Maximum): For every position p starting with the most sig-

nificant bit to the least:

1. Sensors in Ai, j that have a 0 in position p listen; if a 1 or a collision message is

received, they terminate their participation in the protocol.

2. Sensors that have a 1 in position p transmit.

Figure 4.6(a) depicts the case where, due to energy depletion the sensors that

participate in the protocol are sparsely deployed. Implicit in the protocol Incorrect_

Maximum is that every sensor can hear the transmission of every other sensor. In

particular, notice that in group A sensor a does not hear the transmission of

sensor b and continues transmitting even though it should not. Indeed, for this

reason, the value received by sensor g in Ai�1, j is not the correct maximum of

values stored by the sensors in group A. A similar situation occurs when sensor h

in Ai�1, j heard the transmission of sensors a in group A and d in group B. Clearly

h stores a value that corresponds to no maximum.

Notice how protocol Correct_Maximum is sidestepping this difficulty. The trans-

mission of a single bit is separated into two time slots: first, all the sensors in Ai, j

transmit their corresponding bit. In the second slot, the sensors in Ai�1, j echo

back the values received. Since the sensor in Ai, j that store a 0 listen for two time

slots, they will realize that some sensor in Ai, j has a 1 in that bit position and,

consequently, they should drop out. The result is illustrated in Figure 4.6(b).

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE

The main goal of this section is to explore the problem of energy expenditure related

to routing data in a wireless sensor network. Indeed, we adopt a task-based model

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE 129

[27,41,42] whereby the sensor network is subjected to a set T of tasks. Each task

involves the nodes in a sector (i.e., a cluster) and involves performing local sensing

by the sensors, data aggregation, and sending the resulting information to the sink.

Recall that, as discussed in Section 4.8, one of the key benefits of our training is that

transmitting the result of the task from a sector to the sink amounts to routing the

information along a path lying within the same wedge (see also Fig. 4.3(b)).

Thus, we associate each task with such a path. We will now analyze the energy

expended by sensors to fulfill their path-related duties.

Throughout the remainder of this chapter we assume a sensor network deployed

in a circular area and a collocated sink placed at its center. Consider a wedgeW sub-

tended by an angle of u and refer to Figure 4.7. The wedge W is partitioned into k

sectors A1,A2, . . . ,Ak by its intersection with k concentric circles, centered at the

sink, and of monotonically increasing radii r1 , r2 , � � � , rk. It is important to

note that rk, the deployment radius, is a system parameter, and thus a constant for

a particular sensor network.

For convenience of notation we write r0 ¼ 0 and interpret A0 as the sink itself.

Let tx denote the maximum transmission range of a sensor.6

Let n denote the total number of sensors deployed in wedgeW. We assume a uni-

form deployment with density r. In particular, with A standing for the area of wedge

W, we can write

n ¼ rA ¼ ru

2
r2k (4:6)

Let n1, n2, n3, . . . , nk stand for the number of nodes deployed in the sectors

A1,A2,A3, . . . ,Ak, respectively. Since the deployment is uniform, it is easy to

2

2

1

1

A

A

k
A

k
r

r

r

Figure 4.7 A wedge W and the associated sectors.

6Of course, tx is a system parameter that depends on the particular type of sensors deployed.

130 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

confirm that for every i (1 � i � k),

ni ¼ rA1 ¼ ru

2
(r2i � r2i�1): (4:7)

Let N denote the number of sector-to-sink paths (henceforth, simply denoted by

paths) that the wedge W sees during the lifetime of the sensor network. By our pre-

vious discussion there is a one-to-one map between paths and tasks. Thus, N equals

the total number T of tasks that the wedge can handle during the lifetime of the

network.

We make the following assumptions motivated by the uniformity of the deploy-

ment:

. Each sensor in W is equally likely to be the source of a path to the sink

. For 2 � i � k, each sensor in sector Ai�1 is equally likely to serve as the next

hop for a path that involves a node in Ai.

By virtue of the first assumption, the expected number of paths originating at a node

in W is

N

n
(4:8)

Consider sector A1. Since the N paths have the sink as their destination, the nodes

in sector A1 must collectively participate in all the N paths. Since A1 contains n1
nodes, the expected number of transmissions per node is N=n1. Assuming a

power-degradation factor of a, 2 � a � 6, the energy expended by a node in A1

per path served is ra1 þ c for some nonnegative constant c. Thus, the total energy

E1 consumed by a node in A1 to fulfill its routing duties is

E1 ¼ N

n1
ra1 þ c
� �

which, by equation (4.7), can be written as

E1 ¼ N

n1
ra1 þ c
� � ¼ 2N

rur21
ra1 þ c
� � ¼ 2N

ru
ra�2
1 þ c

r21

� �
(4:9)

It is very important to note that equation (4.9) allows us to determine the optimal

value r
opt
1 of r1 that minimizes the value of E1. For later reference, we note that

this value is

r
opt
1 ¼

tx if a ¼ 2

min
2c

a� 2

� �1=a

, tx

()
if 2 , a � 6

8><
>: (4:10)

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE 131

Let T denote the total number of tasks performed by the entire wireless sensor

network (not just wedge W) during its lifetime, and let N be the corresponding

number of node-to-sink paths. Assuming that the T tasks are uniformly distributed

throughout the sensor network, we can write

N

2p
¼ N

u
(4:11)

By equations (4.9) and (4.11) combined, the total energy needed by a node in A1

to handle its routing duties is

E1 ¼ 2N

ru
ra�2
1 þ c

r21

� �
¼ N

rp
ra�2
1 þ c

r21

� �
(4:12)

Let E denote the total energy budget of a sensor. Since the sensors in A1 must have

sufficient energy to handle their routing duties, by using equation (4.12) we can write

N

rp
ra�2
1 þ c

r21

� �
, E

Recalling that in our working model there is a one-to-one correspondence

between tasks and sector-to-sink paths, this inequality can be written in its

equivalent form

T

rp
ra�2
1 þ c

r21

� �
, E (4:13)

4.9.1 Reasoning About the System Parameters

Inequality equation (4.13) can be interpreted in several ways, each expressing a

different view of the limiting factors inherent to the sensors deployed. The goal

of this subsection is to look at some of possible interpretations of inequality (4.13).

1. Network Longevity: We interpret T , the number of transactions that the

system can sustain during its lifetime as the network longevity. Thus, inequal-

ity (4.13) allows us to write

T ,
rpEr21
ra1 þ c

(4:14)

which tells us that the longevity of the system is upper bounded by the ratio

(4.14). More specifically, the longevity is directly proportional to the deploy-

ment density and to the reciprocal of ra1 þ c. Consequently, if we wish to

design a wireless sensor network that must sustain a given number T of

132 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

transactions, we must select the deployment density as well as the radius of the

first corona accordingly. We also need to chose sensors packing an amount of

energy compatible with ratio (4.14).

2. Maximum Transmission Range Close to the Sink: First, assuming a known

deployment density7 r, inequality (4.13) shows that for a given energy

budget E, in order to guarantee a desired network longevity of T tasks, the

(maximum) transmission radius of sensors deployed in close proximity to

the sink must satisfy

ra�2
1 þ c

r21
,

prE

T
(4:15)

with the additional constraint that r1 � tx where, recall, tx stands for the maxi-

mum transmission range of a sensor.

3. Deployment Density: Likewise, for a selected radius r1 (tx � r1), and for a

given energy budget E, in order to guarantee a network longevity of T

tasks, the deployment density r must satisfy the inequality

r .
T ra1 þ c
� �
Epr21

(4:16)

This latter inequality can also be used (perhaps in conjunction with (14) to plan

future re-deployments as the existing sensors exhaust their energy budget.

4.9.2 Energy Expenditure

In this subsection we turn to the task of evaluating the energy expenditure per node

in an arbitrary sector Ai with i � 1. Since the case i ¼ 1 was handled in the previous

section, we now assume i � 2.

Observe that nodes in a generic sector Ai (2 � i � k) are called on to serve two

kinds of paths:

1. Paths originating in a sector Aj with i , j � k

2. Paths originating at a node in Ai

It is easy to confirm that the number of paths involving nodes in Ai includes all paths

except those originating in one of the sectors A1, A2, . . . , Ai�1. Therefore, the total

number of paths that the nodes in Ai must handle is

N � N

n
(n1 þ n2 þ � � � þ ni�1)

7It is important to note that given the deployment area, the density can be engineered beforehand by

simply deploying a suitable number of sensors uniformly at random.

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE 133

By equations (4.6) and (4.7) combined with elementary manipulations, this

expression can be written as

N 1�
Pk

i¼1 (r
2
i � r2i�1)

r2k

" #
¼ N 1� r2i�1

r2k

� �
(4:17)

Recall that sector Ai contains ni nodes. This implies that each node in Ai must

participate in

N

ni
1� r2i�1

r2k

� �

paths. Using equation (4.7), the number of paths handled by each node in Ai can be

written as

2N

ru
1� r2i�1

r2k

� �
1

r2i � r2i�1

(4:18)

Observe that the width of sector Ai is ri � ri�1. It follows that the transmission range

needed to send information between Ai and Ai�1 is ri � ri�1. We shall adopt a most

general power-degradation model according to which the energy expended by a

node in Ai to send information to sensors in Ai�1 is

(ri � ri�1)
a þ c

where c is a nonnegative constant.

Let the total amount of energy expended by a node in Ai be Ei. By equations

(4.11) and (4.18), we have

Ei ¼ N

pr
1� r2i�1

r2k

� �
1

r2i � r2i�1

(ri � ri�1)
a þ c½ �

Simple manipulations show that

Ei ¼ N

pr
1� r2i�1

r2k

� �
(ri � ri�1)

a�1

ri þ ri�1

þ c

r2i � r2i�1

� �
(4:19)

For later reference we will find it convenient to write

Ei ¼ E0
i þ E00

i

134 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

where

E0
i ¼

N

pr
1� r2i�1

r2k

� �
(ri � ri�1)

a�1

ri þ ri�1

(4:20)

and

E00
i ¼

N

pr
1� r2i�1

r2k

� �
c

r2i � r2i�1

(4:21)

We also assume that for all i, 1 � i � k, every sensor in sector Ai should be within

transmission range from some sensor in sector Ai�1. In particular, every sensor in

sector A1 must be within transmission range from the sink.8

4.9.3 Optimizing the Size of Coronas

The main goal of this section is to show how to select the radii r1, r2, . . . , rk in such a
way that total energy spent per sector-to-sink routing path is minimized. For this

purpose, let 1i denote the total amount of energy expended by the nodes along a gen-

eric path transferring data from sector Ai to the sink. Write r0 ¼ 0 and assume that

A0 is the sink node itself; since in transmitting from Aj to Aj�1 (2 � j � i), the

amount of energy spent is (rj � rj�1)
a þ c, it follows that

1i ¼
Xi
j¼1

(rj � r j�1)
a þ c

� �
(4:22)

Recall the Lagrange identity [ref. 52, p. 64]:

X
1�p,q�i

(apbq � aqbp)
2 ¼

Xi
p¼1

a2p

 ! Xi
p¼1

b2p

 !
�

Xi
p¼1

apbp

 !2

For every j (1 � j � i), write aj ¼ (rj � rj�1)
a=2 and bj ¼ 1. Noticing that

.
Pi

p¼1 a
2
p ¼ 1i � ic

.
Pi

p¼1 b
2
p ¼ i

and substituting in Langrage’s identity, we obtain

X
1�p,q�i

(ap � aq)
2 ¼ i(1i � ic)�

Xi
p¼1

ap

 !2

8For convenience of notation we write r0 ¼ 0 and interpret A0 as the sink itself.

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE 135

Thus, we can write

i 1i � icð Þ ¼
Xi
p¼1

(ap)
2 þ

X
1�p,q�i

(ap � aq)
2 (4:23)

Clearly, the left-hand side of equation (4.23) is minimized whenever

X
1�p,q�i

(ap � aq)
2 ¼ 0

which occurs if and only if

a1 ¼ a2 ¼ a3 ¼ � � � ¼ ai

Now, recalling that the optimal value of r1 from equation (4.10) is

r
opt
1 ¼

tx if a ¼ 2

min
2c

a� 2

� �1=a

, tx

()
if 2 , a � 6

8><
>:

We can set for every

j(1 � j � i),

rj � r j�1 ¼ r
opt
1

(4:24)

It is easy to see that equation (4.24) implies

ri ¼ i� r
opt
1 (4:25)

and so, substituting in equation (4.23), we obtain

1i ¼ i�min
ca

a� 2, tax þ c

� �

To summarize, we state the following result.

Theorem 4.2 In order to minimize the total amount of energy spent on routing along

a path originating at a sensor in corona Ai and ending at the sink, all the coronas must

have the same width and the optimal amount of energy is i times the energy needed

to send the desired information between adjacent coronas.

136 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

4.10 CONCLUDING REMARKS AND DIRECTIONS
FOR FURTHER WORK

In this chapter we have proposed a general-purpose virtual infrastructure for a mas-

sively deployed collection of anonymous sensors. The key component of the virtual

infrastructure is a dynamic coordinate system that suggests a simple and robust clus-

tering scheme. We have also shown that training the sensors—the process of learn-

ing their coordinates—can be performed by a protocol that is lightweight. Being

energy efficient, this training can be repeated on either a scheduled or ad hoc

basis to provide robustness and dynamic reorganization.

We also showed that in a trained wireless sensor network the tasks of routing and

data aggregation can be performed by very simple and energy-efficient protocols.

It is important to point out that Olariu et al. [27] have shown that the virtual infra-

structure can be leveraged by a number of applications, including in-network data

storage and security-related problems. This is an extremely important problem, as

the information provided by the sensor network may be used for decision making

in military or civilian environments where human life is at stake.

The genetic material discussed in Subsection 4.2.1 has many other applications.

One of then is generational learning discussed in [53,54] in the context of modeling

wireless sensor networks, and by Jones et al. [55] in the context of biology-inspired

protocols for wireless sensor networks.

REFERENCES

1. C. C. Enz, A. El-Hoiydi, J.-D. Decotignie, and V. Peiris. WiseNET: An ultralow power

wireless sensor network solution. Computer (IEEE), 37(8):62–69, 2004.

2. See at http://www.darpa.mil/mto/mems/.

3. See at http://www.stanford.edu/class/ee321/ho/MEMS-14-sensors.pdf.

4. See at http://www.xs4all.nl/g̃answijk/chipdir/m/sensor.htm.

5. V. V. Zhirnov and D. J. C. Herr. New frontiers: Self-assembly and nano-electronics.

Computer (IEEE), 34(1):34–43, 2001.

6. J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The platforms enabling wireless

sensor networks. Communications of the ACM, 47(6):41–46, 2004.

7. F. Akyildiz, W. Su, Y. Sankarasubramanian, and E. Cayirci. Wireless sensor networks: A

survey. Computer Networks, 38(4):393–422, 2002; IEEE Wireless Communications,

9(1):40–48, 2002.

8. J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile networking for smart dust. In Proceed-

ings of the 5th Annual ACM/IEEE International Conference on Computing and Network-

ing (MobiCom’99), Seattle, Washington, August 1999.

9. B. Warneke, M. Last, B. Leibowitz, and K. Pister. SmartDust: Communicating with a

cubic-millimeter computer. Computer (IEEE), 34(1):44–51, 2001.

10. D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks. Computer (IEEE),

37(8):41–49, 2004.

REFERENCES 137

11. D. Culler and W. Hong. Wireless sensor networks. Communications of the ACM, 47(6):

30–33, 2004.

12. National Research Council. Embedded, Everywhere: A Research Agenda for Systems of

Embedded Computers Committee on Networked Systems of Embedded Computers, for

the Computer Science and Telecommunications Board, Division on Engineering and

Physical Sciences, Washington, D.C., 2001.

13. P. Saffo. Sensors, the next wave of innovation. Communications of the ACM,

40(2):93–97, 1997.

14. J. Agre and L. Clare. An integrated architecture for cooperative sensing networks. IEEE

Computer, 33(5):106–108, 2000.

15. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, Directed diffu-

sion for wireless sensor networking. IEEE/ACM Transactions on Networking, 11(1):

February, 2003.

16. K. Martinez, J. K. Hart, and R. Ong. Sensor network applications. Computer (IEEE),

37(8):50–56, 2004.

17. C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information networking architec-

ture and applications. IEEE Personal Communications, pages 52–59, August 2001.

18. R. Szewczyk, E. Osterweil, J. Polatre, M. Hamilton, A. Mainwaring, and D. Estrin.

Habitat monitoring with sensor networks. Communications of the ACM, 47(6):34–40,

19. S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. A taxonomy of wireless micro-sensor

network models. Mobile Computing and Communications Review, 6(2):28–36,

20. G. J. Pottie andW. J. Kaiser. Wireless integrated sensor networks. Communications of the

ACM, 43(5):51–58, 2000.

21. K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie. Protocols for self-organization of a wire-

less sensor network. IEEE Personal Communications, pages 16–27, October 2000.

22. L. Wang and S. Olariu. Towards a general-purpose virtual infrastructure for mobile

aD-HOC networks. In Ad Hoc and Sensor Networks, Y. Xiao and Y. Pan (eds.), Nova

Science Publishers, January 2005.

23. K. H. Chan, A. Perrig, and D. Song. Random key pre-distribution schemes for sensor

networks. In Proceedings of the IEEE Symposium on Security and Privacy, Berkeley,

California, May 2003.

24. S. Roundy, P. K. Wright, and J. Rabaey. Energy Scavenging for Wireless Sensor

Networks with Special Focus on Vibrations. Kluwer Academic Press, 2004.

25. N. S. Shenck and J. A. Paradiso. Energy scavenging with shoe-mounter piezoelectrics.

IEEE Micro, 21:30–41, 2001.

26. K. Jones, A. Wadaa, S. Olariu, L. Wilson, and M. Eltoweissy. Towards a new paradigm

for securing wireless sensor networks. In Proceeings of the New Security Paradigms

Workshop (NSPW’2003), Ascona, Switzerland, August 2003.

27. S. Olariu, A. Wadaa, L. Wilson, and M. Eltoweissy. Wireless sensor networks: Lever-

aging the virtual infrastructure. IEEE Network, 18(4):51–56, 2004.

28. M. Sichitiu and C. Veerarithiphan. Simple accurate synchronization for wireless sensor

networks. In Proceedings of the IEEE Wireless Communications and Networking Confer-

ence (WCNC 2003), New Orleans, Louisiana, March 2003.

29. F. Sivrukaya and B. Yener. Time synchronization in sensor networks: A survey. IEEE

Network, 18(4):45–50, 2004.

138 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

30. N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for very

small devices. IEEE Personal Communications, 7(5):28–34, 2000.

31. N. Bulusu, J. Heidemann, and D. Estrin. Scalable coordination for wireless sensor

networks: Self-configuration localization systems. In Proceedings of the 6th International

Symposium on Communication Theory and Applications (ISCTA 2001), Ambleside, Lake

District, UK, July 2001.

32. S. Capkun, M. Hamdi, and J.-P. Hubeaux. GPS-free positioning in mobile ad-hoc

networks. Cluster Computing, 5(2):157–167, 2002.

33. L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin. Locating tiny sensors in time and

space: A case study. In Proceedings of the International Conference on Computer

Design (ICCD 2002), Freiburg, Germany, September 2002.

34. L. Doherty, H. S. J. Pister, and L. E. Ghaoui. Convex position estimation in wireless

sensor networks. In Proceedings of IEEE INFOCOM 2001, 3:1655–1663, April 2001.

35. D. Niculescu. Positioning in ad hoc sensor networks. IEEE Network, 18(4):24–29, 2004.

36. C. Savarese, J. Rabaey, and K. Langendoen. Robust positioning algorithms for distributed

ad-hoc wireless sensor networks. In Proceedings of the USENIX Technical Annual

Conference, pages 317–328, Monterey, California, June 2002.

37. K. Langendoen and N. Reijers. Distributed localization algorithm. In Embedded Systems

Handbook, R. Zurawski (ed.), CRC Press, forthcoming.

38. S. Bandyopadhyay and E. Coyle. An efficient hierarchical clustering algorithm for wire-

less sensor networks. In Proceedings of IEEE INFOCOM 2003—The Conference on

Computer Communications, 22(1):1713–1723, March 2003.

39. D. Coore, R. Nagpal, and R. Weiss. Paradigms for Structure in an Amorphous Computer,

MIT Artificial Intelligence laboratory Technical Report AI-1616, October 1997.

40. S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh. Optimal energy-aware clustering

in sensor networks. Sensors, 2:258–269, 2002.

41. A. Wadaa, S. Olariu, L. Wilson, K. Jones, and Q. Xu. On training wireless sensor net-

works. In Proceedings of the 3rd International Workshop on Wireless, Mobile and

Ad Hoc Networks (WMAN’03), Nice, France, April 2003.

42. A. Wadaa, S. Olariu, L. Wilson, K. Jones, and M. Eltoweissy. Training a sensor networks.

Mobile Networks and Applications, February 2005, forthcoming.

43. D. Braginsky and D. Estrin. Rumor Routing Algorithm for Sensor Networks. Paper sub-

mitted to the International Conference on Distributed Computing Systems (ICDCS-22),

November 2001.

44. D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly resilient, energy-efficient

multipath routing in wireless sensor networks. ACM Mobile Computing and Communi-

cations Review, 5(4), 2001.

45. J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-based protocols for dissemi-

nating information in wireless sensor networks. Wireless Networks, 8(3), March 2002.

46. R. C. Shah and J. Rabaey. Energy aware routing for low energy ad hoc sensor networks.

In Proceedings of the IEEE Wireless Communications and Networking Conference

(WCNC 2002), Orlando, Florida, March 2002.

47. E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan. A physical

layer driven protocol and algorithm design for energy-efficient wireless sensor networks.

In Proceedings of the 7th Annual ACM/IEEE International Conference on Computing

and Networking (MobiCom 2001), Rome, Italy, July 2001.

REFERENCES 139

48. A. Woo and D. E. Culler. A transmission control scheme for media access in sensor

networks. In Proceedings of the 7th Annual ACM/IEEE International Conference on

Computing and Networking (MobiCom 2001), Rome, Italy, July 2001.

49. W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless

sensor networks. In Proceedings of the 7th Annual ACM/IEEE International Conference

on Computing and Networking INFOCOM 2002, New York, June, 2002.

50. K. Nakano and S. Olariu. Randomized initialization protocols for radio networks. In

Handbook of Wireless Networks and Mobile Computing, Stojmenović (ed.), pages

195–218, John Wiley & Sons, 2002.

51. K. Nakano and S. Olariu. Uniform leader election for radio networks. IEEE Transactions

on Parallel and Distributed Systems, 13:516–526, 2002.

52. R. G. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics, Addison-Wesley,

1989.

53. D. Gracanin, M. Eltoweissy, S. Olariu, and A. Wadaa. On Modeling Wireless Sensor

Networks. Paper presented at 18th International Parallel and Distributed Processing

Symposium (IPDPS ’04), Workshop 12: Fourth International Workshop on Algorithms

for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), Santa Fe, NM, April 2004.

54. D. Gracanin, M. Eltoweissy, S. Olariu, and A. Wadaa. Dependability support in wireless

sensor networks. InDependable Systems, H. Diab and A. Y. Zomaya (eds.), JohnWiley &

Sons, 2005.

55. K. Jones, K. N. Lodding, S. Olariu, A. Wadaa, L. Wilson, and M. Eltoweissy. Biomimetic

models for wireless sensor networks. In Handbook of BioInspired Algorithms, S. Olariu

and A. Y. Zomaya (eds.), CRC Press, 2005.

140 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

&CHAPTER 5

Broadcast Authentication and
Key Management for Secure
Sensor Networks

PENG NING

North Carolina State University, Raleigh, North Carolina

DONGGANG LIU

University of Texas at Arlington, Arlington, Texas

This chapter is intended as a starting point for studying sensor network security. It

focuses on recent advances in broadcast authentication and key management in

sensor networks, which are foundational cryptographic services for sensor network

security. Authors describe mTESLA and multi-level mTESLA protocols developed

for scalable broadcast authentication in sensor networks. They then describe

random key predistribution techniques proposed for establishing pairwise keys

between resource constrained sensor nodes. Attacks against location discovery

and some additional security problems in sensor networks are then discussed.

5.1 INTRODUCTION

Recent technological advances have made it possible to develop distributed sensor

networks consisting of a large number of low-cost, low-power, and multifunctional

sensor nodes that communicate at short distances through wireless links [1]. Such

sensor networks may also include a few more powerful nodes called base stations

to facilitate computation as well as communication with the outside world. Sensor

networks are ideal candidates for a wide range of applications. Example applications

include monitoring of critical infrastructures such as the power grid, data acquisition

in hazardous environments, and military operations. The desirable features of dis-

tributed sensor networks have attracted many researchers to develop protocols

and algorithms that can fulfill the requirements of these applications.

141

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

It is necessary to guarantee the security of sensor networks as well as sensing

applications in hostile environments, especially when the failures of these

applications (e.g., critical infrastructure protection) may result in catastrophic

events with impacts affecting safety, security, the economy, and society at large.

In other words, sensor networks and sensing applications should work as expected,

and offer gracefully degrading services in hostile environments where there are mal-

icious attackers, even if some nodes fail or are compromised.

However, several unique features of sensor networks make it very challenging to

provide security in sensor networks. First, sensor nodes are typically resource con-

strained due to the need to lower the cost. As a result, it is usually undesirable to use

expensive mechanisms such as public key cryptography on such nodes. Second,

sensor networks are often deployed in an unattended fashion, possibly exposed to

physical attacks. Sensor nodes may be captured, and any secret information on a

captured node can potentially be disclosed to attackers. Thus, any security mechan-

ism for sensor networks has to be resilient to compromised nodes. Third, most sensor

network applications depend on local communication and computation because of

the resource constraints on sensor nodes. However, a determined attacker may

attack any node in a sensor network and use the information gathered from the com-

promised nodes to attack noncompromised ones in a certain region. This further

adds to the imbalance between the threat and the defense in sensor networks.

Security in sensor networks has attracted a lot of attention in the past several

years. Key management is one of the most fundamental security services for

sensor networks. The performance of several traditional key management

approaches has been examined on different hardware platforms [2]. To provide prac-

tical key management techniques for sensor networks, researchers have developed a

number of random pairwise key predistribution techniques [3–9], which can handle

the resource constraints on sensor nodes and are resilient to node compromises.

Moreover, a protocol suite called LEAP was developed to help establish individual

keys between sensor nodes and a base station, pairwise keys between sensor nodes,

cluster keys within a local area, and a group key shared by all nodes [10]. Another

fundamental security service is broadcast authentication, which verifies the integrity

and the source of broadcast messages to multiple receivers. A protocol named

mTESLA [11] has been adapted for sensor networks from TESLA, a multicast

stream authentication protocol [12,13], and later improved for higher scalability

in refs. [14] and [15].

Since the primary goal of sensor networks is to collect data from physical

phenomena, it is critical to ensure the authenticity and integrity of the collected

data in hostile environments, even if some nodes have been compromised. A

number of mechanisms were proposed to improve the security for in-network pro-

cessing [16]. An interleaved hop-by-hop authentication mechanism [17] and a

statistical hop-by-hop authentication mechanism [18] were developed to mitigate

malicious data injection in sensor networks. Several techniques were proposed to

use redundant information sources to detect malicious aggregators or sensor

nodes for secure data aggregation [19–21]. Moreover, researchers have been inves-

tigating potential attacks against sensor networks and possible countermeasures,

142 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

including DOS attacks [22], attacks against routing mechanisms in sensor networks

[23], and Sybil attacks [24].

Despite the recent advances in sensor network security, sensor network security

is still not reality. Indeed, quite a number of problems remain unsolved or require

better solutions. Besides more effective and efficient techniques for some of the

preceding problems, such as key management and broadcast authentication, it is

necessary to have novel techniques to protect critical services such as clock

synchronization and location discovery, mitigate or defeat signal jamming, denial

of service, and other attacks, and provide additional capabilities such as intrusion

detection.

This chapter is intended as a starting point for studying sensor network security.

In the remainder of this chapter, we focus on recent advances in broadcast authen-

tication and key management in sensor networks, which are foundational crypto-

graphic services for sensor network security. In Section 5.2, we introduce

mTESLA and multilevel mTESLA protocols developed for scalable broadcast

authentication in sensor networks. In Section 5.3, we describe random key predistri-

bution techniques proposed for establishing pairwise keys between resource-

constrained sensor nodes. In Section 5.4, we discuss additional security problems

in sensor networks. In Section 5.5, we conclude this chapter and identify a few

research areas that require further investigation.

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS

Broadcast authentication is an essential service in sensor networks. Because of the

large number of sensor nodes and the broadcast nature of wireless communication, it

is usually desirable for the base stations to broadcast commands, queries, and data to

sensor nodes. The authenticity of such commands and data is critical for the normal

operation of sensor networks. If convinced to accept forged or modified commands

or data, sensor nodes may perform unnecessary or incorrect operations, and cannot

fulfill the intended purposes of the network. Thus, in hostile environments (e.g.,

battlefield, antiterrorists operations), it is necessary to enable sensor nodes to auth-

enticate broadcast messages received from the base station.

Providing broadcast authentication in sensor networks turns out to be a nontrivial

task. On the one hand, public key–based digital signatures (e.g., the Rivest–

Shamir–Adleman (RSA) algorithm [25]), which are typically used for broadcast

authentication in traditional networks, are too expensive to be used in sensor net-

works, due to the intensive computation involved in signature verification and the

resource constraints on sensor nodes. On the other hand, secret key-based mechan-

isms (e.g., HMAC [26]) cannot be directly applied to broadcast authentication, since

otherwise a compromised receiver can easily forge any message from the sender.

In the following, we describe the mTESLA and multilevel mTESLA protocols,

which were proposed for broadcast authentication in sensor networks. mTESLA
employs a chain of authentication keys linked to each other by a pseudorandom

function [27], which is by definition a one-way function. Each key in the key

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 143

chain is the image of the next key under the pseudorandom function. mTESLA
achieves broadcast authentication through delayed disclosure of authentication

keys in the key chain. Multilevel mTESLA is aimed at improving the scalability

of mTESLA in large sensor networks. It includes several variations, all of which

are extended from the basic mTESLA protocol.

5.2.1 mTESLA

An asymmetric mechanism such as public key cryptography is generally required

for broadcast authentication [12]. Otherwise, a malicious receiver can easily forge

any packet from the sender, as discussed earlier. mTESLA introduces asymmetry

by delaying the disclosure of symmetric keys [11]. A sender broadcasts a message

with a message authentication code (MAC) generated with a secret key K, which is

disclosed after a certain period of time. When a receiver gets this message, if it can

ensure that the packet was sent before the key was disclosed, the receiver buffers this

packet and authenticates the packet when it later receives the disclosed key. To con-

tinuously authenticate broadcast packets, mTESLA divides the time period for

broadcast into multiple intervals, assigning different keys to different time intervals.

All packets broadcast in a particular time interval are authenticated with the same

key assigned to that time interval. Figure 5.1 illustrates the division of the time

line and the assignment of authentication keys.

To authenticate the broadcast messages, a receiver first authenticates the dis-

closed keys. mTESLA uses a one-way key chain for this purpose. The sender selects

a random value Kn as the last key in the key chain and repeatedly performs a pseu-

dorandom function F to compute all the other keys: Ki ¼ F(Kiþ1), 0 � i � n� 1,

where the secret key Ki (except for K0) is assigned to the ith time interval. Because

of the one-way property of the pseudorandom function, given Kj in the key chain,

anybody can compute all the previous keys Ki, 0 � i � j, but nobody can compute

any of the later ones Ki, jþ 1 � i � n. Thus, with the knowledge of the initial key

K0, which is called the commitment of the key chain, a receiver can authenticate

any key in the key chain by merely performing pseudorandom function operations.

When a broadcast message is available in the ith time interval, the sender generates a

MAC for this message with a key derived from Ki, broadcasts this message along

with its MAC, and discloses the key Ki�d for time interval Ii�d in the broadcast mess-

age (where d is the disclosure lag of the authentication keys).

Figure 5.1 mTESLA.

144 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

Each key in the key chain will be disclosed after some delay. As a result, the

attacker can forge a broadcast packet by using the disclosed key. mTESLA uses a

security condition to prevent such situations. When a receiver receives an incoming

broadcast packet in time interval Ii, it checks the security condition

b(Tc þ D� T1)=Tintc , iþ d � 1, where Tc is the local time when the packet is

received, T1 is the start time of the time interval 1, Tint is the duration of each

time interval, and D is the maximum clock difference between the sender and

itself. If the security condition is satisfied, that is, the sender has not disclosed the

key Ki yet, the receiver accepts this packet. Otherwise, the receiver simply drops it.

mTESLA is an extension to TESLA [12]. The only difference between TESLA

and mTESLA is in their key chain commitment distribution schemes. TESLA

uses asymmetric cryptography to bootstrap new receivers, which is impractical

for current sensor networks due to its high computation and storage overheads.

mTESLA depends on symmetric cryptography (with the master key shared between

the sender and each receiver) to bootstrap the new receivers individually. TESLA

was later extended to include an immediate authentication mechanism [13]. The

basic idea is to include an image under a pseudorandom function of a late message

content in an earlier message so that once the earlier message is authenticated, the

later message content can be authenticated immediately after being received. This

extension can also be applied to mTESLA.
The original TESLA protocol uses broadcast to distribute the initial parameters

(e.g., the key chain commitment) required for broadcast authentication. The authen-

ticity of these parameters is guaranteed by a digital signature generated by the

sender. However, due to the low bandwidth of a sensor network and the low com-

putational resources at each sensor node, mTESLA cannot distribute these initial

parameters using public key cryptography. Instead, the base station has to unicast

the initial parameters to the sensor nodes individually. This feature severely limits

the application of mTESLA in large sensor networks. For example, the implemen-

tation of mTESLA in [11] has 10 kbps bandwidth and supports 30-byte messages.

To bootstrap 2000 nodes, the base station has to send or receive at least 4000 packets

to distribute the initial parameters, which takes at least ð4000� 30� 8Þ=
10; 240 ¼ 93:75 s, even if the channel utilization is perfect. Such a method certainly

cannot scale up to very large sensor networks, which may have thousands of

nodes.

5.2.2 Multilevel mTESLA

Multilevel mTESLA was developed to improve the scalability of mTESLA in large

sensor networks. The basic idea is to predetermine and broadcast the parameters

such as the key chain commitments instead of unicast-based message transmissions.

In the following, we first present the basic approach, and then describe several tech-

niques to deal with potential attacks against multilevel mTESLA.
For simplicity, we use two-level mTESLA to illustrate the idea. This can easily be

extended to multilevel mTESLA. Refer to ref. [15] for further details.

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 145

5.2.2.1 Basic Approach The two-level mTESLA consists of a high-level key

chain and multiple low-level key chains. The low-level key chains are intended for

authenticating broadcast messages, while the high-level key chain is used to

distribute and authenticate commitments of the low-level key chains. The high-

level key chain uses a long enough interval to divide the time line so that it can

cover the lifetime of a sensor network without having too many keys. The low-

level key chains have short enough intervals so that the delay between the receipt

of broadcast messages and the verification of the messages is tolerable. Figure 5.2

illustrates two levels of key chains.

The lifetime of a sensor network is divided into n0 (long) intervals of duration D0,

denoted as I1, I2, . . . , and In0 . The high-level key chain has n0 þ 1 elements

K0,K1, . . . ,Kn0 , which are generated by randomly picking Kn0 and computing Ki ¼
F0(Kiþ1) for i ¼ 0, 1, . . . , n0 � 1, where F0 is a pseudorandom function. The key Ki

is associated with each time interval Ii. We denote the starting time of Ii as Ti. Thus,

the starting time of the high-level key chain is T1.

Since the duration of the high-level time intervals is usually very long compared

with the network delay and clock discrepancies, we choose to disclose a high-level

key Ki used for Ii in the following time interval Iiþ1. Thus, we use the following

security condition to check whether the base station has disclosed the key Ki

when a sensor node receives a message authenticated with Ki at time t:

t þ dmax , Tiþ1, where dmax is the maximum clock discrepancy between the base

station and the sensor node.

Each time interval Ii is further divided into n1 (short) intervals of duration D1,

denoted as Ii,1, Ii,2, . . . , Ii,n1 . If needed, the base station generates a low-level key

chain for each time interval Ii by randomly picking Ki, n1 and computing Ki, j ¼
F1(Ki, jþ1) for j ¼ 0, 1, . . . , n1 � 1, where F1 is a pseudorandom function. The key

Ki, j is intended for authenticating messages broadcasted during the time interval

Ii, j. The starting time of the key chain kKi,0l is predetermined as Ti. The disclosure

lag for the low-level key chains can be determined in the same way as mTESLA
and TESLA [11,12]. For simplicity, we assume all the low-level key chains use the

same disclosure lag d. Further assume that messages broadcasted during Ii, j are

indexed as (i, j). Thus, the security condition for a message authenticated with Ki, j

Figure 5.2 Organizing key chains in two levels.

146 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

and received at time t is: i0 , (i� 1) � n1 þ jþ d, where i0 ¼ bðt � T1 þ dmaxÞ=
D1c þ 1, and dmax is the maximum clock discrepancy between the base station and

the sensor node.

When sensor nodes are initialized, their clocks are synchronized with the base

station. In addition, the starting time T1, the commitment K0 of the high-level key

chain, the duration D0 of each high-level time interval, the duration D1 of each

low-level time interval, the disclosure lag d for the low-level key chains, and the

maximum clock discrepancy dmax between the base station and the sensor nodes

throughout the lifetime of the sensor network are distributed to the sensor nodes.

In order for the sensor nodes to use a low-level key chain kKi,0l during the time

interval Ii, they must authenticate the commitment Ki,0 before Ti. To achieve this

goal, the base station broadcasts a commitment distribution message, denoted as

CDMi, during each time interval Ii. (In this chapter, we use commitment distribution

message and its abbreviation CDM interchangeably.) This message consists of the

commitment Kiþ2,0 of the low-level key chain kKiþ2,0l and the key Ki�1 in the

high-level key chain. Specifically, the base station constructs the CDMi message

as follows:

CDMi ¼ ijKiþ2,0jMACK 0
i
(ijKiþ2,0j)Ki�1,

where “j” denotes message concatenation, and K 0
i is derived from Ki with a pseudo-

random function other than F0 and F1. Thus, to use a low-level key chain kKi,0l
during Ii, the base station needs to generate the key chain during Ii�2 and distribute

Ki,0 in CDMi�2.

Since the high-level authentication key Ki is disclosed in CDMiþ1 during the time

interval Iiþ1, each sensor node needs to store CDMi until it receives CDMiþ1. Each

sensor node also stores a key Kj, which is initially K0. After receiving Ki�1 in CDMi,

the sensor node authenticates it by verifying that F
i�1�j
1 (Ki�1) ¼ Kj. Then the sensor

node replaces the current Kj with Ki�1.

Suppose a sensor node has received CDMi�2. Upon receiving CDMi�1 during

Ii�1, the node can authenticate CDMi�2 with Ki�2 disclosed in CDMi�1, and thus

verify Ki,0. As a result, the sensor node can authenticate broadcast messages sent

by the base station using the mTESLA key chain kKi,0l during the high-level time

interval Ii. Intuitively, this approach uses mTESLA in two different levels. The

high-level key chain relies on the initialization phase of the sensor nodes to distri-

bute the key chain commitment, and it only has a single key chain throughout the

lifetime of the sensor network. The low-level key chains depend on the high-level

key chain to distribute and authenticate the commitments.

The approach in the current form does not tolerate message losses very well.

There are two types of message losses: the losses of normal messages, and the

losses of CDM messages. Both may cause problems. First, the low-level keys are

not entirely chained together. Thus, losses of key disclosure messages for later

keys in a low-level key chain cannot be recovered even if the sensor node can

receive keys in some later low-level key chains. For example, consider the last

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 147

key Ki,n1 that is used to authenticate the packet in the key chain of time interval Ii. If

the packets that disclose Ki,n1 are lost, the sensor node then has no way to authenti-

cate this packet. As a result, a sensor node may not be able to authenticate a stored

message even if it receives some key disclosure messages later. In contrast, with

mTESLA a receiver can authenticate a stored message as long as it receives a

later key. Second, if CDMi�2 does not reach a sensor node, the node will not be

able to use the key chain kKi,0l for authentication during the entire time interval

Ii, which is usually pretty long (to make the high-level key chain short).

To address the first problem, we further connect the low-level key chains to the

high-level one. Specifically, instead of choosing each Ki,n1 randomly, we derive each

Ki,n1 from a high-level key Kiþ1 (which is to be used in the next high-level time inter-

val) through another pseudorandom function F01. That is, Ki,n1 ¼ F01(Kiþ1). As a

result, a sensor node can recover any authentication key Ki, j as long as it receives

a CDM message that discloses Ki0 with i0 � iþ 1, even if it does not receive any

later low-level key Ki, j0 with j0 � j. Thus, the first problem can be resolved.

Figure 5.3 illustrates the key chains in two-level mTESLA.
The second problem does not have an ultimate solution. If the base station cannot

reach a sensor node at all during a time interval Ii, CDMi will not be delivered to the

sensor node. However, the impact of temporary communication failures can be

reduced by standard fault-tolerant approaches. Multilevel mTESLA has the base

station periodically broadcast the CDM message during each time interval. Assum-

ing that the frequency of this broadcast is F, each CDM message is therefore broad-

casted F � D0 times. To simplify the analysis, we assume the probability that a

sensor node cannot receive a broadcast of a CDMmessage is pf . Thus, the probability

that a sensor node cannot receive any copy of the CDMmessage is reduced to pF�D0

f .

Note that even if a sensor node cannot receive any CDM message during a time

interval Ii, it still has the opportunity to authenticate broadcast messages in time

intervals later than Iiþ1. Not having the CDM message in time interval Ii only pre-

vents a sensor node from authenticating broadcast messages during Iiþ1. As long as

the sensor node gets a CDM message, it can derive all the low-level keys in the

previous time intervals.

11,niK −
12,niK − −

−

1,niK 11,niK +

Figure 5.3 Key chains in two-level mTESLA.

148 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

The security of multilevel mTESLA follows directly from the security of

mTESLA. Note that the high-level key chain is only used to authenticate the

commitment of each low-level key chain. As long as the security condition of each

mTESLA key chain is satisfied, the two-levelmTESLA has the same degree of secur-

ity as all the mTESLA instances involved in this scheme. Thus, similar to mTESLA
and TESLA, a sensor node can detect forgedmessages by verifying theMACwith the

corresponding authentication key once the sensor node receives it. In addition, replay

attacks can be easily defeated if a sequence number is included in each message.

5.2.2.2 DOS Attacks Against Multilevel mTESLA One limitation of multi-

level mTESLA is that if a sensor node misses all copies of CDMi during the time

interval Ii, it cannot authenticate any data packets received during Iiþ2 before it

receives an authentic Kj,j . iþ 2. (Note that the sensor node does not have to

receive an authentic CDM message. As long as the sensor node can authenticate a

high-level key Kj with j . iþ 2, it can derive the low-level keys through the

pseudorandom functions F0, F01, and F1.) Since the earliest high-level key Kj that

satisfies j . iþ 2 is Kiþ3, and Kiþ3 is disclosed during Iiþ4, the sensor node has

to buffer the data packets received during Iiþ2 for at least the duration of one

high-level time interval.

This makes the CDM messages attractive targets for attackers. An attacker may

disrupt the distribution of CDM messages, and thus prevent the sensor nodes from

authenticating broadcast messages during the corresponding high-level time inter-

vals. Although the high-level key chain and the low-level ones are chained together,

and such sensor nodes may store the broadcast messages and authenticate them once

they receive a later commitment distribution message, the delay between the receipt

and the authentication of the messages may introduce a problem: An attacker may

send a large number of forged messages to exhaust the sensor nodes’ buffer before

they can authenticate the buffered messages, and force them to drop some authentic

messages.

The simplest way for an attacker to disrupt the CDMmessages is to jam the com-

munication channel. We may have to resort to techniques such as frequency hopping

if the attacker completely jams the communication channel. The attacker may also

jam the communication channel only when the CDM messages are being trans-

mitted. If the attacker can predict the schedule of such messages, it would be

much easier for the attacker to disrupt such message transmissions. Thus, the base

station needs to send the CDM messages randomly or in a pseudorandom manner

that cannot be predicted by an attacker that is unaware of the random transmission.

For simplicity, we assume that the base station sends the CDM messages randomly.

An attacker may forge commitment distribution messages to confuse the sensor

nodes. If a sensor node does not have a copy of the actual CDMi, it will not be able to

get the correct Kiþ2,0, and cannot use the low-level key chain kKiþ2,0l during the time

interval Iiþ2.

Consider a CDM message: CDMi ¼ ijKiþ2,0jMACK 0
i
(ijKiþ2,0)jKi�1. Once seeing

such a message, the attacker learns i and Ki�1. Then the attacker can replace the

actual Kiþ2,0 or MACK 0
i
(ijKiþ2,0) with arbitrary values K 0

iþ2,0 or MAC0, and forge

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 149

another message: CDM0
i ¼ ijK 0

iþ2,0jMAC0jKi�1. Assume a sensor node has an auth-

entic copy of CDMi�1. The sensor node can verify Ki�1 with Ki�2, since Ki�2 is

included in CDMi�1. However, the sensor node has no way to verify the authenticity

of K 0
iþ2,0 or MAC0 without the corresponding key, which will be disclosed later. In

other words, the sensor node cannot distinguish between the authentic CDMi mess-

ages and those forged by the attacker. If the sensor node does not save an authentic

copy of CDMi during Ii, it will not be able to get an authenticated Kiþ2,0, even if it

receives the authentication key Ki in CDMiþ1 during Iiþ1. As a result, the sensor

node cannot use the key chain kKiþ2,0l during Iiþ2.

Multilevel mTESLA uses two techniques to deal with the disk operating system

(DOS) attacks. One is a random selection technique to tolerate DOS attacks, and the

other uses precomputation to defeat such attacks. These two approaches can be com-

bined to provide additional trade-offs.

5.2.2.3 DOS-Tolerant Multilevel mTESLA DOS-tolerant multilevel

mTESLA involves an initial filtering and a random selection process to improve

the reliable broadcast of commitment distribution messages. For the CDMi messages

received during each time interval Ii, each sensor node first tries to discard as many

forged messages as possible. There is a simple test for a sensor node to identify some

forged CDMi messages during Ii. The sensor node can verify if F
i�1�j
0 (Ki�1) ¼ Kj,

where Ki�1 is the high-level key disclosed in CDMi and Kj is a previously disclosed

high-level key. (Note that such a Kj always exists, since the commitment K0 of the

high-level key chain is distributed during the initialization of the sensor nodes.)

Messages that fail this test are certainly forged and should be discarded.

The simple test can filter out some forged messages; however, they do not rule

out the forged messages discussed earlier. To further improve the possibility that

the sensor node has an authentic CDMi message, the base station uses a random

selection method to store the CDMi messages that pass the test just cited. The

goal is to make the DOS attacks so difficult that the attacker would rather use con-

stant signal jamming instead to attack the sensor network. In other words, we want to

prevent the DOS attacks that can be achieved by sending a few packets. Some of the

strategies are also applicable to the low-level key chains as well as the (extended)

TESLA and mTESLA protocols.

Without loss of generality, we assume that each copy of CDMi has been weakly

authenticated in the time interval Ii by using the preceding test. Assume there are m

buffers for CDM packets. During each time interval Ii, a sensor node can save the

first m copies of CDMi. For the kth copy with k . m, the sensor node keeps it

with probability m/k. If a copy is to be kept, the sensor node randomly selects

one of the m buffers and replaces the corresponding copy. It is easy to verify that

if a sensor node receives n copies of CDMi, all copies have the same probability

m/n to be kept in one of the buffers.

During the time interval Iiþ1, a sensor node can verify if it has an authentic copy

of CDMi once it receives and weakly authenticates a copy of CDMiþ1. Specifically,

the sensor node uses the key Ki disclosed in CDMiþ1 to verify the MAC of the buf-

150 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

fered copies of CDMi. Once it authenticates a copy, the sensor node can discard all

the other buffered copies.

If a sensor node cannot find an authentic copy of CDMi after the verification just

discussed, it can conclude that all buffered copies of CDMi are forged and discard all

of them. The sensor node then needs to repeat the random selection process for the

copies of CDMiþ1. Thus, a sensor node needs at most mþ 1 buffers for CDM mess-

ages with this strategy: m buffers for copies of CDMi, and one buffer for the first

weakly authenticated copy of CDMiþ1.

It is easy to see that each sensor node needs to verify the MACs for at most m

times. The number of pseudorandom function operations required to weakly auth-

enticate the CDM messages depends on the total number of (true and forged)

CDM messages a sensor node receives. With m buffer random selections, the prob-

ability that a sensor node has an authentic copy of CDMi can be estimated as

P(CDMi) ¼ 1� pm, where p ¼ ðNo. forged copiesÞ=ðNo. total copiesÞ.

5.2.2.4 DOS-Resistant Multilevel mTESLA DOS-resistant multilevel

mTESLA is intended for base stations with sufficient computational and storage

resources. When at least one copy of each CDM message can reach the sensor

nodes, DOS-resistant multilevel mTESLA can completely defeat the DOS attacks

without buffering and random selection.

The solution can be considered a variation of the immediate authentication exten-

sion to TESLA [13]. The idea is to include in CDMi the image H(CDMiþ1) for each

i, where H is a pseudorandom function. As a result, if a sensor node can authenticate

CDMi, it can get authentic H(CDMiþ1) and then authenticate CDMiþ1 when it is

received. Specifically, the base station constructs CDMi for the high-level time

interval Ii as follows:

CDMi ¼ ijKiþ1,0jH(CDMiþ1)jMACK 0
i
(ijKiþ1,0jH(CDMiþ1))jKi�1,

where “j” denotes message concatenation, H is a pseudorandom function other than

F0 and F1, and K
0
i is derived from Ki with a pseudorandom function other than H, F0,

and F1.

Suppose a sensor node has received CDMi. Upon receiving CDMiþ1, the sensor

node can authenticate CDMi with Ki disclosed in CDMiþ1. Then the sensor node can

immediately authenticate CDMiþ1 by verifying that applyingH to CDMiþ1 results in

the same H(CDMiþ1) included in CDMi. As a result, the sensor node can authenti-

cate a commitment distribution message immediately after receiving it.

Alternatively, if H(CDM1) is predistributed before deployment, the sensor node

can immediately authenticate CDM1 when receiving it, and then use H(CDM2)

included in CDM1 to authenticate CDM2, and so on. One can see that in this

case, a sensor node does not use the disclosed high-level keys in CDM messages

directly. However, including such keys in CDM messages is still useful. Indeed,

when a sensor node fails to receive or keep an authentic CDM message, it can

use the random-selection mechanism and the approach described in the previous

paragraph to recover from the failure.

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 151

The cost, however, is that the base station has to precompute the CDM messages

in the reverse order. That is, in order to include H(CDMiþ1) in CDMi, the base

station has to have CDMiþ1, which implies that it also needs CDMiþ2, and so on.

Therefore, the base station needs to compute both the high-level and the low-

level key chains completely to get the commitments of these key chains, and con-

struct all the CDM messages in the reverse order before distributing the first one

of them. (Note that the base station only needs to compute the high-level key

chain but not all the low-level ones during initialization. The base station can

delay the computation of a low-level key chain until it needs to distribute the com-

mitment of that key chain.)

This imposes additional computation during the initialization phase. Assume that

all the key chains have 1000 keys. The base station needs to perform about

1,001,000 pseudorandom function operations to generate all the key chain commit-

ments, and 1000 pseudorandom function operations and 1000 MAC operations to

generate all the CDM messages. Due to the efficiency of pseudorandom functions,

such computation is still practical if the base station is relatively resourceful. For

example, using MD5 as the pseudorandom function, a modern personal digital

assistant (PDA) can finish the preceding computation in several seconds. Moreover,

the base station does not have to save the low-level key chains. Indeed, to reduce the

storage overhead, the base station may compute a low-level key chain (again) when

the key chain is needed. Thus, the base station only needs to store the high-level key

chain and the MACs of all the CDM messages. Further assume both the authentica-

tion key and the image of a pseudorandom function are 8 bytes. To continue the ear-

lier example, the base station needs (8þ 8)� 1000 ¼ 16,000 bytes to store the high-

level key chain and the MACs.

The immediate authentication of CDMi depends on the successful receipt of

CDMi�1. However, if a sensor node cannot receive an authentic CDMi due to com-

munication failure or an attacker’s active disruption, the sensor node has to fall back

to the DOS-tolerant multilevel mTESLA. This implies that the base station still

needs to distribute CDM messages multiple times in a random manner.

Now let us assess how difficult it is for a sensor node to recover if it fails to receive

an authentic CDMmessage.We assume an attacker will launch a DOS attack to deter

this recovery. To recover from the failure, the sensor node has to buffer an authentic

CDMmessage by the end of a later high-level time interval and then authenticate this

message. For example, suppose a sensor node buffers an authentic CDMiþj. If it

receives a disclosed key in interval Iiþjþ1, it can authenticate CDMiþj immediately

and gets H(CDMiþjþ1). The sensor node then recovers from the failure. Thus, if a

sensor node fails to receive an authentic CDMi, the probability that it recovers

from this failure within the next l high-level time intervals is 1� pm�l, where

p ¼ No. forged copies of each CDM message

No. total copies of each CDM message

and m is the number of buffers for CDM messages.

152 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

The base station needs to broadcast each CDM message multiple times to

alleviate communication failures and to help sensor nodes recover from failures

under potential DOS attacks. A sensor node in this scheme only needs a large

number of CDM buffers temporarily during recovery. Moreover, a sensor node

only needs to recover one authentic CDM message in order to go back to normal

operations, and the sensor node may recover over several high-level time intervals.

Thus, the bandwidth required for CDM messages can be much less than DOS-

tolerant multilevel mTESLA.
DOS-resistant multilevel mTESLA introduces additional computation require-

ment before deployment, though it can defeat the DOS attacks when at least one

copy of each CDM message reaches the sensor nodes. Fortunately, such compu-

tation is affordable if the base station is relatively resourceful. It is also possible

to perform such computation on powerful machines and then download the result

to the base station before deployment. In addition, the communication overhead

and the storage overhead on sensor nodes in this scheme is potentially much less

than that in DOS-tolerant mTESLA. Thus, when the required computational

resources are available (on either the base station or some other machines), DOS-

resistant multilevel mTESLA is more desirable. Otherwise, DOS-tolerant multilevel

mTESLA could be used to mitigate the DOS attacks.

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS

As one of the most fundamental security services, pairwise key establishment

enables the sensor nodes to communicate securely with each other using crypto-

graphic techniques such as encryption and authentication. However, due to the

resource constraints on sensor nodes, it is undesirable for them to use traditional

pairwise key establishment techniques such as public key cryptography and key dis-

tribution center (KDC).

Instead of the traditional approaches to key establishment, a promising alterna-

tive is key predistribution, where keying materials are predistributed to sensor

nodes before deployment. As two extreme cases, one may set up a global key

among the network so that two sensor nodes can establish a key based on this

global key, or assign each sensor node a unique random key with each of the

other nodes. However, the former is vulnerable to the compromise of a single

node, and the latter introduces substantial storage overhead on sensor nodes.

There have been a number of recent advances in key predistribution for sensor

networks, starting from the probabilistic key predistribution scheme proposed by

Eschenauer and Gligor [3]. In this section, we describe several of these advances.

5.3.1 Random Key Predistribution Based on Key Pools

Eschenauer and Gligor developed the first random key predistribution scheme based

on probabilistic key sharing [3]. The main idea is to let each sensor node randomly

pick a set of keys from a key pool before the deployment so that any two sensor

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 153

nodes have a certain probability to share at least one common key. By configuring

the size of the key pool and the size of the key ring, which includes the keys a sensor

node selects, this scheme provides good security properties with reasonable over-

head. For convenience, we call this scheme basic probabilistic key predistribution.

The basic probabilistic key predistribution scheme consists of three phases: key

predistribution, shared key discovery, and path-key establishment. The key predis-

tribution phase is performed to generate the key pool and distribute keys to sensor

nodes. After being deployed, if two sensor nodes need to establish a pairwise key,

they first attempt to do so through shared key discovery, during which they discover

whether they share a common key. If they do, there is no need to start path-key

establishment; otherwise, these two nodes start the path-key establishment phase

to establish a pairwise key with the help of other sensor nodes.

Eschenauer and Gligor studied the connectivity between sensor nodes resulting

from the basic key predistribution as random graphs [3]. Consider a graph of n

sensor nodes where there is an edge between two nodes if and only if they

share a common key. Let p be the probability that two sensor nodes have a

shared key, and n be the number of sensor nodes in a network. This graph can

be modeled as a random graph G(n, p) of n nodes for which the probability that

an edge exists between two nodes is p. According to the classic results on

random graph theory by Erdos and Rényi, there exists a value of p such that the

probability that a random graph is fully connected moves from 0 to 1 in a large

random graph. To further consider the fact that a sensor node has limited com-

munication range, the preceding random graph can be modified to have an edge

between two nodes only if they are neighbors. This requires a larger p to ensure

that the random graph of the sensors is fully connected. The additional analysis

by Eschenauer and Gligor also indicates that there are two critical parameters

during the phase of key predistribution: the size of the key pool (P), and the

size of each key ring (k). The probability of sharing at least one key between

two nodes increases when k increases give a fixed P, and decreases when P

increases given a fixed k. The adoption of the basic probabilistic key predistribu-

tion then involves determining the values of k and P for the network size and

memory constraints on sensor nodes.

A limitation of the basic probabilistic key predistribution scheme is that an

attacker may learn the pairwise keys shared between noncompromised nodes

when the attacker compromises a number of nodes. This is because all the sensor

nodes draw their keys from a common key pool, and by learning the keys from com-

promised nodes, the attacker will be able to get keys used by the noncompromised

nodes.

Chan et al. [4] developed a q-composite key predistribution scheme by extending

the basic probabilistic key predistribution scheme, aiming at addressing the problem

just discussed. The q-composite key predistribution also uses a key pool; however, it

also requires two nodes to compute a pairwise key from at least q predistributed keys

that they share. As a result, an attacker has to learn at least q keys shared between

two noncompromised nodes in order to recover the pairwise key they use. Chan

et al.’s analysis indicates that the q-composite scheme offers stronger resilience

154 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

against random node compromises than the basic probabilistic scheme when the

number of compromised nodes is small.

5.3.2 Random Pairwise Keys

The basic probabilistic key predistribution and the q-composite scheme do not allow

node-to-node authentication, since all nodes select keys from a common key pool

and there is no unique key and identity for node authentication. The random pairwise

keys scheme was proposed to address this limitation.

The random pairwise keys scheme randomly picks pairs of sensor nodes and

assigns each pair a unique random key. Based on Erdos and Rényi’s results about

random graphs, we can easily determine a probability p that allows a sensor net-

works to be fully connected with a probability. In other words, given the storage

for m keys and the preceding probability p, there is a high probability for a sensor

network to be fully connected as long as the network size n is smaller than m=p.
In addition to allowing node-to-node authentication, the random pairwise keys

scheme has several other nice properties. Due to the simplicity of the approach, it

is possible to give a thorough security and performance analysis. Moreover, the

random pairwise keys scheme is resistant to node compromises. Since different

pairs of nodes share different keys, an attacker does not learn the keys shared

between noncompromised nodes by learning the keys stored on compromised

ones. Revocation in this scheme also becomes very straightforward; a sensor node

only needs to delete a key in order to revoke a compromised node.

A limitation of the random pairwise keys scheme is the strict limit on the network

size. The maximum supported network size is strictly limited by the available

memory for keys on sensor nodes and the probability for two sensor nodes to

share a common key.

5.3.3 Polynomial Pool–Based Key Predistribution

Polynomial pool–based key predistribution can be considered to be a combination

of the polynomial-based key predistribution [28] with the aforementioned random

key predistribution techniques based on key pools. Instead of using a pool of

random keys, this approach employs a pool of random polynomials. Due to the

nice threshold property provided by the polynomial-based key predistribution, the

polynomial pool–based approach offers more resilience against compromised

nodes. In the following, before discussing this approach, we first give an overview

of polynomial-based key predistribution.

5.3.3.1 Polynomial-Based Key Predistribution Polynomial-based key

predistribution [28] was developed for group key predistribution. Since our goal

is to establish pairwise keys, for simplicity, we only discuss the special case of pair-

wise key establishment in the context of sensor networks.

To predistribute pairwise keys, the (key) setup server randomly generates a bivari-

ate t-degree polynomial f (x, y) ¼ Pt
i, j¼0 aijx

iyj over a finite field Fq, where q is a

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 155

prime number that is large enough to accommodate a cryptographic key, such that it

has the property of f (x, y) ¼ f (y, x). (In the following, we assume all the bivariate

polynomials have this property without explicitly saying so.) It is assumed that

each sensor node has a unique ID. For each node i, the setup server computes a poly-

nomial share of f (x, y), that is, f (i, y). This polynomial share is predistributed to node

i. Thus, for any two sensor nodes i and j, node i can compute the key f (i, j) by eval-

uating f (i, y) at point j, and node j can compute the same key f (j, i) ¼ f (i, j) by eval-

uating f (j, y) at point i. As a result, nodes i and j can establish a common key f (i, j).

In this approach, each sensor node i needs to store a t-degree polynomial f (i, x),

which occupies (t þ 1) log q storage space. To establish a pairwise key, both sensor

nodes need to evaluate the polynomial at the ID of the other sensor node. There is no

communication overhead during the pairwise key establishment process. The secur-

ity proof in ref. [28] ensures that this scheme is unconditionally secure and t-collu-

sion resistant. That is, a coalition of no more than t compromised sensor nodes

knows anything about the pairwise key between any two noncompromised nodes.

The polynomial-based key predistribution scheme just discussed has some limit-

ations. In particular, it can only tolerate the collusion of no more than t compromised

nodes, where the value of t is limited by the available memory space and the com-

putation capability on sensor nodes. Indeed, the larger a sensor network is, the more

likely it is that an adversary will compromise more than t sensor nodes and then the

entire network.

It is theoretically possible to use the general group key distribution protocol in

ref. [28] in sensor networks. However, the storage cost for a polynomial share is

exponential in terms of the group size, making it prohibitive in sensor networks.

In this chapter, we focus on the problem of pairwise key establishment.

5.3.3.2 A Framework for Key Predistribution Based on
Random Polynomials A general framework called polynomial pool–based

key predistribution was proposed to develop secure and practical key establishment

techniques, using a pool of random bivariate polynomials. In the following, we first

discuss this general framework, and then present two efficient examples of this

framework.

The polynomial pool–based key predistribution is inspired by the studies in refs.

[3] and [4]. The basic idea can be considered as the combination of the polynomial-

based key predistribution and the key pool idea used in refs. [3] and [4]. However,

our framework is more general in that it allows different choices to be instantiated

within this framework.

Intuitively, this general framework generates a pool of random bivariate poly-

nomials and assigns shares on a subset of bivariate polynomials in the pool to

each sensor node. The polynomial pool has two special cases. When it has only

one polynomial, the general framework degenerates into the polynomial-based

key predistribution. When all the polynomials are 0-degree ones, the polynomial

pool degenerates into the key pool used in refs. [3] and [4].

Similar to the basic probabilistic key predistribution scheme, pairwise key estab-

lishment in this framework has three phases: setup, direct key establishment, and

156 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

path-key establishment. The setup phase is performed to initialize the nodes by dis-

tributing polynomial shares to them. After being deployed, if two sensor nodes need

to establish a pairwise key, they first attempt to do so through direct key establish-

ment. If they can successfully establish a common key, there is no need to start path-

key establishment; otherwise, these two nodes start path-key establishment, trying to

establish a pairwise key with the help of other sensor nodes.

. Phase 1: Setup. The setup server randomly generates a set F of bivariate t-

degree polynomials over the finite field Fq. To identify different polynomials,

the setup server may assign each polynomial a unique ID. For each sensor node

i, the setup server picks a subset of polynomials F i # F , and assigns the shares

of these polynomials to node i. The main issue in this phase is the subset assign-

ment problem, which specifies how to pick a subset of polynomials from F for

each sensor node.

. Phase 2: Direct Key Establishment. A sensor node starts phase 2 if it needs to

establish a pairwise key with another node. If both sensor nodes have shares on

the same bivariate polynomial, they can establish the pairwise key directly

using the polynomial-based key predistribution. The main issue in this phase

is the polynomial share discovery problem, which specifies how to find a

common bivariate polynomial, of which both nodes have polynomial shares.

For convenience, we say two sensor nodes have a secure link if they can estab-

lish a pairwise key through direct key establishment. A pairwise key established

in this phase is called a direct key.

. Phase 3: Path-Key Establishment. If direct key establishment fails, two sensor

nodes need to start phase 3 to establish a pairwise key with the help of other

sensor nodes. To establish a pairwise key with node j, a sensor node i needs

to find a sequence of nodes between itself and node j such that any two adjacent

nodes in this sequence can establish a direct key. For the sake of presentation,

we call such a sequence of nodes a key path (or simply a path), since the pur-

pose of such a path is to establish a pairwise key. Then either node i or j initiates

a key establishment request with the other node through the intermediate nodes

along the path. A pairwise key established in this phase is called an indirect key.

A subtle issue is that two adjacent nodes in the path may not be able to com-

municate with each other directly. This framework assumes that they can

always discover a route between themselves so that the messages from one

node can reach the other. The main issue in this phase is the path discovery pro-

blem, which specifies how to find a path between two sensor nodes.

In the following, we describe two random key predistribution schemes that fall in

the framework of polynomial pool–based key predistribution.

5.3.3.3 Random Subset Assignment Key Predistribution As an instan-

tiation of the polynomial pool–based key predistribution, the random subset assign-

ment scheme can also be considered as an extension to the basic probabilistic

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 157

scheme. Instead of randomly selecting keys from a large key pool and assigning

them to sensor nodes, this method randomly chooses polynomials from a random

polynomial pool and assigns their polynomial shares to sensor nodes. However,

these two schemes also differ from each other. In the basic probabilistic key predis-

tribution scheme, the same key may be shared by multiple sensor nodes. In contrast,

in the random subset assignment scheme, there is a unique key for each pair of

sensor nodes. If no more than t shares on the same polynomial are disclosed,

none of the pairwise keys constructed using this polynomial between two noncom-

promised sensor nodes is disclosed.

Now let us describe this scheme by instantiating the three components in the gen-

eral framework.

1. Subset Assignment. The setup server randomly generates a setF of s bivariate

t-degree polynomials over the finite field Fq. For each sensor node, the setup

server randomly picks a subset of s0 polynomials from F and assigns shares as

well as the IDs of these s0 polynomials to the sensor node.

2. Polynomial Share Discovery. Since the setup server does not predistribute

enough information to the sensor nodes for polynomial share discovery,

sensor nodes that need to establish a pairwise key have to discover a

common polynomial with real-time discovery techniques. To find a

common bivariate polynomial, the source node discloses a list of polynomial

IDs to the destination node. If the destination node finds that they have shares

on the same polynomial, it informs the source node the ID of this polynomial;

otherwise, it replies with a message that contains a list of its polynomial IDs,

which also indicates that the direct key establishment has failed.

3. Path Discovery. If two sensor nodes fail to establish a direct key, they need to

start the path-key establishment phase. During this phase, the source node tries

to find another node that can help it set up a pairwise key with the destination

node. Basically, the source node broadcasts two lists of polynomial IDs. One

list includes the polynomial IDs at the source node, and the other includes the

polynomial IDs at the destination node. These two lists are available at both

the source and the destination nodes after the polynomial share discovery.

If one of the nodes that receives this request is able to establish direct keys

with both the source and the destination nodes, it replies with a message

that contains two encrypted copies of a randomly generated key: one

encrypted by the direct key with the source node, and the other encrypted

by the direct key with the destination node. Both the source and the destination

nodes can then get the new pairwise key from this message. (Note that the

intermediate node acts as an ad hoc KDC in this case.) In practice, we can

require that a sensor node only contact its neighbors within a certain range.

The random subset assignment scheme has some nice properties. (We refer the

reader to ref. [6] for a detailed analysis of these properties.) In particular, when

the fraction of randomly compromised secure links is small (e.g., less than 50%),

158 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

given the same storage constraint, the random subset assignment scheme provides a

significantly higher probability of establishing secure communication between

noncompromised nodes than the basic probabilistic and the q-composite key predis-

tribution schemes. Figure 5.4(a) and 5.4(b) compare the security performance of the

random subset assignment scheme with these previous schemes. These figures

clearly show that before the number of compromised sensor nodes reaches a certain

point, the random subset assignment scheme performs much better than both of the

other schemes. When the number of compromised nodes exceeds a certain point, the

other schemes have fewer compromised links or keys than the random subset assign-

ment scheme. Nevertheless, under such circumstances, none of these schemes pro-

vides sufficient security due to the large fraction of compromised links (over 60%) or

the large fraction of compromised (direct or indirect) keys (over 80%). Thus, the

0

0.2

0.4

0.6

0.8

1.0

1.2

0 200 400 600 800 1000

Number of compromised nodes

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

 k
ey

s

RS(s´=2,s=11,t=99)
RS(s´=3,s=25,t=66)
RS(s´=4,s=43,t=49)
q-composite(q=1)
q-composite(q=2)
q-composite(q=3)
Basic probabilistic

RS(s´=2,s=11,t=99)
RS(s´=3,s=25,t=66)
RS(s´=4,s=43,t=49)
q-composite(q=1)
q-composite(q=2)
q-composite(q=3)
Basic probabilistic

0

0.2

0.4

0.6

0.8

1.0

1.2

0 200 400 600 800 1000

Number of compromised nodes

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

 li
n

ks

(a)

(b)

Figure 5.4 Performance of the random subset assignment scheme under attacks. RS refers

to the random subset assignment scheme. Assume the network size is N ¼ 20,000, that

each node has available storage for 200 keys, and that the probability of sharing a direct

key between two nodes is p ¼ .33. (a) Fraction of compromised links between

noncompromised nodes vs. number of compromised nodes. (b) Fraction of compromised

keys (direct or indirect) between noncompromised nodes vs. number of compromised nodes.

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 159

random subset assignment scheme clearly has advantages over the basic probabilis-

tic and the q-composite schemes.

The random subset assignment scheme also has several advantages over the

random pairwise keys scheme [4]. In terms of security performance, the random

pairwise keys scheme does not allow reuse of the same key by multiple pairs of

sensor nodes [4]. Thus, the compromise of some sensor nodes does not lead to

the compromise of direct keys shared between noncompromised nodes. However,

the random pairwise keys scheme has a strict upper bound on the network size

for a given storage constraint and a desired probability to share common keys

between nodes. In contrast, the random subset assignment scheme allows the net-

work to grow by trading off with security. Moreover, in the random subset assign-

ment scheme, sensor nodes can be added dynamically without having to contact

the previously deployed sensor nodes. However, in the random pairwise keys

scheme, if it is necessary to dynamically deploy sensor nodes, the setup server

has to either reserve space for sensor nodes that may never be deployed, which

reduces the probability that two deployed nodes share a common key, or inform

some previously deployed nodes of additional pairwise keys, which introduces

additional communication overhead. Thus, in certain applications, the random

subset assignment scheme is a more attractive choice than the random pairwise

keys scheme.

5.3.3.4 Grid-Based Key Predistribution Grid-based key predistribution is

another instantiation of the general framework. Suppose a sensor network has at

most N sensor nodes. The grid-based scheme constructs anm� m grid and generates

2m bivariate polynomials {f ci (x, y), f
r
i (x, y)}i¼0, ...,m�1, where m ¼ d ffiffiffiffi

N
p e. As shown

in Figure 5.5(a), each row i in the grid is associated with a polynomial f ri (x, y), and

each column i is associated with a polynomial f ci (x, y). The setup server assigns each

),(0 yxf r

),(1 yxf r

),(yxf rj

),(2 yxf rm−

),(1 yxf rm−

− −

)
,

(
0

y
x

fc

)
,

(
1

y
x

fc

)
,

(
y

x
fc i

)
,

(
2

y
x

fc m
−

)
,

(
1

y
x

fc m
−

),(0 yxf r

),(1 yxf r

),(2 yxf r

),(2 yxf rm−

),(1 yxf rm−

)
,

(
0

y
x

fc

)
,

(
1

y
x

fc

)
,

(
2

y
x

fc

)
,

(
2

y
x

fc m
−

)
,

(
1

y
x

fc m
−

(a) (b)

Figure 5.5 Grid-based key predistribution: (a) the grid, and (b) an example order of node

assignment.

160 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

sensor node in the network to a unique coordinate in this grid. For the node at the

coordinate (i, j), the setup server distributes the polynomial shares of f ci (x, y) and

f rj (x, y) to this node. As a result, sensor nodes can perform share discovery and

path discovery based on this information.

For convenience, we encode the coordinate of a sensor node into a single-valued

node ID. Let l ¼ dlog2 me. Any valid coordinate can be represented as two l-bit

binary strings (one from the column, and the other from the row in the grid). We

then denote the ID of a sensor node as the concatenation of these two binary strings.

Syntactically, we represent an ID constructed from the coordinate (i, j) as ki, jl. For
the sake of presentation, we also denote ID i as kic, irl, where ic and ir are the first and
last l bits of i, respectively.

The grid-based key predistribution scheme is also generalized as the hypercube-

based scheme, which has n dimensions in hypercube instead of two dimensions in

the grid. However, we do not discuss it, but refer the readers to ref. [29]. The details

of the grid-based key predistribution scheme are presented below.

. Subset Assignment. The setup server randomly generates 2m t-degree bivari-

ate polynomials F ¼ {f ci (x, y), f
r
i (x, y)}i¼0,...,m�1 over a finite field Fq. For each

sensor node, the setup server picks an unoccupied coordinate (i, j) in the grid

and assigns it to the node. The ID of this sensor node is ID ¼ ki, jl. The setup

server then distributes {ID, f ci (j, x), f
r
j (i, x)} to this node. To facilitate path dis-

covery and guarantee that there is at least one key path between two nodes if

there are no compromised nodes and that any two nodes can communicate

with each other, we require that the coordinates assigned to sensor nodes

are densely selected within a rectangle area in the grid. Figure 5.5(b) shows

a possible order to assign coordinates to sensor nodes. It is easy to see that if

there exist nodes at ki, jl and ki0, j0l, then there must be a node at either ki, j0l or
ki0, jl, or both.

. Polynomial Share Discovery. To establish a pairwise key with node v, node u

checks whether uc ¼ vc or ur ¼ vr. If uc ¼ vc, both nodes u and v have poly-

nomial shares of f cuc (x, y), and they can use the polynomial-based key predistri-

bution scheme to establish a direct key. Similarly, if ur ¼ vr, they both have

polynomial shares of f rur (x, y), and can establish a direct key accordingly. If

neither of these conditions is true, nodes u and v go through path discovery

to establish an indirect key.

. Path Discovery. Nodes u and v need to use the path discovery if uc = vc and

ur = vr. However, we note that either node kuc, vrl or kvc, url can establish

direct keys with both nodes u and v. Indeed, if there is no compromised

node, it is guaranteed that there exists at least one node that can be used as

an intermediate node between any two sensor nodes due to the node-assignment

algorithm. For example, in Figure 5.5(a), both node ki0, jl and ki, j0l can help

node ki, jl establish a pairwise key with node ki0, j0l. Note that nodes u and v

can predetermine the possible intermediate nodes without communicating

with others.

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 161

Dynamic Key-Path Discovery Although the path discovery algorithm just

described can predetermine the key paths that have one intermediate node, both

of the preceding intermediate nodes may have been compromised, or are out of

communication range in some situations. However, there are still alternative key

paths. In particular, we can reuse the predetermined paths at other nodes to find a

secure key path. For example, in Figure 5.5(a), besides node ki0, jl and ki, j0l, node
ki,m� 2l has a predetermined path to node ki0, j0l through node ki0,m� 2l. Thus,
it can help node ki, jl set up a common key with node ki0, j0l. Indeed, there are up

to 2(m2 2) such nodes in the grid.

Due to the resource constraints on sensor nodes, we focus on the key paths that

can be discovered by reusing the predetermined key paths at other nodes. Specifi-

cally, a sensor node S can use the following dynamic path discovery to find a key

path to node D, using the predetermined key paths to D at a node with which S

can establish a direct key using a noncompromised polynomial. This choice reduces

the code size at sensor nodes, since we can reuse the code of computing predeter-

mined key paths between sensor nodes. The algorithm can be performed multiple

times to increase the chance of success.

1. The source node S randomly selects a noncompromised node that can estab-

lish a direct key with S using a noncompromised polynomial. Node S also gen-

erates a random number r, and maintains a counter c with initial value 0. If

none of the nodes is selected, the protocol stops; otherwise, it goes to the

next step.

(The countervalue c is used to identify the randomly generated keys, since

this algorithm can be performed several times to increase the chance of suc-

cess, and different keys are used in different rounds for security purposes.)

2. For the selected intermediate node u, S increments the counter c and computes

Kc ¼ F(r, c), where F is a pseudorandom function [27]. Then S sends u the IDs

of S and D, c, and Kc in a message encrypted and authenticated with the direct

key KS, u shared between S and u.

3. If u receives and authenticates such a message, it knows that S wants to estab-

lish a pairwise key with D. Node u then tries to establish a key with D using

one of its predetermined key paths to D. If this fails, u notifies S that the key

path discovery fails; otherwise, u sends D the IDs of S and D, c, and Kc in a

message encrypted and authenticated with the key between u and D. To save

communication overhead, this message can be piggy-backed in the key estab-

lishment message between u and D.

4. When the destination nodeD receives such a message, it knows that Swants to

establish a pairwise key KS,D with it. Then it sets KS,D ¼ Kc, and informs S of

the countervalue c. Finally, S and D can use KS,D to make their communi-

cation secure.

This grid-based scheme has a number of attractive properties. First, it guarantees

that any two sensor nodes can establish a pairwise key when there are no

162 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

compromised sensor nodes, assuming that the sensor nodes can communicate with

each other. Second, this scheme is sensitive to node compromises. Even if some

nodes are compromised, there is still a high probability that a pairwise key can be

reestablished between two noncompromised nodes. Third, a sensor node can directly

determine whether it can establish a direct key with another node, and if it can,

which polynomial should be used. As a result, there is no communication overhead

during polynomial share discovery.

5.3.4 Improving Random Key Predistribution with Expected
Deployment Locations

Despite the recent advances, key management in distributed sensor networks is still

not an entirely solved problem. This is especially because the performance of these

schemes, particularly the probability of establishing a common key between com-

municating sensors and the ability to tolerate compromised sensors, are highly

dependent on the memory available on sensor nodes. Because of the resource con-

straints on sensor nodes and the need to lower the cost of sensor networks, it is

always desirable to reduce the memory required by key management and allocate

more resources for the sensor network applications.

In some applications, the sensors may have low mobility, and we may be able to

predetermine the location of the sensors to a certain extent. In this case, we can use

the sensors’ location information to improve the performance of pairwise key

predistribution. In this subsection, we describe a simple location-aware deployment

model as well as a pairwise key management scheme that can take advantage of the

location information. More details of random key predistribution using deployment

knowledge can be found in refs. [7] and [8].

5.3.4.1 A Location-Aware Deployment Model We assume that sensors are

deployed in a two-dimensional area called the target field, and two sensors can com-

municate with each other if they are within each other’s signal range. The location

of a sensor can be represented by a coordinate in the target field. Each sensor has an

expected location that can be predicted or predetermined. After the deployment, a

sensor is placed at an actual location that may be different from its expected

location. We call the difference between the expected location and the actual

location of a sensor the deployment error for the sensor. Thus, this model can be

characterized by the following three parameters:

1. Signal Range dr. A sensor can receive messages from another sensor if the

former is located within the signal range of the latter. We model the signal

range of a sensor as a circle centered at its actual location with the radius

dr. For simplicity, we assume that the radius dr defining the signal range is

a networkwide parameter, and denote the signal range by dr. We say two sen-

sors are neighbors if they are physically located within each other’s signal

range.

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 163

2. Expected Location (Lx,Ly). The expected location (Lx,Ly) of a sensor is a

coordinate in the two-dimensional target field; it specifies where the sensor

is expected to be deployed. Sometimes, a sensor can be expected to be

deployed within an area instead of a particular location. In this case, we

assume the sensor is expected to be deployed at any location in that area

with equal probability.

3. Deployment Error e. We model the deployment error e with a probability

density function. The sensor expected to be deployed at (Lx,Ly) may appear

at a particular area with a certain probability, which is calculated by the inte-

gration of probability density function e over this area. In some cases, the

sensor may have certain mobility, and appear somewhere near its expected

location with a certain probability. The actual location of a sensor at any

point in time may also be modeled by the probability density function. We

assume the deployment error is also a networkwide parameter.

5.3.4.2 Closest Pairwise Keys Scheme The closest pairwise keys scheme

is a variation of the random pairwise keys scheme that takes advantage of the sen-

sors’ expected locations. The basic idea is to have each node share pairwise keys

with c other nodes whose expected locations are closest to this node’s expected

location, where c is a system parameter determined by the memory constraint.

Assume there is a setup server responsible for key predistribution, which is also

aware of the networkwide signal range and deployment error, and the expected

location of each sensor before deployment. Further assume each sensor has a

unique, integer-valued ID. We also use a sensor ID to refer to a particular sensor.

For convenience, we call a pairwise key shared directly between two neighbor

nodes a direct key, and a pairwise key established through other intermediate

nodes an indirect key.

The closest pairwise keys scheme predistributes pairwise keys between pairs of

sensors so that two sensors have a predistributed pairwise key if they have a high

probability of appearing in each other’s signal range. Although reasonable, this

idea is difficult to implement, since it is nontrivial to get the probability that two sen-

sors are neighbors. Indeed, this probability depends on the distribution of the

deployment error, which is generally not available and may vary in different appli-

cations. To simplify the situation, we predistribute pairwise keys between pairs of

sensors whose expected locations are close to each other, hoping that the closer

the expected locations of two sensors, the more possible that they are physically

located in each other’s signal range. We will then use a simple deployment error

model to analyze the probability that two neighbor sensors share a pairwise key.

The basic scheme follows:

. Key Predistribution. Based on the expected locations of the sensors, the setup

server predistributes pairwise keys on each sensor to facilitate establishing

pairwise keys during the normal operation. Specifically, for each sensor u,

164 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

the setup server first discovers a set S of c other sensors whose expected

locations are closest to the expected location of u. For each sensor v in S, the

setup server randomly generates a unique pairwise key Ku,v if no pairwise

key between u and v has been assigned. The setup server then distributes

(v,Ku,v) and (u,Ku,v) to sensors u and v, respectively.

. Direct Key Establishment. After the deployment of the sensor network, if two

sensors u and v want to set up a pairwise key to secure the communication

between them, they only need to check whether they have a predeployed pair-

wise key with the other party. This information is obtained from the setup

server at the predistribution phase. The algorithm to identify such a common

key is trivial, because each pairwise key in a particular sensor was associated

with a sensor ID.

. Indirect Key Establishment. After deployment, if two neighbor sensors u and v

do not share a predistributed pairwise key, they can find an intermediate neigh-

bor sensor that shares pairwise keys with both of them to help establish a ses-

sion key. Basically, either of these two sensors can broadcast a request message

with their IDs. Without loss of generality, we assume u sends this request. Sup-

pose sensor i receives this request, and i shares a pairwise key ku,i with u, and a

pairwise key kv,i with v. Sensor i then generates a random session key k and

sends a message back to u, which contains Eku,i(k) and Ekv, i(k). These are the

session key k encrypted with ku,i and kv,i, respectively. Upon receiving this

reply message, sensor u can get the session key by decrypting Eku,i (k), and

inform sensor v by forwarding Ekv,i (k) to v. (Note that sensor i acts as a KDC

in this case.) Sensor u may receive multiple replies; it can choose any one of

them.

The analysis in ref. [8] indicates that if the expected locations are known and the

deployment of sensors follow a certain distribution centered at the expected

locations, the closest pairwise keys scheme can significantly improve the probability

that two neighbor nodes share a common key. Since each predistributed pairwise

key between two sensor nodes is randomly generated, no matter how many sensors

are compromised, the direct keys between noncompromised sensors are still secure.

This is a property inherited from the random pairwise keys scheme.

The essential approach of the closest pairwise keys scheme is to use deployment

knowledge to improve the probability of sharing keys between neighbor nodes. The

same general idea can also be applied to the basic probabilistic key predistribution,

the q-composite, the polynomial pool–based key predistribution, and the multispace

key predistribution schemes. Additional schemes using deployment knowledge can

be found in refs. [7] and [8].

5.3.5 Further Reading on Key Predistribution in Sensor Networks

As mentioned earlier, key management is one of the most fundamental security ser-

vices in sensor networks, and key predistribution is considered a promising approach

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 165

for efficient and resilient key establishment in sensor networks. What we have

described is by no means the complete picture. For additional information on key

predistribution in sensor networks, refer to refs. [3–10] and [30].

5.4 DEMAND FOR MORE SECURITY RESEARCH

Existing sensor network security research has been mostly on foundational crypto-

graphic services, or applying cryptographic techniques to protect sensor network

applications. Examples include resilient data aggregation [19–21], secure in-network

processing [16], and hop-by-hop authentication for filtering out false data-injection

attacks [17,18]. These are certainly critical issues for sensor network security.

However, more issues are required for secure and resilient sensor networks. In

particular, we need novel solutions to protect fundamental services such as location

discovery and clock synchronization, which are also resilient in the presence of fail-

ures and malicious attacks. Moreover, intrusion detection in sensor networks is par-

ticularly important due to the fact that unattended sensor nodes can be easily

captured and compromised. Since the ultimate goal of sensor networks is to collect

data from physical environments, secure data collection and management is another

critical issue as well.

To illustrate the need for additional research, in the rest of this section we discuss

attacks against location discovery in sensor networks.

5.4.1 Attacks Against Location Discovery

Sensors’ locations play a critical role in numerous sensor network applications. For

example, target tracking applications require sensors’ locations to estimate the

moving direction of target objects. As another example, in geographical routing pro-

tocols (e.g., FACE [31,32], greedy perimeter stateless routing (GPSR) [32–34]),

sensor nodes make routing decisions at least partially based on their own and

their neighbors’ locations. Indeed, many sensor network applications will not

work without sensors’ location information.

A number of location discovery protocols [33,35–42] have been proposed for

wireless sensor networks in recent years. These protocols share a common feature:

They all use some special nodes, called beacon nodes, which are assumed to know

their own locations (e.g., through global positioning system (GPS) receivers or

manual configuration). These protocols work in two stages. In the first stage, non-

beacon nodes receive radio signals called beacon signals from the beacon nodes.

The packet carried by a beacon signal, which we call a beacon packet, usually

includes the location of the beacon node. The nonbeacon nodes then estimate certain

measurements (e.g., distance between the beacon and the nonbeacon nodes) based

on features of the beacon signals (e.g., received signal strength indicator, time differ-

ence of arrival). We refer to such a measurement and the location of the correspond-

ing beacon node collectively as a location reference. In the second stage, a sensor

node determines its own location when it has enough number-of-location references

166 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

from different beacon nodes. A typical approach is to consider the location

references as constraints that a sensor node’s location must satisfy, and estimate it

by finding a mathematical solution that satisfies these constraints with minimum

estimation error. Existing approaches either employ range-based methods [35–

39], which use the exact measurements obtained in stage one, or range-free ones

[33,40–42], which only need the existences of beacon signals in stage one.

Despite the recent advances, location discovery for wireless sensor networks in

hostile environments, where there may be malicious attacks, has been mostly over-

looked. As a matter of fact, all of the existing location discovery protocols become

vulnerable in the presence of malicious attacks. As illustrated in Figure 5.6, an

attacker may provide an incorrect location reference by pretending to be valid

beacon nodes (Figure 5.6(a)), compromising beacon nodes (Figure 5.6(b)), or

replaying the beacon packets that were intercepted in different locations

(Figure 5.6(c)). In either of these cases, nonbeacon nodes will determine their

locations incorrectly.

Without protection, an attacker may easily mislead the location estimation at

sensor nodes and subvert the normal operation of sensor networks. The security

of location discovery can certainly be enhanced by authentication. Specifically,

each beacon packet should be authenticated with a cryptographic key known only

to the sender and the intended receivers, and a nonbeacon node accepts a beacon

Beacon node nb

(x,y)

Attacking node na

n

(x´,y´)

I’m nb;
my location is (x,y)

(a)

Malicious beacon

node nb

(x,y)

n

I’m nb; my location

is (x´,y´)

(b)

Beacon node nb

(x,y) Attacking node na

n

(x´,y´)

I’m nb; my location is

(x,y)

Replay “ I’m nb; my

location is (x,y)”

(c)

Figure 5.6 Attacks against location discovery services: (a) masquerade beacon nodes,

(b) compromised beacon nodes, and (c) replay attack.

5.4 DEMAND FOR MORE SECURITY RESEARCH 167

signal only when the beacon packet carried by the beacon signal can be authenti-

cated. However, only having authentication does not guarantee the security of

location discovery, either. As discussed earlier, an attacker may forge beacon pack-

ets with keys learned through compromised nodes, or replay beacon signals inter-

cepted in different locations.

Most of the localization schemes for sensor networks have a certain ability to tol-

erate measurement errors (e.g., by averaging the effect of problematic location refer-

ences over all location references). For example, minimum mean-square estimation

(MMSE) has been used in most of the range-based and some range-free localization

schemes to improve the accuracy of location estimation when a sensor node has

redundant location references. However, these methods cannot properly handle

malicious location references, which typically include very large errors not seen in

natural faults.

To demonstrate the impact of malicious attacks, we performed an experiment

through simulation with the MMSE-based location estimation method in [35]. We

used nine honest beacon nodes and one malicious beacon node randomly deployed

in a 30m� 30m field. The node that estimates location is positioned at the center of

the field. The malicious beacon node always declares a false location that is xmeters

away from its real location, where x is a parameter representing the location error

created by an attacker. To model the distance measurement error, we assume such

an error is uniformly distributed between �emax and emax. Figure 5.7 shows the

location estimation error (i.e., the distance between a sensor’s real location and

the estimated location) introduced by the malicious beacon node when the location

error x created by an attacker increases. We can clearly see that the malicious node

affects the estimated location significantly by declaring incorrect locations. Since an

attacker can introduce arbitrarily large errors by declaring false locations in beacon

packets, the preceding result implies that the attacker can introduce arbitrarily large

errors into a nonbeacon node’s location estimation.

0

2

4

6

8

10

12

14

0 10 15 20 25 30

Location error introduced by a malicious beacon

Lo
ca

tio
n

es
tim

at
io

n
er

ro
r

emax=0

emax=2

emax=4

5

Figure 5.7 Location estimation error introduced by malicious attacks.

168 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

Such malicious attacks will generate similar impacts on the other localization

schemes. This is because an attacker may introduce arbitrary errors into location

estimation process, while all the existing localization techniques assume bounded

errors, which are only true in benign environments. As discussed earlier, such

attacks cannot be simply prevented by cryptographic techniques due to the threat

of compromised nodes and replay attacks. Thus, it is highly desirable to have

additional mechanisms to improve the security of location discovery in sensor

networks.

5.5 CONCLUSION

Sensor network security is a challenging problem, particularly due to the resource

constraints on sensor nodes, the threat of node compromises resulting from unat-

tended deployment, and the imbalance between the threat and the defense in

sensor networks. Foundational cryptographic services such as broadcast authenti-

cation and key management are definitely a necessary condition to ensure secure

and resilient sensor network applications. Other foundational services in sensor

network applications also deserve intensive investigation. Examples of such ser-

vices include secure clock synchronization, secure location discovery, secure

aggregation and in-network processing, cluster formation, and cluster head elec-

tion. Moreover, intrusion detection in sensor networks is highly desirable, particu-

larly due to the fact that unattended sensor nodes may be easily captured and

compromised. We expect to see more advances in sensor network security in the

next several years.

Research in sensor network security is likely to generate an impact beyond sensor

networks themselves. Experiences gained here will offer techniques and insights in

handling security problems arising in many other applications involving resource-

constrained devices interfacing with a malicious physical world.

REFERENCES

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:

A survey. Computer Networks, 38(4):393–422, 2002.

2. D. W. Carman, P. S. Kruus, and B. J. Matt. Constrains and Approaches for Distributed

Sensor Network Security. Technical report, NAI Labs, 2000.

3. L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor

networks. In Proceedings of the 9th ACM Conference on Computer and Communications

Security, pages 41–47, November 2002.

4. H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor

networks. In IEEE Symposium on Research in Security and Privacy, pages

197–213, 2003.

REFERENCES 169

5. W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise key pre-distribution scheme for

wireless sensor networks. In Proceedings of the 10th ACM Conference on Computer and

Communications Security (CCS’03), pages 42–51, October 2003.

6. D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks. In Pro-

ceedings of the 10th ACM Conference on Computer and Communications Security

(CCS’03), pages 52–61, October 2003.

7. W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney. A key management scheme for

wireless sensor networks using deployment knowledge. In Proceedings of IEEE INFO-

COM 2004, Hong Kong, March 2004.

8. D. Liu and P. Ning. Location-based pairwise key establishments for static sensor net-

works. In 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks (SASN

’03), page 720082, October 2003.

9. R. D. Pietro, L. V. Mancini, and A. Mei. Random key assignment for secure wireless

sensor networks. In 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks

(SASN ’03), October 2003.

10. S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient security mechanisms for large-scale dis-

tributed sensor networks. In Proceedings of the 10th ACM Conference on Computer and

Communications Security (CCS’03), pages 62–72, October 2003.

11. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar. SPINS: Security protocols for

sensor networks. In Proceedings of 7th Annual International Conference on Mobile

Computing and Networks, July 2001.

12. A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient authentication and signing of

multicast streams over lossy channels. In Proceedings of the 2000 IEEE Symposium on

Security and Privacy, May 2000.

13. A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient and secure source authentication

for multicast. In Proceedings of the Network and Distributed System Security Symposium,

February 2001.

14. D. Liu and P. Ning. Efficient distribution of key chain commitments for broadcast authen-

tication in distributed sensor networks. In Proceedings of the 10th Annual Network and

Distributed System Security Symposium, pages 263–276, February 2003.

15. D. Liu and P. Ning. Multi-level mTESLA: Broadcast authentication for distributed sensor
networks. ACM Transactions in Embedded Computing Systems, 3(4):800–836, 2004.

16. J. Deng, R. Han, and S. Mishra. Security support for in-network processing in wireless

sensor networks. In 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks

(SASN ’03), October 2003.

17. S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved hop-by-hop authentication

scheme for filtering false data in sensor networks. In Proceedings of the 2004 IEEE Sym-

posium on Security and Privacy, May 2004.

18. F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filtering of injected false data in

sensor networks. In Proceedings of IEEE INFOCOM 2004, March 2004.

19. L. Hu and D. Evans. Secure aggregation for wireless networks. In Workshop on Security

and Assurance in Ad Hoc Networks, January 2003.

20. B. Przydatek, D. Song, and A. Perrig. SIA: Secure information aggregation in sensor

networks. In Proceedings of the 1st ACM Conference on Embedded Networked Sensor

Systems (SenSys ’03), November 2003.

170 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

21. W. Du, J. Deng, Y. S. Han, and P. K. Varshney. A witness-based approach for data fusion

assurance in wireless sensor networks. In Proceedings of the IEEE Global Communi-

cations Conference (GLOBECOM 03), December 2003.

22. A. D. Wood and J. A. Stankovic. Denial of service in sensor networks. IEEE Computer,

35(10):54–62, 2002.

23. C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and

countermeasures. In Proceedings of the 1st IEEE International Workshop on Sensor

Network Protocols and Applications, May 2003.

24. J. Newsome, R. Shi, D. Song, and A. Perrig. The sybil attack in sensor networks: Analysis

and defenses. In Proceedings of the IEEE International Conference on Information

Processing in Sensor Networks (IPSN 2004), April 2004.

25. R. L. Rivest, A. Shamir, and L. A. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

26. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authen-

tication. Internet RFC 2104, February 1997.

27. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal

of the ACM, 33(4):792–807, October 1986.

28. C. Blundo, A. De Santis, Amir Herzberg, S. Kutten, U. Vaccaro, and M. Yung. Perfectly-

secure key distribution for dynamic conferences. In Advances in Cryptology—CRYPTO

’92, LNCS 740, pages 471–486, 1993.

29. D. Liu, P. Ning, and R. Li. Establishing pairwise keys in distributed sensor networks.

ACM Transactions on Information and System Security, forthcoming.

30. S. A. Camtepe and B. Yener. Combinatorial design of key distribution mechanisms for

wireless sensor networks. In Proceedings of the 9th European Symposium on Research

in Computer Security (ESORICS ’04), 2004.

31. P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed delivery in ad

hoc wireless networks. In Proceedings of the 3rd ACM International Workshop on

Discrete Algorithms and Methods for Mobile Computing and Communications, pages

48–55, 1999.

32. P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed delivery in ad

hoc wireless networks. ACM Wireless Networks, 7(6):609–616, 2001.

33. N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for very

small devices. IEEE Personal Communications, pages 28–34, October 2000.

34. B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless networks.

In Proceedings of ACM MobiCom 2000, 2000.

35. A. Savvides, C. Han, and M. Srivastava. Dynamic fine-grained localization in ad-hoc

networks of sensors. In Proceedings of ACM MobiCom ’01, pages 166–179, July 2001.

36. A. Savvides, H. Park, and M. Srivastava. The bits and flops of the n-hop multilateration

primitive for node localization problems. In Proceedings of ACM WSNA ’02, September

2002.

37. D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In Proceedings

of IEEE INFOCOM 2003—The Conference on Computer Communications, 22(1):1734–

1743, March 2003.

38. A. Nasipuri and K. Li. A directionality based location discovery scheme for wireless

sensor networks. In Proceedings of the ACM WSNA’02, September 2002.

REFERENCES 171

39. L. Doherty, K. S. Pister, and L. E. Ghaoui. Convex optimization methods for sensor node

position estimation. In Proceedings of IEEE INFOCOM 2001, pages 1655–1663,

Anchorage, Alaska, April 2001.

40. D. Niculescu and B. Nath. DV based positioning in ad hoc networks. Telecommunication

Systems, 22:1–4, 267–280, 2003.

41. R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from local

information on an ad hoc sensor network. In IPSN’03, 2003.

42. T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher. Range-free local-

ization schemes in large scale sensor networks. In Proceedings of ACM MobiCom 2003,

2003.

172 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

&CHAPTER 6

Embedded Operating Systems for
Wireless Microsensor Nodes

BRIAN SHUCKER, JEFF ROSE, ANMOL SHETH, JAMES CARLSON,
SHAH BHATTI, HUI DAI, JING DENG, and RICHARD HAN

University of Colorado at Boulder, Boulder, Colorado

Sensor nodes fall somewhere in between the single application devices that need no

operating system, and the more capable, general purpose devices with the resources

to run a traditional embedded operating system. This is reflected in the design of

sensornet operating systems, which provide a limited number of common services

for application developers. These common services typically include hardware man-

agement of sensors, radios, and I/O buses, and devices such as external flash. Other

services needed by applications include task coordination, power management,

adapting to resource constraints, and networking. In this chapter, authors examine

the principles behind the design of sensornet operating systems, their basic architec-

ture, and features that are unique to the sensor network domain. These principles

are illustrated by examining two very different sensor operating systems, TinyOS

and MOS (the MANTIS operating system).

6.1 INTRODUCTION

The first question one might ask about operating systems for sensor networks is,

“Why do sensor nodes need an operating system at all?” Indeed, there are many

embedded devices that do not use an operating system. For devices customized to

a particular application, such as digital cameras or microwaves, it is much simpler

to run the application code directly on the microcontroller. On the other hand, more

general-purpose devices such as personal digital assistants (PDAs) use embedded

versions of full-blown operating systems, such as Windows Mobile PocketPC OS

173

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

or Embedded Linux, to provide basic services that are common to multiple

applications.

Sensor nodes fall somewhere in between the single-application devices that need

no operating system, and the more capable, general-purpose devices with the

resources to run a traditional embedded operating system. This is reflected in the

design of sensornet operating systems, which may not even be considered operating

systems in the traditional sense. A sensor operating system provides a limited

number of common services for application developers. These common services

typically include hardware management of sensors, radios, and I/O buses, and

devices such as external flash. Other services needed by applications include task

coordination, power management, adaptation to resource constraints, and network-

ing. In this chapter, we examine the principles behind the design of sensornet oper-

ating systems, their basic architecture, and features that are unique to the sensor

network domain. We will illustrate these principles by examining two very different

sensor operating systems, TinyOS [1] and MOS [2], the MANTIS operating system.

Figure 6.1 identifies the design space that sensor operating systems are targeting.

Minimum requirements of operating systems in terms volatile RAM for run-time

execution and permanent storage for code are shown in Figure 6.1. The design

space of sensor operating systems is in the far lower left of the figure, where both

TinyOS and MOS are clustered. Sensor operating systems impose the most minimal

needs in terms of RAM and flash, and are equivalent in memory requirements to

smart card operating systems. The design space of PDA-class operating systems

such as PalmOS and PocketPC OS are located about two magnitudes higher in

terms of memory requirements. Most embedded operating systems span the gap

between sensor-class operating systems and PDA-class operating systems. Real-

time embedded operating systems (RTOS) like QNX and VXWorks roughly fall

into the gap between the PDA-class operating systemes and sensor-class operating

Volatile storage (kB)

0.1 1 10 100 1000 10,000

P
er

m
an

en
t s

to
ra

ge
 (

kB
)

0.1
1

10

100

1000

10,000

100,000

JavaSC

uCLinux

PocketPC

JVM

PalmOS

MOS

TinyOS

Linux
Mach

PersonalJava

Figure 6.1 Minimum requirements of operating systems in terms of volatile RAM for run-

time execution and permanent storage for code.

174 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

systemes, requiring approximately 100 kB and 286 kB of ROM, respectively, but

are not shown because we were not able to determine their run-time footprints.

Also, we expect mCOS and AVRX embedded operating systems to fall into the

same range between sensor-class operating systems and PDA-class operating

systems. mCLinux requires resources on the order of a PDA-class operating

system. Much larger operating systems, such as Linux, are also shown for compari-

son. Windows-class operating systems fall into the Linux category as well.

Section 6.2 provides an overview of common features of microsensor node hard-

ware. In Section 6.3, we explore the fundamental principles of sensor node operating

system design, and Section 6.4 describes a set of features that are unique to sensor

node operating systems. We follow with a discussion of two operating systems,

TinyOS (Section 6.6) and MANTIS OS (Section 6.7). A detailed comparison of

the relative advantages and disadvantages of event-driven and multithreaded

sensor operating systems is presented in Section 6.8.

6.2 MICROSENSOR NODE HARDWARE

In developing operating systems for embedded microsensor nodes, the chosen hard-

ware has a direct effect on many aspects of the system design. The hardware of a

wireless microsensor node typically consists of five major subsystems, namely,

the microcontroller, sensors, radio, power unit, and permanent storage. Here we

discuss the primary aspects of the microcontroller and other devices that have the

greatest effect on the operating system.

6.2.1 Flash, SRAM, and EEPROM

Most low-power microcontrollers today utilize the Harvard architecture [3], which

means the processing unit uses physically separate storage and signaling pathways

for the executable instructions and the data [4–7]. Today, this typically results in the

usage of flash memory for persistent storage of application code, the text segment,

and static RAM (SRAM) for data storage at run time.

In terms of both time and energy, flash memory is inexpensive to read but expens-

ive to write, which makes it well suited for program memory. Also, it may or may

not be possible for the microcontroller to write to its own flash memory; reprogram-

ming may require additional hardware. In either case, flash memory is written in

blocks (pages), but may be read at random. The number of writes to a particular

block is limited, as the blocks wear out over time. However, flash memory is non-

volatile, so it retains data when powered off.

SRAM is random access and is generally fast for reads and writes, but is volatile,

consumes more energy than flash, and costs more. SRAM does not wear out in the

same fashion as flash memory. For these reasons, SRAM is used in small quantities

as data memory. Extremely limited data memory is one of the major constraints in

sensor network programming.

6.2 MICROSENSOR NODE HARDWARE 175

Additional nonvolatile storage may take the form of a separate flash bank, or

another memory technology such as electrically erasable programmable read-only

memory (EEPROM). From an operating system perspective, EEPROM behaves

similarly to flash: it is nonvolatile, survives a limited number of writes, and may

be slow to write. Both flash and EEPROM come in fairly large units with serial inter-

faces as well as parallel interfaces; the serial devices may be used in a sensor node

similarly to a disk.

6.2.2 Peripheral Interfaces

Modern microcontrollers come with a number of peripheral interfaces, all integrated

on the same chip with the CPU and memory. Peripheral devices, such as the radio

and sensors, connect to the microcontroller through one or more of these interfaces.

Memory-mapped peripherals are rarely used.

Common interfaces include UART (universal asynchronous receiver transmitter),

SPI (serial peripheral interface), and I2C (inter-integrated circuit), among others.

Each type has unique characteristics, such as maximum speed, number of devices

per bus, and signaling protocol. However, the details are largely hidden from the

operating system designers, since the interfaces are implemented in hardware.

6.2.3 Radios

Radio-frequency (RF) devices may or may not have a large impact on the perform-

ance of a sensor operating system, depending on how much of the RF protocol is

handled in hardware. For example, the common Mica2 sensor node uses a

CC1000 radio [8] that provides a raw bit interface. Besides requiring somewhat

complex software to operate, the CC1000 constantly interrupts the CPU with

noise bits whenever it is on. This increases the energy cost of activating the radio,

and also reduces available CPU bandwidth. By contrast, the more recent MicaZ

node uses a packet-based CC2420 radio, which handles entire packet transfers in

hardware. This greatly reduces software complexity and allows the CPU to be in

a low-power mode even while the radio is sending or receiving a packet.

6.2.4 Sensors

Sensors are difficult to characterize as a group, because they come in such a wide

variety. Sensors may be digital or analog in nature, may or may not require signifi-

cant attention from the CPU, and may have power requirements ranging from insig-

nificant to dominant. In order to support the multitude of available sensors, an

operating system must be designed with flexibility and modularity in mind.

6.2.5 Power Systems

Sensor nodes typically run on batteries, which makes effective power management a

key challenge in operating system design, as described in Section 6.3.4. While

176 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

methods of supplying continuous power in outdoor in situ deployments have been

investigated, for example, solar panels and other energy-scavenging techniques, it

is still necessary for operating systems to conserve power as much as possible.

There are some situations, such as in certain indoor sensor networks, when power

can be obtained from wall outlets, though communication continues to be conducted

via wireless multihop networking.

6.2.6 Contrast with PC Systems

Sensor nodes that are deployed in situ do not typically support output devices for

interaction, such as displays. User interaction is not a paramount requirement, as

it is in PC and PDA systems. The nodes are instead left physically unattended for

most of their lifetime. Similarly, in situ sensor nodes do not typically provide

input devices for user interaction such as keyboards or mice.

6.3 PRINCIPLES OF SENSOR OPERATING SYSTEM DESIGN

Modern sensor operating systems differ from conventional PC operating systems in

a number of ways. These differences stem from the unique hardware and energy

constraints typically encountered in sensor networking. The following sections

describe the general principles behind sensor operating systems.

6.3.1 Managing Hardware

The first task of any operating system is to manage the hardware resources available

on the machine. Sensor operating systems are no exception to this rule. The operat-

ing system provides abstract services, such as reading sensors, sending and receiving

data over the radio, and using timers.

One of the primary hardware constraints on a typical microcontroller is the lack

of a memory management unit (MMU). Additionally, most sensor node controllers

only have a single operating mode, whereas a typical processor has both user and

supervisor modes. This eliminates the distinction between executing kernel code

and executing application code, so hardware management may be implemented as

a library of function calls. While these function calls can provide a clean, abstract

interface to the hardware, they do not provide protection from users who access

the hardware directly, either by accident or with malicious intent. This lack of pro-

tection has implications for system reliability, debugging, coordination of multiple

tasks, and security. Such concerns will be addressed in more detail below.

6.3.2 Task Coordination

Another major problem solved by the operating system is that of coordination of

multiple tasks. This primarily consists of two sub-problems: scheduling and syn-

chronization. The operating system must decide when to allocate the CPU to each

6.3 PRINCIPLES OF SENSOR OPERATING SYSTEM DESIGN 177

task, and it must provide mechanisms for the user to attain guarantees about

execution order and mutual exclusion when necessary.

Some systems solve both problems by restricting the user to a single task; this is

the case when running application code directly on a microcontroller (in a sense, the

degenerate case of operating systems). In such a model, there may be multiple logi-

cally distinct tasks present, but the coordination of those tasks is handled in an appli-

cation-specific way by the application programmer, rather than managed in a

standard way by the operating system. Some sensor operating systems, such as

TinyOS, solve the hardware management problem, but make no attempt to solve

the task coordination problem. Others, such as MOS, include task management

features.

There are two costs associated with task management: a small amount of CPU

bandwidth (consumed by the kernel to make scheduling decisions and context

switches) and a significant amount of memory. The memory cost is high because

multiple tasks, each with its own static memory requirements and execution

stack, may need to coexist in memory at the same time. While it is possible to

swap the memory of suspended tasks out to another device, such as flash

memory, this greatly increases the context switching time and thus the CPU over-

head of the scheduling system.

Task coordination does, however, move significant complexity away from the

applications and into the operating system. This may be a drawback if applications

are relatively simple, such as a single application thread and network stack. On the

other hand, if applications make use of such features, it makes sense to implement

them once in the operating system and test them thoroughly, eliminating the need for

application programmers to reimplement and debug such complex code multiple

times.

6.3.3 Resource Constraints

Sensor nodes must operate under resource constraints that are not major concerns on

PCs, or even on smaller embedded devices such as PDAs. For example, the Mica2

node has only 4 kB of data memory (SRAM), 128 kB of program memory (flash),

and an 8-bit, 7.3 MHz CPU. Each of these limitations affects the design of sensor

operating systems.

It has been argued that one should not design around these resource constraints,

because the hardware is subject to Moore’s law and will have increased in capability

by the time sensor networks are widely adopted. However, current sensor nodes are

expensive—on the order of $100 per node. The advances predicted by Moore’s law

can be applied to lower the cost, rather than increase the capability of a sensor node.

An operating system that runs within tight resource constraints will always run on

cheaper hardware, which can be economically deployed in larger numbers.

6.3.3.1 Data Memory Data memory is an extremely scarce resource,

especially in multithreaded systems that must keep multiple execution stacks present

at the same time. Besides the small size of physical memory, sensor nodes may also

178 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

be limited by the lack of a hardware memory management unit. This alters the

memory model, since the entire system, including the operating system and all appli-

cation threads, runs in a single address space.

There are many techniques for reducing memory consumption, such as zero-copy

network stacks, lightweight thread management, and compile-time optimizations.

Some of these techniques impose limits on the services that the operating system

can provide.

The lack of hardware memory management makes proper software engineering

critically important on a sensor node. There is no way to prevent threads from writ-

ing over each other’s memory (although it may be possible to detect after the fact).

Even without multiple threads, an application could write over memory locations

that hold operating system state information, or even memory-mapped registers.

For example, dereferencing NULL on a Mica2 node will overwrite one of the micro-

controller’s internal general-purpose registers, resulting in unpredictable behavior

without ever raising an exception.

6.3.3.2 Program Memory Program memory is not as seriously constrained as

data memory, since flash memory is cheaper; storing a complete program image is

generally not a problem. It is also difficult (sometimes impossible) to write to a flash

bank by accident. The only unusual constraint with program memory is that flash

memory has a limited number of write–erase cycles. Of course, program memory

does not have to be changed often, so this constraint may not be of practical

significance.

6.3.3.3 CPU Bandwidth At first glance, it would seem that the common tasks

on a sensor node are I/O-bound: waiting for sensor events and transmitting/receiv-
ing data are the primary two. However, many research directions involve tasks that

may be CPU-intensive, such as data aggregation [9,10] and/or transformation, in-

network processing [11], and cryptography [12]. On an 8-bit microcontroller, oper-

ations such as encryption with split-key methods may take a long time to complete.

As mentioned in Section 6.3.2, a sensor operating system may or may not manage

the allocation of CPU cycles between tasks. If it does handle CPU scheduling, the

operating system must be capable of intelligently interrupting CPU-bound tasks in

order to service I/O-driven tasks within a reasonable time frame. Of course, if the

operating system does not manage scheduling, the application programmer must

ensure that the CPU-bound tasks pause periodically to give cycles to the I/O-
bound tasks.

6.3.4 Power Management

Power constraints on sensor nodes are severe. While Moore’s law applies to CPU

speed and memory size, it does not apply to battery capacity. Thus, it is not surpris-

ing the majority of the volume and mass of a sensor node such as the Mica2 is occu-

pied by the battery.

6.3 PRINCIPLES OF SENSOR OPERATING SYSTEM DESIGN 179

Because battery technology is not improving very fast, the lifetime of a sensor

node is increased primarily by reducing power consumption, rather than increasing

supply. Low-power components help, but even very low-power microcontrollers

and radios will drain a pair of AA batteries in a matter of days. Large-scale increases

in node lifetime are obtained by turning components off during times when they are

not needed. The “duty cycle” of a node is the fraction of the time that the node’s

high-power components are active, and may be on the order of 1%. This extends

the lifetime of a node from several days to several months (Fig. 6.2).

From the perspective of an operating system, power management comes in two

flavors: implicit and explicit. Implicit power management involves techniques that

do not require cooperation from the user or from applications. Implicit power man-

agement is common in PCs. For example, laptop operating systems may dim the

screen when running off battery power, and switch to full brightness when connected

to an AC outlet. Many systems turn off components that have not been used for a

long time (e.g., spinning down disks), and leave them off until needed. In both

cases, neither the users nor the applications are involved in the power management

decisions.

Explicit power management is user- or application-directed. In an explicit power

management scheme, the application uses a system call to give instructions or hints

to the operating system. These calls may indicate which resources the application is

going to use in the near future so that the operating system can determine which

components need to be powered on. Explicit systems are inherently more efficient

than implicit ones, since the operating system has more information to work with.

However, there is more work to be done by each application.

In sensor nodes, one of the largest power consumers is the radio. The cost of

transmitting one bit is on the order of a thousand times the cost of processing one

bit. Despite power optimizations in other modules, the power consumed by radio

transmission will continue to remain a concern because the laws of physics

0

5

10

15

20

25

30

35

40

.5 1 2 4 8 100

% Duty cycle

M
on

th
s

1000 mAhr

2000 mAhr

3000 mAhr

Figure 6.2 Operating life of a wireless sensor node, comparing 1% and 0.5% duty cycles.

Period ¼ 300 seconds.

