
this print for content only—size & color not accurate spine = 0.968" 512 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro WCF: Practical Microsoft SOA Implementation
Dear Reader,

As you know, Windows Communication Foundation (WCF) is the next genera-
tion of web service technology by Microsoft and also one of the “core pillars” of
Microsoft’s latest offerings. This book explains WCF from the Service-Oriented
Architecture (SOA) perspective. It explains WCF as an evolution of an SOA
concept, not as a “message bus” concept built on the next generation of
Microsoft products. The book attempts to explore how WCF implements SOA
concepts and how WCF addresses the pain points with existing SOA implemen-
tations. In the course of answering these questions, we will cover the following
WCF features in detail:

• We’ll give you a comprehensive description of the WCF programming
model.

• We’ll explain the unified programming model.
• We’ll explore the hosting options available for WCF web services.
• We’ll cover how to make WCF web services secure.
• We’ll show how to manage these WCF services and discuss the tools that

are available to manage them.
• We’ll cover how queue management and reliable messaging work in WCF.
• We’ll explain how you implement transaction support in WCF.
• We’ll discuss how a WCF service interacts with COM+ components, as well

as how an existing COM+ component interacts with a WCF service.
• We’ll cover how to use data binding with WCF services.
• We’ll investigate whether you can interop WCF services with other SOA

(non-Microsoft) offerings.

In addition, we will address the business drivers that dictate the need for
these WCF features, and we’ll explore the industry best practices in the process
of answering these features. So, let’s start learning about these interesting WCF
features.

Welcome aboard!

Chris Peiris

Chris Peiris, author of

Designing Security
for Win 2003

C# for Java Programmers

Professional C#
Web Services

US $49.99

Shelve in
.NET

User level:
Intermediate

Peiris,
M

ulder
Pro W

CF

THE EXPERT’S VOICE® IN .NET

Chris Peiris and Dennis Mulder
Foreword by Thom Robbins,
Director of .NET Platform Marketing, Microsoft Corporation

Pro

WCF
Practical Microsoft SOA Implementation

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

Companion
eBook Available

Creating the next generation of secure,
reliable, and interoperable services

Dennis Mulder

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

Practical M
icrosoft

SOA Im
plem

entation
ISBN-13: 978-1-59059-702-6
ISBN-10: 1-59059-702-8

9 781590 597026

54999

THE APRESS ROADMAP

Pro WF

Pro WPF

Pro WCF

Foundations of WPF

Foundations of WF

www.sharexxx.net - free books & magazines

Chris Peiris, Dennis Mulder, Shawn Cicoria,
Amit Bahree, Nishith Pathak

Pro WCF
Practical Microsoft SOA
Implementation

7028FM.qxp 12/20/06 2:03 PM Page i

Pro WCF: Practical Microsoft SOA Implementation

Copyright © 2007 by Chris Peiris and Dennis Mulder

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-702-6

ISBN-10 (pbk): 1-59059-702-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jon Hassell
Technical Reviewers: Vincent Bedus, Shawn Cicoria, Sylvain Groulx, Chris Peiris, Dennis Mulder
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Denise Santoro Lincoln
Copy Edit Manager: Nicole Flores
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Gunther
Compositor: Lynn L’Heureux
Proofreader: Elizabeth Berry
Indexer: Becky Hornyak
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

7028FM.qxp 12/20/06 2:03 PM Page ii

To my wife, Kushanthi, and my son, Keshera—you give me a reason to wake up every day and
tackle the world head-on. Thank you also to my father, Christopher; mum, Shantha; and my
brother, Gayan. It is your blessings and inspirations that get me through the hard times. Last
but not least, a big thanks to Mr. Pinto and Mrs. Alwis who played a big part in my secondary

education.You gave me wings to fly. I wouldn’t have made it this far without your help.
—Chris Peiris

To my wife, Janneke—without your patience I wouldn’t have been able to get my first book
out of the door. I know that it wasn’t easy to go through the past year with Anouk’s birth
and Amber’s “childhood puberty” (she’s a three year old). To my parents and my sister—

thanks a lot for the heads-up and the interest you expressed in my writing.
—Dennis Mulder

I can safely say that I would’ve never been able to navigate through the past 16 years with-
out my wife, Donna. She has been there for me countless times and is always someone who

provides me with comfort, understanding, and lots of reality. And to my two little girls,
Christine and Lauren, who to me represent what life is all about. I love them all dearly and
couldn’t make it through many days without knowing that I’ll see their smiling faces and

have enjoyable conversations that makes me feel like a kid again.
—Shawn Cicoria

To my wife, Meenakshi, without her support, patience, endless review sessions, ideas, and
desire for perfection, this book would not have been possible. She provides the rational

balance to my mad world.
—Amit Bahree

To my grandfather, Late Mahesh Chandra Pathak, for his blessings and moral values. To
my parents, Pankaj and Bina Pathak, for being the best parents, and to my lovely sister,

Tanwi, for her immense support and for teaching me to do what I believe in. I also
appreciate the help, support, and encouragement from my mentor Mr. J.P. Kukreti and my

dear friends (Amit Rawat, Piyush Suyal, Vikal Devlal, Harsh Nigam, and Shweta Bashani).
—Nishith Pathak

7028FM.qxp 12/20/06 2:03 PM Page iii

7028FM.qxp 12/20/06 2:03 PM Page iv

Contents at a Glance

Foreword . xvii

About the Authors . xix

About the Technical Reviewers . xxiii

Acknowledgments . xv

Introduction . xxvii

PART 1 ■ ■ ■ Introducing Windows
Communication Foundation

■CHAPTER 1 Introducing Service-Oriented Architecture . 3

■CHAPTER 2 Introducing WCF Basics . 25

■CHAPTER 3 Exploring the WCF Programming Model . 51

PART 2 ■ ■ ■ Programming with WCF
■CHAPTER 4 Installing and Creating WCF Services . 99

■CHAPTER 5 Hosting and Consuming WCF Services . 145

■CHAPTER 6 Managing WCF Services . 179

PART 3 ■ ■ ■ Advanced Topics in WCF
■CHAPTER 7 Implementing WCF Security . 213

■CHAPTER 8 Implementing Reliable Messaging and Queue-Based
Communications . 249

■CHAPTER 9 Using Transactions in WCF . 277

■CHAPTER 10 Integrating with COM+ . 301

■CHAPTER 11 Working with Data . 335

■CHAPTER 12 Developing Peer-to-Peer Applications with WCF 371

■CHAPTER 13 Implementing SOA Interoperability . 401

v

7028FM.qxp 12/20/06 2:03 PM Page v

ec776dc60f334d05f9abd7a3c45508ef

PART 4 ■ ■ ■ Appendixes
■APPENDIX A QuickReturns Ltd. 425

■APPENDIX B History of Microsoft Web Service Implementations 431

■APPENDIX C WCF and .NET Framework Installation Steps 441

■INDEX . 455

vi

7028FM.qxp 12/20/06 2:03 PM Page vi

Contents

Foreword . xvii

About the Authors . xix

About the Technical Reviewers . xxiii

Acknowledgments . xv

Introduction . xxvii

PART 1 ■ ■ ■ Introducing Windows
Communication Foundation

■CHAPTER 1 Introducing Service-Oriented Architecture 3

What Is Service-Oriented Architecture? . 4

Disadvantages of Integrating Multiple Applications on
Disparate Networks . 5

Advantages of Using Messaging . 5

Understanding Service-Oriented Architecture . 6

What Is a Service? . 7

Web Services As a Key Enabling Technology for a
Service-Oriented Architecture . 11

Introducing SOAP . 13

SOAP Implementations by Major Software Vendors 18

Web Services Description Language: Describing
Service Endpoints . 18

Dynamically Discovering Web Services . 21

Sending Messages Between Loosely Coupled Systems 22

Summary . 24

■Chapter 2 Introducing WCF Basics . 25

Introducing the Microsoft Remote Object Invocation Model 25

Introducing COM and DCOM . 26

Introducing .NET Remoting . 27

vii

7028FM.qxp 12/20/06 2:03 PM Page vii

Why Are Web Services the Preferred Option? . 28

What Does WCF Solve? . 29

Unification of Existing Technologies . 30

Interoperability Across Platforms . 31

WCF As a Service-Oriented Development Tool 33

Exploring New Features in WCF . 36

Developer Productivity . 36

Attribute-Based Development . 36

Coexisting with Existing Technology . 37

Hosting Services . 37

Migration/Integration with Existing Technology 38

Components vs. Services . 39

Support of Visual Studio 2005 . 41

One Service, Multiple Endpoints . 42

Integration Technologies . 43

Unifying Distributed Technologies . 44

ASMX . 44

MSMQ . 45

WSE . 46

Enterprise Services . 47

How Do You Unify All These Technologies? . 48

Summary . 50

■Chapter 3 Exploring the WCF Programming Model 51

Introducing the Technical Architecture . 52

Introducing the Programming Approach . 53

Learning the ABCs of WCF . 53

What Are Addresses? . 54

What Are Bindings? . 57

What Are Contracts? . 59

Looking at the WCF Layers “Inside” . 66

What Is the Messaging Layer? . 66

What Is the Service Model Layer? . 69

Using ServiceHost and ChannelFactory . 69

ServiceHost . 69

Channel Factory . 76

Service Description . 82

Service Runtime . 82

■CONTENTSviii

7028FM.qxp 12/20/06 2:03 PM Page viii

Applying Behaviors . 83

Service Behavior . 84

Contract Behavior . 86

Channel Behavior . 87

Operation Behavior . 88

Service Metadata Behavior . 88

Using the Configuration Tool . 90

Configuring Diagnostics . 91

Configuring Instrumentation . 95

Summary . 96

PART 2 ■ ■ ■ Programming with WCF

■Chapter 4 Installing and Creating WCF Services . 99

Understanding the Requirements . 99

Hardware Requirements . 99

Software Requirements . 100

Installing the .NET 3.0 Development Components 102

Understanding Service Contracts . 103

Contract First or Code First? . 105

Service Design . 106

Programming Model . 107

“Hello, World” . 107

“Hello, World” with Interfaces . 110

Hosting on IIS . 116

ServiceContract Attribute . 119

OperationContract Attribute . 123

ServiceBehavior Attribute . 126

OperationBehavior Attribute . 127

Understanding Data Contracts . 127

XML Serialization . 127

Data Contracts . 134

Message Contracts . 137

Summary . 143

■CONTENTS ix

7028FM.qxp 12/20/06 2:03 PM Page ix

■Chapter 5 Hosting and Consuming WCF Services 145

Exploring Your Hosting Options . 145

Hosting Environment Features . 147

Hosting Environment Requirements . 148

Self-Hosting Your Service . 149

Hosting in Windows Services . 150

Hosting Using Internet Information Services . 156

Core IIS 5.1 and 6.0 Features . 157

Hosting WCF Services in IIS . 159

Configuring WCF Services in IIS . 160

Accessing ServiceHost in IIS . 161

Recycling . 163

ASP.NET Compatibility Model . 164

Windows XP and IIS 5.1 . 166

Windows Server 2003 and IIS 6.0 . 167

Hosting in IIS 7.0 . 167

Windows Activation Services . 170

Hosting Options . 172

Consuming WCF Services . 172

Service Proxies . 173

Using Visual Studio 2005 . 174

Command-Line Implementation . 176

Summary . 177

■Chapter 6 Managing WCF Services . 179

Exploring the Business Drivers . 180

Building Custom Code to Monitor Activity . 181

Using Configuration Files . 188

Configuration Editor: SvcConfigEditor.exe 189

Using Tracing and Message Logging Capabilities 190

Message Logging . 190

Enabling Message Logging . 191

Enabling Tracing . 193

Using SvcTraceViewer.exe . 194

Utilizing WCF Performance Counters . 195

Enabling Built-in WCF Performance Counters 196

Creating Custom Performance Counters 199

Using Windows Management Instrumentation 207

Summary . 210

■CONTENTSx

7028FM.qxp 12/20/06 2:03 PM Page x

PART 3 ■ ■ ■ Advanced Topics in WCF

■Chapter 7 Implementing WCF Security . 213

Introducing the Business Drivers . 214

Introducing the WCF Security Features . 215

Security Features of Bindings . 215

Protection Levels . 216

Credentials and Claims . 217

Transport-Level Security . 222

Message-Level Security . 225

Mixed Mode . 230

Federated Security Model in WCF . 232

Authorization in WCF . 234

Auditing for Security Features in WCF . 240

Windows CardSpace . 242

Summary . 246

■Chapter 8 Implementing Reliable Messaging and Queue-Based
Communications . 249

The Need for Reliable Messaging . 250

Challenges of Implementing Reliable Messaging 251

Communication Issues . 251

Processing Issues . 252

Reliable Sessions . 252

Enabling WCF Web Service with Reliable Sessions 254

ReliableSessionBindingElement Class . 257

Some Pointers on Reliable Messaging . 257

Queuing in WCF . 259

Installing MSMQ . 260

Microsoft Message Queues in Windows Server 2007 262

Transport Channels . 264

Integration Channels . 270

Some Pointers on Using MSMQ . 274

Summary . 275

■CONTENTS xi

7028FM.qxp 12/20/06 2:03 PM Page xi

■Chapter 9 Using Transactions in WCF . 277

What’s a Transaction? . 278

Understanding the Types of Transactions in WCF 280

Defining Transactions in WCF . 282

Using the TransactionFlow Attribute . 283

Using the ServiceBehavior Attribute and the
OperationBehavior Attribute . 283

Defining Transactions in QuickReturns Ltd. 286

Working with Transactions and Queues . 295

Summary . 299

■Chapter 10 Integrating with COM+ . 301

Why Integrate with COM+? . 302

Running a COM+ Application As a WCF Service 302

Visual Basic 6 COM+ Component Sample Setup 303

COM+ Application WCF Service Wrapper 308

.NET Enterprise Services and COM+ Components 317

Consuming WCF Services from COM+ . 324

QuickReturns Ltd. Quote Service . 325

Security Credentials with IChannelCredentials 332

Summary . 334

■Chapter 11 Working with Data . 335

Understanding the Data Transfer Architecture 335

Exploring the Serialization Options in WCF . 336

Introducing Data Contracts . 337

Data Contract Names . 340

Data Contract Equivalence . 341

Data Contract Versioning . 346

Round-Tripping . 348

XML Serialization . 349

Security . 351

Introducing Message Contracts . 351

Fine-Tuning SOAP . 353

Security . 355

Performance . 356

Using the Message Class . 357

■CONTENTSxii

7028FM.qxp 12/20/06 2:03 PM Page xii

Filtering . 359

Filters . 359

Filter Tables . 360

Best Practices for Versioning . 360

With Schema Validation . 360

Without Schema Validation . 361

Putting It All Together: Quote Client Sample Application 362

Creating the Service . 362

Creating the Client . 366

Summary . 370

■Chapter 12 Developing Peer-to-Peer Applications with WCF 371

Introducing Peer-to-Peer Computing . 371

Why Use P2P? . 372

The Challenges of P2P . 373

P2P Development Life Cycle . 374

Windows P2P Networking . 376

How Does a P2P Mesh Work? . 378

What Is Peer Channel? . 381

QuickReturnTraderChat Sample . 382

P2P Security . 387

QuickReturnSecureTraderChat Sample 389

Working with NetShell . 392

Listing Clouds . 393

Clouds Scopes . 394

Listing Peers in a Cloud . 395

Cloud Statistics . 396

Working with Peers . 396

SOA with P2P . 398

Summary . 400

■Chapter 13 Implementing SOA Interoperability . 401

Achieving Java/J2EE Interoperability . 401

Non-Microsoft SOA Platforms . 402

Interoperability with WS-I Basic Profile 403

Sending Binary Data Over Web Services 406

Using WS-ReliableMessaging . 418

WS-ReliableMessaging Example . 419

Platform Support of WS-ReliableMessaging 421

Summary . 422

■CONTENTS xiii

7028FM.qxp 12/20/06 2:03 PM Page xiii

PART 4 ■ ■ ■ Appendixes

■Appendix A QuickReturns Ltd. 425

Market Overview . 426

Services and Collaboration . 426

Asset Manager . 426

Market Maker . 427

Exchange . 427

Depository . 428

Data Contracts . 428

Quote . 428

Trade . 428

Execution . 429

Settlement . 429

Position . 430

■Appendix B History of Microsoft Web Service Implementations 431

ASMX Pages . 431

Web Services Enhancements (WSE) . 432

WSE 1.0 . 435

WSE 2.0 . 435

WSE 3.0 . 436

SOA and .NET v2.0 . 438

Sample XML Schema . 438

Sample Complex Schema . 439

SOAP Message Example . 439

Summary . 440

■Appendix C WCF and .NET Framework Installation Steps 441

Installing Internet Information Services . 441

Windows 2003 . 441

Windows XP . 442

Installing Visual Studio 2005 or the .NET 2.0 SDK 442

.NET 2.0 SDK . 442

.NET 2.0 Runtime Installation . 443

.NET 2.0 SDK Installation . 443

Visual Studio 2005 . 444

Registering ASP.NET . 445

■CONTENTSxiv

7028FM.qxp 12/20/06 2:03 PM Page xiv

Installing .NET Framework 3.0 Runtime Components for XP
and Windows 2003 . 447

Installing .NET 3.0 RTC . 447

Installing Microsoft Windows SDK for Windows Vista 448

Installing Windows SDK for All Platforms 448

Installing .NET Framework 3.0 Development Tools 450

Making Windows Firewall Changes . 451

Firewall Primer . 452

WCF Requirements . 452

Summary . 454

■INDEX . 455

■CONTENTS xv

7028FM.qxp 12/20/06 2:03 PM Page xv

7028FM.qxp 12/20/06 2:03 PM Page xvi

Foreword

Modern distributed systems are based on the principles of Service-Oriented Architecture
(SOA). This type of application architecture is based on loosely coupled and interoperable serv-
ices. The global acceptance of web services has changed how these application components are
defined and built. They’re fueled by vendor agreements on standards and proven interoperabil-
ity. This combination has helped set web services apart from other integration technologies.
Windows Communication Foundation (WCF) is Microsoft’s unified framework for building reli-
able, secure, transacted, and interoperable distributed applications. WCF represents a new step
in distributed programming for developers using the .NET Framework. If you are planning or
currently building systems using any of today’s .NET distributed technologies, you should be
paying close attention to WCF and the material in this book. It’s only a matter of time before all
.NET-targeted code related to communications will be written using WCF.

WCF is designed to offer a manageable approach to distributed computing, broad inter-
operability, and direct support for service orientation. As the name suggests, WCF provides the
.NET Framework with a foundation for writing code to communicate across components,
applications, and systems. WCF was completely designed with service orientation in mind. It
is primarily implemented as a set of classes on top of the .NET Framework common language
runtime (CLR). Because it was designed to extend the .NET Framework, WCF enables develop-
ers who are building object-oriented applications today to take their existing skills and start
developing service-oriented applications.

SOA is an architectural pattern that has many different styles. To support this, WCF provides
a layered architecture. At the bottom layer, WCF exposes a channel architecture that provides
asynchronous, untyped messages. Built on top of this are protocol facilities for secure, reliable,
transacted data exchange and a broad choice of transport and encoding options. While WCF
introduces a new development environment for distributed application, it is designed to inter-
operate with non-WCF-based applications. WCF interoperability has two important aspects:
interoperability with other platforms and interoperability with the Microsoft technologies that
preceded WCF.

The typed programming model or service model exposed by WCF is designed to ease
the development of distributed applications and provide developers with experience in an
ASP.NET web service. .NET Remoting and Enterprise Services offer a familiar development
experience with WCF. The service model features a straightforward mapping of web service
concepts to the types of the .NET Framework CLR. This includes a flexible and extensible
mapping of messages to service implementations found in the .NET languages. WCF also
provides serialization facilities that enable loose coupling and versioning. At the same time,
this provides integration and interoperability with existing .NET technologies such as MSMQ,
COM+, and others. The result of this technology unification is greater flexibility and signifi-
cantly reduced development complexity.

To allow more than just basic communication, WCF implements web service technologies
defined by the WS-* specifications. These specifications address several areas, including basic
messaging, security, reliability, and transactions, as well as working with a service’s metadata.

xvii

7028FM.qxp 12/20/06 2:03 PM Page xvii

Support for the WS-* protocols means that web services can easily take advantage of interop-
erable security, reliability, and transaction support required by businesses today. Developers
can now focus on business logic and leave the underlying plumbing to WCF. WCF also pro-
vides opportunities for new messaging scenarios with support for additional transports such
as TCP and Named Pipes and new channels such as the peer channel. More flexibility is also
available around hosting web services. Windows Forms applications, ASP.NET applications,
console applications, Windows services, and COM+ services can all easily host web service
endpoints on any protocol. WCF also has many options for digitally signing and encrypting
messages including support for Kerberos and X.509.

Building distributed systems using SOA is not a new concept. However, WCF represents a
new paradigm in how these applications are developed using the .NET Framework 3.0. Each
author has practical real-world experience in building and architecting distributed systems for
a variety of customers. They also bring a wealth of knowledge and experience in their under-
standing of WCF and the .NET Framework. In this book they come together to present
practical answers in building a good architecture, the options you have for communication,
the various security concerns, and so much more.

This book doesn’t merely offer genuine insight into solving real enterprise problems using
WCF. It also provides extensive examples to make it easier to put these into practice. This book
is definitely a great resource for application developers and architects new to SOA or just new
to the core concepts of WCF. It is great to see a resource that both answers common questions
and provides guidance that gets right to the point from experienced architects and developers.
I hope you enjoy reading this book as much as I did and keep it close as you start building
your own WCF applications.

Thom Robbins
Director, .NET Platform Marketing

Microsoft Corporation

■FOREWORDxviii

7028FM.qxp 12/20/06 2:03 PM Page xviii

About the Authors

■CHRIS PEIRIS (MVP, MIT, BComp, BBus–Accounting) currently works
for Avanade Australia as a solutions architect. Chris is an avid publisher
and a thought leader in the application integration space. He is a fre-
quent speaker at professional developer conferences on Microsoft
technologies. In fact, he has been awarded the title Microsoft Most
Valuable Professional (MVP) for his contributions to .NET technologies
by Microsoft. Chris has been designing and architecting Microsoft IT
solutions since 1995. He is an expert in developing scalable, high-
performance integration solutions for financial institutions, G2G, B2B,
and media groups. Chris has written many articles, reviews, and
columns for various online publications including 15Seconds, Wrox

(Apress), and Developer Exchange (DevX). He has also coauthored several books on web
services, UDDI, C#, IIS, Java, and security topics. These include C# Web Services, C# for Java
Programmers, MCSA/MCSE Managing and Maintaining a Windows Server 2003 Environment,
and Managing and Maintaining a Windows Server 2003 Environment for an MCSA Certified on
Windows 2000. Chris’s current passions include WCF, IBM Message Broker, and EAI. He lives
with his family in Conder, Australian Capital Territory, in Australia. He can be reached at
http://www.chrispeiris.com.

■DENNIS MULDER (MCSD, MCDBA) is senior principal consultant and
solution manager with Avanade Netherlands and started his career in
1997. Since the beginning, he has dedicated himself to Microsoft tech-
nology. When the first betas of Microsoft .NET were released, he knew
he made a good choice. As an early adopter of Microsoft technology, he
has kept pace in the certification challenges and succeeded in getting
several of his certifications in beta stage. Although Dennis has a broad
range of experience on the Microsoft platform, in particular in web and
database technology, his current focus is on service orientation, enter-
prise integration, and software factories. As a consultant he is working
with enterprise customers to solve their challenges by leveraging the

power of the Microsoft platform, usually in the role of architect and/or team lead. Dennis fre-
quently publishes articles in Microsoft .NET Magazine (Dutch) and other (online) places. He is
also an Ineta speaker and frequently speaks at Dutch Microsoft conferences and user groups.
You can reach Dennis through his blog at http://www.dennismulder.net.

xix

7028FM.qxp 12/20/06 2:03 PM Page xix

■SHAWN CICORIA (MCT, MCSD, MCDBA) is a financial services industry
solutions architect with Avanade (www.avanade.com), living with his family
in Denville, New Jersey. He has an MBA in finance and information
systems and a BA in economics. Shawn is also an MCT training instruc-
tor with SetFocus (http://www.setfocus.com), located in Parsippany,
New Jersey. He has been working in systems for nearly 20 years mostly in
financial services. Shawn has worked on many platforms including VMS,
Unix variants, and for most of the past decade Microsoft Windows. He
has focused on distributed technologies such as COM+, J2EE, and (for
the past five years) .NET, SOAP, BizTalk, database technologies, and now
.NET 3.0. You can reach him via his blog at http://www.Cicoria.com.

■AMIT BAHREE is a senior solutions architect with Avanade with a degree
in computer science and several years of experience in IT (more than
he will admit), developing and designing mission-critical systems. His
background is a mixture of product development, embedded systems,
and custom solutions across both the public and private sectors. He
has experience in a wide range of industry verticals including finan-
cial services, healthcare, defense, utilities, and insurance, and he has
implemented solutions for many Fortune 100 companies. For Amit,
computers are a passion first, a hobby second, and a career third, and
he is glad he gets paid to do what he loves. Amit lives in London. You
can contact him via his blog at http://www.desigeek.com.

■ABOUT THE AUTHORSxx

7028FM.qxp 12/20/06 2:03 PM Page xx

■NISHITH PATHAK is a budding solutions architect and a .NET purist who
has been working on the .NET platform since its early beta days.
Nishith was born, raised, and educated in a town called Kotdwara in
Uttaranchal, India. Nishith has worked with companies such as Accen-
ture and Avanade as an expert solution developer. His expertise is in
delivering enterprise solutions to Fortune 100 companies spanning the
globe. He is a contributing author and an avid technical reviewer for
multiple electronic and print publications. Over the years, he has also
been involved in providing consultancy and training services to corpo-
rations. You can contact him at NisPathak@Hotmail.com or visit his blog
at http://DotNetPathak.blogspot.com.

■ABOUT THE AUTHORS xxi

7028FM.qxp 12/20/06 2:03 PM Page xxi

7028FM.qxp 12/20/06 2:03 PM Page xxii

About the
Technical Reviewers

■VINNY BEDUS currently works for Avanade as an application develop-
ment capability group leader for the Metro New York (MNY) office. Vinny
has been developing websites since 1994 and is currently a senior archi-
tect specializing in enterprise application development. He has more
than ten years of experience with Microsoft technologies. He has worked
with a variety of organizations ranging from Fortune 500 companies to
Internet start-ups. He focuses on technologies such as the Microsoft
.NET Compact Framework, Microsoft .NET Framework, C#, BizTalk, SQL
Server, Visual Basic, XML, and web development. He is proficient on
multiple platforms including Windows, Linux, and Solaris.

■DENNIS MULDER

■SHAWN CICORIA

xxiii

7028FM.qxp 12/20/06 2:03 PM Page xxiii

7028FM.qxp 12/20/06 2:03 PM Page xxiv

Acknowledgments

This book is a collection of labor of many talented individuals. However, one person above
all—Jon Hassell of Apress—deserves a special mention. I remember attending a Microsoft
Early Adopter conference in 2003 and being exposed to a technology code-named Indigo. It
was followed by an e-mail I put together (around 2 a.m.) to Jon. And, as they say, the rest is
history. I should also extend my gratitude to Denise for her great job as the project manager.
Kim and Kelly also come to mind with the copy edits. Thank you all for your contributions.

I also want to extend a special mention to Avanade management for their continuous
assistance. We have been encouraged every step of the way by our management teams in
Australia, Europe, US East, UK, France, Global (Seattle, Washington), and India. This would
not have been possible without their generosity and encouragement.

A special mention also goes to our tech editors—Vincent Bedus and Sylvain Groulx. I also
want to mention Chris Bunio (Microsoft) and Carl Ward (Accenture) for their contributions on
an ad hoc basis. Your contributions definitely shaped the book content and gave us valuable
insight into our target audience. Yumay Chang, Clemens Vasters, and Thom Robbins from
Microsoft also come into mind for assisting us with tech reviews and marketing initiatives.
Thanks a lot!

Last but not least, my partners in crime—Dennis, Shawn, Amit, Aftab and Nishith: it has
been a great pleasure working with you! I should single out Dennis, Shawn, and Amit for tak-
ing on extra responsibilities to facilitate our tight deadlines. I am constantly amazed by your
wealth of knowledge and thank you for the privilege of sharing your expertise with the wider
IT community.

Chris Peiris
Canberra, Australia

November 2006

Thanks a lot to all the people within Avanade who supported my effort by talking about this
book in meetings, bars, and other places: Edwin, Pieter, Andre, Mark, Albert, Willem, Matt,
Tim, Kyle, Sumit, Karel, Antoine, Gerben, and the others I missed. A big thanks too to the peo-
ple at Microsoft who tried to help out in busy times: Erik, Yumay, Steve, Clemens, and Thom.

Dennis Mulder
Almere, The Netherlands

November 2006

xxv

7028FM.qxp 12/20/06 2:03 PM Page xxv

7028FM.qxp 12/20/06 2:03 PM Page xxvi

Introduction

This book explains the Windows Communication Foundation (WCF) from the Service-
Oriented Architecture (SOA) perspective. It explains WCF as an evolution of the SOA concept,
not as a “message bus” concept built on the next generation of Microsoft products. The book
attempts to answer the following main questions:

• What is SOA?

• Why is WCF so important? What does it solve?

• How does WCF implement SOA principles?

• How does interoperability work between WCF and other SOA implementations?

We will provide answers to these questions by concentrating on the following important
features of WCF:

• The WCF programming model

• The unified programming model

• The hosting options available for WCF web services

• How to make WCF web services secure

• How to manage these WCF services (and the tools available to manage them)

• How queue management and reliable messaging work in WCF

• How to implement transaction support in WCF

• How a WCF service interacts with COM+ components and how COM+ interacts with
WCF service

• How to use data binding with WCF services

• Whether you can interop a WCF service with other (non-Microsoft) SOA offerings

We will also address the business drivers that dictate the need for these WCF feature. In
addition, we’ll explore the industry best practices in the process of addressing all these features.

Who This Book Is For
This book is targeted toward novice and intermediate readers who are curious about WCF. In
this book, we’ll do the following:

xxvii

7028FM.qxp 12/20/06 2:03 PM Page xxvii

• Explain the business motives and pain points of the current SOA offerings.

• Explain how you can address these pain points by using WCF.

• Show practical implementations of these scenarios using code examples.

How This Book Is Structured
This book is divided into three parts, with a total of 13 chapters. The following sections
describe each part. The book also has three appendixes, where you’ll find a description of the
sample application (QuickReturns Ltd), a history of Microsoft web service implementations,
and WCF installation information.

Part 1: “Introducing Windows Communication Foundation”
This part of the book introduces web service standards and the fundamental components of
SOA. We will also discuss how these principles are illustrated in WCF. Once you understand
some of these concepts, including the business and technological factors, you can appreciate
the simplicity and flexibility of WCF. Chapter 1 will cover the service standards. Then we will
introduce WCF in Chapter 2. This is followed by a discussion of the WCF programming model
in Chapter 3.

Part 2: “Programming with WCF”
In this part, we’ll discuss the WCF technical features in detail. We’ll concentrate on the pro-
gramming aspects of WCF with the assistance of a fictitious QuickReturns Ltd. stock market
application in Chapter 4. We’ll initially guide you through installing WCF components. Then
we’ll walk you through creating services and hosting these services with WCF in Chapter 5. We
will discuss all the hosting options available in WCF in detail. Finally, in Chapter 6, we’ll cover
the management options available to manage WCF services to obtain the best return on
investment for your application.

Part 3: “Advanced Topics in WCF”
Real-world SOA applications will have many demanding features to implement. These com-
plex real-world web service implementations will address security issues (both client and
service), reliable messaging, transactions, COM+ integration, data integration issues, and
peer-to-peer communications. An enterprise can achieve the eventual “value proposition” by
utilizing these advanced features of WCF. In Chapters 7 through 12, you will concentrate on
these topics. In addition, you’ll investigate the WCF interoperability options available to seam-
lessly communicate with non-Microsoft platforms in Chapter 13.

■INTRODUCTIONxxviii

7028FM.qxp 12/20/06 2:03 PM Page xxviii

Prerequisites
To get the most out of this book, you should install WCF/the .NET 3.0 Framework. You can
download this for free from http://wcf.netfx3.com/. We also recommend using Microsoft Visual
Studio as the development environment to experiment with the code samples, which you can
find in the Source Code/Download section of the Apress website (http://www.apress.com).

Contacting the Authors
Most of the authors of this book have dedicated websites or blogs. Therefore, please refer to
the “About the Authors” section to find individual contact information.

■INTRODUCTION xxix

7028FM.qxp 12/20/06 2:03 PM Page xxix

7028FM.qxp 12/20/06 2:03 PM Page xxx

Introducing Windows
Communication
Foundation

This part of the book introduces web service standards and fundamental components of

Service-Oriented Architecture. We will also discuss how these principles are illustrated in

Windows Communication Foundation (WCF). Once you have an understanding of some of

these concepts, including the business and technological factors, you can appreciate the

simplicity and flexibility of WCF. The first chapter will cover the services standards. Then

we will introduce WCF in Chapter 2. This is followed by a discussion of the WCF program-

ming model in Chapter 3.

P A R T 1

■ ■ ■

7028Ch01.qxp 12/11/06 8:32 PM Page 1

7028Ch01.qxp 12/11/06 8:32 PM Page 2

Introducing Service-Oriented
Architecture

In today’s world, implementing distributed systems that provide business value in a reliable
fashion presents many challenges. We take many features for granted when developing
nondistributed systems that can become issues when working with disparate distributed sys-
tems. Although some of these challenges are obvious (such as a loss of connectivity leading to
data being lost or corrupted), for other aspects such as tightly coupled systems the dependen-
cies between the various components of a system make it cost prohibitive to make changes as
needed to meet the demands of the business.

Business processes quite often are supported by systems that are running on different
platforms and technologies both within and outside the organization. Service-Oriented Archi-
tecture (SOA) is a mechanism that enables organizations to facilitate communication between
the systems running on multiple platforms. This chapter introduces the fundamental con-
cepts of SOA. The objective of this chapter is to discuss the following:

• What does SOA mean? How do you use messages, which act as the cornerstone for SOA
implementations, to facilitate SOA?

• What makes SOA the preferred approach to design complex heterogeneous IT systems?
Are web services the same as SOA?

• What are the four tenets of SOA?

• What are the implementation building blocks of SOA?

• How do you utilize all these building blocks to send messages between loosely coupled
services?

■Note To explain and demonstrate the various areas of Windows Communication Foundation (WCF), in this
book we will show how to build an application that is modeled after a fictitious financial trading institution
called QuickReturns Ltd. We will build a reference application that will articulate some of the challenges in
today’s enterprises and show how WCF can help solve some of the challenges. Each chapter will add func-
tionality to this application, and you can download the code from the book’s website. This case study will
begin in Chapter 3.

3

C H A P T E R 1

■ ■ ■

7028Ch01.qxp 12/11/06 8:32 PM Page 3

What Is Service-Oriented Architecture?
It is not practical to build monolithic systems in current multinational enterprises. These
systems often take many years to implement and usually address a narrow set of objectives.
Today a business needs to be agile and adapt processes quickly, and SOA is a design principle
that can help address this business need. SOA is a collection of well-defined services, where
each individual service can be modified independently of other services to help respond to the
ever-evolving market conditions of a business. Unlike traditional point-to-point architectures,
an SOA implementation comprises one or more loosely coupled and interoperable set of
application services. Although some of these aspects might be similar to a component-based
development (which is based on strict interfaces), the key difference is SOA provides a
message-based approach based on open standards. As a result of being based on open
standards and using messages that are generic and not representative of any specific platform
and programming language, you can achieve a high degree of loose coupling and interoper-
ability across platforms and technologies. Each of these services is autonomous and provides
one or more sets of business functions; in addition, since the underlying implementation
details are hidden from the consumer, any change to the implementation will not affect the
service as long as the contract does not change. This allows systems based on SOA to respond
in a quicker and more cost-effective manner for the business.

For a business it is usually cheaper to “consume” an off-the-shelf application service that
constitutes the solution instead of writing all the functionality. If a specific module needs to be
updated for some reason, the company also benefits from the changes being confined to the
specific service.

When coupled with industry-standard frameworks, service-based solutions provide the
highly flexible “building blocks” that business systems require to compete in this age. Services
encapsulate business processes into independently deliverable software modules. A service
alone is just a building block; it is not a business solution but instead is an autonomous busi-
ness system that is able to accept requests and whose interoperability is governed by various
industry standards. These building blocks also provide the basis for increased improvements
in quality and reliability and in the decrease of long-term costs for software development and
maintenance.

In addition, even though there is a lot of talk about SOA today, point-to-point architectures
are not disappearing. Many companies have invested a lot of resources in implementing pro-
prietary solutions that mostly fulfill their business needs. SOA makes it easier to integrate
point-to-point systems more easily because one system does not need to know the detailed
mechanics of the other system. For those new to SOA, it is a little difficult to grasp this concept
initially. This is primarily because SOA implementations target back-end systems. As a result,
from a user’s perspective, there are few user interface (UI) changes. However, you can also uti-
lize SOA to provide front-end UI implementations. You can achieve this by combining service
output XML with XSL to produce target HTML.

The SOA paradigm departs significantly from the OO model, where you are encouraged to
encapsulate data. Therefore, an object will hold and protect the data to facilitate a business
need. The enterprise will consist of multiple objects that are specialized to handle “specific
scenarios” with the data protected within the objects. SOA instructs you to utilize loosely cou-
pled services. The service describes the contract to the consuming entities. It does not tightly
couple data to the service interface. It is also difficult to implement a single interface across all
platforms and languages because of the nature of distributed systems. To fulfill the goals of

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE4

7028Ch01.qxp 12/11/06 8:32 PM Page 4

SOA, it is essential to implement the interfaces in a generic fashion. As a result, you need to
express application-specific semantics in messages. The following are a few constraints for the
messages that you need to consider when designing an SOA:

Descriptive: Messages need to be descriptive instead of prescriptive.

Limited structure: For different providers to understand the request, they need to under-
stand the format, structure, and data types being used. This ensures maximum reach to
all entities involved and limits the structure of the message. It also encourages you to use
simple types, which are platform neutral.

Extensibility: Messages need to be extensible; only this provides the flexibility that allows
SOA implementations to be quicker, faster, and cheaper than OO implementations.

Discoverability: Consumers and providers of messages need them to be discoverable so
they know what is out there and how to consume the available services.

Disadvantages of Integrating Multiple Applications on Disparate
Networks
We’ll now discuss some challenges you’ll face when you try to integrate multiple applications
today. The following are some of the fundamental challenges when integrating multiple appli-
cations that reside on disparate physical networks:

Transports: Networks are not reliable and can be slow.

Data formats: The two applications in question are running on different platforms and
using different programming languages, which makes interfacing with the various data
types an interesting challenge.

Change: You know the applications need to change to keep up with the ever-evolving
business requirements. This means any integration solution would need to ensure it
could keep up with this change and minimize dependencies between the systems.

In the past, developers used several approaches to try to integrate applications in an
enterprise. These approaches included file transfers, shared databases, remote procedure calls
(RPC), and messaging. Although each of these approaches might make sense in some context,
messages usually are more beneficial. We’ll discuss some of the advantages of using messages
in the following section.

Advantages of Using Messaging
The following are the advantages of using messages, like you do in SOA:

Cross-platform integration: Messages can be the “universal translator” between various
platforms and languages, allowing each platform to work with their respective native data
types.

Asynchronous communications: Messages usually allow for a “fire-and-forget” style of
communication. This also allows for variable timing because both the sender and receiver
can be running flat out and not be constrained by waiting on each other.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 5

7028Ch01.qxp 12/11/06 8:32 PM Page 5

Reliable communication: Messages inherently use a “store-and-forward” style for delivery,
which allows them to be more reliable than RPC.

Mediation: Messages can act as the mediator when using the Mediator pattern wherein
an application that is disconnected needs to comment only to the messaging system and
not to all the other applications.

Thread management: Since messages allow for asynchronous communication, this
means one application does not have to block for the other to finish. Since this frees up
many threads, the application can get to do other work overall, making it more efficient
and flexible when managing its own threads.

Remote communication: Messages replace the need for the serialization and deserializa-
tion that occurs when one application makes a remote call to another application.
Usually since these can be running on different process or even machines, the calls need
to be marshaled across the network. The process of serializing an object to transfer over a
network is called marshaling. Similarly, the process of deserializing an object on the other
end is called unmarshaling.

End-to-end security: Unlike in the world of RPC, messages can transfer the “complete
security context” to the consumer using a combination of headers and tokens. This
greatly increases the ability to provide more granular control including authentication
and authorization.

Messages are the “cornerstones” of SOA. Messages enable you to create loosely coupled
systems that can span multiple operating systems. SOA relies on messages not only to facilitate
the business need but also to provide the “context” around the message (that is, the security
context, the routing information of the message, whether you need to guarantee the delivery of
the message, and so on). Now you’ll dive into more SOA details.

Understanding Service-Oriented Architecture
SOA and web services are the buzzwords that promise to solve all integration issues in the
enterprise space. Although any kind of implementation can be an SOA implementation,
unfortunately many implementations using web services are marketed as SOA implementa-
tions, when in reality they are not.

SOA can be simply defined as an architectural concept or style that uses a set of “services”
to achieve the desired functionality. A service is an autonomous (business) system that accepts
one or more requests and returns one or more responses via a set of published and well-
defined interfaces. Unlike traditional tightly coupled architectures, SOA implements a set of
loosely coupled services that collectively achieve the desired results.

■Note It is important to understand that although SOA might seem abstract, it is a significant shift from the
earlier days of procedural and object-oriented languages to a more loosely coupled set of autonomous tasks.
SOA is more than a collection of services. It’s a methodology encompassing policies, procedures, and best
practices that allow the services to be provided and consumed effectively. SOA is not a “product” that can be
bought off the shelf; however, many vendors have products that can form the basis of an SOA implementation.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE6

7028Ch01.qxp 12/11/06 8:32 PM Page 6

It is important that the services don’t get reduced to a set of interfaces because they are
the key communication between the provider and the consumer. A provider is the entity
providing the service, and the consumer is the entity consuming the service. In a traditional
client-server world, the provider will be a server, and the consumer will be a client. When
factoring in services, try to model the flow and process based on recognized business events
and existing business processes. You also need to answer a few questions to ensure a clean
design for services:

• What services do you need?

• What services are available for you to consume?

• What services will operate together?

• What substitute services are available?

• What dependencies exist between services and other versions of services?

Service orientation as described earlier is about services and messages. Figure 1-1 shows
an example of how various service providers, consumers, and a repository coexist to form an
SOA implementation. Service providers are components that execute some business logic
based on predetermined inputs and outputs and expose this functionality through an SOA. A
consumer, on the other hand, is a set of components interested in using one or more of the
services offered by the providers. A repository contains a description of the services, where the
providers register their services and consumers find what services are provided.

Figure 1-1. How SOA components interact with each other

What Is a Service?
The term services has been used to describe everything from web services (discussed in detail
in the section “Web Services As a Key Enabling Technology for an SOA Implementation” later
in the chapter) to business processes and everything in between. You should use services to

Service
Consumer A

Service
Repository

Service
Provider A

Service
Consumer B

Service
Provider B

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 7

7028Ch01.qxp 12/11/06 8:32 PM Page 7

represent the functions of the business and explicitly define the boundaries of what the busi-
ness does, which essentially would define what the service can or cannot do. The key is that it
is not a technology-driven approach but, rather, is a business-driven approach.

■Note Loose coupling means any two entities involved reduce the assumptions they make about each other
when they try to exchange information. As the level of assumptions made between two entities goes up (such
as the kind of communication protocol used), so does the efficiency between the two entities; for example, the
communication between the entities is very efficient. However, at the same time, the two entities are less toler-
ant to changes or, say, interruptions in the communication, because they are tightly bound or coupled to each
other. Local method invocation is an excellent example of tight coupling because there are many assumptions
made between the called routine and the calling routine, such as they both need to be in the same process, use
the same language, pass the same number of parameters in the agreed data formats, and so on.

Service orientation is a business-driven “modeling strategy” that defines the business
functionality in terms of loosely coupled autonomous business systems (or services) that
exchange information based on messages. The term services is used in many contexts, but in
the context of service orientation, a service is based on four fundamental tenets. We’ll discuss
these four tenets, originally proposed by the WCF team at Microsoft, in the following sections.

Tenet 1: Boundaries Are Explicit
Crossing boundaries is an expensive operation because it can constitute various elements
such as data marshaling, security, physical location, and so on. Some of the design principles
to keep in mind vis-à-vis the first tenet are as follows:

Know your boundaries: A well-defined and published public interface is the main entry
point into the service, and all interactions occur using that.

Services should be easy to consume: It should be easy for other developers to consume the
service. Also, the service interface should allow the ability to evolve over time without
breaking existing consumers of the service.

Avoid RPC interfaces: Instead, use explicit messages.

Keep the service surface area small: Provide fewer public interfaces that accept a well-defined
message, and respond likewise with a well-defined message. As the number of public inter-
faces grows, it becomes increasingly difficult to consume and maintain the service.

Don’t expose implementation details: These should be kept internal; otherwise, it will lead
to tight coupling between the consumer and the service.

Tenet 2: Services Are Autonomous
Services are self-contained and act independently in all aspects such as deploying, versioning,
and so on. Any assumptions made to the contrary about the service boundaries will most
likely cause the boundaries to change themselves. Services need to be isolated and decoupled
to accomplish the goal of making them autonomous.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE8

7028Ch01.qxp 12/11/06 8:32 PM Page 8

The design principles to keep in mind for the second tenet are as follows:

• Service versioning and deployment are independent of the system in which they are
deployed.

• Contracts, once published, should not be changed.

• Adopt a pessimistic approach, and isolate services from failure.

■Note Business Process Execution Language (BPEL) is a business process language that is based on XML
and built using web service standards. You can use BPEL to define and manage a long-running business
process. BPEL is an orchestration language and is used for abstracting the “collaboration and sequencing”
logic from various web services into a formal process definition that is based on XML, Web Services Descrip-
tion Language (WSDL), and XML Schema. BPEL is also known as BPEL4WS or WSBPEL.

Tenet 3: Services Share the Schema and Contract, Not the Class
Services interaction should be using policies, schemas, and behaviors instead of classes,
which have traditionally provided most of this functionality. The service contract should
contain the message formats (defined using an XML schema), message exchange patterns
(MEPs, which are defined in WSDL), any WS-Policy requirements, and any BPEL that may be
required. The biggest challenge you face is the stability of the service, once it has been pub-
lished. It gets difficult to change it then without impacting any of the consumers.

The design principles to keep in mind for the third tenet are as follows:

• Service contracts constituting data, WSDL, and the policy do not change and remain
stable.

• Contracts should be as explicit as possible; this will ensure there is no confusion over
the intent and use of the service. Additional contracts should be defined for newer ver-
sions of the server in the future.

• If breaking service contracts is inescapable, then version the services because this mini-
mizes the ripple to existing consumers of the service.

• Do not expose internal data representation publicly; the public data scheme should be
absolute.

Tenet 4: Service Compatibility Is Based on Policy
At times you will not be able to express all the requirements of service interaction via WSDL
alone, which is when you can use policies. Policy expressions essentially separate the struc-
tural and semantic compatibility. In other words, they separate “what is communicated” and
“how/whom a message is communicated.” A policy assertion identifies a behavior of a policy
entity and provides domain-specific semantics. When designing a service, you need to ensure

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 9

7028Ch01.qxp 12/11/06 8:32 PM Page 9

that policy assertions are as explicit as possible regarding service expectations and semantic
compatibilities.

The four tenets of service orientation provide you with a set of fundamental principles
when you are designing services. When defining a service, it is always easier to work with well-
defined requirements because that allows for a well-defined scope and purpose of a service.
This enables a service to encapsulate distinct functionality with a clear-cut context. Sadly,
more often than not, requirements are not well defined, which poses more of a problem. It is
difficult to define the service that accurately represents its capabilities because one cannot
relate the service operations by some logical context.

When defining services from scratch, it is helpful to categorize them according to the set
of existing business service models already established within the organization. Because these
models already establish some of the context and purpose in their boundary, it makes it easier
to design the new services.

In addition, the naming of the service should also influence the naming of the individual
operations within the service. As stated earlier, a well-named service will already establish a
clear context and meaning of the service, and the individual operations should be rationalized
so as not to be confusing or contradict the service. Also, because the context is established, the
operations should also try to avoid confusing naming standards. For example, if you have a
service that performs stock operations, then one of the operations in that should be GetQuote
instead of GetStockQuote, because the context has already been established. Similarly, if you
can reuse the service, then avoid naming the operations after some particular task, rather try-
ing to keep the naming as generic as possible.

Naming conventions might not seem important at first, but as your service inventory in
the organization grows, so will the potential to reuse and leverage the existing service to
achieve integration within the various groups and systems. The effort required to establish a
consistent naming convention within an organization pays off quickly. A consistent set of
services that cleanly establish the level of clarity between the services enables easier interop-
erability and reuse.

Unfortunately, no magic bullet can help you standardize on the right level of granularity
that will enable service orientation. But, the key point to remember is the service should
achieve the right balance to facilitate both current and upcoming data requirements, in
essence meeting the business’s need to be more agile and responsive to market conditions.

“COMPONENTS” AND “SERVICES”—ARE THEY THE SAME?

It is natural to be confused about the terms component and services and what they mean. A component is a
piece of compiled code that can be assembled with other components to build applications. Components can
also be easily reused within the same application or across different applications. This helps reduce the cost
of developing and maintaining the application once the components mature within an organization. Compo-
nents are usually associated with the OOP paradigm.

A service is implemented by one or more components and is a higher-level aggregation than a compo-
nent. Component reuse seems to work well in homogeneous environments; service orientation fills the gap
by establishing reuse in heterogeneous environments by aggregating one or more components into a service
and making them accessible through messages using open standards. These service definitions are deployed
with the service, and they govern the communication from the consumers of the service via various contracts
and policies, among other things.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE10

7028Ch01.qxp 12/11/06 8:32 PM Page 10

SOA also assists in promoting reuse in the enterprise. Services can provide a significant
benefit because you can achieve reuse at many levels of abstraction compared to the tradi-
tional methods (in other words, object orientation provide only objects as the primary reuse
mechanism). SOA can offer reuse at multiple levels, including code, service, and/or function-
ality. This feature enhances flexibility to design enterprise applications.

WCF makes it easier for developers to create services that adhere to the principle of serv-
ice orientation. For example, on the inside, you can use OO technology to implement one or
more components that constitute a service. On the outside, communication with the service is
based on messages. In the end, both of these technologies are complementary to each other
and collectively provide the overall SOA architecture.

Although there have been a few attempts to solve the distributed application problem in
the enterprise, there has yet to be a more demanding need to be consistent for standardizing.
The scope of an SOA approach allows you to incorporate far-reaching systems across a num-
ber of platforms and languages. One great example of standardization in an enterprise today
is web services, which we will discuss in the next section. Web services expose functionality
that can be discovered and consumed in a technology-neutral, standardized format.

Web Services As a Key Enabling Technology for a
Service-Oriented Architecture
There has been a lot of discussion about SOA and web services in the past few years. It might
seem that web services and services are analogous in the context of SOA. On the surface this
might seem accurate, but the reality is far from it. A web service is just one kind of implemen-
tation of a service. Web services are just a catalyst for an SOA implementation. In recent years
with the relative ease that allows one to create web services, it has become easier to deliver
SOA implementations; the SOA concept is not new, and certain companies (such as IBM) have
been delivering it for more than a decade.

Almost everyone talks about web services, but interestingly no definition is universally
acceptable. One of the definitions that is accepted by some is as follows: “A web service is a
programmable application component accessible via standard web protocols.” The key
aspects of a web service are as follows:

Standard protocol: Functionality is exposed via interfaces using one of the few standard
Internet protocols such as HTTP, SMTP, FTP, and so on. In most cases, this protocol is HTTP.

Service description: Web services need to describe their interfaces in detail so that a client
knows how to “consume” the functionality provided by the service. This description is
usually provided via an XML document called a WSDL document. (WSDL stands for Web
Services Description Language.)

Finding services: Users need to know what web services exist and where to find them so
the clients can bind to them and use the functionality. One way for users to know what
services exist is to connect to a “yellow pages” listing of services. These yellow pages are
implemented via Universal Discovery, Description, and Integration (UDDI) repositories.
(These can be private or public UDDI nodes.)

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 11

7028Ch01.qxp 12/11/06 8:32 PM Page 11

■Note A web service is not an object model and is not protocol specific. In other words, it’s based on a
ubiquitous web protocol (HTTP) and data format (XML). A web service is also not dependent on a specific
programming language. You can choose to use any language or platform as long as you can consume and
create messages for the web service.

Figure 1-2 shows the basic protocol stack for web services. Interaction with the service will
usually follow a top-down fashion—that is, service discovery down to messaging—invoking the
methods on the service. If you are new to web services and do not understand the various pro-
tocols and standards, don’t worry, because we will be describing them later in this chapter.

Figure 1-2. Protocol stack for web services

To consume a web service, you first find the service and what it offers (you can accom-
plish this by using UDDI). Once you have found the web service, you need to understand the
interface: what the methods are, the parameters accepted, and so on. Traditionally, part of this
discovery also entails what the data types are and the schema that the service expects. You can
achieve the service description using WSDL and XML Schema Definition (XSD). However, with
WCF, the recommendation is to use UDDI purely for publishing Web Services Metadata
Exchange (WS-MetadataExchange, or MEX) endpoints and ask the service directly for the
WSDL and policies. Lastly, the client needs to invoke the web service from the client via SOAP,
which is based on XML.

WCF services also follow the open standards stack. Therefore, this stack not only addresses
web services but it also describes the protocol stack for any service. You can argue the terminol-
ogy services originated from web services. By definition, services do not need to depend on IIS
or web servers to provide hosting environments. WCF enables developers to host services out-
side IIS. (We’ll discuss this topic in detail in Chapter 5.) Therefore, you do not need to restrict
the services to originate from a web server. Hence, they do not need to be called web services.
The protocol stack plays a major role in understanding SOA functionality. Therefore, we’ll dis-
cuss these protocols one by one. We will start with SOAP.

UDDI Service Discovery

WSDL

Service Description
XSD

SOAP

Messaging
XML

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE12

7028Ch01.qxp 12/11/06 8:32 PM Page 12

■Note Web services use metadata to describe what other endpoints need to know to interact with them.
This includes WS-Policy (which describes the capabilities, requirements, and general characteristics), WSDL,
and XML Schema. To bootstrap communication with web services and retrieve these and other types of
|metadata, you use MEX, which is a specification that defines messages to retrieve metadata and policies
associated with an endpoint. This is an industry-standard specification agreed on by most of the leading soft-
ware companies such as Microsoft, IBM, Sun Microsystems, webMethods, SAP, and so on. The interactions
defined by this specification are intended for metadata retrieval only and are not used to retrieve types of data
such as states, properties, and so on, that might be associated with the service. For the detailed specification,
see http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-metadataexchange.pdf.

Introducing SOAP
Simply put, SOAP is a lightweight communication protocol for web services based on XML. It is
used to exchange structured and typed information between systems. SOAP allows you to
invoke methods on remote machines without knowing specific details of the platform or soft-
ware running on those machines. XML is used to represent the data, while the data is structured
according to the SOAP schema. The only thing both the consumer and provider need to agree on
is this common schema defined by SOAP. Overall, SOAP keeps things as simple as possible and
provides minimum functionality. The characteristics of a SOAP message are as follows:

• It is extensible.

• It works across a number of standardized underlying network protocols.

• It is independent of the underlying language or platform or programming model.

■Note SOAP used to stand for Simple Object Access Protocol, but the W3C dropped that name when the
focus shifted from object “access” to object “interoperability” via a generalized XML messaging format as
part of SOAP 1.2.

SOAP recognizes the following message exchange patterns: one-way, request-response,
and so on. Figure 1-3 shows a one-way SOAP message (that is, no response is returned). The
SOAP sender will send the message over some communication protocol.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 13

7028Ch01.qxp 12/11/06 8:32 PM Page 13

Figure 1-3. Simple one-way SOAP message

As Figure 1-3 shows, the SOAP message can be sent over any communication protocol, and
the sender and receiver can be written in any programming model or can run on any platform.

Extensible
Extensibility is the key factor for SOAP in addition to the simplicity of design. Extensibility
allows various features such as reliability, security, and so on to be “layered” via SOAP exten-
sions. Every vendor defines its own set of extensions providing many feature-rich features on
its platform.

Transport
SOAP can use one of the many standard transport protocols (such as TCP, SMTP, FTP, MSMQ,
and so on). You need to define standard protocol bindings, which outline the rules for the
environment to address interoperability. The SOAP specification provides a flexible framework
for defining arbitrary protocol bindings and provides an explicit binding for HTTP because it’s
so widely used.

■Note Most programmers new to SOAP are confused about the difference between the SOAP specification
and the vendor implementations of the SOAP specification. Developers usually use a SOAP toolkit to create
and parse SOAP messages instead of handcrafting them. The types of functional calls and supported data
types for the parameters vary between each vendor implementation. As a result, a function that works with
one toolkit may not work with the other. This is not a limitation of SOAP but rather a limitation of the particu-
lar vendor-specific implementation being used.

SOAP
Sender

SOAP
Receiver

SOAP
Message

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE14

7028Ch01.qxp 12/11/06 8:32 PM Page 14

Programming Model
One of the strengths of SOAP is that it is not tied to RPC but can be used over any program-
ming model. Most developers are surprised to learn that the SOAP model is akin to a
traditional messaging model (such as MSMQ) and less to an RPC style, which is how it is used
primarily. SOAP allows for a number of MEPs, one of them being the request-response model.

■Note MEPs are essentially a set of design patterns for distributed communications. MEPs define the tem-
plate for exchanging messages between two entities. Some examples of MEPs include RPC, Representational
State Transfer (REST), one-way, request-response, and so on. RPC is essentially a protocol that allows one
application to execute another application or module on another computer, without the developer having to
write any explicit code to accomplish the invocation. REST, on the other hand, is an architectural style that is
different from RPC. This uses a simple XML- and HTTP-based interface, but without the abstraction of protocol
such as SOAP. Some purists see this as the subset of the “best” architectures of the Web.

SOAP Message
SOAP’s building block is the SOAP message, which consists of the following four parts:

• A SOAP envelope is an XML document that encapsulates the message to be communi-
cated. This is the only part that is required; the rest is optional.

• The second part of the SOAP message is used to define any custom data types that the
application is using.

• The third part of the message describes the RPC pattern to be used.

• The last part of the message defines how SOAP binds to HTTP.

A SOAP envelope is the root element of the message. The envelope has two sections: the
header and the body. The header has metadata about the message that might be needed for
some specific processing, such as a date-time stamp when the message was sent or an
authentication token. The body contains the details of the message or a SOAP fault. Figure 1-4
shows the structure of a SOAP message. A SOAP message can be one of three types, namely,
request messages, response messages, and fault messages.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 15

7028Ch01.qxp 12/11/06 8:32 PM Page 15

Figure 1-4. SOAP message structure

A request-response SOAP message, as Figure 1-5 shows, essentially has two messages: one
is the request message sent to the service, and the other is a response message sent back to the
client. Although these messages are independent from each other, the request-response pat-
tern provides automatic correlation and synchronization between the messages. This results
in “normal” procedure call semantics to the client.

Figure 1-5. Request-response exchange pattern

Syntactically a SOAP message is quite simple, but the following are a few rules you need to
keep in mind when manually writing SOAP messages:

• Must be encoded in XML

• Must use the SOAP envelope namespace

• Must use the SOAP encoding namespace

• Cannot contain a DTD reference

• Cannot contain XML processing instructions

SOAP
Sender

SOAP
Receiver

Request Message

Response Message

SOAP Message

Protocol Headers

SOAP Envelope

SOAP Header

Individual Headers

SOAP Body

Message
Name and Data

Fault

Complete SOAP message

Standard protocol (HTTP, SMTP, and so on) and SOAP header

<Envelope> encloses payload

<header> encloses headers

Individual headers

<BODY> contains SOAP message name and data

XML-encoded message name and data

SOAP fault for sending exceptions using web services

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE16

7028Ch01.qxp 12/11/06 8:32 PM Page 16

■Note Contract first or code first? When designing a service contract, you have two approaches; you can
either use the contract-first approach or use the code-first approach. The contract-first approach ensures
interoperability and for most situations is the recommended approach. This ensures that any consumers of
the services conform to the published contract. This is especially important if any third parties are involved
who need to conform to a predetermined contract. One of the biggest challenges to the contract-first
approach is the lack of tool support, which hurts productivity. If in a given situation productivity has a higher
precedence than interoperability, then it might make sense to use the code-first approach. Please refer to
Chapter 4 for a more detailed discussion.

SOAP Faults
When an exception needs to be returned by the service, this takes place using a fault element in
a SOAP response. A fault element needs to be within the body element of the SOAP message and
can appear only once. The fault element must contain a faultcode element and a faultstring
element. The fault message contains the exception details such as error code, description, and
so on. Table 1-1 lists the fault codes defined by the specification.

Table 1-1. SOAP Fault Codes

Error Description

VersionMismatch The SOAP receiver saw a namespace associated with the SOAP
envelope that it did not recognize.

MustUnderstand The receiver of the message did not understand a required header.

Client The message sent by the client was either not formed correctly or
contained incorrect information.

Server An error happened at the server while processing the message.

SOAP Message Format
Two types of SOAP messaging formats or styles exist: document and RPC. Document style
indicates the message body contains XML where the format must be agreed upon between the
sender and the receiver. The RPC style indicates it is a representation of a method call.

You also have two ways to serialize the data to XML: using literal XML schema definitions
and using SOAP encoding rules. In the first option, the schema definition defines the XML for-
mat without any ambiguity. These rules are defined in the specification and are sometimes
referred to as Section 5 encoding. It is more suitable for the RPC-style usage of SOAP, because
this option specifies how to serialize most data types including arrays, objects, structures, and
so on. On the other hand, in the second option, the various SOAP encoding rules (usually
defined via a W3C schema) must be parsed at runtime to determine the proper serialization of
the SOAP body. Although the W3C permits the use of both document-literal and RPC-literal
formats, Microsoft recommends the former over the latter because the message should not
dictate the way it’s being processed by the service.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 17

7028Ch01.qxp 12/11/06 8:32 PM Page 17

SOAP Implementations by Major Software Vendors
Every major software vendor in the industry has a SOAP stack implemented that covers both
the open source market and the commercial market. On the open source front, solutions exist
from the likes of Apache Axis implemented in Java/C++ to PocketSoap implemented via COM.
Implementations exist for almost all platforms such as Soap::Lite in Perl and PHP Soap in, you
guessed it, PHP.

On the commercial side of things, every major software vendor has a stack that is tightly
integrated with its other offerings. Microsoft, of course, has the .NET Framework, which tightly
integrates with Visual Studio and ASP.NET to provide a seamless experience for a developer.
IBM’s implementation is its WebSphere web services that allow you to integrate with technolo-
gies such as JAX-B, EMF/SDO, and XMLBeans. Oracle’s web service is implemented as part of
the Oracle Application Server (10g) line. Sun Microsystems has implemented the web services
stack via the Web Services Developer Pack (WSDP), and BEA has WebLogic Server.

■Note <soaprpc/> lists web service implementations by various vendors at http://www.soaprpc.com/
ws_implementations.html.

Some vendors do not implement the complete Web Services Interoperability (WS-I) profile
stack but do only a subset. Security, for example, has had a lot of interest from most enterprise
organizations. Both hardware devices (such as XML Firewall from Reactivity) and software
products (such as XML Trust Services from VeriSign) exist that provide many security features
and act as catalysts for web services. We’ll address some of these implementations in detail in
Chapter 13.

With so many implementations covering almost all platforms and runtimes, it is not
possible to standardize on the various data types used by the components and how they are
represented in memory. A consumer and provider running on different platforms will not be
able to exchange any information without standardizing, thus nullifying the promise of web
services. To help solve this, the W3C recommends XSD, which provides a platform-
independent description language and is used to describe the structure and type of
information using a uniform type system.

How do you describe a service to the consuming party? What open standards do you have
to “describe” a service to its consumer? You achieve this by implementing WSDL. You’ll now
learn a bit more about WSDL.

Web Services Description Language: Describing Service
Endpoints
If no standards existed, it would have been difficult for web services and in turn SOAs to be so
widely accepted. WSDL provides the standardized format for specifying interfaces and allows
for integration. Before we get into the details of WSDL, you need to understand the notion of
endpoints because they are paramount to WSDL.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE18

7028Ch01.qxp 12/11/06 8:32 PM Page 18

What Are Endpoints?
Officially, the W3C defines an endpoint as “an association between a fully specified interface
binding and a network address, specified by a URI that may be used to communicate with an
instance of a web service.” In other words, an endpoint is the entity that a client connects to
using a specific protocol and data format when consuming a service. This endpoint resides at
a well-known location that is accessible to the client. At an abstract level, this is similar to a
port, and in some implementations such as BizTalk, this can literally be exposed as a port for
others to consume over. When looking from the perspective of endpoints, a service can also be
defined as a collection of endpoints.

WSDL
WSDL (pronounced as “whiz-dull”) forms the basis of web services and is the format that
describes web services. WSDL describes the public interface of a web service including meta-
data such as protocol bindings, message formats, and so on. A client wanting to connect to a
web service can read the WSDL to determine what contracts are available on the web service.
If you recall from earlier in the chapter, one of the key tenets of service orientation is that the
services share contracts and schemas, not classes. As a result, when you are creating a service,
you need to ensure the contract for that service is well thought out and is something you
would not change.

Any custom types used are embedded in the WSDL using XML Schema. WSDL is similar
to Interface Description Language (IDL) for web services. The information from the WSDL
document is typically interpreted at design time to generate a proxy object. The client uses the
proxy object at runtime to send and receive SOAP messages to and from the service.

■Note IDL is a standardized language used to describe the interface to a component or routine. IDL is
especially useful when calling components on another machine via RPC, which may be running on a
different platform or build using a different language and might not share the same “call semantics.”

A WSDL document has three parts, namely, definitions, operations, and service bindings,
which can be mapped to one of the elements listed in Table 1-2.

Table 1-2. WSDL Document Structure

Element Description

<portType> Operations performed by the web service

<message> Message used by the web service

<types> Data types used by the web service

<binding> Defines a communication endpoint (by means of protocol and address)
to access the service

<Service> Aggregates multiple ports (in combination with binding and address
into a service)

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 19

7028Ch01.qxp 12/11/06 8:32 PM Page 19

Definitions
Definitions are expressed in XML and include both data type and message definitions. These
definitions are based upon an agreed-on XML vocabulary that in turn should be based on a
set of industry-wide vocabulary. If you need to use data type and message definitions between
organizations, then an industry-wide vocabulary is recommended.

■Note Definitions are not constraints to XML and can be expressed in formats other than XML. As an
example, you can use the Object Management Group (OMG) IDL instead of XML. If you use a different defini-
tion format, as with XML, both the senders and receivers would need to agree on the format and the
vocabulary. However, as per the official W3C WSDL specification, the preference is to use XSD as the canoni-
cal type system. Sticking to this would ensure maximum interoperability and platform neutrality.

Operations
Operations describe the actions for the message supported by the web service and can be one
of four types, as listed in Table 1-3. In a WSDL document structure, operations are represented
using the <portType> element, which is the most important element because it defines the
operations that can be performed. In context of the OO paradigm, each operation is a method.

Table 1-3. Operation Types

Error Description

One-way The service endpoint receives a message.

Request-response The service endpoint receives a message and sends a correlated
message.

Solicit-response The service endpoint sends a message and receives a correlated
message.

Notification The service endpoint sends a message.

Figure 1-6 shows the structure of a WSDL document, which consists of abstract definitions
and concrete descriptions. On the left is the abstract definition where the data type’s definition
is a container for using some type system such as XSD. Message definitions, as the name sug-
gests, are the typed definitions of the data being communicated. An operation is a description
of the action supported by the service and contains one or more data types and message defini-
tions, as shown in Figure 1-6. Port types are a set of operations supported by more than one
endpoint. All of these are brought together by the binding, which is the concrete protocol and
data format specified for a particular port type. A port is a single endpoint defined as the com-
bination of the binding and the network address. Most developers do not handcraft the WSDL
but instead use the underlying .NET Framework to generate this for them.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE20

7028Ch01.qxp 12/11/06 8:32 PM Page 20

Figure 1-6. WSDL

Service Bindings
Service bindings connect port types to a port (that is, the message format and protocol details
for each port). A port is defined by associating a network address with a port type. A service can
contain multiple ports. This binding is commonly created using SOAP. The binding element has
two attributes: a name that can be anything to define the binding and the type, which points to
the port for the binding.

Now you are familiar with SOAP and how you describe the services with WSDL. However,
how can you discover all the services that are available to you? What open standards are avail-
able to dynamically discover services and consume them at runtime? You achieve this by
implementing UDDI. You’ll now investigate what UDDI is.

Dynamically Discovering Web Services
UDDI is a platform-independent directory protocol for describing services and discovering
and integrating business services via the Internet. UDDI is also based on industry-standard
protocols such as HTTP, XML, SOAP, and so on, and it describes the details of the services
using WSDL and communicates via SOAP. The philosophy behind UDDI is like a traditional
“yellow pages” where you can search for a company, search for the services its offers, and even
contact the company for more information.

A UDDI entry is nothing but an XML file that details the business and the services it
offers. It consists of three parts: the white, yellow, and green pages. The white pages contain
details of the company and its contact information. The yellow pages include industry cate-
gories based on standardized taxonomies such as the North America Industry Classification
System, and so on. The green pages contain the technical details that describe the interface via
a WSDL so a consumer has enough information about how to use the service and what is
expected. A UDDI directory also includes several ways to search for the services it offers
including various filtering options such as geographic location, type of business, specific
provider, and so on.

Before UDDI was standardized, there was no universal way to know what services were
offered by partners or off-the-shelf options. You also have no way to get standard integration
and dependencies between providers. The problems that UDDI solves are as follows:

Data Type Definitions

Message Definitions
Binding

Operation

Port Type

Port and Network
Address

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 21

7028Ch01.qxp 12/11/06 8:32 PM Page 21

• UDDI makes it possible to discover the right service that can be used, instead of rein-
venting the wheel.

• UDDI solves the customer-driven need to remove barriers to allow for the rapid partici-
pation in the global Internet economy.

• UDDI describes services and business processes programmatically in a single, open,
and secure environment.

■Note UDDI offers more than design-time support. It plays a critical role after the discovery of a service
because it allows the client to programmatically query the UDDI infrastructure, which further allows the
client applications to be more robust. With a runtime layer between the client and the web service, the
clients can be loosely coupled, allowing them to be more flexible to the changes. Microsoft recommends
publishing a WS-MEX as part of the entries in the UDDI registry.

Now you are familiar with SOAP, WSDL, and UDDI. However, how do all these technolo-
gies work together to send a message from the sender to the receiver in a loosely coupled
system? You’ll now investigate how to achieve this.

Sending Messages Between Loosely Coupled
Systems
To achieve service orientation, you need the ability to send messages from one service to
another. In the context of WCF, service invocation is a general mechanism for sending mes-
sages between an entity that requests a service and another entity that provides the service. It
is important to understand that it does not matter where the provider and consumer physi-
cally exist; they could be on the same physical machine or spread across the opposite ends of
the planet. However, from a service execution perspective, it matters, and WCF fills this infra-
structure gap.

Service invocation, irrespective of platform and technology, follows a similar pattern. At a
high level, the steps involved when a consumer sends a message to a provider are as follows:

1. Find the relevant service that exposes the desired functionality.

2. Find out the type and format of the messages that the service would accept.

3. Understand any specific metadata that might be required as part of the message (for
example, for transaction or security).

4. Send the message to the provider with all relevant data and metadata.

5. Process the response message from the service in the appropriate manner (for exam-
ple, the request might have been successful, or it might have failed because of
incorrect data or network failure, and so on).

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE22

7028Ch01.qxp 12/11/06 8:32 PM Page 22

Because web services are the most popular implementation of service orientation, let’s
look at an example of how you would use a web service to send messages from one applica-
tion to another. Invoking a web service “method” is similar to calling a regular method;
however, in the first case, the method is executed on a remote machine. As the web service is
running on another computer, all the relevant information needed by the web service needs
to be passed to the machine hosting the service. This information then is processed, and the
result is sent to the client.

The life cycle of an XML web service has eight steps, as shown in Figure 1-7:

1. A client connects to the Internet and finds a directory service to use.

2. The client connects to the directory service in order to run a query.

3. The client runs the relevant query against the directory service to find the web service
that offers the desired functionality.

4. The relevant web service vendor is contacted to ensure the service is still valid and is
available.

5. The description language of the relevant web service is retrieved and forwarded to the
client.

6. The client creates a new instance of an XML web service via the proxy class.

7. The runtime on the client serializes the arguments of the service method into a SOAP
message and sends it over the network to the web service.

8. The requested method is executed, which sets the return value including any out
parameters.

Figure 1-7. Web service lifetime

WSDL FileInterface

Web Service
SOAP Messages

Internet

Client

Internet

Search for Web
Service Functionality

UDDI
Registry

Web
Service
Vendor

1

2
3

4

5

6

7

8

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 23

7028Ch01.qxp 12/11/06 8:32 PM Page 23

■Note Although we have shown the example of a web service implementation, WCF provides unification
across the many distributed computing technologies and provides a common programming model irrespec-
tive of the underlying protocol or technology. Also, differences exist in the design time and the runtime of a
WCF implementation. At design time, for example, an SOA implementation would usually account for the def-
inition of the service, the different data types it expects in what order, and so on. But many elements are
accounted for only at runtime, such as the physical location of the service, network latency and failure, error
detection and recovery, and so on. All these attributes are not usually addressed at design time but are
picked up by the WCF runtime; the WCF runtime can also change the behaviors of the service during the
actual operation. This behavior can also be adjusted based on the demand of the service. For more details,
refer to Chapter 2.

Summary
This chapter introduced the concepts of services and SOA. We also described the governing
principles for services, in terms of the four tenets. It is important to understand that at the end
of the day SOA is not about how to invoke objects remotely or how to write web services; it is all
about how to send messages from one application to another in a loosely coupled fashion. Web
services are just one of the many, albeit the most popular, ways to send messages between dis-
parate systems. Adopting an SOA approach is important to an enterprise to help it deliver the
business agility and IT flexibility needed to be able to succeed in today’s marketplace.

The next chapter will introduce you to the new features of WCF, the challenges it helps
solve, and the unification of the various distributed technologies. We will also illustrate how
WCF addresses SOA concepts to promote WCF as a practical SOA implementation from
Microsoft.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE24

7028Ch01.qxp 12/11/06 8:32 PM Page 24

Introducing WCF Basics

During the past decade, a lot of research has been done in the field of distributed computing.
Microsoft and other leading vendors have come up with various distributed technologies. Each
of the technologies reduces the convolution of building rich applications and lowers develop-
ment costs. The latest from Microsoft is Windows Communication Foundation (WCF), the
next-generation uniform way of developing distributed applications by providing a service-
oriented programming model.

WCF (formerly known as Indigo) handles the communication infrastructure of Windows
Vista and has been extended to Windows XP and Windows 2003 through the .NET Framework
3.0 (formerly known as WinFX). The .NET Framework 3.0 is a managed programming model
for Windows (Windows XP, Windows 2003, and Windows Vista) that is designed to replace the
Win32 application programming interface (API) in future releases. WCF provides the commu-
nication infrastructure that allows you to create diverse ranges of applications through its
simplified model. Based on the notion of services, WCF contains the best features of today’s
distributed technology stack to develop the connected systems.

After completing this chapter, you will have the following knowledge:

• You’ll know about existing distributed technologies and their pitfalls.

• You’ll know about the key architectural concepts that underpin WCF.

• You’ll have seen a high-level overview of WCF’s features.

• You’ll understand how WCF unifies existing distributed technologies.

Introducing the Microsoft Remote Object
Invocation Model
Microsoft started its remote invocation technologies with Distributed Component Object
Model (DCOM), which extended Component Object Model (COM). Then, .NET introduced
technologies such as .NET Remoting and XML web services. We’ll now cover these technolo-
gies in bit more detail.

25

C H A P T E R 2

■ ■ ■

7028Ch02.qxp 12/11/06 8:33 PM Page 25

Introducing COM and DCOM
Microsoft developed COM to enable applications to interact with each other and to promote
reusability. COM is the set of specifications that, when followed, allows software components
to communicate with each other. Each component exposes its functionality through an inter-
face and is uniquely identified by global unique identifiers (GUIDs). The advantage of using
COM is that different components developed in different languages can write these software
components and interact with each other by using IUnknown and other standard COM inter-
faces. Most of Microsoft’s products, including Microsoft Office, SQL Server, and even
Windows, are based on COM. Though COM provides the ability to reuse the components
locally, it was not designed to work well with remote components.

Few specifications and extensions had been made that were based on COM and that inter-
acted with remote components. However, the need for remote method invocations grew sub-
stantially. To solve this concern, Microsoft developed DCOM. This essentially is a combination of
COM and the network protocol that allows you to run a COM object on a remote computer.
DCOM was a proprietary wire-protocol standard from Microsoft to extend COM so it could work
in distributed environments. DCOM provides an opportunity to distribute your component
across different locations according to the application requirements. In addition, DCOM provides
basic infrastructure support such as reliability, security, location independence, and efficient
communication between COM objects that are residing across processes and machines.

■Tip Covering DCOM and COM in more detail is beyond the scope of this book, but if you want to delve into
it, we suggest you refer to Inside COM (Microsoft Press, 1997) by Dale Rogerson.

The following are the problems with DCOM:

• DCOM and other distributed technologies such as CORBA, RMI, and so on, are based
on several assumptions. One of the key assumptions is that one organization will man-
age all the components in the systems that are interacting with each other. Another is
that the location of a component will not vary from one place to the other. This sce-
nario can work fine within an organization, but as you cross organization boundaries,
the limitations of DCOM become more significant.

• Microsoft has invested a lot in DCOM to ensure that calling a remote method is as simple
as calling the local component by simplifying the low-level network communication
requirements. Most of the time this resulted in bad programming practices by program-
mers, which resulted in increased network traffic and performance bottlenecks.

• DCOM, being based on a proprietary standard, was essentially built taking only the
Windows operating systems into account, making it not suited for heterogeneous
environments.

• Another issue with DCOM is that its client is tightly coupled with the server, so any
changes done on the client mandate a modification on the server.