180 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

fundamentally limit the amount that can be conserved. Electromagnetic trans-

mission requires a certain transmit power in order to achieve a desired signal-

to-noise ratio (SNR) at the receiver. Radios present a difficult power management

problem, because they generally must be powered on in order to detect incoming

packets. To successfully transmit a packet, both the transmitter and receiver

nodes must power up their radios before the start of transmission. This means that

power management in a sensor network is not a local issue, but rather a network-

wide one. In order to move data across a multihop network, all of the nodes on

the path from data source to data sink must activate their radios in a coordinated

manner that is agreed upon in advance. This may involve integration with other

subsystems, such as the network routing system and time synchronization.

6.3.5 Networking

As implied by the term “sensor network,” the network stack is the primary application

running on a sensor node. The actual application software may be simple and

lightweight in comparison to the network stack. Of particular importance is the

memory consumption of the network stack: while a typical sensor network packet

might be only 32 bytes, 32 bytes is not that small compared to the total data

memory available.

Since memory is so limited and the network may be the primary memory consu-

mer, it is important to define cross-layer interfaces that avoid copying buffers. It also

may make sense to integrate network memory management closely with the operat-

ing system, to make maximum use of the data memory that is available.

6.3.6 Sensing

As the name sensor network implies, sensing is a key requirement that must be

smoothly supported by a sensor operating system. A variety of input sensors

should be supported, ranging from simple analog/digital (A/D) sampling and resis-

tive sensors to complex sensors requiring calibration and warm-up procedures,

including global positioning system (GPS) receivers. Calibrating sensors is an

especially difficult problem in situ. Some approaches seek to provide distributed

autocalibration to improve ease of in situ deployment and management while retain-

ing the accuracy of sensor readings [13]. A given sensor node may house multiple

sensors in order to provide multimodal sensing, for example, temperature, pressure,

and relative humidity. Some types of sensing behavior may be periodic in nature;

that is, the node wakes up every T seconds and takes a sensor reading. A sensor oper-

ating system should provide primitives when possible to support such periodic duty

cycle–based sensing. Other types of sensing behavior are more adaptive and data-

driven, for example, target tracking [14].

6.3.7 Applications

Sensor network applications are structured differently from traditional PC appli-

cations. Individual sensor nodes do not run complete applications—they do not

6.3 PRINCIPLES OF SENSOR OPERATING SYSTEM DESIGN 181

even have user interfaces onboard! Instead of a complete user-driven application, an

individual sensor node runs a small piece of a distributed application, which may be

connected to the user via some other back-end system, perhaps connected to the

sensor network through a gateway. Thus, it makes sense to optimize the operating

system for interactions with other machines, rather than direct operation by a

human user.

6.3.8 Maintenance

Since sensor nodes are intended to be deployed in large numbers [15], it is infeasible

to perform maintenance on each node manually. Thus, if any sort of software main-

tenance is required, the operating system must provide a remote maintenance inter-

face. For example, dynamic reprogramming (also called retasking) features allow a

network administrator to change the software on every node in a network after the

network is deployed. Such features require operating system support and must be

planned for in advance of deployment.

6.4 FEATURES OF SENSOR OPERATING SYSTEMS

In order to be of practical use, sensor operating systems must include features that

are uncommon in PC operating systems, or significantly different from their analogs

in the PC world. Several of those features are described below.

6.4.1 Dynamic Network Reprogramming

Two of the main features of wireless sensor networks are that they are unattended

and long-lived. Sensor networks could be installed in inaccessible and hostile

environments that cannot be accessed easily. Even if the individual nodes are acces-

sible, the scale of a network may be so large that manually accessing each node

in the network is highly impractical. Management of the network under such

conditions is a daunting task, and a sensor node operating system should have

features that enable network management to be handled remotely. The network

administrator should be able to address subsections of the network, as well as indi-

vidual nodes. Over time, due to changing conditions of the environment, it may be

necessary to retask some or all of the nodes in order to modify the behavior of the

network.

Dynamic network reprogramming is defined as the process of programming the

sensor nodes by disseminating code over a multihop network [16,17]. At present,

there are two main techniques that may be used to reprogram a sensor network.

The first technique is to transmit the entire code image as raw binary data. The

main drawback of this approach is that it requires synchronizing large amounts of

data across a multihop wireless network: the size of the updated code image is

182 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

often much larger than main memory (a typical Mica2 node has only 4 kb of RAM)

and dwarfs the size of a 30–64-byte packet.

An alternative approach is to use a virtual machine (VM) on each node in the net-

work [18]. The use of a VM allows nodes to be retasked through small virtual pro-

grams—high-level program specifications that can be interpreted by the VM—that

can be disseminated throughout the network at a lower cost than an entire code

image. Upon receiving an updated virtual program, a node’s VM can interpret the

instructions into byte code, at which point the new program can replace the existing

code. While the use of VMs can provide a low-cost approach to dynamic network

reprogramming, it is still necessary to support raw binary retasking, since the VM

itself may require changes.

A sensor node operating system will need to provide the basic facilities that are

required to support both reprogramming paradigms. First, the network infrastructure

must be capable of disseminating code updates to all nodes in the network. The oper-

ating system must also allow access to nonvolatile data storage; since a sensor node

will need to be rebooted in order to replace old code, the updated code cannot be

stored in main memory. A file system is also required to accumulate the data as

packets arrive over the network, and to organize data in memory (Section 6.4.2).

The final requirement is a boot loader program that is capable of replacing the old

code with the updated code.

To support either of these reprogramming paradigms, the operating system

requires a mechanism by which data can be incrementally added to persistent sto-

rage until all the updated code has been received. This generally requires a file

system, as discussed in Section 6.4.2. Once the complete code image has been

stored, the operating system will set a flag that can be read by the boot loader, indi-

cating that the sensor node is ready to be retasked. Since the entire code image

cannot be replaced during run-time, the operating system must then restart the

sensor node, at which point the boot loader takes over. Upon rebooting, the flag indi-

cates to the boot loader that the node should be reprogrammed, at which point the

boot loader overwrites the existing code with the updated code image that was

stored in persistent memory.

Depending on the scale of the network and the nature of the application, it may

not be feasible for the reprogramming operation to stall the currently running task.

If continuous operation is required while the sensor node accumulates and

organizes the new code image, a portion of memory must be reserved that

cannot be used by the running task. Prior to reprogramming the node, the resources

that are allocated to the currently running task must be freed, after which memory

can be reflashed with the verified update. Fine-grained retasking of a network is

an ongoing area of research, since current mechanisms only allow retasking of

the entire code image of a node. New techniques are required in order to replace

a single thread while the operating system continues to run. In such cases, resource

management will play an important role. The operating system will need to ensure

that no dependencies exist between threads that could lead to a deadlock, since

any deadlock, while freeing resources, would require manual intervention to

reboot the node.

6.4 FEATURES OF SENSOR OPERATING SYSTEMS 183

6.4.2 File System

It may not always be possible to transmit sensor data frequently, due to hardware

failures, environmental conditions, and the presence of physical layer jamming. Fur-

thermore, frequent transmissions over the radio are an expensive operation in terms

of energy consumption. Due to these and other factors, a sensor node must be able to

store data locally over a long period of time while multiple sensor readings are

collected.

At present, most sensor nodes only have around 4–12 kb of RAM, enough to

accommodate data processing, but insufficient for long-term logging of data. How-

ever, sensor nodes also provide a relatively large amount of persistent storage

through external flash memory. To take advantage of this persistent storage, an

abstraction layer must be provided that enables applications to access this

memory in a manner that is simple, efficient, and reliable. While a simple circular

buffer may suffice for the most rudimentary programs, this approach cannot satisfy

the needs of more complex applications, such as the Mate virtual machine [18]. In

order to support complex applications, as well as to provide a reliable logging mech-

anism for sensor data, a sensor network operating system must include a file system.

A file system tailored for sensor nodes needs to take into consideration a multi-

tude of resource constraints, and it should be optimized for the common operations

and data types observed in a sensor network. The three most commonly encountered

data sources in a sensor network are configuration data (sampling rate, various

thresholds, etc.), sequentially appended sensor data, and binary code images.

Clearly, the most common operation on files would be sequential appending and

reading of sensor data. Random access of file data is very rare, and is generally

only performed during dynamic reprogramming.

The most common persistent storage medium for sensor nodes is flash memory.

The characteristics of flash memory are significantly different from those of most

magnetic media, and it is important to take these differences into account when

designing a file system for a sensor network operating system. Flash memory has

a limited write lifetime—on the order of 10,000 write operations. The process of

writing data to flash is a multistep process that consumes a great deal of energy:

A write operation onto a flash page requires reading the entire page into RAM,

modifying the data as needed, erasing the target flash page, and finally, writing

the entire flash page.

The extremely low-frequency (ELF) flash-file system [19] is an example of a file

system designed for microsensor nodes. ELF employs a log-structured paradigm and

write caching to achieve wear leveling. ELF is adapted to the most common oper-

ations of sensor data logging, namely, write-appends, but supports a full set of

file I/O features, namely, sequential reads and writes as well as random reads and

writes. ELF provides additional features such as best-effort reliability of designated

files. A traditional log-structured file system creates a new sequential log entry for

each write operation that occurs. This type of operation causes very good wear level-

ing, since the flash memory can be used sequentially all the way through, only

returning to previously used blocks after all of the blocks in flash have been written

to at least once. Creating a log entry for each write-append operation is not feasible,

184 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

as it would cause the run-time memory representation of a traditional log-structured

file with many small appends to grow to an unwieldy size. Caching individual writes

to the same page reduces the number of write-append operations, and therefore

improves the wear leveling of the flash pages. Furthermore, a log-structured file

system makes the file system resilient to crashes, which is critical if sensor data

are stored locally. Logging the operations performed by the file system provides a

reliable form of data recovery.

6.4.3 Bridging to IP Networks

Today’s architecture for interconnecting wireless sensor networks (WSNs) and the

Internet is based on treating the WSNs as a separate entity. In most existing deploy-

ments, a sensor network is treated as a large-scale distributed database, logically

separated from the Internet by a database application program interface (API),

and physically partitioned by a gateway that resides at the border between the

sensor network and an Internet-connected machine. The gateway’s primary task is

to collect data from the sensor network, then store the data in a local or remote data-

base. This architecture makes it difficult to introduce and integrate sensor networks

with new Internet-based applications. In order to add new features or new Internet-

based services, such as monitoring and management, each application developer

must either develop their own application-specific gateway or modify an existing

gateway’s API. The gateway is therefore a bottleneck when multiple applications

require access to the sensor network.

One solution to this problem is to overlay sensor networks over portions of the

Internet [20]. The gateway could encapsulate the sensor network packets within

transmission control protocol/Internet protocol (TCP/IP) (or user datagram proto-

col/IP (UDP/IP)) packets, which would then be sent over the Internet to the appro-

priate application end point on a remote IP host. With this approach, the gateway

only needs to understand the lowest level (i.e., the network layer) of the sensor

network in order to handle the translation between IP and sensor network routing.

To realize this architecture, conscious design decisions must be made in the

sensor network operating system. The network stack needs to be extensible

enough to allow seamless, easy translation between IP and sensor network packets.

The design of the gateway needs to take into consideration both data-driven

routing protocols [21] (which are typically addressless) and the integration with

IP-based routing. Lightweight data-driven routing protocols should be extensible

via application-level overlays over the Internet; since the Internet is relatively

high-bandwidth in comparison to sensor networks, this should cause minimal

impact in terms of overhead. Further discussion on the design of a sensor network

network stack is presented in Section 6.7.3.

6.5 SENSOR NETWORK MANAGEMENT

Sensor networks have a fundamentally different architecture from that of wired data

networks. Sensor networks are highly resource-constrained, communicate over low-

6.5 SENSOR NETWORK MANAGEMENT 185

bandwidth wireless links, and are often deployed in physically inaccessible environ-

ments. The protocols and applications designed for sensor networks must therefore

be highly optimized for low resource consumption as compared to protocols devel-

oped for wired data networks [22]. Managing problems in a sensor network requires

querying the network for information, diagnosing the information to determine the

faults, and taking the necessary corrective measures to mitigate the problems.

Querying the network for diagnostic information needs to be performed in such a

way that it does not overload the network [23–25]. One commonly encountered pro-

blem is known as the response implosion problem [26,27], which occurs when a diag-

nostic query triggers a high volume of incoming replies, causing the central gateway

node to become the bottleneck. A sensor network operating systemmust also export a

rich set of interfaces to support troubleshooting; applications should have access to

the underlying system parameters so that optimization and troubleshooting can be

performed as needed. Interfaces should be exported at each layer of the operating

system so that the higher-layer applications canmake full use of them to optimize per-

formance. For example, themedium-access control (MAC) layer of the network stack

should export variables like transmit power, preamble length, frequency channel,

enable or disable request to send/clear to send (RTS/CTS), and enable or disable

reliable link-layer acknowledgments (ACKs). Based on information from network

diagnosis, a command server could use these interfaces to refine the operation of

the MAC; for example, disabling ACKs when the link quality is excellent, or dis-

abling RTS/CTS in the absence of hidden terminals in the network.

6.6 TINYOS

The TinyOS operating system utilizes a unique software architecture that was

designed specifically for resource-constrained sensor nodes [1]. Primarily based

on the concept of wiring together components to create an application, the paradigm

strives to use as little memory as possible, while still handling multiple roles in a

sensor networking environment. Initially written in standard C, the project has

since moved to a custom language, nesC. This “Network Embedded Systems C”

uses C-like syntax, but adds some new features to support the structure and

execution model of a TinyOS application. We will discuss nesC and the component

design further, but first let us consider the execution model.

6.6.1 Execution Model

During the execution of a typical task in any operating system, stack memory is allo-

cated for storing activation records and local variables. This typically leads to the

allocation of a separate stack for each running task; however, since most low-

power microcontrollers have a small amount of system memory, the designers of

TinyOS chose to adopt a new execution model that is well suited for limited

memory scenarios.

186 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

In order to minimize the amount of memory used during execution, TinyOS

applications consist of multiple tasks that all share a single stack. Because of this

design, a task must run to completion before giving up the processor and stack

memory to another task. These tasks can be preempted by hardware event handlers,

which also run to completion, but before giving up the shared stack a task must store

any required state in global memory.

6.6.2 TinyOS Components

Another unique aspect of the TinyOS system is its usage of components to create

applications, rather than developing libraries of functions that would be called by

user programs. These components are separate blocks of code that have clearly

defined interfaces for both input and output. In order to “provide” an interface, a

component must implement a set of commands defined by the interface. In order

to “use” an interface, a component implements a different set of functions, called

events. Using this structure, a component that wants to utilize the commands of a

specific interface must also implement the events for that same interface.

Once a variety of components have been developed they must be organized in an

application-specific way to implement the desired application functionality. This is

done by using configuration components. These components essentially connect, or

“wire,” the functional components together. In wiring components, any component

that implements an interface can use or provide multiple interfaces as well as mul-

tiple instances of a single interface.

When completed, a TinyOS application can be represented as a directed graph in

which the wiring of commands and events between components dictates the edges of

the graph. This structure is best visualized as an upside-down tree where the root

node is the single executing task, and the bottom-tier leaf nodes are hardware

event handlers. In this model, events propagate from the bottom of the tree up

through various components where they are either handled directly by intermediate

components, or post a new task to run when the stack and processing time is next

available. From the executing task, commands typically run down the stack through

various protocol and driver components before actually reaching the point of hard-

ware manipulation.

6.6.3 The nesC Language

The first generation of TinyOS was implemented in the C language, which forced

its creators to use a large number of macros to reduce the amount of extra code

necessary to implement the unique component design and execution model. There

were four primary reasons for the large number of macros: simplifying access to

microcontroller features, accessing global variables specific to a given task (the

task frame), calling commands in another component, and signaling events from a

component. In many applications one of these four operations was occurring on

almost every line of source code, which made developing TinyOS components

6.6 TINYOS 187

quite cumbersome. It was decided that a new language, nesC, was the best way to

help ease the development of TinyOS applications.

The main goals of nesC were to allow for strict checking at compile time, while

also easing the development of TinyOS components. Two of the primary constraints

in nesC allow for the majority of its optimization. First, nesC programs are intended

to have all of their components compiled simultaneously. This allows for a large

number of in-line functions and streamlined execution, and it also lets the compiler

check for possible data race conditions. Second, dynamic memory allocation is not

supported in nesC or TinyOS. While this limitation lets the developer know exactly

what the resource requirements are for a given application, it also forces the devel-

oper to determine these requirements in advance, rather than letting them be dictated

by run-time characteristics.

6.7 MANTIS OPERATING SYSTEM (MOS)

The MANTIS Operating System (MOS) [28] is a larger sensor operating system that

is designed to behave similarly to UNIX and provide more built-in functionality than

TinyOS. MOS applications are written in standard C and executed as threads; the

MOS kernel includes scheduling and synchronization mechanisms. MOS also

includes a framework to allow a high degree of integration between device drivers,

network protocols, and the operating system.

6.7.1 Kernel

MOS is based on a multithreaded kernel, with Portable Operating System Interface

for UNIX (POSIX)-like semantics [29]. Scheduling is priority-based; round-robin

scheduling is used for multiple threads at the same priority level. Since all threads

must coexist in the same address space, the maximum stack size of each thread

must be specified when the thread is spawned. This allows the kernel to allocate a

block of data memory for the thread’s stack. The need to keep multiple stacks in

memory at the same time makes MOS (and multithreaded systems in general)

more resource-intensive than single-threaded systems like TinyOS.

The MOS kernel also provides counting semaphores and mutual-exclusion sema-

phores, as well as timers and sleep functions. These create a multiprogramming

model similar to that seen in conventional operating systems.

6.7.2 Memory Management

The layout of data memory in MOS is shown in Figure 6.3. Text does not appear, as

it is stored in program memory. Statically allocated memory, whose size is known at

start-up, begins at low addresses. When the node first starts up, the stack pointer is at

the high end of memory, and therefore the INIT thread stack is located in the top

block of memory. After start-up, the INIT thread becomes the idle thread, and it

keeps the same stack.

All of memory between the data section and the INIT/idle stack is managed as a

heap. When a thread is spawned, its stack space is allocated out of the available heap

188 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

space. The space is reclaimed when the thread exits. Since communications buffers

are relatively large (and may be dynamic), they are also allocated out of the heap

space. It is also technically legal (albeit discouraged) for an application to allocate

memory dynamically out of the heap.

MOS fills a thread’s stack with a flag byte (0xEF) when the thread is spawned, so

stack usage can be determined while a thread is running by counting the number of

flag bytes still present from the end of the thread’s stack space. While this makes it

possible to detect stack overruns after the fact, it does not prevent them. Determining

the amount of stack space necessary for a thread—and not overrunning it—is still

the application programmer’s responsibility.

6.7.3 Com, Dev, and Net Layers

MOS separates hardware devices into two broad categories, each managed by its

own interface layer. The first category includes synchronous, unbuffered devices

and is associated with the Dev layer. The second category includes devices that

receive data asynchronously, requiring buffering, and is associated with the Com

layer. The abstraction layers for devices are shown in Figure 6.4.

Examples of Dev layer devices are most sensors, the file system, the onboard

sounder, and the random-number generator. Any number of such devices may

exist in a single system. Devices are all accessed through the same set of read,

write, mode, and ioctl functions, which are similar to UNIX stream functions.

The mode function is used to turn devices on and off. All Dev-layer functions are

synchronous, so they return only after the operation is completed.

S R A M
0×0

0×1100

Statically
allocated
data

Idle thread

allocated
data(heap)

0×400-
0×700

.

.

.

Thread A stack

Thread B stack
Dynamically

Reserved

com Buf

com Buf

com Buf

com Buf

SP_B
SP_A

0×100

Figure 6.3 MOS data memory layout.

6.7 MANTIS OPERATING SYSTEM (MOS) 189

Examples of Com layer devices are the radio and serial port. These devices are

handled separately from Dev-layer devices because they require the ability to

receive data in the background during times when there is no application thread cur-

rently blocked on a receive call. The interface to Com-layer devices is similar to that

of Dev-layer devices: sends are synchronous and receives block until a packet is pre-

sent. However, packets are being received in the background and buffered whenever

the device is turned on. The Com layer also provides the ability to perform a select

on multiple devices, returning when a packet is available on any selected device.

Select also has a nonblocking option and a time-out option.

It is important to note that device drivers in MOS are not associated with threads.

Rather, they are interrupt-driven state machines. Simple interrupt handlers shift

bytes from buffers to the hardware or vice versa while the application thread is

blocked, and the thread is woken up after the entire operation is complete. Thus,

other application threads may be running while a thread is waiting for a Com-

layer or Dev-layer operation.

One important break from UNIX is that MOS uses zero-copy mechanisms at all

levels of the network stack, including the Com layer [30]. There is a preallocated

pool of packet buffers that is “owned” by the Com layer. Device drivers may request

buffers, which they then fill with incoming data. When a buffer is full, the driver

swaps the filled buffer for another empty buffer. The filled buffer is queued until

an application performs a receive operation on the associated device.

When an application performs a receive, it is passed a pointer to the first filled

buffer on the specified device. At this point, the application “owns” a buffer that

originally was allocated by the Com layer. When the application is finished with

the buffer, it must return it to the Com layer through a “free” function call. When

the application frees the buffer, it is returned to the buffer pool.

This interface decision puts additional responsibility on the application, since it

must free every packet it receives. If the application fails to do so, it will eventually

consume all of the buffers in the Com-layer buffer pool, and the Com-layer devices

Transport

Flooding

Com layer Dev layer

Net layer
Applications

R
ad

io
 d

ri
v
er

 (
cc

1
0
0
0
)

S
er

ia
l

d
ri

v
er

C
o
m

 d
ev

ic
e

N
 d

ri
v
er

S
en

so
r

1
 d

ri
v
er

F
il

e
sy

st
em

 d
ri

v
er

S
o
u
n
d
er

 d
ri

v
er

S
en

so
r

2
 d

ri
v
er

D
ev

ic
e

N
 d

ri
v
er

. . .

Spanning tree

. . .

Figure 6.4 MOS network and device abstraction layers.

190 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

will no longer be able to receive packets. The trade-off for this added responsibility

and loss of isolation is a more efficient use of memory and CPU time.

To allow easy development of network algorithms, MOS also includes an inte-

grated, modular network layer. A user can elect to activate the Net layer instead

of dealing with the Com layer directly. The Net layer has its own thread, which is

necessary because network protocols may perform significant processing, including

generating and sending packets. The Net thread performs a select on all Com-layer

devices. Upon receiving a packet, it looks for a protocol ID in the packet and then

invokes the appropriate routing module. This allows multiple routing algorithms to

coexist and share the same communications devices.

The Net layer includes a notion of ports. Applications may perform a receive

operation on a port at the Net level, and routing modules may deliver packets to

ports. The Net level will buffer packets at each port until they are received by an

application, similar to the Com layer. During a send operation, the application spe-

cifies a destination port number and a routing module, followed by arguments

specific to the routing algorithm.

6.7.4 Power Management

MOS includes both explicit and implicit forms of power management. Explicit

power management is performed through the mode functions in the Com and Dev

layers, which activate and deactivate hardware devices such as the radio and sensors.

Besides on and off, the mode functions also support intermediate states (such as

standby), which have device-specific meanings.

To encourage power-efficient programming, all devices in MOS are set to the off

state initially, where they consume the minimum amount of power possible. Com-

layer devices will not receive packets until they are turned on. However, all of the

device drivers currently implemented for MOS include logic to turn the device on

and then off again if the user attempts to perform a synchronous operation while

in the off mode. In effect, the user is explicitly turning the device on by using it

in a synchronous call, since the user probably does not intend to block forever.

Even with this logic present, the mode functions are still useful because there

may be a performance advantage to keeping a given device on; for example,

when power-up is slow and the user knows the device will be needed again soon.

While device power management is handled explicitly, MOS handles CPU power

management implicitly. The MOS kernel may be in one of three modes: active, idle,

and power-save. In active mode, the CPU is fully powered and running instructions.

In idle mode, the CPU is not running instructions, but interrupts and peripherals are

enabled. Power consumption in idle mode is roughly half that of active mode.

In power-save mode, the CPU is completely powered down except for external inter-

rupts and the watchdog timer, and power consumption is reduced by three orders of

magnitude.

The MOS kernel uses a simple algorithm, executed as part of the idle thread, to

determine the CPU power mode. If at least one thread is ready to run, then the CPU

is left in active mode. If no thread is ready (that is, the idle thread is executed), but at

6.7 MANTIS OPERATING SYSTEM (MOS) 191

least one thread is blocked waiting for an interrupt, then the CPU is put into idle

mode. If no thread is running and no thread is waiting for an interrupt, then the

CPU is put into power-save mode.

The kernel sleep function is the main noninterrupt mechanism that threads use to

block. When switching to power-save mode, the kernel checks the sleep time on

every thread and computes the proper time to wake up so as not to miss any dead-

lines. The watchdog timer is used to wake the CPU back up at the proper time.

6.8 COMPARISON SUMMARY

In this section, we summarize the trade-offs between event-driven run-to-

completion sensor operating systems such as TinyOS, and preemptively time-

sliced multithreaded sensor operating systems such as MANTIS OS. Table 6.1 com-

pares the advantages and disadvantages of each approach.

An event-driven run-to-completion operating system is well suited to highly

memory-constrained devices such as the original Rene motes, which had only 512

bytes of SRAM [1]. Indeed, it is unlikely that a multithreaded system would be

capable of being implemented in such limited memory while also being able to

support multiple threads of execution. As a result, event-driven designs represent

the primary option, given severe memory constraints. An event-driven system

also offers the advantage of being well-suited to achieve energy efficiency. When

there are no events to be handled, for example, sensing events or radio packet

events, then the system need not execute, and can sleep itself. As a result, event-

driven systemswere perfectly adapted to the first generation of wireless sensor nodes.

The drawbacks of an event-driven system relate to its run-to-completion para-

digm. Each task must run to completion before another task can execute. As a

TABLE 6.1 Comparing Event-Driven and Multithreaded Sensor Operating Systems

Operating System Advantages Disadvantages

Event-driven

Run-to-

completion

OS (TinyOS)

† Very compact memory

footprint

† Energy-efficient—sleeps

system when no events

to process (no tasks in

task queue)

† Application developer is

exposed to complexity—must

determine when to relinquish

control

† No fault-tolerant isolation

between applications

† Porting of existing C code

base becomes complicated

† OS code is simplified

Preemptively

Time-sliced

Multithreaded

OS (MOS)

† Programmer is hidden

from complexity

of control and timing issues

† Fault-tolerant isolation

of applications

† Context switch time

† Memory overhead of a

stack per thread

† Leveraging existing C

code base is straightforward

192 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

result, a programmer must be very careful to relinquish control in a timely manner,

to avoid blocking other tasks that need to run. The application programmer is thus

exposed to complexity in terms of needing to determine when to give up control of

the CPU. If a programmer is implementing a complex task, for example, in-network

processing or aggregation that employs onboard statistical analysis and/or a com-

pression algorithm, then implementing such a task as a single monolithic long-

lived execution module or component would prevent other application tasks from

executing in a timely manner; for example, radio packets could overflow their net-

work buffer because the networking component was unable to execute and process

radio packets fast enough. Programmers are forced to alter their programming prac-

tice and “slice-and-dice” their program into sufficiently small execution components

to avoid blocking the CPU. This further imposes a requirement on the programmer

to achieve a detailed semantic understanding of the program to be decomposed, so

that each component is sufficiently small. For example, porting a compression algor-

ithm or encryption algorithm to an event-driven system would require that the pro-

grammer understand compression or encryption in order to properly decompose the

algorithm. Even worse, understanding when the components are “sufficiently” small

depends on the delay tolerances of other tasks. An application developer will not

know a priori the other tasks to be run on the system, nor their latency tolerances.

In the worst case, the developer is forced to decompose a program into the finest

granularity. In addition, there is no isolation of faults between application tasks.

If one task executes a conditional while() loop whose condition is logically never

satisfied, then that task will execute in an infinite loop, blocking all other tasks.

In contrast, a multithreaded preemptively time-sliced system seeks to offer ser-

vices to the programmer that hide complexity, at the cost of additional complexity

in the operating system. Because each application thread operates in its own

execution environment, and the system handles automatic switching between

threads of execution, then the application developer need not be concerned with

such complexities as when to relinquish control of the CPU. This is automatically

done for the programmer by the system’s preemptive time-slicing. Moreover,

fault isolation between applications is accomplished by having multiple execution

environments. A single thread that operates in an infinite loop or that crashes will

not prevent other threads from executing. As a result, the complexities of control

and timing issues are hidden from the programmer, who can then concentrate on

the correctness of the program. A further benefit is that typical programmers already

trained in writing code for multithreaded systems will not need to change their

programming practice. This has important implications for easing the porting

from the vast C code base developed for multithreaded systems to a microsensor

node. The programmer who is porting an algorithm need not have a detailed seman-

tic understanding, and can focus on memory usage of the ported algorithm, which

also must be dealt with in an event-driven system. For example, porting of C

implementations of encryption standards, compression algorithms, stop-and-wait

reliability protocols, and so forth, have all been accomplished with relative ease

to the multithreaded MOS.

The costs of offering these multithreading services are a more complex operat-

ing system, context switch time, and extra memory overhead for one stack per

6.8 COMPARISON SUMMARY 193

thread. The advent of second-generation wireless microsensor nodes such as the

MICA2 motes, which have 4 kB of SRAM, has enabled the development of com-

plete multithreaded systems such as MOS capable of supporting four to eight appli-

cation threads simultaneously. The RAM in current systems is sufficient to support

multiple stacks, with the expectation that from this point forward that Moore’s law

as applied to RAM will make multithreading increasingly affordable on microsen-

sor nodes. Context switch time will continue to remain an issue, though at present

our experience has not found this to be a significant problem in the sensing and

forwarding applications that have been developed on MOS. Multithreaded systems

additionally must be adapted to be energy-efficient. MOS implements power man-

agement such that when there are no more threads with meaningful execution, the

scheduler sleeps the system rather than have the idle thread spin in a continuous

loop. The duration of sleep is determined from the hints provided by each appli-

cation thread, namely, the argument it provided to the sleep() call. The complexity

of power managmenet is largely hidden from the user except through the sleep()

API.

Both multithreaded and event-driven systems also must handle synchronization

issues introduced by concurrency. When there is concurrent execution in a multi-

threaded system, it is important that code be synchronized in a thread-safe

manner. MOS provides mutual exclusion primitives, which can be used to build

thread-safe code. Provided the programmer is furnished with reentrant libraries,

then synchronization complexity can be reduced for the application programmer.

However, the designer in charge of the multithreaded operating system must then

assume the burden and complexity of realizing thread safety while avoiding dead-

lock and race conditions. An event-driven system such as TinyOS also faces similar

synchronization issues. TinyOS introduced atomic operations and the “async” key-

word to address race conditions [31]. This is limited to hardware event handlers.

These operations seek to guarantee correct concurrency in an event-driven model.

As sensor networks evolve, we expect to see increasing heterogeneity, with nodes

of different capabilities; for example, aggregators differ from leaf nodes in purpose

and capabilities. Thus, future sensor networks may consist of mixtures of nodes with

multithreaded and event-driven sensor operating systems. Recent research has also

investigated combining the best features of multithreaded and event-driven systems

in a new sensor operating system [32].

6.9 CONCLUSION

There are many unique challenges in designing a sensor node operating system,

ranging from limitations on power consumption, to flash-based file systems, to

remote network maintenance. This chapter has provided an overview of the prin-

ciples of sensor node operating system design. We showed how sensor hardware

characteristics must influence the decisions about the operating system architecture,

covering the problems of task coordination, management of constrained memory

and CPU resources, power management, network infrastructure, application

194 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

design, and remote maintenance. Three of the more unusual features of sensor node

operating systems include dynamic network reprogramming, sensor node file sys-

tems, and the integration of sensor networks with traditional IP networks. Two

implementations of sensor operating systems were discussed, namely, the event-

based TinyOS, and the multithreaded MANTIS OS, and a comparison of the two

systems was provided. TinyOS is compact and energy efficient, but exposes the

application programmer to the complexity of control, as well as to the faulty beha-

vior of other applications. MOS adds multithreading capability, which shields the

application developer from control issues and fault isolation, but comes at the

cost of context switching and stack memory overhead.

REFERENCES

1. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture

directions for networked sensors. In Proceedings of the 9th International Conference

on Architectural Support for Programming Languages and Operating Systems,

November 2000.

2. H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng, and

R. Han. MANTIS: System support for MultimodAl NeTworks of In-situ Sensors.

In Proceedings of the 2nd ACM International Workshop on Wireless Sensor Networks

and Applications (WSNA) pages, 50–59. San Diego, California, September 2003.

3. Atmel AVR 8-bit RISC processor, from http://www.atmel.com/products/AVR.

4. M. Leopold, M. B. Dydensborg, and P. Bonnet. Bluetooth and sensor networks: A reality

check. In Proceedings of the 1st ACM Conference on Sensor Systems (SenSys’03),

pages 103–113, Los Angeles, California, November 2003.

5. The Smart-Its project, from http://www.smart-its.org/.

6. The Eyes project, from http://eyes.eu.org/.

7. Crossbow motes, from http://www.xbow.com.

8. Single chip ultra low power RF transceiver, from http://www.chipcon.com/files/
CC1000_Data_Sheet_2_1.pdf, 2001.

9. J. Zhao, R. Govindan, and Estrin. Computing aggregates for monitoring wireless sensor

networks. In Proceedings of the 1st IEEE International Workshop on Sensor Network

Protocols and Applications, Anchorage, Alaska, April–May 2003.

10. S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: A Tiny AGgregation

service for ad-hoc sensor networks. In Proceedings of the 5th Annual Symposium on

Operating Systems Design and Implementation (OSDI), Boston, Massachusetts,

December 2002.

11. R. Kumar, V. Tsiatsis, and M. Srivastava. Computation hierarchy for in-network proces-

sing. In Proceedings of the 2nd ACM International Workshop on Wireless Networks and

Applications (WSNA 2003), San Diego, California, September 2003.

12. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar, SPINS: Security suite for sensor

networks. In Proceedings of ACM MobiCom 2001, pages 189–199, July 2001.

13. V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A collaborative approach to

in-place sensor calibration. In Proceedings of the 2nd International Workshop on Infor-

REFERENCES 195

mation Processing in Sensor Networks (IPSN’03), volume 2634 of Lecture Notes in Com-

puter Science, pages 301–316, Springer-Verlag.

14. J. Liu, P. Cheung, L. Guibas, and F. Zhao. A dual-space approach to tracking and sensor

management in wireless sensor networks. In Proceedings of the 1st ACM International

Workshop on Wireless Sensor Networks and Applications (WSNA), Atlanta, Georgia,

September 2002. Also, Palo Alto Research Center Technical Report P2002-10077,

March 2002.

15. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson Wireless Sensor

Networks for Habitat Monitoring. In Proceedings of the 1st ACM Workshop on Wireless

Sensor Networks and Applications (WSNA), pages 88–97, Atlanta, Georgia, September

2002.

16. J. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network

programming at Scale. In Proceedings of the 2nd ACM Conference on Embedded Net-

worked Sensor Systems (SenSys), November 2004.

17. N. Reijers and K. Langendoen. Efficient code distribution in wireless sensor networks, In

Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and

Applications (WSNA), pages 60–67, 2003.

18. P. Levis and D. Culler. Mate: A virtual machine for Tiny networked sensors. In Proceed-

ings of the ACM Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), October 2002.

19. H. Dai, M. Neufeld, and R. Han. ELF: An efficient log-structured flash file system for

wireless micro sensor nodes. In Proceedings of the 2nd ACM Conference on Embedded

Networked Sensor Systems (SenSys), pages 176–187, November 2004.

20. H. Dai and R. Han. Unifying Micro Sensor Networks with the Internet via Overlay Net-

working, Paper presented at the First IEEE Workshop on Embedded Networked Sensors

(EmNetS-I), Tampa, Florida, 2004.

21. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion. In Proceedings of

ACM MobiCom 2000, pages 56–67, Boston, Massachusetts, August 2000.

22. J. D. Case, M. Fedor, M. L. Schostall, and C. Davin. Simple Network Management Pro-

tocol (SNMP). Internet RFC 1157, May 1990.

23. J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa, D. Ganesan, L. Girod,

B. Greenstein, T. Schoellhammer, T. Stathopoulos, and D. Estrin. EmStar: An Environ-

ment for Developing Wireless Embedded Systems Software. CENS Technical Report

0009, March 24, 2003.

24. L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and D. Estrin. EmStar: A

software environment for developing and deploying wireless sensor networks. In Pro-

ceedings of the USENIX Technical Conference 2004.

25. P. Levis, N. Lee, and M. Welsh, TOSSIM: Accurate and scalable simulation of entire

TinyOS applications. In Proceedings of the 1st ACM Conference on Embedded

Networked Sensor Systems (SenSys), pages 126–137, 2003.

26. C. Jaikaeo, C. Srisathapornphat, and C. Shen, Diagnosis of sensor networks. In Proceed-

ings of the IEEE International Conference on Communications (ICC), June 2001.

27. B. Deb, S. Bhatnagar, and B. Nath. A Topology Discovery Algorithm for Sensor Networks

with Applications to Network Management. DCS Technical Report DCS-TR-441,

Rutgers University, May 2001.

196 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

28. S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald,

A. Torgerson, and R. Han, MANTIS OS: An embedded multithreaded operating

system for wireless micro sensor platforms. Mobile Networks and Applications, forth-

coming.

29. Portable Operating System Interface (POSIX)—Part 1: System Application Program-

ming Interface (API)[C Language]. ISO/IEC 9945-1:1996, IEEE standards, 1996.

30. H. K. Jerry Chu. Zero-copy TCP in Solaris. In Proceedings of the USENIX 1996 Annual

Technical Conference, San Diego, California, January 1996.

31. Race conditions, from http://www.tinyos.net/tinyos-1.x/doc/changes-1.1.html.

32. A. Dunkels, B. Gronvall, and T. Voight, Contiki—A Lightweight and Flexible Operating

System for Tiny Networked Sensors. Paper presented at the First IEEE Workshop on

Embedded Networked Sensors (EmNetS-I), Tampa, Florida, 2004.

REFERENCES 197

&CHAPTER 7

Time Synchronization and Calibration
in Wireless Sensor Networks

KAY RÖMER, PHILIPP BLUM, and LENNART MEIER

Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

This chapter reviews time synchronization and calibration for wireless sensor

networks. First, time synchronization is considered, and then calibration. Time

synchronization can be considered as a calibration problem and many observations

about time synchronization can be transferred to calibration. Wireless sensor net-

works present a number of novel challenges to time synchronization, which many

traditional approaches fail to meet. We classify common approaches for synchroni-

zation in sensor networks and discuss underlying models, synchronization tech-

niques, and algorithms. In addition, common techniques for evaluating

synchronization algorithms and selected evaluation results are presented.

7.1 INTRODUCTION

Sensor networks are used to monitor real-world phenomena. For such monitoring

applications, physical time often plays a crucial role. We discuss these applications

of time in Section 7.1.1. Providing synchronized physical time is a complex task due

to various challenging characteristics of sensor networks. In Section 7.1.2, we pre-

sent these challenges and discuss why synchronization algorithms for traditional dis-

tributed systems often do not meet these challenges.

7.1.1 The Need for Synchronized Time

Physical time plays a crucial role for many sensor network applications. While many

traditional applications of time also apply to sensor networks, we will focus here on

199

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

areas specific to sensor networks. Figure 7.1 illustrates a rough classification of

applications of physical time: (a) at the interface between the sensor network and

an external observer, (b) among the nodes of the sensor network, and (c) at the inter-

face between the sensor network and the observed physical world. The following

paragraphs discuss applications of time in these three domains. Note that some

applications are hard to assign to a single domain. In such cases, we picked the

most appropriate domain.

7.1.1.1 Sensor Network: The Observer In many applications, a sensor net-

work interfaces to an external observer for tasking, reporting results, and manage-

ment. This observer may be a human operator or an autonomous computing

system. Tasking a sensor network often involves the specification of time windows

of interest such as “only during the night.” Since a sensor network reports obser-

vation results to an external observer, temporal properties of observed physical

phenomena may be of interest. For example, the times of occurrence of physical

events are often crucial for the observer to associate event reports with the originat-

ing physical events. Physical time is also crucial for determining properties such as

speed or acceleration.

7.1.1.2 Sensor Network: The Real World In sensor networks, many sensor

nodes may observe a single physical phenomenon. One of the key functions of a

sensor network is hence the assembly of those distributed observations into a coher-

ent estimate of the original phenomenon: this process is known as data fusion. Time

is a key ingredient for data fusion. For example, if sensors can only detect the proxi-

mity of an object, then higher-level information (such as speed, size, or shape) can

be obtained by correlating data from multiple sensor nodes. The velocity of a mobile

object, for example, can be estimated by the quotient of the spatial and temporal dis-

tances between two consecutive sightings of the object by different sensor nodes.

Since many instances of a physical phenomenon can occur within a short time,

one of the tasks of a sensor network is the separation of sensor samples, that is,

(a)

(b)

(c)

Figure 7.1 Applications of physical time: (a) interaction of an external observer with the

sensor network, (b) interaction among sensor nodes, and (c) interaction of the sensor

network with the real world.

200 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

the partitioning of sensor samples into groups so that each represents a single

physical phenomenon. Temporal relationships (e.g., distance) among sensor

samples are a key element for separation.

Temporal coordination among sensor nodes may also be necessary to ensure cor-

rectness and consistencyof distributedmeasurements [1]. For example, if the sampling

rate of sensors is low compared to the frequency of an observed phenomenon, it may

be necessary to ensure that sensor readout occurs concurrently at all sensor nodes in

order to avoid false observation results (e.g., for calibration, see Section 7.7.5.2).

It is anticipated that large-scale, complex actuation functions will be

implemented by the coordinated use of many simple actuator nodes. This requires

temporal coordination.

7.1.1.3 Within the Sensor Network Time is also a valuable tool for intranet-

work coordination among different sensor nodes. Many applications of time known

from traditional distributed systems also apply to wireless sensor networks.

Reference [2] points out a number of applications of time in distributed systems,

such as concurrency control (e.g., atomicity, mutual exclusion), security (e.g.,

authentication), data consistency (e.g., cache consistency, consistency of replicated

data), and communication protocols (e.g., at-most-once message delivery).

One particularly important example for concurrency control is the use of time-

division multiplexing in wireless communication, where multiple access to the

shared communication medium is typically achieved by assigning time slots to

the communicating nodes. This requires the participating sensor nodes to share a

common view of physical time.

A number of approaches intend to improve energy efficiency by frequently

switching sensor nodes or components thereof into power-saving sleep modes

(e.g., ref. [3]). In order to nonetheless ensure seamless operation of the sensor net-

work, temporal coordination of the sleep periods among sensor nodes may be

required.

Another important service for sensor network applications is temporal message

ordering (e.g., ref. [4]). Many data-fusion algorithms have to process sensor readings

ordered by the time of occurrence (e.g., the approach for velocity estimation just

sketched). However, the highly variable message delays in sensor networks imply

that messages from distributed sensor nodes may often not arrive at a receiver in

the order in which they were sent. Reordering messages according to the time of

sensor readout requires temporal coordination among sensor nodes.

Methods for localization of sensor nodes based on the measurement of time of

flight or difference of arrival time of certain signals also require synchronized

time (e.g., ref. [5]).

7.1.2 Revisiting Time Synchronization for Sensor Networks

Time synchronization is a research area with a very long history. Over time, numer-

ous algorithms have been proposed and have been in large-scale use. The network

time protocol (NTP) [6] is perhaps one of the most advanced and time-tested

7.1 INTRODUCTION 201

systems. However, several unique characteristics of sensor networks often preclude

the use of existing synchronization techniques in this domain.

In the following, we discuss sensor network challenges that impact the design of

time synchronization approaches. Using NTP as an example, we will outline why

traditional approaches often do not meet the requirements of sensor networks (see

also ref. [7]). Note that some of the illustrated shortcomings of NTP are relatively

easy to fix, while others are not. To provide the necessary background, we will

first give an overview of NTP.

NTP was designed for large-scale networks with a rather static topology (such as

the Internet). Nodes are externally synchronized to a global reference time that is

injected into the network at many places via a set of master nodes (so-called “stra-

tum 1” servers). These master nodes are synchronized out of band, for example, via

global positioning system (GPS) (which provides global time with a precision sig-

nificantly below 1 ms). Nodes participating in NTP form a hierarchy: leaf nodes

are called clients, inner nodes are called stratum L servers, where L is the level of

the node in the hierarchy. The parents of each node must be specified in configur-

ation files at each node. Nodes frequently exchange synchronization messages

with their parents and use the obtained information to adjust their clocks by regularly

incrementing them.

7.1.2.1 Energy and Other Resources Sensor-network applications often

require sensor nodes to be small and cheap. This has a number of important impli-

cations. First of all, the amount of energy that can be stored in or scavenged by small

devices is typically very limited due to the low-energy density of available and fore-

seeable technology. To ensure longevity despite this limited energy budget, energy-

efficient design both in hardware and software becomes a dominating goal.

Additionally, computing, storage, and communication capabilities of individual

sensor nodes are rather limited due to size and energy constraints.

These constraints may preclude the use of GPS or other technologies for out-of-

band synchronization of NTP master nodes. NTP is also not optimized for energy

efficiency, simply because this is not an issue in infrastructure-based distributed sys-

tems. Energy overhead in NTP results from several sources. First, the service pro-

vided by NTP typically cannot be dynamically adapted to the varying needs of an

application. Hence, with NTP all nodes would be continuously synchronized with

maximum precision, even though only subsets of nodes might occasionally need

synchronized time with less-than-maximum precision.

Second, NTP uses the processor and the network in ways that would lead to sig-

nificant overhead in energy expenditure in sensor networks. For example, NTP

maintains a synchronized system clock by regularly adding small increments to

the system-clock counter. This behavior precludes the processor from being

switched to a power-saving idle mode. In addition, NTP servers must be prepared

to receive synchronization requests at any point in time. However, constantly listen-

ing is an energywise costly operation in sensor networks; many sensor network pro-

tocols therefore switch off the radio whenever possible.

202 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

7.1.2.2 Network Dynamics Due to their deployment in the physical environ-

ment, sensor networks are subject to a high degree of network dynamics. Sensor

nodes can be mobile, die due to depleted batteries or due to environmental influ-

ences, and new sensor nodes may be added at any point in time. This results in rela-

tively frequent and unpredictable changes in the network topology and possibly even

in (temporary) network partitions. Mobile nodes can transport messages across par-

tition boundaries by storing a received message and forwarding it as soon as a new

partition is entered. The end-to-end delay of such message paths is very unstable and

hard to predict.

The operation of NTP is independent of the underlying physical network

topology. In the NTP overlay hierarchy, a master and a client can be separated by

many hops in the physical network, even though they are neighbors in the overlay

hierarchy. Due to the previously mentioned effects, multihop paths may be very

unstable and unpredictable in a sensor network. NTP, however, depends on the abil-

ity to accurately estimate the delay characteristics of network links.

NTP implicitly assumes that network nodes that shall be synchronized are a priori

connected by the network. However, this assumption may not hold in dynamic

sensor networks with mobile nodes. Consider, for example, an application where

mobile sensor nodes with sporadic network connectivity time-stamp sensor readings

and deliver these records to an observer as they pass by a base station (e.g., ref. [8]).

The base station may then want to compare time stamps generated by different

sensor nodes in order to evaluate the collected data. However, in the preceding

scenario, there might not be a network connection between the various originators

of the time-stamped messages at any point in time. Hence, NTP cannot be applied

in such settings.

7.1.2.3 Infrastructure In many applications, sensor networks have to be

deployed in remote, unexploited, or hostile regions. Sensor networks therefore

often cannot rely on sophisticated hardware infrastructure. For example, under

dense foliage or inside buildings, GPS cannot be used, since there is no free line

of sight to the GPS satellites.

In order to improve the precision and availability of synchronization in large net-

works, NTP injects the reference time into the network at many points. Hence, any

node in the network is likely to find a source of reference time in a distance of only a

few hops. Note that shorter paths tend to be more reliable and more predictable,

since they include fewer sources of error and unpredictability.

However, such an approach requires an external infrastructure of reference-time

sources that have to be synchronized with some out-of-band mechanism. Where this

is not feasible, NTP would have to operate with a single master node, which uses its

local time as the reference time. In large sensor networks, the average path length

from a node to this single master is long, leading to reduced precision. This is

particularly problematic when collocated sensor nodes require very precise

mutual synchronization, for example, to cooperate in observing a nearby physical

event. With a single master node, the collocated nodes might end up using different

7.1 INTRODUCTION 203

synchronization paths, which results in different synchronization errors (i.e., time

offsets) with respect to the master node.

7.1.2.4 Configuration After initial deployment, it is often infeasible to phys-

ically access the sensor nodes for hardware or software maintenance. The large

number of nodes also precludes manual configuration of individual nodes. While tra-

ditional networks such as the Internet do also consist of a large number of nodes,

there is an accordingly large number of human network administrators, such that

each one takes care of a manageable number of computers. With sensor networks,

however, half a dozen human operators may be responsible for thousands of

sensor nodes.

NTP requires the specification of one or more potential synchronization masters

for each node. This is an appropriate solution for networks with a rather static top-

ology, where configurations remain valid for extended periods of time. In sensor net-

works, however, network dynamics necessitate a frequent adaptation of

configuration parameters.

7.2 SYSTEM MODEL

In the following subsections we analyze various synchronization approaches. We

now specify the system model for time synchronization, which we use as the foun-

dation of our analysis. First, we describe how we model clocks. We then specify the

characteristics of communication between nodes in a sensor network.

All our modeling is done in terms of discrete time and events. An event can

represent communication between nodes, a sensor measurement, the injection of

time information at a node, and so on. We denote the real time at which event a

occurs as ta, and the local time of node Ni at that time as hia. Note that our model

does not explicitly contain node mobility or network dynamics; these aspects are

included implicitly by the absence or existence of corresponding communication

events.

7.2.1 Clock Models

Digital clocks measure time intervals. They typically consist of a counter h (which

we will also refer to as “the (local) clock”) that counts time steps of an ideally fixed

length; we denote the reading of the counter at real time t as h(t). The counter is

incremented by an oscillator with a rate (or frequency) f. The rate f at time t is

given as the first derivative of h(t): f (t) ¼ dh(t)=dt. An ideal clock would have

rate 1 at all times, but the rate of a real clock fluctuates over time due to changes

in supply voltage, temperature, and so on. If the fluctuation were allowed to be arbi-

trary, the clock’s reading would obviously give no information at all. Fortunately, it

is limited by known bounds. Different types of bounds on the rate fluctuation lead to

different clock models.

204 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

7.2.1.1 Constant-Rate Model The rate is assumed to be constant. This is

reasonable if the required precision is small compared to the rate fluctuation.

7.2.1.2 Bounded-Drift Model The deviation of the rate from the standard rate

1 is assumed to be bounded. We call this deviation the clock’s drift

r(t) ¼ f (t)� 1 ¼ dh(t)=dt � 1, and denote the corresponding bound with rmax:

�rmax � r(t) � rmax 8t (7:1)

A reasonable additional assumption is ri(t) . �1 for all times t. This means that

a clock can never stop (ri(t) ¼ �1) or run backward (ri(t) , �1). Thus, if two

events a, b with ta , tb occur at a node Ni whose clock’s drift ri is bounded accord-

ing to equation (7.1), then node Ni can compute lower and upper bounds

Dl
i½a, b�,Du

i ½a, b� on the real-time difference D½a, b� :¼ tb � ta as:

Dl
i½a, b� :¼

hi(tb)� hi(ta)

1þ rmax

Du
i ½a, b� :¼

hi(tb)� hi(ta)

1� rmax

(7:2)

This model is typically reasonable, since bounds on the oscillator’s rate are given

by the hardware manufacturer. Sensor nodes usually contain inexpensive oscillators,

and thus we have rmax [½10 ppm, 100 ppm�.1 Note that in this model, the drift can

jump arbitrarily within the bounds specified in equation (7.1). The next model limits

the variation of the drift.

7.2.1.3 Bounded-Drift-Variation Model The variation q(t) ¼ dr(t)=dt of

the clock drift is assumed to be bounded:

�qmax � q(t) � qmax 8t (7:3)

This assumption is reasonable if the drift is influenced only by gradually chan-

ging conditions such as temperature or battery voltage. It makes drift compensation

possible: A node can estimate its current drift and compute bounds on its drift for

future times.

We can also assume both equation (1.1) and equation (1.3).

7.2.2 Software Clocks

A synchronization algorithm can either directly modify the local clock h or other-

wise construct a software clock c. A software clock is a function taking a local

clock value h(t) as input and transforming it to the time c(h(t)). This time is the

final result of synchronization, and we therefore call it the synchronized time. For

example, c(h(t)) ¼ t0þ h(t)2 h(t0) is a software clock that starts with the correct

1Parts per million, that is, 10�6. A clock with a drift of 100 ppm drifts 100 seconds in a million seconds, or

100ms in one second.

7.2 SYSTEM MODEL 205

real time t0 and then runs with the same speed as the local clock h. In general, we

require that a software clock be a piecewise continuous, strictly monotonically

increasing function.

7.2.3 Communication Models

Communication is needed to obtain and maintain synchronization. In the following,

we identify different communication parameters that affect time synchronization.

7.2.3.1 Unicast versus Multicast If a message is sent by one network node

and is received by at most one other network node, we call this unicast or point-to-

point communication. Multicast communication occurs when a message is sent by

one network node and is received by an arbitrary number of other network nodes.

The case where all nodes within transmission range are recipients is called broad-

cast. Wireless sensor networks typically use simple broadcast radios, such that a

sensor node’s transmission is overheard by all nodes within its transmission range.

7.2.3.2 Symmetrical versus Asymmetrical Links If we assume that node

A can receive messages sent by node B if and only if node B can receive messages

sent by node A, we say that the link between these two nodes is symmetrical. Other-

wise, it is asymmetrical. An example for an asymmetrical link is the link between a

base station with high transmit power and a mobile device with low transmit power:

Beyond a certain distance between the two, only communication in direction from

the base station to the mobile device is possible. In wireless sensor networks, it is

reasonable to assume that there is a large number of small sensor nodes, and a

small number of more powerful (regarding energy, memory, processing power,

and transmit power) nodes. The links between these two types of nodes would

clearly be asymmetrical.

7.2.3.3 Implicit versus Explicit Synchronization When comparing clock

synchronization approaches, it is important to distinguish whether synchronization

information can be sent only with the messages that the sensor network application

transmits (“piggyback”), or whether additional communication (i.e., messages sent

only for the sake of synchronization) is allowed. There is a trade-off between the

amount of additional communication and the achievable synchronization quality.

Additional communication incurs additional energy consumption and can reduce

the bandwidth available for application data. Piggybacked time information does

typically not reduce available bandwidth significantly, since there are no additional

message headers to be transmitted or transmission slots to be occupied, and the time

information is small in size.

7.2.3.4 Delay Uncertainty As far as synchronization is concerned, the goal of

communication is to convey time information. The delay of the messages sent

between nodes has to be taken into account when extracting this time information;

we explore this in Section 7.4.1. The message delay consists of

206 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

. The send time, lasting from when the application issues the send command to

when the node actually starts trying to send; it is caused by kernel processing,

context switches, and system calls, and hence varies with the current system

load.

. The (medium) access time, lasting from when the node is ready to send to when

it actually starts the transmission; this is the time that is spent waiting for access

to the wireless channel, and hence depends on the current network load.

. The propagation time, which is the time it takes for the radio signal to travel

from the sender to the receiver; it is constant for any pair of nodes with constant

distance, and is negligible compared to the other delay components in wireless

sensor networks (since distances are small and radio signals travel very fast).

. The receive time, lasting from the reception of the signal to the arrival of the

data at the application.

The send and receive time (and especially the uncertainty about them) can be

reduced by implementing the time-stamping of outgoing and incoming messages

at a very low level, for instance, in the MAC layer. As a general rule, message-

delay uncertainties in typical wireless sensor networks are rather large compared

to those in wired networks. This is due to the lower link reliability and bandwidth

(see Section 7.1.2).

7.2.4 Sources of Synchronization Errors

Clock synchronization algorithms face two problems: the information a node has

about the local time of another node degrades over time due to clock drift (the

two clocks “drift apart”), and its improvement through communication is hindered

by message-delay uncertainty.

The influence of drift and delay uncertainty on the quality of synchronization can

to a large extent be studied separately. The influence of the clock drift may dominate

over that of the message delays. This is the case in those sensor networks where

communication is infrequent. The reason for this is that with decreasing frequency

of communication, the uncertainty due to clock drift increases, while the uncertainty

due to message delays remains constant. A numeric example: Suppose the message

delay contributes 1 millisecond to a node’s uncertainty, and the clock drift is

bounded by rmax ¼ 10 ppm. After 50 seconds, the drift’s contribution to the uncer-

tainty equals that of the delay. After one hour, it is 72 times larger. In this setting,

neglecting the delay uncertainty is acceptable.

The time information that is obtained through communication has to be processed

to achieve synchronization. As we show in Sections 7.4.1 and 7.4.2, the computation

power and memory size required to do this in a timely fashion can increase (even

nonlinearly) with the amount of communication and thus become very large.

There is a trade-off between computational power and storage capacity spent and

achievable synchronization.

7.2 SYSTEM MODEL 207

7.3 CLASSES OF SYNCHRONIZATION

Synchronization is commonly understood as “making clocks show the same time,”

but there are actually many different types of synchronization. In the following, we

give an overview of the various choices available for synchronization. When choos-

ing the synchronization approach for a given sensor network application, the maxim

is to fulfill the application’s requirements with the smallest possible effort in terms

of computation, memory, and especially energy.

7.3.1 Internal versus External

The synchronization of all clocks in the network to a time supplied from outside the

network is referred to as external synchronization. NTP performs external synchro-

nization, and so do sensor nodes synchronizing their clocks to a master node. Note

that it makes no difference whether the source of the common system time is also a

node in the network or not.

Internal synchronization is the synchronization of all clocks in the network,

without a predetermined master time. The only goal here is consistency among

the network nodes. External synchronization requires consistency within the

network and with respect to the externally provided system time.

In everyday life, we are mostly faced with external synchronization, namely, with

keeping wristwatches and clocks in computers, cell phones, personal digital assist-

ants (PDAs), cars, microwave ovens and so on, synchronized to the legal time.

7.3.2 Lifetime: Continuous versus On-Demand

The lifetime of synchronization is the period of time during which synchronization is

required to hold. If time synchronization is continuous, the network nodes strive to

maintain synchronization (of a given quality) at all times. For some sensor network

applications, on-demand synchronization can be as good as continuous synchroniza-

tion in terms of synchronization quality, but much more efficient. During the (pos-

sibly long) periods of time between events, no synchronization is needed, and

communication, and hence energy consumption, can be kept at a minimum. As

the time intervals between successive events become shorter, a break-even point

is reached where continuous and on-demand synchronization perform equally

well. There are two kinds of on-demand synchronization: event-triggered and

time triggered.

Event-triggered on-demand synchronization is based on the idea that in order to

time-stamp a sensor event, a sensor node needs a synchronized clock only immedi-

ately after the event has occurred. It can then compute the time stamp for the

moment in the recent past when the event occurred. Post facto synchronization

[9] is an example for event-triggered synchronization.

We use time-triggered on-demand synchronization if we are interested in obtain-

ing sensor data from multiple sensor nodes for a specific time. This means that there

is no event that triggers the sensor nodes, but the nodes have to take a sample at

208 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

precisely the right time. This can be achieved via immediate synchronization (where

sensor nodes receive the order to immediately take a sample and time-stamp it) or

anticipated synchronization (where the order is to take the sample at some future

time, the target time). Anticipated synchronization is necessary if it cannot be guar-

anteed that the order can be transmitted rapidly and simultaneously to all involved

sensor nodes. This is especially the case if sensor nodes are more than one hop away

from the node giving the order.

Note that for successful anticipated synchronization, it is sufficient to maintain a

synchronization quality that guarantees that the target time is not missed. This

means that the required synchronization quality grows as the real time approaches

the target time. There is no need to synchronize with maximum quality right from

the beginning.

Analogously to the event-triggered post facto synchronization, we might refer to

time-triggered synchronization as pre facto synchronization.

7.3.3 Scope: All Nodes versus Subsets

The scope of synchronization defines which nodes in the network are required to be

synchronized. Depending on the application, the scope comprises all or only a subset

of the nodes (Fig. 7.2). Event-triggered synchronization can be limited to the collo-

cated subset of nodes that observe the event in question.

7.3.4 Rate Synchronization versus Offset Synchronization

Rate synchronization means that nodes measure identical time-interval lengths. In a

scenario where sensor nodes measure the time between the appearance and disap-

pearance of an object, rate synchronization is a sufficient and necessary condition

for comparing the duration of the object’s presence within the sensor range of differ-

ent nodes (but not for ordering the observations chronologically).

N3

N5

N4

N2

N1

(a) (b)

Space

Time

N3 N5N4N2N1

Scope

Lifetim
e

Scope

Figure 7.2 Scope and lifetime define where and when synchronization is required.

(a) Shows the topology of some network, (b) illustrates the scope and lifetime of

the synchronization: Only nodes N2, N3, and N4 need synchronization.

7.3 CLASSES OF SYNCHRONIZATION 209

Offset synchronization means that nodes measure identical points in time, that is,

at some time t, the software clocks of all nodes in the scope show t. Offset synchro-

nization is needed for combining time stamps from different nodes.

The difference between rate and offset synchronization is illustrated in

Figure 7.3. Node N2 can compute the bird’s speed all by itself by dividing the dis-

tance between the bird’s positions at events a and b by the corresponding local-time

difference. For this, the node’s clock must be rate synchronized to the real-time

rate 1. Alternatively, data from nodes N2 and N3 can be combined to compute the

bird’s speed; here, we would use events b and c. The nodes’ clocks have to be

offset synchronized for this.

7.3.5 Timescale Transformation versus Clock Synchronization

Time synchronization can be achieved in two fundamentally different ways. We can

synchronize clocks, that is make all clocks display the same time at any given

moment. To achieve this, we have to perform rate and offset synchronization (or

continuous offset synchronization, which, however, is costly in terms of energy

and bandwidth and requires reliable communication links). The other approach is

to transform timescales, that is, to transform local times of one node into local

times of another node.

Both approaches are equal in the sense that if we have either perfect clock syn-

chronization or perfect timescale transformation, the distributed sensor data can be

combined as if it had been collected by a single node. The approaches differ in

that clock synchronization requires either communication across the whole network

(for internal synchronization) or some degree of global coordination (for external

synchronization). This calls for communication over multiple hops (which, however,

tends to degrade synchronization quality), or well-distributed infrastructure, which,

for instance, guarantees that every sensor node is only a few hops away from a node

equipped with a GPS receiver. Timescale transformation does not have these draw-

backs, but may instead incur additional computation and memory overhead.

We illustrate the difference between clock synchronization and timescale trans-

formation using the example shown in Figure 7.3. If the clocks of all three nodes are

c
N3

N2 N1

a

b

Figure 7.3 At events a, b, and c, nodes N2 and N3 measure the position of the bird and time-

stamp these data with their current local time. Rate or offset synchronization is needed,

depending on how the data from the three events are to be combined.

210 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

synchronized, node N1 can directly combine the sensor data from nodes N2 and N3,

since the time stamps refer to the same timescale. If the clocks are not synchronized,

a timescale transformation on the received time stamps is necessary. The final result

is identical to that of using synchronized clocks.

7.3.6 Time Instants versus Time Intervals

Time information can be given by specifying time instants (e.g., “t ¼ 5”) or time

intervals (“t [[4.5, 5.5]”). In both cases, the time information can be refined by

adding a statement about its quality. For instance, the time information may be guar-

anteed to be correct with a certain probability, or even probability distributions for

the time can be given. A measure for the quality of the time information can then be

defined; we will speak of its inverse, the time uncertainty.

For sensor networks, the use of guaranteed time intervals can be very attractive.

Interestingly, this approach has not received much attention, although it has a

number of advantages over using time instants: (1) Guaranteed bounds on the

local times at which sensor events occurred allow guaranteed bounds from

sensor-data fusion to be obtained. (2) The concerted action (sensing, actuating, com-

municating) of several nodes at a predetermined time always succeeds, each node

can minimize its uptime while guaranteeing its activity at the predetermined time.

(3) The combination of several bounds for a single local time is unambiguous and

optimal, while the reasonable combination of time estimates requires additional

information about the quality of the estimates.

7.4 SYNCHRONIZATION TECHNIQUES

In this section, building blocks and fundamental mechanisms of time synchroniza-

tion algorithms are presented. The section is organized by increasing complexity: In

Section 7.4.1, various approaches for obtaining a single reading of the clock of a

remote node are presented. In Section 7.4.2, techniques for maintaining synchroni-

zation are discussed. In Sections 7.4.3 and 7.4.4, it is shown how multiple samples

can improve synchronization between two nodes. Finally, various approaches

to organize the synchronization process in larger networks are discussed in

Section 7.4.5.

7.4.1 Taking One Sample

We start with the simple model shown in Figure 7.4(a), with two nodes Ni and Nj that

can exchange messages. Synchronization between these nodes means that the nodes

establish some relationship between their local clocks hi and hj.

7.4.1.1 Unidirectional Synchronization The conceptionally simplest sol-

ution is illustrated in Figure 7.4(b). Node Ni sends a message containing a local

time stamp ha
i to node Nj, where it is received at local time hb

j. The node Nj

7.4 SYNCHRONIZATION TECHNIQUES 211

cannot determine the delay d of the message. It only knows that the local clock of

node Ni showed ha
i before its own local clock shows hb

j. Thus its local time when

the message was sent is ha
j , hb

j, and local time at node Ni when the message is

received is hb
i . ha

i . Time synchronization consists of estimating either hb
i or ha

j .

If a priori bounds on the message delay are known, that is, dmin � d � dmax, then

the estimation ha
j � hb

j 2 1/2(dminþ dmax) (or alternatively hb
i � ha

i þ 1/2(dminþ
dmax)) minimizes the synchronization error in the worst case. Alternatively, hb

j 2
dmax and hb

j 2 dmin are lower and upper bounds on ha
j (and ha

i þ dmin and ha
i þ dmax

are bounds on hb
i).

7.4.1.2 Round-Trip Synchronization A slightly more complex solution is

illustrated in Figure 7.4(c). Node Nj sends a query message to node Ni, asking for

the time stamp hb
i . Node Nj measures the round-trip time D ¼ hc

j 2 ha
j, that is, the

length of the time interval between sending the request and receiving the reply.With-

out having a priori knowledge, node Nj now knows that the delay d is bounded by 0

andD. If a priori bounds on themessage delay are known, that is, dmin � d � dmax, the

node Nj knows that d is bounded by max(D2 dmax, dmin) and min(dmax, D2 dmin).

The estimation hb
j � hc

j 2D/2 minimizes the worst-case synchronization error:

hc
j 2 (D2 dmin) and hc

j 2 dmin are lower and upper bounds on hb
j. Similarly, an esti-

mation and bounds for hc
i can be determined.

In comparison with the unidirectional approach, round-trip synchronization has

the advantage of providing an upper bound on the synchronization error. The mech-

anism known as probabilistic time synchronization, first presented in ref. [10], uses

this to decrease the synchronization error as follows: After receiving the reply mes-

sage, Nj checks whether the worst-case synchronization error D/22 dmin is below a

specified threshold. If not, it sends a new request message to Ni. This procedure is

repeated until a pair of request and reply messages occurs that achieves the required

synchronization error. The smaller the chosen threshold, the more messages have to

be exchanged on average.

The main disadvantage of round-trip synchronization is that the number of mes-

sages increases linearly with the number of nodes that communicate with Ni, while

(a)

Nj

Ni

(c)

h i h j

D

Ni Nj

d

d´

(b)

h i h j

Ni Nj

ha
i

d

(d)

h i h j

D j

Ni Nj

D i
d 1́

d2

d1

d 2́

hb
i

ha
j

hb
i

hc
ihb

j

ha
j

hc
j

Figure 7.4 Uni- and bidirectional synchronization. (a) A node Nj determines the offset of its

local clock relative to that of another node Ni, using (b) unidirectional communication or using

(c, d) bidirectional communication. In contrast to (c), scheme (d) allows both nodes to

measure a round-trip time.

212 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

in the unidirectional case, a single broadcast message sent by Ni can serve an arbi-

trary number of nodes. A combination of the advantages of both approaches is

known as eavesdropping or anonymous synchronization, and was first described

in ref. [11]. The basic idea is the following: Node Nj sends a broadcast message

to Ni and some additional node Nk; and Ni replies with a broadcast message to Nj

and Nk. Node Nk assumes that the second message was produced after it had received

the first message, thus node Nk can do round-trip synchronization with the two local

receive time stamps and the send time stamp from Ni without ever producing any

messages itself.

In Figure 7.4(d), two modifications of round-trip synchronization are illustrated.

First, it is not necessary that Ni replies immediately to query messages. Node Ni can

instead measure the duration Di between receiving the query message and sending

the reply, and the node Nj can then account for this duration in its calculations.

Second, the message exchange shown in Figure 7.4(c) is asymmetrical, that is,

only Nj can do round-trip synchronization. Therefore, at least one additional mes-

sage from Nj to Ni is required, such that also Ni can estimate or bound remote

time stamps.

7.4.1.3 Reference Broadcasting A third approach is shown in Figure 7.5. In

addition to nodes Ni and Nj, a so-called beacon node Nk is involved. The beacon

sends a broadcast message to the other nodes. The delays d (to Ni) and d0 (to Nj)

are almost equal. Ni then sends the time stamp ha
i to Nj. Node Nj measures the

length of the time interval D ¼ hb
j 2 ha0

j between the arrivals of the two messages

and can then estimate hb
i � ha

i þD.

This approach was first proposed in ref. [12] under the name a posteriori agree-

ment. It became more widely known in the sensor network community as reference

broadcast synchronization (RBS) [9]. Its main advantage is that a broadcast message

is received almost concurrently (even though its delay is largely variable), and thus

the synchronization error typically is smaller than with unidirectional or round-trip

synchronization.

Nk

D

(a) (c)

d d´

Nj

Ni

Ni NkNj

h i h k

D

(b)

d d´

Ni NkNj

ha
i

h i h j h j

hb
i

ha´
j

hb
j

ha
i

ha´
kha´

j

Figure 7.5 Reference broadcast synchronization. A node Ni determines the offset of its local

clock relative to that of another node Nj with the help of a third node Nk. In (c), a variant of

reference broadcast synchronization is shown that can be used if Ni and Nj cannot directly

communicate with each other (dashed link in (a)).

7.4 SYNCHRONIZATION TECHNIQUES 213

The reference broadcast technique can be used in many variations. For example,

Figure 7.5(c) shows a solution presented in ref. [13] for the case that nodes Ni and Nj,

while being able to receive messages from Nk, cannot communicate with each other

directly. Node Nj replies to Nk, which then can estimate its own local time ha0
k and

send this information in another broadcast message to Ni and Nj. In ref. [9], yet

another version is described: All nodes report their time stamps to a single node,

which then broadcasts all information.

The disadvantage of the reference broadcast approach is that physical broadcasts

and a beacon node are required.

7.4.2 Synchronization in Rounds

Typically, two local clocks do not run at exactly the same speed. Therefore time syn-

chronization has to be refreshed periodically, the duration of the round depending on

the error budget and the amount of relative drift between the two clocks. Let the

length of a round be tround. Assume a round consists of a first period with length

tsample, where one or more samples are taken according to one of the methods

described in Section 7.4.1, and a second period where the nodes do nothing. Let

us assume that an application allows for a total error of Etotal, the maximum error

after taking the samples is Esample, and the maximal drift rate is rmax. Then the maxi-

mum length of a round tround has to satisfy

tround � Etotal � Esample

rmax

This relation implies that rounds can be longer if Esample and rmax are small. For

example, algorithms that use the round-trip technique can bound Esample according

to the measured round-trip time, and thus can dynamically increase tround if the

round-trip time was small. Other algorithms compensate the drift of the local

clock and therefore can compute a smaller effective rmax, which also allows an

increase in tround.
In some applications, Etotal is smaller than what can be guaranteed by taking a

single sample. In such a case, multiple samples can be taken to achieve Esample ,
Etotal. Taking multiple samples increases tsample. At the limit, tsample � tround; in
this case, synchronization in rounds becomes a continuous process, where in

rounds follow each other seamlessly.

7.4.3 Combining Multiple Time Estimates

We now discuss techniques for combining multiple estimates of the local time of a

remote node. Figure 7.6(a) illustrates the situation: Every circle stands for a

single estimate of node Nj’s local time ha
j at some event a, which occurs at Ni’s

local time ha
i .

214 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

7.4.3.1 Linear Regression The most widely used technique is linear

regression. A linear relation hj ¼ aþ b . hi is postulated and the coefficients a
and b are determined by minimizing the square of the difference between the

fitted hj and the actual samples. This technique has a single parameter, that is, the

number of samples that are accounted for when computing the coefficients. A

large number of samples can improve the regression quality, but requires a large

amount of memory.

The coefficient b can be interpreted as an estimation of h j’s drift relative to hi.

Linear regression thus implicitly compensates for clock drift. If the drift is variable,

the postulated linear relationship between h j and hi does not describe reality very

well. In such a situation, the number of samples accounted for should be small.

The linear regression can be computed on-line, that is, incrementally whenever a

new sample is taken. An efficient on-line implementation can be found in ref. [15]. A

disadvantage of the linear-regression technique is that it weighs data points by the

square of their error against the fitted line. Outliers thus have a particularly strong

influence on the resulting coefficients a and b.

7.4.3.2 Phase-Locked Loops Another method for processing a continuous

sequence of samples is based on the principle of phase-locked loops (PLL) [16].

The PLL controls the slope of the interpolation using a proportional-integral (PI)

controller. The output of a PI controller is the sum of a component that is pro-

portional to the input and a component that is proportional to the integral of the

h i

h j

h i

h j

(a) (b)

Figure 7.6 Multiple samples improve on the synchronization error. (a) Every point

represents a sample, that is a local time hi of node Ni and an estimated local time hj of

node Nj. Using interpolation techniques improves on the synchronization error. The solid

line results from a linear regression on the samples, the dashed line is the result of a

phaselocked loop. (b) The same idea can be used for lower (5) and upper (4) bounds on

the local time of Nj. Also here, interpolation can considerably improve on the

synchronization error (i.e., on the uncertainty in this case). The solid lines are determined

by the convexhull approach, the dashed lines according to ref. [14].

7.4 SYNCHRONIZATION TECHNIQUES 215

input. The input of the controller is the difference between the actual sample and the

interpolated value. If the interpolation is smaller than the sample, its slope is

increased, otherwise it is decreased. The main advantage of the PLL-based approach

is that it requires far less memory than the linear-regression technique (in essence

only the current state of the integrator sum). The main disadvantage is that PLLs

require a long convergence time to achieve a stable rate [17]. The NTP algorithm

uses a PLL [18].

7.4.4 Combining Multiple Time Intervals

The techniques of Section 7.4.1 can also be used to derive lower and upper bounds

on the local time of a remote node. Figure 7.6(b) shows a sequence of lower and

upper bounds on the local times h j of a remote node Nj on the y-axis and the corre-

sponding local times hi of a node Ni on the x-axis. In the previous section, the

samples formed a single cloud and the interpolation was a line “through the

middle of this cloud.” Here we have two clouds, one formed by the lower-bound

samples, the other by the upper-bound samples.

The convex-hull technique [19,20] interpolates the two clouds separately. One

curve is drawn above all lower bounds, a second below all upper bounds. While

linear-regression and PLL techniques tend toward the average of the individual

samples, the convex-hull technique ignores average values and accounts for the

samples with minimal or maximal error. This can result in improved robustness:

While the current average message delay can be very unstable, the minimal message

delay remains stable, though it may occur more or less frequently.

In ref. [14], it is proposed to interpolate lower- and upper-bound samples by a

single line as follows: First, the steepest and flattest lines that do not violate any

lower or upper bound are determined. The slopes of these lines represent bounds

on the drift of clock hj relative to hi. The “average”-line of these two extremal

solutions is used as the final interpolation; for a more detailed description, see

Section 7.5.3.

7.4.5 Synchronization of Multiple Nodes

Sensor networks most often have a much more complicated topology than the

simple examples shown in Figures 7.4 and 7.5, and not all sensor nodes can commu-

nicate with each other directly. Thus, multihop synchronization is required, which

adds an additional layer of complexity. Clearly, this could be avoided by using an

overlay network that provides virtual, single-hop communication from every

sensor node to a single master node. But as we saw in Section 7.4.1, the synchroni-

zation error directly depends on the message delay, which is very difficult to control

on a logical link that is composed of many physical hops. Therefore, performant syn-

chronization schemes have to deal with the multihop problem explicitly.

Figure 7.7 illustrates various approaches to multihop synchronization. We now

describe these four schemes and use them as examples to discuss the main problems

of multihop synchronization.

216 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

7.4.5.1 Out-of-Band Synchronization The conceptually simplest solution

is to avoid the problem: A large number of master nodes is distributed in the network

such that every node has a direct connection to at least one of these masters (e.g., ref.

[21]). The master nodes are synchronized among each other using some out-of-band

mechanism. The GPS is well suited to this purpose, as it provides time information

with submicrosecond accuracy. However, GPS receivers are still relatively costly,

consume a considerable amount of energy, and require a direct line of sight to a

number of satellites, and thus cannot operate inside buildings.

7.4.5.2 Clustering The authors of the RBS algorithm proposed to partition the

network into clusters [9]. All nodes within a cluster can broadcast messages to all

other members of the cluster, and thus the reference broadcast technique can be

used to synchronize the cluster internally. Some nodes are members of several clus-

ters and participate independently in all corresponding synchronization procedures.

These nodes act as time gateways to translate time stamps from one cluster to the

other. There is a trade-off in choosing the size of the clusters. On the one hand, a

small number of large clusters reduces the number of translations, and thus improves

the synchronization error; on the other hand, energy consumption grows quickly

with increasing transmission range; this makes choosing many small clusters attrac-

tive. This trade-off has been examined in ref. [22].

7.4.5.3 Tree Construction The most common solution of the multihop syn-

chronization problem is to construct a synchronization tree with a single master at

the root [14,23,24,31]. Single-hop synchronization is applied along the edges of

the tree. Various well-known algorithms can be used to construct such a tree [24].

Since the accuracy degrades with the hop distance from the root, a tree with mini-

mum depth is preferable. On the other hand, a small depth implies that the root has to

serve many clients, and thus consumes far more energy than the other nodes.

Tree construction faces two main problems: First, in sensor networks, the net-

work topology may be dynamic; nodes may be mobile and repeatedly join or

leave the network. The multihop synchronization algorithms have to explicitly

deal with such events. In particular, if the root node fails, a new root has to be elected

(a) (b) (c) (d)

Figure 7.7 Organizing synchronization in multihop networks. (a) Single-hop

synchronization with a set of master nodes that are synchronized out of band (e.g., using

GPS). (b) Single-hop synchronization in overlapping clusters, gateway nodes translate time

stamps. (c) Tree hierarchy with a single master node at the root. (d) Unstructured.

7.4 SYNCHRONIZATION TECHNIQUES 217

[31]. Second, two neighboring (in terms of physical location) nodes may have a

large hop distance in the synchronization tree. In consequence, the accuracy of syn-

chronization between these nodes is not as good as if they would synchronize

directly with each other.

7.4.5.4 Unstructured As illustrated in the tree-construction approach, the

multihop synchronization problem can be interpreted as the problem of determining

the links and directions over which time information is disseminated. In contrast to

tree-construction approaches, unstructured approaches do not first explicitly solve

this problem and then perform pairwise synchronization. Instead, time information

is exchanged between any pair (or group) of nodes that communicate. Whereas in

the tree-construction approach every pairwise synchronization is asymmetrical

(i.e., between a client and a local master), it is symmetrical in the unstructured

approach (i.e., between two equal peers). In ref. [25], such an approach has been pre-

sented for interval-based synchronization. Two nodes combine their bounds on real

time by selecting the larger lower bound and the smaller upper bound. A similar

approach for point estimates is asynchronous diffusion proposed in ref. [26].

Here, nodes that communicate adjust their synchronized clocks to the average of

their synchronized times. Like the interval-based solution from ref. [25], this

approach is completely local. Since these approaches do not maintain any global

configuration, node mobility does not cause particular problems. In contrast, cluster-

ing and tree-construction schemes require that the global configuration has to be

updated whenever nodes move or fail or when new nodes are added to the system.

Because algorithms that follow the unstructured approach do not attempt to com-

municate with a particular node (e.g., the parent node in a synchronization tree),

some of these algorithms piggyback time stamps on messages that are sent for

some other, not synchronization-related reason (e.g., refs. [25] and [27]). It could

be argued that these algorithms have virtually no communication overhead, as no

messages are generated exclusively for time synchronization.

7.5 CASE STUDIES

In the following subsections, we discuss a number of concrete synchronization

algorithms from the literature (ordered by publication date). The goal here is to

give an overview of the approaches (with reference to the techniques and classes dis-

cussed earlier in this chapter), rather than to discuss all the details. In addition, for

each algorithm we will give some experimental results. Table 7.1 summarizes the

underlying assumptions of the various protocols and classifies the approaches

according to the criteria discussed in Section 7.3.

7.5.1 Time-Stamp Synchronization

Time-stamp synchronization (TSS) [27] provides internal synchronization on

demand. Node clocks run unsynchronized, that is, time stamps are valid only in

218 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

T
A
B
L
E
7
.1

S
y
n
ch
ro
n
iz
a
ti
o
n
C
la
ss
es

a
n
d
A
ss
u
m
p
ti
o
n
s
o
f
T
im

e-
S
y
n
ch
ro
n
iz
a
ti
o
n
P
ro
to
co
ls

R
B
S

T
P
S
N

T
S
/M

S
L
T
S

T
S
S

IB
S

T
S
y
n
c

F
T
S
P

T
D
P

A
D

C
la
ss
es

In
te
rn
al

v
s.
ex
te
rn
al

I
E

I
E

I
E

E
I

I
I

C
o
n
t.
v
s.
o
n
-d
em

an
d

O
C

C
O

O
C

C
C

C
C

A
ll
n
o
d
es

v
s.
su
b
se
ts

S
A

S
A
/S

S
A

A
A

A
A

R
at
e
v
s.
o
ff
se
t

R
O

O
R
O

O
O

O
O

R
O

O
O

T
ra
n
sf
o
rm

v
s.
cl
o
ck
sy
n
c

T
C

—
C

T
C

C
C

C
C

In
st
an
ts
v
s.
in
te
rv
al
s

S
S

T
S

S
T

T
S

S
S

S

A
ss
u
m
p
ti
o
n
s

B
ro
ad
ca
st

X
X

X
X

X
X

B
id
ir
ec
ti
o
n
al

co
m
m
u
n
ic
at
io
n

X
X

X
X

X
X

X

C
o
n
st
an
t
ra
te

X

B
o
u
n
d
ed

d
ri
ft

X
X

X

M
u
lt
ic
h
an
n
el

X

M
A
C
ac
ce
ss

X
X

A
b
b
re
vi
a
ti
o
n
s:
R
B
S
¼

re
fe
re
n
ce

b
ro
ad
ca
st
sy
n
ch
ro
n
iz
at
io
n
;
T
P
S
N
¼

T
im

in
g
-S
y
n
c
P
ro
to
co
l
fo
r
S
en
so
r
N
et
w
o
rk
s;
T
S
/M

S
-T
m
y
-S
y
n
c/
M
in
i-
S
y
n
c;
L
T
S
-l
ig
h
tw
ei
g
h
t
tr
ee
-

b
as
ed

sy
n
ch
ro
n
iz
at
io
n
;
T
S
S
¼

ti
m
e-
st
am

p
sy
n
ch
ro
n
iz
at
io
n
;
IB
S
¼

in
te
rv
al
-b
as
ed

sy
n
ch
ro
n
iz
at
io
n
;
F
T
S
P
¼

fl
o
o
d
in
g
ti
m
e
sy
n
ch
ro
n
iz
at
io
n
p
ro
to
co
l;
T
D
P
¼

ti
m
e
d
if
fu
-

si
o
n
sy
n
ch
ro
n
iz
at
io
n
;
A
D
¼

as
y
n
ch
ro
n
o
u
s
d
if
fu
si
o
n
.

219

the node that generated them. However, when a time stamp is sent to another node as

part of a message, the time stamp is transformed to the timescale of the receiver. For

messages sent over multiple hops, the transformation is repeated for each hop.

Time-stamp transformation is achieved by determining the age of each time

stamp from its creation to its arrival at a sensor node. On a multihop path, the age

is updated at each hop. The time stamp can then be transformed to the receiver’s

local timescale by subtracting the age from the time of arrival. The age of a time

stamp consists of two components: (1) the total amount of time the time stamp

resides in nodes on the path, and (2) the total amount of time needed to transfer

the time stamp from node to node. The first component is measured using the

local, unsynchronized clocks; the second component can be bounded by the

round-trip time of the message and its acknowledgment.

For the round-trip measurement, the technique depicted in Figure 7.4(d) is used,

where the sender is Ni and the receiver is Nj. Message d2 is a data message containing

the time stamp, and message d02 is an acknowledgment. Using the previous message

exchange (d1, d
0
1), the receiver can use Dj2Di as an upper bound for the delay of

message d2. If a minimum delay is known, it can be used as a lower bound (otherwise,

0 is used). Using storage time and the bounds on transmission delay just given, lower

and upper bounds of the time-stamp age can be determined. Additionally, rmax is

used to transform time intervals between node clocks as in equation (7.2).

With this approach, synchronization information is piggybacked to existing

(acknowledged) messages. There are no additional synchronization messages,

except when two nodes exchange a message for the first time. In this case, an

additional initialization message must be sent and acknowledged in order to

enable round-trip measurement. An acknowledgment is not needed if the sender

can overhear the receiver forwarding the message to the next hop, which is typically

the case in broadcast networks.

Measurements in a wired network with rmax ¼ 1 ppm showed that the average

uncertainty of the time-stamp interval is about 200 ms for adjacent nodes. It increases
by an additional 200 ms for each additional hop, and by about 2.5 ms per age second.

7.5.2 Reference Broadcast Synchronization

RBS [9] provides synchronization for a whole network. The basic synchronization

primitive is a reference broadcast to a set of client nodes in the one-hop neighbor-

hood of a beacon node, as illustrated in Figure 7.5(b). The beacon node broadcasts

synchronization pulses. The clients then exchange their respective reception times

and use linear regression to compute relative offsets and rate differences to each

other. Using offset and rate difference, each client can transform a local clock read-

ing to the local timescale of any other client.

To extend this scheme to multihop networks, the network is clustered such that a

single beacon can synchronize all nodes in its cluster. Gateway nodes that participate

in two or more clusters independently take part in the reference broadcast procedure

of all their clusters. By knowing offsets and rate differences to nodes in all adjacent

clusters, gateway nodes can transform time stamps from one cluster to another.

220 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

Time synchronization across multiple hops is then provided as follows. Nodes

time-stamp sensor data using their local clocks. Whenever time stamps are

exchanged among nodes, the time stamps are transformed to the receiver’s local

time using offset and rate difference.

In experiments it has been shown that adjacent Berkeley Motes can be synchro-

nized with an average error of 11 ms by using 30 broadcasts. Over multiple hops, the

average error grows with O(
ffiffiffi
n

p
), where n is the number of hops.

7.5.3 Tiny-Sync and Mini-Sync

Tiny-Sync and Mini-Sync (TS/MS) [14] are methods for pairwise synchronization

of sensor nodes. Both TS and MS use multiple round-trip measurements and a line-

fitting technique to obtain the offset and rate difference of the two nodes. For this, a

constant-rate model (see page 205) is assumed. To obtain data points for line fitting,

multiple round-trip synchronizations are performed, as depicted in Figure 7.4(c),

where the client is Nj and the reference is Ni. Each round-trip measurement results

in a data point (hb
i , [ha

j , hc
j]). Then, the line-fitting technique depicted in Figure 7.6(b)

is used to calculate two lines with minimum and maximum slope. The slope and axis

intercept of these two lines then gives bounds for the relative offset and rate differ-

ence of the two nodes. The line with average slope and intercept of the two lines is

then used as the offset and rate difference between the two nodes.

Note that each of the two lines is unambiguously defined by two (a priori

unknown) data points. The same results would be obtained if the remaining data

points could be eliminated. Since the computational and memory overhead depends

on the number of data points, it is a good idea to remove as many data points as poss-

ible before the line fitting. TS and MS only differ in this elimination step. Essen-

tially, TS uses a heuristic to keep only two data points for each of the two lines.

However, the selected points may not be the optimal ones. MS uses a more complex

approach to eliminate exactly those points that do not change the solution. Hence,

TS achieves a slightly suboptimal solution with minimal overhead, and MS gives

an optimal solution with increased overhead.

Measurements on a 802.11 network with 5000 data points resulted in an offset

bound of 945 ms (3230 ms) and a rate bound of 0.27 ppm (1.1 ppm) for adjacent

nodes (nodes five hops away).

7.5.4 Lightweight Time Synchronization

Lightweight time synchronization (LTS) [24] is a synchronization technique that

provides a specified precision with little overhead, rather than striving for maximum

precision as do many other techniques.

Two algorithms are proposed: one that operates on demand for nodes that actu-

ally need synchronization, and one that proactively synchronizes all nodes. Both

algorithms assume the existence of one or more master nodes that are synchronized

out-of-band to a reference time. The proactive algorithm proceeds to construct span-

ning trees with the masters at the root by flooding the network. In a second phase,

7.5 CASE STUDIES 221

nodes synchronize to their parent in the tree by means of round-trip synchronization.

The synchronization frequency is calculated from the requested precision, from the

depth of the spanning tree, and from the drift bound rmax.

The on-demand version also assumes the existence of one or more master nodes.

When a node needs synchronization, it sends a request to one of the masters using

any routing algorithm (this is not further specified). Then, along the reverse path of

the requestmessage, nodes synchronize using round-tripmeasurements. The synchro-

nization frequency is calculated as in the proactive version just described. In order to

reduce synchronization overhead, each node may ask its neighbors for pending

synchronization requests. If there are any such requests, the node synchronizes with

the neighbor, rather than executing a multihop synchronization with a reference node.

The overhead of the algorithms was examined in simulations with 500 nodes uni-

formly placed in a 120-m � 120-m area, a target precision of 0.5 s, and a duration of

10 h. The centralized algorithm performed an average of 36 pairwise synchroniza-

tions per node. The distributed algorithm executed 4–5 synchronizations per node

on average, if 65% of all nodes request synchronization.

7.5.5 Timing-Sync Protocol for Sensor Networks

The timing-sync protocol for sensor networks (TPSN) [23] provides synchroniza-

tion for a whole network. First, a node is elected as a synchronization master

(details for this are not specified), and a spanning tree with the master at the

root is constructed by flooding the network. In a second phase, nodes synchronize

to their parent in the tree by means of round-trip synchronization. Synchronization

is performed in rounds and initiated by the root broadcasting a synchronization-

request message to its children. Each child then performs a round-trip measure-

ment to synchronize with the root. Nodes further down in the tree overhear the

messages of their parents and start synchronization when their parents have syn-

chronized. To eliminate message-delay uncertainties, time-stamping for the

round-trip synchronization is done in the medium-access control (MAC) layer.

In the case of node failures and topology changes, master election and tree con-

struction must be repeated.

Measurements showed that two adjacent Berkeley Motes can be synchronized

with an average error of 16.9 ms, which is a worse figure than the 11 ms given for

RBS in ref. [9]. However, the authors of ref. [23] claim that a reimplementation

of RBS on their hardware resulted in an average error of 29.1 ms between adjacent

nodes, effectively claiming that TPSN is about twice as precise as RBS.

7.5.6 TSync

TSync [13] provides two protocols for external synchronization: the hierarchy refer-

encing time synchronization protocol (HRTS) for proactive synchronization of the

whole network, and the individual-based time request protocol (ITR) for on-demand

synchronization of individual nodes. Both protocols use an independent radio chan-

nel for synchronization messages in order to avoid inaccuracies due to variable

222 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

delays introduced by packet collisions. In addition, the existence of one or more

master nodes with access to a reference time is assumed.

With HRTS, a spanning tree with the master at the root is constructed. Then, the

master uses the reference broadcasting technique illustrated in Figure 7.5(c) to

synchronize its children. Each child node now repeats the procedure for its subtree.

Measurements in a network of MANTIS sensor nodes showed a mean synchro-

nization error of 21.2 ms (29.5 ms) for two adjacent nodes (nodes three hops away).

For comparison, RBS was also implemented, giving an average error of 20.3 ms
(28.9 ms).

7.5.7 Interval-Based Synchronization

Interval-based synchronization (IBS) was first proposed in ref. [28], where a

bounded-drift model (see page 205) is assumed. The network nodes perform exter-

nal synchronization by maintaining a lower and upper bound on the current time.

During communication between two nodes, the bounds are exchanged and com-

bined by choosing the larger lower and the smaller upper bound. This amounts to

intersecting the time intervals defined by each pair of bounds. Between communi-

cations, each node advances its bounds according to the elapsed real time and the

known drift bounds. In ref. [29], the model was refined by including bounded

drift variation and fault tolerance.

In ref. [25], the simple approach from ref. [28] was shown to be worst-case opti-

mal, where the worst case is the one where all clocks run with maximal drift. A con-

siderable improvement in the synchronization quality can be achieved by having each

node store, maintain, communicate, and use the bounds from its last communications

with other nodes. In ref. [30], it was shown that optimal IBS can only be achieved by

having nodes store and communicate their entire history. Obviously, this becomes

prohibitive with growing network size and lifetime. In realistic settings, the value

of a piece of history data decreases rapidly with its age. Therefore, efficient

average-case optimal synchronization can be obtained by using only recent data.

7.5.8 Flooding Time-Synchronization Protocol

The flooding time-synchronization protocol (FTSP) [31] can be used to synchronize

a whole network. The node with the lowest node ID is elected as a leader that serves

as a source of reference time. If this node fails, then the node with the lowest ID in

the remaining network is elected as the new leader. The leader periodically floods

the network with a synchronization message that contains the leader’s current

time. Nodes that have not yet received this message record the contained time

stamp and the time of arrival, and broadcast the message to their neighbors after

updating the time stamp. Time-stamping is performed in the MAC layer to minimize

delay variability, and hence uncertainty.

Each node collects eight (time stamp, time of arrival) pairs and uses linear

regression on these eight data points to estimate offset and rate difference to the

leader.

7.5 CASE STUDIES 223

Measurements were performed in an eight-by-eight grid of Berkeley Motes,

where each Mote has a direct radio link to its eight closest neighbors. With this

setup, the network synchronized in 10 minutes to an average (maximum) synchro-

nization error of 11.7 ms (38 ms), giving an average error of 1.7 ms per hop.

7.5.9 Asynchronous Diffusion

Asynchronous diffusion (AD) [26] supports the internal synchronization of a whole

network. The algorithm is very simple: each node periodically sends a broadcast

message to its neighbors, which reply with a message containing their current

time. The receiver averages the received time stamps and broadcasts the average

to the neighbors, which adopt this value as their new time. It is assumed that this

sequence of operations is atomic, that is, the averaging operations of the nodes

must be properly sequenced.

Simulations with a random network of 200 static nodes showed that the synchro-

nization error decreases exponentially with the number of rounds.

7.5.10 Time Diffusion Synchronization

Time diffusion synchronization (TDP) [32] supports the synchronization of a whole

network. Initially, a set of master nodes — so-called leaders — is elected. For exter-

nal synchronization, these nodes must have access to a global time. This is not

required for internal synchronization, where masters are initially unsynchronized.

Master nodes then broadcast a request message containing their current time, and

all receivers send back a reply message. Using these round-trip measurements, a

master node calculates and broadcasts the average message delay and standard devi-

ation. Receiving nodes record these data for all leaders. Then they turn themselves

into so-called “diffused leaders” and repeat the procedure. The average delays and

standard deviations are summed up along the path from the masters. The diffusion

procedure stops at a given number of hops from the masters.

All nodes have now received from one or more mastersm the time hm at the initial

leader, the accumulated message delay Dm, and the accumulated standard deviation

bm. A clock estimate is computed as Smvm(hmþ Dm), where the weights vm are

inversely proportional to the standard deviation bm. After all nodes have updated

their clocks, new masters are elected and the procedure is repeated until all node

clocks have converged to a common time.

In a simulation with 200 static nodes with 802.11 radios and a delay of 5 seconds

between consecutive synchronization rounds, the deviation of time across the net-

work dropped to 0.6 second after about 200 seconds.

7.6 EVALUATION STRATEGIES

Evaluating the precision of time synchronization in wireless sensor networks is not a

trivial task. For example, the authors of the RBS algorithm report 11ms precision on
the Berkeley Motes platform [9], while the authors of the TPSN algorithm report

224 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

29 ms for RBS on the same platform, concluding that TPSN is better, as it achieves

17 ms [23]. Which numbers are correct? Probably all of them, but the evaluation was

done slightly differently.

In this section, we discuss different evaluation strategies that have been applied to

time-synchronization algorithms for wireless sensor networks. There are various

aspects of the performance achieved by an algorithm than can be evaluated, for

example, the energy consumption or the message and memory overhead. The dis-

cussion in this section concentrates on various alternatives for the evaluation of

the precision of time-synchronization algorithms.

7.6.1 What Is Precision?

Figure 7.2(b) illustrates the scope and lifetime of synchronization in a sensor net-

work. The scope defines which nodes have to be synchronized, and the lifetime

defines when these nodes have to be synchronized. Thus, it is natural to evaluate

the precision in the shaded area of Figure 7.2(b). The precision is a metric that is

closely related to the synchronization error. While the precision is a single scalar

value for a whole network, the synchronization error is a function of time for a

single node. In the following, we discuss several alternatives to map such functions

to a single scalar precision value P.

7.6.1.1 Combining the Synchronization Error of Many Nodes At some

time t within the lifetime of a sensor network, every node Ni within the scope has a

synchronized time ci(hi(t)). In the case of internal synchronization, the instan-

taneous precision p(t) is often defined as the maximal difference between any two

synchronized times, that is,

p(t) ¼ max
i,j

ci(hi(t))� c j(h j(t))
� �

for any nodes Ni and Nj within the scope. Some authors (e.g., ref. [32]) use the stan-

dard deviation among all ci(hi(t)) as a measure for the instantaneous precision at

time t.

In the case of external synchronization, the instantaneous precision is more often

defined as the maximal synchronization error, that is,

p(t) ¼ max
i

ci(hi(t))� t
� �

for any node Ni within the scope. This variant of precision is sometimes called accu-

racy.Alternatively, the precision can be defined as the average synchronization error

within the scope or the maximal synchronization error among the 90% (or 99%, etc.)

nodes in the scope with the smallest synchronization error.

7.6.1.2 Steady State and Convergence Time The instantaneous precision

p(t) obviously varies during the synchronization lifetime. The final precision metric

7.6 EVALUATION STRATEGIES 225

P can be derived by taking the maximum of p(t) for all t in the lifetime. Alterna-

tively, the average of p(t) can be used.

It is clear that the precision P improves in proportion to the time the synchroniza-

tion process is active, and that at some point, the improvement stops. Usually, the

precision P is evaluated after this point, that is, the lifetime of synchronization

starts after the synchronization process, and the precision P describes the steady

state.

Some authors evaluate the convergence time, which is the length of the interval

from the start of the synchronization process to the point in time where the precision

P stops to improve or reaches a specific value. If the lifetime is defined, the conver-

gence time indicates when the synchronization process has to be started such that the

desired precision P is achieved before the start of the lifetime and is maintained until

the end of the lifetime.

7.6.2 Goals of Performance Evaluation

There can be different reasons why the performance of an algorithm has to be eval-

uated, and different goals lead to different solutions.

The actual performance of a given synchronization algorithm strongly depends

on properties of the target platform. It is difficult to identify and model all the influ-

ence factors explicitly. A realistic estimation of the achievable precision is thus best

obtained by using measurements on the actual target platform, rather than using

simulation of a simplified target platform.

Sometimes, realistic estimation of the performance is less important than fairness

and repeatability of the evaluation. This is the case if several competing algorithms

have to be compared. Also in the optimization process of the parameters of a particu-

lar algorithm, it is important that differences in the performance are due to differ-

ences in the algorithm and not due to different conditions (e.g., message delays,

clock drift). Here, simulation based on recorded or generated traces is more appro-

priate than direct measurements.

If the goal of analyzing a particular synchronization algorithm is to give worst-

case guarantees on its performance, neither measurements nor simulation based

on recorded traces can be used, since both strategies only evaluate a finite number

of instances. Instead, the worst case has to be identified and the worst-case perform-

ance has to be determined analytically.

7.6.3 Measurements

7.6.3.1 Measurement Techniques Three fundamentally different measure-

ment strategies, which are illustrated in Figure 7.8, have been used in recent

publications.

Consider Figure 7.8(a). Every sensor node executes two synchronization pro-

cedures, synchronizing two different clocks. The first procedure is the actual syn-

chronization algorithm under test, using only the means of the platform on which

it is executed. The second procedure is another algorithm, which achieves a far

226 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

better precision than the first. This is possible since this second synchronization uses

resources that are not offered by the target platform, but which are introduced for the

measurements. A GPS receiver for every sensor node can serve this purpose. Alter-

natively, cable connections can be used as an out-of-band mechanism with very low

delay variability to provide a reference time (e.g., refs. [9,33,34]). In ref. [31], a

single-hop RBS scheme is used to measure the precision achieved by the FTSP mul-

tihop algorithm. This approach has the advantage that every node can evaluate and

log its own precision, and these values can be collected at the end of the experiment

(or even on-line), providing complete information.

An alternative is shown in Figure 7.8(b). All sensor nodes generate some directly

observable event, for example, a rising edge on a particular I/O pin, when their syn-

chronized time reaches a particular value X. An external analyzer device then

records the time interval between the instance when a node’s synchronized time

is X and the instance when it really is X. Such a procedure has been used, for

example, in ref. [23]. Its advantage is that the precision of the measurement is not

limited by the resolution of the nodes’ clocks or the performance of a second syn-

chronization procedure.

As illustrated in Figure 7.8(c), ref. [22] proposes to measure the precision

achieved by one client node as follows: A client node synchronizes over several

hops to a master node. Master and client nodes are virtual nodes emulated on a

single physical node, and the intermediate nodes are all separate physical nodes.

Since the master and the client share a single hardware clock, the precision of the

client can easily be evaluated.

7.6.3.2 Systems and Topologies All three approaches do not scale well.

Therefore, only small networks have been used so far for measurements. The largest

experiment is described in ref. [31], where an 8-by-7 grid of Mica2 Motes is eval-

uated. In ref. [23], a chain of six Mica Motes is used, ref. [13] evaluates five

MANTIS Nymph nodes, ref. [27] evaluates a chain of seven standard PCs with

100 Mbit/s wired Ethernet, and ref. [9] evaluates IPAQ nodes communicating

over 802.11-b WLAN and Mica Motes.

Log
file

Log
file

Log
file

Log
fileLog

file
Analyzer

(a) (b) (c)

Generate eventsOut-of-band synchronization

Virtual nodes on a
single physical node

Figure 7.8 Precision-measurement techniques. (a) Every node is synchronized out of band

and measures its own precision. (b) Every node generates events, the evaluation is centralized.

(c) Some nodes are virtual nodes on the same hardware platform as the master node.

7.6 EVALUATION STRATEGIES 227

How the synchronization error of hundreds of nodes should be measured is an

open question. Current evaluations of such large networks are all based on

simulation.

7.6.3.3 Results We will now give some measurement results from recent pub-

lications. Our intention is to give an idea about the order of magnitude of the achiev-

able precision and to illustrate that although all results are about precision, they are

difficult to compare. In ref. [31], the convergence time of the FTSP algorithm in a

7-by-8 grid is reported to be 10 minutes. A maximal error of 38 ms and an average

error (over all nodes) of 12 ms is reported. For the TPSN algorithm, ref. [23] reports

a maximal error of 45 ms for one hop and 74 ms for five hops. Average errors (over
time) are 17 ms for one hop and 38 ms for five hops. The authors also provide the

percentage of the time when the synchronization error was below the average

error (.60%). The authors of RBS present in ref. [9] the distribution of the synchro-

nization error (over time) for one hop and the mean, median, 95%, and 99% values

over 300 trials for one to four hops.

Some authors evaluate the distribution of the synchronization quality in the

system. At some time t, either the synchronized times ci(hi(t)) of all nodes i [32],

or alternatively the corresponding synchronization errors ei(t) [13,23], are shown

in a histogram.

7.6.4 Simulation

Performance evaluation through simulation has the advantage that the resulting pre-

cision or accuracy of all nodes does not have to be measured, but is directly acces-

sible. Thus, much larger systems can be evaluated.

7.6.4.1 Systems and Topologies In ref. [32], systems with 200 nodes are

evaluated, and in refs. [26] and [32] systems with up to 500 nodes, always randomly

placed in a square area. The transmission range of the nodes is 10 m in a square of

length 80 m [33] or 120 m [24]; in ref. [26], various transmission ranges from 0.4 m

to 1 m are used in a square of length 10 m. In ref. [25], the transmission range is

varied between 0.1 and 0.5 times the width of the square area. In ref. [14], a

chain of 5 nodes is simulated.

7.6.4.2 Message Delays For simulation, a number of assumptions about the

behavior of the system have to be made (e.g., about message delays). In ref. [14],

measured delay traces from an 802.11 wireless local area network (LAN) are

used, and the authors of refs. [24] and [32] generate delay traces according to a

normal distribution. In ref. [32], an additional offset is added that increases when

the medium is saturated, that is, when more than 75% of the channel capacity is

used. The authors of ref. [25] assume zero message delay, arguing that the synchro-

nization errors induced by delay uncertainty and drift can be studied separately.

228 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

7.6.4.3 Clock Drift In refs. [26] and [33], every node is assigned an arbitrary

but constant drift rate between 2100 ppm and þ100 ppm. In ref. [24], all nodes

have a drift rate of 50 ppm.

7.6.4.4 Results The main concern of ref. [24] is to compare centralized and

distributed versions of the LTS algorithm in terms of required messages and

achieved synchronization error. The average error (over all nodes) is evaluated as

a function of the hop distance to the master node. Reference [14] evaluates the syn-

chronization error and the drift-compensation error achieved by the TS/MS algor-

ithms as a function of time. A node one hop away from the master has an error of

1 ms after 83 minutes. A node with five hops distance achieves 3 ms. In ref. [25],

the average synchronization error (over time and over all nodes) is evaluated as a

function of the number of messages exchanged between the nodes. Also the

impact of the transmission range and of the number of master nodes is evaluated.

The authors of ref. [26] mainly evaluate how quickly (number of rounds) a network

synchronizes using the AD algorithm. This is evaluated as a function of the trans-

mission range and as a function of the number of nodes in the system. It is also

shown that the synchronization error decreases exponentially with the number of

rounds. The speed of convergence is also evaluated in ref. [32], for the TDP and

TPSN algorithms; the standard deviation of the nodes’ synchronization error is

shown as a function of time. It is argued that node mobility makes convergence

slower. In addition, histograms and three-dimensional plots of the distribution of

the synchronization error after convergence are presented.

7.6.5 Challenges of a Benchmark

So far, we have presented how synchronization algorithms are evaluated in the cur-

rent literature. We have seen that results of different authors are quite incomparable

due to widely differing goals, assumptions, and techniques. On the one hand, there is

not yet a common understanding about the requirements on synchronization in

sensor networks. On the other hand, there is also disagreement about available

resources and platforms.

A benchmark for comparing the various algorithms on common ground has not

yet been presented. In the following, we discuss why it is difficult to devise a bench-

mark that can be used with a large number of algorithms. Ideally, the comparison of

algorithms is based on simulation using system traces. Such traces should contain

the system and communication model (How many nodes are there? How many of

them are master nodes? Which node communicates with which other node at

which time?), and they should characterize the “adversary” of synchronization,

namely, all message delays and the drift rates of the nodes. But this would require

determining all communications before executing the algorithms. This is not poss-

ible for most of the algorithms, since they actively decide to generate messages,

depending on previous events. Furthermore, some algorithms require broadcast

communication, while others do not.

7.6 EVALUATION STRATEGIES 229

7.7 CALIBRATION

In the previous sections, we have considered the problem of time synchronization,

where the output of a hardware clock had to be mapped to a timescale. Sensor cali-

bration is the problem of mapping the output of a sensor to a well-defined scale. In

this section, we take a step back from time synchronization and consider the more

general problem of calibration. As we will show, there is a close relationship

between calibration and time synchronization, since the latter can be considered a

special case of the former. It might be somewhat unfamiliar to consider a hardware

clock as a sensor, but as we will show in Section 7.7.1, the difference is rather subtle.

The remainder of this section is structured in a similar way as the discussion of time

synchronization in the previous sections. Section 7.7.2 explains why new

approaches are required for calibration in sensor networks, Section 7.7.3 presents

our system model for sensors, Section 7.7.4 discusses various classes of calibration,

and Section 7.7.5 presents concrete calibration algorithms from current literature.

7.7.1 Time Synchronization as Calibration

Sensors are hardware devices that have an input and an output. The input is a certain

physical quantity in the real world, such as temperature, light intensity, acceleration,

radio signal strength, and so on. The output typically is a variable electrical signal,

such as a voltage or current. An analog-to-digital (A/D) converter converts it to a

digital number.

A hardware clock typically consists of four components: a physical system that

has a periodic behavior (e.g., an oscillating quartz, decaying cesium, a pendulum),

a sensor that converts the physical phenomenon to an electrical signal, an A/D con-

verter (e.g., threshold detector) that converts the output of the sensor to a one-bit

number, and a counter that counts the number of rising (or falling) edges seen so

far in the digital output stream. Hence, a hardware clock contains, among other

things, a sensor and the physical phenomenon to observe.

Despite this analogy, time as a physical quantity has some unique characteristics.

For example, in many practical settings, observed physical quantities have a rather

limited range of values (e.g., temperature [[2308C, þ308C]). Given a bounded

relative sensor error (i.e., bounded drift), the absolute measurement error is then also

bounded. However, physical time eventually grows beyond all bounds. Hence, the

absolute error of a software clock is unbounded unless synchronization messages

are exchanged. This explains the need for precise drift compensation and for repeat-

ing synchronization after a certain amount of time.

7.7.2 Revisiting Calibration for Sensor Networks

Calibration is a very old problem, since it is needed for almost all measurement instru-

ments. Despite this, calibration in sensor networks has so far not receivedmuch atten-

tion by researchers, at least when compared to time synchronization. However, a

number of challenges to calibration in sensor networks pose interesting questions.

230 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

A large number of sensor nodes often cannot be calibrated manually and indivi-

dually. This is particularly true for pairwise calibration, where a sensor measures a

quantity emitted by another device (i.e., an actuator). One example for this is

measuring the radio signal strength to infer the distance between devices. In such

a scenario, every sensor would have to be calibrated against every transmitter,

resulting in a quadratic number of calibration steps.

Sensors may be exposed to significant changes of environmental parameters (e.g.,

temperature, humidity) during the lifetime of a sensor network. Since the commonly

used low-cost sensors are rather sensitive to such changes, a one-time factory cali-

bration may not be sufficient. In this case, periodical calibration during the lifetime

of the sensor network is necessary.

7.7.3 System Model

The physical quantity q that is observed by a sensor is mainly a function of the size

of the sensor, of its orientation, of its location, and of time t. Since the size of a

sensor is nonzero, sensors can typically only observe the accumulation (e.g.,

weighted average) of a physical quantity over a certain area or volume. If we

assume that size, orientation, and location are constant properties of a sensor i,

we can denote the time-dependent physical quantity observed by the sensor as

qi(t). Often, q is a real-valued scalar function (e.g., for temperature sensors), but

may also be more complex (e.g., for a location sensor, qmight return triples (x, y, z)).

The output of a sensor i under stimulus qi(t) is denoted as hi(t). Note that hi(t) for

a given qi(t) typically depends on a number of parameters, for example, fabrication

tolerance of the sensor, environmental parameters such as temperature and humid-

ity, and wear of the sensor.

In analogy to software clocks, we introduce a software sensor as a function c that

maps a sensor output h(t) to c(h(t)). Software sensors are typically introduced to map

a sensor output to a standard scale (e.g., the Celsius scale). Here, the goal of cali-

bration is to find a suitable c for a given scale. Often, q does refer to such a standard

scale, in which case the goal of calibration could be to find a c that approximates

ci(hi(t)) ¼ qi(t) for all t.

Asmentioned in the previous section, calibration may also be applied to actuators.

An actuator can be considered a reverse sensor that accepts a digital value h(t) as input

and produces a physical quantity q(t) as output. For example, a heater may accept a

temperature specification as input and heat until this temperature is reached. A soft-

ware actuator c21 then maps a given value v to c21 (v), which can be used as an input

to the actuator to produce a certain physical quantity (e.g., such that q(t) ¼ v).

7.7.4 Classes of Calibration

In this subsection, we adapt the classes of time synchronization introduced in Sec-

tion 7.3 to calibration.

. Internal versus External For internal calibration, all software sensors i should

output the same value ci(hi(t)) if they are exposed to an identical stimulus q(t)

7.7 CALIBRATION 231

(note that if for instance q(t) ¼ 258C, then c1(h1(t)) ¼ c2(h2(t)) ¼ 108C would

mean that sensors 1 and 2 are internally calibrated). For external calibration, the

output of all software sensors must conform to a specified scale (e.g., if

q(t) ¼ 258C, then c1(h1(t)) ¼ c2(h2(t)) ¼ 258C is required).

. Lifetime: Continuous versus On-Demand Because some of the parameters

that influence h may change over time, calibration may have to be repeated

to adapt to these parameters. Calibration may be performed continuously or

on demand.

. Scope: All Nodes versus Subsets All nodes or only subsets of nodes might par-

ticipate in calibration. For example, only some nodes might be equipped with a

certain type of sensor, or the sensor might only be used by some nodes.

. Rate versus Offset Sometimes it is sufficient if differences ci(hi(t1))2 ci(hi(t2))

(e.g., temperature differences) obtained from different sensor instances can be

compared. In this case, rate calibration is sufficient. If, however, absolute

values ci(hi(t)) (e.g., absolute temperature values) originating from different

sensor nodes are to be compared, offset calibration is needed.

. Scale Transformation versus Global Scale Rather than having all software

sensors adhere to a global scale, it might be advantageous (e.g., in terms of

overhead) to maintain local scales and transform sensor readings as they are

sent to nodes with a different scale (e.g., if node 1 uses the Celsius scale and

node 2 uses the Fahrenheit scale, then the transformation function for trans-

forming from node 1 to node 2 is c12(h1(t)) ¼ 1.8h1(t)þ 32).

. Point Estimates versus Bounds Software sensors may either output point esti-

mates (in analogy to time instants for time synchronization) or bounds (analo-

gous to intervals for time synchronization).

7.7.5 Case Studies

In this subsection, we present two calibration algorithms for sensor networks. As in

Section 7.5, we outline the algorithm and give an idea of its performance.

7.7.5.1 Calibration as Parameter Estimation Calibration as parameter

estimation (CPE) [35] provides a framework for external calibration where sensors

measure a quantity emitted by an actuator. Both the behavior of the actuator and the

sensor are unknown and must be taken into account for calibration. The general

approach here is the joint calibration of sensors and actuators such that the overall

system response is optimized.

The algorithm is illustrated by pairwise distance measurements between sensor

nodes using the time of flight of an ultrasound signal. Each node is equipped with

a speaker (the actuator) and a microphone (the sensor). Assuming the nodes have

synchronized clocks, one node emits an acoustic signal containing a time stamp

and the other receives the acoustic signal, computes the time of flight, and multiplies

with the speed of sound to obtain a distance estimate.

232 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

For our discussion, we consider a virtual distance sensor that directly outputs a

distance estimate h(t) given the true distance as the physical stimulus q(t). Due to

reasons discussed later, distance estimates include various systematic errors.

Hence, the goal of calibration is to find a function c that maps the distance estimate

h(t) to the correct distance q(t).

For CPE, cmust now be parameterized, such that it is expressed as a function of h

and of parameters that describe the various error sources. These parameters are

related to both the sensor and to the actuator. For example, the distance h(t)

output by the sensor can be expressed in terms of the true distance q(t):

h(t) ¼ BT þ BR þ GTq(t)þ GRq(t)

where BT and BR refer to constant distance offsets caused by startup times for

diaphragm oscillation in the transmitter and the receiver, respectively, and GT and

GR represent the distance-dependent influence of the transmitter volume and the

receiver sensitivity, respectively. Solving for c(h(t)) U q(t), we obtain

c(h(t)) ¼ h(t)� BT � BR

GT þ GR

Although there is one instance of the previously given joint-calibration function for

every transmitter–receiver pair, there is only one set of parameters (BT, BR, GT, GR)

for each of the N nodes. Hence, we can formulate a linear equation system with 4N

variables (i.e., the four parameters for each node just given) and 4N equations, which

requires 4N pairs (h(t), c(h(t)) ¼ q(t)) to solve. Alternatively, more samples can be

collected and least-squares optimization can be used to obtain more accurate esti-

mates for the parameters. Once the parameters (BT, BR, GT, GR) for each node are

known, the calibration functions are also known.

The authors performed an experiment with an 8 � 4 square grid of Berkeley

Motes with a node distance of 30 cm, such that the true distances between pairs

of nodes can be easily calculated. Each node emitted an ultrasound beacon, which

allows all other nodes to estimate their distance to the transmitting node. The aver-

age error of the uncalibrated distance estimates is 74.6%. With the preceding cali-

bration procedure, the average error could be reduced to 10.1%.

7.7.5.2 Collaborative In-Place Calibration Collaborative in-place cali-

bration (CIC) [37] supports internal calibration under a number of assumptions:

the sensor nodes should be densely deployed, sensor orientation should have a neg-

ligible impact on the sensor output, spatial frequency of the observed physical quan-

tity should be low, temporal frequency of the quantity should be high. Essentially,

these assumptions ensure that collocated sensor nodes will see very similar stimuli

q(t) that change quickly over time. Additionally, it is assumed that q, h, c are real-

valued scalar functions. Calibration functions c are assumed to be linear functions,

although the method could also be adapted to nonlinear functions. The algorithm

consists of two phases. In the first phase, pairwise calibration among collocated

7.7 CALIBRATION 233

nodes is performed. In the second phase, calibration among remote nodes is per-

formed.

In the first phase, collocated pairs of nodes are calibrated against each other. Let

us assume node 1 has to be calibrated against node 2. Then the goal is to derive a

linear calibration function c12 with c12(h1(t)) ¼ h2(t). First, both sensor nodes

record sensor readings hi(tx), such that both nodes read out the sensor concurrently

at tx, which requires clock synchronization. The sensor nodes exchange these read-

ings, so that node 1 obtains a set of data points (tx, h
1(tx), h

2(tx)). Since c
12 is assumed

to be linear, it can be derived by linear regression from this set of data points. How-

ever, even though sensor readout is synchronized, it is possible that the two sensors

perceived different physical stimuli q1(tx) = q2(tx) due to their different locations.

Hence, such data points have to be eliminated before regression.

For this, confidence values are assigned to the data points, and the data points

with low confidence values are eliminated. The confidence values are obtained by

shifting a time window with a given size over the set of data points. For each

window position, the linear correlation coefficient r [[21, 1] for the contained

data points is calculated. The larger r is, the better the data points fall on a line

(i.e., the closer q1(tx) and q2(tx) are). If r is positive, then each data point in the

window is further examined. If the data point contributes a positive addend to r,

then the confidence of this data point is increased by r. The initial confidence of

each data point is zero.

After this procedure, all data points with a confidence below a certain threshold

value are eliminated.With the remaining set, linear regression is performed to derive

a linear calibration function c12. This function is also assigned a confidence that

equals the linear correlation coefficient of the used data points.

Calibration functions for remote nodes are obtained by concatenating multiple

calibration functions for collocated nodes. For example, for two remote nodes 1

and 3, the calibration functions c12 and c23 may be concatenated to give a calibration

function c13(h1(t)) ¼ c23(c12(h1(t))). However, there are typically many ways to

construct a remote calibration function from many local function. Due to inconsis-

tencies, it must be expected that for an alternate calibration function c013, we have

c13(h1(t)) = c013(h1(t)). Hence, the second phase of the algorithm computes more

consistent nonlocal calibration functions ĉ.

The algorithm generates a new set of data points and uses linear regression to

compute ĉij. To obtain the data points, the algorithm enumerates all concatenated

paths up to a specified maximum length. The kth path {c
ij
k} is assigned a confidence

r
ij
k by multiplying the confidences of the path segments. Using a set of random data

values xi, the data points are calculated as (xi, (1/N)Skrk
ijck

ij(xl)), where N is the

number of concatenated paths ck
ij.

The accuracy of the derived calibration functions for collocated sensors was

measured in an experiment, where nine Berkeley Motes with temperature sensors

were placed in a 3 � 3 square grid with a node distance of 5 cm. A slowly

moving hair dryer was used as a heat source. About 70% of the pairwise calibration

functions deviated by less than 58C, while more than 10% were off by more

than 108C.

234 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

7.8 SUMMARY

In this chapter, we discussed various aspects of time synchronization and calibration

in sensor networks. We outlined the applications of physical time and discussed why

existing algorithms for time synchronization have to be revisited. We also presented

common classes of and techniques for synchronization, reviewed time-synchroniza-

tion algorithms from the literature, and discussed evaluation strategies. Time syn-

chronization was identified as a special case of calibration, and many of the

observations about time synchronization could be transferred to calibration.

While time synchronization for sensor networks is an established field of

research, calibration has not received that much attention yet. However, we

expect that calibration becomes a more active field as sensor networks move

beyond the lab and small field experiments. Unfortunately, calibration is a much

more general and complex problem than time synchronization. Hence, it is likely

that research will first focus on more specific calibration problems. An interesting

question is, can techniques developed for time synchronization be adapted to cali-

bration problems?

The case studies of time synchronization algorithms and the discussion of evalu-

ation techniques illustrated the very real problem of evaluating and comparing syn-

chronization algorithms. Note that these difficulties also apply to calibration and

many other distributed algorithms. Hence, one of the challenges for future research

is the development of methods and tools for the evaluation of time synchronization

and calibration in large-scale sensor networks.

Current application-oriented projects (e.g., ref. [8]) indicate that many simplify-

ing assumptions about sensor networks (e.g., immobile nodes, fixed-network

topology) may not hold in practice. Hence, future work might have to revisit existing

approaches for time synchronization and calibration under updated assumptions.

REFERENCES

1. D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin. Coping with Irregular Spatio-

Temporal Sampling in Sensor Networks. Computer Communication Review,

34(1):125–130, 2004.

2. B. Liskov. Practical uses of synchronized clocks in distributed systems. In Proceedings of

the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC ’91),

pages 1–10, August 1991.

3. W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless

sensor networks. In Proceedings of the 21st Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), Volume 3, pages 1567–1576,

New York, June 2002.

4. K. Römer. Temporal message ordering in wireless sensor networks. In Proceedings of

the IFIP Mediterranean Workshop on Ad-Hoc Networks (Med-Woc-Net 2003), pages

131–142, Madhia, Tunisia, June 2003.

REFERENCES 235

5. L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin. Locating tiny sensors in time and

space: A case study. In Proceedings of the International Conference on Computer

Design (ICCD 2002), Freiburg, Germany, September 2002.

6. D. L. Mills. Internet time synchronization: The network time protocol. IEEE

Transactions on Communications, 39(10):1482–1493, October 1991.

7. J. Elson and K. Römer. Wireless sensor networks: A new regime for time synchroniza-

tion. In Proceedings of the 1st Workshop on Hot Topics in Networks (HotNets-I),

Princeton, New Jersey, October 2002.

8. P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-efficient

computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet.

In Proceedings of the 10th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-X), pages 96–107,

San Jose, California, October 2002.

9. J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using refer-

ence broadcasts. In Proceedings of the Fifth Symposium on Operating Systems Design

and Implementation (OSDI 2002), Boston, Massachusetts, December 2002.

10. F. Cristian. Probabilistic clock synchronization. Journal of Distributed Computing,

3:146–158, 1989.

11. D. Dolev, R. Reischuk, R. Strong, and E. Wimmers. A Decentralized High Performance

Time Service Architecture. Technical Report 95/26, Institute for Computer Science,

University of Lübeck, November 1995.

12. J. Y. Halpern and I. Suzuki. Clock synchronization and the power of broadcasting.

Distributed Computing, 5(2):73–82, 1991.

13. H. Dai and R. Han. Tsync: A lightweight bidirectional time synchronization service for

wireless sensor networks. Mobile Computing and Communications Review, 8(1):125–

139, January 2004.

14. M. L. Sichitiu and C. Veerarittiphan. Simple, accurate time synchronization for wireless

sensor networks. In Proceedings of the IEEE Wireless Communications and Networking

Conference (WCNC 2003), Volume 2, pages 1266–1273, New Orleans, Louisiana,

March 2003.

15. W. H. Press, S. A. Teukolsky, W. T. Vetterli, and B. P. Flannery. Numerical Recipes in C,

Second Edition. Cambridge University Press, 1992.

16. F. M. Gardner. Phaselock Techniques. John Wiley & Sons, 1979.

17. R. Noro. Synchronization over Packet-Switched Networks: Theory and Applications.

Ph.D. thesis, EPFL, Lausanne, Switzerland, 2000.

18. D. L. Mills. Improved algorithms for synchronizing computer network clocks. IEEE/
ACM Transactions on Networks, 3(3):245–254, June 1995.

19. J.-M. Berthaud. Time synchronization over networks using convex closures. IEEE/ACM
Transactions on Networking, 8(2):265–277, 2000.

20. L. Zhang, Z. Liu, and C. Honghui Xia. Clock synchronization algorithms for network

measurements. In Proceedings of the 21st Annual Joint Conference of the IEEE Compu-

ter and Communications Societies (INFOCOM), Volume 1, pages 160–169, New York,

June 2002.

21. P. Verissimo, L. Rodrigues, and A. Casimiro. Cesiumspray: A precise and accurate global

time service for large-scale systems. Real-Time Systems, 3(12):243–294, 1997.

236 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

22. S. Mitra and J. Rabek. Power efficient clustering for clock synchronization in dynamic

multihop networks, unpublished. See at http://theory.lcs.mit.edu/mitras/courses/
6829/project/final_report.ps, 2003.

23. S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor net-

works. In Proceedings of the 1st International Conference on Embedded Networked

Sensor Systems (SenSys), pages 138–149, November 2003.

24. J. van Greunen and J. Rabaey. Lightweight time synchronization for sensor networks. In

Proceedings of the 2nd ACM International Workshop on Wireless Sensor Networks and

Applications (WSNA), pages 11–19, San Diego, California, September 2003.

25. P. Blum, L. Meier, and L. Thiele. Improved interval-based clock synchronization in

sensor networks. In Proceedings of the 3rd International Symposium on Information Pro-

cessing in Sensor Networks (IPSN), pages 349–358, Berkeley, California, April 2004.

26. Q. Li and D. Rus. Global clock synchronization in sensor networks. In Proceedings of

IEEE INFO COM 2004, Hong Kong, China, March 2004.

27. K. Römer. Time synchronization in ad hoc networks. In Proceedings of the 2nd ACM

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pages 173–

182, Long Beach, California, October 2001.

28. K. Marzullo and S. Owicki. Maintaining the time in a distributed system. In Proceedings

of the 2nd Annual ACM Symposium on Principles of Distributed Computing, pages

295–305, ACM Press, 1983.

29. U. Schmid and K. Schossmaier. Interval-based clock synchronization. Real-Time

Systems, 12(2):173–228, 1997.

30. L. Meier, P. Blum, and L. Thiele. Internal synchronization of drift-constraint clocks in

ad-hoc sensor networks. In Proceedings of the 5th ACM International Symposium on

Mobile Ad Hoc Networking and Computing, pages 90–97, Tokyo, Japan, May 2004.

31. M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time synchronization

protocol. In Proceedings of the 2nd ACN Conference on Embedded Networked Sensor

Systems (SenSys), pages 39–49, Baltimore, Maryland, November 2004.

32. W. Su and I. F. Akyildiz. Time-diffusion synchronization protocol for sensor networks.

IEEE/ACM Transactions on Networking, 13(2): 384–397, 2005.

33. M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Clock synchronization in wireless local

area networks. In Proceedings of the 12th Euromicro Conference on Real Time Systems,

pages 183–189, June 2000.

34. P. Blum and L. Thiele. Clock synchronization using packet streams. In Brief Announce-

ments of the 16th International Symposium on DIStributed Computing (DISC 2002),

pages 1–8, Toulouse, France, October 2002.

35. K. Whitehouse and D. Culler. Calibration as Parameter Estimation in Sensor Networks. In

Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and

Applications (WSNA), pages 59–67, Atlanta, Georgia, September 2002.

36. V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A collaborative approach to

in-place sensor calibration. In Proceedings of the 2nd International Workshop on Infor-

mation Processing in Sensor Networks (ISPN), pages 301–306, Palo Alto, California,

April 2003.

REFERENCES 237

&CHAPTER 8

The Wireless Sensor Network MAC

EDGAR H. CALLAWAY, Jr.

Motorola Labs, Plantation, Florida

Wireless sensor networks usually employ performance metrics that are different

from those of more conventional data networks, emphasizing low power consump-

tion and low cost rather than data throughput or channel efficiency. Since power

is consumed every time a networked device accesses the channel (either transmitting

or receiving), the method by which the device accesses the channel can have a large

effect on its power consumption, and therefore the valuation of the wireless sensor

network as a whole. Should the channel-access method require specialized or

additional hardware (e.g., a second transceiver, or more processor memory), the

cost incurred can similarly affect network valuation. The open systems interconnec-

tion (OSI) stack places the responsibility for channel access in the medium-access

control (MAC) sublayer of the data link layer, the second layer of the stack. This

chapter will discuss the function of the MAC sublayer, identify some of the problems

that are addressed (or avoided) in a good MAC design, and review the relationships

between the performance goals of the network and tradeoffs that can be made in

selecting and designing a MAC protocol. The chapter will then review the major cat-

egories of MAC protocols used in data networks of all types, describe a selection of

MAC protocols designed for wireless sensor networks, and conclude with a look at

directions for future research.

8.1 INTRODUCTION

Wireless sensor networks usually employ performance metrics that are different

from those of more conventional data networks, emphasizing low-power consump-

tion and low cost rather than data throughput or channel efficiency [1]. Since power

is consumed every time a networked device accesses the channel (either transmitting

or receiving), the method by which the device accesses the channel can have a large

239

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

effect on its power consumption, and therefore the valuation of the wireless sensor

network as a whole. Should the channel-access method require specialized or

additional hardware (e.g., a second transceiver or more processor memory), the

cost incurred can similarly affect network valuation. The open systems interconnec-

tion (OSI) stack [2] places the responsibility for channel access in the medium-

access control (MAC) sublayer of the data-link layer, the second layer of the

stack. This chapter discusses the function of the MAC sublayer, identify some

of the problems that are addressed (or avoided) in a good MAC design, and

review the relationships between the performance goals of the network and trade-

offs that can be made in selecting and designing a MAC protocol. The chapter

then reviews the major categories of MAC protocols used in data networks of

all types, describes a selection of MAC protocols designed for wireless sensor

networks, and concludes with a look at directions for future research.

8.1.1 Function of the MAC Layer

The wireless communication medium is a resource that must be shared by all

network devices. Therefore, a scheme must be devised to provide access to it in

some way that meets the needs of the network application. This problem is

termed the MAC problem.

The communication medium has several dimensions that can be exploited for

access control, including time, frequency, and coding. In addition, several physical

parameters of the network devices themselves can also be employed, including

spatial separation, antenna directionality, transmitter power output, and receiver

sensitivity. Gummalla and Limb [3] provide a good survey of wireless MAC proto-

cols in general. Murthy and Manoj [4] provide an encyclopedic collection of MAC

protocols for ad hoc wireless networks.

For wireless sensor networks, the MAC problem assumes a collection of quasi-

stationary network devices. Here we define “quasi-stationary” to mean that the

network devices move slowly compared to the speed of network operation. Note

that, unlike many other types of networks, the assumption that all network devices

generate new frames at the same average rate is often not a good one for wireless

sensor networks, which may have very asymmetric data-generation patterns. The

transmissions of some devices, in fact, may consist entirely of acknowledgment

frames (devices that are data sinks), while other devices may generate the majority

of network traffic (devices that are data sources). This network heterogeneity can be

used to advantage in MAC algorithms.

There is a subtle yet important distinction between medium-access protocols and

multiple-access protocols. Multiple-access protocols solve the MAC problem, but in

addition attempt to service multiple simultaneous communication links [5]. This,

of course, requires multiple logical channels, so the MAC problem becomes one

of optimally sharing multiple communication media in a way that meets the

needs of the network application. Multiple-access protocols are therefore a subset

of the set of medium-access protocols.

240 THE WIRELESS SENSOR NETWORK MAC

The structure of this chapter is as follows. The remainder of Section 8.1 discusses

features of the MAC problem, emphasizing those of special importance to wireless

sensor networks. Section 8.2 discusses several popular MAC methods employed

today. Section 8.3 focuses this discussion on MAC methods proposed for use in

wireless sensor networks. Section 8.4 concludes by considering some future direc-

tions for research.

8.1.2 Problems to Be Solved or Avoided by the MAC Layer

There are several important issues that arise during the solution of the MAC

problem. Many are specific to the particular type of solution selected; however, a

few are more generic and concern all MAC algorithms.

8.1.2.1 Fairness Most MAC algorithms are designed to be fair, that is, to pro-

vide equal access to the channel for all network devices that desire to use it. In most

applications it is undesirable to give some devices preferential treatment, allowing

them better access to the channel than other devices. “Better access to the channel”

in this context is usually defined as “faster access to the channel,” although in

general it may be best defined as “access to the channel leading to better quality

of service,” since the network application may value performance metrics other

than data throughput. This situation may occur, for example, in wireless sensor

networks that value long operational life over message latency. Such networks

may elect to distribute channel access in a manner that will tend to equalize the

remaining battery life of network devices, regardless of message latency; the goal

of these schemes is to have the batteries of all network devices reach depletion at

the same time, in a manner analogous to that of Oliver Wendell Holmes’ “one-

hoss shay” (“It ran a hundred years to the day”) [6]. It is also important to consider

that often a wireless sensor network performs a single application, as opposed to a

wireless local area network (WLAN), which has many independent users perform-

ing independent applications competing for the available communication medium.

Having collective or atomic network functionality can reduce the value of MAC

fairness; it may not be important, for example, that an individual message is sent

if others carrying identical information reach the same destination.

8.1.2.2 Latency Message latency, the time it takes for a message to travel from

an application on a source network device to an application on a destination device,

is important in most wireless data networks; in some, message latency (or its vari-

ation) can be of primary importance (most multimedia applications fall into this

category). MAC latency is a significant contributor to message latency in most

networks; the design of the MAC therefore can have a significant effect on the

suitability of the network for a proposed application. Increased MAC latency is

frequently traded for reduced energy consumption in the design of wireless sensor

network protocols [7].

8.1 INTRODUCTION 241

8.1.2.3 Deadlock, Livelock, and Other Undesirable States Like most

algorithms, it is possible for MAC algorithms to exhibit unexpected (and therefore

undesirable) behavior under certain conditions, behavior that usually takes the form

of a drop in message throughput, often to zero. The algorithm reaches a state in

which communication is not possible, and from which it cannot extract itself (at

least in a given amount of time). The entry conditions to these states can be particu-

larly difficult to identify since, from an ad hoc network perspective, the MAC algor-

ithm is usually a distributed algorithm, and the variables involved may include

particular combinations of the physical location of the network devices, the network

topology, the offered message load, traffic history, and other factors difficult to

model a priori.

As the name suggests, MAC deadlock is a logical condition that can arise in

which a channel is available, network devices are operating properly, yet no attempt

to communicate is made. Deadlock can arise, for example, if each device in a

network is simultaneously expecting to receive a frame from another as a condition

for future transmissions. Since none of them receives the frame it expects, all stay in

a state of suspended animation, and communication halts.

A somewhat less common occurrence is receive livelock, in which there is so

much MAC control message (message setup) overhead (perhaps from a large

number of neighbors with much traffic to send) that the processing power of the indi-

vidual devices is exceeded, and no data transfer is possible. This can occur in a

so-called “broadcast storm,” when a broadcast message is distributed in an ad hoc

network without controlling the number of message retransmissions [8].

Another undesirable condition occurs in carrier sense multiple-access (CSMA)

algorithms (see Subsection 8.2.3.2) when the binary exponential backoff exponent

is allowed to increase without limit, a condition that forces network devices to

self-censor themselves to silence. Several issues with CSMA algorithms employing

the request-to-send/clear-to-send (RTS/CTS) exchange have been identified by

Ray, Carruthers, and Starobinski [9].

Deadlock, livelock, and other logical cul-de-sacs are often quite subtle, and must

be carefully considered with any MAC algorithm—along with the network topo-

logy, network device density, and other assumptions about the environment in

which the MAC algorithm must perform. M.A. Youssef et al. suggest that analyses

of a formal model for MAC algorithms are useful [10].

8.1.3 Important Factors in Wireless Sensor Network MAC Design

Due to the differing performance metrics applied to them, a MAC protocol suitable

for wireless sensor networks is often significantly different than one designed for

other applications, such as WLANs.

8.1.3.1 Emphasis on Power Consumption As we have said, a primary

concern of wireless sensor networks is power consumption. It is desirable to place

the network devices in a low-power sleep mode as much as possible, to minimize

average power consumption. This means that a MAC protocol that requires network

242 THE WIRELESS SENSOR NETWORK MAC

devices to monitor the channel constantly would be a poor choice for wireless sensor

networks, since their receivers would have to be constantly active and drawing

current. (Due to their low transmitter output power, the receivers of many wireless

sensor network devices dissipate more power than their transmitters, exacerbating

this situation.) Any energy expended monitoring a silent channel, or listening to a

network device that does not have a message to send, is wasted energy that could

better be used for actual communication.

It is not just the active time that costs. Transceivers transitioning from a sleep

state to an active state require a finite amount of time to lock synthesizers, regulate

voltages, program registers, and a host of other tasks. These take time and consume

energy, too, and if the MAC design requires frequent, short periods of activity, a sig-

nificant amount of energy will be consumed just waking the transceiver up [1]. This

wake-up problem can occur, for example, in a time-division multiple-access

(TDMA) system (see Section 8.2.1.2) sending frequent control frames.

8.1.3.2 Deemphasis on Throughput, Message Latency, and
Fairness As previously noted, wireless sensor networks emphasize low power

consumption and low cost over more traditional network performance metrics

such as data throughput, message latency, and even fairness. This change in empha-

sis leads to the selection of different trade-offs during the design of the wireless

sensor network MAC [7]. For example, as discussed before, the successful wireless

sensor network MAC is unlikely to employ a scheme requiring constant monitoring

of the channel. However, the decision to allow the network devices to sleep will

almost certainly result in an increase in message latency, since messages must

wait for devices to awaken before communication can be established. (The concept

of a low-power wake-up radio has been proposed as a way to have the best of both

worlds, i.e., the low message latency of an always-awake network device with low

average power consumption [11–13]. Such a receiver would draw only a few tens of

microwatts, and serve only to wake up the main receiver to receive the message.)

Fairness, to both network devices and messages, may also be traded for improved

power consumption. In many cases, wireless sensor networks are designed with a

tree topology, with a central device that is the primary data source, or primary

data sink, in the network. This is often the case in environmental sensing, for

example, where the purpose of the network is to send sensor data to a gateway

device for collection. In this case, it has been proposed that the MAC be optimized

for message transmission in the direction most of the messages are traveling, at the

expense of those that may travel in other directions, for an improvement in energy

efficiency and message latency [14]. It is also important to realize that there is often

a philosophical difference between wireless sensor networks and more conventional

data networks: Since wireless sensor networks often support a single application,

the information from multiple sensors can be redundant. Redundant information

can be delayed or even dropped from the network without affecting the common

task of the network devices. MAC protocols can take advantage of this to reduce

message fairness in certain situations, especially if a lower-cost or lower-power net-

work results. Conventional data networks, on the other hand, more often function as

8.1 INTRODUCTION 243

“radio common carriers,” supporting applications of all types. In this case, the loss

of a single frame can be catastrophic, and link-level message fairness is of greater

importance. In these cases, energy may be spent to enhance fairness.

8.1.3.3 Low Channel Occupancy In the design of a MAC for wireless

sensor networks, it should be kept in mind that the most common state of the

network is that the channel is unused, that is, due to the low throughput of most wire-

less sensor networks, the majority of the time they are in operation there will be no

traffic on the channel within range of a given device. For lowest energy consump-

tion, therefore, it is incumbent on the designer to ensure that the most efficient

state of the MAC is that in which no traffic is present.

8.1.3.4 Self-Organization and Self-Maintenance Wireless sensor net-

works are typically designed to be ad hoc networks, installed by nonspecialists,

and must be self-organizing and self-maintaining. That is, there is no system admin-

istrator available to identify and correct problems. The wireless sensor network

MAC must therefore be utterly stable under a wide range of real-world conditions,

including a wide array of network topologies and data generation patterns.

8.1.3.5 Scalability Scalability is also an important factor in a wireless sensor

network MAC. Since wireless sensor networks are self-organizing, and have an

almost unlimited variety of applications, the MAC must be capable of operation

in networks of both large and small order, and with a wide range of device densities.

8.1.3.6 Quasi-Stationary Assumption It is often assumed that the devices

in wireless sensor networks are quasi-stationary, that is, any movement they may

make is slow relative to the speed at which the network may respond to such move-

ment. This assumption is often employed to increase the sleep periods of the net-

work devices, to improve overall energy efficiency, but it should be carefully

considered in light of the proposed application. For example, if an asset tracking

application is considered, it is important that the MAC be able to supply channel

access fast enough for the asset to be tracked through the network; otherwise,

since it will be unable to transmit a data frame, it will seem to have simply disap-

peared from the network once its motion begins.

8.1.3.7 Use of Unlicensed Frequency Bands An often-overlooked issue

with the wireless sensor network MAC is the fact that they are nearly always

employed on unlicensed frequency bands—bands that are shared with other ser-

vices. The fact that the channel is being shared with noncooperative devices per-

forming other services can greatly complicate MAC design. For example, the

MACs employed by the two services may interact in undesirable ways, producing

deadlock in one or both of the services, or greatly reducing quality of service

(QoS). This behavior may be hard to predict in advance, since there are many differ-

ent services operating on the unlicensed bands, and many potential interactions

between them.

244 THE WIRELESS SENSOR NETWORK MAC

Coexistence between services can be an undocumented requirement in many

wireless sensor network applications, but it can be an extremely important one,

especially if the wireless sensor network is not the first service in the band. Being

second means that it is the responsibility of the wireless sensor network designer

to coexist with the existing service. However, it is unlikely that the existing service

has been designed to coexist with the incoming wireless sensor network, the exist-

ence of which the designers of the existing service may not have expected. The cor-

rect policy for the wireless sensor network to follow could perhaps be, “first, do no

harm,” but this philosophy can have unintended consequences.

For example, consider the use of CSMA on an unlicensed band. Should a device

back off if it detects any signal during its channel-sensing period, or just a signal

from a member of its network? If it desires to be a “good neighbor,” perhaps the

policy should be to back off upon detection of any signal energy, but this policy

is unproductive if the other signal is leakage from a microwave oven on the 2.4-

GHz industrial, scientific, medical (ISM) band; in fact, all that will be accomplished

is that the device’s own communication will be delayed. However, if a device is

required to not only detect signals in the channel but characterize them as well,

additional time must be taken to attempt to demodulate the signal, determine

baud rate, and perhaps even decode a frame header. Simply detecting energy in a

channel can be performed in a few microseconds, but characterizing a signal can

take much longer—and waste significant energy.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS

The following is a brief review of some of the most popular medium-access control

methods employed today. It is important to keep in mind that these methods may be

combined in a single application; for example, a system may employ a polling pro-

tocol on a given channel, but have multiple frequencies available for use (frequency-

division multiple access (FDMA)).

Numerous ways have been proposed to organize the various medium-access con-

trol methods; the taxonomy of Figure 8.1 is but one method. Classification of

medium-access control methods is made difficult not only by the fact that schemes

may be combined in various ways, but also because each method has many vari-

ations, so that even a precise definition of some methods can be elusive, and different

practitioners may reasonably disagree in some areas. In addition, it should be noted

that Figure 8.1 is not exhaustive; there are many other medium access control

methods that have been proposed but are not included here. Among these are

polarization-division multiple access (PDMA) [15] and space-division multiple

access (SDMA) [16,17], in which orthogonally polarized and highly directive anten-

nas, respectively, are employed to transmit to multiple receivers at the same time, on

the same frequency. Despite these limitations, it is instructional to consider some

broad classifications; Figure 8.1 divides medium-access protocols into fixed-

assignment, demand-assignment, and contention-access protocol categories.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 245

Fixed-assignment protocols are those for which, as the name implies, channel

assignments are fixed, regardless of need. Demand-assignment protocols schedule

channel access based on the demand of users having message traffic to transmit.

Those without traffic are not given channel access. In both of these types, users

transmitting messages are assured by the medium-access algorithm that their mess-

ages will not collide with messages from other devices in the network. In the

third category, contention-access (also called random access) protocols, this assur-

ance is not made; the protocols must include a recovery mechanism for message

collisions.

8.2.1 Fixed-Assignment Protocols

As previously noted, fixed-assignment protocols make fixed-channel assignments,

without consideration of any variation in communication needs that may exist

among devices in the network. This makes fixed-assignment protocols often the

easiest to implement, but also the most inflexible in response to changing network

conditions. This last characteristic is often a large disadvantage for wireless

sensor networks, due to their ad hoc, self-organizing, and self-maintaining nature,

and fixed-assignment protocols are rarely proposed for them. However, most

fixed-assignment protocols can be modified into demand-assignment variants,

some of which have been proposed for wireless sensor networks, so it is important

to understand their characteristics and limitations.

8.2.1.1 Frequency-Division Multiple Access Possibly the oldest method

of medium-access control is that of frequency-division multiple access (FDMA),

which can trace its roots to Marconi’s famous “four sevens” British patent of

1900 [18]. Marconi’s patent disclosed the use of tuned circuits to enable multiple

wireless stations to operate simultaneously without interference, by employing

Media access protocols

Fixed assignment
protocols

Demand assignment
protocols

Contention access
protocols

FDMA

TDMA

CDMA Trunking Polling

Reservation
methods

ALOHA CSMA

Figure 8.1 Medium-access protocol taxonomy. Fixed-assignment and demand-assignment

protocols are often collectively referred to as “contention-free” protocols.

246 THE WIRELESS SENSOR NETWORK MAC

different frequencies of operation. Prior to this time, only untuned systems were in

use and, as the range of wireless systems improved, interference was becoming a

serious problem that threatened to limit the utility of the nascent wireless industry.

Dividing the frequency spectrum into bands to be utilized by individual stations

(much later to be assigned and enforced by government regulation) greatly reduced

this problem, and FDMA was the primary multiple-access method used in all types

of wireless services for many decades to follow. The concept of FDMA is shown in

Figure 8.2.

Despite its popularity, FDMA is not without its weaknesses. Primary among

these, like all fixed-assignment protocols, is the need to plan ahead for the “worst

case” maximum-use scenario. Assigning frequencies for all potential users of the

spectrum, when far fewer users will in fact be present most of the time, leads to

poor spectrum utilization. Much of the time, a significant fraction of the available

spectrum will be unoccupied. While this is a minor or nonexistent problem for

some services, such as broadcasting, that occupy their assigned frequencies

almost continuously, it is a significant problem for other services, such as public

safety communications, that seldom require use of their frequencies (but must

have them when required). Just being able to predetermine the maximum number

of users may be impractical for some ad hoc systems, such as wireless sensor

networks. Another weakness is the spacing between users (guard bands) that must

be employed. A trade-off must be made between spectrum utilization efficiency

(higher when the guard bands are small) and the cost of filtering needed to select

the desired user (unfortunately, also higher when the guard bands are small).

Guard bands may be reduced, and less-expensive filtering used, by physically

spacing users so that the received adjacent-channel energy is attenuated; however,

this limits the attainable density of networked devices, and may not be practical

with mobile users.

Time

Frequency

f1

f2

f3

User 1

User 2

User 3

Guard band

Guard band

Figure 8.2 Frequency-division multiple access. A frequency band is reserved at all times for

each user.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 247

8.2.1.2 Time-Division Multiple Access A second method of fixed-

assignment multiple access is time-division multiple access (TDMA). In the basic

TDMA scheme, shown in Figure 8.3, a single channel is time-shared, that is, use

of the channel is divided among several users by allowing each user to access the

channel periodically, but only for a small period of time (a “time slot”). After this

time slot, the user must relinquish the channel to another user. Since the channel

is only available to each user for a fraction of time, the raw (over-the-air) data

rate used by each user must be proportionally higher to maintain a given throughput.

TDMA first came into practical use in satellite communication systems [19], an

application for which FDMA has certain disadvantages, including the development

of intermodulation products in the satellite transponder [20]. Since it employs only

one channel, the use of TDMA eliminates the intermodulation problem in that appli-

cation. It has since come in to wide use in cellular telephone systems, including

Global System for Mobile Communications (GSM) [21], and the American National

Standards Institute/Telecommunications Industry Association/Electronics Industry
Association ANSI/TIA/EIA-136-B digital cellular standard [22].

Difficulties with TDMA largely center on the problem of synchronizing a number

of independent users. Since the time-base references of the users are independent,

the transmission of each user typically begins with a preamble that includes a bit

synchronization pattern, followed by a “start of burst delimiter” (SBD), a synchro-

nization code word indicating that data are to immediately follow. To account for the

finite accuracy of synchronization, the possibility of clock drift during the slot, and

differences in propagation delay between users, guard bands (periods of unassigned

time) between slots are typically employed. These features are shown in Figure 8.4.

TDMA is frequently employed as a demand-assignment protocol, rather than a

fixed-assignment protocol, by allowing users to request and receive multiple slots.

As a demand-assignment protocol, it has been proposed as the underlying structure

for a variety of wireless sensor network channel access methods [23,24]. Clare,

Pottie, and Agre [25] note that the network time synchronization inherent in

TDMA may also be used to synchronize sensor sampling and signal processing,

enabling coherent beam formation of the sensors. The achievement and maintenance

of time synchronization across a large multihop network, however, is quite difficult,

especially if low-power operation is required. Due to the unavoidable communi-

cation delay across the network, it is possible for instabilities to develop; the

Time

Frequency

f1 User 1 User 2 User 3 User 1 User 2 …

Figure 8.3 Time-division multiple access. A periodic time slot is reserved for each user on a

single frequency.

248 THE WIRELESS SENSOR NETWORK MAC

delays themselves vary, of course, due to the changing routes messages may take

over the life of the network.

8.2.1.3 Code-Division Multiple Access As a type of spread-spectrum com-

munication, code-division multiple access (CDMA) is a more recent development

than FDMA and TDMA, and relies on the observation that coding, as well as

frequency and time, can be used to separate simultaneous transmissions in a fre-

quency band and thereby achieve multiple access. If the codes are orthogonal, or

nearly so, so that any bit errors caused by cochannel interference (interference

from other users on the same frequency, but employing different codes) can be

handled by forward error correction, multiple users may occupy the same band.

There are two fundamental types of spread-spectrum communication, frequency

hopping and direct sequence, and each may be used for CDMA. Frequency hopping,

as the name suggests, switches the carrier frequency of the modulated signal from

channel to channel in the frequency band in a pseudorandom pattern (the “code”).

The device may linger on a given channel for the duration of an entire message

(“slow hopping”), or it may stay on a given channel only for the duration of a

few symbols (“fast hopping”). In either case, multiple devices attempting to send

message traffic on the network may do so simultaneously, since it is unlikely that

they will be on the same carrier frequency at the same time. The sequence of trans-

mission frequencies is, of course, known at both the transmitter and the receiver, but

to other devices the sequence seems random. Direct sequence, on the other hand,

keeps the carrier frequency constant, but instead multiplies the transmitted binary

data by a predetermined, high-frequency, pseudorandom spreading code prior to

modulation of the carrier. The elements of the spreading code are called chips,

and there are typically 10 or more chips per transmitted bit of data. Since the rate

at which chips are sent (the chip rate) is greater than the bit rate, the direct sequence

signal occupies more bandwidth than the unspread signal. At the receiver, the

received signal is multiplied by an identical spreading code, producing the recovered

data. Multiple devices therefore may send message traffic on a given frequency

simultaneously, using orthogonal spreading codes.

CDMA employing direct-sequence spread spectrum has been widely used in cel-

lular telephone systems [26], including the ANSI/TIA/EIA-95-B [27] and TIA/
EIA/IS-2000 (Interim Standard) [28] standards. Frequency-hopping CDMA has

been less popular, although it has seen use in cordless telephone applications

[29]. While the use of CDMA has greatly increased the system capacities of cellular

Preamble SBD Payload data Guard band PreambleGuard band

Slot n
(user n)

Slot n − 1
(User n − 1)

Slot n + 1
(User n + 1)

Figure 8.4 Typical structure of a TDMA slot (not to scale).

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 249

telephone systems, it is not without its limitations; for example, in order to employ

CDMA at a receiver the power received from the multiple transmitters must be sub-

stantially equal. This “near–far problem” creates a requirement for power control at

the transmitters, so that their transmit powers vary inversely with respect to the path

loss to the receiver. Not only does this requirement make the network devices more

expensive and complicated, it makes CDMA useful only for networks having a

single coordinator or base station, since it is impossible in general to solve the

near–far problem for multiple receivers simultaneously.

8.2.2 Demand-Assignment Protocols

The economic viability of a wireless service is often a strong function of how effi-

ciently it uses available spectrum [30]. Spectral efficiency, in turn, is greatly affected

by the channel access method employed and, as we have said, fixed-assignment pro-

tocols are not particularly efficient. Demand-assignment protocols attempt to

improve on the channel inefficiencies of fixed-assignment protocols, by reassigning

unused channel assets to users that can use them. In general, this requires the use of a

controller to arbitrate between users, and makes demand assignment protocols more

complex than their fixed counterparts, since needy users and available channel assets

must be matched. It also generates the need for a logical control channel, separate

from the logical data channel over which messages are passed. In addition, the

requirement to request channel access before actually having the channel assigned

implies that there will be a setup delay between the time a user identifies a need

to communicate and the time a channel is assigned to do so. This time, which is

not present in fixed-assignment protocols, must be considered in the design of the

protocol to ensure adequate QoS for the desired application.

8.2.2.1 Polling The most straightforward way to perform demand-based chan-

nel access is to have a controlling device in the network (a controller) repetitively

ask all other network devices, one by one, if they need channel access. Devices

that do not need channel access decline, while those that do need channel access

inform the controller of that fact. The controller then assigns channel access for

the requesting device. (In the degenerate case, devices merely begin transmitting

upon receiving the query.) Polling is inherently fair, in the sense that the controller

is able to ensure that all devices can have access to the channel with the same QoS.

Possibly the most well-known system that employs the polling technique is the

BluetoothTM (IEEE 802.15.1) Wireless Personal Area Network standard [31]. Blue-

tooth is ideally suited for a polling protocol, since it uses a star network topology,

with one master device (the controller) and a maximum of seven slave devices.

Time is divided into slots in the Bluetooth system; the master device can begin its

transmissions only on odd-numbered slots, while slave devices can begin their trans-

missions only on even-numbered slots. Slave devices can only transmit in response

to a query from the master device. Should a slave device have a message to transmit,

it must wait until the master device polls it before it can transmit.

250 THE WIRELESS SENSOR NETWORK MAC

While useful in some applications, it is clear that polling is not appropriate for

many types of networks. For example, star networks that have a large number of

slaves are poor candidates for the polling technique, since an individual slave

would be infrequently polled, leading to message transmission delays and poor qual-

ity of service. Further, if message generation is not evenly distributed among net-

work devices, much network time will be spent uselessly polling devices with no

message traffic, while devices with large amounts of traffic stand idly by—unless

the polling device tracks message generation rates and modifies its polling pattern

accordingly, a complex undertaking. Probably the biggest liability for the polling

technique, however, is that it sets a power-consumption floor for devices in the net-

work. Even if the network has no message traffic to exchange, the controller must

continue to query each network device, and each network device must wake up,

receive the query, and transmit a reply. The power penalty is worst for the controller,

which must periodically contact all devices in the network, but is also a problem for

the other network devices. This problem can be ameliorated somewhat by allowing

the network device to miss a certain number of polls, in order to lower its power

consumption. Bluetooth, in fact, has established three lower-power modes—

HOLD, SNIFF, and PARK—to eliminate the polling overhead from network devices

and allow them to reduce their average power consumption [32].

8.2.2.2 Reservation Methods As the name suggests, reservation methods

require a device to reserve a communication channel prior to transmission. A typical

method is shown in Figure 8.5.

In a network of n devices, in which all devices can receive transmissions from all

other devices, time is divided into superframes, and each superframe is then further

divided into a reservation period and a data-transmission period. The reservation

period is divided into frames, with one frame assigned to each device in the network.

In a device’s reservation frame, the device transmits a code word, indicating whether

or not it has message traffic to send and, if it does, how many of data-transmission

slots A, B, and C it needs. All other devices do the same in turn. At the end of the

reservation period, all devices know which devices will be transmitting during the

data-transmission period.

As just described, the protocol is an example of an unfair algorithm: There are a

finite number of available data-transmission slots, and the devices request them in a

preferred order. Device 0 will always find slots available, and will therefore always

be able to transmit, while device n will find slots available only if all other network

0 1 2 3 4 5 … n Slot BSlot A Slot C 0 1 2 3 4 5 … n …

Reservation period Data-transmission period Reservation period

Superframe period

Figure 8.5 A reservation channel-access protocol. Network devices 0–7 reserve time in

data transmission slots A, B, and C.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 251

devices have left some for it. This unfairness may be acceptable (and even desirable)

if the devices are organized by expected QoS; for example, if device 0 transmits

emergency video for the fire department, and device n transmits, say, daily weather

reports. However, if a fairer algorithm is desired, there are a number of ways this can

be accomplished, for example, each device can include an aging value in its reser-

vation code word, indicating how long its data has been waiting for transmission.

Messages with the higher values can then be selected for transmission during the

data-transmission period.

A second example of a reservation protocol is packet-reservation multiple access

(PRMA) [33]. PRMA is an example of a combination MAC protocol, as it is a reser-

vation protocol with features of TDMA and ALOHA (see Section 8.2.3.1). In

PRMA, a star network is assumed. Time is divided into frames, each of which

has many numbered slots. The network controller transmits an acknowledgment

message at the end of each slot, which identifies that slot as being “reserved” or

“unavailable.” When a network device has message traffic (for the controller), it

uses the ALOHA protocol to contend for an available slot. When the controller suc-

cessfully receives the message, it replies with a “reserved” acknowledgment

message, indicating receipt and indicating that the network device has reserved

that slot for future frames. The network device now has an assigned slot in the

frame, similar to TDMA, and can transmit without fear of frame collision in that

slot in all future frames, since other network devices within range also detect the

acknowledgment message. When the network device has completed its traffic, the

slot reservation is released by the simple expedient of not transmitting in it. The net-

work controller then transmits an “available” acknowledgment message at the end of

the slot, informing the rest of the network.

8.2.2.3 Trunking Trunking is a multiple-access scheme that dynamically

assigns communication requests to available logical channels. Any fixed-assignment

MAC protocol—FDMA, TDMA, CDMA—can be employed, with the goal to sub-

stantially improve the channel efficiency without causing the QoS to any user to

degrade.

The earliest trunked systems were wired telephone systems, in which

multiple lines between points were installed, and calls were routed to a line with

available capacity. This greatly increased the reliability of the network, since a

single line outage would be unlikely to result in a loss of service, and also improved

infrastructure economy, since any peaks in call volume could be rerouted over other,

less busy, lines, and every line did not have to be designed for the peak call volume

requested over that route.

The first wireless systems to employ trunking methods (other than the microwave

systems employed by the telephone system itself) were FDMA land-mobile radio

(LMR) systems. These systems employed repeaters to provide communication

links among mobile devices, normally organized into groups, and between mobile

devices and wireline infrastructure such as telephone interconnect. Devices on

LMR systems typically have very low average data throughput, but very high

peak throughput—the worst-case scenario for channel efficiency using FDMA.

252 THE WIRELESS SENSOR NETWORK MAC

To install an FDMA trunking system, the system operator amasses a collection of

5 to 40 FDMA frequency pairs (inbound/outbound), using a repeater for each of

them. One repeater is designated the control channel, while the others are used

for message traffic. When not engaged in sending or receiving message traffic,

network devices monitor the outbound control channel. When a device has a mess-

age for a particular group, it sends the request on the inbound control channel. The

trunking system identifies an available repeater (channel) and transmits a command

on the outbound control channel for all devices in the requested group to change to

the available channel, where the requesting device transmits and the rest of the group

receives [34]. Since a much larger number of users can be served with the existing

spectrum allocation, this scheme greatly improves the economics of LMR. In the

United States, FDMA trunking has since been expanded into the Associated

Public Safety Communications Officials (APCO) Project 25 Advanced Narrowband

Digital Communications (ANDC) standard [35].

Trunking principles can also be applied to TDMA systems. The TErrestrial

Trunked RAdio (formerly the Trans-European Trunked RAdio) (TETRA) standard

[36] employs TDMAwith four slots per frame. The control frame is the last frame in

a series of eighteen consecutive frames, called a TETRA “multiframe.” Operation is

analogous to FDMA trunked systems; mobile devices monitor the (outbound) con-

trol frame transmitted by the base station, and are assigned communication

resources, in the form of identified slots in identified frames, to communicate.

TETRA is designed to transmit both voice and data as separate services; the use

of TDMA engenders great flexibility in channel access for this purpose, since

voice services can be assigned frequent, repetitive slots, while data transfers can

be assigned larger blocks of time and interrupted for the more latency-critical

voice transmissions.

8.2.3 Contention-Access Protocols

As we have seen, demand-assignment protocols can improve the channel efficiency

of fixed-assignment protocols. However, most demand-assignment schemes require

the existence of an entity from which to demand an assignment, that is, a network

controller. In many networks, for example, wireless sensor networks, such a control-

ler does not exist. Multihop ad hoc networks, in which the network architecture (and

even the order of the network) is not known a priori, are another difficult application

for both fixed and demand assignment protocols. To make matters worse, many

types of multihop ad hoc networks generate traffic patterns that have a low average

message rate, but a high peak rate—as noted earlier, a difficult type of traffic pattern

for a channel access protocol to support.

The solution to this dilemma is the third class of assignment protocols, contention

(random)-access protocols. In these protocols, devices contend (compete) among

each other for channel access; devices that lose access to the channel merely try

again later. Since frame collisions are not prohibited by contention-access protocols,

a method for detecting collisions (or at least determining a posteriori that they must

have occurred) and recovering from them must be included in the protocol.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 253

8.2.3.1 ALOHA The ALOHA channel-access protocol [37] is generally con-

sidered the first channel-access protocol for wireless digital communications to

employ random access. The ALOHA communication system was part of a wireless

time-sharing system used to connect a mainframe computer near Honolulu with

remote users on other Hawaiian islands. The network therefore had a star topology;

it was assigned two radio channels, one for inbound traffic and one for outbound traf-

fic. All traffic was in the form of fixed-length frames, each 704 bits long (including

identification, control, payload, and parity bits). Since there was only one source of

outbound traffic, the mainframe computer, there was no medium-access control

issue on that channel. In the other direction, however, a method was needed to

assign the single inbound channel among the multiple remote users. This was a

nontrivial problem, especially since there was no guarantee that the remote users

could hear each other.

The ALOHA channel-access scheme that was developed to address this issue is

elegant in its simplicity, and operates as follows: Remote devices simply transmit

each frame as soon as it is generated, on the inbound channel. The transmissions

are completely asynchronous and independent of those that may (or may not) be

transmitted by other remote devices. If and only if a frame is received without

error at the mainframe, an acknowledgment frame is sent to the remote device via

the outbound channel. If a remote device does not receive the acknowledgment

frame within a time-out period, it waits a random length of time and then retransmits

the entire frame.

Assuming that message generation follows Poisson statistics, it can be shown that

the ALOHA system becomes unstable (i.e., the number of retransmissions

grows without bound) when the fraction of time the channel is utilized exceeds

1/(2e) � 0.184. This relatively low value is the major drawback to ALOHA channel

access, and modifying ALOHA to increase its channel utilization (and therefore

channel capacity) has been of much research interest. One of the first approaches

taken was to realize that a single transmitted frame could collide with two

frames—one starting before it and one starting after it had started—and that the

frame collision rate could be halved, and therefore the channel capacity doubled,

by quantizing time into slots, then synchronizing the remote users so that frame

transmission could only start at the beginning of each slot. Frames would not be

transmitted as soon as they were generated, as in ALOHA, but would be held in

queue until the beginning of the next slot. This became known as “slotted

ALOHA” [38], and has a capacity of 1/e � 0.368 (see Fig. 8.6).

Slotted or nonslotted, the ALOHA protocol is quite simple, and is often used as

part of more complex medium-access methods (e.g., PRMA, described in Section

8.2.2.2). One advantage is in asymmetrically powered star networks, in which the

controller is mains powered but the remote devices have limited power resources,

and in which communication is initiated solely by the remote devices. In these appli-

cations, using ALOHA, the initiating device(s) may stay asleep until a message is

generated, then wake up, transmit the message, receive the acknowledgment, and

return to sleep. The responding device must keep its receiver constantly active,

but the initiating device may have an extremely low duty cycle, since it need only

254 THE WIRELESS SENSOR NETWORK MAC

be active for transmission and reception of a single packet. An application fitting this

description is that of wireless light switches, in which the lamp itself is mains pow-

ered and the switches are battery powered (or powered by the toggling of the switch

itself [39]). The power consumption of a receiver is trivial compared to that of the

lamp itself, so it remains on at all times; however, the battery-powered switches

benefit from the low duty cycle of the ALOHA protocol.

8.2.3.2 CSMA Carrier sense multiple-access (CSMA) algorithms attempt to

improve upon the relatively poor channel capacity of ALOHA, by requiring that a

device attempting to transmit first sense (monitor) the channel for any ongoing

activity prior to transmission [40]. There are many variations of CSMA, and they

have become popular for wireless personal area networks (WPANs), largely because

of their distributed nature (no controller is needed), a requirement for ad hoc

networks, and for their overall adequate performance.

The fundamental principle of CSMA—that one should check to see that the chan-

nel is idle prior to transmission—is an old idea, and probably an anthropomorphic

one. A natural part of human conversation is to pause before speaking, to ensure

that the recipient is not already engaged. Early manual radiotelegraphic networks

operated in a similar fashion, even going so far as to employ what is now called

the request-to-send/clear-to-send (RTS/CTS) protocol, to minimize the effect of

simultaneous transmissions [41–43]. Its use in packet data networks, however, is

relatively recent; Kleinrock and Tobagi [ref. 40, p. 1401 fn] give credit to

D. Wax of the University of Hawaii, in an internal memorandum dated March 4,

1971. In a manner analogous to the ALOHA protocols, time in CSMA protocols

may be considered to be continuous (unslotted CSMA) or broken into discrete inter-

vals (slotted CSMA).

CSMA protocols can be further divided into two types, the nonpersistent CSMA

protocol and a number of persistent CSMA protocols. In nonpersistent CSMA, a

network device with a message to transmit operates as follows:

. The device senses the channel.

. If the channel is idle, the message is transmitted immediately.

Frame 1 Frame 2

Frame 3

(a)

Frame 1 Frame 2

Frame 3

(b)

Figure 8.6 (a) Nonslotted ALOHA: Frame 3 collides with frames 1 and 2. All three are lost.

(b) Slotted ALOHA: Frame 3 collides only with frame 2. Frame 1 survives.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 255

. If the channel is busy, the device waits a random period of time (the “backoff

period”), senses the channel again, and repeats the process.

The protocol attempts to ensure that frame collisions do not occur by sensing the

channel, then waiting until sometime later if the channel is busy. Nonpersistent

CSMA is simple, and is used in several popular network standards, including the

IEEE 802.15.4 low-rate wireless personal area network (LR-WPAN) standard

[44]. However, in applications that value message throughput it is less than optimal,

because it is possible that the channel may become idle during the backoff time,

when the device is not monitoring the channel. Waiting until the backoff period

expires before attempting retransmission is therefore a waste of the channel

resource.

As a first attempt to overcome this weakness, one can consider a modification, the

so-called 1-persistent protocol. 1-Persistent CSMA operates as follows:

. The device senses the channel.

. If the channel is idle, the message is transmitted immediately.

. If the channel is busy, the device continues to sense the channel (it is persist-

ent). When the channel becomes idle, the device immediately transmits (with

probability one, hence the name 1-persistent).

The goal of 1-persistent CSMA is to make maximum use of the channel, by avoiding

the “dead air” during the backoff period of nonpersistent CSMA. However, consider

the situation of two network devices generating a message at the same time, and

finding the channel busy. Under 1-persistent CSMA the two devices will wait

until the channel is idle, then both transmit simultaneously—with disastrous results!

One method to avoid this undesired behavior, while still improving channel effi-

ciency over nonpersistent CSMA, is, upon sensing an idle channel, to transmit the

message with some probability p, where p , 1. This variant, p-persistent CSMA,

operates as follows:

. The device senses the channel.

. If the channel is idle, the message is transmitted with probability p. With prob-

ability (12 p), the device waits a fixed time (a single slot in slotted CSMA, a

predetermined time in unslotted CSMA). At the end of this new time, the device

senses the channel again, and repeats the process.

. If the channel is busy, the device continues to sense the channel. When the

channel becomes idle, the device proceeds as just outlined.

The optimal value of p for maximum throughput depends on the offered traffic rate

(and the propagation delay, usually neglected in wireless sensor networks); for a

detailed analysis, the interested reader is referred to Kleinrock and Tobagi [40].

A drawback to all CSMA protocols is the so-called hidden and exposed terminal

problems. Consider the linear network of Figure 8.7. Devices A and C are each

256 THE WIRELESS SENSOR NETWORK MAC

within range of device B, but they are not in range of each other. Suppose device C

generates a message for device B while device A is transmitting to device B. Using

CSMA, device C will sense the channel, but find it idle—even though device A is

transmitting, it is out of range of device C. Device C will then begin to transmit (per-

haps after a few backoff periods if employing p-persistent CSMA), causing a frame

collision at device B. Device A is a “hidden terminal” to device C; it is in range of a

device that device C desires to contact, but is out of range of device C itself. The

hidden-terminal problem leads to a reduction in network throughput.

Now consider a second scenario. Device B transmits a frame to device A. Device

C generates a message for device D. Device C will sense the channel, but find it

occupied by device B. Since it finds the channel busy, device C will delay trans-

mission, even though, were it to transmit, it would not cause interference at either

device B (because it is transmitting) or device D (because it is out of range of

device B). This is the “exposed terminal” problem for CSMA; it, too, leads to a

reduction in network throughput, since it prohibits transmission by devices that

would otherwise be able to safely do so. Much of the research into CSMA protocols

has been directed at ways to eliminate or reduce the severity of the hidden- and

exposed-terminal problems [45].

The first solution proposed for the hidden-terminal problem was the use of busy

tones [46]. This solution rests on the realization that the hidden-terminal problem,

and frame collisions in general, occur at the receiving device, while the CSMA

algorithm is being performed at the transmitting device. The busy-tone solution

requires each network device receiving a frame to simultaneously transmit a

“busy tone” on another signaling channel, indicating that its receiver is busy.

Devices desiring to transmit are required to check for the presence of busy tones

prior to transmission. If present, they delay transmission, since the channel (at the

receiving device, where it matters) is busy.

An implementation difficulty with the use of busy tones is the need for simul-

taneous transmission and reception (duplex operation). While busy tones have

been proposed as part of other medium-access protocols for wireless sensor

networks (e.g., power aware multiaccess protocol with signaling (PAMAS), in

Section 8.3.2; see also Haas, Deng, and Tabrizi [47]), duplex operation greatly

increases the complexity, cost, and power consumption of the network devices,

and so alternative solutions are frequently desired.

A B C D

Figure 8.7 The hidden- and exposed-terminal problems. The circles indicate the communi-

cation range of each device.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 257

One way to attack these problems is to continue the anthropomorphic analogy a

step further (see Figure 8.8), by recognizing that something common in the initial

stages of a human conversation is a request to speak (“Hey, Bob?”), followed by a

grant of permission to speak (“Yes, Alice?”). This short exchange warns Bob that

Alice is attempting to speak, and ensures Alice that Bob is ready to receive her

statement. In particular, it confirms to Alice that Bob is not listening to someone

else speak—perhaps someone that Alice cannot hear. Should Bob not reply to

Alice, after a moment’s delay Alice may retry, repeating until the affirmative

reply is received or Alice gives up. Should Alice hear either a request to speak

from someone else, Carol (“Hey, Bob?”), or a grant of permission to speak from

Bob to someone else (“Yes, Carol?”), prior to her own request to speak, Alice

will wait a moment for that conversation to complete before speaking (see

Figure 8.9).

An analogous procedure can be performed on wireless data networks; this pro-

cedure is called carrier sense multiple-access with collision avoidance (CSMA/
CA). In CSMA/CA, after sensing that the channel is idle, the initiating device

first sends a short RTS frame to the responding device. If the responding device

is, in fact, idle, it returns a CTS frame to the initiating device, indicating that it

can begin transmission of its queued data frame. If the initiating device does not

receive a CTS frame after a predetermined period of time, it waits a further

random time (to avoid collisions with a potential competing device on the channel

in the same state), then retransmits the RTS frame.

Alice Bob

“Hey, Bob?”

“Hey, Bob?”

“Hey, Bob?”

“Hey, Bob?”

“Yes, Alice?”

(Time-out expires,
retry starts.)

(Time-out expires,
retry starts.)

(Still no reply;
Alice gives up.)

(a)

(Communication begins)

(Alice realizes she has
something to say.)

(Alice realizes she has
something to say.)

(Bob is
busy.)

(Bob is still
busy.)

(b)

Figure 8.8 Anthropomorphic view of CSMA/CA. (a) Successful. (b) Unsuccessful.

258 THE WIRELESS SENSOR NETWORK MAC

When network devices overhear RTS and CTS frames transmitted by others, they

are prohibited from transmitting for a period of time—long enough for other frames

to be successfully communicated. (This is the “collision avoidance” part of CSMA/
CA.) It is worth noting, however, that not all collisions are avoided in CSMA/CA.
For example, simultaneous RTS transmissions by two devices, both of which

detected an empty channel, are still possible. The recovery mechanism is the

random backoff they employ after they do not receive the expected CTS frame in

reply. Although never zero, the probability of RTS and other possible types of

frame collisions is made small by making the RTS and CTS frames very short.

Another influential single-channel solution to the hidden-terminal problem of

CSMA was MACA [48]. MACA solves these problems, and avoids the implemen-

tation complexity associated with channel sensing, by not sensing the channel at all.

(The name “MACA” is derived from “CSMA/CA,” by deleting the “CS.”) Rather, it
relies on the effect RTS and CTS frames have on eavesdropping devices.

Alice Bob

“Yes, Alice?”

(Time-out expires. Alice does not
hear anything further, so she

sends her own request.)

(Time-out expires. Alice does not
hear anything further, so she

sends her own request.)

(a)

(Communication
begins)

(Alice realizes she has
something to say.)

(Alice realizes she has
something to say.)

Carol

(Alice overhears Carol’s
request, and defers her own.)

“Hey, Bob?”

“Hey, Bob?”

“Yes, Alice?”

“Hey, Bob?”

(b)

(Communication
begins)

(Alice overhears Bob’s reply to
Carol, and defers her own request.)

“Yes, Carol?”

Figure 8.9 Request to speak and permission to speak. (a) Inhibition upon receipt of a request

to speak. (b) Inhibition upon receipt of permission to speak.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 259

MACA is based on the insight that, if a data field is placed in RTS and CTS

frames indicating the amount of data that is queued to be transmitted at the initiator,

any device that can hear either the RTS or CTS has sufficient information to avoid

frame collisions. An idle network device using MACA constantly monitors the

channel for RTS or CTS frames. If it receives an RTS frame addressed to itself, it

replies with a CTS frame and communication begins. If, however, it receives an

RTS frame addressed to another network device, it inhibits all potential trans-

missions of its own for the period of time needed for the device sending the RTS

frame to (1) receive a CTS frame, and (2) send its data frame. This time is

known, since the length of the data frame is included in the RTS frame. Similarly,

if it receives a CTS frame, it inhibits all potential transmissions of its own, for the

period of time needed for the device sending the CTS frame to receive its data

frame. This behavior is shown in Figure 8.10.

Alice Bob

(Alice’s time-out timer expires;
transmissions now possible.)

(a)

(Alice eavesdrops on an RTS
sent by Bob to Carol; Alice
inhibits her transmitter and

starts time-out timer.)

Carol

(Alice cannot hear Carol’s
CTS, sent to Bob.)

RTS

CTS

Data

(Alice’s time-out timer expires;
transmissions now possible.)

(b)

(Alice eavesdrops on a CTS
sent by Bob to Carol; Alice
inhibits her transmitter and

starts time-out timer.)

(Alice cannot hear Carol’s
RTS, sent to Bob.) RTS

Data

CTS

Figure 8.10 MACA operation. (a) Overheard RTS. (b) Overheard CTS. Carol is a hidden

device to Alice.

260 THE WIRELESS SENSOR NETWORK MAC

MACA was very influential, and led to many variants, including MACAW [49],

floor-acquisition multiple-access (FAMA) [45], and the medium-access control

methods used by WLAN standards, such as IEEE 802.11 [50]. Most variants

attempted to address identified weaknesses in MACA, such as the still-nonzero

probability of frame collisions [51] and its backoff algorithm. MACA proposed

the use of a simple binary exponential backoff, in which the backoff time is doubled

after every collision and returned to the minimal value after a successful RTS/CTS
exchange. This algorithm was shown [49] to be unfair, in that over time one network

device would “win” the channel and have a low backoff value (with frequent

channel access), while all remaining network devices would have very large backoff

values and be effectively frozen out of the network. MACA’s backoff problem has

been addressed in a number of ways; MACAW, for example, shares backoff values

between network devices.

One issue with CSMA schemes when applied in wireless sensor networks is the

active time of the receiver [52]. All persistent CSMA schemes require the receiver to

be active for relatively long periods to sense the channel, spending a considerable

amount of energy while receiving nothing but noise. This produces an average

power-consumption floor for the network device, even if it does not transmit or

receive a single frame. Wireless sensor networks are particularly sensitive to this,

since not only is power consumption a primary performance metric but data

throughput is typically low, making the CSMA channel monitoring all the more inef-

ficient. The IEEE 802.15.4 LR-WPAN standard, which employs a CSMA algorithm

for channel access, attempts a compromise for beaconing networks by offering an

optional battery-life extension (BLE) mode. In BLE mode, the number of slots fol-

lowing each beacon available for slotted CSMA channel-access is greatly restricted.

This improves device battery life, since devices can return to sleep quickly, but also

greatly limits channel capacity.

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS
SENSOR NETWORKS

This section reviews a number of MACs proposed for wireless sensor networks. This

collection is by no means exhaustive, and is meant only to convey to the reader the

wide variety of designs possible, and how the assumptions and priorities of the

designers affected their final designs.

8.3.1 Self-Organizing Medium-Access Control for Sensor Networks
and Eavesdrop-and-Register Protocols

Katayoun Sohrabi et al. proposed the self-organizing medium-access control for

sensor networks (SMACS) and eavesdrop-and-register (EAR) protocols in 1999

[23,53]. SMACS is a distributed protocol that incorporates features of FDMA,

TDMA, and CDMA. It is an excellent example of a wireless sensor network MAC

that trades something usually dear in data networks, bandwidth, for increased

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 261

energy efficiency. EAR expands the utility of the wireless sensor network by enabling

quasi-stationary network devices to support roaming devices. EAR allows roaming

devices to connect to the network without the large energy cost usually associated

with the tracking of mobile devices.

As shown in Figure 8.11, devices under SMACS begin their operation by monitor-

ing a previously determined common frequency X for a random period of time. At the

end of its randommonitoring period, a device transmits a Type 1message to establish a

communication link if it has not heard any Type 1 messages from other network

devices. In Figure 8.11, this occurs with device B. A Type 1 message is an invitation

for other devices in range to establish a joint communication link. Devices A and C

receive the Type 1message and, after waiting for a randombackoff period, each replies

with a Type 2 message. Device B receives both messages (assuming they did not

collide), and selects one with which to form a communication link. It may make

this selection on received signal strength, order in which the messages were received,

or upon some information included in the Type 2 messages, such as the number of

attached devices. Device B then sends a Type 3message at the conclusion of its receiv-

ing period, to notify all devices in range of its decision. In this example, device C was

selected; device A, which was not selected, then turns off its receiver for a random

period of time before restarting the procedure with another receiving period.

Device A Device B Device C

Type 1 Type 1

Type 2

Type 2

Type 3 Type 3

Type 4

Test

Test

Frequency X

Frequency Y

= Rx

= Tx

= Sleep

Figure 8.11 SMACS operation.

262 THE WIRELESS SENSOR NETWORK MAC

In addition to the identity of the selected device, the Type 3 message also includes

timing information. SMACS and EAR employ a superframe of length Tframe; how-

ever, unlike conventional TDMA, the superframes are not synchronous between

devices. Rather, the phase of their superframes are independent (i.e., the superframe

of each device begins at an independent time). To establish the communication link,

device B sends device C in its Type 3 message its schedule of existing links in its

superframe, plus the time until the start of its next superframe. Device C receives

the Type 3 message, and compares the link schedule of device B with its own

device schedule, taking into consideration the differing times at which their super-

frames start. It then identifies two (ideally sequential) time slots that are available to

both devices. It transmits the location of these time slots, together with a proposed

frequency for the new communication link (frequency Y), in a final Type 4 message.

Device B receives the Type 4 message and, at the appropriate time, moves to

frequency Y and exchanges a pair of test messages with device C to ensure that

the wireless link on that frequency is in fact open.

Devices B and C now have a communication link established with each other. This

link establishment process can be repeated a number of times, creating a dense net-

work among many devices. After the network is formed, as part of network mainten-

ance the devices periodically transmit a broadcast invitation (BI) message (a beacon)

to announce their presence to other network devices, encouraging them to form con-

nections. These invitation messages need not be sent every Tframe , but may be sent on

some multiple of Tframe , to trade off connection formation latency with energy effi-

ciency. Following the BI messages there is a small period (collection of slots)

during which the device monitors the frequency for the replies of any invitees.

Since coordination is not performed with all devices within range of devices B

and C to establish a noninterfering pair of time slots for this communication link,

if the SMACS procedure were performed in an ad hoc TDMA network on a

single frequency, frame collisions with neighboring devices would be unavoidable.

By employing multiple frequencies for its communication links, SMACS employs a

distributed form of dynamic FDMA to avoid these otherwise inevitable frame

collisions.

Sohrabi et al. [53] note that SMACS can be generalized to define the communi-

cation links to be specific frequency-hopping patterns, rather than fixed frequencies.

This extension moves SMACS from a TDMA/FDMA hybrid to a TDMA/CDMA

hybrid, and offers the advantage of protection against channel degradations, such as

multipath flat fading and the presence of fixed interfering signals, at the cost of

increased complexity. Since SMACS already requires a frequency-agile transceiver,

the additional complexity is due largely to the increased complexity of the protocol,

which must identify, select, and synchronize the orthogonal hopping patterns.

EAR extends SMACS for use with mobile devices. The assumptions made by the

EAR protocol are that there are only a few mobile devices in a randomly distributed,

much larger collection of stationary devices, and that, as before, energy consump-

tion, rather than connectivity, is of primary importance.

A mobile device begins the EAR algorithm by searching (monitoring) for BI

messages sent by stationary devices. It may receive several; if so, it selects one

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 263

based on its signal quality, identification, or other features. It then replies to the

selected BI message with a mobile invite (MI) message, requesting a connection

to the selected stationary device. If it elects to do so, the stationary device then

accepts the MI request by the transmission of a mobile response (MR) message

that includes the suggested slots for communication. Later, as the signal quality

of the connected stationary device falls below an acceptable threshold, a mobile dis-

connect (MD) message is sent by the mobile device to the stationary device, inform-

ing of the disconnection.

No acknowledgments are sent in the EAR algorithm, and the stationary

devices need send only one specialized message (the MR message). Instead of

acknowledgments, time-outs are used to reduce state misunderstandings between

devices. This simplifies the protocol and speeds connection establishment.

Since it establishes reserved, periodic communication links among neighboring

devices, SMACS is a good choice for wireless sensor networks supporting multime-

dia sensor applications like real-time video security systems. Message latency in its

TDMA-like structure should have much less variance than if, say, a CSMA channel-

access mechanism were employed, with its random backoff periods prior to trans-

missions; this meets a critical need of most multimedia applications. A weakness

of SMACS is the relatively high duty cycle imposed by its TDMA-like structure.

Since separate slots are reserved for communication with each device in range,

the duty cycle degrades as the network density (or communication range of the

device) increases. While CSMA protocols, by comparison, monitor the channel

for messages from all neighboring devices at once, performing a parallel operation,

SMACS reserves separate receive slots for each device individually, performing the

function in series. This increases energy expenditure accordingly in a network that is

lightly loaded. In addition, energy is expended during each transceiver warm-up

period prior to each communication slot; energy consumed during warm-up can

have a significant effect on overall energy efficiency [54,55].

8.3.2 PAMAS

As previously noted, power consumption of wireless sensor network devices is of

critical importance, and energy should be conserved whenever possible. As it hap-

pens, the power consumption of the receivers typically used in such networks often

approaches or even exceeds the power consumption of the transmitters (due to their

low output power), and if receivers are operated indiscriminately their energy use

can represent a significant fraction of the total energy used by network devices. It

is therefore productive to evaluate techniques to minimize the use of receivers.

Consider the network of four devices shown in Figure 8.12. In this network,

device B is transmitting a frame to device A. However, device C is also within

range of device B, and it overhears device B’s transmission. The key insight is

that reception of device B’s transmission to device A represents a waste of energy

by device C: Device B’s transmission is not for it, and it cannot receive any other

transmissions (for example, from device D) during device B’s transmission, since

the channel is occupied. To save energy, device C should then turn off its receiver

264 THE WIRELESS SENSOR NETWORK MAC

and go to sleep for the duration of device B’s transmission. When one considers that

many wireless sensor networks are quite dense, with many receiving devices within

range of a single transmitting device, it becomes apparent that, networkwide, signifi-

cant energy can be saved.

This receiver power-off technique was applied in an early MAC protocol for

multihop ad hoc networks called PAMAS [51]. PAMAS is derived from the

MACA CSMA protocol (see Section 8.2.3.2), with several interesting modifications.

Principal among these is the use of a separate signaling channel: The RTS and CTS

messages in PAMAS are transmitted on the signaling channel, rather than on the

data channel, as done in MACA. To prevent collisions of RTS and CTS messages

sent by hidden devices (rare but possible in MACA), PAMAS includes the use of

receiver busy tones, also sent on the signaling channel. If a network device is receiv-

ing a message on the data channel, and receives an RTS message on the signaling

channel, it responds with a busy tone on the signaling channel, with a length

twice that of a CTS message. Should the neighboring target device of the RTS

send a CTS message, it would collide with the busy tone and appear to the requestor

as noise. The requesting device then performs the MACA binary exponential back-

off and retries the RTS at a later time.

The receiver power-off feature of PAMAS is employed in a network device when

either of the following two conditions exists:

1. The transmit message queue (messages generated but not yet sent) is empty

and a neighbor begins transmitting on the data channel.

2. The transmit message queue is not empty, but at least one neighbor is trans-

mitting a data message (detected by monitoring the data channel) and one

is receiving (detected by monitoring the signaling channel for the busy tone

sent at the start of each received frame). In this case, the device goes to

sleep because it is unable to transmit or receive a message.

An interesting feature of PAMAS’s receiver power-off scheme is that, unlike

many other energy-saving MAC techniques, message latency is not affected. To

see why, suppose device C in Figure 8.12 generates a message for device B while

device A is transmitting to device B. Device C is assumed to be out of the range

of device A; it is a “hidden device” (see Section 8.2.3.2) to device A. Since

device C detects the receive busy tone sent by device B, it goes to sleep; however,

A CB

B transmits to A.

B’s transmission
to A is overheard

by C.

D

Figure 8.12 Unnecessary reception in an ad hoc network.

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 265

it would be unable to transmit to device B in any case, since device B is already

occupied. Conversely, suppose device C again has a message for device B, but

this time device B is transmitting to device A. Again, device C goes to sleep; also

again, it would be unable to transmit its message anyway, since device B is occu-

pied. Hence, sleeping does not affect the latency of the message.

The fundamental difficulty with PAMAS is one of implementation: The require-

ment for a second (control) channel, in addition to the data channel, adds signifi-

cantly to the cost of the network device, since a second wireless transceiver, plus

duplexer, is required.

8.3.3 Sensor-MAC

Sensor-MAC (S-MAC—not to be confused with SMAC, discussed in Section 8.3.1),

was designed to address the following sources of energy waste in wireless sensor

networks [56,57]:

. Frame Collisions When frames collide, they must be retransmitted, at

additional energy cost.

. Overhearing When a network device receives a frame destined for another

device, it is a waste of energy, since it could have been sleeping instead.

This was an insight gleaned from PAMAS (Section 8.3.2).

. Control Frame Overhead Since they require an expenditure of energy, but do

not directly result in the communication of information, the transmission and

reception of control packets represents a waste of energy.

. Idle Listening (fruitless channel monitoring) Monitoring the channel for the

possible reception of messages that are not, in fact, sent represents another type

of wasted energy. As noted in Section 8.2.3.2, this type of wasted energy is

especially problematic in wireless sensor networks employing CSMA proto-

cols, since their devices monitor the channel during their CSMA contention-

based channel-access periods, yet network data throughput on such networks

is low.

S-MAC trades some message fairness and latency for reduced power consump-

tion by network devices. It assumes that the wireless sensor network is composed

of a large number of devices, that it employs multihop routing, and that message des-

tinations will be uniformly distributed throughout the network (i.e., there is no single

gateway device acting as a data sink). It also assumes that, as discussed in Section

8.1.3.2, message-level fairness can be sacrificed as long as application-level fairness

is maintained, and that message latency on the order of a few seconds is tolerable.

To reduce energy consumption, S-MAC limits device reception and transmission

to periodic active periods, interspersed by sleep periods. A complete active-sleep

cycle is called a frame, not to be confused with a data frame (i.e., data packet) as

defined in other services. (To avoid confusion, in the rest of this section a data

“frame” will be termed a “packet.”) Frames are synchronized with neighboring

266 THE WIRELESS SENSOR NETWORK MAC

devices by periodically broadcasting SYNC packets, which are very short, and

contain the address of the sender and the relative time at which it will return to

sleep. From these values, recipient devices can construct a table of their neighbors’

schedules, so that future synchronization to exchange messages is possible. As the

multihop network forms, differing clusters of devices may synchronize differently;

devices bordering several asynchronous clusters may elect to either synchronize to

all neighboring clusters (waking up in all of their active periods and thereby

suffering an energy expenditure penalty) or select and follow one cluster, recalling

the timing of the other(s) should that connectivity be needed.

As shown in Figure 8.13(a), unless transmissions are needed, the active portion is

spent constantly receiving. The active period is divided into two parts, one for

SYNC packets and one for data packets; the entire active period is also divided

into a large number of time slots. Slotted CSMA with RTS/CTS is used to access

the channel; each of the synchronization and data portions of the active period there-

fore can be considered to be a separate contention access period.

Listen for
SYNC

Listen for
RTS

Listen for
CTS

SYNC
period

Data
period

Active period
(listening)

Sleep
period

Frame

(a)

(b)

SYNC
Tx

Carrier
sense

(c)

RTS
Tx

Carrier

(Sleep)

CTS
Rx

(Send data)sense

Figure 8.13 S-MAC frame. (a) Reception. (b) Transmission of a SYNC packet. (c) Trans-

mission of a data packet.

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 267

When a device has no pending message traffic, it monitors the SYNC period for

possible SYNC transmissions from its neighbors, and then monitors the RTS portion

of the data period for possible message traffic for it. Following the RTS portion, it

then listens to the CTS portion—even though it has not transmitted an RTS of its

own—for reasons to be explained shortly. When a device is to transmit a SYNC

packet, Figure 8.13(b), it senses the channel for a random period of time during

the SYNC portion of the active period. After this time, if nothing is heard, it trans-

mits the SYNC packet. When a device is to transmit a data packet, Figure 8.13(c), it

senses the channel for a random period of time during the RTS portion of the data

period. After this time, if nothing is heard, it transmits its RTS packet, and then

awaits the CTS reply packet in the corresponding portion of the data period. The

data packet itself is transmitted at the beginning of what would otherwise be the

sleep period. This is deemed acceptable, since data packets are assumed to be rela-

tively rare events in a wireless sensor network and so do not significantly affect over-

all energy consumption.

S-MAC incorporates an intriguing technique to limit message latency while

achieving significant energy efficiency, called adaptive listening. Adaptive listening

is based on the observation that overhearing a neighbor’s transmissions can give a

device early warning that a message may be arriving shortly. Adaptive listening

requires a device that overhears a neighbor’s transmission of an RTS or CTS

packet to wake up for a short period of time at the end of the transmitted data

packet (the packet length is included in RTS and CTS frames). If the listening

device is in fact the next hop for the data packet, it may receive it from its neighbor

immediately, rather than at the next scheduled active time. (The use of active listen-

ing is why all devices monitor the CTS period even if they have not sent RTS pack-

ets.) If it is not the next hop for the data packet, it merely goes to sleep and returns to

its regularly scheduled operation. Adaptive listening enables two communication

links to be traversed per frame, rather than just one.

A final feature of S-MAC is the use of message passing. Consider the trans-

mission of a relatively large amount of data. They could be transmitted in a

single packet but, since wireless links have a nonzero bit error rate, it is likely

that a small number of bit errors would occur in such a long packet. The packet

likely would have to be retransmitted, at considerable energy cost, and perhaps

more than once. On the other hand, the data could be fragmented into many smaller,

independent packets, and sent via conventional CSMA. One then incurs a significant

control overhead, as many RTS/CTS pairs would be sent—one per packet—even

though it is not desirable to lose the channel to other devices before the data trans-

mission is complete and the transmission of so many control packets is a waste of

energy.

Message passing is the transmission of a series of small, related packets, each

fully acknowledged after their transmission, with only one RTS/CTS exchange at

the beginning of the sequence. (In S-MAC, the packet length field in the RTS and

CTS packets is modified in message passing to indicate the length of the trans-

mission of the entire series of packets, including acknowledgment times.) Message

passing can occupy a channel, “freezing out” devices with single packets to send,

268 THE WIRELESS SENSOR NETWORK MAC

and is therefore inherently unfair at the communication link level; however, as dis-

cussed in Section 8.1.3.2, in wireless sensor networks it is often more important to

prioritize operation of the network as a whole, rather than individual messages.

S-MAC is a very promising MAC for wireless sensor networks. An area for

future evaluation is its performance in dense networks, where asynchronous

frames from neighboring device clusters may interfere with data transmissions. It

would also be interesting to investigate its performance in networks employing a

gateway device, where the assumption of evenly distributed message destinations

does not apply.

8.3.4 The IEEE 802.15.4/ZigBeeTM MAC

The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 low-rate wire-

less personal area network (LR-WPAN) standard [44,58] is the first open standard

designed for wireless sensor networks. Promoted by the ZigBeeTM Alliance [59],

an industry consortium, it is a flexible standard suitable for many network topologies

and wireless sensor applications, and includes many features designed to enable low

power consumption and low-cost implementation.

The IEEE 802.15.4 MAC supports both beaconing and nonbeaconing modes. The

nonbeaconing mode is especially useful for star networks in which there is one cen-

tral device that may be mains powered, with essentially unlimited power resources

available, surrounded by other network devices that may be battery-powered, with

more austere power budgets. The pedagogical example is that of a wireless light

switch controlling a lamp. The lamp, attached to the mains, can monitor the channel

constantly, while the switch remains idle unless it is toggled, when it transmits this

information to the lamp. Since it is rarely active, the switch may have an almost

unlimited battery life. The nonbeaconing mode also supports multihop networks,

in which a collection of always-active relaying devices transport messages perhaps

generated by another collection of very-low-duty cycle devices.

In the nonbeaconing mode, IEEE 802.15.4 specifies the use of unslotted, nonper-

sistent CSMA. Due to the small size of IEEE 802.15.4 frames (the maximum size,

including physical-layer preamble, is 133 bytes), an RTS/CTS exchange is not used.

To avoid the state of perpetual backoff, in which the CSMA backoff exponent grows

without bound, the number of backoffs that can be performed is limited. When the

maximum value is reached, a channel-access failure report is generated by the MAC

and sent to an upper layer of the communication stack.

The IEEE 802.15.4 standard also supports an optional superframe structure,

incorporating beacons. As shown in Figure 8.14, two exponent parameters, the super-

frame order (SO) and beacon order (BO), with SO � BO, define the superframe. The

length of the active portion of a superframe is 15.36 ms � 2SO, while the time

between beacon starts is 15.36 ms � 2BO. (Numerical timing values given in this

section are for the 2.4-GHz band physical layer. There is another physical layer

specified for operation below 1 GHz for which the logical operation is the same,

but the numerical timing values are different.) When SO , BO, an inactive period

exists prior to the next beacon, and may be used to sleep. The maximum value of

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 269

SO and BO in beacon mode is 14, defining a beacon period of 251.65824 seconds, or

more than 4 minutes. Application and network designers can use these parameters to

trade off message latency, channel capacity, and battery life.

A beacon is transmitted at the start of a superframe. Following the beacon, the

rest of the active portion is a CSMA contention-access period (CAP). In star net-

works, however, a portion of the CAP can be reserved for specific devices, to guar-

antee them access to the channel. These reservations are called guaranteed time slots

(GTSs), and a maximum of seven of them, of varying length, can be used to avoid

the message latency jitter associated with the CSMA process. This is useful, for

example, in wireless game controllers and mice. When no GTSs have been allo-

cated, there is no contention-free period (CFP) and the entire active portion of the

superframe (excluding the beacon transmission) is the CAP.

The active portion of the superframe is divided into 16 slots. Each slot is further

divided into three backoff periods. When SO ¼ 0, each slot is 960 ms long and each

backoff period 320 ms long.
A device attempting to contact a beaconing device begins by synchronizing with

its beacon. It then performs a slotted, nonpersistent CSMA algorithm, again without

an RTS/CTS exchange, to gain access to the channel. The algorithm uses the back-

off periods as the slotted structure, rather than the superframe slots, to speed the

algorithm. To account for the nonzero receive-to-transmit turnaround time in prac-

tical hardware, the algorithm must find the channel clear during the first 128 ms of
two consecutive backoff periods before it declares the channel idle. If only a single

sampling of the channel were performed, it would be possible to sample the channel

during the turnaround time of an exchange between neighboring devices, determine

that the channel was idle, and then produce a frame collision upon transmission.

For some applications, even the minimum length of the CAP (15.36 ms, less the

beacon transmission time) is much longer than required for the low activity of the

network. Keeping the receiver active is, as previously noted, a weakness of

CSMA, and receiver activity should be minimized wherever possible to optimize

energy efficiency. To this end, the IEEE 802.15.4 standard incorporates a BLE

mode. To employ the BLE mode, the beaconing device sets a BLE flag in its

CAP GTS GTS Inactive

Beacon Tx
CFP

15.36 ms × 2SO

15.36 ms × 2BO

Figure 8.14 The IEEE 802.15.4 superframe. Time values shown are for the 2.4-GHz phys-

ical layer. Abbreviations: CAP ¼ contention access period. CFP ¼ contention-free period.

GTS ¼ guaranteed time slot.

270 THE WIRELESS SENSOR NETWORK MAC

beacon. It then limits its monitoring of the CAP to only six backoff periods. If it

hears no activity by the end of this time, it will return to sleep. When listening

devices detect the BLE flag, devices attempting to contact the beaconing device

set the initial value of their CSMA backoff exponent to a value of two or less.

While use of the BLE mode greatly increases the likelihood of frame collisions

due to the much shorter channel-sensing period, for low-activity networks it can

greatly reduce network device duty cycle: Employing BLE, with BO ¼ 14, a

device can have a total duty cycle (inclusive of transmit, receive, and warm-up

periods) of less than 50 parts per million.

In addition to ZigBee, the IEEE 802.15.4 standard has been proposed for use in a

number of networks, including the neuRFonTM netform [60]. Independent perform-

ance evaluations of the standard are becoming available; Lu, Krishnamachari, and

Raghavendra [61], for example, point out the significant trade-offs made between

energy saving and message latency.

8.4 FUTURE DIRECTIONS

MAC development for wireless sensor networks has really just begun. Since there

are a wide variety of network applications (from multimedia distribution to the

transmission of daily weather reports), many different network topologies, and

many performance metrics from which to choose, the wireless sensor network

MAC is of much research interest.

The standard methods of TDMA and CSMA are subject to refurbishment when

old assumptions are reevaluated. For example, the assumption of random traffic pat-

terns is probably not realistic; many types of traffic occur in bursts in so-called

event-driven applications. Recent work [62,63] has shown that existing wireless

sensor network MAC designs can be improved by adapting them to this reality.

The assumption of omnidirectional communication, in which the range of a given

device is the same in all directions, can also be modified, with the use of directional

antennas. By improving spatial reuse, MAC algorithms employing these antennas

can enable improved QoS, specifically throughput and reduced message latency

[64,65]. While these parameters are usually not of primary interest in wireless

sensor network applications, it is interesting to speculate on the performance of a

MAC protocol that combines the use of directional antennas with the use of

power control [66,67]. Such a protocol may be very energy-efficient.

In addition tominimizing energy expenditures while maximizing QoS (however it

is defined for the network in question), there are a few other areas that deserve inves-

tigation. One is the study of how different MACs perform when they are placed in the

same channel, as often happens in unlicensed wireless bands. Is it possible to estab-

lish some global rules for MAC operation that can aid coexistence between services

competing for the same channel? Is it possible to predict, without a special-purpose,

event-driven simulator, the performance of two (or more) coexisting services?

Continuing further, there is the issue of cognitive radio, or radio systems that

dynamically adapt their behavior to their existing electromagnetic environment.

8.4 FUTURE DIRECTIONS 271

Is it possible to conceive of a wireless sensor network employing cognitive radio

techniques? It would seem that the channel sensing needed for effective cognitive

radio operation would be incompatible with the energy-expenditure requirements

of wireless sensor networks, but perhaps this problem awaits only a sufficiently

clever researcher for a solution.

REFERENCES

1. Anantha Chandrakasan et al. Design considerations for distributed microsensor systems.

In Proceedings of the IEEE Custom Integrated Circuits Conference, pages 279–286,

May 1999.

2. Hubert Zimmermann. OSI reference model—the ISO model of architecture for open

systems interconnection. IEEE Transactions on Communications, COM-28(4):425–432,

April 1980.

3. Ajay Chandra V. Gummalla and John O. Limb. Wireless medium-access control proto-

cols. IEEE Communications Surveys, 3(2):2–15, 2000.

4. C. Siva Ram Murthy and B. S. Manoj. Chapter 6 in Ad Hoc Wireless Networks–

Architectures and Protocols. Prentice Hall, 2004.

5. Dimitri Bertsekas and Robert Gallager. Data Networks, Second Edition. Prentice Hall,

1992.

6. Henry Petroski. To Engineer Is Human: The Role of Failure in Successful Design, pages

35–39. St. Martin’s Press, 1985.

7. Woo Chool Park et al. Trade-off energy and delay between MAC protocols for wireless

sensor networks. In Proceedings of the 6th International Conference on Advanced

Communication Technology, Volume 1, pages 157–160, Phoenix Park, Republic of

Korea, February 2004.

8. Sze-Yao Ni et al. The broadcast storm problem in a mobile ad hoc network. In Proceed-

ings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and

Networking (MobiCom), pages 151–162, Seattle, Washington, August 1999.

9. Saikat Ray, Jeffrey B. Carruthers, and David Starobinski. RTS/CTS-induced congestion

in ad hoc wireless LANs. In Proceedings of the IEEE Wireless Communications and

Networking Conference (WCNC 2003), Volume 3, pages 1516–1521, New Orleans,

Louisiana, March 2003.

10. Moustafa A. Youssef, Arunchandar Vasan, and Raymond E. Miller. Specification and

analysis of the DCF and PCF protocols in the 802.11 standard using systems of commu-

nicating machines. In Proceedings of the 10th IEEE International Conference on

Network Protocols, pages 132–141, Paris, France, 2002.

11. Frazer Bennett et al. Piconet: Embedded mobile networking. IEEE Personal Communi-

cations, 4(5):8–15, October 1997.

12. Chunlong Guo, Lizhi (Charlie) Zhong, and Jan M. Rabaey. Low power distributed MAC

for ad hoc sensor radio networks. In Proceedings of the IEEE Global Telecoms Confer-

ence, Volume 5, pages 2944–2948, 2001.

13. Jan M. Rabaey et al. Picoradios for wireless sensor networks: The next challenge in ultra-

low power design. In IEEE International Solid State Circuits Conference Digest of Tech-

nical Papers, Volume 1, pages 200–202; Volume 2, pages 156–157, 444–445, 2002.

272 THE WIRELESS SENSOR NETWORK MAC

14. Gang Lu, Bhaskar Krishnamachari, and Cauligi S. Raghavendra. An adaptive energy-

efficient and low-latency MAC for data gathering in wireless sensor networks. In

Proceedings of the 18th International Parallel and Distributed Processing Symposium,

pages 224–231, 2004.

15. Bernard Sklar. A structured overview of digital communications—A tutorial review—

Part II. IEEE Communications Magazine, 21(7):6–21, October 1983.

16. King-Tim Ko and Bruce R. Davis. A space-division multiple-access protocol for spot-

beam antenna and satellite-switched communication network. IEEE Journal Selected

Areas in Communications, SAC-1(1):126–132, January 1983.

17. Soheila V. Bana and Pravin Varaiya. Space division multiple access (SDMA) for robust

ad hoc vehicle communication networks. In Proceedings of the IEEE Intelligent Trans-

portation Systems Conference, pages 962–967, 2001.

18. Guglielmo Marconi. Improvements in Apparatus for Wireless Telegraphy. British patent

7777. The Patent Office, Newport, South Wales, April 26, 1900.

19. TadahiroSekimoto and JohnG.Puente.A satellite time-divisionmultiple-access experiment.

IEEE Transactions on Communications Technology, COM-16(4):581–588, August 1968.

20. Adel A. M. Saleh. Intermodulation analysis of FDMA satellite systems employing

compensated and uncompensated TWTs. IEEE Transactions on Communications,

COM-30(5):1233–1242, May 1982.

21. GSM Technical Specifications. European Telecommunication Standards Institute

(ETSI), Sophia Antipolis, France. For a tractable entrance to GSM, see also Siegmund

M. Redl, Matthias K. Weber, and Malcolm W. Oliphant, An Introduction to GSM,

Artech House, 1995.

22. TDMA Third Generation Wireless, Rev B (ANSI/TIA/EIA-136-B-99), Telecommuni-

cations Industry Association, Arlington, Virginia, 1999.

23. Katayoun Sohrabi et al. A self organizing wireless sensor network. In Proceedings of the

37th Annual Allerton Conference on Communication, Control, and Computing, pages

1201–1210, 1999.

24. Saurabh Mishra and Asis Nasipuri. An adaptive low power reservation based

MAC protocol for wireless sensor networks. In Proceedings of the IEEE International

Conference on Performance Computing and Communications, pages 731–736, 2004.

25. Loren P. Clare, Gregory J. Pottie, and Jonathan R. Agre. Self-organizing distributed

sensor networks. In Proceedings of the SPIE Conference on Unattended Ground

Sensor Technologies and Applications, Volume 3713, pages 229–237, 1999.

26. William C. Y. Lee. Overview of cellular CDMA. IEEE Transactions on Vehicular

Technology, 40(2):291–302, May 1991.

27. Mobile Station–Base Station Compatibility Standard for Wideband Spread Spectrum

Cellular Systems (ANSI/TIA/EIA-95-B-99), Telecommunications Industry Association,

Arlington, Virginia, 1999. For a good reference for CDMA system design, see also

Jhong Sam Lee and Leonard E. Miller, CDMA Systems Engineering Handbook, Artech

House, 1998.

28. CDMA 2000w Series, Release A (2000), Telecommunications Industry Association,

Arlington, Virginia, 2000.

29. André Noll Barreto, Jürgen Deißner, and Gerhard Fettweis. A frequency hopping algor-

ithm for cordless telephone systems. In Proceedings of the IEEE International Confer-

ence on Universal Personal Communications, Volume 2, pages 1273–1277, 1998.

REFERENCES 273

30. Richard N. Lane. Spectral and economic efficiencies of land mobile radio systems. IEEE

Transactions on Communications, COM-21(11):1177–1187, November 1973.

31. Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Information

Technology—Telecommunications and Information Exchange between Systems—Local

and Metropolitan Area Networks—Specific requirements—Part 15.1: Wireless Medium

access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal

Area Networks (WPANs), IEEE Std 802.15.1-2002. IEEE Press, 2002.

32. Jaap C. Haartsen and Sven Mattisson. Bluetooth—A new low-power radio interface pro-

viding short-range connectivity. In Proceedings of the IEEE, 88(10):1651–1661, October

2000.

33. D. J. Goodman et al. Packet reservation multiple-access for local wireless communi-

cations. IEEE Transactions on Communications, 37(8):885–890, August 1989.

34. Arthur Chrapkowski and Gary Grube. Mobile trunked radio system design and simu-

lation. In Proceedings of the IEEE Vehicular Technology Conference, pages 245–250,

1991.

35. Gregory M. Stone and Karen Bluitt. Advance digital communications system design con-

siderations for law enforcement and internal security purposes. In Proceedings of the

IEEE 29th Annual International Carnahan Conference on Security Technology, pages

402–408, 1995.

36. European Telecommunication Standards Institute. Terrestrial Trunked Radio (TETRA);

Voice plus Data (VþD); Part 2: Air Interface (AI), Document ETSI EN 300 392-2

V2.4.2 (2004-02). European Telecommunication Standards Institute, 2004.

37. N. Abramson. The ALOHA system—Another alternative for computer communications.

In Proceedings of the AFIPS Fall Joint Computer Conference, Volume 37, pages 281–

285, 1970.

38. Lawrence G. Roberts. ALOHA Packet System With and Without Slots and Capture,

ARPANET Satellite System Note 8 (NIC Document 11290). ARPANetwork Information

Center, Stanford Research Institute, Menlo Park, California, June 26, 1972. Reprinted in

Computer Communications Review, 5(2):28–42, April 1978.

39. Fast wie ein Perpetuum Mobile (Almost like perpetual motion). Markt & Technik,

47:45–47, November 15, 2002. See at http://www.elektroniknet.de.

40. Leonard Kleinrock and Fouad A. Tobagi. Packet switching in radio channels: Part I—

Carrier sense multiple-access modes and their throughput-delay characteristics. IEEE

Transactions on Communications, COM-23(12):1400–1416, December 1975.

41. William Walker. How a C.W. traffic net operates. QST, 36(4):48–49, 128, 130, April

1952.

42. George Hart. Message handling. In The ARRL Operating Manual, Second Edition, Robert

Halprin (ed.), Chapter 4. American Radio Relay League, Newington, Connecticut, 1985.

43. Edgar H. Callaway, Jr. Wireless Sensor Networks: Architectures and Protocols, page 28.

CRC Press, Boca Raton, Florida, 2004.

44. Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Information

Technology—Telecommunications and Information Exchange between Systems—Local

and Metropolitan Area Networks—Specific requirements—Part 15.4: Wireless Medium

Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless

Personal Area Networks (WPANs), IEEE Std 802.15.4-2003, IEEE Press, 2003.

274 THE WIRELESS SENSOR NETWORK MAC

45. Chane L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to hidden terminal problems in

wireless networks. ACM SIGCOMM Computer Communications Review (Proceedings of

the ACM SIGCOMM ’97 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications), 27(4):39–49, October 1997.

46. Fouad A. Tobagi and Leonard Kleinrock. Packet switching in radio channels—Part II:

The hidden terminal problem in carrier sense multiple-access and the busy tone solution.

IEEE Transactions on Communications, COM-23(12):1417–1433, December 1975.

47. Zygmunt J. Haas, Jing Deng, and Siamak Tabrizi. Collision-free medium access control

scheme for ad-hoc networks. In Proceedings of the IEEE Military Communications

Conference, Volume 1, pages 276–280, 1999.

48. Phil Karn. MACA—A new channel-access method for packet radio. In Proceedings of

the ARRL/CRRL Amateur Radio 9th Computer Networking Conference, pages 134–

140, 1990.

49. Vaduvur Bharghavan et al. MACAW. ACM SIGCOMM Computer Communication

Review (Proceedings of the Conference on Communications Architectures, Protocols

and Applications), 24(4):212–225, October 1994.

50. Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Information

Technology—Telecommunications and Information Exchange Between Systems—Local

and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std

802.11-1999 (ISO/IEC 8802-11: 1999). IEEE Press, 1999.

51. Suresh Singh and C. S. Raghavendra. PAMAS—Power Aware Multi-Access protocol

with Signalling for ad hoc networks. ACM Sigcomm Computer Communication

Review, 28(3):5–26, July 1998.

52. Alec Woo and David E. Culler. A transmission control scheme for media access in sensor

networks. In Proceedings of the 7th Annual Conference on Mobile Computing and

Networking, pages 221–235, 2001.

53. Katayoun Sohrabi et al. Protocols for self-organization of a wireless sensor network.

IEEE Personal Communications, 7(5):16–27, 2000.

54. Eugene Shih et al. Physical layer driven protocol and algorithm design for energy-

efficient wireless sensor networks. In Proceedings of the 7th Annual ACM/IEEE
International Conference on Mobil Computing and Networking (MobiCom), pages

272–287, Rome, Italy, July 2001.

55. Andrew Y. Wang et al. Energy efficient modulation and MAC for asymmetric RF micro-

sensor systems. In Proceedings of the IEEE International Symposium on Low Power

Electronics and Design, pages 106–111, Huntington Beach, California, 2001.

56. Wei Ye, John Heidemann, and Deborah Estrin. An Energy-Efficient MAC Protocol for

Wireless Sensor Networks. USC/ISI Technical Report ISI-TR-543, September 2001.

57. Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with coordinated

adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking,

12(3):493–506, June 2004.

58. Jose A. Gutierrez, Edgar H. Callaway, Jr., and Raymond L. Barrett, Jr. Low-Rate Wireless

Personal Area Networks . . . Enabling Wireless Sensors with IEEE 802.15.4TM. IEEE

Press, 2003.

59. See at http://www.zigbee.org.

REFERENCES 275

60. L. Hester et al. neuRFonTM Netform: A self-organizing wireless sensor network. In

Proceedings of the 11th International Computer Communication and Networks Confer-

ence, pages 364–369, 2002.

61. Gang Lu, Bhaskar Krishnamachari, and Cauligi S. Raghavendra. Performance evaluation

of the IEEE 802.15.4 MAC for low-rate low-power wireless networks. In Proceedings of

the IEEE International Conference on Performance, Computing, and Communications,

pages 701–706, 2004.

62. Y. C. Tay, Kyle Jamieson, and Hari Balakrishnan. Collision-minimizing CSMA and its

applications to wireless sensor networks. IEEE Journal on Selected Areas in Communi-

cations, 22(6):1048–1057, August 2004.

63. Jing Li and Georgios Y. Lazarou. A bit-map-assisted energy-efficient MAC scheme for

wireless sensor networks. In Proceedings of the 3rd International Symposium on Infor-

mation Processing in Sensor Networks (IPSN), pages 55–60, Berkeley, California,

April 2004.

64. Young-Bae Ko, Vinaychandra Shankarkumar, and Nitin H. Vaidya. Medium access

control protocols using directional antennas in ad hoc networks. In Proceedings of the

19th Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM), Volume 1, pages 13–21, Tel-Aviv, Israel, March 2000.

65. Yu Wang and J. J. Garcia-Luna-Aceves. Collision avoidance in single-channel ad hoc

networks using directional antennas. In Proceedings of the 23rd International Conference

on Distributed Computing Systems (ICDCS), pages 640–649, May 2003.

66. Shu-Lin Wu, Yu-Chee Tseng, and Jang-Ping Sheu. Intelligent medium access for mobile

ad hoc networks with busy tones and power control. In Proceedings of the 8th Inter-

national Conference on Computer Communications and Networks, pages 71–76, 1999.

67. Maciej Zawodniok and Sarangapani Jagannathan. A distributed power control MAC

protocol for wireless ad hoc networks. In Proceedings of the IEEE Wireless Communi-

cations and Networking Conference (WCNC 2004), Volume 3, pages 1915–1920,

Atlanta, Georgia, March 2004.

276 THE WIRELESS SENSOR NETWORK MAC

&CHAPTER 9

Localization in Sensor Networks

JONATHAN BACHRACH and CHRISTOPHER TAYLOR

Massachusetts Institute of Technology, Cambridge, Massachusetts

Location, Location, Location

— Anonymous

In emerging sensor network applications it is necessary to accurately orient the

nodes with respect to a global coordinate system in order to report data that is geo-

graphically meaningful. Furthermore, basic middle ware services such as routing

often rely on location information (e.g., geographic routing). Application contexts

and potential massive scale make it unrealistic to rely on careful placement or uni-

form arrangement of sensors. Rather than use globally accessible beacons or

expensive GPS to localize each sensor, we would like the sensors to self-organize

a coordinate system. This chapter reviews localization hardware, discusses issues

in localization algorithm design, present the most important localization techniques,

and finally suggests future directions in localization. The goal of this chapter is to

outline the technical foundations of today’s localization techniques and present

the tradeoffs inherent in algorithm design. No specific algorithm is a clear favorite

across the spectrum. For example, some algorithms rely on pre-positioned nodes

while others are able to do without. Other algorithms require expensive hardware

capabilities. Some algorithms need a way of performing off-line computation,

while other algorithms are able to do all their calculations on the sensor nodes

themselves. Localization is still a new and exciting field, with new algorithms, hard-

ware, and applications being developed at a feverish pace; it is hard to say what

techniques and hardware will be prevalent in the end.

9.1 INTRODUCTION

Advances in technology have made it possible to build ad hoc sensor networks using

inexpensive nodes consisting of a low-power processor, a modest amount of

277

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

memory, a wireless network transceiver, and a sensor board; a typical node is

comparable in size to two AA batteries [1]. Many novel applications are emerging:

habitat monitoring, smart building failure detection and reporting, and target

tracking. In these applications it is necessary to accurately orient the nodes with

respect to a global coordinate system in order to report data that are geographically

meaningful. Furthermore, basic middleware services such as routing often rely on

location information (e.g., geographic routing).

Ad hoc sensor networks present novel trade-offs in system design. On the one

hand, the low cost of the nodes facilitates massive scale and highly parallel compu-

tation. On the other hand, each node is likely to have limited power, limited

reliability, and only local communication with a modest number of neighbors.

These application contexts and potential massive scale make it unrealistic to rely

on careful placement or uniform arrangement of sensors. Rather than use globally

accessible beacons or expensive global positioning systems (GPSs) to localize

each sensor, we would like the sensors to self-organize a coordinate system.

In this chapter, we review localization hardware, discuss issues in localization

algorithm design, present the most important localization techniques, and, finally,

suggest future directions in localization. The goal of this chapter is to outline the

technical foundations of today’s localization techniques and present the trade-offs

inherent in algorithm design. No specific algorithm is a clear favorite across the

spectrum. For example, some algorithms rely on prepositioned nodes (Subsection

9.2.1) while others are able to do without. Other algorithms require expensive hard-

ware capabilities. Some algorithms need a way of performing off-line computation,

while other algorithms are able to do all their calculations on the sensor nodes them-

selves. Localization is still a new and exciting field, with new algorithms, hardware,

and applications being developed at a feverish pace; it is hard to say what techniques

and hardware will be prevalent in the end.

9.2 LOCALIZATION HARDWARE

The localization problem gives rise to two important hardware problems. The first,

the problem of defining a coordinate system, is covered in Subsection 9.2.1. The

second, which is the more technically challenging, is the problem of calculating

the distance between sensors (the ranging problem), which is covered in the balance

of this section.

9.2.1 Anchor/Beacon Nodes

The goal of localization is to determine the physical coordinates of a group of sensor

nodes. These coordinates can be global, meaning they are aligned with some exter-

nally meaningful system like GPS, or relative, meaning that they are an arbitrary

“rigid transformation” (rotation, reflection, translation) away from the global

coordinate system.

278 LOCALIZATION IN SENSOR NETWORKS

Beacon nodes (also frequently called anchor nodes) are a necessary prerequisite

to localizing a network in a global coordinate system. Beacon nodes are simply

ordinary sensor nodes that know their global coordinates a priori. This knowledge

could be hard-coded, or acquired through some additional hardware like a GPS

receiver. At a minimum, three noncollinear beacon nodes are required to define a

global coordinate system in two dimensions. If three-dimensional coordinates are

required, then at least four noncoplanar beacons must be present.

Beacon nodes can be used in several ways. Some algorithms (e.g., multidimen-

sional sealing–mobile application part (MDS–MAP), Subsection 9.4.2) localize

nodes in an arbitrary relative coordinate system, then use a few beacon nodes to

determine a rigid transformation of the relative coordinates into global coordinates

(see Appendix B). Other algorithms (e.g., approximate point in triangle (APIT)

Subsection 9.5.4) use beacons throughout, using the positions of several beacons

to “bootstrap” the global positions of nonbeacon nodes.

Beacon placement can often have a significant impact on localization. Many

groups have found that localization accuracy improves if beacons are placed in a

convex hull around the network. Locating additional beacons in the center of the net-

work is also helpful. In any event, there is considerable evidence that real improve-

ments in localization can be obtained by planning beacon layout in the network.

The advantage of using beacons is obvious: the presence of several prelocalized

nodes can greatly simplify the task of assigning coordinates to ordinary nodes. How-

ever, beacon nodes have inherent disadvantages. GPS receivers are expensive. They

also cannot typically be used indoors, and can also be confused by tall buildings or

other environmental obstacles. GPS receivers also consume significant battery

power, which can be a problem for power-constrained sensor nodes. The alternative

to GPS is preprogramming nodes with their locations, which can be impractical

(for instance, when deploying 10,000 nodes with 500 beacons) or even impossible

(for instance, when deploying nodes from an aircraft).

In short, beacons are necessary for localization, but their use does not come

without cost.

The remainder of Section 9.2 focuses on hardware methods of computing

distance measurements between nearby sensor nodes (i.e., ranging).

9.2.2 Received Signal-Strength Indication

In wireless sensor networks, every sensor has a radio. The question is: How can the

radio help localize the network? There are two important techniques for using radio

information to compute ranges. One of them, hop count, is discussed in Subsection

9.2.3. The other, received signal-strength indication (RSSI), is covered here.

In theory, the energy of a radio signal diminishes with the square of the distance

from the signal’s source. As a result, a node listening to a radio transmission should

be able to use the strength of the received signal to calculate its distance from the

transmitter. RSSI suggests an elegant solution to the hardware ranging problem:

all sensor nodes are likely to have radios, so why not use them to compute ranges

for localization?

9.2 LOCALIZATION HARDWARE 279

In practice, however, RSSI ranging measurements contain noise on the order of

several meters [2]. This noise occurs because radio propagation tends to be highly

nonuniform in real environments (see Fig. 9.1). For instance, radio propagates dif-

ferently over asphalt than over grass. Physical obstacles such as walls, furniture, and

the like, reflect and absorb radio waves. As a result, distance predictions using signal

strength have been unable to demonstrate the precision obtained by other ranging

methods, such as time difference of arrival (Subsection 9.2.4).

However, RSSI has garnered new interest recently. More careful physical analy-

sis of radio propagation may allow better use of RSSI data, as might better cali-

bration of sensor radios. Whitehouse [3] did an extensive analysis of radio signal

strength, which he was able to parlay into noticeable improvements in localization.

Thus, it is quite possible that a more sophisticated use of RSSI will eventually

prove to be a superior ranging technology, from a price/performance standpoint.

Nevertheless, the technology is not there today.

9.2.3 Radio Hop Count

Even though RSSI is too inaccurate for many applications, the radio can still be used

to assist localization. The key observation is that if two nodes can communicate by

radio, their distance from each other is less than R with high probability, where R is

the maximum range of their radios, no matter what their signal strength reading is.

Thus, simple connectivity data can be useful for localization purposes.

1

14

12

1

0.8

0.6

0.4

0.2

0

10

8

6

4

2

2 3 4 5 6 7

Grid column

G
rid

 r
ow

8 9 10 11 12

Figure 9.1 Diagram by Alec Woo that shows the probability of successful packet

transmission with respect to distance from the source. It shows that the fixed-radius disk

approximation of radio connectivity is quite inaccurate. It also demonstrates the difficulties

inherent in retrieving distance information from signal strength. (From ref. [3], with

permission.)

280 LOCALIZATION IN SENSOR NETWORKS

In particular, many groups have found “hop count” to be a useful way to compute

internode distances. The local connectivity information provided by the radio

defines an unweighted graph, where the vertices are sensor nodes and edges rep-

resent direct radio links between nodes. The hop count hij between sensor nodes

si and sj is then defined as the length of the shortest path in the graph between si
and sj.

Naively, if the hop count between si and sj is hij, then the distance between si and

sj, dij, is less than R�hij, where R is again the maximum radio range.

It turns out that a better estimate can be made if we know nlocal, the expected

number of neighbors per node. Then, as shown by Kleinrock and Silvester [4], it

is possible to compute a better formula for the distance covered by one radio hop:

dhop ¼ R 1þ e�nlocal �
ð1
�1

e�(nlocal=p)arccost�t
ffiffiffiffiffiffiffi
1�t2

p
dt

� �
(9:1)

Then, dij � hij � dhop. Experimentally [5], equation (9.1) has been shown to be

quite accurate when nlocal grows above 5. However, when nlocal . 15, dhop
approaches R, so equation (9.1) becomes less useful.

There are two problems with using hop count as a measurement of distance. First,

distance measurements are always integral multiples of dhop. This inaccuracy corre-

sponds to a total error of about 0.5R per measurement, which can be too high for

some applications. Second, environmental obstacles can prevent edges from appear-

ing in the connectivity graph that otherwise would be present. As a result, hop

count–based distances can be substantially too high, for example, as in Figure 9.2.

Nagpal et al. [5] demonstrate by algorithm that even better hop-count distance

estimates can be computed by averaging distances with neighbors. This benefit

does not begin to appear until nlocal � 15; however, it can reduce hop-count error

down to as little as 0.2R.

D

C

B
A

Obstruction

Figure 9.2 Examples of hop count. In this diagram, hAC ¼ 4. Unfortunately, hBD is also

four, due to an obstruction in the topology. This is one of the ways that hop-count distance

metrics can experience dramatic error.

9.2 LOCALIZATION HARDWARE 281

9.2.4 Time Difference of Arrival

Time difference of arrival (TDoA) is a commonly used hardware ranging mechan-

ism. In TDoA schemes, each node is equipped with a speaker and a microphone.

Some systems use ultrasound while others use audible frequencies. However, the

general mathematical technique is independent of particular hardware.

In TDoA, the transmitter first sends a radio message. It waits some fixed interval

of time, tdelay (which might be zero), and then produces a fixed pattern of “chirps” on

its speaker.

When listening nodes hear the radio signal, they note the current time, tradio, then

turn on their microphones. When their microphones detect the chirp pattern, they

again note the current time, tsound. Once they have tradio, tsound, and tdelay, the listeners

can compute the distance d between themselves and the transmitter using the fact

that radio waves travel substantially faster than sound in air.

d ¼ (sradio � ssound) � (tsound � tradio � tdelay) (9:2)

See Fig. 9.3 for an illustration.

TDoA methods are impressively accurate under line-of-sight conditions;

however, they perform best in areas that are free of echoes and when the speakers

and microphones are calibrated to each other. Several groups are working to com-

pensate for these issues, which will likely lead to even better field accuracy.

Nevertheless, rather good results can already be obtained, even in subpar con-

ditions. The Cricket ultrasound ranging system [6] can obtain close to centimeter

accuracy without calibration over ranges of up to 10 meters in indoor environments,

provided the transmitter and receiver have line-of-sight.

The downside of TDoA systems is that they inevitably require special hardware

to be built into sensor nodes, specifically a speaker and a microphone. TDoA

systems perform best when they are calibrated properly, since speakers and micro-

phones never have identical transmission and reception characteristics. Furthermore,

the speed of sound in air varies with air temperature and humidity, which introduce

tDelay

A

B

tdelay d / (Sradio − Ssound)

tSoundtradio

R
ad

io

Sound

Figure 9.3 Time difference of arrival (TDoA) illustrated. Sensor A sends a radio pulse

followed by an acoustic pulse. By determining the time difference between the arrival of

the two pulses, sensor B can estimate its distance from A.

282 LOCALIZATION IN SENSOR NETWORKS

inaccuracy into equation (9.2). Finally, the line-of-sight constraint can be difficult to

meet in some environments.

It is possible to use additional constraints to identify and prune bad ranging data

(“outliers”) [7]. Representative constraints include:

. The range from node A to node B should be approximately equal to the range

from node B to node A (rAB � rBA).

. The pairwise ranges between nodes A, B, and C should obey the triangle

inequality (rAB þ rAC � rBC).

In the end, many localization algorithms use time difference of arrival ranging

simply because it is dramatically more accurate than radio-only methods.