CHAPTER 2 ■ INTRODUCING WCF BASICS26

7028Ch02.qxp 12/11/06 8:33 PM Page 26

• DCOM, like other distributed technologies, is based on two-tier architecture and suffers
from some of the same flaws of two-tier architecture.

• DCOM came before the computer world experienced the Internet boom. DCOM was
never built with the Internet in mind. System administrators need to compromise the
security of the firewall in order to use DCOM across firewalls/locations. DCOM is used
to communicate through ports that are generally restricted by firewalls because the
ports are susceptible to attacks.

Introducing .NET Remoting
Though COM and DCOM are able to provide reusability and a distributed platform, they also
suffer from problems of versioning, reference counting, and so on. Microsoft .NET came up
with a vision to be more connected than ever. It wanted to deliver software as a “service” and
also resolve issues related to COM. The release of .NET was termed as the biggest revolution
ever on the Microsoft platform after the introduction of Windows. .NET Remoting is one of the
ways to create distributed applications in .NET. Developers now have additional options such
as XML web services and service components. Essentially, .NET Remoting takes a lot of les-
sons from DCOM. It replaces DCOM as the preferred technology for building distributed
applications. It addresses problems that have wounded distributed applications for many
years (that is, interoperability support, extensibility support, efficient lifetime management,
custom hosts, and an easy configuration process).

.NET Remoting delivers on the promises of easy distributed computing by providing a
simple, extensible programming model, without compromising flexibility, scalability, and
robustness. It comes with a default implementation of components such as channels and pro-
tocols, but all of them are pluggable and can be replaced with better options without much
code modification. Earlier, processes were used to isolate applications from each other. Each
process had its own virtual address space, and the code that ran in one process could not
access the code or data of another process. In .NET, one process can now run multiple appli-
cations in a separate application domain and thereby avoid cross-process communication in
many scenarios. In normal situations, an object cannot access the data outside its application
domain. Anything that crosses an application domain is marshaled by the .NET runtime. Not
only does .NET Remoting enable communication between application domains, but it also
can be extended across processes, machines, and networks. It is flexible in the channels and
formatters that can be used and has a wide variety of options to maintain state. Though .NET
Remoting provides the best performance and flexibility, it too suffers from some vital pitfalls.

The following are the problems with .NET Remoting:

• .NET Remoting works best when assemblies that define the types that are used to inte-
grate are shared. .NET Remoting works fairly well if there is full control over both ends
of the wire. Therefore, it works well in an intranet where you have complete control of
the deployment, the versioning, and the testing.

• Practically, .NET Remoting is proprietary to .NET and works seamlessly to exchange
data between two .NET applications. It is deeply rooted in the common language run-
time (CLR) and relies on the CLR to obtain metadata. This metadata means the client
must understand .NET in order to communicate with endpoints exposed by .NET
Remoting.

CHAPTER 2 ■ INTRODUCING WCF BASICS 27

7028Ch02.qxp 12/11/06 8:33 PM Page 27

• .NET Remoting requires a big leap between programming at a high level and dropping
down into the infrastructure. It’s pretty easy to code .NET Remoting with the available
components, but if you want to start learning about adding your own transports, the
level of complexity increases. .NET Remoting gives you finer-grained control on each
architectural component but also requires a deep knowledge of its architecture.

• .NET Remoting suffers from the issues of load balancing because it is not intelligent
enough to shift a request from a busy application server to one that is not as busy.

Why Are Web Services the Preferred Option?
Unfortunately, with an existing distributed technology stack, you’ll often find a number of lim-
itations, especially with interoperability between platforms. For example, if you try to deploy a
COM+ application to converse across a firewall or to converse across smart routers or organi-
zational boundaries, you’ll often find some significant differences. Most of the earlier distri-
buted component technologies were by no means built to deal with firewalls and intelligent
routers. For instance, if you build an application using Microsoft Enterprise Services (a set of
classes provided by Microsoft to be leveraged in enterprise applications), how do you utilize
the service from a Java client? Considering that most of the enterprises are working on differ-
ent technologies and different platforms, interoperability is a major issue. Generally,
companies used to buy some complex software and invest a lot of money in building a bridge
between the existing components to make them distributed. Other complexities and difficul-
ties soon arose when these custom solutions needed to be extended further. Web services
solve these problems by relying on open standards and protocols that are widely accepted.

Web services are not just another way of creating distributed applications. The distinguishing
factor of web services from other distributed technologies is that rather than relying on propri-
etary standards or protocols, web services rely on open web standards (such as SOAP, HTTP, and
XML). These open standards are widely recognized and accepted across the industry. Web serv-
ices have changed how distributed applications are created. The Internet has created a demand
for a loosely coupled and interoperable distributed technology. Specifically, prior to web services,
most of the distributed technologies relied on the object-oriented paradigm, but the Web has cre-
ated a need for distributed components that are autonomous and platform independent.

XML web services are designed with interoperability in mind and are easily callable from
non-Windows platforms. It is common to confuse web services with .NET Remoting. Web serv-
ices and .NET Remoting are related, but web services have a more simplified programming model
than .NET Remoting. In other words, they both look similar from a high-level architecture level,
but they differ in the way they work. For example, they both have different ways of serializing data
into messages. .NET Remoting supports RPC-based communication by default, and web services
support message-based communication by default. Web services rely on XML Schema for data
types, and .NET Remoting relies on the CLR. You can use .NET Remoting to build web services,
but the Web Services Description Language (WSDL) generated by .NET Remoting is not widely
adopted and might be ignored by some clients. Though you can use either for creating compo-
nents, .NET Remoting is suitable for creating components to be used by your own application
running in the .NET environment, and XML web services create components that can be accessi-
ble to any application connected via the Internet. Through web services, Microsoft wants to
achieve the best of both worlds—Web development and component-based development. Web
services were the first step toward service orientation, which is a set of guiding principles for

CHAPTER 2 ■ INTRODUCING WCF BASICS28

7028Ch02.qxp 12/11/06 8:33 PM Page 28

developing loosely coupled distributed applications. SOA is a vision of services that have well-
defined interfaces. These loosely coupled interfaces communicate through messages described
by XML Schema Definition (XSD) and through the message patterns described by WSDL. This
provides for a great base architecture for building distributed applications. Since a web service
and its clients are independent from each other, they need to adhere only to the XSD and WSDL
document standards in order to communicate.

The next Microsoft offering to address SOA is WCF. We’ll now discuss how WCF comple-
ments web services and enhances their value.

What Does WCF Solve?
WCF is not just another way of creating a distributed solution but provides a number of bene-
fits over its predecessors. If you look at the background of WCF, you’ll find that work on WCF
started with the release of .NET. Microsoft unveiled this technology at the Microsoft Product
Developers Conference 2003 in Los Angeles, California. In other words, it has taken years to
build and come to market. WCF addresses lots of issues, and Figure 2-1 shows the three main
design goals of WCF:

• Unification of existing technologies

• Interoperability across platforms

• Service-oriented development

Figure 2-1. Design goals of WCF

Interoperability
Across Platforms

Service-Oriented
Development

Unification of
Existing Distributed

Technology

CHAPTER 2 ■ INTRODUCING WCF BASICS 29

7028Ch02.qxp 12/11/06 8:33 PM Page 29

Unification of Existing Technologies
The current world of enterprise computing has many distributed technologies, each of which
has a notion to perform a specific task and have its distinct role in the space. Apart from that,
these distributed technologies are based on different programming models. (For example, if
you are building an application that happens to communicate over HTTP, you will be required
to change your programming model if you want to switch to using TCP. If you are used to
building XML web services today, you don’t have the ability to support and flow transactions
with message queuing enabled without changing your programming model.) This has created
problems for developers, who have to keep learning different APIs for different ways of build-
ing distributed components.

The constant fight since the 1990s between distributed technologies has led to a debate
about which technology is best suited for developing distributed applications in the long
term. One of the interesting questions is, why not have just one technology that can be used in
all situations? WCF is Microsoft’s solution to distributed application development for enter-
prise applications. It avoids confusion by taking all the capabilities of the existing distributed
systems’ technology stacks and enables you to use one clean and simple API. In other words,
WCF brings the entire existing distributed stack under one roof. All you need to do as a devel-
oper is reference the System.ServiceModel assembly and import its namespace.

WCF is a set of class libraries that comes with the .NET Framework 3.0. The .NET Frame-
work 3.0 will become a core API with the Windows Vista operating system. You can also install
it on a machine running Windows XP (Service Pack 2) as well as Windows Server 2003.

■Note For more information about installing WCF, refer to Appendix C.

If you look at Figure 2-2, you will find that WCF subsumes the best of all the distributed
technologies. WCF brings together the efficiency of ASMX, the gift of merely adopting transac-
tions with Enterprise Services just through using attributes, the extensibility and flexibility of
.NET Remoting, the supremacy of MSMQ for building queued applications, and WSE’s inter-
operability through WS-*. Microsoft took all these capabilities and built a single, steady
infrastructure in the form of WCF.

CHAPTER 2 ■ INTRODUCING WCF BASICS30

7028Ch02.qxp 12/11/06 8:33 PM Page 30

Figure 2-2. Unification of distributed technologies

Interoperability Across Platforms
Most of the big software companies are developing software using proprietary protocols that
are tightly coupled with a specific platform. This succumbs to the problem of not being inter-
operable with other software running on different platforms. When you look at any large
enterprise in particular, you often notice a number of disparate systems built and bought over
periods of time. Often these systems are incompatible with one another. The ability to link the
systems becomes a crucial need for a large number of organizations. In addition, newly devel-
oped applications need to interoperate with the existing platforms, and the business needs to
support applications written in different programming languages with different technologies.
Also, companies need seamless interoperability across the organization between “purchased”
software from different software vendors.

As you can see, interoperability has been a major issue for all the major software vendors,
and they wanted to use a suite of protocols that was widely accepted and adopted. Therefore,
leaders in the industry such as Microsoft, IBM, BEA, and Sun formed the Web Services Inter-
operability (WS-I) organization, which has developed a constant suite of specifications that, if
adopted, allows software to seamlessly communicate with other software running on different
platforms.

Windows
Communication

Foundation

System.Messaging

.NET Remoting

ASMX

Enterpris
e Solutio

ns

Interoperability with
Other

Operating Systems

Interoperability with
Other

Operating Systems

Interoperability with
Other

Operating Systems

Extensibility and
Location

Transparency

Attribute-Based
Programming

W
SE

CHAPTER 2 ■ INTRODUCING WCF BASICS 31

7028Ch02.qxp 12/11/06 8:33 PM Page 31

One of the great features of the WS-I specifications is that they are simple, small, modular,
and easy to implement. You are free to choose which specification you need to implement. For
example, implementing WS-Security does not mandate that you implement transaction speci-
fications. It is broken down into several layers. (For example, there is a specification for
sending a digital signature in a SOAP message and a different specification for sending a sim-
ple username and password in SOAP.) The core architecture of a web service specification for
all this is WSDL. Therefore, WCF speaks the language of the latest web service suite of proto-
cols to achieve seamless interoperability across platforms.

Figure 2-3 shows that the WCF native messaging protocol is SOAP, which as an open stan-
dard provides the opportunity for the WCF service to interact with different technologies
running on different platforms and non-Windows operating systems. Since services are based
on open standards, other applications can use them without requiring that these clients pos-
sess detailed knowledge about the service’s underlying implementation. This is exciting for
software architects, because they can know that their WCF application that runs on a Windows
2003 or Vista web server can do reliable messaging with a Java application running on an IBM
mainframe. The technical world will not speak in different languages anymore, and with WCF,
diverse and heterogeneous systems can coexist peacefully.

Figure 2-3. Interoperability with Windows and non-Windows operating systems

SOAP Message

Legacy Applications

SOAP Message

WCF Service

Linux Machines Windows Sun Solaris

CHAPTER 2 ■ INTRODUCING WCF BASICS32

7028Ch02.qxp 12/11/06 8:33 PM Page 32

Not only can WCF interact with its counterparts from other vendors, but it also can exist
peacefully with its predecessors such as COM+ and Enterprise Services. For developers, this
drastically reduces the amount of infrastructure code required to achieve heterogeneous
interoperability.

WCF As a Service-Oriented Development Tool
WCF is the first programming model built from the ground up to provide explicit service-
oriented application development and ready-to-face-the-future business orientation. Service
orientation is not a technology but instead is a design concept. Service orientation uses the
best practices for building today’s distributed applications. Purists and gurus of distributed
applications consider service orientation to be the design guideline for overcoming some of
the complicacy existing in designing loosely coupled applications. Service orientation is not a
new concept, and it has been around for some years. Some projects have tried to implement
the concept of service orientation by tweaking existing distributed technologies; these proj-
ects have always demanded a framework that has built-in support for service orientation.
Although existing distributed technologies can offer the groundwork for interoperability and
integration, a new platform was required—a new infrastructure that makes it much easier to
build these distributed technologies. The new distributed technology should also support
adequate extensibility so that when fresh technologies and innovative protocols come along,
they can be rapidly and effortlessly adopted without having to revamp the entire platform
time after time.

Although it may seem surprising, one of the most intriguing parts of designing a service is
deciding how it should expose its functionality to the outside world. The level of granularity of
the service quite often is one of the most heated topics of debate within an organization. If the
service is “finely grained,” then the focus is usually on exchanging small amounts of data to
complete a specific task. This is usually associated with the more traditional RPC type of com-
munication style. Any additional tasks, if required, are invoked similarly. Since message-based
service invocations are expensive, finely grained approaches might not be practical in most
situations because the overhead of transmitting and processing many individual messages
would not be acceptable. On the other hand, coarse-grained services expose more functional-
ity within the same service invocation, combining many small tasks. This relates to fewer
messages transmitted with more data as opposed to many messages with less data. In other
words, the service is less chatty. This also relates to less overhead on both ends of the service,
enabling a coarse-grained service to scale better.

When designing services, you need to extend yourself beyond the basic object-oriented
design principles and use the four tenets of service orientation briefly discussed in Chapter 1 as
the guiding principles. Figure 2-4 shows the four tenets of service orientation from Chapter 1.
One of the challenges in developing WCF is shifting developers’ mind-sets away from thinking
about building distributed systems in terms of objects and components and starting to think
about building distributed systems as services. WCF offers that foundation for service-oriented
applications built on Windows. It will be basic to the SOA efforts of many organizations. WCF
provides this platform for building the next generation of distributed applications.

CHAPTER 2 ■ INTRODUCING WCF BASICS 33

7028Ch02.qxp 12/11/06 8:33 PM Page 33

Figure 2-4. Four tenets of service orientation

Until now you probably have been creating applications utilizing an object-oriented pro-
gramming model. Service-oriented architecture (SOA) is a fundamental shift to dealing with
the difficulties of building distributed systems. The following are some of the key differences
between object-oriented and service-oriented programming:

• Technology and business are changing rapidly, and companies are constantly investing
in application development. For years, developers and organizations have struggled to
build software based on object-oriented paradigms that adapt at the momentum of
business. Design needs to be flexible and time tested. Services of WCF are built in an
autonomous way, and by following key principles of SOA, they promise less mainte-
nance cost, allow for change, and are interoperable across platforms.

• Most object-oriented applications target homogeneous environments, and no simple
and flexible way exists in object orientation to work in heterogeneous environments
because it is tightly coupled with the platform being built. An SOA targets both hetero-
geneous and homogeneous environments.

• Object-oriented developers share interfaces and classes that give them a comfortable
way to program. However, the programming practices are much simpler if the schema
is shared rather than the objects. A schema is defined in the XML Schema language,
and contracts are defined in WSDL. An SOA application (WCF) allows you to share
schemas and not objects.

Boundaries Are
Explicit

Services Are
Autonomous

Share Schema
and Not Class

Four Tenets of Service Orientation

Policy-Based
Compatibility

CHAPTER 2 ■ INTRODUCING WCF BASICS34

7028Ch02.qxp 12/11/06 8:33 PM Page 34

• In object-oriented architecture, behaviors are implicitly remote, or everything is dis-
tributed by default. For instance, we created the following interface:

public interface Ihello
{
string Hello(string name);
}

This interface can be accessible remotely without any restrictions. Classes are also not
left behind, and an access specifier determines the behavior of the class. Classes have
the default access specifier. This default and implicit behavior of object orientation
proves to be an issue in developing complex applications where thousands of objects
are interacting with each other. In WCF, the behavior is explicitly defined remotely by
decorating the class with the appropriate attributes. Nothing is visible outside your
code, unless you want that facet of your code to be publicly exposed to a service-
oriented interface. The concepts of public and private are pointless when identifying
methods on a service contract. With WCF, you will need to start writing applications
explicitly as being remote. Similar to the [WebMethods] attributes of web services, you
can decorate the method with the OperationContract attribute. Chapter 4 covers more
about OperationContract and how to create a service.

• Object-oriented programming gives a tight coupling with the underline platform, and
services are free to act independently. A service and its clients are independent of each
other, and as long as they agree upon the interface, it hardly matters whether they are
written in different languages, are using different runtime environments, or are getting
executed on different operating systems.

• Most distributed object technologies such as DCOM have a goal to make remote
objects look as much as possible like local objects. Microsoft and other companies have
gone to extraordinary lengths to ensure that a call to a remote component is as easy as a
call to the local component. A call to a remote component involves a lot of work going
behind the scenes and is abstracted from the programmer. (For example, Visual Basic 6.0
uses COM in an abstracted manner. How many Visual Basic developers are aware of
COM?) Although this approach simplifies development in some ways by providing
rapid application development (RAD), it also hides the inescapable differences between
local objects and remote objects. Contrary to this, services avoid this problem by mak-
ing interactions between services and their clients more explicit.

• Most of the technology based on object orientation provides a way to encapsulate code
in the classes, which requires an explicit compilation in case of any changes. Service
orientation also supports policy-based compatibility through which code that needs to
be changed frequently can be put in the configuration-based file. This policy-based
configuration can be changed when required. Services encapsulate behavior and infor-
mation in a way that is immeasurably more flexible and reusable than objects.

CHAPTER 2 ■ INTRODUCING WCF BASICS 35

7028Ch02.qxp 12/11/06 8:33 PM Page 35

Exploring New Features in WCF
To a distributed object veteran, WCF might look like yet another distributed technology. WCF
has taken a lot of features from the existing distributed stack but also extends the existing fea-
tures and defines new boundaries. We’ll now discuss some of the new features in WCF.

Developer Productivity
WCF increases a developer’s productivity in several ways by simplifying the development of
service-oriented applications. Previously, developers were forced to learn different APIs for
building distributed components. It cannot be denied that developers who are good at build-
ing service components might not be as efficient at building remote components using .NET
Remoting. Creating custom solutions that require the functionality of two or more distributed
technologies has always raised butterflies in the bellies of developers and architects.

WCF has a simple and unified programming model that has the potential to create appli-
cations with diverse requirements. WCF is built from the ground up to support the features of
service orientation. One of the best aspects of WCF is that developers using existing technolo-
gies will find their favorite features in it, and all developers will benefit from the consistent
architecture. The WCF support of the declarative and imperative programming model will
make you write less code, which offers the likelihood of fewer errors. An application requiring
hundreds to thousands lines of code prior to WCF can now be accomplished in few lines of
code.

Attribute-Based Development
WCF is a message-plumbing engine and has a simple, clear, and flexible programming model
that sits at the top of this message engine. The programming model provides different ways to
leverage the message engine. You can use the classes to directly write code similar to other dis-
tributed applications such as DCOM. You also get the opportunity to use configuration files
that can be changed at runtime. The simplest and easiest way is WCF’s support for the attribute-
based programming model. One of the main intentions of the SOA is to separate the
application code from the messaging infrastructure. The developer specifies infrastructure
requirements declaratively by decorating the service class with custom attributes but does not
actually write any infrastructure code.

In simple terms, you can think of an attribute as a simple string or annotation. Attributes
are just declarative tags that, when applied to classes, methods, properties, and so on, provide
viable information about behavior to the CLR and are the way to add metadata to the runtime.
You can view metadata through any of the metadata-reading tools such as ILDASM. Attributes
have been part of .NET since its beta releases, but the power of attributes has never been
exploded in the wild jargon of the enterprise world. In WCF, attributes are central to the pro-
gramming model and are treated as first-class citizens. This attribute-based model is not a new
concept in WCF but has its roots in Enterprise Services and web services. Microsoft used the
attribute-based programming model in Microsoft Transaction Server (MTS). If you have cre-
ated a web service using .NET, you are already familiar with the [WebMethods] attribute. WCF has
extended the immense support of declarative programming in the message engine. So, when-
ever you need transactional support or some security, you just need to decorate the service
class with the specific attributes, and the messaging engine will provide you with the necessary
infrastructure to achieve your desired result. This offers a real advantage to developers who can

CHAPTER 2 ■ INTRODUCING WCF BASICS36

7028Ch02.qxp 12/11/06 8:33 PM Page 36

now concentrate on the real logic and then decorate the class and methods with the appropri-
ate attribute to get the necessary infrastructure.

Attribute-based programming is simply the best way to get things done with the WCF
engine, but you should also not forget the power of the object model of WCF. Depending on
your application requirements, you can fulfill different application needs through minor con-
figuration file changes. You can use an extensible API programming model for instances where
you need finer-grained control. Actually, most of the attributes in WCF are shortcuts for
imperative tasks you can do via APIs. Which method you use depends on your requirements.

Coexisting with Existing Technology
With .NET, Microsoft espouses a vision of how the Internet can make businesses more
efficient and deliver services to consumers. WCF takes all the capabilities of the existing tech-
nology stacks while not relying upon any of them. WCF is a new investment and relies on the
classes that are available in the .NET Framework 3.0. All your existing investments will run
side by side with WCF. Applications built with these earlier technologies will continue to work
unchanged on systems with WCF installed. It also provides you with an opportunity to com-
municate with, or even replace, existing Windows communications APIs and technologies,
including ASMX, ASP.NET web services, Web Services Enhancements (WSE), Enterprise
Services, System.Messaging, and .NET Remoting.

■Note WCF has been coded with Managed C#, so existing technology will be able to coexist with WCF
because WCF is just another managed-code implementation. The development of WCF started in parallel
with .NET 1.x and .NET 2.0, and it is therefore being smoothly integrated into the existing technologies in the
space. We cover coexistence in later chapters in more detail.

Hosting Services
A class implementing a WCF service is typically compiled into a library, and thus it needs a
process to host the services. If you look at earlier distributed technologies, you will find that
most of the distributed technologies are bound with only one hosting environment. For exam-
ple, ASMX web services can be hosted only with HttpRuntime on IIS. A COM+ application
requires component services as the hosting environment. .NET Remoting is a bit more flexi-
ble, with channels and transports being used. This limits the variety of clients that can access
your component.

WCF has been made with a vision to allow endpoints to be seamlessly available for any
kind of scenario and thereby ready to meet any requirement. A WCF component can be
hosted in any kind of environment in .NET 3.0, be it a console application, Windows applica-
tion, or IIS. To be honest, it hardly matters that the WCF client knows which environment is
hosting its services. (Not only does it provide you with a variety of hosting environments, it
also supports various activation models.) By hosting the service in IIS, it offers a lot of benefits
such as automatic object activation and periodic recycling. Along with providing a lot of
benefits, it comes with a tight coupling with HTTP. However, WCF gives you the freedom to

CHAPTER 2 ■ INTRODUCING WCF BASICS 37

7028Ch02.qxp 12/11/06 8:33 PM Page 37

self-host a WCF service. (Chapter 5 details the hosting options.) This is the reason for calling
the WCF services services as opposed to web services. The terminologies have changed because
you can host services without a web server. Earlier, web services used a default transport pro-
tocol such as HTTP. WCF provides different transport mechanisms such as TCP, Custom, UDP,
and MSMQ.

■Note Hosting services in normal EXEs requires the code to activate and run the service. They are gener-
ally also called self-hosting. Self-hosting the services gives you the flexibility to use transports other than
HTTP with service development today. Chapter 5 describes hosting environments in more detail.

Migration/Integration with Existing Technology
WCF, being the next-generation way of developing distributed applications, has raised the
curiosity level of developers working in existing distributed technologies. This is true because
existing applications are likely to be impacted in the near future. There are already a lot of
investments in applications built on ASMX, WSE, and System.EnterpriseServices. Here are
some important questions when thinking about working with WCF:

• Will new applications developed using WCF work with your existing applications? For
example, will your new WCF transacted application work with your existing transaction
application built on System.Transactions?

• Will your existing applications be able to upgrade with WCF?

Fortunately, the answers to these questions are yes and yes! In truth, existing distributed
applications cannot be migrated to WCF in a single day. Microsoft has created a durable sur-
face for WCF to interoperate with existing investments. The WCF team consists of the same
developers who built the System.Messaging, System.EnterpriseServices, WSE ASMX, and
.NET Remoting technologies. WCF can use WS-* or HTTP bindings to communicate with
ASMX pages, as shown in Figure 2-5. In other words, integration with existing systems was on
the minds of the WCF team from the beginning.

Microsoft has implemented a set of capabilities within the WCF product suite to enable
you to interact with and to reuse COM+ applications without having to fundamentally change
your programming experience. Therefore, if you have COM+ applications, WCF lets you essen-
tially write code that can access existing WCF applications as if they were COM+ applications.

This technology is simple to use. The samples that accompany WCF show how to use it.
Also, a command-line tool called COMSVCConfig.exe (discussed in Chapter 10) lets an existing
COM+ application spit out a WCF stub to interoperate with COM+ applications. The stub bro-
kers call back and forth between the stub and COM+ application. MSMQ also integrates well
with WCF. If you have an existing MSMQ application and use it to send messages back and
forth between systems using queues, then WCF offers an msmqIntegrationBinding binding that
allows communication with existing MSMQ applications. If you want to use a WCF applica-
tion to utilize MSMQ on the wire, this binding is available to you so your applications can
communicate with MSMQ applications openly.

CHAPTER 2 ■ INTRODUCING WCF BASICS38

7028Ch02.qxp 12/11/06 8:33 PM Page 38

Figure 2-5. ASMX to WCF connectivity

■Note You can find more information about integration between WCF and MSMQ in Chapter 8.

A WCF application not only interoperates with applications running on other platforms
but also integrates with other distributed programming models that Microsoft has come up
with over the past ten years. Microsoft has been providing the upgrade path through the use of
wizards, which are the easy way to perform complex tasks. Honestly, these wizards are good in
labs and can be used only for upgrading sample and testing applications. Using wizards to
upgrade a complex application is ill advised. This time, Microsoft, having learned from past
experiences of wizards to migrate applications, is using a more practical approach by provid-
ing a bunch of white papers and guidance, samples, demos, and examples illustrating how to
port applications from ASMX, Enterprise Services, .NET Remoting, WSE, and MSMQ to WCF
and other technologies. These examples also address many of the concerns you’ll have when
going through the porting process.

Components vs. Services
Reusability is the key to success in a distributed environment. Most of the architecture focuses
on the way to maximize the components’ usage in an easy and efficient manner. Most compo-
nents are built on an object-oriented paradigm that also provides reuse in terms of encap-
sulating the state (data) and behavior (function) in a container called a class. We have already

HTTP/WS-*
Binding WCF

WS-* Protocols

WS-* Protocols
HTTP/WS-*

BindingASMX

CHAPTER 2 ■ INTRODUCING WCF BASICS 39

7028Ch02.qxp 12/11/06 8:33 PM Page 39

discussed the flaws in object-oriented technology in applications that mandate the need of
loosely coupled distributed systems. Services compose a distributed system that can loosely
couple one another to achieve a particular business goal. These services can later be com-
posed differently to achieve a different business goal.

A lot of confusion exists about the terms component and services; a component is com-
piled code. It can be assembled to build applications and can also be deployed. Ease of
reusability, maintenance, and lower application costs are some of the major factors for initiat-
ing component-based development. Most of the time, the term component has been
associated with object-oriented programming but as per our earlier definition, you can use
components to build services. The functionality that gets added on top of the component fea-
tures is the service definition. This service description gets deployed with the components,
and the communication with the service is governed by data contracts and policies.

The term services is used widely in various contexts. In service orientation, the term
service is that which adheres to the four tenets of service orientation, and services are inde-
pendently versioned, deployed, operated, and secured in a message-oriented fashion. To
paraphrase Martin Fowler from his book Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions (Addison-Wesley, 2003), interesting applications rarely live
in isolation. We discussed some of the challenges we face when trying to integrate applica-
tions in a homogeneous environment in Chapter 1. These can range from the tactical issues
that a developer may face to the more strategic issues in a corporate environment where the
challenges are quite difficult.

For a more detailed understanding of WCF’s unified programming model, please refer to
Chapter 3. The WCF stack maps almost on a one-to-one basis to all the SOA principles, as
shown in Figure 2-6, which covers both the concrete and abstract implementations. WCF sim-
plifies the development of connected systems because it unifies a wide range of distributed
systems in a composite and extensible architecture. This architecture can span various trans-
port layers, security systems, messaging patterns, network topologies, and hosting models.

■Note Chapter 3 will explain aspects of the WCF stack from Figure 2-6 such as the service contract, the
message contract, the data contract, and so on.

Building an application in terms of a service and not components also provides enor-
mous benefits in terms of the reuse of code, the reuse of service and functionality, and the
ability to glue together far more dynamic, far more agile business applications and business
services. WCF makes it easy for developers to create services that adhere to the principle of
service orientation. If you are an OO person, you will find a few things to be restrictive in SOA.
The SOA world is a world of messages and not objects. Few key features (such as the ability to
pass an object reference) exist in the current technology stack that are not available in WCF.
Actually, the paradigm has shifted now from object oriented to service oriented, and it makes
more sense to pass messages between services instead of objects.

CHAPTER 2 ■ INTRODUCING WCF BASICS40

7028Ch02.qxp 12/11/06 8:33 PM Page 40

Figure 2-6. WCF and service orientation mapping

Support of Visual Studio 2005
WCF is a technology that comes with the .NET Framework 3.0. One of the advantages of using
the .NET Framework is that you can use any of the languages supported by the CLR to build SOA
applications. Any technology can be successful only if it has the required tools and designers to
develop the components. Since the introduction of Visual Basic, Microsoft has always tried to
simplify development by utilizing Visual Studio and the integrated development environment
(IDE). WCF is actually one of the pillars for Windows Vista but can also run on Windows XP and
Windows 2003 through the .NET Framework 3.0. Visual Studio 2005 supports WCF.

Figure 2-7 demonstrates that you get the required templates, IntelliSense in the configu-
ration file, and the familiar IDE for creating WCF services. Developers who are already familiar
with the Visual Studio IDE can leverage it to create service-oriented connected systems. You
don’t need to learn a new language for creating service-oriented applications. Languages such
as C# and VB .NET, plus all the other CLR-compatible languages, have been extended to use

Service Orientation
Concepts

Abstract

Concrete

Entity

Message

Interface

Transport

Endpoint

WCF
Concepts

Data Contract

Message Contract

Service Contract

Binding

Deployment

CHAPTER 2 ■ INTRODUCING WCF BASICS 41

7028Ch02.qxp 12/11/06 8:33 PM Page 41

the capabilities of the classes of WCF. Chapter 4 discusses the Visual Studio IDE and how WCF
utilizes the IDE.

Figure 2-7. Creating a WCF service in Visual Studio .NET 2005

One Service, Multiple Endpoints
If you look at the current distributed technology stack, you will find that services are tightly
coupled with the transport, the channels, the URLs, and the features the stack provides such
as security and reliability. Service development is greatly affected by the transport you use.
After defining the service, you have to specify some vital information such as what this service
can do, how can it be accessed, and where it is available. These three are encapsulated in end-
points. An endpoint contains information that gives the path through which the service is
available. One service can have multiple endpoints, which makes it flexible and interoperable
for any application requirements. Each of these endpoints can differ in the address, binding
requirements, or contract getting implemented.

WCF provides a unique way to create services independent of the transport being used.
Figure 2-8 shows that the same service can be exposed with two different endpoints. Both of
the endpoints have different binding requirements. For example, Endpoint 1 and Endpoint 2
have the transaction support but run on different transport protocols. In the future, if you
need to have another client that has different binding requirements, all you need to do is
create another endpoint in the configuration file. This enables you to serve the needs of two or

CHAPTER 2 ■ INTRODUCING WCF BASICS42

7028Ch02.qxp 12/11/06 8:33 PM Page 42

more clients requiring the same business logic encapsulated in the service with different tech-
nical capabilities.

Figure 2-8. One service with multiple endpoints

Integration Technologies
In addition to extending the functionality of the .NET Framework and Visual Studio 2005, you
can use WCF with BizTalk Server to provide both brokered and unbrokered application-to-
application communication. Actually, BizTalk Server and WCF are complementary to each
other. BizTalk Server provides business process orchestration, message transformation, busi-
ness activity monitoring, and more, through designers and visual tools. WCF provides a
unified framework for building secure and reliable transacted services. BizTalk Server is a key
technology in and is responsible for orchestrating WCF services. In future versions of BizTalk
Server, the orchestration process will use workflow foundation. BizTalk Server provides a WCF
adapter that enables WFC services to be incorporated into business process orchestration. In
future versions of BizTalk Server, the integration between these technologies will be even more
seamless, with WCF providing the core messaging and web service capabilities of BizTalk
Server and with WCF integrated in the native protocol of BizTalk Server.

HTTP

Endpoint 1

Transaction
Support

HTTP

Endpoint 2

Transaction
Support

WCF Service

CHAPTER 2 ■ INTRODUCING WCF BASICS 43

7028Ch02.qxp 12/11/06 8:33 PM Page 43

Unifying Distributed Technologies
Many of the features in WCF have their deep roots in a number of technologies such as ASMX,
Enterprise Services, .NET Remoting, MSMQ, and WSE. Though this book won’t cover all these
technologies, it’s always good to take a sneak peek at each of these to get a better understand-
ing of WCF.

ASMX
A web service is a component on the Web that is accessible through open standards such as
SOAP and HTTP. Accessing a remote component is not a new concept. It was previously accom-
plished through RMI, CORBA, and DCOM. But these distributed components are based on
proprietary standards or protocols. Earlier distributed technologies had two main problems:

• Interoperability

• Crossing firewalls

These proprietary standards cannot interoperate with each other because they have their
own binary standards and protocols. Additionally, they send binary messages through a non-
standard port that results in creating “holes” in corporate firewalls. Web services deviate from
all these issues by relying on web standards or protocols instead of relying on proprietary pro-
tocols. Web services are based on the notion of a service and transfer the data in messages.

A web service is a class that inherits from System.Web.Services.WebService and contains
the method to be exposed with the [WebMethod] attribute over it. Listing 2-1 contains a class
named Employee that has two public methods named Gand so onustomer and DeleteCustomer.
The method name Gand so onustomer will be consumed only as web service methods because
it has been decorated with the [WebMethod] attribute.

Listing 2-1. Sample XML Web Service Class

<%@ WebService Language="C#" Class="Order.Employee" %>
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace Order
{

public class Employee : WebService
{

[WebMethod()]
public DataSet Gand so onustomer(int CustomerID)
{
// logic to retrieve customer
}

CHAPTER 2 ■ INTRODUCING WCF BASICS44

7028Ch02.qxp 12/11/06 8:33 PM Page 44

public DataSet DeleteCustomer(int CustomerID)
{
// logic to delete Orders of a customer
}

}
}

To access any remote components, you need a transport protocol, a message protocol,
and the serialization mechanism for a client and server. In web services, the transport proto-
col is mainly HTTP, though it can be SMTP or TCP as well. As far as a message protocol is
concerned, SOAP is the preferred and default message protocol. It also supports HTTP GET or
HTTP POST. XML web services use XML serialization.

The following are the problems with ASMX:

• An ASMX page contains a complete set of information that describes how the data will
be formatted, how to wrap the data in a SOAP header, and how to prepare it to be sent.
However, it doesn’t tell you how to deliver it over the transports and to use a specific
type of security. All of those transport-oriented notions are missing from today’s ASMX
services, and this is something that WCF enhances quite significantly.

• Another limitation of ASMX is the tight coupling with the HTTP runtime and the
dependence on IIS to host it. This problem is solved by WCF, which can be hosted by
any Windows process that is able to host the .NET Framework 3.0.

• ASMX service is instantiated on a per-call basis, while WCF gives you flexibility by pro-
viding various instancing options such as Singleton, private session, per call. (We
discuss these in detail in Chapter 4.)

• ASMX provides the way for interoperability but doesn’t fulfill some of the basic require-
ments; for example, it does not provide or guarantee end-to-end security or reliable
communication.

MSMQ
Distributed systems have been built for many years by using synchronous RPCs. This means
the sender application must be online during each request while the receiver carries out the
requested task. The receiver must be online for the sender to make requests, and the sender
must be online to issue requests. In other words, both the sender and receiver need to be
online to make the task operational. Some applications (especially ones supporting discon-
nected environments) need to communicate in an asynchronous manner. Asynchronous-
based communication through messages has become one of the alternatives in distributed
computing. In this communication model, the client begins the process by sending messages
and then continues doing other work or even goes offline without waiting for the operation to
complete. If the receiver is offline, the entire request from the sender gets stored in queues.
Once the receiver is ready, it can consume the messages from the queue and do the necessary
operations on it. The best advantage is that the sender and receiver do not need to be avail-
able at the same time. It also ensures the reliable delivery of messages in a loosely coupled
environment.

CHAPTER 2 ■ INTRODUCING WCF BASICS 45

7028Ch02.qxp 12/11/06 8:33 PM Page 45

Asynchronous-based communication requires a custom messaging infrastructure. Fortu-
nately, many middleware systems such as IBM’s MQSeries and Microsoft’s MSMQ provide
built-in powerful capabilities to address these issues. (These packaged software products pro-
vide transactional support, guaranteed delivery, and security.) Message queues are stores that
hold application-specific messages. Applications can read, send, store, and delete the mes-
sages in queues.

MSMQ is a set of objects that allows you to perform queue messaging in Windows. You
can use this technology to collect a series of messages, send them to the server for processing,
and receive the results when they are finished. MSMQ essentially provides the infrastructure
to develop highly available business-critical applications. System.Messaging is the .NET layer
on top of MSMQ. It gives you the ability to build queued applications through .NET. One of the
limitations in MSMQ is the ability to deal with corrupted messages. A message is referred to as
corrupted when the message cannot get processed after several attempts. These corrupted
message(s) block other messages in the queue. Since MSMQ does not support this feature,
developers used to write a lot of code to deal with corrupted messages. Few features of MSMQ
(such as security and searching on public queues) are tightly integrated with Active Directory.
Another issue with MSMQ is that developers need to write MSMQ-specific plumbing code in
client and service code especially while writing a complex listener code to listen these queues.

WSE
Web services have become the unvarying way for consuming the business logic across platforms.
The core architecture of web services only formulates the way that a message gets formatted and
how a web service can be defined in a standardized manner. This core architecture enables you to
consume web services in an interoperable manner. As the business requirements that drive web
services become more and more complex, developers require additional capabilities that current
web services standards do not address. A few of those capabilities include the following:

• Security

• Routing

• Reliable messaging

• Transactions

Rather than providing these capabilities in a proprietary manner, it was necessary for the
future of web services to provide these capabilities in an open way. Industry leaders such as
Microsoft and IBM came together to provide these additional capabilities in a standardized
manner and drafted some web service standards also known as the WS-* suite of protocols.
This was done in order to create a standard infrastructure for building the next generation of
web services. Some of the WS-* suite of protocols are HTTP, standards-based XML, SOAP, WS-
Addressing, and Message Transmission Optimization Mechanism (MTOM). These protocols
are merely the specifications and do not provide the implementation details. Microsoft has
been generous enough to provide the class library on the top of the .NET Framework called
WSE that encapsulates the implementations details and provides an easy-to-use API to con-
sume these specifications. WSE is a runtime that is built on the .NET Framework and uses
outbound and inbound message filters to intercept SOAP messages.

CHAPTER 2 ■ INTRODUCING WCF BASICS46

7028Ch02.qxp 12/11/06 8:33 PM Page 46

■Tip Microsoft enhances WSE as new web service specifications come into the picture. To learn about the
most recent updates on WSE, visit http://msdn.microsoft.com/webservices/webservices/
building/wse/default.aspx.

WSE is an appealing technology in that it fundamentally helps accelerate the adoption of
WS-* standards. WSE 3 is the latest version of WSE.

Enterprise Services
Every distributed component requires some basic services to work in a multiuser environment.
In the early days of COM, developers spent a large amount of time creating an infrastructure to
handle a large number of transactions, provide queuing infrastructure, and so on, for running
the components. COM+ (also known as component services) provides an infrastructure that
applications utilize to access services and capabilities beyond the scope of the developers who
are actually building those applications. It also supports multitier architecture by providing the
surrogate process to host the business objects. In many ways, COM+ is a combination of COM,
DCOM, MTS, and MSMQ in a single product. This application infrastructure includes services
such as transactions, resource management, security, and synchronization. By providing these
services, it enables you to concentrate on building serviced components rather than worrying
about the infrastructure required to run these business components. COM+ has two types of
applications, namely, server applications and library applications. A server application is
hosted by the COM+ surrogate process and supports all the services. Contrary to this, library
applications are hosted by the client process, and certain COM+ services such as queued com-
ponents and object pooling are not available to a library application. One of the many
advantages of component services is that it allows you to select the appropriate services.

COM+ was initially for providing an infrastructure to COM components, but this does not
mean it cannot be used from .NET. .NET components can also utilize COM+ services through
the attributes and classes residing in the System.EnterpriseServices namespace. .NET Enter-
prise Services, which is the .NET layer on top of COM+, gives a powerful distributed
component technology capability by providing the necessary service infrastructure to .NET
assemblies. The classes in .NET that can be hosted by the COM+ application and use COM+
services are called serviced components. Any class in .NET that derives directly or indirectly
from the System.EnterpriseServices.ServicedComponent class is called a serviced component
class. Listing 2-2 illustrates these concepts for a fictitious Account class.

Listing 2-2. Serviced Component for the Account Class

using System.EnterpriseServices;
using System;

[Transaction(TransactionOption.Required)]
public class Account : ServicedComponent

CHAPTER 2 ■ INTRODUCING WCF BASICS 47

7028Ch02.qxp 12/11/06 8:33 PM Page 47

{
[AutoComplete]
static void Main()

{

}
}

Enterprise Services, or COM+, is a component-oriented technology. It is used inside the
service boundary and implements the complex business logic as with transactions spanning
multiple objects and spanning multiple resources. However, Enterprise Services applications
are tightly coupled with the infrastructure. Microsoft has always regarded Enterprise Services
as the core technology for providing the infrastructure, but it also suffers heavily from
interoperability.

How Do You Unify All These Technologies?
Most of these distributed technologies are based on the same concept. However, all of them
provide specific services that are unique to the product. (That is, if you want to do queuing,
you need to use MSMQ or System.Messaging; if you want to do transactions, you need to use
System.EnterpriseServices; if you need to do security, you need to use WSE.) As a program-
mer, you are constantly forced to switch between these programming models.

Therefore, we need one distributed technology to gather the capabilities of the existing
stack and provide a solution with a simple and flexible programming model. WCF does a great
job of providing a unified programming model wherein you can compose all these different
functionalities into your application without having to do a lot of context switching. Going
forward, you have to just learn one programming model—WCF. If you want queuing, you just
add an attribute to your WCF service contract that makes it queued. If you want to secure the
communication with your WCF service, you just add the appropriate security attributes for
authentication and privacy. If you are after transaction support, you just add the transaction
attribute. This new programming paradigm should help you concentrate more on the busi-
ness logic.

WCF provides a single programming model to leverage the features of any distributed
technology in the stack, as shown in Figure 2-9. Though WCF takes the best features of all the
distributed technology in the stack, the team developing WCF has not chosen to extend any of
the existing distributed technologies; instead, the whole infrastructure has been revamped to
support the predecessors and use the classes available in the .NET Framework 3.0. Developers
now can select the features they need to incorporate into the component. (That is, the devel-
oper can choose to implement security and reliability without requiring the transaction
support.)

CHAPTER 2 ■ INTRODUCING WCF BASICS48

7028Ch02.qxp 12/11/06 8:33 PM Page 48

Figure 2-9. Unification of existing technology

Programming bugs are common in development environments. During testing, you can
trap runtime errors by debugging the code. But finding bugs during the product environment
is not as easy. You need the appropriate tools to help in instrumentation and in monitoring the
health of an application. Tracing is a process to receive informative messages about the execu-
tion of a web application. In ASP.NET, tracing takes place through the methods available in the
Trace class residing in the Systems.Diagnostics namespace. WCF extends the tracing capabili-
ties of ASP.NET with lots of new features. WCF has also come up with end-to-end tracing
through a trace viewer called svcTraceViewer.exe and also with message logging in the XML
files.

■Note Chapter 6 covers tracing in more detail.

WCF also has the queue management that is similar to queued components of COM+ and
extends the API of MSMQ. With the queue management features of WCF, developers no longer
need to write complex plumbing code of sending and receiving queues in the application.
WCF comes with NetProfileMsmqBinding and other custom bindings to interact with queues.
It also resolves the ability to handle corrupted message that was a nightmare for many MSMQ
developers. Contrary to MSMQ, the queue management of WCF also supports application-to-
application security and does not require Active Directory. WCF supports queue management
through bindings, and you can decide the appropriate binding depending on the consuming
application’s requirements.

ASMX .NET Remoting WSE Enterprise Services

MSMQ

Transport Protocols

WCF programming model unifies all technologies
to produce multiple formatters and channels

to be consumed by the user.

CHAPTER 2 ■ INTRODUCING WCF BASICS 49

7028Ch02.qxp 12/11/06 8:33 PM Page 49

■Note For more information about queue management, please refer to Chapter 8.

Writing a WCF application is similar to writing another application; you don’t need to be
concerned with the protocols or transport being used. Service endpoints that are the combi-
nation of address, binding, and contract (commonly known as the ABCs of WCF) can be
specified in the configuration file that is separate from the service being developed. Endpoints
are not a new concept. They were earlier defined in WSDL, but WCF extends this extensible
model to other technologies such as Enterprise Services, thus giving a consistent model to its
predecessors.

■Note Chapter 3 covers the ABCs of WCF in more detail.

Services can now have multiple endpoints. These endpoints either can be defined in the
code or can be defined in the configuration file. WCF can facilitate bindings changes without
impacting the code using configuration files.

Summary
The world is now more connected since the introduction of the Web. A few basic needs of con-
nected systems are security, transaction, and reliability along with interoperability in
heterogeneous environments. As various networks bring the world more closely together than
ever, you need to develop components that meet the needs of this connected environment.

Microsoft initiated its vision of connected systems through web services. However, being
the first step toward developing connected systems, it has some vital pitfalls. WCF takes web
services to the next level by providing developers with a highly productive framework for
building secure, reliable, and interoperable applications and meeting today’s demand of con-
nected systems. WCF also integrates with the latest suite of WS-* protocols; when the latest
protocols are released by WS-*, there will be service packs of WCF to implement them.

WCF provides a number of benefits that will make developers more productive, reduce
the number of bugs, speed up application development, and simplify deployment. WCF helps
achieve all those challenges using a unified programming model that provides for a unifying
message style that is not only based on open standards but also is optimized for binary com-
munication where applicable. WCF’s unified programming model also provides for building
secure, reliable, and interoperable applications. With that said, IT managers are understand-
ably wary (since WCF is a new technology that requires a moderately steep learning curve).
However, for most organizations, the benefits will far outweigh the negatives; and with WCF,
you’ll see great productivity gains for future development projects. We will explain how you do
this in Chapter 3 by covering the unified programming models of WCF.

CHAPTER 2 ■ INTRODUCING WCF BASICS50

7028Ch02.qxp 12/11/06 8:33 PM Page 50

Exploring the WCF Programming
Model

Building connected systems on the Microsoft platform usually means using multiple tech-
nologies and as such different programming models. WCF comes with a unified programming
model that makes your life as a developer much easier. Some of the benefits are as follows:

• Built-in support for a broad set of web service protocols

• Implicit use of service-oriented development principles

• A single API for building connected systems

As you read in Chapters 1 and 2, WCF combines and extends the features for connectivity
that you find in the .NET Framework 1.0, 1.1, and 2.0. We are referring to technologies such as
ASP.NET web services (ASMX), .NET Remoting, Enterprise Services, Web Services Enhance-
ments, and the System.Messaging namespace. WCF is meant to provide an easier-to-understand
and unified programming model compared to the previous set of technologies. It should make
you more productive when creating connected systems. In addition, it provides superior ways to
extend the application if the existing rich functionality doesn’t fulfill your requirements.

This chapter covers the WCF programming model. It gives you some insight into the lay-
ered architecture of WCF. After reading this chapter, you should be familiar with the concepts
of WCF and the programming model in particular. You will learn enough to create your first
WCF-enabled application, and you will start the case-study application that we will show how
to create throughout this book. Additionally, this chapter shows you where the extension
points are inside WCF and explains when to use them.

The heart of WCF lives inside the System.ServiceModel namespace and the messaging
system underneath it; we’ll cover both in this book. This chapter won’t go into the details of all
the classes in the namespaces. (We will go through most of them throughout the next chap-
ters.) This chapter will give you a basic understanding of the programming model and should
give you a starting point to understand the more complex concepts of WCF.

To illustrate how to use WCF, we will present a case study of an imaginary company called
QuickReturns Ltd. QuickReturns Ltd. is a stock-trading company that needs a connected sys-
tem that requires functionality to trade stock on a stock exchange. Typical actors in the
systems are Market Makers and Asset Managers. The appendix of this book describes the
QuickReturns Ltd. case study. In this chapter, we will define the initial set of contracts and
services that the QuickReturns Ltd. system offers.

After completing this chapter, you will have the following knowledge:
51

C H A P T E R 3

■ ■ ■

7028Ch03.qxp 12/11/06 8:33 PM Page 51

• You’ll be familiar with the core architecture of WCF.

• You’ll be familiar with all the terms that are used in WCF.

• You’ll understand the unified programming model of WCF.

• You’ll be able to start developing your first WCF-enabled application.

• You’ll know in which areas WCF can be extended and when to do what.

Introducing the Technical Architecture
To be able to use WCF, you have to install certain Microsoft software on a supported Microsoft
operating system. WCF is part of the .NET Framework 3.0 that comes with Windows Vista and,
among others, contains the following technologies:

• Windows Communication Foundation (WCF)

• Windows Presentation Foundation (WPF)

• Windows Workflow Foundation (WF)

• Windows Card Services (WCS)

The .NET Framework supports the following operating systems:

• Windows XP Service Pack 2 and newer

• Windows Server 2003 Service Pack 1 and newer

• Windows Server 2003 Release 2

• Windows Vista

• Windows Server 2007

The .NET Framework 3.0 should also support revisions of the Windows platforms men-
tioned. The .NET Framework 3.0 is built on top of the .NET Framework 2.0 and in essence
adds the aforementioned frameworks while the base frameworks stay the same. You can
install the framework on any of the mentioned operating systems, and you can enable it easily
in Windows Vista and Windows Server 2007.

To be able to develop connected systems with WCF, you also require a development environ-
ment. The recommended development environment for WCF is Visual Studio 2005. All versions of
Visual Studio 2005, including Express Edition, are supported. Visual Studio 2005 also requires the
.NET Framework 2.0, which Visual Studio 2005 will install if it’s not already available.

■Note The Windows software development kit (SDK) comes with a lot of sample code you can use to learn
WCF and the other frameworks that are part of the .NET Framework 3.0. Refer to the .NET Framework 3.0
Developer Center on the Microsoft Developer Network at http://msdn.microsoft.com/winfx/ to get the
latest version. Refer to the appendix to get more details about the installation. Finally, refer to
http://www.netfx3.com to get additional news, samples, and resources.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL52

7028Ch03.qxp 12/11/06 8:33 PM Page 52

Introducing the Programming Approach
The programming model of WCF, and the programming models of the other frameworks that
are part of the .NET Framework 3.0 in general, allows you to program in a few ways. In other
words, you can accomplish your goals using any of the following approaches:

• You can use the object model programmatically.

• You can use configuration files.

• You can use declarative programming (attributes).

You will use all these approaches in most of your applications, and it is a great benefit for
developers to be able to choose their preference. (That is, it is important to be able to make
your application configurable for operations people, so you will not hard-code the URLs of
your endpoints by using the object model.) The object model is the richest model in which
you can basically accomplish everything you like. The WCF configuration model is built on
top of the object model.

For now, it is good to remember you have three options and that you have to make sure
you know the order of precedence in WCF (since you can override one model with the other).
The order in which settings are applied is as follows:

1. Attributes are applied.

2. The configuration is applied.

3. The code runs.

In the following sections, we will show how to accomplish the same goals in different
ways. We’ll first cover what the “ABCs” of WCF are all about.

Learning the ABCs of WCF
What are the ABCs of WCF? This is a common question that is asked of WCF lovers. In short,
ABC stands for address, binding, and contract:

• The address specifies where the messages can be sent (or where the service lives).

• The binding describes how to send the messages.

• The contract describes what the messages should contain.

Obviously, clients need to know the ABCs of a service to be able to use the service. An
endpoint acts as a “gateway” to the outside world. Usually you can refer to these three items as
the endpoint of a service defined in WCF. The Web Services Description Language (WSDL) is
meant to describe service endpoints in a standardized way. A WSDL file describes what a serv-
ice can do, how a service can be accessed, and where the service can be found.

Figure 3-1 illustrates all the components to consume WCF services using the programming
model and to use and extend the messaging layer. In addition, you can see how the service
model influences the messaging layer and which terms fit where. In this chapter, we’ll concen-
trate on addresses, bindings, factories, listeners, channels, and messages on the messaging layer.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 53

7028Ch03.qxp 12/11/06 8:33 PM Page 53

We’ll address clients, services, endpoints, contracts, and behaviors on the service model side.
Together, the address, binding, and contract are commonly referred to as an endpoint.

Figure 3-1. The WCF programming model

On the client side, you can see only one endpoint consisting of an address, binding, and
contract. Think of the client as a piece inside your program that is able to communicate with a
service, not your entire application. Commonly this is referred to as a proxy for that service. Of
course, it is possible to have your client connect to multiple services by using multiple proxies
with different endpoints (that is, connected to different services). The client side can have a
specific behavior to do local configuration, such as concurrency, instancing, throttling, error
handling, transaction control, security, and so on.

The service side can have multiple endpoints. A service just sits around and waits for
messages to come in on its endpoints. And again on the service side, you see the same behav-
iors you can see on the client side that cover local configuration behaviors on the service or at
the operation level.

You will learn more about behaviors, factories, listeners, and channels later in this chap-
ter. We’ll cover the ABCs of WCF in much greater detail now.

What Are Addresses?
Addressing a service is essential to being able to use a service. You need to have the address of
a service to be able to send it a message. Addresses in WCF are URLs that define the protocol
used, the machine where the service is running, and the path to the service. The port number
is an optional field in the URL and depends on the protocol used. Table 3-1 lists the addressing
specifications.

Client

Behavior

Behavior

BindingContract

Factory

Channel Address

Service
Messaging Layer

Service Model

Behavior

Behavior

ContractBinding

Listener

ChannelAddress

ContractBinding

Endpoint

Message

Address

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL54

7028Ch03.qxp 12/11/06 8:33 PM Page 54

Table 3-1. Addressing Specifications

Address Section Description

Transport scheme This defines the transport protocol (or scheme).

Machinename This specifies the fully qualified domain name of the machine.

Port The port is an optional field and is specified as :port. Port 80 is the
default for HTTP addresses.

Path The path is the specific path to the service. You can define paths as
names of directories separated by a forward slash. For example,
/Stock/GetQuote is the path in the following address: http://
localhost:8080/Stock/GetQuote.

So, the format of a service address is as follows:

scheme://<machinename>[:port]/path1/path2

As you can see, it is similar to a URL of a website. scheme can be any type of supported
transport, machinename is the server name, port is the port where the service is listening, and
path is essentially to differentiate services running on the same machine.

WCF supports several protocols, and each has its own particular addressing format. WS-
Addressing is essential when WCF services use protocols other than HTTP. The foundation of a
service is the SOAP protocol, which defines a basic message structure for simple (remote)
object access containing an extensible envelope structure with a header and a body. In a SOAP
message, endpoints are expressed as WS-Addressing endpoint reference constructs. With WS-
Addressing you can also add specific headers inside the SOAP message that defines where
message replies should go (if applicable in the used messaging exchange pattern).

Addressing HTTP
Services can be hosted in different ways, as you’ll learn more about in Chapter 5. HTTP serv-
ices can be either self-hosted or hosted on Internet Information Services (IIS). When
addressing an HTTP service in a self-hosted scenario, you use the following format:

http://localhost:8080/QuickReturns/Exchange

When SSL is required, you can replace http with https. In a WCF configuration, you can
set the HTTP address as follows:

<endpoint
address="http://localhost:8080/QuickReturns/Exchange"
bindingsSectionName="BasicHttpBinding"
contract="IExchange" />

We’ll cover the bindingsSectionName and contract attributes of the endpoint node in the
following sections.

■Note It is common to add versioning directives to the path of a service address. You can version the
address like this: http://localhost:8080/QuickReturns/Stock/v1/GetQuote.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 55

7028Ch03.qxp 12/11/06 8:33 PM Page 55

Addressing TCP
The TCP transport uses the net.tcp: scheme but otherwise follows the same rules as described
for HTTP addresses. Here is an example:

net.tcp://localhost:8080/QuickReturns/Exchange

In a WCF configuration, you can set the net.tcp address as follows:

<endpoint
address="net.tcp://localhost:8080/QuickReturns/Exchange"
bindingsSectionName="NetTcpBinding"
contract="IExchange" />

Addressing MSMQ
You can use the Microsoft Message Queue (MSMQ) transport in an asynchronous one-way
(fire-and-forget) or duplex type of messaging pattern and use the MSMQ features of Windows.
MSMQ has public and private queues. Public queues are usually available through Active
Directory and can be accessed remotely whereas private queues are local queues that are
available only on the local machine. MSMQ addresses use the net.msmq scheme and specify a
machine name, queue type, and queue name. Port numbers don’t have any meaning in the
MSMQ address, so a sample MSMQ address is as follows:

net.msmq://localhost/private$/QuickReturnSettleTrade

In a WCF configuration, you can set the net.msmq address as follows:

<endpoint
address=" net.msmq://localhost/private$/QuickReturnsSettleTrade"
bindingsSectionName="NetMsmqBinding"
contract="IExchange" />

Addressing Named Pipes
Named Pipes is a common way to provide a means to implement inter- or in-process commu-
nication. The Named Pipes transport in WCF supports only local communication and uses the
net.pipes scheme. Port numbers don’t have any meaning with the Named Pipes transport.
This results in the following address format:

net.pipe://localhost/QuickReturns/Exchange

In a WCF configuration, you can set the net.pipe address as follows:

<endpoint
address="net.pipe://localhost/QuickReturns/Exchange"
bindingsSectionName="NetNamedPipeBinding"
contract="IExchange" />

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL56

7028Ch03.qxp 12/11/06 8:33 PM Page 56

Base Addresses
WCF supports base addresses, which enables you to host multiple endpoints under the same
base address and which shortcuts the duplication of the scheme, host, port, and root path in
your configuration. To define two endpoints in a WCF configuration, you would add the fol-
lowing section to express QuickReturns Ltd.’s base address:

<host>
<baseAddresses>

<add baseAddress="http://localhost:8080/QuickReturns"/>
<add baseAddress="net.tcp://localhost/QuickReturns"/>

</baseAddresses>
</host>

This allows you to define the following endpoints:

<endpoint
name="BasicHttpBinding"
address="Exchange"
bindingsSectionName="BasicHttpBinding"
contract="IExchange" />

<endpoint
name="NetNamedPipeBinding"
address="Exchange"
bindingsSectionName="NetNamedPipeBinding"
contract="IExchange" />

What Are Bindings?
A binding defines how you can communicate with the service and as such has the biggest
impact in the programming model of WCF. It is the primary extension point of the ABCs of
WCF. The binding controls the following:

• The transport (HTTP, MSMQ, Named Pipes, TCP)

• The channels (one-way, duplex, request-reply)

• The encoding (XML, binary, MTOM…)

• The supported WS-* protocols (WS-Security, WS-Federation, WS-Reliability,
WS-Transactions)

WCF provides a default set of bindings that should cover most of your requirements. If the
default bindings don’t cover your requirements, you can build your own binding by extending
from CustomBinding.

Table 3-2 shows the features of each default binding that comes with WCF. As you can see,
these features directly relate to the transport protocols, the encoding, and the WS-* protocols.
The Configuration and Element columns relate to the configuration element in the applica-
tion interoperability, the Transactions and Security Default Session columns relate to several
of the WS-* protocols described in Chapters 1 and 2. The Duplex column specifies whether the

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 57

7028Ch03.qxp 12/11/06 8:33 PM Page 57

binding supports the duplex messaging exchange pattern. As you can see, each transport we
covered earlier has at least one associated predefined binding.

Table 3-2. Predefined WCF Bindings

Binding Configuration Security Default Transactions Duplex
Session

basicHttpBinding Basic Profile 1.1 None No

wsHttpBinding WS Message Optional Yes

wsDualHttpBinding WS Message Yes Yes Yes

wsFederationHttpBinding WS-Federation Message Yes Yes No

netTcpBinding .NET Transport Optional Yes Yes

netNamedPipeBinding .NET Transport Yes Yes Yes

netMsmqBinding .NET Transport Yes Yes No

netPeerTcpBinding Peer Transport Yes

msmqIntegrationBinding MSMQ Transport Yes Yes

Remember, you can have multiple endpoints defined for a service so that your service
supports any combination of these bindings.

WCF supports several transports on the Microsoft platform:

• HTTP(S)

• TCP

• Named Pipes

• MSMQ

Obviously, only HTTP(S) is truly an interoperable transport. When integration is required
with different platforms, you can recognize interoperable bindings with the WS prefix.
BasicHttpBinding is also an interoperable binding that maps very well on the pre-WCF service
stacks such as ASMX. The bindings prefixed with Net are really Windows-centric, where it is
expected that interoperability is not a requirement. So, you know up front what your require-
ments are and as such what transport fits best into your scenario. As mentioned, when you
choose a binding, often you are choosing a transport as well. Table 3-3 lists the predefined
WCF bindings and the transport(s) they support.

Table 3-3. Predefined WCF Bindings Mapped on the Transports

Binding HTTP HTTPS TCP MSMQ Named
Pipes

BasicHttpBinding Yes Yes No No No

WSHttpBinding Yes Yes Yes No No

WSDualHttpBinding Yes Yes No No No

WSFederationHttpBinding Yes Yes No No No

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL58

7028Ch03.qxp 12/11/06 8:33 PM Page 58

Binding HTTP HTTPS TCP MSMQ Named
Pipes

NetTcpBinding No No Yes No No

NetNamedPipeBinding No No No No Yes

NetMsmqBinding No No No Yes No

NetPeerTcpBinding No No Yes No No

MsmqIntegrationBinding No No No Yes No

What Are Contracts?
One of the core principles of service orientation is explicit boundaries. When crossing bound-
aries in typical RPC technology, you will struggle with issues where the internals and externals
are mixed up. The essence of contracts in service orientation is that you agree on what you
expose to the outside in order to decide for yourself how you implement (and change) the
inside. Service orientation draws a distinct line between the “external interface” and the
“internal implementation.” Contracts are not connected to the .NET type system but rather to
an implementation of several standards by using the .NET type system. Contracts are the way
service orientation achieves true interoperability between different platforms; see Chapter 13
for more details about this.

Contracts come in different flavors. A contract is a declaration of exposed behavior (the
service contract), persistent data (the data contract), or message structure (the message con-
tract). In the following sections, you will learn how to define and use each of these in the WCF
programming model.

Messaging Exchange Patterns
WCF service contracts can express three message exchange patterns that can be used in your
services. Note that bindings limit the message exchange patterns that are available.

Request-Reply

Request-reply is a two-way operation where each request correlates to a response. The client
explicitly waits for a reply. Request-reply is the most common pattern in today’s (ASMX) web
services (and also RPC) world. In WCF, request-reply is the default pattern. Figure 3-2 illustrates
the request-reply messaging exchange pattern.

Figure 3-2. Request-reply messaging exchange pattern

Client Service

Request

Reply

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 59

7028Ch03.qxp 12/11/06 8:33 PM Page 59

One-Way

One-way is a “fire-and-forget” style of messaging, where the message is transmitted without
waiting for a reply from the service. As you can see in Figure 3-3, the message is initiated on
the client side and passed to the service side, but the client is not expecting a reply. This is
similar to calling an asynchronous method (a delegate) with a void return type.

Figure 3-3. One-way messaging exchange pattern

Duplex

Duplex messaging is slightly more complex. A duplex channel is really a peer-to-peer connec-
tion, with both ends simultaneously acting as both a sender and a receiver (on different
channels), as you can see in Figure 3-4. A duplex service defines two interfaces—one for each
side of the wire. Please refer to Chapter 12 for more information about peer-to-peer (and
duplex) messaging.

Figure 3-4. Duplex messaging exchange pattern

Service Contracts and Operations
The service contract expresses the “methods” that are exposed to the outside world. The service
contract is also commonly referred to as the service interface or the exposed behavior of the
service. It describes what you can expect from the service, and its policy describes what
requirements the service has. Service contracts are implemented as .NET interfaces. The
service interfaces are implemented as .NET classes implementing the .NET interfaces. To make
the classes WCF service contracts, you must annotate the interface with the [ServiceContract]
attribute. The operations need to be annotated with the [OperationContract] attribute. You can
find the ServiceContractAttribute and OperationContractAttribute classes in the System.
ServiceModel namespace, which you have to include with a using statement. Listing 3-1 shows
the service contract defined as a .NET interface for QuickReturns Ltd., including two operation
contracts.

Client Service

Message

Message

Client Service
Message

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL60

7028Ch03.qxp 12/11/06 8:33 PM Page 60

Listing 3-1. ServiceContract for the Trade Service

using System.ServiceModel;
using QuickReturns.StockTrading.ExchangeService.DataContracts;

namespace QuickReturns.StockTrading.ExchangeService.Contracts
{

[ServiceContract(Namespace = "http://QuickReturns")]
interface ITradeService
{

[OperationContract()]
Quote GetQuote(string ticker);

[OperationContract()]
void PublishQuote(Quote quote);

}
}

This service is the exchange of the stock-trading application for QuickReturns Ltd. The
contract of this service defines the interaction that is going on between the sellers and buyers
on a stock market. Sellers offer their stocks by publishing quotes. A quote obviously defines the
company the stock is for and what price the seller wants to have for it. Hence, the PublishQuote
method is able to publish quotes by sellers on the trade service. The buyers, on the other hand,
will query the trade service to get a quote on a specific type of stock for a specific company.
Therefore, the GetQuote method is able to retrieve published quotes from the service. When the
buyer finds an appropriate seller, the actual exchange of stocks can take place by a different
service (which will be covered later in this book).

As you can see, the exchange service is marked with the [ServiceContract] attribute
and currently has two operations, GetQuote and PublishQuote. These operations have the
[OperationContract] attribute applied. WCF uses these attributes to determine which .NET
methods it needs to invoke based on an incoming SOAP message. The attributes also deter-
mine the serialization WCF has to do for you. WCF serialization encompasses the mapping
from SOAP messages to your .NET objects. In Listing 3-1, Quote is a custom .NET type where
no mapping is defined yet. For the custom Quote object and any other custom object you want
to pass between services and clients, you have to define data contracts. Data contracts control
the mapping between SOAP messages and .NET objects. We’ll cover data contracts in the next
section.

To influence the service contract, the [ServiceContract] attribute has several parameters
that have their own functions:

CallbackContract: Gets or sets the type of callback contract. This is useful when using the
duplex messaging exchange pattern.

ConfigurationName: Defines the name as used in the configuration file to store the related
configuration settings.

Name: Gets or sets the name for the <portType> element in WSDL. The default value is the
name of the .NET interface.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 61

7028Ch03.qxp 12/11/06 8:33 PM Page 61

Namespace: Gets or sets the namespace for the <portType> element in WSDL. The default
value is the namespace of the .NET interface.

HasProtectionLevel: Defines a (read-only) value that indicates the protection level of the
service. At the operation level, it is possible to define that the messages of the operation
must be encrypted, signed, or both.

ProtectionLevel: Defines the protection level that the binding must support.

SessionMode: Gets or sets a value that defines whether the contract requires the WCF
binding associated with the contract to use channel sessions. SessionMode is an enumera-
tion with possible values of allowed, notallowed, and required. The default value is
allowed.

The same is true for the [OperationContract] attribute. Several parameters are available
to you:

Name: Specifies the name of the operation. The default is the name of the operation.

Action: Defines the (WS-Addressing) action of the request message.

AsyncPattern: Indicates that the operation is implemented asynchronously by using a
Begin/End method pair.

IsInitiating: Defines a value that indicates whether the method implements an opera-
tion that can initiate a session on the server.

IsOneWay: Defines a value that indicates whether an operation returns a reply message.

IsTerminating: Defines a value that indicates whether the operation causes the server to
close the session after the reply message is sent.

ProtectionLevel: Defines a value that indicates the protection level of the operation. You
can define that the messages of the operation must be encrypted, signed, or both.

ReplyAction: Defines the value of the SOAP action for the reply message of the operation.

If you need full access to the message body and don’t want to bother with serialization,
another approach is using the Message object, as you can see in Listing 3-2.

Listing 3-2. ITradeServiceMessage Interface Using the Message Object

using System.ServiceModel;
using System.ServiceModel.Channels;

namespace QuickReturns.StockTrading.ExchangeService.Contracts
{

[ServiceContract(Namespace = "http://QuickReturns")]
interface ITradeServiceMessage
{

[OperationContract()]
Message GetQuote(string ticker);

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL62

7028Ch03.qxp 12/11/06 8:33 PM Page 62

[OperationContract()]
void PublishQuote(Message quote);

}
}

This way, you get access to the SOAP message directly, and WCF doesn’t do any type-based
serialization. As you can see, the code in Listing 3-2 differs from Listing 3-1. The Quote return
type of the GetQuote method and the Quote parameter in the PublishQuote method are now
replaced by the generic Message type. So instead of having the convenience of being able to
access the properties of the type in an object-oriented way, you can now access the individual
elements and attributes directly in the XML message. This can be useful in scenarios where the
overhead that comes with serialization is too high.

■Note During the course of this chapter and the book, you will read about the other requirements in the
sample application; refer to the appendix and the accompanying sample code at http://www.apress.com
to understand the application requirements and implementation. In this chapter, we’ll use pieces of the
sample application to explain the programming model.

Data Contracts
As discussed earlier, we are using a custom type called Quote for which you can define a data
contract. WCF needs to know how to serialize your custom .NET types. You have two ways of
letting WCF know how to do this. WCF knows implicit and explicit data contracts. Implicit data
contracts are mappings of simple types in .NET. WCF has predefined mappings for all .NET
simple types to their SOAP counterparts. So, you don’t have to explicitly define data contracts
for the .NET simple types you know in the System namespace including enums, delegates, and
arrays or generics of the simple types in .NET.

Since you build up your types based on the simple types in .NET, or based on types that are
themselves built up based on the simple types, you can also annotate your custom types with
the [Serializable] attribute. This tells WCF to use implicit data contracts. If you use this way of
serialization, you don’t have to define a data contract. To influence the way you want the seriali-
zation to happen, you have to define an explicit data contract for your type. You can do this by
defining a simple class with all the properties your type needs and annotating the class with the
[DataContract] attribute. The [DataContract] attribute uses an opt-in model, where the .NET
way of serializing in combination with formatters determines what gets serialized (public prop-
erties, private properties, and so on); therefore, you have to specifically annotate each property
with the [DataMember] attribute. In Listing 3-3, we have defined a data contract for the Quote
custom type in the stock-trading example.

Listing 3-3. Data Contract for the Custom Quote Type

using System;
using System.Runtime.Serialization;

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 63

7028Ch03.qxp 12/11/06 8:33 PM Page 63

namespace QuickReturns.StockTrading.ExchangeService.DataContracts
{

[DataContract(Namespace=" http://QuickReturns")]
public class Quote
{

[DataMember(Name="Ticker")]
public string Ticker;

[DataMember(Name="Bid")]
public decimal Bid;

[DataMember(Name="Ask")]
public decimal Ask;

[DataMember(Name="Publisher")]
public string Publisher;

[DataMember(Name="UpdateDateTime")]
private DateTime UpdateDateTime;

}
}

■Note The UpdateDateTime field is private and attributed, so it will be serialized as part of the SOAP
messages that WCF generates.

To influence the data contract, the [DataContract] attribute has several parameters that
have their own functions:

Name: Defines the name for the data contract, which will also be the name in the XML
schema (XSD, WSDL). The default value is the name you defined in .NET.

Namespace: Defines the namespace for the data contract. Use this property to specify a
particular namespace if your type must return data that complies with a specific data
contract or XML schema.

To influence the data members and to make versioning possible, you need to be aware of
several parameters for the [DataMember] attribute:

Name: Defines the name for the data contract, which will also be the name in an XML
schema (XSD, WSDL). The default value is the name you defined in .NET.

Namespace: Defines the namespace for the data contract. Use this property to specify a
particular namespace if your type must return data that complies with a specific data
contract or XML schema.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL64

7028Ch03.qxp 12/11/06 8:33 PM Page 64

IsRequired: Gets or sets a value that instructs the serialization engine that the member
must be present.

Order: Gets or sets the order of serialization and deserialization of a member. This can be
important if clients rely on the order of the fields.

EmitDefaultValue: Gets or sets a value that specifies whether to generate a default value of
null or 0 for a field or property being serialized.

Message Contracts
Sometimes you require more control over the SOAP envelope that WCF generates. For exam-
ple, you may want to be able to map fields in your message to the SOAP headers instead of the
SOAP body. This is when message contracts come into play. The [MessageContract] attribute
allows you to map fields into either the SOAP body or the SOAP headers by means of the
[MessageBody] and [MessageHeader] attributes, as shown in Listing 3-4.

Listing 3-4. Quote as a MessageContract

using System;
using System.ServiceModel;

namespace QuickReturns.StockTrading.ExchangeService.MessageContracts
{

[MessageContract]
public class QuoteMessage
{

[MessageBody]
public string Ticker;

[MessageBody]
public decimal Bid;

[MessageBody]
public decimal Ask;

[MessageHeader]
public string Publisher;

[MessageBody]
private DateTime UpdateDateTime;

}
}

In this example, the publisher has now moved from the SOAP body to the SOAP headers.
Now you can use this message contract in an operation contract, just like you did with the
data contract. So when you need direct control over the SOAP envelope, you can use message
contracts to control how properties of your types map to the SOAP headers and SOAP body.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 65

7028Ch03.qxp 12/11/06 8:33 PM Page 65

Looking at the WCF Layers “Inside”
WCF is a layered framework similar to the Open Systems Interactive (OSI) model. The service
model layer is the layer you will use primarily to program against. The service model layer
influences the layer underneath it, which is called the messaging layer. The messaging layer is
the layer where all the actual transportation of messages across the channels on the network
becomes reality. The reason for the separation is an architectural concept. It allows you to sep-
arate the actual messaging from the programming model, and this allows you to benefit just
from the messaging layer (similar to what BizTalk Server does).

Figure 3-5 shows how the layering is organized. The messaging layer is the lower-level
layer where you talk about transports, channels, protocols, and encoding. The service model
layer is where you talk about behavior, contracts, and policy. Behaviors are the most impor-
tant piece in the service model layer, whereas in the messaging layer channels are central.

Figure 3-5. WCF layers

What Is the Messaging Layer?
The messaging layer is the layer where the actual communication on the wire is happening.
This is the layer where the transports such as HTTP, MSMQ, TCP, and Named Pipes come into
play. In addition to that, the encoding used for the messages and the format of the messages
come into play. In other words, these are the protocols used inside the messages. Then, the
protocols are implemented as channels; a channel allows you to clearly separate the combina-
tion of the transport and the messaging exchange pattern.

Channels
The address and binding together manifest themselves in the messaging layer of WCF. The
address expresses where the message should go, and the binding is the model you use to
manipulate the message. Going a bit lower into the stack of WCF, Figure 3-6 shows a layered
description of the WCF messaging stack.

Your Application

Messaging

ServiceModel

Channels Encoders Transports Protocols

Contracts Policy Behavior

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL66

7028Ch03.qxp 12/11/06 8:33 PM Page 66

Figure 3-6. WCF messaging stack

The binding is the mechanism to control the channel stack. When you pick one of the pre-
defined bindings mentioned earlier, you are picking, in essence, specific channels. Looking at
the bottom of Figure 3-6, you can see the channels are responsible for transferring a message
from the client side to the service side, and vice versa, depending on the messaging exchange
pattern used. Obviously for this to work, the client side and the service side should be consis-
tent to be able to exchange messages. In other words, they have to understand the messaging
pattern, the transport, the protocols, and the encoding. On the client side, channels are created
by factories to be able to talk to the service side across a specific channel or a set of channels.
On the service side, listeners accept messages from channels.

Channels have input and output handlers that are responsible for consuming messages.
Consuming messages can mean forwarding the messages across a certain transport or receiv-
ing messages across a certain transport through a specific messaging exchange pattern. The
channel also applies security and performs validations. In the default WCF set of bindings, this
results in support for the WS-* specifications. Channels can be connected to each other in a
pipeline. Therefore, you don’t have to rebuild security, reliability, or session state capabilities
inside your channels for every transport. Bindings make it much easier to have the client side
and the service side work together. The information about the binding is described by the pol-
icy in the metadata of the service, and as such you can rely on this information to align the
information by means of imperative code or the more usual configuration. The metadata that
is exposed based on the binding allows you to generate proxy code for use on the client side.

Shapes of Channels
Channels come in three shapes that correspond to the messaging exchange patterns
described earlier. Channels are a way for WCF to separate these messaging exchange patterns

Client

Message

Factory

Binding

Channel

Service

Listener

Binding

Channel

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 67

7028Ch03.qxp 12/11/06 8:33 PM Page 67

from the transport. Given a transport, WCF implements only the messaging exchange patterns
that are natural for the transport. This is so that when using the WCF programming model,
you don’t need to bother about the transports directly; rather, you can think about the mes-
saging exchange pattern or channel shape. With the interfaces in Listing 3-5, WCF enables the
three messaging exchange patterns in code.

Listing 3-5. Channel Interfaces to Support the Different Shapes of Channels

public interface IOutputChannel : IChannel {
void Send(Message message);

}

public interface IInputChannel : IChannel {
Message Receive();

}

public interface IDuplexChannel : IInputChannel, IOutputChannel { }

public interface IRequestChannel : IChannel {
Message Request(Message message);

}

public interface IReplyChannel : IChannel {
IRequestContext ReceiveRequest();

}

public interface IRequestContext : IDisposable {
Message RequestMessage { get; }
void Reply(Message message);

}

The IOutputChannel interface supports sending messages, and the IInputChannel interface
supports receiving messages. Together these support the one-way messaging exchange pattern.
IInputChannel and IOutputChannel are combined to create the IDuplexChannel interface, which
supports the duplex messaging exchange pattern. The IRequestChannel interface supports
sending requests, and the IReplyChannel interface supports receiving requests. Together they
support the request-reply messaging exchange pattern. Finally, the IRequestContext interface
allows you to receive multiple messages over the same channel. This improves concurrency
and doesn’t limit you from blocking the channel until the reply to a specific request is ready to
be transmitted.