The actual reason why TDoA is more effective in practice than RSSI is due to the

difference between using signal travel time and signal magnitude, where the

former is vulnerable only to occlusion while the latter is vulnerable to both occlusion

and multipath.

9.2.5 Angle of Arrival, Digital Compasses

Some algorithms depend on angle of arrival (AoA) data. These data are typically

gathered using radio or microphone arrays, which allow a listening node to deter-

mine the direction of a transmitting node. It is also possible to gather AoA data

from optical communication methods.

In these methods, several (3–4) spatially separated microphones hear a single

transmitted signal. By analyzing the phase or time difference between the signal’s

arrival at different microphones, it is possible to discover the AoA of the signal.

These methods can obtain accuracy to within a few degrees [8]. Unfortunately,

AoA hardware tends to be bulkier and more expensive than TDoA ranging

hardware, since each node must have one speaker and several microphones. Further-

more, the need for spatial separation between speakers is difficult to accommodate as

the form factor of sensors shrinks.

AoA hardware is sometimes augmented with digital compasses. A digital com-

pass simply indicates the global orientation of its node, which can be quite useful

in conjunction with AoA information.

In practice, few sensor localization algorithms absolutely require AoA infor-

mation, though several are capable of using it when it is present.

9.3 ISSUES IN LOCALIZATION ALGORITHM DESIGN

9.3.1 Resource Constraints

Sensor networks are typically quite resource-starved. Nodes have rather weak pro-

cessors, making large computations infeasible. Moreover, sensor nodes are typically

battery powered. This means communication, processing, and sensing actions

9.3 ISSUES IN LOCALIZATION ALGORITHM DESIGN 283

are all expensive, since they actively reduce the lifespan of the node performing

them.

Not only that, sensor networks are typically envisioned on a large scale, with

hundreds or thousands of nodes in a typical deployment. This fact has two important

consequences: nodes must be inexpensive to fabricate, and trivially easy to deploy.

Nodes must be inexpensive, since fifty cents of additional cost per node translates

to $500 for a one-thousand node network. Deployment must be easy as well:

30 seconds of handling time per node to prepare for localization translates to over

8 man-hours of work to deploy a 1000-node network.

Localization is necessary to many functions of a sensor network; however, it is

not the purpose of a sensor network. Localization must cost as little as possible

while still producing satisfactory results. That means designers must actively

work to minimize the power cost, hardware cost, and deployment cost of their

localization algorithms.

9.3.2 Node Density

Many localization algorithms are sensitive to node density. For instance, hop-

count–based schemes generally require high node density so that the hop count

approximation for distance is accurate (Subsection 9.2.3). Similarly, algorithms

that depend on beacon nodes fail when the beacon density is not high enough in a

particular region. Thus, when designing or analyzing an algorithm, it is important

to notice the algorithm’s implicit density assumptions, since high node density

can sometimes be expensive if not totally infeasible.

9.3.3 Nonconvex Topologies

Localization algorithms often have trouble positioning nodes near the edges of a

sensor field. This artifact generally occurs because fewer range measurements are

available for border nodes, and those few measurements are all taken from the

same side of the node. In short, border nodes are a problem because less

information is available about them and that information is of lower quality.

This problem is exacerbated when a sensor network has a nonconvex shape:

Sensors outside the main convex body of the network can often prove unlocaliz-

able. Even when locations can be found, the results tend to feature disproportion-

ate error.

9.3.4 Environmental Obstacles and Terrain Irregularities

Environmental obstacles and terrain irregularities can also wreak havoc on localiz-

ation. Large rocks can occlude line of sight, preventing TDoA ranging, or interfere

with radios, introducing error into RSSI ranges and producing incorrect hop-count

ranges. Deployment on grass versus sand versus pavement can affect radios

and acoustic ranging systems. Indoors, natural features like walls can impede

284 LOCALIZATION IN SENSOR NETWORKS

measurements as well. All of these issues are likely to come up in real deployments,

so localization systems should be able to cope.

9.3.5 System Organization

This Subsection defines a taxonomy for localization algorithms based on their

computational organization.

Centralized algorithms (Section 9.4) are designed to run on a central machine

with plenty of computational power. Sensor nodes gather environmental data and

pass them back to a base station for analysis, after which the computed positions

are transported back into the network. Centralized algorithms circumvent the pro-

blem of nodes’ computational limitations by accepting the communication cost of

moving data back to the base station. This trade-off becomes less palatable as the

network grows larger, however, since it unduly stresses nodes near the base station.

Furthermore, it requires that an intelligent base station be deployed with the nodes,

which may not always be possible. This scaling problem can be partially alleviated

by deploying multiple base stations (forming a multitier network).

In contrast, distributed algorithms are designed to run in the network, using

massive parallelism and internode communication to compensate for the lack of

centralized computing power. Often distributed algorithms use a subset of the

data to solve for each position independently, yielding an approximation of a

corresponding centralized algorithm where all the data are considered and used to

solve for all the positions simultaneously.

There are two important approaches to distributed localization. The first group,

beacon-based distributed algorithms (Section 9.5), typically starts with some

group of beacons (Subsection 9.2.1). Nodes in the network obtain a distance

measurement to a few beacons, then use these measurements to determine their

own location. In some algorithms, these newly localized nodes become beacons

to help other nodes localize.

The second group approaches localization by trying to optimize a global metric

over the network in a distributed fashion. This group splits out into two substantially

different approaches. The first approach, relaxation-based distributed algorithms

(Section 9.6) is to use a coarse algorithm to roughly localize nodes in the network.

This coarse algorithm is followed by a refinement step, which typically involves

each node adjusting its position to optimize a local error metric. By doing so,

these algorithms hope to approximate the optimal solution to a networkwide

metric that is the sum of the local error metric at each of the nodes.

Coordinate system stitching (Section 9.7) is the second approach to optimizing a

networkwide metric in a distributed manner. In these algorithms, the network

is divided into small overlapping subregions, each of which creates an optimal

local map. Finally, the subregions use a peer-to-peer process to merge their local

maps into a single global map. In theory, this global map approximates the global

optimum map.

The next four sections treat each of these groups in turn.

9.3 ISSUES IN LOCALIZATION ALGORITHM DESIGN 285

9.4 CENTRALIZED ALGORITHMS

This section is devoted to centralized localization algorithms. Centralization

allows an algorithm to undertake much more complex mathematics than is possible

in a distributed setting. However, as we said in the previous section, centralization

requires the migration of internode ranging and connectivity data to a sufficiently

powerful central base station and then the migration of resulting locations back to

respective nodes. The main difference between centralized algorithms is the type

of processing they do at the base station. We will discuss two types of processing:

semidefinite programming and multidimensional scaling.

9.4.1 Semidefinite Programming

The semidefinite programming (SDP) approach to localization was pioneered

by Doherty et al. [9]. In this algorithm, geometric constraints between nodes are rep-

resented as linear matrix inequalities (LMIs). Once all the constraints in the network

are expressed in this form, the LMIs can be combined to form a single semidefinite

program. This is solved to produce a bounding region for each node, which Doherty

et al. simplify to be a bounding box. See Figure 9.4 for some sample LMI

constraints.

Unfortunately, not all geometric constraints can be expressed as LMIs. In gen-

eral, only constraints that form convex regions are amenable to representation as

an LMI. Thus, AoA data can be represented as a triangle and hop-count data can

be represented as a circle, but precise range data cannot be conveniently represented,

since rings cannot be expressed as convex constraints. This inability to accommo-

date precise range data may prove to be a significant drawback.

Solving the linear or semidefinite program must be done centrally. The relevant

operation is O(k2) for angle of arrival data, and O(k3) when radial (e.g., hop count)

(a) (b) (c)

Figure 9.4 Semidefinite program constraints. (a) A radial constraint, for example, from

radio connectivity. (b) A triangular constraint, for example, from angle of arrival data.

(c) Location estimate derived from intersection of two convex constraints.

286 LOCALIZATION IN SENSOR NETWORKS

data is included, where k is the number of convex constraints needed to describe

the network. Thus, running time is something of an Achilles’ heel for this algorithm.

A hierarchical version of this algorithm might have better scaling properties, but no

relevant performance data have been published to our knowledge.

The real advantage of this algorithm is its elegance. Given a set of convex con-

straints on a node’s position, SDP simply finds the intersection of the constraints.

However, SDP’s poor scaling and inability to effectively use range data will

likely preclude the algorithm’s use in practice.

9.4.2 MDS–MAP

MDS–MAP is a centralized algorithm due to Shang et al. [10]. Instead of using

semidefinite programming, however, MDS–MAP uses a technique from mathe-

matical psychology called multidimensional scaling (MDS).

The intuition behind MDS is simple. Suppose there are n points, suspended in a

volume. We do not know the positions of the points, but we do know the distance

between each pair of points. MDS is an O(n3) algorithm that uses the law of cosines

and linear algebra to reconstruct the relative positions of the points based on the

pairwise distances. The mathematical details of MDS are in Appendix C of this

chapter.

MDS–MAP is almost a direct application of the simplest kind of MDS: classic

metric MDS. The algorithm has four stages, which are as follows:

Step 1. Gather ranging data from the network, and form a sparse matrix R, where

rij is the range between nodes i and j, or zero if no range was collected (for

instance, if i and j are physically too far apart).

Step 2. Run a standard all-pairs shortest-path algorithm (Dijkstra’s, Floyd’s) on

R to produce a complete matrix of internode distances D.

Step 3. Run classic metric MDS on D to find estimated node positions X, as

described in Appendix C.

Step 4. Transform the solution X into global coordinates using some number of

fixed anchor nodes using a coordinate system registration routine B.

MDS–MAP performs well on RSSI data alone, getting performance on the order

of half the radio range when the neighborhood size nlocal is higher than 12.

As expected, MDS–MAP estimates improve as ranging improves. MDS–MAP

also does not use anchor nodes very well, since it effectively ignores their data

until stage 4. As a result, its performance lags behind other algorithms as anchor

density increases. The main problem with MDS–MAP, however, is its poor

asymptotic performance, which is O(n3) on account of stages 2 and 3. It turns out

that this problem can be partially ameliorated using coordinate system stitching:

see Section 9.7 for details.

9.4 CENTRALIZED ALGORITHMS 287

9.5 BEACON-BASED DISTRIBUTED ALGORITHMS

In this section, we talk about beacon-based distributed algorithms. These algorithms

all extrapolate unknown node positions from beacon positions. Thus, they localize

nodes directly into the global coordinate space of the beacons. These algorithms

are also all distributed, so that all the relevant computation is done on the sensor

nodes themselves. We will present four beacon-based distributed algorithms:

diffusion, bounding box, gradient multilateration, and APIT.

9.5.1 Diffusion

Diffusion arises from a very simple idea: the most likely position of a node is at the

centroid of its neighbors’ positions. Diffusion algorithms require only radio

connectivity data. We describe two different variants below.

Bulusu et al. [11] localize unknown nodes by simply averaging the positions of

all beacons with which the node has radio connectivity. Thus, Bulusu et al. assume

that nodes have no way of ranging to beacons. This method is attractive in its blind-

ing simplicity; however, the resulting positions are not very accurate, particularly

when beacon density is low, or nodes fall outside the convex hull of their audible

beacons.

Fitzpatrick and Meertens [12] describe a more sophisticated variant: each node

is at the centroid of its neighbors, including nonbeacons. The algorithm is as

follows:

Step 1. Initialize the position of all nonbeacon nodes to (0, 0).

Step 2. Repeat the following until positions converge:

Step 2a. Set the position of each nonbeacon node to the average of all its

neighbors’ positions.

This variant requires fewer beacons than Bulusu et al.’s algorithm; nevertheless,

its accuracy is poor when node density is low, nodes are outside the convex hull

of the beacons, or node density varies across the network. In all of these cases, a

more sophisticated algorithm would improve accuracy dramatically. Fitzpatrick

and Meertens’s variant also uses substantially more computation than Bulusu

et al.’s approach, since positions must be exchanged between adjacent nodes

during step 2.

However, this algorithm is quite useful in networks where nodes are capable

of very little computation, but the network topology can be selectively changed to

improve localization. In particular, Savvides et al. [13] recommend placing some

beacons around the edges of the sensor network field. Selectively adding additional

beacons can also help resolve pathologies in the diffusion estimates. Bulusu et al.

[11] describe an approach for adaptive beacon placement to improve diffusion-

based localization.

288 LOCALIZATION IN SENSOR NETWORKS

9.5.2 Bounding Box

The bounding-box algorithm [14,15] is a computationally simple method of localiz-

ing nodes given their ranges to several beacons. See Figure 9.5 for an example.

Essentially, each node assumes that it lies within the intersection of its beacons’

bounding boxes. The bounding box for a beacon b is centered at the beacon position

(xb, yb), and has height and width 2db, where db is the node’s distance to the beacon

measurement.

The intersection of the bounding boxes can be computed without use of floating-

point operations:

½max (xi � di), max (yi � di)� � ½min (xi þ di), min (yi þ di)�
i ¼ 1 � � � n (9:3)

The position of a node is then the center of this final bounding box, as shown in

Figure 9.5.

Whitehouse [3] analyzes a distributed version of this algorithm [15], showing that

unfortunately this version is highly susceptible to noisy range estimates, especially

small estimates that tend to propagate.

The accuracy of the bounding-box approach is best when the nodes’ actual pos-

itions are closer to the center of their beacons. Simic and Sastry [15] prove results

about convergence, errors, and complexity.

In any event, bounding box works best when sensor nodes have extreme

computational limitations, since other algorithms may simply be infeasible. Other-

wise, more mathematically rigorous approaches such as gradient multilateration

(Subsection 9.5.3), may be more appropriate.

Figure 9.5 An example of the intersection of bounding boxes. The center of the intersection

is the position estimate for the unknown node. The size of the boxes is based on hop count

radio range from the beacons to the unknown node.

9.5 BEACON-BASED DISTRIBUTED ALGORITHMS 289

9.5.3 Gradient

The principal mathematical operation of the gradient method is called multilateration.

Multilateration is a great deal like triangulation, except that multilateration can incor-

porate ranges from more than three reference points. Formally, given m beacons with

known Cartesian positions bi, i ¼ 1 � � �m and possibly noisy range measurements ri
from the known nodes to an unknown sensor node s, multilateration finds the most

likely position of s. The mathematics of multilateration are outlined in Appendix 1.9.

Using gradients to compute ranges for multilateration has been proposed by a

number of researchers [11,16–19]. These algorithms all assume that there are at

least three beacon nodes somewhere in the network (though probably more). Each

of these beacon nodes propagates a gradient through the network, which is the

distributed equivalent of computing the shortest path distance between all the

beacons and all of the unlocalized nodes. The gradient propagation is as follows:

Step 1. For each node j and beacon k, let djk (the distance from j to k) be 0 if j ¼ k,

and 1 otherwise.

Step 2. On each node j, perform the following steps repeatedly:

Step 2a. For each beacon k and neighbor i, retrieve dik from i.

Step 2b. For each beacon k and neighbor i, apply the following update formula:

d jk ¼ min (dik þ r̂ij, d jk)

where r̂ij is the estimated distance between nodes i and j. These internode dis-

tance estimates can be either unweighted (one if there is connectivity, zero

otherwise) or measured distances (e.g., using RSSI or TDoA).

After some amount of settling time, each value djk will be the length of the shortest

path between node j and beacon k. Figure 9.6 shows the results of running the gra-

dient propagation algorithm with one beacon.

The gradient-based distance estimate to a beacon must be adjusted, since even

given perfect internode distance estimates, gradient distance estimates will always

be longer than (or exactly equal to) corresponding straight-line distances. Of

course, given imperfect internode distance estimates, gradient-based distance esti-

mate can actually be shorter than straight distances. In fact, Whitehouse [3]

shows that it is actually more likely that they are shorter, since underestimated

internode distances skew all subsequent gradient-based estimates. Niculescu and

Nath [20] suggest using a correction factor calculated by comparing the actual

distance between beacons to the shortest path distances computed during gradient

propagation. Each unlocalized node simply applies the correction factor from its

closest beacon to its gradient distance estimate.

As an alternative, Nagpal et al. [5] in their Amorphous algorithm suggest correct-

ing this distance based on the neighborhood size nlocal, as we previously discussed in

Subsection 9.2.3.

290 LOCALIZATION IN SENSOR NETWORKS

Once final distance estimates to beacons have been computed, the actual localiz-

ation process simply uses multilateration directly on the beacon positions k and the

distance measurements djk.

Like the other beacon-based distributed algorithms, this algorithm has the virtue

of being direct and easy to understand. It is also scales well (provided the density of

beacons is kept constant; otherwise, the communication cost can be prohibitive). It is

also quite effective in homogeneous topologies where there are few environmental

obstructions. However, even when using high-quality range data, this algorithm is

subject to the deficiencies described in Subsection 9.2.3 and demonstrated in

Figure 9.2, so it behaves badly in obstructed settings. It also requires substantial

node density before its accuracy reaches an acceptable level.

A number of variations to the multilateration approach have been suggested.

Niculescu and Nath [21] suggest propagating AoA information along links.

Nagpal [22] proposes refining the hop-count estimates by averaging values among

neighbors. This turns out to greatly increase the accuracy of gradient multilateration.

9.5.4 APIT

APIT [23] is quite a bit different from the beacon-based distributed algorithms

described so far. APIT uses a novel area-based approach, in which nodes are

assumed to be able to hear a fairly large number of beacons. However, APIT

does not assume that nodes can range to these beacons. Instead, a node forms

some number of “beacon triangles,” where a beacon triangle is the triangle

formed by three arbitrary beacons. The node then decides whether it is inside or out-

side a given triangle by comparing signal-strength measurements with its nearby

Figure 9.6 Gradients propagating from a beacon (in the lower right corner). Each dot

represents a sensor node. Gray levels are based on their gradient value.

9.5 BEACON-BASED DISTRIBUTED ALGORITHMS 291

nonbeacon neighbors. Once this process is complete, the node simply finds the inter-

section of the beacon triangles that contains it. The node chooses the centroid of this

intersection region as its position estimate. Figure 9.7 shows an example of this

process: each of the triangles represents a triple of beacons and the intersection of

all the triangles defines the position of the unknown node.

The actual algorithm is as follows:

Step 1. Receive beacon positions from hearable beacons.

Step 2. Initialize inside-set to be empty.

Step 3. For each triangle Ti in possible triangles formed over beacons, add Ti to

inside-set if node is insideTi.GotoStep4whenaccuracyof inside-set is sufficient.

Step 4. Compute position estimate as the center of mass of the intersection of all

triangles in inside-set.

The point in triangle (PIT) test is based on geometry. For a given triangle with

points A, B, and C, a given pointM is outside triangle ABC, if there exists a direction

such that a point adjacent toM is further/closer to points A, B, and C simultaneously.

Otherwise, M is inside triangle ABC. Unfortunately, given that typically nodes

cannot move, an approximate APIT test is proposed that assumes sufficient node

density for approximating node movement. If no neighbor of M is further from/
closer to all three anchors A, B, and C simultaneously, M assumes that it is inside

triangle ABC. Otherwise, M assumes it resides outside this triangle.

This algorithm is described as being range-free, which means that RSSI range

measurements are required to be monotonic and calibrated to be comparable but

are not required to produce distance estimates. It could be that the effort put into

RSSI calibration would produce an effective enough ranging estimate to be useful

for gradient techniques described in Subsection 9.5.3, making the range-free

Figure 9.7 Node position estimated as the center of mass of the intersection of a number of

beacon triangles for which a given node is inside.

292 LOCALIZATION IN SENSOR NETWORKS

distinction potentially moot. The APIT algorithm also requires a relatively high ratio

of beacons to nodes, requires longer-range beacons, and is susceptible to erro-

neously low RSSI readings. On the other hand, He et al. [23] show that the algorithm

requires smaller amounts of computation and less communication than other

beacon-based algorithms. In short, APIT is a novel approach that is a potentially

promising direction that requires further study.

9.6 RELAXATION-BASED DISTRIBUTED ALGORITHMS

The class of relaxation-based distributed algorithms starts with nodes estimating

their positions with any of a variety of methods, such as gradient distance propa-

gation. These initial positions are then refined from position estimates of neighbors.

Savarese et al. [24] refine the initial gradient-derived positions using local neigh-

borhood multilateration. Each node adjusts its position by using its neighbors as

temporary beacons. Convex optimization can also be used to find an improved

position for situations where beacon distance estimates are unavailable.

An equivalent formulation to localmultilateration is presented in ref. [25] and is gen-

erally referred to as a spring model. This description considers edges between nodes as

springs,with resting lengthsbeing the actualmeasureddistances.Thealgorithm involves

iteratively adjusting nodes in the direction of their local spring forces. The optimization

stops when all nodes have zero forces acting on them. If the magnitude of all the forces

between nodes is also zero, then the final positions form a global minimum.

Unfortunately, these relaxation techniques are quite sensitive to initial starting

positions. Bad starting positions will result in local minima. Priyantha et al. [25]

describe a technique for producing starting positions for nodes that nearly always

avoid bad local minima. The insight is that the network gets tangled and that,

using the spring model style, optimization is unable to fully untangle the network.

Their approach starts the network in a “fold-free” state.

The fold-free algorithm works by choosing five reference nodes, one in the center

n0 and four on the periphery, n1, n2, n3, n4. The four on the periphery are chosen so

that the two pairs n1, n2 and n3, n4 are roughly perpendicular to each other. The

choice of these nodes is performed using a hop-count approximation to distance.

The node positions (xi, yi) are calculated using polar coordinates (ui, ri):

ui ¼ h0, iR

ri ¼ arctan
h1, i � h2, i

h3, i � h4, i

xi ¼ h0, iR
h3, i � h4, i

li

yi ¼ h0, iR
h1, i � h2, i

li

li ¼
ffi
(h3, i � h4, i)

2 þ (h1, i � h2, i)
2

q

(9:4)

where hj,i is the hop count to reference node j and R is the maximum radio range.

9.6 RELAXATION-BASED DISTRIBUTED ALGORITHMS 293

These relaxation algorithms have the virtue that they are fully distributed and

concurrent and operate without beacons. While the computations are modest and

local, it is unclear how well these algorithms scale to much larger networks.

Furthermore, there are no provable means for avoiding local minima and local

minima problems could worsen at larger scales. To date, researchers have avoided

local minima by starting optimizations at favorable starting positions, but another

alternative would be to utilize optimization techniques, such as simulated annealing

[26], which tend to fall into fewer local minima.

9.7 COORDINATE SYSTEM STITCHING

In section 9.6, we showed one method of fusing the precision of centralized schemes

with the computational advantages of distributed schemes. Coordinate system

stitching is a different way of approaching the same problem. It has received a

great deal of recent work [20,27–29]. Coordinate system stitching works according

to the following algorithm:

Step 1. Split the network into small overlapping subregions. Very often each sub-

region is simply a single node and its one-hop neighbors.

Step 2. For each subregion, compute a “local map,” which is essentially an

embedding of the nodes in the subregion into a relative coordinate system.

Step 3. Finally, merge the subregions using a coordinate system registration

procedure. Coordinate system registration finds a rigid transformation that

maps points in one coordinate system to a different coordinate system.

Thus, step 3 places all the subregions into a single global coordinate

system. Many algorithms do this step suboptimally, since there is a closed-

form, fast, and least-square optimal method of registering coordinate systems.

We describe this optimal method in Appendix B.

Steps 1 and 2 tend to be unique to each algorithm, whereas step 3 tends to be the

same in every algorithm. We will describe three different methods of performing

steps 1 and 2, and finally explain the typical method of performing step 3.

Meertens and Fitzpatrick [28] form subregions using one-hop neighbors. Local

maps are then computed by choosing three nodes to define a relative coordinate

system and using multilateration (Subsection 9.5.3) to iteratively add additional

nodes to the map, forming a “multilateration subtree.”

Moore et al. [29] outline an approach that they claim produces more robust local

maps. Rather than use three arbitrary nodes to define a map, Moore et al. use “robust

quadrilaterals” (robust quads), where a robust quad is a fully connected set of four

nodes, where each subtriangle is also “robust.” A robust subtriangle must have the

property that:

b sin2 u . dmin

294 LOCALIZATION IN SENSOR NETWORKS

where b is the length of the shortest side, u is the size of the smallest angle, and dmin is a

predetermined constant based on average measurement error. The idea is that the

points of a robust quad can be placed correctly with respect to each other (i.e., without

“flips”). Moore et al. demonstrate that the probability of a robust quadrilateral experi-

encing internal flips given zero mean Gaussian measurement error can be bounded

by setting dmin appropriately. In effect, dmin filters out quads that have too much

positional ambiguity to be localizedwith confidence. The appropriate level of filtering

is based on the amount of uncertainty s2 in the distance measurements.

Once an initial robust quad is chosen, any node that connects to three of the four

points in the initial quad can be added using simple multilateration (Subsection

9.5.3). This preserves the probabilistic guarantees provided by the initial robust

quad, since the new node forms a new robust quad with the points from the original.

By induction, any number of nodes can be added to the local map, as long as each

node has a range to three members of the map.

These local maps (which Moore et al. call “clusters”) are now ready to be stitched

together. Optionally, an optimization pass such as those in Section 9.6 can be used to

refine the local maps first.

Ji and Zha [30] useMDS to form localmaps.We discussedMDSwithMDS–MAP

in Subsection 9.4.2, and cover themathematics ofMDS inAppendixC. Ji and Zha use

an iterative variant ofMDS to compensate for missing internode distances. This itera-

tive variant turns out to be intimately related to standard iterative least-square algor-

ithms, though it is somewhat more sophisticated. Ji and Zha focus on RSSI for range

data. Once again, subregions are defined to be one-hop neighborhoods.

The stitching phase (step 3 in previous algorithm), uses coordinate system

registration (described in Appendix B) in a peer-to-peer fashion to shift all the

local maps into a single coordinate system. One way of performing this stitching

is now described:

Step 1. Let the node responsible for each local map choose an integer coordinate

system ID at random.

Step 2. Each node communicates with its neighbors; each pair performs the fol-

lowing steps:

Step 2a. If both have the same ID, then do nothing further.

Step 2b. If they have different IDs, then register the map of the node with the

lower ID with the map of the node with the higher ID. Afterward, both

nodes keep the higher ID as their own.

Step 3. Repeat step 2 until all nodes have the same ID; now all nodes have a coor-

dinate assignment in a global coordinate system.

Limited work has been done on the mathematical properties of this scheme.

Moore et al. prove the probability of their algorithm constructing correct local

maps and prove error lower bounds on the local map positions. Meertens and

Fitzpatrick [28] devote some discussion to the topic of error propagation caused

by local map stitching. They point out that registering local maps iteratively can

9.7 COORDINATE SYSTEM STITCHING 295

lead to error propagation and perhaps unacceptable error rates as networks grow.

Furthermore, they argue that in the traditional communication model, where

nodes can communicate only with neighbors, this algorithm may converge quite

slowly, since a single coordinate system must propagate from its source across

the entire network. Future work is needed to curb this error propagation.

Furthermore, these techniques have a tendency to orphan nodes, either because

they could not be added to a local map or because their local map failed to overlap

sufficiently with neighboring maps. Moore et al. argue that this is acceptable because

the orphaned nodes are the nodes most likely to display high error. However, this

answer may not be satisfactory for some applications, many of which cannot use

unlocalized nodes for sensing, routing, target tracking, or other tasks.

Nonetheless, coordinate system stitching techniques are quite compelling. They

are inherently distributed, since subregion and local map formation can trivially

occur in the network and stitching is easily formulated as a peer-to-peer algorithm.

Furthermore, they enable the use of sophisticated local-map algorithms which

are too computationally expensive to use at the global level. For example, map for-

mation using robust quadrilaterals is O(n4), where n is the number of nodes in the

subregion; however, in networks with fixed neighborhood size nlocal, map formation

is O(1). Likewise, coordinate system stitching enables the realistic use ofO(n3) mul-

tidimensional scaling in sensor networks.

9.8 FUTURE DIRECTIONS

The sensor network field and localization in particular are in their infancy. Much

work remains in order to address the varied localization requirements of sensor

network services and applications. Many future directions stand out as important

areas to pursue in order to meet both current and future needs.

Localization hardware will always involve fallible and imperfect components;

thus, calibration is imperative [3]. For example, raw measurements from

RSSI vary wildly from node to node, while most algorithms expect measurements to

be at minimum monotonic and comparable. If calibration can bridge this gap, a wide

variety of algorithms would become practical on cheap hardware.

Even with accurate calibration, localization hardware produces noisy measure-

ments due to occlusion, collisions, and multipath effects. This mandates an improve-

ment in measurement outlier rejection algorithms. Early work [7] has suggested that

outlier rejection can greatly improve the performance of localization algorithms.

Some early ideas [7] involve using consistency checks such as symmetry and geo-

metric constraints to reject improbable measurements, as discussed in Subsection

9.2.4. Other possibilities involve using statistical error models to identify outliers.

Future sensor networks will involve movable sensor nodes. New localization

algorithms will need to be developed to accommodate these moving nodes. Some

algorithms can tolerate a certain amount of movement, but more experiments and

algorithm development is required. Some researchers [11,31] have touched on

this issue with adaptive beacon placement, but much more work is needed.

296 LOCALIZATION IN SENSOR NETWORKS

No current localization algorithm adequately scales for ultrascale sensor net-

works (i.e., 10,000 nodes and beyond). It seems likely that such networks will

end up being multitiered, and will require the development of more hierarchical

algorithms.

9.9 CONCLUSION

In this chapter we presented the foundations of sensor network localization. We

discussed localization hardware, issues in localization algorithm design, major

localization techniques, and future directions. In this section, we summarize the

trade-offs and provide guidelines for choosing different algorithms based on context

and available hardware.

The first primary distinction between algorithms is those that require beacons

(described in Section 9.5) and those that do not (described in Sections 9.4, 9.6,

and 9.7). Beaconless algorithms necessarily produce relative coordinate systems

that can optionally be registered to a global coordinate system by positioning

three (or four) nodes. Often sensor network deployments make the use of beacons

prohibitive and furthermore many applications do not require a global coordinate

system. In these situations beaconless algorithms suffice. Finally, some algorithms

(such as APIT from Subsection 9.5.4) require a higher beacon-to-node ratio than

others to achieve a given level of accuracy.

The next distinction between localization algorithms is their hardware require-

ments. All sensor nodes have radios and most can measure signal strength, thus,

algorithms that rely on hop count or RSSI require the least hardware. Varying

degrees of ranging precision can be achieved from RSSI, with hop count being

at the low end, with one bit precision. Gradient algorithms (from Subsection

9.5.3 such as DV-hop and Amorphous can often produce quite accurate results

using only hop counts and sufficient node density. Sometimes, a microphone

and speaker are required for other reasons, making the use of more accurate

TDoA ranging possible. Sometimes nodes lack sufficient arithmetic processing,

making certain algorithms impractical. Algorithms such as bounding-box and

APIT make the least demands on processors (although APIT makes some

demands on memory).

Finally, certain algorithms are centralized while others are distributed. Centra-

lized algorithms typically compute more exact positions and can be competitive

in situations where accuracy is important and the exfiltration of ranging data and dis-

semination of resulting location data is not prohibitively time-consuming nor error-

prone. Centralized algorithms could actually be a viable option in many typical

deployments where a base station is already needed for other reasons. Distributed

algorithms are often local approximations to centralized algorithms, but have the

virtue that they do not depend on a large centralized computer and potentially

have better scalability.

Other issues to consider are battery life and communication costs. Often these

two are intertwined, as typically communication is the most battery-draining

9.9 CONCLUSION 297

sensor node activity. Consult He et al. [23] for a comparison of communication costs

(and other metrics) of a number of localization algorithms.

The development of localization algorithms is proceeding at a fast pace. While

the task appears simple, to compute positions for each node in a sensor network,

the best algorithm depends heavily on a variety of factors such as application

needs and available localization hardware. Future algorithms will address new

sensor network needs such as mobile nodes and ultrascale sizes.

APPENDIX A: MULTILATERATION

This Appendix derives a solution to the multilateration problem (Subsection 9.5.3).

See Figure 9.8 to see an example of this solution in practice.

Multilateration is a simple technique, but the specific mathematics of its

implementation vary widely, as do its application in sensor networks. The

purpose of multilateration is simple: given m nodes with known Cartesian positions

bi, i ¼ 1 � � �m and possibly noisy range measurements ri from the known nodes to an

unknown node s, multilateration finds the most likely position of s.

Multilateration is typically done by minimizing the squared error between the

observed ranges ri and the predicted distance ks� bik:

s ¼ argmin
s

E(s)

E(s) ¼
Xm
i¼1

(ks� bik � ri)
2

(9:5)

Starting
point

50 cm

Actual
position

Ending
point

Anchor
nodes

Figure 9.8 In this diagram, a single unknown node with ranges to six different beacons

localizes itself using multilateration. The ground truth position of the unknown node is

circled. The X’s mark the best estimate after each iteration of least squares, with darker

shades indicating higher iterations.

298 LOCALIZATION IN SENSOR NETWORKS

This minimization problem can be solved using Newton–Raphson/least squares
as follows. First, approximate the error function e(s, bi) ¼ ks� bik � ri in equation

(9.5) with a first-order Taylor series about s0:

e(s, bi) � e(s0, bi)þ re(s0, bi)(s� s0)

¼ re(s0, bi)s� (�e(s0, bi)þ re(s0, bi)s0)

re(s, bi) ¼ s� bi

ks� bik
Plug this approximation back into equation (9.5):

s � argmin
s

Xm
i¼1

(re(s0, bi)s� (�e(s0, bi)þ re(s0, bi)s0))2

Stacking terms:

s � argmin
s

kAs� bk2 (9:6a)

A ¼

re(s0, b1)
re(s0, b2)

..

.

re(s0, bm)

2
66664

3
77775 (9:6b)

b ¼

�e(s0, b1)þ re(s0, b1)s0
�e(s0, b2)þ re(s0, b2)s0

..

.

�e(s0, bm)þ re(s0, bm)s0

2
66664

3
77775 (9:6c)

The right side of equation (9.6a) is in exactly the right form to be solved by an

off-the-shelf iterative least-square solver. The resulting s is a good estimate of the

unknown sensor’s position, provided bi and ri are accurate. Here is a summary of

the multilateration method:

Step 1. Choose s0 to be a starting point for the optimization. The choice is some-

what arbitrary, but the centroid �b is a good one:

�b ¼ 1

m

Xm
i¼1

bi

Step 2. Compute A and b using s0 and equations (9.6b) and (9.6c).

Step 3. Compute s00 ¼ argmin
x

kAx� bk2 using a least-square solver.

Step 4. If E(s0)� E(s00) , e, then s00 is the solution, otherwise set s0 ¼ s00
and return to Step 2.

APPENDIX A: MULTILATERATION 299

There are many ways to solve the multilateration problem. The one presented

here is equivalent to Newton–Raphson descent on the error function E (equation

(9.5)). Most alternate methods also attempt to minimize squared error using some

form of iterative optimization. To see a prototypical example of an algorithm that

uses multilateration, see Subsection 9.5.3.

APPENDIX B: COORDINATE SYSTEM REGISTRATION

Many localization algorithms compute a relative coordinate assignment for a group

of sensors and later transform this local coordinate assignment into a different

coordinate system. To do this, the algorithm must compute a translation vector, a

scale factor, and an orthonormal rotation matrix that define the transformation

from one coordinate system to the other. The process of finding these quantities is

known as “coordinate system registration.” Registration can be performed for two

dimensions as long as three points have known coordinates in both systems. The

three-dimensional version naturally requires four points.

We present Horn et al.’s method of solving the coordinate system registration

problem [32]. It has many advantages over commonly used registration methods:

. It has provable optimality over the canonical least-square error metric (equation

(9.7)).

. It uses all the data available, though it can compute a correct result with as few

as three (or four) points.

. It can be computed quickly, since its running time is proportional to the number

of common points n.

There is one caveat: even after a rigid transformation, it is unlikely that the known

points will precisely align, since the measurements used to localize the points are

likely to have errors. Thus, the best that can be done is a minimization of the

misalignment between the two coordinate systems. Let xl,i and xr,i be the known pos-

itions of node i ¼ 1 � � � n in the left-hand and right-hand coordinate systems, respect-

ively. The goal of registration is to find a translation t, scale s, and rotation R that

transform a point x in the left-hand coordinate system to the equivalent point x0 in
the right-hand coordinate system using the formula:

x0 ¼ sRxþ t (9:7)

Horn et al. approach this problem using squared error; they look for a t, s, and R

that meet the following condition:

(t, s,R) ¼ argmin
t, s,R

Xn
i¼1

keik2 (9:7a)

ei ¼ xr, i � sRxl, i � t (9:7b)

300 LOCALIZATION IN SENSOR NETWORKS

In ref. [32], Horn et al. derive a closed form for equation (9.7) that can be

computed in O(n) time. The method is outlined in the following with emphasis on

the precise steps required to perform the computation. For more detail on the

mathematical underpinnings, see ref. [32]. To see the method in action, see

Figure 9.9.

Step 1. Compute the centroids of xl and xr:

�xl ¼ 1

n

Xn
i¼1

xl, i �xr ¼ 1

n

Xn
i¼1

xr, i

X

Y
X´

X´

Y´

Y´

X

Y

Figure 9.9 An example of coordinate system registration. In the upper left is a set of

reference points (X,Y). On the right, the reference points have been moved into a new

coordinate system by a linear transformation (X0, Y 0) ¼ L(X, Y) and then jittered to simulate

position error. Finally, in the lower left the (X0, Y 0) coordinate system is brought into

registration with the reference coordinate system (X,Y).

APPENDIX B: COORDINATE SYSTEM REGISTRATION 301

Step 2. Shift the points so that they are defined with respect to the centroids:

x0l, i ¼ xl, i � �xl x0r, i ¼ xr, i � �xr

Now the error term in equation (9.7b) can be rewritten as

ei ¼ x0r, i � sRx0l, i � t0

t0 ¼ t � �xr þ sR�xl

As it turns out, the squared error from equation (9.7) is minimized when

t0 ¼ 0, independent of s and R. Therefore:

t ¼ �xr � sR�xl (9:8)

So after s and R have been computed, equation (9.8) can be used to compute t.

Since t0 ¼ 0, the error term can be rewritten as:

ei ¼ x0r, i � sRx0l, i (9:9)

Now that t is out of the way, we can focus on finding s and R. Equation (9.9)

can be rewritten as

ei ¼ 1ffiffi
s

p x0r, i �
ffiffi
s

p
Rx0l, i (9:10)

So now we need only find

(s,R) ¼ argmin
s,R

Xn
i¼1

keik2

¼ argmin
s,R

1

s

Xn
i¼1

kx0r, ik2 þ s
Xn
i¼1

krl, ik2

�2
Xn
i¼1

x0r, i � (Rx0l, i)

(9:11)

By completing the square in s, it can be shown that equation (9.11) (and thus

equation (9.7)) is minimized when

s ¼
ffiXn
i¼1

kx0r, ik2
.Xn

i¼1

kx0l, ik2
s

(9:12)

Step 3. Use equation (9.12) to compute the optimal scale factor s. Now equation

(9.11) can be simplified to

R ¼ argmin 2
R

ffiXn
i¼1

kx0r, ik2
 ! Xn

i¼1

kx0l, ik2
 !vuut �

Xn
i¼1

x0r, i � (Rx0l, i)
0
@

1
A (9:13)

302 LOCALIZATION IN SENSOR NETWORKS

Equation (9.13) is minimized when the following is true:

R ¼ argmax
R

Xn
i¼1

x0r, i � (Rx0l, i)

This is the same as

R ¼ argmax
R

Trace(RTM) (9:14a)

M ¼
Xn
i¼1

x0r, i(x
0
l, i)

T (9:14b)

M is a 2 � 2 or 3 � 3 matrix, depending on whether the points xl,i and xr,i are

two- or three-dimensional. For the remainder of this discussion, assume M is

3 � 3; the results are similar for the two-dimensional case.

Step 4. Compute M using equation (9.14b).

Step 5. Compute the eigen decomposition of MTM. That is, find eigenvalues l1,
l2, l3 and eigenvectors û1, û2, û3 such that

MTM ¼ l1û1û
T
1 þ l2û2û

T
2 þ l3û3û

T
3

Step 6. Compute S ¼ (MTM)1=2 and U ¼ MS�1. That is,

S ¼
ffiffiffiffiffi
l1

p
û1û

T
1 þ

ffiffiffiffiffi
l2

p
û2û

T
2 þ

ffiffiffiffiffi
l3

p
û3û

T
3

U ¼ MS�1 ¼ M
1ffiffiffiffiffi
l1

p û1û
T
1 þ 1ffiffiffiffiffi

l2
p û2û

T
2 þ 1ffiffiffiffiffi

l3
p û3û

T
3

� �

Note that M ¼ US, and that U is orthonormal, since UTU ¼ I. We can now

write Trace(RTM) from equation (9.14a) as:

Trace(RTUS) ¼
ffiffiffiffiffi
l1

p
Trace(RTUû1û

T
1)

þ
ffiffiffiffiffi
l2

p
Trace(RTUû2û

T
2)

þ
ffiffiffiffiffi
l3

p
Trace(RTUû3û

T
3)

Trace(RTUûiû
T
i) can be rewritten as (Rûi � Uûi). Since ûi is a unit vector, and

since U and R are orthonormal transformations, (Rûi � Uûi) � 1, with equality

only when Rûi ¼ Uûi. Therefore:

Trace(RTUS) �
ffiffiffiffiffi
l1

p
þ

ffiffiffiffiffi
l2

p
þ

ffiffiffiffiffi
l3

p
¼ Trace(S)

The maximum value of Trace (RTUS) occurs when RTU ¼ I, that is,

when R ¼ U. Therefore, the rotation R necessary to minimize the error in

equation (9.13) is given by

R ¼ U ¼ M
1ffiffiffiffiffi
l1

p û1û
T
1 þ 1ffiffiffiffiffi

l2
p û2û

T
2 þ 1ffiffiffiffiffi

l3
p û3û

T
3

� �
(9:15)

APPENDIX B: COORDINATE SYSTEM REGISTRATION 303

Step 7. Compute R using equation (9.15). R is an orthonormal matrix that encap-

sulates the rotation and possible reflection necessary to transform xl,i into xr,i.

Step 8. Now we have R and s, so use equation (9.8) to compute t. R, s, and t form

a complete linear transformation between the two coordinate systems that

minimizes equation (9.7).

Step 9. For each point x in the left-hand coordinate system, compute the corre-

sponding position x0 in the right-hand coordinate system using

x0 ¼ t þ sRx

Even though this math may look imposing, it is straightforward to implement,

and gives provably optimal results. As you will see shortly, many algorithms

depend on coordinate system registration, either to shift a completely localized

relative topology into global coordinates, or to “stitch together” small local

topologies into a single consistent coordinate assignment. This Appendix descri-

bed a powerful closed-form method of performing the necessary registration

operations.

APPENDIX C: MULTIDIMENSIONAL SCALING

Multidimensional scaling (MDS) was originally developed for use in mathematical

psychology. It comes in many variations, but all the variations share a common goal.

Given a set of points whose positions are unknown and measured distances between

each pair of points, multidimensional scaling determines the underlying dimension-

ality of the points, and finds an embedding of the points in that space that honors the

pairwise distances between them.

Clearly, MDS has potential in the sensor localization domain. Using only ranging

data, without anchors or GPS, MDS can solve for the relative coordinates of a group

of sensor nodes with resilience to measurement error and rather high accuracy.

This Appendix focuses on a type of multidimensional scaling called classical

metric MDS, classical because it uses only one matrix of “dissimilarity” or distance

information, and metric because the dissimilarity information is quantitative (e.g.,

distance measurements), as opposed to ordinal. There are many other types, but

they are not common in sensor networks, so they are omitted for brevity.

Let there be n sensors in a network, with positions Xi, i ¼ 1 � � � n, and let

X ¼ ½X1,X2, . . . ,Xn�T . Here, X is n � m, where m is the dimensionality of X. For

now, consider m to be an unknown. Let D ¼ [dij] be the n � n matrix of pairwise

distance measurements, where dij is the measured distance between Xi and Xj for

i = j, and dii ¼ 0 for all i. The distance measurements dij must obey the triangular

inequality: dijþ dik � djk for all (i, j, k).

The goal of MDS is to find an assignment of X in low-dimensional space that

minimizes a “stress function,” defined as:

X ¼ argmin
x

Stress(X) (9:16)

304 LOCALIZATION IN SENSOR NETWORKS

Stress(X) ¼
ffiPn

i¼1

Pi�1
i¼1 (dij � dij)

2Pn
i¼1

Pi�1
j¼1 d

2
ij

vuut (9:17)

In equation (9.16), dij is the distance between Xi and Xj. Thus, the metric MDS

stress function is closely related to the squared error function we have seen in

other techniques, such as multilateration (Subsection 9.5.3).

Classic metric multidimensional scaling is derived from the law of cosines, which

states that given two sides of a triangle dij, dik, and the angle between them ujik, the
third side can be computed using the formula:

d 2
jk ¼ d 2

ij þ d 2
ik � 2dijdik cos u jik (9:18)

Rewriting:

dijdik cos u jik ¼ 1

2
(d 2

ij þ d 2
ik � d 2

jk) (9:19)

The left side of equation (9.19) can be rewritten as a dot product:

(Xj � Xi) � (Xk � Xi) ¼ 1

2
(d 2

ij þ d 2
ik � d 2

jk) (9:20)

If all measurements are perfect, then a good zero-stress way to solve for the

positions X is to choose some X0 from X to be the origin of a coordinate system,

and construct a matrix B(n21)x(n 2 1) as follows:

bij ¼ 1

2
d 2
0i þ d 2

0j � d 2
ij

� �
(9:21)

Matrix B is known as the matrix of scalar products. As we know from equation

(9.20), we can write B in terms of X. Call X0
(n�1)xm the matrix X where each of the X0

i

is shifted to have its origin at X0:X
0
i ¼ Xi � X0. Then, using equations (9.20)

and (9.21),

X0X0T ¼ B

We can solve for X0 by taking an eigen decomposition of B into an orthonormal

matrix of eigenvectors and a diagonal matrix of matching eigenvalues:

B ¼ X0X0T ¼ UVUT

X0 ¼ UV1=2
(9:22)

The problem is that X0 has too many columns: we need to find X in 2-space or

3-space. To do this, we throw away all but the two or three largest eigenvalues

from V, leaving a 2 � 2 or 3 � 3 diagonal matrix, and throw away the matching

eigenvectors (columns) of U, leaving U(n�1)x2 or U(n�1)x3. Then X0 has the proper

dimensionality.

APPENDIX C: MULTIDIMENSIONAL SCALING 305

Note that this method produces a coordinate system that is a linear transformation

from the coordinate system of the true Xi. Reconciling the two requires a registration

procedure like that of Appendix B.

Remember, though, that we said this method only works when the data dij is per-

fect, which is an unrealistic assumption. In practice, there is some error, which ends

up in the stress value of the final coordinate assignment. Fortunately, the classic

metric MDS method generalizes to gracefully cover measurement errors. In the pre-

ceding, we chose a single point from our data to be the origin. This choice gives X0

an undue influence on the error of X. Thus, real MDS does not use a point from the

data; rather, it uses a special point in the center of the Xi. This point is found by

“double centering” the squared distance matrix. The squared distance matrix

D2 ¼ [dij
2]. To double center a matrix, subtract the row and column means from

each element. Then, add the grand mean to each element. Finally, multiply by

21/2. The elementwise formula for double centering is below:

bij ¼ � 1

2
d 2
ij �

1

n

Xn
k¼1

d 2
kj �

1

n

Xn
k¼1

d 2
ik þ

1

n 2

Xn
k¼1

Xn
l¼1

d 2
kl

 !

¼
Xm
a¼1

xiax ja

(9:23)

Reformulating equation (9.23) in matrix notation:

Bn�n ¼ � 1

2
JD2J ¼ XXT (9:24a)

Jn�n ¼ In�n � 1

n
eTe (9:24b)

e1�n ¼ ½1, 1, 1, . . . , 1� (9:24c)

Equation (9.24) is an expression for X in terms of D, in m-dimensional space. If

m ¼ n2 1, then there is a trivial assignment of X1 � � �Xn that makes Stress (X) ¼ 0.

As m decreases, it turns out that Stress (X) must increase or stay the same; it

cannot decrease. We know that the measurements D originate from a two- or

three-dimensional space. If the measurements from D are perfect, then there is a

zero-stress assignment of X when m ¼ 2 or 3. However, measurement error

makes it unlikely that such an assignment really exists. Thus, some stress is

nevitable as we reduce the dimensionality from n to 2 or 3.

As before, this dimensionality reduction is done by taking an eigen decompo-

sition of B, then removing eigenvalues and eigenvectors. This is a safe operation

because B is symmetric positive definite, and therefore has n positive eigenvalues.

B ¼ XXT ¼ UVUT

X ¼ UV�1=2
(9:25)

306 LOCALIZATION IN SENSOR NETWORKS

Thus, multidimensional scaling provides a method of converting a complete

matrix of distance measurements to a matching topology in 2-space or 3-space.

This conversion is quite resilient to measurement error, since increased measure-

ment error simply becomes an increase in the stress function. To see an example

of MDS in action, look at Figure 9.10.

Unfortunately, multidimensional scaling has some disadvantages. First, the main

computation of MDS, the eigen decomposition of B (equation (9.25)) requires O(n3)

time. As a result, a single pass of multidimensional scaling cannot operate on a large

topology, particularly in the constrained computational environment of sensor

networks. Second, classic MDS requires that D contain a distance measurement

for all pairs of nodes. This requirement is impossible to meet with ranging hardware

alone in large networks; thus, implementations of MDS in sensor networks must do

preprocessing on measured data to generate D (Subsection 9.4.2) or use coordinate

system stitching to distribute the computation (9.7).

To conclude, here are the steps of classic metric multidimensional scaling:

Step 1. Create the symmetric matrix D ¼ [dij], with dii ¼ 0 and dijþ dik � djk.

Step 2. Create the symmetric matrix J (equation 9.24b).

Ground truth position
MDS position estimate

50

50

100

100

Figure 9.10 Topology constructed by multidimensional scaling. Each internode range

measurement has zero-mean Gaussian error with a standard deviation of 10 units.

APPENDIX C: MULTIDIMENSIONAL SCALING 307

Step 3. Compute B using D2 ¼ [dij
2] and J (equation (9.24a)).

Step 4. Take an eigen decomposition UVUT of B.

Step 5. Let Vd be the diagonal matrix of the d largest eigenvalues in V, where d is

the desired dimensionality of the solution.

Step 6. Let Ud be the d eigenvectors from U that match the eigenvalues in Vd.

Step 6. Compute Xd ¼ [X1, X2, . . . Xn]
T using Xd ¼ UdVd

1/2. Here, Vd
1/2 can be

computed by taking the square root of each of Vd’s diagonal elements.

Step 7. (Optional) Transform the Xi from Xd into the desired global coordinate

space using some coordinate system registration algorithm (Appendix B).

These transformed Xi are the solution.

REFERENCES

1. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture

directions for networked sensors. In Proceedings of the 9th International Conference

on Architectural Support for Programming Language and Operating Systems

(ASPLOS-IX), pages 93–104, Combridge, Massachusetts, November 2000.

2. P. Bahl and V. Padmanabhan. Radar: An in-building rf-based user location and tracking

system. In Proceedings of the 19th Annual Joint Conference of the IEEE Computer and

Communication Societies (INFOCOM 2000), pages 775–784, Tel-Aviv, Israel, March

2000.

3. Cameron Whitehouse. The Design of Calamari: An Ad-Hoc Localization System for

Sensor Networks. Master’s thesis, University of California at Berkeley, 2002.

4. L. Kleinrock and J. A. Silvester. Optimum transmission radii for packet radio networks or

why six is a magic number. In Proceedings of the IEEE National Telecommunications

Conference, pages 4.3.1–4.3.5, Birmingham, Alabama, December 1978.

5. R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from local

information on an ad hoc sensor network. In Proceedings of the 2nd International Work-

shop on Information Processing in Sensor Networks (ISPN ’03), Palo Alto, California,

April 2003.

6. H. Balakrishnan, R. Baliga, D. Curtis, M. Goraczko, A. Miu, N. Priyantha, A. Smith,

K. Steele, S. Teller, and K. Wang. Lessons from developing and deploying the cricket

indoor location system. Preprint, November 2003.

7. Y. Kwon, K. Mechitov, S. Sundresh, W. Kim, and G. Agha. Resilient Localization for

Sensor Networks in Outdoor Environments. Technical Report UIUCDCS-R-2004-2449,

University of Illinois at Urbana-Champaign, June 2004.

8. N. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The cricket compass for context-

aware mobile applications. In Proceedings of the 7th Annual ACM/IEEE International

Conference on Mobile Computing and Networking (MobiCom), pages 1–14, Rome,

Italy, July 2001.

9. L. Doherty, L. El Ghaoui, and K. S. J. Pister. Convex position estimation in wireless

sensor networks. In Proceedings of the 20th Annual Joint Conference of the IEEE Com-

puter and Communications Societies (INFOCOM 2001), Volume 3, pages 1655–1663,

Anchorage, Alaska, April 2001.

308 LOCALIZATION IN SENSOR NETWORKS

10. Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz. Localization from mere

connectivity. In Proceedings of the 4th ACM International Symposium on Mobile Ad

Hoc Networking and Computing (MobiHoc 2003), pages 201–212, Annapolis, Maryland,

June 2003.

11. N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann. Scalable, ad hoc

deployable rf-based localization. In Proceedings of the Grace Hopper Celebration of

Women in Computing Conference 2002, Vancouver, British Columbia, Canada, October

2002.

12. S. Fitzpatrick and L. Meertens. Diffusion based localization. Private communication,

2004.

13. A. Savvides, H. Park, and M. Srivastava. The bits and flops of the n-hop multilateration

primitive for node localization problems. In Proceedings of the 1st ACM International

Workshop on Wireless Sensor Networks and Applications (WSNA), pages 112–121,

Atlanta, Georgia, September 2002.

14. A. Savvides, C.-C. Han, and M. B. Srivastava. Dynamic fine-grained localization in ad-

hoc networks of sensors. In Proceedings of the 7th Annual Conference on Mobile Com-

puting and Networking, pages 166–179, Rome, Italy, July 2001.

15. S. Simic and S. Sastry. Distributed Localization in Wireless Ad Hoc Networks.

Memorandum No. UCB/ERL M02/26, University of California, Berkeley, 2002.

16. W. J. Butera. Programming a Paintable Computer. Ph.D. thesis, Massachusetts Institute

of Technology, 2002.

17. D. Niculescu and B. Nath. Localized positioning in ad hoc networks. Ad Hoc Networks,

1:247–259, 2003.

18. J. D. McLurkin. Algorithms for Distributed Sensor Networks. Master’s thesis, UCB,

December 1999.

19. R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from

local information on an ad hoc sensor network. In Proceedings of the 2nd International

Workshop on Information Processing in Sensor Networks (IPSN ’03), Palo Alto,

California, April 2003.

20. D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proceedings of

GLOBECOM ’01 (IEEE), pages 2926–2931, San Antonio, Texas, November 2001.

21. D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In Proceedings

of IEEE INFOCOM 2003—The Conference on Computer Communications,

22(1):1734–1743, March 2003.

22. R. Nagpal. Organizing a global coordinate system from local information on an amor-

phous computer, 1999.

23. T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher. Range-Free Localization

Schemes in Large Scale Sensor Networks. Paper Submitted to MobiCom 2003.

24. C. Savarese, J. Rabaey, and J. Beutel. Locationing in distributed ad-hoc wireless

sensor networks. In Proceedings of the 2001 International Conference on Acoustics,

Speech, and Signal Processing (ICASSP 2001), pages 2037–2040, Salt Lake City,

Utah, May 2001.

25. N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-free distributed local-

ization in sensor networks. In Proceedings of the 1st International Conference on

Embedded Networked Sensor Systems (SenSys-03), pages 340–341, Los Angeles,

California, November 2003.

REFERENCES 309

26. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated annealing.

Science, no. 4598, pages 671–680, May 13, 1983.

27. S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mobile ad-hoc net-

works. In Proceedings of the 34th Annual Hawaii International Conference on System

Sciences (HICSS-34), Volume 9, page 9008, Maui, Hawaii, January 2001.

28. L. Meertens and S. Fitzpatrick. The Distributed Construction of a Global Coordinate

System in a Network of Static Computational Nodes from Inter-Node Distances. Kestrel

Institute Technical Report KES.U.04.04, Kestrel Inistitute, Palo Alta, California, 2004.

29. D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localization with

noisy range measurements. In Proceedings of the 2nd International Conference on

Embedded Networked Sensor Systems (SenSys-04), pages 50–61, Baltimore, Maryland,

November 2004.

30. X. Ji and H. Zha. Sensor positioning in wireless ad hoc networks using multidimensional

scaling. In Proceedings of IEEE INFOCOM 2004—The Conference on Computer

Communication, 23(1):2652–2661, March 2004.

31. N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. Teller. Mobile-assisted localiz-

ation in wireless sensor networks. In Proceedings of the 24th Annual Joint Conference of

the IEEE Communications Society on Computer Communications (INFOCOM 2005),

Miami, Florida, March 13–17, 2005.

32. B. K. P. Horn, H. Hilden, and S. Negahdaripour. Closed-form solution of absolute orien-

tation using orthonormal matrices. Journal of the Optical Society of America A, 5(7),

1988.

310 LOCALIZATION IN SENSOR NETWORKS

&CHAPTER 10

Topology Construction and
Maintenance in Wireless
Sensor Networks

JENNIFER C. HOU and NING LI

University of Illinois, Urbana, Illinois

IVAN STOJMENOVIĆ

University of Ottawa, Ontario, Canada

Energy efficiency and network capacity are two of the most important issues in wire-

less sensor networks. Topology-control algorithms have been proposed to maintain

network connectivity while reducing energy consumption and improving network

capacity. Several studies have also been performed to investigate critical conditions

on several network parameters in order to ensure network k-connectivity (in the

asymptotic sense). In this chapter, several problems (and their corresponding sol-

utions) related to topology construction, maintenance, and connectivity in wireless

sensor networks are discussed. Specifically, topics discussed include (1) various

communication models and generation of random network topologies; (2) neighbor

discovery and maintenance; (3) basic connectivity properties of wireless sensor net-

works (with the random unit graph model as the underlying model); (4) localized

topology construction algorithms, along with their associated geometric structures

in both homogeneous and heterogeneous networks; and (5) how to enhance fault

tolerance in topology construction and connectivity.

10.1 INTRODUCTION

To construct and maintain an efficient network topology is a very important task in

wireless sensor networks. Instead of transmitting with the maximal power, nodes in

a multihop wireless network collaboratively determine their transmission power and

311

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

define the network topology by forming the proper neighbor relation under certain

criteria. This is in contrast to the “traditional” network, in which each node transmits

with its maximal transmission power and the topology is built implicitly by routing

protocols (that update their routing caches as in timely a way as possible) without

considering the power issue. A desirable network topology not only reduces

energy consumption and prolong network lifetime, but also improves spatial reuse

(and hence the network capacity [1]) and mitigate the medium-access control

(MAC) level contention.

The research in topology construction and connectivity has been approached

independently along two paths. In one path, researchers aim to determine critical

conditions on network parameters (such as the transmission range [2–5], the

number of neighbors [5,6], the minimum total power required [7–11], or the node

failure probability) to ensure network (k-)connectivity with high probability. Of

particular interest is how these critical conditions scale as the number of wireless

devices increases. In the other path, researchers aim to devise distributed algorithms

to enable each node to choose its own transmission power in order to minimize the

total transmission power of all wireless nodes, while maintaining (k-)connectivity.

This problem is, in general, NP-hard in the Euclidean plane [8]. What makes the

problem more complicated is that there is, in general, no central authority in a

multiple-hop wireless network, and each node has to make its decision based on

the information collected from the network. This implies the topology construction

algorithm should be distributed. To be less susceptible to mobility, the algorithm

should depend only on the information collected locally. Algorithms that depend

only on local information also incur less message overhead/delay in the process

of information collection, and are hence more scalable. Several researchers

have leveraged elegant graph-theoretic structures to develop localized heuristics

[12–19] or efficient algorithms with bounded approximation ratios [20,21].

In this chapter, we give an overview of research activities along these two

research thrusts, and present several problems (and their corresponding solutions)

related to topology construction, maintenance, and connectivity in wireless sensor

networks. We consider the problem that arises in topology construction (1) when

the network is heterogeneous and nodes may have different attributes (such as

transmission radii); and (2) when fault tolerance has to be taken into account (in

addition to the primary objectives of network connectivity and reduction in power

consumption).

The rest of this chapter is organized as follows. In Section 10.2, we introduce the

communication models for wireless sensor networks, including the unit-graph

model and other probabilistic models. In Section 10.3, we discuss the methods for

generating random unit graphs. The issue of neighbor discovery and maintenance

is treated in Section 10.4. Following that, we summarize in Section 10.5 several

localized geometric structures for topology construction, and discuss in Section

10.6 the problem that arises in the case of network heterogeneity. Several essential

connectivity properties of wireless sensor networks (with the random unit graph as

the underlying model) are presented in Section 10.7. Finally, we discuss the issue of

enhancing fault tolerance in topology construction and connectivity in Section 10.8.

312 TOPOLOGY CONSTRUCTION AND MAINTENANCE

10.2 COMMUNICATION MODELS

In the subsequent discussion, we assume that all the communication activities of a

node take place in a single wireless channel, that is, each wireless device has one

transmitter and one receiver. A widely accepted basic graph-theoretical model for

wireless sensor networks is the unit-graph model. In the unit-graph model, two

nodes A and B are neighbors (and thus joined by an edge) if the Euclidean distance

between their coordinates in the network is at most R, where R is the transmission

radius and is assumed to be the same for all nodes in the network. Figure 10.1

gives an example of a unit graph with transmission radius as indicated. Because

of limited transmission radius, the routes are normally created through several

hops in such a multihop wireless network.

The unit-graph model assumes that all nodes use the same and fixed-transmission

radius. Variation of this model includes unit graphs with obstacles (or subgraphs of

unit graphs), and minpower graphs where each node has its own maximum trans-

mission radius and links are unidirectional or allowed only when bidirectional

communication is possible. Nodes in an ad hoc network may transmit with their

maximum transmission radius, or may adjust their transmission range, normally

selected from a discrete set of possible values.

The network is normally assumed homogeneous, with all the nodes possessing

the same network attributes (such as computational capacity, battery power, and

transmission radii). In heterogeneous networks, however, nodes may have different

network attributes. An example is heterogeneous (and often hierarchical) sensor net-

works, in which a large number of low-cost lightweight wireless devices (that

simply sense the environmental changes) and a few energy-rich devices (that

serve as cluster heads for data aggregation and in-network processing) coexist.

They scatter in a geographic region, have to dynamically organize themselves,

9υ

5υ

1υ
0υ

6υ

3υ2υ

8υ

4υ

7υ

Figure 10.1 Unit-graph representation of multihop wireless network.

10.2 COMMUNICATION MODELS 313

and convey the location/tracking information periodically or on-demand to data

sinks. Each type of node has its own battery power (and hence transmission

radius), computational capacity, and memory.

Credible research was conducted in the literature only for the unit-graph model,

while other models are sporadically mentioned, without many results. One example

is fuzzy unit graph, used in [22] to improve routing with guaranteed delivery [23]. In

this model, there exist two transmission radii, r and R. Two nodes always commu-

nicate if their distance is �r, never communicate of their distance if �R, and may or

may not communicate otherwise.

The unit-graph model is ideal in the sense that the probability of receiving a

packet between two nodes does not, in reality, suddenly change from 1 to 0 when

nodes move from distance R2 1 to Rþ 1 for a very small 1. There exist few articles

that consider a more realistic physical layer, but the first one to formalize the com-

munication model is ref. [24]. They applied the log normal shadow fading model to

represent a realistic physical layer to derive the probability p(x) for receiving a

packet successfully as a function of distance x between two nodes, as shown in

Figure 10.2. The transmission radius R is defined in ref. [23] as the distance

at which p(R) ¼ 0.5. Then p(x) is approximated reasonably accurately by

P(x) ¼ 12 (x/R)nb/2 for x , R, and ((2R2 x)/R)nb/2 otherwise, where b is the

power attenuation factor (between 2 and 6), and n depends on packet length L

(e.g., n ¼ 2 for L ¼ 120). Two nodes are considered neighbors if the distance x

between them is such that p(x) � w, where w is a threshold parameter (for example,

when w ¼ 0.05, then x � 1.4R).

10 20 30 40 50 60 700

Distance

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

P
ro

ba
bi

lit
y

of
 r

ec
ep

tio
n

Beta = 4

æ p(x) L=120

Figure 10.2 The packet reception probability in log normal shadow fading model, R � 41.

314 TOPOLOGY CONSTRUCTION AND MAINTENANCE

10.3 GENERATING RANDOM UNIT GRAPHS

Parameters of a random unit graph are normally the number of nodes N and the

common transmission radius R. However, R may be a misleading parameter when

used in simulations, since all generated graphs may be either dense or sparse,

which has significant impact on the performance (for example, of routing protocols).

It is therefore preferable to use another parameter that can be easily interpreted and

matched directly with the graph density. That parameter is the average number of

neighbors d per each node. There exists a relation between R and d, since an approxi-

mate radius R can be obtained from the formula d ¼ (N � 1)pR2=A, where A is the

area of the region where nodes are placed. In case of a square of edge length a,

A ¼ a2. This formula is obtained by finding the expected number of nodes inside

a circle with radius R (the formula multiplies number of other nodes with probability

of being generated inside the region).

In the literature, random unit graphs are normally generated by selecting each of

N nodes at random locations inside a square or circle. In the case of a square region,

this means generating x and y coordinates at random in an interval [0, a). Then all

N�(N � 1)=2 potential edges in the network among the N nodes are sorted by their

length in ascending order. The radius R that corresponds to a chosen value of d

is equal to the length of the N�d/2-th edge in the sorted order. Any edge no longer

than R will remain in the graph. Other edges are eliminated from the graph.

Dijkstra’s shortest-path algorithm (from one node to all other nodes) is used to

check the connectivity of the graph, if desired. This generation method is proposed

in ref. [25].

Sparse random unit disk graphs have high probability of being partitioned, which

increases the generation time of connected ones. In [52], Atay and Stojmenovic

addressed the following two problems: fast generation of sparse connected

random unit graphs and the nature of obtained graphs. They describe several new

generation schemes that resemble conference scenarios. These schemes select the

next node position based on the distribution of the nodes already placed. In theMini-

mum Degree Proximity Algorithm (MIN-DPA), first a center node C is selected at

random among nodes having the smallest number of neighbors. Then the new

node is placed at random but constrained to be neighbor of C. The placed node

might affect the degree of not only the center node but also other nodes in the proxi-

mity. Based on this observation, Maximum Degree Proximity Algorithm (MAX-

DPA) imposes a maximum degree constraint for each node. In each round, a

random position X is generated repeatedly until it passes both the proximity test

(to be the neighbor of at least one already selected node) and the maximum

degree test. To check the latter, the approximate degrees of X and all already

selected nodes are calculated assuming that X is added to the set. If none of these

degrees is greater than or equal to the maximum degree allowed dmax, the position

is accepted. Authors [52] show that their new algorithms are significantly faster than

the well-known generation scheme for sparse graphs, and also have lower standard

deviation in node degree. In addition, they analyze the degree distribution and par-

tition patterns of graphs generated by different algorithms.

10.3 GENERATING RANDOM UNIT GRAPHS 315

10.4 NEIGHBOR DISCOVERY

It is usually assumed in the literature that each node is aware of its direct neighbors.

In the case that the assumption does not hold, a node may broadcast a “hello” mess-

age, with all the nodes that receive the message being defined as the neighbors.

Although the problem of neighbor discovery does not appear trivial in real

networks, where transmission activities may interfere with each other and messages

may collide, surprisingly, this problem did not receive much attention in this

literature.

Alonso et al. [27] proposed a protocol for node discovery in single-hop ad hoc

networks, where each node is within transmission radius of each other. The protocol

discovers one edge in the network, which is considered to be detected after one end-

point was a single transmitter in one step, followed by the other endpoint being a

single transmitter in the next step with the edge confirmation. Therefore the protocol

remains short of achieving the larger goal of recognizing all edges and all nodes in

the network, since repeated application of one of the protocols described may not

lead to an efficient and terminating scheme for that goal.

In multihop ad hoc networks, nodes may not be within communication range

of each other. We assume that node B detects edge AB if B receives a packet

from A without any collision. Nodes that send “hello” messages are not able to

recognize a collision, because the signal from its own transceiver is so strong that

the receiver of the transmitting node cannot hear or even recognize the existence

of any other signal. The problem can be considered to have two variants: with

and without time synchronization of the sensors.

McGlynn and Borbash [28] assumed that time is synchronized and is divided

into slots. They considered the variant of the neighbor discovery problem by

enabling sensors to broadcast “hello” messages in different starting slots, and

devised methods for saving energy during the neighbor discovery process over

a longer period of time. They propose some variants of birthday protocols,

where each sensor may be active or in the sleeping mode. In their protocol, the

average number of neighbors N of each sensor is overestimated by a fixed

number N0, equal to all sensors. Then each sensor transmits the message with

probability 1/N0.
The variant of the problem when all sensors are active and all begin initialization

in the same time slot is considered in ref. [29]. In this protocol, each node maintains

its own estimate N of the number of its neighbors based on its own collision experi-

ence, and transmits with probability 1/N. If a nontransmitting node experiences

collision, N is doubled. If silence is detected, N is halved. If a nontransmitting

node hears only one neighbor, N does not change. The algorithm in ref. [29] is

applied to single-hop networks (complete graphs), but can be extended to multihop

networks.

Neighbor discovery with all the physical layer characteristics taken into account

is considered in ref. [24]. The simplest protocol is that each node transmits “hello”

packets for a prespecified number of times, thus increasing the chance of being

discovered by its neighbor(s). In the variable transmission-count protocol, each

316 TOPOLOGY CONSTRUCTION AND MAINTENANCE

node transmits “hello” packets until it correctly identifies a certain number of

neighbors. Note that protocol in ref. [24] does not consider the impact of col-

lisions. The problem becomes much more difficult if both the physical-layer

characteristics and collisions are taken into account; this has not been addressed

in the literature.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION

In this section, we describe some basic geometric structures used in the various

topology construction protocols. Most of this section is devoted to a “chain” of

planar and such connected structures: MST (minimum spanning tree), LMST

(local minimum spanning tree), RNG (relative neighborhood graph), GG (Gabriel

graph), PDT (partial Delaunay triangulation), and DT (Delaunay triangulation).

They create a chain since MST # LMST # RNG # GG # PDT # DT: MST and

DT are global structures, while LMST, RNG, GG, and PDT are constructed based

only on local knowledge. Some other structures exist in literatures that need only

local knowledge. However, in addition to the knowledge of (mostly one-hop and

sometimes k-hop) neighbors, they may also require nodes to send additional mess-

ages between them in order to construct the graph. In addition, for a complete treat-

ment of the subject, we introduce relay-region–based and cone-based topology

construction approaches.

10.5.1 Minimum Spanning Tree

MST is a subgraph of a given unit graph that is connected, contains all the nodes, and

whose sum of edge lengths is minimized. It can be constructed using Dijkstra’s

algorithm as follows. All edges are sorted according to the increasing order by

9υ

5υ

1υ
0υ

6υ

3υ2υ

8υ

4υ

7υ

Figure 10.3 MST for a unit graph.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 317

their lengths. Each edge is tested in that order (from shortest to longest) for inclusion

in MST. If adding the edge to the already constructed graph does not create a cycle,

the edge is then added to the constructed graph (that is, eventually to MST); other-

wise it is not added. This construction also can be used to show that the connected

unit graph contains MST as its subgraph (since edges whose length does not exceed

the transmission radius will already connect the graph while constructing MST).

Figure 10.3 shows an MST for a unit graph, with MST edges drawn in bold lines.

When several edges are of the same length, the MST may not be unique. In order

to have a unique structure for MST, one can label edges so that all edges become

distinct, and edges of the same length can be compared. This can be achieved by

introducing the weight of an edge AB as a record w(AB) ¼ ðjABj, min(id(A), id(B)),

max(id(A), id(B))), where jABj is the length of AB, and id(A) and id(B) are unique

identifiers of its endpoints, and jABj, min(id(A), id(B)), and max(id(A), id(B))

serve as the primary, secondary, and ternary keys in comparisons. Two edges are

compared first by their primary keys. If the primary keys are the same, secondary

keys are used. If the secondary keys are also the same, the ternary keys are used.

The defined edge weights can also be applied to other structures, which are

described in the following subsections, thus eliminating ambiguity and leading to

some desirable characteristics (e.g., degree limitation).

10.5.2 Local Minimum Spanning Tree

A localized MST-based topology control algorithm was proposed in ref. [14]. Each

node u first collects positions of its one-hop neighbors N1(u). Node u then computes

the minimum spanning tree MST(N1(u)) of N1(u). Node u keeps a directed edge uv

in LMST if and only if the edge uv is also an edge in MST(N1(v)). If each node

already has 2-hop neighboring information, the construction does not involve any

message exchange between neighboring nodes; otherwise, each node contacts

9υ

5υ

1υ
0υ

6υ

3υ2υ

8υ

4υ

7υ

Figure 10.4 LMST for a unit graph.

318 TOPOLOGY CONSTRUCTION AND MAINTENANCE

neighbors along its LMST link candidates, to verify the status at other nodes. The

variant with the union of edge candidates rather than their common intersection is

also considered in ref. [14], possibly leading to a directed graph (no message

exchange is then needed even with one-hop neighbor information). Figure 10.4

shows an example of an LMST graph.

In ref. [18], Li et al. showed that LMST is a planar graph (no two edges intersect).

Then they extended LMST to k-hop neighbors, that is, the same construction but

with each node having more local knowledge. They also proved that MST is a

subset of 2-hop–based LMST, but MST is not a subset of the one-hop–based

LMST considered in this article. We observed, however, on their diagrams that

LMST with 2-hop and higher local knowledge was mostly identical to the one con-

structed with only one-hop knowledge, and recommend that only that limited

knowledge be used, thereby reducing the communication overhead needed to main-

tain k-hop knowledge. MST and LMST are illustrated in Figure 10.5.

Theorem 10.1 MST is a subset of LMST [30].

Proof. Let LMST(A) ¼ MST(n(A)) be the minimal spanning trees constructed

from n(A), which is the set containing A and its one-hop neighbors. We will show

that if an edge from MST has endpoints in n(A), then it belongs to LMST(A). Sup-

pose that this is not true, and let e be the shortest such edge. LMST(A) can also be

constructed by following Kruskal’s algorithm described earlier. Thus edges from A

to its neighbors and between neighbors of A are sorted in increasing order. They are

then considered for inclusion in LMST(A). Thus, when e is considered, since it is not

included in LMST(A), it creates a cycle C in LMST(A), with e being the longest edge

in that cycle. Some of the edges from C are not in MST. Consider now expanded

cycle C0 constructed from C as follows. Let f be an edge from C that is not in

MST. Addition of f into MST creates a cycle B, with f being the longest edge in

the cycle. The cycle consists of f and a path consisting of edges from MST. Replace

f in C with all the edges from that path. Each such replacement enlarges the cycle C,

but does not add any edge longer than f, and consequently longer than e. At the end

of this process, after replacing all non-MST edges with the corresponding paths of

LMST1MST

Figure 10.5 MST and LMST in two dimensions.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 319

MST edges, edge e remains the longest edge of C0, but all the other edges of C0 are
now also in MST. This is a contradiction, since MST has no cycles. Therefore each

edge AB from MST belongs to both LMST(A) and LMST(B), and therefore to

LMST. A

10.5.3 Relative Neighborhood Graph

Relative neighborhood graph (RNG) is introduced by Toussaint [31], and can be

defined, in the simplest form, as follows. An edge uv is included in RNG if and

only if it is not the longest edge in any triangle uvw. Figure 10.6 illustrates this defi-

nition. Consider the “lune,” which is the intersection of two circles centered at u and

v, both with radius uv. Edge uv is in RNG if and only if this lune has no other nodes

from an ad hoc network in its interior. In Figure 10.2, uv is not in RNG because of a

witness neighbor w that makes uv the longest edge in triangle uvw.

Using this definition, some edges may have very large degrees in several particu-

lar scenarios (e.g., many nodes can be located at the boundary of the lune just dis-

cussed). To obtain a degree-limited structure, the record w(AB) ¼ (jABj, min(id(A),

id(B)), max(id(A), id(B))) can be used instead, as described earlier. We refer to this

structure in the sequel, assuming random node placement and a very low chance of

any two edges being of the same length. The degree of such a structure is limited to 6

(for nodes located in a plane). This can be proved by contradiction. Assume that

node A has more than 6 neighbors in RNG. Then there exist two consecutive neigh-

bors B and C so that /BAC , p=6: Then BC is not the shortest edge in triangle

ABC, and either AB or AC is. This contradicts the definition of RNG. Note again

that such an argument cannot be used if one allows that AB ¼ AC. Note also that

the same proof can be used to show the degree of limitation of MST or LMST in

two dimensions.

Theorem 10.2 The LMST of a unit graph is a subgraph of RNG of the same

graph [32].

Proof. It suffices to show that if an edge uv belongs to LMST, then it belongs to

RNG. By contradiction, suppose there exists an edge uv such that uv [LMST

u v
w

Figure 10.6 (u, v) is not in RNG graph because of a witness node w.

320 TOPOLOGY CONSTRUCTION AND MAINTENANCE

and uv � RNG. Then uv belongs to MST(n(u)) and to MST(n(v)), and since uv does

not belong to RNG, there exists a node w [n(u) > n(v) such that uv is the “longest”

edge in triangle uvw. Either edge uw or vw is not in LMST, since LMST is a tree

(from the local point of view). Without loss of generality, suppose uw is not in

LMST. Then uv can be replaced by uw in MST(n(u)), giving a spanning tree with

a lower overall weight (i.e., total sum of all edge lengths) than the minimal one

(MST(n(u))), which is a contradiction. Therefore LMST is a subgraph of RNG. A

MST, LMST, and RNG are used in a number of articles where a sparsely con-

nected network is desirable. The average degree of a node in MST with n nodes

9υ

5υ

1υ
0υ

6υ

3υ2υ

8υ

4υ

7υ

Figure 10.7 RNG in a small ad hoc network.

Figure 10.8 RNG in a large ad hoc network.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 321

is 2(n2 1)/n � 2. LMST has an average degree of about 2.04 (that is, about 2%

more than MST), while RNG has an average degree of about 2.5.

Figure 10.7 and Figure 10.8 show RNGs in smaller and larger networks. LMST

and RNG are planar graphs, which follows from the planarity of the Gabriel graph

(which is their superset). Note that construction of LMST and RNG does not require

that the exact positions of nodes and their neighbors be known; only the correspond-

ing mutual distances are required. In both cases, each node requires that the distance

to its neighbors be known, as well as the distances between any pair of neighbors.

10.5.4 Gabriel Graph

The Gabriel graph (GG) is proposed in ref. [33], and is defined as follows. A GG

contains an edge UV if and only if the disk with diameter UV contains no other

node inside it. For instance, in Figure 10.9, UV is in GG while PQ is not, because

of a “witness node” W located inside the disk. This criterion can be tested in two

ways. Each common neighbor W of nodes U and V should be located at a distance

of at least jUVj/2 from the midpoint of UV for UV to be included in GG. Alterna-

tively, one can verify the angles from neighbors to UV. As shown in Figure 10.9, if

/PWQ . p=2 for a common neighbor W of P and Q, then PQ is not in GG. It

should be observed, as in the case of LMST and RNG, that the construction of

GG requires only the knowledge of the location of a node and those of its neighbors.

Figure 10.10 shows an example of a GG, with GG edges drawn as thick lines.

Theorem 10.3 RNG is a subgraph of GG.

Proof. Note that the lune in the RNG definition is a subset of the disk in GG defi-

nitions. Therefore, if the lune does not contain any neighbor, then the disk also

does not contain any neighbor. Therefore if an edge belongs to RNG it also belongs

to GG. A

AGabriel graph was used in ref. [23] for routing with guaranteed delivery because

it was the densest known localized structure that was planar. The planarity of GG

(and consequently its subgraphs RNG and LMST) can be shown from the planarity

of Delaunay triangulation (see the next proof), which contains GG as its subset.

U

V
P Q

W

Figure 10.9 UV is included in GG, while PQ is not, because of witness W.

322 TOPOLOGY CONSTRUCTION AND MAINTENANCE

However, in order to give a simpler proof, we concentrate on the GG case only, and

prove this directly.

Theorem 10.4 The Gabriel graph is a planar graph.

Proof. Suppose that, on the contrary, GG is not a planar graph. Let UV and PQ be

two of its edges that intersect (Fig. 10.11). Since UV is in GG, nodes P and Q are

outside the disk with diameter UV. Therefore /UPV , p=2, and /UQV , p=2.
Similarly, /PUQ , p=2 and /PVQ , p=2. Then the sum of angles in quadri-

lateral UPVQ is ,2p. This is a contradiction, since the sum of angles in any

quadrilateral is 2p. A

Huang, Lu, and Roman [34] presented some statistics on the Gabriel graph. On a

random graph with 1600 nodes, they report an average face size of 4.3, 1369 faces,

average node degree about 3.8, and an average size of the outer face of 248. How-

ever, they counted each dangling edge once (an edge that belongs to only one face,

not to two different faces). If dangling edges are counted as two edges in the corre-

9υ
5υ

1υ
0υ

6υ

3υ2υ

8υ

4υ

7υ

Figure 10.10 GG of a set of nodes in a unit graph.

U

VQ

P

Figure 10.11 Planarity of GG, RNG, and LMST.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 323

sponding face, then counting the average number of edges on a face of a planar

graph can be done as follows. Let N, F, and E be the number of nodes, faces, and

edges of a planar graph, respectively. The well-known Euler formula is

F ¼ E � N þ 2. Let S be average number of edges on a face. Since each edge is

counted twice (whether or not it belongs to same or two different faces), we have

FS ¼ 2E. Thus S ¼ 2E=F, or S ¼ 2E=(E � N þ 2).

10.5.5 Delaunay Triangulation and Partial Delaunay Triangulation

Delaunay triangulation (DT) is a well-known and frequently used applied structure

in computational geometry [35]. It can be constructed inO(n log n) time for a set of n

points in the plane. One definition of Delaunay triangulation is as follows: an edge

uv belongs to DT if and only if there exists a circle, whose chord is uv, which does

not contain any other point from the set in its interior. It immediately follows that

GG is a subset of DT, since diameter uv (and the disk with diameter uv) is a special

case of a chord (and the corresponding circle).

Partial Delaunay triangulation (PDT) [16] is a subgraph of DT, and contains GG

as its subgraph. PDT can be constructed locally. More precisely, it is a subset of DT

containing edges of DT that can be locally confirmed. Let Disk(u, v) be the disk with

diameter uv. Given an edge uv, we consider three cases: (1) if Disk(u, v) contains no

other node from the network, then uv [GG # PDT; (2) if Disk(u, v) contains nodes

on both sides of uv, then uv � DT and uv � PDT; and (3) if Disk(u, v) only contains

nodes on one side of uv, let w be one such point that maximizes the angle

a ¼ /uwv � p=2. Consider the largest angle b ¼ /upv on the other side of uv,

where p is a node outside Disk(u, v). If aþ b . p, then uv � DT (and

uv � PDT); if aþ b , p (assume that no four nodes are cocircular), we can add

uv into PDT if the following two conditions are both satisfied, which depends on

whether one-hop or 2-hop neighbor topology is known to each node (this defines

two structures, PDT1 and PDT2, respectively). PDT definition is illustrated in

Figure 10.12.

u v

w

p

a

b

Figure 10.12 Definition of the partial Delaunay triangulation (PDT).

324 TOPOLOGY CONSTRUCTION AND MAINTENANCE

In the case of one-hop neighbor knowledge, assume w [n(u) is inside Disk(u, v),

with the largest angle a ¼ /uwv � p=2. Edge uv is added to PDT1 if (1) there is no
node from n(u) that lies on the different side of uv and inside the circumcircle pas-

sing through u, v, and w; and (2) sina . d=R, where R is the transmission radius of

each wireless node, and d ¼ juvj.
In the case of 2-hop neighbor knowledge, assume w [n(u)> n(v) is inside

Disk(u, v), with the largest angle a ¼ /uwv � p=2. Edge uv is added to PDT2 if

(1) there is no node from n(u)< n(v) that lies on the different side of uv and

inside the circumcircle passing u, v, and w; and (2) cosa=2 . d=2R, where R is

the transmission radius of each wireless node.

The construction of PDT ensures that GG # PDT # DT. Since DT is planar, GG

and PDT are also planar. PDT1 # PDT2, since more edges can be confirmed with

more knowledge. PDT1 has about 2% more edges than GG. The average degree

of a node of DT is about 5.9.

10.5.6 Yao Graph

The Yaop graph [36] is proposed by Yao to efficiently construct an MST in high

dimensions. Any p equally separated rays originating at each node u define p

cones. In each cone, u then chooses the closest node v within the transmission

range, if there is any, and adds a directed link uv. This can result in a directed sub-

graph, as shown in Figure 10.13. Since Yaop contains MST as a subgraph, deleting

all unidirectional links still preserves network connectivity. Note that Yaop is not

necessarily planar.

10.5.7 Minimum Power Topology

Rodoplu and Meng [12] introduced the enclosure graph for localized power-aware

topology control in ad hoc networks. The power needed for transmitting between

9υ
5υ

1υ
0υ

6υ

3υ2υ

8υ

4υ

7υ

Figure 10.13 YAO6 for a unit graph. The arrows indicate the direction of communication.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 325

two nodes at distance r is proportional to u(r) ¼ ra þ c, where a is power attenu-

ation factor (a number between 2 and 6), while c is a constant that accounts for

the cost of running hardware at nodes and minimum reception power. Although

most researchers assume c ¼ 0, which enables them to prove some nice properties,

in reality it is c . 0, which means that selecting a very close forwarding

neighbor may not be the best choice when energy is the criterion. An edge AB is

in the enclosure graph if and only if direct transmission between A and B is a

power-optimal solution for a given set of nodes. That is, u(jABj) � u(jACj)þ
u(jCBj) for any common neighbor C of A and B. The enclosure graph is undirec-

tional. In the case when a ¼ 2 and c ¼ 0, the enclosure graph becomes equivalent

to GG, illustrated in Figure 10.10.

10.5.8 Cone-Based Topology

Cone-based topology control (CBTC(a)) [13] is a two-phase localized algorithm.

Each node finds the minimal power p such that transmitting with the power p ensures

that the node can reach some node in every cone of degree a. The algorithm has been

proved to preserve network connectivity if a , 5p=6. Several optimizations to the

basic algorithm have also been discussed. These include (1) a shrink-back operation

can be added at the end to allow a boundary node to broadcast with less power, if

doing so does not reduce the cone coverage; (2) if a , 2p=3, asymmetric edges

can be removed while maintaining the network connectivity; and (3) if there

exists an edge from node u to node v1 and from node u to node v2, respectively,

the longer edge can be removed while preserving connectivity, as long as

d(v1, v2) , max{d(u, v1), d(u, v2)}. As shown in Figure 10.14, the resulting sub-

graph may be directed.

An event-driven strategy was also proposed to reconfigure the network topology in

the case of mobility. Each node is notified when any neighbor leaves/joins the neigh-
borhood and/or the angle changes. The mechanism used to realize this requires the

9υ
5υ

1υ
0υ

6υ

3υ2υ

8υ

4υ

7υ

Figure 10.14 CBTC 2p=3ð Þ of a unit graph.

326 TOPOLOGY CONSTRUCTION AND MAINTENANCE

state to be kept at, and message exchanges among, neighboring nodes. The node then

determines whether it needs to rerun the topology control algorithm.

10.5.9 Bluetooth Scatternet Formation

Bluetooth technology is based on a medium-access frequency-hopping, where

master nodes decide about a series of frequencies for communication within a

piconet. A piconet consists of a master node and up to seven slave nodes. Piconets

can be connected to a scatternet via common nodes that can serve as common slaves,

or a master node in one piconet can serve as slave node in another piconet. Bluetooth

is currently considered energy expensive for application in sensor networks. The

creation of a connected degree-limited scatternet is a challenging problem that

attracted research interest recently. For instance, ref. [16] proposed a solution that

will optionally apply RNG, GG, or PDT to create a planar structure (if desired,

e.g., for routing), and then to apply a Yao graph that will limit degree while preser-

ving connectivity (and planarity). The last step is to decide about master–slave

roles. Since the Yao graph construct selects the closest nodes in each angular

range, all proposed methods tend to choose neighboring nodes that are relatively

close to the current node. When routing is applied in a scatternet that is constructed

in this way, the routes have relatively large hop count (although they can be power

efficient). An alternative design is proposed in ref. [37]. Since LMST and RNG are

degree limited, the Yao graph does not need to be applied on them. Each node has,

on average, two neighbors in LMST and 2.5 neighbors in RNG, and the scatternet is

already connected. Therefore the remaining links, up to seven per node, may be

chosen arbitrarily. If the hop count is the optimality metric, then these links can

be oriented toward the furthest neighbors in several angular ranges (to provide

good forwarding neighbors in all directions). If power or other metric is considered,

the best neighbors for the given metric can be added. The scatternet constructed in

this way improves routing performance [36].

10.6 TOPOLOGY CONSTRUCTION IN
HETEROGENEOUS NETWORKS

The homogeneity assumption usually does not hold in practice for various reasons.

First, even devices of the same type may have slightly different maximal trans-

mission power. Second, the environment settings also affect the transmission

range. For instance, a wireless device usually has a larger transmission range with

fewer obstacles around it. Finally, as mentioned in Section 10.2, there exist devices

of dramatically different capabilities in wireless sensor networks, for example, light-

weight sensor nodes versus energy-rich cluster heads. In this section, we consider

the issue of topology construction in heterogeneous wireless networks, where the

transmission range of each node may be different.

Most of the topology construction algorithms discussed in Section 10.5 assume

homogeneous wireless nodes with uniform transmission ranges. When directly

10.6 TOPOLOGY CONSTRUCTION IN HETEROGENEOUS NETWORKS 327

applied to heterogeneous networks, these algorithms may render disconnectivity.

For example, as shown in Figure 10.15(a) and 10.15(b) (the arrows are used to indi-

cate the direction of the links), the network topology derived under CBTC (2p=3)
without optimization may not preserve connectivity. Similarly, we show in

Figure 10.16(a) and 10.16(b) that the network topology derived by RNG may be

disconnected.

Since RNG is originally intended for undirected graphs only, one can tailor the

definition of RNG for directed graphs. The modified relative neighborhood graph

(MRNG) is defined as shown in Figure 10.17. An edge uv is included in MRNG

Original topology (without
topology control) is strongly
connected.

Topology by RNG is not
strongly connected: there is no
path from v1 to v4.

Topology by DLSS is strongly
connected.

(a) (b) (c)

5υ 1υ

3υ

2υ

4υ
5υ 1υ

3υ

2υ

4υ
5υ 1υ

3υ

2υ

4υ

Figure 10.16 An example that shows that RNG may render disconnectivity in

heterogeneous networks. There is no path from v1 to v4 due to the loss of edge (v2, v4),

which is discarded since j(v2, v1)j , j(v2, v4)j, and j(v4, v1)j , j(v2, v4)j.

Original topology
(without topology control)
 is strongly connected.

Topology by CBTC(2π/3)
without optimization
is not strongly connected:
there is no path from v6 to v8.

Topology by DLSS is strongly
connected.

(a) (b) (c)

7υ

5υ

1υ

6υ

3υ2υ

8υ

4υ

7υ

5υ

1υ

6υ

3υ2υ

8υ

4υ

7υ

5υ

1υ

6υ

3υ2υ

8υ

4υ

Figure 10.15 An example that shows that CBTC(2p/3) may render disconnectivity in

heterogeneous networks. There is no path from v6 to v8 due to the loss of edge (v1, v8),

which is discarded by v1, since v5 and v6 have already provided the necessary coverage.

328 TOPOLOGY CONSTRUCTION AND MAINTENANCE

if and only if there does not exist a third node p such that both u and v can reach p by

using the maximal transmission power, and w(up) , w(uv), w(vp) , w(uv). Unfor-

tunately, the topology derived by MRNG may still be disconnected, as shown in

Figure 10.18(a) and 10.18(b).

Two localized topology construction algorithms were proposed in ref. [38]. The

first one, directed relative neighborhood graph (DRNG), is an extension of RNG for

heterogeneous graphs. An edge uv is included in DRNG if and only if there does not

exist a third node w such that both u can reach w and w can reach v by using the

maximal transmission power, respectively, and w(up) , w(uv), w(pv) , w(uv).

The second one, directed local spanning subgraph (DLSS), is an extension of

LMST for heterogeneous graphs. In DLSS, each node u first builds its local spanning

subgraph Su of the one-hop neighborhood n(u). The algorithm to construct Su is simi-

lar to Kruskal’s algorithm. Edges are inserted into Su in ascending order of weight.

An edge pq is kept in Su only if p and q are not strongly connected before the inser-

Original topology (without
topology control) is strongly
connected.

Topology by MRNG is not
strongly connected: there is no
path from v1 to v3.

Topology by DLSS is strongly
connected.

(a) (b) (c)

5υ

1υ

3υ

2υ
4υ

5υ

1υ

3υ

2υ
4υ

5υ

1υ

3υ

2υ
4υ

Figure 10.18 An example that shows MRNG may render disconnectivity in heterogeneous

networks. There is no path from v1 to v3 due to the loss of edge (v5, v3), which is discarded

since j(v5, v1)j , j(v5, v3)j, and j(v3, v1)j , j(v5, v3)j.

u v

p

Figure 10.17 The definition of modified relative neighborhood graph (MRNG).

10.6 TOPOLOGY CONSTRUCTION IN HETEROGENEOUS NETWORKS 329

tion of pq. This procedure repeats until the Su is strongly connected. Then u keeps a

directed edge uv if and only if uv is also an edge in Su. The definition of DRNG is

illustrated in Figure 10.19.

The following lemmas and theorems show that both DLSS and DRNG can pre-

serve the strong connectivity of the original graph.

Lemma 1. For any edge uv in the original graph E(G), u is still connected to v in

DLSS [37].

Proof. Sort all edges uv [E(G) in ascending order of weight, that is, w(u1v1),
w(u2v2) , . . . , w(ulvl), where l is the total number of edges. We now prove by

induction.

. Basis: The first edge u1v1 satisfies w(u1v1) ¼ minfw(uv)j uv [E(G)g. Accord-
ing to the algorithm for constructing Su , u1v1 [E(DLSS), that is, u1 is

connected to v1 in DLSS.

. Induction:Assuming the hypothesis holds for all edges uivi, i , k, we prove uk is

connected to vk in DLSS. Since this is obviously true if ukvk [E(DLSS), we only

need to consider the case where ukvk � E(DLSS). Before edge ukvk was con-

sidered in the local topology construction of vk, there must already exist a path

p ¼ (w0 ¼ uk, w1, w2, . . . ,wm21, wm ¼ vk) from uk to vk, where wiwiþ1 [E(Suk),

wiþ1 [E(Suk), i ¼ 0, 1, . . . , m2 1. Since edges are inserted in ascending order

of weight, we have w(wiwiþ1) , w(ukvk). Applying the induction hypothesis, wi

is connected to wiþ1 for i ¼ 0, 1, . . . , m2 1. Therefore, uk is connected to vk.

A

Theorem 10.5 (Connectivity of DLSS [37]): DLSS preserves the connectivity of

G, that is, DLSS is strongly connected if G is strongly connected.

Proof. Suppose G is strongly connected. For any two nodes u, v [V(G), there

exists at least one path p ¼ (w0 ¼ u, w1, w2, . . . ,wm21, wm ¼ v) from u to v,

u v

p

Figure 10.19 The definition of directed relative neighborhood graph (DRNG).

330 TOPOLOGY CONSTRUCTION AND MAINTENANCE

where wiwiþ1 [E(G), i ¼ 0, 1, . . . ,m2 1. Since wi is connected to wiþ1 by Lemma

10.1, u is connected to v in DLSS. A

Lemma 10.2. DLSS is a subset of DRNG [37].

Proof. We prove by contradiction. Given any edge uv [E(DLSS), assume

uv � E(DRNG). According to the definition of DRNG, there must exist a third

node p such that w(up) , w(uv), w(pv) , w(uv). According to the construction of

DLSS, uv should not be inserted since u is connected to p and p is connected to

v, that is, uv � E(DLSS). A

Theorem 10.6 (Connectivity of DRNG [37]): If G is strongly connected, then

DRNG is also strongly connected.

Proof. This is a direct result of Theorem 10.5 and Lemma 10.2. A

Figure 10.20 shows DRNG and DLSS of a large network where 50 nodes are

randomly distributed in a 500 m � 500 m area, and the transmission ranges vary

from 100 m to 150 m.

10.7 CONNECTIVITY

In this section, we present some basic connectivity properties of the random unit-

graph model. In particular, we discuss the critical conditions, such as the trans-

mission range, the number of neighbors, and the minimum total power of all the

nodes (termed as the critical total power), to ensure network connectivity with

high probability. Two of the objectives that have been most commonly considered

in the literature are minimizing the maximum transmission range at each node

(assuming all nodes use a common transmission radius), and minimizing the total

power incurred by all the nodes.

10.7.1 Critical Transmission Range and Node Degree

One of the most fundamental questions is: Given a number of nodes n to be deployed

in a region, which is the minimum value r of the transmitting range that ensures net-

work connectivity? If node placement is known in advance, the localized structures

given in Section 10.5 can be used to construct the topology and the value of r can be

determined accordingly. In the case that n nodes are uniformly randomly placed on a

unit disk and the transmission radius r(n) satisfies pr2(n) ¼ (log nþ c(n))=n, it is
guaranteed that the network (of large sizes) is connected with probability approach-

ing 1 if and only if c(n) ! 1 as n ! 1. That is, r ¼ O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
) [10,39].

Penrose [2] shows that the longest edgeMn of the minimum spanning tree has the

following asymptotic distribution:

P(npM2
n � log n ,¼ a) �! exp(�e�a) as n ! 1

10.7 CONNECTIVITY 331

Thus if we let npr2(n) ¼ log nþ a, and a ! 1, the network is connected with the

probability approaching one. He also showed in ref. [3] that the longest nearest

neighbor and the longest MST edge have asymptotically (when n ! 1) the same

value. Based on this observation, Ovalle et al. [30] proposed to use the longest

LMST edge to approximate the value of r(n) using a wave-propagation quazi-

localized algorithm. The differences between the exact and approximated values

of r(n) are estimated for two- and three-dimensional random unit graphs. Despite

a small number of additional edges in LMST with respect to MST (under 3%),

they can extend r(n) by about 33% its range on networks with up to 500 nodes,

which implies a 50% or more increase in energy consumption, depending on the

power attenuation factor. A quazi-localized scheme to construct MST from

LMST is then described in ref. [30]. The scheme needs less than seven messages

per node on average (for networks up to 500 nodes). It eliminates LMST edges

Original topology (without topology control)
 is strongly connected.

Topology by DRNG is strongly connected.

Topology by DLSS is strongly connected.

(a) (b)

(c)

Figure 10.20 Topologies derived by DRNG and DLSS.

332 TOPOLOGY CONSTRUCTION AND MAINTENANCE

that are not in MST by a loop-breakage procedure, which iteratively follows dan-

gling edges from leaves to LMST loops, and breaks loops by eliminating their long-

est edges, until the procedure finishes at a single node (as a by-product, this single

node can also be considered as an elected leader of the network). The leader so

elected also learns the longest MST edge in the process, and can broadcast it to

other nodes. Note that this procedure operates only in two dimensions, since it is

based on a face routing scheme (cf. ref. [23]).

Santi and Blough [4] showed that, in two and three dimensions, the transmission

range can be reduced significantly if weaker requirements on connectivity are accep-

table. Halving the critical transmission range, the longest connected component

contains 90% of nodes approximately. This means that a considerable amount of

energy is spent in order to connect relatively few nodes.

It has also been shown in ref. [40] that, as the common transmission range

changes, the probability that the network is connected exhibits a sharp transition

within a relatively short interval (see Fig. 10.21). Similar transition phenomena

also exist for k-connectivity [19,39].

10.7.2 Critical Node Degree

Since the average number of neighbors d is approximated from d ¼ (n� 1)r2p=A
(where A is the area of the region), it follows directly from Gupta and Kumar’s

result [10] (if the transmission radius r(n) satisfies pr2(n) ¼ (log nþ c(n))=n, the
network (of large sizes) is connected with probability approaching 1 if and only if

100

90

80

70

60

50

40

30

20

10

0

P
ro

ba
bi

lit
y

of
 c

on
ne

ct
iv

ity

Density

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 10.21 Sharp transition of probability of connected network with respect to common

transmission radius.

10.7 CONNECTIVITY 333

c(n) ! 1 as n ! 1 that d ¼ Q(log n) is the average density for critical connec-

tivity. This means that each node needs to have, on average, Q(log n) neighbors

for the network to be connected.

Xu and Kumar [6] went one step further and showed that in a network with n

randomly placed nodes, if each node is connected to less than 0.074 log n nearest

neighbors, then the network is asymptotically disconnected with probability one

as n increases; on the other hand, if each node is connected to more than 5.1774

log n nearest neighbors, then the network is asymptotically connected with prob-

ability approaching one as n increases. It appears that the critical constant may be

close to one, but that remains an open problem.

10.7.3 Critical Total Power

Blough et al. [7] studied the critical total power for one-connectivity, based on results

on the asymptotic total weight for weighted minimal spanning trees [41,42]. Since the

proof is based on the results on the asymptotic total weight for weighted minimal

spanning trees, it cannot be easily generalized to the case of k-connectivity. Rengar-

ajan et al. [11] gave the expectation of the critical total power for 1-connectivity.

Clementi et al. [8] studied the problem of assigning transmission ranges for wire-

less nodes so as to minimize the total power consumption in the special case of the

path-loss exponent a ¼ 2, provided that any pair of nodes are within h hops. They

showed that given the upper bound on the number of hops h, the total power incurred

Q(n1=h) with high probability. Their result cannot be readily generalized to the case

of a = 2. Gomez and Campbell [9] applied the results reported in ref. [41] and

showed that for the n nodes that are independently, uniformly distributed in a unit

d-dimensional cubic, the total length of the minimal spanning tree using the edge

weight function c(x) ¼ xa is Q(n1�a=d) with probability 1 as n ! 1 for

0 , a , d. Their results hold only for 0 , a , 2, which is out of the typical

range for the path loss exponent in the 2-dimensional case.

The entire preceeding analysis assumes that all the nodes are subject to the same

network parameter (e.g., common transmission power/range). Zhang and Hou [43]

investigate the critical total power required for maintaining asymptotic k-connectivity

in a heterogeneous randomwireless network on a unit square S ¼ ½0,1�2. In their analy-
sis, each node is allowed to choose its own transmission power. Specifically, letWt,i be

the critical transmission power node i uses, and Rt,i the corresponding transmission

range of node i under the power model Wt,i ¼ R 2
t,i , where 2 � a � 4 is the path-loss

exponent. They showed that, under the assumption that wireless nodes are distributed

on a unit square according to a Poisson point process with density l and with the

use of the toroidal model (torus convention), the critical total power of all the

nodes, Wa ¼ P
Wt,i ¼

P
Ra
t,I , for maintaining k-connectivity is Q(G(a=2þ k)=(k �

1)!l1�a=2) with probability approaching 1 as l ! 1. This result suggests that the

power saved using optimal, nonuniform transmission ranges is on the order of

(log l)a=2 as compared to that using optimal uniform transmission ranges.

334 TOPOLOGY CONSTRUCTION AND MAINTENANCE

10.8 TOPOLOGY CONSTRUCTION AND CONNECTIVITY WITH
CONSIDERATION OF FAULT TOLERANCE

Since a wireless sensor network is usually composed of a large number of unreliable

sensor nodes, fault tolerance is an important requirement for topology construction.

In particular, the network connectivity should be preserved even when some of the

sensor nodes fail or deplete their power. With the use of smaller transmission power,

most topology control algorithms actually decrease the number of possible routing

paths between any pair of nodes. The topology thus derived is more susceptible to

node failure. For instance, if node v7 in Figure 10.3 fails, the network will be parti-

tioned into three disconnected components. One way to construct fault-tolerant

topology is to construct a k-vertex connected network. Note that a k-vertex

connected network is k2 1 fault-tolerant, that is, it can tolerate failure of at most

k2 1 nodes. A 3-vertex connected network is given in Figure 10.22. (For simplicity,

the term k-connectivity is used to refer to k-vertex connectivity.)

An alternate way to enhance fault tolerance in topology construction is to make

data sinks or network controllers aware of critical nodes and links in the network, so

that additional sensors can be woken up or deployed on demand in the network. A

node is defined to be critical if the subgraph of its p-hop neighbors (without the node

itself) is disconnected [26]. Similar definitions were given in ref. [26] for critical

links.

In this section, we first discuss the properties of k-vertex connected topologies

and present several algorithms that construct such topologies. Then we discuss

localized algorithms that detect such nodes and links.

10.8.1 K-vertex Connected Topologies

Since the problem of finding a minimum-cost k-connected subgraph has been proved

to be NP-hard, many approximation algorithms have been proposed (see, for

example, refs. [21] and [44] for a summary).

Penrose [3] studied k-connectivity in a geometric random graph of n nodes, each

with a transmission range of r. It has been proved that the minimum value of r at

Figure 10.22 A 3-vertex connected network.

10.8 TOPOLOGY CONSTRUCTION AND CONNECTIVITY 335

which the graph is k-connected is equal to the minimum value of r at which the graph

has a minimum degree of k, with probability 1 as n goes to infinity. This result is

significant, since it links k-connectivity, a global parameter of the graph, to node

degree, a local parameter. However, the minimum value of r was not given in ref.

[3]. Bettstetter [40] also investigated the relation between the minimum node

degree and k-connectivity for geometric random graphs. The analytical expression

of the required range r0 for the almost surely k-connected network is derived and

verified by simulation.

Li et al. [19] extended the work in ref. [3] and gave the lower and upper bounds

on the minimum value of r at which the graph is k-connected with high probability.

Yaop,k, a localized topology control algorithm based on the Yao structure, was also

proposed. Yaop,k is constructed by having every node u choose k closest neighbors in

each of the p � 6 equal cones around u. It was proved to preserve k-connectivity and

a length spanner.

Bahramgiri et al. [45] augmented the CBTC algorithm (Subsection 10.5.8) to pro-

vide fault tolerance. Specifically, let the directed subgraph of G, D(a), be the output
of the CBTC(a) algorithm. Let G(a) be the result of deleting all unidirectional links
in D(a). It was proved that G 2p=3kð Þ preserves k-connectivity of G.

In ref. [21], three approximation algorithms were presented to find the mini-

mum power k-connected subgraph. The first algorithm is global and gives an

O(kb)-approximation, where b is the best approximation factor for the

k-UPVCS problem defined in ref. [21]. The second algorithm is also global

and improves the approximation factor to O(k) for general graphs. The third

algorithm is distributed and gives an k O(a)-approximation, where a is the expo-

nent in the propagation model. It first computes the MST of the input graph by

using a distributed algorithm, and then adds a path among the neighbors of each

node in the returned tree. Since this distributed algorithm is based on the distrib-

uted MST algorithm, it is not localized, that is, it relies on information that is

multiple hops away to construct the MST. This implies more maintenance over-

head, and delay will be incurred when the topology has to be changed in response

to node mobility or failure.

In [15], a centralized greedy algorithm, fault-tolerant global spanning subgraph

(FGSSk), was first presented. FGSSk is a generalized version of the Kruskal’s algo-

rithm for MST [46]. In FGSSk, different components are iteratively merged until

only one k-connected component remains. FGSSk preserves k-vertex connectivity

and is min–max optimal, that is, FGSSk minimizes the maximum transmission

power used in the network, among all algorithms that preserve k-vertex connectivity.

Based on this algorithm, fault-tolerant local spanning subgraph (FLSSk) is proposed

for topology control in wireless networks. In FLSSk, each node u applies the FGSSk
algorithm to its one-hop neighborhood, n(u), and determines its neighbor set locally.

It has been proved that FLSSk preserves k-vertex connectivity and maintains

bidirectionality for all links in the topology, while reducing the transmission

power and improving the network capacity. FLSSk has also been proved to be

min–max optimal among all strictly localized algorithms.

336 TOPOLOGY CONSTRUCTION AND MAINTENANCE

10.8.2 Detection of Critical Nodes and Links

An alternative way to enhance fault tolerance is to make data sinks or network

controllers aware of critical nodes and links in the network. Algorithms for detecting

critical nodes and links based on global knowledge are well known. However, their

use in sensor networks is limited, since the controllers may not be able to learn the

overall network structure in a dynamic environment. It is therefore preferred that

sensors themselves detect locally critical links and/or nodes and report them to

the controllers.

Several localized definitions of critical nodes and links, using topological or

positional information, are introduced in ref. [26]. A node is critical if the subgraph

of its p-hop neighbors (without the node itself) is disconnected. Three definitions of

critical links are proposed, based on verifying common p-hop neighbors, loop

length, and critical status of link endpoints, respectively. The experiments with

random unit graph model of ad hoc networks show high correspondence of local

and global decisions. The errors mostly occur when alternative routes exist but

are relatively long. Note that for a given particular report path, the reporting

sensor and the network controller could be located in the same component after fail-

ure of a sensor on the route between them, and therefore the criticality of that sensor

does not necessarily imply the criticality of the overall route, as an alternate route

may already exist. However, in the case of monitoring and reporting by many or

all sensors and multiple reporting paths, the criticality of a node is likely to require

network maintenance. The notions can be generalized to the case of critical

k-connectivity of the network.

Localized algorithms for testing k-connectivity are proposed in ref. [47]. In the

first protocol, each node makes a criticality decision by verifying whether or not

each of its p-hop neighbors has degree (number of neighbors) at least k. The

second protocol also tests whether the subgraph of p-hop neighbors of a given

nodes is k-connected. The third protocol also verifies whether this subgraph contains

any critical nodes.

The proposed tests assume static sensors. In the case of mobile sensors (e.g.,

attached to some vehicles), the partition detection can be performed with the proto-

col [48], based on LMST structure [14]. Based on their speed and movement direc-

tions, two neighboring nodes A and B can predict when their link will break (details

are first described in ref. [49]). Using movement information from all neighbors,

nodes A and B construct LMST at the time their link will break. If at that time

AB is in LMST (no matter whether the link is or is not currently in LMST) then

the link is critical.

To the best of our knowledge, there have been no studies of connectivity issues

when realistic physical-layer characteristics are taken into account to model sensor

networks. What does it mean that a set of nodes is connected? There are several

possible definitions as a starting point. In the simplest definition, a network can

be considered q-connected if the network, consisting of edges whose probability

of receiving a packet is at least q, is connected. When a message is broadcast

from a source, it reaches any other node with a certain probability. However, mul-

10.8 TOPOLOGY CONSTRUCTION AND CONNECTIVITY 337

tiple hops can drastically decrease the probability that a unicast/broadcast message

reaches one or all nodes. Alternatively, one can define the network as being

q-connected if the probability of a packet to be routed successfully between any

two of the nodes, or broadcasting from any node to reach all of the nodes in the

network, is �q [24].

We recommend to read [50,51] for a deeper treatment of topology in ad hoc and

sensor networks.

EXERCISES

10.1. Prove that MST is a subset of Yaop [36].

10.2. Show that PDT1 # PDT2.

10.3. Prove that the enclosure graph for a ¼ 2 and c ¼ 0 becomes equivalent

to GG.

10.4. Prove that CBTC(a) preserves network connectivity for a , 5p/6 [13].

REFERENCES

1. P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on

Information Theory, 46:388–404, March 2000.

2. M. Penrose. The longest edge of the random minimal spanning tree. Annals of Applied

Probability, 7(2):340–361, 1997.

3. M. Penrose. On k-connectivity for a geometric random graph. Random Structures and

Algorithms, 15(2):145–164.

4. P. Santi and D. Blough. The critical transmitting range for connectivity in sparse wireless

ad hoc networks. IEEE Transactions on Mobile Computing, 2(1):1–15, 2003.

5. P.-J. Wan and C. Yi. Asymptotic critical transmission radius and critical neighbor number

for k-connectivity in wireless ad hoc networks. In Proceedings of the ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Tokyo, May

2004.

6. F. Xue and P. R. Kumar. The number of neighbors needed for connectivity of wireless

networks. Wireless Networks, 10(2):169–181, March 2004.

7. D. M. Blough, M. Leoncini, G. Resta, and P. Santi. On the symmetric range assignment

problem in wireless ad hoc networks. In Proceedings of the 2nd IFIP International Con-

ference on Theoretical Computer Science, pages 71–82, Montreal, August 2002.

8. A. E. F. Clementi, P. Penna, and R. Silvestri. On the power assignment problem in radio

networks. Mobile Networks and Applications, 9(2), April 2004.

9. J. Gomez and A. Campbell. A case for variable-range transmission power control in wire-

less multihop networks. In Proceedings of IEEE INFOCOM 2004, Hong Kong, China,

March 2004.

338 TOPOLOGY CONSTRUCTION AND MAINTENANCE

10. P. Gupta and P. Kumar. Critical power for asymptotic connectivity in wireless networks.

Stochastic Analysis, Control, Optimization and Applications, W. M. McEneaney, G. Xin,

and Q. Zhang (eds.), pages 547–566, Birkhauser, Boston, 1998.

11. B. Rengarajan, J. Chen, S. Shakkottai, and T. S. Rappaport. Connectivity of sensor net-

works with power control. In Proceedings of the 37th Asilomar Conference on Signals,

Systems and Computers, Volume 2, pages 1691–1693, Pacific Grove, California,

November 2003.

12. V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks. IEEE Journal

on Selected Areas in Communications, 17(8):1333–1344, August 1999.

13. L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang, and R. Wattenhofer. Analysis of a cone-based

distributed topology control algorithm for wireless multi-hop networks. In Proceedings of

the ACM Symposium on Principles of Distributed Computing (PODC), pages 264–273,

Newport, Rhode Island, USA, August 2001.

14. N. Li, J. C. Hou, and L. Sha. Design and analysis of an MST-based topology control

algorithm. In Proceedings of IEEE INFOCOM 2003, San Francisco, California, 2003.

15. N. Li and J. C. Hou. FLSS: A fault-tolerant topology control algorithm for wireless net-

works. In Proceedings of the ACM International Conference on Mobile Computing and

Networking (MobiCom), Philadelphia, Pennsylvania, September 2004.

16. X. Li, I. Stojmenovic, and Yu Wang. Partial Delaunay triangulation and degree limited

localized Bluetooth scatternet formation. IEEE Transactions on Parallel and Distributed

Systems, 15(4):350–361, April 2004.

17. X. Y. Li and I. Stojmenovic. Broadcasting and topology control in wireless ad hoc net-

works. In Handbook of Algorithms for Mobile and Wireless Networking and Computing,

A. Boukerche and I. Chlamtac (eds.), CRC Press, to appear.

18. X. Y. Li, Yu Wang, Peng-Jun Wan, and Ophir Frieder. Localized low weight graph

and its applications in wireless ad hoc networks. INFOCOM, Hong Kong, China,

March 2004.

19. X. Y. Li, P. J. Wan, Y. Wang, and C. W. Yi. Fault tolerant deployment and topology con-

trol in wireless ad hoc networks. Wireless Communications and Mobile Computing,

4:109–125, 2004.

20. G. Calinescu, I. L. Mandoiu, and A. Zelikovsky. Symmetric connectivity with minimum

power consumption in radio networks. In Proceedings of the 17th IFIP World Computer

Congress, pages 119–130, 2002.

21. M. Hajiaghayi, N. Immorlica, and V. S. Mirrokni. Power optimization in fault-tolerant

topology control algorithms for wireless multi-hop networks. In Proceedings of the

ACM International Conference on Mobile Computing and Networking (MobiCom),

pages 300–312, San Diego, California, September 2003.

22. L. Barriere, P. Fraigniaud, L. Narajanan, and J. Opatrny. Robust position based routing in

wireless ad hoc networks with unstable transmission ranges. In Proceedings of the 5th

ACM International Workshop on Discrete Algorithms and Methods for Mobile Comput-

ing and Communications DIALM’ 01, pages 19–27, Rome, Italy, July 2001.

23. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in

ad hoc wireless networks. In Proceedings of the 3rd International Workshop on Discrete

Algorithms and Methods for Mobile Computing and Communications, pages 48–55,

Seattle, Washington, August 1999.

REFERENCES 339

24. I. Stojmenovic, A. Nayak, J. Kuruvila, F. Ovalle-Martinez, and E. Villanueva-Pena.

Physical layer impact on the design and performance of routing and broadcasting proto-

cols in ad hoc and sensor networks. Computer Communications, 28(10):1138–1151, June

2005.

25. I. Stojmenovic and X. Lin. Loop-free hybrid single-path/flooding routing algorithms

with guaranteed delivery for wireless networks. IEEE Transactions on Parallel and

Distributed Systems, 12(10):1023–1032, October 2001.

26. M. Jorgic, I. Stojmenovic, M. Hauspie, and D. Simplot-Ryl. Localized algorithms for

detection of critical nodes and links for connectivity in ad hoc networks. In Proceedings

of the 3rd Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pages

360–371, Bodrum, Turkey, June 2004.

27. G. Alonso, E. Kranakis, R. Wattenhofer, and P. Widmayer. Probabilistic protocols for

node discovery in ad hoc, single broadcast channel networks. In Proceedings of the

IEEE International Parallel and Distributed Processing Symposium Workshops, Nice,

France, 2003.

28. M. J. McGlynn and S. A. Borbash. Birthday protocols for low energy deployment and

flexible neighbor discovery in ad hoc wireless networks. In Proceedings of the ACM

International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),

Long Beach, California, October 2001.

29. A. Micic and I. Stojmenovic. A hybrid randomized initialization protocol for TDMA in

single-hop wireless networks. In Proceedings of the IEEE International Parallel and

Distributed Processing Symposium Workshops, Fort Lauderdale, Florida, April 2002.

30. F. J. Ovalle-Martinez, I. Stojmenovic, F. Garcia-Nocetti, and J. Solano-Gonzalez. Find-

ing minimum transmission radii and constructing minimal spanning trees in ad hoc and

sensor networks. In Proceedings of the 3rd Workshop on Efficient and Experimental

Algorithms, Angra dos Reis, Rio de Janeiro, Brazil, May 2004.

31. G. Toussaint. The relative neighborhood graph of finite planar set. Pattern Recognition

12(4):261–268, 1980.

32. J. Cartigny, F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Localized LMST and RNG

based minimum energy broadcast protocols in ad hoc networks. Ad Hoc Networks,

3(1):1–16, 2005.

33. K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analy-

sis. Systemic Zoology, 18:259–278, 1969.

34. Q. Huang, C. Lu, and G. C. Roman. Reliable mobicast via face-aware routing. In Pro-

ceedings of IEEE INFOCOM 2004, Hong Kong, China, March 2004.

35. A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of

Voronoi Diagrams, John Wiley & Sons, 1992.

36. A.C-.C. Yao, On constructing minimum spanning trees in k-dimensional spaces and

related problems. SIAM Journal of Computing, 11:721–736, 1982.

37. D. Yang and I. Stojmenovic. Bluetooth Scatternet Formation for Efficient Routing in

Ad Hoc Networks. In preparation.

38. N. Li and J. C. Hou. Topology control in heterogeneous wireless networks:

Problems and solutions. In Proceedings of IEEE INFOCOM, 2004, Hong Kong, China,

March 2004.

340 TOPOLOGY CONSTRUCTION AND MAINTENANCE

39. P. Panchapakesan and D. Manjunath. On the transmission range in dense ad hoc radio

networks. In Proceedings of the IEEE Signal Processing and Communications Confer-

ence (SPCOM), Bangalore, India, 2001.

40. C. Bettstetter. On the minimum node degree and connectivity of a wireless multihop net-

work. In Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc

Networking and Computing (MobiHoc), pages 80–91, Lusanne, Switzerland, 2002.

41. J. M. Steele. Growth rates of Euclidean minimal spanning trees with power weighted

edges. Annals of Probability, 16(4), 1988.

42. J. E. Yukich. Asymptotics for weighted minimal spanning trees on random points.

Stochastic Processes and Their Applications, 85:123–128, 2000.

43. H. Zhang and J. C. Hou. On the Critical Total Power for Asymptotic k-Connectivity in

Wireless Networks. Technical Report UIUCDCS-R-2004-2386, Department of Computer

Science, University of Illinois at Urbana-Champaign, July 2004.

44. S. Khuller. Approximation algorithms for finding highly connected subgraphs. In

Approximation Algorithms for NP-Hard Problems, D. S. Hochbaum, (ed.), PWS

Publishing Company, Boston, Massachusetts, 1996.

45. M. Bahramgiri, M. Hajiaghayi, and V. S. Mirrokni. Fault-tolerant and 3-dimensional

distributed topology control algorithms in wireless multi-hop networks. In Proceedings

of the 11th International Conference on Computer Communications and Networks

(IC3N), pages 392–397, October 2002.

46. J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical Society, 7:48–50, 1956.

47. M. Jorgic and I. Stojmenovic. Localized algorithms for detection of k-connectivity in

ad hoc networks. In preparation.

48. I. Stojmenovic. LMST-Based Partition Detection for Mobile Sensors. In preparation.

49. I. Stojmenovic. M. Russell, and B. Vukojevic. Depth first search and location based loca-

lized routing and QoS routing in wireless networks. Computers and Informatics,

21(2):149–165, 2002.

50. P. Santi. Topology Control in Wireless Ad Hoc and Sensor Networks. Submitted to ACM

Computing Surveys, 2004.

51. X. Y. Li and Y. Wang. Wireless sensor networks and computational geometry. In

Handbook of Sensor Networks, M. Ilyas (ed.), CRC Press, 2003.

52. F. Atay and I. Stojmenovic. Fast generation of connected random unit disk graphs in ad

hoc networks with reduced degree deviations, submitted for publication, 2000.

REFERENCES 341

&CHAPTER 11

Energy-Efficient Backbone
Construction, Broadcasting, and
Area Coverage in Sensor Networks

DAVID SIMPLOT-RYL

IRCICA/LIFL, Universite Lille, Villeneuve d’Ascq, France

IVAN STOJMENOVIĆ

University of Ottawa, Ontario, Canada

JIE WU

Florida Atlantic University, Boca Raton, Florida

A backbone is a subset of sensors that is sufficient for performing assigned tasks. The

exact definition depends on the task or the particular desirable properties of a back-

bone. We discuss two specific kinds of backbones, neighbor and area dominating

sets, that we believe are the essential and perhaps only backbones required for

sensor networks. A sensor is covered by a backbone if it is in the backbone or is

a neighbor to a sensor in the backbone. This type of backbone is referred to here

as neighbor-dominating sets, or simply dominating sets. A point within a monitoring

area is covered by a sensor backbone if it is within sensing range of at least one

sensor from the backbone. This type of backbone is called area-dominating set. In

a broadcasting (also known as data-dissemination) task, a message is sent from

one node, which could be a monitoring center, to all nodes in the network. Sensors,

which are randomly placed in an area, decide which of them should be active and

monitor an area, and which of them may sleep and become active at a later time. The

communication connectivity is important so that the measured data can be reported

to a monitoring center. This problem is known as the sensor-area coverage problem,

and needs to be solved efficiently to enable sensor functioning for a prolonged time.

Sensors may also be placed deterministically in an area to optimize coverage and

reduce power consumption. Most solutions considered in this chapter are based

343

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

on constructing area-dominating sets for sensor-area coverage. The best known sol-

utions for backbone construction, broadcasting, and sensor-area coverage problems

are based on the concept of localized connected dominating sets. For instance, one

solution to the broadcasting problem is that only nodes from a connected neighbor-

dominating set retransmit the message. This chapter reviews solutions to these three

related problems in sensor networks.

11.1 INTRODUCTION

11.1.1 Modeling Sensor Networks

Awidely accepted basic graph-theoretical model for sensor networks is the unit-disk

graph model, defined as follows: two nodes, A and B, in the network are neighbors

(and thus joined by an edge) if the Euclidean distance between their coordinates in

the network is at most R, where R is the transmission radius that is equal for all nodes

in the network. There are two kinds of unit-disk graphs considered in sensor net-

works, sensing and communication unit-disk graphs, with corresponding sensing

and transmission radii, respectively. The relationship between sensing and trans-

mission radii may vary based on the particular hardware or application. There are

three basic cases: equal sensing and transmission (communication) radii, trans-

mission radius more than twice the sensing radius, and a communication range

that is between sensing and twice the sensing radii. Reasons for the three cases

become apparent later in the chapter.

Some solutions make use of sensor ability to adjust transmission radius, instead

of using the maximum radius, as determined by the unit-disk graph model. The unit-

disk graph model is not fully realistic, but is much better for approximation of a

sensor network than the random graph model (with each edge having equal prob-

ability of being selected for the graph), studied in ref. [1]. In the unit-disk graph

model, the probability of receiving a packet between two nodes suddenly changes

from 1 to 0 at distance R. A more realistic model is the fuzzy unit-disk graph pro-

posed in ref. [2]. In this model, there are two transmission radii, r and R. Two

nodes communicate with each other if the distance between them is �r; they do

not communicate with each other if their distance is �R, and may or may not com-

municate if the distance is between r and R. In a realistic physical-layer model, such

as the log normal shadowing model, random signal strength variations lead to a

model where the packet reception probability p(x) is a function of distance x

between two nodes. The transmission radius R is defined in ref. [3] as the distance

at which p(R) ¼ 0.5. Two nodes are considered neighbors if the distance x between

them is such that p(x) � w, where w is a threshold parameter (for example, when

w ¼ 0.05, then x � 1.4R). In the hitchhiking model [4], two transmission radii, r

and R, are also used. The receiver can receive a partial packet from the sender if

their distance is between r and R. The actual percentage of packet that can be

decoded depends on a particular signal model. It is assumed that each receiver

can assemble several partially received packets to one complete packet.

344 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

11.1.2 Localized Algorithms and Message Complexity

Among recently developed strategies for constructing small connected dominating

sets, localized protocols offer the best prospect for achieving energy efficiency. In

a localized protocol, each node makes protocol decisions based solely on some

available local knowledge (to be more precise, based on the information from neigh-

bors within k hops for certain k), without resorting to global network information.

Because of the dynamic nature of sensor networks, the topology changes are

frequent and unpredictable. The local information must suffice for a sensor node

to make protocol decisions; otherwise, the increased communication overhead

could offset the energy savings and increase latency. In a centralized (or globalized)

algorithm, one or more nodes (or a central entity like a base station) need to learn

global node and/or edge structure, either the whole graph (for instance, to find a

route using the shortest-path algorithm), or a global structure derived from the

graph (such as minimal spanning tree, which can be used for optimal energy data

aggregation). Because of the huge communication overhead involved in gathering

such information in dynamically changing sensor networks, such protocols cannot

be energy efficient solutions in normally large sensor networks. This chapter conse-

quently discusses primarily localized solutions (some centralized algorithms are

described only for the sensor-area coverage problem).

The sensor network may operate with or without time synchronization between

sensors. In an asynchronous protocol, there is no common clock between the sen-

sors. Therefore, each sensor makes its own decision about being active or going

to a sleep state for an arbitrary period based on the overheard communication

from other sensors. In a synchronous protocol, sensors follow a common clock,

and therefore naturally may operate in rounds. In the case of sensor-area coverage,

for example, they exchange some messages (at the beginning of each round) in order

to decide which of them is needed for coverage in a given round, while the remain-

ing sensors may sleep for the rest of the round and wake up at the beginning of the

next round.

We further classify localized protocols according to the amount of information

required and to overhead in the construction and maintenance phases. The amount

of required information is related to the message complexity, which can be defined

as the average number of transmitted messages per sensor node in a protocol.

Although some protocols appear localized, an extensive message exchange with

neighbors amounts to collection and use of global information. In a strictly localized

protocol [5], all information processed by a node is either local in nature or global in

nature, but obtainable in a short constant time by querying only the node’s neighbors

or itself. In other words, only a small constant number of message exchanges with

neighbors is allowed. Strictly localized protocols may need some information that is

part of their input (such as destination position in a routing protocol) but cannot use

structures that are global in nature (e.g., information about which of the outgoing

links belongs to the minimum spanning tree (MST)). An interesting similar

definition is given in ref. [6]. An emergent algorithm is any computation that

achieves formally or stochastically predictable global effects by communicating

11.1 INTRODUCTION 345

directly with only a bounded number of immediate neighbors and without the use of

central control or global visibility [6].

The sensors may or may not use position information in their decisions. The

availability of position information for proper sensor functioning was widely recog-

nized as highly desirable; however, it is a nontrivial problem and the precision of the

location information may impact the performance of a protocol. There exists a

variety of position-determination protocols [7], with a variety of message complex-

ities. If position information is used, we will make the simple assumption that it was

provided to the node message tree (here only messages transmitted by sensors are

counted), which is true only if it was provided externally via a global positioning

system (GPS) or similar beacons arriving from the environment.

The simplest local information required is certainly no knowledge at all about

existing neighbors. The blind flooding protocol for broadcasting (used in a typical

route discovery in reactive routing protocols), where each node will retransmit the

packet after receiving it the first time, belongs to this category. The next, and com-

monly used, assumption is the knowledge of one-hop neighbors (direct neighbors, or

nodes located within transmission radius R), and possibly their locations. To collect

such knowledge, a periodic “hello” message protocol is normally assumed, where

each sensor transmits one message informing neighbors about its existence. There-

fore, when message complexities are compared, we assume that one message per

node is needed to acquire one-hop information. A further common assumption is

of 2-hop neighbors, which are obtained after each node sends a message containing

the list of its one-hop neighbors. We will assume therefore that collecting this infor-

mation requires two messages per node. The actual cost could be higher, since such

messages in dense networks could be long and energy-consuming to transmit.

11.1.3 Does Sleeping Always Conserve Energy?

The importance of placing as many sensor nodes as possible into sleep mode is

apparent from the analysis of sensor energy expenditure. A sensor’s radio can be

in one of three active states—transmit, receive, idle—or in the sleep state. The

radio is turned off in sleep state. The power consumption for various types of sensors

and ad hoc nodes [8] shows that a sensor in the sleep state consumes 7–20 times less

energy than one in the idle state. The power consumption while receiving a message

is up to 10% higher than in idle state. Nodes spend 10–100% more energy while

transmitting than while receiving messages. For instance, the Windows Internet

Naming Service (WINS) seismic sensor consumes between 0.38 W and 0.7 W in

the transmit state, 0.36 W in the receive state, 0.34 W in the idle state, and

0.02 W in the sleep state [9]. Sensors in the idle state are listening to the traffic

and can be “alarmed” for any action. In the sleep state, however, they cannot receive

any message and cannot be alarmed to become active. The importance of placing as

many sensors as possible into the sleep state in order to prolong network life is

apparent. Shall sensors sleep whenever they know that they are not needed for

sensing or communication? Such an assumption is made in ref. [10], which proposed

an activity scheduling scheme that assumes that sensor reporting can be done at

346 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

predetermined times, along predetermined routes. In the route-discovery phase, each

node learns about some neighbors and receives some forwarding tasks [10]. In

addition, sampling, transmissions, and receptions along the route are also scheduled.

This enables sensors to sleep between two scheduled tasks [10].

Suppose, for simplicity, that sensors are changing between active and sleep states

on a regular basis, in rounds. The duration of a round cannot be made arbitrary, if

prolonged network life is desirable. We will demonstrate this in the case of energy

efficient behavior of a single sensor. Assume that there is fixed chargeC for transition

between the active and sleep periods in sensor networks (this charge is not zero!).

Assume also for simplicity that energy consumption in the active state remains con-

sistent regardless of the amount of traffic handled (this, in fact, is not far from the rea-

lity [8]). Let F be the ratio of energy consumption between the active and sleep states,

and let S be the energy consumed in the sleep state per unit of time (therefore, in the

active state the consumption is SF per unit time). Suppose that T is the ratio of sensor

reporting (active) and sleep times. If the sensor remains in active mode, its energy

consumption is LSF over L time units. If the sensor decides to switch to sleep state

between reporting, then there are 2L=(T þ 1) transitions, requiring energy of

2CL=(T þ 1). The consumption for sleep periods is SLT=(T þ 1), and consumption

during the active states is SLF=(T þ 1). Thus overall consumption is 2CL=(T þ 1)þ
SLT=(T þ 1)þ SLF=(T þ 1) ¼ L½2C þ ST þ SF�=(T þ 1). This is compared to LSF

to conclude that switching to the sleep state between reporting periods is beneficial

only if T . 2C=(S(F � 1)). Therefore, the power needed for frequent transitions

may outweigh the benefits obtained from sleeping.

Clustering can be effectively used to minimize internal transmission in a cluster

with time division or frequency division. Energy awareness is not only a problem of

sleep and awake but also a problem of collision avoidance.

11.2 BACKBONE CONSTRUCTION

11.2.1 Backbone Construction, Maintenance, and Analysis

Most broadcasting, activity scheduling, and sensor-area coverage algorithms rely on

the concept of backbone. A backbone is a subset of sensor nodes that is able to per-

form data communication tasks and to serve nodes that are not in the backbone

(because it is close to them). A backbone can also be the set of active sensor

nodes, assuming then that the rest of the sensors are sleeping. There is a vast litera-

ture about backbone construction (see ref. [11] for a more comprehensive review).

The primary backbone concept used in the literature is the dominating-set concept.

A dominating set has the following property: each node is either in the dominating

set or has a one-hop neighbor that is in the dominating set. Further, the connectivity

property is often required for proper protocol functioning. A connected dominating

set (CDS) is a dominating set of nodes that is also a connected set.

Figure 11.1 illustrates the CDS concept. Nodes 13, 12, 11, 10, 9, 4, 3, 1 are

in CDS, and any remaining node is a neighbor of one listed. It is obvious that

11.2 BACKBONE CONSTRUCTION 347

broadcasting protocol, in which all nodes belonging to a CDS retransmit the mess-

age, will reach all nodes in a sensor network (assuming an ideal medium-access

layer). This does not mean that all of them indeed need to retransmit, as will be dis-

cussed later in the chapter. An activity-scheduling scheme may simply direct all sen-

sors in the backbone to be active, and allow all others to sleep. In this chapter,

we have described the two most important backbone concepts: neighbor- and

area-dominating sets. They can both be applied in the sensor networks. Once the

sensors for area coverage are selected (area-dominating set), their backbone (neigh-

bor-dominating set) can be constructed. Sensors in a connected neighbor-dominat-

ing set constructed over a connected area-dominating set can be used for

broadcasting in the sensor network. Thus, one can be considered a backbone of

another backbone. Note that area-dominating sets provide a network of medium

density, which has an impact on the selection and performance of broadcast proto-

cols for use in sensor networks (e.g., blind flooding may be an acceptable option).

The quality of a backbone construction/maintenance protocol is normally

evaluated by backbone size with respect to the minimal possible size for the same

network. The problem of constructing a CDS of minimal size (with a minimal

number of sensors in it) is known to be NP-complete even for centralized algorithms.

Therefore it is not surprising that finding good solutions by local means is a difficult

task, and one that has attracted significant interest in recent years. The approxi-

mation ratio of a scheme is the ratio of the number of sensors in the constructed

backbone over the minimal possible number of sensors in an optimal backbone.

There are other metrics that can be considered [12]: the protocol duration, message

overhead, and backbone robustness (does the backbone remains connected if one

node fails?). For each metric, the evaluation can be performed, analytically or

experimentally, using either average-case or worst-case performances. The ultimate

goal is certainly to have a winner in both categories (such as mergesort or heapsort

for the sorting problem). However, so far such a winner has not emerged, and

researchers have normally adopted one of the two ways for comparison. Arguably,

if a sensor network designer is presented with two protocols, one with excellent

average-case, but occasionally quite bad performance, and the other with

firm worst case guarantees (e.g., theoretically provable constant bound for the

1

2

3
8

7

6

5

4

14

13

9

16

15

10
11

1712

Figure 11.1 A neighbor CDS consisting of nodes 13, 12, 11, 10, 9, 4, 3, 1.

348 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

approximation ratio) but considerably inferior in the average case, we believe that

the former would be the choice. This is the “philosophy” followed in this chapter.

Before describing some backbone schemes, we discuss their determinism and

cost aspects. Backbone construction schemes can be classified as probabilistic

and deterministic, based on whether or not a random number generator was used

to construct them. The random number usage here is limited to the network-layer

decisions; the underlying medium access scheme may still use random backoff

counters, for example, in a deterministic protocol.

The backbone construction protocols described in the literature normally con-

sider only construction cost. However, sensor networks are dynamic and the main-

tenance cost cannot be ignored; this is the cost to update the backbone when the

network changes. Both construction and localized maintenance protocols can be

further divided into quasi-local and local protocols. In a quasi-local (localized) pro-

tocol, all decisions are made based on local knowledge; however, the decisions

made in one part of the network may have an impact on decisions made in a distant

part of the network. Clustering is a typical example of a quasi-local protocol for both

the construction and maintenance phases. The construction phase starts from a few

selected “seed” nodes and propagates throughout the network. While this perform-

ance is debatable, the maintenance phase of quasi-local protocols is problematic,

because of possible “chain effect”: a simple change in an edge or addition/deletion
of nodes may trigger global backbone updates by propagation. Otherwise, a local

localized clustering procedure may have a negative impact on the quality (e.g.,

size) of the cluster structure. This chapter is therefore inclined toward local (loca-

lized) solutions, where, in both the construction and maintenance phases, the back-

bone status of each node depends solely on the local network configuration, typically

one-hop or 2-hop (2-hop neighbors are one-hop neighbors of one-hop neighbors).

We will now describe some localized backbone construction methods and discuss

them in the light of mentioned criteria and desirable properties.

11.2.2 Backbone Construction by Clustering

The distributed clustering algorithm [13] is initiated at all nodes whose id is lowest

among all their neighbors (locally lowest id nodes). All nodes are initially undecided.

If all neighbors of node A, which have a lower id, sent their cluster decisions and none

declared itself a clusterhead (CH), node A decides to create its own cluster and broad-

casts this decision and its id as a cluster id. If a node receives a message from a neigh-

bor that announces itself as a CH, it will send a message (to all its neighbors)

declaring itself a non-CH node, to enable more clusters to be created (note that

two CHs are not direct neighbors in the algorithm). Thus each node broadcasts its

clustering decision after all its neighbors with lower ids have already done so.

Non-CH nodes that hear two or more CHs will declare themselves as gateway

nodes. A sophisticated maintenance procedure for cluster formation when nodes

move is described in ref. [13]. To minimize the number of clusters, ref. [14] proposed

that node degree be applied as the primary key in clusterhead decisions. Nodes with

more neighbors are then more likely to become a CH. In the case of ties, lower id

11.2 BACKBONE CONSTRUCTION 349

nodes have an advantage. The clustering process requires one message per node in

the construction phase (after one “hello” message to find the ids of neighbors or

two “hello” messages to learn their degrees). Basagni [15] proposed variants of the

clustering algorithm [13], which uses a variety of weights for selecting best CHs.

In the protocol described in ref. [16], after the clustering process is completed,

each CH contacts neighboring CHs (up to three hops away) in order to eliminate

some gateway nodes, and to use only essential gateway nodes to preserve overall

connectivity. The construction and maintenance are fully localized. The protocol

in ref. [16] produces an excellent approximation ratio, but the message overhead

is significant, due to the overly high complexity of the election phase of the protocol

leader, which requires information to be propagated to the fragment members and to

nodes in adjacent fragments every time two fragments are merged into a new one.

The simulation results [12] show that approaches with nice theoretical features,

such as that presented in ref. [16], may hardly be applicable in practice due to the

message complexity of their operations.

Basagni, Carosi, and Petrioli [17] described such a clustering based backbone

scheme where nodes with more energy have higher chances to be clusterheads.

Their construction and maintenance procedures are ongoing process with decisions

based on received “hello” messages from neighbors. A node declares itself a CH if it

did not receive a “hello” packet from a CH with energy that differs by more than

certain threshold (“older” decisions have priority).

Chan and Perrig [5] described a localized clustering algorithm. New clusters are

spawned in a self-elective process, when no messages from other CHs are received.

Migration of an existing cluster is controlled by its CH. Each CH will periodically

poll all its followers (neighbors) to determine which is the best candidate to become

the new CH. The best candidate is the node that, if it were to become a CH, would

have the greatest number of nodes as followers while minimizing the amount of

overlap with existing clusters. The algorithm achieves a packing, efficiency close

to hexagonal packing, but is quasi-local because chain effect is not prevented. It

also has significant message overhead compared to other clustering protocols.

Wu and Dai [18] proposed a simple cluster formation in a dense network. First,

the neighborhood detection is done using Hello messages with shorter transmission

ranges than the normal one. The regular clustering algorithm is used to find CHs.

However, CHs are directly connected using the normal transmission range. There

are two versions of this approach. In the first version, the range of the Hello message

is 1
3r
, where r is the normal range. In this way, all CHs within three hops are con-

nected, and CHs are globally connected. In the second version, the range of Hello

message is 1
4r
. During the transmission using the normal range r, 3

4r
is used to connect

all CHs within three hops and 1
4r
is used to cover the member in the cluster with a

radius of 1
4r
.

In the protocol by Kuhn, Moscibroda, and Wattenhoffer [19], sensors may wake

up asynchronously at any time and do not have collision detection capabilities. They

only know the limit on the total number of sensors, and have no knowledge of pos-

sible neighbors. The algorithm computes asymptotically optimal clustering. The

main idea is that nodes, after some initial waiting, compete to become dominators

350 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

by exponentially increasing their sending probability on one channel. Two other

channels are then used to guarantee that the number of further dominators emerging

in the neighborhood of an already existing dominator remains small. The algorithm

can be simulated to work by using only one channel.

11.2.3 Backbone Construction by Nominating and Grid Partitioning

This section will describe two very simple schemes for backbone construction. In

ref. [20], the authors propose a simple method for determining the dominant set

(not necessarily connected). Each node nominates the neighbor with the largest id

among its neighbors to be in the dominant set (assuming that each node has a

unique identifier). This can produce the O(n) approximation ratio in the worst

case, but works well in the average case. An example of bad performance is a

linear chain of nodes with increasing identifiers. Each node needs one message to

learn the identifiers of neighbors, and possibly the second message to nominate a

neighbor into the dominant set. Connecting the dominant nodes is, unfortunately,

a nontrivial problem (e.g., the protocol in ref. [16] could be used for it).

Xu, Heidemann, and Estrin [21] discuss the following backbone construction

scheme called GAF. The given two-dimensional space is partitioned into a set of

squares (called cells), such that any node within a square can directly communicate

with any node in an adjacent square. Therefore, one representative node from each

cell is sufficient for a connected backbone. Each node transmits its id (which may

depend on its remaining energy) plus its coordinates (this requires one message

per node). In each cell, the node with maximal id is selected for the backbone.

The selected nodes in ref. [21] make a dominant set, but its average size (which

depends on the selected size of the square) may be higher than for other methods

considered here. Further, the dominant-set concept needs some parameters, such

as the size and position of squares, which have to be propagated in the network.

The method is simple, has no chain effect, and has a constant approximation

ratio. When crossing a boundary, nodes need to retransmit their information to main-

tain the dominant set. When crossing the second boundary in a larger movement, this

is not sufficient, as the moving node has no information about nodes in the new cell.

This can be resolved by triggering a round of Hello messages in that cell. The most

significant problem is that, for any ratio of transmission radius and grid size, the

dominant set obtained may disconnect the graph [17]. Although the network topo-

logy is connected, Basagni, Carosi, and Petrioli [17] observed that, for instance,

on a network with 50 nodes, GAF [21] get disconnected �40% of simulation

time for any grid size that produces a meaningful backbone size. An example illus-

trating that the partition may occur even for range transmission radii with respect to

grid size is given in Figure 11.2.

11.2.4 MPR-Based Backbone

Several broadcasting schemes are based on the concept of multipoint relays (MPR)

of a node S, defined as a minimal-size subset of neighbors of a given node S that will

11.2 BACKBONE CONSTRUCTION 351

“cover” all 2-hop neighbors of S. A node is called covered if it can receive (directly

or via retransmissions by relay nodes of S) messages originating at S. Relay points of

S are one-hop neighbors of S that cover all 2-hop neighbors of S. The goal is to mini-

mize the number of relay points of S. The computation of an MPR set with minimal

size is an NP-complete problem. A heuristic algorithm, called a greedy set cover

algorithm, is proposed in ref. [22]. This algorithm repeats selecting node B, which

maximizes the number of neighbor nodes that are not yet covered.

Adjih, Jacquet, and Viennot [23] proposed to combine MPR and dominant-set

approaches. Each node computes its set to be forwarded to its neighbors and

transmits it to its neighbors. It then determines whether it belongs to the “MPR-

dominating set” if it either has the smallest id in its neighborhood, or the node is

a forwarding (relay) neighbor of the neighbor with the smallest id. Wu [24] observed

that a node with a smaller id than all its neighbors, but without two unconnected

neighbors, can be eliminated. The construction of an MPR-based backbone requires

2-hop neighbor knowledge, plus a message containing the list of relay nodes of each

node. This can be treated overall as CDS construction requiring three rounds of

messages, plus another round if the CDS decisions are to be communicated to

neighbors.

11.2.5 Wu’s Backbone

In a series of articles (the first one being ref. [25]), Wu et al. described, a lightweight

backbone construction scheme. We will use a modified definition from refs. [14] and

the [26] of basic concept [25], because of its reduced message overhead. A node is

an intermediate node if it has two unconnected neighbors [25]. In the example in

Figure 11.1, nodes C and K are the only nodes that are not intermediate. A node

A is covered by a neighboring node B if each neighbor of A is also a neighbor

of B, and key(A) , key(B). Assuming that the keys in Figure 11.1 are ordered

Transmission radius

Figure 11.2 Leaders in a grid partitioning may be disconnected.

352 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

alphabetically, node H is covered by node I, G is covered by L, while A and B are

covered by E. Nodes not covered by any neighbor are intergateway nodes. A

node A is covered by two connected neighboring nodes B and C if each neighbor

of A is also a neighbor of either B or C (or both), key(A) , key(B), and key(A) ,
key(C). An intermediate node not covered by any neighbor becomes an intergate-

way node. An intergateway node not covered by any pair of connected neighboring

nodes becomes a gateway node.

Dai and Wu [27] introduced a generalized dominant set, where coverage can be

provided by an arbitrary number of connected one-hop neighbors (instead of 1 or 2

as in the original definitions). The definition was modified in ref. [11] to the follow-

ing form to avoid similar message exchanges between neighbors. Node A is covered

by its one-hop neighbors B, C, D, . . . if the neighbors B, C, D, . . . are connected, any
neighbor of A is a neighbor of at least one of nodes B, C, D, . . . , and key(A) , min

(key(B), key(C), key(D), . . .). It is then further computationally simplified by Carle

and Symplot-Ryl [28], as follows. First, each node checks if it is an intermediate

node. Then each intermediate node A constructs a subgraph G of its neighbors

with higher key values. If G is empty or disconnected, then A is in the dominating

set. If G is connected, but there exists a neighbor of A that is not a neighbor of any

node from G, then A is in the dominant set. Otherwise A is covered and is not in the

dominant set. Dijkstra’s shortest-path scheme can be used to test the connectivity.

This procedure is generalized since it allows coverage by any number of neighbors.

It is computationally even less expensive than the two-nodes coverage case.

The CDS concept [25,27] is illustrated in Figure 11.1, where the keys are

assumed to be ordered by their numerical id values: “1” , “2” , � � � , “16.”

Nodes 6, 15, 16, 17, 14, and 8 do not have two unconnected neighbors that are

not in CDS (they are not intermediate). Node 2 is dominated by three connected

neighbors (nodes 3, 4, 12), since they have higher key values, and the remaining

neighbors 6 and 16 are “covered” by 3 and 12, respectively. Node 7 is covered by

four connected neighbors with higher keys 9, 13, 10, and 11 (the remaining neighbor

17 is covered by 11). Node 5 is covered by its neighbor 9, since other neighbors

(1 and 8) are neighbors of 9, and “5” , “9.” Node 1 remains in CDS because neigh-

bors with higher keys (4, 14, 5, 9, 13) are disconnected.

Wu’s concepts require either one-hop knowledge of neighbors with their pos-

ition, or 2-hop neighbor topology information. This can be obtained after one or

two Hello messages from each node. Experimental data from several sources

(e.g., ref. [12]) confirm that Wu’s concepts provide small-size CDS on average. It

was proved in ref. [27] that the generalized CDS concept has a constant approxi-

mation ratio on average, and very low probability of having an infinitely large

approximation ratio. An example of a “bad” approximation ratio is the case of a

linear chain of nodes with increasing keys, where almost all nodes are selected

into the CDS.

Each node makes decisions about CDS membership (in Wu’s concept) without

communications between nodes beyond the message exchanges that nodes use to

discover each other and establish neighborhood information. If knowledge of neigh-

bors that are in the CDS is needed, then one message from these nodes suffices.

11.2 BACKBONE CONSTRUCTION 353

In that case, such a message can be used to further reduce the size of the backbone.

As soon as one node decides to be in the CDS, it sends a packet informing neighbors

about the decision. Neighbors (which did not yet decide their membership) will then

consider such decided CDS neighbors as having higher key values, which may help

them in withdrawal from the CDS decision [28].

11.2.6 Enhanced Dominating Sets

The number of nodes in a CDS following Wu’s concepts can be reduced by applying

some enhanced concepts [29,30]. The first observation [29] is that if 2-hop topo-

logical knowledge is already required, it can be used to eliminate a few more

nodes from the CDS. Consider the example in Figure 11.1. Node D is in the CDS

although it is actually covered by nodes E, I, and L. The later three nodes all have

higher key values, and are connected. Node L, however, is not a one-hop neighbor

of D. This does not prevent node D from verifying whether any of its neighbors are

neighbors of L, or whether E, I, and L are connected, since L appears in the list of

neighbors sent to D by its one-hop neighbors; therefore, such a conclusion can be

made. The new definition therefore can be given as follows [29]. Node A is covered

by its 2-hop neighbors B, C, D, . . . if the neighbors B, C, D, . . . are connected

(according to information available to A), any neighbor of A and A itself is the neigh-

bor of at least one of nodes B, C, D, . . . and key(A) , min (key(B), key(C),

key(D), . . .). Note that A is not aware of possible links between its two 2-hop neigh-

bors, and therefore may declare the set disconnected although in reality it may be

connected. Note that Rule k in ref. [27] is general, allowing coverage by a set of

one-hop and 2-hop “marked” neighbors that are “glued” together by other

“marked” nodes (“marked” nodes are those that consider themselves to be in the

dominant set), which can be at an arbitrary hop distance. However, in algorithm 2

from ref. [27], implementing Rule k, nodes send their dominating status only to

their one-hop neighbors; therefore, the information about the dominating status of

2-hop neighbors and beyond is not made available for use in making a decision.

While implementation [27] is based on sending messages from each node (inform-

ing about withdrawal from the dominant set), the algorithm set forth in ref. [28] does

not use any message between nodes after gaining 2-hop topological knowledge.

Further, the observation described in ref. [29] is based on coverage by nodes that

may or may not be in the dominant set, while the definition given in ref. [27]

refers to only coverage by nodes that are in the dominant set.

The second observation [29] is that key values often present obstacles to selecting

proper nodes in the CDS. A definition that will allow key reversal may be beneficial.

Suppose that, in Figure 11.1 node G was actually renamed nodeM for a reason (e.g.,

high energy value). Then node M ¼ G will be in the CDS, because of the highest-

key value. But this does not eliminate any other node from the CDS; therefore, its

inclusion is superfluous. How then can the key ofM ¼ G be reversed? All the neigh-

bors of M ¼ G are neighbors of L, and L has a neighbor that is not a neighbor of

M ¼ G. This is sufficient for node M ¼ G to realize that L will not declare it as a

covering node, and therefore can safely withdraw from CDS. This concept can be

354 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

formalized as follows. Node u is covered by node v if and only if one of the follow-

ing two conditions is satisfied:

(1) N(u) , N(v), where N(u) is a proper subset of N(v), that is N(v) = N(u) is

part of this condition), and

(2) N(u) ¼ N(v) and key(u) , key(v).

Note that the preceding extended rule cannot be used jointly with other rules, such

as Wu and Li’s Rule 2 [25]. The generalization to coverage by several nodes and

the corresponding algorithms for backbone construction are presented in ref. [29].

The two enhancements described can be combined into a single one, by allowing

the node to be covered by either of the two ways [28].

11.2.7 Activity Scheduling in Ad Hoc Networks

In an ad hoc network that is not a sensor network, area coverage may not be required.

In such a case, activity scheduling (deciding which nodes should be active, and

which should go to sleep mode, so that the ad hoc network life is prolonged) can

be performed by applying the connected-neighbor dominant set concept. Nodes in

the connected-neighbor dominant set are active, while the rest of the nodes can be

put to sleep. However, in order to increase network lifetime, such decisions need

to be periodically reevaluated, as nodes that are saving energy need to contribute

at a later time. Each node in an asynchronous ad hoc network may wake up at its

predetermined time and evaluate whether it needs to be active based on a message

exchange with currently active neighbors. In the case of synchronous nodes, such

decisions are made in rounds. All nodes wake up at the same time, exchange

Hello messages, and then decide which of them will create a backbone. Any

described backbone decision process can be applied. If Wu’s concept is applied, a

suitably selected key value, which depends on the remaining node energy, is

selected and used. The other important parameter for making decisions is the

average number of neighbors (average degree) of each node. The choice of such a

best metric for prolonged network life was investigated in ref. [31].

11.3 BROADCASTING IN SENSOR NETWORKS

11.3.1 Taxonomy

In addition to the taxonomy discussed for the backbone construction, the broadcast-

ing protocols can be further classified. The next division is whether or not they are

reliable. Reliability is the ability of a broadcast protocol to reach all the nodes in the

network, assuming that the medium-access control (MAC) layer is ideal (every

message sent by a node reaches all its neighbors), location update protocol provides

accurate desired information to all nodes about their neighborhood, and the network

is connected. The blind-flooding protocol, where each node receiving the packet for

the first time will retransmit it, is a reliable protocol at the network layer. However,

11.3 BROADCASTING IN SENSOR NETWORKS 355

as observed in seminal work [32], due to excessive retransmissions for dense

networks, collisions and contentions actually can make it very unreliable at the

MAC layer, plus there exists a large amount of redundancy. The probabilistic

(retransmissions with certain fixed probability), counter (retransmitting if the

number of received copies does not exceed a constant), and distance (retransmitting

if the distance to all senders exceeds certain threshold distance) solutions proposed

in ref. [32] are not reliable at the network layer, and also have inferior rebroadcast

savings (percentage of nodes that do not retransmit the packet) to the backbone-

based reliable solutions reviewed here. Note that the MAC layer cannot be reliable

(at least those currently considered for adoption in sensor networks), due to the

hidden-terminal problem (a node simultaneously receiving messages from two

other nodes that are not aware of each other’s transmission) and the probabilistic

nature of the protocols used.

The final classification of broadcasting schemes is determined according to the

packet content during the broadcasting process. The broadcast message sent by

the source, or retransmitted, might contain a broadcast message only. In addition,

it may contain a variety of information needed for proper functioning of the broad-

cast protocol, such as its own id, its position, one bit about its backbone status, a list

of one-hop neighbors, degree (number of its neighbors), or list of forwarding neigh-

bors, informing them whether or not to retransmit the message.

11.3.2 Backbone and Neighbor Elimination–Based Broadcasting

In ref. [14], the following framework and general algorithm were established for

reliable broadcasting. The algorithm is based on two concepts: CDS as the particular

type of backbone that provides reliability, and neighbor-elimination scheme. Back-

bone formation was already discussed in Section 11.2. Connectivity provides propa-

gation through thewhole network,while domination assures reachability by all nodes.

Excessmessages in any protocol affect node power and the bandwidth available; thus,

the main goal is to describe a reliable broadcast protocol with a minimal number

of retransmissions, that is, to construct a connected dominating set of minimal size.

The neighbor-elimination scheme was independently proposed in three papers in

August 2000 [33–35]. In this scheme, a node does not need to rebroadcast a message

if all its neighbors have been covered by previous transmissions. After each copy of

the same message is received, a node eliminates, from its rebroadcast list, neighbors

that are assumed to have correctly received the same message (based on one-hop

positional or 2-hop topological knowledge that the node has about its neighbors).

If the list becomes empty before the node decides to rebroadcast, the rebroadcasting

is canceled.

The general algorithm [14] for intelligent flooding is then the following one. The

source node transmits the packet. Upon receiving the first copy of the transmitted

packet intended for broadcasting, the node will not retransmit it if it is not in the

CDS. If it is in the CDS, it will select a time-out based on some criteria and some

random number. It will also eliminate all neighbors that received the same copy

of the message from its forwarding list (originally containing all one-hop neighbors).

356 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

While waiting, more copies of the packet could be received. For each of them, all

neighbors receiving it are eliminated from the forwarding list. When timeout

expires, the node will retransmit if its forwarding list is non-empty, otherwise it

will cancel retransmission. This framework was applied in ref. [14] using clustering

based andWu’s concept based backbones. Wu and Dai [36] propose a general algor-

ithm that unifies many neighbor elimination schemes.

Figure 11.3 illustrates the broadcasting algorithm [14], with C being the source

node, and nodes F, A, G, and H being in the connected dominating set following

definition [25,27], with key ¼ (degree, id). Node E is covered by node G, while

node L is covered by connected neighbors with higher keys G and H. Similarly,

node I is covered by A and H. Other nodes are not intermediate (do not have two

unconnected neighbors). Covering relations are drawn in the dashed bolder edges.

Let the time-out be defined as time-out ¼ (1/(number of uncovered neighbors),

id). Note that id is added to decide which node retransmits first in case of ties.

Node F then sets the time-out to 1
3
(three uncovered neighbors by source transmission

are A, G, E) and retransmits at the time-out expiration. Neighbors from CDS are A

and G, and they set time-outs to 1
3
and 1

2
, respectively, based on the number of neigh-

bors not receiving that transmission (based on their knowledge; it is possible that

some neighbors treated as uncovered actually already received the message from

nonneighbors in the process). Node A then retransmits because of shorter timeout.

After this retransmission, G changes the original time-out to 1
1
(only neighbor L

remains uncovered), and the remaining time-out is 1
1
– 1

3
, since 1

3
of the time already

lapsed. The time-out at H is 1
3
and is shorter, so it retransmits first. Node G then can-

cels retransmission.

To increase reliability at the MAC layer, Stojmenovic et al. [14] proposed the

retransmissions after negative acknowledgments (RANA) protocol. Collision

J

C

D

G

H

I

K

L

B

F

A

E

M

1
3

1
2

Figure 11.3 F, A, and H retransmit in the neighbor elimination and dominating set–based

broadcasting [14].

11.3 BROADCASTING IN SENSOR NETWORKS 357

between two packets normally occurs after the initial portion of the first packet,

containing the sender’s information has already been received. The receiver node

can then send a negative acknowledgment back to the sender node, asking it to

retransmit again.

11.3.3 MPR

Several authors [33,37–39] independently proposed reliable broadcasting schemes

in which the sending node selects adjacent nodes that should relay the packet to

complete the broadcast. The ids of the selected adjacent nodes are recorded in the

packet as a forward list. An adjacent node that is requested to relay the packet

again determines the forward list. This process is iterated until the broadcast is

completed. The methods differ in the details on how a node determines its forward

list. The general principle was already outlined in the section on MPR-based

backbone.

The adaptation of multihop relaying presented in ref. [40] improves its perfor-

mance by the following observations: the broadcasting node transmits a list of its

neighbors at the time of broadcast packet transmission, not as part of any Hello

message. Knowledge of the 2-hop neighbors is used to determine which neighbors

also received the broadcast packet in the same transmission, and these nodes are

already covered and are removed from the neighbor graph used to choose the

next hop relaying nodes. Finally, if a broadcast message is received from a node

that is not listed as a neighbor, the message is retransmitted to deal with high mobi-

lity issues. In connected dominant set–based broadcast algorithm [41], the sender

node establishes priorities between the forwarding nodes and each forwarding

node should eliminate from consideration not only neighbors of the sender node,

but also neighbors of each relaying node with higher priority. Wu and Lou [43]

proved several extensions of MPR to generate a smaller CDS using 2-hop neighbor-

hood topology information to cover each node’s 2-hop neighbor set. Note that 2-hop

neighborhood topology includes all nodes within two hops and their connections. In

addition, they extended the notion of coverage in the original MPR and showed that

the extended MPR has a constant local approximation ratio compared with a logar-

ithmic local ratio in the original MPR.

Compared to backbone-based broadcasting, MPR broadcasting has a similar or

somewhat better performance in terms of rebroadcast savings, but has message

overhead due to the inclusion of the forwarding list in the packet, which may be

significant for energy-limited tiny sensors.

11.3.4 Broadcasting and Dominating Sets with Realistic
Physical Layers

We now describe the corresponding coverage, backbone notions, and broadcasting

process when the impact of the physical layer is considered. Let A1, . . . , Ak be active

neighbors of given node B, and let x1, . . . , xk be their respective distances to B. Then
p(x1), . . . , p(xk) are their packet reception probability rates for packets sent by B.

358 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

The probability q(x) that at least one of the packets from the active nodes is received

by B is then q ¼ 1� (1� p(x1))(1� p(x2)) � � � (1� p(xk)). Node B is m-covered by

active nodes A1 , . . . , Ak if q � m [3]. A set of nodes is the m-dominating set if each

node is either in the set or is m-covered by nodes from the set [3]. Note that, for

m ¼ 1, and the unit-disk graph model, the well-known definition of dominant sets

follows.

These definitions can be used as a basis to generalize some well-known types of

dominating sets for the unit-disk graph to be applied under a realistic physical layer.

For example, the following definition is proposed in ref. [3] as a generalization of the

concept proposed by ref. [27]. Let A1, . . . ,Ak be the set of higher id neighbors of B.

If the set is empty or disconnected, then B is in the dominating set. If the set is con-

nected and each neighbor of B is m-covered by them, then B is not in the dominating

set. Finally, if any neighbor of B is not m-covered by the set, then B is in the

dominating set.

The broadcasting process with any notion of dominating sets and neighbor

elimination [14] can proceed as follows [3]. After receiving a broadcast message,

node A will set a time-out short if it is in the dominant set, and long if not. It calcu-

lates the probabilities of each neighbor for receiving the same message, and elimin-

ates m-covered neighbors from the list. This lists is updated for any further copy of

the received message. The update includes the time-out that can be extended with

more received messages. At the end of time-out, if all neighbors are m-covered,

retransmission is canceled. Otherwise, the node retransmits the packet.

Since the reception of any message is a probabilistic event, one retransmission by

any particular node may not suffice. To learn about the existence of neighbors, each

node may need to send several packets. The number of retransmissions needed for

learning about the satisfactory number of neighbors depends on density. In ref. [3],

it was proposed that each node retransmit Hello messages until a certain fixed

number of such packets or responses is received from neighbors, as an indirect measure

of density. A similar protocol also can be applied for the broadcasting task, modifying

any existing protocol originally designed for the unit graph as follows. Instead of

retransmitting only once, a given node can keep retransmitting until a certain fixed

number of packets (carrying the same packet) has been heard from neighbors, before

or after the first retransmission, or until a certain time-out expires (to handle the case of

low-degree nodes). If density is known, then a fixed number of retransmissions can be

replaced by a number depending on local density. Nodes that are, by original protocol,

supposed not to retransmit may also contribute by retransmitting the message, but

fewer times than other nodes. Further investigation and simulation is needed to find

a precise description of the winning protocols, following this general design principle.

11.3.5 Minimum Energy Broadcasting

Suppose that nodes in an ad hoc network can adjust their transmission radii, and that

they are aware of their own and the geographic position of their neighbors. The pro-

blem is to broadcast a packet to all the nodes in the network so that the sum of all

transmission power used is minimized. The power consumption for two nodes at

11.3 BROADCASTING IN SENSOR NETWORKS 359

distance r is r aþ c, where a � 2 and c is a constant that includes signal processing

and minimal reception power. It is shown in ref. [43] that, for c . 0 (which is a rea-

listic assumption), it is not optimal to minimize transmission range. Furthermore, it

was demonstrated that there exists an optimal radius, computed with a hexagonal

tiling of the network area, that minimizes the power consumption. For a . 2 and

c . 0, the optimal radius is r ¼ (2c=(a� 2))1=a, which is derived theoretically

and confirmed experimentally.

A localized broadcast algorithm, called TR-LBOP is proposed [43], which takes

this optimal radius into account. This protocol is experimentally shown to be have lim-

ited energy overhead with respect to globalized algorithms for all network densities.

11.4 SENSOR AREA COVERAGE

In area-coverage problems, a set of sensors is given and distributed over a given

area. Each sensor is able to cover a circle with radius centered at it. The problem

is to determine a small number of sensors that still cover the same area and are con-

nected, so that the sensor can report the detected information to a monitoring center.

The maximum network lifetime is certainly a related goal. Full coverage, energy

efficiency, and connectivity are critical requirements of any area-coverage protocol.

The objective of any area-coverage protocol is to achieve full area coverage, and

protocols can be classified into those that guarantee full area coverage (provided

such coverage exists) and those that do not guarantee it. A set of sensor nodes

that together fully cover a given area is called area-dominating set. Protocols can

also be divided into those that guarantee connectivity of selected active sensors

and those that do not.

There is a variety of problem statements, assumptions, and solution approaches

for the sensor area coverage. We will review them before presenting some solutions.

The problem is centered on a fundamental question: How well do the sensors

observe the physical space? This chapter discusses only the area-coverage problem,

meaning that each point in a given geographic area needs to be covered by at least

one sensor. Alternative formulations include covering certain points instead of area

(point coverage) and barrier coverage. Examples of barrier-coverage problems are,

minimizing the probability of undetected penetration through the sensor barrier and

minimal exposure path, measured as sensing time, with sensing ability diminishing

with distance. A survey of point- and barrier-coverage solutions is given in ref. [44].

The area-coverage problem can be further divided into single and multiple area

coverage. In single area coverage, each point in the area is required to be covered

at least by one sensor. In multiple area coverage, each point needs to be covered

multiple times, which could be a fixed k times coverage at a given time, or division

of sensors into maximum number of layers of area coverage. These layers can then

either alternate in time for coverage, or several layers can be used to cover an area

simultaneously for increased reliability.

The sensor deployment mechanism can be random or deterministic. A determi-

nistic sensor placement (placing sensors at desired locations) may be feasible in

360 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

friendly and accessible environments. Random sensor distribution is generally

considered in remote or inhospitable areas, or when a fast deployment of a large

amount of sensors is desirable. We will consider only random placement in this

chapter. An example of deterministic placement is considered in ref. [45], where

the authors proposed path exposure (the likelihood of detecting a target traversing

the region using a given path) as the measure of goodness of the sensors that are

deployed to perform collaborative target detection. A centralized algorithm for pla-

cing sensors at selected locations to minimize path exposure is described in ref. [45].

In most articles in the literature, all sensing radii are equal, while a few articles

consider coverage with different sensing radii. We will consider only the case of

equal sensing radii at each node, since there is limited research done for the case

of adjustable ranges [46,47]. Wu and Yang [47] considered the cases where each

sensor is able to select one of two or three adjustable ranges, with the goal of mini-

mizing the overlapped sensing area, extending results from ref. [48].

There are also several variants regarding the relation between sensing and trans-

mission ranges. One common assumption is that sensing radius and communication

radius are equal [28]. However, some physical measurements indicate that the com-

munication range is normally larger than the reliable sensing range. This has impli-

cations on the selection of sensors for coverage, and also on the performance of other

relevant protocols. For example, Xing, Lu, Pless, and Huang [49] show that greedy

routing always works when the communication range is twice or more the sensing

range, and the area is covered and convex. They also consider restricting greedy

routing to nodes whose Voronoi regions intersect the source–destination line.

Most literature uses the unit-disk graphmodel for sensing, which is similar to the

unit-disk graph model used for communication. In this model, the sensor is able to

monitor an event if and only if the distance from the sensor to the event is at most S,

where S is its sensing radius. However, a closer look at the physical layer reveals that

sensing ability decreases with distance. Instead of the unit-disk graph model, it is

more realistic to use a model where the probability of sensing an event depends

on the distance from the sensor to that event. Liu and Towsley [50] approached

the coverage problem from a theoretical perspective and explored the fundamental

limits of the coverage of a large-scale sensor network.

Zhang and Hou [51] studied the fundamental limits of sensor network lifetime

that all algorithms can possibly achieve. If the lifetime of a sensor is T, they derived

analytically and by simulation the minimum sensor density needed to achieve net-

work lifetime kT. They observed that the increase in lifetime per unit of nodal den-

sity becomes marginal when the density exceeds a certain threshold.

11.4.1 Threshold-Based Protocols

Ye et al. [52] proposed a simple localized protocol (called PEAS) for dynamically

selecting an area-dominating set in asynchronous sensor networks. Each sensor has

the same probing radius P and the same maximum transmission radius R, which is

also the monitoring radius. Any two active sensors must be at a distance of at least P,

which is enforced by the scheme. Initially all sensors are in sleeping mode, with an

11.4 SENSOR AREA COVERAGE 361

exponentially distributed sleep-duration function. When sleeping time expires, the

sensor sends a probing message using transmission radius P. Each active sensor

that overhears this probing message should estimate whether or not its distance to

the probing sensor is below P. Since they are able to detect signals from a greater

distance, up to R, they should apply signal strength (which is considered an unreli-

able measurement due to fading effect) or time-delay measurements to make the

judgment. If the distance is below P, then it sends (a/the) message to the probing

sensor informing it about its activity. Upon receiving such a response, the probing

sensor again selects a new sleeping duration and continues to sleep, waking up at

a later predetermined time to reevaluate the decision. If the distance is above P,

then no response is generated. If the sensor does not receive any response to its prob-

ing signal, it decides to wake up and monitor the area, up to radius R. Once a sensor

wakes up, it continues to work until it dies. For this protocol, the probability of

having full coverage of a monitored area is close to 1 if the threshold P is less

than 1=(1þ ffiffiffi
5

p
) � 0:3 of the sensing area’s radius S, that is, P , 0:3S. The ration-

ale is that otherwise activating the sensor has an insufficient contribution toward

covering some new area, due to it being too close to an already active sensor. The

method presented has a high degree of fault tolerance. However, this protocol is

probabilistic and does not ensure full area coverage. Figure 11.4 illustrates this pro-

tocol, with the black nodes being active and the white nodes being in sleep mode,

because each of them is contained within the threshold distance (smaller circles)

to one of the active nodes. The larger circles indicate the communication radius

for active nodes.

In ref. [53], three sensor-area covering schemes are proposed. In the probabilistic-

based scheme, each node decides whether or not to remain active with a fixed

probability, whose optimal value is derived based on the expected percentage of

the sensing area coverage, which in turn depends on the number of neighbors

Figure 11.4 Threshold-based area coverage.

362 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

within transmission radius that announced active status and expected distance to

them. In the nearest neighbor–based scheme, the decision is based on the expected

distance (whose value is derived as a function of the ratio of the transmitting and

sensing radii and the number of active neighbors) to the nearest of the active neigh-

bors (this is similar to the PEAS scheme [52]). In the neighbor number–based

scheme, the decision is based on a counterthreshold compared to the number of

active nodes. All mentioned threshold values are determined numerically and exper-

imentally, for use in the schemes, and do not guarantee area coverage.

11.4.2 Some Covering and Connectivity Properties

In refs. [48] and [54], it is proved that if the transmission range is at least twice the

sensing range, and the area to be covered is convex, then the area coverage also

implies connectivity among the covering sensors. This follows from observing that

the distance between the centers of two intersecting circles of the same radius

cannot exceed twice the radius, therefore two sensors whose sensing radii intersect

are also communication neighbors. The distance between two nodes whose sensing

ranges S intersect is ,2S, which is within the transmission range R for R . 2S. Di

Tian [55] generalized this proof by eliminating the need for the convexity condition.

When the sensing and transmission radii are equal, the coverage property can be

tested by verifying whether or not the perimeter of the sensing circle is covered by

other circles. This is illustrated in Figure 11.5. The number of uncovered arcs of a

circle can be at most two.

When the communication range exceeds the sensing range, this simple test

cannot be used. Finding the exact regions of intersection, or their size, is computa-

tionally sophisticated and time-consuming. However, one can apply the following

well-known geometric theorem [48,54] to efficiently confirm that a sensing circle

is fully covered by other sensing circles: It is shown that if there are at least two

covering circles and any intersection point of two covering circles inside the sensing

area is covered by a third covering circle, then the sensing area is fully covered.

Figure 11.5 Testing the coverage property when sensing and communication radii are equal.

11.4 SENSOR AREA COVERAGE 363

This preceding result is illustrated in Figure 11.6. Sensors within a communi-

cation edge of each other are joined by an edge. The central darker sensing circle

is covered by other circles, and all the intersection points of other circles, which

are inside it, are covered by a third circle.

This result provides an efficient method for testing the full-coverage criterion.

However, it does not provide direct information about the possible size of the uncov-

ered region. One possible estimate is to generate a certain number of points at

random, test each for coverage with existing circles, and take the percentage of

covered points as the estimate (this method can be computationally expensive if

satisfactory precision is required). Another alternative is to make an estimate

based on the distances and positions of the active sensors. There exists a need for

designing more accurate and fast-coverage size-estimation protocols, including an

efficient test for confirming full coverage.

11.4.3 Hexagonal Area Coverage

Zhang and Hou [47] described an efficient algorithm for selecting covering sensors.

Sensors are assumed to be time synchronized, and they periodically make new

decisions about sensors that remain active to cover the area. In each round, a

single sensor starts the decision process, which then propagates to the whole

network. New sensors are selected so that the priority is given to sensors located

near optimal hexagonal area coverage, obtained when the area is ideally divided

into equal regular hexagons. The coverage is indeed very optimal, given the distri-

buted nature of the decisions. However, the need for a single sensor to start the

process may cause problems in applying it. Since time is synchronized, and

rounds are well defined, perhaps it is better to allow all sensors to make localized

decisions without waiting for any specific sensor to start the process (especially if

Figure 11.6 A circle is covered when all intersection points are covered.

364 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

the sensor somehow decided to start the process and failed to do so because of

malfunctioning). The original sensing coverage may not be preserved (as shown

by experimental results).

11.4.4 Area Coverage Based on Neighbor Cooperation

The algorithm presented in ref. [56] divides the area into small grids, and then covers

each grid with a sensor. Each sensor that can cover a grid maintains a list of other

sensors that can also cover it, in a priority order. All sensors covering the same

grid can communicate with each other, since the communication range is at least

twice the sensing range. When sensor density is significant, sensors need a lot of

memory and processing time to maintain priority lists, plus the communication over-

head for making covering decisions in cooperative manner is nontrivial.

Hsin and Liu [57] investigated random and coordinated area-coverage algo-

rithms. Each sensor covers a circle of radius R. In their coordinated-coverage

scheme, a sensor may decide to sleep after receiving “permission” from sponsoring

neighbors, for the time such permission is given. A node that sponsors any other

node must be active. The decisions are not synchronized, since each sensor can

“negotiate” with its sponsors independently, and the scheme allows for several var-

iants with (sophisticated) protocol details. The authors suggest that nodes collect

information about residual energy from neighboring sensors. Sensors with high

residual energy are more likely to enter the sleep state than sensors with low residual

energy. Each sensor maintains its own delay counter, which is used for role altera-

tion. Coordinated schemes performed better in their experiments. Although the Hsin

and Liu’s [57] coordinated scheme has some desirable properties, such as localized

behavior, it may select too many sponsor nodes to be active, since there is no

coordination between nodes for the selection of as many as possible common

sponsor nodes.

11.4.5 Centralized Area-Coverage Protocols

Centralized (and distributed) schemes may be treated as localized schemes with

extended communication range, where any node can reach any other node. In this

scenario, obviously one node can make all sensing decisions for other nodes and

communicate them.

In ref. [58], a centralized algorithm is given for finding a small-size connected

sensor cover. A straightforward distributed version of the same algorithm is also

given. The sensing circles are not necessarily of the same size. In their greedy algor-

ithm, candidate sensors for inclusion are those sensors that partially (not fully) inter-

sect with sensors previously included in the area coverage. For each such sensor, a

shortest path from it to one of the sensors already selected is considered. Note that, if

coverage circles were the same, the considered path consists of one hop only, since

any two sensors whose coverage circles intersect must be neighbors. Circles of can-

didate sensors divide the area into subelements (each subelement is a small region

belonging entirely to some circles and entirely outside the remaining circles). The

11.4 SENSOR AREA COVERAGE 365

length of each path is divided by the number of subelements. All sensors on the path

with the maxim of such a ratio are added to the covering set (the sensor that starts the

selected path is called “leader” here). In the distributed implementation, the sensor

that was last added (the leader) initiates the search for a new sensor/path to add. It

broadcasts the search message up to 2R hops, where R is the maximal hop distance

between any two sensors whose circles intersect (R ¼ 1, if all circles are equal).

Sensors that receive such a message and have partial coverage perform the described

iteration, to select a new path and a new sensor “leader.” This process repeats until

the entire query region is covered.

We observe that the algorithm presented in ref. [58] may not converge with full

coverage of the region. For example, the corner of a region may just be fully covered

by the last leader, and all sensors within distance 2R may be fully covered as well.

On the other hand, uncovered regions may exist in other corners of the region. This

problem, however, can be resolved by some additional protocols, such as time-out at

sensors that activate if the region is partially covered, but no news is received within

the given time-out. More detail regarding parallel actions by several such sensors

needs to be added, and the quality of the final result may not differ significantly

from the one obtained by centralized implementation.

For simplicity of analysis, consider the case of equal sensing and transmission

radii (R ¼ 1). Candidate search broadcast involves transmission from the leader,

and retransmissions by several of the neighbors to reach all nodes at distance two

(an MPR-like broadcasting method can be used), responses from each candidate

sensor, and another broadcast to communicate the decision. In dense sensor net-

works, many sensors are candidate sensors, thus too much traffic for selecting

each next sensor is easily generated. Let R be the transmission radius. Initially, all

sensors at the distance in the interval (0,2R) from the first leader are candidate sen-

sors for the next leader. There is, unfortunately, no limit on their number inside this

circle. It is also difficult to schedule so many transmissions at the MAC layer.

11.4.6 Localized Sensor Area Coverage

Tian and Georganas [46] proposed a solution for sensor area coverage in synchro-

nous networks where sensing range is equal to the transmission range. It requires

that every node know all its neighbors’ positions before making its monitoring

decision. At the beginning of each round, each node selects a time-out interval.

At the end of the interval, if a node sees that neighbors that have not yet sent any

messages together cover its monitoring area, the node transmits a “withdrawal”

message to all its neighbors and goes into the sleep mode. Otherwise, the node

remains active, but does not transmit any message. The process repeats periodically

to allow for changes in monitoring status. There are several problems in this proto-

col. Neighboring active sensors may fail without notice, and neighboring sensors

may not activate, believing that the sensor is “alive” and monitoring. This problem

can be resolved if neighboring information is exchanged at the beginning of each

round. However, this then involves significant communication overhead once sen-

sors start to die between activity periods. The other problem is that covering sensors

366 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

may not be connected; thus, reporting to a monitoring station may not succeed. The

authors also discuss the case of different sensing radii at each sensor.

Jiang and Dou [59] describe several improvements to the algorithm in ref. [46].

They apply the criterion that a circle is covered completely if perimeters of other

circles covering it are fully covered by other covering circles (note that it can be

further simplified, as discussed later, to consider only intersection points). In the

algorithm presented in ref. [59], at the beginning of each round, each node sends

a hello message to inform about its position. The algorithm from ref. [46] is then

applied (which relies on node withdrawals with negative acknowledgments) for

all ratios of sensing and transmission radii, using criteria described here. Experimen-

tal data in ref. [59] show that this algorithm outperforms PEAS [52] with respect to

the number of nodes needed in the coverage, while completely preserving sensing

coverage of the original network.

Carle and Simplot-Ryl [28] described a localized algorithm for area coverage for

the case of equal sensing and transmission radii. This approach has been generalized

by Carle, Gallais, Simplot-Ryl, and Stojmenovic [60] for an arbitrary ratio of sen-

sing and transmission radii. The approach, in addition to being fully localized,

has a very small communication overhead. There are two variants in the approach.

One requires each sensor to send exactly one message, while the other requires that

only nodes that will remain active for covering the area send exactly one message.

The two approaches have a trade-off, since one message sent by each sensor that will

move to a sleep mode is expected to leave less active sensors for the area coverage.

The basic principle of the algorithm presented in ref. [60] is that each node selects

a time-out and listens to messages sent by other nodes before the time-out expires.

The time-out can be selected at random, or may depend on the sensor’s remaining

battery energy. Each received message provides information that a portion of the

sensing range is covered. This information is derived from the position of the trans-

mitting sensor, which is reported in the message. The reduction of the required area

coverage for monitoring implies an extension of time-out. Nodes with smaller uncov-

ered areas should receive a longer time-out, hoping that a message by a node that is

able to cover more area will cover that small portion as well. At the end of time-out,

the node verifies whether or not its sensing area is fully covered. If so, it goes to sleep

mode in the current round. The two variants differ in whether or not the node then

sends the message informing neighbors about the sleep status decision. These

messages are called negative acknowledgments. If such a negative acknowledgment

is sent by a node that will enter a sleep state, it still informs neighbors about a certain

area that has already been covered by sensors that will remain active. The benefits of

the negative acknowledgment message are illustrated in Figure 11.7 (where sensing

and communication radii are equal). Assume that nodes 1–4 announced their active

status. Although node 5 then decides to sleep, its withdrawal message reduces the

area to be covered by node 6 by the shaded area in Figure 11.7 (more precisely,

node 6 may now conclude that its sensing area is fully covered, which enables it

to select sleep mode). That shaded area is covered by active nodes 3 and 4, which

are not communication neighbors of 6. Sensor nodes whose sensing area is not

fully covered (or fully covered but with a disconnected set of active sensors) when

11.4 SENSOR AREA COVERAGE 367

the deadline expires decide to remain active for the considered round, and send a

message to all its neighbors informing them about the decision. Such a message is

called positive acknowledgment [60]. The process repeats in each round in synchro-

nous fashion.

The details of the protocol given in ref. [60] include how the time-out is decided,

and how the area coverage and connectivity tests are performed. First consider the

case of equal sensing and transmission radii. One important property of the protocol

is that no prior knowledge about neighbor existence and location is required. That is,

there is no communication overhead coming from the preprocessing step to collect

neighborhood information. The test for connectivity of covering circles must be

performed whenever 2S . R, where S and R are sensing and transmission radii.

The network can reselect covering nodes periodically to spread the sensing cost

dynamically over all nodes in a fair manner. This method significantly extends

the network’s life. If the density is more than 30 nodes per unit area, the area-

dominating graph is sparse, with nodes having on average three neighbors (this is

valid when sensing and communication ranges are equal). In addition, the distance

between its two neighboring nodes is typically two-thirds of the transmission radius.

Hence, active nodes form a very simple network with a structure similar to regular

hexagonal tiling.

11.4.7 Multiple Sensor Area Coverage

In ref. [53], the problem of covering each point in an area with at least k sensors

(k-coverage) is reduced to the simpler problem of determining the similar coverage

of all the intersection points of the sensing circles. A sensor is ineligible for turning

Figure 11.7 Negative acknowledgment by node 5 reduces the area to be covered by node 6.

368 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

active if all the intersection points inside its sensing circle are at least k-covered. To

find all the intersection points inside its sensing circle, a sensor v needs to consider

all the sensors in its sensing neighbor set, SN(v). Set SN(v) includes all the active

nodes that are within a distance of twice the sensing range to v. The algorithm is

then combined with SPAN activity-scheduling protocol [61], which is an inefficient

version of Wu’s dominating set definitions [25] published long before SPAN

(see ref. [25] for details).

Abrams, Goel, and Plotkin [62] studied the problem of partitioning the sensors

into covers so that the number of covers that include an area, summed over all k

areas, is maximized. Three approximation algorithms, assuming k is fixed, are

described. Randomized algorithm assigns to each sensor one of k covers at

random. In the distributed greedy algorithm, each sensor sets a time-out and listens

to decisions made by neighbors, increasing the counter in the appropriate set for

each message announcing the decision by a neighbor (the communication radius

is assumed to be twice the sensing radius). When time-out expires, each node selects

a set for which the corresponding counter is minimal. The centralized greedy algor-

ithm adds some weight, but otherwise runs a similar procedure. This article [62]

does not discuss what the best value is for k, that is, how many layers of coverage

could be reasonably achieved.

An adaptive localized multiple sensor area-coverage algorithm is proposed in ref.

[63]. The algorithm [63] adjusts k dynamically to reflect the sensor density. Each

sensor node selects a time-out, which depends on the portion of the area not covered

by other sensors, and has some random number or other parameter in the formula to

avoid simultaneous transmissions by neighbors. Suppose that node A received a

message from a neighbor that informed about i, the cover-layer number selected

by that neighbor, and its geographic coordinates. Node A adjusts the uncovered por-

tion of layer i at the node, and extends appropriately its deadline. When the time-out

expires, there are a few options for making a decision (which is then transmitted):

. Assign the layer j, which is a minimal number so that the area in layer j is not

yet fully covered;

. Among layers covered partially by some neighbors, and not yet fully covered,

choose one that maximizes the uncovered area;

. If all layers covered by some neighbors are fully covered, the sensor chooses a

new layer, and informs its neighbors about covering it.

This algorithm can be extended to provide layers for activity scheduling in static

ad hoc and sensor networks. Existing algorithms only select sensors for the next

round, one round at a time. The difference is that the required area coverage is

replaced by neighbor coverage. Each node again sets a time-out. The message

received from a neighbor gives selected layer i covered by that neighbor. Time-

out is extended, and covered neighbors at layer i are updated. At the end of the

time-out, the node may select either minimal j, so that its neighbors are not covered

at layer j, or layer j with a maximal number of uncovered neighbors. If all neighbors

11.4 SENSOR AREA COVERAGE 369

are covered for all known layers, the node announces participating in the next

layer number.

11.4.8 Coverage Using the Physical-Layer Model of Sensing

Xing, Lu, Pless, and O’Sullivan [64] consider a probabilistic model of sensor cover-

age. A point A is covered in a sensor network if the probability at which a target

located at A is detected by active sensors is above threshold b and the system

false-alarm rate is below threshold a. The probability of correct detection by a

sensor depends on the distance of the sensor. The authors describe a centralized

algorithm for deciding which sensors should remain active. Using the active sensors’

locations and local false-alarm rate, the location with minimal detection probability

is found. If that probability is below b, then the closest sensor to the considered

location is selected to become active. The authors also describe a distributed algor-

ithm that divides the network into grids, selects one sensor in each grid to be coor-

dinator, and then each coordinator follows the centralized algorithm to decide which

sensors from its grid need to be active. Neighboring coordinators collaborate to

improve the decisions in border areas.

A localized algorithm along these lines can be described as follows [65]. First, we

need an approximate function for sensing probability with respect to distance. Then

sensors select random time-outs and wait to hear from nearby sensors about their

active status. For each received message, the sensor adjusts (normally prolongs)

its time-out based on the measured coverage in its local area (e.g., the percentage

of its local area having “satisfactory” coverage) and the measured benefit if that

sensor is to become active. At the end of the time-out, if the sensor sees that its

local area already has satisfactory coverage by other active sensors, it decides to

sleep. Otherwise it decides to become active and informs its neighbors about it.

The local area to be considered may be a small circle around the sensor that has

high values for sensing. Some particular sample of points from the area can be

taken to reduce computation time.

11.4.9 Variations of the Sensor Area-Coverage Problem

Gui and Mohapatra [66] observe that it is not necessary to achieve a perfect sensing

coverage of a moving object. They found that the expected length of a straight-line

path and object should move before hitting the boundary of any covered area, for a

random sensor placement in the area, can be approximated by jXj/(4nr), where jXj is
the area of a given field, n is number of sensors, and r is their sensing radius.

Cardei and Du [67] considered the point coverage problem. A certain number of

points needs to be covered by sensors within sensing range of them. Each target

point needs to be monitored by at least one sensor. The authors divide the sensors

into disjoint sets, each covering target points, with sets being activated in turn.

They prove that the problem is NP-complete and propose a centralized solution

based on the heuristics of the disjoint set cover.

370 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

Shakkottai, Srikant, and Shroff [68] showed that the necessary and sufficient

conditions for the random grid network of n nodes, arranged in a grid over a

square region of unit area, to cover the unit square region as well as ensure that

the active nodes that are connected are of the form pr 2 ¼ u(log (n)/n), where r is

the transmission radius of each node, and p is the probability that a node is active.

11.4.10 Mobile Sensors for Improved Area Coverage

Zou and Chakrabarty [69] proposed a virtual force algorithm as a sensor deployment

strategy to enhance the coverage after an initial random placement of sensors. It is

assumed that sensors can move by “virtual force” with the force’s strength deter-

mined by node distance.

Cao, Wang, La Porta, and Zhang [70] considered the problem of moving some

sensors from their initial random placement in order to cover some areas that

were not covered by either the nature of randomness or some other effects such

as wind. It is also assumed that sensors can move after gathering some information

from neighbors. The algorithm proceeds in rounds. In each round, sensors commu-

nicate to local neighbors in order to construct Voronoi diagrams. Each sensor then

subtracts its sensing area from its Voronoi polygon, and moves in the direction of the

largest uncovered piece of area. The process repeats until no further improvement is

possible. The approach appears suitable when robots, equipped with sensors, are

monitoring an area, which can also be monitored by some static sensors. Voronoi

diagram construction, however, may not always be locally constructed, and it

may be better to use localized versions such as the partial Delauny triangulation

[71]. The Gabriel graph can also be used. An alternative approach may be to use

face routing [72] to estimate the size of a hole, find its centroid, estimate the

number of sensors that should move toward the centroid, and provide the best pos-

sible information to sensors for their move.

Wang, Cao, and La Porta [73] propose a proxy-based sensor deployment proto-

col. Instead of moving iteratively, sensors calculate their target locations based on a

distributive iterative protocol. Current proxy sensors advertise the service of mobile

sensors to their neighborhoods (up to certain parameter distance), searching for a

better coverage location. They collect bidding messages and choose the highest

bid. Then they delegate the bidder as the new proxy. The iterative moves are logical,

not physical. Actual movement only occurs when sensors determine their final

locations. If the bidding process is local, the sensor movement and the area-coverage

gains may be restricted. If the bidding process includes neighbors at several hops

distance, the communication overhead for bidding becomes significant. Bidding

decisions are based on price (number of logical movements made so far) and

distance that the moving sensors are physically supposed to move altogether. A pro-

cedure to prevent multiple healing is described, which includes some message over-

head. The bidding criterion does not include lost area coverage for moving out of the

current position. It is not certain whether the described procedure is always loop-free

and always converging. The difference between sensing and transmission radii (the

ratio is not discussed in ref. [73]) has a direct impact on message complexity.

11.4 SENSOR AREA COVERAGE 371

The iterative nature of logical moves in ref. [73] may still easily lead each mobile

sensor to a local minimum. It may be better to apply an expanding ring strategy [74]

in search of the best proxy, by using the increasing sizes of distances from each

mobile sensor, and asking sensors within the ring to respond with their biddings

(these responses may be suspended on the way to the mobile sensor by intermediate

nodes that learn about better bids). The bidding price also includes the traveling dis-

tance for the mobile sensor, which chooses the best bid. Somemechanisms for avoid-

ing multiple healing of the same hole need to be added in the protocol, such as

reporting to only one mobile sensor (note that this is not sufficient, since few sensors

can be located around the same hole). Instead ofmoving, mobile sensors send the best

bid so far to the next ring, asking sensors from that ring to report their bids only if they

have a better bid to offer. This protocol should reduce the number of reports, because

substantially more free area needs to be made available to justify longer movement.

Wu and Yang [75] propose a scan-based movement-assisted sensor deployment

method (SMART) that uses scan and dimension exchange to achieve a balanced

state. In SMART, a given rectangular sensor field is first partitioned into a 2-D

mesh through clustering. Each cluster corresponds to a square region and has a clus-

terhead which is in charge of bookkeeping and communication with adjacent clus-

terheads. Clustering is a widely used approach in sensor networks for its support for

design simplification. In fact, it is shown in ref. [76] that clustering is the most effi-

cient for sensor network where data are continuously transmitted. A hybrid approach

is used for load balancing, where the 2-D mesh is partitioned into 1-D arrays by row

and by column. Two scans are used in sequence: one for all rows, followed by the

other for all columns. Within each row and column, the scan operation is used to

calculate the average load and then to determine the amount of overload and under-

load in clusters. The load is shifted from overloaded clusters to underloaded clusters

in an optimal way to achieve a balanced state. By optimal, we mean the minimum

number of moves and minimum total moving distance and minimum number of

moves. By a balanced state, we refer to a state where the maximum cluster size

(the number of sensors in a cluster) and the minimum cluster size are different by

at most 1. Using this 2-D scan without global information, each sensor moves at

most twice, although it may not be globally optimal in terms of total moving dis-

tance in 2-D meshes. SMART addresses a unique problem called empty cells in

sensor networks and provides a local solution to it.

Mobile and static sensors can use the perimeter created by a Gabriel graph to

make moving decisions after only one iteration, as elaborated in ref. [72]. First,

static sensors will locally communicate to ensure that their biddings are made for

nonintersecting coverage areas. They then send their bidding by the GFG routing

protocol [72] (which guarantees delivery in connected unit-disk graphs) in an arbi-

trary direction. Such routing will end up creating a loop along the perimeter. The

node that detects the loop will store the bid. Mobile sensors also will search for

the best bid by routing in arbitrary directions, ending on a perimeter. A similar

idea has been described in ref. [77] for the purpose of providing location service.

If the network of static sensors is disconnected, then mobile sensors will send one

message to each connected component and search several perimeters. Mobile

372 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

sensors will set a criterion for selecting the bid, which will include the cost for

moving to a new location, and gain made for changing the coverage area (the differ-

ence between current and new coverage). After making a full traversal along the per-

imeter, the message sent by the mobile sensor will select the best bid and return it to

the node responsible for the bid, which in turn will eliminate the bid to prevent other

mobile sensors from taking it. The message is then routed back to the mobile sensor,

which performs the indicated move. Note that the proposed protocol has only one

iteration, flooding type of message circulation is avoided, and the message cost is

made quite uniform.

11.5 RELATED SURVEY ARTICLES

Because of space limitations, this chapter did not cover all relevant aspects of the

considered problems. For a more complete coverage, the reader is referred to several

complementary book chapters [11,78–81]. In particular, ref. [78] contains compre-

hensive coverage of the topology aspects of these problems, ref. [11] discusses

broadcasting with directional antennas and reliable broadcasting, refs. [79] and

[81] give comprehensive coverage for broadcasting with adjustable transmission

powers with omnidirectional and directional antennas (that is, the minimum

energy broadcasting problem). Further, ref. [79] contains comprehensive coverage

of broadcasting reliability issues, deciding transmission radii, and resource-aware

broadcasting. Probabilistic broadcasting protocols are covered in refs. [11] and

[79] (see also the recent article, ref. [82]). Finally, ref. [80] describes routing and

broadcasting schemes for hybrid ad hoc and sensor networks.

ACKNOWLEDGMENTS

This research was supported by grants from NSERC, INRIA, and NSF. The authors are grate-

ful to Roger Wattenhoffer for a fruitful e-mail discussion that contributed to clarification of

major aspects of dominating sets and subsequently to an improved presentation of this

chapter. We are also grateful to Stefano Basagni for a careful reading of the manuscript

and several useful suggestions.

EXERCISES

11.1. Prove that intergateway and gateway nodes in Wu’s concept [14,25] create

dominating sets [26].

11.2. Write a procedure for deciding whether or not a node is an intermediate, inter-

gateway or gateway node in Wu’s concept [14,25,26].

11.3. Give a formal definition of an enhanced dominating set, generalizing the case

of coverage by one neighbor presented in this chapter. Describe the appropri-

ate efficient algorithm, and prove that the new set is indeed a CDS [30].

EXERCISES 373

11.4. To increase reliability, double (and in general t-coverage) dominating sets can

be considered. In this approach, every neighbor needs to be covered by two (in,

general, t) neighbors, instead of only one. Describe some backbone construc-

tion methods based on double domination, and some broadcasting schemes

that would require each node to receive the message at least twice [30].

11.5. Assume that each node knows its geographic location, but has no knowledge

about the existence or position of its neighbors. Describe a beaconless broad-

casting scheme that will work with such assumptions and will minimize the

number of retransmissions [81,83].

11.6. Suppose that broadcast messages need to be acknowledged. Describe a proto-

col that will minimize the number of acknowledgment packets for reliable

broadcasting [81].

11.7. Generalize the sensor area-coverage scheme [60], described in this chapter,

for the case of unequal sensing radii at sensor nodes.

11.8. Give an example showing that GAF [21] can disconnect the network [17].

(Hint: Consider scenarios with nodes near corners of grids and near some

empty grids.)

11.9. Suppose that sensor nodes are placed at vertices of a regular hexagonal tiling

with side length r corresponding to the transmission radius. Prove that the side

length that minimizes the total transmission power used when all nodes

retransmit the packet is r ¼ (2c=(a� 2))1=a [43].

REFERENCES

1. F. Kuhn and R.Wattenhoffer. Constant-time distributed dominating set approximation. In

Proceedings of the 22nd ACM Symposium on the Principles of Distributed Computing

(PODC), Boston, Massachusetts, July 2003.

2. L. Barriere, P Fraigniaud, L. Narajanan, and J. Opatrny. Robust position-based routing in

wireless ad hoc networks with irregular transmission ranges. Wireless Communications

and Mobile Computing, 3(2):141–153, 2003.

3. I. Stojmenovic, A. Nayak, J. Kuruvila, F. Ovalle-Martinez, and E. Villanueva-Pena.

Physical layer impact on the design and performance of routing and broadcasting proto-

cols in ad hoc and sensor networks. Computer Communications, 28(10), 1138–1151,

June 2005.

4. M. Agarwal, J. H. Cho, L. X. Gao, and J. Wu Energy Efficient Broadcast in Wireless

Ad Hoc Networks with Hitch-hiking, to appear in ACM/Kluwer MONET.

5. H. Chan and A. Perrig. ACE: An emergent algorithm for highly uniform cluster for-

mation. In Proceedings of the European Workshop on Wireless Sensor Networks

(EWSN 2004), pages 154–171, Berlin, Germany, January 2004.

6. D. A. Fisher and H. F. Lipson. Emergent algorithms: A new method for enhancing survi-

vability in unbounded systems. In Proceedings of the 32nd Annual Hawaii International

Conference on System Sciences (HICSS-32), Maui, Hawaii, January 1999.

374 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

7. D. Niculescu. Positioning in ad hoc sensor networks. IEEE Networks, 18:24–29,

July 4, 2004.

8. L. M. Feeney. Energy efficient communication in ad hoc wireless networks. In Mobile

Ad Hoc Networking, S. Basagni, M. Conti, and S. Giordano, and I. Stojmenovic (eds.),

pages 301–327, IEEE/Wiley, 2004.

9. V. Raghunathan, C. Schurger, S. Park, and M. B. Srivastava. Energy-aware wireless

microsensor networks. IEEE Signal Processing Magazine, 19:40–50, 2002.

10. M. L. Sichitiu. Cross-layer scheduling for power efficiency in wireless sensor networks.

In Proceedings of IEEE INFOCOM 2004, Hong Kong, China, March 2004.

11. I. Stojmenovic and J. Wu. Broadcasting and activity scheduling in ad hoc networks. In

Mobile Ad Hoc Networking, pages 205–229, S. Basagni, M. Conti, S. Giordano, and

I. Stojmenovic (eds.), IEEE Press, 2004.

12. S. Basagni, M. Mastrogiovanni, and C. Petrioli. A performance comparison of protocols

for clustering and backbone formation in large scale ad hoc networks. In Proceedings of

them 1st IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS

2004), Fort Landerdale, Florida, October 2004.

13. C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. IEEE Journal

of Selected Areas in Communications, 15(7):1265–1275, 1997.

14. I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor elimination

based broadcasting algorithms in wireless networks. IEEE Transactions on Parallel

and Distributed Systems, 13(1): 14–25, January 2002.

15. S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of the 1999 Inter-

national Symposium on Parallel Architectures Algorithms, and Networks (ISPAN 99),

pages 310–315, Freemantle, Australia, June 1999.

16. P.-J. Wan, K. M. Alzoubi, and O. Frieder. Distributed construction of connected dominat-

ing sets in wireless ad hoc networks. Mobile Networks and Applications (MONET),

9(2):141–149, April 2004.

17. S. Basagni, A. Carosi, and C. Petrioli. Sensor-DMAC: Dynamic topology control for

wireless sensor networks. In Proceedings of the IEEE VTC, Los Angeles, California,

September 2004.

18. J. Wu and F. Dai. A distributed formation of a virtual backbone in MANETS using adjus-

table transmission ranges. In Proceedings of the 24th IEEE International Conference on

Distributed Computing Systems (ICDCS), pages 372–379, Tokyo, Japan, March 2004.

19. F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing newly deployed ad hoc

and sensor networks. In Proceedings of the 10th Annual International Conference

on Mobile Computing and Networking (MobiCom), pages 260–274, Philadelphia,

Pennsylvania, September 2004.

20. J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mobile centers. In

Proceedings of the 17th Annual Symposium on Computational Geometry (SCG), pages

188–196, Boston, Massachusetts, June 2001.

21. Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for

ad hoc networks. In Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking (MobiCom), pages 70–84, Rome, Italy, July 2001.

22. L. Lovasz. On the ratio of optimal integral and fractional covers. Discrete Mathematics,

13:383–390, 1975.

REFERENCES 375

23. C. Adjih, P. Jacquet, and L. Viennot. Computing Connected Dominating Sets with

Multipoint Relays. Research Report #4597, INRIA, October 2002. To appear in

Ad Hoc & Sensor Wireless Networks. Vol. 1, No. 1–2, 27–40.

24. J. Wu. An enhanced approach to determine a small forward node set based on multipoint

relay. In Proceedings of the IEEE VTC, Orlando, Florida, October 2003.

25. J. Wu and H. Li. On calculating connected dominating set for efficient routing in ad hoc

wireless networks. In Proceedings of the 3rd International Workshop on Discrete Algo-

rithms and Methods for Mobile Computing and Communications (DIAL-M), pages 7–14,

Seattle, Washington, August 1999.

26. I. Stojmenovic. Comments and corrections to “Dominating Sets and Neighbor

Elimination-Based Broadcasting Algorithms in Wireless Networks.” IEEE Transactions

on Parallel and Distributed Systems, 15(11), 1054–1055, November 2004.

27. F. Dai, and J. Wu. An extended localized algorithm for connected dominating set for-

mation in ad hoc wireless networks. IEEE Transactions on Parallel and Distributed

Systems, 15(10), 2004.

28. J. Carle and D. Simplot-Ryl. Energy efficient area monitoring for sensor networks. IEEE

Computer, 37(2):40–46, February 2004.

29. F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Smaller connected dominating sets in

ad hoc and sensor networks based on coverage by two-hop neighbors. Submitted for

publication.

30. I. Stojmenovic. Data gathering and activity scheduling in ad hoc and sensor networks,

Proc. International Workshop on Theoretical Aspects of Wireless Ad Hoc, Sensor, and

Peer-to-Peer Networks, Chicago, USA, June 11–12, 2004.

31. J. Shaikh, J. Solano, I. Stojmenovic, and J. Wu. New metrics for dominating set

based energy efficient activity scheduling in ad hoc networks. In Proceedings of the IEEE

Conference on Local Computer Networks, pages 726–735, Bonn, Germany, October 2003.

32. S. Y. Ni, Y. C. Tseng, Y. S. Chen, and J. P. Sheu. The broadcast storm problem in a

mobile ad hoc network. In Proceedings of the 5th Annual ACM/IEEE International Con-

ference on Mobile Computing and Networking (MobiCom), pages 152–162, Seattle,

Washington, August 1999.

33. H. Lim and C. Kim. Multicast tree construction and flooding in wireless ad hoc networks.

In Proceedings of the 3rd ACM International Workshop on Modeling, Analysis and

Simulation of Wireless and Mobile Systems (MSWiM ’00), pages 61–68, Boston,

Massachusetts, August 2000; see also Computer Communications, 24:3–4, 353–363,

February 2001.

34. W. Peng and X.-C. Lu. On the reduction of broadcast redundancy in mobile ad hoc

networks. In Proceedings of the 1st ACM International Symposium onMobile and Ad Hoc

Networking and Computing, pages 129–130 Boston, Massachusetts, August 2000.

35. I. Stojmenovic and M. Seddigh. Broadcasting algorithms in wireless networks. In Proceed-

ings of the International Conference on Advances in Infrastructure for Electronic Business,

Science, and Education on the Internet SSGRR, L’Aquila, Italy, July–August 2000.

36. J. Wu and F. Dai. A generic distributed broadcast scheme in ad hoc wireless networks. In

Proceedings of the 23rd IEEE International Conference on Distributed Computing

Systems (ICDCS), pages 460–467, May 2003.

37. G. Calinescu, I. Mandoiu, P. J. Wan, and A. Zelikovsky. Selecting forwarding neighbors

in wireless ad hoc networks. In Proceedings of the 5th International Workshop on

376 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

Discrete Algorithms and Methods for Mobile Computing and Communication (DIAL M

2001), pages 34–43, Rome, Italy, 2001.

38. A. Qayyum, L. Viennot, and A. Laouiti. Multipoint relaying: An efficient technique for

flooding in mobile wireless networks. In Proceedings of the 35th Annual Hawaii Inter-

national Conference System Sciences (HICSS ’02), Big Island, Hawaii, January 2002.

39. M. T. Sun and T. H. Lai. Location aided broadcast in wireless ad hoc network systems. In

Proceedings of the IEEE Symposium on Ad Hoc Wireless Networks, at GLOBECOM,

November 2001.

40. W. Peng and X. Lu. AHBP. An efficient broadcast protocol for mobile ad hoc networks.

Journal of Science and Technology (Beijing, China), 2002.

41. W. Peng and X. Lu. Efficient broadcast in mobile ad hoc networks using connected

dominating sets. In Proceedings of the 7th International Conference on Parallel and

Distributed Systems (ICPADS 2000), Iwate, Japan, July 2000.

42. J. Wu and W. Lou. Extended multipoint relays to determine connected dominating sets in

MANETs. In Proceedings of the 1st IEEE Communications Society Conference on

Sensor and Ad Hoc Communications and Networks (SECON 2004), Santa Clara,

California, October 2004.

43. F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Target transmission radius over LMST

for energy-efficient broadcast protocol in ad hoc networks. In Proceedings of the IEEE

International Conference on Communications (ICC), Paris, June 2004.

44. M. Cardei and J. Wu. Energy-efficient coverage problems in wireless ad hoc sensor

networks. Computer Communications, forthcoming.

45. T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja. Sensor deploy-

ment strategy for target detection. In Proceedings of the 1st ACM International Workshop

on Wireless Sensor Networks and Applications (WSNA), pages 42–48, Atlanta, Georgia,

September 2002.

46. D. Tian and N. D. Georganas. A coverage-preserving node scheduling scheme for

large wireless sensor networks. Wireless Communications and Mobile Computing,

3:271–290, 2003.

47. J. Wu and S. Yang. Coverage and connectivity in sensor networks with adjustable ranges.

In Proceedings of the 2004 International Workshop on Mobile and Wireless Networks

(MWN), Montreal, Canada, August 2004.

48. H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in large sensor

networks. Ad Hoc and Sensor Wireless Networks, an International Journal, 1(1–2): 89–

124, 2005.

49. G. Xing, C. Lu, R. Pless, and Q. Huang. Greedy geographic routing is good enough in

sensing covered networks. INFOCOM 2004.

50. B. Liu and D. Towsley. A study of the coverage of large-scale sensor networks. In

Proceedings of the 1st IEEE International Conference on Mobile Ad Hoc and Sensor

Systems (MASS 2004), pages 475–483, Fort Lauderdale, Florida, October 2004.

51. H. Zhang and J. Hou. On deriving the upper bound of alpha-lifetime for large sensor

networks. In Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc

Networking and Computing (MobiHoc), pages 121–132, Tokyo, Japan, May 2004.

52. F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang. PEAS: A robust energy conserving

protocol for long-lived sensor networks. In Proceedings of the 23rd International

REFERENCES 377

Conference on Distributed Computing Systems (ICDCS), page 28, Providence, Rhode

Island, May 2003.

53. Di Tian and N. D. Georganas. Location and calculation-free node scheduling schemes in

large wireless sensor networks. Ad Hoc Networks, 2: 65–85, 2004.

54. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. D. Gill. Integrated coverage and

connectivity configuration in wireless sensor networks. In Proceedings of the 1st ACM

Conference on Embedded Networked Sensor Systems (SenSys ’03), Los Angeles,

California, November 2003.

55. Di Tian. Node Activity Scheduling Schemes in Large-Scale Wireless Sensor Networks.

Ph.D. thesis, SITE, University of Ottawa, 2004.

56. T. Yan, T. He, and J. A. Stankovic. Differentiated surveillance for sensor networks. In

Proceeding of the 1st International Conference on Embeded Networked Sensor Systems

(SenSys ’03), pages 51–62, Los Angeles, California, November 2003.

57. C. F. Hsin and M. Liu. Network coverage using low duty-cycled sensors: Random and

coordinated sleep algorithms. In Proceedings of the 3rd International Symposium on

Information Processing in Sensor Networks, Berkeley, California, April, 2004.

58. H. Gupta, S. R. Das, and Q. Gu. Connected sensor cover: Self-organization of sensor

networks for efficient query execution. In Proceedings of the 4th ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Annapolis,

Maryland, June 2003.

59. J. Jiang and W. Dou. A coverage preserving density control algorithm for wireless sensor

networks. In Proceedings of the 3rd International Conference on Ad-Hoc Networks and

Wireless (ADHOC-NOW ’04), (LNCS 3158), pages 42–45, Vancouver, July 2004.

60. J. Carle, A. Gallais, D. Simplot-Ryl, and I. Stojmenovic. Localized Sensor Area Coverage

with Small Communication Overhead. 5th Scandinavian Workshop on Wireless Ad-Hoc

Networks (ADHOC ’05), Stockholm, May 3–4, 2005.

61. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-efficient coordi-

nation algorithm for topology maintenance in ad hoc wireless networks. In Proceedings

of the 7th Annual International Conference on Mobile Computing and Networking

(MobiCom), Rome, Italy, July 2001.

62. Z. Abrams, A. Goel, and S. Plotkin. Set k-cover algorithms for energy efficient monitor-

ing in wireless sensor networks. In Proceedings of the 3rd International Symposium on

Information Processing in Sensor Networks (ISPN), pages 424–432, Berkeley,

California, April 2004.

63. I. Stojmenovic. An Adaptive Localized Algorithm for Multiple Sensor Area Coverage.

In preparation.

64. G.Xing,C. Lu, R. Pless, and J.O’Sullivan. Co-Grid: An efficient coveragemaintenance pro-

tocol for distributed sensor networks. InProceedings of the 3rd International Symposium on

Information Processing in Sensor Network (IPSN), Berkeley, California, April 2004.

65. I. Stojmenovic. A Localized Algorithm for Sensor Area Coverage Based on a Realistic

Physical Layer. In preparation.

66. C. Gui and P. Mohapatra. Target Tracking and Surveillance Using Sensor Networks. Paper

presented at the InternationalWorkshop on Theoretical and Algorithmic Aspects of Sensor,

Ad Hoc Wireless and Peer-to-Peer Networks, Fort Lauderdale, Florida, February 2004.

67. M. Cardei and D. Z. Du. Improving wireless sensor network lifetime through power

aware organization. Wireless Networks, 11(3): 333–340, May 2005.

378 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

68. S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor grids: Coverage, connectivity,

and diameter. In Proceedings of IEEE INFOCOM 2003, San Francisco, California,

June 2003; See also Ad Hoc Networks, forthcoming.

69. Y. Zou and K. Chakrabarty. Sensor deployment and target localization based on virtual

forces. In Proceedings of IEEE INFOCOM 2003, pages 1293–1303, San Francisco,

California, March 2003.

70. G. Cao, G.Wang, T. La Porta, andW. Zhang. Distributed Algorithms for DeployingMobile

Sensors. Paper presented at the International Workshop on Theoretical and Algorithmic

Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks, Fort Lauderdale, Florida,

February 2004.

71. Xiang-Yang Li, Ivan Stojmenovic, and Yu Wang. PartialDelaunay triangulation and

degree limited localized Bluetooth multihop scatternet formation. IEEE Transactions

on Parallel and Distributed Systems, Vol. 15, No. 4, April 2004, 350–361.

72. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in

ad hoc wireless networks. Wireless Networks, 7(6):609–616, November 2001.

73. G. Wang, G. Cao, and T. La Porta. Proxy-based sensor deployment for mobile sensor

networks. In Proceedings of the 1st IEEE International Conference on Mobile Ad Hoc

and Sensor Systems (MASS 2004), Fort Lauderdale, Florida, October 2004.

74. I. Stojmenovic. Deploying Mobile Sensors for Improved Area Coverage. In preparation.

75. J. Wu and S. Yang. SMART: A Scan-based Movement-Assisted sensoR deploymenT

Method in Wireless Sensor Networks. Paper presented at INFOCOM 2005, Miami,

Florida, March 2005.

76. W. Heinzelman. Application-Specific Protocol Architectures for Wireless Networks.

Ph.D. thesis, Massachusetts Institute of Technology, 2000.

77. I. Stojmenovic. A Scalable Quorum Based Location Update Scheme for Routing In Ad

Hoc Wireless Networks. Technical Report TR-99-09, SITE, University of Ottawa,

September 1999.

78. X.Y. Li and I. Stojmenovic. Broadcasting and topology control in wireless ad hoc net-

works. In Handbook of Algorithms for Mobile and Wireless Networking and Computing,

A. Boukerche and I. Chlamtac (eds.), CRC Press, forthcoming.

79. F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Energy-efficient broadcasting in wire-

less mobile ad hoc networks. In Resource Management in Wireless Networking, Mihaela

Cardei, Ionut Cardei, and Ding-Zhu Du (eds.), pages 543–582, Kluwer, 2005.

80. François Ingelrest, David Simplot-Ryl, and Ivan Stojmenovic. Routing and broadcasting

in hybrid ad hoc and sensor networks. In Theoretical and Algorithmic Aspects of Sensor,

Ad Hoc Wireless and Peer-to-Peer Networks, Jie Wu (ed.), CRC Press.

81. Justin Lipman, Johnson Kuruvila, and Ivan Stojmenovic. Localized broadcasting in ad

hoc networks. In Wireless Ad Hoc and Sensor Networks, Ahmed Safwat (ed.), Kluwer,

forthcoming.

82. L.Orecchia, A. Panconesi, C. Petrioli, andA.Vitaletti. Localized techniques for broadcasting

in wireless sensor networks. In Proceedings of the DIALM-PODC Joint Workshop, on

Foundations of Mobile Computing, pages 41–51, Philadelphia, Pennsylvania, October

2004.

83. I. Stojmenovic. Beaconless Area Based Broadcasting. In preparation.

REFERENCES 379

FURTHER READING

Z. Hu and B. Li. On the fundamental capacity and lifetime limits of energy-constrained wire-

less sensor networks. In Proceedings of the 10th IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium (RTAS ’04), pages 38–47, Toronto, Canada, 2004.

380 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

&CHAPTER 12

Geographic and Energy-Aware
Routing in Sensor Networks

HANNES FREY

University of Trier, Trier, Germany

IVAN STOJMENOVIĆ

University of Ottawa, Ontario, Canada

Typical communication patterns within a sensor network are data delivery from

sensor nodes to one of selected information sinks, and information sinks requesting

a certain physical phenomenon or requesting sensor nodes lying within a sensed

area. In general, addressing is achieved by utilizing sensor locations. Geographic

routing algorithms allow routers to be nearly stateless since packet forwarding is

achieved by utilizing location information about candidate nodes in vicinity and

the location of the final destination only. By their localized nature, geographic rout-

ing algorithms are highly scalable solutions which do not require any additional

control overhead when network topology changes due to mobility or energy conser-

ving sleep cycles. Recent work investigated that location information may be utilized

to define new link metrics aiming on energy and physical layer optimized routing

paths instead of only minimizing the number of hops needed to reach the desired

destination. This chapter reviews geographic and energy aware routing algorithms

for sensor networks. It includes simple heuristic greedy forwarding strategies,

strategies which obtain guaranteed delivery by memorizing information about all

ongoing routing tasks, memoryless recovery strategies, energy aware routing strat-

egies aiming on increased network lifetime, and routing without information about

their neighbor nodes. The majority of geographic routing protocols assume a sim-

plified network model which does not take into account random variations in correct

381

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

message receipt. This chapter also discusses physical layer impact on both greedy

geographical routing strategies and their recovery strategies.

12.1 INTRODUCTION

Sensor networks are typically composed of hundreds to thousands of small collabor-

ating wireless sensor nodes that have limited computation and communication capa-

bilities. Communication patterns within a sensor network are data delivery from

sensor nodes to one or a subset of selected information sinks, and information

sinks requesting a certain physical phenomenon or requesting sensor nodes lying

within a sensed area. In general, addressing is achieved by utilizing sensor locations

or querying all sensor nodes matching a certain criterion instead of utilizing individ-

ual node addresses. Ease of deployment and the fact that sensor nodes are small and

closely located at the measured phenomenon makes an external power supply,

recharging batteries, or replacing depleted batteries impractical or even impossible.

Consequently, the lifetime of a sensor node is directly related to its on-board power

supply, and thus energy is the most sensitive resource with respect to the whole

network lifetime.

Communication between sensor nodes and information sinks can be achieved by

setting an appropriate transmission power (if possible) and sending data or control

messages directly to the desired recipient. However, this simple communication

form may degrade the bandwidth of the limited shared wireless communication

media, and moreover will drastically increase energy consumption at sender

nodes, since signal attenuation increases significantly with the distance to the mess-

age recipient. If no fixed networked infrastructure is additionally available, a

resource-saving communication may only be achieved by multihop ad hoc routing

techniques, where communication between any two network nodes requires colla-

borating with intermediate next-hop forwarding nodes.

Since location information is often available due to the very nature of sensor net-

works, the special class of geographic routing algorithms may be a good choice in

order to build a scalable resource-saving communication infrastructure. Geographic

routing algorithms allow routers to be nearly stateless, since packet forwarding is

achieved by utilizing location information about candidate nodes in the vicinity

and the location of the final destination only. By their localized nature, geographic

routing algorithms are highly scalable solutions that do not require any additional

control overhead when network topology changes due to mobility or energy-

conserving sleep cycles. In particular, due to the addressing scheme of sensor net-

works there is no need for an additional location service (producing an additional

network load), which is used in other ad hoc network scenarios in order to acquire

location information about individual network nodes before communication can

take place. Finally, location information about all neighbor nodes can be used in

order to estimate the signal strength needed to reach a certain neighbor node.

Recent work investigated that location information can be utilized to define new

382 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

link metrics aiming at energy and physical-layer optimized routing paths instead of

only minimizing the number of hops needed to reach the desired destination.

12.2 GREEDY ROUTING ALGORITHMS

Greedy routing algorithms limit forwarding decisions on information about the pos-

ition of all nodes in the vicinity and forward a message to the “best” neighbor

regarding the position of the final destination and the metric being optimized.

Each forwarding node applies this greedy principle until the final destination (if

possible) is finally reached. The current required location information about neigh-

bor nodes is maintained by proactively exchanging short beacon messages (contain-

ing node ID and location) transmitted with maximum signal strength.

12.2.1 Progress, Distance, and Direction

The first geographic routing algorithm was described by Takagi and Kleinrock in the

mid-1980s [1]. They introduced the notion of progress in order to define the most

forward within radius (MFR) greedy routing scheme. The distance between the cur-

rent node S and the projection A0 of a neighbor node A onto the line SD connecting S

and final-destination node D is termed progress (see node A in Fig. 12.1). MFR

selects the neighbor node that maximizes progress, while nodes with negative pro-

gress are ignored (e.g., MFR selects node A in Fig. 12.1).1 Alternatively, distance-

based greedy forwarding considers Euclidean distance instead of progress. Finn [3]

proposed the first distance-based greedy routing scheme, which selects a node closer

and minimizes the distance d to the final destination (e.g., node B in Fig. 12.1). This

scheme is the most widely applied greedy strategy in the literature, and it will sub-

sequently be referred as GREEDY. In recent years direction-based (DIR) greedy

routing, which considers the angle between the next hop, current, and destination

nodes, was investigated as a third alternative of greedy forwarding. The DIR

method, described by Kranakis et al. [4], selects the next hop forwarding node,

minimizing the deviation from the line connecting the current and the destination

node (e.g., node C in Fig. 12.1).

There are several variants of nodes that will be considered, along with the stop-

ping criterion in progress or distance-based routing schemes. In originally proposed

articles, greedy forwarding based on progress or distance considers nodes in the

forward direction (respectively closer to destination) only (e.g., nodes A, B, C,

and E in Fig. 12.1), since choosing a node in the backward direction (e.g., nodes

F and G in Fig. 12.1) might lead to a packet loop. Ref. [5] considers all nodes,

but routing stops at a node whose best choice is to return the packet to a neighbor

that sent the packet to it (the loop-free property has been proved for this variant).

1More precisely, in their original work MFR also considered nodes with negative progress. However, in

later studies (e.g., ref. [2]) MFR was often described to consider nodes with nonnegative progress only.

This chapter will use this variant when speaking of MFR.

12.2 GREEDY ROUTING ALGORITHMS 383

A node where packet forwarding is stopped due to lack of a neighbor in the forward

direction, or by applying the described stoppage criterion, is termed a concave node.

12.2.2 Sensing Coverage and Greedy Routing

Many applications of sensor networks (e.g., tracking of moving targets) require a

specific class of sensor networks that provide sensing coverage, that is, every

point of a geographic area must be within the sensing range of at least one sensor

node. A simplified formal model assumes that every node N has the same sensing

range, which is a circle with radius Rs centered at N. Thus, for a sensor network

covering an area A, the union of the circular sensing ranges of all network nodes

must at least contain the area A. In a similar way, a simplified formal communication

model can be defined by using a unique communication range Rc . The communi-

cation network, which is often referred to as the unit-disk graph, has a bidirectional

communication link between any two sensor nodes X and Y, if and only if the

Euclidean distance between X and Y is less than Rc .

Xing et al. [6] investigated properties of greedy routing algorithms in sensing

covered networks having the double-range property, that is, Rc/Rs � 2. Focus on

this special class is motivated by the geometric analysis from Wang et al. [7],

which showed that a sensing covered network is always connected if it has the

double-range property. The geometric analysis and simulation results from ref. [6]

demonstrate that greedy geographic routing is a viable and effective routing

scheme in sensing covered networks, and it turns out that the range ratio Rc/Rs

has a significant impact on the quality of greedy routing in sensing covered

networks.

The qualitative properties of greedy routing in sensing covered networks may be

expressed in terms of network and Euclidean dilation. A subgraphH ofG is termed a

network t-spanner of G if the length (measured in hops) of the shortest path between

any two nodes U and V in H is at most t times longer than the shortest path produced

in G. The value t is termed the network stretch factor of the spanner H. Network

dilation represents the stretch factor of a graph G relative to an ideal network

S
A´

A

E

F

G

C

B
d

D

Figure 12.1 Node A is maximizing progress, node B has the least distance to D, and node C

lies closest in direction to D.

384 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

producing a minimum number of hops of about jSDj=Rc between source S and

destination D. Euclidean stretch factor and dilation can be defined in a similar

way by utilizing Euclidean distance instead of hop count.

Xing et al. [6] studied the dilation properties of sensing covered networks by

utilizing a known upper bound of the Euclidean stretch factor of Delaunay trian-

gulations (DTs). This well-studied graph structure can be defined as the twin of

the Voronoi diagrams. For a set of n nodes in two-dimensional (2D) space, the

Voronoi diagram partitions the plane into n Voronoi regions Vor (U), while each

Voronoi region contains all points in the plane that are closest to U (see the face

surrounding node F in Fig. 12.2, for instance). The DT can be obtained by connect-

ing each node pair (U,V) that shares a common boundary in the Voronoi diagram

(see the dotted lines in Fig. 12.2).

It is proved in ref. [6] that the DT is a subgraph of a sensing covered network

when the double-range property holds. This result and the known upper bound of

the Euclidean stretch factor of DTs is finally used to derive a constant upper

bound for the network dilation in a sensing covered network that has the double-

range property. Additionally, it is observed that any DT edge is shorter than 2Rs .

Thus, when range ratio Rc/Rs increases, the shortest path found in the DT gets

significantly longer than the shortest possible path in the complete network, since

all edges longer than 2Rs are ignored by the DT.

Besides the results based on DT, properties of greedy routing are investigated in

ref. [6] as well. It is proved that greedy routing will always find a routing path

between any two nodes if the sensing covered network has a convex network bound-

ary and the double-range property holds. Additionally, the progress made in each

routing step is at least Rc � 2Rs closer to the destination than the current forwarding

node. Furthermore, the latter result is used in order to estimate the quality of the

routing path produced by greedy routing. It is observed that in a sensing covered

network with the double-range property the path (from source S to destination D)

found by greedy routing is always no longer than about jSDj=ðRc � 2RsÞ.

H

F

S

G

E

D

Figure 12.2 The bounded Voronoi greedy forwarding (BVGF) routing algorithm will select

the node closest to D, but considers only nodes having a Voronoi region intersecting the

straight line SD.

12.2 GREEDY ROUTING ALGORITHMS 385

In summary, the result of DT and greedy routing motivate the bounded Voronoi

greedy forwarding (BVGF) algorithm [6] as follows. Greedy routing applied in sen-

sing covered networks will produce satisfactory path lengths if the range ratio Rc/Rs

is significantly greater than 2, while, on the other hand, the upper bound of the path

lengths produced jSDj=ðRc � 2RsÞ tends to infinity when the range ratio is close to

2. The shortest path found in a DT is always upper bound by a constant, while

the upper bound becomes very conservative when the range ratio is increased.

Thus, the BVGF algorithm is a combination of both methods, greedy routing, and

routing along the edges of a DT. A node holding a packet addressed from the

source node S to the final destination D will consider only those neighbor nodes

U, where the line segment connecting S and D intersects Vor (U) or coincides

with one of the boundaries of Vor (U). From these subsets of one-hop neighbors,

the node closest to D will be selected as the next hop node. For instance, in

Figure 12.2 only nodes E, F, G, and H can be visited by BVGF. Note that BVGF

is not constrained to the edges of the DT. For instance, if source S is able to

reach node F, it will send the message to node F directly, since node F is closer

to D than E.

A theoretical analysis shows that BVGF will always find a path in sensing cov-

ered networks with the double-range property. An additional result shows that each

node visited by the path produced by BVGF has a distance of at most Rs from the

line connecting source node S and final destination D. Finally, this result is used

to prove for the sensing covered network that the network dilation of the paths

produced by BVGF is always upper bound by a constant value, provided that the

range ratio is at least 2. In addition to this theoretical analysis, the average dilation

of BVGF has been investigated in a simulation environment. The simulation results

show that network dilations produced by BVGF are comparable to greedy

forwarding, while Euclidean dilations are always better for all range ratios within

2 and 10.

12.2.3 Real-Time Communication in Sensor Networks

Sensor network applications such as surveillance systems may require sensor nodes

to meet certain “soft” real-time communication constraints. Only a few results that

adequately address such real-time requirements exist for sensor networks. The

SPEED protocol by Lu et al. [8] is the first greedy-based protocol addressing

real-time guarantees for sensor networks. SPEED utilizes the notion of relay

speed in order to select one “best” next hop node in a greedy manner. Relay

speed toward a next hop node A is calculated by dividing the advance in distance

by the estimated send delay toward A. The single-hop delay toward a neighbor A

can be estimated by continuously measuring the round-trip delay between current

unicast data transmissions and the receipt of related acknowledgments. The esti-

mated single-hop delay is calculated by means of an exponential weighted

moving average over the previous average with the current single-hop delay.

The latter is obtained by subtracting the receiver-side processing time from the

round-trip delay experienced by the sender.

386 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

Before selecting the next hop node, a set of candidate nodes is calculated by

selecting all nodes closer to the final destination than the current node and removing

all nodes having a relay time smaller than a certain threshold s, which is a

system-dependent parameter. The next hop node is selected according to a discrete

exponential distribution, while the node with the fastest relay speed is selected with

the highest probability. Selecting only nodes with a relay speed greater than a certain

threshold assures that this routing scheme, if successful, will guarantee delivery of a

packet within time d/s, with d being the distance between source and final destina-

tion. Furthermore, the randomized selection scheme provides traffic balance, and

thus reduced congestion, since packets are dispersed into a large relay area. The

authors of ref. [8] also propose neighborhood feedback-loop and back-pressure

rerouting mechanisms.

Huang, Dai, and Wu [9] considered a quality of service (QoS) routing scheme,

using progress instead of distance metric to advance toward the destination. The

selected neighbor is one that maximizes the ratio of progress and delay in sending

to a neighbor, where progress from node S when forwarding to neighbor A and

with destination D can be measured as SD � SA (the dot product of vector SD and

SA), and delay can be replaced by any other additive QoS metric. The authors

also proposed several ticket-based multipath schemes to search for QoS paths.

They also proposed a backward checking method that corresponds to the iterative

improvement method described here for power and cost aware routing protocols.