Channel Flavors
Channels come in three flavors:

• Transports

• Encoders

• Protocols

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL68

7028Ch03.qxp 12/11/06 8:33 PM Page 68

You now understand what these concepts encompass. A transport is really a way to talk to
some source on the service side. As you know, WCF supports several transports and allows you
to write your own to support other transports such as SMTP or FTP. On the encoding side,
WCF supports several typical encoders that either are standards based such as Message Trans-
mission Optimization Mechanism (MTOM) or are optimized for reading (binary) or readable
(text). You could imagine other encoders that improve the size of the messages and minimize
the data and as such the bandwidth used. Supported protocols in WCF are the most important
WS-* standards. In this book, we’ll cover several of them, specifically in Chapters 6, 7, 8, and 9.

What Is the Service Model Layer?
Whereas the messaging layer provides total control over the messages flowing around in your
application, the service model layer is a higher-level abstraction layer that allows you to influ-
ence the messaging through object-oriented programming principles. This is really where the
WCF team was able to reach its design goals. The service model layer offers an easy-to-use API
with classes, methods, attributes, and configuration to build connected applications. Behav-
iors are the most important concept in this regard. You can apply multiple behaviors on the
client and service sides. Behaviors don’t influence the contract in any way; in other words,
consumers of services don’t know the details about the behavior of the service. Behaviors
influence the conversion from messages to .NET types, instancing, throttling, concurrency,
and error handling. Up until now in this book, we have covered the generic concepts of the
entire API; the rest of this chapter is focused on the service model layer. This is the layer you
will use the most.

Using ServiceHost and ChannelFactory
ServiceHost gives you access to the WCF hosting infrastructure on the server side whereas
ChannelFactory gives you access to the WCF hosting infrastructure on the client side. The
following sections cover the basics of ServiceHost and ChannelFactory from a programming
model perspective.

In Chapter 4, you will learn about hosting web services in IIS. Chapter 5 covers the com-
plete WCF hosting infrastructure and shows you the different options WCF offers in terms of
hosting services in different types of applications and using services in different types of
clients. In this chapter, we cover only self-hosting and console applications.

ServiceHost
ServiceHost is instantiated based on a particular service type you implemented and as such
“hosts” your service. When a ServiceHost instance is available, you can do anything you like
programmatically in regards to the ABCs and behavior (which we will cover later). So, Listing
3-6 and Listing 3-7 define and instantiate your first service in a specific service host that is ini-
tialized imperatively with an address, a binding, and a contract. We are using the basic
examples given earlier, so we use a simple HTTP address and the BasicHttpBinding and
ITradeService contracts you saw earlier.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 69

7028Ch03.qxp 12/11/06 8:33 PM Page 69

Listing 3-6. ServiceHost Instantiation Based on Imperative Calls

using System;
using System.ServiceModel;
using QuickReturns.StockTrading.ExchangeService;
using QuickReturns.StockTrading.ExchangeService.Contracts;

namespace QuickReturns.StockTrading.ExchangeService.Hosts
{

class Program
{

static void Main(string[] args)
{

Uri address = new Uri
("http://localhost:8080/QuickReturns/Exchange");

Type serviceType = typeof(TradeService);
BasicHttpBinding binding = new BasicHttpBinding();
ServiceHost host = new ServiceHost(serviceType);
host.AddServiceEndpoint(typeof(ITradeService), binding, address);
host.Open();
Console.WriteLine("Service started: Press Return to exit");
Console.ReadLine();

}
}

}

Listing 3-7. TradeService

using System;
using System.Collections;
using System.ServiceModel;
using QuickReturns.StockTrading.ExchangeService.Contracts;
using QuickReturns.StockTrading.ExchangeService.DataContracts;

namespace QuickReturns.StockTrading.ExchangeService
{

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single,
ReturnUnknownExceptionsAsFaults=true)]

public class TradeService : ITradeService
{

private Hashtable tickers = new Hashtable();
public Quote GetQuote(string ticker)
{

lock (tickers)
{

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL70

7028Ch03.qxp 12/11/06 8:33 PM Page 70

Quote quote = tickers[ticker] as Quote;
if (quote == null)
{

// Quote doesn't exist.
throw new Exception(

string.Format("No quotes found for ticker '{0}'",
ticker));

}
return quote;

}
}

public void PublishQuote(Quote quote)
{

lock (tickers)
{

Quote storedQuote = tickers[quote.Ticker] as Quote;
if (storedQuote == null)
{

tickers.Add(quote.Ticker, quote);
}
else
{

tickers[quote.Ticker] = quote;
}

}
}

}
}

As you can see, the implementation of the service is simple. It has one member variable
(of type Hashtable) that is responsible for keeping the internal state of the service with the
provided quotes in memory. In a more realistic scenario, this would of course be kept in some
permanent state system (a back end based on a database). To be able to call into the service
multiple times, you have to make sure the behavior of the service is a Singleton. Therefore,
the ServiceBehavior attribute is applied with the InstanceContextMode property set to
InstanceContextMode.Single. You will learn more about behaviors in the “Applying Behaviors”
section. The ReturnUnknownExceptionsAsFaults property is able to track back the exception
that can occur when a quote is requested for an unknown ticker to propagate to the client. For
obvious reasons, by default WCF doesn’t map .NET exceptions across the wire in SOAP faults.

In the “Introducing the Programming Approach” section, you learned the approaches you
can take in programming WCF; you also learned that as soon as ServiceHost is there, any
attributes and configuration have already been applied. In other words, Listing 3-8 shows the
same thing in terms of the actual result, but the one with the configuration is much more
maintainable.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 71

7028Ch03.qxp 12/11/06 8:33 PM Page 71

Listing 3-8. ServiceHost Instantiation Based on Configuration

using System;
using System.ServiceModel;
using QuickReturns.StockTrading.ExchangeService;
using QuickReturns.StockTrading.ExchangeService.Contracts;

namespace QuickReturns.StockTrading.ExchangeService.Hosts
{

class Program
{

static void Main(string[] args)
{

Type serviceType = typeof(TradeService);
ServiceHost host = new ServiceHost(serviceType);
host.Open();

Console.WriteLine("Service started: Press Return to exit");
Console.ReadLine();

}
}

}

Listing 3-9 provides the App.config file of the service. You can find the TradeService
defined with its endpoints. Please note the IMetadataExchange endpoint. You specify this
endpoint in order to allow consumers to retrieve the metadata (WSDL) of the service. If you
want to use either SvcUtil.exe or Add Service Reference in Visual Studio, you need to enable
the retrieval of metadata. The service is referring to a specific behaviorConfiguration called
serviceTypeBehaviors that sets some service-wide settings too. The service-wide settings are
as follows:

serviceMetadata: This allows you to set whether metadata may be retrieved for the service.
You can set some additional attributes such as ExternalMetadataLocation, HttpEnabled,
HttpsEnabled, HttpGetUrl, HttpsGetUrl, and MetaDataExporter. These are self-explanatory;
please refer to the MSDN Help for more information.

serviceDebug: These settings allow you to express whether you want to leak specific
service exception information and helpful HTML information pages for your services
across the service boundary. This should be disabled in production scenarios but can be
helpful during development. You can set some additional attributes such as
HttpHelpPageEnabled, HttpHelpPageUrl, HttpsHelpPageEnabled, HttpsHelpPageUrl, and
IncludeExceptionDetailInFaults. These are self-explanatory; please refer to the MSDN
Help for more information.

We have set httpGetEnabled for the metadata and httpHelpPageEnabled and
includeExceptionDetailInFaults because we need these in the remaining part of this
section and the following section.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL72

7028Ch03.qxp 12/11/06 8:33 PM Page 72

Listing 3-9. App.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>

<services>
<service name="QuickReturns.StockTrading.ExchangeService.TradeService"

behaviorConfiguration="tradeServiceBehavior ">
<host>

<baseAddresses>
<add baseAddress="http://localhost:8080/QuickReturns"/>

</baseAddresses>
</host>
<endpoint address="http://localhost:8080/QuickReturns/Exchange"

binding="basicHttpBinding"
contract="QuickReturns.StockTrading.ExchangeService.TradeService">

</endpoint>
<endpoint contract="IMetadataExchange"

binding="mexHttpBinding"
address="mex" />

</service>
</services>
<serviceBehaviors>

<behavior name="tradeServiceBehavior">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug httpHelpPageEnabled="true"

includeExceptionDetailInFaults="true"/>
</behavior>

</serviceBehaviors>
</system.serviceModel>
</configuration>

When you take a closer look at ServiceHost at runtime, you can see that it falls into two pieces.
The ServiceDescription is all about the endpoints and behaviors, and the second part is all about
the runtime where you can find listeners, sites, and extensions. The ServiceDescription is built
based on the configuration and can be changed with the imperative code you add. Figure 3-7
shows this graphically.

■Note It is highly recommended you download and open the solution for this chapter to get a better
understanding of the ServiceDescription. Look at it with the Visual Studio .NET debugger by using the
Watches or QuickWatch window.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 73

7028Ch03.qxp 12/11/06 8:33 PM Page 73

Figure 3-7. Representation of the ServiceHost in memory

We’ll now explain what the ServiceDescription and runtime can do for you. The
ServiceHost is always in a certain state (reflected by the State property of type
CommunicationState). The possible states are Created, Opening, Open, Closing, Closed, and
Faulted. When you start the ServiceHost, it activates the runtime and starts creating listeners
and extensions. In the debugger, the ServiceDescription looks like Figure 3-8. As you can see,
it shows you the same information as Figure 3-7.

A realistic scenario is that you subclass (extend) ServiceHost by hooking into the API and
overriding the OnInitialize (and any other methods that are applicable in your scenario) to
be able to abstract the logic to build up the description from external configuration or create a
more suitable base class for your base library, project, department, or company to use. The
OnInitialize method of the ServiceHost is a method suitable for doing this type of customi-
zation. Listing 3-10 shows you the same example as before, but now by subclassing
ServiceHost.

ServiceHost<T>

ServiceDescription Runtime

Behaviors Endpoints

Address

Contract

Binding

Listeners

Extensions

Sites

Behaviors

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL74

7028Ch03.qxp 12/11/06 8:33 PM Page 74

Figure 3-8. QuickWatch window of the ServiceDescription in ServiceHost

Listing 3-10. Subclassed ServiceHost Instantiation Based on Imperative Calls

using System;
using System.ServiceModel;
using QuickReturns.StockTrading.ExchangeService;
using QuickReturns.StockTrading.ExchangeService.Contracts;

namespace QuickReturns.StockTrading.ExchangeService.Hosts
{

public class ExchangeServiceHost
{

static void Main(string[] args)
{

Uri baseAddress =
new Uri("http://localhost:8080/QuickReturns");

CustomServiceHost host =
new CustomServiceHost(typeof(TradeService), baseAddress);

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 75

7028Ch03.qxp 12/11/06 8:33 PM Page 75

host.Open();
Console.WriteLine("Service started: Press Return to exit");
Console.ReadLine();

}
}

public class CustomServiceHost : ServiceHost
{

public CustomServiceHost(Type serviceType, params Uri[] baseAddresses)
: base(serviceType, baseAddresses)

{
}

protected override void OnInitialize()
{

BasicHttpBinding binding = new BasicHttpBinding();
AddServiceEndpoint(typeof(ITradeService), binding, "Exchange");

}
}

}

Although this scenario is not really something you would do in a real application because
you are hard-coding the configuration again, you can imagine the benefits of this scenario.
An example is setting up the description of your service based on a configuration stored in a
database.

Channel Factory
Just like ServiceHost, you instantiate ChannelFactory based on a specific service. There’s a differ-
ence, though. The client knows only about the exposed contract of the service, not about its
implementation. Therefore, in this case, the generic that is passed to ChannelFactory is the inter-
face of the contract. In Listing 3-11, we have written a client that instantiates a ChannelFactory to
open a channel to the service defined in the previous section about ServiceHost. Listing 3-12
shows the associated configuration files for use on the client side. To handle the third tenet
(share the schema and not the class), it is best if you define the contract of the service separately
and not create a separate assembly that you use on both the client side and the service side. This
way, the service side can evolve without impacting the client side. Of course, the code uses the
configuration best practice instead of the imperative code.

Listing 3-11. The Client Code Using ChannelFactory

using System;
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.Runtime.Serialization;

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL76

7028Ch03.qxp 12/11/06 8:33 PM Page 76

namespace QuickReturns.StockTrading.ExchangeService.Clients
{

[ServiceContract(Namespace = "http://QuickReturns")]
interface ITradeService
{

[OperationContract()]
Quote GetQuote(string ticker);

[OperationContract()]
void PublishQuote(Quote quote);

}

[DataContract(Namespace = "http://QuickReturns", Name = "Quote")]
public class Quote
{

[DataMember(Name = "Ticker")]
public string Ticker;

[DataMember(Name = "Bid")]
public decimal Bid;

[DataMember(Name = "Ask")]
public decimal Ask;

[DataMember(Name = "Publisher")]
public string Publisher;

[DataMember(Name = "UpdateDateTime")]
private DateTime UpdateDateTime;

}

class ExchangeServiceSimpleClient
{

static void Main(string[] args)
{

EndpointAddress address =
new EndpointAddress
("http://localhost:8080/QuickReturns/Exchange");

BasicHttpBinding binding = new BasicHttpBinding();
IChannelFactory<ITradeService> channelFactory =

new ChannelFactory<ITradeService>(binding);
ITradeService proxy = channelFactory.CreateChannel(address);

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 77

7028Ch03.qxp 12/11/06 8:33 PM Page 77

Quote msftQuote = new Quote();
msftQuote.Ticker = "MSFT";
msftQuote.Bid = 30.25M;
msftQuote.Ask = 32.00M;
msftQuote.Publisher = "PracticalWCF";

Quote ibmQuote = new Quote();
ibmQuote.Ticker = "IBM";
ibmQuote.Bid = 80.50M;
ibmQuote.Ask = 81.00M;
ibmQuote.Publisher = "PracticalWCF";

proxy.PublishQuote(msftQuote);
proxy.PublishQuote(ibmQuote);

Quote result = null;
result = proxy.GetQuote("MSFT");
Console.WriteLine("Ticker: {0} Ask: {1} Bid: {2}",

result.Ticker, result.Ask, result.Bid);

result = proxy.GetQuote("IBM");
Console.WriteLine("Ticker: {0} Ask: {1} Bid: {2}",

result.Ticker, result.Ask, result.Bid);

try
{

result = proxy.GetQuote("ATT");
}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}

if (result == null)
{

Console.WriteLine("Ticker ATT not found!");
}

Console.WriteLine("Done! Press return to exit");
Console.ReadLine();

}
}

}

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL78

7028Ch03.qxp 12/11/06 8:33 PM Page 78

Listing 3-12. The App.config File for the Client Code

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.serviceModel>
<client>

<endpoint address="http://localhost:8080/QuickReturns/Exchange"
binding="basicHttpBinding"
contract="QuickReturns.StockTrading.ExchangeServiceClient.➥

ITradeService">
</endpoint>

</client>
</system.serviceModel>

</configuration>

There is an easier way to consume services without using the ChannelFactory. You can
generate the proxies using the SvcUtil.exe utility. The SvcUtil.exe utility retrieves the meta-
data (WSDL) of the service, and based on that it will generate the proxy classes that can be
used to call the service. In addition, it will make sure the contracts are generated as interfaces
as well. Therefore, you can leave out the service contract and data contract you saw in Listing
3-11. The following call to SvcUtil.exe generates a proxy class for use in your client (make
sure your service is running):

svcutil.exe http://localhost:8080/QuickReturns

The utility will generate a proxy class based on the metadata of the service, which can be
retrieved with the following URL:

http://localhost:8080/QuickReturns?WSDL

The utility will generate a proxy class for you (the file will be named TradeService.cs, and
the configuration file is called Output.config). You can then simplify the client as shown in
Listing 3-13. Listing 3-14 shows the generated Output.config configuration file.

Listing 3-13. Simplified Client Code Using the Proxy Generated by SvcUtil.exe

using System;
using quickReturns;

namespace QuickReturns.StockTrading.ExchangeService.Clients
{

class ExchangeServiceClientProxy
{

static void Main(string[] args)
{

TradeServiceProxy proxy = new TradeServiceProxy();

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 79

7028Ch03.qxp 12/11/06 8:33 PM Page 79

Quote msftQuote = new Quote();
msftQuote.Ticker = "MSFT";
msftQuote.Bid = 30.25M;
msftQuote.Ask = 32.00M;
msftQuote.Publisher = "PracticalWCF";

Quote ibmQuote = new Quote();
ibmQuote.Ticker = "IBM";
ibmQuote.Bid = 80.50M;
ibmQuote.Ask = 81.00M;
ibmQuote.Publisher = "PracticalWCF";

proxy.PublishQuote(msftQuote);
proxy.PublishQuote(ibmQuote);

Quote result = null;
result = proxy.GetQuote("MSFT");
Console.WriteLine("Ticker: {0} Ask: {1} Bid: {2}",

result.Ticker, result.Ask, result.Bid);

result = proxy.GetQuote("IBM");
Console.WriteLine("Ticker: {0} Ask: {1} Bid: {2}",

result.Ticker, result.Ask, result.Bid);

try
{

result = proxy.GetQuote("ATT");
}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}

if (result == null)
{

Console.WriteLine("Ticker ATT not found!");
}

Console.WriteLine("Done! Press return to exit");
Console.ReadLine();

}
}

}

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL80

7028Ch03.qxp 12/11/06 8:33 PM Page 80

Listing 3-14. Output.config Generated by SvcUtil.exe

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<system.serviceModel>
<bindings>

<basicHttpBinding>
<binding name="basicHttpBinding"

closeTimeout="00:01:00"
openTimeout="00:01:00"
receiveTimeout="00:10:00"
sendTimeout="00:01:00"
allowCookies="false"
bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
maxBufferSize="65536"
maxBufferPoolSize="524288"
maxReceivedMessageSize="65536"
messageEncoding="Text"
textEncoding="utf-8"
transferMode="Buffered"
useDefaultWebProxy="true">

<readerQuotas maxDepth="32"
maxStringContentLength="8192"
maxArrayLength="16384"
maxBytesPerRead="4096"
maxNameTableCharCount="16384" />

<security mode="None">
<transport clientCredentialType="None"

proxyCredentialType="None"
realm="" />

<message clientCredentialType="UserName"
algorithmSuite="Default" />

</security>
</binding>

</basicHttpBinding>
</bindings>
<client>

<endpoint address="http://localhost:8080/QuickReturns/Exchange"
binding="basicHttpBinding"
bindingConfiguration="basicHttpBinding"

contract="ITradeService" name="basicHttpBinding" />
</client>

</system.serviceModel>
</configuration>

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 81

7028Ch03.qxp 12/11/06 8:33 PM Page 81

■Note With the code in the ServiceHost and ChannelFactory discussions, we have finalized the first
bit of WCF code that actually compiles and runs. In the code that comes with this book, you can find the
ExchangeService sample in the ExchangeService folder for Chapter 3 (c:\PracticalWCF\Chapter03\
ExchangeService), complete with two flavors of clients that do some calls to publish and get quotes. The
difference between the two clients (SimpleClient and SimpleClientWithProxy) is that the first is using
ChannelFactory and the other is using a proxy generated with SvcUtil.exe. It is highly recommended
you walk through this code with Visual Studio .NET in debug mode.

Service Description
The service description is an important concept when trying to understand WCF. The ABCs of
WCF result in a service description as shown in Figure 3-7. In essence, the ServiceDescription
is an in-memory representation of the environment where your service lives. It is either based
on initialization code or based on a configuration file according to your wishes. Then, in later
stages before starting your runtime, you have several options for modifying the service
description through the WCF API. Please refer to the earlier ServiceHost discussion for details.

Service Runtime
The service runtime is an abstraction layer on top of the messaging layer. This layer is the bridge
between your application code and the channels in the messaging layer. The messaging layer
deals with transport, protocols, and so on, whereas the service runtime or the service model in
general deals with the messages flowing through the messaging layer and conforming to a cer-
tain contracts. How they get to the other end of the wire is abstracted from the developer.

You see two similar concepts on the client and service side of the wire. Just like you
learned about the factories and listeners in the channel layer, you will see a similar concept in
the service runtime. The service runtime has typed proxies on the client side and dispatchers
on the service side. Typed proxies and dispatchers are responsible for handing over messages
from the service runtime to the messaging layer and the other way around. The typed proxy
offers methods that are useful to your applications, and it transforms the method calls into
WCF messages and hands them over to the messaging layer to transmit them to the service.
The dispatcher is used on the service side to handle the messages coming in on the channels
and is responsible for sending them over to your application code. Figure 3-9 shows this
graphically.

As you can see in Figure 3-9, you have proxy operations and a proxy behavior on the client
side that are responsible for influencing the channel layer. For every method in your service
contract of your service, you have one proxy operation. The operations share one proxy
behavior. The proxy behavior deals with all the messages flowing between the channel layer
and your application. On the proxy behavior level, you can make interceptions to deal with
parameter interception, serialization, formatting, the mapping to real methods, and so on. On
the operation behavior level, you can perform such tasks as selecting channels, selecting oper-
ations (mapping methods), or inspecting messages.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL82

7028Ch03.qxp 12/11/06 8:33 PM Page 82

Figure 3-9. The service model runtime

On the service side, you’ll see a similar concept. At the service level you can do more pow-
erful tasks because the service side is richer in functionality. The dispatch behavior level
allows you to perform tasks such as initializing channels, inspecting messages, handling
exceptions, selecting operations, and handling concurrency. The dispatch operation level can
handle tasks such as inspecting parameters, serializing, handling transactions, and invoking
calls.

Applying Behaviors
Most of the details until now have addressed how the service looks from the outside and a lit-
tle bit about how it works from the inside. A powerful concept you haven’t read about a lot
until now is behaviors. Influencing the internals of a service, behaviors are applied at the serv-
ice level, operation level, contract level, and endpoint level. WCF comes with several behaviors
out of the box, which we’ll cover in this section.

With behaviors, it is possible to modify the runtime and eventually influence the internals
of each type of concept where it applies (for example, endpoint, operation, contract, and serv-
ice). From a programming model perspective, you can apply behaviors through configuration
or by using the attributes available to you. Behaviors are something consumers of services
have no direct notion of, and they are not expressed in the contract. So, they are all about con-
cepts such as instancing lifetime, concurrency, and transactions.

The interface of behaviors is defined in such a way that it allows you to influence different
levels of your service. The levels are validation, bindings, and two methods that do the actual
work either on the client side or on the server side. Each behavior has the interface shown in

Client
Typed Proxy

Message

Channel Layer

Service
Dispatcher

Channel Layer

Proxy
Operation

Proxy
Behavior

Dispatch
Operation

Dispatch
Behavior

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 83

7028Ch03.qxp 12/11/06 8:33 PM Page 83

Listing 3-15, with one exception. The ServiceBehavior doesn’t have the ApplyClientBehavior
method because you can apply ServiceBehavior only on the service level.

Listing 3-15. Generic I…Behavior Interface

public interface I…Behavior
{

void AddBindingParameters(ServiceEndpoint serviceEndpoint,
BindingParameterCollection bindingParameters);

void ApplyClientBehavior(ServiceEndpoint serviceEndpoint,
ClientRuntime behavior);

void ApplyDispatchBehavior(ServiceEndpoint serviceEndpoint,
EndpointDispatcher endpointDispatcher, ...);

void Validate(ServiceEndpoint serviceEndpoint);
}

The order in which the methods of the interface are called is as follows:

Validate: This is called when all the information is gathered to build the runtime.

AddBindingParameters: This method is called in the first step of building the runtime and
before the underlying channel listener is constructed. This allows you to add the custom
parameters expected by the underlying channel implementation.

ApplyClientBehavior/ApplyDispatchBehavior: The actual work takes place in these meth-
ods that apply either on the client or on the service side (depending on where you are).

■Note Although the behavior interfaces look similar, there’s no base IBehavior interface. In other words,
to make them as intuitive as possible, they look similar. However, they have some minor differences. For
example, the IServiceBehavior interface doesn’t have the ApplyClientBehavior. In addition, the
ApplyDispatchBehavior has some different parameters in certain interfaces. This is why we replaced the
specific names of the behaviors with dots (…). Please refer to the MSDN Help to get more insight into all the
behavior interfaces.

Service Behavior
You can define the [ServiceBehavior] attribute on the service implementation (class) level to
specify service-wide execution behavior. In other words, you cannot apply this attribute to the
interface (contract) level. This distinction is important. The behaviors in WCF have to do with
the internals of the implementation, not with the service contract. Listing 3-16 shows the
interface of the IServiceBehavior interface that the ServiceBehaviorAttribute implements.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL84

7028Ch03.qxp 12/11/06 8:33 PM Page 84

Listing 3-16. IServiceBehavior Interface

public interface IServiceBehavior
{

// Methods
void AddBindingParameters(ServiceDescription description,

ServiceHostBase serviceHostBase,
Collection<ServiceEndpoint> endpoints,
BindingParameterCollection parameters);

void ApplyDispatchBehavior(ServiceDescription description,
ServiceHostBase serviceHostBase);

void Validate(ServiceDescription description,
ServiceHostBase serviceHostBase);

}

As you can gather, the most important method on the IServiceBehavior interface is called
ApplyDispatchBehavior, which comes with two parameters. The ServiceDescription is mainly
provided to inspect the entire service description. However, in practice you could also modify it,
although that is not typically what you do at this level. Validate is called in order for you to be
able to validate the endpoint. WCF will automatically call it for you. The ChannelDispatchers
collection that ServiceHostBase provides is obviously provided to inject code into the dispatcher
pipeline and influence the dispatching behaviors. This is basically where the translation is made
between the .NET objects and the actual sockets underneath the transport. Through the
AddBindingParameters method and the provided BindingParameterCollection, you can pass
information about the contract to the channel stack to implement concepts such as security and
transactions. Therefore, you can probably imagine this is an important interception and extensi-
bility point if you want to hook into the WCF programming model. This enables you to create
even more powerful solutions than you get out of the box.

The default [ServiceBehavior] attribute already provides you with a lot of functionality
that can be set through its properties (Name, Namespace, and ConfigurationName are omitted
because they are common across WCF):

AddressFilterMode (AddressFilterMode): By default WCF will match messages to their
destination endpoint, matching it with the WS-Addressing To header in the SOAP mes-
sage. For example, setting AddressFilterMode to AddressFilterMode.Prefix will instruct
WCF to match the endpoints on the start of the endpoint URI.

AutomaticSessionShutdown (boolean): Specifies whether to automatically close a session
when a client closes an output session.

ConcurrencyMode (ConcurrencyMode): Specifies whether a service supports one thread,
multiple threads, or reentrant calls. Valid values are Reentrant, Single, or Multiple. Single
and Multiple correspond to single and multithreaded types of service, and the Reentrant
service accepts calls that have the same thread context. It is particularly useful when a
service calls another service, which subsequently calls back to the first service. In this
case, if the first service is not reentrant, the sequence of calls results in a deadlock. The
default is percall and is typically the best choice because it is best to keep your services
stateless to provide scalability.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 85

7028Ch03.qxp 12/11/06 8:33 PM Page 85

IgnoreExtensionDataObject (boolean): Specifies whether to send unknown serialization
data onto the wire.

IncludeExceptionDetailInFaults (boolean): Specificies whether you want to leak specific
service exception information across the service boundary. This is useful during debug-
ging.

InstanceContextMode (InstanceContextMode): Gets or sets the value that indicates when
new service objects are created. The default is PerCall; the other available values are
PerSession, Shareable, and Single.

MaxItemsInObjectGraph (int): Specifies the maximum amount of items that are to be seri-
alized as part of an object.

ReleaseServiceInstanceOnTransactionComplete (boolean): Gets or sets a value that speci-
fies whether the service object is recycled when the current transaction completes.

ReturnUnknownExceptionsAsFaults (boolean): By default WCF doesn’t provide the stack
trace of issues occurring inside the service, because of the security risks involved. You
should set this value only during development to troubleshoot a service; it specifies that
unhandled exceptions are to be converted into a SOAP Fault<string> and sent as a fault
message. In other words, this translates the world of .NET exceptions to SOAP faults. So,
on the wire the details of exceptions can be read, which could potentially give too much
detail of the internals of the service.

TransactionAutoCompleteOnSessionClose (boolean): Gets or sets a value that specifies
whether pending transactions are completed when the current session closes.

TransactionIsolationLevel (IsolationLevel): Specifies the transaction isolation level.
WCF relies on the .NET System.Transactions namespace to enable transactions.

TransactionTimeout (Timespan/string): Gets or sets the period within which a transaction
must be completed before it times out (and rolls back).

UseSynchronizationContext (boolean): Gets or sets a value that specifies whether to use
the current synchronization context to choose the thread of execution.

ValidateMustUnderstand (boolean): Gets or sets a value that specifies whether the system
or the application enforces SOAP MustUnderstand header processing.

Contract Behavior
You can use the IContractBehavior interface to modify the dispatch behavior on the client or
service level. IContractBehavior is an extension point you usually need only when you want to
influence the dispatch behavior of WCF (see Listing 3-17).

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL86

7028Ch03.qxp 12/11/06 8:33 PM Page 86

Listing 3-17. IContractBehavior Interface

public interface IContractBehavior
{

void AddBindingParameters(ContractDescription description,
ServiceEndpoint endpoint,
BindingParameterCollection parameters);

void ApplyClientBehavior(ContractDescription description,
ServiceEndpoint endpoint,
ClientRuntime proxy);

void ApplyDispatchBehavior(ContractDescription description,
IEnumerable<ServiceEndpoint> endpoints,
DispatchRuntime dispatch);

void Validate(ContractDescription description,
ServiceEndpoint endpoint);

}

When you implement the IContractBehavior interface in your client-side proxy or service,
the ApplyClientBehavior and ApplyDispatchBehavior methods will be called when WCF is bind-
ing the proxies or dispatchers. Obviously, you can then influence the passed-in parameters. This
is an extension point of the Service runtime.

■Tip If you want to get a better understanding of what this interface can do for you, just implement it in
your service and set a breakpoint in the body of your method. Then you can inspect the passed parameters
and get a better understanding of what you can influence.

Channel Behavior
You can use the IEndpointBehavior interface to modify the channel behavior on the client or
service side. IEndpointBehavior is an extension point that you usually need only when you
want to influence the channel behavior of WCF (see Listing 3-18).

Listing 3-18. IEndpointBehavior Interface

public interface IEndpointBehavior
{

void AddBindingParameters(ServiceEndpoint serviceEndpoint,
BindingParameterCollection bindingParameters);

void ApplyClientBehavior(ServiceEndpoint serviceEndpoint,
ClientRuntime behavior);

void ApplyDispatchBehavior(ServiceEndpoint serviceEndpoint,
EndpointDispatcher endpointDispatcher);

void Validate(ServiceEndpoint serviceEndpoint);
}

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 87

7028Ch03.qxp 12/11/06 8:33 PM Page 87

When you implement the IEndpointBehavior interface in your client-side proxy or service,
the ApplyClientBehavior method will be called when WCF is applying behaviors at the channel
level on the client side; the ApplyDispatchBehavior class does the same on the service side.
Obviously, you can then influence the passed-in parameters. This is an extension point of the
messaging layer.

Operation Behavior
You can apply the [OperationBehavior] attribute at the operation (method) level; it allows you
to specify the specific operation behavior the method has during the execution of an operation.
As with all behaviors, the OperationBehavior is internal to the service and has no influence on
the contract.

Just like the [ServiceBehavior] attribute, the [OperationBehavior] attribute supports a
few default properties:

TransactionAutoComplete (boolean): Gets or sets a value that specifies whether the trans-
action in which the method executes is automatically committed if no unhandled
exceptions occur.

TransactionScopeRequired (boolean): Gets or sets a value that specifies whether a transac-
tion scope is required in which the method executes. The transaction in which the method
executes is automatically committed if no unhandled exceptions occur. The method will
enlist in the transaction.

Impersonation (boolean): Gets or sets a value that specifies whether the operation can
impersonate the caller’s identity.

ReleaseInstanceMode (boolean): Gets or sets a value that specifies whether the service
objects are recycled during the operation invocation process.

AutoDisposeParameters (boolean): Determines whether the service runtime should dispose
all input/output parameters once the operation is invoked.

Service Metadata Behavior
The ServiceMetadataBehavior is a specialized behavior that implements the IServiceBehavior
interface. It intercepts requests for metadata of your service and makes it possible to enable or
disable the publication of service metadata using an HTTP GET request (the HTML page
shown in Figure 3-10).

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL88

7028Ch03.qxp 12/11/06 8:33 PM Page 88

Figure 3-10. The metadata page for the trade service

In addition, it is possible to enable or disable the publication of this metadata through a
WS-MetadataExchange (WS-MEX) request. If you know your consumers and handed them
your metadata, it is a viable option not to allow others to retrieve the metadata. By default
when adding a baseAddress to your service, just like we did in several of our samples, the
ServiceMetadataBehavior is added automatically to the Behaviors collection. As expected, you
can change this behavior either through configuration or by using imperative code. This way
you can appropriately set the properties (httpGetEnabled and httpHelpPageEnabled) of the
class. Of course, the best way to do this is by using a configuration file, as in the sample config-
uration file shown in Listing 3-19. You can retrieve the metadata (WSDL) by retrieving the base
address appended with ?wsdl. For example:

http://localhost:8080/QuickReturn?wsdl

Retrieving the base address in a browser results in Figure 3-10 being shown.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 89

7028Ch03.qxp 12/11/06 8:34 PM Page 89

Listing 3-19. Service Metadata in Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>

<services>
<service name="QuickReturns.StockTrading.ExchangeService.TradeService"

behaviorConfiguration="tradeServiceBehavior ">
<host>

<baseAddresses>
<add baseAddress="http://localhost:8080/QuickReturns"/>

</baseAddresses>
</host>
<endpoint address="http://localhost:8080/QuickReturns/Exchange"

binding="basicHttpBinding"
contract="QuickReturns.StockTrading.ExchangeService.TradeService">

</endpoint>
<endpoint contract="IMetadataExchange"

binding="mexHttpBinding"
address="mex" />

</service>
</services>
<serviceBehaviors>

<behavior name="tradeServiceBehavior">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug httpHelpPageEnabled="true"

includeExceptionDetailInFaults="true"/>
</behavior>

</serviceBehaviors>
</system.serviceModel>
</configuration>

Using the Configuration Tool
The .NET Framework 3.0 SDK comes with several utilities. One of the most useful utilities is the
Microsoft Service Configuration Editor (SvcConfigEditor.exe), as shown in Figure 3-11. This util-
ity enables you to open existing and create new WCF configuration files without editing XML files
directly. With the tool, you can manage settings for both the client and the service. Additionally, it
is possible to configure bindings, behaviors, extensions, host environments, and diagnostics.

■Tip By default the configuration tool is installed in the Microsoft Windows SDK Bin folder (C:\Program
Files\Microsoft SDKs\Windows\v6.0). It also comes with a help file in that same folder. When you use
the configuration editor, we suggest you keep an eye on what the configuration editor is actually adding to
your configuration file. It tends to add more information than you specify, and it is important you know what
the configuration settings mean. So, always inspect the results in a text editor after you make changes with
the configuration editor and try to understand what it did.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL90

7028Ch03.qxp 12/11/06 8:34 PM Page 90

Figure 3-11. Microsoft Service Configuration Editor

Configuring Diagnostics
When you work with WCF, it is likely you will run into issues you don’t understand completely.
To investigate these issues, you will need to know what messages flow through your applica-
tion and to trace them. Luckily, WCF provides integrated support for logging messages and
tracing. You can configure diagnostics by using the Microsoft Service Configuration Editor or
by manipulating the application configuration manually. Tracing works with listeners, similar
to the Microsoft .NET Framework 2.0. Refer to Listing 3-20 for an example.

Listing 3-20. Application Configuration with Tracing Enabled

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.diagnostics>

<sources>
<source name="System.ServiceModel.MessageLogging"

switchValue="Warning, ActivityTracing">
<listeners>

<add type="System.Diagnostics.DefaultTraceListener"
name="Default">
<filter type="" />

</add>
<add name="ServiceModelMessageLoggingListener">

<filter type="" />
</add>

</listeners>
</source>

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 91

7028Ch03.qxp 12/11/06 8:34 PM Page 91

<source name="System.ServiceModel"
switchValue="Warning, ActivityTracing"
propagateActivity="true">

<listeners>
<add type="System.Diagnostics.DefaultTraceListener"

name="Default">
<filter type="" />

</add>
<add name="ServiceModelTraceListener">

<filter type="" />
</add>

</listeners>
</source>

</sources>
<sharedListeners>

<add initializeData="C:\Temp\App_messages.svclog"
type="System.Diagnostics.XmlWriterTraceListener, System, ➥

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
name="ServiceModelMessageLoggingListener"
traceOutputOptions="Timestamp">
<filter type="" />

</add>
<add initializeData="C:\App_tracelog.svclog"

type="System.Diagnostics.XmlWriterTraceListener, System, ➥

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
name="ServiceModelTraceListener"
traceOutputOptions="Timestamp">
<filter type="" />

</add>
</sharedListeners>

</system.diagnostics>
<system.serviceModel>
<diagnostics>

<messageLogging logEntireMessage="true"
logMalformedMessages="true"
logMessagesAtServiceLevel="true"
logMessagesAtTransportLevel="true" />

</diagnostics>
<services>

<service behaviorConfiguration="tradeServiceBehavior"
name="QuickReturns.StockTrading.ExchangeService.TradeService">

<endpoint address="Exchange"
binding="basicHttpBinding"
bindingConfiguration=""
name="basicHttpBinding"
contract="QuickReturns.StockTrading.ExchangeService. ➥

Contracts.ITradeService" />

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL92

7028Ch03.qxp 12/11/06 8:34 PM Page 92

<endpoint address="mex"
binding="mexHttpBinding"
name="mexHttpBinding"
contract="IMetadataExchange" />

<host>
<baseAddresses>
<add baseAddress="http://localhost:8080/QuickReturns" />

</baseAddresses>
</host>

</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="tradeServiceBehavior">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug httpHelpPageEnabled="true"

includeExceptionDetailInFaults="true"/>
</behavior>

</serviceBehaviors>
</behaviors>

</system.serviceModel>
</configuration>

You can also edit the configuration file with the configuration tool’s Diagnostics window,
shown in Figure 3-12.

Figure 3-12. Diagnostics window in the configuration tool

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 93

7028Ch03.qxp 12/11/06 8:34 PM Page 93

In addition, the Windows SDK comes with a small utility that enables you to view the
messages flowing through your application. The utility is called the Microsoft Service Trace
Viewer (SvcTraceViewer.exe) and is in the same location as the configuration tool, as shown in
Figure 3-13.

Figure 3-13. Microsoft Service Trace Viewer

The logging capabilities of WCF are extensive, and it is possible to enable a certain type of
granularity as well. (In other words, it allows you to log full messages, just headers, malformed
messages, messages at the service level or transport level, and so on, as shown in the second
bold section of Listing 3-20.) You can then use the Service Trace Viewer to view the log files.

■Tip By default, the Service Trace Viewer tool is installed in the Microsoft Windows SDK Bin folder
(C:\Program Files\Microsoft SDKs\Windows\v6.0). It also comes with a compiled help file (CHM) in
that same folder. We strongly suggest you run the sample application in this chapter and enable all or at
least most of the tracing and diagnostics functionality in the configuration on both the client and service
sides and then inspect the log files you are getting. This will enable you not only to understand the built-in
capabilities around diagnostics but also to understand what is going on under the hood of the WCF
programming model.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL94

7028Ch03.qxp 12/11/06 8:34 PM Page 94

Configuring Instrumentation
Although any enterprise application needs instrumentation to satisfy operators, it is always
useful if the platform also has instrumentation built in so you as an application developer
don’t have to be concerned about all the details of supporting instrumentation. Just like log-
ging and tracing, you can enable performance counters and WMI from within the application
configuration or the configuration tool for both the client side and the service side. You can
also set the performanceCountersEnabled property to ServiceOnly. Listing 3-21 shows how you
do this in an application configuration file.

Listing 3-21. Application Configuration with Instrumentation Enabled

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<system.serviceModel>
<diagnostics wmiProviderEnabled="true" performanceCounters="All" />
<client>

<endpoint address="http://localhost:8080/QuickReturns/Exchange"
binding="basicHttpBinding" bindingConfiguration=""
contract="ITradeService" name="basicHttpBinding" />

</client>
</system.serviceModel>

</configuration>

In Figure 3-14, you see the Diagnostics window in the Microsoft Service Configuration
Editor that you can use to enable performance counters and WMI events. This results in the
marked changes in the configuration shown in Listing 3-21.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL 95

7028Ch03.qxp 12/11/06 8:34 PM Page 95

Figure 3-14. Microsoft Service Configuration Editor with instrumentation enabled

Summary
So now that you know how the unified programming model of WCF works and what its archi-
tecture is, you should be able to create your first WCF-enabled application. You should also be
able to describe where the extension points are and be able to decide where you should
extend in a particular scenario. We strongly suggest you continue with the next part of the
book that builds on the foundation set in this chapter through the more advanced topics in
the programming model around creating, consuming, and hosting services. However, make
sure you have at least played around with the base services and client that comes in the
accompanying code with the book.

CHAPTER 3 ■ EXPLORING THE WCF PROGRAMMING MODEL96

7028Ch03.qxp 12/11/06 8:34 PM Page 96

Programming with WCF

In Part 1, you investigated the basics of Service-Oriented Architecture and the building

blocks of service-oriented computing (that is, SOAP, WSDL, UDDI, and so on). You also

learned about the evolution of Microsoft offerings that provide a practical SOA platform to

build services. You concentrated on the ASMX, WSE 1.0, WSE 2.0, and WSE 3.0 features ini-

tially. Then you learned about the unified programming model and how WCF provides the

best tools to create secure, interoperable web services.

In this part, we’ll discuss WCF technical features in detail. We’ll concentrate on the program-

ming aspects of WCF with the assistance of fictitious QuickReturns Ltd. stock market

application. We’ll initially guide you through installing WCF components. Then we’ll walk you

through creating services and hosting these services with WCF. We will discuss all the host-

ing options available in WCF in detail. Finally, we’ll cover the management options available

to manage WCF services to obtain the best return on investment for your application.

P A R T 2

■ ■ ■

7028Ch04.qxp 12/11/06 8:32 PM Page 97

7028Ch04.qxp 12/11/06 8:32 PM Page 98

Installing and Creating WCF
Services

This chapter introduces how to implement WCF services. Much can be said about what con-
stitutes a good service and a strong SOA architecture—Chapter 1 addresses those principles.
Additionally, many have described web services and SOA as synonyms. We hope we’ve altered
that perspective to clearly indicate that web services are an implementation model for SOA,
just as message-oriented middleware and other loosely coupled technologies have provided
in the past.

This chapter identifies the installation and configuration requirements of WCF and then
presents a simplified set of examples for creating different types of contracts for services that
are part of the QuickReturns Ltd. sample implementation. This chapter focuses primarily on
the following:

• The requirements for WCF on the Windows XP, 2003, and Vista operating systems

• Creating WCF services and proxies using Visual Studio 2005 and .NET 3.0 Framework tools

To illustrate the simplified model, this chapter doesn’t discuss the variations of how you
can host the service. We’ll explain that in more detail in later chapters.

WCF allows the abstraction and decoupling of a service’s functionality from the actual
transport protocols and physical characteristics of the communication interfaces. Prior chap-
ters covered the ABCs of WCF, but here we’ll focus on creating services. We will also more deeply
dive into the technical aspects of the WCF programming model from this chapter onward.

Understanding the Requirements
We’ll briefly cover the hardware and software requirements for both developing and running
.NET 3.0 applications. It’s important to note that Microsoft may change or update these require-
ments over time, so it’s best to check Microsoft’s website for the most up-to-date versions.

Hardware Requirements
Generally, the hardware requirements for running WCF as part of .NET 3.0 are simple. Running
on top of .NET 2.0, the base level requirements are directly related to the .NET 2.0 runtime and
.NET 2.0 SDK requirements.

99

C H A P T E R 4

■ ■ ■

7028Ch04.qxp 12/11/06 8:32 PM Page 99

■Note The .NET runtime and the .NET SDK have different base requirements. Running the SDK, tools, utili-
ties, and compilers requires additional resources. Given that most developers are leveraging Visual Studio
.NET 2005 as their primary development environment (although not required), they should have as much
memory, CPU, and disk space as they can afford.

At the time of this writing, Table 4-1 represents the minimum hardware requirements for
the processor and RAM, and Table 4-2 represents the minimum hardware requirements for
hard disk space.

Table 4-1. Hardware Requirements: Processor and RAM

Scenario Processor Minimum RAM Minimum

.NET Framework redistributable 400 megahertz (MHz) 96 megabytes (MB)

.NET Framework SDK 600MHz 128MB

Table 4-2. Hardware Requirements: Hard Disk Space

Scenario Minimum

32-bit 280MB

64-bit 610MB

■Note Microsoft publishes its requirements at http://msdn2.microsoft.com/en-us/library/
ms229070.aspx and in the ReadMe file that is installed with the .NET SDK. You can find this in the Program
Files\Microsoft Visual Studio 8\SDK\v2.0 directory if it is installed as part of Visual Studio .NET.

Software Requirements
We’ll now cover the software platform requirements for both developing and running .NET 3.0
applications. Note that although .NET 2.0 will run on Windows 2000 Service Pack 3, the .NET
3.0 bits, at the time of this writing, are not supported on any version of Windows 2000.

WCF is part of the .NET 3.0 Framework API that is fully integrated into the next major
release of Windows—Windows Vista. Microsoft is also making the .NET 3.0 Framework
backward compatible for certain versions of Windows, specifically Windows XP Service Pack 2
and Windows 2003 Service Pack 1.

At the time of this writing, the installation order is quite stringent. During research for this
book, we’ve installed, deinstalled, reinstalled, and even wiped machines numerous times to
get the beta and Community Technology Preview (CTP) components operating correctly. It’s
clear that machine virtualization is a blessing for this type of leading-edge work. Having

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES100

7028Ch04.qxp 12/11/06 8:32 PM Page 100

discussed the “cleanliness” of the SDK installation process with the Microsoft program man-
agers, we know they empathize with the development community and are looking to make the
process as tight as possible.

■Note The .NET 3.0 Framework is an additive set of class libraries, assemblies, and tools that runs on top
of the .NET 2.0 Framework. Prior to being released to manufacturing, the working name was WinFX. The
renaming has, as expected, caused confusion about the versioning, about what is included in each version,
and about what installation packages are needed. However, with Vista, all the base components are distrib-
uted with the core operating system installation.

Appendix C contains detailed installation steps. The following are the component
requirements to run and develop .NET 3.0 and WCF-based applications:

• Windows 2003 Service Pack 1, Windows XP Service Pack 2, Windows Vista

• The .NET Framework 2.0 redistributable package (x86/x64/I64), which is part of Vista
(this is an add-on for Windows 2003 and XP Service Pack 2)

• The .NET 3.0 Framework components, which are part of Vista (these are add-ons for
Windows 2003 and XP Service Pack 2)

The development environment requires a few extra tools and, as a general recommenda-
tion, should be equipped with a bit more resources for the hardware—specifically RAM, CPU,
and disk space:

• Windows 2003 Service Pack 1, Windows XP Service Pack 2, or Windows Vista

• The .NET Framework 2.0 redistributable package (x86/x64/I64), which is part of Vista

• The .NET Framework 2.0 SDK (x86/x64/I64)

• The Microsoft Windows SDK—formerly known as Platform SDK

• The.NET Framework 3.0 runtime components (RTC), which are already included in
Windows Vista

• Recommended: IIS installation—not required with Visual Studio 2005 development web
server

• Recommended: Microsoft Visual Studio 2005 Express Edition (or “larger” version—Pro,
Suite, and so on)

• Recommended: The .NET Framework 3.0 Development Tools for Visual Studio

Note that the .NET Framework 3.0 Development Tools for Visual Studio 2005 provide tem-
plate support for .NET 3.0 projects and project items. They are not required, but they make
working with WCF and .NET 3.0–based solutions and components inside Visual Studio 2005 a
little bit easier because they add all the references and template code for you.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 101

7028Ch04.qxp 12/11/06 8:32 PM Page 101

■Note Developing WCF and .NET 3.0 Framework solutions requires only the .NET 2.0 Framework SDK.
However, it is expected that most developers will use Visual Studio 2005. All versions of Visual Studio 2005
support the development of WCF (.NET 3.0) applications. You can find the .NET 2.0 runtime and SDK at
http://msdn.microsoft.com/netframework/downloads/updates/. Currently, you can find all the .NET
3.0 components at http://msdn.microsoft.com/windowsvista/downloads/products/.

Installing the .NET 3.0 Development Components
This section lists the general steps for installing the .NET 3.0 (WCF) development components.
(Appendix C lists the detailed installation steps for the required components.) This is the
required installation order:

1. Install Visual Studio 2005 or .NET 2.0 SDK.

2. Install the .NET Framework 3.0 RTC.

3. Install the Windows SDK.

4. Install the .NET Framework 3.0 Development Tools (if using Visual Studio).

■Tip At the time of this writing, Visual Studio 2005 has known compatibility issues with Vista. The Visual
Studio 2005 team is working on a service pack to be available in 2007 to address these issues. Also note
that for ASP.NET debugging, it’s best to run Visual Studio 2005 from an elevated process.

WCF services can be hosted in any application process that loads the .NET 2.0 runtime,
loads the appropriate .NET 3.0 Framework runtime components, and ultimately instantiates a
System.ServiceModel.ServiceHost instance that listens on an endpoint for requests.

■Note Chapter 5 provides greater detail about hosting, the various options available, the overall mechan-
ics, and the nuances associated with the various hosting options.

This chapter focuses on getting up and running with WCF services and using the simplest
of hosts—the ASP.NET development server and IIS. You can use IIS for both developing and
deploying WCF services. Most of the mechanics of hosting WCF services inside ASP.NET are
handled by an implementation of an HttpHandler. This handler is System.ServiceModel.
Activation.HttpHandler and is mapped on a per-machine basis in the machine’s Web.config
file, which is located in the directory %windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES102

7028Ch04.qxp 12/11/06 8:32 PM Page 102

IIS, WCF, AND THE HTTP API

Windows 2003, Windows XP Service Pack 2, and Windows Vista all provide the HTTP API to allow applications
that create HTTP listeners to gain a series of advantages over the traditional Winsock mechanism that has
been available in current and prior releases of Windows.

WCF is positioned to take full advantage of this capability, which for the most part sat dormant on the
client platform. Check out the article “Http.sys in WinXP SP2: What It Means with Windows Communication
Foundation” located at http://www.dotnetjunkies.com/Tutorial/99DD7042-532D-4DB4-8625-
1CD8BF422D64.dcik.

■Note All ASP.NET “resources” are mapped to types that implement the IHttpHandler interface as
required by the ASP.NET hosting engine.

Within the httpHandler section of the machine’s Web.config, the mapping appears as
shown in Listing 4-1.

Listing 4-1. *.svc Mapping for WCF Handler

<add
path="*.svc"
verb="*"
type="System.ServiceModel.Activation.HttpHandler, System.ServiceModel,
Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
validate="false" />

The System.ServiceModel.Activation.HttpHandler class is responsible for providing the
ServiceHost environment inside the ASP.NET worker process for applications that are hosted on
IIS. This handler, just as handlers provide for other extensions (*.aspx, *.asmx), is responsible for
providing any runtime compilation of source code embedded inside the *.svc files, in addition
to providing update detection of the same source code as is done for the other handler types.

Understanding Service Contracts
Service contracts, one of the Cs in the ABCs of WCF, are what are advertised to the consumers
of your services. This advertisement generally takes place through a schema and a contract
definition that supports a standardized method for publishing the service contract (along with
data contracts). Today, that schema is either a Web Services Description Language (WSDL)
contract or a WS-MetadataExchange (MEX) contract. These formats are industry-supported,
open specifications. These specifications are located at the following locations:

WSDL: http://www.w3.org/TR/wsdl

MEX: http://schemas.xmlsoap.org/ws/2004/09/mex/

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 103

7028Ch04.qxp 12/11/06 8:32 PM Page 103

WSDL AND WS-METADATAEXCHANGE

WSDL is an XML Schema–based description of supported operations and messages for an endpoint.
MEX represents a message exchange protocol that allows the discovery of WSDL, WS-Policy, or XML

Schema associated with a target namespace. More information is available at the following location:
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf.

■Note For COM interop, a third type of contract exists—a typed contract. See Chapter 10 for more details.

The service is basically that, a service—something, perhaps a behavior, that takes place on
behalf of another system. Services themselves can be a variety of types and generally fall into
either informational or action oriented.

Platform and framework vendors have implemented the tools and libraries that can lever-
age these standardized contracts to provide a more seamless integration experience amongst
the service provider and the consumers (sometimes referred to as receivers and senders). This
is what WCF provides in its metadata model: the ability to both define and publish as well as
consume these standardized schema definitions. It is possible, in WCF, to provide that support
both programmatically at runtime and declaratively at design and configuration time.

WCF provides the standards and tools support primarily through SvcUtil.exe. This utility
is the primary code and metadata interpretation tool. That, in combination with the WCF
framework’s ability to leverage reflection to interrogate types adorned with the appropriate
attributes, makes generating and using the WCF framework less complicated than before. Fig-
ure 4-1 illustrates how service metadata is consumed by SvcUtil.exe for proxy generation;
additionally, the same metadata is leveraged by the WCF framework for runtime interaction.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES104

7028Ch04.qxp 12/11/06 8:32 PM Page 104

Figure 4-1. Metadata publishing and client code generation

Contract First or Code First?
There have been lots of discussions in SOA communities regarding best practices for either
“code first” or “contract first” service development. We won’t say one is better than the other.
However, in a true “contract-first” paradigm, you’ll spend all the up-front time generating the
schema (WSDL) in XML that supports your service contract implementation. Frankly, we’d
rather listen to someone scratch their nails on a blackboard than start with a whole bunch of
XML. Although WCF can support a contract- and schema-driven starting point, for the most
part you’ll spend time adorning your types with attributes in a declarative model and allowing
the WCF framework to generate the necessary schema and contract metadata.

The WCF programming model of “code first and then apply attributes to the interface”
allows the WCF framework to do all the work of providing a standardized schema to publish to
consumers of the service. This model works best in industries or organizations where you’re
the only provider of the service or where you’re just working on internal solutions that require
cross-application integration and you have full control over the interfaces.

NET Proxy

WCF Host (ASP.NET)

WCF
Framework

[ServiceContract]
IMyInterface

MyClass :
IMyInterface

App config

SvcUtil exe

WSDL or WS-
MetadataExchange

Reflection

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 105

7028Ch04.qxp 12/11/06 8:32 PM Page 105

.NET ATTRIBUTES BACKGROUND

.NET uses attributes throughout the framework. Attributes permeate many aspects of how your types are
hosted by the .NET CLR. Things such as Code Access Security (CAS) and general assembly metadata all
depend upon attributes that are part of the generated MSIL. This is one of the declarative aspects of .NET.

The ASP.NET 2.0 web service model relies as well on class- and method-level attributes that control
how the .NET Framework manages the runtime support of web services through the request-reply cycle. For
the most part, the declarative model remains the same when moving to WCF.

According to the WCF product team, this was somewhat intentional to help the migration and transition of
both existing ASP.NET 2.0 web services and developers to the WCF model. That initial transition started with
the introduction of Web Services Enhancements (WSE) from version 1.0 up through version 3.0. In fact, the
transition from out-of-the-box ASP.NET 2.0 web services to WSE web services required no change from a cod-
ing perspective. All WSE required was the modification of the application (Web.config) file that the site was
hosted on, in addition to a recompile to bind to the updated assemblies that were part of the WSE distributions.

WCF supports schema-first and contract-first development as well. This might sound like
a new model in the .NET world, but it was possible under ASP.NET 1.1 web services as well; it
just required some discipline to follow and implement. The paradigm also existed in the COM
world; but again, discipline was required and tool support was limited, and we all need to get
things done, right?

WCF offers the tools and framework support to provide the malleability of an implemen-
tation and definition that allows service architects to view what they implement from either
the outside in or the inside out. The primary tool you’ll use in WCF is SvcUtil.exe. We’ll intro-
duce how to use SvcUtil.exe in this chapter, but Chapter 5 covers it in more detail.

Service Design
WCF provides the complete decoupling at design time of the service from the actual ABCs of
the service implementation. Why? This provides a greater level of flexibility in both choosing
the implementation model today (which consists of both the service and the ABCs) and pro-
viding the greatest amount of flexibility and extensibility for supporting varied transports
available today and in the future. In other words, you can write and maintain a single instance
of your service code without regard for what the physical deployment model is.

Now, in the real world, you still need to consider what the service provides and what the
overall performance is as it relates to marshaling objects across service boundaries and ulti-
mately coupling physical nodes separated by a LAN, WAN, or the Internet. So, as good solution
architects, you must never forget the “Eight Fallacies of Distributed Computing” by Peter
Deutsch; see http://today.java.net/jag/Fallacies.html for more information.

In the ideal implementation, the service providers and service consumers will spend a
significant amount of time collaborating from a business perspective. During that collabora-
tion process, a service model will evolve to properly address many aspects of what the service
contract will look like, including elements such as the following:

• Granularity

• Coupling

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES106

7028Ch04.qxp 12/11/06 8:32 PM Page 106

• Cohesion

• Security

• Performance

• Reliability

• Other “ilities” of architecture

To be clear, WCF doesn’t address these aspects directly; that’s up to the solution architect.
WCF provides the base framework for implementing service contracts, in conjunction with
the rest of the ABCs for a solid foundation of any SOA implementation.

Programming Model
So, Table 4-3 compares WCF’s programming model to ASP.NET 2.0 web services and WSE.

Table 4-3. Attribute Programming Model Comparison

ASP.NET 2.0 Attribute WCF Attribute Comments

[WebServiceAttribute] [ServiceContractAttribute] Interface, class-level
attribute

[WebMethodAttribute] [OperationContractAttribute] Method-level attribute

[DataContractAttribute] Class-level attribute

[DataMemberAttribute] Field, property, event-level
attribute

You probably noticed the name change from web-oriented naming to more SOA nomen-
clature—Service, Operation, and Data. This was done intentionally to shift the architectural
thinking from a web-only mentality to an “any transport” paradigm.

WSE 3.0 provides the ability for different transports in addition to supporting more com-
plex message exchange patterns such as duplex channels (through the ISoapDuplexChannel
interface). WCF now provides a much more simplistic model for implementation in addition
to a fully extensible framework along with support for WS-* specifications such as WS-
Transactions, WS-Reliability, and others.

“Hello, World”
Now, you’ll see the simplest of examples (Chapter04/Example01 in the downloadable code) in
both ASP.NET 2.0 and WCF. This first sample is just to provide a minimal example of a service
implementation. The example uses a “code first with attributes” model. To be clear, this is not
a best practice—it’s purely an example to show the similarities between ASP.NET 2.0 web serv-
ices and WCF. The best practice is a contract-first model where you define the schema prior to
coding the implementation. This removes the designer’s bias toward any implementation
details or restrictions.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 107

7028Ch04.qxp 12/11/06 8:32 PM Page 107

■Note With some of the IIS-hosted samples, a set of scripts provides the IIS virtual directory creation
and ASP.NET mapping, along with a script to remove the IIS virtual directory when done. The
creation/removal scripts are in each example’s directory and are named CreateVirtualDirs.bat and
DeleteVirtualDirs.bat, respectively. You must be an administrator on the system from where these files
are executed. Additionally, if you’re on Vista, you must run from an elevated command prompt from the
directory where these files exist.

Also, to ensure you focus on how the services are created, we will use only IIS as the host-
ing environment. (Chapter 5 discusses other WCF hosting options.)

ASP.NET 2.0 Web Service: “Hello, World”
Listing 4-2 shows MyService.asmx.

Listing 4-2. MyService.asmx

<%@ WebService Language="C#" Class="MyService" %>
using System.Web.Services;
[WebService]
public class MyService : System.Web.Services.WebService
{

[WebMethod]
public string HelloWorld (string yourName)
{

return "Hello, World to " + yourName;
}

}

WCF Service: “Hello, World”
Listing 4-3 shows MyService.svc, and Listing 4-4 shows Web.config.

Listing 4-3. MyService.svc

<%@ ServiceHost Language="C#" Service="MyService" %>
using System.ServiceModel;
[ServiceContract]
public class MyService
{

[OperationContract]
public string HelloWorld (string yourName)
{

return "Hello, World to " + yourName;
}

}

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES108

7028Ch04.qxp 12/11/06 8:32 PM Page 108

Listing 4-4. Web.config

<?xml version="1.0"?>
<configuration>
<system.serviceModel>
<services>
<service
name="MyService"
behaviorConfiguration="returnFaults">
<endpoint

contract="MyService"
binding="wsHttpBinding"/>
</service>

</services>
<behaviors>
<serviceBehaviors>
<behavior name="returnFaults">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug
httpHelpPageEnabled="true"
includeExceptionDetailInFaults="true"/>

</behavior>
</serviceBehaviors>
</behaviors>

</system.serviceModel>
</configuration>

■Tip A best practice in WCF is to implement the service contract using an interface; then you implement
the interface in a class and update the configuration file to point to the correct type.

From a coding and implementation perspective, the ASP.NET 2.0 web service and the WCF
service aren’t that different. The method bodies are identical. Deployment, under ASP.NET, is
also nearly identical. When running from Visual Studio 2005, both can leverage the ASP.NET
development server. Additionally, if running from IIS and the application mappings are correct,
the deployment is identical between the ASP.NET 2.0 web services and WCF services.

The first obvious difference is that the WCF implementation requires a configuration
(Web.config) file. The configuration file you see is one of the strengths of building services with
WCF—you get almost complete control of the runtime characteristics of a service without
forcing a change in the code. Configuration files are not required for WCF. However, given that
this example is expected to be hosted by the ASP.NET runtime, a configuration file is required.
In later chapters, we’ll cover self-hosting and how to manage the WCF runtime characteristics
through code.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 109

7028Ch04.qxp 12/11/06 8:32 PM Page 109

“Hello, World” with Interfaces
A best practice in WCF is to define a contract up front, as an interface, and then provide the
implementation of that interface in a concrete class. Why? This provides a clear abstraction of
the contract from the implementation. The other aspect of this approach is a clear distinction
of the service boundary (remember the “boundaries are explicit” SOA tenet) from the imple-
mentation. Although the service interface definition is in code, and not in metadata, it’s a clear
perimeter that permits some flexibility for exposing only what’s necessary and that provides
design-time and configuration-time flexibility.

WCF Service: “Hello, World”
The next example (Example02 in the downloadable code) follows the best practice of imple-
menting the contract in a defined interface with the implementation provided for separately.
The mapping, as you’ll soon see, is managed through the framework either programmatically
or through configuration options. Listing 4-5 shows MyService.svc.

Listing 4-5. MyService.svc

<%@ ServiceHost Language="C#" Service="MyService" %>
using System.ServiceModel;

[ServiceContract]
public interface IMyInterface
{

[OperationContract]
string HelloWorld (string yourName);

}

public class MyService : IMyInterface
{

public string HelloWorld(string yourName)
{

return "Hello, World to " + yourName;
}

}

■Note For Vista users, if you’ve run CreateVirtualDirs.bat (from an elevated prompt as required) and
attempt to open the Visual Studio 2005 solution file with Visual Studio 2005, you will be presented with a
message box indicating the site is configured with the wrong version of .NET. You can answer either Yes or
No to this prompt. This is because of Visual Studio 2005 incompatibilities with the Vista RTM release. To vali-
date the correct version mapped for the virtual site, you must use the IIS manager and ensure the site is
mapped to an application pool configuration with ASP.NET 2.0. The CreateVirtualDirs.bat script handles
this automatically.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES110

7028Ch04.qxp 12/11/06 8:32 PM Page 110

The implementation now provides a clear contract definition, void of implementation
details, that is attributed as required to provide the automatic generation of the metadata
(either WSDL or MEX). This separation, in the same source file, can appear elsewhere. How the
contract is implemented, and ultimately bound, is managed through a configuration file or
programmatically. For this example, and probably what is destined to be the norm, we do it
via configuration.

In the Web.config file for the WCF service, shown in Listing 4-6, the mapping between
the type and the contract takes place through the <services> element inside the <system.
serviceModel> section. Note the clear contract mapping to the implementation type, which is
the interface definition.

Listing 4-6. Web.config

<?xml version="1.0"?>
<configuration>
<system.serviceModel>
<services>
<service
name="MyService"
behaviorConfiguration="returnFaults">
<endpoint

contract="IMyInterface"
binding="wsHttpBinding"/>
</service>

</services>
<behaviors>
<serviceBehaviors>
<behavior name="returnFaults">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug
httpHelpPageEnabled="true"
includeExceptionDetailInFaults="true"/>

</behavior>
</serviceBehaviors>
</behaviors>

</system.serviceModel>
</configuration>

If you launch this service in the ASP.NET development server, you’ll see something differ-
ent from Figure 4-2 because the URL will differ by the IP port in use for the project. The
ASP.NET development server dynamically chooses the IP port, unless you’ve overridden it. If
you’re using IIS, then the default port 80 is left off, and the URL appears as in Figure 4-2.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 111

7028Ch04.qxp 12/11/06 8:32 PM Page 111

Figure 4-2. Viewing the WCF “Hello, World” service

The initial difference when consuming ASP.NET web services vs. WCF services is the use
of different client proxy generation tools. You’ll see that step in the following sections using
two different methods: Visual Studio 2005 integration and the SvcUtil.exe utility.

Service Client Proxy
Now that you have a service, it’s time to define a client for that service. So, add a C# console
application, and place the implementation code in a separate file as part of the ASP.NET appli-
cation. The following is part of the Example03 sample code.

Proxy Generation: Using the Visual Studio 2005 Add-In

Similar to ASP.NET proxy creation, if you right-click the project in the IDE, you’ll see three
options for adding references. Select Add Service Reference, as shown in Figure 4-3.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES112

7028Ch04.qxp 12/11/06 8:32 PM Page 112

Figure 4-3. Adding a reference to a WCF service

This menu option is a wrapper around the SvcUtil.exe utility, actually spawning a
process with the necessary parameters. Once you’ve selected the Add Service Reference
option, you’ll see the Add Service Reference dialog box, as shown in Figure 4-4.

Figure 4-4. Add Service Reference dialog box

Click OK, and the add-in spawns SvcUtil.exe, generating (or modifying) the necessary
proxy class and the required configuration file and adding the necessary references to the
project. The project’s references will now list the required WCF assemblies—System.Runtime.
Serialization and System.ServiceModel. At this point, you’re now ready to program your first
service call into your service tier.

A brief explanation of the objects added to the project is necessary. During the
SvcUtil.exe (Add Service Reference) call, the utility added the following items and references
to the project automatically. Some are only to aid the Visual Studio integration; others are
required for using the service directly through the proxy.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 113

7028Ch04.qxp 12/11/06 8:32 PM Page 113

Service references: Within this folder two items were added. The first, a “map” file, provides
support for the generation and regeneration of the proxy through the Visual Studio add-
in. The second item—Example03.cs—represents the concrete proxy class implementation
that leverages the namespace System.ServiceModel to provide a simple integration class.

Configuration: The second item is the App.config file. An App.config file (automatically
renamed during the Visual Studio build process to <assembly name>.config) provides the
runtime WCF configuration parameters. If you peer inside this file, you’ll notice a tremen-
dous amount of settings, many of which are either defaulted or redundant to the default
settings. A general approach is to generate the file and then manage the file using the
WCF SvcConfigEditor.exe editor utility. This utility is located in the Windows SDK Bin
directory and accessible from within Visual Studio 2005 in the Tools menu as WCF
SvcConfigEditor. Figure 4-5 shows the implementation of the tool.

Figure 4-5. Microsoft Service Configuration Editor—SvcConfigEditor.exe

As you can see from the Microsoft Service Configuration Editor, you can manage a
tremendous amount of detailed properties through the configuration tool. This is one of the
greatest strengths of WCF—the ability to control many aspects of an implementation without
impacting the core service implementation. That a service implementation doesn’t need to
change in order to migrate from an HTTP-based protocol to another message-oriented one is
a core strength of WCF’s metadata approach.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES114

7028Ch04.qxp 12/11/06 8:32 PM Page 114

You’ll see many parts are controllable through the runtime configuration; however, you
need to define many aspects of a service implementation at the service contract level.

Proxy Generation: Using SvcUtil.exe

An alternative method is to leverage the SvcUtil.exe utility directly instead of the Visual Studio
add-in. Again, the Visual Studio add-in calls SvcUtil.exe, with parameters, to generate the
proxy when executed directly from within Visual Studio. You can see the command line and
results of that command by viewing the Output window and setting the Show Output From
drop-down list to Service Reference.

To generate the proxy manually, choose Start ➤ All Programs ➤ Microsoft Windows SDK
➤ CMD. This command prompt is useful because its path is set to the binary directory where
the SDK tools and utilities are located.

We’ll show how to use the SvcUtil.exe command-line tool to generate two outputs neces-
sary for the example project: the client proxy source code file and the application
configuration file. These files are then merged into the client project. The SvcUtil.exe can
generate both. For this example, the following command (which should appear on a single
line) produces both a proxy class and a configuration file:

svcutil /config:newConfig.config /out:"Example03.cs"
/n:*,WcfClient.Example03
"http://localhost/WcfHelloWorld/Service.svc?wsdl"

The command is fairly self-explanatory. The /n switch indicates in which namespace the
generated proxy class should fall. The last parameter is the URL of the service endpoint where
you can find schema information. Note that you can replace ?wsdl with ?mex because SvcUtil.
exe supports both methods of discovery. Further help is available by executing svcutil.exe /?
from the command prompt.

The next step is to take the output files Example03.cs and newConfig.config and merge
them into the project. You can add the first file, Example03.cs, directly to the project by choos-
ing Add Existing Item from the Project menu in Visual Studio 2005.

You need to add the second file as an application configuration (App.config) file in the
project. If the project does not already have an App.config file, you can add one by again
choosing Add Existing Item from the Project menu. If there is already an existing App.config,
you need to merge the section system.serviceModel, ensuring you take all the appropriate
child elements.

Client Code

The client code in Example03, shown in Listing 4-7, is a simple call through the proxy class.
Here, you are leveraging a best practice of the using statement to ensure that the Dispose()
method is called. The other option is to wrap it in a try...finally block, with a call to the
object’s Dispose() method inside the finally clause.

■Note The using keyword is a shortcut method that expands in the generated MSIL to try...finally
block. This has always been available to C# and is in VB .NET 2005.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 115

7028Ch04.qxp 12/11/06 8:32 PM Page 115

Listing 4-7. WcfClient program.cs

using System;
namespace WcfClient
{

class Program
{

static void Main()
{

//using "block" as a shortcut for a try...finally block
// with a call to the object Dispose() method in the finally block
using(Example03.MyInterfaceClient proxy =

new Example03.MyInterfaceClient())
{

string result = proxy.HelloWorld("Shawn");
Console.WriteLine(result);
Console.WriteLine("Press <enter> to exit...");
Console.ReadLine();

}
}

}
}

Hosting on IIS
The previous examples are all included in the downloadable source code with an automated
script for creating the virtual directory on IIS. This section shows you how to both create a
.NET 3.0 WCF service and host it in IIS.

The first step to take is to create an empty solution file. This provides total control over the
location of the file. If you bypass this step, Visual Studio 2005 creates the project where you
want it to, but the solution file is put in your default location for your Visual Studio projects.

To generate an empty solution file that you’ll add your projects to, from within Visual Stu-
dio select File ➤ New Project ➤ Other Project Types ➤ Visual Studio Solutions ➤ Blank
Solution. Be sure to specify both the name and the location for the blank solution.

After creating the empty solution file, the next step is to add a .NET 3.0 (WCF) service web
project. If you immediately add the project to the solution, the project files are created in the
default c:\inetpub\wwwroot subdirectory. To gain a little more control, you can create the IIS
virtual site before adding the project location to the solution file.

The next step is to just create a subdirectory where the solution file is located, as shown in
Figure 4-6.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES116

7028Ch04.qxp 12/11/06 8:32 PM Page 116

Figure 4-6. Creating a subdirectory in solution folder

Then, you need to create a mapping in IIS. You can navigate through IIS Manager; for
simplicity, just right-click the folder, and select Properties.

Once the Properties dialog box appears, click the Web Sharing tab, as shown in Figure 4-7.
Simply click the radio button Share This Folder, and the Edit Alias dialog appears. You can
enable directory browsing to make it easier to view and click items in the website. Generally,
this is a setting only for development.

■Caution This setting allows users to browse all files on the site, just like Windows Explorer. Although it’s
a nice feature, be careful with it in production.

Figure 4-7. Web Sharing tab’s Edit Alias dialog box

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 117

7028Ch04.qxp 12/11/06 8:32 PM Page 117

At this point, click OK several times to dismiss the dialog boxes. The site should now be
available through the URL http://localhost/Example04Web. However, you still need to check the
version of ASP.NET that is set for this site. If you have only .NET 2.0 installed—that is, .NET 1.1
was never installed—there should be nothing else to do; however, it doesn’t hurt to just check.

So, launch IIS Manager (Start ➤ Control Panel ➤ Administrative Tools ➤ Internet Infor-
mation Services). Once you see the Properties dialog box, click the ASP.NET tab, and then
switch the version of ASP.NET using the drop-down list to the .NET 3.0–supported version,
which is 2.0.50727 (the RTM version).

■Tip If you don’t see this icon, then either you have limited access on the machine or IIS is not installed.
Please ensure IIS is installed and you have the appropriate permissions.

This example has one additional step—to provide access to resources known as anony-
mous requests. Anonymous requests are any requests that have no identity or Windows
principals associated with the HTTP request.

Click the Directory Security tab, and then click Edit under the Anonymous Access and
Authentication Control section of the dialog box. Ensure that the option Anonymous Access is
enabled. This will allow the example to run without stepping into how to provide authentica-
tion credentials on the requests.

Dismiss all open dialog boxes by clicking the OK buttons. At this point, you now have a
solution directory with a child project that has, or will have, all its resources (source code files
and content) located in a directory of your choosing (that is, not in the default c:\inetpub\
wwwroot directory).

Now you’re ready to add the project to the solution you created earlier. In Visual Studio,
select the solution in Solution Explorer, right-click, and then select Add ➤ New Web Site.

At this point, ensure you select the .NET 3.0/WCF service template, set HTTP as the loca-
tion, use the URL that was set on the folder alias using web sharing in Windows Explorer, and
set the language of your choice. Click OK, and the Visual Studio .NET 3.0 template system cre-
ates a project starting point for your service, giving you a complete project.

Notice that the project template leverages the special folder names for the application code
and application data. In the prior example, the source code was hosted directly in the *.svc file.
The project shown here, which is generated from the .NET 3.0 template, has a distinct source
directory along with a *.cs file that contains the interface and class implementation.

■Tip In the real world, it’s best to separate the service interface (contract) and implementation types into
their own assemblies (DLL), which translates to projects in Visual Studio. Having the structure as shown pre-
viously is a nice feature for ease of use, but from a physical separation perspective, it’s better to provide
distinct assemblies for the tiers.

If you look at the file system using Windows Explorer or using a command prompt and
view the directory you started in, you’ll see the same set of files listed under the project in
Visual Studio Solution Explorer.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES118

7028Ch04.qxp 12/11/06 8:32 PM Page 118

At this point, if you browse to the location http://localhost/example04Web/ using Inter-
net Explorer, you’ll see a directory listing (as long as the settings are like those in Figure 4-7).

If you click service.svc, you are then brought to the default help screen generated by
System.ServiceModel.Activiation.HttpHandler for the *.svc extensions, as shown in
Figure 4-2.

At this point, you follow the same steps in a client application, either generating a proxy
class directly through the use of the SvcUtil.exe utility or right-clicking the project and gener-
ating the proxy through the Add Service Reference add-in feature, as shown previously.

The accompanying solution for this example has a complete console client that makes a
call into the WCF service you just created.

ServiceContract Attribute
One of the valuable capabilities of WCF is getting control over how the WCF framework gener-
ates the metadata for the service contract. The examples presented so far have been the
simplest forms, relying on the default settings and values that are generated by SvcUtil.exe
(for the client) or at runtime by the framework.

When designing services, it’s important to understand what is generated as metadata. You
need an awareness of what the naming conventions are because they directly impact the gen-
erated service description metadata. This section helps you identify what capabilities exist in
WCF for controlling how this metadata is created.

The ServiceContract attribute is the entry point into the definition of a service. In con-
junction with binding and endpoint information (generally through configuration), it is this
information that clients (service consumers) apply in order to exercise your service.

This represents the contract and not the behavior. To control the behavior, you need to
leverage the behavior aspect of the WCF programming model. More specifically, apply the
class-level attribute ServiceBehaviorAttribute and the required properties associated with
your implementation. Chapter 3 provides more details on behaviors. Table 4-4 lists the prop-
erties that are part of the ServiceContractAttribute to control metadata generation and
runtime capabilities support by WCF.

Table 4-4. ServiceContractAttribute Properties

Class Property Description

CallBackContract Designates the contract in duplex message exchange (two-way) pattern
implementations.

Name Controls the naming of the interface in the WSDL or metadata; allows
overriding using the interface or class name in the generated metadata.

Namespace Controls the namespace that is used in the WSDL or metadata from the
default of tempuri.org.

SessionMode Indicates whether this service requires bindings that can support ses-
sions amongst more complex message exchange patterns. Used in
conjunction with ServiceBehaviorAttribute that is applied on a class.

At the service contract level, you have a few options that give you a foundation to work
upon for managing the emitted metadata. Since types are ultimately turned into XML to sup-
port the loosely coupled world of WCF services, you have two choices for serialization,
described in Table 4-5.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 119

7028Ch04.qxp 12/11/06 8:32 PM Page 119

Table 4-5. Serialization Options

Attribute Type Description

DataContractSerializer Default serialization class that handles serializable types in addition
to contract types (data or message). Supports two modes: shared
type and shared contract. The first is when both “types” exist on
both sides of the channel—such as with .NET Remoting. The second
type is a loosely coupled mode, where the only requirement is that
types exist on both sides of the channel that can serialize/deserialize
from the XML.

XmlSerializer Serialization class that handles only serializable types. Use this class
when you need greater control over the XML that is emitted from
the WCF serialization process.

Let’s take a look at a different example, one that’s from the QuickReturns Ltd. company
(Example05). Specifically, this section shows how to implement the exchange’s service for
TradeSecurity. (Please refer to Chapter 3 for background information on QuickReturns Ltd.)

The core requirement for TradeSecurity is a request-reply message exchange pattern.
This pattern is a fairly simple but common interaction between service endpoints. The defini-
tion from the high-level view is the method requires a Trade schema, and on return, it
provides an Execution schema. For the examples here, we’ll just return a decimal in order to
simplify the explanation.

You’ll start by implementing the service contract using all the defaults. First, create an
empty Visual Studio Solution. The Blank Solution template appears under Other Project Types
➤ Visual Studio Solutions after you choose File ➤ New Project.

Second, add a class library, or what’s called a .NET 3.0/WCF service library to the project.
Therefore, select the solution in Solution Explorer, and right-click. Then, choose Add ➤ New
Project.

Once the Add New Project dialog box appears, ensure you select the .NET 3.0 grouping
along with the .NET 3.0/WCF service library template. Also ensure you name your project
ExchangeService along with validating the location of where the files are created.

■Tip It’s a best practice to separate your service library into a discrete compilation unit—a .NET assembly.
This allows for greater specialization of the project team because you extend and integrate various parts of
the system. Also, it allows for more loosely coupled versioning of system components. Obviously, if the sys-
tem is simple, it’s probably not necessary to take these control steps; however, it generally doesn’t hurt to
start out this way because when it grows beyond the “simple” system, you’re better prepared.

At this point, Visual Studio adds the project, creating a source file that has a simple WCF
implementation with the customary “Hello, World” method implementation. The template
has embedded comments that provide some basic pointers on how to proceed with your
implementation. Additionally, a commented code section provides the necessary steps on
hosting the WCF service from your newly created WCF library in another project. The code
provided in that commented section is for hosting outside ASP.NET. (Chapter 5 covers hosting
options in depth.)

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES120

7028Ch04.qxp 12/11/06 8:32 PM Page 120

In addition to a sample implementation, the project references have been updated to
make it easier to work with WCF applications.

Now in Solution Explorer, delete the generated Class1.cs file. Then right-click the project,
and add a new item. Locate the .NET 3.0/WCF service item. Enter TradeService in the Name
field, and click Add.

In the generated TradeService.cs file, replace the contents with Listing 4-8.

Listing 4-8. TradeService.cs Implementation

using System;
using System.ServiceModel;

namespace ExchangeService
{

[ServiceContract(
Namespace="http://PracticalWcf/Exchange/TradeService",
Name="TradeService")

]
public interface ITradeService
{

[OperationContract]
decimal TradeSecurity(string ticker, int quantity);

}
public class TradeService : ITradeService
{

const decimal IBM_Price = 80.50m;
const decimal MSFT_Price = 30.25m;
public decimal TradeSecurity(string ticker, int quantity)
{

if(quantity < 1)
throw new ArgumentException(

"Invalid quantity", "quantity");
switch(ticker.ToLower())
{

case "ibm":
return quantity * IBM_Price;

case "msft":
return quantity * MSFT_Price;

default:
throw new ArgumentException(

"SK security - only MSFT & IBM", "ticker");
}

}
}

}

Notice that the top of the file contains a reference to the System.ServiceModel namespace.
This namespace contains the necessary types that provide attribute support for the contract
declaration.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 121

7028Ch04.qxp 12/11/06 8:32 PM Page 121

This implementation follows the best practice of separating the contract definition
from the implementation. In the example, the ServiceContract attribute is applied to the
ITradeService interface. Additionally, the single method signature within ITradeService has
the OperationContract attribute. These attributes signal to the WCF runtime how to generate
the metadata and WSDL necessary for discovering supported operations in addition to man-
aging the actual runtime calls from clients.

The TradeService class simply implements ITradeService. How does the WCF runtime
know what type to load in response to client requests? You’ll see in a little bit how it takes place
through configuration, specifically, how the ABCs are tied together.

Make sure it compiles before proceeding. If there are no errors, create a simple ASP.NET
hosting project for this newly created .NET 3.0/WCF service library.

In Solution Explorer, add a new empty website—which is just a standard ASP.NET website
to your solution. Do this either by right-clicking the solution and choosing Add New Web Site
or by choosing File ➤ Add ➤ New Web Site from the Visual Studio menu.

Now, select the web project you just created in Solution Explorer, right-click, and choose
to add a reference. Once the Add Reference dialog box opens, select the Projects tab, and
choose the Exchange Service project from the list.

Now, right-click the project again, and add a Web.config (web configuration) file to the
project if one does not already exist. Modify the contents of the Web.config file, ensuring the
<system.serviceModel> section appears as a child to the <configuration> element, as shown
in Listing 4-9.

Listing 4-9. Website Web.config File (Partial)

<?xml version="1.0"?>
<configuration>
<system.serviceModel>
<services>
<service name="ExchangeService.TradeService"

behaviorConfiguration="returnFaults">
<endpoint contract="ExchangeService.ITradeService"

binding="wsHttpBinding"/>
</service>

</services>
<behaviors>
<serviceBehaviors>
<behavior name="returnFaults">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug httpHelpPageEnabled="true"

includeExceptionDetailInFaults="true"/>
</behavior>

</serviceBehaviors>
</behaviors>

</system.serviceModel>
<appSettings/>
<connectionStrings/>

<system.web>
...

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES122

7028Ch04.qxp 12/11/06 8:32 PM Page 122

This configuration file contains a system.serviceModel section, in bold, that provides the
necessary binding and contract information for the sample. The service element identifies the
specific .NET type that is exposed through this service endpoint. The endpoint element identi-
fies the specific contract that is bound to the service type listed. Since the example is using IIS
activation, the wsHttpBinding is the binding used, which supports request-reply in addition to
reliable, secure, and transactional message exchange.

Then, right-click again the web project, and add a .NET 3.0/WCF service. Modify the dia-
log box entries by specifying TradeService.svc as the name of the file and setting C# as the
language.

Open the newly created TradeService.svc file, and replace the contents with this single
line:

<%@ ServiceHost Language="C#" Service="ExchangeService.TradeService" %>

Note that the Service parameter is now set to a type that resides in the assembly gener-
ated from the exchange service project.

First, do a solution build (Build ➤ Build Solution). Now, right-click the web project, and
choose View in Browser (you must have directory browsing enabled as in Figure 4-7). Once
Internet Explorer opens and you see the directory listing, click the TradeService.svc file. At
this point, the ASP.NET runtime will begin the compilation process, generating the required
assemblies to service your request. After a few seconds (depending upon your machine con-
figuration), you should see the standard help screen similar to what is shown in Figure 4-2.

You’ve now created a simple TradeService that leverages a best practice of separating the
service implementation into its own assembly and referencing it from a web project. If you
look at the accompanying solution, a simple client console project calls the service for a few
securities.

If you enter the following into a browser (ensure the ASP.NET development server is run-
ning and the port for your site matches), you’ll see the differences in the generated metadata
for the namespace and name of the service:

http://localhost:8888/ExchangeWeb/TradeService.svc?wsdl

OperationContract Attribute
The OperationContract attribute, as with the ServiceContract attribute, provides for even
greater control over the WSDL generation. Generally you’ll accept most of the defaults, but for
certain features, such as duplex messaging, you’ll need to use options indicating the operation
is one-way. Additionally, for session management, you’ll be leveraging some of the options for
overall service session management.

Table 4-6 describes the properties in the OperationContract attribute type.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 123

7028Ch04.qxp 12/11/06 8:32 PM Page 123

Table 4-6. OperationContractAttribute Properties

Class Property Description

Action Controls the action on the request (input) message; the default is the
contract namespace, contract name, and operation name. Use this in
conjunction with * to indicate the operation can handle all unmatched
operation requests—there can be only one of these, and it must take a
message as a parameter.

AsyncPattern Provides for the implementation of an asynchronous process on the server,
client, or both tiers. This feature aids .NET clients in supporting operations
with the efficiency of using a single client thread.

IsInitiating Indicates that this operation is an initiation of a session; the default is true,
so if you require session initiation, you need to set all operations to false
except the initiation operation.

IsOneWay Indicates that the operation returns nothing (void) or can’t accept out
parameters. The default is false; as a result, all operations without it return
an empty message that is useful for capturing exceptions. If applying the
value of true to an operation that is marked with a return type other than
void, WCF doesn’t throw a compiler error. Instead, it throws an
InvalidOperation exception when the WCF framework inspects the
ServiceContract types at runtime.

IsTerminating Indicates this operation terminates the session and the channel should close.

Name Overrides the operation name from the method name on the interface.

ReplyAction Controls the action on the reply (output) message. Used in conjunction with
the Action property.

The solution Example06 has an updated version of the ITradeService service contract. In
this version, the OperationContract properties have been explicitly set. You’ll also notice that
the ServiceContract attribute now has a new property indicating it supports sessions.
Without the ServiceContract.SessionMode property being set to SessionMode.Required, the
OperationContract properties of IsInitiating and IsTerminating would be illogical. This
condition is not caught at compile time, only at reflection time.

Listing 4-10 is a snippet from Example06. Notice that some added properties have been set
in both the ServiceContract and OperationContract attribute initialization.

Listing 4-10. TradeService.cs with OperationContract Properties

[ServiceContract(
Namespace = "http://PracticalWcf",
Name = "TradeService",
SessionMode = SessionMode.Required)

]
public interface ITradeService
{

[OperationContract(
Action="http://PracticalWcf/TradeSecurityNow",
IsOneWay = false,

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES124

7028Ch04.qxp 12/11/06 8:32 PM Page 124

IsTerminating = false,
Name = "TradeSecurityNow"
)]

decimal TradeSecurity(string ticker, int quantity);
}

These changes provide control over the WSDL generated from the metadata on your serv-
ice contract. If you take a brief “before” and “after” look, you’ll see some of the changes.

If you open the URL that points to the WSDL for the definitions, you’ll see the changes
and added control. The URL to open is as follows (ensure your ASP.NET development server is
running!):

http://localhost:8888/ExchangeWeb/TradeService.svc?wsdl=wsdl0

■Note The generated URL by the .NET Framework may differ from the one shown here. To find the correct
URL, look for the <wsdl:import...> element in the base URL.

Listing 4-11 is the generated WSDL before applying the OperationContract properties.

Listing 4-11. TradeService.csWSDL Before Property Changes

<wsdl:input wsaw:Action="http://PracticalWcf/TradeService/TradeSecurity"
message="tns:TradeService_TradeSecurityNow_InputMessage" />

Listing 4-12 shows the WSDL definition for a newly modified service contract.

Listing 4-12. TradeService.csWSDL after Property Changes

<wsdl:input
wsaw:Action="http://PracticalWcf/TradeSecurityNow"
message="tns:TradeService_TradeSecurityNow_InputMessage"/>

Note the updated Action names for both the input and output messages. If you look
inside the client proxy code generated as part of the project, you’ll see the updated matching
names for the new contract.

■Caution Whenever an update to metadata occurs, ensure you regenerate the proxy. You can do this by
selecting the “map” file in Solution Explorer for the service reference, right-clicking, and choosing Update
Service Reference. This resubmits the call through SvcUtil.exe for the regeneration of the proxy type in
your client project. This assumes you’re working with Visual Studio integration.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 125

7028Ch04.qxp 12/11/06 8:32 PM Page 125

Inside the client program, the only change required, other than updating the service ref-
erence through SvcUtil.exe, is to modify the method name on the proxy class from the
following:

result = proxy.TradeSecurity("MSFT", 2000);

to the following:

result = proxy.TradeSecurityNow("MSFT", 2000);

The reason for this change is that the OperationContract.Name property is now set to
TradeSecurityNow. As a result, when the call to SvcUtil.exe was made to regenerate the proxy,
the new operation name instead of the old is used, which causes a break in the compile.

ServiceBehavior Attribute
So far, we’ve focused specifically on the contract definition. We’ve intentionally avoided any
discussion of how a service behaves. Generally, service behavior is an implementation-
dependant aspect of a solution. In addition to using ServiceBehavior, you also have an ability
to apply behavior at the operation level with the OperationBehavior attribute (covered in the
next section).

The ServiceBehavior attribute is applicable only at the class (implementation) level.
Although the ServiceContract attribute was applicable at both the interface (contract) and the
class levels, it is this distinction that is important. Behaviors in WCF are not part of the con-
tract; they are implementation-specific aspects.

The capability exists to control service-wide behavior elements such as the following:

Concurrency: Controls threading behavior for an object and whether it supports reentrant
calls. Valid only if the Instancing property is not PerCall.

Instancing: Controls new object creation and control object lifetime. The default is
PerCall, which causes a new object on each method call. Generally, in session-oriented
services, providing either PerSession or Shareable may provide better performance,
albeit at the cost of concurrency management.

Throttling: Managed through configuration, when concurrency allows for multiple calls, to
limit the number of concurrent calls, connections, total instances, and pending operations.

Transaction: Controls transaction aspects such as autocompletion, isolation level, and
object recycling.

Session management: Provides automatic session shutdown or overrides default behavior.

Thread behavior: Forces the service thread to have affinity to the UI thread; this is helpful
if the underlying service host is a WinForms application and updates to controls on that
form may happen in the service implementation.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES126

7028Ch04.qxp 12/11/06 8:32 PM Page 126

OperationBehavior Attribute
The other important behavior attribute is the OperationBehavior attribute. Although you have
control over the service-wide behaviors using the ServiceBehavior attribute, you have more
granular control at the operation level.

Again, these are implementation details applied at the class method level instead of the
service interface. Operation aspects controllable through this attribute are as follows:

Transactional: Provides for autocompletion along with transaction flow and the required
and supported options

Caller identity: When binding supports, provides the ability to execute under the caller’s
identity

Object recycling: Provides for overriding the InstanceMode mode of the
ServiceContractBehavior

Understanding Data Contracts
Data contracts, in WCF, are the preferred method of abstracting your .NET types from the
schema and XML serialized types. With WCF, you have choices for creating the metadata that
is used to publish your service and how that impacts the runtime serialization of your .NET
types into platform-agnostic schema types that are represented in XML.

The process is all hidden, if you choose, from the developer. Primitive types are easily
mapped to leverage the default DataContractSerializer. Other types are controllable through
the DataContract attribute capabilities. However, if you still want control, you can always
leverage XmlSerializer to manage the serialization of your types into XML. So, in the follow-
ing sections, we’ll first walk you through some of the ways you can work with XmlSerializer
before moving on to data contracts.

All the examples so far have leveraged the default DataContractSerializer type for XML
serialization/deserialization. You’ll take a brief look at levering XmlSerializer for managing
the XML serialization process.

XML Serialization
WCF supports two primary means of XML serialization. For a majority of scenarios, the
DataContract attribute and its corresponding DataContractSerializer type are the
preferred means of providing this requirement. However, the secondary method, the
XmlSerializerFormat attribute, provides finer control over the XML serialization process.
Additionally, by providing your own implementation of IXmlSerializable, effectively
overriding .NET default serialization, you can control serialization entirely.

We will stress that you can use the data contract capabilities most of the time when devel-
oping enterprise applications. This is especially true when you control, or at least influence,
both sides of the wire. Even if you don’t have influence on both sides of the wire, you probably
can gain enough control to emit the XML as required by leveraging data contracts.

In Listing 4-13, the solution (Example07) has been expanded to include a concrete Trade
class. This class represents the object (or message) that is presented to the exchange for
requesting execution on a market order.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 127

7028Ch04.qxp 12/11/06 8:32 PM Page 127

Listing 4-13. TradeService Interface with Trade Parameter

[ServiceContract(
Namespace = "http://PracticalWcf/Exchange/TradeService",
Name = "TradeService",
SessionMode = SessionMode.Required)

]
public interface ITradeService
{

[OperationContract(
IsOneWay = false,
Name = "TradeSecurityAtMarket"
)]

decimal TradeSecurity(Trade trade);
}

The TradeSecurity interface is updated to take a Trade object and return a decimal result.
Also recognize that the Name parameter on the operation is TradeSecurityAtMarket. We chose
the name of the operation to override the default of TradeSecurity and provide a distinction of
a market order vs. limit orders on the metadata.

The Trade class looks like Listing 4-14 (notice the absence of either a Serializable attrib-
ute or a DataContract attribute at the top of the class).

Listing 4-14. First Few Lines of Trade Class

namespace ExchangeService
{

public class Trade
{

string _ticker;
char _type;
string _publisher;
string _participant;
decimal _quotedPrice;
int _quantity;
DateTime _tradeTime;
decimal _executionAmount;

/// <summary>
/// Primary exchange security identifier
/// </summary>
public string Ticker
{

get { return _ticker; }
set { _ticker = value; }

}

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES128

7028Ch04.qxp 12/11/06 8:32 PM Page 128

If you launch the ASP.NET development server and view TradeService.svc in the browser,
you’ll see the error shown in Figure 4-8.

Figure 4-8. Error page for nonserializable or missing data contract

At this point, WCF doesn’t know what to do. Therefore, let’s apply the Serializable attrib-
ute to the Trade type and take a look at the generated schema, as shown in Listing 4-15.

Listing 4-15. Trade Type with the Serializable Attribute

namespace ExchangeService
{

[Serializable]
public class Trade
{

string _ticker;
char _type;
string _publisher;

...

To view the generated schema for the modified contract, first navigate to the following page:
http://localhost:8888/ExchangeWeb/TradeService.svc?wsdl. Once at that page, if you locate the
schema import, using the XPath /wsdl:definitions/wsdl:import, you’ll see another reference to
a schema. You need to load that schema as well. That location should be, depending upon your
host and IP port, as follows: http://localhost:8888/ExchangeWeb/TradeService.svc?wsdl=wsdl0.

■Note Again, you need to first open the base WSDL and search for the <wsdl:import> element, which
will provide the correct location for the imported WSDL.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 129

7028Ch04.qxp 12/11/06 8:32 PM Page 129

Notice the addition of the wsdl0 parameter to the original WSDL request. Viewing that
page, you should see something that contains XML and is similar to Listing 4-16.

Listing 4-16. TradeServiceWSDL Definition

<xsd:import
schemaLocation="http://localhost:8888/ExchangeWeb/TradeService.svc?xsd=xsd2"
namespace="http://schemas.datacontract.org/2004/07/ExchangeService" />

You need to go a little deeper, opening the schemaLocation URL from Listing 4-16 to get to
the type’s schema. If you browse to the schemaLocation from Listing 4-16, the code in Listing 4-17
appears.

Listing 4-17. Trade Schema Contract-Only Serializable (Trade.cs)

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://schemas.datacontract.org/2004/07/ExchangeService"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://schemas.datacontract.org/2004/07/ExchangeService"
xmlns:ser="http://schemas.microsoft.com/2003/10/Serialization/">
<xs:import
schemaLocation="http://localhost:8888/ExchangeWeb/TradeService.svc?xsd=xsd1"
namespace="http://schemas.microsoft.com/2003/10/Serialization/"/>

<xs:complexType name="Trade">
<xs:sequence>
<xs:element name="_executionAmount" type="xs:decimal"/>
<xs:element name="_participant" nillable="true" type="xs:string"/>
<xs:element name="_publisher" nillable="true" type="xs:string"/>
<xs:element name="_quantity" type="xs:int"/>
<xs:element name="_quotedPrice" type="xs:decimal"/>
<xs:element name="_ticker" nillable="true" type="xs:string"/>
<xs:element name="_tradeTime" type="xs:dateTime"/>
<xs:element name="_type" type="ser:char"/>

</xs:sequence>
</xs:complexType>
<xs:element name="Trade" nillable="true" type="tns:Trade"/>

</xs:schema>

First, note the targetNamespace that was used. Since you didn’t override the namespace
using .NET XML serialization support, you get what DataContractSerializer defaults to—
http://schemas.data.coontract.org/2004/07/<serviceName>. This is probably not desired.
We’ll get to this issue in a moment.

Second, the elements chosen by DataContractSerializer aren’t the public properties but
the fields (private or public) along with the underscore as part of the name; this is also an
undesirable result. This is the default behavior, and fortunately you can control this by utiliz-
ing the XML serialization support that’s part of the .NET Framework.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES130

7028Ch04.qxp 12/11/06 8:32 PM Page 130

Finally, note the order of the elements—they’re in alphabetical order, which is the default
processing rule for DataContractSerializer.

■Note This code is provided in the Begin folder as part of Example07 on the Apress website
(http://www.apress.com).

To control the WSDL generation, you need to switch from using DataContractSerializer
to instead leveraging XmlSerializer; you can do this by decorating the service contract, at the
interface level, with the XmlSerializerFormat attribute, as shown in Listing 4-18.

Listing 4-18. TradeService with XmlSerializer Support (TradeService.cs)

namespace ExchangeService
{

[ServiceContract(
Namespace = "http://PracticalWcf/Exchange/TradeService",
Name = "TradeService",
SessionMode = SessionMode.Required)

]
[XmlSerializerFormat(

Style = OperationFormatStyle.Document,
Use = OperationFormatUse.Literal)]

public interface ITradeService
{

[OperationContract(
IsOneWay = false,
Name = "TradeSecurityAtMarket"
)]

decimal TradeSecurity(Trade trade);
}

Now, if you rerequest the imported namespace using the following URL, you’ll see the
schema updated with your targetNamespace attribute (check the schema import in the gener-
ated WSDL for the correct location):

http://localhost:8888/ExchangeWeb/TradeService.svc?xsd=xsd0

■Note Again, we need to emphasize that to find the nested WSDL, you must search the base WSDL for the
<wsdl:import> element and then the nested import of the type schema shown in this step.

Listing 4-19 shows the new schema.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 131

7028Ch04.qxp 12/11/06 8:32 PM Page 131

Listing 4-19. New Schema with XmlSerializer Support

<?xml version="1.0" encoding="utf-8"?>
<xs:schema

elementFormDefault="qualified"
targetNamespace="http://PracticalWcf/Exchange/TradeService"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://PracticalWcf/Exchange/TradeService">

<xs:import
schemaLocation="http://localhost:8888/ExchangeWeb/TradeService.svc?xsd=xsd1"
namespace="http://microsoft.com/wsdl/types/"/>

<xs:element name="TradeSecurityAtMarket">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name="trade" type="tns:Trade"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="Trade">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1"

name="Ticker" type="xs:string"/>
<xs:element

minOccurs="1" maxOccurs="1"
name="Type" type="q1:char"
xmlns:q1="http://microsoft.com/wsdl/types/"/>

<xs:element
minOccurs="0" maxOccurs="1"
name="Publisher" type="xs:string"/>

<xs:element
minOccurs="0" maxOccurs="1"
name="Participant" type="xs:string"/>

<xs:element
minOccurs="1" maxOccurs="1"
name="QuotedPrice" type="xs:decimal"/>

<xs:element
minOccurs="1" maxOccurs="1"
name="Quantity" type="xs:int"/>

<xs:element
minOccurs="1" maxOccurs="1"
name="TradeTime" type="xs:dateTime"/>

<xs:element
minOccurs="1" maxOccurs="1"
name="ExecutionAmount" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES132

7028Ch04.qxp 12/11/06 8:32 PM Page 132

<xs:element name="TradeSecurityAtMarketResponse">
<xs:complexType>
<xs:sequence>
<xs:element
minOccurs="1" maxOccurs="1"
name="TradeSecurityAtMarketResult" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

You now have a targetNamespace that reflects the namespace requirement; additionally,
the elements within the Trade complexType are all the public property names and types. The
XmlSerializer includes only the public properties or fields; additionally, they are serialized in
the order presented in the class as requested through reflection.

■Note This code is provided in the accompanying code as Step1 in Example07.

It’s possible to gain further control over the generated schema by continuing to leverage
the capabilities of .NET XML serialization. If you want to modify or exclude public properties
or fields and control the order and nullability, you can use the various attributes as described
in the MSDN documentation under the topic “Attributes That Control XML Serialization.”
As a quick example just for fun, let’s exclude the participant, modify the element name for
TradeTime, and cause Ticker to be an attribute instead of an XML element. The example code
now generates a schema, as shown in Listing 4-20.

■Tip To get a full understanding of the capabilities of XML serialization in .NET, please refer to MSDN and
search for attributes that control XML serialization.

Listing 4-20. Trade Schema Using XML Serialization Control Attributes

<xs:complexType name="Trade">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1"
name="Type" type="q1:char"
xmlns:q1="http://microsoft.com/wsdl/types/"/>

<xs:element minOccurs="0" maxOccurs="1"
name="Publisher" type="xs:string"/>

<xs:element minOccurs="1" maxOccurs="1"
name="QuotedPrice" type="xs:decimal"/>

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 133

7028Ch04.qxp 12/11/06 8:32 PM Page 133

<xs:element minOccurs="1" maxOccurs="1"
name="Quantity" type="xs:int"/>

<xs:element minOccurs="1" maxOccurs="1"
name="ExecutionTime" type="xs:dateTime"/>

<xs:element minOccurs="1" maxOccurs="1"
name="ExecutionAmount" type="xs:decimal"/>

</xs:sequence>
<xs:attribute name="Ticker" type="xs:string"/>

</xs:complexType>

You’ll notice now that the Ticker property appears as an XML Schema attribute instead of
an element, the property TradeTime is now ExecutionTime, and the element Participant no
longer appears in the schema.

■Note The complete solution is provided in the accompanying code in the folder End as part of Example07.

So, with XmlSerialization support through the use of the XmlSerializer attribute on the
service contract, it is possible to gain control over the XML Schema generation. Along with the
ultimate extensibility by the implementation of the .NET interface IXmlSerializable on your
.NET class, the capabilities to support just about any format required are present.

Data Contracts
Data contracts are the preferred means (because of their simplicity) for controlling what and
how .NET type members are serialized to and from XML. Again, it’s important to emphasize
that one size does not fit all. Sometimes data contracts can’t support the required schema gen-
eration. This happens most likely when you have no control over the schema and you must
provide messages that match a published schema.

The first step in leveraging data contract capabilities in the WCF framework is to modify
the Trade class by decorating it with the DataContract attribute, as shown in Listing 4-21.

Listing 4-21. Trade Class with the DataContract Attribute

using System;
using System.Runtime.Serialization;
namespace ExchangeService
{

[DataContract(
Namespace = "http://PracticalWcf/Exchange/Trade")]

public class Trade

If you rerequest the schema for the TradeService contract, you now have a Trade type that
leverages DataContractFormatter support (DataContractFormatter is the default formatter
type on the service contract if no Formatter attribute is present). The issue now is that you
have no members of the trade that appear in the schema, as shown in Listing 4-22.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES134

7028Ch04.qxp 12/11/06 8:32 PM Page 134

Listing 4-22. Trade Class Schema with No Members

<xs:complexType name="Trade">
<xs:sequence/>

</xs:complexType>
<xs:element name="Trade" nillable="true" type="tns:Trade"/>

DataContractSerializer, by default, serializes only member fields or properties, either
public or private, that are decorated with the DataMember attribute. This is in further support of
the “boundaries are explicit” base tenet of SOA that the WCF team followed.

■Note This example is part of the accompanying code in folder Example08.

So, once you have determined which DataContract members should be present on the
service contract interface, you must adorn those members with the DataMember attribute, as
shown in Listing 4-23.

Listing 4-23. Trade with DataMember Attributes on Fields and Properties

namespace ExchangeService
{

[DataContract(
Namespace = "http://PracticalWcf/Exchange/Trade")]

public class Trade
{

string _ticker;
char _type;
string _publisher;
string _participant;

[DataMember(Name = "QuotedPrice", IsRequired = false, Order = 1)]
internal double _quotedPrice;

[DataMember(Name = "Quantity", IsRequired = true, Order = 0)]
private int _quantity;

[DataMember(Name = "TradeTime", IsRequired = false, Order = 9)]
Nullable<DateTime> _tradeTime;

double _executionAmount;

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 135

7028Ch04.qxp 12/11/06 8:32 PM Page 135

[DataMember(IsRequired = true, Order = 3)]
public string Ticker
{

get { return _ticker; }
set { _ticker = value; }

}

[DataMember(IsRequired = true, Order = 4)]
public char Type
{

get { return _type; }
set { _type = value; }

}

[DataMember(IsRequired = true, Order = 10)]
public string Publisher
{

get { return _publisher; }
set { _publisher = value; }

}

public string Participant
{

get { return _participant; }
set { _participant = value; }

}

Pay special attention to the mix of fields and properties that have the DataMember attrib-
ute. As stated, you can apply the DataMember attribute to either fields or properties.
Additionally, these fields or properties’ accessibility level can be either public or private. So,
regardless of the accessibility level (public, private, internal), DataContractSerializer serial-
izes those member fields or properties. We’ve also applied additional properties to several of
the DataMember attributes (there are only three properties—a case for simplicity). These prop-
erties control the following:

• XML Schema optional support: IsRequired

• Physical order in the schema: Order

• Name of element: Name

Now, if you rerequest the schema for the DataContract type, you see the code in Listing 4-24.

Listing 4-24. Trade Data Contract with DataMember Properties

<xs:complexType name="Trade">
<xs:sequence>
<xs:element

name="Quantity" type="xs:int"/>

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES136

7028Ch04.qxp 12/11/06 8:32 PM Page 136

<xs:element
minOccurs="0" name="QuotedPrice" type="xs:double"/>

<xs:element
name="Ticker" nillable="true" type="xs:string"/>

<xs:element
name="Type" type="ser:char"/>

<xs:element
minOccurs="0"
name="TradeTime" nillable="true" type="xs:dateTime"/>

<xs:element
name="Publisher" nillable="true" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:element name="Trade" nillable="true" type="tns:Trade"/>

You can see that the generated schema is produced that includes members marked with
the DataMember attribute regardless of the accessibility level or whether it’s a field or property.
The primary reason for this method of processing data contracts is that the WCF team under-
stands that many systems are developed by looking at predefined business classes—a code-
first model. This gives designers and developers the flexibility for defining what should be
included via a declarative model, without forcing developers down a significant refactoring
path or back to design.

Another interesting aspect of DataMember is the Order property. The WCF framework
(DataContractSerializer specifically) isn’t as rigid as the XmlSeriaization framework in
regard to specifying the order the elements appear. In fact, you can skip around (as shown in
the example) and even duplicate Order values.

Message Contracts
Message contracts in WCF give you control over the SOAP message structure—both header
and body content. You leverage the MessageContract attribute along with the MessageHeader,
MessageBody, and Array variants of both (MessageHeaderArray and MessageBodyArray) to
provide structure along with additional control over the content. With message contracts
you can designate optional SOAP headers. With message body elements you can designate
ProtectionLevel settings that provide WCF-enforced policies of signing and encrypting on
those elements decorated with the ProtectionLevel property.

Message contracts work with either DataContractSerializer or XmlSerializer and pro-
vide you with additional control over the WSDL generation, specifically SOAP headers and
body content. Additionally, message contracts provide support for SOAP header requirements
designating specific endpoints for processing the message via the MessageHeader.Actor prop-
erty. Additionally, the MessageHeader.Relay property indicates that the actor should continue
to pass messages to the next endpoint after processing the request.

Message Contracts
In this section, we’ll present a quick example of message contracts related to QuickReturns
Ltd. Remember, three fields are required to be set to predefined values in the SOAP header.
Why would you mandate headers in the SOAP request? One scenario that is common is for

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 137

7028Ch04.qxp 12/11/06 8:32 PM Page 137

applying policies and rules based upon the content of the SOAP request. If you can promote
or present some attribute of the request to the SOAP header, it’s easily validated before any
downstream code processes the request in your service implementation.

If you take a look at the Trade class in Listing 4-25 (part of the accompanying code in
Example09), you can see that it has been updated with a specific namespace in addition to
being decorated with the DataMember attribute with a mix of fields and properties. Additionally,
the Execution class, shown in Listing 4-26, has been similarly decorated.

Listing 4-25. Trade Data Contract (Partial)

namespace ExchangeService
{

[DataContract(
Namespace = "http://PracticalWcf/Exchange/Trade")]

public class Trade
{

string _ticker;
char _type;
string _publisher;

[DataMember(
Name = "Participant", IsRequired = true, Order = 0)]

string _participant;

[DataMember(
Name = "QuotedPrice", IsRequired = false, Order = 1)]

internal double _quotedPrice;

[DataMember(
Name = "Quantity", IsRequired = true, Order = 1)]

private int _quantity;

[DataMember(
Name = "TradeTime", IsRequired = false, Order = 9)]

Nullable<DateTime> _tradeTime;

double _executionAmount;

/// <summary>
/// Primary exchange security identifier
/// </summary>
[DataMember(IsRequired = true, Order = 3)]
public string Ticker
{

get { return _ticker; }
set { _ticker = value; }

}

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES138

7028Ch04.qxp 12/11/06 8:32 PM Page 138

Listing 4-26. Execution Data Contract (Partial)

namespace ExchangeService
{

[DataContract(
Namespace = "http://PracticalWcf/Exchange/Execution")]

public class Execution
{

[DataMember(Name= "SettleDate")]
DateTime _settlementDate;

[DataMember(Name = "Participant")]
string _participant;

[DataMember(Name = "ExecutionAmount")]
double _executionAmount;

[DataMember(Name = "TradeSubmitted")]
Trade _trade;

Message contracts allow the encapsulation of data contracts in addition to specifying
what part of the message is in the message header and message body. So, for this example,
we’ve added a single source code file that contains the definition of two additional classes:
TradeSecurityRequest and TradeSecurityResponse. These classes are then decorated as
required with the MessageContract attribute. Additionally, the members are then decorated
with either the MessageHeader attribute or the MessageBody attribute, as shown in Listing 4-27.

Listing 4-27. Messages—TradeSecurityRequest (Partial)

[MessageContract]
public class TradeSecurityRequest
{

Trade _trade;
string _particpant;
string _publisher;
string _ticker;

[MessageHeader(MustUnderstand=true)]
public string Participant
{

get
{

return _particpant;
}
set
{

_particpant = value;
}

}

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 139

7028Ch04.qxp 12/11/06 8:32 PM Page 139

[MessageBody]
public Trade TradeItem
{

get
{

return _trade;
}
set
{

_trade = value;
}

}

Looking at the MessageHeader attribute on Participant, the MustUnderstand property
transfers the responsibility of enforcing this header on the SOAP request to the WCF frame-
work. So, with a simple attribute and property value, we’ve now provided a simple validation.
Listing 4-28 illustrates how to use the MessageContract and MessageBody attributes as applied
to the TradeSecurityResponse message in this example.

Listing 4-28. TradeSecurityResponse Message

[MessageContract]
public class TradeSecurityResponse
{

[MessageBody]
public Execution ExecutionReport;

}

The response message is simply an encapsulation of the execution data contract. We’ve
simply encapsulated the data contracts and promoted certain fields or properties as header
values.

If you take a look at the update TradeService implementation shown in Listing 4-29,
you’ll see several changes.

Listing 4-29. Updated TradeService (Partial)

[ServiceContract(
Namespace = "http://PracticalWcf/Exchange",
Name = "TradeService"
)

]
public interface ITradeService
{

[OperationContract(
Action = "http://PracticalWcf/Exchange/TradeService/TradeSecurityAtMarket"
)]
[FaultContract(typeof(ArgumentException))]
TradeSecurityResponse TradeSecurity(TradeSecurityRequest tradeRequest);

}

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES140

7028Ch04.qxp 12/11/06 8:32 PM Page 140

The first change is the explicit specification of the Action property of OperationContract.
The second is the addition of the FaultContract attribute to the TradeSecurity method. And
finally, the TradeSecurity interface itself, as defined in ITradeService, has been updated to
take the respective message contracts from the classes defined in Messages.cs.

Specifically, the first change, the addition of Action, is for illustrative purposes only to
show how you can control these values. The WCF framework would provide default WS-
Addressing and SOAP headers as required based upon the ServiceContract namespace, name,
and operation name.

The second change is the FaultContract attribute. So far, all the examples have had limited
exception processing. However, it’s important to note that .NET exceptions and SOAP excep-
tions are different. Therefore, the FaultContract capability of WCF provides a way to map,
encapsulate, and override how faults are handled and reported. This is important because
given the cross-platform capability of WCF, it would not be feasible to enforce knowledge of
.NET types. Therefore, in this example, we’ve wrapped the TradeService implementation in a
try...catch and provided a throw of FaultException in the catch block as follows:

throw new FaultException<ArgumentException>(ex);

The final change is the modification to the TradeSecurity operation. The signature has
been updated to receive and respond with the corresponding TradeSecurityRequest and
TradeSecurityResponse messages, respectively.

With the service contract change, the TradeSecurity implementation changes to match
the interface signature. You now have direct and simple property-level access to the SOAP
headers that the client of the service contract must present. Although we are using in our
examples WCF-generated proxies and .NET clients, this requirement is a SOAP standard and
regardless of the implementation technology—Java, C++, or some other SOAP framework—as
long as they implement the specifications, you have enforcement of your MustUnderstand rule.

In Listing 4-30, we’ve provided the simple value validation of the three headers presented
using .NET properties from the message contract.

Listing 4-30. TradeService Header Check Implementation (Partial)

public class TradeService : ITradeService
{

const double IBM_Price = 80.50D;
const double MSFT_Price = 30.25D;
public TradeSecurityResponse TradeSecurity(TradeSecurityRequest trade)
{

try
{

//Embedded rules
if(trade.Participant != "ABC")

throw new ArgumentException("Particpant must be \"ABC\"");

if(trade.Publisher != "XYZ")
throw new ArgumentException("Publisher must be \"XYZ\"");

if(trade.Ticker != "MSFT")
throw new ArgumentException("Ticker must be \"MSFT\"");

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 141

7028Ch04.qxp 12/11/06 8:32 PM Page 141

The completed solution provides for client-side trapping of the fault exceptions leverag-
ing the WCF capabilities. On the client side, using WCF, apply the FaultException generic with
the ArgumentException type to trap and process as required by the fault condition, as shown in
Listing 4-31.

Listing 4-31. Client program.cs Catch Block on Fault Exception (Partial)

catch(FaultException<ArgumentException> ex)
{

Console.WriteLine("ArgumentException Occurred");
Console.WriteLine("\tAction:\t" + ex.Action);
Console.WriteLine("\tName:\t" + ex.Code.Name);
Console.WriteLine("\tMessage:\t" + ex.Detail.Message);

}

The FaultException type provides access to the SOAP fault headers through simple prop-
erties, allowing exception handling or reporting as needed.

The service contract side of the channel is extensible by providing your own implementa-
tion of the IErrorHandler interface. This interface, when extended, is added to your own
service contract implementations, or you can add it to the DispatchBehavior.ErrorHandlers
collection, which can provide overriding how messages are transformed into objects and dis-
patched to methods.

Summary of Service Contracts
We’ll now summarize some characteristics of the service contract capabilities and the types
that are available for managing the generation of the schema and the serialization process.

DataContractSerializer

This is a summary of DataContractSerializer:

• Default serialization manager in WCF

• Works with the DataContract, MessageContract, Serializable, and IXmlSerializable
types

• Default namespace is http://schemas.data.coontract.org/2004/07/<serviceName>

• Defaults to fields (public or private)

• Defaults to alpha sort

XmlSerialization (XmlSerializerFormat)

This is a summary of XmlSerialization:

• Works with the Serializable and IXmlSerializable types

• Controlled through .NET XML serialization rules—a host of XML attributes that provide
an explicit override of default behavior

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES142

7028Ch04.qxp 12/11/06 8:32 PM Page 142

• Can control attribute vs. element—through the simple use of XML serialization attributes

• Can control order (but the Order property is rigid in .NET XML serialization)—again,
through XML serialization attributes

DataContract

This is a summary of DataContract:

• Works with DataContractSerializer

• Includes only DataMember in serialization

• Overrides the Name or Namespace property—only two properties

• Default order is reflection based

DataMember

This is a summary of DataMember:

• Works with DataContractSerializer and DataContract

• Overrides Name, IsRequired, and Order only—only three properties

• Order property is not rigid

MessageContract

This is a summary of MessageContract:

• Works with the DataContractSerializer and XmlSerializerFormat attributes

• Provides control over SOAP message structure—header or body content

• Leverages the MessageHeader, MessageBody, MessageHeaderArray, and MessageBodyArray
attributes for customization

Summary
In this chapter, we stepped through the initial installation and configuration of your first WCF
services. We then provided background on service contracts, on data contracts, on different
aspects of how WCF deals with serialization, and on important aspects of distributed computing.

We focused purely on the implementation details and not the actual hosting. The samples
for this chapter all run either within IIS hosting or directly under the ASP.NET development
server that comes with Visual Studio 2005.

So, the next chapter will cover the hosting options and the details associated with some of
those options. What’s important to take away from this chapter is the separation and decou-
pling of those who implement the service logic and those responsible for deployment and
hosting. This provides solution designers with a framework that reduces bias based upon plat-
form or implementation restrictions.

CHAPTER 4 ■ INSTALLING AND CREATING WCF SERVICES 143

7028Ch04.qxp 12/11/06 8:32 PM Page 143

7028Ch04.qxp 12/11/06 8:32 PM Page 144

Hosting and Consuming WCF
Services

When your business relies on a service-oriented architecture, you need to make sure your
services are robust. The most important driver behind the robustness of your application is
where/how you host your service. You need to ask yourself several questions when thinking
about hosting services: What are the availability requirements of my services? How am I going
to manage and deploy my services? Do I need to support older versions of my services?

Learning how to cover these business requirements is essential to developing successful
services. As you learned in Chapter 3, you have to host services on your own host. WCF doesn’t
come with its own host but instead comes with a class called ServiceHost that allows you to
host WCF services in your own application easily. You don’t have to think about any of the net-
work transport specifics to be able to make sure your services are reachable. It’s a matter of
configuring your services’ endpoints either programmatically or declaratively and calling the
Open method of ServiceHost. All the generic functionality regarding bindings, channels, dis-
patchers, and listeners you learned about in Chapter 3 is baked into ServiceHostBase and
ServiceHost. This means the responsibility of the application you use to host your service, the
application where ServiceHost is running, is significantly less than you would expect up front.

This chapter is about which types of applications you can use to host ServiceHost. In
addition, you will learn about the differences when you want to consume these services
hosted in different applications.

After completing this chapter, you will have the following knowledge:

• The different hosting options available to you

• The advantages and disadvantages of each hosting option

• Guidance on when to choose each hosting option

• Architectural guidance on how Microsoft implemented the different hosting options
and the extensibility points each option has

Exploring Your Hosting Options
On the Microsoft .NET platform, you have several types of managed Windows applications
that you can create with Visual Studio .NET:

145

C H A P T E R 5

■ ■ ■

7028Ch05.qxp 12/11/06 8:35 PM Page 145

• WinForms applications

• Console applications

• Windows services

• Web applications (ASP.NET) hosted on Internet Information Services (IIS)

• WCF services inside IIS 7.0 and WAS on Windows Vista or Windows Server 2007

If you look through the project templates that come with Visual Studio 2005, you will find
other options available at your disposal. For obvious reasons, we don’t consider any of the
other templates to be viable options to use in the services world. It is worth noting, however,
that WCF doesn’t block you from running your service in any other type of application as long
as it provides you with a .NET application domain. If you don’t know the concepts behind a
.NET application domain, please refer to the “Understanding .NET Application Domains”
sidebar. It all comes down to the requirements you have for your host. To summarize the
options, think about the following three generic categories of hosts for your WCF services:

• Self-hosting in any managed .NET application

• Hosting in a Windows service

• Hosting in different versions of IIS

As you can imagine, all these have associated project templates in Visual Studio, as men-
tioned earlier in this section, and all of them have their own characteristics. To get a better
understanding of which host is the best in each situation, you need to understand the require-
ments and the features hosts typically have. After you understand this, we will walk you
through each hosting option individually.

UNDERSTANDING .NET APPLICATION DOMAINS

Assuming you understand the role of Windows processes and how to interact with them from managed code,
you need to investigate the concept of a .NET application domain. To run your managed .NET code in a
process, you create assemblies. These assemblies are not hosted directly within a Windows process. Instead,
the common language runtime (CLR) isolates this managed code by creating separate logical partitions
within a process called an application domain. A single process may contain multiple application domains,
each of which is hosting distinct pieces of code encapsulated in assemblies. This subdivision of a traditional
Windows process offers several benefits provided by the .NET Framework.

The main benefits are as follows:

• Application domains provide the operating system–neutral nature of the .NET platform by abstracting
away the concept of an executable or library.

• Application domains can be controlled and (un)loaded as you want.

• Application domains provide isolation for an application or within a process where multiple application
domains live. Application domains within a process are independent of each other and as such remain
functional when one fails the other.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES146

7028Ch05.qxp 12/11/06 8:35 PM Page 146

Hosting Environment Features
A .NET application requires a hosting Windows process. Inside that Windows process you can
host multiple .NET application domains. An application domain is the means for the .NET
CLR to isolate the managed code from Windows. The CLR automatically creates one default
application domain in each worker process where it is initialized in a process. The default
application domain is not unloaded until the process in which it runs shuts down. The CLR
controls the shutdown of the default application domain. In most hosts, no code is running
inside the default application domain. Instead, hosts (or processes) create a new application
domain so the application domain can be closed independently of the process. In a lot of
applications, it is desirable that the client-side code and server-side code execute in different
application domains. Often these desires stem from reasons such as security and isolation.

The relationship between processes and application domains is similar to the relation-
ship between applications and application domains and the WCF ServiceHost. As Figure 5-1
illustrates, every process has at least one application domain, and each application domain
can host zero or more WCF ServiceHost instances. WCF requires at least an application
domain hosted inside a Windows process.

Figure 5-1. Processes, application domains, and WCF ServiceHost relationship

■Note Although you can instantiate multiple instances of ServiceHost, it is easier to maintain one
instance of ServiceHost per application domain. You can use multiple endpoints to expose multiple service
interfaces in one host. More advanced hosts such as IIS and WAS do instantiate multiple instances of
ServiceHost to provide isolation and different security contexts.

Therefore, the main responsibility of the host is to provide a Windows worker process and
an application domain to the WCF ServiceHost. In addition, WCF relies on the security and
configuration features provided by an application domain. A Windows process always runs
under a default identity that WCF uses out of the box. However, WCF comes with features to

Process

Application
Domain

ServiceHost

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 147

7028Ch05.qxp 12/11/06 8:35 PM Page 147

impersonate users on several levels (which is covered in Chapter 7). If you don’t use these
features, then the Windows process that your service runs under provides the security context.
As you know from previous chapters, by default WCF relies on the configuration features in
the .NET Framework that are accessible through the application domain.

Some hosts come with additional features for managing applications running under them.
Most notably, IIS comes with automatic process recycling, resource throttling, logging, health
indicators, and other features.1 You can learn more about these topics throughout the chapter.

Hosting Environment Requirements
Microsoft did a good job ensuring that you as a service developer don’t have to care much
about the hosting environment. ServiceHost abstracts all the technological difficulties away so
you can focus on your service logic instead of the plumbing involved in hosting services. Based
on your requirements, you have to choose a host. WCF is written primarily as a programming
model, and one of the main design decisions for it is to be host agnostic. ServiceHost doesn’t
care where it is instantiated as long as it is running when you want your services to be reach-
able. In other words, it requires a process that runs a .NET application domain.

You need to consider certain requirements when choosing an application type (such as
whether it’s a console application, a WinForms application, and so on). You need to instantiate
ServiceHost to provide you with the hosting environment where your services live. Typical
.NET applications such as console and WinForms applications run on user desktop machines.
These environments are not running all the time; hosting your services there is possible, but
they’re not typical enterprise-ready hosts. We consider enterprise-ready hosts to support a
larger-scale service-oriented architecture, where services are exposing key business functional-
ity on which multiple systems rely. These enterprise-ready hosts typically fulfill requirements
such as high availability. As such, we don’t consider console or WinForms applications to be
enterprise-ready hosts.

Services usually run on servers and are managed and operated by operators. Usually the
operators that manage servers don’t like starting console applications or WinForms applica-
tions by hand when servers are rebooted. For your service applications to be ready to run in a
data center, the only viable option for enterprise service-oriented scenarios is hosting your
services either on IIS or as a Windows service.

Sometimes you’ll require interprocess communication on a user’s desktop machine. In
this scenario, the service is active only when the user is using the application. Typical applica-
tions where you see interprocess communication requirements are console applications and
WinForms applications. The applications are suitable to host these types of services.

To be able to determine which host is the most applicable host for your scenario, you
should refer to your nonfunctional requirements. Typically, nonfunctional requirements state
technical requirements for your application to ensure they meet the quality and maintainabil-
ity of your application. For WCF applications, this comes down to the following topics:

Availability: When do you want to be able to reach your service?

Reliability: What happens when your service somehow breaks? How does this affect other
consumers?

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES148

1. Different IIS versions have different manageability features that are supported by WCF. Most notably, IIS
5.1 on Windows XP comes with several limitations in the management user interface.

7028Ch05.qxp 12/11/06 8:35 PM Page 148

Manageability: Do you need easy access to information about what is happening on the
host where WCF services live?

Versioning: Do you need to support older versions of the service? Do you know who is
consuming your services?

Deployment: What is your deployment model? Are you installing through the Microsoft
Installer process and Visual Studio deployment packages, or is xcopy sufficient?

State: Are your services stateless? Do you need sessions?

Based on these nonfunctional requirements, you can decide which host meets your
needs. To help you with this choice, for the remaining part of this chapter you will look at the
different hosting environments, including their advantages and disadvantages.

■Note The WCF programming model is agnostic to where it is running, so switching to a different host
later is always possible and doesn’t mean you have to change your service implementation. Typically, you’ll
start with a self-hosted scenario in a console application to test-drive and prototype your services.

Self-Hosting Your Service
The most flexible and easiest way to host WCF services is by self-hosting. To be able to self-host
your services, you have to meet two requirements. First, you need the WCF runtime; second,
you need a managed .NET application in which you can host ServiceHost. It is your own
responsibility to write the code that starts and stops the host.

The following are the advantages of self-hosting:

Is easy to use: With only a few lines of code you have your service running.

Is flexible: You can easily control the lifetime of your services through the Open() and
Close() methods of ServiceHost<T>.

Is easy to debug: Debugging WCF services that are hosted in a self-hosted environment
provides a familiar way of debugging, without having to attach to separate applications
that activate your service.

Is easy to deploy: In general, deploying simple Windows applications is as easy as xcopy.
You don’t need any complex deployment scenarios on server farms, and the like, to deploy
a simple Windows application that serves as a WCF ServiceHost.

Supports all bindings and transports: Self-hosting doesn’t limit you to out-of-the-box
bindings and transports whatsoever. On Windows XP and Windows Server 2003, IIS limits
you to HTTP only.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 149

7028Ch05.qxp 12/11/06 8:35 PM Page 149

The following are the disadvantages of self-hosting:

Limited availability: The service is reachable only when the application is running.

Limited features: Self-hosted applications have limited support for high availability, easy
manageability, robustness, recoverability, versioning, and deployment scenarios. At least,
out-of-the-box WCF doesn’t provide these, so in a self-hosted scenario you have to imple-
ment these features yourself; IIS, for example, comes with several of these features by default.

In other words, you shouldn’t consider self-hosting for enterprise scenarios. Self-hosting is
suitable during the development or demonstration phases of your enterprise project. Another
suitable example where you would self-host your services is when you want applications on a
user desktop to communicate with each other or in a peer-to-peer scenario, as described in
Chapter 12.

You saw several examples of self-hosting scenarios in Chapter 3. These examples all used
simple console applications. To illustrate this better in a real-life scenario, this chapter presents
a WinForms application that hosts a service that tracks published quotes for the Market Makers
actors in the QuickReturns Ltd. case study.

For this scenario, you have two distinct WinForms applications. One is the Market Makers
Manager application that Market Makers can use to publish quotes and trade their securities. The
other is a separate WinForms application that tracks published quotes. It does that by exposing a
service that implements the ITradeTrackingService contract, as described in Listing 5-1. The
Market Makers Manager application calls this service when it successfully publishes a quote
through the TradeService.

Listing 5-1. ServiceContract for the Trade-Tracking Service

using System.ServiceModel;
using QuickReturns.StockTrading.ExchangeService.DataContracts;

namespace QuickReturns.StockTrading.TradeTrackingService.Contracts
{

[ServiceContract()]
interface ITradeTrackingService
{

[OperationContract()]
void PublishQuote(Quote quote);

}
}

Hosting in Windows Services
Hosting a WCF service in a Windows service is a logical choice. Windows services shouldn’t be
confused with WCF services. They both use the word service, but they have different meanings.
A Windows service is a process managed by the operating system. Windows comes with the Ser-
vice Control Manager, which controls the services installed on the operating system. Windows
uses services to support operating system features such as networking, USB, remote access,

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES150

7028Ch05.qxp 12/11/06 8:35 PM Page 150

message queuing, and so on. You can use Visual Studio 2005 to create a Windows service using
the Windows Service project template shown in Figure 5-2.

The Windows Service project template generates a project that contains two files: the
service1.cs that contains the service implementation and the program.cs file that instantiates
and essentially hosts the Windows service. To host your WCF service inside a Windows service,
you merely need to implement the Start() and Stop() methods of the Windows service, as
shown in Listing 5-2. Since the paradigm of starting Windows services is similar to starting
your services inside WCF ServiceHost, you end up tying the lifetime of your WCF service to the
lifetime of your Windows service.

Figure 5-2. Visual Studio 2005 Windows Service project template

Listing 5-2. Windows Service Hosting the WCF ServiceHost

using System;
using System.ServiceModel;
using System.ServiceProcess;
using QuickReturns.StockTrading.ExchangeService;

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 151

7028Ch05.qxp 12/11/06 8:35 PM Page 151

namespace QuickReturns.StockTrading.ExchangeService.Hosts
{

public partial class ExchangeWindowsService : ServiceBase
{

ServiceHost host;

public ExchangeWindowsService()
{

InitializeComponent();
}

protected override void OnStart(string[] args)
{

Type serviceType = typeof(TradeService);
host = new ServiceHost(serviceType);
host.Open();

}

protected override void OnStop()
{

if(host != null)
host.Close();

}
}

}

■Tip If you want to debug your start-up (or shutdown) code, just insert the following line in your code:
System.Diagnostics.Debugger.Break(); (potentially surrounded by some logic to do this only in debug
builds).

So, writing a Windows service that hosts your WCF service is pretty easy and comes with
several benefits when compared to the self-hosting scenario from earlier in this chapter. On
the other hand, writing a Windows service that hosts your WCF service also comes with some
disadvantages that you need to understand.

The following are the advantages:

Automatic starting: The Windows Service Control Manager allows you to set the start-up
type to automatic so that as soon as Windows boots, the service will be started, without an
interactive login on the machine.

Recovery: The Windows Service Control Manager has built-in support to restart services
when failures occur.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES152

7028Ch05.qxp 12/11/06 8:35 PM Page 152

Security identity: The Windows Service Control Manager allows you to choose a specific
security identity under which you want the service to run including built-in system or
network service accounts.

Manageability: In general, Windows operators know a lot about the Service Control Man-
ager and other management tools that can work with Windows service installation and
configuration. This will improve the acceptance of Windows services in production envi-
ronments; however, to make services maintainable, you would probably have to add
some instrumentation and logging features.

Support for all bindings and transports: Self-hosting doesn’t limit you in using any of the
out-of-the-box bindings and transports whatsoever. On Windows XP and Windows Server
2003, IIS limits you to HTTP only.

The following are some of the disadvantages of Windows services:

Deployment: Services need to be installed with the .NET Framework Installutil.exe util-
ity or through a custom action in an installer package.

Limited features: Windows services still have a limited set of out-of-the-box features to
support high availability, easy manageability, versioning, and deployment scenarios.
Essentially you have to cover these requirements yourself through custom code while, for
example, IIS comes with several of these features by default. Windows services do add
recoverability and some security features, but you still have to do some work yourself.

To be able to install a service in the Service Control Manager, you have to add an installer
to the project. Visual Studio 2005 allows you to do this easily:

1. Open the Designer view of the Service class in your Windows service project.

2. Click the background of the designer to select the service itself, rather than any of its
contents.

3. In the Properties window, click the Add Installer link in the gray area beneath the list
of properties, as shown in Figure 5-3. By default, this adds a component class contain-
ing two installers to your project. The component is named ProjectInstaller, and the
installers it contains are the installer for your service and the installer for the associ-
ated process of the service.

Figure 5-3. The Add Installer function of a Windows service project

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 153

7028Ch05.qxp 12/11/06 8:35 PM Page 153

4. Access the Designer view for ProjectInstaller, and click ServiceInstaller1.

5. In the Properties window, set the ServiceName property to QuickReturns Exchange
Service.

6. Set the StartType property to Automatic, as shown in Figure 5-4.

Figure 5-4. The Properties window of QuickReturns Exchange Service

7. Access the Designer view for ProjectInstaller, and click serviceProcessInstaller1.

8. In the Properties window, set the Account property to Network Service, as shown in
Figure 5-5.

Figure 5-5. The Properties window of QuickReturns Exchange Service

To be able create a setup that can be used to install your Windows service, you need to
add a Visual Studio setup and deployment project to the solution. The following steps describe
how to add a setup and deployment project to your solution:

1. Select File ➤ Add ➤ New Project.

2. In the New Project dialog box, select the Other Project Types category, select Setup and
Deployment, and then select Setup Project, as shown in Figure 5-6.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES154

7028Ch05.qxp 12/11/06 8:35 PM Page 154

Figure 5-6. Visual Studio 2005 setup project template

3. In Solution Explorer, right-click the setup project, point to Add, then choose Project
Output, as shown in Figure 5-7. The Add Project Output Group dialog box appears.

Figure 5-7. Adding the Windows service project output

4. Select the Windows service project.

5. From the list box, select Primary Output, and click OK.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 155

7028Ch05.qxp 12/11/06 8:35 PM Page 155

This adds a project item for the primary output of your Windows service to the setup proj-
ect. Now add a custom action to install the executable file. To add a custom action to the setup
project, follow these steps:

1. In Solution Explorer, right-click the setup project, point to View, and then choose Custom
Actions, as shown in Figure 5-8. The Custom Actions view appears.

Figure 5-8. Opening the Custom Actions view

2. Right-click Custom Actions, and select Add Custom Action.

3. Double-click the application folder in the list box to open it, select Primary Output
from the Windows service project, and click OK. The primary output is added to all
four nodes of the custom actions—Install, Commit, Rollback, and Uninstall.

4. Build the setup project.

When you compile the project, the output is a Microsoft Installer file (.msi) that you can
use to install the service into the Windows Service Control Manager.

■Note This chapter describes the basics of building Windows services and Windows service installers.
Setting your Windows services to run under the unrestricted Localsystem account or the somewhat appro-
priate Network Service account is not always the best choice in terms of security best practices. Usually
operators have the ability to choose the credentials during setup or adjust the security identity settings after
installation through the Service Control Manager Management Console snap-in that can be accessed
through Windows Computer Management. Please refer to Chapter 7 of this book, MSDN Help, or a book
dedicated to .NET development for more details and best practices regarding developing Windows services.

Hosting Using Internet Information Services
Web service development on IIS has long been the domain of ASP.NET. When ASP.NET 1.0 was
released, a web service framework was part of it. Microsoft leveraged the ASP.NET HTTP

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES156

7028Ch05.qxp 12/11/06 8:35 PM Page 156

pipeline to make web services a reality on the Windows platform. Unfortunately, this tight
coupling between ASP.NET and web services comes with several limitations in the service
orientation world; the dependency on HTTP is the main culprit. Running the ASP.NET HTTP
pipeline on a different host is hard and therefore is an uncommon scenario. Even then,
ASP.NET web services (a.k.a. ASMX services) stay very web oriented in terms of deployment
scenarios and configuration dependencies. Microsoft initially released several version of the
Web Services Enhancements (WSE) to cover some of the limitations of ASP.NET web services,
and especially to address the limitations in the implementation of the WS-* protocols. How-
ever, WSE was very dependent on the ASP.NET web service implementation.

As you learned in previous chapters, WCF services take a totally different approach to
make service orientation a reality. The unified programming model of WCF is based on a
strictly layered model to break the web-oriented paradigm and disconnect the service model
and channel layer from the supported transports. This model allows WCF to support several
different hosts of which IIS is the most important.

WCF was built to support Windows XP, Windows Server 2003, Windows Vista, and Win-
dows Server 2007. Since IIS 5.1, which was released with Windows XP, a lot has changed. Still,
Microsoft succeeded in supporting WCF on older versions. This was possible because of the
features that the Microsoft .NET Framework and the CLR provide, which is what WCF is built
on. In the following sections, you will learn the differences in the process models of the differ-
ent IIS versions and the consequences for your WCF services.

Core IIS 5.1 and 6.0 Features
To be able to explain the differences, we first have to explain the core features of IIS. IIS has
long been supporting multiple sites and multiple applications on one machine. To enable this,
IIS introduced a common address model that is split into three main areas:

• Sites2

• Applications

• Virtual directories

Sites are bound to a particular scheme, network address, and port combination. IIS not
only supports HTTP but also, depending on the version, FTP, NNTP, and SMTP. You can run
multiple applications under the same site and under the same scheme, network, and port
combination. A typical URI for an application is http://localhost/MyApplication. A virtual
directory is simply a folder that is mapped to the network space of the site, which could be
somewhere else on the file system. This way, you can keep the actual content or code of an
application separate from the other applications that are part of the same site.

In IIS 6.0 Microsoft made some significant changes in the IIS process model. The IIS
process model was split into application pools that can be shared among sites and applica-
tions, where each application runs in its own application domain. An application pool is a
separate Windows worker process called W3wp.exe and is started only when it needs to start. In
other words, IIS comes with an application activation model that allows IIS to start up an
application pool when it receives a request for a particular application that is bound to that

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 157

2. IIS 5.1, released with Windows XP, supports only one site.

7028Ch05.qxp 12/11/06 8:35 PM Page 157

application pool. This enables IIS to host several thousands of applications on one server
without keeping several thousand processes running. The activation architecture of IIS is an
interesting model in the services world, as you will see in the “Windows Activation Services”
section of this chapter.

Figure 5-9 shows the core IIS 6.0 architecture on the bottom of the HTTP protocol stack
and on top of that at least four different processes:

Lsass.exe: Is responsible for the security features in IIS: the implementation of Windows
Authentication and Secure Sockets Layer (SSL).

Inetinfo.exe: Is the process that hosts the non-HTTP services and the IIS Admin Service,
including the Metabase.

SvcHost.exe: Is the process that can host operating system services; in the case of IIS, it
hosts the web (HTTP) service.

W3wp.exe: Is a worker process. IIS can have multiple W3wp.exe processes, one for each
application pool. To support web garden scenarios where one application is split in sepa-
rate processes, you have multiple instances of the same worker process. This can provide
additional scalability and performance benefits.

Figure 5-9. IIS 6.0 core architecture

W3wp.exeInetinfo.exe

IIS Admin
Service

Lsass.exe

SSL

HTTP Protocol Stack (HTTP.SYS)

Kernel Mode

User Mode

Windows
Authentication

SvcHost.exe W3wp.exe

Worker Process

FTP

SMTP

NNTP

Metabase

Application Pool(s) Application Pool (Web Garden)

ISAPI
Extensions

ISAPI Filters

Worker Process

ISAPI
Extensions

ISAPI Filters

WWW Service

Application
Domains

Application
Domains

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES158

7028Ch05.qxp 12/11/06 8:35 PM Page 158

■Note We are describing the IIS 6.0 architecture here because that was the most widely used version of
IIS before the release of WCF. In addition, WCF supports IIS 6.0, and the model closely resembles the imple-
mentation that was chosen with IIS 7.0 and Windows Activation Services, as you will learn in the remainder
of this chapter. The main difference between IIS 5.1 and IIS 6.0 is the limitation in the amount of sites and
application pools. IIS 5.1 supports only one site bound to one application pool.

Hosting WCF Services in IIS
To host a WCF Service in IIS, you need a new physical file with the .svc extension. The file
associates a service with its implementation and is the means for IIS to create ServiceHost for
you. IIS takes over the interaction between your service and ServiceHost; you no longer have
to instantiate and start ServiceHost yourself. The first line of the .svc file contains a directive
enclosed in the ASP.NET <% Page %> directive that tells the hosting environment to which
service this file points. The service code can then reside inline as shown in Listing 5-3, in a
separate assembly registered in the GAC, in an assembly that resides in the application’s Bin
folder, or in a C# file that resides under the application’s App_Code folder. The most common
scenario is to define endpoints in a configuration file. In IIS you have to define your endpoints
in the Web.config file, as explained in the next section.

Listing 5-3 shows a sample .svc file based on the TradeService service you saw earlier. It
has the service code defined inline. Listing 5-4 shows an example .svc file where the code
resides in the App_Code folder.

Listing 5-3. ExchangeServiceInline.svc File with Inline Code

<%@ServiceHost Language="C#"
Service="QuickReturns.StockTrading.ExchangeService.TradeServiceInline" %>

using System;
using System.Collections;
using System.ServiceModel;
using QuickReturns.StockTrading.ExchangeService.Contracts;
using QuickReturns.StockTrading.ExchangeService.DataContracts;

namespace QuickReturns.StockTrading.ExchangeService
{

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single,
IncludeExceptionDetailInFaults=true)]

public class TradeServiceInline : ITradeService
{

public Quote GetQuote(string ticker)
{

…
}

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 159

7028Ch05.qxp 12/11/06 8:35 PM Page 159

public void PublishQuote(Quote quote)
{

...
}

}
}

Listing 5-4. ExchangeService.svc File with External Code

<% @ServiceHost language="C#"
Service=" QuickReturns.StockTrading.ExchangeService.TradeService"
CodeBehind="~/App_Code/TradeService.cs" %>

■Note The sample code that comes with this book contains the TradeService service hosted inline and
comes with its implementation in the App_Code folder to illustrate the concepts in this section. You can find
it by opening the Chapter 5 solution file.

Configuring WCF Services in IIS
Hosting in IIS means you will have to set up the WCF configuration in the Web.config file of
the application where you want to host your service. The service configuration in the
Web.config file is similar to that of self-hosted services. Listing 5-5 shows an example of a Web.
config file for the TradeService service.

Listing 5-5. Web.config Used to Configure a Service Hosted in IIS

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

<system.serviceModel>
<services>

<service name="QuickReturns.StockTrading.ExchangeService.TradeService"
behaviorConfiguration="tradeServiceBehavior">

<endpoint name="basicHttpBinding"
address=""
binding="basicHttpBinding"
contract="QuickReturns.StockTrading.ExchangeService.➥

Contracts.ITradeService"/>
<endpoint name="mexHttpBinding"

contract="IMetadataExchange"
binding="mexHttpBinding"
address="mex" />

</service>

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES160

7028Ch05.qxp 12/11/06 8:35 PM Page 160

<service name="QuickReturns.StockTrading.ExchangeService.TradeServiceInline"
behaviorConfiguration="tradeServiceBehavior">

<endpoint name="basicHttpBinding"
address=""
binding="basicHttpBinding"
contract="QuickReturns.StockTrading.ExchangeService.➥

Contracts.ITradeService"/>
<endpoint name="mexHttpbinding"

contract="IMetadataExchange"
binding="mexHttpBinding"
address="mex" />

</service>
</services>
<behaviors>

<serviceBehaviors>
<behavior name="tradeServiceBehavior" >

<serviceMetadata httpGetEnabled="true" />
</behavior>
<behavior name="returnFaults"

returnUnknownExceptionsAsFaults="true"/>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

</configuration>

Please note that the address attribute of the service is empty. The .svc file determines the
base address of the service. You can, however, provide an additional string that would set the
endpoint’s address relative to the .svc file. For example, you can use http://localhost:8080/
QuickReturns/Exchange.svc/ExchangeService.

The service name attribute specified in the config file functions as a lookup key for the cor-
responding ExchangeService.svc. It tells the hosting environment to which service this
configuration belongs. The other attributes on the endpoint level are the same as explained
previously.

In IIS, web configuration files can be nested in sites, applications, and virtual directories.
WCF takes all the configuration files into account and merges services and their endpoints
together. This means nested Web.config files are additive to each other, where the last file read
in the bottom of the hierarchy takes precedence over files higher in the hierarchy.

Accessing ServiceHost in IIS
The default behavior of hosting your WCF services in IIS is that IIS controls the instantiation of
ServiceHost. This limits you from having start-up and shutdown code before a message
reaches your service. The advantage of no start-up and shutdown code is, of course, less code
that potentially introduces errors. IIS provides you with an easier hosting environment, in
terms of lines of code, than a console application. However, sometimes you need a way to cir-
cumvent this limitation. To do this and influence IIS in instantiating ServiceHost, you can
build your own factory that creates your custom host. This way, you can access any of the
events or override any of the methods you like.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 161

7028Ch05.qxp 12/11/06 8:35 PM Page 161

To support custom ServiceHost activation, you should implement your own Factory that
inherits from ServiceHostFactory, which is a factory class that can instantiate your custom
host. That class is provided in order to hook up the events for ServiceHost; you can use this
class and put the type as the Factory attribute in the .svc file, as shown in Listing 5-6. By over-
riding the CreateServiceHost method of the ServiceHostFactory class, you can perform
similar tasks as you do in self-hosting scenarios, as you learned in Chapter 3. This enables you,
among other things, to abstract the logic to build up the description from the external config-
uration or create a more suitable base class for your base library, project, department, or
company to use.

Listing 5-7 shows the code of TradeServiceCustomHost and TradeServiceCustomHostFactory
that creates the host.

Listing 5-6. .svc File with a CustomServiceHostFactory

<% @ServiceHost Language="C#" Debug="true"
Service="QuickReturns.StockTrading.ExchangeService.TradeService"
Factory="QuickReturns.StockTrading.ExchangeService.

TradeServiceCustomHostFactory" %>

Listing 5-7. TradeServiceCustomHostFactory and TradeServiceCustomHost

using System;
using System.ServiceModel;
using System.ServiceModel.Activation;

namespace QuickReturns.StockTrading.ExchangeService
{

public class TradeServiceCustomHostFactory : ServiceHostFactory
{

protected override ServiceHost CreateServiceHost(
Type serviceType, Uri[] baseAddresses)

{
TradeServiceCustomHost customServiceHost =

new TradeServiceCustomHost(serviceType, baseAddresses);
return customServiceHost;

}
}

public class TradeServiceCustomHost : ServiceHost
{

public TradeServiceCustomHost(Type serviceType, params Uri[] baseAddresses)
: base(serviceType, baseAddresses)

{
}

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES162

7028Ch05.qxp 12/11/06 8:35 PM Page 162

protected override void ApplyConfiguration()
{

base.ApplyConfiguration();
}

}
}

Recycling
When you are hosting WCF services on IIS, the WCF services enjoy all the features of ASP.NET
applications. You have to be aware of these features because they can cause unexpected
behavior in the services world. One of the major features is application recycling, including
application domain recycling and process recycling. Through the IIS Management Console,
you can configure different rules when you want the recycling to happen. You can set certain
thresholds on memory, on time, and on the amount of processed requests, as shown in
Figure 5-10. When IIS recycles a worker process, all the application domains within the worker
process will be recycled as well. Usually when critical files in an ASP.NET-based web applica-
tion change, the application domain also recycles. This happens, for example, when changing
the Web.config file or assemblies in the Bin folder.

Figure 5-10. Application pool recycling settings

■Note The process recycling described here covers recycling in Windows Server 2003. To enable process
recycling in Windows XP and IIS 5.1, you can download the IIS 5.0 process recycling tool from the Microsoft
website. The process recycle tool runs as a service on a computer running IIS 5.0 or 5.1.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 163

7028Ch05.qxp 12/11/06 8:35 PM Page 163

After modifying an .svc file, the application domain is also recycled. The hosting
environment will try to close all the WCF services’ open connections gracefully in a timely
manner. When services somehow don’t close in time, they will be forced to abort. Through
the HostingEnvironmentSettings configuration settings, you can influence the behavior of
recycling, as you can see in Listing 5-8. The idleTimeout setting determines the amount of idle
time in seconds for an application domain to be recycled. The shutdowntimeout setting deter-
mines the amount of time in seconds to gracefully shut down an application. After this
timeout, it forces applications to shut down.

Listing 5-8. Web.config with hostingenvironment Section for Recycling Settings

<system.web>
<hostingEnvironment idleTimeout="20"

shutdownTimeout="30"/>
</system.web>

When you are using WCF sessions, these recycling features are critical to understand.
This is typically the case in the security and reliable messaging scenarios, as you will read in
Chapters 6 and 8 of this book. By default, WCF stores session state in memory. This is a differ-
ent implementation from ASP.NET session state and doesn’t come with a configuration to
switch over to persistent session state storage. However, in the security and reliable messaging
scenarios you can, and should, benefit from the ASP.NET implementation. Using the ASP.NET
compatibility features of WCF provides you with the SQL Server and state server implementa-
tions of ASP.NET session state to support enterprise-ready scenarios. In the next section, you
will learn how to benefit from the WCF ASP.NET compatibility mode.

ASP.NET Compatibility Model
When hosting your WCF services in a load-balanced or even a web garden environment where
subsequent requests in a session can be processed by different hosts or processes in the envi-
ronment, you need out-of-process persistent storage for your session state. Out-of-the box
WCF doesn’t support persistent storage for session state. Instead, WCF stores all its session
state in memory. When your WCF services are hosted in IIS, you can end up with recycling sce-
narios, as described in the previous section. Instead of building persistent storage for sessions
all over again, WCF relies on the ASP.NET implementation for session state. This approach has
one serious limitation: you limit your services to HTTP.

ASP.NET session state is not the only feature that is supported by the ASP.NET compatibil-
ity mode. It also supports features such as the HttpContext, globalization, and impersonation,
just like you are used to with ASP.NET web services (ASMX). Refer to MSDN Help for the
ASP.NET-specific features to enable out-of-process session state.

To see the limitation of the ASP.NET compatibility mode, you have to explicitly mark your
services with the AspNetCompatibilityRequirements attribute, as shown in Listing 5-9.

Listing 5-9. AspNetCompatiblityRequirements Attribute

namespace QuickReturns.StockTrading.ExchangeService
{

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single,
ReturnUnknownExceptionsAsFaults=true)]

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES164

7028Ch05.qxp 12/11/06 8:35 PM Page 164

[AspNetCompatibilityRequirements(
RequirementsMode=AspNetCompatibilityRequirementsMode.Allowed)]
public class TradeService : ITradeService
{
...
}

}

The AspNetCompatibilityRequirementsMode attribute has the following allowed values:

NotAllowed: Indicates your services may never be run in the ASP.NET compatibility mode.
You have to set this in scenarios where your service implementation doesn’t work in
ASP.NET compatibility mode, such as in scenarios where your services are not built for
HTTP.

Allowed: Indicates your services may run in the ASP.NET compatibility mode. Pick this
value only when you know your service may work in this mode.

Required: Indicates your service must run in the ASP.NET compatibility mode. Pick this
value when your service requires persistent session storage.

When you choose the Required option, WCF will verify that all the supported endpoints
for the services are HTTP endpoints and will throw an exception during ServiceHost initializa-
tion if they aren’t. In addition to the AspNetCompatibilityRequirements attribute, you must set
aspNetCompatibilityEnabled, as shown in Listing 5-10.

Listing 5-10. Configuration with ASP.NET Compatibility Enabled

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

<system.serviceModel>
<serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>
<services>
...
</services>
<behaviors>
...
</behaviors>

</system.serviceModel>
</configuration>

■Note The sample code that comes with this book contains the TradeService service hosted in the
ExchangeServiceInline.svc file that is configured to run in ASP.NET compatibility mode. You can find it
by opening the Chapter 5 solution file.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 165

7028Ch05.qxp 12/11/06 8:35 PM Page 165

Windows XP and IIS 5.1
IIS 5.0, which came as part of Windows 2000, split the process model of IIS and introduced
worker processes. The primary reason for this change was to isolate applications so that IIS
could host different applications that were less dependent on each other. IIS 5.0 was released
with Windows 2000, and IIS 5.1 was released with Windows XP. WCF doesn’t support hosting
services on Windows 2000 with IIS 5.0; because of that, we will take a closer look at IIS 5.1 only.
IIS 5.1 is supported but has a limitation of only one site, and each application runs in one
worker process called aspnet_wp.exe. IIS 5.1 is a great version for developing ASP.NET websites
and WCF services. It is not ready for enterprise use because it has connection limits and runs
only on a client version of earlier Windows versions or Windows XP. In this chapter, we will talk
about IIS 5.1

In Figure 5-11 you can see the process model of IIS 5.1. The architecture is split into two
pieces. W3svc.exe on the left side hosts an HTTP listener, launches worker processes, and
manages the configuration. The worker processes on the other side enable IIS 5.1 to host
managed .NET applications, where ASPNET_ISAPI.dll is responsible for creating managed
.NET application domains. Please note that on Windows XP the W3svc.exeWindows service is
hosted in the SvcHost.exe process, together with the SMTP and FTP services.

Figure 5-11. IIS 5.1 process model architecture

■Note You aren’t required to have IIS to run ASP.NET and WCF services. For example, you can use the
ASP.NET development web server that is provided with Visual Studio 2005. When Windows XP was released,
Visual Studio didn’t have this feature. You were required to work with IIS 5.1 to be able to develop web appli-
cations on Windows XP.

Inetinfo.exe

W3svc.exe

Aspnet_wp.exe

ASPNET_ISAPI.dll
Process and
Configuration

Manager

HTTP Listener

Application
Domains

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES166

7028Ch05.qxp 12/11/06 8:35 PM Page 166

Windows Server 2003 and IIS 6.0
As of Windows Server 2003, Microsoft introduced the kernel mode HTTP stack called
HTTP.SYS. HTTP.SYS is plugged into the IIS 6.0 architecture through W3svc.exe. W3svc.exe is a
user mode component that bridges the kernel mode implementation of HTTP.SYS and con-
nects this to the process and configuration management system that was already there in IIS
5.1. And as of IIS 6.0, the concept of application pools was more generalized. Although in IIS
5.1 only managed (ASP.NET) applications could be hosted in separate application pools, in IIS
6.0 all types of applications can be hosted in separate application pools. ASPNET_ISAPI.dll is
still responsible for starting application domains in the managed ASP.NET world. Figure 5-12
illustrates the process model in IIS 6.0.

Figure 5-12. IIS 6.0 process model architecture

To host your services in IIS 6.0, please refer to Chapter 4.