12.3 GUARANTEED DELIVERY BASED ON MEMORIZATION

Stojmenović and Lin proposed neighbor flooding as a recovery mechanism at con-

cave nodes, while every intermediate node handles received messages using the

basic routing algorithm (named f-GEDIR, f-MFR, and f-DIR, for instance) [5].

Each concave node memorizes message IDs and rejects further copies of the

same message (more precisely, neighbors learn about their concave status from

the packet and do not select them as forwarding nodes). In original f-GEDIR or

f-MFR, each neighbor of a concave node initiates a separate routing task toward des-

tination D. Lin et al. proposed component routing [10], a more elaborate recovery

strategy where concave nodes determine connected components in the subgraph

of its neighbors and forward the message to only one “best” node in each com-

ponent. The number of routing tasks initiated due to concave nodes is thus reduced

significantly, since there are at most four connected components of neighbors of any

concave node in the unit graph model [10].

The geographical routing algorithm (GRA) by Jain et al. [11] maintains a routing

table that maps locations on next-hop forwarding nodes. A node receiving a message

addressed to destination D, will look up its routing table and find the position p that

is closest to the final destinationD. The message will then be forwarded to the neigh-

bor node that is assigned with position p. Initially, the routing table contains position

information about neighbor nodes only, thus, operation of GRA is the same as

greedy forwarding. Message forwarding is deferred and a route discovery is invoked

12.3 GUARANTEED DELIVERY BASED ON MEMORIZATION 387

if the routing table contains no position closer to the destination than the position of

the current forwarding node S itself. The route discovery will find an acyclic path

from the current node to the final destination and update the routing tables of all

nodes lying on that path. A new entry is added to the routing table that maps the

location of destination D on the next hop along the discovered path. Jain et al. pro-

pose breadth-first search (BFS) and depth-first search (DFS) as two possible route

discovery mechanisms. BFS is the same as flooding, that is, a node receiving a dis-

covery message appends its address on the path discovered so far and rebroadcasts

the packet. Additional broadcast packets received subsequently are ignored. DFS

yields only a single acyclic path from node S to destination D. Similar to BFS, a

node receiving a route-discovery packet puts its address into the packet, but for-

wards it to a single neighbor Y that has not been visited so far and that minimizes

the sum of the distance between S and Y and Y and D. If all neighbors have been

visited, the current forwarding node removes its address from the path discovered

so far and returns the packet to the node from which it was first received. Once

the final destination receives a route-discovery packet, it is able to send an acknowl-

edgment to the originator of the route discovery by utilizing the reverse of the path

stored in the discovery packet. All nodes along that path will receive the destination

acknowledgment and will update their routing table accordingly. On receipt of the

destination acknowledgment the originator S will continue to forward the original

message toward destination D.

Independently a localized DFS-based routing algorithm was proposed by

Stojmenović et al. [12]. In contrast to the GRA algorithm, nodes do not store any

routing-table entries and the list of visited nodes is not stored in the DFS packet.

In order to enable DFS in a distributed manner, each node remembers if it has

already been visited by the DFS traversal. Additionally, each node memorizes the

node from where the packet was received for the first time. Packet forwarding is per-

formed by sorting all neighbor nodes with respect to their distance from the final

destination D and selecting the node that is closest to D. Already-visited neighbor

nodes have already transmitted a forward packet, therefore neighboring nodes can

overhear it and can learn their status and do not select them for another forwarding.

A returned message will be sent to the next choice in the sorted list of all next-hop

nodes. If all neighbors already have been visited or have returned the packet, then

the message will be returned to the neighbor node that sent the message for the

first time. In addition to the basic algorithm, Stojmenovic et al. discussed a possible

improvement with respect to QoS support. By utilizing information about its own

physical location and periodically updated position information about all neighbor

nodes, a node A can estimate the current speed and send direction of itself and its

neighbor B and can thus estimate how long the link between A and B will remain

stable. This link measure can be used in order to construct a path that provides a

specific connection-time requirement. Each node visited by the search message

will simply ignore all adjacent links that do not match this QoS requirement. In

addition, a minimum bandwidth requirement and maximum delay may be con-

sidered as well during DFS traversal. In a simplified model, total delay is decom-

posed into the number of hops � propagation delay per hop (which is directly

388 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

related to the bandwidth requirement per hop). In order to find a path with the

required maximum propagation delay, DFS traversal is limited to a maximum

path length and will consider only edges that have at least the minimum required

bandwidth. A node will return the search message immediately if the maximum

number of hops is exceeded or no outgoing edge matches the minimum bandwidth

requirement. Nodes located along the path found will memorize the uplink and

downlink edges of the path, which finally enables communication between source

S and destination D within the established QoS requirements. The DFS-based

QoS routing protocol can also be designed by using an advance (distance- or pro-

gress-based) per delay metric over links with sufficient bandwidth and connection

times. The search for such a path proceeds until the destination is found and overall

delay is acceptable.

12.4 MEMORYLESS GUARANTEED DELIVERY

Bose et al. described FACE, the first memoryless single-path recovery mechanism

with guaranteed delivery [13] in a unit-disk graph model of communication (assum-

ing ideal medium-access control (MAC) layer and connectivity). The FACE algor-

ithm is an improvement of the routing algorithm due to Kranakis et al. [4], which

guaranteed delivery in connected geometric planar graphs. A geometric planar

graph partitions the plane into faces bounded by the polygons made up of the

edges of the graph, and the nodes are described by geographic positions. A geo-

metric graph is said to be planar if there is no intersection between any two edges

of the graph (see the graph depicted in Fig. 12.3, for example).

The main idea of the FACE algorithm is to route a packet along the interiors of

the faces intersected by the straight line connecting the source node S and destina-

tion D (see Fig. 12.3). Each face interior is traversed by applying the right-hand rule

1

2

3

4

S D

A B
C

E

F G

H
I

K
L

M N

F

F

F

F

F5

Figure 12.3 Face routing of a packet sent from source S to destination D leads to the path

SABCEFGHIHGKLMND if the right-hand rule is applied.

12.4 MEMORYLESS GUARANTEED DELIVERY 389

or the left-hand rule, that is, a packet is forwarded along the next edge clockwise or

counterclockwise from the edge where it arrived. When the packet arrives at an edge

intersecting the line connecting S and D, the next face intersected by this line is

handled in the same way. For example, in Figure 12.3 a packet routed from

source S to destination D visits the faces F1, . . . ,F5 . The algorithm proceeds until

the destination node is eventually reached or if the first edge of current face traversal

is traversed twice in the same direction. In the latter case, the destination node is not

reachable. Face routing is shown to be loop-free and to guarantee delivery in static

connected planar geometric graphs [13]. There are two main variants of FACE rout-

ing: the before crossing and after crossing protocols. They differ in the selection of

the next edge after the current node detects that the face for traversing needs to be

changed. The example in Figure 12.3 shows the before-crossing variant. The after

(before) crossing variant selects (does not select, respectively) the edge that is inter-

sected by the straight line SD. Note that nodes cannot be certain locally whether they

are following the right-hand or left-hand rule, because an open face has the opposite

orientation to the closed faces, and nodes are not aware locally whether or not they

are on the open face.

Ad hoc and sensor wireless networks can be modeled as unit-disk graphs. How-

ever, the unit-disk graph is not planar in general. Thus, before the FACE recovery

procedure can be performed, a planar subgraph has to be extracted from the com-

plete network graph. In the description of FACE, Bose et al. [13] proposed a distrib-

uted algorithm for extracting a planar subgraph from a unit-disk graph, which is

based on Gabriel graphs (GG) [14], a well-known geometric planar graph construc-

tion. A GG for a finite-point set S is constructed by connecting any two nodes X and

Y of S if and only if the circle with diameter (X, Y) contains no other node of S. This

test can be performed by each node without any message exchange with neighbors,

other than “hello” messages to learn their position. It is proved in ref. [13] that the

minimal spanning tree belongs to the intersection of the GG and the unit-disk graph,

therefore the network connectivity is preserved.

When the average density (average number of neighbors) increases, edges in GG

become smaller, therefore the routes in FACE routing become longer. The other

problem is that the routes may be long if an external face is encountered on the

route. On the other hand, the path produced by successful greedy routing is compar-

able to the one produced by Dijkstra’s single-source shortest path algorithm. Thus,

Bose et al. [13] proposed a combination of the FACE algorithm with distance-based

greedy routing, called GFG (greedy-face-greedy). A packet arriving at a concave

node is switched into recovery mode and routed along the faces until reaching a

node closer to the destination than the position of the concave node where recovery

mode was entered. At this node, routing is again performed in greedy mode. The

integration of GFG algorithm [13] with IEEE 802.11 was later implemented in

the greedy perimeter stateless routing (GPSR) protocol by Karp and Kung [15].

Their GPSR protocol is the same as GFG. More precisely, they use the before-

crossing instead of after-crossing variant, and also discuss the relative neighborhood

graph (RNG) as an alternative to the GG. These modifications do not improve the

performance of the routing protocol.

390 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

12.4.1 Connected Dominating Sets and Shortcuts

Face routing has an increased hop count compared to Dijkstra’s single-source short-

est path algorithm, since planar graph construction based on GGs favors short edges

over long ones. Datta et al. [16] improved the performance of GFG by the concept of

connected dominating sets (CDS), shortcut-based routing, and a combination of

both. Localized dominating-set construction in unit graphs is only possible with

one-hop neighbor information, while shortcut-based routing also requires infor-

mation about 2-hop neighbors.

A subset S of all network nodes G is called a dominating set if each node of G is

either an element of S or has at least one neighbor in S. If the dominating set is

connected, FACE routing constrained on CDS will produce shorter paths, since

the corresponding GG edges will be longer on average. If a concave node is not

in CDS, then it forwards the message to one of its adjacent nodes from CDS.

Face routing (in recovery mode of GFG) then proceeds using only nodes from

CDS. In greedy mode, the GFG algorithm works somewhat better on the whole

set than on CDS, since there are more neighbor choices and longer edges can be

used. The construction of CDS for unit-disk graphs is discussed in the chapter on

backbones (Chapter 11) in this book.

In addition to the next forwarding node, there might be more neighbor nodes on

the same path produced by FACE routing. For example, in Figure 12.3 the nodes A,

B, and C on the path produced by traversal of face F1 are all within transmission

range of node S (the circle around S). When information about 2-hop neighbors is

available, the concept of shortcut-based routing can be applied at each node. A

forwarding node locally constructs the part of the planar graph seen by all its neigh-

bors. Based on this information a node can make a shortcut by sending the message

to the last known hop directly instead of forwarding it to the next hop along the path.

For example, in Figure 12.3 node S could send the packet to node C directly.

12.4.2 Asymptotic Optimality of Face Routing

In order to analyze asymptotic behavior of combined greedy and face routing algo-

rithms, Kuhn et al. [17] constructed a family of networks where each localized

memoryless algorithm will produce a routing path that has quadratic cost compared

to the cost of the shortest weighted path. The cost of a path is calculated by summing

the cost produced by each path edge, while the theoretic results from ref. [17] are

valid for all cost metrics that are polynomial in the Euclidean distance. Due to the

lower-bound argument given in ref. [17], a localized memoryless algorithm produ-

cing at most quadratic path costs (compared to the shortest weighted path) for any

network configuration in the worst case can be denoted as asymptotic optimal.

It can be observed [18] that asymptotic optimality is sacrificed if face traversal is

switching back to greedy mode when the line connecting concave node S and final

destination D is intersected for the first time (i.e., GFG and its previously described

variants are not asymptotic optimal). On the other hand, the combination of greedy

and face routing becomes asymptotic optimal when packets in face mode traverse

12.4 MEMORYLESS GUARANTEED DELIVERY 391

the complete face and change back to greedy mode at the face edge that is closest to

the destination D. However, successful greedy routing is more efficient than face

routing in the average case, that is, even when not optimal in the worst case, switch-

ing back to greedy mode as soon as possible may be the better strategy in practice.

Kuhn et al. [19] described greedy other adaptive face routing plus (GOAFRþ), a

greedy routing algorithm that overcomes the trade-off between asymptotic optimal-

ity and average case efficiency of combined greedy and face routing. The efficient

operation of face routing depends on the decision in the starting node of whether

a face is being traversed in the clockwise or counterclockwise direction. For

example, in Figure 12.4 applying the left-hand rule to traverse the outer face F1

leads to the path MLK . . . UTSR until arriving at the edge (R,Q) intersecting the

line connecting source S and destination D. In contrast, if the face traversal was

started in the opposite direction, the packet is forwarded along the significantly

shorter path MNOPQ before switching to face F2 .

In order to cope with that suboptimality, Kuhn et al. proposed an extension of the

GFG algorithm limiting the searchable area during face traversal. The GOAFRþ
algorithm uses a circle C centered at the destination node D in order to restrict

face traversal to the searchable area C. The radius of C is initially set to r0jSDj
with r0 � 1 so that source node S is also included within C (see the dashed circular

arc centered at D in Fig. 12.4). The greedy mode is applied as long as there is a next-

hop node closer to the destination D, and whenever possible the radius rC of C is

exponentially decreased (rC ¼ rC=r with r . r0) as long as the currently visited

node stays within C. Whenever the greedy mode encounters a local minimum at a

node U, the algorithm continues with a modified version of face routing. When

the face is traversed completely without hitting the current circle C, the packet

will be sent to the node visited so far that is closer to D than U (and handled in

greedy mode again). However, if no visited node is closer to D than U, the algorithm

will terminate and report that no path from S to D exists. When C is hit for the first

time, face traversal is reversed and face exploration is applied in the opposite

M

N
O

Q

R

S
TLK

P

U

S D
F 1

F 2

Figure 12.4 The GOAFRþ algorithm limits exploration to a circle centered at D and

containing at least the node where the recovery procedure was invoked.

392 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

direction. If C is hit for the second time and none of the visited nodes is closer to D

thanU, face exploration is continued as if started at nodeU, but the radius of circle C

is exponentially increased (rC ¼ rrC). In order to avoid a complete face exploration,

the algorithm applies an elaborate “early fallback” technique to return to greedy

routing as soon as possible. However, it is proved in ref. [18] that algorithms will

lose their asymptotic optimality when resuming greedy routing as soon as they arrive

at the first node closer to the destination D than the concave node U. GOAFRþ
maintains two counters to keep track of the number of nodes closer to and the

number of nodes not closer to the destination than the starting node U of the current

face traversal. If face exploration has visited up to a constant factor s more nodes

closer to D, GOAFRþ will interrupt face traversal, advance to the node seen so

far that is closest to the destination D, and the packet will be handled in greedy

mode again. Thus, GOAFRþ does not explore the complete face in general, but

on the other hand, greedy routing is not resumed at the first node closer to destination

D than concave node U. The latter property of GOAFRþ is finally used in ref. [19]

in order to prove its asymptotic optimality. Finally, from simulation results it turned

out that r0 ¼ 1:4, r ¼ ffiffiffi
2

p
, and s ¼ 1=100 are good choices for practical purposes.

A simplified example of GOAFRþ is depicted in Figure 12.4, where source node

S will forward in greedy mode to node M, which has no neighbor closer to destina-

tion D. Thus, the recovery strategy of GOAFRþ will begin exploration of face F1 in

the clockwise direction. At node L, face traversal hits the circle centered at node D,

and the algorithm switches to exploration in the opposite direction. Each routing step

updates the number p of nodes closer and the number q of nodes not closer to the

destination D. When arriving at node P, a certain threshold condition p . 1=3q
holds (p ¼ 2, q ¼ 3, and s ¼ 1=3) and the message will be handled in greedy

mode again.

For arbitrary unit-disk graphs (i.e., no restrictions regarding minimum node dis-

tance and maximum node degree), cost metrics divide into two classes, linearly

bounded and superlinear cost functions. The first ones are lowerbound by a linear

function, while for the latter there exists no such function. A theoretical result

from ref. [19] reveals that for any localized memoryless routing algorithm A,

there exists a node configuration where the cost of the path produced by A is

unbounded with respect to the path produced by the shortest weighted-path algor-

ithm if a superlinear cost function is considered. Thus, discussion of asymptotic

optimality is reasonable only if restricted minimum node distance, maximum

node degree, or linearly bounded cost metrics are considered. Standard cost metrics

like hop count or Euclidean distance are linearly bound from below, while energy

metrics defined as a polynomial da, with a . 1 and d being the distance between

sender and receiver, fall into the class of superlinear functions. However, as dis-

cussed in Section 12.5, “Routing with Energy-Aware Cost Metrics,” from a practical

point of view even energy-aware metrics are often considered to be of the form

da þ c, with c . 0, and are thus linearly bound in practice.

In order to prove asymptotic optimality for linearly bound cost metrics and arbi-

trary unit-disk graphs, Kuhn et al. described an improved version of GOAFRþ,

which utilizes a routing backbone instead of using all possible edges from the

12.4 MEMORYLESS GUARANTEED DELIVERY 393

unit disk graph. Before routing takes place GOAFRþ precomputes a subgraph of the

unit disk graph that forms a connected dominating set of bounded degree. The dis-

tributed construction of such a graph structure is not described in ref. [19], but it is

referred to in existing methods described in refs. [20–22]. Similar to GFG-I, the

execution of GOAFRþ is restricted on the routing backbone, that is, a message is

first sent to a dominating set member (if necessary), and from there on routing

takes place along the routing backbone only until reaching a dominating set

member that has the final destination D in its neighborhood.

12.4.3 Routing Along Geographical Clusters

Typical sensor network scenarios assume that sensor nodes are densely deployed in

the monitored area. Greedy routing algorithms applied on uniformly distributed and

densely deployed network nodes perform close to the shortest-path algorithm and

are thus the first choice for such a scenario. However, even for densely deployed net-

work nodes a recovery strategy may still be necessary, since greedy forwarding

might get stuck at convex network boundaries or at network voids resulting from

an inhomogeneous node distribution. Such an inhomogenity may be due to the phys-

ical properties of the monitored surface (e.g., a lake inside the monitored area where

sensor nodes cannot be deployed).

Frey and Görgen [23] observed that such an inhomogeneous node distribution

can have a significant impact on the recovery strategy being applied. Simulation

experiments show that performance of face routing and the internal nodes concept

may even degrade when node density is increased in a network scenario with an

inhomogeneous node distribution. On the other hand, face recovery in combination

with the shortcut procedure is almost unaffected by such an inhomogenity. However,

the shortcut procedure has an increased message complexity compared to face

routing or the internal nodes concept, since information about all 2-hop neighbors

is required.

Frey and Görgen [23] described the geographic cluster routing (GCR) algorithm,

which is based on the concept of GFG and assumes that the network is modeled as a

unit-disk graph in the 2D Euclidean space as well. Routing in GCR is not performed

on a per-node basis, but packets are forwarded along the edges of adjacent geo-

graphical clusters. In order to define geographical clusters, the plane is partitioned

by an infinite mesh of regular hexagons (see Fig. 12.5), while each hexagon defines

one cluster. Two geographical clusters C1 and C2 are denoted as adjacent, if there are

at least two connected nodes with one located in C1 and the other located in C2. The

graph resulting from adjacent clusters is not necessarily planar, thus, before face

routing can be applied, a planar subgraph has to be extracted in advance. This is

obtained by a variant of the localized planar graph construction applied by GFG.

However, the method used by GCR may produce a disconnected subgraph even

when the original graph is connected. Thus, in contrast with GFG and its variants,

GCR cannot guarantee delivery, even if there is a path from source to destination.

However, simulation results reveal that the delivery rate quickly tends to 100%

when network degree is increased. In particular, in densely deployed networks

394 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

GCR achieves a comparable performance to that of GFG combined with the shortcut

procedure. However, message complexity is significantly decreased to an exchange

of one-hop neighbor information only. Thus, GCR is a good choice to apply as a

recovery strategy in densely deployed sensor networks.

12.4.4 Multicast Routing

A sensor network request may simultaneously address several different network

nodes or network regions. This can be achieved by sending a unicast message to

each individual entity. However, a resource-saving multicast strategy may be the

better choice in order to reduce the bandwidth requirement when the same packet

has to be delivered to multiple destinations. The majority of multicast protocols

addressed to wireless networks require a distribution structure for the delivery of

multicast messages. Mauve et al. [24] described a quasi-stateless protocol that

achieves multicast addressing based on destination positions and neither requires

construction and maintenance of a distribution structure nor resorts to some sort

of flooding. The proposed position-based multicast (PBM) algorithm is a generali-

zation of the GFG algorithm, with rules for splitting multicast greedy packets and a

repair strategy for concave nodes that includes one or more addressed destinations.

Minimizing the path length for individual nodes and reducing the total number of

message transmissions are two desirable and potentially conflicting properties of

multicast forwarding strategies. The greedy routing part of PBM utilizes a localized

criterion aimed at optimizing both objectives. In order to achieve short path lengths,

greedy routing may select for each destination D the neighbor node that is closest to

D. Applied as the sole optimization criterion, this strategy would lead to splitting

message forwarding as soon as there is no single node that is optimal with respect

to progress toward all destination nodes. Thus, while this criterion is a good

Figure 12.5 Geographic cluster routing explores the faces resulting from a planar graph

extracted from the graph defined by all connected clusters.

12.4 MEMORYLESS GUARANTEED DELIVERY 395

choice to minimize the path length for individual nodes, the total number of message

transmissions remains suboptimal. On the other hand, reducing bandwidth usage can

be obtained by sending along a single path as long as possible, that is, the message

will be duplicated only if no neighbor node exists that is closer to all the destination

nodes considered. However, it can be observed that splitting a packet too late may

again increase the total number of hops.

Mauve et al. derived an optimization criterion for greedy multicast forwarding

that combines both objectives into one expression. The function described in ref.

[24] depends on a parameter l within [0, 1] that can be used to bias the expression

between both extremes. A value close to 0 will result in splitting a message as soon

as possible, while the total number of single-hop transmissions is likely to decrease

when l is increased up to a value s , 1. Simulation results show that there exists an

optimal value for l within [0, 1] regarding the total network load produced.

Greedy multicast forwarding may arrive at nodes with no node closer to some of

the addressed destination nodes. Thus, similar to unicast greedy routing, a recovery

strategy must be employed in order to guarantee delivery to all destination

nodes. Mauve et al. generalized the face routing algorithm to support message

forwarding with multiple destinations. If a node has no neighbor with forward pro-

gress with regard to one or more destination nodes, face recovery will be invoked for

all these destinations, while all other destinations are handled in a greedy mode

further on. Face recovery is started by sending the recovery packet to the next

edge in a counterclockwise direction to the line connecting the current node and a

virtual position averaged over all affected destination nodes. A node receiving a

recovery packet checks to see if it is closer to some of the destinations addressed

by the packet. For all destinations where the receiving node is closer than the

node where face routing was invoked, the packet will revert to the greedy mode

again. For all remaining destinations face recovery is continued by transmitting to

the next edge in a counterclockwise direction from the last edge at which the

packet arrived.

Splitting a packet into a greedy and a recovery copy may lead to redundant mess-

age transmissions, since the greedy packet and the recovery packet may travel the

same edges for some hops. In order to reduce the load due to such redundant trans-

missions, PBM combines the greedy and recovery packet in one transmission as

long as possible, that is, the greedy packet will follow the path of the recovery

packet as long the next hop node selected by face exploration also provides progress

toward all destinations addressed by the greedy packet.

12.4.5 Routing Toward a Single Information Sink

All known memoryless routing strategies for arbitrary sender/receiver pairs resort to
some variant of face traversal in order to provide guaranteed delivery in a connected

network. However, for a typical sensor network scenario where each sensor node is

aware of the location of a single information sink D, a quasi-stateless alternative

(some nodes do need to memorize some information to facilitate routing) to face

routing has recently been proposed that enables a reliable traffic flow from each

396 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

sensor node toward D. The partial-partition avoiding geographic routing (PAGER)

algorithm by Zou et al. [25] is a two-phase distributed and stateless construction of

an acyclic graph leading toward the information sink D.

In the first phase the algorithm subsequently finds all shadow nodes where greedy

routing toward the information sink would fail. Concave nodes are declared to be

shadow nodes, and recursively other nodes are declared shadow nodes as well. A

node becomes a shadow node when all its neighbors, closer to destination D, already

became shadow nodes. For instance, in Figure 12.6, nodes A, B, and C are shadow

nodes as far information sink D is concerned.

Greedy routing started at nonshadow nodes is always successful when shadow

nodes are ignored. In order to enable successful traffic flow from all sensor nodes,

shadow nodes establish exit pointers as follows. Each shadow node that has a non-

shadow neighbor, or a neighbor with an already established pointer, will point to that

neighbor. Packets originated in shadow nodes will follow the exit pointers until the

first nonshadow node is reached. Routing then follows the greedy strategy until the

final destination D is finally reached. An example is given in Figure 12.6. Nodes B

and C will establish an exit pointer to nodes E and F, respectively. Afterwards, node

A will establish an exit pointer to both nodes B and C. Traffic originated in A will

follow exit pointers until reaching node E for instance. From there on, the packet

will be delivered successfully in greedy mode.

12.5 ROUTING WITH ENERGY-AWARE COST METRICS

Sensor nodes are typically equipped with small low-power batteries, and it is

impossible to recharge them in most sensor network scenarios. Thus, the lifetime

of a sensor network is directly related to the energy consumption produced by the

routing mechanism applied. If sensor nodes are able to adjust their signal strength,

routing algorithms could attempt to reduce power consumption by selecting next-

hop nodes within optimal transmission range. Geographic information can be

incorporated in order to enable a localized computation of the best next-hop node

D

E

A

CB

F

Figure 12.6 The algorithm PAGER establishes an acyclic graph leading toward one

information sink.

12.5 ROUTING WITH ENERGY-AWARE COST METRICS 397

by means of a power metric, which is a function that depends on the distance to the

receiving node. However, a power-metric considers the optimal transmission range

only, thus, single nodes might be selected by many routing tasks, which will result in

their premature failure. Using a cost-metric or a combination of both power- and

cost-metric might cause the nodes remaining battery power to increase the total net-

work lifetime by spreading the energy consumption evenly among all network

nodes. Such energy-aware metrics have been used to define novel energy-aware

routing algorithms, replace traditional link-metrics in existing routing algorithms,

and finally have also implicitly been applied to existing routing protocols by restrict-

ing the selection of next-hop forwarding nodes on an energy-optimized subgraph

that has been constructed in advance.

12.5.1 Making Existing Protocols Energy Aware

The total energy needed for communication between two devices S and D might be

reduced if the communication were relayed over an intermediate node R, while R

and S transmit with the minimal power needed to reach nodes S and D, respectively.

However, possible energy reduction depends on the position of the relay node R and

the additional energy dissipation at the receiving device. This observation was used

by Rodoplu and Meng [26] in order to define the minimum energy communication

network (MECN) algorithm2 that constructs power-optimized paths between a set

of source nodes to one master node (i.e., the information sink in a sensor network

scenario). It is implicitly assumed that each node is able to reach each other node

in the network by transmitting with appropriate signal strength. In order to find

all power-efficient routes to the master node, the algorithm first extracts a sub-

network (termed enclosure graph) containing at least all shortest-path edges (with

respect to the power metric being optimized) leading from source nodes to the

master node. This is achieved by a localized algorithm utilizing position information

about all neighbor nodes and eliminating all nodes A for which it takes less power to

send messages over a relay node instead of sending it directly to A. As a result each

node obtains a reduced set of immediate neighbors, and thus in a second phase opti-

mal routes can be constructed in a more power-efficient way, since communicating

with neighbors in the enclosure graph requires less power than communicating with

all neighbors from the original network. Optimal routes are found in ref. [26] by

applying the distributed Bellman–Ford shortest-path algorithm. Each node calcu-

lates the minimum cost it can attain given the cost values of all its neighbors

from the enclosure graph and the power needed to transmit a message to that neigh-

bor. When the cost value of any neighbor is reduced, the current minimum cost value

is recalculated, and if it was reduced, the new value is announced again to all

immediate neighbors from the enclosure graph. The initial route setup from all

sources to the sink can be obtained by broadcasting from the sink using only the

edge of the enclosure graph, until all sources are reached.

2The algorithm was not termed MECN in the original work. However, this chapter will follow subsequent

publications (e.g., ref. [27]), which referred this algorithm as MECN.

398 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

12.5.2 Localized Power- and Cost-Aware Routing

The majority of energy-aware geographic routing schemes described in the literature

utilizes the distance to neighbors in the vicinity and apply some sort of distributed

shortest weighted path algorithm to that information in order to construct a path from

the source to the final destination. Stojmenovic and Lin [28] were the first investi-

gating localized energy-aware greedy routing algorithms, that is, according to the

greedy routing principle a received message will be forwarded to the best node

regarding the energy metric being optimized.

According to refs. [26] and [29], a general power metric can, depending on node

distances, be derived based to the most common channel model used for radio fre-

quency systems. The received signal power for radio frequency communication

decreases by a factor 1=da (referred to as path loss model), with a � 2 and d denot-

ing the distance between the sending and receiving device. The correct choice of a
depends on the system being used and can be determined from field measurements.

A value of a ¼ 2 is often used to model radio propagation at short distances

(referred as the free-space propagation model), while a ¼ 4 is used for radio trans-

mission at longer distances (referred to as the two-ray ground reflection model).

Additionally, the expression may be normalized by t, which denotes the predetection

threshold at the receiver. Altogether this leads to an expression tda, which denotes

the minimum power the sender has to radiate in order to enable a signal detection at

distance d. Besides power consumption at the sender there is additional power con-

sumption at the receiver that is independent of the distance d and can thus be

described as a constant c . 0. Summing the power expenditure for one signal trans-

mission altogether amounts to tda þ c. (Note: The constant c may also incorporate

additional power expenditure due to computer processing and encoding/decoding
on the sending and receiving devices.)

Assuming that additional nodes can be placed arbitrarily between source S and

destination D, the polynomial power consumption u(d) ¼ tda þ c in case of direct

transmission can be converted to a linear function in d, producing minimal power

consumption. More precisely, there is an optimal number n ¼ dc1 of equally

spaced intermediate nodes producing a minimal total power consumption of

v(d) ¼ dc2, where the constant values c1 and c2 are calculated from the constant

power metric parameters t, c, and a [28]. In reality, it is not possible to insert equally

spaced intermediate nodes. However, assuming that the power consumption for the

rest of the path is equal to the optimal one, this result can be used to define the

power-aware greedy routing algorithm POWER, where each intermediate node S

selects the best next-hop neighbor E closer to the final destination D, which mini-

mizes the sum u(s)þ v(t), with s ¼ jSAj and t ¼ jADj. For example, in

Figure 12.7, node S will select node C as the next forwarding node, since the

power u(s) needed to transmit a message directly to C and the minimal power v(t)

needed to forward the packet over the remaining distance between C and D is mini-

mal compared to all other neighbors.

The theoretical result of the power optimal number of equally spaced intermedi-

ate nodes is directly related to the polynomial power-consumption formula tda þ c.

12.5 ROUTING WITH ENERGY-AWARE COST METRICS 399

If other power metrics were applied (e.g., a metric changing at a reference distance

between free-space propagation and the two-ray ground model) a new theoretical

analysis will be necessary in order to calculate these optimal values again before

the POWER routing algorithm can be applied. In particular, if the power metric is

given by empirical values only, an approximation by an appropriate choice of t

and a may be necessary. Kuruvila et al. [30] proposed a novel power-aware

greedy routing scheme, PowerProgress, which does not suffer from this fact. Let

u(s) be the power needed to transmit a message from node S to neighbor node A

at distance s. If all subsequent forwarding nodes make the same progress toward

the destination, the minimum number of forwarding steps amounts to d=(d � t),

with d being the distance between S and D and t being the remaining distance

between A and D. When each forwarding step consumes the same amount u(s) of

power, the total power consumption will be at least u(s)d=(d � t). Thus, a forward-

ing node applying the PowerProgress routing strategy will select the neighbor node

A that minimizes u(s)=(d � t) (with t , d), that is, the power spent per unit of pro-

gress made in terms of getting closer to the destination D (see Fig. 12.7).

Additionally, the IPowerProgress algorithm, which is an iterative refinement of

the optimal node found by the PowerProgress method, was described by Kuruvila

et al. In the first iteration step a node S applies the PowerProgress selection criterion

in order to find the optimal next-hop node E regarding the distance between S and

final destination D. However, sending the packet to node E may still be optimized

locally, that is, it might still be more power efficient to send the packet over a

relay node instead of sending it directly to E. Thus, the next iteration step selects

(if possible) a neighbor F of both S and E, which has a distance to D less than the

distance between S and D and which minimizes the sum R of power needed to

send from S to F and finally from F to E. However, the relay node F is selected

only if the power r needed to relay the packet is less than sending it directly to E.

If such a node F is found, the original next hop node E is replaced by F and the itera-

tive refinement method is applied again. The procedure repeats until no better node

can be found and the packet is sent to the last optimal relay node found. Note that the

node E, which was found initially, is not necessarily visited by the selected routing

S uu

u

A

uu
u (s)

B

v (t)
C

D

Figure 12.7 S selects nodes C, A, and B in the POWER, PowerProgress, and IPowerProgress

methods, respectively.

400 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

path. An example of the algorithm is depicted in Figure 12.7. First, node Swill select

A according to the PowerProgress method. However, there is an optimal relay node

B producing less power consumption than would be spent by sending directly to

node A. The algorithm will terminate at node B, since there is no additional node

U that would further improve the power consumption when sending to B over

relay node U.

Kuruvila et al. [30] also defined the ProjProgress and IProjProgress algorithms,

which differ from PowerProgress and IPowerProgress in terms of measuring the pro-

gress made in each routing step. Instead of calculating distances, the progress made

by the projection of neighbor node A onto the line SD connecting source node S with

destination node D is considered. A node S, applying the ProjProgress, will forward

a message to the neighbor node A, minimizing the expression u(s)=(SD � SA), where
SD � SA denotes the dot product of vectors SD and SA (cf. difference between MFR

and GREEDY). The IProjProgress method is very similar to IPowerProgress, but

differs in the first iteration step, which selects the best node by applying the

ProjProgress method instead.

Singh et al. [31] have observed that minimizing hop count, delay, or the power

consumption of the paths produced by routing algorithms may be misguided in

the long term. A longer path passing through nodes that have plenty of energy

may be a better solution in terms of total network lifetime. In order to avoid

energy-critical nodes and to maximize the number of successful routing tasks, a

cost metric f (A) expressing a node’s reluctance to forward a packet is defined in

ref. [31]. It is an expression proportional to the inverse of the node’s remaining bat-

tery power, thus, a node’s reluctance increases significantly when its battery power

approaches 0. Stojmenovic and Lin [28] proposed a localized algorithm, COST,

which is based on that cost metric. The cost to route a packet addressed to D via

a neighboring node A is the sum of the cost f (A) and the estimated cost produced

to send along the remaining distance between node A and final destination D. The

cost of the remaining path is assumed to be proportional to the number of hops

between A and D, which in turn can be estimated as td=R, with d being the distance

between A and D, R expressing a node’s sending radius, and time t set to an appro-

priate value (empirical results showed t ¼ f (A) to be a good performing definition).

A node holding a packet addressed to D will select a next-hop node A closer to the

destination, which minimizes the expression c(A) ¼ f (A)þ td=R (with d ¼ jADj).
In their recent paper, Kuruvila et al. [30] also investigated the principle of pro-

portional progress in combination with the cost metric defined in ref. [31] and

defined the CostProgress routing scheme, which selects the forwarding neighbor

closer to the destination, which minimizes f (A)=(d � x). An iterative improvement

like IPowerProgress cannot be defined for CostProgress, since the overall cost

increases by adding intermediate nodes on a path.

Stojmenovic and Lin [28] also investigated combinations of power and cost

metrics in one expression in order to achieve both objectives, reducing energy dis-

sipation of the current message forwarding and increasing total network lifetime for

many routing tasks. A multiplicative expression termed power/cost metric can be

defined as powercost(S,A) ¼ f (A)u(r) (with r ¼ jASj and u(r) ¼ ra þ c). Based

12.5 ROUTING WITH ENERGY-AWARE COST METRICS 401

on that metric, a forwarding node running the PowerCost routing algorithm will

select the neighbor node A, minimizing the expression powercost(S,A)þ
v(d) f 0(A) with r ¼ jSAj, d ¼ jADj, and f 0(A) being the average reluctance of A

and its neighbors. A simpler algorithm is proposed in ref. [30], by selecting a neigh-

bor that minimizes powercost(S,A)=(jSDj � jADj) (the algorithm is named Power-

Cost Progress). The ProjPowerCostProgress proposed in ref. [30] applies the same

metric, but a node S will forward a message to the neighboring node A closer to the

destination, which is minimizing the expression powercost(S,A)=(SD � SA). Finally,
similar iterative versions of to Power-Cost Progress and ProjPowerCostProgress

protocols are also described in ref. [30].

12.5.3 Energy-Aware Guaranteed Delivery

The localized energy-aware greedy routing algorithms described so far do not guar-

antee delivery even if there is a path from source to destination. Stojmenovic and

Datta [32] investigated a combination of face routing with power, cost, and

power/cost greedy routing algorithms (called PFP, CFC, and PcFPc, respectively),

which guarantee delivery in connected unit-disk graphs. More precisely, routing will

start with a power-, cost-, or power/cost routing scheme, respectively. As with GFG,

a message that encounters a concave node E also will be handled by the face routing

mechanism until the final destinationD is reached or a node having a neighbor that is

closer to D than the distance between E and D is found. In the latter case, the mess-

age is sent to the best of these neighbors and is again handled by the corresponding

PFP, CFC, or PcFPc routing method. The choice of such nodes enables it to be

proved that the combined routing mechanism remains loop-free and guarantees

delivery.

Energy savings of PFP, CFC, and PcFPc result from the energy efficiency of the

greedy methods being applied when not in recovery mode. An additional perfor-

mance gain can be achieved by providing energy awareness in recovery mode,

too. Stojmenovic and Lin [32] investigated the impact of CDS construction on the

energy-efficiency of PFP, CFC, and PcFPc. A static selection of CDS results in a

shorter lifetime of nodes from CDS, which ultimately leads to a shorter lifetime

of the whole network. Thus, with the same argument applied to cost-routing, a

cost metric might be applied to the construction of the dominating set, taking the

node’s remaining battery power into consideration. This kind of energy-aware

dominating-set construction has been proposed by Wu et al. [33]. Roughly, the

algorithm is an extension of the basic distributed dominating-set construction

from ref. [34], where the energy level of each node serves as the primary key

when comparing two identifiers for a decision about including a CDS (the details

are in Chapter 11 in this book).

An additional improvement has been achieved in ref. [32] by applying the short-

cut procedure during the recovery mode of PFP, CFC, and PcFPc. In contrast to the

original shortcut procedure, the forwarding node considers an energy metric instead

of a hop-count metric. To apply this shortcut procedure, 2-hop neighbor information

is required.

402 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

12.6 BEACONLESS ROUTING

The greedy forwarding mechanisms described need periodic hello messages (bea-

coning) transmitted with maximum signal strength by each node in order to provide

current position information to all one-hop neighbors. This proactive component of

greedy routing leads to additional energy consumption, which occurs independently

of current data traffic.

Heissenbüttel and Braun [35] proposed the beaconless routing (BLR) algorithm.

The contention-based forwarding (CBF) by Füssler et al. [36] and implicit geo-

graphic forwarding (IGF) by Blum et al. [37] implement the same idea, focusing

on the integration of BLR with the IEEE 802.11 MAC layer. Since no beacons

are transmitted, a node, currently holding the packet with the known destination,

is generally not aware of any of its neighboring nodes and simply broadcasts a

data packet. The main idea of BLR is that each neighboring node receiving the

packet calculates a small transmission time-out before forwarding the packet,

depending on its position relative to the last node and the destination. The node

located at the “best” position introduces the fewest delays and retransmits the

packet first. The remaining nodes then cancel the scheduled packet.

For example, in Figure 12.8, node B is closest to the destination D, but its trans-

mission is not heard by node F, also closer to destination than S. To ensure that all

potential forwarding nodes detect this transmission, only nodes within a certain for-

warding area may be allowed as candidate nodes for the next forwarding step. The

forwarding area has the property that each node is able to overhear the transmission

of every other node within that area. Heissenbüttel and Braun show that the circle

with a diameter equal to the transmission radius, centered at the line SD with S as

one endpoint (the dotted circle in Fig. 12.8) is a good forwarding area with regard

to progress and successful hops before greedy routing fails. Several delay functions

are investigated, resulting in different forwarding behavior.

The authors of ref. [36] also propose a technique called the active selection

method. A forwarding node sends a control packet instead of the full message to

all its neighbors. Neighbors that provide forward progress respond after a time-out

S

A

B

E

F

G

H

C
D

Figure 12.8 A possible forwarding region for BLR.

12.6 BEACONLESS ROUTING 403

that depends on their distance to the destination. If a neighbor hears another neigh-

bor’s response, it does not respond itself (it is suppressed). The forwarding node then

sends the full message, indicating which of its neighbors will forward the message.

In a similar way, Zorzi [38] proposed to avoid duplicate forwarding in a BLR

scheme by applying the request-to-send/clear-to-send (RTS/CTS) MAC scheme

known from IEEE 802.11. The current node sends an RTS signal instead of the

message. Afterwards, the node waits for a node to respond with a CTS signal. If sev-

eral responses are received, the node selects the one that appears to be the best for

forwarding and then sends the packet to that neighbor directly.

The principle of sending a control message before selecting the appropriate next-

hop node can also be applied in order to describe a beaconless GFG (or alternative

protocol, for example, beaconless GOAFRþ) scheme [39]. If no CTS signal is

received, the node assumes that no neighbor closer to the destination exists and

sends another RTS packet to enter the recovery mode. The following procedure is

repeated at each intermediate node S during the recovery phase of the beaconless

GFG protocol. Each receiving neighbor of S sets a time-out based on the distance

to S, so that closer neighbors have a smaller time-out, following the preference of

the localized planar graph extraction method. All neighbors participate (including

those closer to the destination) in competing for the forwarding neighbor for recov-

ery mode. When the time-out at neighbor A expires, A makes a decision whether or

not to report to S. If A heard a transmission from any node B such that B is located

inside the circle with diameter AS, then A cancels reporting to S. Otherwise, A

reports. Note that A reports even if it learns in the process that it will not be selected

as forwarding neighbor, because its report may prevent other nodes, not in GG, from

falsely reporting to S, which may contribute to the wrong choice of forwarding

neighbor at S. After receiving all replies from GG neighbors, node S selects,

among all neighbors from the GG, the one that creates the smallest angle in relation

to the incoming packet direction, in the direction decided (clockwise or counter-

clockwise), following the GFG (or alternative, e.g., GOAFRþ) scheme.

12.7 PHYSICAL-LAYER IMPACT ON ROUTING

Almost all existing literature on geographic routing uses the unit-graph communi-

cation model, which does not take into account random variations in received

signal strengths. It was demonstrated by Schmitz et al. [40] that signal-strength fluc-

tuations have a significant impact on ad hoc network performance metrics, some-

times “outperforming” the impact of node mobility. Thus, nondeterministic radio

fluctuations cannot be ignored when designing robust ad hoc network protocols

based on ad hoc network simulation and analysis. For instance, in order to find

the positions of neighbors, nodes need to resort to a hello message exchange. This

is a simple procedure in the unit-graph model, accomplished by each node sending

one hello packet, which is then received by all neighbors located within transmission

radius R. However, with a realistic physical layer, hello message operation requires a

closer look [41].

404 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

Independent of the physical-layer model being used (e.g., the combined Friis

and two-ray ground model used in ref. [45] or the log normal shadowing model

used in ref. [41], protocols dealing with physical-layer impact require nodes to esti-

mate the probability of receiving a bit or a packet based on either signal strength,

distance between nodes, or merely by deriving statistics from a number of bits or

packets recently sent between two nodes. The basic property of each of realistic

physical modeling is a rapidly decreasing packet reception probability. For example,

in the shadowing model used in ref. [41], the packet reception probability p(x)

depends on the probability of receiving a bit successfully, the length of the

packet, and the distance x between two nodes. Suppose R can be determined

in that way, so that the packet error rate at distance R is 0.5. Then the function

p(x) may have approximately the following values: p(0) ¼ 1, p(0:1R) � 1,

p(0:5R) � 0:9, p(R) ¼ 0:5, p(1:5R) � 0:25, and p(2R) ¼ 0. The given values are

only an illustration, but give a sufficient intuition on how to design physical

layer–aware routing schemes.

Kuruvila et al. [42,43] described geographic routing schemes that are amenable

to any realistic physical-layer model (which follows the basic properties of the wire-

less medium) and consider two basic medium access-layer approaches, with fixed

and variable packet lengths, while cases both with and without acknowledgments

are being considered. The described methods assume that all nodes use the same

transmission power for sending messages, and, in most cases, optimize the expected

(packet or bit) hop count on a route. In the case of routing without acknowledg-

ments, the goal is to find the route with the maximal probability of delivering a

packet at the destination.

In order to apply position-based routing, the first step is to find a reasonably accu-

rate approximation for the bit and packet reception probabilities for the given

physical-layer model. In refs. [42] and [43], Kuruvila et al. considered the lognormal

shadowing model and used the following function P(q, x) as an approximation

within 5% accuracy of the actual one. The functions P(q, x) ¼ 1� (x=R)qb=2 for x ,
R and P(q, x) ¼ (2� x=R)qb=2 otherwise, where b is the power attenuation factor

(between 2 and 6). The constant R is determined so that the value of the considered

probability at distance R is P(q,R) ¼ 0:5. The value q depends on the length of the

considered entity. Bit reception probability is b(x) ¼ P(1, x), while, for instance, for

packets 120 bits long the packet reception probability is p(x) ¼ P(2, x). The reason

for using the approximation rather than the actual function is to reduce computation

time at each node (if the protocol is used in practice) and in order to simplify the

analyses and simulation of the protocol.

First, consider the case of routing with fixed-size packets and acknowledgments

using the same packet size. If the acknowledgments are of a different packet size, the

algorithms described are still applicable by changing only the corresponding for-

mulas involving acknowledgments. Let C be the node currently holding the mess-

age, D be destination node, A the forwarding neighbor considered, c ¼ jCDj,
a ¼ jADj, and x ¼ jCAj (see Fig. 12.9). Several localized position-based algorithms

are described in ref. [42]. The following discussion describes only the best per-

forming ones, which also apply a general design principle. The progress made by

12.7 PHYSICAL-LAYER IMPACT ON ROUTING 405

forwarding from C to A is c� a, and this progress is probabilistic. In the aEPR

(expected progress routing) algorithm [42], the node C currently holding the

packet will forward it to a neighbor A (closer to the destination than itself), which

maximizes the expected progress, which is the product of the probability of success-

ful delivery and acknowledgment of the packet from C to A (which is p2(x)) and the

progress made (c� a) by forwarding to A. Thus in aEPR, the neighbor A that maxi-

mizes p2(x)(c� a) is selected.

The progress that can be made by sending a packet to A can also be considered

with respect to the cost measure for making this progress. The cost measure con-

sidered is the expected hop count. The expected hop count depends on the distance

and the selected number u of acknowledgments. The progress made could be

measured in different ways. In the aEPR-1 algorithm [42], the node C currently

holding the packet will forward it to a neighbor A (closer to the destination than

itself), which maximizes the ratio of expected progress and the cost of the progress

made. Since the considered cost, the expected hop count, is 1=p(x)2 þ 1=p(x),
aEPR-1 will select the neighbor A, which maximizes (c� a)=(1=p(x)2 þ 1=p(x)).
This derivation is based on a single acknowledgment for each packet, which is

best only if packet reception probability is over 0:5. The optimal number of

acknowledgment retransmissions u is approximated as u � 1=p(x). The expected

hop count is then f (u, x) ¼ 2=(p(x)(1� (1� p(x))u)). This variant, called aEPR-u,

selects the neighbor that maximizes (c� a)=f (u, x).
The iterative EPR (IaEPR) algorithm is an improved variant of aEPR-u. The algo-

rithm can be described as follows. As in aEPR-u, the node C currently holding a

message will first find a neighbor A that maximizes (c� a)=f (u, x). Then, an inter-

mediate common neighbor node B (closer to the destination than C, if it exists,

b ¼ jBDj) is found, which minimizes f (u1, jCBj)þ f (u2, jBAj), where u1 �
1=p(jCBj) and u2 � 1=p(BAj). If f (u1, jCBj)þ f (u2, jBAj) , f (u, x), then B becomes

the new forwarding neighbor, taking the role of A. This process is iteratively repeated

until no improvement is possible. Node C will forward the message to the selected

neighbor A, which then again applies the same scheme for its own forwarding.

Consider now the model that does not have hop-by-hop acknowledgments.

Localized protocols for this model are described in ref. [43]. It was proved in ref.

[43] that the packet delivery rate approaches 1 if a large number of intermediate

nodes is placed between the source and the destination nodes at distances between

x

C
c

A

D

a

Figure 12.9 Several physical-layer optimized localized routing schemes can be defined by

considering the probability of a successful transmission p(x) and the progress c� a.

406 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

consecutive hops approaching 0. Following this observation, a localized algorithm

can be described as in ref. [43]: The node C currently holding a message will for-

ward it to its nearest neighbor A, which is closer to the destination than itself. The

process continues until the destination is reached or a node is reached that has no

neighbor closer to the destination.

A somewhat better performance is obtained by the following alternative scheme

[43]. The progress made by forwarding from C to A is c� a. This progress is

probabilistic. In the non-acknowledged EPR (nEPR) algorithm [43], the node C

currently holding a message will forward it to a neighbor A (closer to the destination

than itself), which maximizes the expected progress, which is the product of the

probability of successful delivery p(x) of the message from C to A and the

progress (c� a) made by forwarding to A. Therefore, the neighbor A that maximizes

p(x)(c� a) is chosen to forward the message.

The iterative EPR (InEPR) algorithm [43] is an improved variant of nEPR. The

algorithm can be described as follows. As in nEPR, the node C currently holding a

message will first find a neighbor A that maximizes p(jCAj)(jCDj � jADj). Then, if it
exists, an intermediate node B (closer to the destination than C and a neighbor to

both C and A) is found that satisfies p(jCBj)p(jBAj) . p(jCAj) and has the maximum

p(jCBj)p(jBAj) measure. If found, then B becomes the new forwarding neighbor,

taking the role of A. This process is iteratively repeated until no improvement is

possible. Node C will forward the message to the selected neighbor A, which then

again applies the same scheme for its own forwarding.

Now consider the case of variable packet lengths on each hop, and routing with

hop-by-hop acknowledgments [44]. The localized algorithms described remain the

same, with the following differences. Instead of the expected hop count in terms of

packets, the schemes measure the expected number of transmitted bits. The expected

hop count f (u, x) in aEPR-u and IaEPR is replaced by the expected bit count g(b, k)

for routing with acknowledgments. If the aEPR variant is considered, then the-

criterion maximizing p2(x)(c� a) is replaced by the criterion maximizing g(b, k)

(c� a). Observe here that k, the packet length corresponding to the optimal expected

bit count g(b, k) (determined in ref. [45]), is not a constant, since each neighbor,

being at a different distance, has its own optimal value for k. The case of variable

packet length and routing without hop-by-hop acknowledgments was also con-

sidered in ref. [44].

The algorithms described so far are physical layer–based solutions for greedy

position–based routing. Routing with guaranteed delivery for the unit-graph

model and an ideal MAC layer, as described in ref. [13], applies greedy routing

as long as possible, and when a node has no neighbor closer to the destination

than itself, it resorts to face-recovery mode until a node closer to it is found. The

recovery procedure is based on a planar graph locally defined. This procedure can

be adapted to the physical layer in a straightforward manner. The edges of the

planar graph are normally short ones, and therefore have relatively high reception

probabilities. They are therefore good choices for edge selection. Thus, the recovery

mode for the physical-layer impact routing may proceed in the same way as in the

unit-graph model. Only greedy mode needs to be changed.

12.7 PHYSICAL-LAYER IMPACT ON ROUTING 407

Finally, beaconless routing can be adapted to the physical layer by modifying

the criterion for selecting the best forwarding neighbor and the appropriate

time-out. The time-out can be based on the formulas already described here for

selecting the best forwarding neighbor. If a given node announces the request

for forwarding the packet several times, the best forwarding neighbors will receive

it, and the best will respond a few times to make sure the response was received

and it was selected.

EXERCISES

12.1 Show that any greedy routing algorithm that selects only nodes closer to the

destination is always loop free. Find a representation of MFR in terms of the

dot product and show in a similar way that MFR is also a loop-free routing

scheme. Finally, construct an example where DIR will end in a packet

loop [5].

12.2 Suppose a node configuration S ¼ (0, 0), A ¼ (1, 1), B ¼ (1,�1), and D ¼
(3, 0) ((x, y) represents the node position), while nodes S, A, B can mutually

reach each other and node D is disconnected from all other nodes. Show that

MFR forwarding from node S toDwill end in a loop and that such a loop can

also be constructed even when there is a path from source S to destinationD.

Explain why this does not contradict the proof of the loop-free property of

MFR [5] and show how this loop can easily be repaired in a practical

implementation.

12.3 The GEDIR [5] algorithm is an improvement of GREEDY that considers all

(i.e., even those in the reverse direction) neighbor nodes and selects the node

closest to the final destination. A message is dropped if it would be sent back

to the node where it was previously sent from. Show that GEDIR is a loop-

free routing algorithm and construct an example where GEDIR is successful

while GREEDY is not.

12.4 The nearest with forward progress (NFP) algorithm [2] is a progress-based

routing strategy which selects the neighbor with least forward progress as

the next hop node. Investigate whether the method provides loop-free oper-

ation or if there is a node configuration where this routing strategy will pro-

duce a packet loop.

12.5 Derive an expression that estimates the expected forward progress of MFR

applied on uniformly spatial distributed network nodes [46]. Use this

expression to estimate a lower bound on the average number of hops pro-

duced by MFR when routing a packet over a distance d.

12.6 Greedy routing is often used as a single-path strategy, that is, at any time

there is only one instance of the message in the network. In contrast, loca-

lized multipath strategies perform routing along a few recognizable paths

408 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

simultaneously. Extend the GREEDYmethod presented to a multipath strat-

egy that forwards the packet along c recognizable paths (however, paths can

have edges in common). Define the different rules for nodes receiving the

same greedy packet more than once [47].

12.7 Restricted directional flooding allows each intermediate node to forward a

packet to possibly more than one neighbor lying in the general direction

of the final destination [48,49]. Suppose the destination node D is located

somewhere inside a circle C centered at the last known position of D.

Apply the concept of restricted directional flooding and generalize dis-

tance-, progress-, and direction-based greedy routing methods in order to

address all possible destination locations within the circle C [50].

12.8 Show that in a sensing covered network with the double-range property any

node U lying within the Voronoi region Vor(V) is also covered by node V.

Use this result in order to prove that the Delaunay triangulation is always a

subgraph of a sensing covered network with double-range property.

12.9 Show that the combination of GREEDY with the recovery strategy FACE

is a loop-free routing strategy, while GEDIR and FACE may produce a

packet loop.

12.10 Construct an example to show that face routing may not be successful in a

connected unit-disk graph if it is applied in a subgraph that is not planar.

12.11 Suppose a weakened planar graph construction where the edges do not inter-

sect in one intersection point but where collinear edges may intersect. Is face

traversal always successful in such a graph construction?

12.12 Assume the following simple implementation of face routing. Face traversal

is always performed in the clockwise direction. When face exploration

encounters an edge intersected by the straight line connecting the last inter-

section point and final destination D, the next face is determined by simply

skipping the intersected edge and continuing face exploration with the next

edge clockwise from the intersected edge. Give an example where this

simple implementation of face routing will lead to a packet loop. What

additional condition must be checked in order to provide a loop-free oper-

ation of this algorithm?

12.13 It can be observed that face routing can produce a forwarding loop when the

network topology changes due to node mobility. Show that both adding a

new edge and removing an edge during face traversal may lead to a

packet loop. Find a solution utilizing the creation time of both message

and edges that will guarantee loop-free operation in the case where new

edges are added during face traversal.

12.14 Assume a GFG implementation with the following simplified recovery strat-

egy. The current face, which is traversed due to a packet recovery started at a

node A, will never be changed. The recovery strategy will fall back to

EXERCISES 409

greedy mode when arriving at a node B, which lies closer to the destination

D than the distance between A and D. Construct an example planar graph

where this algorithm will end in a loop.

12.15 Construct a family of unit-disk graphs in order to show that any memoryless

geographic routing algorithm with guaranteed delivery can produce a path

of length O(c2), where c is the length of the shortest path [17].

12.16 Addressing all nodes lying within a certain geographical area is termed geo-

casting. Define an algorithm based on planar graph traversal that achieves

geocasting with guaranteed delivery when the area is a circle centered

around a given center position [51].

12.17 The concept of Gabriel graphs [14] can be used to define a localized planar

graph construction for unit-disk graphs. By using information about all

neighbor nodes, a node U preserves an edge to its neighbor V if and only

if the circle with diameter jUV j passing the nodes U and V does not contain

any other neighbor. Show that for a connected unit-disk graph the resulting

subgraph is planar and connected [13].

12.18 The localized planar graph construction from the previous exercise will not

work correctly if the unit-graph property is missing. Give an example where

two neighbor nodes U and V will produce an inconsistent view, that is, node

U will preserve edge UV, while node V will remove that edge.

12.19 Suppose a generalization of the unit-graph concept where any node can have

a sending range that varies within a maximum r and minimum r=
ffiffiffi
2

p
trans-

mission range [52,53]. An edge exists between two nodes if they are

mutually included in their sending ranges (i.e., only bidirectional connec-

tions are considered). Show that by additional message exchange a localized

planar graph construction is also possible for this generalized network class.

Investigate whether localized planar graph construction is also possible for

variations in transmission range ratios that are larger than
ffiffiffi
2

p
.

12.20 Face traversal needs exact location information about neighbor nodes and

the final destination. Construct two examples where planar graph routing

will end in a routing failure due to imprecise location information about

the destination and the neighbor nodes, respectively [54].

12.21 Design and analyze a routing algorithm that will consider two types of

errors: transmission failures (the receiver node is believed to be within

the transmission radius, but it is not), and backward progress (the receiver

node is believed to be closer to destination node than the sender node, but

it is not) [55].

12.22 Planar graph routing applied on the network defined by connected geo-

graphical clusters may suffer from the fact that there are connected node

configurations where any extracted planar graph will be disconnected.

Give an example node configuration that proves this claim [23].

410 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

12.23 Assume a simplified power metric da with a � 2 and d is the distance

between the sender and the receiver. Show that it is always better to relay

traffic along an intermediate collinear node. Does this proposition also

hold if the power metric is extended by an additive constant c . 0?

REFERENCES

1. Hideaki Takagi and Leonard Kleinrock. Optimal transmission ranges for randomly dis-

tributed packet radio terminals. IEEE Transactions on Communications,

32(3):246–257, March 1984.

2. Ting-Chao Hou and Victor O. K. Li. Transmission range control in multihop packet radio

networks. IEEE Transactions on Communications, 34(1):38–44, January 1986.

3. Gregory G. Finn.Routing and Addressing Problems in LargeMetropolitan-Scale Internet-

works. Technical Report ISI/RR-87-180, InformationSciences Institute (ISI),March 1987.

4. Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing on geometric

networks. In Proceedings of the 11th Canadian Conference on Computational Geometry

(CCCG ’99), pages 51–54, Vancouver, Canada, August 1999.

5. Ivan Stojmenovic and Xu Lin. Loop-free hybrid single-path/flooding routing algorithms

with guaranteed delivery for wireless networks. IEEE Transactions on Parallel and

Distributed Systems, 12(10):1023–1032, October 2001.

6. Guoliang Xing, Chenyang Lu, Robert Pless, and Qingfeng Huang. On greedy geographic

routing algorithms in sensing-covered networks. In Proceedings of the 5th ACM Inter-

national Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc ’04),

pages 31–42, Tokyo, Japan, May 2004.

7. Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu, Robert Pless, and

Christopher Gill. Integrated coverage and connectivity configuration in wireless sensor

networks. In Proceedings of the 1st International Conference on Embedded Networked

Sensor Systems (Sensys ’03), Los Angeles, California, November 2003.

8. Chenyang Lu, John A. Stankovic, Tarek Abdelzaher, and Tian He. SPEED: A stateless

protocol for real-time communication in sensor networks. In Proccedings of the 23rd

International Conference on Distributed Computing Systems (ICDCS 2003), Providence,

Rhode Island, May 2003.

9. C. Huang, F. Dai, and J. Wu. On-demand location-aided QoS routing in ad hoc networks.

In Proceedings of the 2004 International Conference on Parallel Processing (ICPP),

pages 502–509, Montreal, Canada, 2004.

10. Xu Lin, Mouhsine Lakshdisi, and Ivan Stojmenovic. Location based localized alternate,

disjoint, multi-path and component routing schemes for wireless networks. In Proceed-

ings of the 2001 ACM Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc 2001), pages 287–290, Long Beach, California, October 2001.

11. Rahil Jain, Anuj Puri, and Raja Sengupta. Geographical routing using partial

information for wireless ad hoc networks. IEEE Personal Communication, pages

48–57, February 2001.

12. Ivan Stojmenovic, Mark Russell, and Bosko Vukojevic. Depth first search and location

based localized routing and QoS routing in wireless networks. Computers and Infor-

matics, 21(2):149–165, 2002.

REFERENCES 411

13. Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing with guaranteed

delivery in ad hoc wireless networks. In Proceedings of the 3rd ACM International Work-

shop on Discrete Algorithms and Methods for Mobile Computing and Communications

(DIALM ’99), pages 48–55, Seattle, Washington, August 1999.

14. K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation

analysis. Systematic Zoology, 18:259–278, 1969.

15. Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless

networks. In Proceedings of the 6th ACM/IEEE Annual International Conference on

Mobile Computing and Networking (MobiCom-00), pages 243–254, New York,

August 2000.

16. Susanta Datta, Ivan Stojmenovic, and Jie Wu. Internal node and shortcut based routing

with guaranteed delivery in wireless networks. In Proceedings of the IEEE International

Conference on Distributed Computing and Systems (Wireless Networks and Mobile

Computing Workshop [WNMC]), pages 461–466, Phoenix, Arizona, April 2001.

17. Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically optimal geo-

metric mobile ad-hoc routing. In Proceedings of the 6th International Workshop on

Discrete Algorithms and Methods for Mobile Computing and Communications

(DIALM-02), pages 24–33, New York, September 2002.

18. Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-case optimal and average-

case efficient geometric ad-hoc routing. In Proceedings of the 4th ACM International

Symposium on Mobile Computing and Networking (MobiHoc 2003), pages 267–278,

Annapolis, Maryland, 2003.

19. Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc

routing: Of theory and practice. In Proceedings of the 22nd ACM International

Symposium on the Principles of Distributed Computing (PODC), pages 63–72,

Boston, Massachusetts, July 2003.

20. Khaled M. Alzoubi, Peng-Jun Wan, and Ophir Frieder. Message-optimal connected dom-

inating sets in mobile ad hoc networks. In Proceedings of the 3rd ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pages

157–164, Lausanne, Switzerland, 2002.

21. Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. Discrete mobile

centers. In Proceedings of the 17th Annual Symposium on Computational Geometry

(SCG), pages 188–196, 2001.

22. Yu Wang and Xiang-Yang Li. Geometric spanners for wireless ad hoc networks. In Pro-

ceedings of the 22nd International Conference on Distributed Computing Systems

(ICDCS ’02), pages 171–180, July 2002.

23. Hannes Frey and Daniel Görgen. Planar graph routing on geographical clusters. Ad hoc

Networks, forthcoming.

24. Martin Mauve, Holger Füßler, Jörg Widmer, and Thomas Lang. Position-Based Multicast

Routing for Mobile Ad-Hoc Networks. Technical Report TR-03-004, Department of

Computer Science, University of Mannheim, Germany, 2003.

25. Le Zou, Mi Lu, and Zixiang Xiong. Pager: A distributed algorithm for the dead-end

problem of location-based routing in sensor networks. In Proceedings of the 13th

International Conference on Computer Communications and Networks (ICCCN ’04),

pages 509–514, Chicago, Illinois, October 2004.

26. Volkan Rodoplu and Teresa H. Meng. Minimum energy mobile wireless networks. IEEE

Journal on Selected Areas in Communications, 17(8):1333–1344, August, 1999.

412 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

27. Li Li and Joseph Y. Halpern. Minimum-energy mobile wireless networks revisited. In

Proceedings of the 2001 IEEE International Conference on Communications (ICC

2001), Volume 1, pages 278–283, June 2001.

28. Ivan Stojmenovic and Xu Lin. Power-aware localized routing in wireless networks.

IEEE Transactions on Parallel and Distributed Systems, 12(11):1122–1133, November

2001.

29. Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-

efficient communication protocol for wireless microsensor networks. In Proceedings of

the 33rd Hawaii International Conference on System Sciences (HICSS-33), Volume 8,

page 8020, Maui, Hawaii, January 2000.

30. Johnson Kuruvila, Amiya Nayak, and Ivan Stojmenovic. Progress based localized power

and cost aware routing algorithms for ad hoc networks. In Proceedings of the 3rd Inter-

national Conference on AD-HOC Networks & Wireless (ADHOC-NOW ’04), pages

294–299, Vancouver, British Columbia, July 2004.

31. Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing in mobile ad hoc

networks. In Proceedings of the 4th Annual ACM/IEEE International Conference on

Mobile Computing and Networking (MobiCom-98), pages 181–190, New York, October

1998.

32. Ivan Stojmenovic and Susanta Datta. Power and cost aware localized routing with guar-

anteed delivery in unit graph based ad hoc networks. Wireless Communications and

Mobile Computing, 4:175–188, 2004.

33. Jie Wu, Fei Dai, Ming Gao, and Ivan Stojmenovic. On calculating power-aware con-

nected dominating sets for efficient routing in ad hoc wireless networks. Journal of

Communications and Networks, 4(1), March 2002.

34. Jie Wu and Hailan Li. On calculating connected dominating set for efficient routing in

ad hoc wireless networks. In Proceedings of the 3rd International Workshop on Discrete

Algorithms and Methods for Mobile Computing and Communications (DIALM ’99),

pages 7–14, Seattle, Washington, August 1999.

35. Marc Heissenbüttel and Torsten Braun. BLR: Beacon-less routing algorithm for mobile

ad-hoc networks. Computer Communications (Elsevier), 27(11):1076–1086, July 2004.

36. Holger Füßler, Jörg Widmer, Michael Käsemann, Martin Mauve, and Hannes

Hartenstein. Contention-based forwarding for mobile ad-hoc networks. Ad Hoc

Networks, 1(4):351–369, November 2003.

37. Brian M. Blum, Tian He, Sang Son, and John A. Stankovic. IGF: A State-Free Robust

Communication Protocol for Wireless Sensor Networks. Technical Report CS-2003-11,

Department of Computer Science, University of Virginia, April 21, 2003.

38. M. Zorzi. A new contention-based MAC protocol for geographic forwarding in ad hoc

and sensor networks. In Proceedings of the IEEE International Conference on Communi-

cations (ICC 2004), Volume 16, pages 3481–3485, Paris, 2004.

39. Ivan Stojmenovic. Beaconless Position Based Power Aware Routing and Routing with

Guaranteed Delivery. In preparation.

40. R. Schmitz, M. Torrent-Moreno, H. Hartenstein, and W. Effelsberg. The impact of wire-

less radio fluctuations on ad hoc network performance. In Proceedings of the 4th Inter-

national IEEE Workshop on Wireless Local Networks (WLN 2004), Tampa, Florida,

November 2004.

41. I. Stojmenovic, A. Nayak, J. Kuruvila, F. Ovalle-Martinez, and E. Villanueva-Pena.

Physical layer impact on the design and performance of routing and broadcasting

REFERENCES 413

protocols in ad hoc and sensor networks. Computer Communications (Elsevier),

forthcoming.

42. Johnson Kuruvila, Amiya Nayak, and Ivan Stojmenovic. Hop count optimal position

based packet routing algorithms for ad hoc wireless networks with a realistic physical

layer. In Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc and

Sensor Systems (MASS), Fort Lauderdale, Florida, October 2004.

43. Johnson Kuruvila, Amiya Nayak, and Ivan Stojmenovic. Greedy localized routing for

maximizing probability of delivery in wireless ad hoc networks with a realistic physical

layer. In CD Proceedings of the 1st International Workshop on AlgorithmS for Wireless

And mobile Networks (A-SWAN), Personal, Sensor, Ad-hoc, and Cellular Workshop (at

MobiQuitous), Boston, Massachusetts, August 2004.

44. Ivan Stojmenovic, Amiya Nayak, and Johnson Kuruvila. Design guidelines for

routing protocols in ad hoc and sensor networks with a realistic physical layer. IEEE

Communications Magazine (Ad Hoc and Sensor Networks Series), 43(3):101–106,

March 2005.

45. T. Nadeem and A. Agrawala. IEEE 802.11 fragmentation-aware energy-efficient ad-hoc

routing protocols. In Proceedings of the 1st IEEE International Conference on Mobile

Ad-hoc and Sensor Systems (MASS), pages 90–103, Fort Lauderdale, Florida, October

2004.

46. Pedro Acevedo Contla and Milos Stojmenovic. Estimating hop counts in position

based routing schemes for ad hoc networks. Telecommunication Systems, 22:109–118,

2003.

47. Xu Lin and Ivan Stojmenovic. Location-based localized alternate, disjoint and multipath

routing algorithms for wireless networks. Journal of Parallel and Distributed Computing,

63:22–32, 2003.

48. Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Woodward. A

distance routing effect algorithm for mobility (DREAM). In Proceedings of the 4th

Annual ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom-98), pages 76–84, Dallas, Texas, October 1998.

49. Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (LAR) in mobile ad hoc net-

works. In Proceedings of the 4th Annual ACM/IEEE International Conference on

Mobile Computing and Networking (MobiCom-98), pages 66–75, Dallas, Texas, October

1998.

50. Ivan Stojmenovic, Anand Prakash Ruhil, and D. K. Lobiyal. Voronoi diagram and convex

hull based geocasting and routing in wireless networks. In Proceedings of the 8th IEEE

Symposium on Computers and Communications (ISCC), pages 51–56, Kemer-Antalya,

Turkey, July 2003.

51. Ivan Stojmenovic. Geocasting with Guaranteed Delivery in Sensor Networks. Paper

presented at the International Workshop on Theoretical and Algorithmic Aspects of

Sensor, Ad Hoc Wireless and Peer-to-Peer Networks, Fort Lauderdale, Florida, February

2004.

52. Lali Barriere, Pierre Fraigniaud, Lata Narajanan, and Jaroslav Opatrny. Robust position-

based routing in wireless ad hoc networks with unstable transmission ranges. In Proceed-

ings of the 5th ACM International Workshop on Discrete Algorithms and Methods for

Mobile Computing and Communications (DIALM ’01), pages 19–27, Rome, Italy, July

2001.

414 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

53. Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad-hoc networks beyond

unit disk graphs. In Proceedings of the 2003 Joint Workshop of Foundations of

Mobile Computing (DIALM-POMC), pages 69–78, San Diego, California, September

2003.

54. Karim Seada, Ahmed Helmy, and Ramesh Govindan. On the Effect of Localization

Errors on Geographic Face Routing in Sensor Networks. Technical Report 03-797,

University of Southern California USC, 2003.

55. S. Kwon and N. B. Shroff. Geographic Routing in the Presence of Location Errors.

Submitted for publication.

REFERENCES 415

&CHAPTER 13

Data-Centric Protocols for Wireless
Sensor Networks

IVAN STOJMENOVIĆ

University of Ottawa, Ontario, Canada

STEPHAN OLARIU

Old Dominion University, Norfolk, Virginia

This chapter reviews a number of emerging topics pertaining to a data-centric view

of wireless sensor networks. These topics include data-driven routing, tracking

mobile objects, constructing and maintaining reporting trees, dynamic evolution

of a monitoring region for moving targets (mobicast), disseminating monitoring

tasks, data gathering, receiving reports from a particular area of interest, and send-

ing information and task assignment from a sink to all the sensors inside a geo-

graphic region (geocasting). The chapter also discusses various other issues,

including sensor training options, data aggregation, data storage, as well as

design guidelines for data aggregation and clustering, and rate-based data propa-

gation in wireless sensor networks.

13.1 INTRODUCTION

13.1.1 Sensors and Sensor Networks

Recent technological advances have enabled the development of low-cost, low-

power, and multifunctional sensor devices. These nodes are autonomous devices

with integrated sensing, processing, and communication capabilities. A sensor is

an electronic device that is capable of detecting environmental conditions such as

temperature, sound, or the presence of certain objects. Sensors are generally

equipped with data-processing and communication capabilities. The sensing circui-

try measures parameters from the environment surrounding the sensor and

417

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

transforms them into electric signals. Processing such signals reveals some proper-

ties about objects located and/or events happening in the vicinity of the sensor. The
sensor sends such sensed data, usually via radio transmitter, to a command center

either directly or through a data collection station (a base station or sink). To con-

serve the power, reports to the sink are normally sent via other sensors in a multihop

fashion. Retransmitting sensors and the base station can perform fusion of the sensed

data in order to filter out erroneous data and anomalies and to draw conclusions from

the reported data over a period of time. For example, in a reconnaissance-oriented

network, sensor data indicates detection of a target, while fusion of multiple

sensor reports can be used for tracking and identifying the detected target.

The block diagram of a typical sensor is depicted in Figure 13.1. The function-

ality of the sensing circuitry depends on the sensor capabilities. In general, the

sensing circuitry generates analog signals whose properties reflect the surrounding

environments. These signals are sampled using the analog/digital (A/D) converter
and stored in the on-board memory as a sequence of digital values. The sensed data

can be further processed using a data processor (microprocessor or digital signal

processor (DSP)) prior to sending them over to the base station using the radio trans-

ceiver. The capabilities of the data processor are subject to a trade-off. A powerful

DSP can be advantageous, since it will allow the sensor to transmit only important

findings rather than excessive raw readings. Reducing the sensor’s traffic generation

rate can save the energy consumed by the radio transmitter and can decrease radio

signal interference and collisions among the deployed sensors. On the other hand,

sophisticated data processing can consume significant energy and can be a cost

and a design burden by increasing the complexity of the sensor design. In all

cases, the sensor has to include some control logic to coordinate the interactions

among the different functional blocks. Such a control function also can be performed

by the data processor, if included. Individual sensors have severely limited band-

width and battery power. State-of-the-art sensors use one-to-all communication

provided by omnidirectional antennas and communication on a single common

A/D
converter

Sensing
circuitry

Data processor
and control

Radio
transceiver

Memory
(RAM + ROM)

Antenna
Data

Control

Figure 13.1 The block diagram design of a typical sensor.

418 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

channel (sensors using several frequencies, frequency hopping, or several transcei-

vers and receivers are also being considered). Variants of IEEE 802.11 (designed to

operate efficiently at low poser consumption) are candidate medium-access control

protocols for sensor networks, while Bluetooth appears to be an energy-expensive

solution (Chapter 8 in this book is devoted to medium access). Sensor memory

and processing capabilities are limited. Routing tables, if used at all, must be

small. Data-compression and error-control schemes for sensor networks must be

carefully selected. Secure operation is difficult to provide. There exists a great

risk when using sensors. Sensor nodes can be defective, lost, damaged, compro-

mised, or expired. Sensors in the active state spend considerably more energy

than sensors in the sleep state, as discussed in several chapters in this book.

13.1.2 Applications and Physical Properties of
Wireless Sensor Networks

Once deployed, the sensors are expected to self-configure into a wireless network.

Sensor networks consist of a large number of sensor nodes that collaborate together

using wireless communication and asymmetric many-to-one data. Indeed, sensor

nodes usually send their data to a specific node called the sink node or monitoring

station, which collects the requested information. The limited energy budget at

the individual sensor level implies that in order to ensure longevity, the transmission

range of individual sensors is restricted, perhaps of the order of a few meters. In turn,

this implies that wireless sensor networks should be multihop. An important differ-

ence between wireless sensor networks and conventional networks is that sensor

nodes do not need node addresses (e.g., medium-access control (MAC) address

and Internet protocol (IP) address). In conventional networks (e.g., Internet), the

node address is used to identify every single node in the network. Various communi-

cation protocols and algorithms are based on this low-level naming. However, wire-

less sensor networks are information-retrieval networks, not point-to-point

communication networks. That is, wireless sensor network applications focus on

collecting data, rather than on providing communication services between network

nodes. Node address is not essential for sensor network applications.

Wireless sensor networks are a special case of ad hoc networks. However, there

are several major differences between wireless sensor networks and ad hoc net-

works. To begin, the nodes of a wireless sensor network are generally densely

deployed (e.g., hundreds or thousands of sensors may be placed, mostly at random,

either very close or inside the phenomenon to be studied). Also, the number of nodes

is typically not the same: while there are hundreds or thousands of sensors, the

number of nodes (laptops, personal digital assistants (PDAs), palmtops, etc.) in an

ad hoc network normally ranges from tens to hundreds. The sensors have a larger

failure rate and feature lower data reliability, and are subject to stringent limitations

in the energy budget, computing capacity, and memory. The nodes of an ad hoc

network are normally distinguished by their IP addresses or other identifiers,

while sensors are usually anonymous, lacking fabrication-time identifiers. Conse-

quently, they are being addressed and named using various strategies that either

13.1 INTRODUCTION 419

endow sensors with temporary IDs or else rely on data or position-driven naming.

While ad hoc networks normally rely on topological information in their operation

(e.g., knowledge of one-hop and often times 2-hop neighbors), such information

may not be available in wireless sensor networks simply because of the lack of

IDs at the individual sensor level. In some cases, however, the sensors benefit

from a sense of relative geographic position with respect to the monitored

environment and/or with respect to a sink. Thus, positional information (covered

in Chapter 9 in this book) may be essential in some applications of sensor

networks, although it may not be essential for ad hoc networks.

Depending on the application, different architectures and design goals/
constraints have been considered for wireless sensor networks. We attempt to

capture architectural design issues and highlight their implications on the network

infrastructure and operation models proposed in the literature. We use the routing

protocol as a vehicle for discussion in order to highlight how the infrastructure

has been set to fit the network operational model and to deal with the specific archi-

tectural issue.

There are three main components in a sensor network. These are the sensor

nodes, the sink, and the monitored events. Aside from the few architectures that uti-

lize mobile sensors, most of the network architectures assume that sensor nodes are

stationary. On the other hand, supporting the mobility of sinks, clusterheads (CHs),

or gateways is sometimes deemed necessary. Routing messages from or to moving

nodes is more challenging, since route stability becomes an important optimization

factor, in addition to energy, bandwidth, and the like. The sensed event can be either

dynamic or static depending on the application. For instance, in a target detection/
tracking application, the event (phenomenon) is dynamic, whereas forest monitoring

for early fire prevention is an example of static events. Monitoring static events

allows the network to work in a reactive mode, simply generating traffic when

reporting. Dynamic events in most applications require periodic reporting, and con-

sequently generate significant traffic to be routed to the sink.

An important design consideration is the topological deployment of nodes. This

is usually application-dependent and affects the performance of the communication

protocol. The deployment is either deterministic or self-organizing. In deterministic

situations, the sensors are manually placed and data are routed through predeter-

mined paths. In addition, collision among the transmissions of the different nodes

can be minimized through the prescheduling of medium access. However, in self-

organizing systems, the sensor nodes are scattered randomly, creating an infrastruc-

ture in an ad hoc manner. In that infrastructure, the position of the sink or the CH is

also crucial in terms of energy efficiency and performance. When the distribution of

nodes is not uniform, optimal clustering becomes a pressing issue to enable energy-

efficient network operation. During the creation of an infrastructure, the process of

setting up the network topology is greatly influenced by energy considerations.

Since the transmission power of a wireless radio is proportional to distance squared

or even higher order in the presence of obstacles, multihop routing will consume less

energy than direct communication. However, multihop routing introduces signifi-

cant overhead for topology management and MAC. Direct routing would perform

420 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

well enough if all the nodes were very close to the sink. Most of the time sensors are

scattered randomly over an area of interest, and multihop routing becomes unavoid-

able. Arbitrating medium access in this case becomes cumbersome.

Depending on the application of the wireless sensor network, the data-delivery

model to the sink can be continuous, event-driven, query-driven, and hybrid. In

the continuous-delivery model, each sensor sends data periodically. In event-

driven and query-driven models, the transmission of data is triggered when an

event occurs or when a query is generated by the sink. Some networks apply a

hybrid model using a combination of continuous, event-driven, and query-driven

data delivery. The routing and MAC protocols are highly influenced by the data-

delivery model, especially with regard to the minimization of energy consumption

and route stability. For instance, it has been concluded in that for a habitat monitor-

ing application where data are continuously transmitted to the sink, a hierarchical

routing protocol is the most efficient alternative. This is due to the fact that such

an application generates significant redundant data that can be aggregated en

route to the sink, thus reducing traffic and saving energy. In addition, in the continu-

ous data-delivery model time-based medium access can achieve significant energy

saving, the since it will enable turning off sensors’ radio receivers. Carrier sense

multiple access (CSMA) medium-access arbitration is a good fit for event-based

data-delivery models, since the data are generated sporadically.

In a wireless sensor network, different functionalities can be associated with the

sensor nodes. In the early work on sensor networks, all sensor nodes are assumed to

be homogenous, having equal capacity in terms of computation, communication,

and power. However, depending on the application a node can be dedicated to a par-

ticular special function, such as relaying, sensing, and aggregation, since engaging

the three functionalities at the same time on a node might quickly drain the energy of

that node. Some of the hierarchical infrastructures proposed in the literature desig-

nate a CH different from the normal sensors. While some networks have selected

CHs from the deployed sensors in other applications a CH is more powerful than

the sensor nodes in terms of energy, bandwidth, and memory. In such cases, the

burden of transmission to the sink and aggregation is handled by the CH.

13.1.3 Transport Layer Issues in Wireless Sensor Networks

The transport layer in wireless sensor networks is different from its counterpart in

ad hoc and other types of wireless networks. There are several reasons for this.

First, the reduced amount of traffic in sensor networks implies fewer congestion pro-

blems. Second, traditional end-to-end reliability does not usually apply in wireless

sensor networks. Additionally, acknowledgments consume significant amounts of

energy and are consequently avoided; similarly, the small on-board memory

makes data-significant buffering at the individual sensor nodes level infeasible.

The reliability of individual sensor measurement is low, and the goal is to provide

good reliability of global sensor network measurement. Finally, quality of service

(QoS) issues are of a different type in sensor networks: here it is more important

to provide the reliability of a small amount of information rather than providing

13.1 INTRODUCTION 421

bandwidth or delay guarantees. Therefore, the transport control protocols designed

for wired networks or for other kinds of wireless networks cannot be used for wire-

less sensor networks.

When an event occurs, there is usually a multiple correlated data flow from the

event to sink. A spatial correlation exists among the data reported. Several reports

may arrive at the sink, or several reports can be combined at intermediate nodes

to reduce communication (data fusion). The sink makes a decision on the event

based on these reports, which has a certain degree of collective reliability. The trans-

port-layer problem in wireless sensor networks can be defined concisely as follows:

to configure the reporting rate to achieve the required event detection reliability at

the sink with minimum resource utilization.

13.1.4 Query Processing

In other types of networks, queries are normally address-centric in the sense that

they are sent to an individual node using, for example, IP-based routing. By contrast,

the anonymity of sensors suggests that in wireless sensor networks queries be either

location-centric or data-centric. Queries are addressed to a geographic region rather

than to individual sensors. Since, as we discussed, the sensors do not have unique

IDs, routes are created based on the nature and value of data collected by sensors.

An example of data-driven routing is the response to a query that is asking to

report all sensor readings with temperature over 408C.
Queries can be distinguished along several orthogonal axes. Spatially, queries

may be global and be sent to the entire deployment area, or area-specific, in

which case they are addressed to a geocasting region (where only sensors inside a

geographic region are asked to report), or to multigeocasting regions (where all sen-

sors located inside several geographic regions are asked to report). In terms of the

reporting mechanism there are several possible types of queries. We only mention

the following three: event-driven, on-demand, and persistent. In an event-driven

query, the sensor itself decides when it has something to report (for instance,

when it measures high temperature, which may indicate incipient fire). In an on-

demand query, the request comes from the end user via the sink. In a persistent

query, the end user expresses a long-term interest in an event or a disjunction of

events. The various sensors tasked with answering the persistent query report

whenever a trigger event occurs during the lifetime of the interest.

13.1.5 Data Aggregation in Wireless Sensor Networks

When data are measured or arrive from a neighbor, the sensor needs to decide

whether or not they are important enough to forward them. The coding techniques

used need to minimize the number of forwarded bits. The new data may also be com-

bined with other received data, in order to minimize the number of bits to forward.

Such data aggregation (also referred to as fusion) from multiple sensors is import-

ant, because of severe energy and bandwidth limitations as well as for numerous

other reasons, including reliability. The reliability of individual measurements

422 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

depends on the sensing distance and other factors. For instance, some sensors may

be malfunctioning (there are also some security issues, see Chapter 7 in this book).

The process of data aggregation from multiple sensors is also referred to as colla-

borative signal processing. Some sensors may aggregate data by doing some com-

putation, such as computing the average of received values, computing the sum total

of received values, and computing the largest/smallest of the received values. In

order to maximize efficiency, wireless sensor networks may espouse division or

work and functional specialization of sensors. For example, based on their relative

position and remaining energy level, some sensors may forgo sensing, limiting their

activities to data aggregation and data forwarding, while some other sensors may

engage in a larger spectrum of activities or even in all the activities for which

they qualify. An interesting aspect of the division of work is that it is done dynami-

cally, balancing the load of the various sensors in order to extend as much as poss-

ible the useful life of the network.

13.1.6 Deployment Strategies, Time Synchronization and
Position Awareness

There are several strategies for deploying wireless sensor networks. The sensors can be

embedded in the ambient environment, be embedded in the asphalt covering streets

and highways, in the walls of building, in trees, and so on. They can be placed deter-

ministically by humans or robots, or incorporated in the paint coating walls, or

deployed in a purely random fashion. Most research is devoted to random placement,

where the sensors are dispersed randomly by plane, artillery, humans, or robots.

Further, the initial deployment may be followed by later redeployment, as necessary.

Wireless sensor network self-organization includes a time component. One

aspect of the problem is the time at which each sensor starts to operate. In many pro-

tocols, there exists an implicit assumption that all sensors start to operate at the same

time, which could be preprogrammed, or may be externally decided and communi-

cated. The later option is avoided because sensors need to be in the idle state to

receive any instruction, which is much more energy-consuming compared to the

sleep state (when receivers are turned off). Sensor network operation may require

time synchronization (covered in Chapter 7 in this book), whether or not all sensors

follow the same time or at least have synchronized time slots. Time synchronization

can be provided by a global positioning system (GPS), by collaborative efforts, or

can be achieved by some other means.

Some applications benefit or even require that the sensory data collected by sen-

sors be supplemented with location information, which encourages the development

of communication protocols that are location aware and perhaps location dependent.

The practical deployment of many sensor networks will result in sensors initially

being unaware of their location: they must acquire this information postdeployment.

In fact, in most of the existing literature, the sensors are assumed to have learned

their geographic position. The location-awareness problem is for individual sensors

to acquire location information either in absolute form (e.g., geographic coordinates)

or relative to a reference point. The localization problem is for individual sensors to

13.1 INTRODUCTION 423

determine, as precisely as possible, their geographic coordinates in the area of

deployment. One simple solution to the localization problem is to use a GPS,

where sensors receive signals from several satellites and decide their position

directly. However, for tiny sensors such direct position learning may not be possible

or may not be sufficiently accurate enough (if a GPS signal is not provided with suf-

ficient accuracy) for the assigned task. However, due to limitations in form factor,

cost per unit, and energy budget, individual sensors are not expected to be GPS-

enabled. Moreover, in many occluded environments, including those inside build-

ings, hangars, or warehouses, satellite access is drastically limited.

Since direct reliance of GPS is specifically proscribed, in order to obtain location

awareness individual sensors exchange messages to collaboratively determine their

own geographic position (absolute or relative) in the network. The vast majority of

collaborative solutions to the localization problem are based on multilateration or

multiangulation. These solutions assume the existence of several anchors that are

aware of their geographic position (e.g., sinks or specialized sensors that can

engage in satellite communication). By exchanging messages with their neighbors,

individual sensors can conceivably measure signal strengths and/or time delays in

communication. Some approaches are based on hop-count distances to reference

points. Sensors receiving location messages from at least three sources can approxi-

mate their own locations. For a good survey on localization protocols for wireless

sensor networks, we refer the interested reader to the relevant Chapter 9 in this book.

In some other applications, exact geographic location is not necessary: all that

individual sensors need is coarse-grain location awareness. There is an obvious

trade-off; coarse-grain location awareness is lightweight, but the resulting accuracy

is only a rough approximation of the exact geographic coordinates. One can obtain

this coarse-grain location awareness by a training protocol that imposes a coordinate

system onto the sensor network. Olariu et al. [1] have shown that an interesting by-

product of such a training protocol is that it provides partitioning into clusters and a

structured topology with natural communication paths. The resulting topology will

make it simple to avoid collisions between transmissions of nodes in different clus-

ters, between different paths, and also between nodes on the same path. This is in

contrast with the majority of papers that assume routing along spanning trees with

frequent collisions. In the training protocol of Olariu et al. [1] the deployment

area is endowed with a virtual infrastructure (for details see a dedicated Chapter 4

in this book). To make the presentation self-contained, however, we now outline

the idea. Referring to Figure 13.2, the coordinate system divides the sensor network

area into equiangular wedges. In turn, these wedges are divided into sectors by

means of concentric circles or coronas centered at the sink. The task of training

the wireless sensor network involves establishing:

. Coronas: The deployment area is covered by coronas determined by con-

centric circles centered at the sink

. Wedges: The deployment area is ruled into a number of angular wedges

centered at the sink.

424 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

Individual sensors can acquire the desired coarse-grain location awareness by learn-

ing the identity of the corona and the wedge to which they belong. As it turns out, the

training protocol is lightweight and does not require sensors to have IDs; moreover,

sensors are not aware of their neighbors within the same sector. It is worth noting

that location awareness is modulo the sector to which the sensor belongs. Since

accurate position information is unreliable because of shadowing, scattering, multi-

paths, and time synchronization problems, training provides a viable alternative.

13.1.6 Topology Control and Area Coverage

In addition to gaining a sense of their location, sensors also need to gain some

sense of their neighborhood. This can be achieved with various degrees of self-

organization. For example, if sensors have IDs, they can discover neighbors by

exchanging “hello” messages, and decide which neighbors and links are needed

for their best operation, or what transmission range to select, to provide a certain

density for reliable reporting and route construction. The communication may be

critical for sparse networks, while for dense networks collisions, congestions and

excessive energy expenditures may occur.

Since sensor batteries cannot be recharged under present-day technology, energy

consumption is considered the most important parameter contributing to the long-

evity of the network. The best energy-conservation method is to have as many sen-

sors as possible in sleep mode, where energy consumption is minimal. The network

must be connected to remain functional, so that the monitoring station can receive

the message sent by any of the active sensors. An intelligent strategy for selecting

Figure 13.2 Training a wireless sensor network.

13.1 INTRODUCTION 425

and updating a set of active sensors that are connected is needed in order to extend

the network lifetime. After learning about neighboring sensors, sensors decide

whether to remain active or to go to sleep if their sensing areas are already covered.

This problem is known as the connected area coverage problem, which aims to

dynamically activate and deactivate sensors while maintaining the full coverage

of the monitoring area. Efficient solutions to the connected area coverage problem

are discussed in Chapter 11 in this book. When this coverage step is performed

first, the large sensor network becomes reasonably sparse, but remains connected.

In the case of training [1], the optimal solution might be to keep a few active

sensors in each sector, which can be decided by a simple leader election process.

For example, each sensor may choose a time-out based on its remaining energy,

and send a packet containing its sector information and remaining lifetime, so

that other sensors in the same sector can hear that message, cancel their own trans-

mission, and decide how long they could sleep.

Topology in sensor networks may change more frequently, because of failures,

changes in sleep/active periods, and perhaps mobility. Designing efficient proto-

cols for many operations requires a backbone, which is a subset of sensors, so

that each sensor is either in a backbone or near it. Backbone examples include clus-

tering and connected dominating sets. Active sensors can organize themselves into

clusters. In a clustering process, some sensors may be selected as clusterheads

(CHs), and every other sensor is assigned to one of the clusters. The alternative

organization is to create backbones via connected dominating sets (each node is

in such a set or is a neighbor of a node from the set). Backbone creation and

sensor area coverage (which decides activity schedules) are covered in Chapter

11 in this book.

13.1.7 Localized versus Centralized Protocols

Estrin, Govindan, Heidemann, and Kumar [2] promoted the design of localized

rather than centralized protocols in wireless sensor networks. Due to a number

of factors, the topology of wireless sensor networks changes frequently and self-

organization must be adaptive to local changes. Centralized protocols require

global network information at each sensor (sink only, respectively, with sink

making decisions) for making sensor decisions. This includes the use of topological

structures, such as minimal spanning tree (MST), whose local links cannot be locally

determined. There are a number of combinatorial optimization formulations of

sensor network design problems with linear programming solutions. These protocols

can perform well only when sensor networks are small. We do not discuss centra-

lized approaches further, since we believe in and assume large-scale wireless

sensor networks where centralized protocols do not work well.

Localized protocols only require local knowledge for making decisions, and a

limited (usually constant) amount of additional information (e.g., the position of

the sink). Some localized protocols may require preprocessing, such as constructing

a suitable topology for further operation. One typical example is setting up a cluster

structure. In addition to localized protocol operation, it is also important to consider

426 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

the maintenance cost of such topology. For instance, if the cluster structure is

adopted, what happens when CHs move or fail? Does the update procedure

remain local, and, if so, what is the quality of the maintained structure over time?

Some maintenance procedures may not remain local. This happens when local

change triggers message propagation throughout the network. Of course, localized

maintenance is preferred, meaning that local topology changes should be performed

by a procedure that always remains local, involving only the neighborhood of the

affected sensors.

A number of protocols in the literature are localized, but use an excessive number

of messages between neighboring sensors. For instance, some topology control and

position determination protocols require over a dozen (sometimes even thousands

of) messages to be exchanged between neighbors. Because of the severely limited

bandwidth and energy budget and medium-access problems caused by excessive

messaging, messages between neighbors to construct/maintain topology, determine

position, or perform any other operation should be minimized, possibly avoided

entirely (e.g., some backbone construction methods do not require any message

after hello messages to learn that neighbors have been exchanged).

13.1.8 Roadmap of the Chapter

This chapter concentrates on localized protocols, featuring localized maintenance,

and a limited number of messages between neighboring sensors. We begin by dis-

cussing data gathering—the most fundamental problems in wireless sensor net-

works. Data gathering has an implicit routing component, with or without

involving data aggregation. Protocols for reporting an event (upon detecting it) by

a single sensor are described in Sections 13.2 and 13.4. These protocols can be con-

sidered as responses to an event-driven query. The event may be detected by a group

of sensors, but a single sensor reports it after data are aggregated first. Section 13.2 is

devoted to protocols where a report is sent to the sink based on its position or merely

distance to it (the later suffices in the case of direct transmission with omni-

directional antennas), without using any local information inferred by a dissemi-

nation originating from the sink. Section 13.3 discusses various ways for

disseminating monitoring tasks from sink to sensor nodes. This is mainly done by

applying broadcasting and geocasting protocols. Section 13.4 is devoted to data-

gathering methods that are based on broadcast trees, which are constructed during

the task-dissemination process from the sink, with sensors memorizing certain infor-

mation that is later used for reporting. Section 13.5 and 13.6 discuss the case when

all sensors in an area are requested to report as a reply to an on-demand query.

Section 13.5 focuses on the case where data aggregation is not applied, whereas

Section 13.6 looks at data aggregation as well. Data aggregation can be applied to

all active sensors, or only to the active sensors within a region or a cluster. Section

13.7 discusses the case of mobile sinks or sensors. In Section 13.8, we discuss the

problem of sending enough reports about an object to the sink so that the sink can

accurately determine the position of the object. It also discusses tracking mobile

objects using tree reconfiguration and mobicast protocols. Section 13.9 discusses

13.1 INTRODUCTION 427

the problem of rate-based data propagation in sensor networks. Section 13.10

discusses an important corollary of the data-centric view of wireless sensor net-

works, namely, anonymity. Conclusions, exercises, and references complete this

chapter.

13.2 DATA GATHERING WITHOUT MEMORIZING LINKS
TOWARD THE SINK

13.2.1 Direct Reporting by Individual Sensors

The simplest way of reporting an event is to simply send a packet with sufficient

power to reach the sink. If communication is omnidirectional, the exact position

of the sink is not needed, since the approximate signal strength needed to reach

the sink will suffice. Since sinks can always operate with more power than sensors,

they can send a packet to all sensors announcing its presence, or assigning a task, or

perhaps informing about its location. Sensors can also apply the power-increasing

method to reach the sink, for example, to double the power applied for transmission

until the sink acknowledges the receipt of the report. Since such direct communi-

cation may be over a long distance, it will drain the power quickly, and will drain

it from all sensors. Therefore this method is presented here only for completeness,

and has not been seriously considered as a viable option except for some small-size

networks such as the home environment.

13.2.2 Direct Reporting by Cluster Heads

Heinzelman, Chandrakasan, and Balakrishnan [3] described the low-energy adap-

tive clustering hierarchy (LEACH) protocol for reporting data to the sink. Each

node randomly decides whether or not to become a CH. The parameter used in

decision making is the percentage of desired CHs. Sensors that decide to become

CHs send a packet with their decision. Each node reports to the CH with the highest

signal strength, and therefore clusters correspond to Voronoi diagrams of CHs. The

CHs assign to each sensor from their cluster a time slot for reporting, aggregate data

received from individual sensors, and send aggregated data directly to the sink. The

selection of CHs is repeated periodically, to balance energy consumption. The opti-

mal number of clusters is not investigated. LEACH is illustrated in Figure 13.3. The

major problem with LEACH is that the sink may be very far from many CHs, there-

fore direct reporting may be extremely energy-consuming or even impossible. This

basic method has variants that depend on how clusters are created. In some scenarios

(e.g., military applications, with sensors attached to soldiers), there may exist natural

cluster organization, especially if different types of sensors are being used. Different

methods for forming reporting clusters are investigated in ref. [4]. Each sensor

chooses a time-out interval. If no message is heard during that interval, the sensor

decides to form a cluster and to report; otherwise, it becomes the follower of the

sensor that sent the message.

428 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

13.2.3 Design Guidelines for Clustering and Aggregation
in Sensor Networks

Mhatre and Rosenberg [5] considered the organization of sensors into clusters.

Sensors could use either a single- or multihop mode of communication to send

their data to their respective CHs. The CHs send their data directly to base stations.

The energy needed for communication between two nodes at distance r is pro-

portional to r aþ c, where a is a power attenuation factor (between 2 and 6), and

c is a constant that accounts for minimum reception energy and energy to run circui-

try. The goal is to minimize and balance energy consumption. The authors analyze

two modes of communicating between sensors and base stations, and derive con-

ditions under which single-hop transmission by all nodes is best. One of the

conclusions made is that, for a ¼ 2, there is no benefit from multihop communi-

cation. When multihop communication is better, each CH is assumed to be at the

center of a circle divided into rings of equal width (equal to the used transmission

radius). Therefore, they assume that each multiple hop is of approximately equal

length and they find the optimal forwarding distance for each hop. The authors

[5] do not prove that it is indeed optimal to use each hop of equal length (i.e.,

that the rings indeed all need to have equal width for optimality). Their result is

based on minimizing the energy in a ring that is found to be critical. However,

other rings may not be critical at that time. Our analysis [6], presented below,

shows that, in fact, the rings are not of the same size for the optimal case (i.e.,

the sensor uses different transmission radii for maximizing network lifetime). We

also note that the communication from CHs to base stations can also be multihop,

via other CHs or even other sensors, instead of being single-hop. Finally, overall

analysis is based on each sensor having an equal amount of data to report, which

may not hold in a real application. Mhatre and Rosenberg [5] also studied the pro-

blem of determining and selecting the optimal number of CHs and required battery

energy. Their derivations, however, are very complex.

Event Event

Sink

Figure 13.3 Data aggregation at CHs and direct reporting to sink.

13.2 DATA GATHERING WITHOUT MEMORIZING LINKS TOWARD THE SINK 429

Suppose that N sensors are randomly placed in a circle with fixed radius P. The

task is to subdivide the circle into n rings, and determine their widths R1, R2, . . . , Rn,

so that the network lifetime is optimized, where R1 þ R2 þ � � � þ Rn ¼ P (that is, the

sum is fixed). Optimization variables are therefore n, R1, R2, . . . , Rn. The sink is in

the center of the first circle, of radius R1. It is assumed that the energy required for

communication between two sensors (or sensor and sink) is proportional to d aþ c,

for some constants a (2 � a � 6) and c. For instance, two particular models con-

sidered in ref. [7] are a ¼ 2, c ¼ 104, and a ¼ 4, c ¼ 108. For simplicity, the

energy is charged fully to the transmitting node. Suppose that the sensor distribution

is uniform, and therefore the number of sensors Ni in the ith ring is proportional to

the areas of the rings. That is, Ni/Nj ¼ Ri
2/Rj

2, and the sum N1 þ N2 þ � � � þ Nn ¼ N

is fixed, equal to the total number of sensors. It is assumed that each sensor helps a

proportional number of sensors from the rings farther from the sink in retransmit-

ting. To send a message from sensor in the ith ring to a sensor in the (i2 1)th

ring, we assume that the energy needed is proportional to Ri
aþ c, as an average

amount with respect to ring size, or worst-case amount for the first ring (transmitting

to sink, which is the zeroth ring). We also assume that the maximum transmission

radius is limited, equal to T.

The sensors in the first ring spend (in the worst case) energy proportional to

R1
aþ c to send their own message directly to the sink, and to retransmit each

message. In addition, each of them retransmits a proportional number of messages

from sensors in all other rings. The number of sensors it helps is therefore

(N2 þ � � � þ Nn)=N1 ¼ (N � N1)=N1, and the total number of messages it sends

is 1þ (N2 N1)/N1 ¼ N/N1 ¼ P2/R1
2. Thus the energy needed for these trans-

missions is (R1
aþ c)P2/R1

2. This is a function of one variable, which has the mini-

mum at r1 ¼ (2c/(a2 2))1/a. For a ¼ 2, the energy is minimized for the maximal

transmission range. The (unrealistic) case c ¼ 0 is easy to discuss. We therefore

continue the discussion only for the case c . 0 and a . 2. Interestingly, the mini-

mal energy for the first ring is obtained for the target radius that does not depend

on P, N, and even n! The target radius for the first ring is adopted if r1 , T, other-

wise, it must be changed to r1 ¼ T. If P � r1, then the optimal number of rings is

n ¼ 1. Moreover, in this case r1 ¼ P. We assume that P . r1 in the remaining

analysis.

Now consider sensors in the last ring. They send only one message to sensors in

the previous ring, which requires energy proportional to Rn
aþ c. The sensor network

will maximize its lifetime when all sensors die at approximately the same time.

Otherwise, the sensor network will not be able to either monitor or report the

event. Therefore the optimal value of Rn is obtained when energies in the first and

last rings are equal, that is, when Rn
aþ c ¼ (r1

aþ c)P2/r1
2 (here the optimal value

for the first ring is already assumed). This equation has a straightforward solution

for rn (see ref. [6] for the formula) as the optimal ring size. Interestingly, the solution

again does not depend on n and N, but it does depend on P, the overall circle size. If

this optimal ring size is.T, it should be reduced to T. Note that rn = r1 (unless they

are both “trimmed” to the same value T), which can be easily verified from the

equation.

430 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

If r1þ rn � P, then the optimal value for n is n ¼ 2. In the case of strict inequality,

further energy savings cannot be achieved, because the limit on the first ringwidth does

not depend on P. If r1þ rn , P, then more rings are needed, and the process can con-

tinue iteratively, from the last rings toward the first ring. Sensors in ringRiwill forward

messages from a proportional number of sensors from rings Rj for j . i. The number

ofsuch sensors is (Nn þ � � � þ Niþ1)=Ni ¼ (R2
n þ � � � þ R2

iþ1)=R
2
i . Therefore, in the

worst case, the sensors in the ith ring are expected to spend energy (1þ (R2
n þ � � � þ

R2
iþ1)=R

2
i)(R

k
i þ c). Assume that the optimal values for rings n, . . . , iþ 1 are already

determined. The equation to be solved is then (1þ (r2n þ � � � þ r2iþ1)=
R2
i)(R

k
i þ c) ¼ ran þ c. This is the equation of one variable, and the function has its

minimum, obtained by standard calculus methods (finding a derivative) [6]. Let the

optimal solution be Ri ¼ ri. If this solution is larger than T, then it should be changed

to T. If r1 þ rn þ rn�1 þ � � � þ ri � P, then i ¼ 2, which determines the final value of

n. Otherwise, it continues with the next value of i, effectively increasing n by 1. Note

that, in the analysis presented, all sensors are assumed to be active.

Assume now that the transmission radii of all sensors are the same and fixed to T.

Energy consumption can then be balanced by applying nonuniform sensor distri-

bution. This problem was studied in ref. [8], with solution techniques involving

sleep periods and energy consumption for routing tasks. We will extend the preced-

ing solution to the case of nonuniform densities, following ref. [6], keeping all sen-

sors active. Suppose that N sensors are randomly placed in a circle with fixed radius

P. The task is to subdivide the circle into n rings of the same fixed widths

T ¼ R1 ¼ R2 ¼ , . . . , ¼ Rn, and corresponding sensor densities r1, r2, . . . , rn in

these rings so that the network lifetime is optimized. The number of rings n is there-

fore n ¼ P/T, since R1 þ R2 þ � � � þ Rn ¼ P. Optimization variables are therefore

r1, r2, . . . , rn. The sink is in the center of the first circle, of radius T and density

r1. Since ring areas are the same, the number of sensors Ni in the ith ring is pro-

portional to their densities. That is, Ni=Nj ¼ ri=rj, and the sum N1 þ N2 þ � � � þ
Nn ¼ N is fixed, equal to the total number of sensors. If all densities were the

same, then balancing energy consumptions would not be possible, because sensors

in rings closer to the sink are getting an increasing number of forwarding tasks, and

the transmission energy per task is fixed. Therefore, for balanced energy consump-

tion we have r1 � r2 � � � � � rn. Suppose that rn ¼ 1, since other values would

simply result in multiplying other densities by the same factor. The energy consump-

tion is proportional to the numbers of messages sent. Sensors in the last ring send one

message per considered time unit (which depends on reporting the rate), as a result

of their monitoring. Sensors in the first ring, being more densely spread, require a

lower reporting rate for their own monitoring. They therefore send 1=r1 reports in
the same time frame. Similarly, sensors in the ith ring generate 1=ri reports. Sensors
in the first ring retransmit a proportional number of messages from sensors in

all other rings. The number of sensors each of them helps is therefore

(N2=r2 þ � � � þ Nn=rn)=N1 ¼ (n� 1)=r1, and the total number of messages it

sends is 1=r1 þ (n� 1)=r1 ¼ n=r1. Thus, n=r1 ¼ 1 or r1 ¼ n. Continuing this

discussion, we conclude that ri ¼ nþ 1� i. With this solution, each sensor sends

on average one message per unit time, independently on the ring it is contained in.

13.2 DATA GATHERING WITHOUT MEMORIZING LINKS TOWARD THE SINK 431

13.2.4 Data Aggregation with Consensus

A data-aggregation and -consensus algorithm for object location and tracking by a

sensor network is described by Kumar, Schwiebert, and Brockmeyer [9]. The first

node that detects an event will first generate consensus by obtaining a quorum

from nodes having similar interests and area of coverage. If more than half of the

sensors close to the event confirm the same observation by acknowledging to the

initiating node, the node will report the event.

13.2.5 Multihop Reporting among Nodes or Clusters

The direct communication from CHs to sinks may be impossible because of distance

or can be extremely energy-consuming. Further, even communication from any

sensor to its own CH can have such problems. If multihop reporting is applied, pack-

ets can be forwarded among CHs only until they reach the sink (if transmission

power is adjusted to reach a neighboring CH), or the route could include bridge

(or gateway) sensors between adjacent clusters. Note that this multihop forwarding

using other CHs can be applied with or without further data aggregation, beyond the

initial one within each cluster.

Alternatively, cluster organization may not be necessary. Sensors may react to an

event by first finding consensus among other nearby sensors that detect the same

event (e.g., the consensus method [9]), and then the lead sensor applies multihop

reporting, that is, routing via other active sensors in the network toward the sink.

13.2.6 Reporting with Energy-Efficient Routing

Multihop reporting can be performedwith a routing algorithm that aims atminimizing

hop count. Alternatively, the algorithmmay attempt to minimize the energy expendi-

ture needed for a given routing task, or to maximize the network lifetime by con-

sidering the remaining energy when selecting forwarding neighbors. In Chapter 12

in this book, routing protocols with mentioned optimization criteria are surveyed.

For the sake of completeness, we summarize here a few relevant protocols.

Schurgers and Srivastava [10] propose that nodes collect several packets intended

for the same neighbor into a single packet. They claim that compression can be

achieved in this way, leading to more energy efficiency. They also propose stochas-

tic schemes where the best neighbor is chosen at random, an energy-based scheme

where the best neighbor is selected based on its energy, and a stream-based scheme

where busy nodes inform their neighbor by asking them to select other forwarding

nodes instead.

Chatzigiannakis and Nikoletseas [11] describe a routing protocol for sensors that

have the sense of direction, but do not know their coordinates. The monitoring center

is a wall known to sensors, and wider than the width of the sensor network. The task

of reporting from a sensor to the wall proceeds by a greedy algorithm, which follows

the direction orthogonal to the wall. At each step, the node currently holding the

message broadcasts a search message looking for another sensor within an angular

432 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

range with respect to the wall direction and at a certain minimum distance (and

maximum distance, which is the transmission radius). Thus, each sensor has the abil-

ity to estimate the distance to neighboring sensors. Each awake sensor located in the

desired cyclic sector will report back to current node A, but only the first such node B

will receive the full message from the current node. Current node A will wait to hear

the forwarded message from B to one of its neighbors. If successful, A will go to

sleep. If there is no closer node to the wall from B, a failure message is generated

and the message is backtracked to A. Note that no two consecutive backtrack

steps are possible, so this simple greedy routing may fail. Note also that the

greedy-face-greedy (GFG) algorithm [12] can be used to guarantee delivery.

13.2.7 Sector Routing

In the case of sector training [1], messages are not directed toward any particular

sensor. Instead, they are directed toward a sector. All active sensors inside the

sector receive the message. One of them decides to retransmit, and others in the

same sector (if more than one in a given sector is active) can overhear this trans-

mission, which prevents them from their own retransmissions. This assumes that

inside a sector the sensors are within the communication range of each other.

This may or may not be true in general. In any case, forwarding toward the sink

then follows a sector-routing principle: a route is created from sector to sector,

with an arbitrary sensor from each sector participating (see Fig. 13.2, showing a

route from the top sector toward the sink). In case of empty sectors, a variant of rout-

ing with guaranteed delivery [12] can be applied, since sectors are creating a planar

graph. In recovery mode, face routing can be employed using direction orthogonal to

the wall (that is, with the destination being imagined at infinity).

13.2.8 Data-Centric Storage

In some particular scenarios, wireless sensor networks can operate, at least tempor-

arily, without a sink. In this case, reports by sensors need to be stored in the sensor

network itself. Ratnasamy, Estrin, Govindan, Karp, Shenker, Yin, and Yu [13]

described a data-centric storage system for application in wireless sensor networks.

Sensors have a tiny memory, and therefore limited storage capacity. Therefore, they

need to distribute storage among themselves. The algorithm in ref. [13] is to apply a

hash function to a keyword assigned to a file, datum, information, or an object,

which will map it to a point with geographic coordinates. The hash function

needs to be carefully selected so that the obtained point is inside the geographic

region containing the sensors. A planar graph over sensor network can be obtained

by applying a Gabriel graph (GG) structure (described in Chapter 10). The infor-

mation is stored in all sensors on the face containing the mapped point. In order

to retrieve the information, GFG routing that guarantees delivery [12] can be

applied. Since the mapped node is generally not in the sensor network, routing

will create a loop along the face containing it. Sensors on that face have already

stored the information and can provide it to the requester.

13.2 DATA GATHERING WITHOUT MEMORIZING LINKS TOWARD THE SINK 433

13.3 DATA DISSEMINATION FROM THE SINK

13.3.1 Broadcasting Short Packets from the Sink

This subsection discusses various ways the sink assigns monitoring tasks. The tasks

assigned to sensors need to be propagated to all active sensors in the network (broad-

casting), or to all the active sensors located inside a region of interest (geocasting),

consisting of currently active sensors (e.g., sensors selected for area coverage). One

simple solution, if it is assumed to have sufficient transmission power to cover the

entire deployment area, is that the sink sends one message that reaches all the

sensor nodes in the network. If the sink does not have sufficient power, the sensors

themselves need to retransmit such messages. If the packet containing the task and

the location of the sink is relatively short then the data dissemination can be fulfilled

by any of the broadcasting protocols, covered in Chapter 11. Most of these protocols

assume that the sensors know the position of their local neighbors. Otherwise, blind

flooding can be applied, meaning that each sensor receiving the packet for the first

time will rebroadcast it. This method is the most popular in the existing literature

(for instance, it was applied in protocols given in refs. [14] and [15]). Intelligent

flooding (broadcasting) schemes are surveyed in Chapter 11. Some sensors do not

need to retransmit the task packet, and the task can still be distributed to all the sen-

sors (assuming an ideal medium-access protocol). One such method is beaconless

area-based broadcasting [16], where a sensor whose communication area is comple-

tely covered by transmissions from other sensors does not need to retransmit. Note

that this method does not require prior knowledge of neighbors. When sensors need

to report using a broadcast tree, they can link themselves to one of the nodes from

which the packet was received.

Acknowledgments for the receipt of monitoring tasks may or may not be sent. If

requested, it can be provided, for instance, as follows. Lipman, Boustead, and

Chicharo [17] proposed to send acknowledgments only to neighbors along local

minimum spanning tree (LMST) edges. Each sensor then on average sends only at

most two acknowledgments, because of the sparse LMST structure. To construct

a LMST [18], each node first constructs a MST of its local neighbors (knowing

their geographic positions), and keeps edges that are included in such local MSTs

by both end points (see more details in Chapter 10). On average, each node will

send one acknowledgment only, since the average degree (average number of neigh-

bors) of a LMST is only slightly larger than two.