Hosting in IIS 7.0
IIS 7.0 has established another big evolution in the web server world. As you can see in
Figure 5-13, two big changes were made. First, now protocol-specific listener adapters support
all four WCF transports, instead of only HTTP in IIS 6.0. In addition, a new operating system
service is available called Windows Activation Services (WAS). Both W3svc.exe and WAS are
running inside an operating system host called SvcHost.exe. To be able to use the power of the
IIS 6.0 process model in conjunction with WCF, these changes were necessary. Why? you may
ask. Well, WCF services also work in IIS 5.1 and IIS 6.0, so what benefits could you get by
generalizing the process model and activation features in IIS? Simple—by generalizing the
activation concept to make it protocol agnostic, instead of being bound to HTTP, you expand
the activation features of the platform to basically all transports.

SvcHost.exe

W3svc.exe

W3wp.exe

ASPNET_ISAPI.dll
Process and
Configuration

Manager

HTTP Listener

Application
Domains

HTTP Protocol Stack (HTTP.SYS)

Kernel Mode

User Mode

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 167

7028Ch05.qxp 12/11/06 8:35 PM Page 167

Figure 5-13. IIS 7.0 process model architecture

With the release of Windows Vista and Windows Server 2007, Microsoft moved the process
management and configuration features of IIS and made this generally available inside the
operating system. This enables any application built on top of that model to use the power of
runtime activation and spawning worker processes based on messages coming in.

The protocol-specific listener adapters for HTTP, TCP/IP, Named Pipes, and MSMQ live
inside their own process and are bridging the specific transports over to WAS. Listener
adapters ask WAS to activate worker processes and then hand over the actual communication
to the specific protocol handler inside these worker processes. So, WAS now has all the fea-
tures that used to be part of W3svc.exe. By splitting this responsibility into separate processes,
the three other transports also benefit from the process model and activation features that
used to be built into IIS 6.0, but only for HTTP. To summarize, with IIS 7.0 you can host any
WCF service across any transport that is provided out of the box inside IIS. In the next section,
you will learn how WAS activation works and what you need to be aware of when you want to
host your WCF services inside IIS 7.0 and WAS on Windows Vista or Windows Server 2007.

To host the TradeService that you have been using throughout this book inside IIS 7.0, all
you have to do is configure IIS and place the .svc file created for IIS 6.0 in the site you will cre-
ate. The following steps will enable you to configure IIS 7.0, WAS, and the .NET Framework 3.0
on Windows Server 2007 and get your TradeService running inside IIS 7.0:

1. Start the Server Manager (found in Administrative Tools).

2. Add the Web Server (IIS) role to the server.

3. Note that the web server installation automatically adds WAS.

4. On the Detailed Settings screen for IIS, select ASP.NET, and under Security select Basic
and Windows Authentication. Keep the rest in its default settings.

SvcHost.exe

W3svc.exe

W3wp.exe

ASPNET_ISAPI.dll
Process and
Configuration

Manager Application
Domains

W3SVC.EXE

HTTP

ITCPPSS.EXE

NET.TCP

IMSMQAS.EXE

NET.MSMQ

INPAS.EXE

NET.PIPE

Protocol-Specific Listener Adapters

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES168

7028Ch05.qxp 12/11/06 8:35 PM Page 168

5. This will install IIS and WAS.

6. By default, Windows Server 2007 comes without the .NET Framework 3.0 installed. To
install .NET Framework 3.0, open the Add Features Wizard (Control Panel ➤ Programs
➤ Windows Features).

7. Click Add Features, and select .NET Framework 3.0 (if you want to experiment with the
WCF MSMQ transport). Also select MSMQ.

Now you are all set to run your WCF services on IIS 7.0. The next step is to create an appli-
cation in IIS in which to run your service. For this you need the Internet Information Services
(IIS) Manager. You can find the IIS management tool in Administrative Tools in the Start
menu. Then navigate to your server, then to your websites, and finally to the default website.
Right-click the default website, and select Create Application, as illustrated in Figure 5-14.

Figure 5-14. Creating a new application in the Internet Information Services (IIS) Manager

Now you need a folder on your local machine where you want to host your application’s
.svc files. As illustrated in Figure 5-15, you can give the application a name where the service
can be reached (http://localhost/<chosenname>) and the folder where the files reside, and
you can select the application pool.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 169

7028Ch05.qxp 12/11/06 8:35 PM Page 169

Figure 5-15. Setting the properties for a new application in the Internet Information Services (IIS)
Manager

If you did everything correctly, your service is reachable through IIS 7.0. You can test
this by navigating to your newly created application, for example: http://localhost:8080/
QuickReturns/Exchange.svc/ExchangeService.

Windows Activation Services
WAS enables you to host any WCF service, supporting any transport inside the IIS model. WAS
takes over creating worker processes and providing the configuration from the original W3svc.
exeWindows service that you know from IIS 6.0 (and runs inside the Inetinfo.exe process).
WAS and IIS now share the configuration store that defines sites, applications, application
pools, and virtual directories. In this section, we’ll walk you through the process of activation
with WAS, as shown in Figure 5-16.

By default when no requests are being made to a newly booted server, Windows runs five
services (if all the protocols are enabled). These are the following Windows services:

• WAS

• World Wide Web Publishing Service (hosting the listener adapter)

• NET.TCP listener adapter

• NET.PIPE listener adapter

• NET.MSMQ listener adapter

When the listener adapters start, they register themselves with WAS and receive the WAS/IIS
configuration for their specific protocols. In this way, the listener adapters are aware of the sites
and applications they should support. Each listener adapter then starts listening on the appro-
priate ports provided with the configuration so it can dispatch the requests coming in to the
appropriate application.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES170

7028Ch05.qxp 12/11/06 8:35 PM Page 170

Figure 5-16. Activation of worker processes with WAS for an HTTP request

As soon as the first request comes in, the listener adapter will call WAS to activate the
worker process, including a managed .NET application domain for the specific application for
which the request is destined.

The request is then handed over to the so-called application domain protocol handler inside
the worker process to handle the request and return the response to the client. It doesn’t matter
whether the request is a WCF service request, an ASP.NET request, or any other request for IIS 7.0.
The activation process is created to enable worker processes to start when requests come in.

To start the WCF ServiceHost inside the application domain, the application domain proto-
col handler must call the static method called EnsureServiceAvailable. That method is protocol
agnostic and activates the entire service including all endpoints and transports (not only the
transport for the protocol handler that calls the method).

Listener Adapter

Listen

WAS

Notify Start

Configuration

Activate Worker Process

Activate

Application Domain Protocol Handler

Activate

Start Listening

Request

Request

Subsequent Request

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 171

7028Ch05.qxp 12/11/06 8:35 PM Page 171

■Note Inside the listener adapters and protocol handlers, some true magic is happening for HTTP and TCP
in particular. Sockets are opened inside the listener adapters hosted in a separate process. Then when the
first request comes in, the socket is actually handed over from the listener adapter to the application domain
protocol handler to be able to handle the first request and any subsequent requests!

Hosting Options
In the previous section of this chapter, you learned the different options you have to host your
services. In addition, you learned which business requirements (or nonfunctional require-
ments) can be covered by which hosting scenario. In general, you can apply a “Why not IIS?”
approach. What do we mean by that? IIS provides the best match in terms of features, in par-
ticular in scenarios where your services are exposing key business functionality on which
multiple systems rely. When you choose IIS and then have to choose between IIS 6.0 and IIS
7.0, you should obviously choose the latter because of the new activation features. In scenar-
ios where you need interprocess communication, both WinForms and console applications
are viable options. Windows services are essentially the only alternative to IIS and will typi-
cally be used when you are building a server product or when you need advanced control over
the activation and lifetime of your services.

In the next section, we will go through the options you have to consume your services and
what the hosting option means for the consumer side.

Consuming WCF Services
In the previous sections, you learned about the different hosting options you have. The chosen
hosting scenario can have its influence on the consumer side. You can consume WCF services in
several ways. If you are using WCF on the client side, you will be very productive because WCF
comes with tools that can generate proxy classes to call WCF services. WCF provides the stan-
dards and tools support primarily through SvcUtil.exe. You’ll use this as the primary metadata
interpretation tool. That, in combination with the WCF Framework’s ability to leverage reflection
to interrogate types adorned with the appropriate attributes, makes the generation and use of
the WCF Framework less complicated than with existing frameworks. In addition, Visual Studio
2005 comes with easy-to-use features to add service references to your projects and seamlessly
generate proxy classes for you.

Essentially, you have the following options:

• Retrieve the WSDL from the service, and handcraft a proxy to call the service. This is a
typical scenario when you don’t have WCF on the client side. For this scenario, please
refer to Chapter 13.

• Use the Add Service Reference features of Visual Studio 2005, and let it generate a proxy
to use in your client.

• Use the SvcUtil.exe tool to generate proxy classes.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES172

7028Ch05.qxp 12/11/06 8:35 PM Page 172

In the following sections, we will go through the latter two options: Visual Studio 2005 and
SvcUtil.exe.

Service Proxies
A service proxy enables you to work with services in an object-oriented way. Proxy classes
abstract the communication model used by the service so you as a client developer are not
directly aware you are talking to a (remote) service. It is as if you are calling local code. The
proxy class implements the service interface of the service and thus enables you to call meth-
ods on the service interface as if these are local methods. Proxies are generated for any custom
type that is used in the service interface. Listing 5-11 contains pieces of a generated proxy for
the TradeService service in the QuickReturns Ltd. sample. It illustrates that on the client side a
Quote is available that maps to the Quote object on the server side, although they are distinct
classes. The Quote object serializes according to the contract so that on the service side it can
be serialized into the service-side version of the Quote data contract. In addition, you can see
the GetQuote and PlaceQuote methods calling a base class that will eventually make the call
across the service boundary via the configured transport.

Listing 5-11. Sample Generated Proxy for the TradeService Service

namespace SimpleClientWithProxy.ExchangeService
{

[DataContract()]
public partial class Quote : object, IExtensibleDataObject
{

// Left out the Quote Datamembers in printed code, see sample code
}

}

[GeneratedCode("System.ServiceModel", "3.0.0.0")]
[ServiceContract()]
public interface ITradeService
{

[
OperationContract(Action = "http://tempuri.org/ITradeService/GetQuote",

ReplyAction = "http://tempuri.org/ITradeService/GetQuoteResponse")]
Quote GetQuote(string ticker);

[
OperationContract(Action = "http://tempuri.org/ITradeService/PublishQuote",

ReplyAction = "http://tempuri.org/ITradeService/PublishQuoteResponse")]
void PublishQuote(Quote quote);

}

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 173

7028Ch05.qxp 12/11/06 8:35 PM Page 173

[GeneratedCode("System.ServiceModel", "3.0.0.0")]
public interface ITradeServiceChannel : ITradeService, IClientChannel
{
}

[GeneratedCode("System.ServiceModel", "3.0.0.0")]
public partial class TradeServiceClient : ClientBase<ITradeService>, ITradeService
{

// Left out some constructors in printed code, see sample code

public SimpleClientWithProxy.ExchangeService.Quote
GetQuote(string ticker)

{
return base.Channel.GetQuote(ticker);

}

public void PublishQuote(
SimpleClientWithProxy.ExchangeService.Quote quote)

{
base.Channel.PublishQuote(quote);

}
}

Using Visual Studio 2005
Similar to ASP.NET proxy creation, if you right-click the project from the IDE, you’ll see three
options for adding references, as shown in Figure 5-17.

Figure 5-17. Adding a reference to a WCF service

The option you’re looking for is Add Service Reference. This menu option is a wrapper
around the SvcUtil.exe utility (which is explained in the next section), actually spawning a
process with the necessary parameters. Once you’ve selected Add Service Reference, you’ll see
the dialog box shown in Figure 5-18.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES174

7028Ch05.qxp 12/11/06 8:35 PM Page 174

Figure 5-18. Add Service Reference dialog box

Once you’ve clicked OK in the dialog box, the add-in spawns SvcUtil.exe, generating the
necessary proxy class and the required configuration file (or modifying it) and adding the nec-
essary references to the project. The project’s references will now list the WCF assemblies.

■Note For this to work, you have to have the Windows ServiceHost running or change the URL to point
to any of the services hosted in IIS (a URL pointing to any of the .svc files).

At this point, you’re now ready to program your first service call in your service tier. The
example solution file has been modified in the following ways to help you review the code:

• Set Startup Projects on the solution has multiple projects selected.

• The ExchangeServiceIISHost web project has Use dynamic ports set to false and a hard-
coded setting for Port Number.

A brief explanation of the objects added to the project is necessary. During the SvcUtil.exe
(Add Service Reference) call, we added the following items and references to the project auto-
matically. Some are merely to aid the Visual Studio integration; others are required for the
direct use of the service through the proxy.

Service references: Within this folder, we added two items. First, a “map” file provides sup-
port for the generation and regeneration of the proxy through the Visual Studio add-in.
Second, ExchangeService.cs represents the concrete proxy class implementation that
leverages the namespace System.ServiceModel to provide a simple integration class.

Configuration: The second item is the App.config file. An App.config file (automatically
renamed during the Visual Studio build process to <assembly name>.config) provides the
runtime WCF configuration parameters. What you will notice if you peek inside this file is a
tremendous amount of settings, many of which are either defaulted or superfluous. A general
approach is to generate the file and then manage the file using the WCF SvcConfigEditor.exe
editor utility. This utility is located in the Windows SDK Bin directory. You can also find it in
the Visual Studio 2005 Tools menu. Figure 5-19 shows the implementation of the tool.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 175

7028Ch05.qxp 12/11/06 8:35 PM Page 175

Figure 5-19. SvcConfigEditor.exe

As you can see from the SvcConfigEditor.exe screen in Figure 5-19, you can manage a
tremendous amount of detailed properties through configuration. This is one of the greatest
strengths of WCF—the ability to control many aspects of an implementation without impact-
ing the core service implementation. The concept that a service implementation doesn’t need
to change in order to migrate from an HTTP-based protocol to another message-oriented one
is an example. To get more information about the features of the tool, refer to Chapter 3 of this
book or the MSDN help.

Command-Line Implementation
An alternative method is to leverage the SvcUtil.exe utility directly instead of the Visual Studio
add-in. Again, the Visual Studio add-in calls the SvcUtil.exe, with parameters, to generate the
proxy when executed directly from within Visual Studio. You can see the command line and
results of that command by viewing the Output window and setting the Show output in the
drop-down list to Service Reference.

To generate manually, choose the CMD window by selecting Start ➤ All Programs ➤
Microsoft Windows SDK ➤ CMD. This command prompt is useful because its path is set to the
binary directory where the SDK tools and utilities are located.

You’ll use the SvcUtil.exe command-line tool to generate two outputs that could be used
in the SimpleClientWithProxy project. However, the sample code that comes with this chapter
used the Add Service Reference method described in the previous section. The steps described
here explain how to generate the same outputs as Add Service Reference. The output files it

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES176

7028Ch05.qxp 12/11/06 8:35 PM Page 176

generates are the client proxy source code file and the application configuration file. These
files are then merged into the client project. The SvcUtil.exe can generate both. For this
example, the following command (it is all a single line despite what’s shown here) produces
both a proxy class and a configuration file:

svcutil /config:app.config /out:"ExchangeService.cs" /language:csharp /n:*,
SimpleClientWithProxy.ExchangeService "http://localhost/ExchangeService/➥

ExchangeService.svc"

■Caution For this to work, you need a running version of the Windows ServiceHost, or you have to change
the URL to point to any of the services hosted in IIS (a URL pointing to any of the .svc files discussed in this
chapter). In addition, your service requires the metadataexchange endpoint, as described in Chapter 3. The
code that comes with this chapter has the metadataexchange endpoint configured, but it is left out of the
inline code in this chapter!

The command is fairly self-explanatory. The /n switch indicates under which namespace
the generated proxy class should fall. The last parameter is the URL of the service endpoint
where schema information can be found. Note that the ?wsdl can be replaced by ?mex because
SvcUtil.exe supports both methods of discovery. Further help is available by executing
svcutil.exe /? from the command prompt.

The next step is to take the output files ExchangeService.cs and App.config and merge
them into the project. You can just add the first file, ExchangeService.cs, directly to the project
by choosing Add Existing Item from the Project menu in Visual Studio 2005.

You need to add the second file as an application configuration (App.config) file to the
project. If the project does not already have an App.config file, you can add it by again choos-
ing Add Existing Item from the Project menu. If there is already an existing App.config, you
need to merge the section system.serviceModel, ensuring you take all the appropriate child
elements.

Summary
Now you know all about your alternatives in terms of hosting, you are able to build WCF appli-
cations and host them anywhere you like. In addition, you are now able to explain the benefits
of hosting in the most recent environment available, IIS 7.0 on Windows Vista or Windows
Server 2007 in combination with WAS. In the next chapter, you will learn about managing WCF
services. Of course, IIS 7.0 comes with several manageability features, but to gain insight into
WCF specifics that IIS 7.0 doesn’t know about, the next chapter will dive into this important
topic. More advanced management features are required and delivered by WCF.

CHAPTER 5 ■ HOSTING AND CONSUMING WCF SERVICES 177

7028Ch05.qxp 12/11/06 8:35 PM Page 177

7028Ch05.qxp 12/11/06 8:35 PM Page 178

Managing WCF Services

Any new technology goes through numerous phases in its life cycle. The most exciting phase
is the envisioning or evangelizing phase where you are exposed to snazzy marketing material
and promises of higher productivity. Then the technology graduates to a phase of gradual
implementation by the industry. It is correct to conclude that most people get caught up in the
euphoria of technical features in these two phases. Senior managers (that is, CIOs and CTOs)
of organizations are keen to deliver the “latest and greatest” technology to their shareholders.
However, developers tend to focus their attention on implementing the technology. The devel-
opment cycle for most of these new applications is much shorter when you compare it to the
expected life span of the systems. All these systems need to be maintained efficiently to justify
the return on investment (ROI) over a long period of time. Unfortunately, in most cases people
tend to overlook the management and operation of new technology. Specifically, how do you
continue to support the new system? What are the operational processes that can assist in
managing each component? Often, these questions are not appropriately answered when try-
ing to promote new technology.

In fact, organizations often spend millions of dollars building the most state-of-the-art
technical solution but are reluctant to consider a substantial budget for operating and manag-
ing the new technology. We heard the best description of this dilemma described eloquently
by a Microsoft speaker once—he compared operating and managing a new technology to rais-
ing a baby. The most exciting part for the parents is conceiving and giving birth to the baby.
However, the difficult part of parenting starts after the baby is born. This is similar to the tech-
nology life cycle. A lot of emphasis is put on the conception and first implementation of a new
technology. However, you achieve most of the effort and the value-added activity (the return
to the business stakeholders) by carefully managing and monitoring the system. With the lat-
est trend of outsourcing operational activities to overseas developer centers, the issue of
managing the day-to-day operations of any technology is gaining more attention every day.
Microsoft has recognized this industry trend and invested in WCF service management to
address this issue.

You investigated the WCF architecture and learned how to create and host WCF services
in the previous chapters. In this chapter, you will learn how to manage and monitor a WCF
service. The objectives of this chapter are as follows:

• We will illustrate the WCF management tools available to developers so they can be
more productive. We will discuss the value of building custom code, implementing log-
ging and tracing, using performance counters, and using WMI objects.

• We will illustrate the value of message logging, tracing, WMI, and performance monitors to
system administrators for monitoring their IT systems and maintaining them efficiently. 179

C H A P T E R 6

■ ■ ■

7028Ch06.qxp 12/11/06 8:34 PM Page 179

• We will explain the custom performance monitors that business users can work with to
cater to different business activities.

• We will explain the custom performance counters and WMI tools available to senior
management to monitor their ROI.

We’ll first cover the business drivers for managing and monitoring WCF services.

Exploring the Business Drivers
You need to justify the business value of any IT investment before stakeholders approve the
costs to implement it. Stakeholders expect several important features from any new IT invest-
ment. The typical questions they will ask are as follows:

• How do I track the new technology’s performance? The business may need to produce
statistics for ROI figures or be aware of salability issues. It may need to know whether
the new solution will process 100,000 requests a day. Can you track and log these
100,000 requests and data mine to derive valuable business information?

• Can the system administrators monitor the activity? Most important, does it have the
capability to let the system administrators know when the system fails? Is it an expen-
sive exercise to manage these activities? How much extra effort is involved to build a
separate IT system to monitor the new application?

• How extensible is the technology? Do you need to have a complete rewrite of code to
modify simple business logic? Or is it a simple task through a configuration setting?
What happens when the upgrades become available? Will the new technology be
backward compatible?

The WCF service management tools address all these business drivers. WCF provides the
user interface to the back-office system when it comes to the traceability of business activities.
This can take place in many ways. You can utilize configuration files to create the plumbing for
services and clients. WCF also makes deploying the services and clients easy. When the appli-
cation is operational, you can use runtime tools to monitor its activity. You can use specific
WCF performance counters (and custom-built ones) to track server activities. You can also use
Windows Management Instrumentation (WMI) to monitor the application.

What happens if your service fails? Is there a way to trace the origin of the failure? You can
utilize message logging and tracing to evaluate how each message is processed using WCF
tools. These tools are also helpful when the system administrator tries to pinpoint a failure of
the system. WCF also utilizes the event log to record errors and warnings for easier diagnosis
of issues by a system administrator. The same tools can also assist developers in validating
and debugging their code. The WCF tools provide a complete record of the service’s activities,
from UI screens to back-office systems. These tools and defined processes will assist an orga-
nization’s senior management in addressing the proper governance and accountability for IT
systems in their organizations.

You will learn how to utilize these tools throughout this chapter. Specifically, you will
begin your journey by implementing a custom monitoring system built using an “interfaces”

CHAPTER 6 ■ MANAGING WCF SERVICES180

7028Ch06.qxp 12/11/06 8:34 PM Page 180

approach. We will demonstrate how you can manage WCF services by writing custom code
similar to any other .NET application. You will purposely look at the current code required to
manage an application in this manner so that you can contrast this with how the WCF tools
alleviate this overhead. We hope you will appreciate the flexibility and the power of the tools,
which can produce extensive tracing information by simply “flicking a switch.” In addition,
you will investigate configuration files, tracing and message logging activities, performance
counters, and WMI objects in this chapter. However, we will not cover the Windows event log
implementations. This is similar to any other .NET development application that communi-
cates with the event log. You’ll start your learning process with custom code now.

Building Custom Code to Monitor Activity
The most common implementation option among developers is to develop their own custom
code for monitoring. Developers can utilize interfaces in C# or VB .NET to build monitoring
classes to audit, trace, and manage their services. This was common with ASMX and other
previous technologies because of the lack of tools available “out of the box” from the Windows
platform. This method also delivers the flexibility to concentrate on the features the developer
prefers to monitor. In this section, you’ll investigate how you can utilize custom code building
to implement some monitoring functionality in the QuickReturns Ltd. example. Specifically,
you will create an ITradeMonitor interface that will act as a framework monitor to the
ExchangeService service requests.

■Note We have decided to use Chapter 4’s Example04 to build these monitoring examples, and we have
decided to self-host the service. This is different from Chapter 4’s implementation of the service being hosted
as an IIS service. The design change is simply to facilitate the ease of creating sample code. The self-host
concepts will facilitate IIS hosting without any major modifications (that is, you need to make some trivial
changes such as creating a Web.config file as opposed to an App.config file). We have used Visual Studio
2005 as the IDE for these examples.

Here are the steps for implementing the code:

1. Open the Visual Studio 2005 IDE (Start ➤ Programs ➤ Microsoft Visual Studio 2005 ➤
Microsoft Visual Studio 2005).

2. Create a blank solution in Visual Studio 2005 (File ➤ New ➤ Project).

3. You will see the New Project dialog box. Select Other Project Types, then select Visual
Studio Solutions, and finally choose Blank Solution. Name this solution WCFManagement,
and point to your preferred directory (in this case we have chosen C:\PracticalWcf\
Chapter06), as shown in Figure 6-1.

CHAPTER 6 ■ MANAGING WCF SERVICES 181

7028Ch06.qxp 12/11/06 8:34 PM Page 181

Figure 6-1. Creating a blank solution file

4. Add the ExchangeService project from Chapter 4’s Example04 folder. Now you need to
make some changes to the code. Specifically, add a new C# file to the project by right-
clicking ExchangeService and selecting Add ➤ New Item. When the Add New Item
dialog box appears, name it ITradeMonitor.cs, as shown in Figure 6-2.

CHAPTER 6 ■ MANAGING WCF SERVICES182

7028Ch06.qxp 12/11/06 8:34 PM Page 182

Figure 6-2. Adding the ITradeMonitor class to ExchangeService

Listing 6-1 illustrates the code in this class.

Listing 6-1. ITradeService.cs

Using System;
using System.Collections.Generic;
using System.ServiceModel;
using System.Text;

namespace ExchangeService
{

[ServiceContract]
public interface ITradeMonitor
{

[OperationContract]
string StartMonitoring(string ticker);
[OperationContract]
string StopMonitoring(string ticker);

}
}

CHAPTER 6 ■ MANAGING WCF SERVICES 183

7028Ch06.qxp 12/11/06 8:34 PM Page 183

The ITradeMonitor interface is simple. You are implementing two methods:
StartMonitoring and StopMonitoring. What is the objective of this interface? You are forcing
the classes that implement this interface to address monitoring activities that are “before” and
“after” implementing the business logic. Therefore, alter TradeService.cs to implement this
interface, as shown in Listing 6-2.

■Note We are illustrating how to use custom-built interfaces as monitoring utilities in order to illustrate
WCF managing and monitoring concepts. We have not implemented the best practices or any optimization
required to run this in production environments. This is an exercise to illustrate the “pain” developers will
encounter when implementing management logic. We will walk through the WCF tools available that can
deliver far more efficient and productive outcomes with only a configuration file switch.

Listing 6-2. Altering the TradeService.cs Code

using System;
using System.ServiceModel;

namespace ExchangeService
{

[ServiceContract(
Namespace = "http://PracticalWcf/Exchange/TradeService",
Name = "TradeService")

]
public interface ITradeService
{

[OperationContract]
double TradeSecurity(string ticker, int quantity);

}
public class TradeService : ITradeService, ITradeMonitor
{

//Same code as Example 4, Chapter 4

public string StartMonitoring(string ticker)
{

lock (this)
{

// Start the monitoring process here. In other words, you can
// configure this function to start a manual log file
// or send information to the event log. For this example, we are
// returning a string to indicate the monitoring has commenced.
return "Monitoring has started for " + ticker;

}
}

CHAPTER 6 ■ MANAGING WCF SERVICES184

7028Ch06.qxp 12/11/06 8:34 PM Page 184

public string StopMonitoring(string ticker)
{

lock (this)
{

// End the monitoring process here.
return "Monitoring has finished for " +ticker;

}
}

}//end of TradeService Class
}//end of Namespace

In this code, you have implemented the ITradeMonitor interface in TradeService.cs and
will display a message and the ticker name as the functionality of these methods. Traditionally,
developers utilized this mechanism to create log files, implement auditing, and enable trace
information. The WCF service is operational now, so let’s try to host it (refer to Chapter 5 for
detailed descriptions on various hosting options in WCF).

As mentioned, we will show how to utilize the self-hosting option for this example. There-
fore, create a new console project (select File ➤ Add ➤ New Project ➤ Console Application)
called TradeServiceHost, and add it to the WCFManagement solution. Rename the program.cs
file to host.cs. You will need to add a reference to the ExchangeService project and add a refer-
ence to the System.ServiceModel namespace. Listing 6-3 illustrates the code for host.cs.

Listing 6-3. Self-Hosting Code

using System;
using System.Collections.Generic;
using System.ServiceModel;
using System.Text;

namespace ExchangeService
{

public class Program
{

public static void Main(string[] args)
{

using (ServiceHost host = new ServiceHost(typeof(
TradeService),
new Uri[] { new Uri("http://localhost:8000/") }))

{
host.Open();
Console.WriteLine("The WCF Management trading

service is available.");
Console.ReadKey();

}
}

}
}

CHAPTER 6 ■ MANAGING WCF SERVICES 185

7028Ch06.qxp 12/11/06 8:34 PM Page 185

In this code, you are creating a WCF self-hosted service on port 8000 on the localhost
machine. You display a message indicating the service is functioning after you start the host
with the host.Open() method. You also need to add the endpoints for ITradeService and
ITradeMonitor. Both these endpoints will use wsHttpBinding as the preferred binding
mechanism.

Next, you need to detail this information in the App.config file. You can add App.config by
right-clicking the solution and choosing Add New Item. Listing 6-4 shows the code for
App.config.

Listing 6-4. Configuration File for host.cs

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>

<services>
<service name="ExchangeService.TradeService"

behaviorConfiguration="returnFaults">
<endpoint address="http://localhost:8000/TradeService"

binding="basicHttpBinding"
contract="ExchangeService.ITradeService" />

<endpoint address=http://localhost:8000/TradeMonitor
binding="wsHttpBinding"
contract="ExchangeService.ITradeMonitor" />

</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="returnFaults">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug httpHelpPageEnabled="true"

includeExceptionDetailInFaults="true"/>
</behavior>

</serviceBehaviors>
</behaviors>

</system.serviceModel>
</configuration>

Now you’ll concentrate on the client that consumes these services. You will reuse the
WCFSimpleClient project from Example04 from Chapter 4. You will alter the code to implement
the ITradeMonitor interface and utilize the StartMonitoring and EndMonitoring code. You
need to right-click the solution file and select the Add Project option to achieve this. You will
also need to add references to System.SystemModel and System.Runtime.Serialiation. Listing
6-5 shows the client code.

CHAPTER 6 ■ MANAGING WCF SERVICES186

7028Ch06.qxp 12/11/06 8:34 PM Page 186

Listing 6-5. Client Code for the Trade Service

ITradeService proxy = new System.ServiceModel.ChannelFactory
<ITradeService>("TradeServiceConfiguration").CreateChannel();

ITradeMonitor monitor = new System.ServiceModel.ChannelFactory
<ITradeMonitor>("TradeMonitorConfiguration").CreateChannel();

Console.WriteLine("\nTrade IBM");
Console.WriteLine(monitor.StartMonitoring("IBM"));

double result = proxy.TradeSecurity("IBM", 1000);
Console.WriteLine("Cost was " + result);

Console.WriteLine(monitor.StopMonitoring("IBM"));

Finally, you need to add the configuration code for the client, as shown in Listing 6-6.

Listing 6-6. Client Configuration Settings for the Trade Service

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<system.serviceModel>
<client>
<endpoint name="TradeServiceConfiguration"

address="http://localhost:8000/TradeService"
binding="wsHttpBinding"

contract="ExchangeService.ITradeService"/>
<endpoint name="TradeMonitorConfiguration"

address="http://localhost:8000/TradeMonitor"
binding="wsHttpBinding"

contract="ExchangeService.ITradeMonitor"/>
</client>

</system.serviceModel>
</configuration>

Now you are ready to test your new monitoring code, so right-click the solution file, and
select Build All. Start the service, browse to the Bin\debug directory of the TradeServiceHost
project, and double-click TradeServiceHost.exe. You should see the screen shown in Figure 6-3.

Figure 6-3. TradeServiceHost running

Let’s execute the client now. Browse to the Bin\debug directory of the WCFSimpleClient
project, and execute WCFSimpleClient.exe. You should see the screen shown in Figure 6-4.

CHAPTER 6 ■ MANAGING WCF SERVICES 187

7028Ch06.qxp 12/11/06 8:34 PM Page 187

Figure 6-4. TradeServiceClient running

As you can probably gather, creating custom code to manage a web service is a tedious
task. You should also not discount the developer effort that goes into creating these modules.
You can use the same time and effort to solve more business problems (as opposed to building
a custom framework that manages services). You probably are saying now, “There must be a
better way to do these monitoring activities. There must be better tools to utilize my time and
effort. What does WCF offer?”

We believe that one of the most appealing features about WCF is its management function-
ality. It is safe to say that with Microsoft service offerings, WinFx and WCF will have the greatest
breath and depth when they address the management of services. The management is one of
the key features that really sells WCF. Therefore, what do you have in WCF to assist you?

• Using configuration files

• Using tracing functionality

• Using message logging

• Using performance monitors—both built-in WCF counters and custom-made counters

• Implementing WMI

Using Configuration Files
You have already been exposed to the concept of using a configuration file in an application.
Configuration files usually assist you in the form of App.config or Web.config files for WCF
services. These are great tools to alter the behavior of programs without changing code. These
runtime tools are extensively used in WCF. You can manage settings for WCF bindings, behav-
iors, services, and diagnostics without manually modifying the configuration files in a text
editor. The executable used for this activity is SvcConfigEditor.exe. You can find it in the
<Drive Name>:\Program Files\Microsoft SDKs\Windows\v6.0\Bin directory. The main features
of this tool are as follows:

CHAPTER 6 ■ MANAGING WCF SERVICES188

7028Ch06.qxp 12/11/06 8:34 PM Page 188

• You can create new configuration files for services and clients using a wizard approach.
This process will guide you to choose binding, behavior, contract, and diagnostic settings.

• You can validate an existing configuration file against the standard System.Configuration
schema.

• You can modify and manage configuration settings for services, executables, COM+
services, and web-hosted services.

You’ll now investigate how you can use SvcConfigEditor.exe to improve the QuickReturns
Ltd. example.

Configuration Editor: SvcConfigEditor.exe
Open the App.config file of the WCFSimpleClient project (refer to Listing 6-6). You are attempt-
ing to utilize SvcConfigEditor.exe to modify the content and add a new binding to the client.
Here are the steps:

1. Navigate to <Drive Name>:\Program Files\Microsoft SDKs\Windows\v6.0\Bin, and
open SvcConfigEditor.exe. You can also refer to the help file in the same directory.

2. Select File ➤ Open ➤ Config File, navigate to the directory of the App.config file for the
WCFSimpleClient application, and open the file. Your screen should be similar to
Figure 6-5.

Figure 6-5. Service Configuration Editor screen for the WCFSimpleClient App.config file

CHAPTER 6 ■ MANAGING WCF SERVICES 189

7028Ch06.qxp 12/11/06 8:34 PM Page 189

You can view and modify every element of the configuration file using this graphical user
interface. You can simply select the element you want to modify and type in the new value. For
this example, let’s change the wsHTTPBinding setting of the client to basicHttpBinding. Therefore,
select the Binding element, and change the value to basicHttpBinding for the TradeService end-
point. Save the settings using File ➤ Save. You also need to change the binding settings for the
TradeServiceHost App.config file for the same endpoint information and change wsHttpBinding
to basicHttpBinding. Otherwise, an error will occur because of a binding mismatch. Now open
the new configuration file, and view the changes in Visual Studio 2005. You can clearly view the
changes in Listing 6-7 performed by SvcConfigEditor.exe and compare it to Listing 6-6.

Listing 6-7. WCTSimpleClient App.config File After the Service Configuration Editor Change

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<system.serviceModel>
<client>
<endpoint address=http://localhost:8000/TradeService

binding="wsHttpBinding"
bindingConfiguration=""
contract="ExchangeService.ITradeService"
name="TradeServiceConfiguration" />

<endpoint address=http://localhost:8000/TradeMonitor
binding="wsHttpBinding"
contract="ExchangeService.ITradeMonitor"
name="TradeMonitorConfiguration" />

</client>
</system.serviceModel>

</configuration>

The configuration file changes are quite trivial with WCF services (refer to Chapter 3 for
more details). You will also utilize SvcConfigEditor.exe in the rest of the chapter to apply
numerous configuration file changes to implement message logging, tracing, performance
counters, and WMI providers. Now you’ll concentrate on adding tracing and message logging
capabilities to a WCF service.

Using Tracing and Message Logging Capabilities
Implementing tracing and implementing message logging capabilities are similar tasks in WCF.
Therefore, we will cover them together. We’ll first clarify what circumstances dictate message
logging and then cover where you use tracing.

Message Logging
You can use message logging to monitor the activity of incoming and outgoing messages from
a service. This will enable you to view and evaluate the message content that is received by the

CHAPTER 6 ■ MANAGING WCF SERVICES190

7028Ch06.qxp 12/11/06 8:34 PM Page 190

services. This is valuable in tracking malformed messages for system administrators and
developers. The business users will also be interested in the content that describes the user’s
input requests that are derived through the message log. Several options are available for mes-
sage logging in WCF.

Message logging can occur at two levels: the service level and the transport level. At the
service level, messages get logged immediately, and at the transport level messages are logged
when the WCF runtime calls the transport mechanism to transfer the messages. WCF
messaging offers three switches to manage this activity. They are logMessagesAtServiceLevel,
logMalformedMessages, and logMessagesAtTransportLevel, which are set in the messageLogging
element. You can also utilize filters to set the boundaries for capturing messages.

At the service level, all messages are logged even if filters are defined. If they are defined,
only the messages that agree with the filters are logged. This happens before the WCF runtime
is called. The transport layer messages are ready to be encoded after reaching the WCF runtime.
If the filters are defined, it will log only those messages that correspond to the filter. Otherwise,
it will record all messages. You’ll now learn how to activate message logging and define filters.

■Caution You need to be careful with assigning read access to message logging and tracing. Traditionally,
only system administrators should have the privileges to activate or deactivate these processes. This could
be a security breach in your solution architecture.

Enabling Message Logging
The following are the steps for using SvcConfigEditor.exe to enable message logging.

■Note We are using the TradeServiceHost project’s App.config file to demonstrate message logging
and tracing. It is important to note that production services should not be targeted to rigorous tracing and
message logging. This will affect the productivity of the service, which primarily should facilitate the business
processes, not tracing and message logging.

1. Open SvcConfigEditor.exe.

2. Open the TradeServiceHost project’s App.config file (File ➤ Open).

3. Navigate to the Diagnostics window, and click the Enable Message Logging link. This
action will add a ServiceModelMessageLoggingListener class to the project to enable
message logging. You can also configure the extent of the logging (where the log is
stored on disk). Your screen should look like Figure 6-6.

CHAPTER 6 ■ MANAGING WCF SERVICES 191

7028Ch06.qxp 12/11/06 8:34 PM Page 191

Figure 6-6. Enabling message logging

4. Save the file in the Service Configuration Editor. Build the solution, and run the server
and the client. You should view the message log file in the specified location. It is inter-
esting to revisit the App.config file to view the changes by enabling message logging, as
shown in Listing 6-8.

Listing 6-8. Additional Code in the TradeServiceHost App.config File

...
<system.diagnostics>
<sources>
<source name="System.ServiceModel.MessageLogging"

switchValue="Warning, ActivityTracing">
<listeners>
<add type="System.Diagnostics.DefaultTraceListener"

name="Default">
<filter type="" />

</add>
<add name="ServiceModelMessageLoggingListener">
<filter type="" />

</add>
</listeners>

</source>
</sources>

CHAPTER 6 ■ MANAGING WCF SERVICES192

7028Ch06.qxp 12/11/06 8:34 PM Page 192

<sharedListeners>
<add initializeData="

C:\PracticalWcf\Chapter06\WCFManagement\\WcfSimpleClient\
App_messages.svclog"

type="System.Diagnostics.XmlWriterTraceListener, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

name="ServiceModelMessageLoggingListener"
traceOutputOptions="Timestamp">

<filter type="" />
</add>

</sharedListeners>
</system.diagnostics>
<system.serviceModel>
<diagnostics>
<messageLogging logMalformedMessages="true"

logMessagesAtServiceLevel="false"
logMessagesAtTransportLevel="true" />

</diagnostics>
...

How do you add a filter to the message logger? You can just include XML tags that direct
the WCF runtime to log the images that correspond to this namespace and ignore the others.
Listing 6-9 details the modification to the App.config file. You need to add the <filters>
section to the <messageLogging> section of the App.config file. How do you view these message
log files? We will show how to use the SvcTraceViewer.exe utility for this (discussed in the next
section).

Listing 6-9. Adding a Filter to the Message Log

<messageLogging logEntireMessage="true"
logMalformedMessages="true" logMessagesAtServiceLevel="true"
logMessagesAtTransportLevel="true" maxMessagesToLog="420">
<filters>

<add xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
/soap:Envelope/soap:Headers

</add>
</filters>

</messageLogging>

Enabling Tracing
We’ll now cover how to enable tracing. How does tracing differentiate from message logging?
Tracing mechanisms act as the instrumentation for service messages and fault monitoring. It
is similar to a Visual Studio debugger that helps you step through and step into code. There-
fore, tracing is primarily a great tool to track the message flow of the application.

How do you enable tracing in WCF? Please follow steps 1 to 4 in the previous section. You
need to click the Enable Tracing hyperlink to enable tracing, as in Figure 6-6. This will add a

CHAPTER 6 ■ MANAGING WCF SERVICES 193

7028Ch06.qxp 12/11/06 8:34 PM Page 193

ServiceModelTraceListener instance to the runtime. You configure the name and location for
your trace file if you have specific requirements.

Then build the solution, and run the server and client. All the communication for initial-
izing the host, the communication between the host and the client, and the destruction of the
host instance will be recorded in this trace file. How will you be able to view this content? You
can use SvcTraceViewer.exe.

Using SvcTraceViewer.exe
The SvcTraceViewer.exe utility will enable you to view both message log files and trace files.
You can find it at <Drive Name>:\Program Files\Microsoft SDKs\Windows\v6.0\Bin. Open the
trace file from the TradeServiceHost communications with the WCFSimpleClient console
application. (Navigate to the correct directory, and select File ➤ Open to open the file.) You
should see a screen similar to Figure 6-7.

Figure 6-7. SvcTraceViewer.exe reading the trace file

This is a comprehensive implementation of the step-by-step process of the WCF service.
It starts with the object creation at the top and records each interaction with the WCF runtime
and the clients. It clearly details object activities, message sends, and all errors in the host’s life
cycle. You can view each of the XML messages in the bottom pane. It also records the duration
of each activity. You can also get a graphical timeline representation by clicking the Graph tab.
This is a comprehensive tool that adds a lot of value for developers and system administrators

CHAPTER 6 ■ MANAGING WCF SERVICES194

7028Ch06.qxp 12/11/06 8:34 PM Page 194

who are investigating tracing and message log files. Please refer to the SvcTraceViewer help file
(in the same directory) for further information.

Utilizing WCF Performance Counters
WCF implements “out-of-the-box” performance counters to assist developers and system
administrators in monitoring WCF services. You can use these performance counters for
business uses to justify the costs, risks, and return on the investment of software systems.
WCF performance counters address four major areas: AppDomain, ServiceHost, Endpoint, and
Operation. All operation counters monitor activities on “calls per second” and “call duration”
items. The following are some other important WCF counters; most of them are self-
explanatory:

• Calls: Total Number of Calls

• CallsOutstanding

• CallsSucceeded

• CallsErrored

• CallsDuration

These are some security-related counters:

• SecurityCallsNotAuthenticated

• SecurityCallsNotAuthorized

• SecurityCallsTampered

• SecurityImpersonationsFailed

These are some important transaction and messaging performance counters:

• TxCommitted

• TxAborted

• TxInDoubt

• RMSessionsStarted

• RMSessionsCompleted

• RMSessionsFaulted

• RMMessagesDiscarded

• RMQPoisonedMessages

• RMBufferSize

CHAPTER 6 ■ MANAGING WCF SERVICES 195

7028Ch06.qxp 12/11/06 8:34 PM Page 195

■Note Performance counters consume a lot of memory. Therefore, make sure you allocate substantial
memory when you run performance counters. It is good practice to add the <performanceCounters
fileMappingSize="1000000" /> line to the App.config file to increase the memory size. This will
replace the default size of 524,288 bytes.

Enabling Built-in WCF Performance Counters
Enabling WCF performance counters is a pretty straightforward process. The easiest way is to
open the configuration file in SvcConfigEditor.exe. In the Diagnostics window in the Service
Configuration Editor, you need to click only the Toggle Performance Counters link and save
the file to enable WCF built-in counters in your code. This will enter the following line in the
App.config file:

<diagnostics performanceCounters="All">

You’ll now see some performance counters in action. Specifically, you will monitor the
TradeServiceHost service activity using these counters. Here are the steps:

1. Open App.config of TradeServiceHost using the Service Configuration Editor, and
change the diagnostic element to include performance counters. You can do this by
checking the Enable Performance Counter box.

2. Build the WCFManagement solution. Run TradeServiceHost and the WCFSimpleClient
module as the client. This will create the instances for the performance counters to
track against.

3. Open Performance Monitor by selecting Start ➤ Control Panel ➤ Administrative Tools
➤ Performance or by entering perfmon.exe at the Start ➤ Run command. You should
see Figure 6-8.

4. Click the + button to add a performance counter.

You will see the screen shown in Figure 6-9. You can clearly view the WCF-related coun-
ters under the Processor section. They are prefixed by ServiceModel text.

CHAPTER 6 ■ MANAGING WCF SERVICES196

7028Ch06.qxp 12/11/06 8:34 PM Page 196

Figure 6-8. Adding a performance counter

Figure 6-9. Selecting WCF performance counters

CHAPTER 6 ■ MANAGING WCF SERVICES 197

7028Ch06.qxp 12/11/06 8:34 PM Page 197

Please select the ServiceModelService 3.0.0.0 family of counters. This will select all the
counters that are built in to the WCF ServiceModel namespace. You will see the screen shown
in Figure 6-10 when you try to add one of these counters. You can pick any counter (such as
Calls Total, Calls Faulted, and so on) from the list. This will instruct you to choose the WCF
instances on the right side of the Add Counters dialog box. You are currently monitoring the
TradeServiceHost service. Therefore, you can pick the TradeService HTTP (since you are using
the HTTP binding variation) instance to monitor and click Add to include it in the graph.

Figure 6-10. Picking performance counters for the TradeServiceHost instance

Figure 6-11 clearly illustrates the Calls: Total Number of Calls counters for both the
TradeService and TradeMonitor services in the WCFManagement solution. These are built-in
performance counters provided by Microsoft. However, you can build custom counters to
address specific business needs.

CHAPTER 6 ■ MANAGING WCF SERVICES198

7028Ch06.qxp 12/11/06 8:34 PM Page 198

Figure 6-11. Performance counters for TradeService and TradeMonitor

Creating Custom Performance Counters
You can also create custom counters for WCF. This gives the flexibility to the system adminis-
trators to address specific technical needs of the system. This also assists the business users in
monitoring “business information” by leveraging the Performance Monitor utility. The latter is
appealing to the senior management of an organization because it gives them a set of tools to
measure the success or failure of their IT systems.

QuickReturns Ltd. is a stock-brokering house that will have many stockbrokers dealing in
multiple securities. How will management track the total value of the stockbrokers’ daily
trades? You can assume this stock-brokering firm has a particular interest in Microsoft stock.
They may think this is “good buy” and want to keep a keen eye on the fluctuation of the stock
price. How do you accommodate this scenario? Will you be able to utilize performance coun-
ters to address these business needs?

You will be addressing both these concerns utilizing performance counters. It is not a
tedious task to implement custom performance counters in WCF. You will create a new con-
sole application called TradingServicePerfMonHost and use this project to create the
performance counters. However, you will not create any new clients for this service. You will
utilize the self-hosting method and invoke the service calls from the main() function. This is
the same as having multiple clients trying to send requests to the host. The following are the
steps. This design principle minimizes unnecessary code.

CHAPTER 6 ■ MANAGING WCF SERVICES 199

7028Ch06.qxp 12/11/06 8:34 PM Page 199

1. First you need to add a class to the ExchangeService project. You could have modified
the TradeService.cs class. However, it is cleaner to add a new class and implement the
code, and we want to leave TradeService.cs for you to experiment with. Please feel
free to modify the code available on the Apress website (http://www.apress.com).

2. Right-click the ExchangeService project, and select Add ➤ New Item. Call this class
TradePerfMon.cs. You need to add references to System.ServiceModel, System.
Diagnostics, and System.Runtime.InteropServices. Listing 6-10 shows the code
for the new class.

Listing 6-10. TradePerfMon.cs

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Management;
using System.Management.Instrumentation;
using System.Runtime.InteropServices;
using System.ServiceModel;
using System.ServiceModel.Description;
using System.Text;
using System.Threading;

namespace ExchangeService
{

[ServiceContract(
Namespace = "http://PracticalWcf/Exchange/TradeService",
Name = "TradeService")

]

public interface ITradePerfMonService
{

[OperationContract]
double TradeSecurity(string ticker, int quantity);

}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public class TradePerfMon : ITradePerfMonService
{

private double totalValue = 0;
private double microsoftVolume = 0;
private const string CounterCategoryName =

"Trade Service PerfMon";
private const string TotalCounterName = "Trade Total Value";
private const string MicrosoftCounterName =

"Microsoft Trade Volume";

CHAPTER 6 ■ MANAGING WCF SERVICES200

7028Ch06.qxp 12/11/06 8:34 PM Page 200

private PerformanceCounterCategory counterCategory = null;
private PerformanceCounter totalCounter = null;
private PerformanceCounter microsoftCounter = null;
const double IBM_Price = 80.50D;
const double MSFT_Price = 30.25D;

public TradePerfMon()
{
if (PerformanceCounterCategory.Exists(CounterCategoryName))
{

PerformanceCounterCategory.Delete(CounterCategoryName);
}

CounterCreationData totalCounter = new CounterCreationData
(TotalCounterName, "Total Dollar value of Trade Service
transactions.",PerformanceCounterType.NumberOfItemsHEX32);

CounterCreationData microsoftCounter = new
CounterCreationData(MicrosoftCounterName, "Total Microsoft
securities being traded", PerformanceCounterType.NumberOfItemsHEX32);

CounterCreationDataCollection counterCollection = new
CounterCreationDataCollection(new CounterCreationData[]
{ totalCounter, microsoftCounter });

this.counterCategory = PerformanceCounterCategory.Create(
CounterCategoryName,"Trade Service PerfMon Counters",
PerformanceCounterCategoryType.MultiInstance,counterCollection);

totalValue = 0;
microsoftVolume = 0;

}
}

}

In this code, first you initialize the variables to implement the Total Value counter and the
Microsoft Volume counter. Then you create the foundations for the performance counters in
the TradePerfMon constructor. You will first check whether the performance counter category
(that is, Trade Service PerfMon) is available. If so, delete it because you will create it again.
Then you create the Total Value counter and the Microsoft Volume counter and add them to
the performance counter collection.

The next step is to initialize the counters. The following code illustrates this concept:

public void InitializeCounters(
System.ServiceModel.Description.ServiceEndpointCollection endpoints)

{
List<string> names = new List<string>();
foreach (ServiceEndpoint endpoint in endpoints)
{

names.Add(string.Format("{0}@{1}",
this.GetType().Name, endpoint.Address.ToString()));

}

CHAPTER 6 ■ MANAGING WCF SERVICES 201

7028Ch06.qxp 12/11/06 8:34 PM Page 201

while (true)
{

try
{

foreach (string name in names)
{

string condition = string.Format("SELECT * FROM
Service WHERE Name=\"{0}\"", name);

SelectQuery query = new SelectQuery(condition);
ManagementScope managementScope = new

ManagementScope(@"\\.\root\ServiceModel",
new ConnectionOptions());

ManagementObjectSearcher searcher = new
ManagementObjectSearcher(managementScope, query);

ManagementObjectCollection instances = searcher.Get();
foreach (ManagementBaseObject instance in instances)
{

PropertyData data = instance.Properties["
CounterInstanceName"];

this.totalCounter = new PerformanceCounter(
CounterCategoryName, TotalCounterName,
data.Value.ToString());

this.totalCounter.ReadOnly = false;
this.totalCounter.RawValue = 0;
this.microsoftCounter = new PerformanceCounter(

CounterCategoryName, MicrosoftCounterName,
data.Value.ToString());

this.microsoftCounter.ReadOnly = false;
this.microsoftCounter.RawValue = 0;

break;
}

}
break;

}
catch(COMException)
{

}

}
Console.WriteLine("Counters initialized.");

}

In this code, you use a Windows Management Instrumentation Query Language (WQL)
query to select the counters that are available to the runtime. Therefore, the query at runtime

CHAPTER 6 ■ MANAGING WCF SERVICES202

7028Ch06.qxp 12/11/06 8:34 PM Page 202

for totalCounters will be SELECT * FROM Service WHERE Name= "tradeperfmon@http://
localhost:8000/tradeperfmonservice. This query is executed in the scope of the root\
ServiceModel namespace to retrieve data about the TradePerMon service from WMI. From the
data that is retrieved, the code extracts the value of the CounterInstanceName property. That
property value provides the name by which the current instance of the service is identified
within the Windows performance counter infrastructure. Then you initialize the totalValue
and microsoftCounter counters.

The next step is to code the TradeSecurity function:

public double TradeSecurity(string ticker, int quantity)
{

double result = 0;
if (quantity < 1)

throw new ArgumentException(
"Invalid quantity", "quantity");

switch (ticker.ToLower())
{

case "ibm":
result = quantity * IBM_Price;
totalValue = +result;
if (this.totalCounter != null)

this.totalCounter.RawValue = (int)totalValue;
return result;

case "msft":
result = quantity * IBM_Price;
totalValue = +result;
microsoftVolume = +quantity;
if (this.totalCounter != null)

this.totalCounter.RawValue = (int)totalValue;
if (this.microsoftCounter !=null)

this.microsoftCounter.RawValue = (int)microsoftVolume;
return result;

default:
throw new ArgumentException(

"Don't know - only MSFT & IBM", "ticker");

}
}

}
}

This is similar to the previous TradeSecurity function. The only difference is you add the
logic to increment the totalValue field and the microsoftVolume field. Then it is used as the
source for the counters.

The next step is to create a self-hosting application to invoke the TradeSecurity function
so you can record values against the custom counters.

CHAPTER 6 ■ MANAGING WCF SERVICES 203

7028Ch06.qxp 12/11/06 8:34 PM Page 203

Create a new console project called TradingServicePerfMonHost (right-click the
WCFManagement solution, and select Add ➤ New Project). You also need to add a reference to
the System.ServiceModel namespace. Put the code in Listing 6-11 in the Program.cs file.

Listing 6-11. Code for Program.cs File in TradingServicePerfMonHost

using System;
using System.Collections.Generic;
using System.Messaging;
using System.ServiceModel;
using System.Text;

namespace ExchangeService
{

public class Program
{

public static void Main(string[] args)
{

TradePerfMon trade = new TradePerfMon();
using (ServiceHost host = new ServiceHost(typeof(

TradePerfMon), new Uri[] { new Uri("
http://localhost:8000/TradePerfMonService") }))

{
host.Open();
trade.InitializeCounters(host.Description.Endpoints);
Console.WriteLine("The WCF Management trading

service is available.");
for (int index = 1; index < 225; index++)
{

Console.WriteLine("IBM - traded " + (index+100) +
" shares for " + trade.TradeSecurity("IBM",
(index+100)) + " dollars");

// you are deliberately increasing the total volume
of trades to view the difference in the
Perfomance Monitor)
Console.WriteLine("MSFT - tradedtrade " + index +
" shares for " + trade.TradeSecurity("MSFT",
index) + " dollars");

System.Threading.Thread.Sleep(1000);
}

Console.ReadKey();
}

}
}

}

CHAPTER 6 ■ MANAGING WCF SERVICES204

7028Ch06.qxp 12/11/06 8:34 PM Page 204

In this code, first you instantiate an object type of TradePerfMon. Then you create a host
type of TradePerfMon and open the host. The configuration settings are read from the App.
config file. Then you invoke the IntializeCounters function to initiate the counters. Then you
utilize a loop to create a series of trades. This is deliberately done to view the custom perform-
ance counters in action. Please note that we have tweaked some variables (that is, the index
variable in Listing 6-11) to differentiate the counters when they become available (for cos-
metic changes—to view them as separate entities from each other).

The next step is to create the App.config file for the host application, as shown in
Listing 6-12. Please ignore the wmiProviderEnabled="true" flag. We will discuss this in the
next section. This is similar to the previous host application.

Listing 6-12. App.config File for the Host Application

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<diagnostics wmiProviderEnabled="true"

performanceCounters="All">
<messageLogging logEntireMessage="true"

logMalformedMessages="true"
logMessagesAtServiceLevel="true"

logMessagesAtTransportLevel="true" />
</diagnostics>
<services>
<service name="ExchangeService.TradePerfMon">
<endpoint address=http://localhost:8000/TradePerfMonService

binding="basicHttpBinding"
contract="ExchangeService.ITradePerfMonService" />

</service>
</services>

</system.serviceModel>
</configuration>

Now you’ll build the WCFManagement solution and make the TradeServicePerfMonHost the
start-up application:

1. Right-click the WCFManagement solution, and select Set As Startup Project. Compile the
solution, and run the code. You should see a screen similar to Figure 6-12 to indicate
that trading takes place in a loop structure.

2. Now you are ready to capture these custom counters in the Performance Monitor. How
do you do it? Open Performance Monitor (select Start ➤ Run, and enter perfmon.exe),
and click the Add button.

CHAPTER 6 ■ MANAGING WCF SERVICES 205

7028Ch06.qxp 12/11/06 8:34 PM Page 205

Figure 6-12. TradeServicePerfMonHost application running

3. You should view the new custom counter collection Trade Service PerfMon. You should
view the two counters, Trade Total Value and Microsoft Trade Volume, under the collec-
tion. You should also see the existing instances of the host application. Your screen
should be similar to Figure 6-13.

Figure 6-13. Custom TradeService counters

CHAPTER 6 ■ MANAGING WCF SERVICES206

7028Ch06.qxp 12/11/06 8:34 PM Page 206

Select both of these counters, and investigate how the total value of the trades and
Microsoft volumes of trading are doing. This information will be valuable for business users to
make decisions about Microsoft volumes and the state of the business by analyzing the daily
total turnover. Since you are using a loop to trade stocks, the values of both the total value and
the Microsoft volumes are increasing steadily. Please note we are using two different scales for
the total value and the Microsoft volume, since the total value will be far greater than the
Microsoft volume amount, as shown in Figure 6-14.

Figure 6-14. Custom performance counters in action

This is how you utilize Performance Monitor to manage your WCF service. Now you’ll
learn how you can use WMI to facilitate WCF management.

Using Windows Management Instrumentation
WMI is an “add-in” component to the Windows operating system that enables monitoring on
a variety of object models. WMI was created as a web-based enterprise management (WBEM)
tool that you can use to monitor and maintain complex enterprise applications over web
browsers. You can invoke WMI from many technologies, such as C++, Visual Basic, C# (and any
managed code implementation—J# or VB .NET), ODBC, and so on. It integrates seamlessly
with the WCF programming model to monitor and manage WCF services also.

You can enable WMI with the flip of a switch in WCF. WCF services provide information to
WMI at runtime. Therefore, you can use existing WMI tools to monitor and manipulate these
services. You can use the WMI programming interfaces to construct custom network and busi-
ness operation consoles for your WCF applications. It is easy to enable WMI monitoring in
WCF services. All you have to do is to include the following line in the configuration file:

<diagnostics wmiProviderEnabled="true" >

CHAPTER 6 ■ MANAGING WCF SERVICES 207

7028Ch06.qxp 12/11/06 8:34 PM Page 207

This enables all the WMI objects for WCF. However, how can you view this information?
You need to install WMI CIM Studio to view the WMI interactions. This is a free download
available from Microsoft. It is an ActiveX component that plugs into Internet Explorer. Here
are the steps to utilize WMI for WCF services:

1. Run TradeServicePerfMonHost.exe (since you need a live instance to monitor).

2. Open WMI CIM Studio (Start ➤ Programs ➤ WMI Tools ➤ WMI CIM Studio).

3. You will be asked to enter the starting point for the namespace in which you are inter-
ested. Enter root\ServiceModel. Your screen should be similar to Figure 6-15.

Figure 6-15. Opening WMI CMI Studio with the correct namespace

4. You will be asked to select your user details. Then you will be presented with a compre-
hensive view of every WMI interface that deals with WCF. You can monitor bindings,
services, behaviors, contracts, and so on, from this interface. Therefore, can you moni-
tor the TradeService instance with this interface? Yes, you can. You can get a list of all
running services by clicking the instance icon, as shown in Figure 6-16.

CHAPTER 6 ■ MANAGING WCF SERVICES208

7028Ch06.qxp 12/11/06 8:34 PM Page 208

Figure 6-16. Services in WMI CIM Studio

When you click the instance icon, you will see a list of running WCF services. Please
choose the TradeService instance. Your screen should be similar to Figure 6-17.

Figure 6-17. Current running TradeService instances

CHAPTER 6 ■ MANAGING WCF SERVICES 209

7028Ch06.qxp 12/11/06 8:34 PM Page 209

Therefore, you can navigate to each WMI element and query the WCF service in great
detail. This is a great monitoring tool for system administrators and developers.

Summary
You have learned a lot about WCF management and monitoring in this chapter. We discussed
that you can utilize the following methods to manage WCF services:

• Developers can use custom-built interface to monitor the service activity.

• Developers and system administrators can utilize message logging and tracing in WCF
to track and debug the WCF service. They can use SvcTraceViewer.exe to view the mes-
sage logs and trace data.

• Developers and system administrators can extensively use the SvcConfigEditor.exe
tool to modify the configuration files.

• Business users, system administrators, and developers can use the “out-of-the-box”
performance counters to monitor service activity. They can also build custom Perfor-
mance Monitor counters to facilitate business needs.

• Developers and system administrators can use WMI CIM Studio to monitor WMI activ-
ity on WCF services.

Now you are familiar with how to manage and monitor web services. WCF security is one
of the most intriguing and important topics in WCF. The next chapter will shed some light on
this topic.

CHAPTER 6 ■ MANAGING WCF SERVICES210

7028Ch06.qxp 12/11/06 8:34 PM Page 210

Advanced Topics in WCF

You have investigated the WCF basics of creating services, evaluated the “out-of-the-box”

hosting options, and learned how to consume them using clients. You have also learned

about the management tools available in WCF to efficiently manage these WCF services.

These features will assist you in creating simple WCF applications. However, the real-

world SOA applications will have many other demanding features to implement.

These complex real-world web service implementations will address security issues (both

client and service), reliable messaging, transactions, COM+ integration, data integration

issues, and peer-to-peer communications. An enterprise can achieve the eventual “value

proposition” by utilizing these advanced features of WCF. In this part, you will concentrate

on these topics. In addition, you’ll investigate the WCF interoperability options available to

seamlessly communicate with non-Microsoft platforms in Chapter 13.

P A R T 3

■ ■ ■

7028Ch07.qxp 12/11/06 8:38 PM Page 211

7028Ch07.qxp 12/11/06 8:38 PM Page 212

Implementing WCF Security

Security is one of the fundamental features of any software platform. In fact, security require-
ments have grown exponentially in the past decade because of the increasing popularity of
public networks. Securing a distributed enterprise (one that is physically scattered around the
world) using a public network such as the Internet is a challenging task. Malicious hackers, iden-
tity fraudsters, and disgruntled employees cost organizations millions of dollars every year. So,
how do you address these issues as a senior stakeholder of a company? What does WCF offer in
the security space to combat these issues?

You can secure your enterprise in many ways. Initially, you need to secure an organization
at the physical level. You need to ensure your server farms are behind locked doors and are
carefully monitored for access. You should restrict the access to all resources as much as possi-
ble. One emerging option is to outsource server farms to reputable third parties, which set up
stringent measures to limit physical access to server farms. These outsourced hardware facili-
ties have strict access controls to prevent any unauthorized access to the servers. They are in
most cases built underground and without any windows or external access points. When you
are comfortable with the level of security with your hardware devices by using services such as
these, you can turn your attention to software practices.

You can address security requirements for applications in many aspects of software devel-
opment. Some of these aspects are the platform, the data, the hosts, and the communications
between clients and services. In this chapter, we will discuss only platform-level security. Our
main focus will be to show the mechanisms available to protect your messages between serv-
ices and clients.

WCF is a distributed application platform based on SOAP. Basically, WCF addresses the
communication between multiple nodes and multiple applications, and you utilize SOAP to
achieve the communication in WCF. Bindings in WCF (that is, HTTP, TCP, MSMQ, and so on)
provide you with different options to optimize SOAP messages depending on your business
requirements. In this chapter, we will address messages traveling from one node to another
through intermediaries (with firewalls) and messages traveling on public networks (the Inter-
net). These scenarios introduce many security threats. We will discuss these threats in the next
section. In a nutshell, this chapter discusses the following items to illustrate the WCF security
concepts:

213

C H A P T E R 7

■ ■ ■

7028Ch07.qxp 12/11/06 8:38 PM Page 213

• Why do you need to be concerned about security in SOAP messages?

• What are the WCF security features that address these issues?

• Credentials and claims

• Transport-level security

• Message-level security

• Mixed mode (transport level and message level)

• The federated security model in WCF

• Authorization

• Auditing

• Windows CardSpace (formally known as Infocard)

You’ll start your journey by learning why you need to address WCF security. What are the
business drivers behind addressing security on the latest Microsoft platform offerings? What
value does WCF add to solve the security concerns of a CTO or CIO? The next section will
answer these questions.

Introducing the Business Drivers
WCF is based on the communication mechanism between clients and services using mes-
sages. These messages are vulnerable on numerous fronts. An authorized party must create
the client message to conform to a standard that the service can comprehend. In most cases,
the messages need to be encrypted and signed to verify the authenticity of the sending party.
The communication line between the client and the service needs to be secure. The receiver
should also be able to decrypt the messages and verify the integrity of the sender. Therefore,
security plays a major part in any enterprise architecture solution.

Here are some other examples of business drivers:

• You need to audit and track the communication between clients and services to pre-
vent malicious acts. In the QuickReturns Ltd. example, an intruder can intercept the
messages between the clients and the service. If they can use the valid client details to
initiate trades on the market and withdraw funds from the client’s account, this can
have disastrous implications for QuickReturns Ltd. Therefore, how do you stop these
malicious attacks? What is available in WCF to prevent these attacks?

• How can you guarantee the messages arrived from the client (that is, how do you imple-
ment nonrepudiation)? How do you know whether messages were intended for the correct
service? Can the client sign the messages with the private key, and can the service verify
the authenticity by utilizing a public key?

• Do you know whether a purchase order was submitted only once? What happens if a
rogue intruder replays the same order to generate bogus orders for the service? What
measures are in place to stop these attacks? If these attacks continue, how do you
eradicate the threat before it escalates to a denial of service attack?

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY214

7028Ch07.qxp 12/11/06 8:38 PM Page 214

How can you address these security concerns? What does WCF offer to counter these
issues? You’ll take a closer look at what WCF has to offer in the next section.

Introducing the WCF Security Features
Microsoft has invested a lot of effort in guaranteeing the security in the Vista platform.
Microsoft counterparts viewed its security as a weakness in the early 1990s. Since then,
Microsoft has done a commendable job shrugging off that stigma. You may remember the
initiative to ensure “secure code” and the “trusted access security” campaigns that Microsoft
implemented to address this issue. Microsoft’s objective was to educate developers so they will
address security needs in the fundamental design.

Windows 2003 Server implemented security as “highest security turned on” by default.
You had to downgrade the security privileges to obtain access to resources. WCF is also based
on the “guilty until proven innocent” and “all user input is evil” concepts. Any distributed
application is prone to many forms of malicious attacks by intruders. The modern distributed
software architectures leverage public networks such as the Internet to send business-
sensitive information. This information can be compromised at various locations (such as by
packet sniffing on the wire, malicious systems administrators at routing destinations, and so
on). Therefore, the security model for WCF needs to be comprehensive to handle all these
threats. The core of WCF security is to address four important features:

Confidentiality: Is the information confidential between the sender and the receiver? This
feature will ensure that “unauthorized” parties do not get the opportunity to view the
message. You usually achieve this by utilizing encryption algorithms.

Integrity: This feature ensures that the receiver of the message gets the same information
that the sender sends without any data tampering. You usually sign messages using digital
signatures to achieve integrity.

Authentication: This is to verify who the sender is and who the receiver is. Are they known
to the system or the application?

Authorization: At the authorization stage, you know who the sender or the receiver is.
However, you also need to know whether they are authorized to perform the action they
are requesting from the application.

These are the key features the WCF security model attempts to address. You achieve the
physical implementation of addressing these issues by configuring bindings in WCF. WCF
offers a rich set of binding to address these security issues. You also have the flexibility of
extending or creating custom bindings to address specific security needs if necessary. In the
next section, you’ll investigate how to use bindings in WCF to implement security.

Security Features of Bindings
Bindings define one or more WS-* protocols that WCF supports. Every binding addresses two
important aspects of messaging. These aspects are the encoding and transport of the message.
Encoding defines the way messages are serialized. Transport defines the mechanisms that get
the messages from the sender to the receiver. Let’s look at the BasicHttpBinding binding as an
example. It uses the WS-I Basic Profile XML encoding and HTTP for transport. This binding is

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 215

7028Ch07.qxp 12/11/06 8:38 PM Page 215

designed to support interoperable scenarios with other platforms. Therefore, it does not imple-
ment security by default. (However, you can extend this binding to implement security by
utilizing custom code.) You need to utilize WsHttpBinding or WsDualHttpBinding to implement
security.

■Note Please consult Chapter 3 for an extensive discussion of bindings. This chapter will concentrate
only on the security implications and extensions of bindings. However, it is important to note that the binary-
encoded bindings (that is, Net*Binding) require WCF on both the sender and the receiver ends because of
optimization and performance reasons. NetMsmqBinding is used for asynchronous scenarios.
NetTcpBinding and NetNamedPipeBinding support reliable sessions and transactions.

You can also build your custom binding by utilizing the System.ServiceModel.Channels
namespace. You can define security features, encoding, and serialization options that are suit-
able to your requirements using the classes available in this namespace. Similarly, you can
also utilize the ProtectionLevel binding property to enforce integrity and confidentiality. The
options available for the ProtectionLevel property are as follows:

None: Only authenticate the binding.

Sign: Ensure integrity in the transmitted data.

EncryptAndSign: Ensure both confidentially and integrity.

Protection Levels
WCF security encrypts and signs the messages by default. This could lead to “overkill” in some
instances. Therefore, you can implement integrity where confidentiality is not a requirement
(such as when debugging code by developers). In such cases, WCF provides the facility to set
the protection level on the message. The following application file snippet illustrates how to
achieve this using configuration files; the messages are required to be signed only before they
are sent:

<bindings>
<wsHttpBinding>
<binding name="test">
<security mode="Message">
<message defaultProtectionLevel="Sign"/>

</security>
</binding>

</wsHttpBinding>
</bindings>

Message exchange patterns (MEPs) determine how the messages are sent from the sender
to the receiver. How are these message patterns implemented in WCF? Can you implement secu-
rity on all these bindings for one-way and request-reply patterns? WCF does implement security

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY216

7028Ch07.qxp 12/11/06 8:38 PM Page 216

support for both the MEPs. However, duplex MEP is available only in WsDuaHttpBinding,
NetTcpBinding, and NetNamedPipeBinding.

How do you present your rights to WCF runtime via bindings? What are the mechanisms
available in WCF to pass on your requests to access resources? These questions are answered
by implementing credentials and claims in WCF. The following section will discuss what these
are.

Credentials and Claims
WCF security is based on credentials. What are these credentials? A credential is an XML-
compatible entity that assists the Windows runtime in identifying a user. Credentials consist
of one or more claims. A claim can be a username, a digital certificate, or a custom token that
specifies the holder’s right to access the application. This information will assist the Windows
runtime in granting or denying access to the WCF application. The Windows runtime will ver-
ify the claims by the user. Therefore, if the user is using a certificate, the runtime will inspect
the certificate information and verify whether the user is who they say they are. This is the
authentication concept discussed earlier. When the user is authenticated, the certificate key
could be used to decrypt the data. This will fulfill the integrity feature discussed earlier. This
could be followed by an authorization check that will verify whether the user has access to the
data and functions of the application. Therefore, we can summarize a set of claims into the
user’s complete access privileges in WCF.

There are several setup claim sets in WCF (that is, certificates, usernames, Kerberos tick-
ets, and custom tokens). They are mapped to a standard internal claim set in WCF runtime.
Therefore, the user can alternate between one claim and another (that is, between the user-
name and the custom token pair) without any issues with the Windows runtime. After the first
communication with the server, the user session will commonly use a token to present the
claim set information without checking for authentication, authorization, and integrity for
subsequent requests. This is designed to improve response times.

■Note In WCF, the highest security level is activated by default. Therefore, the user needs to decrease the
security levels if they want to accommodate security requirements. Also, the security model facilitates
configuration-level changes without any code or runtime modifications (which is the same as reliable mes-
saging, transaction support in WCF, and so on). Therefore, if you alter your MSMQ binding to replace with the
WSHttpBinding binding, the application will seamlessly integrate with the same security context.

How do you extract claim information in WCF? How can you investigate the claim infor-
mation using code? Let’s examine this with the assistance of the QuickReturns Ltd. sample
application.

■Note You will reuse the Chapter 6 code in this example. The service and client functionality will be the
same. Specifically, the server will expose a security trading service, and the client will make requests to trade
securities. Please consult the code that accompanies this chapter to maximize your learning experience.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 217

7028Ch07.qxp 12/11/06 8:38 PM Page 217

The most significant code changes will be in the ExchangeService class. You will modify
the code to reflect the claims the client will make to gain access to the service. Here are the
steps:

1. Open Visual Studio 2005 (select Start ➤ Programs ➤ MS Visual Studio 2005 ➤ Microsoft
Visual Studio 2005).

2. Create a blank solution in Visual Studio 2005 (select File ➤ New ➤ Project).

3. Select Visual Studio Solutions ➤ Other Project Types, and choose Blank Solution. Name
this solution WCFSecurity, and point to your preferred directory (C:\PracticalWcf\
Chapter07 in this example).

4. Add the ExchangeService project from Chapter 6 (right-click the WCFSecurity solution,
and select Add ➤ Existing Project). The next step is to make some changes to the
TradeSecurity code. As shown in Listing 7-1, modify the code to gain access to claim
information. The rest of the class is identical to the Chapter 6 code.

Listing 7-1. Adding Claim Access Code to the ExchangeService Class

public double TradeSecurity(string ticker, int quantity)
{

Console.WriteLine("Claim made at " + System.DateTime.Now.TimeOfDay);
System.ServiceModel.OperationContext opx;
opx = OperationContext.Current;
if (opx != null)
{

System.IdentityModel.Policy.AuthorizationContext ctx =
opx.ServiceSecurityContext.AuthorizationContext;

foreach (System.IdentityModel.Claims.ClaimSet cs in ctx.ClaimSets)
{

Console.WriteLine("Claim Issued by : " + cs.Issuer);
foreach (System.IdentityModel.Claims.Claim claim in cs)
{

Console.WriteLine("Claim Type - " + claim.ClaimType);
Console.WriteLine("Claim Resource name - " +

claim.Resource);
Console.WriteLine("Claim Right - " + claim.Right);

}
}

}
if (quantity < 1)

throw new ArgumentException(
"Invalid quantity", "quantity");

switch (ticker.ToLower())
{

case "ibm":
return quantity * IBM_Price;

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY218

7028Ch07.qxp 12/11/06 8:38 PM Page 218

case "msft":
return quantity * MSFT_Price;

default:
throw new ArgumentException(

"Don't know - only MSFT & IBM", "ticker");
}

}

Initially you need to gain access to the authorization context, available from the cur-
rent operation context by utilizing the ServiceSecurityContext.AuthorizationContext
property. Then you go through all the ClaimSets the user is presenting to the service.
These ClaimSets are comprised of individual claims. These are the claims that the
client needs to present to the service to gain access to the QuickReturns Ltd. applica-
tion. This claim information is printed on the console for you to read. You are printing
only the ClaimType, Resource (the claim is for), and Right information for the purpose
of this example. The next step is to create the host console application to host this
newly modified ExchangeService class.

5. This example uses the self-hosting option. Create a new console project by right-
clicking and selecting Solution ➤ Add ➤ New Project ➤ Console Application. Name it
ClaimHost, and add it to the WCFSecurity solution. Rename the program.cs file to
host.cs. You are creating a WCF self-hosted service on port 8000 on the localhost
machine. You display a message to inform the service is functioning after you start the
host with the host.Open() method. The code and the config file are identical to the
Chapter 6 TradeServiceHost project. You will utilize the WsHttpBinding to communi-
cate with the service endpoints. (Please refer to Listing 6-2 for the host.cs code and
Listing 6-4 for the App.config file in Chapter 6 for the code.)

6. Let’s concentrate on the client that consumes this service now. Create a new console
project called ClaimClient, and add it to the WCFSecurity solution. The code for the
client is identical to Listing 6-5 in Chapter 6. You will also use WsHttpBinding to bind
with the service endpoint. The App.config file is also identical to Listing 6-5.

7. Build the solution to create executables for ClaimHost and ClaimClient.

Try to execute your application. Let’s run the service first. Your screen should be similar to
Figure 7-1.

Figure 7-1. ClaimHost application running

The next step is to run the client. Let’s navigate to the client’s directory and execute the
client. Your screen should look like Figure 7-2.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 219

7028Ch07.qxp 12/11/06 8:38 PM Page 219

Figure 7-2. ClaimClient application running

You will notice while the client was running, the ClaimHost window recorded all the
claims the client was presenting over WsHttpBinding. The screen will display the Issuer for the
ClaimSet and the ClaimType, Resource, and Right information for each claim. Your screen
should look like Figure 7-3.

Figure 7-3. Displaying claim information at the service host console

This screen displays all the claim information to authenticate the client (the ClaimClient
instance) to the service (ClaimHost). The issuer of the ClaimSet is Self in this scenario (that is,
the services and the client are running on the same machine). Then you loop through all the
claims one by one. You first display the ClaimType. Then you display the Resource that the
claim is for, and finally, you display the Right for the resource.

You are familiar with the mechanisms the client utilizes to submit claims to WCF services.
However, what are the options available to present these claims to the WCF runtime? The next
section will answer this question.

Presenting Credentials and Claims to WCF
The user’s credentials can be presented to the Windows runtime in one of two ways: by utiliz-
ing the transport level or by utilizing the message level. The transport level will provide the
credentials as part of the message transport. This is similar to Secure Sockets Layer (SSL)
communication. The transport-level protocols will verify the credentials with the Windows
runtime and establish a secure session between the client and the service. However, there is
no explicit security for the messages that travel utilizing the protected transport layer.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY220

7028Ch07.qxp 12/11/06 8:38 PM Page 220

Unfortunately, the transport security also terminates at the destination SSL gateway. The mes-
sages will be exposed to malicious intruders as soon as the messages exit the destination’s SSL
gateway. This may not be the actual hosting web server. Many companies implement SSL
accelerators on proxy servers in their DMZ. This leaves the message’s subject open to possible
hijacking in the network between their accelerators and their servers. However, this is a com-
mon and proven security feature that the industry has utilized successfully (provided the
destination organization takes steps to secure the messages as soon as the messages enter
their organization).

The second option is to implement credentials at the message level, where the credentials
are embedded in the message. No credentials are transported at the transport layer. The mes-
sage will not be exposed to malicious hackers until the receiver can decrypt the message using
a special key known to the receiver. However, this method is slower than the transport-level
credentials because of the extra encryptions with messages. The message size will also be
larger than the transport-level messages. The first message between the sender and receiver
initiates the authentication and authorization between the two entities. The subsequent mes-
sages will have an optimized token to replace the complete credential set to counter the slow
response times. This mechanism will attempt to reduce the size limitation and increase the
speed of the communication. The credentials of the service and client are specified in the
binding information. You can have the following options as the credential types in WCF:

None: No security is provided via the transport level or messaging level. BasicHttpBinding
uses this mode by default. The rest of the other bindings do not use it. (In other words,
their security mode needs to be specified explicitly.)

Transport: This uses transport-level security (that is, SSL).

Message: This uses SOAP messages to provide authentication, authorization, integrity, and
confidentiality. These SOAP messages are WS-Security compliant.

Mixed mode: This uses both transport-level and message-level security. Confidentiality
and integrity are delivered by the transport layer. Authentication and authorization are
provided by the message level.

Both: This is available only in the NetMsmqBinding binding. This provides authentication at
both the message level and the transport level.

Binding Support for Credentials
Table 7-1 lists the most common bindings and whether they support transport, message, or
mixed modes.

Table 7-1. Binding Support for Credential Types

Binding Transport Mode? Message Mode? Mixed Mode?

BasicHttpBinding Yes Yes Yes

WsHttpBinding Yes Yes Yes

WsDualHttpBinding No Yes No

NetTcpBinding Yes Yes Yes

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 221

7028Ch07.qxp 12/11/06 8:38 PM Page 221

Table 7-1. Continued

Binding Transport Mode? Message Mode? Mixed Mode?

NetNamedPipeBinding Yes No No

NetMsmqBinding Yes Yes No

MsmqIntegrationBinding Yes No No

You are now familiar with bindings and the modes they support. How do you set this
mode in code? You change the credentials by setting the binding credentials in the binding’s
Mode property, which you can find in the Security property of the binding. You can also set
them using the bindingCredentials property of the Binding object. Figure 7-4 illustrates the
security mode being set using a WsHttpBinding at the message level.

Figure 7-4. Adding the security mode

Please note that this TradeService instance is scheduled to run on port 8001. However, all
the examples in this chapter will utilize port 8000 as the endpoint. In the next section, you’ll
look at these credential security levels in more detail with some sample code.

Transport-Level Security
Under the transport-level model, the credentials are applied at the transport level. Therefore,
all the messages between the sender and the receiver are not visible to any intruders. They
also work effectively on point-to-point scenarios. It is difficult to implement transport-level
security when there are multiple routing mechanisms to multiple recipients. Multiple gate-
ways will expose the messages to intruders when the message is transferred from one SSL
provider to another. This feature will make the transport-level security unrealistic for non-
point-to-point scenarios. However, you can use hardware accelerators to achieve quick
response times under this model. Transport-level security is also considered for high through-
put and faster response times because of this feature. Transport-level security provides
mechanisms to authenticate both the service and the client so they adhere to confidentiality,
integrity, and authorization.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY222

7028Ch07.qxp 12/11/06 8:38 PM Page 222

CODE VERSUS CONFIGURATION FILES REGARDING SECURITY

One of the most flexible features in WCF is the ability to implement the same task by either coding explicitly
or utilizing configuration files. It is helpful to use configuration files regarding WCF security. Configuration files
give you the flexibility to alter the security features without recompiling the code. This is common when the
security standards get superseded by the latest security offerings. However, for the purposes of the next
example, you will use explicit code on the service side. The client is configured using application configura-
tion files. This was intentionally done to illustrate the flexibility of the WCF security model.

Transport-level security (specifically, SSL) is a proven concept and has wide acceptance in
the technical community. Also, SSL hardware accelerators will expedite the message transmission
speed. However, SSL supports only a subset of claim types. They are Windows authentication,
digest authentication, and certificates. SSL does not support the rich WS-Security or Security
Access Markup Language (SAML) token claim types in WCF. SAML tokens are a key element to
achieve distributed computing security on multiple platforms. WCF offers several transport cre-
dential types:

None: This is for anonymous clients. This setting specifies that the client does not need to
present any credentials to the service. This is not recommended.

Basic: This specifies Windows basic authentication. This is implemented according to RFC
2617 (which is available at http://www.rfc-editor.org).

Digest: This specifies digest authentication between the service and the client.

Ntlm: This specifies NTLM authentication.

Windows: This specifies Windows Kerberos authentication.

Certificate: This performs client authentication using an X.509 certificate.

How do you implement transport-level security in WCF? In the following exercise, you will
reuse the TradeServiceHost and WcfSimpleClient projects from Chapter 6. Specifically, you
will add these two projects to the WCFSecurity solution. Here are the steps:

1. Add the TradeServiceHost project and the WcfSimpleClient project to the WCFSecurity
solution (right-click the WCFSecurity solution, and select Add ➤ Existing Project).

2. You need to modify the code for the host.cs file in the TradeServiceHost project.
Listing 7-2 shows the code.

Listing 7-2. Code for host.cs File in the TradeServiceHost Project

using System;
using System.Collections.Generic;
using System.ServiceModel;
using System.Text;

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 223

7028Ch07.qxp 12/11/06 8:38 PM Page 223

namespace ExchangeService
{

public class Program
{

public static void Main(string[] args)
{

Uri address = new Uri("https://localhost:8000/TradeService");
WSHttpBinding binding = new WSHttpBinding();
binding.Security.Mode = SecurityMode.Transport;
// The clients of the service do not need to be
// authenticated - since we are running over SSL
binding.Security.Transport.ClientCredentialType =

HttpClientCredentialType.None;
Type contract = typeof(ExchangeService.ITradeService);
ServiceHost host = new ServiceHost(typeof(TradeService));
host.Open();
Console.WriteLine("The WCF Management trading
service is available.");
Console.ReadKey();

}
}

}

Initially you will create a new URI and WsHttpBinding for your endpoint. It is important
to know that the URI is an HTTPS endpoint—not an HTTP endpoint. This is to utilize
SSL as a transport credential provider. Then you set the binding security credential as
Transport. You are not requesting the client to authenticate over SSL. Therefore, you
utilize HttpClientCredentialType.None. Finally, you specify the contract and then acti-
vate the service. Now you’ll work on the client code.

3. You are not altering any code with the WcfSimpleClient project’s program.cs file. You
are utilizing the App.config file of the project to enhance the security. Therefore, the
App.config file of the WcfSimpleClient project should be similar to Listing 7-3.
(Please note that you are altering code only for the TradeService functions. The
TradeServiceMonitoring functions are not altered as a result of this exercise. The code
is similar, so we won’t reiterate the same concepts. Therefore, we have deleted the
monitoring code from the sample code for this chapter.)

Listing 7-3. App.config File for the WcfSimpleClient Project

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<system.serviceModel>
<client>

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY224

7028Ch07.qxp 12/11/06 8:38 PM Page 224

<endpoint
address="https://localhost:8000/TradeService"
binding="wsHttpBinding"
bindingConfiguration="TradeWsHttpBinding"
contract="ExchangeService.ITradeService"
name="TradeServiceConfiguration" />

</client>

<bindings>
<wsHttpBinding>
<binding name="TradeWsHttpBinding">
<security mode="Transport">
<transport clientCredentialType="None"/>

</security>
</binding>

</wsHttpBinding>
</bindings>

</system.serviceModel>
</configuration>

This is similar to the Chapter 6 TradeService configuration file. However, you have
altered the binding information to facilitate transport security. You have declared a
new TradeWsHttpBinding section to detail the binding information. This section details
that you are utilizing Transport as the security mode and you are not requiring the
client to authenticate against the service.

4. Compile and build the TradeServiceHost and WcfSimpleClient projects. Navigate to
the service, and start the service first. You will see an image similar to Figure 7-1.
Then start the client, and you will be presented with Figure 7-2. You will also view the
ClaimSet activity in the service console. (This looks like Figure 7-3. However, the
claim data will be different because you are utilizing transport-level security.)

The next step is to examine what message-level security provides in WCF.

Message-Level Security
Message-level security relies on the message itself to secure the communication. The authenti-
cation, authorization, integrity, and confidentiality are met using the message data. It does not
rely on the transport mechanism to provide any security for it. The message mode provides an
end-to-end security context for the enterprise. This also works well with multiple hops and
multiple recipients. Since you are not relying on the transport layer, you can expand the mes-
sage headers to implement multiple security assertions. This is a great tool to build federation
services. Persistence of message headers will enable you to utilize integrity and confidentiality
checks. You can also have rich claim support (in SAML, Custom Tokens, WS-Trust, and so on) in
message-level security. You can utilize multiple authentication mechanisms at different gate-
ways. However, the downside is the message can get considerably larger because of additional

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 225

7028Ch07.qxp 12/11/06 8:38 PM Page 225

header information. Therefore, the throughput will be slower than transport-level security.
Message-level security also provides mechanisms to authenticate and authorize both services
and clients. You can also implement message-level security as utilizing binding by explicit cod-
ing or configuration files. What are the message credential types available in WCF? They are as
follows:

None: There is no message-level security with the client and the service. Therefore, the
user is anonymous.

Windows: The client uses Windows credentials in SOAP messages to authenticate with the
service.

Username: The client needs to be authenticated using the username credentials. How-
ever, WCF does not provide any encryption to protect the username credentials.

Certificate: The client needs to be authenticated using an X.509 certificate.

Infocard: The client is required to be authenticated using Windows CardSpace—formally
known as Infocard. This is discussed later in the “Windows CardSpace” section.

You’ll now learn how to implement message-level security in WCF. You will modify the
TradeServiceHost service to utilize a certificate to authenticate the service to the Windows
runtime. You will call this certificate localhost. You will also use another certificate called
WCFUser to authenticate the client to the service. Therefore, when the message leaves the
client, it will be protected until it gets to the service machine’s Windows runtime. You will use
explicit code (as opposed to configuration files) in both the client and the service for this
exercise. Here are the steps:

1. The first step is to create two certificates for localhost and WCFUser. Let’s use
makecert.exe to create these certificates:

makecert.exe -sr CurrentUser -ss My -a sha1 -n CN=localhost -sky
exchange -pe
certmgr.exe -add -r CurrentUser -s My -c -n localhost -r CurrentUser -s
TrustedPeople

This command will make a certificate called localhost in the store location CurrentUser
and use the store name My. Then the following command adds the newly created cer-
tificate to the TrustedPeople container. These steps will ensure that you have a valid
service certificate. The client will also be based on the local machine for the purposes
of this example. Therefore, the following command will create the WCFUser certificate
for the client to authenticate against the server:

makecert.exe -sr CurrentUser -ss My-a sha1 -n CN=WCFUser -sky
exchange -pe
certmgr.exe -add -r CurrentUser -s My -c -n WCFUser -r CurrentUser -s
TrustedPeople

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY226

7028Ch07.qxp 12/11/06 8:38 PM Page 226

You can verify that the certificate is created without any errors by invoking the MMC
console for certificates by selecting Start ➤ Run and typing certmgr.msc and pressing
Enter. (Or you can select Start ➤ Run and type mmc. Then press Enter, and select Add
Certificates snap in if the view is not available.) Your screen should look like Figure 7-5.

Figure 7-5. Verifying certificates for the service and the client authentication

Listing 7-4 shows the code for the host.cs file on TradeServiceHost.

Listing 7-4. host.cs File of TradeServiceHost Project

using System;
using System.Collections.Generic;
using System.ServiceModel;
using System.Text;
using System.Security.Cryptography.X509Certificates;

namespace ExchangeService
{

public class Program
{

public static void Main(string[] args)
{

Uri address = new Uri("http://localhost:8001/TradeService");
WSHttpBinding binding = new WSHttpBinding();
// Set the security mode
binding.Security.Mode = SecurityMode.Message;
binding.Security.Message.ClientCredentialType =

MessageCredentialType.Certificate;

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 227

7028Ch07.qxp 12/11/06 8:38 PM Page 227

Type contract = typeof(ExchangeService.ITradeService);
ServiceHost host = new ServiceHost(typeof(TradeService));
host.AddServiceEndpoint(contract, binding, address);
//Set the service certificate.
host.Credentials.ServiceCertificate.SetCertificate(

StoreLocation.CurrentUser,
StoreName.My,
X509FindType.FindBySubjectName,
"localhost");

host.Open();
Console.WriteLine("The WCF Management trading service
is available.");
Console.ReadKey();

}
}

}

You need to import System.Security.Cryptography.X509Certificates into the code
first. This is mandatory to utilize certificate-related functions. Then you will specify the
client credential type as Certificate. Then you set the certificate for the service. You
can use this certificate to authenticate against the Windows runtime to validate that
the service has access to the business data. Therefore, even if an intruder hacks into
the service, the intruder will not be able to access business information without the
certificate information. You’ll now see how the client is implemented.

2. Modify the program.cs file in the WcfSimpleClient project according to Listing 7-5.

Listing 7-5. Client Code to Run TradeServiceHost Service

using System;
using System.ServiceModel.Channels;
using System.ServiceModel;
using System.Security.Cryptography.X509Certificates;

namespace ExchangeService
{

class Program
{

static void Main(string[] args)
{

EndpointAddress address =
new EndpointAddress("http://localhost:8001/TradeService");

WSHttpBinding binding = new WSHttpBinding();
binding.Security.Mode = SecurityMode.Message;
binding.Security.Message.ClientCredentialType =

MessageCredentialType.Certificate;

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY228

7028Ch07.qxp 12/11/06 8:38 PM Page 228

System.ServiceModel.ChannelFactory<ITradeService> cf =
new ChannelFactory<ITradeService>(binding,address);

cf.Credentials.ClientCertificate.SetCertificate(
StoreLocation.CurrentUser,
StoreName.My,
X509FindType.FindBySubjectName,
"WCFUser");

cf.Credentials.ServiceCertificate.SetDefaultCertificate(
StoreLocation.CurrentUser,
StoreName.My,
X509FindType.FindBySubjectName,
"localhost");

ITradeService proxy = cf.CreateChannel();

//.... The rest of the code is unchanged.
}

}
}

The code is similar to service code. You will initially set the security mode as Message.
Then you inform the runtime that the clients will be using certificates to authenticate
themselves. Then you set the WCFUser certificate credentials. You use the SetCertificate
method that specifies the StoreLocation and StoreName and ask the certificate to be
found using the subject name. This certificate will give all the information a client will
need to present to the server to authenticate. Then you try to set the server’s certificate.
Please remember the service needs to authenticate itself to the Windows runtime. This
certificate information can be available only to a valid client. Therefore, you minimize
the risk of an intruder getting access to the service by presenting a single compromised
client certificate under this design (that is, the client needs to know both the client and
server certificate information to gain access to the service).

3. The App.config file for both the service and the client is simple. They have to only
define the endpoint of the TradeService since you have implemented the security set-
tings in the code. Compile and build the service and the client. First run the service
and then the client. You should view images that are similar to Figure 7-1, Figure 7-2,
and Figure 7-3.

It is also beneficial to analyze the messages that travel between the service and the client.
You will be able to view the encrypted message data using SvcTraceView.exe. (Please consult
Chapter 6 to learn about SvcTraceViewer.exe, how to implement it, and its location.) This view
will enable the user to analyze every message that transfers between the client and the service.
This will enhance your knowledge regarding the “under-the-covers” WCF implementation to
facilitate message-level security. (Figure 7-6 illustrates how the certificate claim set in the mes-
sage header was understood by the server authentication system.) The next step is to learn
about mixed mode security.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 229

7028Ch07.qxp 12/11/06 8:38 PM Page 229

Figure 7-6. Using SvcTraceView.exe to analyze message-level security

Mixed Mode
Transport mode credentials are faster than message level. However, they have limited creden-
tial types (like no SAML tokens). The message-level security has a richer set of credentials.
However, because of XML serialization and deserialization, they are slower than transport
mode. Will it be possible to have a rich set of claims and at the same time be optimized to the
wire? WCF does offer this flexibility, called mixed mode. Mixed mode offers the rich claims and
federation advantages message-level offers. It supports multifactor authentication using rich
credentials. You can also use custom tokens in mixed mode. Therefore, mixed mode offers a
secure and fast option to transmit data between services and clients.

Mixed mode will perform the integrity and confidentiality at the transport level. The
authentication and the authorization takes place at the message level. You can use the
TransportWithMessageCredential property (refer to Figure 7-4) to specify mixed mode with
the binding.Security.Mode setting. It is simple to implement mixed code. The service code
will be similar to Listing 7-6.

Listing 7-6. Implementing Mixed Mode in the Service

using System;
using System.Collections.Generic;
using System.ServiceModel;
using System.Text;
using System.Security.Cryptography.X509Certificates;

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY230

7028Ch07.qxp 12/11/06 8:38 PM Page 230

namespace ExchangeService
{

public class Program
{

public static void Main(string[] args)
{

Uri address = new Uri("https://localhost:8001/TradeService");
WSHttpBinding binding = new WSHttpBinding();
// Set the security mode
binding.Security.Mode = SecurityMode.TransportWithMessageCredential;
binding.Security.Message.ClientCredentialType =

MessageCredentialType.Certificate;

Type contract = typeof(ExchangeService.ITradeService);
ServiceHost host = new ServiceHost(typeof(TradeService));
host.AddServiceEndpoint(contract, binding, address);
// The rest of the code is the same

It is important to note that the URL is HTTPS. You are relying on SSL for integrity and
confidentiality. Then you set the security mode to TransportWithMessageCredential and
dictate that the client must authenticate using a certificate to gain access to the service. The
program.cs file of the WcfSimpleClient will look like Listing 7-7.

Listing 7-7. Client Code for Mixed Mode Security

using System.Net
namespace ExchangeService
{

class Program
{

static void Main(string[] args)
{

ServicePointManager.ServerCertificateValidationCallback =
delegate(Object obj, X509Certificate certificate,
X509Chain chain, SslPolicyErrors errors)
{ return true;

// Need to implement company specific validations
};

EndpointAddress address =
new EndpointAddress("https://localhost:8001/TradeService");

WSHttpBinding binding = new WSHttpBinding();
binding.Security.Mode =

SecurityMode.TransportWithMessageCredential;
binding.Security.Message.ClientCredentialType =

MessageCredentialType.Certificate;

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 231

7028Ch07.qxp 12/11/06 8:38 PM Page 231

System.ServiceModel.ChannelFactory<ITradeService> cf =
new ChannelFactory<ITradeService>(binding,address);

cf.Credentials.ClientCertificate.SetCertificate(
StoreLocation.CurrentUser,
StoreName.My,
X509FindType.FindByThumbprint,
"43 5d 98 05 7b a1 73 87 66 ca 89 a1 ae 0e 3c 76 2c 12 2b 95");

You need to inform the client to initiate the SSL session with the service first. You do this
by utilizing the ServicePointManager.ServerCertificateValidationCallback delegate. This
delegate will initialize the SSL connection. The implementation of this delegate can be differ-
ent from company to company. (That is, every organization will have a different matrix to
validate their digital claims. Usually the code will check for a CN=CompanyName entry.) Therefore,
you have returned true for the purpose of this example. Then you set the security mode and
set the client certificate. This time you are using the FindByThumbprint function (as opposed to
FindByName). You can derive the thumbprints from accessing the properties of the certificate.
Build the server and client, and your output should be similar to Figures 7-1, 7-2, and 7-3.

Do you need to authenticate and authorize every time you send a SOAP message to the
server? Doesn’t this consume valuable resources to verify the identity of the sender when the
sender has already established their identity using claims? Yes, you can counter this scenario
in WCF. It is commonly referred to as secure sessions.

A secure session is established when the first call is made from the client to the server. The
client will initially present the credentials to the service to authenticate. The service will create
a special token that will be inserted into the SOAP header to keep track of the client’s creden-
tials. The subsequent requests from the client will present this special token to the service to
gain access to the service. Please view Listing 7-7 in SvcTraceViewer.exe, and navigate through
the messages between the client and the server. You will find this token information in the
header of the SOAP message.

We have discussed security mainly on point-to-point client and service scenarios. How-
ever, large enterprises employ thousands of employees. Certificates are commonly used to
authenticate these employees. Does this mean every employee needs to know all the other
employees’ certificate information to send a message to one of them? What happens when
one enterprise merges with another enterprise? Does the enterprise A employee need to know
all the enterprise B certificate details? You can use federated credentials to address this issue
in WCF.

Federated Security Model in WCF
The concept of federated credentials is important in the modern age of distributed comput-
ing. It means you can delegate the “verification” of a claim to a third party. The third party will
in return give you a key that you can use to communicate with a service. The third party (com-
monly referred to as the broker or security token service) has a trust relationship with the
service. Therefore, whenever a client comes with a certified credential from the broker, the
service will trust the client’s credentials. Figure 7-7 explains this scenario further.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY232

7028Ch07.qxp 12/11/06 8:38 PM Page 232

Figure 7-7. Federated credentials in action

You are assuming the client employee is using a certificate in this scenario. The employee
may use multiple devices (such as a computer, PDA device, and so on) to make a request of a
service that is part of an external enterprise. The employee will first liaise with the certificate
broker by providing the employee certificate stating his intentions of consuming the service.
The broker will analyze the certificate and confirm its authenticity. Then the broker will issue
an SAML-based credential set to the user to communicate with the service. This SAML token
is signed with the special key from the broker to validate the token. This key is known only to
the service that the employee is attempting to consume.

The client uses the SAML token in the request SOAP message header to send a request to
the service. The service will analyze the SAML token and verify it is from a known certificate
broker to the service (that is, using the special key from the broker). The service will check the
trust relationship between the service and the certificate broker and proceed with the client
request.

Federated credentials play a key role in future security implementations. You can use the
flexibility of proving one set of credentials to a user (that is, certificate by the client) and
converting it to another set of credentials (an SAML token) in many scenarios to add value
to the customers. You also have the flexibility of altering your internal security mechanisms.
(That is, the client can provide a username password pair to replace the certificate.) However,
your external implementation of the claims will not be changed. The broker will still create
the same SAML token with the username-password pair. You do this by utilizing
WSFederationHttpBinding in WCF. In the next section, you will investigate authorization.

SAML Credentials in SOAP

Trust Relationship

Service

Certificate
Broker

SAML
Credential

Employee
Credential

1

2

3

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 233

7028Ch07.qxp 12/11/06 8:38 PM Page 233

Authorization in WCF
How can you authorize users in WCF? What is the difference between authentication and
authorization in the first place? You should also take this opportunity to investigate some of
the .NET Framework offerings to handle authentication and authorization. You’ll first investi-
gate the fundamentals of the .NET application security model.

■Note The .NET Framework offers a rich set of APIs (based in the IPrincipal interface) to manage
authentication and authorization. The objective is to create a specialized, static (once only) Principal
object after the Active Directory authentication is approved. This Principal object will securely live on the
client’s desktop and attend authorization requests during the life span of the user session. The authorization
and authentication are provided by different providers. This provider information is usually based in configu-
ration files. The objective is to seamlessly transfer the user context from one authorization or authentication
provider without any code changes. This is the best practice in the industry. It is important to note that WCF
explicitly does not address authentication and authorization. What WCF does is evaluate claims and authenti-
cate and authorize these claim sets utilizing .NET Framework to satisfy the security requirements.

IPrincipal Interface
The cornerstones of the .NET security models are the IPrincipal interfaces. The developers
will build an object that extends IPrincipal (usually called Principal) to incorporate the
authentication and authorization information regarding a specific user. So, what is the differ-
ence between authentication and authorization?

Authentication: This is the process of identifying users. This is commonly performed by
requesting a username-password pair or a certificate to verify the authenticity of the user.
(Who is the user? Can you identify him as a manager in your system?)

Authorization: Authorization happens after authentication. Authorization addresses the
question, what does the user have access to after the authentication? Therefore, the user
is already known to the Windows runtime, but what can the user access in the system? For
example, does the user have delete access for a purchase order if the user logs in as a
Manager role?

Authentication is mainly performed by API calls to Active Directory. Active Directory will
return with a confirmation of the identity or deny the access to the system. The authorization
details in most cases have to be explicitly coded. Authorization in .NET is based on roles. (For
example, the SeniorManager role can delete the purchase orders as opposed to the Manager
role, which is not entitled for the same privilege.) Therefore, before you delete a purchase
order, you need to check whether the currently logged in user has the SeniorManager role
attached to his profile. You do this by utilizing the IsInRole function. The code is similar to the
following code. This code queries whether the currently logged in user has the SeniorManager
role to proceed to delete the purchase order:

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY234

7028Ch07.qxp 12/11/06 8:38 PM Page 234

Using System;
Using System.Threading;
if (Thread.CurrentPrincipal.IsInRole("SeniorManager"))
{

// Code to delete purchase order
}

You can also utilize .NET Framework security to force the runtime to authorize entities at
the function level. The following code snippet will demand the permissions you need to check
before the user can execute the function. This is an alternative to the IsInRole feature of .NET
Framework.

using System.Security.Permissions;
...
[PrincipalPermission(SecurityAction.Demand, Role="SeniorManager")]
public bool DeletePurchaseorder()
{

// Code to delete purchase order.
}

It is important to understand the basics of authentication and authorization to grasp the
security concepts in WCF and the .NET Framework. You’ll now learn how to implement
authorization in WCF security. Here are the steps:

1. The first step is to add the authorization information to the ExchangeService module.
You have not enforced any authorization check to the code until now. You have relied
on the Windows authentication models to authenticate the user. As soon as the
authentication is valid, the client has been able to extract the stock prices from the
service. Let’s tie authorization to the user’s Windows credentials. Let’s assume you are
going to restrict the access to the TradeService function only to administrators for the
purposes of this example. Therefore, any other user who is not part of the Administra-
tor group will not be able to access the service. Code this logic into ExchangeService, as
illustrated in Listing 7-8. The code explicitly instructs the .NET runtime to check
whether the user has the Administrator role.

Listing 7-8. ExchangeService Code to Include Authorization

using System;
using System.ServiceModel;
using System.Security.Permissions;

namespace ExchangeService
{

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 235

7028Ch07.qxp 12/11/06 8:38 PM Page 235

// Same code as before

public class TradeService : ITradeService, ITradeMonitor
{

const double IBM_Price = 80.50D;
const double MSFT_Price = 30.25D;

// Invokers must belong to the Administrator group.
[PrincipalPermission(SecurityAction.Demand,
Role = "Administrators")]
public double TradeSecurity(string ticker, int quantity)
{

Console.WriteLine("Claim made at " + System.DateTime.Now.TimeOfDay);
System.ServiceModel.OperationContext opx;
opx = OperationContext.Current;

// Same code as before

2. Now you’ll create the service. Add a new project to the WCFSecurity solution by right-
clicking the WCFSecurity solution and then selecting Add ➤ New Project. Call it
AuthAuditHost. (Note that we will use the same project to illustrate auditing in the next
section.) The code will be similar to Listing 7-9.

Listing 7-9. Code for the host.cs File of the AuthAuditHost Project

using System;
using System.ServiceModel;
using System.ServiceModel.Description;

namespace ExchangeService
{

public class Program
{

public static void Main(string[] args)
{

Uri address = new Uri("http://localhost:8001/TradeService");
WSHttpBinding binding = new WSHttpBinding();
Type contract = typeof(ExchangeService.ITradeService);
ServiceHost host = new ServiceHost(typeof(TradeService));
host.AddServiceEndpoint(contract, binding, address);
host.Open();
Console.WriteLine("The WCF Management trading service is available.");
Console.ReadKey();

}
}

}

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY236

7028Ch07.qxp 12/11/06 8:38 PM Page 236

3. Create the client now. Create a new console application called AuthAuditClient, and
add it to the WCFSecurity solution. (Right-click the WCFSecurity solution, and select
Add ➤ New Project.) The code will be similar to Listing 7-10. You have added some
exception management code to address the exceptions that arise if the user does not
have the Administrator role.

Listing 7-10. Code for the program.cs File of the AuthAuditClient Project

using System;
using System.ServiceModel.Channels;
using System.ServiceModel;

namespace ExchangeService
{

class Program
{

static void Main(string[] args)
{

EndpointAddress address =
new EndpointAddress("http://localhost:8001/TradeService");

WSHttpBinding binding = new WSHttpBinding();
System.ServiceModel.ChannelFactory<ITradeService> cf =

new ChannelFactory<ITradeService>(binding, address);
ITradeService proxy = cf.CreateChannel();

Console.WriteLine("\nTrade IBM");
try
{

double result = proxy.TradeSecurity("IBM", 1000);
Console.WriteLine("Cost was " + result);
Console.WriteLine("\nTrade MSFT");
result = proxy.TradeSecurity("MSFT", 2000);
Console.WriteLine("Cost was " + result);

}
catch (Exception ex)
{

Console.Write("Can not perform task. Error Message –
" + ex.Message);

}
Console.WriteLine("\n\nPress <enter> to exit...");
Console.ReadLine();

}
}

}

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 237

7028Ch07.qxp 12/11/06 8:38 PM Page 237

4. Now execute the service, and then run the application. Your screen should be similar
to Figure 7-1. You are currently logged in as an user who is part of the Administrator
group. Therefore, when you execute the client, you should get a screen that looks like
Figure 7-8.

Figure 7-8. AuthAuditClient running under an Administrator account

We’ll now show how to run this client under a different account without administrator
access. We have created a user account called chris without any administrator access. Use the
following runas command to run the client:

runas /noprofile /user:local\chris AuthAuditClient.exe

This command will execute AuthAuditClient.exe as the chris account. You don’t need to
load the user profile in this case. Therefore, you use the /noprofile flag. You will be asked to
enter the password for the chris account. When the password is validated, the client will run
under the new account (chris). Your screen should look like Figure 7-9.

Figure 7-9. Using the runas command to execute the client under a different account

Since the chris account is not part of the Administrator group (and does not have a role
to reflect it in his Windows profile), you should see the screen shown in Figure 7-10, which
denies access to the service.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY238

7028Ch07.qxp 12/11/06 8:38 PM Page 238

Figure 7-10. Access denied for users who do not have the correct roles

Authorization Options for One-Way Communications
What happens when the message is only one-way? Is there a requirement to authorize the
sender at the receiver’s end? Does WCF support this functionality? WCF implements mecha-
nisms that do not require any negotiation between the client and service. WCF supports a
one-shot, or non-negotiated, security mode for this purpose. To support one-shot security
mode, you will set the flag negotiateServiceCredential="false" at the message level. How-
ever, you need to provide the valid credentials to authenticate the request. This will ensure the
message initiated from a trusted source even when the authorization is ignored at the service
end. The following configuration snippet illustrates this feature:

<bindings>
<wsHttpBinding>
<binding name="test">
<security mode="Message">
<message negotiateServiceCredential="false"

clientCredentialType="Certificate"/>
</security>

</binding>
</wsHttpBinding>

</bindings>
<behaviors>
<behavior name="credentialConfig">
<clientCredentials>
<!-- Other configuration not shown. -->
<serviceCertificate storeLocation="CurrentUser" storeName="My"
x509FindType="FindBySubjectDistinguishedName"
findValue="localhost"/>

</clientCredentials>
</behavior>

</behaviors>

WCF also implements multiple membership providers to assist developers to integrate to
Active Directory, LDAP, and custom directory structures. You can also create your own providers
to suit specialized scenarios. WCF also ships with multiple role provider classes that will reduce
developer effort.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 239

7028Ch07.qxp 12/11/06 8:38 PM Page 239

You have investigated the WCF security model, authentication, and authorization in
detail. Is there a way to track these security-related features and their impact? Does WCF offer
any “auditing” mechanisms to trace and monitor security activities? You’ll investigate this fea-
ture in the next section.

Auditing for Security Features in WCF
WCF has a rich set of utilities to address security auditing. It leverages the Event Viewer exten-
sively to record any security-related events. You also have access to a rich set of APIs that will
enable you to directly communicate with the Event Viewer. Let’s examine how you can lever-
age Event Viewer now. You will enhance AuthAuditHost to record all the security events to the
Event Viewer. Listing 7-11 shows the code for the modified host.cs file of AuthAuditHost.

Listing 7-11. Enabling Auditing for the Service

using System;
using System.ServiceModel;
using System.ServiceModel.Description;

namespace ExchangeService
{

public class Program
{

public static void Main(string[] args)
{

Uri address = new Uri("http://localhost:8001/TradeService");
WSHttpBinding binding = new WSHttpBinding();
Type contract = typeof(ExchangeService.ITradeService);
ServiceHost host = new ServiceHost(typeof(TradeService));
host.AddServiceEndpoint(contract, binding, address);

// Add Auditing to the service
ServiceSecurityAuditBehavior auditProvider =

host.Description.Behaviors.Find<ServiceSecurityAuditBehavior>();
if (auditProvider == null)
{

auditProvider = new ServiceSecurityAuditBehavior();
}
auditProvider.AuditLogLocation = AuditLogLocation.Application;
auditProvider.MessageAuthenticationAuditLevel =

AuditLevel.SuccessOrFailure;
auditProvider.ServiceAuthorizationAuditLevel =

AuditLevel.SuccessOrFailure;

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY240

7028Ch07.qxp 12/11/06 8:38 PM Page 240

host.Description.Behaviors.Add(auditProvider);
host.Open();
Console.WriteLine("The WCF Management trading service is available.");
Console.ReadKey();

}
}

}

Auditing is available in WCF using ServiceSecurityAuditBehavior from the System.
ServiceModel.Description namespace. First, you will check whether the audit provider is
available in the current context. If it doesn’t already exist, then you create an audit provider
using the ServiceSecurityAuditBehavior class. Next, you specify the audit location. This can
be either the application or the security log. Choose the application log for this example. Then
you can specify the audit level. The available levels are success, failure, or both success and
failure. For this example, you have chosen the success and failure option. You can set these
levels utilizing the MessageAuthenticationAuditLevel and ServiceAuthorizationAuditLevel
properties for the message. Therefore, all the auditing information regarding messages and
server authorization will be recorded on the server’s application log. Finally, you add the audit
provider to the service.

Now run the service and then the client. Let’s check whether the information is available
in the event log. Choose Start ➤ My Computer ➤ Manage ➤ System Tools ➤ Event Viewer, or
choose Start ➤ Run ➤ Eventvwr.exe. Look under the application log under the event log, as
shown in Figure 7-11.

Figure 7-11. Application log entries for the AuthAuditHost service

Let’s look at one log entry to verify the details. Your screen should be similar to Figure 7-12.
This entry describes a successful authorization call made by the AuthAuditClient instance.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 241

7028Ch07.qxp 12/11/06 8:38 PM Page 241

Figure 7-12. Audit log entry that illustrates successful authorization by AuthAuditClient

You are familiar with WCF authentication, authorization, and auditing concepts. However,
how do you manage your identity in a distributed environment? Is it fair to conclude that the
identities are all scattered over a public network such as the Internet? Some of our traces of
information are stored in Amazon accounts. You might also have a .NET Passport identity to
sign on to your Hotmail account. Are you also an avid buyer and seller on eBay? Is there a way
you can leverage all these identities at once? Or can you present your “platinum” eBay identity
to convince Amazon to upgrade your membership? Can you manage them centrally? Does
WCF offer a programming model to make this vision reality?

Windows CardSpace
Windows CardSpace (formally known as Infocard) is a specialized metaidentity system that
helps you manage multiple identities. Let’s take an everyday example. You use your driver’s
license to prove you are a valid driver on the road. How do you prove this to a suspecting
police officer who inquires about it? You show them a valid driver’s license card. In addition,
you use a card to prove to a bank teller (or an automatic teller machine) that you have the
correct credentials to withdraw money. Basically, you use different physical cards to accom-
modate different situations. However, you need a mechanism to manage all the cards every
day. A common practice in real life is to store all the cards in a wallet. Therefore, the wallet
becomes your identity metasystem in everyday life.

You can use the same concept in distributed computing. The .NET Passport system has
provided an e-mail and password to validate you. This is similar to the bank providing a card
to withdraw cash. Similarly, your employees will give the administration digital signature that
proves they are legitimate employees of the company. How do you store all these identities
and extract them on demand to facilitate your needs? The answer lies in Windows CardSpace.
Windows CardSpace is an identity metasystem that handles multiple identities for you.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY242

7028Ch07.qxp 12/11/06 8:38 PM Page 242

What are cards, and how many types of cards does CardSpace support? A card is a digitally
signed entity that illustrates the user’s claims to a system. In general, two types of cards exist. The
first one is the personal card. The user can issue these cards to herself. This is similar to picking
an e-mail address and a password for a Passport account. The second type is the provider card.
This is provided by a trusted third party. These cannot be issued by the user. This is similar to a
bank card that is given to you by the bank.

How Does Windows CardSpace Work?
How does CardSpace work? You may remember that your bank card has a magnetic strip on
the back of it. This stores your claims to the bank system. Windows CardSpace works the same.
CardSpace converts your personal or provider cards to special tokens and validates their
authenticity on demand. Different card types can use different tokens for this validations.
Personal cards use SAML 1.1 token types by default. However, provider card tokens are subject
to an organization’s technology preferences.

■Note It is important to note that CardSpace is based on the WS-Trust specification. Windows CardSpace
can use SAML tokens to validate the user claims. However, it is not restricted to SAML tokens. It can use any
custom token algorithm as long the server can validate the credentials. It is also important to understand
that the Windows CardSpace is the Microsoft implementation of an identity metasystem. There are other
identity metasystems based on other software platforms. Currently, CardSpace is available only on the
Windows XP SP2, Windows Server 2003 SP1, and Windows Vista operating systems.

So, what is the difference between Passport and CardSpace? Microsoft .NET Passport is
one identity system that enables access to multiple Microsoft resources. Passport’s single
identity system fits well into the metaidentity system of CardSpace. Microsoft has also indi-
cated that a metaidentity system that supports multiple identities is more scalable than
attempting to dominate the world with a single identity system (such as Passport). CardSpace
is already supported by a Java toolkit from Ping Identity (a major player in the identity space).
Therefore, you can utilize multiple identities on heterogeneous platforms to validate identities
with CardSpace.

How do you know whether you have CardSpace available on your system? How can you set
up cards that can be used by WCF for authentication purposes? You can verify the CardSpace
availability by navigating to Start ➤ Control Panel. You should have an icon called Digital Iden-
tities. Your screen should be similar to Figure 7-13.

When you double-click the icon, you will see a wizard that will assist you in creating per-
sonal cards and exporting provider cards. This interface acts as a container for all your identity
needs. Now you’ll learn how to use CardSpace in WCF.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 243

7028Ch07.qxp 12/11/06 8:38 PM Page 243

Figure 7-13. Checking whether you have CardSpace available on your system

Enabling Windows CardSpace in WCF
CardSpace is one of the client credential types in WCF. CardSpace is used as an authentication
mechanism on the client side. The server receives a token that summarizes the claims in the
personal or provider card. However, the service side must authenticate itself using an X.509
certificate to verify the authenticity. (In other words, since you rely on a foreign token, you
need to make sure you have valid credentials at the server side to execute the service.) There-
fore, the configuration file will be similar to Listing 7-12.

Listing 7-12. Service Application Configuration File for CardSpace Support

<?xml version="1.0" ?>
<configuration>

<system.serviceModel>
<services>

<service type="ExchangeService.TradeService"
<endpoint address="http://localhost:8000/TradeMonitor"

binding="wsFederationBinding"
bindingConfiguration="wsBinding"
contract="ExchangeService.ITradeMonitor">
<identity>

<certificateReference findValue="localhost"
storeLocation="LocalMachine"
storeName="TrustedPeople"
x509FindType="FindBySubjectName" />

</identity>
</endpoint>

</service>
</services>

</system.serviceModel>

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY244

7028Ch07.qxp 12/11/06 8:38 PM Page 244

<wsHttpBinding>
<binding configurationName="wsBinding">

<security mode="Message">
<message clientCredentialType="IssuedToken" />

</security>
</binding>

</wsHttpBinding>
</configuration>

You will use the localhost certificate to authenticate the service to the server runtime.
CardSpace also utilizes the message-level security. The client credential type you use to utilize
CardSpace is called IssuedToken. The client configuration file is similar to the server configu-
ration file. The client credential type will be IssuedToken, and you need to make sure you set
the server certificate properly. When the service is built and running, you can execute the
client instance. When the client instance runs for the first time, Figure 7-14 will appear. This is
a confirmation request by the Windows CardSpace instance to proceed to choose a card to
communicate with the service. You can navigate through the wizards and select the appropri-
ate card to use.

Then you can select the CardSpace controller you prefer to use to communicate with the
service. The Windows runtime will then create a special token that embeds the user’s claims
and sends it to the service to validate the claims. Figure 7-15 shows the dialog box that
requests the user to select one of his cards to submit to the service.

Figure 7-14. Windows CardSpace request dialog box

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 245

7028Ch07.qxp 12/11/06 8:38 PM Page 245

Figure 7-15. Selecting a CardSpace card to authenticate against the service

Summary
You learned the essentials of WCF security in this chapter. We discussed the following concepts
in detail:

• WCF security is based on four important concepts: authentication, authorization,
integrity, and confidentiality.

• You can utilize WCF security at the transport layer, message layer, or at both the transport
and message layer (mixed). These are commonly referred to as modes.

• Transport-layer security depends on the transport (specifically, SSL) to protect the
communication between the client and the service. This method is faster. However, the
credential types supported in WCF are limited (in other words, no rich SAML tokens).
The messages can also be vulnerable in the recipient’s domain after the messages leave
the SSL gateway.

• Message-level security is slower than transport mode. However, the developers can use
a rich set of credentials. Message mode will guarantee the message will get to the
receiver without being exposed at transport level. Therefore, it supports n-ton security.

• Mixed mode supports integrity and confidentiality at the transport layer. Authentication
and authorization are achieved at the message layer.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY246

7028Ch07.qxp 12/11/06 8:38 PM Page 246

• WCF also supports federated claims and Windows CardSpace. WCF uses CardSpace as a
client credential type. Both personal cards and provider cards are supported.

• WCF also enables authorization at the Windows level and will support multiple mem-
bership providers as role providers. It also supports a comprehensive auditing and
tracing API.

Now you are familiar with the security features of WCF. The next chapter discusses reliable
messaging and how it is implemented in WCF. Reliable messaging is an important concept in
distributed computing. It will enable reliable communication channels between multiple
enterprises (on heterogeneous platforms) with failover mechanisms.

CHAPTER 7 ■ IMPLEMENTING WCF SECURITY 247

7028Ch07.qxp 12/11/06 8:38 PM Page 247

7028Ch07.qxp 12/11/06 8:38 PM Page 248

Implementing Reliable
Messaging and Queue-Based
Communications

WCF helps you implement reliable communications over an infrastructure that might be
unreliable. Application infrastructure is prone to failure. Network connectivity often breaks,
services might not always be available, or messages get lost. WCF provides you with the func-
tionality to overcome these limitations in the infrastructure.

You will learn in this chapter how to ensure reliable communication in a distributed envi-
ronment where the application endpoints might be available only intermittently. Reliable
messaging in WCF helps developers solve a number of challenges that have plagued them for
many years. You will learn about the following in this chapter:

• The need for reliable messaging

• Challenges in implementing reliable messaging

• Reliable sessions

• Queuing support in WCF

• How to integrate with legacy applications using MSMQ

Let’s consider our QuickReturns Ltd. scenario. Say you decide to sell a stock that has
declared a loss. You put in your order to sell. However, the message never reaches the trading
application, and the stock loses more value before you realize what has happened. This could
potentially cost you thousands of dollars. Alternatively, say you put in a buy order, which may
accidentally be sent multiple times. This can occur for a number of reasons, prime amongst
them being the lack of an acknowledgment from the receiving end. You could end up buying
stocks that you didn’t really plan to buy. Further, say you want to apply the proceeds of the sale
of one stock to buy a second stock. The message to buy goes through, but the sell message
fails. This can cause a lot of problems in your portfolio.

You could also experience network-related issues. For example, say the network is clogged
by buy/sell orders, and the router is overcome. Or say the wireless connection on your laptop
blinks, and your order does not go through. Moreover, since the application is working over
the Internet, the congestion is completely out of anyone’s control and can result in messages

249

C H A P T E R 8

■ ■ ■

7028Ch08.qxp 12/11/06 8:37 PM Page 249

being lost, causing you a real monetary loss. All of these scenarios are real and problematic
and need to be addressed successfully to achieve reliability.

Reliable messaging helps overcome some of these issues since WCF also tracks the liveli-
ness of the available resources. This helps both the reliability and the scalability aspects of
your application. An additional piece of functionality that reliability offers you is a network
adaptive rate of sending messages. In other words, WCF monitors the network congestion and
will either speed up or slow down the rates at which messages flow across the network, thus
providing a pseudo load-balancing functionality.

Let’s dive into the implementation of reliable messaging in WCF.

The Need for Reliable Messaging
Why should you be excited about reliable messaging? It certainly does not seem at first to be
cool, interesting, or even something to get mildly excited about.

Providing reliability to messages has been somewhat of a nightmare in distributed applica-
tions irrespective of the transport. A lot of issues are associated with it. For example, the servers
or a network connection might not be available. Even worse, the connection itself might be dis-
rupted for reasons that are not readily predictable. As the developer and architect, you must
design around these issues. If you look at the concepts of SOA in general, a key requirement
that really should be the fifth tenet of SOA is reliability. (Please refer to Chapter 1 for the four
tenets of SOA.) It is of little value to have an architecture that does not provide reliability at its
core for message communications.

Reliable messaging in the context of SOA guarantees that a message will actually be
received at the destination. To do this, you need to ensure that a destination is available. In the
SOA world, this option does not exist since you might not control the destination. In the sce-
nario of reliable messaging, you need to compensate for the fact that messages may not arrive
at the destination as intended because of unforeseen and unknown reasons. Hence, you need
to hold on to the message until the destination is available and the entire message has in fact
passed successfully. Finally, should something go wrong, you need to detect that an error has
occurred, recover from it, and then resend the message, which will then be reprocessed. This
has been extremely difficult to do in the past, and when a custom implementation has been
delivered, it has been prohibitively expensive to implement and maintain.

Therefore, software industry leaders including Microsoft, IBM, BEA, and TIBCO created the
WS-ReliableMessaging standard. This addresses the problem of being able to allow messages to
be delivered reliably between applications despite failures within software components, net-
works, or systems. You accomplish this by standardizing on the SOAP and WSDL requirements
to identify the application endpoints and bindings.

WCF allows for reliable messaging in a web service environment by facilitating that mes-
sages are delivered only once (in other words, no duplicates) and in order. However, since the
standard for message queues is not in place across the industry, Microsoft decided to build
this capability on top of MSMQ, which provides a buffer mechanism between the client and
the service and in essence decouples them. However, reliable messaging can also be some-
thing of a misnomer since it does not provide for durability, unless you consider MSMQ as the
container.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS250

7028Ch08.qxp 12/11/06 8:37 PM Page 250

For example, if the server application is down for a period of time longer than the timeout
defined in the client application, the message will indeed never be delivered. Or if you persist
messages to a durable store—that is, you write these to the disk on the client side but no such
strategy exists on the server side—there really is no reliability. Although the implementation
does in fact take into account the requirements for reliability, at least for version 1 of WCF,
there is no real support for durability. The WS-ReliableMessaging specification specifies only
that the receiving endpoint is required to send an acknowledgment that the message has
indeed been received.

Despite these limitations, in the scenario that both ends of the application—that is, the
client endpoint and the server endpoint—are indeed up and running, reliable messaging
offers you a host of advantages. The failures at the transport level are overcome, more often
than not without writing a single line of additional code.

Challenges of Implementing Reliable Messaging
Implementing reliable messaging has multiple challenges. We’ll broadly categorize them into
communication issues and processing issues. More often than not, these are interrelated chal-
lenges that are nontrivial in nature to solve.

Communication Issues
Communication issues typically revolve around the physical transport. In a service-oriented
world, the quality of the communication layer is often not within our control. The main com-
munication issues are the following:

Network issues: The actual physical network is not available. So, what happens to your
messages? Do you compensate for this? How do you compensate for this? The server is
down or the router is struggling to cope with high levels of network congestion.

Connection drops: You send the message; however, the connection to the destination is
lost before the message arrives at the destination. How do you detect the drop, and more
important, how do you recover from this? In this scenario, say your machine has the net-
work cable unplugged or the wireless card on the laptop momentarily blinks. Prior to
WCF, the messages would be lost, unless of course you had envisioned this and written
lots of code to overcome the scenario.

Lost messages: This is much like the load of laundry that loses one sock. You don’t know
what happened to your message. You sent it, the network was available, and your connec-
tion was stable, but for some reason the message didn’t arrive at the destination. How do
you prevent this situation?

Out-of-order messages: You put in a sell order for MSFT stock, the proceeds of which you
want applied to the purchase of a really hot energy stock. Naturally the sell order needs to
arrive before the purchase; otherwise, your account will not have the adequate funds to
buy the energy stock. How do you go about avoiding this scenario?

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 251

7028Ch08.qxp 12/11/06 8:37 PM Page 251

Processing Issues
Processing issues have to do with the internal applications. When an error occurs, how is it
handled internally by the application? Let’s look at the main processing challenges:

Messages are lost when an error occurs: Your message was received at the location. How-
ever, before it actually enters the system, an error occurred, and the message vanished
into the network. How do you prevent this? Take a sell order for MSFT, for example, which
is received by the QuickReturns Ltd. application. Before the entire message was actually
received, the network dropped some packets. Though you have sent the sell order and it
has been received at the server, it never entered the sell application.

Interrelated messages are processed individually: You might have a set of messages that
need to be processed as one transaction. However, these are treated as individual requests
by your system. Once again, the order to sell for MSFT and the order to buy for the energy
stock could be processed as a single transaction. Both the messages are related to each
other and need to be processed as such.

Failure leads to an inconsistent state: The failure of the delivery of a message in some sce-
narios leads to an inconsistent state, whereby the client is actually expecting a response.
However, since the service might be unavailable, this leads to the client continuing to wait
until a timeout occurs.

Messages cannot be retired: Your sale of the marketing stock netted you more money than
you expected, which you would like to apply toward the energy stock. So, you resubmit
the buy order with a changed quantity. How do you handle this scenario?

The good news is that WCF enables you to overcome these challenges fairly easily with its
built-in support for reliable messaging and reliable sessions. Moreover, providing this func-
tionality is fairly straightforward and does not require the services of a highly skilled
programmer or reams of code.

WCF makes adding reliability to the distributed application somewhat of a nonevent. This
is especially true in an environment where both ends of the application are “likely” to be avail-
able, and it provides it at no extra cost or effort. The lack of a durable store for messages is a
reality for version 1 of the WCF implementation. Durability can be provided using MSMQ. At
the same time, it is important to keep in mind that the reliable messaging feature set in WCF is
not a silver bullet, and it wasn’t designed to be one. The reliable messaging feature set in the
end is about as reliable or unreliable as the network available to it.

Reliable Sessions
WCF reliable messaging provides reliability between two given endpoints regardless of the
number of intermediaries between the two. This also includes intermediaries that might use
alternatives such as HTTP proxies and ones that use SOAP. A great benefit in WCF is the ability
to switch from one transport mechanism to another using configuration settings. (For exam-
ple, you start by using TCP with binary encoding and then change to reliable messaging over
HTTP by modifying only the configuration files. It really is pretty much as simple as that.)

WCF provides reliability and resilience. This means the following:

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS252

7028Ch08.qxp 12/11/06 8:37 PM Page 252

Guaranteed delivery: Messages are guaranteed to be delivered once and only once. What
this means is that your message will get to its destination without any chance of failure,
vanishing into the ether, or duplications.

In-order delivery: The messages will be delivered in the same order as they were sent.

Resilience: WCF offers resilience to network outages, delivery destinations being
unavailable, SOAP errors, and failures at the intermediaries. Features such as
AcknowledgementInterval, FlowControl, and InactivityTimeout help the application be
more aware of its environment.

Reliable sessions essentially support interactive communication between endpoints. The
reliable session channel runs under a condition of low latency, and the exchange of messages
are at fairly short intervals. Internally it handles the two main issues facing reliable messaging.
These issues are lost or duplicated messages and messages arriving in an order different from
the one in which they were sent. The reliable session provides SOAP messages with the func-
tionality that is almost analogous to that provided by TCP in the TCP/IP stack to the IP packets.
A TCP socket connection provides the infrastructure for once-only delivery of IP packets
between nodes. However, there are significant differences between reliable messaging and the
implementation of TCP.

The reliability provided by WCF reliable sessions is at the SOAP message level, rather than
the packet level, which is arbitrarily defined. This once again is the implementation from the
WS-ReliableMessaging standard, which is an interoperable industry-standard implementation.
The reliability is provided in a transport-neutral manner and not just for TCP. Additionally, it is
not tied to a particular transport session (that is, TCP session) but is for the lifetime of the ses-
sion, which may or may not be over a single transport. Reliable sessions provide you with the
means to use multiple transport sessions concurrently or sequentially without any fuss. More-
over, the reliability provided is for the end-to-end delivery rather than between two nodes of a
transport. What this means is that when compared to TCP, which ensures reliability between
only two ends of a connection, WCF reliability is end to end from a sender node to a receiver
node irrespective of the number of intermediaries. Also, you must keep in mind that the reli-
able sessions can support out-of-order delivery (First In First Out, or FIFO, which really is that
the messages should be processed in the order they arrive in rather than the logical order)
should this be desired.

WCF provides you with a number of settings to implement fairly sophisticated means of
applying network congestion detection, timeout intervals, retry counts, ordering, and so on.
These are a lot more than just the simple retry events you are familiar with, and they help
overcome issues by responding quicker to the loss of a message. (For further details on this,
please refer to the WCF SDK documentation.)

Let’s now dive into how you actually implement reliable sessions.

■Note The code in this chapter is slightly different from the code in Chapter 7. The reasoning behind this is to
reinforce the concepts within this chapter. For complete listings of the code, please refer to the solution files.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 253

7028Ch08.qxp 12/11/06 8:37 PM Page 253

Enabling WCF Web Service with Reliable Sessions
Assume you have an interface implemented that is called ITradeService, as shown in Listing 8-1.

Listing 8-1. ITradeService

using System;
using System.Collections.Generic;
using System.ServiceModel;
using System.Text;

namespace QuickReturns
{

[ServiceContract]
public interface ITradeService

{
[OperationContract]
string BeginTrade();
...
void Buy();
[OperationContract]
void EndTrade();

}
}

The AddTrade and EndTrade parameters that are provided for the OperationContract
attribute ensure that any sequence of invocations to the operation begin with the method and
complete with the CompleteDeal() method. The client application invokes BeginTrade() and
then invokes AddTrade() twice. It has a Buy() method followed by an EndTrade() method. Let’s
now assume that one of the AddTrade() invocations never reached the service. In this case, the
service would still operate in a valid manner, and the application would not miss AddTrade().
Similarly, consider the scenario where both the invocations have arrived at the destination.
For whatever reason, one of them was delayed and arrived after CompleteDeal() was invoked.
The execution sequence would still execute in a valid manner. However, this would not be in
the sequence intended by the client. Overcoming these problems is a fairly simple task.

To begin, make the changes shown in Listing 8-2 to ITradeService in order to ensure that
you do not have a scenario where messages could potentially be received out of order.

Listing 8-2. ITradeService Changes

[ServiceContract(SessionMode=SessionMode.Allowed)]
public interface ITradeService

This change will ensure that the messages are delivered in the order you intended. That is
practically all you need to do to ensure that you avoid the scenario where messages are
received out of order.

You now need to make the same change to the definition of ITradeService in the client, as
shown in Listing 8-3.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS254

7028Ch08.qxp 12/11/06 8:37 PM Page 254

Listing 8-3. Modifying ITradeService

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>

<client>
<endpoint

address="http://localhost/servicemodelsamples/service.svc"
binding="wsHttpBinding"
bindingConfiguration="Binding1"
contract="Microsoft.ServiceModel.Samples.ICalculator" />

</client>

<!-- binding configuration - configures WSHttp binding for reliable sessions -->
<bindings>
<wsHttpBinding>
<binding name="Binding1">
<reliableSession enabled="true" />

</binding>
</wsHttpBinding>

</bindings>

</system.serviceModel>

</configuration>

You will now modify the App.config file of the host project to incorporate the implementa-
tion of the WS-ReliableMessaging standard as implemented in the Windows Communication
Framework. You can do this by double-clicking the App.config file in the IDE or by simply
opening it in Windows Notepad. Add the lines shown in Listing 8-4 to the file.

Listing 8-4. Modifying the Service Host App.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<appSettings>
<!-- use appSetting to configure base address provided by host -->
<add key="baseAddress" value="http://localhost:8000/TradeService" />

</appSettings>
<system.serviceModel>

<services>
<service name="QuickReturns.TradeService">

<endpoint address="" binding="wsHttpBinding"
contract="QuickReturns.ITradeService"/>

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 255

7028Ch08.qxp 12/11/06 8:37 PM Page 255

<!-- Must have an HTTP base address for this -->
<endpoint address="mex"

binding="mexHttpBinding"
contract="IMetadataExchange" />

</service>
</services>
<!-- binding configuration - configures WSHttp binding

for reliable sessions -->
<bindings>

<wsHttpBinding>
<binding name="Binding1">

<reliableSession enabled="true" />
</binding>

</wsHttpBinding>
</bindings>

</system.serviceModel>
</configuration>

You will make similar changes to your client App.config file as well.
We recommend that you test this application using multiple machines. Put the server

application on one machine and the client on the other. Ensure that you can invoke the serv-
ice; once you have verified this, you can simulate problems. For example, remove the network
cable from the server to simulate an intermittent connection, and try calling the service. If the
executing thread blocks until the connection becomes available, then as soon as you plug the
server back in, you will notice that the call will complete successfully. The magic of reliable
sessions is in fact implemented by the ReliableSessionBindingElement class, which you will
look at more in depth next.

MOVING LARGE VOLUMES OF DATA RELIABLY

Moving large amounts of data between endpoints is somewhat of a sticky situation. Assume that you have a
requirement to move files that are 2GB in size between endpoints in your application. Under most circum-
stances, streaming offers you an ideal solution.

However, imagine that you are streaming this data across the wire and, because of a network outage,
you lose the connection. Given that you have implemented reliable messaging in your solution, the message
will be recovered. Here you have a small issue. When streaming data, the file is considered to be a single
message. Let’s assume you transferred 1GB prior to the outage. Therefore, the message will be resent from
the beginning when the transmission resumes. You will be starting over, which is not only annoying but can
be avoided.

The solution is to implement chunking instead of streaming in this scenario. With chunking, the sending
application will divide the message into smaller files (for instance, 1,000 files of 2MB). The downside of this
approach is that the throughput is likely to be lower than that of streaming because of the overhead of reli-
able messaging and the chunking taking place. When you need reliability while moving large files, use
chunking. You should be aware that chunking per se is not a feature of WCF even though it can be imple-
mented fairly easily. In the end, which threshold will trigger the switch from streaming to chunking is a
decision you as an architect will make based upon the operational environment.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS256

7028Ch08.qxp 12/11/06 8:37 PM Page 256

ReliableSessionBindingElement Class
The ReliableSessionBindingElement class provides the implementation of the reliable session
and ordering mechanisms as defined in the WS-ReliableMessaging specification.

This is provided on all of the standard protocols, such as netTCPBinding, wsHttpBinding,
and wsDualHttpBinding. The default values are false/off for the first two of these.

You can also provide reliable sessions for custom bindings quite easily. You would define
the reliable session in the same manner as you did for Http in the previous section. Your code
will look like Listing 8-5.

Listing 8-5. Changing the Bindings

<bindings>
<customBinding>

<binding configurationName="ReliabilityHTTP">
<reliableSession/>
<httpTransport/>

</binding>
</customBinding>

</bindings>

We discuss the actual implementation of custom bindings in greater detail in Chapter 3.

Some Pointers on Reliable Messaging
When using the functionality of reliable messaging, it is important to follow some basic prin-
ciples to ensure the scalability of the application.

It is advisable to keep your network in mind, and this includes the transports, firewalls,
proxies, and whatever else might be between the client application and the server application.

Internally in WCF, a transfer window is used to hold messages on the client as well as on the
server in the event of either not being reachable. This is a volatile cache and is fully configurable.
You can find the property in System.ServiceModel.Channels.ReliableSessionBindingElement.
MaxTransferWindow; the value of this is in fact the number of messages that can be held within
the transfer window. On the client side, this sets the number of messages held awaiting
acknowledgments, while on the server it indicates the number of messages that can be
buffered for the service in a given transfer window. By default, the value on this is eight mes-
sages; however, you can configure this size depending on the utilization, bandwidth, and
latency of your network infrastructure.

For example, even if the sender keeps up with data rate, latency could be high if there are
several intermediaries between the sender and receiver or an intermediary or network. Thus,
the sender will have to wait for acknowledgments for the messages in its transfer window
before accepting new messages to send on the wire. The smaller the buffer with high latency,
the less effective the utilization of the network is. On the other hand, too high a transfer win-
dow size may impact the service because the service may have to catch up to the high rate of
sends from the client.

Optimally you would like your network to have the lowest latency possible, but this is
often not the case. The transfer window can actually help out here. Keep in mind that setting
this value to 1, for example, might actually cause lost messages or dropped messages, thus
defeating the entire purpose of reliable messaging. Buffering, when used correctly, will

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 257

7028Ch08.qxp 12/11/06 8:37 PM Page 257

increase the concurrency of your application. If you are in doubt as to what you should set this
value at, it is advisable to leave it at its default setting.

■Note Before you decide to change any of the default settings, you should test and benchmark the differ-
ent settings for your environment.

Should you decide on a nondefault value, you should configure it on both the client and
the server. The correct value will in all likelihood require a measure of trial and error, as well as
some degree of understanding of the network.

Another aspect to keep in mind is flow control, which is a mechanism to help the sender and
receiver more or less keep pace with each other. Although the TransferWindow property does help
in this regard, another tool is available to you, namely, the FlowControlEnabled property.

This is a piece of magic pulled off by the WCF team that actually can allow the client and
service to either speed up or slow down, depending on how quickly each of them can produce
and consume messages. It is recommended that you set this to true.

On the next logical level in concurrent applications, the response of the service is gov-
erned by the MaxPendingChannels property. This property sets the number of client sessions
with which the service can do a handshake. It is possible that a service might not have enough
channels available, and in this scenario, when a client attempts to establish a session, it will
be refused. That is not something you want. At the same time, setting this value too high
could have adverse effects as well. The default value for the System.ServiceModel.Channels.
ReliableSessionBindingElement.MaxPendingChannels property is 4. What you should set it to
depends on your infrastructure.

When hosting your application, it is important to take into account a few more points.
Reliable sessions are stateful, and the state is maintained in the application domain. This
means all messages that are part of a reliable session must be processed within the same
application domain. This is a constraint in the event you are thinking of using a web farm or in
any scenario where the number of servers is more than one. Additionally, when you are using
dual HTTP channels, it is possible that each client might require more than two connects,
which is the default. Duplex reliable connections in certain cases could require two connec-
tions each way. The fallout of this is that you could enter a potential deadlock situation using
dual HTTP reliable sessions. This is easily overcome by setting the MaxConnections property to
a suitably high number in your configuration files. This can be done quite easily by simply
adding <add name = "*" maxconnection = "nn" /> to the connection management element.
Keep in mind that nn is the number of maximum connections you would like to set.

Message queuing is used primarily when you require true asynchronous messaging where
the lifetimes of the client and the service might not overlap. And the second scenario is where
you require reliability. In the real world, applications go down, and services are not always
available, especially in scenarios where you face poor network infrastructures. WCF uses the
underlying MSMQ technology to provide you with the means of leveraging the available tech-
nology to implement reliability, as you will see in the next section.

Reliable messaging, as you have seen, does not provide you with a silver bullet. In particular,
the WS-ReliableMessaging standard–compliant implementation means you really do not have
any durable storage for your messages. Using MSMQ, which is supported out of the box in WCF,

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS258

7028Ch08.qxp 12/11/06 8:37 PM Page 258

allows you to overcome the infrastructure unreliability to a greater extent. Queuing enables you
to effectively uncouple the transport for the messages from the actual processing of the mes-
sage. Moreover, the reliability provided is really only as reliable as the underlying infrastructure
in an environment where you do not have control over both endpoints of your application.
Figure 8-1 shows conceptually what happens. Figure 8-1 describes using persistent stores to uti-
lize the MSMQ communication between a WCF application and an MSMQ legacy application.

Figure 8-1. Conceptual MSMQ usage with WCF

Queuing in WCF
While designing distributed applications, selecting a transport is fairly important. Factors that
you should consider include the requirements of the client and the service but, most impor-
tant, whether you need a direct transport or a more isolated transport. In other words, unlike a
direct transport such as HTTP or TCP where all the communication will fail if the network
goes down, you want more resilience in the transport to overcome this issue. Typically, using a
queued transport will overcome this scenario, since it is backed by a store (that is, a durability
container).

Out of the box WCF provides the ability to use MSMQ, which is the Microsoft implementa-
tion of queued transports at the operating system level. Queues store messages from a sending
application on behalf of a receiving application and later forward these messages to the receiv-
ing application. They ensure the reliable transfer of messages between queues. WCF provides
support for queuing by using Microsoft Message Queuing (MSMQ) as a transport and enables
the following features:

Loosely coupled applications: Sending applications and receiving applications are not
dependent upon knowing whether the other is available. Moreover, both ends can send
and receive messages without being dependent upon how quickly the messages are actu-
ally processed. This in effect also makes the overall application achieve higher levels of
availability.

Failure isolation: The fact that loose coupling enables messages to be sent to the queue or
received from the queue without actually needing the endpoints to be running adds a
level of failure isolation. For example, let’s look at the scenario where the server side of the
application is unavailable and the client can continue to send messages to the queue.
Once the server (receiver) is available, it will pick the messages up and process them.

WCF Application

Persistent Store

MSMQ

MSMQ Legacy
Application

Persistent Store

MSMQMSMQ
Communication

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 259

7028Ch08.qxp 12/11/06 8:37 PM Page 259

Load leveling: Multiple instances of the server application are able to read from the same
queue and help the application scale out to meet the additional load. Additionally, a high
rate and volume of transactions are unlikely to overwhelm the receiver, since the mes-
sages will remain in the queue until processed by the receiving application at a rate
completely independent of the client application.

Disconnected operations: As you have examined, reliability can suffer greatly in environ-
ments with unreliable network availability. Queues allow these operations to continue
even when the endpoints are disconnected by providing a durable, albeit transient, mes-
sage store. When the connection to the receiver application is established again, the
queue will simply forward the messages to the receiver application for further processing.

It is also important to keep in mind that WCF uses MSMQ not only as the transport chan-
nel when communicating with WCF endpoints but also as a means of integrating with legacy
applications. Legacy applications in this context are anything written prior to the release of
WCF. These are applications that originally used MSMQ in order to provide a degree of relia-
bility in the world before WCF.

In addition, queuing in WCF is not synonymous with MSMQ. MSMQ is supported out of
the box in WCF (but is a feature of the Windows operating system), which makes its usage
easy. If you wanted to implement your own version of queues, you could do that using the
custom transport properties.

Durable storage, again, is not available out of the box with WCF since the WS-
ReliableMessaging standard does not specify any rules about this. Durable storage, however,
is possible using persistent queues, which are a feature of MSMQ and not WCF. This is a some-
what subtle but important distinction. The “reliable” aspect of reliable messaging really
depends on how stable your network is. It is more about the actual transport than trying to
ensure 100 percent delivery. It simply is not possible to achieve this without having control
over both ends of the application infrastructure (sender and receiver), which in turn opens up
an entirely different set of questions quite beyond the scope of this book. NetMsmqBinding
offers you a solution, but be aware that it is not WS-ReliableMessaging compliant for the very
reasons we have discussed.

Having stated that, you must also weigh the advantages offered by the NetMSMQ binding
stack, including durable storage, transactional I/O, and reliable guaranteed delivery of mes-
sages. The trade-offs are that you lose interoperability as offered by a web service environment
and are in essence operating on a Windows infrastructure only.

The NetMSMQ binding in WCF offers two distinct scenarios. One is where it is used as a
transport channel between two WCF application endpoints, and the second scenario is where
MSMQ is actually used to integrate with legacy applications that use MSMQ, also known as
the integration channel. Hence, you could integrate a WCF receiver or client endpoint to your
legacy application using MSMQ. This is possible since the queue channel in WCF is actually
independent of MSMQ behavior and is in effect only abstracting it.

To get started with MSMQ, you first need to install it on your machine if you have not
already done so.

Installing MSMQ
To install MSMQ, choose Add or Remove Programs from the Windows Control Panel to open
the dialog box shown in Figure 8-2.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS260

7028Ch08.qxp 12/11/06 8:37 PM Page 260

Figure 8-2. Selecting Add or Remove Programs

Click Add/Remove Windows Components, and then select Application Server in the Win-
dows Components Wizard, as shown Figure 8-3, and click the Details button.

Figure 8-3. Selecting Application Server

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 261

7028Ch08.qxp 12/11/06 8:37 PM Page 261

If Message Queuing is not checked in the Application Server dialog box (as indicated in
Figure 8-4), then check it and click the OK button. Then click the Next button in the Windows
Components Wizard, and follow the instructions on the subsequent screens to install MSMQ.

Figure 8-4. Selecting Message Queuing

Microsoft Message Queues in Windows Server 2007
WCF abstracts out MSMQ, though the behavior of MSMQ itself has remained the same, with
the exception of MSMQ under Windows Server 2007. If you have worked with MSMQ in the
past, you will recognize the familiar queue and the dead letter queue (DLQ). The queue is the
active channel where MSMQ actually stores the messages that are relevant and that will be
processed by the receiver application. The dead letter queue is where the messages end up if
they have timed out or have become irrelevant.

Windows Server 2007 also introduces the concept of a poison queue. A poison message is
one that has exceeded the number of retries. (In other words, say a receiver application is try-
ing to process a message, but it encounters an error. In this scenario, the message queue will
retry delivery until the timeout occurs. At this point, the message will end up in the DLQ. With
WCF on Windows Server 2007, a message will continue its set of retry attempts, and once that
is achieved, it will be put onto the poison queue.)

In WCF, poison message handling provides a way for the receiving application to deal with
poison messages. The poison message handling is provided by the following properties in
each of the available queued bindings:

MaxImmediateRetries: An integer value that indicates the maximum number of times to
retry delivery of the message from the main queue to the application. The default value is 5.

MaxRetryCycles: An integer value that indicates the maximum number of retry cycles. A
retry cycle consists of putting a message back into the application queue from the retry
queue to attempt delivery again. The default value is Max Value or 2,147,483,647, which is
the largest possible value for an int32.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS262

7028Ch08.qxp 12/11/06 8:37 PM Page 262

RetryCycleDelay: The time delay between retry cycles attempting to deliver a message
again. The default value is ten minutes. The retry cycle and the retry cycle delay together
provide a mechanism to address the problem where a retry after a periodic delay fixes the
problem.

RejectAfterLastRetry: A Boolean value that indicates what action to take for a message
that has failed delivery after the maximum number of retries has been attempted. If true,
the message is dropped, and a negative acknowledgment is returned to the sender. If
false, the message is sent to the poison message queue. The default value is false. This is
used when the receiving application cannot process the message after several attempts. If
you set the value to false, the message is moved to the poison queue. A queued WCF serv-
ice can then read the messages out of the poison queue for processing. A negative
acknowledgment to the sender is as yet unsupported so will be ignored under MSMQ 3.0.

■Note The poison message feature is supported only on Windows Server 2007 at the time of writing.
Another major difference area in Vista is in the DLQ. Under the currently supported versions of Windows,
there exists a single DLQ on a system-wide basis. However, with Vista you have the option of having DLQs
on a per-application basis. Windows Server 2007 also introduces the concepts of the subqueue and transac-
tional remote receives. The latter allows receiving applications to get the message in a transactional manner.
MSMQ did not support this earlier, though the functionality could be implemented in a convoluted manner by
using the peek method or by writing a custom dispatcher. Please refer to http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/wcecomm5/html/wce50lrfmsmqqueuepeek.asp for fur-
ther documentation on the peek method because it is implemented currently in MSMQ. In Figure 8-5, you
can see how a message is retried for a predefined number of times (in this case three times) and then sent
on to the poison queue. You can implement your own logic for how you want to handle messages in the poi-
son queue. Please refer to http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/msmq/html/42fe2009-310b-42fa-a65e-6d395c15ada5.asp for further details.

Figure 8-5. Retries in queues

As an MSMQ veteran, you will also miss the peek method that was available in previous
MSMQ implementations. WCF does not support the peek method; however, MSMQ retains
the behavior, which has nothing to do with WCF per se.

The requirement for application-wide queues in the past depended upon the usage of
public queues. This in turn required Active Directory. Utilizing private queues was not an
option, particularly when you needed to cross authentication boundaries. WCF no longer

1st attempt 3 retry cycles

2 retries 10 seconds
to Poison

Message Queue

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 263

7028Ch08.qxp 12/11/06 8:37 PM Page 263

requires the public queues, since the behavior of the MSMQ channel is akin to that of the
HTTP channel.

The channel stack, as you have seen in earlier chapters, is where WCF actually sends and
receives its messages. The transport channels, as you know, are where the messages get
exchanged between WCF endpoints, and the MSMQ transport channels, as you will see, are
really no different from the HTTP transport channels.

Transport Channels
The MSMQ transport channel is really geared toward allowing two WCF endpoints to commu-
nicate with each other using MSMQ. The transport channel supports using SOAP within a
message over MSMQ. You will typically use this when your network is inherently unreliable or
you want to ensure that your messages are delivered irrespective of the infrastructure issues.
In other words, use it when you are more concerned about transacted I/O and absolute guar-
anteed delivery rather than interoperability. You can accomplish this by using NetMsmqBinding,
which is predefined in WCF.

Let’s look at how you can use queuing in a WCF service as the transport channel. We’ll use
a self-hosted version of TradeService to illustrate the exchange of messages using the MSMQ
transport and its failover.

■Note Please keep in mind that the code snippets in the following listings are incomplete; you should refer
to the code samples for the complete listings. You can find the complete listing under \ProWCF\Chapter8\
QueueMessaging.

Begin by modifying TradeService as shown in Listing 8-6 to make it a self-hosted service.
Then utilize NetMsmqBinding, and create the queues as required.

Listing 8-6. Modifying TradeService for MSMQ

using System;
using System.Configuration;
using System.Messaging;
using System.ServiceModel;

namespace QuickReturns
{

// Define a service contract.
[ServiceContract]
public interface ITradeService
{

[OperationContract(IsOneWay=true)]
void DoTrade(string BuyStock, string SellStock, int Amount);

}

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS264

7028Ch08.qxp 12/11/06 8:37 PM Page 264

// Service class which implements the service contract.
// Added code to write output to the console window
public class TradeService : ITradeService
{

[OperationBehavior]
public void DoTrade(string BuyStock, string SellStock, int Amount)
{

Console.WriteLine("Received Request to Sell Stock {0}
with the quantity of {1} from And Buy {2}",
SellStock.ToString() , Amount.ToString(),
BuyStock.ToString());

Console.WriteLine();

}

// Host the service within this EXE console application.
public static void Main()
{

// Get MSMQ queue name from app settings in configuration
string queueName = ConfigurationManager.AppSettings["queueName"];

// Create the transacted MSMQ queue if necessary.
if (!MessageQueue.Exists(queueName))

MessageQueue.Create(queueName, true);

// Get the base address that is used to listen for
WS-MetaDataExchange requests

// This is useful to generate a proxy for the client
string baseAddress = ConfigurationManager.AppSettings["baseAddress"];

// Create a ServiceHost for the TradeService type.
using (ServiceHost serviceHost = new ServiceHost(

typeof(TradeService), new Uri(baseAddress)))
{

serviceHost.Open();

Console.WriteLine("The Trade Service is online.");
Console.WriteLine("Press <ENTER> to terminate service.");
Console.WriteLine();
Console.ReadLine();
// Close the ServiceHost to shutdown the service.
serviceHost.Close();

}
}

}

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 265

7028Ch08.qxp 12/11/06 8:37 PM Page 265

Notice that you add a reference to the System.Messaging namespace, which provides the
support for MSMQ. You also add code to create a message, should one not exist. You create the
host service like you did in Chapter 4.

Define the App.config file that specifies the service address and uses the standard
NetMsmqBinding binding for TradeService. The code looks like Listing 8-7.

Listing 8-7. TradeService NetMsmqBinding

<?xml version="1.0" encoding="utf-8" ?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

<system.serviceModel>
<services>

<service
behaviorConfiguration="MyServiceTypeBehaviors"
name="QuickReturns.TradeService">
<endpoint address="net.msmq://localhost/private/TradeQueue"

binding="netMsmqBinding"
bindingConfiguration="DomainlessMsmqBinding"
contract="QuickReturns.ITradeService"
/>

<!-- Add the following endpoint. -->
<!-- Note: your service must have an http base

address to add this endpoint. -->
<endpoint contract="IMetadataExchange" binding=

"mexHttpBinding" address="mex" />

</service>
</services>

<bindings>
<netMsmqBinding>
<binding name="DomainlessMsmqBinding" >
<security>
<transport
msmqAuthenticationMode="None"
msmqProtectionLevel="None"/>

</security>
</binding>

</netMsmqBinding>
</bindings>

...
</configuration>

You then modify the client to be able to utilize the NetMSMQ bindings, as shown in
Listing 8-8.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS266

7028Ch08.qxp 12/11/06 8:37 PM Page 266

Listing 8-8. Modifying the Client

using System;
using System.Data;
using System.Messaging;
using System.Configuration;
using System.Web;
using System.Transactions;
namespace QuickReturns
{

class Client
{

static void Main()
{

// Create a proxy for the client
using (TradeServiceClient proxy = new TradeServiceClient())
{

//Create a transaction scope.
using (TransactionScope scope = new TransactionScope

(TransactionScopeOption.Required))
{

proxy.DoTrade("MSFT", "IBM", 60);
Console.WriteLine("Selling 60 stocks of IBM and Buying MSFT ");

proxy.DoTrade("ACN","ABN", 100);
Console.WriteLine("Selling 60 stocks of ABN and Buying ACN ");

// Complete the transaction.
scope.Complete();

...
}

As you have seen, you add a transaction scope around the DoTrade method in order to
have the service utilize the NetMSMQ binding correctly. You will learn more about transac-
tions in the next chapter. Now modify the App.config file for the client in order to use MSMQ,
as per Listing 8-9.