13.3.2 Broadcasting Long Packets from Sink

If the message containing a detailed assignment, or other type of message that needs

to be disseminated, is relatively long, then an alternative is to send two types of mess-

ages instead: a short message is sent first that offers a long message to sensors, fol-

lowed by a long message sent only to those sensors that require it. In the sensor

protocol for information via negotiation (SPIN) [19], each node that receives the

datum (full message) that is being broadcast will forward the corresponding

434 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

metadatum (short message) that has a considerably shorter bit length (e.g., 16 bytes

instead of 500) to all its neighbors. The metadatum is thus flooded. Neighboring

nodes that did not yet receive the full message will reply to the short message with

a request to receive it. The sensor will then respond by sending the full message to

all nodes that requested it. If an omnidirectional antenna is used, sensors may retrans-

mit the full message upon receipt of the first request for it. Note, however, that, short

request messagesmay be sent back to the transmitting node only if it is a neighbor in a

selected sparse, connected structure, as observed in ref. [20], greatly reducing the

amount of short messages needed. For example, if a LMST [18] is used as the

sparse structure, the reduction is about 2/d times, where d is the average number

of neighbors in the network. This reduction is possible if nodes have 2-hop topo-

logical or one-hop positional information about their neighbors.

13.3.3 Geocasting in Wireless Sensor Networks

Data dissemination, or task allocation, from the sink does not need to be propagated

to all active sensors. If only sensors that are close to a monitoring event (e.g., a fac-

tory that pollutes the environment) need to be alerted, then only sensors located

inside a geographic region need to receive the task. This problem is known as

geocasting. A survey of existing geocasting schemes is given in ref. [21]. It was

shown that most existing geocasting schemes do not guarantee delivery to all

nodes inside a region, the main reasons being either the partitioning of the network

inside the region, or applying greedy routing instead of one that guarantees delivery.

Yu, Govindan, and Estrin [22] considered a geocasting variant of the data-

gathering problem. They describe the geographic and energy-aware routing

(GEAR) algorithm, which uses energy-aware neighbor selection to route the

packet toward the target region, and recursive geographic forwarding, or restricted

blind flooding algorithm, to disseminate the packet inside the destination region.

Recursive forwarding applies GEAR to send messages to four subregions in the

geocast region, which repeats until the region has a single node inside it. Blind flood-

ing does not guarantee delivery to all sensors inside the region, because of possible

partition inside the region (but connectivity outside it), and can be replaced by a

more intelligent scheme (see Chapter 11 in this book). The GEAR algorithm selects

a forwarding neighbor (among those that are closer to the destination), which mini-

mizes a linear combination of their distance to the destination and the energy they

already spent. This is almost equivalent to the cost-aware localized scheme

by Stojmenović and Lin [7], originally proposed in 1998 (described in detail in

Chapter 12). Yu, Govindan, and Estrin [22] also claim that GEAR can avoid

holes by applying a learning A� algorithm-based approach, without presenting

details. To avoid holes, one can use, for example, the depth-first search (DFS)

approach [23]. This approach requires memorizing past traffic at nodes. Unfortu-

nately, it does not guarantee delivery to all sensors in the geocasting region, because

of possible partitioning inside the geocasting region.

We observe that, to guarantee delivery to all sensors in a geocasting region, and

also to avoid memorization, GFG [12] can be applied first, while some optimizations

13.3 DATA DISSEMINATION FROM THE SINK 435

(described in ref. [22]) can follow later on recursively. Note also that ref. [24] further

elaborated on the use of GEAR for various forms of data dissemination, without

giving its description.

Three existing geocasting algorithms that guarantee delivery to all nodes inside

the geocasting region (subject to the ideal medium-access layer and connectivity

of these nodes to the source) are described in refs. [21] and [25]. One algorithm

[21,25] is based on multicasting to entrance zones, and flooding from entrance

zones to nodes inside the geocasting region. Bose, Morin, Stojmenović, and Urrutia

[12] observed that a geocasting algorithm will guarantee delivery if all faces of a

planar graph that are inside or intersect the geocasting region are traversed. The geo-

casting algorithm [12] is based on a DFS of the face tree, constructed from a node

inside the geocasting region.

Seada and Helmy [26] observed that it is sufficient to traverse only faces that

intersect the boundary of a given geocasting region, and proposed the following

algorithm. Source node first uses GFG algorithm [12] to forward the packet

toward the region. Each node that is inside region will retransmit the packet when

receiving it for the first time (“regional flooding”). If the node also has neighbors

outside geocast region, it will instruct them to perform face traversals using

“right-hand” rule (see chapter on routing in this book for details). The first node

inside the region to receive the face traversal packet floods it inside the region or

ignores it if that packet was already received and flooded before [26]. Figure 8 in

ref. [26] shows that face traversal was not assumed in cases when an outer node

brings the packet inside the region (the receiving node then only floods the

region, but does not instruct the sender node outside the region to then also perform

face traversal). Therefore, as elaborated in ref. [21], the algorithm [26] does not

guarantee delivery, despite the claim. A protocol that does guarantee delivery

(with proof of it) was described in refs. [21] and [26].

Algorithm Geocast_traversal_intersecting_faces

. The source node S sends the message toward the geocasting region, using the

GFG algorithm [12];

. Each node inside the region retransmits the message when receiving it for the

first time, and ignores it when receiving it again;

. Each internal border node (node inside a region having neighbor(s) on planar

graph outside the region) will instruct (together with retransmission) all its

perimeter neighbors outside the region to perform right-hand-based face

traversals;

. Each external border node (node outside the region having neighbor(s) on the

planar graph inside the region) will initiate right-hand-based face traversal(s)

with respect to all edges leading to internal-perimeter neighbors, after receiving

the first copy of the message, and will ignore further received copies unless a

packet is received from an external neighbor following a different “external”

face (in which case it forwards it along that face, as requested). Each traversal

is performed until another node that is inside the region is found.

436 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

13.3.4 Multicasting in Wireless Sensor Networks

A monitoring task can also be disseminated to all the sensors located in several geo-

casting regions. Assuming that these regions are relatively small, a position-based

multicasting protocol [27] can be applied. Mauve, Fusler, Widmer, and Lang [27]

proposed two multicasting schemes, with some optimizations. In the optimal-

paths method, each node receiving a multicasting message for a group of nodes

will forward it to each neighbor that is closest to one of the group members.

More precisely, each group member is assigned to the neighbor that is closest to

it (provided that neighbor is closer to it than the current node). In the aggregate-

paths method, for each neighbor A, the number of destinations for which A is the

closest node is determined. Then a covering algorithm is applied. Basically, a neigh-

bor is chosen that covers the maximum number of destinations, these destinations

(and other nodes for which a selected node makes some progress) are eliminated

from the list, then another neighbor is chosen that covers the maximal number of

remaining destinations, and so on. The forwarding list of multicast group is similarly

changed as in the previous algorithm [27]. In both schemes, if no neighbor is closer

to one or more destinations, then the recovery mode in the GFG algorithm [12] is

applied. The virtual destination used for the recovery mode is calculated as the

position representing the average of the positions of the affected destination

nodes. When a node receives a multicast packet in recovery mode, it checks for

each destination, if it is closer to that destination than the node where the packet

entered recovery mode. For all destinations where this is the case, greedy multicast

forwarding can be resumed, as described in the corresponding scheme. For all other

destinations, recovery mode is continued, with an updated average of positions of

affected nodes (those not recovered yet). Both optimal- and aggregate-path methods

can be modified by considering metrics different from hop count, such as power,

cost, or delay. Greedy routing can be replaced by power and/or cost-aware routing
(see Chapter 12), and forwarding neighbors will be judged based on the metric in

question, combined with their coverage ability, for their selection.

13.4 DATA GATHERING BASED ON MEMORIZED
BROADCASTING TREES

Sensors (or their CHs, when they are clustered), may report back to the sink using a

tree structure that is constructed together with the task allocation from the sink. This

tree is referred to here as the broadcasting tree, since it is usually set during the

broadcasting operation. It sends task allocation and other (e.g., sink position) infor-

mation from the sink to all the sensors in the network. The use of broadcasting tree

also implies the need to memorize some information made available during

broadcasting process, which is then used in the reporting phase. The broadcasting

tree consists of links along which the sensors learned about the position of the

sink(s). Therefore, the sink monitoring implicitly informs the sensors that link to

be used for replying. Sensors then create links for reporting along the reverse broad-

cast tree. This term is used, since reporting is normally applied in the direction that is

13.4 DATA GATHERING BASED ON MEMORIZED BROADCASTING TREES 437

opposite to the direction of request propagation from the sink. Most of the literature

considers this type of sensor training for reporting. Note that the broadcasting oper-

ation is applied when all active sensors are alerted to report possible events. The

broadcasting tree can also be set during a geocasting operation, where the monitoring

station requests reports only from sensors located inside a geographic region. This

can be further generalized to multigeocasting operations, which disseminates a

request to all sensors located inside several geocasting regions. Because of the vola-

tility of individual sensors (failures or changes between sleep and active periods), the

use of broadcasting trees for reporting has certain risks, since a particular node or link

may not be available although demanded by the memorized response path.

Carle and Simplot-Ryl [28] proposed the following framework for wireless

sensor network operation. Sensor-area monitoring consists of three phases or

subproblems. The first one is to select the sensors that are needed for connected-

area coverage, placing other sensors in sleep mode. The second phase is to construct

a broadcasting tree from the sink to all active sensors. They consider two types of

trees, minimum energy broadcasting or dominating set based. The last phase is to

report events using the reverse broadcast tree.

13.4.1 Directed Diffusion

Directed diffusion [14] is a often cited scheme for data gathering by using a data-

centric routing scheme. The data sink identifies a set of attributes and propagates

an interest message throughout the network. The interest is flooded throughout the

network (apparently blind flooding was used). Each receiving node records the inter-

ests and establishes the so called gradient, the state indicating the next hop direction

for other nodes to report data of interest. When an interest arrives at a data producer,

data are being forwarded to the sink along established gradients. Note that the algor-

ithm is similar to the well-known ad hoc on-demand distance vector (AODV) routing

scheme [29], considered as a possible routing standard. Flooding the interest with

attribute-based addressing corresponds to the route discovery with IP or ID addres-

sing. Instead of comparing their address with the destination address as in AODV,

sensors in directed diffusion compare the interest from the packet with the data

they measure and their location if the interest is location specific. Therefore various

AODV optimizations that exist in the literature are applicable in the context of

directed diffusion. Although it is an on-demand localized scheme that does not

require prior “hello” messages, the scalability is questionable. If the interest is

location specific, then obviously it is much more efficient to route the request

(using, e.g., a protocol that guarantees delivery [12]) toward the location of interest

instead of flooding it to the whole network. The protocol described in ref. [14] uses

path memorization for reporting the sensor measurements back toward sink.

13.4.2 Reporting via Neighbor with Smaller Hop Count

Ding, Sivalingam, Kashyapa, and Chuan [15] considered the problem of finding a

route from a sensor to the single sink in a wireless sensor network. Following a

438 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

reactive route discovery strategy, the sink floods the network and sets the routes. The

difference is that each sensor does not memorize the whole route, or a single pointer

to the previous sensor on the route, but instead memorizes its hop-count distance to

sink. When a packet is sent toward the sink, any neighbor at one less hop distance

can forward it, instead of reporting back to the first node that sent the task assign-

ment packet to it. For instance, a report can be sent to the neighbor with the highest

energy and smaller hop count, or any neighbor that sent the packet with a smaller

hop count from the sink [15]. The node can memorize few such alternatives

during the setup phase and try them one by one. Alternatively, a neighbor at one

less hop distance can simply retransmit, and the node can block further retransmis-

sions by a separate blocking packet.

Fujiwara, Iida, and Watanabe [30] proposed a mechanism that allows nodes to

maintain their routes to the base station via multihopping, if needed. If a direct

link between any node and its base station is broken, the node starts monitoring com-

munications in its neighborhood to find a node that is still connected to the base

station, either directly or by multihopping. When the node finds a connected neigh-

bor, which should be one hop nearer, it marks it as its router and sends to it the packets

that must be sent to the access point. This allows nodes to always be able to connect

to their base station. The authors consider only the case of a single access point.

Zou, Nikolaidis, and Harms [31] described several localized schemes for con-

structing reporting trees for sensors to the sink. The tree construction starts at a

sink node, which floods a message in the network. Upon receipt of several copies

of the message, a given node may decide which of the nodes that sent the message

is best to use for reporting data back to the sink. Authors described several possible

localized criteria for selecting the best neighbor: minimum distance to the next hop,

maximum distance to the next hop, random next hop, maximum degree of the next

hop neighbor, and the maximum size of the 2-hop neighbor set of the next hop

neighbors.

Wireless sensor networks with multiple sinks are special cases of hybrid wireless

networks considered in ref. [32]. The hop distances to the closest sink, and therefore

the routes, can be similarly determined as in the case of the single sink [15,30], as

described in ref. [32]. Each access point sends messages toward sensors to establish

reporting links. Each sensor may receive such messages frommultiple sinks, but will

forward them only from the closest sink. This will reduce the amount of traffic, with-

out affecting the choice of the closest sink. If all sinks start the process synchro-

nously, at the same time, then only one message is forwarded by each sensor.

Otherwise, sensors will forward a new message only if it comes from a sink that

is closer than the previously closest sink from which such a message was already

received. This algorithm constructs the reporting trees from each sink to all sensors

for which that sink is the closest one.

13.4.3 Reporting via Alternate Paths in a Broadcast Tree

Most of the current methods for reporting sensor data first construct a broadcast tree

from the source, then use this tree for reporting in reverse order. Nodes in the tree

13.4 DATA GATHERING BASED ON MEMORIZED BROADCASTING TREES 439

may first be selected so that they make minimal connected-area coverage. The pro-

blem is that if a node in the tree fails or is malfunctioning, then the reports can be lost

or compromised. To enhance the security of reporting, secondary and ternary paths

for reporting are proposed in refs. [33] and [34]. A primary broadcast tree is con-

structed from the monitoring center (MC). All nodes are labeled based on the first

hop out of the MC. Thus the network is effectively partitioned based on which

neighbor of the MC delivers the report to it. Now consider an edge AB in the net-

work, where A and B have two different labels. Such edges can serve as bridges

for the second copy of messages. Suppose that node S wants to send a report to

the MC (see Fig. 13.4). Node S can send one copy of the report directly to the

MC using the reverse broadcast tree. The second copy can be sent instead to a

node A with the same label as S, which has a neighbor B with a different label.

Then the report can be sent from S to A, and from A to B, and from B using the

reverse broadcast tree to the MC. The two paths should be disjoint, if possible. Simi-

larly, S may find even a ternary path through another bridge, on the other side of the

tree, for even higher security, or to provide the majority consensus to the MC, which

can choose two out of three reports. The construction of the secondary and ternary

paths may proceed as follows. Both end points A and B of each bridge edge AB can

initiate the construction of their private trees within the neighborhood with the same

label, in the same way the MC constructs its own broadcast tree. These trees are

labeled with the label of the other end point. That is, the private tree of A within

the neighborhood of A with the same primary label as A is labeled with the label

of B, and vice versa. Each node Q receiving such a message for the first time will

join the corresponding broadcast tree, and forward the message so that the tree is

enlarged. If the message is already received from another bridge node, with the

same “bridge” label, Q ignores it to avoid too much traffic and constructing

additional trees that may not significantly enhance security. If a message is received

with a different secondary label, Q accepts the participation in yet another tree and

enlarges it by rebroadcasting the message. Routing the report then follows the

MC

X

D
A

B

S

C

Figure 13.4 Reporting from source S to MC via three alternate paths.

440 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

constructed trees. The source node S sends the primary report on the primary tree,

and uses the secondary and perhaps the ternary tree to which it belongs to send

additional copies of the same report. Security can be jeopardized with the new

method if several nodes close to the sink, one or two hops away, located on several

branches of the tree, are all compromised. To prevent that, the sink must be particu-

larly responsible for the authentication of all nodes that are one hop and perhaps two

or three hops away from it in the broadcast tree.

13.5 PERIODIC REPORTS BY ALL SENSORS

13.5.1 PEGASIS: Chain of Reporting Nodes

Lindsey, Raghavendra, and Sivalingam [35] proposed a framework for energy-

efficient data gathering algorithms in wireless sensor networks. Their power-

efficient gathering in sensor information system (PEGASIS) protocol [35] first

organizes sensors into a chain, by a centralized algorithm (e.g., the sink can decide

about ordering of reports). Thus, sensors are initialized as c0, c1, . . . , cn21. Data gath-

ering is performed in rounds. In round k, first find i ¼ kmod n.Each round consists of

n iterations. In each iteration, only one sensor is sending a message, containing data

gathered by that sensor. Iterations are performed as follows: c0 sends to c1, c1 to

c2, . . . , ci21 to ci. Then cn21 sends to cn22, cn22 to cn23, . . . , ciþ1 to ci. Finally, ci-
sends the gathered data to the MC. The distance to the MC is assumed to be larger

than the distances between the sensors. Chains can be difficult to construct in multi-

hop sensor networks. For single-hop networks, initialization algorithm needs to run,

or the MC needs to assign reporting indices to individual sensors. Once constructed,

when sensors change activity status (from active to passive) or stop functioning, the

order scheme needs to run again, or a maintenance procedure is needed. The scheme

is also not sensitive to the energy levels of the sensors, as different sensors consume

different amount of energy, depending mainly on their distances to the MC.

13.5.2 LMST- and Geocasting-Based Data Gathering

Several localized solutions are proposed in refs. [33] and [34]. One is a localized

algorithm that first constructs LMST (or other sparse structure such as the relative

neighborhood graph (RNG)). Instead of creating a chain, a token is circulated in

the network. The node currently having the token will send it to one of its LMST

neighbors. This can be done in different ways. Nodes can forward with equal prob-

ability of sending to one of its neighbors (not returning to the neighbor it came

from). Since the average degree of LMST is about 2.04 [18], there is on average

one such neighbor to forward the token. The forwarding probability may depend

on node densities. Neighbors with more LMST neighbors should have a smaller

probability of getting the token (since they may get tokens from more neighbors

in the process). Next, neighbors with more energy left may have a higher probability

of getting the token. Finally, in the case of monitoring an event that can be

13.5 PERIODIC REPORTS BY ALL SENSORS 441

geographically located, sensors nearby need to preserve more energy, and thus they

may decide to postpone reporting to the MC. Thus, instead of reporting every

nth time to the MC, the frequency may also be decided probabilistically, depending

on the energy level of the node. This scheme does not offer an immediate alternative

for the data aggregation. LMST may be converted to MST [36], or a spanning

tree may be constructed by broadcasting a message from the node holding the

token. The constructed tree may be used for data gathering from other sensors,

before the node holding the token sends the report to the MC. MST can also be

used for data aggregation, since reports can be sent toward the node holding the

token, and aggregated on the way.

Another solution proposed in refs. [33] and [34] is to apply the geocasting

algorithm [12,37], which follows a single path from the source while visiting

all nodes in the region. The algorithm guarantees to see all nodes, and on average

it does so twice during a single geocasting process, which can be repeated period-

ically. If the sink is fixed, preprocessing can de done to decide the entry edges and

reduce communication time, as described in refs. [21] and [25]. The advantage

over the solution just described is to guarantee the participation of each node

on a fairly regular basis.

13.6 DATA GATHERING WITH DATA AGGREGATION

Data collection, known as data gathering or data dissemination, can be considered

as a reverse multicasting task, with all nodes from the multicasting group reporting

their data to the MC. There are several cases that need to be distinguished in these

tasks. The data collected may or may not be aggregated at intermediate sensor

nodes. Data aggregation is applied when sensor measurements are correlated,

which is reasonable to assume when they measure the same event in nearby pos-

itions. In this case, it is not necessary that each individual report (which may not

be sufficiently reliable) reaches the monitoring center. Intermediate nodes may

combine (aggregate) data received from several neighbors, and possibly one

measured by itself, into a single report, and forward it toward the MC. In the

case of data aggregation, a distinction can be based on whether or not forwarding

sensors have their own data measured. Obviously, all sensors that want to report

data need to be included in the reporting tree. If data aggregation is not applied,

then clearly each reporting sensor may apply one of the routing algorithms with

guaranteed delivery (e.g., ref. [12]) for sending its report to the MC. If data aggre-

gation is applied, a distinction can be made between protocols applied within the

geocasting region, and outside of it. Outside the geocasting region, not all sensors

need to participate in reporting. The problem appears, then, to be the inverse of the

multicasting problem, that is, the multicast tree that is set while sending the request

to the sensors can be used to report data back from the sensors (assuming an on-

demand query was issued to all sensors).

442 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

13.6.1 Power-Efficient Data-Gathering and Aggregation Protocol

Tan and Korpeoglu [38] proposed a power-efficient data-gathering and aggregation

protocol (PEDAP) that assumes that locations of all nodes are known by the sink a

priori. The sink constructs a MST which is then used for data gathering and aggre-

gation. In the power-aware version of the same protocol, the MST is constructed

with weights on each edge calculated as the product of power consumption on the

edge and the reluctance of a neighbor to receive the packet (reluctance is the inverse

of the remaining energy at the node).

13.6.2 LMST-Based Data-Aggregation

Inside the geocast region, two cases for data aggregation may occur: all nodes in the

region sense the event, or some nodes are there only to forward traffic. If all sensors

within the region are reporting, the optimal tree to use is apparently the MST (as

observed in ref. [39]). The existing distributed algorithm for constructing a MST

require O(n log n) messages, with a high constant involved. The algorithm presented

in ref. [36] is based on breaking all cycles created in the LMST. Each of the LMST’s

links is broken by identifying the longest edge in it and removing it [36]. The

removal of one such edge may lead to a longer cycle, which is broken in the next

iteration. The LMST can also be broken differently, in the considered context.

The new solution [33,34] is to also start with the LMST structure. The (MC) will

create a tree out of the LMST by forwarding its request, within the geocasting

region, only along the LMST’s edges. When a node receives a message from the

MC, it will forward it on only on its remaining LMST edges, if any. However, if

a neighbour already received a message from the MC, that link is not used; an

LMST cycle is broken that way. The obtained tree is not necessarily MST, but its

approximation, which is expected to be very close to it in performance.

Figure 13.5 illustrates the construction of a LMST-Based data aggregation tree.

The edges of the LMST are drawn with thick edges, and all but one (drawn with

a dashed line) is included in the broadcasting tree. Edge WF is the only one that

is in the LMST, but not in the MST.

FWMC

Figure 13.5 LMST-based energy-efficient data-aggregation tree.

13.6 DATA GATHERING WITH DATA AGGREGATION 443

13.7 MOBILE SINKS OR SENSORS

13.7.1 Two-Tier Data Dissemination

Data dissemination for large-scale wireless sensor networks was considered in ref.

[40], for the case when multiple mobile sources send information constantly to mul-

tiple mobile destinations. The authors [40] proposed a two-tier data-dissemination

approach, source to destination and destination to source, with grid subdivision of

the area and greedy forwarding. The initial routes are set by flooding (if the destina-

tion locations are not known) or greedy forwarding (otherwise). Sources create grids

that contain sensors that are closest to the grid intersections. These sensors act as a

backbone for routing. When sources or sinks move to a new cell, they flood new

cells to find a new backbone sensor, so that the existing paths can be extended.

This article [40] does not give any concrete scheme for path optimization to

avoid using long paths.

The grid backbone assumes large sensor density, with all sensors being active.

However, if a sensor-area coverage scheme is applied to select active sensors, the

grid backbone can be replaced by a more efficient and more natural backbone of cov-

ering sensors (discussed in a separate chapter in this book). Grid division is

unnecessary overhead, and greedy forwarding may fail. GFG [12] can replace

greedy forwarding. If either sources or sinks are fixed, then mobile components

will initiate route maintenance toward stationary components. Let S be a fixed

source, and D be the initial position of a destination. Path extension from the new

destination position D0 toward the old position D can be applied up to a certain tra-

veled distance, then D0 can initiate routing toward the source until it reaches it. In

fact, the maintenance can stop when a node that already knows the path to S is

found. Alternatively, the new path search may terminate after reaching a node A’

that is a neighbor of a node A on the original path SAD. Instead of SADD0 the
new path, is then SAA0D0 [33,34].

Further optimizations can be achieved my merging some reporting streams

toward same sink or the same source. Suppose that messages from sensors A and

B, sent toward the same sink or source, are heard by sensor C, their common neigh-

bor. Sensor C can then offer to merge these streams, reporting its position. Nodes A

and B evaluate the gain obtained by each of such candidates C, in the case of several

such offers, and select the best one [33,34]. Note that A and B may or may not be

neighbors themselves, which results in two different protocols. The problem exists

when both sources and sinks can be mobile, since then the updates do not have pre-

cise destinations. The procedure then is an alternate the application of the described

procedure from both ends until the packets meet somewhere in the network.

13.7.2 Mobile Collectors

Tirta, Li, Lu, and Bagchi [41] proposed using a mobile collector, such as an airplane

or a vehicle, to collect sensor data from remote fields. The sensor network is clustered

and only CHs report data. They present three different schedules for the collector.

444 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

In the round-robin scheme, each CH is visited in a predefined order, regularly for

same amount of time. In the rate-based scheme, the frequency of visits depends on

the amount of data reported. In themin-movement scheme, CHs are visited in specific

order, but the time spent with each of them depends on the amount of data to report

(more precisely, the collector stays with each CH until all data are collected).

13.7.3 Mobile Sensors

Taherian and O’Keefe [42] proposed an energy-aware event-dissemination protocol

for mobile sensor networks. In this protocol, each sink proactively constructs a

redundant tree in the network. This redundant tree is combined with probabilistic

forwarding. The main idea is to limit the number of parent and sibling nodes as

the redundant tree grows. The proposed redundant tree is not guaranteed to be con-

nected, that is, be useful for event dissemination. It is also not guaranteed to provide

full coverage of the sensor network area. Routing follows tree pointers if they exist;

otherwise, it applies a probabilistic forwarding scheme (which is similar to existing

beaconless routing schemes reviewed in Chapter 12).

13.8 TRACKING OBJECTS IN SENSOR NETWORKS

13.8.1 Tracking Objects Without Data Aggregation

We now discuss problems associated with tracking an object, possibly moving. This

section considers problem aspects when data aggregation is not involved. Each

report therefore needs to be sent directly to the base station. The problem is to

send a sufficient number of reports so that the position of the object can be reliably

determined by the base station, while minimizing the number of sensors that send

the report. We assume that each sensor knows its own location, and location of

its neighboring sensors. Although in reality the reliability of sensor observation

depends on the distance to the object, we consider a simplified model, assuming

that all sensors located within the sensing radius from the object can reliably

detect it. After detecting the object, sensors can measure either the distance to it,

or the direction (angle) toward it. The case of distance is similar to the position deter-

mination problem, discussed in Chapter 9. We therefore now study the case of

measuring an angle toward an object, without knowing the distance to it. All reports

will be assumed accurate, although in reality some reports may be false, and security

and report reliability issues need to be studied as well. Estrin, Govindan, Heide-

mann, and Kumar [2] were the first to investigate this problem. In their solution,

the sensor network is clustered first. CHs for which all neighboring CHs lie on

the same side of a line drawn toward the object elect themselves to participate in

object location. The goal is to elect sensors that form the longest baseline for tri-

angulation. There are several problems with this approach. In general, there are

two such nodes, which are tangent nodes from the object to the convex hull of

CHs. If one of them for any reason does not see the object (because of obstacles),

13.8 TRACKING OBJECTS IN SENSOR NETWORKS 445

the object cannot be accurately determined. Next, the longest baseline is not always

the best choice for accuracy (see Fig. 13.6 where the object R in drawn as a square).

Small or large angles in the triangle containing the baseline may cause large errors in

object positioning. Short and long baselines, with respect to other network measure-

ments, also cause large errors. What is a better criterion? It appears that it is better to

maximize the minimal angle in the triangle used to decide object location [43].

The next problem occurs when the object is inside the convex hull of participat-

ing CHs, as object R in Figure 13.6. In this case, no sensor reports the direction of the

object in ref. [2]. Therefore, there is a need for designing new protocols. In fact, the

problem appears to be quite challenging. Some proposals were given in ref. [43] as

follows. Each node can decide whether or not it is locally a northernmost (N), east-

ernmost (E), westernmost (W), or southernmost (S) node, by verifying whether or

not any sensor exists on the corresponding horizontal or vertical line passing through

the sensor. Similarly, NE, NW, SE and SW sensors can be found, by considering

directions p/4 and 3p/4. Every sensor that can see the object could report it to

its locally northernmost node, by sending/forwarding a message to its northernmost

neighbor, using the greedy routing or routing scheme [12]. The exact protocol

details and analysis are still under investigation [43]. The best approach appears

to be to use the multilateration technique, which is applied, for instance, in ref.

[4] for position determination based on distances. It is also interesting to consider

the different ways of selecting which sensors will participate. In addition, clustering

organization could be replaced by another backbone, for example, connected dom-

inating sets. Any type of backbone could be applied on an area covering the set of

sensors.

13.8.2 Tree Reconfiguration for Tracking Mobile Objects

Zhang and Cao [44] discussed how to monitor an object by sensors located inside a

monitoring region, such as a circle. These sensors are organized into a tree, with one

of the sensors serving as the root. The root collects all reports, aggregates them, and

routes them to one or more sinks (base stations). In this method, the root keeps

O

A B

R

Figure 13.6 Longest baseline may not accurately determine the location of the object O; the

object R is inside the convex hull of the observing sensors.

446 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

monitoring its distance to the target. When the distance becomes larger than a certain

threshold d, it will be replaced by the node that is closest to the center of the current

monitoring region.

13.8.3 Mobicast Protocol for Tracking Mobile Objects

One particular application of geocasting is tracking mobile objects. Mobile objects

create geocast regions that are time dependent, and data collection is performed by

the sensors in the vicinity of a moving object. The sink may collect reports from

the sensors in the vicinity of the object, and may send periodic signals to the

sensors adjusting the geocasting region, following the trajectory along with the

object advances. In mobicast application [45], however, the sensors themselves

adjust the geocasting region.

Huang, Lu, and Roman [45,46] proposed a mobicast protocol where the nodes

that belong to the forward, time-dependent region, or belong or are about to enter

the geocast region, retransmit the message. Their algorithm presented in ref. [45]

is an improved version of the one in ref. [46]. In their problem formulation, the

MC is not used to decide and inform about the geocast region. Instead, the sensors

themselves cooperate, follow the movement of an object, and inform the sensors,

which are approached by the object, to start monitoring. This is achieved by consid-

ering the planar graph of covering sensors, and forwarding messages to the faces of

the planar graph in the direction of object movement, with proper timing corre-

sponding to the arrival time of the object at the considered face. This is illustrated

in Figure 13.7. Suppose that the rectangle object, shown with dashed lines,

moved from the far left and is continuing toward the far right. All faces that the

object intersected are traversed by messages from sensors in these faces. They are

marked in Figure 13.7 by clockwise arrows along the face edges (following the

S
C

B

A

Q

F

E

Z

Y

XRT

U

HG

K

J

I

L

W

P

N O M

Figure 13.7 Reliable mobicast.

13.8 TRACKING OBJECTS IN SENSOR NETWORKS 447

left-hand rule for face traversal). Node F, after receiving the signal from neighbors

C, E, or N, starts monitoring. It then estimates when the rectangle will reach two

other faces containing F, and will send a signal at the appropriate time, so that

nodes in these faces are alerted in time. In turn, node W decides when the rectangle

will reach that face, and sends the alert signal at the best possible time, so that all the

nodes on the long face are alerted just before the arrival of the rectangle. In that way,

alert messages are able to cross over obstacles, or areas without sensors. For

instance, node Z will be alerted although there is no direct neighbor of it that mon-

itored the same rectangle before the rectangle reached Z. In the algorithmic details

given by the authors [45], each node needs to learn all nodes that are on the same

face as the given node, which may not always be available from local knowledge.

However, we believe that this may be avoided by slightly changing the description.

Proper timing for reaching node Z is also an issue, since the face size may be signifi-

cantly larger than the average one, and the message may even follow the outer

boundary of the network. Face routing may not be necessary for alerting sensors

ahead of the arriving object. Greedy routing may be used, or, more precisely,

GFG [12]; it is its combination with face routing that guarantees delivery. If the

area is convex, completely covered by sensors, and the communication radius is

over twice as large as the sensing area, ref. [47] showed that greedy routing guaran-

tees delivery. The problem can even be considered as a variant of geocasting, with

sensors themselves issuing geocast messages toward the future location of the

object, alerting sensors in a certain area. If several such messages arrive at a

given node, it will forward only one of them, to control the overhead.

13.9 RATE-BASED DATA PROPAGATION IN SENSOR NETWORKS

In sensor networks, data sources sample data and propagate them to potential

consumers. A consumer may subscribe to a data item at a certain rate, and the sub-

scription rate may vary for different consumers. The problem is to construct a data

propagation tree to efficiently disseminate data from a source node at the required

rate to each of its consumers.

Singh, Pujar, and Das [48] proposed a breadth-first search-based protocol for a

one-to-one network model, assuming that the connections between sources and

consumers are with a wired network. We shall consider a sensor network, that is,

a wireless network, for connection between sources and consumers. In this scenario,

communication is one-to-all. The main difference from Singh et al.’s model [48] is

that the rates are marked at each node, instead of at each edge.

The proposed solution [49] is a generalized multicasting position-based protocol

(following a solution proposed in ref. [27]), which applies themultipoint relay (MPR)

strategy (see Chapter 11) in determining forwarding neighbors and their rates.

In a preprocessing step, each consumer reports to the source (assume that there is

only one source, for simplicity). Thus the source is informed about customers and

their preferred rates. The source then creates a list of customers and their rates

and makes forwarding decisions, that is, which neighbors will retransmit and at

448 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

what rates. Other nodes, receiving decisions to retransmit, will follow a very similar

protocol to determine their forwarding nodes.

Let S be the current node, and let C1, C2, . . . , Cn be consumers that S needs to

serve. Let R1, R2, . . . , Rn be their preferred rates. Let A1, A2, . . . , Am be neighbors

of S. For each consumer, only neighbors that are closer to it than S can be considered

for serving and covering. Each possible covering of consumer Ci by neighbor

Aj(jAjCij , jSCij) is associated with the cost per progress, defined as Ri=(jSCij�
jAjCij). More precisely, since Ai, once selected, will cover all consumers it is

closer, the cost of selecting Ai is associated with the progress it makes toward all con-

sumers it could serve (it is closer than S to them). To avoid notational difficulties, let

B1, B2, . . . , Bk be those consumers among C1, C2, . . . , Cn that are considered for ser-

ving by Ai (they are all closer to Ai then to S, but not all such nodes need to be

selected). Let P1, P2, . . . , Pk be their corresponding preferred rates. Then the cost

per progress for selecting Ai is max(P1,P2, . . . ,Pk)=(jSB1j � jAiB1j þ jSB2j�
jAiB2j þ � � � þ jSBkj � jAiBkj). An alternative measure is to consider each progress

individually: P1=(jSB1j� jAiB1j)þP2=(jSB2j� jAiB2j)þ�� �þPk=(jSBkj� jAiBkj).
However, this is not likely to be a better criterion, since one small progress can

easily undermine a number of good progresses made. The selection of covering

neighbors and their rates then can proceed in the following manner:

. If there is any consumer served by a single neighbor, then that neighbor is

selected; moreover, the selected neighbor will also cover other consumers

that are closer to it than to S.

. Select one of the remaining consumers with maximal preferred rate, and con-

sider the cost of each neighbor serving it, and the additional benefit such a

choice makes overall. Select the node that then minimizes its own

max(P1,P2, . . . ,Pk)=(jSB1j � jAiB1j þ jSB2j � jAiB2j þ � � � þ jSBkj � jAiBkj).
. Repeat previous step until all consumers are covered.

13.10 ANONYMITY ISSUES IN WIRELESS SENSOR NETWORKS

In many applications, safeguarding output data assets, that is, data produced by the

wireless sensor network and consumed by the end user (application), against loss or

corruption is a major security concern. In these application domains, a wireless

sensor network is typically deployed in a hostile target environment for a relatively

long period of time. The network self-organizes and works to generate output data

that is of import to the application. For example, a wireless sensor network may be

deployed across a vast expanse of enemy territory ahead of a planned attack; the

network system monitors the environment and produces reconnaissance data that

are absolutely essential to a mission planning application. Periodically, during the

network lifetime, a mobile gateway, mounted on a person, land or airborne vehicle,

or a satellite, collects the output data assets from the network system, to maintain an

up-to-date state. This means the network system must store the output data assets

13.10 ANONYMITY ISSUES IN WIRELESS SENSOR NETWORKS 449

from the time it is produced until it is collected. Therefore, securing the output data

assets in the network is an important problem in this class of applications.

We view an attack on the output data assets in the sensor network as a type of

denial of service attacks. This view is based on the abstraction that output data

are stored in a logical repository, and that access to this output data repository

constitutes, in effect, a “service” provided by the network system to the application;

corruption or loss of output data denies the application access to that service.

13.10.1 What Is Anonymity?

Anonymity protects the identity of the sender or receiver and guarantees that both

parties involved in a communication remain anonymous to each other. Recent

years have seen a flurry of activity, and many anonymous communication systems

have been developed for the Internet. Most of the work on anonymity is concerned

with sender anonymity, receiver anonymity, and mutual anonymity. Quite recently,

traffic anonymity has also received well-deserved attention in the literature.

Recently, the problem of securing ad hoc networks has received a great deal of

well-deserved attention. To the best of our knowledge, the anonymity problem

has not been adequately addressed in wireless sensor networks [50].

The threat model assumed byWadaa et al. [50] comes from a data-centric view of

wireless sensor networks. The model is predicated on the assumption that the end-

goal of anonymity attacks on the wireless sensor network is to identify and eliminate

the minimum number of sensors to inflict maximum loss of data assets; eliminating a

sensor means disabling it so that it is permanently nonoperational. For any operation

cycle, if a sink suffers a permanent failure before transferring the contents of its data

repository to the gateway, then a portion of the data assets corresponding to the cycle

is irrevocably lost. The goal of the adversary is to eliminate all sinks. This can be

accomplished in two ways.

13.10.2 The Anonymity Threat Model

13.10.2.1 Brute-Force (Sink Nodes Not Identified) This can take the form

of randomly eliminating nodes in the network on the assumption that, statistically,

some sinks will be eliminated in the process. Coarse sink granularity and sink redun-

dancy mitigate the risk of loss of data assets as a result of this type of attack. A

straightforward special case is the massive elimination of all sensors in the network.

13.10.2.2 Smart (Sink Nodes Identified) The adversary analyzes network

traffic to deduce information about topology, traffic flow patterns, and other

system attributes. The goal is to discover sink nodes and to eliminate them. In

this chapter we assume the adversary engages in smart elimination attacks. The spe-

cifics of the architecture and the implementation of the adversary system are

assumed to be unknown.

450 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

13.10.3 Sender and Path Anonymity

Sender anonymity is most commonly achieved by transmitting a message to its des-

tination through one or more intermediate nodes in order to hide the true identity of

the sender. The message is thus effectively rerouted along what is called a rerouting

path. It is important to study rerouting-based anonymous communication systems in

terms of their ability to protect sender anonymity. The selection of rerouting paths is

critical for this kind of system. Olariu et al. [51] investigated how different path

selection strategies affect the ability to protect sender anonymity. For a given anon-

ymous communication system, they measure this ability by determining how much

uncertainty this system can provide in order to hide the true identity of a sender.

They call this measure the anonymity degree. In ref. [51] the authors assume a

passive adversary model: the adversary can compromise one or more nodes in the

system. An adversary agent at such a compromised node can gather information

about messages that traverse the node. If the compromised node is involved in the

message rerouting, it can discover and report the immediate predecessor and succes-

sor nodes for each message traversing the compromised node. We assume that the

adversary collects all the information from its agents at the compromised nodes

and attempts to derive the identity of the sender of a message.

Common sense indicates that the degree of anonymity increases with increasing

number of intermediate nodes between the sender and the receiver. Olariu et al. [51]

call this number of intermediate nodes the path length of the rerouting path. There is

a point, however, beyond which increasing the path length actually decreases the

degree of anonymity. The authors give a quantitative analysis of how path length

affects the degree of anonymity. Rerouting schemes give rise either to paths with

fixed length (where messages are forwarded to the receiver after traversing a fixed

number of intermediate nodes) or variable length (for example, where every

intermediate node randomly decides whether to forward the message to the receiver

directly or to another intermediate node). The authors show that variable path-length

strategies perform better than fixed path-length strategies in terms of degree of anon-

ymity. However, when the expected path length is sufficiently long, the difference of

anonymity degree is relatively small between different variable and fixed path-

length strategies. As a result of this study, Olariu et al. [51] argue that several

well-known anonymous communication systems are not using the best path selec-

tion strategies. They go on to propose an optimal method to select path lengths,

by showing that the path selection problem can be cast as an optimization problem,

whose solution yields an optimal path-length distribution that maximizes the degree

of anonymity.

13.11 CONCLUSIONS

We considered some relevant aspects of the process of issuing requests and collect-

ing data, with sensor ad hoc networks as the primary application of the presented

methods. Protocol efficiency was the primary goal, with efficiency defined by

some metrics or design characteristics (such as localized behavior of protocols).

13.11 CONCLUSIONS 451

Ad hoc and sensor networks have recently attracted exponentially increasing

interest, including the creation of new conferences, new journals, and publication

of a number of books. We envision that this trend will continue in the short term,

and we envision that data-centric operation problems, discussed in this chapter,

will continue to be intensively studied. We hope that the research efforts will lead

toward real applications of ad hoc networks, especially sensor networks.

Sensor networks pose a number of research challenges. In addition to the problems

discussed in this and other chapters in this book, we mention two more problem areas.

One is about the design of sensor network protocols for heterogeneous sensor networks,

the other is the investigation of various scenarios and protocols for wireless sensor and

actor networks. Actor nodes are active nodes, with higher energy and computation

capabilities, that are able to perform some actions and are able to move around.

EXERCISES

13.1. Describe a routing algorithm based on sector training [1] that will guarantee

delivery in when there are empty sectors.

13.2. Derive a formula for the error involved when the position of an object is deter-

mined based on the angles measured from three given sensors [43]. Show that

the error is minimized when the minimal angle in the triangle created by three

measuring sensors is maximized.

13.3. Prove that the geocast_traversal_intersecting_faces algorithm guarantees

delivery to all nodes inside the geocasting region, which is connected to the

source [21,25].

13.4. Design an algorithm for finding optimal ring sizes (for extending network life-

time) for reporting to a CH with data aggregation for the case of n rings [49].

13.5. Design some protocols for moving the sink to a new position near the old pos-

ition so that the overall energy consumption for reporting from last-hop sen-

sors is reduced. Design another procedure for moving the sink to reduce the

number of incoming reports that violate delay constraints [52].

13.6. Design an energy-efficient data-aggregation protocol for the following scenario.

There are two types of sensors in a geocasting region, plus sensors outside the

region. Some sensors inside the geocasting region are sensing and can perform

data aggregation, while some other sensors are not sensing, but can only per-

form data aggregation, if needed. Sensors outside the geocasting region can

only perform data aggregation, if needed, or can simply forward the traffic.

13.7. In a heterogeneous sensor network, there are two kinds of sensors. Some super-

sensors have high-energy resources and can communicate with each other and

with the sink with much smaller delays than communication between regular

sensors. Suppose that each node knows the distance to and label of the nearest

452 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

supersensor, and that this information is communicated to neighboring

sensors. Describe a broadcasting protocol in this environment [32].

13.8. Describe a localized protocol for general multigeocasting problems, where a

monitoring task is to be disseminated from the sink to all the sensors located

inside several geographic regions that are of arbitrary sizes, shapes, and

locations, known to the sink.

ACKNOWLEDGMENT

This research is partially funded by NSERC Discovery grant.

REFERENCES

1. S. Olariu, A. Wadaa, L. Wilson, and M. Eltoweissy. Wireless sensor networks: Lever-

aging the virtual infrastructure. IEEE Network, pages 51–56, July/August 2004.

2. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable

coordination in sensor networks. In Proceedings of the 5th Annual ACM/IEEE Inter-

national Conference on Mobile Computing and Networking (MobiCom’99), pages

263–270, Seattle, Washington, August 1999.

3. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communi-

cation protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii

International Conference on System Sciences (HICSS), Volume 8, page 8020, Maui,

Hawaii, January 2000.

4. R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from local

information on an ad hoc sensor network. In Proceedings of the 2nd International Work-

shop in Information Processing in Sensor Networks (IPSN ’03), pages 333–348,

Palo Alto, California, April 2003.

5. V. Mhatre and C. Rosenberg. Design guidelines for wireless sensor networks: Communi-

cation, clustering and aggregation. Ad Hoc Networks, 2(1): 45–63, 2004.

6. S. Olariu and I. Stojmenovic. Design Guidelines for Clustering and Aggregation in

Sensor Networks. In preparation.

7. I. Stojmenović and X. Lin. Power aware localized routing in wireless networks. IEEE

Transactions on Parallel and Distributed Systems, 12(11):1122–1133, November 2001.

8. J. Lian, K. Naik, and G. B. Agnew. Data capacity improvement of wireless sensor net-

works using non-uniform sensor distribution. International Journal of Distributed

Sensor Networks, forthcoming.

9. M. Kumar, L. Schwiebert, and M. Brockmeyer. Efficient data aggregation middleware for

wireless sensor networks. Paper presented at the 1st IEEE International Conference on

Mobile Ad-hoc and Sensor Systems (MASS 2004), Fort Lauderdale, Florida, October

2004.

10. C. Schurgers and M. Srivastava. Energy efficient routing in wireless sensor networks. In

Proceedings of MILCOM 2001, pages 357–361, Vienna, Virginia, October 2001.

REFERENCES 453

11. I. Chatzigiannakis and S. Nikoletseas. A sleep-awake protocol for information propa-

gation in smart dust networks. In Proceedings of the 17th International Parallel and

Distributed Processing Symposium (IPDPS 2003), page 225, Nice, France, April 2003.

12. P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed delivery in

ad hoc wireless networks. In Proceedings of the 3rd ACM Inernational Workshop on

Discrete Algorithms and Methods for Mobile Computing and Communications (D/
ALM’99), pages 48–55, Seattle, Washington, August 1999. See also in Wireless

Networks, 7(6):609–616, 2001.

13. S. Ratnasamy, D. Estrin, R. Govindan, B. Karp, S. Shenker, L. Yin, and F. Yu. Data-

centric storage in Sensornets with GHT, a geographic hash table. Mobile Networks and

Applications (MONET), 8:427–442, August 2003.

14. C. Intanagonwiawat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and

robust communication paradigm for sensor networks. In Proceedings of the 6th Annual

ACM/IEEE International Conference on Mobile Computing and Networking (Mobi-

Com ’00), pages 56–67, Boston, Massachusetts, August 2000. See also IEEE/ACM
Transactions on Networking, 11(1):2–16, February 2003.

15. J. Ding, K. M. Sivalingam, R. Kashyapa, and L. J. Chuan. A multi-layered architecture

and protocols for large-scale wireless sensor networks. In Proceedings of the IEEE

Vehicular Technology Conference (VCT2003), Orlando, Florida, October 2003.

16. I. Stojmenovic. Beaconless Area Based Broadcasting. In preparation.

17. J. Lipman, P. Boustead, and J. Chicharo. Reliable minimum spanning tree flooding in

ad hoc networks. IEEE Transactions on Vehicular Technology, forthcoming.

18. N. Li, J. C. Hou, and L. Sha. Design and analysis of an MST-based topology control

algorithm. In Proceedings of IEEE INFOCOM, Volume 3, pages 1702–1712, San Fran-

cisco, California, April 2003.

19. W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information dis-

semination in wireless sensor networks. In Proceedings of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom ’99),

pages 174–185, Seattle, Washington, August 1999.

20. M. Seddigh, J. Solano Gonzalez, and I. Stojmenovic. RNG and internal node based broad-

casting algorithms for wireless one-to-one networks. Mobile Computing and Communi-

cations Review, 5(2):37–44, 2001.

21. I. Stojmenovic. Geocasting in Ad Hoc and Sensor Networks. Technical Report TR-

2004-02, Computer Science, SITE, University of Ottawa, March 2004. See also in Theor-

etical and Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks,

Jie Wu (ed.), CRC Press, pages 79–97, 2005.

22. Y. Yu, R. Govindan, and D. Estrin. Geographic and Energy Aware Routing: A Recursive

Data Dissemination Protocol for Wireless Sensor Networks. Technical Report TR-

01-0023, Computer Science, University of California, Los Angeles, August 2001.

23. I. Stojmenović, M. Russell, and B. Vukojevic. Depth first search and location based loca-

lized routing and QoS routing in wireless networks. Computers and Informatics,

21(2):149–165, 2002.

24. J. Heidemann, F. Silva, and D. Estrin. Matching data dissemination algorithms to

application requirements. In Proceedings of the 1st International Conference on

Embedded Networked Sensor System (SenSys), pages 218–229, Los Angeles, California,

November 2003.

454 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

25. I. Stojmenovic. Geocasting with guaranteed delivery in sensor networks. IEEE Wireless

Communications Magazine, 11(6):29–37, December 2004.

26. K. Saeda and A. Helmy. Efficient geocasting with perfect delivery in wireless networks.

In Proceedings of the IEEE Wireless Communications and Networking Conference

(WCNC 2004), Volume 5, pages 2555–2560, Atlanta, Georgia, March 2004.

27. M. Mauve, H. Fusler, J. Widmer, and T. Lang. Position-Based Multicast Routing for

Mobile Ad Hoc Networks, Technical Report TR-03-004, Department of Computer

Science, University of Mannheim, March 2003. See also Poster: Position-based multicast

routing for mobile ad-hoc networks, In Proceedings of the 4th ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc ’03) (electronic

edition), Annapolis, Maryland, June 2003.

28. J. Carle and D. Simplot-Ryl. Energy efficient area monitoring by sensor networks.

Computer (IEEE), 37(2):40–47, February 2004.

29. C. Perkins and E. M. Royer. Ad hoc on-demand distance vector (AODV) routing. In

Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA ’99), pages 90–100, New Orleans, Louisiana, February 1999.

30. T. Fujiwara, N. Iida, and T. Watanabe. An ad hoc routing protocol in hybrid wireless

networks for emergency communications. In Proceedings of the 24th International Con-

ference on Distributed Computing Systems Workshops—W6: WWAN (ICDCSW ’04),

pages 748–754, Tokyo, Japan, March 2004.

31. S. Zou, I. Nikolaidis, and J. J. Harms. Efficient data collection trees in sensor networks

with redundancy removal. In Proceedings of the 3rd International Conference on

AD-HOC Networks and Wireless (ADHOC-NOW 2004), pages 252–265, Vancouver,

British Columbia, July 2004.

32. F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Routing and broadcasting in hybrid

ad hoc and sensor networks. In Theoretical and Algorithmic Aspects of Sensor, Ad Hoc

Wireless and Peer-to-Peer Networks, Jie Wu (ed.), CRC Press, pages 415–426, 2005.

33. I. Stojmenović. Geocasting, Data Gathering and Activity Scheduling in Ad Hoc and

Sensor Networks. Technical Report TR-2003-05, Computer Science, SITE, University

of Ottawa, August 2003.

34. I. Stojmenović. Data Gathering and Activity Scheduling in Ad Hoc and Sensor Networks.

Paper presented at the International Workshop on Theoretical Aspects of Wireless

Ad Hoc, Sensor, and Peer-to-Peer Networks, Chicago, Illinois, June 2004.

35. S. Lindsey, C. Raghavendra, and K. Sivalingam. Data gathering algorithms in sensor

networks using energy metrics. IEEE Transactions on Parallel and Distributed Systems,

13(9):924–935, September 2002.

36. F. J. Ovalle-Martinez, I. Stojmenovic, F. Garcia-Nocetti, and J. Solano-Gonzalez. Find-

ing minimum transmission radii and constructing minimal spanning trees in ad hoc and

sensor networks. Journal of Parallel and Distributed Computing, 65(2):132–141,

February 2005.

37. P. Morin. Online Routing in Geometric Graphs. Ph.D. thesis, School of Computer

Science, Carleton University, January 2001.

38. H. O. Tan and I. Korpeoglu. Power efficient data gathering and aggregation in wireless

sensor networks. ACM SIGMOD Record, 32(4):66–71, December 2003.

39. M. Khan, G. Pandurangan, and B. Bhargava. Energy-Efficient Routing Schemes for

Sensor Networks, Technical Report CSD TR 03-013, Purdue University, July 2003.

REFERENCES 455

40. F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model for

large-scale wireless sensor networks. In Proceedings of the 8th International ACM Con-

ference on Mobile Computing and Networking (MobiCom), pages 148–159, Atlanta,

Georgia, September 2002.

41. Y. Tirta, Z. Li, Y. H. Lu, and S. Bagchi. Efficient collection of sensor data in remote fields

using mobile collectors. In Proceedings of the 13th International Conference on

Computer Communications and Networks (ICCCN 2004), pages 515–520, Chicago,

Illinois, October 2004.

42. S. Taherian and D. O’Keefe. Event dissemination in mobile wireless sensor networks.

Paper presented at the 1st IEEE International Conference on Mobile Ad Hoc and

Sensor Systems (MASS 2004), Fort Lauderdale, Florida, October 2004.

43. I. Stojmenovic. Object Location in Sensor Networks. In preparation.

44. W. Zhang and G. Cao. Optimizing tree reconfiguration to track mobile targets in sensor

networks. Mobile Computing and Communications Review, 7(3):39–40, July 2003.

45. Q. Huang, C. Lu, and G. C. Roman. Reliable mobicast via face-aware routing. In

Proceedings of IEEE INFOCOM, Hong Kong, China, March 2004.

46. Q. Huang, C. Lu, and G. C. Roman. Mobicast: Just-in-Time Multicast for Sensor

Networks under Spatiotemporal Constraints, Technical Report TR WUCS-02-42,

Washington University, St. Louis, Missouri, December 2002.

47. G. Xing, C. Lu, R. Pless, and Q. Huang. Greedy geographic routing is good enough in

sensing covered networks. IEEE INFOCOM 2004.

48. G. Singh, S. Pujar, and S. Das. Rate-Based Data Propagation in Sensor Networks. Paper

presented at the IEEE Wireless Communications and Networking Conference (WCNC

2004), Atlanta, Georgia, March 2004.

49. I. Stojmenovic. Rate Based Data Propagation in Sensor Networks. In preparation.

50. A. Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones. On providing anonymity in

wireless sensor networks. In Proceedings of the 10th International Conference on Paral-

lel and Distributed Systems (ICPADS-2004), pages 411–418, Newport Beach, California,

July 2004.

51. S. Olariu, A. Wadaa, L. Wilson, K. Jones, and M. Eltoweissy. Enforcing Anonymity in

Wireless Sensor Networks. In preparation.

52. K. Akkaya, M. Younis and M. Bangad. Sink repositioning for enhanced performance in

wireless sensor networks. Computer Networks, forthcoming.

456 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

&CHAPTER 14

Path Exposure, Target Location,
Classification, and Tracking in
Sensor Networks

KOUSHA MOAVENI-NEJAD and XIANG-YANG LI

Illinois Institute of Technology, Chicago, Illinois

Algorithms designed for sensor networks should be self-organizing (should not

depend on global infrastructure), robust (be tolerant to node failures and range

errors), and energy efficient (i.e., require little computation and, especially, com-

munication). This chapter briefly discusses what information is available to the

nodes whose location is unknown and the methods that this information can be

used to derive the location of the object. The localization and tracking problems

are introduced and methods to solve it are discussed. Some experimental location

and tracking systems are then reviewed.

14.1 INTRODUCTION

Wireless sensor networks are large-scale distributed embedded systems composed

of small devices that integrate sensors, actuators, wireless communication, and

microprocessors. With advances in hardware, it will soon be feasible to deploy

dense collections of sensors to perform distributed microsensing of physical

environments. Sensor networks will serve as a key infrastructure for a broad

range of applications, including precision agriculture, intelligent highway systems,

emergent disaster recovery, and surveillance.

Sensor networks are an emerging technology that promises the unprecedented

ability to monitor and instrument the physical world. Sensor networks consist of a

large number of inexpensive wireless devices (nodes) densely distributed over

457

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

the region of interest and have wireless connectivity. They are typically battery

powered with limited communication and computation abilities. Also each node

in a wireless sensor network is equipped with a variety of sensing modalities,

such as acoustic, seismic, and infrared.

Having location information can be very useful and has so many applications, it

can answer questions like: Are we almost to the campsite? What lab bench was

I standing by when I prepared these tissue samples? How should our search-and-

rescue team move to quickly locate all the avalanche victims? Can I automatically

display this stock devaluation chart on the large screen I am standing next to? Where

is the nearest cardiac defibrillation unit? and so on.

Service providers can also use location information to provide some novel

location-aware services. The navigation system based on a global positioning

system (GPS) is an example. A user can tell the system his destination and the

system will guide him there. Phone systems in an enterprise can exploit locations

of people to provide follow-me services.

Researchers are working to meet these and similar needs by developing systems

and technologies that automatically locate people, equipment, and other tangibles.

Indeed, many systems over the years have addressed the problem of automatic

location-sensing. Because each approach solves a slightly different problem or

supports different applications, they vary in many parameters, such as the physical

phenomena used for location determination, the form factor of the sensing appar-

atus, power requirements, infrastructure versus portable elements, and resolution

in time and space.

For outdoor environments, the most well-known positioning system is the GPS

[1], which uses 24 satellites set up by the U.S. Department of Defense to enable

global three-dimensional positioning services, and it provides an accuracy of

around 20 to 50 m. In addition to the GPS system, positioning can also be done

using somewireless networking infrastructures. Taking the personal communications

service (PCS) cellular networks as an example, the E911 emergency service requires

determining the location of a phone call via the base stations of the cellular system.

In GPS, triangulation uses ranges to at least four known satellites to find the

coordinates of the receiver, and the clock bias of the receiver. For our node-location

purposes, we are using a simplified version of the GPS triangulation, as we only deal

with distances, so there is no need for clock synchronization. Because of the

following reasons GPS is not suitable for wireless sensor networks and much

work has been dedicated recently to positioning and location tracking in the area

of wireless sensor networks. The reasons are:

. It is not available in an indoor environment because satellite signals cannot

penetrate buildings.

. For more fine-grained applications, higher accuracy is usually necessary in the

positioning result.

. Sensor networks have their own battery constraint, which requires special

design.

458 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

Many applications of sensor networks require knowledge of physical sensor

positions. For example, target detection and tracking are usually associated with

location information [2]. Further, knowledge of sensor location can be used to

facilitate network functions such as packet routing [3–5], and collaborative

signal processing [6]. Sensor position can also serve as a unique node identifier,

making it unnecessary for each sensor to have a unique ID assigned prior to its

deployment.

In sensor networks the capabilities of individual nodes are very limited and nodes

are often powered by batteries only. To conserve energy, collaboration between

nodes is required and communication between nodes should be minimized. To

achieve these goals nodes in wireless sensor networks (WSNs) need to determine

a device’s context, and since each node has limited power, we want to determine

the location of individual sensor nodes without relying on external infrastructure

(base stations, satellites, etc.).

Location information not only can be used to minimize the communication

but also can be used to improve the performance of wireless networks and

provide new types of services. For example, it can facilitate routing in a wireless

ad hoc network to reduce routing overhead. This is known as geographic rout-

ing [7,8]. Through location-aware network protocols, the number of control

packets can be reduced. Other types of location-based services include geocast

[9], by which a user can request to send a message to a specific area, and temporal

geocast, by which a user can request to send a message to a specific area at a

specific time. In contrast to traditional multicast, such messages are not targeted

at a fixed group of members, but rather at members located in a specific physical

area.

However, location discovery in wireless sensor networks is very challenging.

First, the positioning algorithm must be distributed and localized in order to

scale well for large sensor networks. Second, the localization protocol must

minimize communication and computation overhead for each sensor, since

nodes have very limited resources (power, CPU, memory, etc.). Third, the posi-

tioning functionality should not increase the cost and complexity of the sensor,

since an application may require thousands of sensors. Fourth, a location-

detection scheme should be robust. It should work with accuracy and precision

in various environments, and should not depend on sensor-to-sensor connectivity

in the network.

The localization problem has received considerable attention in the past, as

many applications need to know where objects or persons are, and hence various

location services have been created. Undoubtedly, the GPS is the most well-

known location service in use today. The approach taken by GPS, however, is

unsuitable for low-cost, ad hoc sensor networks, since GPS is based on extensive

infrastructure (i.e., satellites). Likewise, solutions developed in the area of robotic

[10–12] and ubiquitous computing [13] are generally not applicable for sensor

networks, as they require too much processing power and energy. Recently, a

number of localization systems have been proposed specifically for sensor net-

works [14–16]. We are interested in truly distributed algorithms that can be

14.1 INTRODUCTION 459

employed on large-scale ad hoc sensor networks (100þ nodes). Such algorithms

should be:

. Self-organizing (i.e., do not depend on global infrastructure)

. Robust (i.e., be tolerant of node failures and range errors)

. Energy efficient (i.e., require little computation and, especially, communi-

cation)

These requirements immediately rule out some of the proposed localization

algorithms for sensor networks. The rest of this chapter is organized as follows.

In Section 14.2, we briefly discuss what information is available to the nodes

whose location is unknown, and then we discuss the methods that use this infor-

mation to find the location of the object. In Section 14.3 the localization problem

is introduced and methods to solve it are discussed. Similarly in Section 14.4

the target-tracking problem is introduced and methods to solve it are discussed.

Section 14.5 reviews some experimental location and tracking systems, and finally

Section 14.6 concludes the chapter.

14.2 NAVIGATION TECHNIQUES TO DERIVE LOCATION

There are several methods, such as time of arrival (ToA), time difference of arrival

(TDoA), and signal strength, with which an object can estimate its distance or its

relative location to a reference point. In this section several approaches, which

use the methods previously cited to calculate an object’s location, will be discussed.

14.2.1 Lateration

Lateration computes the position of an object by measuring its distance from mul-

tiple reference positions. Calculating an object’s position in two dimensions requires

distance measurements from three noncollinear points, as shown in Figure 14.1(a),

and in three dimensions, distance measurements from four noncoplanar points are

C

A

B

C

A

B

(a) (b)

Figure 14.1 Trilateration method: (a) ideal situation and (b) real situation with error.

460 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

required. Domain-specific knowledge can reduce the number of required distance

measurements. For example, if all reference points are above the object, then dis-

tance measurements from only three reference points are required. We now describe

two different lateration techniques.

14.2.1.1 Trilateration Trilateration is a well-known technique in which the

positioning system has a number of beacons at known locations. These beacons

can transmit signals so that other devices can determine their distances to these bea-

cons based on received signals. If a device can hear at least three beacons, its

location can be estimated. Figure 14.1(a) shows how trilateration works: A, B,

and C are beacons with known locations. From A’s signal, one can determine the

distance to A, and thus that the object should be located at the circle centered at A

with a radius equal to the estimated distance. Similarly, from B’s and C’s signals,

it can be determined that the object should be located at some circles centered at

B and C, respectively. Thus, the intersection of the three circles is the estimated

location of the device. The preceding discussion has assumed an ideal situation;

however, as mentioned earlier, distance estimation always contains errors that

will, in turn, lead to location errors. Figure 14.1(b) illustrates an example in practice.

The three circles do not intersect at a common point. In this case, the maximum-

likelihood method can be used to estimate the device’s location. Let the three

beacons A, B, and C be located at (xA, yA), (xB, yB), and (xC, yC), respectively. For

any point (x, y) on the plane, a difference function is computed:

sx, y ¼
ffi
(x� xA)

2 þ (y� yA)
2

q
� rA

����
����þ

ffi
(x� xB)

2 þ (y� yB)
2

q
� rB

����
����

þ
ffi
(x� xC)

2 þ (y� yC)
2

q
� rC

����
����

where rA, rB, and rC are the estimated distances to A, B, and C, respectively. The

location of the object can then be predicted as the point (x, y) among all points

such that sx, y is minimized. In addition to using the ToA approach for positioning,

the angle of arrival (AoA) approach can be used. For example, in Figure 14.2, the

unknown node D measures the angle of /ADB, /BDC, and /ADC by the

received signals from beacons A, B, and C. From this information, D’s location

can be derived [16].

14.2.1.2 Multilateration The trilateration method has its limitation in that at

least three beacons are needed to determine a device’s location. In a sensor network,

in which nodes are randomly deployed, this may not be true. Several multilateration

methods are proposed to relieve this limitation. The ad hoc localization system

(AHLoS) [17] enables nodes to discover their locations by using a set of distributed

iterative algorithms. Figure 14.3 shows an example in which, initially, beacon nodes

contain only nodes marked as reference points. Device nodes A, B, and C are at

14.2 NAVIGATION TECHNIQUES TO DERIVE LOCATION 461

unknown locations. In the first iteration, as Figure 14.3(a) shows, the locations of

nodes A and C will be determined.

Once the location of a device is estimated, its role is changed to a beacon node so

as to help determine other devices’ locations. This is repeated until all host locations

are determined (if possible). As Figure 14.3(b) shows, in the second iteration, the

location of node B can be determined with the help of nodes A and B, which are

now serving as beacons.

If the distance or regular estimation is precise, we can show that the order in

which each node determines its location and then serves as a beacon node will

(a) (b)

Unknown point

Reference point

C

A

B

C

A

B

Unknown point

Reference point

Figure 14.3 (a) Atomic multilateration and (b) iterative multilateration.

Reference point

Unknown point

C

D

B

A

Figure 14.2 Angle measurement from three beacons A, B, and C.

462 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

not affect the number of nodes whose positions can be computed. However, when

the information is not precise, it does affect this and further, the precision of the

system.

14.2.2 Pattern Matching Using Database

Pattern matching (also known as fingerprinting) tries to compare the received signal

pattern against the training patterns in the database and to determine the likeli-

hood that the device is currently located in a position. A typical solution has two

phases:

1. Off-Line Phase. The purpose of this phase is to collect signals from all base

stations at each training location, thus the received signal strengths are

recorded in the database. For higher accuracy, one can establish multiple

entries in the database for the same training location. From the database,

some positioning rules, which form the positioning model, will then be

established.

2. Real-Time Phase. With a well-trained positioning model, one can estimate a

device’s location, given the signal strengths collected by the device from

all possible base stations. The positioning model can determine a number of

locations, each associated with a probability.

There are several similarity searching methods in the matching process in the

literature, such as nearest-neighbor algorithms (NNSS) [18,19] and probability-

based algorithms [20].

14.2.3 Network-Based Tracking

At the network level, location tracking may be done via the cooperation of sensors.

Tseng and colleagues [21] addressed these issues using an agent-based paradigm.

Once a new object is detected by the network, a mobile agent will be initiated to

track the roaming path of the object. Then the agent invites some nearby slave sen-

sors to cooperatively position the object and inhibit other irrelevant (i.e., farther)

sensors from tracking the object. More precisely, only three agents will be used

for the tracking purpose at any time, and they will move as the object moves.

The trilateration method is used for positioning.

Figure 14.4 shows an example. The sensor network is deployed in a regular

manner, and it is assumed that each sensor’s sensing distance equals the distance

between two neighboring sensors. Initially, each sensor is in the idle state, searching

for new objects. Once it detects a target, a sensor will transit to the election state,

trying to serve as the master agent. The nearest sensor will win. The master agent

will then dispatch two neighboring sensors as the slave agents; master and slave

agents will cooperate to position the object. In the figure, the object is first tracked

by sensors {S0, S1, S2} when resident in A0, then by {S0, S2, S3} when in A1, by

14.2 NAVIGATION TECHNIQUES TO DERIVE LOCATION 463

{S2, S3, S5} when in A2, etc. The master agent is responsible for collecting all sensing

data and performing the trilateration algorithm. It also conducts data fusion by

keeping the tracking results while it moves around. At the proper time, the master

agent will forward the tracking result to the data center.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS

In this section, we address the issue of localization in ad hoc sensor networks. That

is, we want to determine the location of individual sensor nodes without relying on

external infrastructure (base stations, satellites, etc.). Undoubtedly, the GPS is

the most well-known location service in use today. The approach taken by GPS,

however, is unsuitable for low-cost, ad hoc sensor networks, since GPS is based

on extensive infrastructure (i.e., satellites). Location service has many applications,

for example, it enables routing in sufficiently isotropic large networks, without the

use of large routing tables.

We assume that only a limited fraction of nodes, which are called anchor nodes,

have a self-location capability. Note that, in wireless ad hoc sensor networks, there

exist no fine control over the placement of the sensor nodes when the network is

installed (e.g., when nodes are dropped from an airplane). Consequently, we

assume that nodes are randomly distributed across the environment. For simplicity

and ease of presentation, we limit the environment to two dimensions, but all algor-

ithms are capable of operating in three dimensions. Figure 14.5 shows an example

network with 25 nodes; pairs of nodes that can communicate directly are connected

by an edge. The connectivity of the nodes in the network (i.e., the average number of

neighbors) is an important parameter that has a strong impact on the accuracy of

most localization algorithms.

A2

S1

S3

S2

S4

S5

S0

A0

A1

Figure 14.4 Roaming path of an object (dashed line).

464 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

In some application scenarios, nodes may be mobile. Here, however, we focus on

static networks, where nodes do not move for a reasonably short period of time,

since this is already a challenging condition for distributed localization. Note that

anchor nodes have the same capabilities (processing, communication, energy con-

sumption, etc.) as all other sensor nodes with unknown positions. Ideally, the frac-

tion of anchor nodes should be as low as possible to minimize the installation costs.

14.3.1 Ad Hoc Positioning System

The ad hoc positioning system (APS) [16] is a distributed, hop-by-hop positioning

algorithm that provides the approximate location for all nodes in a network where

only a limited fraction of nodes have the self-location capability. Also, APS is

appropriate for indoor location-aware applications.

14.3.1.1 Algorithm It is not desirable to have the landmarks emit maximum

power to cover the entire network for several reasons: collisions in local communi-

cation, high power usage, coverage problems when moving. Also, it is not accepta-

ble to assume some fixed positions for the landmarks, as the applications envisioned

by APS systems are either in deployments from the air over inaccessible areas, or

possibly involving the movement and reconfiguration of the network. In this case,

one option is to use the hop-by-hop propagation capability of the network to forward

distances to landmarks. In general, they aim for the same principle as GPS, the

difference being that the landmarks are contacted in a hop-by-hop fashion, rather

than directly, as ephemerides are. Once an arbitrary node has estimated a number

Unknown

Anchor

Figure 14.5 Example network topology.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 465

(�3) of landmarks, it can compute its own position in the plane, using a procedure

similar to the one used in GPS position calculation described in the previous section.

The estimate we start with is the centroid of the landmarks collected by a node.

In what follows we refer to one landmark only, as the algorithm behaves identically

and independently for all the landmarks in the network. It is clear that the immediate

neighbors of the landmark can estimate the distance to the landmark by direct signal-

strength measurement. Using some propagation method, the second-hop neighbors

then are able to infer their distance to the landmark, and the rest of the network

follows, in a controlled flood manner, initiated at the landmark. Complexity of

signaling is therefore driven by the total number of landmarks, and by the average

degree of each node.

14.3.1.2 Distance to Anchors The APS system uses three methods of hop-

to-hop distance propagation and examines advantages and drawbacks for each of

them. Each propagation method is appropriate for a certain class of problems, as

it influences the amount of signaling, power consumption, and position accuracy

achieved.

Nodes that can communicate with anchor nodes directly are able to find their dis-

tance from anchor nodes, but this information is not available to all nodes. Nodes

share information to collectively determine the distances between individual

nodes and the anchors, so that an (initial) position can be calculated. None of the

alternatives engage in complicated calculations, so finding the distance to anchors

is communication bounded. Most of the distributed localization algorithms share

a common communication pattern: information is flooded into the network, starting

at the anchor nodes. A networkwide flood by some anchor A is expensive, since each

node must forward A’s information to its (potentially) unaware neighbors. This

implies a scaling problem: flooding information from all anchors to all nodes will

become too expensive for large networks, even with low anchor fractions. Fortu-

nately a good position can still be derived with knowledge (position and distance)

from a limited number of anchors. Therefore, nodes can simply stop forwarding

information when enough anchors have been located. This simple optimization

(have a flood limit) has been proved to be highly effective in controlling the

amount of communication. We now list three methods for determining the location.

. Sum-dist. This method is also known as DV-distance [16]. The most simple

solution for determining the distance to the anchors is simply adding the

ranges encountered at each hop during the network flood. Sum-dist starts at

the anchors, which send a message including their identity, position, and a

path length set to 0. Each receiving node adds the measured range to the

path length and forwards (broadcasts) the message if the flood limit allows it

to do so. Another constraint is that when the node has already received infor-

mation about the particular anchor, it is only allowed to forward the message

if the current path length is less than the previous one. The end result is that

each node will have stored the position and minimum path length to at least

flood-limit anchors.

466 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

. DV-hop. A drawback of Sum-dist is that range errors accumulate when dis-

tance information is propagated over multiple hops. This cumulative error

becomes significant for large networks with few anchors (long paths) and/or
poor ranging hardware. A robust alternative is to use topological information

by counting the number of hops instead of summing the (erroneous) ranges.

This approach was named DV-hop by Niculescu and Nath [16], and

Hop-TERRAIN by Savarese et al. [22]. The DV-Hop propagation method is

the most basic scheme, and it first employs a classic distance vector exchange

so that all nodes in the network discover distances, in hops, to the landmarks.

Essentially, DV-hop consists of two flood waves. After the first wave, which

is similar to Sum-dist, nodes have obtained the position and minimum hop

count to at least flood-limit anchors. The second calibration wave is needed

to convert hop counts into distances such that nodes can compute a position.

This conversion consists of multiplying the hop count by an average hop

distance. Whenever an anchor A1 infers the position of another anchor A2

during the first wave, it computes the distance between them, and divides that

by the number of hops to derive the average hop distance between A1 and A2.

When calibrating, an anchor takes all remote anchors into account that it is

aware of. Nodes forward (broadcast) calibration messages only from the first

anchor that calibrates them, which reduces the total number of messages in the

network.

. Euclidean. A drawback of DV-hop is that it does not work for highly irregular

network topologies, where the variance in actual hop distances is very large.

Niculescu and Nath [16] have proposed another method, named Euclidean,

which is based on the local geometry of the nodes around an anchor. Again

anchors initiate a flood, but forwarding the distance is more complicated than

in the previous cases. When a node has received messages from two neighbors

that know their distance to the anchor, and to each other, it can calculate the

distance to the anchor. Figure 14.6 shows a node X that has two neighbors n1
and n2 with distance estimates (a and b) to an anchor. Together with the

known ranges c, d, and e, there are two possible values (r1 and r2) for the dis-

tance of the node to the anchor. Niculescu describes two methods to determine

which, if any, distance to use. The neighbor vote method can be applied if there

exists a third neighbor n3 that has a distance estimate to the anchor and that is

connected to either n1 or n2. Replacing n2 (or n1) by n3 will again yield a pair of

distance estimates. The correct distance is part of both pairs, and is selected by a

simple vote. Of course, more neighbors can be included to make the selection

more accurate.

14.3.1.3 Node Position Now nodes can determine their position using latera-

tion, min–max (presented by Savvides et al. [23]), or other methods based on the

distance estimates to a number of anchors provided by one of the three alternatives

(Sum-dist, DV-hop, or Euclidean). The determination of the node positions does not

involve additional communication.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 467

14.3.2 Time-Based Positioning Scheme

The time-based positioning scheme (TPS) is meant for use with outdoor wireless

sensor networks. Many applications of outdoor sensor networks require knowledge

of physical sensor positions. For example, target detection and tracking is usually

associated with location information. Further, knowledge of sensor location can

be used to facilitate network functions such as packet routing and collaborative

signal processing. Sensor position can also serve as a unique node identifier,

making it unnecessary for each sensor to have a unique ID assigned prior to its

deployment.

TPS relies on an RF signal, which performs well compared to ultrasound, infra-

red, and so on, in outdoor environments. They measure the difference in arrival

times (TDoA) of beacon signals. TPS does not need the specialized antennae gen-

erally required by an AoA positioning system. This time-based location-detection

scheme avoids the drawbacks of many existing systems for outdoor sensor location

detection. Compared to existing schemes proposed in the context of outdoor sensor

networks, the TPS scheme has the following characteristics and advantages:

. Time synchronization of all base stations and nodes is not required in TPS.

. There are no requirements for an ultrasound receiver, second radio, or special-

ized antennae at base stations or sensors.

. The TPS algorithm is not iterative and does not require a complicated refine-

ment step.

. TPS has low computation cost.

. Sensors listen passively and are not required to make radio transmissions.

Figure 14.6 Determining distance using Euclidean.

468 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

14.3.2.1 Network Model Assume that the sensors are deployed randomly over

a two-dimensional monitored area (on the ground). Each sensor has limited

resources (battery, CPU, etc.), and is equipped with an omnidirectional antenna.

Three base stations A, B, C, with known coordinates (xa, ya), (xb, yb), and (xc, yc),

respectively, are placed beyond the boundary of the monitored area, as shown in

Figure 14.7. Let us assume A is the master base station. Assume the monitored

area is enclosed within the angle /BAC. Let the unknown coordinates of a sensor

be (x, y), which will be determined by TPS. Each base station can reach all sensors

in the monitored area. One restriction on the placement of these base stations is that

they must be noncollinear, as otherwise, the sensor locations will be indistinguish-

able. If the monitored area is so large that three base stations cannot cover the whole

area completely, we can always divide the area into smaller subareas and place more

base stations.

14.3.2.2 PositioningScheme TheTPS time-based location-detection scheme

consists of two steps. The first step detects the time difference of signal arrival

times from three base stations. These time differences are transformed into range

differences from the sensor to the base stations. In the second step, we perform tri-

lateration to transform these range estimates into coordinates.

Given the locations (xa, ya), (xb, yb), and (xc, yc) of base stations A, B, and C,

respectively, the TPS system determines the location (x, y) of sensor S, as shown

in Figure 14.6.

. Range Detection. Let A be the master base station, which will initiate a beacon

signal every T seconds. Each beacon interval begins when A transmits a beacon

signal. Sensor S, base stations B and C will all receive A’s beacon signal,

respectively. Base station B will reply to A with a beacon signal conveying

the difference between the time the signal from A was received and the time

B

A
C

Monitored area

Base station
Sensor

S

A
C

B

(a) (b)

Base station
Sensor

Figure 14.7 TPS example: (a) sensor networks; (b) node S determines its position.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 469

the replay was sent. This signal will reach S. After receiving beacon signals

from both A and B, C will reply to A with a beacon signal conveying the differ-

ence between the time the signal from A was received by C and the time the

replay was sent. This signal will also reach S, based on triangle inequality.

. Location Computation. Node S know the time the signal was sent from A and

the time it was received by B, C, and also by itself. Node S also has the same

information about the signal sent by B and C. Now node S can calculate its

position using trilateration.

14.3.3 GPS-less Low-Cost Outdoor Localization for
Very Small Devices

GPS solves the problem of localization in outdoor environments for PC-class nodes.

However, for large networks of very small, inexpensive, and low-power devices,

practical considerations such as size, form factor, cost, and power constraints of

the nodes preclude the use of GPS on all nodes. The GPS-less system [14] addresses

the problem of localization for such devices, with the following design goals.

. RF-Based. They focus on small nodes that have some kind of short-range RF

transceiver. The primary goal is to leverage this radio for localization, thereby

eliminating the cost, power, and size requirements of a GPS receiver.

. Receiver-Based. In order to scale well to a large distributed networks, the

responsibility for localization must lie with the receiver node that needs to be

localized, and not with the reference points.

. Ad hoc. In order to ease deployment, a solution that does not require preplan-

ning or extensive infrastructure is desired.

. Responsiveness. We need to be able to localize within a fairly low response

time.

. Low Energy. Small, untethered nodes have modest processing capabilities, and

limited energy resources. If a device uses all of its energy localizing itself, it

will have none left to perform its task. Therefore, we want to minimize compu-

tation and message costs to reduce power consumption.

. Adaptive Fidelity. In addition, we want the accuracy of our localization algor-

ithms to be adaptive to the granularity of available reference points.

This scheme uses an idealized radio model and proposes a simple connectivity-

based localization method for such devices in unconstrained outdoor environments.

It leverages the inherent RF communications capabilities of these devices. A fixed

number of nodes in the network with overlapping regions of coverage serve as

reference points and transmit periodic beacon signals. Nodes use a simple connec-

tivity metric to infer proximity to a given subset of these reference points and then

localize themselves to the centroid of the selected (proximate) reference points.

470 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

14.3.3.1 Localization Algorithm We considered two approaches to engineer

an RF-based localization system, based on measurements of received signal strength

and connectivity, respectively. The first approach for RF-based localization is to use

the measured signal strength of received beacon signals to estimate distance, as in

the RADAR system [19], with an outdoor radio signal-propagation model. We dis-

carded this approach for several reasons relating to our short-range (10-m) radios.

First, signal strength at short ranges is subject to unpredictable variation due to

fading, multipaths, and interferences. It does not therefore correlate directly with

distance. Moreover, short range does not allow much gain in density of reference

points when considering signal strength. We have found an idealized radio model

useful for predicting bounds on the quality of connectivity-based localization. We

chose this model because it was simple and easy to reason about mathematically.

This subsection presents this idealized model. To our surprise, this model compares

quite well to outdoor radio propagation in uncluttered environments, as we explore

in the next subsection. We make two assumptions in our idealized model:

1. Perfect spherical radio propagation

2. Identical transmission range (power) for all radios

Multiple nodes in the network with overlapping regions of coverage serve as

reference points (labeled R1 to Rn). They are situated at known positions, containing

their respective positions (X1,Y1) to (Xn, Yn), that form a regular mesh and transmit

periodic beacon signals every T seconds. We assume that neighboring reference

points can be synchronized so that their beacon signal transmissions do not overlap

in time. Furthermore, in any time interval, each of the reference points would have

transmitted exactly one beacon signal.

Each mobile node listens for a fixed time period t and collects all the beacon

signals that it receives from various reference points. We characterize the infor-

mation per reference point Ri by a connectivity metric, defined as:

CMi ¼ N recv(i, t)

N sent(i, t)
� 100

where N recv(i, t) is the number of beacons sent by Ri that have been received in time

t, and N sent(i, t) is the number of beacons that have been sent by Ri. In order to

improve the reliability of our connectivity metric in the presence of various radio

propagation vagaries, we would like to base our metric on a sample of at least S

packets, where S is the sample size, a tunable parameter of our method (i.e.,

N sent(i, t) ¼ S). Since we know T to be the time period between two successive

beacon signal transmissions, we can set t, the receiver’s sampling time as,

t ¼ (sþ 1� 1)T (0 , 1 � 1)

From the beacon signals that it receives, the receiver node infers proximity to a

collection of reference points for which the respective connectivity metrics exceed a

certain threshold. We denote the collection of reference points by Ri1,Ri2, . . . ,Rik.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 471

The receiver localizes itself to the region that coincides with the intersection of the

connectivity regions of this set of reference points, which is defined by the centroid

of these reference points:

(X,Y) ¼ Xi1 þ Xi2 þ � � � þ Xik

k
,
Yi1 þ Yi2 þ � � � þ Yik

k

� �

14.3.4 Computational Complexity of Sensor Network Localization

The localization problem for sensor networks is to reconstruct the positions of all of

the sensors in a network, given the distances between all pairs of sensors that are

within some radius r of each other. In the past few years, many algorithms for sol-

ving the localization problem were proposed, without knowing the computational

complexity of the problem. Aspnes et al. [24] showed that no polynomial-time algor-

ithm can solve this problem in the worst case, even for sets of distance pairs for

which a unique solution exists, unless RP ¼ NP.

Although the designs of the previous schemes have demonstrated clever engin-

eering ingenuity, and their effectiveness is evaluated through extensive simulations,

the focus of these schemes is on algorithmic design, without knowing the fundamen-

tal computational complexity of the localization process. In sensor network localiz-

ation, since only nodes that are within communication range can measure their

relative distances, the graphs formed by connecting each pair of nodes that can

measure each other’s distance are better modeled as unit disk graphs. Such con-

straints could have the potential of allowing computationally efficient localization

algorithms to be designed.

The localization problem considered here is to reconstruct the positions of a set of

sensors given the distances between any pair of sensors that are within some unit-

disk radius r of each other. Some of the sensors may be beacons, sensors with

known positions, but our impossibility results are not affected much by whether

beacons are available. To avoid precision issues involving irrational distances, it

is assumed that the input to the problem is presented with the distances squared.

If we make the further assumption that all sensors have integer coordinates, all dis-

tances will be integers as well.

For the main result, we consider a decision version of the localization problem,

which we call UNIT-DISK GRAPH RECONSTRUCTION. This problem essen-

tially asks if a particular graph with given edge lengths can be physically realized

as a unit-disk graph with a given disk radius in two dimensions. The input is a

graph G where each edge uv of G is labeled with an integer luv
2, the square of its

length, together with an integer r2 that is the square of the radius of a unit disk.

The output is yes or no, depending on whether there exists a set of points in R2

such that the distance between u and v is luvwhenever uv is an edge inG and exceeds

r whenever uv is not an edge in G.

The main result, is that UNIT-DISK GRAPH RECONSTRUCTION is NP-hard,

based on a reduction from CIRCUIT SATISFIABILITY. The constructed graph for

a circuit with m wires has O(m2) vertices and O(m2) edges, and the number of sol-

472 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

utions to the resulting localization problem is equal to the number of satisfying

assignments for the circuit. In each solution to the localization problem, the

points can be placed at integer coordinates, and the entire graph fits in an O(m)-

by-O(m) rectangle, where the constants hidden by the asymptotic notation are

small. The construction also permits a constant fraction of the nodes to be placed

at known locations. Formally:

Theorem 14.1 There is a polynomial-time reduction from CIRCUIT SATIS-

FIABILITY to UNIT-DISK GRAPH RECONSTRUCTION, in which there is a

one-to-one correspondence between satisfying assignments to the circuit and sol-

utions to the resulting localization problem.

A consequence of this result is:

Corollary 14.1 There is no efficient algorithm that solves the localization problem

for sparse sensor networks in the worst case unless P ¼ NP.

It might appear that this result depends on the possibility of ambiguous recon-

structions, where the position of some points is not fully determined by the

known distances. However, if we allow randomized reconstruction algorithms, a

similar result holds even for graphs that have unique reconstructions.

Corollary 14.2 There is no efficient randomized algorithm that solves the localiz-

ation problem for sparse sensor networks that have unique reconstructions unless

RP ¼ NP.

Finally, because the graph constructed in the proof of Theorem 14.1 uses only

points with integer coordinates, even an approximate solution that positions each

point to within a distance 1 , 1
2
of its correct location can be used to find the

exact locations of all points by rounding each coordinate to the nearest integer.

Since the construction uses a fixed value for the unit disk radius r (the natural

scale factor for the problem), we have the following corollary.

Corollary 14.3 The results of Corollary 14.1 and Corollary 14.2 continue to hold

even for algorithms that return an approximate location for each point, provided the

approximate location is within 1r of the correct location, where 1 is a fixed constant.

What we do not know at present is whether these results continue to hold for sol-

utions that have large positional errors, but that give edge lengths close to those in

the input. Our suspicion is that edge-length errors accumulate at most polynomially

across the graph, but we have not yet carried out the error analysis necessary to

prove this. If our suspicion is correct, we would have:

Conjecture 14.1 The results of Corollary 14.1 and Corollary 14.2 continue to hold

even for algorithms that return an approximate location for each point, provided the

relative error in edge length for each edge is bounded by 1=nc for some fixed constant c.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 473

14.4 TARGET TRACKING AND CLASSIFICATION

One of the most important areas where the advantages of sensor networks can be

exploited is for tracking mobile targets. Scenarios where this network may be

deployed can be both military (tracking enemy vehicles, detecting illegal border

crossings) and civilian (tracking the movement of wild animals in wildlife pre-

serves). Typically, for accuracy, two or more sensors are simultaneously required

for tracking a single target, leading to coordination issues. Additionally, given the

requirements to minimize the power consumption due to communication or other

factors, we want to select the minimum number of sensors dedicated for the task,

while all other sensors should preferably be in the sleep or off state. In order to sim-

ultaneously satisfy requirements like power saving and improving overall efficiency,

we need large-scale coordination and other management operations. These tasks

become even more challenging when one considers the random mobility of the tar-

gets and the resulting need to coordinate the assignment of the sensors best suited for

tracking the target as a function of time. In this section we discuss managing and

coordinating a sensor network for tracking moving targets.

The power limitation due to the small size of the sensors, the large numbers of

sensors that need to be deployed and coordinated, and the ability to deploy sensors

in an ad hoc manner give rise to a number of challenges in sensor networks. Each of

these needs to be addressed by any proposed architecture in order for it to be realistic

and practical.

. Scalable Coordination. A typical deployment scenario for a sensor network

comprises a large number of nodes reaching in the thousands to tens of thou-

sands. At such large scales, it is not possible to attend to each node individually

due to a number of factors. Sensor nodes may not be physically accessible,

nodes may fail, and new nodes may join the network. In such dynamic and

unpredictable scenarios, scalable coordination and management functions are

necessary that can ensure the robust operation of the network. In the light of

target tracking, the coordination function should scale with the size of the

network, the number of targets to be tracked, number of active queries, and

so on.

. Tracking Accuracy. To be effective, the tracking system should be accurate

and the likelihood of missing a target should be low. Additionally, the dynamic

range of the system should be high while keeping the response latency, sensi-

tivity to external noise, and number of false alarms low. The overall architec-

ture should also be robust against node failures.

. Ad hoc Deployability. A powerful paradigm associated with sensor networks is

their ability to be deployed in an ad hoc manner. Sensors can be thrown in an

area affected by a natural or man-made disaster or air dropped to cover a

geographical region. Thus sensor nodes should be capable of organizing them-

selves into a network and achieving the desired objective in the absence of any

human intervention or fixed patterns in the deployment.

474 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

. Computation and Communication Costs. Any protocol being developed for

sensor networks should keep in mind the costs associated with computations

and communication. With current technology, the cost of computation locally

is lower than that of communication in a power-constrained scenario. As a

consequence, emphasis should be put on minimizing the communication

requirements.

. Power Constraints. The available power in each sensor is limited by the bat-

tery lifetime due to the difficulty or impossibility of recharging the nodes. As

a consequence, protocols that tend to minimize the energy consumption or

power-aware protocols that adapt to the existing power levels are highly desir-

able. Additionally, efforts should be made to turn off the nodes themselves, if

possible, in the absence of sensing or coordination operations.

14.4.1 Collaborative Signal Processing

Power consumption is a critical consideration in a wireless sensor network. The lim-

ited amount of energy stored at each node must support multiple functions, including

sensor operations, on-board signal processing, and communication with neighboring

nodes. Thus, one must consider power-efficient sensing modalities, low sampling

rates, low-power signal-processing algorithms, and efficient communication proto-

cols to exchange information among nodes. To facilitate monitoring of a sensor

field, including detection, classification, identification, and tracking of targets,

global information in both space and time must be collected and analyzed over a

specified space–time region. However, individual nodes only provide spatially

local information. Furthermore, due to power limitation, temporal processing is

feasible only over limited time periods. This necessitates collaborative signal pro-

cessing (CSP) (i.e., collaboration between nodes to process the space–time signal).

A CSP algorithm can benefit from the following desirable features:

. Distributive Processing. Raw signals are sampled and processed at individual

nodes, but are not directly communicated over the wireless channel. Instead,

each node extracts relevant summary statistics from the raw signal, which

are typically of smaller size. The summary statistics are stored locally in

individual nodes and may be transmitted to other nodes upon request.

. Goal-Oriented, On-Demand Processing. To conserve energy, each node only

performs signal-processing tasks that are relevant to the current query. In the

absence of a query, each node retreats into a standby mode to minimize

energy consumption. Similarly, a sensor node does not automatically publish

extracted information (i.e., it forwards such information only when needed).

. Information Fusion. To infer global information over a certain space–time

region from local observations, CSP must facilitate efficient, hierarchical infor-

mation fusion and progressively lower bandwidth information must be shared

between nodes over progressively large regions. For example, (high bandwidth)

time series data may be exchanged between neighboring nodes for classifi-

14.4 TARGET TRACKING AND CLASSIFICATION 475

cation purposes. However, lower bandwidth closest point of approach (CPA)

data may be exchanged between more distant nodes for tracking purposes.

. MultiresolutionProcessing. Dependingon thenature of thequery, someCSP tasks

may require higher spatial resolution involving a finer sampling of sensor nodes, or

higher temporal resolution involving higher sampling rates. For example, reliable

detection may be achievable with a relatively coarse space–time resolution,

whereas classification typically requires processing at a higher resolution.

14.4.2 Target Tracking Using Space–Time Cells

14.4.2.1 Introduction Each object in a geographical region generates a time-

varying space–time signature field that may be sensed in different modalities, such

as acoustic, seismic, or thermal. The nodes sample the signature field spatially, and

the density of nodes should be commensurate with the rate of spatial variation in the

field. Similarly, the time series from each sensor should be sampled at a rate com-

mensurate with the required bandwidth. Thus, the rate of change of the space–time

signature field and the nature of the query determines the required space–time

sampling rate. A moving object in a region corresponds to a peak in the spatial

signal field that moves with time. Tracking an object corresponds to tracking the

location of the spatial peak over time.

14.4.2.2 Using Space–Time Cells To enable tracking in a sensor network,

the entire space–time region must be divided into space–time cells to facilitate

local processing. The size of a space–time cell depends on the velocity of the

moving target and the decay exponent of the sensing modality. It should approxi-

mately correspond to a region over which the space–time signature field remains

nearly constant. In principle, the size of space–time cells can be dynamically

adjusted as new space–time regions are created based on predicted locations of tar-

gets. Space–time signal averaging can be done over nodes in each cell to improve

the signal-to-noise ratio. We note that the assumption of a constant signature field

over a space–time cell is at best an approximation in practice due to several factors,

including variations in terrain, foliage, temperature gradients, and the nonisotropic

nature of the source signal. However, such an approximation can be judiciously

applied in some scenarios for the purpose of reducing intrasensor communication,

as well to improve algorithm performance against noise.

14.4.2.3 Single-Target Tracking One of the key premises behind the

networking algorithms being developed at Wisconsin [2] is that routing of infor-

mation in a sensor network should be geographic-centric rather than node-centric.

In other words, from the viewpoint of information routing, the geographic locations

of the nodes are the critical quantities rather than their arbitrary identities. In the

spirit of space–time cells, the geographic region of interest is divided into smaller

regions (spatial cells) that facilitate communication over the sensor network. Some

476 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

of the nodes in each cell are designated as manager nodes for coordinating signal

processing and communication in that cell.

Figure 14.8 illustrates the basic idea of region-based CSP for detection and track-

ing of a single target. Under the assumption that a potential target may enter the

monitored area via one of the four corners, four cells, A, B, C, and D, are created

by the UW-API protocols [2]. Nodes in each of the four cells are activated to

detect potential targets.

Each activated node runs an energy-detection algorithm whose output is sampled

at an a priori fixed rate, depending on the characteristics of expected targets.

Suppose a target enters cell A. Tracking of the target consists of the following

five steps:

Step 1. Some and perhaps all of the nodes in cell A detect the target. These nodes

are the active nodes and cell A is the active cell. The active nodes also yield

CPA time information. The active nodes report their energy detector outputs

to the manager nodes at N successive time instants.

Step 2. At each time instant, the manager nodes determine the location of the

target from the energy detector outputs of the active nodes. The simplest

estimate of target location at an instant is the location of the node with the

strongest signal at that instant. However, more sophisticated algorithms for

target localization can be used. Such localization algorithms justify their

higher complexity only if the accuracy of their location determination is

finer than the node spacing.

Step 3. The manager nodes use locations of the target at the N successive time

instants to predict the location of the target at M(,N) future time instants.

C

AB

D

Figure 14.8 A schematic illustrating detection and tracking of a single target.

14.4 TARGET TRACKING AND CLASSIFICATION 477

Step 4. The predicted positions of the target are used by the UW-API protocols

[2] to create new cells that the target is likely to enter. This is illustrated in

Figure 14.8, where the three dotted cells represent the regions that the target

is likely to enter after the current active cell (cell A in Fig. 14.8). A subset

of these cells is activated by the UW-API protocols for subsequent detection

and tracking of the target.

Step 5. Once the target is detected in one of the new cells, it is designated as the

new active cell and the nodes in the original active cell (cell A in Fig. 14.8) can

be put in the standby state to conserve energy.

Steps 1–5 are repeated for the new active cell, and this forms the basis of detect-

ing and tracking a single target. For each detected target, an information field

containing tracking information, such as the location of the target at certain past

times, is usually passed from one active cell to the next one. This is particularly

important in the case of multiple targets.

14.4.2.4 Multiple-Target Tracking Figure 14.8 illustrates detection and

tracking of a single target. If multiple targets are sufficiently separated in space or

time, that is, they occupy distinct space–time cells, essentially the same procedure

as described in Section 14.4.2.3 may be used: a different track is initiated and main-

tained for each target. Sufficient separation in time means that the energy detector

output of a particular sensor exhibits distinguishable peaks corresponding to the

CPAs of the two targets. Similarly, sufficient separation in space means that at a

given instant the spatial target signatures exhibit distinguishable peaks correspond-

ing to nodes that are closest to the targets at that instant. The assumption of sufficient

separation in space and/or time may be too restrictive in general. In such cases,

classification algorithms are needed that operate on spatiotemporal target signatures

to classify them. This necessarily requires a priori statistical knowledge of typical

signatures for different target classes.

14.4.2.5 Target Classification Here, we focus on single-node (no collabor-

ation between nodes) classification based on temporal target signatures: a time

series segment is generated for each detected event at a node and processed for

classification. Some form of temporal processing, such as a fast Fourier transform

(FFT), is performed and the transformed vector is fed to a bank of classifiers corre-

sponding to different target classes. The outputs of the classifiers that detect the

target, active classifiers, are reported to the manager nodes as opposed to the

energy detector outputs. Steps (1) to (5) in Subsection 14.4.2.3 are repeated for

all the active classifier outputs to generate and maintain tracks for different classified

targets. In some cases, both energy-based CPA information and classifier outputs

may be needed.

Now we briefly describe the three classifiers explored in this chapter. Given a set

of N-dimensional feature vectors {x; x [RN}, we assume that each of them is

assigned a class label, vc [V ¼ {v1,v2, . . . ,vm}, that belongs to a set of m

elements. We denote by p(vc) the prior probability that a feature vector belongs

478 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

to class vc. Similarly, p(vcjx) is the posterior probability for class vc given that x is

observed.

A minimum error classifier maps each vector x to an element in. such that the

probability of misclassification (i.e., the probability that the classifier label is differ-

ent from the true label) is minimized. To achieve this minimum error rate, the opti-

mal classifier decides x has label vi if p(vijx) for all j = i,vi,vj [V. In practice, it

is very difficult to evaluate the posterior probability in closed form. Instead, one can

use an appropriate discriminant function gi(x) that satisfies gi(x) . gj(x) if p(vijx) .
p(vjjx) for j = i, for all x. Then minimum error classification can be achieved as:

decide x has label vi if gi(x) . gj(x) for j = i. The minimum probability of mis-

classification is also known as the Bayes error, and a minimum error classifier is

also known as a Bayes classifier or a maximum posterior probability (MAP)

classifier. Below, we briefly discuss three classifiers that approximate the optimal

Bayes classifier.

k-Nearest-Neighbor Classifier The k-nearest-neighbor (kNN) classifier uses all

the training features as the set of prototypes {pk}. During the testing phase, the dis-

tance between each test vector and every prototype is calculated, and the k prototype

vectors that are closest to the test vector are identified. The class labels of these

k-nearest prototype vectors are then combined using majority vote or some other

method to decide the class label of the test vector. When k ¼ 1, the kNN classifier

is called the nearest-neighbor classifier. It is well-known [6] that asymptotically

(in the number of training vectors), the probability of misclassification of a

nearest-neighbor classifier approaches twice the (optimal) Bayes error. Hence, the

performance of a nearest-neighbor classifier can be used as a baseline to gauge

the performance of other classifiers. However, as the number of prototypes

increases, a kNN classifier is not very suitable for actual implementation, since it

requires too much memory storage and processing power for testing.

Maximum-Likelihood Classifier Using the Gaussian mixture density model in

this classifier, the distribution of training vectors from the same class is modeled

as a mixture of Gaussian density functions. That is, the likelihood function is

modeled as:

p(xjvi)/ Gi(xjui) ¼
X
k

jLikj�N=2 exp � 1

2
(x� mik)

TL�1
ik x� mikð Þ

� �
(14:1)

where ui ¼ ½mi1,mi2, . . . ,mip,Li1,Li2, . . . ,Lip� are the mean and covariance matrix

parameters of the P mixture densities corresponding to class vi. These model

parameters can be identified by applying an appropriate clustering algorithm, such

as the k-means algorithm, or the expectation-maximization algorithm to the training

vectors of each class. The discriminant function is computed as gi(x) ¼ Gi(xjui)
p(vi), where the prior probability p(vi) is approximated by the relative number of

training vectors in class i. In the numerical examples, the can also be modeled

14.4 TARGET TRACKING AND CLASSIFICATION 479

data as Gaussian rather than a Gaussian mixture (P ¼ 1). Furthermore, you can use

the maximum-likelihood (ML) classifier (uniform prior probabilities).

Support Vector Machine Classifier A support vector machine (SVM) is essen-

tially a linear classifier operating in a higher dimensional space. Consider a binary

classification problem without loss of generality. Let {w(x)}Mi¼1 be a set of nonlinear

transformations mapping the N-dimensional input vector to an M-dimensional fea-

ture space (M . N). A linear classifier, characterized by the weights w1,w2, . . . ,wM ,

operates in this higher dimensional feature space g(x) ¼ PM
j¼1 wjwj(x)þ b, where b

is the bias parameter of the classifier. The optimal weight vectors for this classifier

can be represented in terms of a subset of training vectors, termed the support vec-

tors wj ¼
PQ

i¼1 aiwj(xi), j ¼ 1, 2, . . . ,M. Using the preceding representation for the

weight vectors, the linear classifier can be expressed as g(x) ¼ PQ
i¼1 aiK(x, xi)þ b,

where K(x, xi) ¼
PM

j¼1 wj(x)wj(xi) is the symmetric kernel representing the SVM.

In the numerical examples presented in this chapter, we use a third-degree poly-

nomial kernel: K(xmmaxi) ¼ (xTxi þ 1)3. In practice, the SVM discriminant

function g(x) is computed using the kernel representation, bypassing the nonlinear

transformation into the higher dimensional space [13]. The classifier design then

corresponds to the choice of the kernel and the support vectors. By appropriately

choosing the kernel, an SVM can realize a neural network classifier as well. Similar

to neural networks, the training phase can take a long time. However, once the clas-

sifier is trained, its application is relatively easy. In general, a different SVM is

trained for each class. The output of each SVM can then be regarded as an estimate

of the posterior probability for that class and the MAP decision rule can be directly

applied.

14.4.3 Target Tracking Based on Cooperative Binary Detection

14.4.3.1 Introduction Unlike other sensor network–based methods, which

depend on determining distance to the target or the angle of arrival of the signal,

the cooperative tracking approach requires only that a sensor be able to determine

if an object is somewhere within the maximum detection range of the sensor.

Cooperative tracking is proposed as a method for tracking moving objects and extra-

polating their paths in the short term. By combining data from neighboring sensors,

this approach enables tracking with a resolution higher than that of the individual

sensors being used. In cooperative tracking, statistical estimation and approximation

techniques can be employed to further increase the tracking precision, and enables

the system to exploit the trade-off between accuracy and timeliness of the results.

This work focuses on acoustic tracking; however, the presented methodology is

applicable to any sensing modality where the sensing range is relatively uniform.

Cooperative tracking is a solution for tracking objects using sensor networks, and

may achieve a high degree of precision while meeting the constraints of sensor

network systems. The approach uses distributed sensing to identify an object and

determine its approximate position, and local coordination and processing of

sensor data to further refine the position estimate. The salient characteristics of

480 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

the cooperative tracking approach are that it achieves a resolution that is finer than

that of the individual sensors being used and that it provides early estimates of the

object’s position and velocity. Thus cooperative tracking is useful for short-term

extrapolation of the object’s path. Here an acoustic tracking system for wireless

sensor networks is considered as a practical application of the cooperative tracking

methodology. Acoustic tracking relies on a network of microphone-equipped sensor

nodes to track an object by its characteristic acoustic signature.

14.4.3.2 Model In the real world, objects can move arbitrarily, that is, possibly

changing speed and direction at any time. The representation of such arbitrary paths

may be cumbersome and unnecessarily complex for the purpose of tracking the

object’s path with a reasonable degree of precision. Instead, an approximation of

the path can be considered. Cooperative tracking uses piecewise-linear approxi-

mation to represent the path of the tracked object. Although the object itself may

move arbitrarily, its path is considered as a sequence of line segments along

which the object moves with a constant speed. The degree to which the actual

path diverges from its representation depends on several factors, including the

speed and turning radius of the object itself. For vehicles such as cars driving

along highways the difference is quite small, whereas for a person walking a

curved route with tight turns, it may be significant. In either case, accuracy can

be improved by increasing the resolution of the sensor network, either through

increasing sensor density or by other means.

In cooperative tracking, it is assumed that each node is equipped with a sensor (in

the case of acoustic tracking, a microphone) and a radio for communication with

nearby nodes. Since these embedded systems are designed to be small and inexpen-

sive, the sensors they are equipped with are unlikely to be very sophisticated.

Traditionally, tracking relies on sensors that are long range and can detect the direc-

tion of an object and the distance to it. This is not the case with sensor networks: the

microphones used for acoustic tracking are likely to be short range, nondirectional,

and poorly suited for detecting the distance to the sound source. The method pre-

sented here assumes that only binary (on–off) detection can be used. It is possible

to generalize this analysis if multilevel detection is feasible. Moreover, without

proper calibration the detection range may be neither uniform nor exact.

Figure 14.9 shows the model of a sensor considered in this chapter. Given a

sensor with a nominal (noncalibrated) range R, the object will always be detected

if it is distance R� e or less away from the sensor, detected some of the time

between R� e and Rþ e, and never detected beyond that range. We found that set-

ting e ¼ 0:1R comes fairly close to the actual behavior of the sensors used in our

experiments.

To track an object, it must be identified and its presence detected. For acoustic

tracking, objects are identified based on their acoustic signature, which is a character-

istic sound pattern or a set of frequencies unique to that object. For simplicity, it is

assumed that the object emits the sound of a frequency not present in the environment,

so there are no false positives. However, the results are fairly robust with respect to

intermittent detection (false negatives) during the period of observations.

14.4 TARGET TRACKING AND CLASSIFICATION 481

It is worth noting that the sensor model is generic enough to encompass other

sensing modalities beyond acoustic. All that is required is a sensor with a relatively

uniform range, as defined earlier, that is capable of differentiating the target from the

environment. The magnetometer, a device that detects changes in magnetic fields, is

one such sensor.

14.4.3.3 Algorithm The simplest distributed tracking algorithm entails simply

recording the times when each sensor detects the object, and then performing line

fitting on the resulting set of points. While simple, this approach is not very precise:

it can only track the object with a resolution of the sensor range R. Moreover, if a

sensor detects the object more than once as it moves through the sensor’s detection

range, that information is lost.

The position of a stationary object, or a moving object for that matter, which is

determined using this method is not very precise and depends heavily on the

number, the detection range, and precision of sensors that detect the sound. Instead

of looking at a single position measurement, we are interested in the path of a

moving object, which is a sequence of positions over a period of time. Combining

a large number of somewhat imprecise position estimates distributed over space

and time may yield surprisingly accurate results. Cooperative tracking addresses

the problem of high-resolution tracking using sensor networks. It improves accuracy

by combining information from neighboring sensors. The only requirement for

cooperative tracking to be used is that the density of sensor nodes must be

high enough for the sensing ranges of several sensors to overlap. When the object

of interest enters the region where multiple sensors can detect it, its position can

R
ee

Figure 14.9 Model of a sensor. For nominal sensing range R, the object is always detected

when it is R� e away or closer, never detected beyond Rþ e, and has a nonnegative chance of

detection between R� e and Rþ e.

482 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

be pinned down with a higher degree of accuracy, since the intersection area is

smaller than the detection area of a single node. Below is the outline of a generic

cooperative tracking algorithm.

. Each node records the duration for which the object is in its range.

. Neighboring nodes exchange these times and their locations.

. For each point in time, the object’s estimated position is computed as a

weighted average of the detecting nodes’ locations.

. A line-fitting algorithm is run on the resulting set of points.

Several of these steps require careful consideration. First, the algorithm implicitly

assumes that the nodes’ clocks are synchronized, and that the nodes know their

locations. Second, we obtain a position reading by a weighted average of the

locations of the nodes that detected the sound at a given instant, but the exact weight-

ing scheme is not specified. This is an important issue, as selecting an appropriate

scheme will improve accuracy, while a poor choice might be detrimental to it.

The simplest choice is to assign equal weights to all sensors’ readings. This effec-

tively puts the estimate of the object’s position at the centroid of the polygon, with

sensors acting as vertices. This is a safe choice, and intuitively it should be more

accurate than noncooperative tracking. However, it is possible to do even better.

Consider Figure 14.10: sensors that are closer to the path of the target will stay in

sensor range for a longer duration. Thus to increase accuracy, the weight of a sen-

sor’s reading should be proportional to some function of the duration for which the

target has been in range of that sensor.

Once the individual position estimates are computed, the final step of the line-

fitting algorithm can begin. Least-square regression can be used to find the equation

of the line. It is interesting to note that the duration-based weighting scheme for pos-

R

d

r

R

d

r

Figure 14.10 If the object’s speed is constant, detection time is directly proportional to the

path segment d and inversely proportional to the distance r from the sensor to the object’s

trajectory.

14.4 TARGET TRACKING AND CLASSIFICATION 483

ition estimates moves the points closer to the actual path, thus reducing variance in

the least-square computation. Also important is the fact that the multistep approach

enables early estimates of the path to be computed, so that continuous refinement is

possible, as more data points become available. The resulting equation of the line

extrapolates the path of the object until it changes course sharply. This information

may be used by the system, for example, for asynchronous wake-up of nodes likely

to be in its path.

14.4.3.4 Data Aggregation The final step of the algorithm involves perform-

ing a line-fitting computation on the set of all the position estimates (or some subset

of them). Unlike position estimates, which can be performed in a distributed manner

with only local communication, this necessitates collecting sensor readings from

many sensor nodes at a centralized location for processing. This process is called

data aggregation, and it is present in one form or another in virtually all sensor net-

work applications. The main concerns for data aggregation are timeliness and

resource usage. Timeliness, with respect to sensor data, is critical to real-time

monitoring and control applications where stale data are useless or even detrimental.

Resources, in particular network bandwidth and message buffers, are quite scarce in

networked-embedded systems. Low bandwidth of small wireless transmitters and

the potential for contention with other messages drastically limit the amount of

data that can pass through the network.

We assume that some nodes in the sensor network are gateway nodes connected

to outside networks such as the Internet. To process the data from the sensor net-

work, they need to be sent through one of these gateway nodes to the more powerful

computers connected to the outside network. To do this efficiently, a tree rooted at

each gateway is constructed and spanning the entire network. Each sensor node in

the tree collects data from its children and sends them up the tree to either the closest

or the least busy gateway. This scheme addresses the conflicting requirements of low

bandwidth usage and timeliness of data: a near-shortest path is always taken, unless

its links are overloaded. The method just discussed is practical only if the outside

network is low latency and high bandwidth, so it does not matter to which gateway

the data are sent.

14.4.4 Distributed Prediction Tracking

The distributed prediction tracking (DPT) algorithm is specifically aimed at addres-

sing the various challenges outlined in Section 14.4 while accurately tracking

moving targets. As the name suggests, this algorithm does not require any central

control point, eliminating the possibility of a single point of failure and making it

robust against random node failures. The tracking task is carried out distributively

by sequentially involving the sensors located along the track of the moving target.

DPT assumes a cluster-based architecture for the sensor network, and the choice

was motivated by the need to ensure the sensor network’s scalability and energy effi-

ciency. Any suitable clustering mechanism from those proposed in the literature

484 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

may be used, also note that DPT does not impose any specific requirements or

restrictions on the choice of clustering algorithm.

14.4.4.1 Assumptions of the DPTAlgorithm While no assumption is made

on the choice of the clustering algorithm, we assume that the clusterhead (CH) has

the following information about all sensors belonging to its cluster: (1) sensor iden-

tity, (2) location, and (3) energy level. When tracking a moving target and deciding

which sensors to use for tracking, the CH’s decision-making procedure will be based

on this information. The assumptions about the sensors are enumerated below.

These assumptions are realistic and targeted at reducing the energy cost and

prolonging the whole network’s lifetime as well.

1. All sensors have the same characteristics.

2. Sensors are randomly distributed across the whole sensing area with uniform

density.

3. Each sensor has two sensing radii, normal beam r and high beam R. The

default operation uses the low beam, and the high beam is turned on only

when necessary. The following relationship holds between the energy con-

sumed by the low and high beams:

Elow beam

Ehigh beam

¼ r2

R2
ð14:2Þ

4. A sensor’s communication and sensing channels stay in the hibernation

mode most of the time where they consume minimal energy. The communi-

cation channel will wake up routinely to receive possible messages from

its CH. The sensor will perform sensing according to its CH’s requirements.

In order to produce information that is accurate enough to locate themoving target,

DPT requires that at any given time there should be at least three sensors to sense the

target jointly. The number 3 is chosen as a compromise between increasing accuracy

and minimizing the consumed energy (note that this is not a hard assumption, and

depending on the sensor node specifications, the number may vary).

No specific assumptions are made about the movement pattern of the targets.

However, DPT assumes that the targets originate outside the sensing region and

then move inside. Also, it is assumed that the movement of each tracked target

needs to be forwarded to a central location, which we term the sink. In reality,

the sink could be either a special node or a terminal associated with a human.

14.4.4.2 DPT Algorithm The DPT algorithm comes into play after sensors are

deployed and clusters are formed. DPT distinguishes between the border sensors,

sensors located within a given distance of the border, and nonborder sensors in

terms of their operation. While border sensors are required to keep sensing all

times in order to detect all targets that enter the sensing region, the nonborder

14.4 TARGET TRACKING AND CLASSIFICATION 485

sensor’s sensing channel hibernates unless it is specifically asked to sense by its

cluster head. Since the target is assumed to move from outside into the sensing

area, it will be detected by the border sensors when trespassing the border. As

soon as a target is detected, a sequence of tasks in the order of sense–predict–

communicate–sense are carried out distributively by a series of sensors that are

located along the target’s track. This forms the essential idea behind the DPT

algorithm.

Let CH1,CH2, . . . ,CHN denote the sequence of CHs that become involved with

tracking the target as it proceeds from its very first location to the last. The infor-

mation gathered by each CH is sent all the way back to the sink (either sent intact

or after being aggregated) for further processing as well as to the downstream

clusterhead CHiþ1. The target identity is created when the target is first detected.

This identity is unique and all CHs that cotrack this target use it to identify the

target. In order to facilitate the smooth tracking of the target, CHi predicts the

future location of the moving target, and informs the downstream clusterhead

CHiþ1 ahead of time about this target. The accuracy of the prediction is very import-

ant if downstream CHs are to be identified accurately and the overall tracking mech-

anism is to be effective. Many prediction mechanisms are possible, the simplest one

is a linear predictor, which uses only the previous two locations to linearly predict

the third location. Higher-order prediction can also be adopted, it predicts the

nth location information based on previous n� 1 actual locations. Higher-order

prediction results in more accurate results, though, at the cost of greater energy

consumption.

Sensor Selection Algorithm After clusterhead CHi predicts the location of the

target, the downstream clusterhead CHiþ1, toward which the target is headed

receives a message from CHi indicating this predicted location. With information

of all the sensors belonging to CHiþ1 available in its database, the search algorithm

running at CHiþ1 is able to locally decide the sensor-triplet to sense the target. The

selection rule chooses three sensors (if possible) such that their distances to the pre-

dicted location are not only less than the sensor’s normal beam r, but also the smal-

lest. After the sensor-triplet is chosen, CHiþ1 sends them a wake-up message so that

they are ready to sense the target. If the prediction and selections process succeeds,

after sensing, each sensor will send a location message to CHiþ1. If CHiþ1 is unable

to find enough sensors eligible for this sensing task with the normal sensing beam, it

will try to search for eligible sensors within a distance R, the higher sensing beam,

from the predicted location. The selected sensors, whose distance from the predicted

location is greater than r and lower than R, will now be contacted and instructed to

sense with their high beam, while the rest of the sensors in the triplet use their

normal beam. If CHiþ1 is unable to find enough sensors even with high sensing

beams, it asks its neighboring CHs for help.

Failure Recovery Let us first identify two possible failure scenarios. As described

in the previous subsections, each upstream CH sends a message to the expected

downstream CH. If the upstream CH does not get any confirmation from the

486 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

downstream CH after a given period of time, then it assumes that the downstream

CH is no longer available and the target has been lost. Another failure scenario

occurs when the target changes it direction or speed so abruptly that it moves signifi-

cantly away from the predicted location and falls out of the detectable region of the

sensor-triplet selected for the sensing task. In both of these failure scenarios a

straightforward solution is to wake up all sensors within a given area, which is

calculated based on the target’s previous actual location. The recapture radius s
is an important parameter in this process and is decided by the target’s moving

speed and time elapsed since it was last sensed.

14.5 EXPERIMENTAL LOCATION AND TRACKING SYSTEMS

In this section, several location systems are introduced. Although they may not be

specially designed for wireless sensor networks, these design concepts and

experiences will benefit future implementations of positioning systems in wireless

sensor networks.

14.5.1 Active Badge and Bat

14.5.1.1 Introduction Efficient location and coordination of staff in any large

organization is a difficult and recurring problem. Hospitals, for example, may

require up-to-date information about the location of staff and patients, particularly

when medical emergencies arise. See ref. [25] for detail information.

14.5.1.2 An Active Badge Design A solution to the problem of automati-

cally determining the location of an individual has been to design a tag in the

form of an “Active Badge” that emits a unique code for approximately one-tenth

of a second every 15 seconds (a beacon). These periodic signals are picked up by

a network of sensors placed around the host building. A master station, also con-

nected to the network, polls the sensors for badge “sightings,” processes the data,

and then makes it available to clients that may display it in a useful visual form.

The badge was designed in a package that is roughly 55 � 55 � 7 mm and

weighs a comfortable 40 g. Pulsewidth-modulated infrared (IR) signals are used

for signaling between the badge and sensor [26], mainly because IR solid-state emit-

ters and detectors can be made very small and very inexpensively (unlike ultrasonic

transducers); they can be made to operate with a 6-m range; and the signals are

reflected by partitions and therefore are not directional when used inside a small

room. Moreover, the signals will not travel through walls, unlike radio signals

that can penetrate the partitions found in office buildings. An active signaling unit

consumes power; therefore, the signaling rate is an important design issue. First,

by only emitting a signal every 15 seconds, the mean current consumption can be

very small, with the result that “badge-sized” batteries will last for about one

year. Second, it is a requirement that several people in the same locality be detect-

able by the system. Because the signals have a duration of only one-tenth of a

14.5 EXPERIMENTAL LOCATION AND TRACKING SYSTEMS 487

second, there is approximately a 2=150 chance that two signals will collide when

two badges are placed in the same location. For a small number of people, there

is a good probability they will all be detected. The Active Badge also incorporates

a light-dependent component that, when dark, turns the badge off to conserve battery

life. Reduced lighting also increases the period of the beacon signal to a time greater

than 15 seconds. In ambient lighting conditions in a room, this effect only slightly

modifies the period, but it is another factor that ensures that synchronized badges

will not stay synchronized very long. If the badge is placed in a drawer out of

office hours, at weekends, and during vacation, the effective lifetime of the batteries

is increased by a factor of 4. A disadvantage of an infrequent signal from the badge is

that the location of a badge is only known, at best, to a 15-s time window. However,

because in general a person tends to move relatively slowly in an office building, the

information the Active Badge system provides is very accurate. An Active Badge

signal is transmitted to a sensor through an optical path. This path may be found

indirectly through a surface reflection, for example, from a wall. The Active

Badge location system was developed at Olivetti Research Laboratory and now

AT&T at Cambridge.

14.5.1.3 Bat System A successor of the Active Badge system is the Bat

system [27], which consists of a collection of wireless transmitters, a matrix of recei-

ver elements, and a central RF base station. The wireless transmitters, called bats,

can be carried by a tagged object and/or attached to equipment. The sensor

system measures the time of flight of the ultrasonic pulses emitted from a bat to

receivers installed in known and fixed positions and it uses the time difference to

estimate the position of each bat by trilateration. The RF base station coordinates

the activity of bats by periodically broadcasting messages to them. The location

of the bat can be determined within 3 cm of error in a three-dimensional space at

95% accuracy. This accuracy is quite enough for most location-aware services;

however, the deployment cost is high.

14.5.2 Cricket

Cricket is a location-support system for in-building, mobile, location-dependent

applications. It allows applications running on mobile and static nodes to learn

their physical location by using listeners that hear and analyze information from

beacons spread throughout the building. Cricket is the result of several design

goals, including user privacy, decentralized administration, network heterogeneity,

and low cost. Rather than explicitly tracking user location, Cricket helps devices

learn where they are and lets them decide to whom to advertise this information; it

does not rely on any centralizedmanagement or control and there is no explicit coordi-

nation between beacons; it provides information to devices regardless of their type of

network connectivity; and eachCricket device ismade fromoff-the-shelf components

and costs less than $10. See ref. [28] for more information about Cricket.

By not tracking users and services, user privacy concerns are adequately met. We

emphasize that Cricket is a location-support system, rather than a conventional

488 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

location-tracking system that tracks and stores location information for services and

users in a centrally maintained database.

Cricket uses a combination of RF and ultrasound to provide a location-support ser-

vice to users and applications. Wall- and ceiling-mounted beacons are spread through

the building, publishing location information on an RF signal. The beacon transmits a

concurrent ultrasonic pulsewith eachRF advertisement. The listeners receive theseRF

and ultrasonic signals, correlate them to each other, and infer the space they are cur-

rently in. The beacons use a decentralized randomized transmission algorithm tomini-

mize collisions and interference amongeach other. The listeners implement a decoding

algorithm to overcome the effects of ultrasound multipath and RF interference.

14.5.3 RADAR: An In-Building RF-Based User Location and
Tracking System

RADAR [19] is an RF-based system for locating and tracking users inside buildings.

RADAR operates by recording and processing signal strength information at

multiple base stations positioned to provide overlapping coverage in the area of

interest. It combines empirical measurements with signal propagation modeling

to determine user location, and thereby enable location-aware services and

applications.

RADAR complements the data networking capabilities of RF wireless local area

networks (LANs) with accurate user location and tracking capabilities, thereby

enhancing the value of such networks. RADAR uses signal-strength information

gathered at multiple receiver locations to triangulate the user’s coordinates.

Triangulation is done using both empirically determined and theoretically computed

signal-strength information.

14.6 CONCLUSION

In this chapter, some fundamental techniques in positioning and location tracking

have been discussed and several experimental systems reviewed. Location infor-

mation may enable new types of services. Accuracy and deployment costs are

two factors that may contradict each other, but both are important factors for the

success of location-based services.

REFERENCES

1. P. Eng and P. Mirsa. Special issue on global positioning system. Proceedings of the IEEE,

87:3–15, January 1999.

2. D. Li, K. Wong, Y. Hu, and A. Sayeed. Detection, classification, and tracking of targets.

IEEE Signal Processing Magazine, 19(2):17–30, March 2002.

3. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in

ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001. See also In Proceed-

REFERENCES 489

ings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile

Computing and Communications, pages 48–55, Seattle, Washington, August 1999.

4. Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless net-

works. In Proceedings of the 6th Annual ACM/IEEE International Conference on

Mobile Computing and Networking (MobiCom 2000), pages 234–254, Boston,

Massachusetts, August 2000.

5. J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location service

for geographic ad-hoc routing. In Proceedings of the 6th Annual ACM International

Conference on Mobile Computing and Networking (MobiCom 2000), pages 120–130,

Boston, Massachusetts, August 2000.

6. J. Heidemann and N. Bulusu. Using geospatial information in sensor networks. In

Proceedings of the CSTB Workshop on Intersection of Geospatial Information and

Information Technology, Arlingtan, Virginia, October, 2001.

7. Y. Ko and N. Vaidya. GeoTORA: A Protocol for Geocasting in Mobile Ad Hoc Networks.

Technical Report 00-010, Department of Computer Science, Texas A&M University,

March 2000.

8. Julio C. Navas and Tomasz Imielinski. GeoCast—geographic addressing and routing.

In Proceedings of the 3rd Annual ACM/IEEE International Conference on Mobile Com-

puting and Networking (MobiCom ’97), pages 66–76, Budapest, Hungary, September

1997.

9. Y. Ko and N. Vaidya. Geocasting in Mobile Ad Hoc Networks: Location-Based Multicast

Algorithms. Technical Report TR-98-018, Texas A&M University, September 1998.

10. S. Atiya and G. Hager. Real-time vision-based robot localization. IEEE Transactions on

Robotics and Automation, 9(6):785–800, 1993.

11. J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking geometric

beacons. IEEE Transactions on Robotics and Automation, 7(3):376–382, 1991.

12. R. Tins, L. Navarro-Serment, and C. Paredis. Fault tolerant localization for teams of dis-

tributed robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, Volume 2, pages 1061–1066, Maui, Hawaii, October 2001.

13. Jeffrey Hightower and Gaetano Borriella. Location systems for ubiquitous computing.

Computer (IEEE), 34(8):57–66, 2001.

14. N. Bulusu, J. Heidemann, and D. Estrin. Gps-less Low Cost Outdoor Localization for

Very Small Devices. Technical Report 00-729, Computer Science Department, University

of Southern California, April 2000.

15. Srdan Capkun, Maher Hamdi, and Jean-Pierre Hubaux. GPS-free positioning in

mobile ad-hoc networks. In Proceedings of the 34th Annual Hawaii International

Conference on Systems Science (HICSS-34), Volume 9, page 9008, Maui, Hawaii,

January 2001.

16. Dragos Niculescu and Badri Nath. Ad hoc positioning system (APS). In Proceedings of

IEEE GLOBECOM 2001, pages 2926–2931, San Antonio, Texas, November 2001.

17. Andreas Savvides, Chih-Chieh Han, and Mani B. Srivastava. Dynamic fine-grained local-

ization in ad-hoc networks of sensors. In Proceedings of the 7th Annual International

Conference on Mobile Computing and Networking (MobiCom 2001), pages 166–179,

Rome, Italy, July 2001.

18. P. Bahl, A. Balachandran, and V. Padmanabhan. Enhancements to the RADAR

User Location and Tracking System. Microsoft Research Technical Report MSR-

TR2000-12, Microsoft Research, Redmond, Washington, February 2000.

490 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

19. Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An in-building RF-based user

location and tracking system. In Proceedings of INFOCOM 2000, Volume 2, pages

775–784, Tel-Aviv, Israel, March 2000.

20. T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen. A probabilistic approach

to WLAN user location estimation. International Journal of Wireless Information

Networks, 9(3):155–164, 2002.

21. Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang. Location tracking in a wireless

sensor network by mobile agents and its data fusion strategies. In Proceedings of the

2nd International Workshop on Information Processing in Sensor Networks (IPSN),

pages 625–641, Palo Alto, California, April 2003.

22. C. Savarese, J. Rabay, and K. Langendoen. Robust positioning algorithms for distributed

ad-hoc wireless sensor networks. In Proceedings of the USENIX Technical Annual

Conference, pages 317–328, Monterey, California, June 2002.

23. A. Savvides, H. Park, and M. Srivastava. The bits and flops of the n-hop multilateration

primitive for node localization problems. In Proceedings of the 1st ACM International

Workshop on Wireless Sensor Networks and Applications (WSNA 2002), pages

112–121, Atlanta, Georgia, September 2002.

24. J. Aspnes, D. Goldengerg, and Y. R. Yang. On the computational complexity of sensor

network localization. In Proceedings of the 1st International Workshop on Algorithmic

Aspects of Wireless Sensor Networks (ALGOSENSORS 2004), pages 32–44, Turku,

Finland, July 2004.

25. Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The Active Badge

Location System. Technical Report 92.1, Olivetti Research Ltd. (ORL), Cambridge,

England, 1992.

26. Satellite, Cable, and TV IC Handbook. In Plessey Semiconductors, pages 64, 67, 124,

1988.

27. Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete Steggles, Andy Ward,

and Andy Hopper. Implementing a sentient computing system. Computer (IEEE),

34(8):50–56, 2001.

28. Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket location-

support system. In Proceedings of the 6th Annual ACM/IEEE International Conference

on Mobile Computing and Networking (MobiCom 2000), pages 32–43, Boston,

Massachusetts, August 2000.

REFERENCES 491

&CHAPTER 15

Data Gathering and Fusion in
Sensor Networks

WEI-PENG CHEN

Fujitsu Laboratories of America, Sunnyvale, California

JENNIFER C. HOU

University of Illinois at Urbana Champaign, Urbana, Illinois

Data gathering is one of the most important tasks in sensor networks. In most

data-gathering applications, sensors extract useful information from the environ-

ment and either respond to queries made by users or take the active role of disse-

minating the information to one or more sinks. The information is then exploited by

subscribers/users for environment monitoring, target tracking, and/or decision

making. In some sense, a sensor network can be envisioned as a distributed data-

base that provides a layer of query processing for users. How information can be

effectively gathered, aggregated, and disseminated to users and how queries made

by users can be effectively directed to sensors that have the corresponding infor-

mation is the focus of this chapter. Specifically, an overview is given of research

activities on data gathering and fusion along three research thrusts: (1) query

processing in sensor database systems, (2) data-gathering and -dissemination

mechanisms, and (3) data-fusion mechanisms. In each of the research thrusts,

first an overview of the various mechanisms is presented and their design objec-

tives and criteria are discussed. This is then followed by a taxonomy of existing

mechanisms based on their design objectives and criteria. Also presented are

several utility-based data-gathering algorithms that maximize the amount of infor-

mation extracted, subject to constraints on flow conservation, energy, latency,

and/or channel bandwidth.

493

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

15.1 INTRODUCTION

Recent technological advances have led to the emergence of small, low-power

devices that integrate sensors and actuators with limited on-board processing and

wireless communication capabilities. Pervasive networks of such sensors and actua-

tors open new vistas for constructing complex monitoring and control systems,

ranging from habitat monitoring [1], target tracking [2], home automation [3],

ubiquitous sensing for smart environments [4], construction of safety monitoring,

and inventory tracking. In most sensor network applications, sensors extract

useful information from the environment, and either respond to queries made by

users or take an active role to disseminate the information to one or more sinks.

The information is then exploited by subscribers/users for their decision making.

In other words, one can envision sensor networks as a distributed database for

users to query the physical world [5]. How information can be effectively gathered,

aggregated, and disseminated to users and how queries made by users can be effec-

tively directed to sensors that have the corresponding information is the focus of this

chapter. Figure 15.1 depicts the simplified relationship between users and sensor

networks.

The process of data gathering in sensor networks is nevertheless significantly

different from conventional warehousing database systems, where data are extracted

from sensors and stored in a centralized server that is responsible for query proces-

sing. Aside from the fact that sensor networks operate in a distributed fashion, they

encompass several distinct characteristics, and hence pose more challenges [6,7]: (1)

the convention that sensors are usually deployed with high nodal density pose a scal-

ability problem; (2) the fact that these sensors are usually left unattended once

deployed makes autonomous operations necessary; (3) the fact that the computing

and communication environment is unreliable due to the irregular terrain, environ-

ment dynamics, energy depletion, and potential hardware defects requires that the

design be robust; and (4) the resource constraints in energy, bandwidth, storage,

and computation capability require that resources be more efficiently used. In gen-

eral, the design criteria for data-gathering applications in sensor networks are: (1)

scalability, (2) autonomy, (3) robustness, and (4) energy-efficiency. In addition,

Users

Query

Result

Sensor networks

Figure 15.1 Query/result relationship between users and sensor networks.

494 DATA GATHERING AND FUSION IN SENSOR NETWORKS

there are several features that should be included in the design and implementation

of data-gathering applications:

. Devising Localized Algorithms. In a localized algorithm, each node operates

on the information locally collected. As compared to algorithms that rely on

global topological knowledge, localized algorithms incur less communication

overhead (and hence save power) in the case of topology changes (as a result

of power depletion and/or environmental stimuli), and hence adapt better to

these changes. Reduction in the communication overheads (and hence saving

in the power) also contributes to system scalability.

. Aggregating Data in the Process of Routing [8]. Redundancy exists in sensor

data in both the temporal and spatial domains. That is, readings collected by a

single sensor at different times or among neighboring sensors may be highly

correlated, and contain redundant information. Instead of transmitting all the

highly correlated information to subscribers, it may be more effective for

some intermediate sensor node(s) to digest the information received and

come up with a concise digest, in order to reduce the amount of raw data to

be transmitted (and hence the power incurred, and bandwidth consumed, in

transmission). This technique is termed as data fusion (also called data aggre-

gation). Data fusion can also be integrated with routing. Compared with

traditional address-centric routing, which finds the shortest paths between

pairs of end nodes, data-fusion–centric routing aims to locate routes that

lead to the largest degree of data aggregation.

. Being Adaptive to Topology Changes. Due to environmental dynamics (such

as channel fading due to weather effects) and node failure (as a result of power

depletion and hardware failure), the network topology can change from time to

time. In addition, the locations of the traffic source and destination, as well

as the amount of traffic may vary. Adaptation to these changes is the key to

making the system autonomous and efficient.

. Increasing Node/Route Redundancy. In second listed feature, we state that it is

desirable to remove data redundancy in the time and spatial domains. On the

other hand, deploying a sensor network with a high nodal density so as to

increase node/route redundancy is likely to make the system more resilient

and robust to all the aforementioned environment dynamics. Increasing node

redundancy also extends network lifetime if subsets of nodes can be properly

identified (each of which covers the entire monitoring area) and take turns car-

rying out the task of sensing the environment and monitoring.

In this chapter, we give a survey of research activities in the areas of data

gathering, dissemination, and fusion. The survey is conducted along three research

thrusts: (1) query processing in sensor database systems, (2) data-gathering

and -dissemination mechanisms, and (3) data-fusion mechanisms. The categoriz-

ation is made roughly based on the major focus of algorithms, although some

algorithms consider both data dissemination and fusion jointly.

15.1 INTRODUCTION 495

The rest of this chapter is organized as follows. In Section 15.2 we introduce

sensor database systems and how queries are processed in such systems. In Section

15.3, we present an overview of data-gathering and dissemination mechanisms and

two predominant factors that determine the system architecture. This is then fol-

lowed by a taxonomy of data-gathering mechanisms based on storage locations,

directions of diffusion, and structures of dissemination. In Section 15.4, we give

an overview of data-fusion mechanisms, and then classify them based on functions

of data fusion, system architectures, and trade-offs in the system design. Finally, in

Section 15.5 we present several utility-based data-gathering algorithms that maxi-

mize the amount of information extracted.

15.2 SENSOR DATABASE

Sensor networks provide a new computing platform for users to readily access the

data in the physical world [5]. They can be viewed as a large distributed database

system. Consider an environment monitoring and alert system that is similar to the

ALERT system (http://www.alertsystems.org). Several types of sensors, including

rainfall sensors, water-level sensors, weather sensors, and chemical sensors, are

used to record the precipitation andwater level regularly, to report the current weather

conditions, and to issue flood or chemical pollution warnings. In such a monitoring

application, there are five types of queries that users typically make [5,9,10]:

1. Historical Queries. These queries are concerned with aggregate, historical

information gathered over time and stored in a database system, for example,

“What was the average level of rainfall of Champaign County in May 2000?”

2. Snapshot Queries. These queries are concerned with the information gathered

from the network at a specific (current or future) time point, for example,

“Retrieve the current readings of temperature sensors in Champaign County.”

3. Long-Running Queries. These queries ask for information over a period of

time, for example, “Retrieve every 30 minutes the highest temperature

sensor reading in Champaign County from 6 P.M. to 10 P.M. tonight.”

4. Event-Triggered Queries [9]. These queries prespecify the conditions that

trigger queries, for example, “If the water level exceeds 10 meters in

Champaign County, query the rain-fall sensors about the amount of precipi-

tation during the past hour. If the amount of precipitation exceeds 100 mm,

send an emergency message to the base station to issue a flood warning.”

5. Multidimensional Range Queries [10]. These queries involve more than one

attribute of sensor data and specify the desired search range as well, for

example, “In Champaign County, list the positions of all sensors that detect

water level between 5 to 8meters and have temperatures between 50 and 608F.”

A complete hierarchical architecture (four-tier) of sensor database systems for a

monitoring application answering these five types of queries is depicted in

496 DATA GATHERING AND FUSION IN SENSOR NETWORKS

Figure 15.2 [1]. The lowest level is a group of sensor nodes that perform sensing,

computing, and in-network processing in a field. The data collected within the

sensor network are first propagated to its gateway node (second level). Next the gate-

way node relays the data through a transit network to a remote base station (third

level). Finally, the base station connects to a database replica across the Internet.

Among the four tiers, the resource within the sensor networks is the most con-

strained. In most of the applications, the sensor network is composed of sensors

and a gateway node (sink), as shown in Figure 15.3, although the number of sinks

or sources might vary from application to application.

End users Data service

Base station
Internet

Transit network

Sensor network
Gateway

Sensor node

�
��

Figure 15.2 The complete architecture of a sensor database system.

Figure 15.3 Procedures for query and data extraction in TinyDB [9,11].

15.2 SENSOR DATABASE 497

15.2.1 Example Sensor Database System

The main purpose of a sensor database system is to facilitate the data-collection pro-

cess. Users specify their interests via simple, declarative structured query language–

like (SQL) queries. Upon receipt of a request, the sensor database system efficiently

collects and processes data within the sensor network, and disseminates the result to

users [11]. A query-processing layer between the application layer and the network

layer provides an interface for users to interact with the sensor network. The layer

should alsobe responsible formanaging the resources (especially the available power).

Two of the most representative sensor database systems are TinyDB [9,12] and

Cougar [11,13]. The former evolves from tiny aggregation (TAG), and is built on

top of the TinyOS operating system [14] (which operates on smart dusts, Motes,

developed by University of California at Berkeley). The latter database system

is developed by Cornell University. Both the TinyDB and Cougar architectures con-

sist of a single base station (sink) and multiple sensors. The sink and sensors are

connected in a routing tree, shown in Figure 15.3. A sensor chooses its parent

node, which is one hop closer to the root (sink). The sink accepts queries from

users outside the sensor network. Query processing can be performed in four steps:

query optimization, query dissemination, query execution, and data dissemination.

Both TinyDB and Cougar provide a declarative SQL-like query interface for

users to specify the data to be extracted. Similar to SQL, the acquisitional query

language used in TinyDB, TinySQL, consists of a select-from-where clause that

supports selection, join, projection, and aggregation. The data within sensor

networks can be considered as virtually a table, each column of which corresponds

to an attribute and each row of which corresponds to a sample measured at a specific

location and time. An example in TinySQL is like:

SELECT region id, AVG(water level), AVG(precipitation)
FROM water level sensor (W), precipitation sensor (P)
WHERE W.location IN Champaign County AND P.location IN
Champaign County

GROUP BY region
Having AVG(W.water level) > 10 meters
EPOCH DURATION 10 minutes
TRIGGER ACTION report an emergency warning

This query monitors the water level in all regions in Champaign County every

10 minutes. If the average water level of sensors in a region exceeds 10 meters, the

system generates a flooding warning and sends the region ID and the value of the

average water level and precipitation to the sink. The query language in the sensor

database differs from SQLmainly in that its queries are continuous and periodic [11].

Upon reception of a query, the sink performs query optimization to reduce the

energy incurred in the pending query process. Two query optimization techniques

are commonly used in TinyDB: ordering of sampling operations and query aggrega-

tion. First, since the energy incurred in retrieving readings from different types of

sensors is different, the sampling operations should be reduced for sensors that con-

498 DATA GATHERING AND FUSION IN SENSOR NETWORKS

sume high energy. For instance, the energy consumed for sampling a magnetic read-

ing is much higher than that for a light reading. The sampling energy can be saved if

a proper ordering of sampling operations can be arranged in the evaluation of the

HAVING clause. For another example, the query “HAVING light . 200 and

mag . 100” consumes less energy than the query “HAVING mag . 100 and

light . 200,” because in the former case the sampling operation for magnetic

readings can be skipped if the condition on the light reading fails. Second, by com-

bining multiple queries for the same event into a single query, only one query needs

to be sent.

After a query is optimized at the sink, it is broadcast by the sink and disseminated to

the sensor network.When a sensor receives a query, it has to decidewhether to process

the query locally and/or rebroadcasts it to its children. A sensor only needs to forward

the query to those child nodes that may have the matched result. To this end, a sensor

has to maintain information on its children’s attribute values. In TinyDB, a semantic

routing tree (SRT) containing the range of the attributes of its children is constructed at

each sensor. The attributes can be static information (e.g., location) or dynamic infor-

mation (e.g., light readings). For attributes that are highly correlated among neighbors

in the tree, SRT can reduce the number of disseminated queries.

One distinct characteristic of query execution in TinyDB is that sensors sleep

during every epoch and are synchronized to wake up, receive, transmit, and process

the data in the same time period.

15.3 DATA-GATHERING AND DISSEMINATION MECHANISMS

The wide variety of requirements and objectives for different applications in sensor

networks impose various design criteria and lead to different solutions. Two major

factors that determine the system architecture and design methodology are:

1. The number of sources and sinks within the sensor network: Sensor network

applications can be classified into three categories: one-sink–multiple-

sources, one-source–multiple-sinks, and multiple-sinks–multiple-sources.

An environment monitoring application shown in Figure 15.3 falls in the

one-sink–multiple-sources category, since the interaction between the sensor

network and the subscribers is usually through a single gateway (sink) node.

On the other hand, a traffic-reporting system that disseminates the traffic con-

dition (e.g., an accident) at a certain location to many drivers (sinks) falls in

the one-source–multiple-sinks category.

2. The trade-offs between energy, bandwidth, latency and information accuracy:

An approach cannot usually optimize its performance in all aspects. Instead,

based on the relative importance of its requirements, an application usually

trades less important criteria for optimizing the performance with respect to

the most important attribute. For instance, for mission-critical applications,

the end-to-end latency is perhaps the most important attribute and needs to

be kept below a certain threshold, even at the expense of additional energy

consumption. We will treat this topic in Section 15.4.3.

15.3 DATA-GATHERING AND DISSEMINATION MECHANISMS 499

In what follows, we categorize data-gathering and -dissemination mechanisms

based on the following three factors: (1) storage location, (2) direction of diffusion,

and (3) structure of devices.

15.3.1 Classification of Data-Gathering Mechanisms Based on
the Storage Location

In order to process historical queries, data collected at different sensors have to be

properly stored in a database system for future query processing. Figure 15.4 shows

three scenarios of placing storage at different locations [15]:

1. External Storage (ES): All the data collected at sensors in a sensor network

are relayed to the sink and stored at its storage for further processing. For a

sensor network with n sensor nodes, the cost of transmitting data to the exter-

nal storage is O(
ffiffiffi
n

p
). There is no cost for external queries, while the cost of a

query within the network incurs a cost of O(
ffiffiffi
n

p
).

2. Local Storage (LS): Data are stored at each sensor’s local storage and thus no

communication cost for data storage is incurred. However, each sensor needs

to process all queries and a query is flooded to all sensors. The cost of flooding

a query is O(n).

3. Data-Centric Storage (DCS): DCS stores the data at a sensor (or a location) in

the sensor network based on the content of the data. Data storage in a DCS

system consists of two steps: first the sensor maps an event it detects to a

label via a consensus hash function and then routes the data to a node accord-

ing to the label. The label can be a location and the sensor can route the data

via geographic routing. We will introduce two of the representative

approaches relying on geographic information, GHT [15] and DIM [10] in

the next subsection. Both data and query communication costs are O(
ffiffiffi
n

p
).

Figure 15.4 Three types of storage scenarios [15]. (a) External storage; (b) local storage;

(c) data-centric storage.

500 DATA GATHERING AND FUSION IN SENSOR NETWORKS

15.3.1.1 Database with Geographic Information As just mentioned, one

of the common hash functions in sensor database systems is to map the data to a

location and then send the data via geographic routing to the sensor node that is

closest to the mapped location for storage. If all of the sensors have the same

hash function, a query with a specific content can be converted to a location

where the data were stored for future retrieval. Geographic hash table (GHT) [15]

and distributed index for multidimensional data (DIM) [10] are two of the represen-

tative databases with geographic information. Both of them adopt greedy perimeter

stateless routing (GPSR) [16,17] as the underlying routing protocol, but differ

slightly in the hash functions used.

In GHT, the input to the hash function is a reading of a single attribute or a

specific type of event, and the hash result is a point in the two-dimensional space.

If no sensor node is located at the precise coordinates of the hash result, the data

are stored at the node closest to the hash result. With the use of the perimeter

mode of GPSR, the data packet traverses the entire perimeter enclosing the location

of the hash result, and the closest location can be identified.

DIM, on the other hand, is designed especially formultidimensional range queries.

DIM maps a vector of readings with multiple attributes to a two-dimensional

geographic zone. Two assumptions are made in DIM: first, sensors are aware of

their own locations and field boundaries, and second, all the sensors are static. The

entire field is divided recursively into zones, as shown in Figure 15.5. The sequence

of divisions is vertical, horizontal, and so on. Each zone is encodedwith a unique code

based on the following rule: For a vertical division (the ith division where i is an odd

number), the ith bit code of the zone is encoded as “1” if it is in the right region, and “0”

otherwise. Similarly, the even bit of the code word is determined by whether the zone

is above (“1”) or below (“0”) the divided line. For instance, the code word of the

region in which node 6 resides in Figure 15.5 is “101.” Due to the fact that sensors

may not be uniformly deployed in an area, every zone just defined may not contain

3

7

2

1

5

6

4

1

001000 1000 101

1001

11

(a) (b)

01

∫ 100001
E1= <0.7, 0.2, 0.4>

3

7

6

4

52

Q11= <0.1-0.2, 0.5-0.6, 0.8-0.9>

Q1= <0.1-0.2, 0.3-0.6, 0.8-0.9>

Q10= 0.3-0.5, 0.8-0.9>

01 11

1001

001000 1000 101

<0.1-0.2,

Figure 15.5 (a) Inserting an event; (b) issuing a multidimension range query [10].

15.3 DATA-GATHERING AND DISSEMINATION MECHANISMS 501

a sensor. In other words, a sensor needs to determine the zone(s) it owns where no

other sensors reside. This can be easily achieved when a node is aware of its neigh-

bors’ locations.

The encoding rule for mapping an event A with m normalized attributes

(A1 � � �Am) (0 � Ai � 1) to a zone with k divisions (k is a multiple of m) is based

on the following rule:

For i ¼ 1 ! m, if Ai , 0:5, then the ith bit of the event ¼ 0; otherwise, ¼ 1.

For i ¼ mþ 1 ! 2m, if Ai�m , 0:25 or Ai�m ¼ ½0:5, 0:75), then the ith bit of the
event ¼ 0; otherwise, ¼ 1.

Repeat the same procedure until all k bits are assigned.

With the encoding rules for both zones and events, the next task is to route

the event to the node that owns the zone (code word) of the event. An example

of inserting an event is illustrated in Figure 15.5(a). The event with two attri-

butes k0.7, 0.2, 0.4l is routed to node 4, which owns the zone 1000. Similar

encoding rules are applied to queries, except that when the range of a query is

larger than the range of a zone, it has to be divided into several subqueries. An

example of querying range event k0.1–0.2, 0.3–0.6, 0.8–0.9l is illustrated in

Figure 15.5(b).

15.3.2 Classification of Data-Gathering Mechanisms Based
on the Direction of Diffusion

The data-gathering process usually consists of two steps: query and reply. A sink (or

user) sends a query to a sensor network and sensors that detect events matching the

query send replies to the sink. Applications with different requirements opt for

different communication paradigms. According to the direction of interest/data
diffusion, there are three types of approaches [18]:

1. Two-Phase Pull Diffusion. The most representative approach in this category

is directed diffusion [19]. Both the queries for events of interest and the replies

are initially disseminated via flooding, and multiple routes may be established

from a source to the sink. In the second pull phase, the sink reinforces the best

route (usually with the lowest latency) by increasing its data rate (i.e., gradi-

ent). Data are then sent to the sink along this route. We present in detail the

directed diffusion mechanism later. Two-phase pull diffusion is especially

well suited for applications with many sources and only a few sinks.

2. One-Phase Pull Diffusion [18]. The overheads of flooding of both queries and

replies are high in the cases that (1) there exist a large number of sinks or

sources, and (2) the rate of queries for different events is high. One-phase

pull diffusion skips the flooding process of data diffusion. Instead, replies

are sent back to neighbors that first send the matching queries. In other

words, the reverse path is the route with the least latency. One-phase pull

502 DATA GATHERING AND FUSION IN SENSOR NETWORKS

diffusion is well-suited for scenarios in which a large number of disparate

events are being queried.

3. Push Diffusion. In the push-diffusion mechanism, a source actively floods the

information collected when it detects an event and sinks subscribe to events of

interest via positive enforcements. Push diffusion is well-suited for: (1) appli-

cations in which there exist many sinks and only a few sources, and sources

generate data only occasionally, and (2) target tracking applications [2] in

which data sources constantly change with time, and hence data routes

cannot be established effectively via reinforcement. Sensor protocol for infor-

mation via negotiation (SPIN) [20,21] can be classified as a protocol built

upon the push-diffusion mechanism. We will present SPIN in detail below.

With the knowledge of geographic scooping of either sources or sinks, one can

apply the energy- and location-aware routing protocols [22–24] to further reduce

the flooding region, and hence save more energy.

15.3.2.1 Directed Diffusion Directed diffusion [19] is a two-phase pull rout-

ing mechanism in which data consumers (sinks) search for the data sources matching

their interests and the sources find the best routes to route their data back to the sub-

scribers. Directed diffusion consists of three phases: interest propagation, data

propagation, and reinforcement (Fig. 15.6). Sinks first broadcast interest packets

to their neighbors. When a node receives an interest packet, the packet is cached

and rebroadcast to other neighbors if it is new to this node. Propagation of interest

packets also sets up the gradient in the network to facilitate data delivery to the sink.

A gradient specifies both a data rate and a direction to relay data. The initial data rate

of the gradient is set to be a small value and will be increased if the gradient along

the path is enforced.

When a node matches an interest (e.g., it is in the vicinity of the event in the

target-tracking application), it generates a data packet with the data rate specified

in the gradient. The data packet is unicast individually to the neighbors from

which the interest packet is received. When a node receives a data packet matching

a query in its interest cache, the data packet is relayed to the next hop toward the sink.

Both interest and data propagation are exploratory, but the initial data rate is low.

When a sink receives data packets from some neighbors, it reinforces one of the

neighbors by increasing the data rate in the interest packet. Usually this neighbor is

the one on the least-delay path. If a node receives an interest packet with a higher

data rate, it also reinforces the path in the interest cache. Since the entries in the

interest cache are kept as soft state, eventually only one path remains while other

paths are torn down.

15.3.2.2 SPIN SPIN [21,25] is a push-diffusion mechanism in which data

sources initiate the data-sending activities. SPIN consists of three-stage handshaking

operations (Fig. 15.7), including ADV (advertisement), REQ (request for data), and

DATA (data message). Instead of directly flooding new data, the description of new

15.3 DATA-GATHERING AND DISSEMINATION MECHANISMS 503

data, that is, metadata, is exchanged in the first two advertisement–subscription

phases to reduce message overhead. If a node receives an advertisement with new

information that is of interest to it, it replies with a request packet. The real data

are then transmitted in the third phase upon receipt of such a request. Propagation

of new information is executed hop-by-hop throughout the entire network.

15.3.3 Classification of Data-Gathering Mechanisms Based
on the Structure of Dissemination

The number of sources and sinks in sensor network applications not only determines

the direction of diffusion but also plays a crucial role in laying the structure of

Sink

Interest

Source Source Source

Data Data

Sink Sink
(a) (b) (c)

Figure 15.6 Three phases in directed diffusion [19]. (a) Interest propagation; (b) data

propagation; (c) data delivery along reinforced path.

AD
V

RE
Q DA

TA

ADVREQDATA

Figure 15.7 Three phase hand-shaking protocols in SPIN [25].

504 DATA GATHERING AND FUSION IN SENSOR NETWORKS

dissemination in the system, especially when it is considered in conjunction with

data fusion. In what follows, we introduce four types of configurations, including

tree, grid, cluster, and chain, and their representative approaches.

1. Tree. One of the most common dissemination structures used in sensor net-

works is a tree that is rooted at the sink and spans the set of sources from which

the sink will receive information. It is usually constructed in the reverse multicast

fashion. TAG [26] and TinyDB [9] are two examples that use sink trees for data dis-

semination. On the other extreme, in the scenario of a single source and multiple

sinks, a tree is rooted at a source and constructed in the usual multicast fashion.

The self-organizing multicast forwarding tree proposed by Mirkovic et al. [27] to

disseminate reports from stimuli to multiple sinks falls in this category. The sinks

broadcast their interest packets for certain events. Upon receipt of an interest

packet, each sensor updates its distance to the sink and forwards the packet if it is

new to the sensor. Each of the interest packets that record a minimum distance

from some sink will be used by the source to construct the shortest path tree. The

tree grows from the root and follows the reverse paths to reach sinks. A sensor

node with a new stimulus joins the tree at the on-tree sensor that is closest to it,

thus creating a new branch of the tree.

In the scalable energy-efficient asynchronous dissemination protocol (SEAD)

[28], a dissemination tree is built to deliver data from a source (root) to multiple

mobile sinks (leaves). The tree is built upon an underlying geographical routing pro-

tocol. When a mobile sink would like to receive data from a source, it connects to the

dissemination tree through one of its neighboring sensors, called an access node.

Similar to the home agent in Mobile IP (Internet protocol), the access node acts

as an anchor node to relay data to the sink. When the sink moves out of the trans-

mission range of its access node, it informs its access node of its new whereabouts

by sending a PathSetup message. The latter will then forward all the data packets

that are of interest to the node. When the distance to the original access node exceeds

a predetermined threshold, the mobile sink joins a new access node. In order to

reduce the number of messages transmitted over the tree, a source node duplicates

its data at several replicas. The criterion for placing a replica on the tree is to mini-

mize the extra cost of constructing a branch for a new join request.

2. Grid. Similar to SEAD, two-tier data dissemination (TTDD) [29] is designed

for scenarios with a single source and multiple mobile sinks. Unlike SEAD, a grid

structure is adopted as the dissemination structure in TTDD. An example grid struc-

ture originated from the source is shown in Figure 15.8. In the higher tier, a source that

detects an event proactively constructs a grid structure where sensors close to the grid

points are elected as dissemination nodes. In the lower tier, a mobile sink sends a

query to, and receives data from, its nearest grid point on the local grid. When a

sink moves to another grid, it can quickly connect to the grid structure and the infor-

mation access delay thus incurred is reduced.One of the applications forwhichTTDD

is particularly well suited is target tracking in the battlefield.

3. Cluster. When data-fusion is integrated with data dissemination, data gener-

ated by sensors are first processed locally to produce a concise digest, which is then

15.3 DATA-GATHERING AND DISSEMINATION MECHANISMS 505

delivered to a sink. A hierarchical cluster structure [20,30,31] is better suited for this

purpose. The low-energy adaptation clustering hierarchy (LEACH) [20] is a two-

level clustering mechanism in which sensors are partitioned into clusters. Each

sensor volunteers to become a clusterhead (CH) with a certain probability such

that the task of being CHs is evenly distributed and rotated among all sensors.

Once a sensor elects itself as the CH, it broadcasts a message to notify other

nearby sensor nodes of the fact that it is willing to be a CH. The remaining sensors

then select a minimum transmission power to join their closest CHs. Within the

cluster, a CH uses time-division multiple access (TDMA) to allocate time slots to

cluster members (so that the latter can relay their readings to the CH), compresses

received data, and transmits a digested report directly to the base station (sink).

Bandyopadhyay and Coyle [30] propose a multilevel hierarchical clustering algor-

ithm. Similar to LEACH, this approach aims to realize the objective of balancing

the load of sensors and achieving energy efficiency.

Chen et al. [32] devise and evaluate a fully decentralized, light-weight, dynamic

clustering algorithm for target tracking. A cluster is dynamically formed and a CH

becomes active when the acoustic signal strength detected by the CH exceeds a pre-

determined threshold. The active CH then broadcasts an information solicitation

packet, asking sensors in its vicinity to join the cluster and provide their sensing

information. With the use of a Voronoi diagram, they devise solution approaches

to determine (I1) how CHs cooperate with one another to ensure that only one

CH (preferably the CH that is closest to the target) is active with high probability;

(I2) when the active CH solicits for sensor information, instead of having all the

sensors in its vicinity reply, only a sufficient number of sensors respond with

nonredundant, essential information to determine the target location; and (I3) both

Sink Source

Grid point

Dissemination node

Data

Query

Figure 15.8 Two-tier data dissemination (TTDD) grid structure [29].

506 DATA GATHERING AND FUSION IN SENSOR NETWORKS

the packets that sensors send to their CHs and packets that CHs report to subscribers

do not incur significant collision.

4. Chain. If the energy efficiency and bandwidth usage requirement is more

important than the latency requirement, the chain structure that allows aggregation

of data along a path ending at a sink is a competitive solution. The power-efficient

gathering in sensor information system (PEGASIS) [33] is designed to aggregate

data collected by all sensors in the entire network. Only one leader is elected

each time, and the leadership is rotated among all the sensors. Under the assumption

that the network topology is a complete graph, the leader is able to connect all the

sensors with the chain structure. Starting from the sensor at one end of the chain,

data are propagated and aggregated along the chain toward the leader. Then the

data dissemination and aggregation processes continue from the other end. The

aggregations from both ends arrive at the leader, which directly transmits the aggre-

gation result to the sink.

15.4 DATA-FUSION MECHANISMS

As mentioned in Section 15.1, in most of the sensor network applications,

sensors are deployed over a region to extract environmental data. Once data

are gathered by multiple sources (e.g., sensors in the vicinity of the event of

interest), they are forwarded perhaps through multiple hops to a single destina-

tion (sink). This, coupled with the facts that the information gathered by neigh-

boring sensors is often redundant and highly correlated, and that the energy is

much more constrained (because once deployed, most sensor networks operate

in the unattended mode), necessitates the need for data fusion. Instead of trans-

mitting all the data to a centralized node for processing, data are processed

locally and a concise digest is forwarded (perhaps through multiple hops) to

sinks. Data fusion reduces the number of packets to be transmitted among sen-

sors, and thus the usage in bandwidth and energy. Its benefits become manifest,

especially in a large-scale network. For a network with n sensors, the centralized

approach takes O(n3=2) bit-hops, while data fusion takes only O(n) bit-hops to

transmit data [34].

When data fusion is considered in conjunction with data gathering and dissemi-

nation, the conventional address-centric routing, which finds the shortest routes

from sources to the sink, is no longer optimal. Instead, data-centric routing, which

considers in-network aggregation along the routes from multiple sources to a

sink, achieves better energy and bandwidth efficiency, especially when the

number of sources is large, and/or when the sources are located closely to one

another and far from the sink [8]. Figure 15.9 gives a simple illustration of data-

centric routing versus address-centric routing. Source 1 chooses node A as the relay-

ing node in address-centric routing, but node C as the relaying and data aggregation

node in data-centric routing. As a result, a smaller number of packets are transmitted

in data-centric routing.

15.4 DATA-FUSION MECHANISMS 507

Existing research activities of data fusion can be categorized with respect to the

following aspects:

. Fusion Function. Data-fusion is generally applied for:

(a) Basic Operations. The most basic operations for data fusion include:

COUNT, MIN, MAX, SUM, and AVERAGE [26].

(b) Redundancy Suppression. Data-fusion, in this case, is equivalent to data

compression [35,36].

(c) Estimation of a System Parameter. Based on the observations from several

pieces of sensor data, the data-fusion function aims to solve an optimiz-

ation problem to minimize the estimation error of a system parameter [34].

. System Architecture. Besides the sources and sinks, a sensor network that con-

siders data fusion has an additional component—the data aggregator. There

exist a wide variety of ways to determine the location of the data aggregator.

. Trade-Offs of Resources. Depending on the resource constraints in a sensor

network, there exist the following trade-offs: energy vs. estimation accuracy

[34,37], energy vs. aggregation latency [38,39], and bandwidth vs. aggregation

latency [36].

15.4.1 Classification of Data-Fusion Mechanisms Based
on Functions

The major purpose of incorporating data fusion into the data-gathering and dissemi-

nation process is to reduce the number of packets to be transmitted, and hence the

energy incurred in transmission. There are two types of data aggregation: “Snapshot

aggregation” is data fusion for a single event, such as tracking a target, while

“periodic aggregation” periodically executes the data-fusion function, such as moni-

toring an environment parameter periodically [37]. Depending on the application

requirements, three types of data-fusion functions can be used: basic aggregation

functions, redundancy suppression, and estimation of a system parameter.

A

C

B A

C

B

Sink

Source 1

Source 2

Sink

Source 1

Source 2

(a) (b)

Figure 15.9 Address-centric routing vs. data-centric routing [8]. (a) Address-centric

routing; (b) data-centric routing.

508 DATA GATHERING AND FUSION IN SENSOR NETWORKS

15.4.1.1 Basic Aggregation Function Basic aggregation functions include

five SQL-like operations: COUNT, MIN, MAX, SUM, and AVERAGE [26]. Here

we use the structure of aggregates and the AVERAGE function used in TAG as an

example to explain the procedure of data aggregation. An aggregation component

consists of three functions: a merging function f, an initializer i, and an evaluator e.

The aggregation process starts with one sensor specifying the initial states for initia-

lizer i, kx, 1l, where the first entry in the 2-tuple is the sensor value of the starting

node, and the second entry represents the number of readings in the first entry. The

aggregation packet including the initializer is propagated to the next hop, and the

merging function f is executed there for data aggregation. The merging function f

is one of the five functions just mentioned and in the case of AVERAGE its function

is expressed below:

f kS1,C1l, kS2,C2lÞ ¼ kS1 þ S2, C1 þ C2lð

which means that the first entry is the sum of sensor readings along the aggregation

path and the second entry is the count of sensor readings. Finally, when the aggrega-

tion packet arrives at the sink (or the subscriber), the evaluator e calculates the final

result e(kS, Cl) ¼ S=C.
Although the basic functions share the same aggregation structure, the char-

acteristics of different functions differ in three aspects (as summarized in

Table 15.1) [26]:

1. Duplicate Sensitive. Duplicate sensitivity indicates whether the result of the

aggregation evaluator is affected by a duplicated reading from a single

sensor. In the case of duplicate sensitive aggregates such as COUNT or

AVERAGE, sending aggregation packets over multiple paths will lead to

incorrect results.

2. Exemplary or Summary. The result of exemplary aggregates might depend on

any one value from the set of all sensor readings, while summary aggregates

compute some property over all values. The results of exemplary aggregates

are not predictable when one critical reading is lost.

3. Monotonic. An aggregate is monotonic if and only if for any two partial

states, s1 and s2, and their aggregate state s0, either e(s0) �

TABLE 15.1 Classes of Aggregation Functions

MAX, MIN COUNT, SUM AVERAGE MEDIUM

Duplicate sensitive No Yes Yes Yes

Exemplary (E)/summary (S) E S S E

Monotonic Yes Yes No No

Partial state Distributive Distributive Algebraic Holistic

Source: Ref. [26].

15.4 DATA-FUSION MECHANISMS 509

MAX(e(s1), e(s2)) or e(s
0) � MIN(e(s1), e(s2)) holds. The monotonic property

is an index of whether some predicates (e.g., HAVING) can be applied to par-

tial states before the final aggregate state is acquired. If applicable, an early

predicate evaluation reduces the search space by avoiding traversing an

unlikely aggregation tree.

4. Partial State. The characteristic of partial state for aggregation functions rep-

resents the size of intermediate states. Distributive aggregates like MAX,

COUNT, and SUM keep a single entity in their partial states. Algebraic aggre-

gates such as AVERAGE update more than one entity in the partial states, but

the number of entities kept is a constant. In Holistic aggregates, the size of

entities in a partial state is proportional to the number of the aggregated

states. That is, aggregation takes no effect and all the data have to be trans-

mitted to a centralized node for further processing. Function MEDIUM falls

into this category.

15.4.1.2 Redundancy Suppression Due to the fact that correlation exists in

sensor data both in the spatial and temporal domains, one of the most important data-

fusion functions is to eliminate data redundancy, or in a more concrete term, to exploit

the correlation structure that exists in sensor data via distributed source coding.

Chou et al. [35] proposed incorporating both distributed source coding and

adaptive signal processing in data fusion and exploiting the correlation structure

in sensor data to reduce the number of bits transmitted. The system architecture con-

sists of a data-gathering node (sink) and sensors. The data-gathering node sends

queries to sensors sequentially to obtain certain information that pertains to the

entire field. The design objective here is to devise a computationally inexpensive

encoding operation that supports multiple compression rates in the sensors while

allowing a more complex decoding procedure in the data-gathering node. The theor-

etical base used is the Slepian–Wolf theorem [40]: if two discrete random variable

X andY are correlated, thenX can be losslessly compressed usingH(XjY) bits with-
out access to Y, whereH(XjY) is the conditional entropy of X given the information

of Y. Based on the Slepian–Wolf theorem, the authors propose a blind compression

method to achieve the theoretical limit given in the theorem. Suppose that the data-

gathering node has full information of Y (side information) and the difference

between X and Y is less than 2i�1D, where D is the sampling resolution of the

sensor readings. With their proposed tree-based codebook, one can encode X with

only i bits without any knowledge of Y and the decoder can fully recover the infor-

mation of X. An example that shows the encoding and decoding operations with the

tree-based codebook is depicted in Figure 15.10. The sampling resolution, D, in this
example is set to 0.1. If the sink has collected the full information of sensor data Y

(e.g., Y ¼ 0.4) and that the difference between the value of X and Y is less than 0.2,

then sensor X only needs to use i (¼2) bits to encode its value without the knowl-

edge of Y. The deterministic encoding function for X is f (X) ¼ index(X) mod 2i,

where the index function converts the value to the index in the tree-based code-

book, for example, f (0.5) ¼ 5 and X is encoded in 2 bits as 01 because 5 mod

510 DATA GATHERING AND FUSION IN SENSOR NETWORKS

4 is equal to 1. After the sink receives the 2-bit (01) encoding information of X, it

traverses the tree and finds the corresponding subcodebook S, in which all elements

share the same encoding rule. In the given example, S ¼ r1, r5f g. The decoding rule
is X̂ ¼ argminri[S Y � rik k. Since r5 is closer to Y than r1, the sink can decode the

value of X to be 0.5.

The procedures to obtain the correlation structure of sensor data can be divided

into two steps. First the data-gathering node collects the uncompressed data from all

sensors in the first K rounds to obtain the temporal and spatial redundancy in data.

Then in the following round of data collection, an adaptive filtering framework is

used at the data-gathering node to learn the correlation structures in the data.

Duarte-Melo et al. [41] address the issue of joint design of data compression and

data dissemination. They consider the same system architecture as [35] (i.e., the

system consists of a sink and multiple sensors), and formulate the problem as a

nonlinear programming problem that maximizes the system lifetime, subject to

the constraints on flow conservation, energy, and sampling rates. The last constraint

specifies the least sampling rate for Slepian–Wolf type of encoding.

Scaglione and Servetto [36] propose to integrate routing with source coding

under a system in which each sensor reports its data to the entire network and all

sensors intend to capture certain information that pertains to the entire field

within a prescribed distortion value, that is, the joint entropy of all readings. As

the data are propagated to a node, they are encoded with the local data, and the com-

pressed data are relayed to the next hop node. It is shown that the aggregation

method consumes bandwidth in a scalable way (i.e., below the transport capacity),

and thus the problem of vanishing per-node throughput [42] is avoided.

Petrovic et al. [43] propose the data-funneling mechanism. In data funneling,

multiple reports from different sensors are sent to the sink at approximately the

same time. Since these packets have similar headers, they can be merged to a

single packet by removing their redundant headers. Considerable saving can be

made by a simple concatenation of readings in the packet body. Source coding

∆=0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

r0 r1 r2 r3 r4 r5

r6

r7

r0 r2 r4 r1 r3 r5 r7

r0 r4 r6r2 r1 r3r5 r7

2 2

4 444

Y = 0.4

0 1 10

10

r6

Figure 15.10 An example of the tree-based codebook [35].

15.4 DATA-FUSION MECHANISMS 511

based on the ordering is further applied to compress the data of concatenated read-

ings. For instance, suppose there are four nodes with ID’s 1, 2, 3, and 4 in a region.

The readings of the four sensors are integers within the range of [0, 1, . . . , 5]. The
fourth node that receives the concatenation of readings from the other three sensors

can compress the data set with four readings by simply sending three readings. The

fourth reading is implicitly encoded by the order of the three readings because there

are six (3!) combinations of the ordering relationship. More specifically, the order-

ing of IDs (1, 2, 3) in the data packet represents that the fourth reading of data are 0,

the ordering (1, 3, 2) represents the value of 1, and so on.

15.4.1.3 Estimation of a System Parameter In this category of appli-

cations, sensors cooperate to disseminate necessary information to certain nodes,

which then proceed to estimate the parameter of interest. The estimation problem

can be formulated as an optimization problem, whose objective is to minimize the

estimation error. An example of such an optimization problem is to average all

the temperature readings of sensors within a room to estimate the temperature of

a room. The estimation is optimal with respect to the minimum square error

(MSE) criterion. Another example is to track targets to minimize the estimation

error of the target’s location.

Rabbat and Nowak [34] formulate an optimization problem to estimate a system

parameter, u, given a set of data from n sensors, x. The objective is to minimize the

cost function f :

min
u

f (u, x) ¼ 1

n

Xn
i¼1

fi(u, xi) (15:1)

The iterative gradient decent method shown in Eq. (15.2) is one of the most pop-

ular techniques for solving the nonlinear optimization problem. It can be used at a

central server that has the entire set of data:

û
(kþ1) ¼ û

(k) � a
Xn
i¼1

gi, k (15:2)

where gi, k [@fi(û
(k)
), a is a small positive step size, and k is the iteration number. In

ref. [34], Eq. (15.1) is solved with a decentralized incremental approach by dividing

Eq. (15.2) into a cycle of n subiterations. The ith subiteration focuses on optimizing

a single component, fi(u), at a node i based on its local data. Just a with PEGASIS,

the task of subiterations is rotated hop by hop in a chain. The subiteration starts from

a node 1, which inherits the estimation result from the previous iteration,

w(k)
0 ¼ û

(k�1)
, where w(k)

i is the result of the ith subiteration within the kth iteration.

The sensor i updates the result of the aggregation that it receives from the previous

hop, sensor i� 1, as follows:

w(k)
i ¼ w(k)

i�1 � agi, k i ¼ 1, : : : ; n

512 DATA GATHERING AND FUSION IN SENSOR NETWORKS

where gi, k [@fi(w
(k)
i�1). Finally the estimation in the kth iteration ends at the nth

subiteration: û (k) ¼ w(k)
n . No more than O(1�2) iterations are required for the desired

accuracy 1. Three applications, robust estimation, localization, and clustering and den-

sity estimation, are illustrated that leverage the distributed optimization in ref. [34].

Zhao et al. [2] proposed a leader-based tracking scheme in which samples are col-

lected successively at different time instants and locations to localize the target. A

sensor that contains the most information is elected by the previous leader to esti-

mate the current location of the target based on the past belief and the current

measurement. Similar to the directed diffusion approach [19], a routing protocol,

called constrained anisotropic diffusion routing (CADR) [44], is used to redirect

queries from users to the most qualified leader. The current leader adopts the sequen-

tial Bayesian filtering technique to estimate the current location of the target. A

sensor, which is estimated to hold the maximum information, is then chosen to be

the next leader. This process is termed the information-driven sensor query (IDSQ).

15.4.2 System Architectures of Data Fusion

As mentioned earlier, the data-fusion mechanisms can also be categorized based on

where to place the data aggregators.

Data funneling [43] is intrinsically an energy-efficient routing protocol [45] inte-

grated with data aggregation and compression techniques. The basic idea of data

funneling is to build a cost field with the funnel shape to pull the data from sources

to the sink. The sink initials directional flooding to send an interest packet toward a

target region, as shown in Figure 15.11(a). During the process of forwarding interest

packets, a forwarder computes its (energy) cost for communicating back to the sink

and updates the cost field in the interest packet.

When a node within the target region receives an interest packet from the nodes

outside the region, it designates itself a border node. The cost required to reach the

sink (i.e., the cost in the interest packet) is recorded, and a field that is used to keep

track of the cost to reach the border node is also included. Since there could be mul-

tiple “entries” (border nodes) to the target region, a node within the target region

might receive multiple interest packets from border nodes. Instead of requesting all

the nodes to send individual reports back to the sink, one of the border nodes is

responsible for the task of collecting and aggregating all reports in the region and

Sink Sink

Border node Border node

(a) (b)

Figure 15.11 Data funneling: (a) directed flooding phase and (b) data communication

phase [43].

15.4 DATA-FUSION MECHANISMS 513

sending a single packet to the sink. All the sensors within the region share a common

schedule of which border node to be the data aggregator during each round of report-

ing. The schedule is determined by a deterministic function of the costs to reach the

sink from all border nodes. Sensors with a longer distance to the designated aggrega-

tor send their reports earlier and the readings are concatenated in a single packet to

eliminate redundant headers. The data communication process is shown in

Figure 15.11(b). After receiving reports from all the sensors within the region, the

designated border node further compresses the data by applying a coding technique

based on ordering.

DFuse [46] is a distributed data-fusion framework especially designed for video

streaming applications. The framework provides the flexibility of data fusion in two

aspects. First, a layer of fusion modules provides a set of data-fusion functions for an

application to manage video streams. Second, the role of a node (a sink, a relay, or a

fusion point) is determined in a distributed way based on the given cost function.

Baek et al. [47] study optimal data-fusion strategies regarding the order of fusion

and the organization of fusion devices under two scenarios: networks with a single

sink and those with multiple sinks. In the case of a single sink, all sensors send

their nonredundant data to the sink. The optimal fusion strategy is to determine

the order of compression at each node, so as to minimize the overall energy consump-

tion while faithfully disseminating the data from all sensors to the sink.

According to the Slepian–Wolf theorem [40], the sum of rates for any subset of sen-

sors is lower bounded by the conditional entropy, given that the sink has known the

data of the set of rest sensors. The optimal solution can be found using a greedy algor-

ithm. The sensor to reach the sink first with the least communication cost transmits its

data without compression to the sink. Then, in the increasing order of communication

costs to reach the sink, sensors sequentially disseminate their compressed data, given

the known side information at the sink. Surprisingly, the optimal solution is indepen-

dent of the correlation structure of the data, and simply relies on the topology of the

network. For instance, the optimal fusion strategy for the sink S in the region consist-

ing of nodes A, B, and C shown in Figure 15.12 is: first S retrieves the full

information of node A, H(A), following by H(BjA), and H(CjA, B) sequentially.
In the case of multiple sinks, a three-level hierarchical architecture that includes

sensors, compressors, and sinks is considered. Both compressors and sinks can

aggregate data from sensors with a compression ratio a (0 , a , 1). All the

compressed data are destined for any one of the sinks. Therefore, a sensor transmits

C B A S

2. H(B|A)

1. H(A)

3. H(C|A, B)

Figure 15.12 The optimal fusion strategy under the case of a single sink.

514 DATA GATHERING AND FUSION IN SENSOR NETWORKS

its raw data either directly to its closest sink or a nearby compressor, which com-

presses the data and forwards the compressed data to its closest sink. The authors

show that under a given a, the optimal organization that minimizes energy consump-

tion is a Johnson–Mehl tessellation, in which the entire sensing field is divided into

regions belonging to either a sink or a compressor. In the two extreme cases that a is

equal to 0 and 1, representing full and no compression, the optional organization

degenerates from Johnson–Mehl tessellation into Voronoi tessellations that consti-

tute the set of sinks and compressors and the set of sinks, respectively.

15.4.3 Trade-Offs in System Design

Depending on the resource constraints, there exist various trade-offs in different

data-fusion schemes: energy versus estimation accuracy [34,37], energy versus

aggregation latency [38,39], and bandwidth versus aggregation latency [36].

15.4.3.1 Trade-Off Between Energy and Accuracy The requirement of

higher accuracy demands more message exchanges and leads to higher energy con-

sumption. Bonnet et al. [5] proposed a distributed periodic aggregation approach to

estimate the maximum of sensor data in a field, where the maximum of sensor data

are modeled to be Gaussian distributed. Compared with multiple “snapshot aggrega-

tions,” the proposed approach exploits the energy–accuracy trade-off, and provides

users with a system-level knob to control the desired accuracy and energy consump-

tion. The distributed optimization approach proposed in ref. [34] shows that O(1�2)

iterations of aggregation are required to achieve the desired accuracy 1.
Similar to a model-based query is supported in ref. [48]. A declarative query-pro-

cessing engine uses a probabilistic model to answer questions about the current state

of the sensor network. The model is based on time-varying multivariate Gaussians,

constructed based on the historical data, and updated when new data are available.

Given a query specifying the confidence interval, the problem is to choose the best

set of new observations such that the cost of collecting new data is minimized.

Ye et al. [49] figure robustness of delivery in the design. Multiple, interleaved

paths between the source and the sink enable the system to be more resilient to

node or transmission failure. In their proposed gradient broadcast (GRAB) protocol,

the cost field is constructed first [49a]. The cost of a node represents the minimum

energy required to forward a packet along a path to the sink. To exploit the redun-

dancy of delivery, a sender (forwarder) broadcasts a packet, and a relay node forwards

the packet only if its cost is smaller than the sender’s cost. Moreover, the degree of

delivery redundancy is controlled, as paths are expanded quickly from the source,

maintained within a reasonable width next, and finally shrunk near the sink.

Tilak et al. [50] trade accuracy of information for energy saving in data dissemi-

nation. They advocate nonuniform information granularity, that is, the required

accuracy of information decreases as the distance from the source becomes

longer. Applications in the battlefield or disaster rescue scenarios usually possess

such characteristics. Two deterministic and two nondeterministic protocols are

designed for nonuniform information dissemination. The proposed protocols trade

15.4 DATA-FUSION MECHANISMS 515

accuracy of information for energy expenditure by selectively discarding packets

from a sensor.

15.4.3.2 Trade-Off Between Energy and Latency Both Schurgers et al.

[38] and Yu et al. [39] explore the trade-off between energy consumption and propa-

gation latency from data sources to a sink, but from different perspectives. In ref. [38],

energy is saved via directly turning off the radio circuitry when a sensor is not trans-

mitting or receiving data. While the low duty cycle reduces power consumption, it

increases the propagation latency from a data source to the sink. The protocol,

sparse topology and energy management (STEM), is proposed to deal with the pro-

blem. STEM utilizes dual bands for data transmission and wake-up signaling. The

channel for wake-up signaling is operated in a low duty cycle. Each node periodically

turns on the radio circuitry for thewake-up channel to hearwhether any other node has

attempted to communicate with it. Once a node detects such an activity in thewake-up

signaling channel, it turns on its radio circuitry for the data channel. The increased

latency due to the sleep state is thus bounded by the sleep–listen period in the

wake-up channel. STEM is especially well suited for applications with most oper-

ations in the monitoring state. For instance, in a fire alarm system, the network only

senses the environment in an energy-efficient way and the system stays in the moni-

toring state most of the time. Once an event takes place, the system quickly changes

to the transfer state and reports the event to the data sink in a timely manner.

Ye et al. [39] achieve energy saving via adjusting the modulation scaling factor,

that is, the number of bits in a modulated symbol. In general, a smaller modulation

scaling factor reduces the power required in the transmission, but increases the trans-

mission time over a link, although the relationship between the power required and

the link delay thus increased is not necessarily monotonic. The authors consider a

multiple-source single-sink data-aggregation tree, and formulate the problem of

finding an optimal schedule of packet transmission to minimize the total trans-

mission energy incurred at all nodes in the aggregation tree, subject to the given

propagation latency constraints. A numerical optimal algorithm, a pseudopolyno-

mial, a dynamic programming-based approximation algorithm, and a distributed

on-line protocol are developed to solve the problem.

Scaglione and Servetto [36] discuss the trade-off between the bandwidth usage

and the decoding delay. They argue that data aggregation along a path leads to

better bandwidth usage, but if the aggregation is conducted along multiple parallel

paths, the delay incurred in aggregating and sending data to destinations is reduced,

but the bandwidth usage (or the corresponding energy consumption) is increased.

They then suggest that these two quantities should be linked together by the routing

strategy chosen.

15.5 DATA TRANSPORT ISSUES

Most of the data-gathering and -fusion mechanisms reside in or below the network

layer, except sensor databases, which reside in the application layer but exploit

516 DATA GATHERING AND FUSION IN SENSOR NETWORKS

geographic routing or sink tree for data dissemination and storage. Several research-

ers have stepped up in the protocol stack and considered the data transport issues.

Research along this line can be roughly categorized into two tracks: one treats

data transport in sensor networks as an optimization problem, with the objective

of maximizing the amount of information (utility) collected at sinks, subject to con-

straints on flow conservation, energy, latency, and/or channel bandwidth; and the

other designs a transport-layer protocol for congestion control and end-to-end

reliability in wireless sensor networks.

15.5.1 Utility-Based Data Transport

General approaches along this line of research are to (1) formulate the problem as a

nonconvex programming problem and solve it in a centralized manner (so as to pro-

vide performance bounds); or (2) formulate the problem (with some approxi-

mations) as a convex programming problem that can be solved in a decentralized

manner, and devise the corresponding distributed algorithm. Some of the data-

gathering and -fusion approaches discussed in Sections 15.3 and 15.4 can be cast

in this optimization framework by properly assigning the utility of each packet

(e.g., packets that carry updated digests are assigned higher utilities).

In this subsection we first introduce a nonconvex programming problem formu-

lation [51] that is general enough to encompass a wide variety of applications in

sensor networks, each with a different objective function and subject to different

constraints. Then we discuss various simplified convex or linear programming pro-

blems. Note that utility-based approaches have been exploited in conventional wired

networks by Kelly et al. [52] and Low and Lapsley [53]. Kelly et al. [52] propose a

pricing scheme to achieve weight-proportional fair-rate allocation for users in a

wireline network. The same problem considered in ref. [52] is solved by Low and

Lapsley [53] differently with the use of the dual optimization problem. A major

advantage of Low and Lapsley’s solution approach is that the dual optimization

problem can be solved in a distributed manner via a pricing mechanism.

In the context of wireless sensor networks, there are three types of objective func-

tions in the optimization problem: (1) maximizing the overall utility of the sensor

data collected at sinks throughout the system lifetime [51,54,55], (2) maximizing

the amount of data extracted from sensors [56,57], and (3) maximizing the system

lifetime (or equivalently minimizing the energy expenditure) [57,58]. We

formulate the first optimization problem, subject to the flow constraint, the energy

constraint, and the channel capacity constraint. As will become clearer, the

second and the third problems are special cases of the first one.

For notational convenience, we define the following notion:

Us �ð Þ the utility function that specifies the commodity generated from a sensor s

and sent to a sink (perhaps through multiple routes);

Sn and Si the set of sensors and sinks in the sensing field;

Nk the set of one-hop neighbors of node k;

15.5 DATA TRANSPORT ISSUES 517

q(s)ij the rate of the commodity s that passes from node i to node j;

xi the source rate originated from node i;

x(s)i the source rate of commodity s originated from node i; as the commodity s

only originates from node s, x(s)i ¼ xi if i ¼ s; x(s)i ¼ 0, otherwise;

Ei the amount of energy initially equipped with node i;

ei the energy consumed in the idle state per unit time;

es and er the additional energy consumed in transmitting and receiving one unit

of data rate per unit time;
�ds the average end-to-end latency that a packet experiences from a sensor s to a

sink;

T the system lifetime defined as the time interval until the first failure of a node

due to power depletion;

Ci the channel capacity of node i.

Given this notation, the first problem can be formulated as a nonlinear program-

ming problem as follows:

max
x,q, T

X
s[Sn

Us

X
i[Si

X
k:i[Nk

q(s)ki ,
�ds

 !" #
� T (15:3)

s:t: X
k:i[Nk

q(s)ki þ xi �
X
j:j[Ni

q(s)ij , 8 i [Sn, s [Sn (15:4)

er �
X
k:i[Nk

X
s[Sn

q(s)ki þ es �
X
:j[Ni

X
s[Sn

q(s)ij þ ei

()
� T � Ei, 8 i [Sn (15:5)

X
j:j[Ni

X
s[Sn

q(s)ij � Ci, 8 i [Sn (15:6)

The objective is to maximize the utility of all received packets throughout the

system lifetime over a vector of source rates of commodities x, a vector of link

flow q, and the system lifetime (T). As such, the objective function (Eq. (15.3)) is

expressed as the product of the system lifetime and the utility of all commodities

received at the sinks per unit time. The utility function for the commodity

s, Us(�), is a function of the total rate of the commodity s arriving at sinks and

the average end-to-end latency it sustains. The rate of commodity s arriving at

sinks is the sum of all the incoming flows of commodity s to any of the sinks.

Since flows traveling through different routes to sinks endure different latencies,

we express the utility function as a function of the average latency �ds to account

for the average loss of utility due to the delay. Moreover, with different qualities

of data, the different quantized utility functions (such as in ref. [59]) can be used

to evaluate the utility of a data packet.

518 DATA GATHERING AND FUSION IN SENSOR NETWORKS

The first constraint (Eq. (15.4)) is the flow constraint. The sum of both the

incoming flows of commodity s and the flow of commodity s originated from a

node is greater than or equal to the sum of the outgoing flows of commodity s,

with the inequality implying that intermediate relay nodes may drop the packets

they forward. The second constraint (Eq. (15.5)) is the energy constraint, while

the third constraint (Eq. (15.6)) is the capacity constraint, that is, the sum of the out-

going flows of all the commodities from a node i should be less than its channel

capacity Ci.

The problem just formulated aims to maximize the total utility received at the

sinks, by controlling the parameter vectors x and q (which in turn are related to

flow control and routing decisions). As a matter of fact, the preceding problem

formulation encompasses a wide variety of requirements and objectives for different

applications in sensor networks. In what follows, we discuss six possible design

dimensions and their corresponding amendments to the preceding problem

formulation:

1. Flow Conservation If intermediate relay nodes are not allowed to discard

the packets they forward, the inequality in Eq. (15.4) is changed to an

equality. With the flow conservation constraint, for each commodity s, the

sum of the incoming flows of commodity s at sinks is equal to the rate xs
originated at node s, and hence the objective function in Eq. (15.3) can be

rewritten as

max
x,q, T

X
s[Sn

Us(xs, ds)

" #
� T (15:7)

2. Flow Indivisibility Constraint If a commodity from a sensor node s cannot

be routed through multiple paths, an additional constraint has to be added

in Eq. (15.4) such that for each commodity s, only one incoming and one out-

going flow has positive rate and the others are zero. This makes it more diffi-

cult to solve the optimization problem because of its discrete constraint.

3. Join Design of Flow Control and Routing In the problem formulation given

in Eqs. (15.3)–(15.6), both the routing and flow-control problems are jointly

considered. An alternative approach is to solve the optimization problem in

two steps. The routes are determined first by a routing protocol and figured

into the optimization problem. The optimization problem then solves the

flow-control problem by optimizing the total utility over the vector of

source rates, x. Wang et al. [60] show that the optimization problem consider-

ing both routing and flow-control decisions together is a NP-hard problem.

They also show a trade-off exists between utility maximization and route

instability. The routing metric based on pure dynamic pricing information

achieves high utility but results in instable routing. Adding static components

such as hop count to the routing metric stabilizes routing decisions.

15.5 DATA TRANSPORT ISSUES 519

4. Quality-Driven Utility Function If the quality of the data are considered, the

utility function of each sensor is determined based on the quality of the data

sensed; otherwise, the utility functions are the same for all the sensors and

then the objective function is reduced to the special case of maximizing the

data extraction rate or system lifetime.

5. Effect of Latency on Utility Whether the latency affects the utility of the data

sensed is application dependent. In general, the utility of data decays with the

latency, but the decay function (convex, linear, or concave) varies with the

application characteristics. Alternatively, the effect of latency can be figured

in as a constraint into the optimization problem.

6. Energy Awareness If the energy constraint is not considered, the problem

formulation can be simplified as follows: the system lifetime T can be

removed from the objective function and the energy constraint (Eq. (15.5))

can be removed.

By either modifying the objective function or relaxing one of the constraint

functions, the preceding problem formulation can be reduced to several data-

gathering optimization problems considered in the literature. Byers and Nasser

[54] consider the optimization problem of maximizing the overall utility of sensor

networks during the system lifetime, subject to an energy constraint. The energy

constraint is expressed as a high-level cost on sensing, transmission, reception, and

aggregation. Chang and Tassiulas [61] devise a routing solution to maximize the

system lifetime of sensor networks under the given source rate of nodes and subjected

to flow conservation and energy constraints.1 Without considering the node capacity

constraint, the problem reduces to a linear programming problem. Sadagopan and

Krishnamachari [56] use an iterative approximation algorithm to solve a similar

linear programming problem except by changing the objective function from maxi-

mizing the system lifetime to maximizing the data extraction rate. Duarte-Melo et al.

[41] formulate a nonlinear programming problem that jointly considers the data-

compression and data-dissemination problem to maximize the number of snapshots

generated from the network, or equivalently maximize the system lifetime.

Chen et al. [55] first transform the optimization problem (Eqs. (15.3)–(15.6)) to a

convex programming problem, by linearizing the energy constraint (Eq. (15.5)).

This is done by properly setting the value of the system lifetime in advance and con-

trolling the data rate of a node (and hence its total energy consumption rate) so as to

sustain its battery lifetime longer than the specified lifetime. Given the transformed

problem, they then derive a distributed solution with the use of the dual optimization

problem and the pricing mechanism given in ref. [53]. They devise a simple node-

capacity estimation method to measure the node capacity (which changes with the

traffic load and nodal distribution, but is needed in the optimization problem)

on-line, and incorporate optimization results in selecting routes to further increase

the overall utility.

1Only the transmission power consumption is considered.

520 DATA GATHERING AND FUSION IN SENSOR NETWORKS

The goals of maximizing information extraction and minimizing energy con-

sumption always conflict with each other and could not be satisfied at the same

time. Ordonez and Krishnamachari [57] discuss two complementary nonlinear

optimization problems under the scenario of a single sink and multiple sensors:

one maximizes the total information gathered subject to an overall energy constraint,

and the other minimizes the overall energy consumption subject to the minimal

information-rate requirements. Other constraints considered include (1) fairness

constraints, in which the flow rate from one sensor is restricted to be less than or

equal to a portion of the overall rate that arrives at the sink, and (2) channel-capacity

constraints in which Shannon’s theoretical capacity limit is imposed under an

interference-free communication model. These two complementary problems are

shown to be equivalent in terms of the correspondence between optimal solutions

and constraints.

15.5.2 Data Transport Design for Congestion Control and Reliability

In addition to utility-based approaches, there have been several transport control

protocols that are designed for wireless sensor networks for congestion control

and end-to-end reliability.

PSFQ [62] focuses on reliable transport, which is necessary under certain

scenarios such as transport of debugging messages and critical commands. PSFQ

consists of two operations: (1) pump slowly, where a packet is generated periodically

from the source in a low rate so as not to congest the network; and (2) fetch quickly,

where once a node detects packet loss (perhaps by detection of a discontinuity in the

sequence number), it immediately requests a retransmission from its previous hop.

Different from PSFQ, the goal of CODA [63] is simply congestion detection and

avoidance. It consists of three mechanisms: (1) congestion detection via observing

the buffer status and channel loading, (2) open-loop, hop-by-hop backpressure, and

(3) closed-loop, multisource regulation.

ESRT [64] intends to provide both reliability and congestion control, although the

reliability measure used in ESRT is the ratio of the number of received packets to the

number of packets required for reliable event detection. The reliability measure

increases when a source increases the data rate, subject to the constraint that the

data rate should not exceed the critical threshold of congesting the network. On

the other hand, once a forwarder detects congestion, it sets the congestion notifica-

tion bit in the packet. When the sink receives a packet with the congestion bit set, it

broadcasts a congestion notification packet (which is assumed to be able to reach all

the nodes in one hop), asking the sources to decrease their data rates.

The objective of the SPEED protocol [65] is to disseminate the data from the

source to the destination at a steady speed, that is, the end-to-end propagation

delay is proportional to the distance from the source to the destination. Similar

to CODA, Speed employs both open-loop and closed-loop control mechanisms,

including back-pressure rerouting and neighborhood feedback loop, to achieve the

objective.

15.5 DATA TRANSPORT ISSUES 521

Woo and Culler [66] propose a transmission control mechanism at both the

medium-access control (MAC) and transport layers. Instead of providing reliability

or congestion control services, they focus on the fairness issue for a wireless sensor

network with the sink tree as the underlying routing paths.

REFERENCES

1. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor

networks for habitat monitoring. In Proceedings of the 1st ACM International Workshop

on Wireless Sensor Networks and Applications (WSNA ’02), Atlanta, Georgia, September

2002.

2. F. Zhao, J. Shin, and J. Reich, Information-driven dynamic sensor collaboration for track-

ing applications, IEEE Signal Processing Magazine, 19:68–77, March 2002.

3. S. S. Intille. Designing a home of the future. IEEE Pervasive Computing, 1(2):80–81,

April–June 2002.

4. I. A. Essa. Ubiquitous sensing for smart and aware environments. IEEE Personal

Communications, 7(5):47–49, October 2000.

5. P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. IEEE Personal

Communications, 7:10–15, October 2000.

6. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable

coordination in sensor networks. In Proceedings of the 5th Annual International Confer-

ence on Mobile Computing and Networks (MobiCom ’99), August 1999.

7. D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with wireless

sensor networks. In Proceedings of the International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Salt Lake City, Utah, May 2001.

8. B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-centric routing in wireless

sensor networks. In Proceedings of INFOCOM 2002, New York, June 2002.

9. S. Madden, M. J. Franklin, and J. M. Hellerstein, and W. Hong. The design of an

acquisitional query processor for sensor networks. In Proceedings of the 2003 ACM

SIGMOD International Conference on Management of Data, pages 491–502,

San Diego, California, June 2003.

10. X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries in sensor

networks. In Proceedings of the 1st ACM Conference on Embedded Networked Sensor

Systems (Sensys ’03), Los Angeles, California, November 2003.

11. J. Gehrke and S. Madden. Query processing in sensor networks. Pervasive Computing,

3(1):46–55, January–March 2004.

12. TinyDB, from http://telegraph.cs.berkeley.edu/tinydb/index.htm.

13. Y. Yao and J. Gehrke. Query processing for sensor networks. In Proceedings of the 1st

Biennial Conference on Innovative Data Systems Research (CIDR ’03), pages

233–244, Asilomar, California, January 2003.

14. TinyOS, from http://www.tinyos.net.

15. S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu. Data-

centric storage in sensornets with GHT, a geographic hash table. Mobile Networks and

Applications, 8(4):427–442, August 2003.

522 DATA GATHERING AND FUSION IN SENSOR NETWORKS

16. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in

ad hoc wireless networks. In Proceedings of the 3rd International Workshop on Discrete

Algorithms and Methods for Mobile Computing and Communications, pages 48–55,

Seattle, Washington, August 1999.

17. B. Karp and H. T. Kung. Greedy perimeter stateless routing for wireless networks.

In Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Com-

puting and Networking (MobiCom ’00), Boston, Massachusetts, August 2000.

18. J. Heidemann, F. Silva, and D. Estrin. Matching data dissemination algorithms to appli-

cation requirements. In Proceedings of the 1st International Conference on Embedded

Networked Sensor Systems (Sensys ’03), Los Angeles, California, November 2003.

19. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust

communication paradigm for sensor networks. In Proceedings of the 6th Annual IEEE/
ACM International Conference on Mobile Computing and Networking (MobiCom ’00),

pages 56–57, Boston, Massachusetts, August 2000.

20. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication

protocols for wireless microsensor networks. In Proceedings of the 33rd Hawaii

International Conference on Systems Science (HICSS), Volume 8, page 8020, Maui,

Hawaii, January 2000.

21. J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-based protocols for dissemi-

nating information in wireless sensor networks. Wireless Networks, 8(2/3):169–185,
March–May 2002.

22. I. Stojmenovic and X. Lin. Power aware localized routing in wireless networks. IEEE

Transactions on Parallel and Distributed Systems, 12(11):1122–1133, November 2001.

23. I. Stojmenovic, M. Russell, and B. Vukojevic. Depth first search and location based

localized routing and QoS routing in wireless networks. In Proceedings of the IEEE

International Conference on Parallel Processing, pages 173–180, Toronto, August 2000.

24. Y. Yu, R. Govindan, and D. Estrin. Geographic and Energy Aware Routing: A Recursive

Data Dissemination Protocol for Wireless Sensor Networks. Technical Report

TR-01-0023, Computer Science, University of California, Los Angeles, California,

August 2001.

25. W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information

dissemination in wireless sensor networks. In Proceedings of the 5th ACM/IEEE Inter-

national Conference on Mobile Computing and Networking (MobiCom ’99), Seattle,

Washington, August 1999.

26. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny Aggrega-

tion service for ad-hoc sensor networks. In Proceedings of the 5th Symposium on

Operating System Design and Implementation (OSDI 2002), Boston, Massachusetts,

December 2002.

27. J. Mirkovic, G. P. Venkataramani, S. Lu, and L. Zhang. A self-organizing approach to

data forwarding in large-scale sensor networks. In Proceedings of the IEEE International

Conference on Communications (ICC 2001), Volume 5, pages 1357–1361, Helsinki,

Finland, June 2001.

28. H. S. Kim, T. F. Abdelzaher, and W. H. Kwon. Minimum-energy asynchronous dissemi-

nation to mobile sinks in wireless sensor networks. In Proceedings of the 1st International

Conference on Embedded Networked Sensor Systems (Sensys ’03), Los Angeles,

California, November 2003.

REFERENCES 523

29. F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model for

large-scale wireless sensor networks. In Proceedings of the 8th Annual International

Conference on Mobile Computing and Networking (MobiCom 2002), pages 148–159,

Atlanta, Georgia, September 2002.

30. S. Bandyopadhyay and E. J. Coyle. An energy efficient hierarchical clustering algorithm

for wireless sensor networks. In Proceedings of INFOCOM 2003, San Francisco, April

2003.

31. C.-C. Shen, C. Srisathapornphat, and C. Jaikeo. Sensor information networking

architecture and applications, IEEE Personal Communications, 8(4):52–59, August 2001.

32. W.-P. Chen, J. C. Hou, and L. Sha. Dynamic clustering for acoustic target tracking in

wireless sensor networks. IEEE Transactions on Mobile Computing, 3(3):258–271,

July–September 2004.

33. S. Lindsey, C. Raghavendra, and K. M. Sivalingam. Data gathering algorithms in sensor

networks using energy metrics. IEEE Transactions on Parallel and Distributed Systems,

13(9):924–935, September 2002.

34. M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Proceedings of

the 3rd International Symposium on Information Processing in Sensor Networks (IPSN),

Berkeley, California, April 2004.

35. J. Chou, D. Petrovic, and K. Ramchandran. A distributed and adaptive signal processing

approach to reducing energy consumption in sensor networks. In Proceedings of

INFOCOM 2003, San Francisco, April 2003.

36. A. Scaglione and S. D. Servetto. On the interdependence of routing and data compression

in multi-hop sensor networks. In Proceedings of the 8th Annual ACM/IEEE International

Conference on Mobile Computing and Networking (MobiCom ’02), Atlanta, Georgia,

2002.

37. A. Boulis, S. Ganeriwal, and M. B. Srivastava. Aggregation in sensor networks: An

energy-accuracy trade-off. In Proceedings of the 1st IEEE International Workshop on

Sensor Network Protocols and Applications (SNPA 2003), Anchorage, Alaska, May 2003.

38. C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Optimizing sensor networks

in the energy-latency-density design space. IEEE Transactions on Mobile Computing,

1(1):70–80, January 2002.

39. Y. Yu, B. Krishnamachari, and V. K. Prasanna. Energy-latency tradeoffs for data

gathering in wireless sensor networks. In Proceedings of INFOCOM 2004,

Hong Kong, March 2004.

40. D. Slepian and J. K. Wolf. Noiseless encoding of correlated information sources. IEEE

Transactions on Information Theory, IT-19:471–480, July 1973.

41. E. Duarte-Melo, M. Liu, and A. Misra. A computational approach to the joint design of

distributed data compression and data dissemination in a data-gathering wireless sensor

network. In Proceedings of the 34th Allerton Conference on Communications Control,

Monticello, Illinois, October 2003.

42. P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on

Information Theory, 46(2):388–404, 2000.

43. D. Petrovic, R. C. Shah, K. Ramchandran, and J. Rabaey. Data funneling: Routing with

aggregation and compression for wireless sensor networks. In Proceedings of the 1st

IEEE International Workshop on Sensor Network Protocols and Applications (SNPA),

pages 156–162, Anchorage, Alaska, May 2003.

524 DATA GATHERING AND FUSION IN SENSOR NETWORKS

44. M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying and

routing for ad hoc heterogeneous sensor networks. International Journal of High

Performance Computing Applications, 16(3), Fall 2002.

45. R. C. Shah and J. M. Rabaey. Energy aware routing for low energy ad hoc sensor

networks. In Proceedings of the IEEE Wireless Communications and Networking

Conference (WCNC 2002), Orlando, Florida, March 2002.

46. R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and U. Ramachandran.

DFuse: A framework for distributed data fusion. In Proceedings of the 1st ACM

Conference on Embedded Networked Sensor Systems (Sensys ’03), Los Angeles,

California, November 2003.

47. S.-J. Baek, G. de Veciana, and X. Su. Minimizing energy consumption in large-scale

sensor networks through distributed data compression and hierarchical aggregation.

IEEE Journal of Selected Areas in Communications, 22(6):1130–1140, August 2004.

48. A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model driven data

acquisition in sensor networks. In Proceedings of the 30th International Conference on

Very Large Data Bases (VLDB 2004), pages 588–599, Toronto, Canada, August–

September 2004.

49. F. Ye, G. Zhong, S. Lu, and L. Zhang. A robust data delivery protocol for large scale

sensor networks. In Proceedings of the 2nd International Workshop on Information

Processing in Sensor Networks (IPSN ’03), Palo Alto, California, April 2003.

49a. F. Ye, A. Chen, S. Lu, and L. Zhang. A scalable solution to minimum cost forwarding in

large scale sensor networks. In Proceedings of the 10th International Conference on

Computer Communications and Networks (ICCCN 2001), Scottsdale, Arizona, October

2001.

50. S. Tilak, A. Murphy, and W. Heinzelman. Non-uniform information dissemination for

sensor networks. In Proceedings of the 11th IEEE International Conference on Network

Protocols (ICNP ’03), Atlanta, Georgia, November 2003.

51. W.-P. Chen and L. Sha. An energy-aware data-centric generic utility based approach

in wireless sensor networks. In Proceedings of the 3rd International Symposium on

Information Processing in Sensor Networks (IPSN), pages 215–224, Berkeley,

California, April 2004.

52. F. Kelly, A. Maulloo, and D. Tan. Rate control for communication networks: Shadow

prices, proportional fairness and stability. Journal of the Operational Research Society,

49(3):237–252, March 1998.

53. S. H. Low and D. E. Lapsley. Optimization flow control, I: Basic algorithm and conver-

gence. IEEE/ACM Transactions on Networking, 7(6):861–875, December 1999.

54. J. Byers and G. Nasser. Utility-based decision-making in wireless sensor networks

(extended abstract). In Proceedings of the 1st Annual Workshop on Mobile Ad Hoc

Networking and Computing (IEEE MobiHoc 2000), pages 143–144, Boston,

Massachusetts, August 2000.

55. W.-P. Chen, J. C. Hou, L. Sha, and M. Caccamo. A Distributed, Energy-aware, Utility-

based Approach for Data Transport in Wireless Sensor Networks. Technical Report

UIUCDCS-R-2004-2455, Department of Computer Science, University of Illinois at

Urbana-Champaign, July 2004.

56. N. Sadagopan and B. Krishnamachari. Maximizing data extraction in energy-limited

sensor networks. In Proceedings of INFOCOM 2004, Hong Kong, March 2004.

REFERENCES 525

57. F. Ordonez and B. Krishnamachari. Optimal information extraction in energy-limited

wireless sensor networks. IEEE Journal of Selected Areas in Communications, 22(6),

August 2004.

58. M. Bhardwaj and A. P. Chandrakasan. Bounding the lifetime of sensor networks via

optimal role assignments. In Proceedings of INFOCOM 2002, New York, June 2002.

59. R.-F. Liao and A. T. Campbell. A utility-based approach to quantitative adaptation

in wireless packet networks. ACM Journal on Wireless Networks (WINET), 7(5):541–

557, September 2001.

60. J. Wang, L. Li, S. H. Low, and J. C. Doyle. Can TCP and shortest path routing maximize

utility? In Proceedings of INFOCOM 2003, San Francisco, April 2003.

61. J.-H. Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc networks.

In Proceedings of INFOCOM 2000, Tel Aviv, Israel, March 2000.

62. C. Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ: A reliable transport protocol

for wireless sensor networks. In Proceedings of the 1st ACM International Workshop on

Wireless Sensor Networks and Applications (WSNA’02), pages 1–11, Atlanta, Georgia,

September 2002.

63. C. Y.Wan, S. B. Eisenman, and A. T. Campbell. CODA: Congestion detection and avoid-

ance in sensor networks. In Proceedings of the 1st International Conference on

Embedded Networked Sensor Systems (Sensys ’03), Los Angeles, California, November

2003.

64. Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz. ESRT: Event-to-sink reliable

transport in wireless sensor networks. In Proceedings of the 4th ACM International Sym-

posium on Mobi Ad Hoc Networking and Computing (MobiHoc ’03), pages 177–188,

Annapolis, Maryland, June 2003.

65. T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher. SPEED: A stateless protocol for

real-time communication in sensor networks. In Proceedings of the 23rd International

Conference on Distributed Computing Systems (ICDCS ’03), Providence, Rhode

Island, May 2003.

66. A. Woo and D. Culler. A transmission control scheme for media access in sensor net-

works, In Proceedings of the 7th Annual International Conference on Mobile Computing

and Networking (MobiCom ’01), pages 221–235, Rome, Italy, July 2001.

526 DATA GATHERING AND FUSION IN SENSOR NETWORKS

&INDEX

active badge, 487–488
activity scheduling, 346–347, 355
actor networks, 25–29
aggregation function, 509–510

duplicate sensitive, 509
exemplary or summary, 509
monotonic, 509
partial state, 510

ALOHA, 254
anchor/beacon nodes, 278–279
angle of arrival, 283
anonymity issues, 449–451

sender and path anonymity, 451
applications, 5–14, 419

environmental applications, 6–9
military applications, 5–6

approximation ratio, 348
architecture, 25–27
area coverage, 360–374, 426

centralized, 365–366
hexagonal, 364–365
localized, 366–368
mobile sensors, 371–373
multiple, 368–370
neighbor cooperation, 365
threshold based, 361–363
variations, 370–371

attacks on location discovery,
166–169

backbone construction, 343–355
GAF, 351
grid partitioning, 351–352
MPR (multi-point relay), 351–352

bat system, 488
Bayes classifier, 478
beaconless routing, 403

BLR, 404
contention-based forwarding, 403
implicit geographic forwarding, 403

Bluetooth scatternet formation, 326–327
broadcast authentication, 141–172
DOS attacks, 149–153
mTESLA, 142–153

broadcasting, 343–360, 434–435
blind flooding, 346
minimum energy broadcasting,

359–360
MPR based, 358
neighbor elimination, 356–358
taxonomy, 355–356
two-tier data dissemination, 444

calibration, 199–237
case studies, 232–234
classes, 231–232
collaborative in-place, 233–234
parameter estimation, 232–233
system model, 231

carrier sense multiple access, see CSMA
classes of synchronization, 208–211
continuous lifetime, 208–209
clock synchronization, 210
offset synchronization, 209–210
on-demand lifetime, 208–209
internal versus external, 208
rate synchronization, 209
scope, 209
time instants, 211
time intervals, 211
timescale transformation, 210

cluster routing, 394–395
clustering, 429–431, 349–351
code division multiple access, 249–250
collaborative signal processing, 474–475
distributive processing, 475
information fusion, 475
on-demand processing, 475

communication models, 313–314
cone-based topology, 326

527

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenović
Copyright # 2005 John Wiley & Sons, Inc.

configuration, 204
congestion control, 521–522
connectivity, 332–338
contention access protocols, 253
cooperative reachback, 42
coordinate system registration, 300–304
coordinate system stitching, 294–296
covering and connectivity properties,

363–364
cricket, 488
critical node degree, 333–334
critical nodes and links, 336–338
critical total power, 334
critical transmission range, 332–333
cryptographic services, 141–172
CSMA, 255–261

data aggregation, 18–22, 123–129,
422–423, 432–433, 442–443,
483–484

lossless aggregation, 128–129
data-centric protocols, 417–456
data-centric storage, 433
data dissemination, see broadcasting
data fusion, 493–526
basic operations, 508
parameter estimation, 508, 512–513
redundancy suppression, 508–513
system architecture, 513–515
tradeoffs, 515–516

data gathering, 428, 437–438, 493–526
basic functions, 509
classification, 500–507

grid, 505
tree, 505–507

cluster, 505–506
LEACH, 428, 506

data storage, 22–23
data transport, 516–517
energy awareness, 520
flow conservation, 519
flow control and routing, 519–520
flow indivisibility constraint, 519
latency, 520
quality-driven utility function, 520
utility based, 517–521

database systems, 29–30, 496–499
Cougar, 498
TinyDB, 498
TinySQL, 498

Delaunay triangulation, 324–325
demand assignment protocols, 250
dense networks, 42–43

deployment strategies, 423
depth-first search, 387–389
design challenges, 2–5, 15
design guidelines, 429–431
design metrics, 15
dFSK receiver simulation, 66–70
diffusion, 288, 502–504

APIT, 291–293
bounding box, 289
directed, 21, 30, 428, 503
gradient, 290
one phase pull, 502
push, 503
relaxation, 293–294
SPIN, 503–504
two phase pull, 502

distributed frequency shift key, 64–66
modulation scheme, 65–66
wavelet generation, 64–65

distributed prediction tracking, 484–486
assumptions, 484–485
DPT algorithm, 485–486
failure recovery, 486
selection algorithm, 486

distributed signal processing, 41–73
dominating sets, 347–348, 391

enhanced dominating sets, 354–355

EAR, 261–264
eavesdrop-and-register protocols, 261–264
embedded operating systems, 173–197
energy reservoirs, 77–87

macroscale batteries, 78–79
microscale batteries, 79–80
microfuel cells, 80–83
micro-heat engines, 83–86
ultracapacitors, 80–81

energy resources, 202–203
energy scavenging, 75–105

face routing, 389–394
fixed assignment protocols, 246
frequency division multiple access,

246–247
fusion, see data fusion

Gabriel graph, 24, 322–323, 390
generating random unit graphs, 315
geocasting, 435–436, 441–442
geographic routing, 23–24, 381–415

greedy routing, 23, 383–386
guaranteed delivery, 387–394
memorization, 387–389

528 INDEX

MFR, 383–384
progress, distance, direction, 383–384

greedy-face-greedy (GFG), 23–24,
389–394

GOAFRþ, 392–394
GPSR, see greedy-face-greedy

hardware, 10–12, 31
Mica mote, 10–12

IEEE 802.15.4, 269–271
infrastructure, 203–204

key management, 141–172
key predistribution, 153–166

closest pairwise key scheme, 164–165
grid based, 160–163
location aware deployment model,

163–164
random, 153–166
random pairwise keys, 155–160

localization, 17–18, 113–116, 277–310,
460–473

angle of arrival, 18
APS, 17–18, 465–466
cluster structure, 117
coarse-grain localization, 113–116
computational complexity, 471–473
distance to anchors, 466–467
DV-hop, 467
dynamic coordinate system, 116–117
environmental obstacles, 284–285
GPS-less outdoor, 469–470
hardware, 278–283
lateration, 460–461
multilateration 17, 461–463
node density, 284
nonconvex topologies, 284
pattern matching, 463
resource constraints, 283–284
time-based, 468–469
trilateration 461–463

localized algorithms, 345
location discovery, see localization

MAC layer, 29, 239–276
channel occupancy, 244
CSMA, 33
deadlock, 242
fairness, 241, 243
function, 240–245
latency, 241, 243

livelock, 241
power consumption, 242–243
quasi-stationary, 244
scalability, 244
self-maintenance, 244
self-organization, 244
TDMA, 33
throughput, 243
unlicensed frequency bands, 244

MACA, 259–261
MANTIS, 174, 188–192
com, dev, net layers, 189–191
kernel, 188
memory management, 188–189
power management, 191

maximum likelihood, 479
MDS-MAP, 287
message complexity, 345
microsensor node hardware, 175–177
EEPROM, 175–176
flash, 175
peripheral interfaces, 176
power systems, 176–177
radios, 176
SRAM, 175

minimal spanning tree, 317–318, 332, 390,
434–435

LMST, 318–322, 332, 337,
434–435, 441–442, 443

minimum power topology, 325–326
mobile sensors, 445
mobile sink, 444–445
modeling, 109–110, 344
genetic material, 110

multicasting, 395–396, 437
multidimensional scaling, 304–308
multilateration, 298–300
multiple access control, see MAC

neighbor discovery, 315–316
network dynamics, 203
network management, 186
network reliability, 31
packet reliability, 32–33
PicoRadio network, 31

operating systems, 34–35, 173–197
applications, 181–182
bridging to IP networks, 185–186
comparison summary, 192–194
CPU bandwidth, 179
data memory, 178–179
design principles, 177–182

INDEX 529

operating systems (Continued)
dynamic network reprogramming,

182–183
features, 182–186
file system, 184–185
maintenance, 182
managing hardware, 177
networking, 181
power management, 179–182
program memory, 179
resource constraints, 178
sensing, 181
task coordination, 177–178

PAGER, 397
PAMAS, 264–266
path exposure, 457–491
physical layer, 404–408
polling, 250–251
power and cost aware routing

397–402
enclosure graph, 398
guaranteed delivery, 402

power consumption, 76–77
power distribution, 87–88
acoustic emitters, 88
electromagnetic RF power

distribution, 87–88
light, 88
wires, 88

power scavenging, 88–100
human power, 91
photovoltaics (solar cells), 88–90
pressure variations, 92–93
temperature gradients, 90–91
time-varying structural strain, 93–95
vibrations, 96–100
wind and airflow, 91–92

protocol stack, 27–29, 31–32

queries, 496–497
event-triggered, 496
historical, 496
long-running, 496
multidimensional range, 496
snapshot, 496

query processing, 29–30, 422
Cougar, 29
TinyDB, 30

RADAR, 488–489
radio hop count, 280–281

radioactive power sources, 86–87
rate based data propagation, 448–449
reachback communication, 42
realistic physical layer, 41–73, 313–314,

358–359, 370, 404–408
fuzzy unit graph, 314

real-time communication, 386–387
received signal strength indication,

279–280
reference broadcast synchronization,

220–221
relative neighborhood graph,

320–322, 328
reporting to sink, 438–442

PEGASIS, 441
reservation, 251–252
routing, 123–136, 381–415

energy efficient, 129–136, 432
sector routing, 433

RSSI, see received signal strength
indication

security, 141–172
semi-definite programming, 286–287
sensor-MAC, 266–269
services, 14–24
shortcut-based routing, 391
SMACS, 261–264
software clocks, 205–206
support vector machine, 479–480
synchronization, 112–113

frequency hopping, 112–113
task based, 123

synchronization techniques, 211–229
asynchronous diffusion, 224
beacon based distributed algorithms,

288–292
benchmark challenges, 229
case studies, 218–224
centralized algorithms, 286–287
clock drift, 229
clustering, 217
combining multiple time estimates,

214–216
combining multiple time intervals, 216
combining synchronization error, 225
evaluation strategies, 224–229
flooding, 223
in rounds, 214
interval-based, 223
lightweight, 221–222
linear regression, 215
measurements, 226–228

530 INDEX

message delays, 228
one sample, 211
out-of-band synchronization, 217
performance evaluation, 226
phase-locked loops, 215–216
precision, 225
reference broadcasting, 213–214
round trip, 212–213
simulation, 228–229
steady state and convergence time,

225–226
synchronization of multiple nodes,

216–218
system organization, 285
systems and topologies, 227–228
time diffusion, 224
timing-sync protocol, 222
tiny-sync and mini-sync, 221
tree construction, 217–218
TSync, 222
unidirectional synchronization,

211–212
unstructured, 218

target classification, 478
k-nearest neighbor, 478–479
minimum error, 478

target location, 457–491
target tracking, 473–489

cooperative binary detector, 480–484
deployability, 474
multiple, 477
piecewise linear approximation, 480
power constraints, 474
scalable coordination, 474
single, 476–477
space-time cells, 475–480
tracking accuracy, 474

task based data processing, 122–123
TDoA, see time difference of arrival
time difference of arrival, 282–283
time division multiple access,

248–249
time synchronization, 14, 43, 199–237,

423–425
bounded-drift model, 205
bounded-drift-variation model, 205
clock models, 45–47, 204–205
communication models, 206–207

communication pulses, 50
constant-rate model, 205
delay uncertainty, 206–207
implicit versus explicit, 206
multihop synchronization, 58–59
observation model, 47–49
one-hop synchronization, 57–58
optimality conditions, 56–57
physical layer, 54–60
propagation model, 49–50
randomly shifted pulses, 52–53
signal-reception model, 50–51
simulation, 60–64
symmetrical versus asymmetrical

links, 206
synchronization errors, 207
synchronization protocol, 54–56
synchronization pulse trains, 51
system model, 204–207
unicast versus multicast, 206

time-stamp synchronization,
218–220

TinyOS, 174, 186–188
components, 187
execution model, 187
nesC language, 187–188

topology construction, 23, 311–341
fault tolerance, 334–335
heterogeneous networks, 327–331
k-vertex topologies, 335–336

topology control, 425–426
tracking objects, 445–491
mobicast, 447
network based, 463–464
tree reconfiguration, 446

training protocol, 111, 117–122,
424

corona training, 118–122,
424–425

transport layer, 421–422
trunking, 252–253

virtual infrastructure, 107–140
Voronoi diagrams, 385–386

Yao graph, 325

ZigBee, 269–271

INDEX 531

WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING

Series Editor: Albert Y. Zomaya

Parallel and Distributed Simulation Systems/Richard Fujimoto

Mobile Processing in Distributed and Open Environments/Peter Sapaty

Introduction to Parallel Algorithms/C. Xavier and S. S. Iyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from

Biological Sciences/Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu (Editors)

Parallel and Distributed Computing: A Survey of Models, Paradigms, and

Approaches/Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective/
Zahir Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel
Systems/Martin Fleury and Andrew Downton

Handbook of Wireless Networks and Mobile Computing/
Ivan Stojmenović (Editor)

Internet-Based Workflow Management: Toward a Semantic Web/
Dan C. Marinescu

Parallel Computing on Heterogeneous Networks/Alexey L. Lastovetsky

Performance Evaluation and Characterization of Parallel and Distributed

Computing Tools/Salim Hariri and Manish Parashar

Distributed Computing: Fundamentals, Simulations and Advanced Topics,

Second Edition/Hagit Attiya and Jennifer Welch

Smart Environments: Technology, Protocols, and Applications/Diane Cook

and Sajal Das

Fundamentals of Computer Organization and Architecture/
Mostafa Abd-El-Barr and Hesham El-Rewini

Advanced Computer Architecture and Parallel Processing/
Hesham El-Rewini and Mostafa Abd-El-Barr

UPC: Distributed Shared Memory Programming/Tarek El-Ghazawi,

William Carlson, Thomas Sterling, and Katherine Yelick

Handbook of Sensor Networks: Algorithms and Architectures/
Ivan Stojmenović (Editor)

	cover.pdf
	page_c1.pdf
	page_c2.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf
	page_z0173.pdf
	page_z0174.pdf
	page_z0175.pdf
	page_z0176.pdf
	page_z0177.pdf
	page_z0178.pdf
	page_z0179.pdf
	page_z0180.pdf
	page_z0181.pdf
	page_z0182.pdf
	page_z0183.pdf
	page_z0184.pdf
	page_z0185.pdf
	page_z0186.pdf
	page_z0187.pdf
	page_z0188.pdf
	page_z0189.pdf
	page_z0190.pdf
	page_z0191.pdf
	page_z0192.pdf
	page_z0193.pdf
	page_z0194.pdf
	page_z0195.pdf
	page_z0196.pdf
	page_z0197.pdf
	page_z0198.pdf
	page_z0199.pdf
	page_z0200.pdf
	page_z0201.pdf
	page_z0202.pdf
	page_z0203.pdf
	page_z0204.pdf
	page_z0205.pdf
	page_z0206.pdf
	page_z0207.pdf
	page_z0208.pdf
	page_z0209.pdf
	page_z0210.pdf
	page_z0211.pdf
	page_z0212.pdf
	page_z0213.pdf
	page_z0214.pdf
	page_z0215.pdf
	page_z0216.pdf
	page_z0217.pdf
	page_z0218.pdf
	page_z0219.pdf
	page_z0220.pdf
	page_z0221.pdf
	page_z0222.pdf
	page_z0223.pdf
	page_z0224.pdf
	page_z0225.pdf
	page_z0226.pdf
	page_z0227.pdf
	page_z0228.pdf
	page_z0229.pdf
	page_z0230.pdf
	page_z0231.pdf
	page_z0232.pdf
	page_z0233.pdf
	page_z0234.pdf
	page_z0235.pdf
	page_z0236.pdf
	page_z0237.pdf
	page_z0238.pdf
	page_z0239.pdf
	page_z0240.pdf
	page_z0241.pdf
	page_z0242.pdf
	page_z0243.pdf
	page_z0244.pdf
	page_z0245.pdf
	page_z0246.pdf
	page_z0247.pdf
	page_z0248.pdf
	page_z0249.pdf
	page_z0250.pdf
	page_z0251.pdf
	page_z0252.pdf
	page_z0253.pdf
	page_z0254.pdf
	page_z0255.pdf
	page_z0256.pdf
	page_z0257.pdf
	page_z0258.pdf
	page_z0259.pdf
	page_z0260.pdf
	page_z0261.pdf
	page_z0262.pdf
	page_z0263.pdf
	page_z0264.pdf
	page_z0265.pdf
	page_z0266.pdf
	page_z0267.pdf
	page_z0268.pdf
	page_z0269.pdf
	page_z0270.pdf
	page_z0271.pdf
	page_z0272.pdf
	page_z0273.pdf
	page_z0274.pdf
	page_z0275.pdf
	page_z0276.pdf
	page_z0277.pdf
	page_z0278.pdf
	page_z0279.pdf
	page_z0280.pdf
	page_z0281.pdf
	page_z0282.pdf
	page_z0283.pdf
	page_z0284.pdf
	page_z0285.pdf
	page_z0286.pdf
	page_z0287.pdf
	page_z0288.pdf
	page_z0289.pdf
	page_z0290.pdf
	page_z0291.pdf
	page_z0292.pdf
	page_z0293.pdf
	page_z0294.pdf
	page_z0295.pdf
	page_z0296.pdf
	page_z0297.pdf
	page_z0298.pdf
	page_z0299.pdf
	page_z0300.pdf
	page_z0301.pdf
	page_z0302.pdf
	page_z0303.pdf
	page_z0304.pdf
	page_z0305.pdf
	page_z0306.pdf
	page_z0307.pdf
	page_z0308.pdf
	page_z0309.pdf
	page_z0310.pdf
	page_z0311.pdf
	page_z0312.pdf
	page_z0313.pdf
	page_z0314.pdf
	page_z0315.pdf
	page_z0316.pdf
	page_z0317.pdf
	page_z0318.pdf
	page_z0319.pdf
	page_z0320.pdf
	page_z0321.pdf
	page_z0322.pdf
	page_z0323.pdf
	page_z0324.pdf
	page_z0325.pdf
	page_z0326.pdf
	page_z0327.pdf
	page_z0328.pdf
	page_z0329.pdf
	page_z0330.pdf
	page_z0331.pdf
	page_z0332.pdf
	page_z0333.pdf
	page_z0334.pdf
	page_z0335.pdf
	page_z0336.pdf
	page_z0337.pdf
	page_z0338.pdf
	page_z0339.pdf
	page_z0340.pdf
	page_z0341.pdf
	page_z0342.pdf
	page_z0343.pdf
	page_z0344.pdf
	page_z0345.pdf
	page_z0346.pdf
	page_z0347.pdf
	page_z0348.pdf
	page_z0349.pdf
	page_z0350.pdf
	page_z0351.pdf
	page_z0352.pdf
	page_z0353.pdf
	page_z0354.pdf
	page_z0355.pdf
	page_z0356.pdf
	page_z0357.pdf
	page_z0358.pdf
	page_z0359.pdf
	page_z0360.pdf
	page_z0361.pdf
	page_z0362.pdf
	page_z0363.pdf
	page_z0364.pdf
	page_z0365.pdf
	page_z0366.pdf
	page_z0367.pdf
	page_z0368.pdf
	page_z0369.pdf
	page_z0370.pdf
	page_z0371.pdf
	page_z0372.pdf
	page_z0373.pdf
	page_z0374.pdf
	page_z0375.pdf
	page_z0376.pdf
	page_z0377.pdf
	page_z0378.pdf
	page_z0379.pdf
	page_z0380.pdf
	page_z0381.pdf
	page_z0382.pdf
	page_z0383.pdf
	page_z0384.pdf
	page_z0385.pdf
	page_z0386.pdf
	page_z0387.pdf
	page_z0388.pdf
	page_z0389.pdf
	page_z0390.pdf
	page_z0391.pdf
	page_z0392.pdf
	page_z0393.pdf
	page_z0394.pdf
	page_z0395.pdf
	page_z0396.pdf
	page_z0397.pdf
	page_z0398.pdf
	page_z0399.pdf
	page_z0400.pdf
	page_z0401.pdf
	page_z0402.pdf
	page_z0403.pdf
	page_z0404.pdf
	page_z0405.pdf
	page_z0406.pdf
	page_z0407.pdf
	page_z0408.pdf
	page_z0409.pdf
	page_z0410.pdf
	page_z0411.pdf
	page_z0412.pdf
	page_z0413.pdf
	page_z0414.pdf
	page_z0415.pdf
	page_z0416.pdf
	page_z0417.pdf
	page_z0418.pdf
	page_z0419.pdf
	page_z0420.pdf
	page_z0421.pdf
	page_z0422.pdf
	page_z0423.pdf
	page_z0424.pdf
	page_z0425.pdf
	page_z0426.pdf
	page_z0427.pdf
	page_z0428.pdf
	page_z0429.pdf
	page_z0430.pdf
	page_z0431.pdf
	page_z0432.pdf
	page_z0433.pdf
	page_z0434.pdf
	page_z0435.pdf
	page_z0436.pdf
	page_z0437.pdf
	page_z0438.pdf
	page_z0439.pdf
	page_z0440.pdf
	page_z0441.pdf
	page_z0442.pdf
	page_z0443.pdf
	page_z0444.pdf
	page_z0445.pdf
	page_z0446.pdf
	page_z0447.pdf
	page_z0448.pdf
	page_z0449.pdf
	page_z0450.pdf
	page_z0451.pdf
	page_z0452.pdf
	page_z0453.pdf
	page_z0454.pdf
	page_z0455.pdf
	page_z0456.pdf
	page_z0457.pdf
	page_z0458.pdf
	page_z0459.pdf
	page_z0460.pdf
	page_z0461.pdf
	page_z0462.pdf
	page_z0463.pdf
	page_z0464.pdf
	page_z0465.pdf
	page_z0466.pdf
	page_z0467.pdf
	page_z0468.pdf
	page_z0469.pdf
	page_z0470.pdf
	page_z0471.pdf
	page_z0472.pdf
	page_z0473.pdf
	page_z0474.pdf
	page_z0475.pdf
	page_z0476.pdf
	page_z0477.pdf
	page_z0478.pdf
	page_z0479.pdf
	page_z0480.pdf
	page_z0481.pdf
	page_z0482.pdf
	page_z0483.pdf
	page_z0484.pdf
	page_z0485.pdf
	page_z0486.pdf
	page_z0487.pdf
	page_z0488.pdf
	page_z0489.pdf
	page_z0490.pdf
	page_z0491.pdf
	page_z0492.pdf
	page_z0493.pdf
	page_z0494.pdf
	page_z0495.pdf
	page_z0496.pdf
	page_z0497.pdf
	page_z0498.pdf
	page_z0499.pdf
	page_z0500.pdf
	page_z0501.pdf
	page_z0502.pdf
	page_z0503.pdf
	page_z0504.pdf
	page_z0505.pdf
	page_z0506.pdf
	page_z0507.pdf
	page_z0508.pdf
	page_z0509.pdf
	page_z0510.pdf
	page_z0511.pdf
	page_z0512.pdf
	page_z0513.pdf
	page_z0514.pdf
	page_z0515.pdf
	page_z0516.pdf
	page_z0517.pdf
	page_z0518.pdf
	page_z0519.pdf
	page_z0520.pdf
	page_z0521.pdf
	page_z0522.pdf
	page_z0523.pdf
	page_z0524.pdf
	page_z0525.pdf
	page_z0526.pdf
	page_z0527.pdf
	page_z0528.pdf
	page_z0529.pdf
	page_z0530.pdf
	page_z0531.pdf
	page_z0532.pdf