Listing 8-9. Modifying the Client App.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<system.serviceModel>
<bindings>

<netMsmqBinding>
<binding name="NetMsmqBinding_ITradeService" closeTimeout="00:01:00"

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 267

7028Ch08.qxp 12/11/06 8:37 PM Page 267

openTimeout="00:01:00" receiveTimeout="00:10:00"
sendTimeout="00:01:00"

deadLetterQueue="System" durable="true"
exactlyOnce="true"

maxReceivedMessageSize="65536" maxRetryCycles="2"
receiveErrorHandling="Fault"

receiveRetryCount="5" retryCycleDelay="00:30:00"
timeToLive="1.00:00:00"

useSourceJournal="false" useMsmqTracing="false"
queueTransferProtocol="Native"

maxBufferPoolSize="524288" useActiveDirectory="false">
<readerQuotas maxDepth="32" maxStringContentLength=

"8192" maxArrayLength="16384"
maxBytesPerRead="4096" maxNameTableCharCount=

"16384" />
<security mode="Transport">

<transport msmqAuthenticationMode="None"
msmqProtectionLevel="None" />

<message clientCredentialType="Windows" />
</security>

</binding>
</netMsmqBinding>

</bindings>
<client>

<endpoint address="net.msmq://localhost/private/
TradeQueue" binding="netMsmqBinding"

bindingConfiguration="NetMsmqBinding_ITradeService"
contract="ITradeService"

name="NetMsmqBinding_ITradeService" />
</client>

</system.serviceModel>
</configuration>

In this code, you set timeouts, the dead letter queue (should the message time out), the
number of retries, and several related parameters. You also define that the client should use
the netMSMQBinding elements.

Right-click the solution, and set the client, TradeService, as the start-up project. Run the
application. Close TradeService, and let the client send messages. You can then browse the
MSMQ queues in the Computer Management console and see the messages in the queue, as
shown in Figure 8-6.

Start another version of TradeService, and you should be able to see the same messages
being processed by the service.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS268

7028Ch08.qxp 12/11/06 8:37 PM Page 268

Figure 8-6. Messages in TradeQueue

The scenario here addresses the use of discrete transactions; however, in some cases,
you would need to use batch processing. Typically when you will be dealing with back-end
applications such as order-clearing systems, you would encounter this issue. For further
thoughts on batch processing with queues, please refer to the “Batch Processing with Queues
Using Sessions” sidebar.

BATCH PROCESSING WITH QUEUES USING SESSIONS

When messages are processed together or in a specified order, you can use a queue to group them to facilitate
batch processing by a single receiving application. To understand this better, you’ll now look at an example.

Say you are selling products online and want to process orders that consist of multiple line items. The
client application stores each of these line items as messages in a queue to be processed by a back-end
order-processing system implemented as a WCF service. In a farmed back-end order-processing system, if
each line item message is processed by a different back-end server, the performance will suffer. In a non-
farmed system with only a single back-end server, the server must process unrelated order line items as they
come out of the queue. This complicates the business logic and degrades performance because the server
switches between processing different orders.

For performance and for correctness, it is best to have a single back-end system to process all line items
associated with an order. WCF provides the concept of a session, which allows a server to maintain state for a
client over a series of interactions. You can use a session to group all the messages related to an order so that
a single receiving application and the same service instance can process all the related messages.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 269

7028Ch08.qxp 12/11/06 8:37 PM Page 269

The MSMQ transport channel at the sender places the body of the WCF message within
the MSMQ message and sends it via the MSMQ transport. It is the job of the MSMQ transport
channel stack at the receiver to unpack the WCF message from the MSMQ message and then
to dispatch it as an invocation operation on the WCF service. The common theme in WCF is
that the real work of messaging is in the channel, which abstracts out most of the complexities
involved from the developer to make life simpler.

Implementing the MSMQ transport channel in WCF to integrate two WCF endpoints, as
you have seen, is a straightforward task. Let’s now look at the integration channel.

Integration Channels
Massive amounts of applications have already been deployed and will not be thrown away
because of an emerging set of tools. We would prefer the world to become WCF compliant
overnight, but the chances of that happening are slim.

WCF addresses this issue with a practical solution. The queuing channel within WCF
offers the concept of integration channels, which should be used to communicate with the
legacy applications that use MSMQ. The integration channel for queues in WCF continues to
use the classic MSMQ messaging formats and is implemented via the MsmqIntegrationBinding
binding.

What is occurring here is that the MSMQ message is mapped out to a WCF message and,
once this has been achieved, invokes the WCF service. Alternatively, when you have a WCF
application sending out a message, the reverse of the previous occurs. The properties of the
WCF message are mapped back to those available in the legacy MSMQ message format, thus
enabling the legacy application to consume the message.

The next section discusses the two scenarios in greater detail.

Integrating a WCF Client with an MSMQ Receiver
Leveraging existing investments in applications is a scenario that you will witness fairly often.
Typically you will find that your key business processes are on opposite sides of the queue,
and typically one of them will not be a WCF application.

In this scenario, the WCF client will hand the message to the integration channel, which
will convert it to the MSMQ message format. Then the queue manager will store it in its local
store. When the receiver MSMQ application becomes available, it will hand the message over
to the queue manager for the receiver application and be consumed, as shown in Figure 8-7.

Figure 8-7. Integrating with an MSMQ application

WCF Application

Persistent Store

MSMQ

Persistent Store

MSMQMSMQ
Communication

WCF Service

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS270

7028Ch08.qxp 12/11/06 8:37 PM Page 270

You will now look at how you can integrate your WCF application to a legacy application
using the MSMQ integration channel. Here are the steps (assuming you already have the
message-receiving service up and running).

First, create an interface that defines the service contract for the WCF service that will
send queued messages to the MSMQ receiver, as shown in Listing 8-10.

Listing 8-10. MSMQ Receiver Interface

[ServiceContract]
interface ITradeService
{

[OperationContract(IsOneWay = true)]
void SubmitPurchaseOrder(MsmqMessage<BuyTrade> msg);

}

Second, create the configuration that specifies the use of the IntegrationBinding binding,
as shown in Listing 8-11.

Listing 8-11. IntegrationBinding Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

<system.serviceModel>

<client>
<endpoint name="TradeServiceLegacy"

address="msmq.formatname:DIRECT=OS:.\private$\LegacyQueue"
binding="msmqIntegrationBinding"
bindingConfiguration="TradeServiceBinding"
contract="QuickReturns.ITradeService">

</endpoint>
</client>

<bindings>
<msmqIntegrationBinding>
<binding name="TradeServiceBinding" >
<security mode="None" />

</binding>
</msmqIntegrationBinding>

</bindings>
</system.serviceModel>

</configuration>

You can now perform a buy or a sell in a transacted manner using MSMQ. And that is it. It
is quite easy to integrate an MSMQ application with a WCF application. Now that you have
accomplished this, you’ll see how you can integrate an MSMQ client with a WCF application.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 271

7028Ch08.qxp 12/11/06 8:37 PM Page 271

Integrating an MSMQ Client with WCF Service
This scenario is commonly encountered when legacy applications need to interact with
newer, more up-to-date applications. Traditionally this has been a nightmare scenario.

Legacy applications seldom have the flexibility to be able to be integrated with newer
technologies. In a business scenario, when critical processes reside in two different technolo-
gies, this equates to a great deal of frustration. However, if your legacy application uses MSMQ
for messaging, then you can rectify this situation easily with WCF. The sender can still con-
tinue sending messages as it always has, and no change is required to the client application.
WCF can easily integrate and communicate with the legacy system. Figure 8-8 illustrates this
scenario.

Figure 8-8. Integrating with a WCF client

The msmqIntegrationBinding binding also allows you to integrate with MSMQ clients
fairly easily. Let’s see how you can accomplish this.

Create an interface that defines the service contract for the WCF service that will receive
queued messages from an MSMQ client, as shown in Listing 8-12.

Listing 8-12. msmqIntegrationBinding

// Define a service contract.
[ServiceContract(Namespace = "http://QuickReturns")]
[KnownType(typeof(SomeOrder))]
public interface ITradeProcessor
{

[OperationContract(IsOneWay = true, Action = "*")]
void SubmitSomeOrder(MsmqMessage<SomeOrder> msg);

}

Next implement the IOrderProcessor interface, and apply the ServiceBehavior attribute,
as shown here:

// Service class which implements the service contract.
// Added code to write output to the console window
public class TradeProcessorService : ITradeProcessor

WCF Application

Persistent Store

MSMQ

Persistent Store

MSMQMSMQ
Communication

WCF Service

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS272

7028Ch08.qxp 12/11/06 8:37 PM Page 272

{
[OperationBehavior(TransactionScopeRequired = true,

TransactionAutoComplete = true)]
public void SubmitSomeOrder(MsmqMessage<SomeOrder> somemsg)
{

SomeOrder so = (SomeOrder)somemsg.Body;
}

}

You will now create the configuration to use the integration binding, as shown in Listing 8-13.

Listing 8-13. Configuration for Integration Binding

<?xml version="1.0" encoding="utf-8" ?>
<configuration >
<appSettings>
<!-- use appSetting to configure MSMQ queue name -->
<add key="orderQueueName" value=".\private$\ReceiveOrders" />

</appSettings>
<system.serviceModel>
<services>
<service
name="QuickReturns.LegacyReceive" >
<endpoint address="msmq.formatname:DIRECT=OS:.\private$\ReceiveOrders"

binding="msmqIntegrationBinding"
bindingConfiguration="OrderProcessorBinding"
contract="QuickReturnsLegacyReceive">

</endpoint>
</service>

</services>

<bindings>
<msmqIntegrationBinding>
<binding name="OrderProcessorBinding" >
<security mode="None" />

</binding>
</msmqIntegrationBinding>

</bindings>
</system.serviceModel>

What you have accomplished here is to define the service endpoints and let the applica-
tion know to which method to bind the application. And you told it where the endpoint is
actually located.

You will now create the service host, in this case using a console-based executable, as
shown in Listing 8-14.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 273

7028Ch08.qxp 12/11/06 8:37 PM Page 273

Listing 8-14. Creating the Service Host

// Host the service within this EXE console application.
public static void Main()
{
// Get MSMQ queue name from app settings in configuration

string queueName = ConfigurationManager.AppSettings["LegacyQueue"];

// Create the transacted MSMQ queue if necessary.
if (!MessageQueue.Exists(queueName))

MessageQueue.Create(queueName, true);
using (ServiceHost serviceHost = new ServiceHost(typeof(TradeService)))
{

serviceHost.Open();

// The service can now be accessed.
Console.WriteLine("The service is ready.");
Console.WriteLine("Press <ENTER> to terminate service.");
Console.ReadLine();

// Close the ServiceHostBase to shutdown the service.
serviceHost.Close();

}
}

Start the host, and you are good to receive and process messages from an MSMQ client.
As you have seen, using queues with WCF is fairly easy. There is not a lot of complexity or

code required to integrate legacy applications using the integration channel with WCF.

Some Pointers on Using MSMQ
As you have seen, MSMQ offers you the ability to provide a durable store for your messages
and an easy way to integrate with other non-WCF applications that use MSMQ, but you
should keep in mind a few pitfalls and pointers when using MSMQ:

• It is important to note that the durability of the messages depends on the durability of
the queue. MSMQ queues have a property called Durable. This means that when set to
true, every message received on the queue will be written to disk until processed. If this
property is set to false, keep in mind that if the machine hosting the queue fails, all
messages in the queue will be lost. By default, this is set to true. It does have some per-
formance overhead; however, it is not recommended that you change this to anything
else, since that would mean that end-to-end reliability could no longer be guaranteed.
Of course, both the client and server ends need to have durability enabled to provide
the reliability that you want.

• Disabling the DLQ is not recommended. If you are developing for MSMQ 4.0 or later, it
is recommended that you configure one DLQ per application and use the poison mes-
sage–handling capabilities. For more information, please refer to the MSMQ guide on
MSDN.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS274

7028Ch08.qxp 12/11/06 8:37 PM Page 274

• Again, in a web farm scenario, be aware that MSMQ 3.0 is not able to perform remote
transacted reads. This is a limitation on MSMQ and not WCF.

• In general while using the MSMQ channels, please ensure complete familiarity with the
base technology, since your issues are likely to be more with the MSMQ infrastructure
rather than WCF.

Summary
In this chapter, you learned the following:

• Why you need reliable messaging

• How to use the reliable messaging options offered by WCF

• How to implement reliable messaging using reliable sessions

• What queuing channels are available in WCF

• How to use the MSMQ transport channel

• How to use the integration channel

• How to integrate with an MSMQ receiver application

• How to integrate your application with an MSMQ client

We recommend the Vista SDK and WCF documentation for further information about this
topic. Please dive into the code listings that implement reliable messaging within the .NET
Framework also. You’ll find the API-level implementation of the subject discussed here, as well
as guidance on best practices.

In Chapter 9, you will learn about support for transactions in WCF and how to implement
transactions. Transactions are important in business dealings. Executing a set of processes as
a transaction can ensure reliability and consistency of data.

CHAPTER 8 ■ IMPLEMENTING RELIABLE MESSAGING AND QUEUE-BASED COMMUNICATIONS 275

7028Ch08.qxp 12/11/06 8:37 PM Page 275

7028Ch08.qxp 12/11/06 8:37 PM Page 276

Using Transactions in WCF

Transactions are fundamental to applications in order to ensure consistent behavior for data.
In addition, they are a fundamental building block for ensuring the implementation of
atomic, consistent, independent, and durable (ACID) behavior in an application. In the
QuickReturns Ltd. application, ACID behavior means that when you do make a trade, it is
absolute. It will either be complete in its entirety or be rolled back, leaving no room for ambi-
guity. If you were to put in a buy order for a stock, you would definitely want to be sure that
the trade were absolute, right? Without transactions, you would not be sure that the trade was
indeed conducted, and you would have no means of verifying the validity without ambiguity.
Having a transactional system ensures that trades are consistently applied and are final. After
all, you want to be clear about whether a trade has actually occurred.

You need to ensure that the systems being built provide you with features such as recover-
ability. That is, if a service or machine fails, when it does come back, data is still available.
Scalability is another area where transactions are critical, since it clearly earmarks the point
at which resources are requested and released at the end of the transaction. This enables you
to avoid deadlocks, whereby two or more threads are trying to acquire the same resources,
causing the application to hang. Typically deadlocks are resolved by making one of the threads
release its resources. Transactions are critical in this to ensure safe system state and to ensure
that any data that was being applied is rolled back successfully. Finally, transactions are
important to preserve data integrity. (In other words, when you perform the same query to
your persistent data store, you want to receive the same result each time.) Transactions are the
basis of ensuring this. These are key business drivers for transactional support in any enter-
prise application.

WCF provides rich support for transactions, and you will look at that support in detail in
this chapter. Specifically, we will cover the following topics:

• The need for transactions

• The types of transactions in WCF

• How to define transactions in WCF

• How to use transactions with queues

This chapter builds on the concepts introduced in Chapter 8; it is important that you are
familiar with those concepts, since they really do go hand in hand with each other.

277

C H A P T E R 9

■ ■ ■

7028Ch09.qxp 12/11/06 8:36 PM Page 277

What’s a Transaction?
What is a transaction? Broadly speaking, a transaction is a mechanism to ensure that several
operations succeed or fail as an atomic unit. In other words, it ensures that all operations
succeed or all operations fail in the event that even one of the constituent components of the
transaction encounters an error. Broadly speaking, transactions enforce the ACID rule popu-
larized in database programming. WCF provides a simple centralized manner to support
transactions within your applications. Prior to WCF, although there were mechanisms to
support transactions (Begin Transaction...End Transaction in Visual Basic, for example), a
single standard means of being able to support nondatabase transactions was not a trivial task
to say the least. A transaction enables you to carry out a set of operations as a single execution
unit whereby you achieve reliable results.

In the QuickReturns Ltd. scenario, you conduct trades on the stock exchange, and not
knowing for sure whether a trade was successful could have disastrous results. Using the
transaction mechanism, you achieve the following results:

Atomicity: The trades go through the system as single unit, thus achieving durability or
aborting as a single unit, where nothing goes through in a rollback of the transaction.

Consistency: This guarantees that the transaction is a correct transformation in the system
state. All orders that are part of a single transaction do so with the correct attributes
(buy/sell, associated quantities/prices), and that behavior is repeatable identically time
after time.

Isolation: This ensures that each transaction is independent and isolated from other
transactions that could be occurring simultaneously in the system. The transactions do
not have any impact on the behavior of any other transaction that might be occurring in
the system. Looking at the trade system, it is more than likely that more than one user is
using the system to trade at the same time. The isolation of the transactions ensures that
the trades conducted by other users, or even multiple trades occurring at the same time
from a single user, are treated as being distinct and separate from each other.

Durability: As the name suggests, this ensures that all data is committed to a nonvolatile
resource such as a database, an XML file, or even a flat file. The data of the transaction
must remain available even though the transaction has long since completed. For us, this
provides a record for the trades provided. You can check when a particular trade was con-
ducted and have the data available to you whenever you want it.

WCF implements the WS-Atomic protocol to enable transaction support. This enables
you to build transactions that can interact with multiple endpoints inside WCF and with third-
party systems such as web services.

A transaction has multiple discrete players involved in the process. These components
interact with each other and are essential for any given transaction. If you consider Figure 9-1,
you can see that any transaction has three essential components: the application, the persist-
ent store, and the transaction manager.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF278

7028Ch09.qxp 12/11/06 8:36 PM Page 278

■Note Looking again at QuickReturns Ltd. from a business perspective, you might need transactions that
span multiple business activities. For example, you might put in a sell order and then want to buy oil futures
at a predefined price. Should you be unable to get your oil futures at the desired price, you might want to
hold off on the sale itself. This scenario is referred to as a compensating transaction, whereby all discrete
components of the flow are treated as a single transaction. The compensating transaction offers looser cou-
pling than the atomic transaction protocol, with the trade-off that compensating transactions are inherently
more difficult to code and maintain. WCF does not provide support for compensating transactions out of the
box. In other words, should you need a compensating transaction, you would need to implement the code
yourself, use a complementary product such as Windows Workflow Foundation, or utilize Microsoft Distrib-
uted Transaction Coordinator (MS DTC) to achieve this.

Figure 9-1. Participants in a transaction

KERNEL TRANSACTION COORDINATOR

The Kernel Transaction Coordinator is a feature of Windows Server 2007 that allows you to make the transac-
tion available as a kernel object rather than a user object. The advantage of the Kernel Transaction Manager
(KTM) is that it allows you to access system objects such as the file system or access files via transactions.
You can leverage this in conjunction with WCF applications that need to read from files and write to files, for
example, to provide transactional support where hitherto there was none.

It is important to keep in mind that the KTM is not part of WCF but rather the Windows Server 2007 family.
You can find more information about the KTM and its usage at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/KTM/fs/transaction_managers.asp.

Pe
rs

is
te

nt
St

or
e

Transaction
Manager

WCF
Application

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 279

7028Ch09.qxp 12/11/06 8:36 PM Page 279

The application imitates a transaction, which could be over any of the supported proto-
cols, in essence to commit it to a persistent store such as SQL Server or Oracle or even a flat
file. The coordination between the application and the persistent store to comply with the
ACID rule for transactions takes place by the transaction manager in the background. This
could be the Lightweight Transaction Manager (LTM), the MS DTC, or even a custom transac-
tion manager. The role of the transaction manager is to enlist all parties in the transaction,
preparing them for the transaction. This means ensuring that they are available and ready to
participate in the transaction. (The persistent store is also referred to as a resource manager in
some documentation.) Then you can commit, or you can roll back if the data is not persisted.
The LTM is implemented by System.Transactions and provides an extremely fast means for
transaction management for volatile data within the application domain. Figure 9-2 displays
the transaction stack in .NET 3.0 including the kernel transaction manager, which will be
available in Windows Server 2007. (See the “Kernel Transaction Coordinator” sidebar for more
information.)

Figure 9-2. Transactions in .NET 3.0

Understanding the Types of Transactions in WCF
Implementing reliable messaging has multiple challenges. You could broadly categorize these
challenges into communication issues and processing issues. More often than not, these are
interrelated challenges that are nontrivial in nature to solve. In WCF, the transaction is imple-
mented in System.ServiceModel, which easily enables you to configure TimeOuts, activation
(Just in Time), and the behavior of the transaction in terms of functionality, contracts, and
flow. The System.Transactions namespace allows you to implement your own transaction or
use the System.Transactions namespace’s TransactionScope class to use the implicit model
within WCF.

.NET
Framework

WCF AppsWCF Declarative Transactions

System.Transactions

Lightweight Transaction Manager

Implicit

Transaction

Kernel Transaction

Coordinator

(Windows Server 2007)

Distributed Transaction

Coordinator

Manual Transactions

Committable Transaction

Participate
As Required

CHAPTER 9 ■ USING TRANSACTIONS IN WCF280

7028Ch09.qxp 12/11/06 8:36 PM Page 280

The transactions themselves internally use a mechanism called two-phase commit. The
two-phase commit protocol lets all the nodes involved in a distributed transaction participate in
an atomic manner. During the course of the two-phase commit transaction protocol, the state of
the transaction transitions multiple times. The two-phase commit protocol has three stages:
active, phase 1, and phase 2. In the active stage, the transaction is created. The superior resource
manager (the resource manager of the creator) will enlist the other resource managers, who will
become active in the transaction. In phase 1 of the two-phase commit transaction, the creator
has issued the commit command for the transaction, and the enlisted resource managers
respond about whether they are prepared to commit. If the responses are prepared to commit,
the transaction will move to phase 2. Otherwise, it will abort.

In phase 2 of the two-phase commit transaction, the superior resource manager will write
a durable entry to an internal log and then issue the commit to the enlisted resource man-
agers. Once this is done, the superior resource manager will begin sending the commit to the
enlisted resource managers and, irrespective of any errors (network, resource unavailability,
and so on), will continue until all enlisted resource managers have been sent a commit mes-
sage. Then the superior resource manager will wait for the confirmation of the commit from
the enlisted resource managers or for an error message. Alternatively, it will wait until a time-
out occurs. Should all enlisted resource managers respond positively about the commit, the
superior resource manager will erase the log entry, and the transaction will end. In the event
of an error, the transaction will abort. Internally the System.Transactions namespace utilizes
the two-phase commit protocol. Figure 9-3 explains this graphically.

Figure 9-3. The two-phase commit transaction

Active Phase
Enlist resource manager.

Get confirmation of enlistment.

Transaction Scope

Phase 1
Check whether enlisted resource
managers are ready to commit.

If all resource managers are prepared
to commit, proceed to phase 2.

Otherwise, abort.

Phase 2
Write to log.

Issue commit.
Receive success/failure.

If all are successful, remove from log
and end transaction. Otherwise, abort.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 281

7028Ch09.qxp 12/11/06 8:36 PM Page 281

MS DTC AND WCF

The MS DTC is designed to support transactions that span multiple Windows systems. Each of the machines
participating in the transaction has local transaction managers that are enlisted by MS DTC for the transaction,
and the initiating manager handles the coordination between the local managers on the remote systems. The
transaction is executed as a single atomic transaction whereby MS DTC will commit to all participating
machines in a single unit or roll back the transactions across all the participating machines. MS DTC transac-
tions utilize the OLE transaction–compliant resource managers and explicitly control the duration and the
scope of the transaction; they can be invoked from any application written in C or C++. You can interface with
these applications through the interop interfaces in WCF, which we’ll discuss in greater detail in Chapter 10.

For further details about MS DTC programming, please refer to the DTC Programmer’s Reference at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/html/
c0f7d3dd-4da1-45df-8516-d0d2ec1b0ca6.asp.

So in the QuickReturns Ltd. scenario, when the client invokes the trade, it will utilize its
resource manager to enlist the trade service’s resource manager. Then in phase 1 of the two-
phase commit, it will get its confirmation to participate in the transaction, once the data has
been marshaled to the trade service resource manager. And then in the second phase, the data
would be committed as well as the transaction completed.

In addition to this, you can also use the MS DTC to implement transactions that span
multiple Windows (XP/2003 or later) infrastructures. In the scenario where MS DTC is utilized
to provide transactions, each of the machines and applications that participate within the
transaction has its own local resource managers that cooperatively manage transactions that
span multiple systems. Distributed transactions are in essence transactions that update data
across two or more systems as a single unit. Distributed transactions are required and are dif-
ficult to implement in the absence of the MS DTC since the application’s resource manager
must detect and recover from a variety of failure scenarios, including the network infrastruc-
ture, local availability of resources in a distributed environment, and state management
across multiple machines. We’ll concentrate on System.ServiceModel primarily, though we will
dive into the problem space of distributed transactions in the next section. For further details
about MS DTC in the context of WCF, please refer to the “MS DTC and WCF” sidebar.

If you look at a scenario in the QuickReturns Ltd. application where you would at some
point like to register the trade with the broker and the stock exchange as single transaction,
you will begin to appreciate the requirements for MS DTC support.

Defining Transactions in WCF
WCF supports the WS-Atomic transaction protocol. Transactions in WCF have been defined
with the System.ServiceModel namespace and feature three main components. These are the
ServiceBehavior attribute, the OperationBehavior attribute, and the TransactionFlow attrib-
ute. You will look at each of these in a little more depth and examine what these achieve
individually in the transaction in the following sections. You’ll learn about their implications
prior to jumping into the how-tos of implementing them.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF282

7028Ch09.qxp 12/11/06 8:36 PM Page 282

Using the TransactionFlow Attribute
The TransactionFlow attribute specifies whether the service can be related to the external
interactions and the level at which the incoming transaction is accepted. The only options
available are Allowed, NotAllowed, and Mandatory. You set this in App.config, which essentially
passes information about the transaction to the service, and will either slow down or speed
up the rate of transactions depending upon the network conditions. Transaction flow is deter-
mined by the bindings and by default is disabled. Unless you explicitly utilize it, it will not be
enabled, as you can see in Listing 9-1. The listing enables the transaction flow for the
ITradeService interface.

Listing 9-1. Enabling Transaction Flow

<!-- binding configuration - configures WSHttp binding
for Transactions sessions -->

<bindings>
<wsHttpBinding>

<binding name="ITradeService" transactionFlow="true">
<reliableSession enabled="false" />

</binding>
</wsHttpBinding>

</bindings>
<behaviors>

<serviceBehaviors>
<behavior name="MyServiceTypeBehaviors" >

<!-- Add the following element to your service
behavior configuration. -->

<serviceMetadata httpGetEnabled="true"/>
<serviceDebug httpHelpPageEnabled="true"

includeExceptionDetailInFaults="false"/>
</behavior>

</serviceBehaviors>
</behaviors>

Using the ServiceBehavior Attribute and the OperationBehavior
Attribute
The ServiceBehavior attribute defines the behavior of the contract and the attributes of the
transaction. In essence, this is how the transaction will behave under circumstances such as a
failure in the network; it specifies whether resources should be released when a transaction
completes, as well as concurrency in the transaction. The attributes of the ServiceBehavior
attribute include the following:

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 283

7028Ch09.qxp 12/11/06 8:36 PM Page 283

TransactionAutoCompleteOnSessionClose: Specifies whether outstanding transactions are
completed when the session closes and by default is false. For example, if in the trading
service you were to shut the trading service down, this affects how the incoming sessions
would behave. The default setting ensures that if an error occurs (when the service is shut
down or unavailable or when there is a network error), then the transaction would abort
and roll back to its original state. You can also set this to true, in which case the incoming
session will degrade gracefully. In other words, it will shut down in a controlled fashion
rather than just crash. Additionally, any uncompleted transaction is successfully com-
pleted. However, this is from the perspective of the client and can potentially lead to an
inconsistent state, since the trade service will not be available though the client thinks
that the transactions did commit correctly.

ReleaseServiceInstanceOnTransactionComplete: Specifies whether the underlying service
instance is released when a transaction completes. The default value for this property is
true. This means each instance will create a new transaction scope. Releasing the service
instance is an internal action taken by the service and has no impact on sessions and/or
instances established by clients. The transaction scope is the entire process of enlisting
the various parties in a communication, exchanging the data, and then terminating the
connection once the exchange of the data is completed. In the QuickReturns Ltd. exam-
ple, the transaction scope would be establishing the client connectivity to the trade
service and then passing the actual trade messages. Then, once the service has received
the data, it includes terminating the specific connection created for the transaction.
Managing transaction scope was quite a daunting task if it had to be done manually.

Within the ReleaseServiceInstanceOnTransactionComplete attribute, you have four primary
ways of completing transactions:

• An operation marked with TransactionAutoComplete equal to true returns control to the
initiator of the transaction.

• A service calls the SetTransactionComplete.

• A client closes a session associated with an active transaction that is still executing or
there is a network error; in either of these scenarios, the result is a rollback if the
TransactionAutoComlete is set to false.

• Alternatively, the transaction aborts, for any given reason. These can be set quite easily
in the OperationBehavior attribute, as defined in Listing 9-2.

Listing 9-2. Setting the OperationBehavior Attribute

[OperationBehavior(TransactionScopeRequired=true,TransactionAutoComplete=true)]
void ITradeService.AddTrade(Trade trade)

Keep in mind that if this property is set to true, ConcurrencyMode must be set to Single, or
else the service will throw invalid configuration exceptions.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF284

7028Ch09.qxp 12/11/06 8:36 PM Page 284

The TransactionIsolationLevel property deals with how the data is to be versioned (or in
other words, the isolation level to be applied). If TransactionScopeRequired is set to true and
no transaction is flowed, then the TransactionIsolationLevel property takes one of the
IsolationLevel values: ReadCommited where only nonvolatile data can be read or ReadUnCommited
where even volatile data can be read. If this property is left blank, it will default to Unspecified.
This specifies that the method accepts any isolation level for a transaction that flows into it
and uses Serializable where each transaction is completely separate from any other transac-
tion when you create a new transaction. Should you decide to change the default value on the
calling application, please keep in mind that it must match the local values for the transaction
to succeed. A mismatch in the values will cause the transaction to fail.

The TransactionTimeout property, just as the name suggests, sets the time period within
which a new transaction created at the service must complete. If this time is reached and the
transaction is still not completed, it aborts. The TimeSpan set in this property is used as the
TransactionScope timeout for any operations that have TransactionScopeRequired set to true
and that have established a new transaction. Although it is important to give your transactions
adequate time to complete, setting this value too high or too low will have a serious impact on
the performance of the application. Listing 9-3 shows how to implement the transaction isola-
tion level, which in this case is set to ReadCommited.

Listing 9-3. Setting the Transaction Isolation Level

ServiceBehavior(TransactionIsolationLevel=
System.Transactions.IsolationLevel.ReadCommited)]

public class TradeService : ITradeService

The OperationBehavior attribute, as the name suggests, helps you configure the behavior
of the transaction. By default this is set to false, which in turn means that if a transaction scope
has not been defined, then the operation will occur outside the scope of the transaction.

Let’s put this into context; as you saw in the previous chapter, you were not using transac-
tions or defining the OperationBehavior attribute in the code. So, even though the trade service
was receiving the messages reliably from the client application, there really was no guarantee
that the data was actually persisted correctly. This is a scary scenario.

However, keep in mind that even when the OperationBehavior attribute is set to false and
you do want a transaction scope, it is derived from the calling application. So, what happens if
you have defined a TransactionScope on the client and none on the service? In this case, what
occurs is that the transaction scope of the client would be utilized to create a transaction
scope on the service, even though none was defined for the service. This is a boon for develop-
ers, who can now really decouple their application from the implementation of the service.

Now that you have gone through the dense and somewhat difficult theory and attributes
of the transaction, you’ll look at how to add transaction support to the WCF application.

■Note We will continue to build upon the concepts covered in Chapter 8, since reliable messaging and
transactions really do go hand in hand. As you have seen, having just reliable messaging or transactions
independently does not allow you to offer the reliable and durable results or the solution you will want.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 285

7028Ch09.qxp 12/11/06 8:36 PM Page 285

Defining Transactions in QuickReturns Ltd.
You’ll now begin to modify the QuickReturns Ltd. application to use transactions. Open the
Chapter09\ReliableMessaging\QuickReturnsTransactional solution.

We will assume that you are going to sell a stock and log the sale in a database. The two
deals will be committed in a single transaction. You’ll begin by modifying the client.

■Note The TradeServiceDB database used in this example uses SQL Server Express, which is freely
downloadable from http://msdn.microsoft.com/vstudio/express/sql/download/default.aspx.
You must have this installed for the example to work. To install SQL Express, you need the executable. It is
recommended that once the download begins, you select the Run option when prompted. Once the down-
load completes, this will automatically launch the installation. It is recommended that you accept the default
settings during the installation process. You can find complete details of the installation and additional
components at the previously mentioned link. Also, keep in mind that if you have installed Visual Studio 2005
in a non-Express edition, SQL Server Express is installed by default. Please check your local installation to
see whether SQL Server Express was already installed as part of your Visual Studio installation.

Begin by adding a reference to System.Transactions in the QuickReturns Ltd. solution.
Open program.cs in the client application of TradeService, and modify it to look like the
code in Listing 9-4. You begin with adding support for the transactions by referencing
System.Transactions. Thereafter, you add a transaction endpoint in order to allow the client
application to utilize transactions.

Listing 9-4. Modifying the Client program.cs for Transactions

using System;
using System.ServiceModel;
using System.Transactions;

namespace QuickReturns
{

//The service contract is defined in generatedClient.cs,
generated from the service by the svcutil tool.

//Client implementation code.
class Client
{

static void Main()
{

// Create a client using either wsat or oletx
endpoint configurations

TradeServiceClient client = new TradeServiceClient(
"WSAtomicTransaction_endpoint");

CHAPTER 9 ■ USING TRANSACTIONS IN WCF286

7028Ch09.qxp 12/11/06 8:36 PM Page 286

// In the event you decide to use the Ole transaction
endpoint, uncomment the line below and comment the line above

// TradeServiceClient client = new
TradeServiceClient("OleTransactions_endpoint");

// Start a transaction scope
using (TransactionScope tx =

new TransactionScope(TransactionScopeOption.RequiresNew))
{

Console.WriteLine("Starting transaction");

// Call the Add service operation
// - generatedClient will flow the required active transaction
int qty;
int price;
int result;

// Call the CalcValue service operation
// - generatedClient will not flow the active transaction
qty = 100;
price = 15;
result = client.CalcValue(qty, price);
Console.WriteLine(" Sold ACN Quantity {0},

For$ {1} With a Total Value of ${2}",
qty, price, result);

// Complete the transaction scope
Console.WriteLine(" Completing transaction");
tx.Complete();

}

Console.WriteLine("Transaction Committed");

// Closing the client gracefully closes the
connection and cleans up resources

client.Close();

Console.WriteLine("Press <ENTER> to terminate client.");
Console.ReadLine();

}
}

}

You will notice that the transaction scope is defined, which encapsulates the operations
you want to handle in a single transaction.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 287

7028Ch09.qxp 12/11/06 8:36 PM Page 287

You now modify the App.config file on the client project to reflect the usage of transactions,
as shown in Listing 9-5. What you are doing here is enabling the transaction flow attribute.

Listing 9-5. Modifying the Client App.config
<system.serviceModel>

<client>
<endpoint name="TradeServiceConfiguration"
address="http://localhost:8000/TradeService"

binding="wsHttpBinding "
bindingConfiguration="ReliableHttpBinding"
contract="Client.ITradeService,Client"/>

</client>
<bindings>

<wsHttpBinding>
<binding name="ReliableHttpBinding" transactionFlow="true">

<reliableSession enabled="true" ordered ="true"/>
</binding>

</wsHttpBinding>
</bindings>

</system.serviceModel>

Now that this is done, modify the ITradeService interface in the client project. This will
then reflect the changes that you will be making to ITradeService later. Listing 9-6 shows the
changes.

Listing 9-6. Modifying the Client ITradeService

<configuration>
<system.serviceModel>
<bindings>
<netTcpBinding>
<binding name="transactionalOleTransactionsTcpBinding"

transactionFlow="true"
transactionProtocol="OleTransactions" />

</netTcpBinding>
<wsHttpBinding>
<binding name="transactionalWsatHttpBinding"

transactionFlow="true" />
</wsHttpBinding>

</bindings>
<client>
<endpoint
address="http://localhost:8000/QuickReturns/TradeService"
binding="wsHttpBinding"
bindingConfiguration="transactionalWsatHttpBinding"
contract="ITradeService"
name="WSAtomicTransaction_endpoint">

CHAPTER 9 ■ USING TRANSACTIONS IN WCF288

7028Ch09.qxp 12/11/06 8:36 PM Page 288

<!--The username and the domain over here will have to be replaced
by the identity under which the service will be running-->
<!--identity>

<userPrincipalName value="username@domain" />
</identity-->

</endpoint>
<endpoint
address="net.tcp://localhost:8008/QuickReturns/TradeService"
binding="netTcpBinding"
bindingConfiguration="transactionalOleTransactionsTcpBinding"
contract="ITradeService"
name="OleTransactions_endpoint">
<!--The username and the domain over here will have to be replaced
by the identity under which the service will be running -->
<!--identity>

<userPrincipalName value="username@domain" />
</identity-->

</endpoint>
</client>

</system.serviceModel>
</configuration>

Now that you have accomplished this, you can enhance the trade service so you can
accomplish your goals. You will enhance the CalculateTradeValue() method in order to be
able to accommodate the trade and log being handled in a single transaction.

Next you’ll modify ITradeService of the QuickReturns Ltd. trade service in the same man-
ner as you did for the client. Please refer to Listing 9-7 for details.

Listing 9-7. Modifying ITradeService in the QuickReturns Ltd. Trade Service

using System;
using System.ServiceModel;
using System.Transactions;
using System.Configuration;
using System.Data.SqlClient;
using System.Globalization;

namespace QuickReturns
{

// Define a service contract.
[ServiceContract(Namespace = "QuickReturns")]
public interface ITradeService
{

[OperationContract]
[TransactionFlow(TransactionFlowOption.Mandatory)]
int CalculateTradeValue(int qty, int price);

}

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 289

7028Ch09.qxp 12/11/06 8:36 PM Page 289

Once you have included the references to System.Transactions and in particular Sys.Data.
SqlClient, you have laid the basis for supporting transactions, as well as supporting the logging
database. So, now look at Listing 9-8, where you will set the transaction isolation level for the
trade service.

Listing 9-8. Setting the Transaction Isolation Level

// Service class that implements the service contract.
[ServiceBehavior(TransactionIsolationLevel =

System.Transactions.IsolationLevel.Serializable)]

Now you’ll set the transaction scope, which will encapsulate the operations you want to
occur within the transaction, as shown in Listing 9-9.

Listing 9-9. Setting the Transaction Scope

public class TradeService : ITradeService
{

[OperationBehavior(TransactionScopeRequired = true)]

public int CalculateTradeValue(int qty, int price)
{

RecordToLog(String.Format(CultureInfo.CurrentCulture,
"Recording CAN Trade Value {0} with price {1}",
qty,price));
return qty * price;

}

private static void RecordToLog(string recordText)
{

// Record the operations performed
if (ConfigurationManager.AppSettings["usingSql"] == "true")
{

using (SqlConnection conn = new
SqlConnection(ConfigurationManager.AppSettings
["connectionString"]))
{

conn.Open();
// you are now going to log our trade to the Log Table.

By actually inserting the data into the table.
SqlCommand cmdLog = new SqlCommand(

"INSERT into Log (Entry) Values (@Entry)",
conn);

cmdLog.Parameters.AddWithValue("@Entry", recordText);
cmdLog.ExecuteNonQuery();
cmdLog.Dispose();

CHAPTER 9 ■ USING TRANSACTIONS IN WCF290

7028Ch09.qxp 12/11/06 8:36 PM Page 290

Console.WriteLine(" Logging Trade to database:
{0}", recordText);

conn.Close();
}

}
else

Console.WriteLine(" Noting row: {0}", recordText);
}

}

Next you can modify the App.config file for the service host in order to ensure that all
transactions are passed on to the QuickReturns Ltd. trade service. The console-based service
host does not require any modifications, since the host service itself does not change. You will
be calculating the trade value and returning this to the client, as well as logging the trade into
the TradeService database. This is a simple database with a log table, which has an identity
field and the log field. Both the transactions are occurring within a transaction scope and will
fail or succeed as a single unit, as shown in Listing 9-10.

Listing 9-10. Modifying the Host App.config File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<!-- Sets connect to a database -->
<add key="usingSql" value="true" />
<!-- Sets the database connection string -->
<add key="connectionString" value="DataSource=.\SQLEXPRESS;

AttachDbFilename=
|DataDirectory|\TradeServiceDb.mdf;Integrated Security=
True;User Instance=True" />

</appSettings>

Now that you have established the database connectivity for the logging, you can modify
the <Service> attributes. In Listing 9-11, you will be configuring the bindings of the service to
use the WS-Atomic transaction protocol.

Listing 9-11. Setting the WSAtomicTransaction Binding Configuration in App.config

<system.serviceModel>
<services>
<service

name="QuickReturns.TradeService"
behaviorConfiguration="TradeServiceBehavior">

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 291

7028Ch09.qxp 12/11/06 8:36 PM Page 291

<host>
<baseAddresses>
<add baseAddress="http://localhost:8000/QuickReturns/tradeservice" />
<add baseAddress="net.tcp://localhost:8080/QuickReturns/tradeservice" />

</baseAddresses>
</host>

<!-- specify wsHttpBinding with the WSAtomicTransacttional
binding configuration -->

<endpoint address=""
binding="wsHttpBinding"
bindingConfiguration="transactionalWsatHttpBinding"
contract="QuickReturns.ITradeService"
name="WSAtomicTransaction_endpoint" />

<!-- specify netTcpBinding and an OleTransactions
transactional binding configuration since that is
what WCF uses internally-->

<endpoint address=""
binding="netTcpBinding"
bindingConfiguration="transactionalOleTransactionsTcpBinding"
contract="QuickReturns.ITradeService"
name="OleTransactions_endpoint" />

<!—specify the Metadata Exchange -->
<endpoint address="mex"

binding="mexHttpBinding"
contract="IMetadataExchange"
name="mex_endpoint"/>

</service>
</services>

In Listing 9-12, you will continue to modify App.config so that it utilizes the
transactionFlow and sets it to true.

Listing 9-12. Configuring Transaction Flow

<!-- binding configuration - configures transaction flow -->
<bindings>
<netTcpBinding>
<binding name="transactionalOleTransactionsTcpBinding

" transactionFlow="true" transactionProtocol=
"OleTransactions"/>

</netTcpBinding>

CHAPTER 9 ■ USING TRANSACTIONS IN WCF292

7028Ch09.qxp 12/11/06 8:36 PM Page 292

<wsHttpBinding>
<binding name="transactionalWsatHttpBinding" transactionFlow="true" />

</wsHttpBinding>
</bindings>

<!--For debugging purposes -->
<behaviors>
<serviceBehaviors>
<behavior name="TradeServiceBehavior" >
<serviceMetadata httpGetEnabled="true" />
<serviceDebug includeExceptionDetailInFaults="false" />

</behavior>
</serviceBehaviors>

</behaviors>

</system.serviceModel>
</configuration>

Finally, all you need to do is to enable the support for WS-Atomic transactions in WCF. To
do this, you need to first open the .NET Framework command prompt. You can find this in the
Microsoft .NET Framework SDK 3.0 program group, as shown in Figure 9-4.

Figure 9-4. Selecting the .NET command prompt

At the command prompt, run xws_reg –wsat+, and press Enter, and you are done with
configuring the transaction support for QuickReturns Ltd.

You can also register WsatUI.dll using regasm.exe to provide the Microsoft Management
Console snap-in for WSAT configuration. Navigate to Control Panel ➤ Administrative Tools ➤
Component Services, and select Properties from My Computer, as shown in Figure 9-5.

To register WsatUI.dll, you need to run regasm.exe /codebase WsatUI.dll at the command
prompt. You can then configure the parameters of the WS-Atomic transaction protocol from the
user interface, as illustrated in Figure 9-6.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 293

7028Ch09.qxp 12/11/06 8:36 PM Page 293

Figure 9-5. Selecting the properties for My Computer in Component Services

Figure 9-6. The WsatUI.dll user interface

CHAPTER 9 ■ USING TRANSACTIONS IN WCF294

7028Ch09.qxp 12/11/06 8:36 PM Page 294

When you run the application, you should see that the trades sent by the client show up
in the TradeAuditService window and also that the committed trades show up in the window.

You have seen how to configure the application to use transactions in conjunction with
reliable messaging. You will now learn how to make your queues utilize transactions easily.

Working with Transactions and Queues
In Chapter 8 you saw that MSMQ plays an important part in WCF and offers you a great deal
of advantages in terms of reliability in scenarios that require integration with legacy applica-
tions as well as in scenarios where you require guaranteed delivery.

It is important to note that the queuing and dequeuing of messages between a client and
the queue is implicitly transactional. In other words, the transfer of a message to and from a
queue is transactional in nature; either the entire message will get on the queue or no part of it
will be placed on the queue. This is comfortable for scenarios that require one-way messaging
only. However, what if you require a series of operations under the sponsorship of a single
transaction scope?

The scenario where you require multiple operations to occur as a single transaction in the
context of MSMQ is often referred to as a sessiongram, while the single one-way operation is
referred to as a datagram. In using sessiongram scenarios, what you are aiming for is for a
group of operations to occur within the scope of a single transaction exactly once and in order.
Open the Chapter09\QueueMessaging solution.

■Note In reality, a transaction using message queues requires two transactions. The first transaction
occurs between the application and the queue, and a second occurs between the queue and the receiver. If
an error occurs in either one of these transactions, the transaction will abort. However, note that the mes-
sages sent under the transaction are discarded, while messages received by the queue remain in the queue
until they are retried at a later time. Transactions using queues provide a level of isolation, inherent reliability,
and security. However, for version 1.0 of WCF, they are not interoperable with heterogeneous systems that do
not use MSMQ. Technically, you can use IBM MQSeries through the interop mechanism, which you will study
in Chapters 10 and 13.

WCF makes programming MSMQ transaction scenarios a lot simpler than you would
assume, as you will see, in how you configure the audit service and the client parts of your
application.

Examine QueueMessagingClient shown in Listing 9-13. We have added support for trans-
actions and are setting a transaction scope.

Listing 9-13. QuickReturns Ltd. QueueMessagingClient

using System;
using System.Transactions;

namespace QuickReturns

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 295

7028Ch09.qxp 12/11/06 8:36 PM Page 295

{
class Client
{

public static void Main()
{

// Create a proxy for the client
using (TradeServiceClient proxy = new TradeServiceClient())
{

//Create a transaction scope. This is the only line of
code required to enable transactions in WCF
using MSMQ

using (TransactionScope scope = new
TransactionScope(TransactionScopeOption.Required))

{
proxy.DoTrade("MSFT", "IBM", 60);
Console.WriteLine("Beginning Transaction 1....");
Console.WriteLine("Selling 1000 stocks of ACN and Buying IBM ");
Console.WriteLine("Ending Transaction 1....");
Console.WriteLine("");
//Mark the beginning of the second transaction..
Console.WriteLine("Beginning Transaction 2....");
proxy.DoTrade("ACN", "ABN", 100);
Console.WriteLine("Selling 100 stocks of ABN and Buying ACN ");
Console.WriteLine("Beginning Transaction 2....");

// Complete the transaction.
scope.Complete();

}

}

Console.WriteLine();
Console.WriteLine("Press <ENTER> to terminate client.");
Console.ReadLine();

}
}

}

MSMQ operations are by default one-way only, and to enable transactions on the service,
you would require either a duplex or a request-response contract. In the current scenario,
this is not possible. If you run your client only, you will see the console application shown in
Figure 9-7. At this point, the messages have been put on the queue successfully, and you can
rest assured that the queue will deliver the messages to the trade service when it does become
available.

Even though the service is not running, the queue is able to pick up the messages and
store these for when the service becomes available. You must keep in mind that the reliable
and durable storage provided is in fact a feature of MSMQ and not WCF. The WS-
ReliableMessaging standard does not make any assertion regarding message durability.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF296

7028Ch09.qxp 12/11/06 8:36 PM Page 296

This means that should the machine crash, any messages that existed are lost. On the other
hand, MSMQ, as a technology independent of WCF, provides you with a transport that is both
reliable and durable. Messages that have persisted to the queue survive machine reboots and
are lost only in the event of a catastrophic hardware failure. In the current scenario, you can
benefit from this feature where the client has passed on the messages to MSMQ and the trade
service is not available. To simulate a failure scenario, you could reboot the machine and then
start TradeService, and the messages would be delivered successfully. MSMQ also provides
you with the means of decoupling the transport from the application. By doing this, MSMQ
can open up a whole new world of scenarios for integration. An application at the end of the
queue may or may not be a WCF application or even a Windows-based application. The only
requirement is that it is able to communicate with MSMQ. This decoupling of the transport
from the application, as well as the availability of a durable store for the application, provides
you the tools to build highly resilient enterprise applications without having to write code,
since the Windows platform provides you with the functionality out of the box.

Figure 9-7. The client placing messages on the queue

■Note WCF provides support for integrating with MSMQ out of the box. However, queues are possible even
without MSMQ, and you could decide to write your own queue provider. Technically, it would be possible to
interact with your queue provider if it provides an API that WCF understands. This, although technically possi-
ble, is extremely difficult to accomplish. Please refer to http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/msmq/html/ff917e87-05d5-478f-9430-0f560675ece1.asp for
further details about the MSMQ provider. To get started with building custom queue providers, refer to
http://www.wsmq.com/. WSMQ is an open source initiative to provide a web service–based message
queue and will help you get started in writing your own queues.

When you do start an instance of the trade service, the messages are passed on to the
service by the queue, as shown in Figure 9-8.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 297

7028Ch09.qxp 12/11/06 8:36 PM Page 297

Figure 9-8. Transactions received by the trade service

A rule of thumb when using transactions with queues is the setting for ExactlyOnce; set
this to true if you are using transacted queues and to false if using nontransacted queues.
However, be aware that setting this to false can degrade reliability, and you should evaluate
this on a case-by-case basis.

A WORD ABOUT DLQ AND POISON QUEUES

In Chapter 8 you learned about the dead letter queues (DLQs) and poison queue functionality. It is possible to
use the functionality provided by the poison queue to ensure your transactions are retried multiple times at
set intervals rather than failing after the first attempt. This feature will become available in Windows Server
2007 and will add to the powerful arsenal of tools available to you.

A message will generally become poisoned if the queue has tried to deliver it to the receiver but the
number of retries has been exceeded. Although this can happen because of network outages and service
unavailability amongst other reasons, you can configure the message to be retried after a set amount of time
has elapsed, as well as configure the number of times the queue should retry. Once this number has been
exceeded, the message will be placed in the DLQ.

The DLQ is configurable on a per-system or per-application basis in Windows Server 2007. In versions of
Windows Server prior to Windows Server 2007, you have only one DLQ per system. Consequently, if multiple
applications or multiple parts of an application are using MSMQ, all the messages that have exceeded their retry
or timeout parameters will end up in this queue. Processing the messages from the DLQ then becomes a chal-
lenge, especially if you have discrete destinations based on message types. For example, if you take the
QuickReturns Ltd. application, in an MSMQ scenario you might have trade messages, as well as messages
related to the trader’s accounts. You would need to write discrete code to interrogate the messages and route
these to their appropriate destinations when building systems not based on MSMQ 4.0 or later.

The ability to configure per-application DLQs in Windows Server 2007 means that you can then have
one DLQ for the trade service and another DLQ for the account service. Doing the latter will give you further
flexibility for providing greater levels of resilience in your application. It is recommended that you study these
features as they become available in MSMQ 4.0 on Windows Server 2007 and, as an architect, utilize the
functionality available to you to increase the reliability of your applications.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF298

7028Ch09.qxp 12/11/06 8:36 PM Page 298

Summary
In this chapter, you learned the following:

• The need for transactions to solve issues around deadlocks, ensuring repeatability and
recoverability

• How transactions are supported by WCF with the WS-Atomic transaction protocol

• How to use transactions with your services and sessions using the various behavior
attributes provided by WCF including the ServiceBehavior and OperationBehavior
attributes

• How to use the MSMQ transport channel with transactions by incorporating support
for transactions within your application

We recommend the Windows Server 2007 SDK and WCF documentation for further reading
on this topic. Please dive into the code listings about implementing the System.Transactions
namespace within the .NET Framework also.

Transactions are critical to your applications, and you must look at the requirements for
transactions in conjunction with the scope of reliable messaging since these go hand in hand.
It is safe to say that building an enterprise application without transactional support is a
recipe for failure.

Looking ahead to Chapter 10, you will learn about how to integrate with legacy COM+
applications. Some of the topics that would be covered are aimed at not only the aspects
around integration but also how to run COM+ services within WCF, as well as typed and early
bound contracts with COM.

CHAPTER 9 ■ USING TRANSACTIONS IN WCF 299

7028Ch09.qxp 12/11/06 8:36 PM Page 299

7028Ch09.qxp 12/11/06 8:36 PM Page 300

Integrating with COM+

This chapter is about working with the past. That past is based upon component technology
created by Microsoft to provide, at first, a desktop-oriented protocol for reusing application
logic. That technology expanded into a distributed technology that helped better position
Microsoft in the enterprise and provide a challenge to competing technologies.

Not without faults, numerous applications were developed based upon this component
technology. As a result, we can’t forget the amount of investment by enterprises in this tech-
nology. It would damage Microsoft’s credibility and the marketability if Microsoft introduced a
new technology that would force an enterprise to scrap its original investments. Therefore,
Microsoft and the WCF team worked hard to provide an evolutionary, as opposed to revolu-
tionary, approach for bridging the technological divide, never forgetting the famous quote
“Those who cannot remember the past are condemned to repeat it.”1

Introduced in 1993, Component Object Model (COM) was the basis for other emerging
technologies from Microsoft such as Object Linking and Embedding (OLE), ActiveX, and
Distributed COM (DCOM). COM was initially introduced to compete with Common Object
Request Broker Architecture (CORBA), a language-independent and cross-platform distrib-
uted system technology. They did share some core principles, but they were not compatible.
Concepts and techniques such as Interface Definition Language (IDL) are present in both
technologies. But, binary interoperability didn’t exist.

COM+, introduced in 1998, was more of ancillary technology that worked with COM but
did not replace it. Key features of COM+ are transactional components, queued components,
role-based security, and object pooling. COM+ 1.5 added features such as application pooling,
SOAP services, services without components, and some other features.2

Today, COM+ 1.5 is a core part of the Windows platform. Even with the .NET base class
library (BCL) COM interoperability still occurs. Runtime callable wrappers (RCW) are used
throughout the .NET BCL—one prime example in .NET 2.0 is the web browser control, which
is, as stated in the MSDN documentation, a managed wrapper for the web browser’s ActiveX
control. Additionally, serviced components use COM+ transactions.

301

C H A P T E R 1 0

■ ■ ■

1. Attributed to George Santayana, 19th-century philosopher

2. You can learn more in the topic “What’s new in COM+ 1.5” on MSDN at http://msdn.microsoft.com/
library/en-us/cossdk/html/e7073ba5-6b19-4d94-8cc0-b4e16bb44afd.asp.

7028Ch10.qxp 12/11/06 8:34 PM Page 301

Why Integrate with COM+?
Although the future of the Windows platform seems to be a managed world, COM+ will still be
around. COM exists in the core Windows platform3 but most important also in the billions of
lines of code that independent software developers have written to produce solutions. A great
number of solutions have been built on COM+ by enterprises that have also spent billions of
their dollars. So, clearly WCF needs to work with legacy implementations in order to justify an
investment in extending existing applications.

Few applications built today are completely stand-alone. In fact, the terms application
and solution need a little definition. Generally, an application represents a stand-alone
deployable set of components, functionality, and so on. A solution, however, represents a
combination of applications coupled together (either tightly or loosely) to address numerous
business-processing requirements.

So today, we need to build solutions. These solutions will most likely require integration
with existing data and processes that exist in legacy technology, where some of that technology
will be COM+. The other part of the enterprise solution demands that existing COM+ applica-
tions aren’t going to be thrown away and rewritten in .NET and WCF. Since we’re building all
these new applications based upon .NET and they’ll of course offer fantastic services that you’ll
just need to share, you’ll need a way to provide legacy COM+ applications to call your services,
just as any other application would. Fortunately, the WCF team has provided the core tools to
facilitate both sides of the interoperability needs.

This chapter will walk you through how to consume COM+ application services from
WCF clients. Additionally, you’ll look at how legacy applications can use applications that
expose WCF services built on .NET 3.0.

Running a COM+ Application As a WCF Service
Let’s take a look at a scenario involving QuickReturns Ltd.’s OldHorse position-tracking system
(or a custody system), as shown in Figure 10-1. OldHorse was built in the late 1990s using
Visual Basic 6. Since other groups within QuickReturns Ltd. leverage OldHorse, the OldHorse
development team provided COM interfaces allowing client applications to interoperate with
OldHorse using COM+.

When an Asset Manager makes a trade, it’s necessary that the trade information is posted
to the custody system. Additionally, as you’ll see later, it’s necessary that the custody system
checks with the Asset Manager’s system for pricing and pending trade information.

CHAPTER 10 ■ INTEGRATING WITH COM+302

3. In addition to the Win32 API that has gone legacy—but still exists and matures

7028Ch10.qxp 12/11/06 8:34 PM Page 302

Figure 10-1. QuickReturns Ltd.’s OldHorse system

Visual Basic 6 COM+ Component Sample Setup
The example we’ll use is a simple Visual Basic 6 COM (ActiveX DLL) component that exposes
two interfaces. The complete solution is contained in the chapter sample code’s Visual Basic
6 Project folder. The following code snippets are just the method signatures representing the
Visual Basic 6 COM interface. This is an illustration of a Visual Basic 6 component and should
not be viewed as a Visual Basic 6 best practice.

When looking at Visual Basic 6 COM components, you’ll soon see that some issues relate
to how the WCF interfaces leverage type library information in regard to COM+ application
components. Visual Basic 6 COM packs both the component logic and the type library infor-
mation inside the COM DLL; doing so adds some attributes that prevent some interfaces from
being initially wrapped in WCF COM+ integration.

Prior to working through this example, set up a virtual directory in IIS called VB6ComSample
that is set for ASP.NET 2.0 and has anonymous access enabled.

COM+ Host/In Process

OldHorse
Custody System

COM+
Services

Legacy
COM

Server

QuickReturns, Ltd.
Asset Management

WCF
Client

WCF Host

WCF
Framework

WCF
Services

Legacy
COM
Client

COM+
Services

WCF
Framework

CHAPTER 10 ■ INTEGRATING WITH COM+ 303

7028Ch10.qxp 12/11/06 8:34 PM Page 303

The PositionManagement interface shown in Listing 10-1 provides a set of simple methods
that allow the retrieval of the position for a given ticker, in addition to providing a method for
updating the persisted quantity associated with a ticker.4 One element that is not shown is a
constructor. COM+ objects don’t offer a constructor. They can provide information in other
ways, such as with an initialization method. Visual Basic 6 and COM offer several ways of
providing static configuration information such as COM+ initialization strings on the config-
ured component; however, that requires implementing IObjectConstructString in Visual
Basic 6 and using the ConstructionEnable attribute in .NET. For the example code and to keep
it simple, we’re just showing method interfaces. The ability to provide a connection string on
object construction is something that could be provided through COM+ initialization.

Listing 10-1. PositionManagement.cls

'Simple interface that allows a nominal change in the quantity of a position
'ticker: Ticker symbol of security
'quantity: Amount (+/-) to shift existing position
'Throws an error if quantity is not sufficient to support the change (overdrawn)
Public Function UpdatePosition(ByVal Ticker As String, _

ByVal Quantity As Long) As Long
...
Public Function GetQuantity(ByVal Ticker As String) As Long
...

The second component is the Position component. This class represents mostly a data
class with read/write properties. In addition, it has two methods; one provides a retrieval of a
specific position for a ticker, and the other returns a concrete Position object for a specific
ticker. Listing 10-2 shows the abbreviated class, and the full class is part of the chapter code in
\OldHorsePositionTracking\VB6\PositionManagement.

Listing 10-2. Visual Basic 6 Position Class: Position.cls

Public Property Let Quantity(ByVal vData As Long)
...
Public Property Get Quantity() As Long
...
Public Property Let Ticker(ByVal vData As String)
...
Public Property Get Ticker() As String
...
Public Function GetQuantity(ByVal Ticker As String) As Long
...
Public Function GetPosition(ByVal Ticker As String) As Position
...

CHAPTER 10 ■ INTEGRATING WITH COM+304

4. Note these are simplified interfaces for example purposes only and do not represent a proper interface
definition for a fully functional custody system.

7028Ch10.qxp 12/11/06 8:34 PM Page 304

One additional aspect of the PositonManagement class is that it’s configured in Visual Basic 6
to be an MTS component with a Required transaction setting. This setting is reflected in the
generated WCF service inside the configuration file and is handled automatically by the COM+
Integration Wizard, which makes a call to the ComSvcConfig.exe utility. This allows flow from a
WCF client to your COM+ component, ultimately being managed by the Microsoft Distributed
Transaction Coordinator (MSDTC).

Once the project is built to an ActiveX DLL, it is ready to be installed and configured as a
COM+ application. Briefly, for a Visual Basic 6 COM component, you follow these steps to
create the OldHorse COM+ application:5

1. From Administrative Tools, launch Component Services.6 Then, expand the
Component Services node until you are at the computer you want to configure for
your COM+ application. In this example, it’s the local machine, or My Computer. Select
the COM+ Applications object in the console, right-click, and choose New Application,
as shown in Figure 10-2.

Figure 10-2. Creating a new COM+ application

CHAPTER 10 ■ INTEGRATING WITH COM+ 305

5. We won’t go into too much depth about how to create Visual Basic 6 COM+ applications. Note that these
steps for COM+ applications are programmable through the COM Administration type library. However,
.NET offers the RegSvcs.exe utility that provides a simple command-line interface for this.

6. You can also get to this Microsoft Management Console (MMC) via the dcomcnfg.exe command.

7028Ch10.qxp 12/11/06 8:34 PM Page 305

2. At this point you’re presented with the COM+ Application Install Wizard. Click through
the first page of the wizard. On the second page, click the Create an Empty Application
button, as shown in Figure 10-3.

Figure 10-3. Creating an empty COM+ application

3. On the next page of the wizard, enter the name of your application, and ensure you
select Library Application as the activation type (see Figure 10-4).

Figure 10-4. OldHorse library activation

CHAPTER 10 ■ INTEGRATING WITH COM+306

7028Ch10.qxp 12/11/06 8:34 PM Page 306

4. Click through the last page of the wizard. At this point, you should now have a COM+
application defined in Component Services. However, this is an empty package and
has no associated components.

5. The next step is to add your compiled ActiveX DLL into the package. Do that by first
selecting the Components tree from within the OldHorse COM+ application. Right-
click the Components folder under the OldHorse application, and then choose ➤ New
➤ Component, as shown in Figure 10-5.

Figure 10-5. Adding a new component to the OldHorse application

6. This opens the COM+ Component Installation Wizard. Click Next in the wizard, and
then choose Install New Component(s). Then, navigate to where your Visual Basic 6
COM component’s DLL resides (if you have extracted the samples, it is located in the
directory \OldHorsePositionTracking\VB6\PositionManagement\bin). Choose it, and
then click Next until the wizard is dismissed.

At this point you should have a COM+ application with the components shown in
Figure 10-6.

First, you’ll see two components each with a single interface listed—the name manufac-
tured by the Visual Basic 6 framework. Second, in the right pane, notice the Required
transaction attribute. (You can see this view by clicking the detail view.) This attribute forces
the activation of this component within a COM+ transaction—either a new transaction or an
inherited transactional context from the caller.

CHAPTER 10 ■ INTEGRATING WITH COM+ 307

7028Ch10.qxp 12/11/06 8:34 PM Page 307

Figure 10-6. Configured OldHorse COM+ application

COM+ Application WCF Service Wrapper
Once a COM+ application is configured, you’re ready to leverage WCF’s utilities for creating the
necessary resources for calling a COM+ component from a WCF client. The primary utility for
this is the ComSvcConfig.exe utility. This is a command-line utility that is installed with the .NET 3.0
runtime. Additionally, the SvcConfigEditor.exe utility provides a graphical interface with some
additional features that help hide the complexities of the command-line ComSvcConfig.exe util-
ity. One suggestion is to get used to the SvcConfigEditor.exe utility; it facilitates the composition
of proper configuration files for WCF with configuration-time validation of many elements.

Using SvcConfigEditor.exe Utility
Before you proceed, it’s important to understand some caveats related to COM+ interoperabil-
ity with WCF. There are restrictions as to what COM+ interfaces can be exposed as a web
service through the COM+ Integration layer. Those restrictions are listed in the SDK, but some
of them are as follows:

CHAPTER 10 ■ INTEGRATING WITH COM+308

7028Ch10.qxp 12/11/06 8:34 PM Page 308

Interfaces that pass object references as parameters: This violates a core tenet of SOA in that
passing a reference across a service boundary is expensive.

Interfaces that pass types that are not compatible with the .NET Framework COM interop
conversions: This is a general incompatibility issue for types that won’t serialize between
the interoperability layers.

Interfaces for applications that have application pooling enabled when hosted by COM+:
This causes multiple listeners on the same URI moniker issues because there will be more
than one application pool attempting to reserve the service endpoint address.

Interfaces from managed components that have not been added to the global assembly
cache (GAC): This is a general limitation of how COM+ hosts configured managed compo-
nents. There are other means of using COM+ from managed applications (services
without components7), but they are not supported with WCF COM+ integration.

The first item mentioned here is important because given that one of the core tenets of
SOA is that boundaries are explicit, it would be expensive to share an interface pointer across
the service boundary. Also, given that the default WCF service behavior InstanceContext mode
is PerCall, this is something your SOA implementation should consider.

In addition to the previously listed limitations, you’ll soon see some limitations with
Visual Basic 6 components and, specifically, how Visual Basic 6 components are implemented.

At this point, you’re ready to create a WCF interoperability layer around your COM+ com-
ponents. Start by launching the SvcConfigEditor.exe utility, which is located in the Microsoft
SDK’s Bin directory. The easiest way is to launch the CMD shell shortcut that gets installed on
your Start menu under the Microsoft Windows SDK program group or from within the Visual
Studio 2005 Tools menu as WCF Service Configuration Editor.

Start with no configuration file, and have the utility generate the necessary parts; this will
allow you to call the OldHorse component from a WCF client.

From the menu bar of SvcConfigEditor.exe, select File ➤ Integrate ➤ COM+ Application.
At this point you should see a listing of all the COM+ applications, including OldHorse, that are
present on the local machine, as shown in Figure 10-7.

If you expand the OldHorse.PositionManagement node until you are able to see the list of
interfaces (which will list only one), then select the _PositionManagement interface, and click
Next. At this point, you should see the page shown in Figure 10-8.

CHAPTER 10 ■ INTEGRATING WITH COM+ 309

7. Services without components were introduced with COM+ 1.5. See http://msdn2.microsoft.com/
en-us/library/ms172373.aspx.

7028Ch10.qxp 12/11/06 8:34 PM Page 309

Figure 10-7. COM+ Integration Wizard

Figure 10-8. _PositionManagement interface

CHAPTER 10 ■ INTEGRATING WITH COM+310

7028Ch10.qxp 12/11/06 8:34 PM Page 310

Keep all selected, and just click Next. This presents the Hosting Mode options. Choose
the web hosting in-process mode, which allows per-message activation and hosting within the
IIS/WAS worker process. The other hosting options are not available for library-activated
(in-process) applications and are enabled when the activation type is Server Activated
(out-of-process). Ensure that the Add MEX endpoint option is enabled. This allows clients to
leverage WS-Metadata Exchange to query the interface for contract and service information.

The next page of the wizard lists the IIS virtual directories on the local machine. Make
sure you choose an IIS virtual directory that is configured for .NET 2.0. For this example, we’ve
preconfigured a virtual directory called /localhost/VB6ComSample (see Figure 10-9) that is con-
figured for ASP.NET 2.0.

Figure 10-9. Choosing an IIS virtual directory

At that point, click Next, and you’re presented with the summary of options shown in
Figure 10-10.

CHAPTER 10 ■ INTEGRATING WITH COM+ 311

7028Ch10.qxp 12/11/06 8:34 PM Page 311

Figure 10-10. COM+ integration summary page

Click Next again, and SvcConfigEditor.exe makes a call to the ComSvcConfig.exe utility
with the appropriate command-line options. This generates two files in the virtual directory. If
the SvcConfigEditor.exe utility cannot find the ComSvcConfig.exe utility, you’ll be presented
with a message box asking you to specify where it can be located.8

The two resources that are generated provide the WCF wrapper service resource file and a
Web.config file. The WCF service file is generated with the COM ProgID as the filename. For
this example, the component OldHorse.PositionManagement generates the file OldHorse.
PositionManagement.svc. The contents of that file appear in Listing 10-3.

Listing 10-3. OldHorse.PositionManagement.svc

<%@ServiceHost .ServiceModel.ComIntegration.
WasHostedComPlusFactory" WasHostedComP12Service=
"{f4612210-b755-4e17-87db-f82d9751d582},
{d3a08ae7-1857-409d-97aa-d86c0b366f5f}" %>

The SVC file contains a single line that points to the service factory that will provide the
COM+ integration—WasHostedComPlusFactory. The second parameter, WasHostedComP12Service,
provides two initialization parameters for the factory class. The first is the GUID for the COM
interface as specified by the type library for the COM component. If you leverage a tool such as
OleView (which comes with the Windows SDK), view the type library for OldHorse, and dump the

CHAPTER 10 ■ INTEGRATING WITH COM+312

8. The ComSvcConfig.exe utility is located at %SystemRoot%\Microsoft.NET\Framework\v3.0\
Windows Communication Foundation.

7028Ch10.qxp 12/11/06 8:34 PM Page 312

IDL, you’ll see that the supplied GUID matches the UUID of the implementation class, which is
PositionManagement.

The second parameter represents the COM+ application ID, which is visible by choosing
the properties of the COM+ application from the Component Services management console.
So, the combination of the application ID and the CLSID (ProgID reference from COM) is a
direct pointer that allows the WCF COM+ integration runtime to locate, instantiate, and serv-
ice the WCF client call.

If you check the properties of the OldHorse.PositionManagement component from within
Component Services, you’ll see that the CLSID GUID and application GUID both match the
generated GUIDs in the OldHorse.PositionManagement.svc file, as shown in Figure 10-11.

Figure 10-11. OldHorse.PositionManagement properties

Using ComSvcConfig.exe Utility
You can also use the stand-alone ComSvcConfig.exe utility to generate the required resource’s
COM+ application integration. The primary difference is it doesn’t provide the up-front valida-
tion that the SvcConfigEditor.exe utility does for validating supported COM interfaces prior
to generation. Instead, it provides that information as error messages at runtime.

Using the same COM+ application as an example, the following command generates the
required resources for wrapping your COM+ application’s PositionManagement interface in a
WCF service and hosting inside IIS/WAS (all on a single line).

ComSvcConfig.exe /install /application:OldHorse
/contract:OldHorse.PositionManagement,_PositionManagement
/hosting:was /webdirectory:VB6ComSample /mex

CHAPTER 10 ■ INTEGRATING WITH COM+ 313

7028Ch10.qxp 12/11/06 8:34 PM Page 313

In addition to the /install option listed here, there are two additional primary actions:
/list and /uninstall. The /list option enumerates what WCF COM+ integration services
currently exist on the local machine. The /uninstall option removes the application .svc file
in addition to updating the Web.config (or application configuration) file, removing all refer-
ences to the identified application and interface.

Client Proxy Generation
At this point, you’re ready to create the client proxy for your WCF COM+ integration, using
either the SvcUtil.exe utility or the Visual Studio 2005 Add Service Reference add-in, as
described in Chapter 5. Before proceeding, ensure that the IIS website that you will be using
has anonymous access enabled (accessed through the Directory Security tab in IIS Virtual
Directory properties). A completed solution appears in the sample code in the \VB6ComClient
directory.

In this section, you’ll create a simple console application. Start Visual Studio 2005, and
create a new Windows console project. Once you have done this, right-click the project (or
select the Project menu), and choose Add Service Reference. You can find detailed steps for
generating service proxies in Chapter 4. The URI to specify for the Add Service Reference dia-
log box looks like Figure 10-12.

Figure 10-12. Adding a service reference to a COM+ WCF wrapper

Once you’ve generated the service reference, you can now provide the client code. Inside
the Main method, the example code looks like Listing 10-4, which shows the completed client
project’s program.cs class file.

Listing 10-4. WCF COM+ Integration Client

namespace VB6ComClient
{

class Program
{

static void Main(string[] args)
{

OldHorse._PositionManagementClient proxy =
new VB6ComClient.OldHorse._PositionManagementClient();

CHAPTER 10 ■ INTEGRATING WITH COM+314

7028Ch10.qxp 12/11/06 8:34 PM Page 314

int q = proxy.GetQuantity("MSFT");
Console.WriteLine("We have " + q + " of MSFT");
q = proxy.UpdatePosition("MSFT", 100);
Console.WriteLine("We now have " + q + " of MSFT");
proxy.Close();
proxy = null;
Console.WriteLine("Press return to end...");
Console.ReadLine();

}
}

}

As shown in Listing 10-4, you simply instantiate a proxy type using the default constructor
(which reads address, binding, and contract information from the configuration file). Using the
_PositionManagementClient object (which was automatically generated from SvcUtil.exe), you
then make a call to the methods exposed on the interface.

Consuming the PositionManagement interface from a WCF client is done just like with any
other WCF-generated proxy type. In this model, the call is handed from the client over HTTP,
which is then received by the IIS/Http.sys listener framework, and finally onto the WCF frame-
work inside the WasHostedComPlusFactory type. The WCF framework does a runtime lookup of
the COM+ information, instantiates the Visual Basic 6 COM component, and services the call.

One thing to note is that given the default service InstanceContext behavior is PerCall,
the WCF COM+ integration framework will service each call with a new PositionManagement
object. Therefore, if you require server-side state, you must modify the service behavior.
Review Chapters 3 and 6 for details about service behavior.

Visual Basic 6 COM+ Hiding Interfaces
During the generation of the WCF COM+ integration components for your OldHorseVisual
Basic 6 ActiveX DLL, the Position component, while visible in the component selection page as
shown in Figure 10-7 earlier in the chapter, offered no visible interfaces for use with the WCF
COM+ integration. This is because Visual Basic 6 generates hidden interfaces for the type
library information that is bundled with the COM DLL for nonprimitive types. Generally, when
using other COM+ languages, specifically C/C++, generating the type library information, a
critical aspect of COM+ programming, is done using IDL and compiled into a type library (TLB)
that is then used by the implementation programmer to ensure adherence to the contract. Any
interfaces that have any hidden types as parameters or return values are not available in the
WCF COM+ integration framework.

So, if you have an investment in Visual Basic 6 COM+ components, you may need to con-
sider alternate methods of generation of type library information. Please see the sidebar
“Visual Basic 6 COM and Contract-First Programming.”

CHAPTER 10 ■ INTEGRATING WITH COM+ 315

7028Ch10.qxp 12/11/06 8:34 PM Page 315

VISUAL BASIC 6 COM AND CONTRACT-FIRST PROGRAMMING

When COM was introduced, it provided a capable component architecture that permitted developers to lever-
age binary compatibility and reuse components across solutions. With this came the complexity of COM
(reference tracking especially) and the language of COM itself. A core component of COM definitions are
buried inside the type library for each COM component. C/C++ programmers are used to seeing IDL, which
describes the COM interfaces of implementation components.

Visual Basic programmers are generally not accustomed to working with IDL. This is because Visual
Basic 6 hides the inner workings of COM. However, it is possible to take a contract-first approach in working
with Visual Basic 6 and COM.

Generally, you can find good references on the Internet, and the following link provides examples and shows
how to provide a contract-first approach to Visual Basic 6 COM development: http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dncomg/html/msdn_vbscriptcom.asp.

For the OldHorseVisual Basic 6 COM implementation, the reason the WCF COM+ Integra-
tion Wizard ignores the Position interface is because of the method GetPosition that returns a
Position object. Visual Basic 6 has hidden the internally generated _Position (note the under-
score) interface from consumers of the type library; therefore, it’s not possible to create a type
of _Position by a caller—generally that’s up to the COM component.

Using OleView.exe (which comes with the Windows SDK), if you dump the IDL and inspect
the _Position interface, you can see it’s marked with a hidden attribute (see Listing 10-5).

Listing 10-5. OldHorseVisual Basic 6 COM Position IDL

[
odl,
uuid(7E22753A-CD1B-4620-A952-E3CDFD456431),
version(1.0),
hidden,
dual,
nonextensible,
oleautomation

]
interface _Position : IDispatch {

[id(0x68030001), propput] HRESULT Quantity([in] long);
[id(0x68030001), propget] HRESULT Quantity([out, retval] long*);
[id(0x68030000), propput] HRESULT Ticker([in] BSTR);
[id(0x68030000), propget] HRESULT Ticker([out, retval] BSTR*);
[id(0x60030002)] HRESULT GetQuantity(

[in] BSTR Ticker,
[out, retval] long*);

[id(0x60030003)] HRESULT GetPosition(
[in] BSTR Ticker,
[out, retval] _Position**);

};

CHAPTER 10 ■ INTEGRATING WITH COM+316

7028Ch10.qxp 12/11/06 8:34 PM Page 316

USING OLEVIEW.EXE

OleView.exe is the COM/OLE viewer utility that helps you view COM interfaces and type libraries registered
on a machine.

To view the OldHorse type library information, open OleView.exe, and then navigate into the Type
Libraries folder. In that folder you should see the OldHorse (Ver 1.0) type library registration. Initially, in
the right pane you’ll see the type library information as stored in the registry under the HKCR\TypeLib\
{GUID} where the GUID is the type library’s UUID.

At this point, to view the IDL, double-click the entry OldHorse (Ver 1.0) in the left pane; this opens
another window showing you the detailed interface information on the left pane along with the IDL in the
right pane.

[
uuid(E17BC5E8-0378-4775-88DE-BADB73C57F03),
version(1.0)

]
coclass Position {

[default] interface _Position;
};

Through the IDL you can see why the WCF COM+ Integration Wizard did not display this
interface and how you use interface names when you are using the ComSvcConfig.exe utility.
You don’t actually use the class names as declared inside the Visual Basic 6 class files; you use
the generated interface names that Visual Basic 6 provides (prefixed with an underscore, _).

So, again, if you require access to the Position object through the WCF service boundary,
you have a couple of work-arounds (there may be more):

• Remediate Visual Basic 6 to leverage contract-first COM+ development (see the sidebar
“Visual Basic 6 COM and Contract-First Programming”).

• Provide a .NET wrapper that interacts directly with Visual Basic 6 COM components
and exposes .NET types on the service boundary.

.NET Enterprise Services and COM+ Components
For another example, we’ve included a simple .NET 2.0 class library that represents the
OldHorse2 COM+ application but written in .NET 2.0 using Enterprise Services and serviced
components.

This solution file is located as part of the Chapter 10 projects:

OldHorsePositionTracking\DotNet\OldHorse2Sln

Prior to stepping through this example, set up a virtual directory inside IIS called
DotNetComSample that is configured as ASP.NET 2.0 and has anonymous access enabled. The
script CreateVirtualDirs.bat will create the IIS virtual directories and set the .NET runtime
to 2.0 for the sites.

CHAPTER 10 ■ INTEGRATING WITH COM+ 317

7028Ch10.qxp 12/11/06 8:34 PM Page 317

The solution also contains a couple of batch files (reg.bat and unreg.bat) that handle the
GAC installation and COM+ application configuration. These batch files use the GacUtil.exe
utility and the RegSvcs.exe utility that handles GAC and COM+ registration. As listed in the
SDK requirements, a .NET component that is also a serviced component (COM+) must be
registered in the GAC, which requires it to have a strong name.

The implementation of OldHorse2 is a mirror image of the Visual Basic 6 COM example,
except it uses attributes from the Enterprise Services namespaces. Additionally, the Guid
attribute is applied to ensure you leverage a consistent CLSID and APPID instead of relying on
the framework to regenerate each time.

For the OldHorse2 project, Listing 10-6 shows the PositionManagement class. The code
provides the sample simple interface as the Visual Basic 6 version along with Transaction
attributes and AutoComplete attributes for transaction management.

Listing 10-6. OldHorse2 PositionManagement.cs

using System;
using System.EnterpriseServices;
using System.Runtime.InteropServices;

namespace OldHorse2
{

[Guid("3B26F4CA-E839-4ab6-86D4-AADB0A8AADA5")]
public interface IPositionManagement
{

long UpdatePosition(string ticker, long quantity);
long GetQuantity(string ticker);

}

[Guid("08F01AD6-F3EB-4f41-A73A-270AA942881A")]
[Transaction(TransactionOption.Required)]
public class PositionManagement : ServicedComponent, IPositionManagement
{

public PositionManagement() {}

#region IPositionManagement Members

[AutoComplete]
public long UpdatePosition(string ticker, long quantity)
{

IPosition pos = new Position();
pos = pos.GetPosition(ticker);
pos.Quantity += quantity;
return pos.Quantity;

}

CHAPTER 10 ■ INTEGRATING WITH COM+318

7028Ch10.qxp 12/11/06 8:34 PM Page 318

[AutoComplete]
public long GetQuantity(string ticker)
{

IPosition pos = new Position();
pos = pos.GetPosition(ticker);
return pos.Quantity;

}

#endregion
}

}

As you can see in the code in Listing 10-6, we’ve specifically provided the interface
IPositionManagement that is implemented in the class PositionManagement, which also inherits
from ServicedComponent. Additionally, the class has the TransactionOption.Required setting
with each method having the AutoComplete attribute from Enterprise Services. This will ensure
that each instance and call through the PositionManagement type takes place within a COM+
transaction.

In the same project, we’ve also defined the Position class. Listing 10-7 shows its contents.
Notice that we’ve followed the same approach of providing a specific interface and correspon-
ding implementation class.

Listing 10-7. OldHorse2 Position.cs

using System;
using System.Runtime.InteropServices;
using System.EnterpriseServices;

namespace OldHorse2
{

[Guid("D428B97A-13C8-4591-8AC3-5E8622A8C8BE")]
public interface IPosition
{

long Quantity
{ get; set; }

string Ticker
{ get; set; }

long GetQuantity(string ticker);
IPosition GetPosition(string ticker);

}

CHAPTER 10 ■ INTEGRATING WITH COM+ 319

7028Ch10.qxp 12/11/06 8:34 PM Page 319

[Guid("02FD3A3B-CFCE-4298-8766-438C596002B4")]
public class Position : ServicedComponent, IPosition
{

...
#region IPosition Members
public long Quantity
...
public string Ticker
...
public long GetQuantity(string ticker)
...
public IPosition GetPosition(string ticker)
...

}
}

Once the project is compiled to a managed assembly, it’s necessary to register it in the
GAC using the GacUtil.exe utility that comes with the .NET 2.0 Framework. The command to
register is as follows:

gacutil /i bin\debug\OldHorse2.dll

Once it’s registered in the GAC, you can then install it in COM+. .NET offers a useful
command-line utility that does all the work for you. The following command creates the
COM+ application along with registering the .NET assembly’s components:

regsvcs bin\debug\OldHorse2.dll

You can attribute the assembly with Enterprise Services types that control the COM+ reg-
istration, shown in Listing 10-8; therefore, you don’t have to build the application first and
install the components through the wizard. If you want to script this outside of .NET or for
non-.NET components, you could leverage the COM+ administrative interfaces for controlling
COM+ applications.

Listing 10-8. OldHorse2 Assembly Attributes for COM+

[assembly: ComVisible(true)]
[assembly: Guid("c41f4ee8-3475-47b6-b381-5e7774e4287d")]
[assembly: ApplicationName("OldHorse2")]
[assembly: ApplicationActivation(ActivationOption.Library)]
[assembly: ApplicationAccessControl(false)]

These commands are best executed from the Windows SDK command or Visual Studio
2005 command prompt—located under the Tools folder for the Windows SDK and Visual Stu-
dio 2005 by selecting Start ➤ All Programs. Additionally, the commands are contained in the
batch files previously mentioned. Once registered, you should now see in Component Services
the OldHorse2 application, as shown in Figure 10-13.

CHAPTER 10 ■ INTEGRATING WITH COM+320

7028Ch10.qxp 12/11/06 8:34 PM Page 320

Figure 10-13. OldHorse2 .NET COM+ registration

Now, using OleView.exe (from the Windows SDK), refer to the IDL that is generated by
the .NET Framework. The full IDL files are located as part of the Chapter 10 code in the
\OldHorsePositionTracking directory. Listing 10-9 shows the IDL listing.

Listing 10-9. OldHorse2 .NET IDL

[
odl,
uuid(D428B97A-13C8-4591-8AC3-5E8622A8C8BE),
version(1.0),
dual,
oleautomation,
custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9, OldHorse2.IPosition)

]
interface IPosition : IDispatch {
...

CHAPTER 10 ■ INTEGRATING WITH COM+ 321

7028Ch10.qxp 12/11/06 8:34 PM Page 321

[
odl,
uuid(3B26F4CA-E839-4AB6-86D4-AADB0A8AADA5),
version(1.0),
dual,
oleautomation,
custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9, OldHorse2.IPositionManagement)

]
interface IPositionManagement : IDispatch {
...

The code has been abbreviated here, but you can see that the declared interfaces IPosition
and IPositionManagement both do not have the hidden attribute. Therefore, you should have a
different experience when you run the WCF COM+ Integration Wizard, as shown in Figure 10-14.

Start the SvcConfigEditor.exe utility, and access the COM+ integration feature. You now
see the OldHorse2 application along with both the IPosition and IPositionManagement inter-
faces available for integration.

Figure 10-14. OldHorse2WCF COM+ Integration Wizard

Select the IPositionManagement interface, and click Next. You now see that both methods,
as with the Visual Basic 6 COM component, appear (see Figure 10-15).

CHAPTER 10 ■ INTEGRATING WITH COM+322

7028Ch10.qxp 12/11/06 8:34 PM Page 322

Figure 10-15. OldHorse2.PositionManagement interface methods

Click Next two times, and then click Finish. At this point you’ll have two resources gener-
ated in the virtual directory root—a Web.config file along with the service host file called
OldHorse2.PositionManagement.svc.

Client Proxy Generation
Once again, create a Visual Studio 2005 console application, and choose Add Service Reference
to add to the project using the following URI shown in Figure 10-16.

Figure 10-16. Adding a service reference to the project

CHAPTER 10 ■ INTEGRATING WITH COM+ 323

7028Ch10.qxp 12/11/06 8:34 PM Page 323

In the completed solution, Listing 10-10 shows the code that performs the same call that
the Visual Basic 6 COM client performed. The only difference is the type name no longer is
prefixed with an underscore (_). This is because when authoring components in .NET, you
have control over the interface names, where in Visual Basic 6 it’s left up to the Visual Basic 6
framework, hidden from normal levels of control. Other than that, there’s no discernable dif-
ference from the consumer side, as shown in Listing 10-10.

Listing 10-10. OldHorse2 Position Management Client

namespace DotNetComClient
{

class Program
{

static void Main(string[] args)
{

OldHorse2.PositionManagementClient();
OldHorse2.PositionManagementClient proxy =

new OldHorse2.PositionManagementClient();
long q = proxy.GetQuantity("MSFT");
Console.WriteLine("We have " + q + " of MSFT");
q = proxy.UpdatePosition("MSFT", 100);
Console.WriteLine("We now have " + q + " of MSFT");
proxy.Close();
proxy = null;
Console.WriteLine("Press return to end...");
Console.ReadLine();

}
}

}

Consuming WCF Services from COM+
Up to now, we’ve focused on solutions that need to leverage existing legacy application logic that
is hosted in COM+. We’ve focused primarily on Visual Basic 6 given its distinct ability to hide some
things that you need control over in order to fully leverage and reuse your application logic.

This section approaches the problem scenario from the perspective that these legacy
solutions are not stagnant. In fact, it has been estimated that nearly 90 percent9 of IT budgets
are focused on maintaining and extending existing solutions—many of those built on Visual
Basic 6 and other legacy technologies.

CHAPTER 10 ■ INTEGRATING WITH COM+324

9. Erlikh, L. “Leveraging Legacy System Dollars for E-Business.” (IEEE) IT Pro, May/June 2000. See also
http://doi.ieeecomputersociety.org/10.1109/6294.846201 and http://www.cs.jyu.fi/
~koskinen/smcosts.htm.

7028Ch10.qxp 12/11/06 8:34 PM Page 324

So, those applications aren’t going away. In fact, they most likely will need to be extended
to support new functionality or just change the way they interface with other applications.

For the examples in this chapter, you’ll look at how you can make a WCF service look like
a COM+ component. This allows your legacy clients that understand COM+ to work with your
new .NET 3.0–based applications that expose service endpoints. Note that both the .NET 3.0
and .NET 2.0 runtimes are required when calling from any client. This is a requirement
because the dynamic invocation framework is leveraged in process by the client process.

QuickReturns Ltd. Quote Service
The QuickReturns Ltd. system, built on .NET 2.0, provides a quote service using WCF. All parts
of the QuickReturns Ltd. application leverage this service. Some of the OldHorse custody sys-
tems, however, require the ability to reuse this application logic, and they’ve chosen to use
WCF COM integration capabilities. The new QuickReturns Ltd. quote service is hosted in
ASP.NET and IIS and exposes its services using WCF.

Alternatively, we’ll also discuss how you can leverage runtime registration of the COM
interface through the use of the WSDL and MEX service monikers.

Typed Contract Service Moniker
We’ll provide a quick walk-through for the first scenario, consuming a WCF service from COM
clients. This example will provide both an automation client (VBScript) and an early binding
client, Visual Basic 6. The Visual Studio 2005 solution file QuickReturnsQuotes.sln contains the
website and proxy projects.

The first part of the solution is the QuickReturnsQuotesWCF service, which is hosted in IIS
and ASP.NET. If you haven’t already run the setup script, to set up this virtual directory in IIS,
run the batch file CreateVirtualDirs.bat. The requirements are that IIS is installed along with
.NET 2.0 and the .NET 3.0 runtime components.

Open the solution file QuickReturnsQuotes.sln. The solution file contains two projects.
The first is the website that was just mapped using the scripts mentioned previously. If the
project doesn’t load, there’s a problem with the script on your machine, and you’ll have to map
the site manually and reload the project. Ensure that you have IIS and .NET 2.0 installed and
ASP.NET registered with IIS (use the aspnet_regiis.exe command in the Framework folder).

The second project represents the proxy that when compiled, with a strong name, will be
registered both in the GAC and as a COM interface using the RegSvcs.exe utility that’s part of
the .NET 2.0 Framework.

This project has several extra member files along with both prebuild and postbuild event
command lines:

makeProxy.bat: This is the batch file that calls SvcUtil.exe to generate the proxy stub
source files; this file is part of the project prebuild steps.

reg.bat: This is the batch file that registers the assembly in the GAC and for COM interop-
erability; this file is part of the project post-build steps.

unreg.bat: This is the batch file that will remove the assembly from the GAC and from
COM interoperability.

CHAPTER 10 ■ INTEGRATING WITH COM+ 325

7028Ch10.qxp 12/11/06 8:34 PM Page 325

■Note For the build steps and these batch files to work, Visual Studio 2005 must be installed in the default
path. If you chose a different path or haven’t installed Visual Studio 2005, you need to update the path to the
utilities as required.

If you build the solution and all is successful, then you should have a GAC-installed
assembly registered for COM interoperability and ready for use by COM clients. To verify,
you can open Windows Explorer to the C:\Windows\Assembly path and see the assembly
TypedServiceProxy listed, as shown in Figure 10-17.

Figure 10-17. QuickReturns Ltd. WCF proxy in the GAC

■Note If you haven’t modified any of the project Guid attributes, then the next two steps are not required
for this project to work. This would be a normal step in your solutions to validate the correct interface GUIDs.

The next step is to both verify the registration for COM and retrieve the interface ID that is
stored in the registry. The best tool for this is OleView.exe, which comes with the Windows
SDK. Start OleView.exe, and open the top-level node labeled Type Libraries. Scroll down until
you find TypedServiceProxy, as shown in Figure 10-18.

CHAPTER 10 ■ INTEGRATING WITH COM+326

7028Ch10.qxp 12/11/06 8:34 PM Page 326

Figure 10-18. TypedServiceProxy registered in COM

The next step is you need to retrieve the interface ID (the GUID) for the IQuoteService
interface. The OleView.exe utility can view the IDL for any COM registered classes. Double-click
the item TypedServiceProxy in the list to open the ITypeLib Viewer, as shown in Figure 10-19.

Figure 10-19. ITypeLib Viewer for TypedServiceProxy

Find in the right pane of the viewer the IDL definition for the IQuoteService interface
(which inherits from IDispatch—implying it supports automation as well as early bind COM
clients). Now, just above it (like attributes in .NET) is a list of IDL attributes for this interface.
We’re looking for the universally unique identifier (UUID) just above it. For this component,
its value is 058E1BEC-C44A-31FB-98C8-9FB223C46FAF.

CHAPTER 10 ■ INTEGRATING WITH COM+ 327

7028Ch10.qxp 12/11/06 8:34 PM Page 327

Inside the project file TypedServiceProxy, you’ll see a VBScript file that illustrates how to
call from an automation client. Since this is an early bound client, it requires the interface ID
to be part of the service moniker construction string for the GetObject call. The call sequence
is into the quote service through COM and then through the WCF framework to the quote
service .NET assembly hosted in IIS/ASP.NET.

Listing 10-11 is the source file for QuickReturnsScriptClient.vbs; note the wrap on some
lines.

Listing 10-11. QuickReturnsScriptClient.vbs Automation Client

Option Explicit
Dim quoteProxy, moniker, result
moniker = "service:address=http://localhost/QuickReturnsQuotes/service.svc,

binding=wsHttpBinding"
moniker = moniker + ", contract={058E1BEC-C44A-31FB-98C8-9FB223C46FAF}"
'... cut comments

Set quoteProxy = GetObject(moniker)
result = quoteProxy.GetQuote("MSFT")
WScript.Echo "MSFT's price is " + CStr(result)

The moniker string value used for the GetObject COM call provides the address endpoint
URI in addition to the binding type, which is wsHttpBinding because we’re hosting in IIS. The
final parameter of the moniker is the contract type. Using this GUID, the WCF framework
looks up the type library information to obtain the COM interface and instantiates the proxy
on the client side. The proxy in turn leverages the .NET Framework 3.0 to construct a channel
and message for the request through the service boundary. This is all done “automagically” by
the WCF components, which must be installed on the client tier as well.

Typed Contract: Early Bound

Visual Basic 6 can use early binding. Early binding allows the lookup and discovery of the
interfaces in your COM component at design time. So, at runtime the COM client is expecting
that the same UUID of your interface is registered (via type library registration). The type
library that needs to be registered and referenced is part of the reg.bat batch file in the
TypedServiceProxy project—QuickReturnsProxy.tlb. COM interfaces are to be considered
immutable. If they change, then the underlying IDL will change. Therefore, any changes to
your interfaces in the base WCF service class will require a regeneration of the proxy and a
regeneration of the type library for use by clients.

■Note If you open the Visual Basic 6 project, you may need to reset the project references back to the
TypedServiceProxy on your machine. That’s accessible from Project ➤ References from within the Visual
Basic 6 IDE.

CHAPTER 10 ■ INTEGRATING WITH COM+328

7028Ch10.qxp 12/11/06 8:34 PM Page 328

If you look at the Visual Basic 6 project TypedServiceVbClient, you can see that the project
should have a reference to the TypedServiceProxy type library. In the button click event handler,
you can now make references directly to the types inside the COM interface (see Listing 10-12;
please note the line wrap).

Listing 10-12. Early Bound Visual Basic 6 Client

Private Sub Command1_Click()
Dim obj As TypedServiceProxy.QuoteServiceClient
Dim moniker, Ticker As String
Dim price As Double

moniker = "service:address=http://localhost/QuickReturnsQuotes/
service.svc, binding=wsHttpBinding"

On Error GoTo ErrHandler

Ticker = UCase(Trim(txtTicker.Text))
Set obj = GetObject(moniker)
price = obj.GetQuote(Ticker)
MsgBox "Price is " & CStr(price)
Exit Sub

ErrHandler:
MsgBox Err.Number & " : " & Err.Description & " : " & Err.Source

End Sub

The obj object is declared to be of the interface proxy type. The moniker is then set to
include only the address and the binding type. Since you’re using just the default settings for
the wsHttpBinding, you aren’t required to supply a bindingConfiguration value. If you required
overriding any of the default settings for the binding, you could supply an application config-
uration file with the name file.exe.config and place it in the program directory of the client.
For this example, the filename would be TypedServiceVbClient.exe.config.

You then use the COM GetObject statement, which makes a call through the COM frame-
work into the Service Control Manager (SCM, or affectionately known as “scum”), activating
the COM registered WCF proxy type. Then as each method is called on the activated instance,
the WCF framework is responsible for both transforming and marshaling the call from COM
into the WCF framework and ultimately across the service boundary to the service class.

Dynamic Discovery
There are scenarios where registering the COM type library is not feasible. An example is
Microsoft Excel spreadsheets that require dynamic discovery and invocation through COM
locally to WCF services. For this, the WCF framework and the COM integration provide a
dynamic model, or what’s known as late binding.

What the WCF framework provides is the runtime construction of a proxy and COM inter-
face for the COM client at object construction time. By first querying the service metadata,
after being provided some initialization parameters, the WCF framework generates both a
WCF proxy and a COM callable wrapper that the COM client interfaces with. You currently

CHAPTER 10 ■ INTEGRATING WITH COM+ 329

7028Ch10.qxp 12/11/06 8:34 PM Page 329

have two choices for the service monikers: WS-MetadataExchange (MEX) and WSDL. Given
this is a nontyped model, it is callable only by clients that support automation (IDispatch)
such as VBScript, Visual Basic 6, Excel, and so on.

Metadata Exchange Contract Service Moniker

WCF supports the WS-MetadataExchange protocol that provides the discovery of services in
addition to policy and schema information. Please see Chapter 4 for more information. The
WCF COM integration framework uses this to dynamically derive the service endpoint inter-
faces along with binding and service behavior.

Starting with the scripting sample from the project file in Listing 10-2, there’s an additional
VBScript file: QuickReturnsScriptClientMex.vbs. Listing 10-13 shows its contents (note the line
wrap).

Listing 10-13. QuickReturns Ltd. Script Using Mex Service Moniker

Option Explicit
Dim quoteProxy, moniker, result

moniker="service:mexAddress=http://localhost/QuickReturnsQuotes/service.svc/mex, "
moniker=moniker + "address=http://localhost/QuickReturnsQuotes/service.svc,"
moniker=moniker + "contract=IQuoteService, "
moniker=moniker + "contractNamespace=http://PracticalWcf/QuoteService, "
moniker=moniker + "binding=WSHttpBinding_IQuoteService, "
moniker=moniker + "bindingNamespace=http://tempuri.org/"

Set quoteProxy = GetObject(moniker)
result = quoteProxy.GetQuote("MSFT")
WScript.Echo "MSFT's price is " + CStr(result) WSDL Contract Service Moniker

From the code in Listing 10-13, you don’t have a local configuration file or a strongly
typed object (in COM or .NET). Therefore, you must supply the “discovery” information to the
GetObject call. One part is the URI for where the MEX metadata is found. The others are the
URI of the service endpoint, binding, and contract information that will be mapped into the
MEX response.

The contract and contractNamespace comes directly from the metadata binding informa-
tion inside the <wsdl:binding> element from the metadata. This must match what the MEX
response contains; otherwise, you’ll receive a mismatch on the contract error. For this sample,
this represents the <wsdl:binding> element that is visible if you request the WSDL for the serv-
ice using the following URI:

http://localhost/QuickReturnsQuotes/service.svc?wsdl

WSDL Contract Service Moniker

Similar to how WCF works with the WS-MetadataExchange protocol to dynamically derive the
COM and WCF interfaces and types, the service moniker can also work with a WSDL contract.
Listing 10-14, contained in the file QuickReturnsScriptClientWsdl.vbs, illustrates how to
make a call using the service moniker for WSDL.

CHAPTER 10 ■ INTEGRATING WITH COM+330

7028Ch10.qxp 12/11/06 8:34 PM Page 330

Listing 10-14. QuickReturns Ltd. Script Using WSDL Service Moniker

Option Explicit
Dim quoteProxy, wsdl, moniker, result

wsdl = GetWsdlFromUrl ("http://localhost/QuickReturnsQuotes/service.svc?wsdl")
moniker="service:wsdl=" & wsdl & ", "
moniker=moniker + "address=http://localhost/QuickReturnsQuotes/service.svc,"
moniker=moniker + "contract=IQuoteService, "
moniker=moniker + "contractNamespace=http://tempuri.org/, "
moniker=moniker + "binding=WSHttpBinding_IQuoteService, "
moniker=moniker + "bindingNamespace=http://tempuri.org/"
Set quoteProxy = GetObject(moniker)

result = quoteProxy.GetQuote("MSFT")
WScript.Echo "MSFT's price is " + CStr(result)

Function GetWsdlFromUrl(strUrl)
Dim WinHttpReq, resp
Set WinHttpReq = CreateObject("WinHttp.WinHttpRequest.5)
resp = WinHttpReq.Open("GET", strUrl, False)
WinHttpReq.Send()
GetWsdlFromUrl = WinHttpReq.ResponseText

End Function

■Note For the previous dynamic HTTP request for the WSDL to work, the correct version of the WinHttp
services component needs to be referenced by the CreateObject call. On some installations, this may be
WinHttp.WinHttpRequest.5.1. Please see http://msdn.microsoft.com/library/en-us/winhttp/
http/winhttp_start_page.asp for more information.

The first statement after the variable declarations makes a call to the included function
that invokes GetWsdlFromUrl. This VBScript function just makes an HTTP get call to the URI to
retrieve the HTTP response, which for that URI is the WSDL document for the service interface.

The moniker initialization string is then composed of the WSDL response along with the
remaining service moniker attributes. The WSDL string is an XML response that fully
describes the IQuoteService interface exposed at the endpoint address. It’s the same XML you
would see if you opened the URL http://localhost/QuickReturnsQuotes/service.svc?wsdl
directly from a browser.

Again, using the dynamic service moniker, the COM interface makes a call into the WCF
framework to dynamically construct the types necessary to make a round-trip request into
the WCF service that is hosted in IIS—all without the COM client knowing the underlying
workings of how to work with WCF (other than the moniker construction). What the dynamic
generation provides is the generation of a fully configured proxy that matches the service
endpoints’ advertised metadata including policy, security, and contract information.

CHAPTER 10 ■ INTEGRATING WITH COM+ 331

7028Ch10.qxp 12/11/06 8:34 PM Page 331

Briefly, let’s summarize what the high-level steps are required to consume a WCF service
as a COM interface leveraging a typed contract service moniker:

1. Generate a proxy using the WCF SvcUtil.exe utility.

2. Create a project/solution in Visual Studio 2005 that contains the generated proxy class
file.10

3. Add the attribute ComVisible to the solution; you can add this to the AssemblyInfo.cs file.

4. Provide a strong name for the assembly; this is optional but allows loading to the GAC
to ensure a single version is loaded.

5. Register the assembly for COM using the RegAsm tool.

6. Install the assembly in the GAC; this is optional but ensures a single version is loaded.

7. Create an application configuration file for your client executable; for example, if the
client is called OldHorseClient.exe, then the configuration file is
OldHorseClient.exe.config. This is the standard .NET configuration file-naming
requirement.

8. Use the GetObject statement in your COM environment (Visual Basic 6, scripting, and
so on) with the service moniker to instantiate the WCF service interface.

Security Credentials with IChannelCredentials
In any modern IT infrastructure, security is paramount for interoperability amongst applica-
tions in a distributed solution. In our example, there are clear requirements for securing our
services. The examples so far haven’t demonstrated any way of securing our services, whether
exposed to legacy COM+ clients or wrapping COM+ services with the WCF services.

Chapter 7 discussed WCF security in detail and covered both the declarative and pro-
grammatic means for securing services. Fortunately, the COM+ interoperability tier of WCF
leverages the same base framework for supplying both transport and message security.

For the final steps in the COM+ integration, we’ll show how to secure the WCF service that
you are consuming from late-bound COM+ clients. A few additional steps are required to con-
figure the IIS instance that hosts the QuickReturnsQuotesSecure website. Again, we’ve supplied
a script, CreateVirtualDirs.bat, that configures IIS and sets the ASP.NET runtime to .NET 2.0,
which is required for running .NET 3.0 services.

The first modification is to the service Web.config. Here you add the necessary security
configuration elements to enable both transport-level and message-level security. Make the
modification to the binding element that is associated with the endpoint, as shown in
Listing 10-15.

CHAPTER 10 ■ INTEGRATING WITH COM+332

10. This is not required, but it makes things easier.

7028Ch10.qxp 12/11/06 8:34 PM Page 332

ENABLING SSL ON IIS

Using transport security requires SSL; consequently, you need to enable the website to use SSL, which
requires the presence of a server certificate.

To install a test certificate, you can leverage the IIS 6 Resource Kit (SelfSSL.exe).11 Simply execute
the following command:

selfssl /t

This installs a server certificate for use by IIS and places it in the Trusted Certificate list. WCF by default
validates the certificate if you trust the issuer, so, for this example, it will fail without the /t switch.

Listing 10-15. Security-Enabled Web.config

<bindings>
<wsHttpBinding>
<binding name="Binding1">
<security mode="TransportWithMessageCredential">
<message clientCredentialType="UserName" />

</security>
</binding>

</wsHttpBinding>
</bindings>

For this solution, we are using wsHttpBinding. To add transport and message security, you
add the security element and set the mode to TransportWithMessageCredential. This mode
provides both an SSL-based channel along with message-encoded authentication. Addition-
ally, for the message element, you inform the WCF framework that you require UserName
authentication. This informs WCF that the client embeds a username and password into the
message, and this will pass over SSL.

The solution includes the project TypedServiceProxySecure class library that contains a
set of batch files that dynamically generate the proxy file along with providing both GAC
installation and COM+ registration. These steps are in the prebuild and post-build steps
associated with the project.

Once you’ve configured your service to support the security model required, you can now
update the late-bound VBScript client to make a call matching the security requirements of
the service.

If you take the late-bound VBScript file QuickReturnsScriptClientMex.vbs and run it with-
out specifying any credentials, you’ll see an exception raised to the client indicating that the
username is not provided, so you need to specify it in ClientCredentials.

Fortunately, COM+ integration makes that easy from the COM+ client. You just need to
make a call to set the credentials on the channel. Listing 10-16 shows the updated VBScript
that supports username and password authentication (watch the line wrap).

CHAPTER 10 ■ INTEGRATING WITH COM+ 333

11. You can download the IIS 6 Resource Kit from the following URL: http://www.microsoft.com/
downloads/details.aspx?FamilyID=56fc92ee-a71a-4c73-b628-ade629c89499&DisplayLang=en.

7028Ch10.qxp 12/11/06 8:34 PM Page 333

Listing 10-16. Late-Bound VBScript with Security

Option Explicit
Dim quoteProxy, moniker, result

moniker="service:mexAddress=http://xpshawnci/QuickReturnsQuotesSecure/"
moniker=moniker + "service.svc/mex, "
moniker=moniker + "address=https://xpshawnci/QuickReturnsQuotesSecure/service.svc, "
moniker=moniker + "contract=IQuoteService, "
moniker=moniker + "contractNamespace=http://tempuri.org/, "
moniker=moniker + "binding=WSHttpBinding_IQuoteService, "
moniker=moniker + "bindingNamespace=http://tempuri.org/"

Set quoteProxy = GetObject(moniker)
quoteProxy.ChannelCredentials.SetUserNameCredential "xpshawnci\soauser", "p@ssw0rd"

result = quoteProxy.GetQuote("MSFT")
WScript.Echo "MSFT's price is " + CStr(result)

The only modification you needed to make is adding the call, shown in bold. Here we
made a call to the ChannelCredentials.SetUserNameCredential method, passing in the user-
name and password of the principal. The WCF framework then generates a security token that
is put into the message. On the receiving side, the server validates that token. If we supplied
an invalid username or password, the error that the late-bound client receives is that the
“security token could not be validated” message.

Internally, the SetUserNameCredential call creates a new ClientCredential object, setting
the username and password, and adds it to an internal collection of security credentials that
are associated to the channel.

Other methods of supplying credentials are part of the IChannelCredentials interface, imple-
mented by the System.ServiceModel.ComIntegration.ChannelCredentials type. The
IChannelCredentials interface supports other credential types such as Windows credentials
(SetWindowsCredentials), certificate based (SetClientCertificateFromStore,
SetClientCertificateFromStoreByName), and SetIssueToken for use with Security Token Service
(STS) services.

Summary
This chapter focused on interoperability with COM, both from a consumer and service per-
spective. Although you might be lucky enough to forget the past, WCF hasn’t left it all in the
dust. The WCF framework provides a strong extensible starting point to help in the evolution-
ary model of moving solutions into the SOA age.

The next chapter focuses on working with data in and around WCF. All relevant services in
some form have data associated with them. Without the data, you have fairly empty services.
With WCF and SOA in general, careful consideration is required to understand not only the
“how to” but also the implications of what happens to data as it crosses the explicit service
boundaries.

CHAPTER 10 ■ INTEGRATING WITH COM+334

7028Ch10.qxp 12/11/06 8:34 PM Page 334

Working with Data

Data is the “Holy Grail” of an application. Almost every application needs to operate on data—
whether it’s creating, consuming, or processing data. Without data, almost all applications would
be useless. You can use many patterns when designing applications to work with data. In the early
days of DNA and client-server applications, a favorite approach was the n-tier approach where
the application was divided into n tiers (the most common division was three tiers). In the three-
tier approach, the first tier is the presentation tier, which handles all the presentation of the
application (the user interface) and is essentially what the user interacts with. The next tier is the
business layer, which contains all the business rules to which the application needs to adhere.
The last tier is the data layer, which performs all the create, read, update, and delete (CRUD)
functionality. The data layer usually connects to the required back-end data sources using one
of many well-known mechanisms such as OLE DB, ODBC, and so on.

In the SOA world, however, data is transferred in the form of a “message” over the wire.
You can think of the WCF as a messaging infrastructure because it can receive, process, and
dispatch messages. In addition, it can also construct messages and dispatch and deliver them
to a desired location. Often, the messages are represented as objects in memory and need to
be converted to an appropriate format so they can be transmitted across the wire. The process
of converting them is called serialization and is explained in the “XML Serialization” section.
Similarly, on the other end of the wire, the process of converting the message to an object that
can be represented in memory is called deserialization. This chapter introduces the concepts
of data contracts in addition to the basics of serialization.

After completing this chapter, you will have the following knowledge:

• You’ll know why you need serialization.

• You’ll understand the serialization options available in WCF.

• You’ll understand best practices for data connectivity.

Understanding the Data Transfer Architecture
At the heart of the message capabilities of WCF is the Message class. The WCF architecture and
runtime are essentially two pillars—the channel stack and the service framework—and the
Message class is the bridge between the two. The first pillar (the channel stack) on the “send
side” converts a Message instance with some specified action to the act of either sending or
receiving data. On the other hand, with the channel stack operating on the receiving side, it is
responsible for the reverse—converting an action into some specific message.

335

C H A P T E R 1 1

■ ■ ■

7028Ch11.qxp 12/11/06 8:32 PM Page 335

Although there is no restriction on using the Message class and channel stack directly, it is
not usually recommended because it is fairly expensive (time-wise) and complex. Also, there
are runtime issues such as lack of metadata support, lack of strongly typed proxies, and so on.
To overcome these restrictions, WCF has the second pillar—the framework that provides a rel-
atively easy programming model for working with Message objects. This framework maps .NET
types and services via service contracts and sends messages to operations that are .NET meth-
ods that are marked with the [OperationContract] attribute. The framework converts the
incoming Message instances into the parameters on the server side. On the client side, it does
the reverse and converts the return types to the outgoing Message instance.

Although the Message class is the most fundamental concept of WCF, it is usually not
interacted with directly. You should use one of the other WCF service model constructs (such
as data contracts, discussed later in the “Introducing Data Contracts” section), message con-
tracts, and operation contracts (both introduced in Chapter 3) to describe the incoming and
outgoing messages. You should use Message only when working with some advanced scenar-
ios. We’ll discuss all the aforementioned Message classes and WCF constructs a little later in
this chapter in the “Introducing Message Contracts” section.

Regardless of which construct you use whenever the message contents are described
using message contracts or parameters, the message contents need to be serialized to convert
these between the .NET type to the relevant SOAP or binary representation. Before you exam-
ine each of the options available in WCF, you need to understand the serialization options
available and the advantages and challenges of each of them.

Exploring the Serialization Options in WCF
Serialization is nothing but the process of converting the state of an object into a format that
can be either persisted to disk or transmitted over the wire. On the flip side, deserialization is
the process of converting an incoming stream, which is either read from disk or read over the
wire to an object in memory. Collectively, this allows data to be stored and transmitted with
relative ease.

This is all good, but why serialize in the first place? Serialization is a key aspect of any dis-
tributed technology, and .NET is no different. For example, in an ASP.NET application, you can
use serialization to save the session state to the configured medium (that is, memory, state
server, or database). One of the main problems that serialization solves for you is interoper-
ability with other systems and platforms. Serialization is not a new concept, but it is an
important one because without serialization, it would be difficult to support interoperability
between various platforms. Since XML serialization converts the object or data structure at
hand to an architecture-independent format, you do not encounter issues with different pro-
gramming languages, operating systems, and hardware such as memory layout, byte ordering,
or even that different platforms represent data structures differently.

The .NET Framework features two options for serializing objects—binary and XML serial-
ization. The primary difference between the two is that binary serialization allows you to
maintain type fidelity, whereas XML serialization does not. In other words, type fidelity allows
for preserving the “complete state” of an object including any private members of the object.
However, by default, XML serialization will serialize only the public fields and properties of the
object. If, for example, you need to pass an object “by value” across either machine or domain
boundaries, then you would need to use binary serialization. You can use binary serialization
only when both the runtimes and platforms on either end of the stream are the same; this is

CHAPTER 11 ■ WORKING WITH DATA336

7028Ch11.qxp 12/11/06 8:32 PM Page 336

because the platforms know how the type is represented internally in memory. If this is not
the case, then the object would not be able to deserialize on the other end. XML serialization,
as the name suggests, uses XML and as a result is a better choice for sharing data across differ-
ent platforms or the Internet.

In .NET by default only primitive types (such as integers) are serializable, and there is no
need for any additional steps to serialize these primitive types. Since the .NET runtime has
no knowledge of complex types, these are not serialized by default, and the .NET runtime
needs more information about how these types should be serialized. Because each operation
in a WCF service needs to either consume or generate data, which is transmitted over the wire,
in WCF it is important that every type is correctly serialized.

■Note The ability to serialize an object can be enabled only when writing the code; in other words, serialization
is a design-time feature. If this was not enabled at design time for an object, then that object cannot support
serialization at runtime. The ability to serialize an object cannot be switched on at runtime in an ad hoc manner.
Also note that serializing and deserializing are sometimes also known as hydrating and dehydrating.

WCF (being part of .NET 3.0) not only supports the serialization options available in .NET
but also adds a few new ones. A data contract is the default option among all the following
available options:

• Serializable attribute/ISerializable interface

• Data contracts

• XML serialization

• Message contracts

• Message class

Introducing Data Contracts
Data contracts are the “agreement” between a service and its consumer. At an abstract level,
the contract defines how the data will be exchanged between the two and also defines what
data is returned for each type (that is, serialized to XML). For a service and its consumer to
communicate, they do not necessarily have to share the same types; they need to share only
the data contracts. The default serialize engine in WCF is the data contract serializer, which is
implemented as the DataContractSerializer class and is the recommended way to go for
WCF. All .NET primitive types can be serialized without any other requirement. However, new
complex types need to have an associated data contract defined before they can be serialized.

Data contracts are defined by applying the [DataContract] attribute to the type and can
be applied to classes, structs, and enums. Just as each operation in a service needs to be
decorated with the [ServiceContract] attribute, similarly every data member (such as fields,
properties, and events) in the data contract needs to be decorated with the [DataMember]
attribute. This indicates to the data contract serializer that this member needs to be serialized.

CHAPTER 11 ■ WORKING WITH DATA 337

7028Ch11.qxp 12/11/06 8:32 PM Page 337

■Note Unlike binary serialization that automatically includes all public and private members in a class and
unlike XML serialization that automatically includes public members in a class, a data contract is designed
with an “opt-in” model. This means the members of a class that are not explicitly marked with the
[DataMember] attribute are not automatically serialized, regardless of their accessibility levels, and hence
are not included in the data contract.

Some of the important aspects of data contracts and their implications in the WCF runtime
are as follows:

• Member accessibility levels such as private, public, internal, and so on, do not affect the
data contract. Members that are private in one context could end up being accessed
publicly elsewhere after serialization.

• Static fields cannot be included in the data contract. As a result, if a [DataMember] attrib-
ute is applied to a static field, it will be ignored.

• All data members for a data contract need to be serialized and deserialized for the data
contract to be valid.

• Every property should have the get and set accessors. This is important because the
properties get and set are used during the serialization and deserialization process.

• There is no special process for generic types; they are treated the same as nongeneric
types.

• The WCF runtime takes care of defining the underlying SOAP message and the seriali-
zation of the data. As long as the data types are serializable, WCF will handle the
underlying message exchange.

For example, in the QuickReturns Ltd. trading application, look at the stock quote of a
particular company. Figure 11-1 shows the data entities such as Change, price-to-earnings ratio
(PERatio), average volume (AvgVol), LastTrade, and so on, that this quote will include.

As discussed earlier, to make this into a serializable type to allow you to transmit this data
across to other applications, which may or may not be based on WCF, you need to apply the
[DataContract] and [DataMember] attributes, as shown in Listing 11-1. Although this structure
consists of mostly primitive data types, which can be serialized, you still need to explicitly
mark them as part of the data contract so the runtime is aware of which members constitute
the data members.

CHAPTER 11 ■ WORKING WITH DATA338

7028Ch11.qxp 12/11/06 8:32 PM Page 338

Figure 11-1. QuickReturnStockQuote class

Listing 11-1. QuickReturnStockQuote Data Contract

[DataContract]
public class QuickReturnStockQuote
{

[DataMember]
internal string Symbol;

[DataMember]
internal string CompanyName;

[DataMember]
internal decimal LastTrade;

[DataMember]
internal decimal Change;

[DataMember]
internal decimal PreviousClose;

CHAPTER 11 ■ WORKING WITH DATA 339

7028Ch11.qxp 12/11/06 8:32 PM Page 339

[DataMember]
internal decimal AvgVol;

[DataMember]
internal double MarketCap;

[DataMember]
internal decimal PERatio;

[DataMember]
internal decimal EPS;

[DataMember]
internal decimal FiftyTwoWeekHigh;

[DataMember]
internal decimal FiftyTwoWeekLow;

}

Data Contract Names
Sometimes even though a consumer and a service might not share the same type, they can
still pass data between each other as long as the data contracts are equivalent on both sides.
This equivalence is based on a combination of the data contract and data member names.
These data contract and data member names follow a few simple rules that you can use to
map the different types in situations where they differ on either end. These data contract and
member rules are as follows:

• The “fully qualified” data contract name consists of both the namespace and a name.

• Data members have only names (no namespaces).

• Namespaces, data contract, and member names are case-sensitive.

The default namespace for a data contract is in the form of a URI, which can be either
absolute or relative. By default, the namespace is the same as the CLR namespace for that type
and maps to http://schemas.datacontract.org/2004/07/Clr.Namespace with the correct CLR
namespace. If required, you can change the default namespace in two ways. First, you can
change the Namespace property of the [DataContract] attribute. Second, you can apply the
[ContractNamespace] attribute to the relevant module or assembly.

A data contract’s default name is the name for that type. You can use the Name property of
the [DataContract] attribute to override the default name. Similar to the data contract, the
default name for a data member is the name of that member (field or property). You can use
the Name property on the [DataMember] attribute to override that default. Listing 11-2 shows an
updated version of the data contract from Listing 11-1 with the default names overridden.

CHAPTER 11 ■ WORKING WITH DATA340

7028Ch11.qxp 12/11/06 8:32 PM Page 340

Listing 11-2. QuickReturnStockQuote Data Contract with Names Specified

[DataContract]
public class QuickReturnStockQuote
{

[DataMember(Name = "TickerSymbol")]
internal string Symbol;

[DataMember]
internal string CompanyName;

[DataMember]
internal decimal LastTrade;

[DataMember]
internal decimal Change;

[DataMember]
internal decimal PreviousClose;

[DataMember(Name = "AverageVolume")]
internal decimal AvgVol;

[DataMember(Name = "MarketCapital")]
internal double MarketCap;

[DataMember(Name = "PriceEarningRatio")]
internal decimal PERatio;

[DataMember(Name = "EarningsPerShare")]
internal decimal EPS;

[DataMember(Name = "52WkHigh")]
internal decimal FiftyTwoWeekHigh;

[DataMember(Name = "52WkLow")]
internal decimal FiftyTwoWeekLow;

}

Data Contract Equivalence
As stated earlier, both the client and service do not have to have the same type for them to be
able to exchange data. However, they need to have the data contracts of both the types present
on either end to be equivalent. Or in other words, they need to have the same namespace and
names. Also, every data member on one side needs to have an equivalent on the other end.

CHAPTER 11 ■ WORKING WITH DATA 341

7028Ch11.qxp 12/11/06 8:32 PM Page 341

■Note In the case where both the sides have the same types but different data contracts (in other words,
they are not equivalent), then the data contracts should not be given the same name and namespace. Doing
so can lead to unexpected runtime exceptions.

If a data contract inherits from another data contract, then that data contract is treated as
one data contract that includes all the types from the base. Also in accordance with the rules
of object-oriented programming (OOP) when passing data contracts, a base class cannot be
sent when the expected data contract is from a derived class. On the flip side, a data contract
from the derived class can be sent when expecting data from the derived class but only if the
receiving endpoint is aware of the derived type via the [KnownType] attribute. This attribute
can be applied only to data contracts and not at the data member level and is discussed later
in this chapter (in the “Introducing Data Contracts” section). As an example, the data contract
for the MyStockQuote type shown in Listing 11-3 is the same as the one in Listing 11-2.

Listing 11-3. MyStockQuote Data Contract

[DataContract(Name="QuickReturnStockQuote")]
public class MyStockQuote
{

internal string TickerSymbol;

[DataMember(Name="CompanyName")]
internal string Name;

[DataMember]
internal decimal LastTrade;

[DataMember]
internal decimal Change;

[DataMember]
internal decimal PreviousClose;

[DataMember(Name = "AverageVolume")]
internal decimal Volume;

[DataMember(Name = "MarketCapital")]
internal double MktCap;

internal decimal PriceEarningRatio;

[DataMember(Name = "EarningsPerShare")]
internal decimal EPerS;

CHAPTER 11 ■ WORKING WITH DATA342

7028Ch11.qxp 12/11/06 8:32 PM Page 342

[DataMember(Name = "52WkHigh")]
internal decimal WeekHigh52;

[DataMember(Name = "52WkLow")]
internal decimal WeekLow52;

}

Another factor that affects the data equivalence is the order of members. Data contracts
must have members in the same order. By default the order is alphabetical; however, you can
change this using the Order property of the [DataMember] attribute. The sequences in which
the ordering of elements occurs are as follows:

• The first in order is the data member of the base types if there is an inheritance hierarchy
for the current data member type.

• Next are the data members of the current type in alphabetical order that do not have the
Order property set in the [DataMember] attribute.

• Last are the data members that do have the Order property set in the [DataMember]
attribute first; if more than one is set to the same Order property, then they appear
alphabetically.

For example, the code in Listing 11-4 produces the same data equivalence.

Listing 11-4. Coordinate Data Contract Equivalence

[DataContract(Name = "QuickReturnStockQuote")]
public class MyStock1
{

//Order is alphabetical (CompanyName, LastTrade, TickerSymbol)

[DataMember]
internal string CompanyName;

[DataMember]
internal decimal LastTrade;

[DataMember]
internal string TickerSymbol;

}

[DataContract(Name = "QuickReturnStockQuote")]
public class MyStock2
{

//Even though the TickerSymbol and LastTrade member orders have changed
//the order is alphabetical (CompanyName, LastTrade, TickerSymbol)
//and is equivalent to the preceding code.

CHAPTER 11 ■ WORKING WITH DATA 343

7028Ch11.qxp 12/11/06 8:32 PM Page 343

[DataMember]
internal string CompanyName;

[DataMember]
internal string TickerSymbol;

[DataMember]
internal decimal LastTrade;

}

[DataContract(Name = "QuickReturnStockQuote")]
public class MyStock3
{

//Order is according to the Order property (CompanyName, LastTrade,
//TickerSymbol), equivalent to the preceding code.

[DataMember(Order=1)]
internal string CompanyName;

[DataMember(Order=3)]
internal string TickerSymbol;

[DataMember(Order=2)]
internal decimal LastTrade;

}

[DataContract(Name = "QuickReturnStockQuote")]
public class MyStock4 : MyStockBase
{

//Order is alphabetical (CompanyName, LastTrade, TickerSymbol)
//and includes all the data types from the current class and
//the base class.

[DataMember]
internal decimal LastTrade;

}

[DataContract(Name = "QuickReturnStockQuote")]
public class MyStockBase
{

[DataMember]
internal string TickerSymbol;

[DataMember]
internal string CompanyName;

}

CHAPTER 11 ■ WORKING WITH DATA344

7028Ch11.qxp 12/11/06 8:32 PM Page 344

■Note Primitive types and certain types, such as DateTime and XmlElement, are treated as primitive
because they are always known to the .NET runtime. As a result, you do not need to add them via the
[KnownType] attribute. The only exception to this is when using arrays of primitive types.

Sometimes both the endpoints involved will not be aware of the types and therefore warrant
the use of the [KnownType] attribute. These situations are as follows:

• As stated earlier, the data type sent is inherited from the type that is being expected.

• The type sent is declared as an interface as opposed to a concrete implementation such
as a class, structure, or enumeration. Since you cannot know in advance what type
implements that interface, the [KnownType] attribute is required.

• The declared type that is being sent is declared of the type Object; because every type
inherits from Object, the type cannot be known in advance.

• Some of the types, even though declared, might not fall in one of the previous three situ-
ations. For example, a HashTable internally stores the actual object using the Object type.

Listing 11-5 shows an example of how you can use the [KnownType] attribute when using
a HashTable. The class QuickReturnPortfolio implements a HashTable, and because of the
[KnownType] attribute, the runtime is aware that only the types QuickReturnStock and
QuickReturnBond are stored in the HashTable.

Listing 11-5. Data Contract Using [KnownType] Attribute

[DataContract]
public class QuickReturnStock { }

[DataContract]
public class QuickReturnBond { }

[DataContract]
[KnownType(typeof(QuickReturnStock))]
[KnownType(typeof(QuickReturnPortfolio))]
public class QuickReturnPortfolio
{

[DataMember]
System.Collections.Hashtable thePortfolio;

}

CHAPTER 11 ■ WORKING WITH DATA 345

7028Ch11.qxp 12/11/06 8:32 PM Page 345

Data Contract Versioning
Change is a fact of life, and in a service-oriented world you do not have the luxury of assuming
that everyone will change their implementation as your solution evolves. Some consumers
will still be using the old version of the contract; therefore, you need to be able to support
them by versioning data contracts.

Broadly speaking, data contract changes fall into two categories—nonbreaking and break-
ing. Nonbreaking changes are when a consumer is able to communicate with a service using a
newer version of a data contract, and vice versa. Breaking changes, on the other hand, do not
allow this communication without changes to the consumer as well. Any change to a type that
does not affect how an item is serialized and deserialized on the other end is a nonbreaking
change. Listing 11-6 shows two versions of a class called QuickReturnQuote. Although the
underlying type has changed between the two versions, the data contract is still the same
because the Name property will be applied to the changing member to mask the internal name
change.

Listing 11-6. Coordinate Data Contract Equivalence

//Version 1 of the QuickReturnQuote Class
[DataContract]
public class QuickReturnQuote
{

[DataMember(Name = "TickerSymbol")]
internal string Symbol;

[DataMember]
internal decimal LastTrade;

[DataMember]
internal decimal Change;

}

//Version 2 of the QuickReturnQuote Class
[DataContract]
public class QuickReturnQuote
{

[DataMember]
internal string TickerSymbol;

[DataMember(Name="LastTrade")]
internal decimal Value;

[DataMember]
internal decimal Change;

}

CHAPTER 11 ■ WORKING WITH DATA346

7028Ch11.qxp 12/11/06 8:32 PM Page 346

Table 11-1 summarizes the options available when changing a data contract and the
impact that change has on the consumers, if any.

Table 11-1. Data Contract Change and Its Impact

Change Impact of Change

Changing name or namespace Breaking change

Changing order of data members Breaking change

Renaming data members Breaking change

Changing data contract Breaking change

Adding data member Nonbreaking change (in most cases)

Removing data member Nonbreaking change (in most cases)

Changing contracts is a tricky situation no matter how careful you are. You can change the
contracts in many ways—by adding, removing, or modifying—and you can cause many issues
on either end of the wire. These can include the obvious issues where an exception will be
thrown (and it would be easier to debug and fix) to the more interesting ones where the data
may lack integrity and not make sense. Figure 11-2 shows a versioning decision tree that you
can use to see the effect of any changes applied to the data contracts. The versioning decisions
are depicted with blue diamonds, and the actions of those decisions are represented in rectan-
gles. The arrows represent the direction of the flow. The green actions represent nonbreaking
changes, and those in orange show breaking changes.

Let’s take an example service and walk through the flowchart. When you need to modify
your existing service and can do so by adding a new service, then the easiest way forward is to
use service contract inheritance. This new type will be pointing to a new endpoint, which only
the new consumers of this service will be aware of; the existing consumers will continue using
the existing published version of the service. However, if this is not an option and you need to
change the data contract, then (depending on the kind of change) this may or may not be
easy. If you need to add more data, then, as you can see in Figure 11-2, the easiest option is
adding new optional data members.

If adding new members is not an option and you need to change the service operation
and its corresponding data contract, then, as shown in the decision tree, it is best to imple-
ment a new version of the data contract (depicted as “v.Next”) within a new namespace and
also pointing to a new endpoint. It is recommended that you incorporate a version number in
the namespace. At this point if you choose, you can deprecate the old endpoint, and it is this
action of deprecating that is breaking. If you are only deleting a service operation, you can
keep the same data contract and just implement the “v.Next” version of the service and name-
space pointing to a new endpoint.

CHAPTER 11 ■ WORKING WITH DATA 347

7028Ch11.qxp 12/11/06 8:32 PM Page 347

Figure 11-2. Versioning decision tree

Round-Tripping
As you have seen so far, versioning data contracts is fairly straightforward, and for the most
part a data contract can evolve with the service in a nonbreaking fashion. But there is one
feature called round-tripping where the type cannot be evolved. Round-tripping is when, for a
data contract, data passes from a new version to an old version and back to a new version.
Since round-tripping guarantees that no data is lost, enabling this makes the type forward-
compatible with any changes supported by data contract versioning in the future.

For a type to take part in round-tripping, you need to implement the IExtensibleDataObject
interface. This interface contains the property called ExtensionData, which is used to store any
data from future versions of the data contract that might not be known to the current version.
When the WCF runtime comes across any data that is not part of the original contract, that data is
stored in this property and persisted. This property is essentially a “property bag” for the data and
is not processed in any other fashion.

Yes Stop

NoNoNo

No

New
Operation?

Yes

Yes

Yes

Yes Yes

Start

No

Stop

Service Contract
Inheritance

Change
Operation?

Change
Binding?

Delete
Operation?

Change
Data Contract?

Add Member?

v.Next Data
Contract

+ Namespace

v.Next Service
Contract

+ Namespace

Deprecate Old
Endpoint
(Optional)

Add New Endpoint

Add New Optional
Member

CHAPTER 11 ■ WORKING WITH DATA348

7028Ch11.qxp 12/11/06 8:32 PM Page 348

One caveat to using the round-tripping feature is that sometimes it may cause the WCF
runtime to produce schema-invalid messages. Round-tripping should be disabled when strict
schema compliance is a requirement, such as if a future version of a data contract adds new
members. When serialized, these new members are stored in the ExtensionData property.
Now, when this new data contract is serialized the next time, the ExtensionData property will
be serialized instead of the content of that ExtensionData property (that is, the new members).
This will result in a message with a schema in which the new members are not present.

If at some point in the future you do not like the support for unknown members and want
to switch off round-tripping, you can do so quite easily. For example, you might have a require-
ment for strict schema compliance in the future. You can disable this feature by setting the
IgnoreExtensionDataObject property in the [ServiceBehavior] attribute to true. Listing 11-7
shows how you can apply this at the service level. The class called Main implements a service
defined by the interface IQuickReturnTraderChat.

Listing 11-7. Sample Showing How to Ignore ExtensionDataObject at a Service Level

[ServiceBehavior(InstanceContextMode =
InstanceContextMode.Single,
IgnoreExtensionDataObject=true)]

public partial class Main : Form, IQuickReturnTraderChat
{

//Code removed for clarity
}

If you want to implement certain behaviors at an operation level as opposed to the
service level, then use the [OperationBehavior] attribute instead of the [ServiceBehavior]
attribute. However, the [OperationBehavior] attribute supports only a subset of features of
the [ServiceBehavior] attribute.

■Note The [ServiceBehavior] attribute specifies the internal execution behavior of a specific service
and applies at the service-wide level, affecting all the operations within that service. You can use this attrib-
ute to enable most common features such as concurrency, exception details, automation session shutdown,
transaction behavior, and so on, which otherwise would need to be manually implemented.

XML Serialization
As you have seen so far, the default option to serialize data types is the data contract
serializer, which is implemented via the DataContractSerializer class. However, WCF
also supports XmlSerializer. Although XmlSerializer supports fewer types compared to
DataContractSerializer, it does provide better control over the resulting XML and also sup-
ports more of the XSD standard. Even though DataContractSerializer is the default option,
sometimes using XmlSerializer is better:

CHAPTER 11 ■ WORKING WITH DATA 349

7028Ch11.qxp 12/11/06 8:32 PM Page 349

• It’s better if you are migrating an application from ASP.NET web services to WCF and
want to reuse existing types instead of data contracts.

• It’s better when more control over XML is required for it to adhere to some schema.

• It’s better when services need to follow legacy SOAP encoding standards.

You also need to be aware of the underlying differences between the two platforms.
Although the data contract serializer expects every member that needs to be serialized deco-
rated with the [DataMember] attribute, XmlSerializer, on the other hand, serializes any public
member. If you are not careful, this can lead to situations where data you were not expecting
to be serialized is exposed, which can cause security and information disclosure issues.

■Note The two serialization options (DataContractSerializer and XmlSerializer) serialize the same
type to XML differently, which makes their interchange usage difficult because you might get runtime excep-
tions or behavior that might not be expected.

To use XmlSerializer instead of the data contract serializer, all you need to do is apply the
[XmlSerializerFormat] attribute to the service. Listing 11-8 shows the QuickReturnStockQuote
example discussed earlier in the chapter, implementing XmlSerializer. Note, in addition to
the required attribute, the accessibility of the class members has changed to public. This is
because, as we stated earlier, only public members will be serialized by XmlSerializer.

Listing 11-8. QuickReturnStockQuote Using XmlSerializer

[DataContract]
[XmlSerializerFormat]
public class QuickReturnStockQuote
{

[DataMember(Name = "TickerSymbol")]
public string Symbol;

[DataMember]
public string CompanyName;

[DataMember]
public decimal LastTrade;

//Abbreviated for Clarity
}

You should be aware of the following rules when using XmlSerializer:

CHAPTER 11 ■ WORKING WITH DATA350

7028Ch11.qxp 12/11/06 8:32 PM Page 350

• The [XmlSerializer] attribute, when being used on methods or parameters, can be
used only when the class is a typed message. This cannot be applied directly to a service
operation’s parameters or its return values. Do not worry if you are not aware of what a
typed message or a [MessageContract] is; we’ll define both in the “Introducing Message
Contracts” section.

• This attribute takes precedence when applied to a typed message member when that
message member has conflicting properties set. For example, the ElementName property
on XmlSerializer overrides the Name property on the [MessageContract] attribute.

• Both the [SoapInclude] and [XmlInclude] attributes that are used to recognize a type
when serializing or deserializing with SOAP are not supported; instead, use the
[KnownType] attribute.

• When trying to do SOAP encoding, XmlSerializer does not support the
[MessageHeaderArray] attribute, which is used to customize part of the SOAP
header element.

Security
When switching from the data contract serializer to XmlSerializer, you need to take into
account some security changes. Unlike the data contract serializer, XmlSerializer needs write
access to the temp folder of the machine. And theoretically, another process could overwrite
the temp assemblies that XmlSerializer created with other assemblies containing malicious
code. Since XmlSerializer supports the loading of pregenerated serialized assemblies, it is
recommended that you sign the WCF solution that uses XmlSerializer. If the solution is
unsigned, then the possibility exists where a malicious program could place an assembly with
the same name as the pregenerated assembly in the application folder or GAC and load it.

■Note We have been primarily discussing XML serialization so far, but .NET also supports another called
binary serialization. This allows an object in memory to be converted into a byte of streams, which—in addition
to persisting to disk—allows you to marshal by value. Marshal by value is when objects are passed between
application domains via parameters or return values. The objects need to have the flexibility to be serialized to
allow them to do that. The binary serialization, although it is efficient and produces compact code, works only
with the .NET platform and is not portable across platforms.

Introducing Message Contracts
When using data contracts, usually your concentration is on the data structure and the seriali-
zation aspects of those structures and not so much on the SOAP message, which carries the
“payload” between the service and the consumer. In other words, the data contracts control
the format of the SOAP message. However, if you are in a situation where you want an equal

CHAPTER 11 ■ WORKING WITH DATA 351

7028Ch11.qxp 12/11/06 8:32 PM Page 351

amount of control over both the structure and the content of the message because of opera-
tional reasons, then you need to use message contracts as opposed to data contracts. When
using message contracts, you can use a data type as either the parameter to a service call or
the return value from a call. And it is this data type that is precisely serialized to the SOAP
message, defining the precise schema for the message. Another way to put it is a message con-
tract is nothing but a mapping for a data type and the SOAP envelope that is created.

Applying the [MessageContract] attribute to a type defines its message contract. Those
type members that need to be part of the SOAP header need to have the [MessageHeader]
attribute applied, and those that will be part of the SOAP body need to have the
[MessageBodyMember] attribute applied to them. You can apply both the [MessageHeader]
attribute and the [MessageBodyMember] attribute to all members of a type irrespective of
their accessibility levels.

Similar to the data contracts, you can use the Name and Namespace properties on the
[MessageHeader] and [MessageBodyMember] attributes. If the namespace is not changed, the
default is the same namespace of the service contract. Listing 11-9 shows the earlier example
of QuickReturnStockQuote from Listing 11-2, which implements a message contract instead
of a data contract. This allows you to precisely control the schema of the message when
QuickReturnStockQuote is the data type.

Listing 11-9. QuickReturnStockQuote Implementing a Message Contract

[MessageContract]
public class QuickReturnStockQuote
{

[MessageHeader(Name="TickerSymbol")]
internal string Symbol;

[MessageHeader]
internal string CompanyName;

[MessageBodyMember]
internal decimal LastTrade;

[MessageBodyMember]
internal decimal Change;

[MessageBodyMember]
internal decimal PreviousClose;

[MessageBodyMember(Name = "AverageVolume")]
internal decimal AvgVol;

[MessageBodyMember(Name = "MarketCapital")]
internal double MarketCap;

[MessageBodyMember(Name = "PriceEarningRatio")]
internal decimal PERatio;

CHAPTER 11 ■ WORKING WITH DATA352

7028Ch11.qxp 12/11/06 8:32 PM Page 352

[MessageBodyMember(Name = "EarningsPerShare")]
internal decimal EPS;

[MessageBodyMember(Name = "52WkHigh")]
internal decimal FiftyTwoWeekHigh;

[MessageBodyMember(Name = "52WkLow")]
internal decimal FiftyTwoWeekLow;

}

Listing 11-10 shows the SOAP representation of QuickReturnStockQuote.

Listing 11-10. SOAP Message Representation of QuickReturnStockQuote

<soap:Envelope>
<soap:Header>

<TickerSymbol>MSFT</TickerSymbol>
<CompanyName>Microsoft</CompanyName>

</soap:Header>
<soap:Body>

<LastTrade>29.24</LastTrade>
<Change>0.02</Change>
<PreviousClose>29.17</PreviousClose>
<AverageVolume>59.31</AverageVolume>
<MarketCapital>287.44</MarketCapital>
<PriceEarningRatio>24.37</PriceEarningRatio>
<EarningsPerShare>1.20</EarningsPerShare>
<_52WkHigh>29.40</_52WkHigh>
<_52WkLow>21.45</_52WkLow>

</soap:Body>
</soap:Envelope>

Fine-Tuning SOAP
As we have stated, a message contract is all about fine-tuning the various aspects of a SOAP
envelope, empowering you with the ability to integrate with other platforms and also those
that have a special interoperability need. In this section, you will see what options you have to
customize the SOAP envelope; we’ll cover aspects such as SOAP wrappers, element order,
SOAP actions, SOAP header attributes, and so on.

You can also control the wrapping of the SOAP body parts. The default behavior is to have
the body parts in a wrapper element when serialized. More than one body part should not be
wrapped because it is not compliant with WS-I Basic Profile (version 1.1). The only situation
where you would do this is for interoperability in some specific scenarios to another system
that expects this format. You can control the name and the namespace of the wrapper element
by setting the WrapperName and WrapperNamespace properties in the [MessageContract] attribute.

The default order of elements is alphabetical; however, both the [MessageHeader] and
[MessageBodyMember] attributes support the Order property, which can be used to set the

CHAPTER 11 ■ WORKING WITH DATA 353

7028Ch11.qxp 12/11/06 8:32 PM Page 353

specific ordering of elements the same as in a data contract. The only difference when com-
pared to the data contract is the inheritance scenario. Unlike the data contract, in a message
contract the base type’s members are not sorted before the child type’s members.

If you need to implement a SOAP action, then you need to define that with the service
operation of the service contract through the [OperationContract] attribute. To specify the
SOAP action, you need to set the Action and ReplyAction properties on the [OperationContract]
attribute when defining the service operation. The SOAP specification allows the three attributes
listed in Table 11-2 in the header. By default, these headers are not emitted, but they can be set
via the Actor, MustUnderstand, and Relay properties on the [MessageHeader] attribute, respec-
tively. Note, if you have the property MustUnderstand set to true and you have a new version of
the message contract, then you will get an exception at runtime because there is an extra header
in the SOAP message that is “not understood.”

Table 11-2. Valid SOAP Header Attributes

Value Description

Actor (version 1.1)/Role (version 1.2) Header’s target URI

MustUnderstand Specifies whether the node processing the header must
understand it or not

Relay Specifies whether the header can be relayed down-
stream to other nodes

At times a service might be required to support legacy XML. This is especially true in inte-
gration and interop situations where the platforms might differ between the consumer and
the service. If required, you can enable the legacy XML encoding by setting the Use property
on the [XmlSerializerFormat] attribute to Encoded, as shown in Listing 11-11. However, this is
not recommended for two reasons. First, arrays are not supported, and second, it’s because
object references are preserved within the message body.

Listing 11-11. QuickReturnStockQuote Using Legacy SOAP Encoding

[XmlSerializerFormat(Use=OperationFormatUse.Encoded)]
public class QuickReturnStockQuote
{

[DataMember(Name = "TickerSymbol")]
public string Symbol;

[DataMember]
public string CompanyName;

[DataMember]
public decimal LastTrade;

//Abbreviated for Clarity
}

CHAPTER 11 ■ WORKING WITH DATA354

7028Ch11.qxp 12/11/06 8:32 PM Page 354

The only time a message type can inherit from another type is when the base type also has a
message contract. Also when inheriting, the message headers are a collection of all the headers
in the inheritance hierarchy. Similarly, all the body parts are also consolidated in the inheritance
hierarchy and are ordered first by the Order property specified in the [MessageBodyMember]
attribute (if any) and then alphabetically. If the same name for either the header or the body part
is repeated in the inheritance hierarchy, then the member that is lowest in the hierarchy is used
to store the information.

■Note If required, the WCF runtime allows you to use your own serializer by inheriting the
XmlObjectSerializer class and overriding the WriteStartObject, WriteObjectContent, and
WriteEndObject members.

You also need to consider the legacy XML support. If there is a requirement by your service
to produce WSDL for interop scenarios, you need to treat this with care. WSDL and message
contract support is tricky because WSDL supports only a subset of the message contract fea-
tures. As a result, when generating WSDL, all the features from a message contract will not get
reflected because of the lack of this support. You should consider these points when working
with WSDL:

• WSDL does not have the notion of an array of headers and will show only one header as
opposed to the array.

• Similar to the previous point, protection-level information is not fully supported and
may be missing.

• The class name of the message contract type will be the message type generated in the
WSDL.

• If many operations in a service contract use the same message contract across those
operations, then the WSDL that is generated for that service contract will contain multi-
ple message types even though at the end of the day they are the same type. These
multiple messages are made unique in the WSDL by appending a numeral at the end
such as 2, 3, and so on. As a result, the message types created when importing such a
WSDL are identical except for their names.

Security
You have three options to make a message secure when using message contracts. Depending
on which of the three options you choose, different parts of a SOAP message are digitally
signed and encrypted. The options you have are to secure the entire SOAP message, to secure
only the header of the SOAP message, or to secure only the body of the SOAP message (that is,
the payload). To enable the option you choose, set the ProtectionLevel property on either the
[MessageHeader] attribute or the [MessageBodyMember] attribute. Although for each header the
protection level is determined individually, the body’s security level is determined collectively
with the highest level being applied across all body parts. For these security options to work,

CHAPTER 11 ■ WORKING WITH DATA 355

7028Ch11.qxp 12/11/06 8:32 PM Page 355

the bindings and behaviors need to be set up correctly (for example, attempting to sign with-
out providing the correct credentials); otherwise, you will get an exception. Table 11-3
summarizes the possible values of this property.

Table 11-3. ProtectionLevel Property Values

Value Description

None No encryption or digital signature (this is also the default option)

Sign Digital signature only

EncyrptAndSign Both digitally signs and encrypts

Performance
Since every message header and body part is serialized independent of each other, the same
namespace will be repeatedly declared for each of the same. It is recommended you consoli-
date these multiple headers and body parts into a single header or body part to reduce the size
of the message on the wire and improve performance. For example, you can rewrite the origi-
nal Listing 11-8 that showed QuickReturnStockQuote implemented as a message contract as
shown in Listing 11-12.

Listing 11-12. QuickReturnStockQuote Implemented for Optimal Performance

[MessageContract]
public class QuickReturnStockQuote
{

[MessageHeader(Name="TickerSymbol")]
internal string Symbol;

[MessageHeader]
internal string CompanyName;

[MessageBodyMember]
internal StockDetails StockInformation;

}

[DataContract]
public class StockDetails {

[DataMember]
internal decimal LastTrade;

[DataMember]
internal decimal Change;

[DataMember]
internal decimal PreviousClose;

CHAPTER 11 ■ WORKING WITH DATA356

7028Ch11.qxp 12/11/06 8:32 PM Page 356

[DataMember(Name = "AverageVolume")]
internal decimal AvgVol;

[DataMember(Name = "MarketCapital")]
internal double MarketCap;

[DataMember(Name = "PriceEarningRatio")]
internal decimal PERatio;

[DataMember(Name = "EarningsPerShare")]
internal decimal EPS;

[DataMember(Name = "52WkHigh")]
internal decimal FiftyTwoWeekHigh;

[DataMember(Name = "52WkLow")]
internal decimal FiftyTwoWeekLow;

}

Using the Message Class
Up until now you have been looking at the various serialization techniques and data transfer
architectures available to use as part of WCF. Understanding this basic foundation and how
data transfers within WCF is key. In looking at data transfers, it is important to understand the
core foundation of WCF—the Message class.

As stated earlier, the Message class is one of the two pillars of WCF and serves as a general-
purpose container of data for all communication between a service and the consumers of that
service. However, you should use it only in a few specific scenarios. For example, you should
use it if you need either an alternative way of handling an incoming message or an alternative
way of creating the outgoing message (say, saving the message to disk). The Message class is
closely aligned to the SOAP protocol and contains a header and body. The Message class is
defined in the System.ServiceModel.Channels namespace, and you create a simple message by
calling the CreateMessage static method on the factory. Listing 11-13 shows a sample opera-
tion contract using Message.

Listing 11-13. Message Class in Operations

[ServiceContract()]
public interface IQuickReturnStock
{

[OperationContract]
System.ServiceModel.Channels.Message GetCurrentTicker();

[OperationContract]
void SetTickerSymbol(System.ServiceModel.Channels.Message data);

}

CHAPTER 11 ■ WORKING WITH DATA 357

7028Ch11.qxp 12/11/06 8:32 PM Page 357

When you use the Message class in an operation, you should be aware of the following rules:

• The operation cannot have any out or ref parameters.

• You cannot have more than one input parameter, and that input parameter can be only
type Message.

• The return type can be only Message or void.

Listing 11-14 shows an example of creating a simple message using an object. At the sim-
plest level, the CreateMessage overloaded method takes objects and uses the default data
contract serializer for serialization. There is also an overloaded version of CreateMessage,
which takes XmlObjectSerializer as the serializer instead of using the default one.

Listing 11-14. Creating Messages from Objects

public class MyMessageService : IQuickReturnStock
{

private Message IQuickReturnStock.GetCurrentTicker()
{

QuickReturnStockMessage stock = new QuickReturnStockMessage();
stock.ticker = "MSFT";
stock.companyName = "Microsoft Inc";
MessageVersion ver =

OperationContext.Current.IncomingMessageVersion();
return Message.CreateMessage(ver,"GetDataResponse",stock);

}

//Abbreviated for clarity
}

[DataContract]
public class QuickReturnStockMessage
{

[DataMember] public string ticker;
[DataMember] public string companyName;

}

Similar to how the message in Listing 11-14 was created using objects, you could have
created the same message using XML readers instead. A few scenarios where this would
make more sense than using objects would be when reading from a file system, using an
XmlDictionaryWriter object, creating fault messages (using CreateFault method), and so on.

When writing messages, you can do so using primarily three different methods. First is
the WriteBodyContents method, which writes the body contents of the message to a given XML
writer. Second is the WriteBody method, which writes the body content as well but also
encloses the appropriate wrapper elements (such as <soap:body>). Third is the WriteMessage
method, which writes out the entire message including the wrapping SOAP envelope and
headers. Note if SOAP is turned off, all three methods produce the same result of writing out
the message body contents.

CHAPTER 11 ■ WORKING WITH DATA358

7028Ch11.qxp 12/11/06 8:32 PM Page 358

When reading messages, the primary way to do so is via the GetReaderAtBodyContents
method, which returns an XmlDictionaryReader object. Alternatively, if you require a type-
safe way to access the message, then use the GetBody method, which allows access to the
message body as a typed object. In addition, the Message class has properties such as Headers,
Properties, Version, IsFault, IsEmpty, and so on, that represent access to other parts of the
message such as message header, message properties, SOAP, WS-Addressing, and so on, that
you might need.

Filtering
WCF has a concept of a filtering mechanism, which you can use to examine parts of messages
and match them and then make some operational decision at runtime. This filtering mecha-
nism is implemented as a set of classes and is designed to be fast with each filter implemented
specifically for a certain kind of message matching. The filtering takes place after a message
has been received and sits in the stack when the message is being dispatched to the relevant
application. At this level, the filtering system can interact with all other WCF subsystems such
as routing, security, event handling, and so on. An example is if there is a queue, then based
on the priority of the message it can be moved to the front of the queue for processing.

Filtering is typically used when you need to route the message to different modules
within a system depending on the content of the message. Two of the more common scenar-
ios for this are routing and demultiplexing. In the first scenario, routing, the listener running
at an endpoint filters for a specific action, and only matching actions get to the endpoint. In
the second scenario of demultiplexing, various listeners are on the wire, and only those with
the “filtered” endpoint address reach the intended endpoint.

Filters
Internally the filtering mechanism consists of a filter and a filter table. The filters implemented
via an abstract MessageFilter class make a boolean decision based on the configured condi-
tions. These filters are used in a filter table instead of being tested individually, and each filter
has an associated table with the filter data. The filter table implements the IMessageFilterTable
interface and is created by calling the generic CreateFilterTable<FilterData> method on the
abstract MessageFilter class. The Match method on the MessageFilter class determines whether
an incoming message satisfies a particular filter.

This method returns a true if a match was found based on the specified criteria. Once a
filter is created, the criteria used cannot be changed because there is no implementation in
the filter to detect this change. The only way to work around this is to delete the existing filter
and create a new one with the updated criteria. WCF out of the box has a few concrete imple-
mentations of the abstract MessageFilter class, as shown in Table 11-4.

Table 11-4. Concrete MessageFilter Implementations in WCF

Classes Description

XPathMessageFilter Uses an XPath expression to specify the criteria

MatchAllMessageFilter Matches all messages

MatchNoneMessageFilter Matches none of the messages

CHAPTER 11 ■ WORKING WITH DATA 359

7028Ch11.qxp 12/11/06 8:32 PM Page 359

Table 11-4. Continued

Classes Description

ActionMessageFilter Tests whether the message action matches a given set
of actions

EndpointAddressMessageFilter Tests whether the message is valid for a given addresses

PrefixEndpointAddressMessageFilter Similar to EndpointAddressMessageFilter, except
matches a prefix of the URI

Filter Tables
Internally the filter table is similar to a HashTable and is a key-value pair where the filter is the
key and some metadata in the value. This metadata can contain any relevant information
needed such as the type of the filter data, the actions to take for a matching message, and so on.
Filter tables have methods that return both single matching and multiple matching records.
Note, these records are not ordered in any sequence. The MessageFilterTable class is the most
generic implementation of the IMessageFilter interface in WCF and can store any type of filter.

You can assign filter priorities using a number; the higher the number, the higher priority
the filter has. You can assign the same priority to more than one type of filter at the same time.
The same filter type can have more than one priority at the same time. You can match these
filters in a top-down fashion, starting with the highest-priority filter. Once a matching filter is
found at a certain priority, the WCF runtime does not examine any filters of that type with a
lower priority.

■Note If you want, you can also send attachments with WCF using Direct Internet Message Encapsulation
(DIME). If you want to be WSE compliant, then you should use DIME’s successor called Message Transmis-
sion Optimization Mechanism (MTOM). For more details, refer to Chapter 13.

Best Practices for Versioning
Versioning, in the context of data contracts, is all about schema validation because the entity
that is consumed and used at the end of the schema itself. It is the changes to this schema you
need to version. Versioning for data contracts can be divided into two groups—one that
requires schema validation and a second that does not. The first group where schema valida-
tion is required is quite rare in today’s enterprise environment, and many systems can handle
the fact that certain elements are extra and not defined in a schema.

With Schema Validation
Data contracts should be considered immutable when schema validation is required “both
ways” (that is, new to old, and vice versa). You should create a new data contract whenever a
new version is required, because this will generate a new schema. This new data contract

CHAPTER 11 ■ WORKING WITH DATA360

7028Ch11.qxp 12/11/06 8:32 PM Page 360

should also incorporate the relevant name, namespace, and updated service type informa-
tion. In most cases, changes to data contracts in these circumstances need to be rippled
across to every layer in the solution. This means if a data contract is part of another data con-
tract and if the child data contract is updated, even though the parent is not, then the parent
data contract would need to be versioned as well.

It is quite common that in a heterogeneous environment you do not have control over the
incoming messages, though usually you do have some degree of control on the outgoing mes-
sages. If there is a requirement that the messages that are generated (that is, the outgoing
messages) need to strictly comply with a schema, then you would need to turn off the round-
tripping feature. Round-tripping is when the original incoming message, which you have no
control over, has extra information that does not comply with your schema. This extra informa-
tion is stored and then returned with the outgoing message. When this happens, if the outgoing
message needs to be compliant with a schema, it won’t be. You have two options to switch off
round-tripping. One option is not to implement IExtensibleDataObject, and the second is to
set the IngoreExtensionDataObject property to true on the [ServiceBehavior] attribute.

Without Schema Validation
When schema validation is not required, the guidelines for versioning are as follows:

• Type inheritance should not be used to version data contracts; instead, either create a
new type or change the data contract on an existing type.

• Always implement the interface IExtensibleDataObject to support round-tripping.

• Do not change the name or namespace for the data contract because the versions for
that data contract evolve. If the underlying type changes, then make appropriate
changes to keep the data contract the same, for example, by using the Name property.

• Similar to the data contract point earlier, do not change any names or namespaces for
the data members. If the underlying data member (such as field, property, event, and so
on) changes, preserve the data member by using the Name property. Also, changing
either the type or the order of any of the data member is not allowed because in most
cases doing so will also cause the data contract to change.

• When there is a new version containing new data members, they should always follow
these rules:

• For the new member, the IsRequired property should be set to false (the default
value).

• A callback method using the [OnDeserializing] attribute should be provided in
cases where a default value of null or zero for a data member is not acceptable.
This should provide the default value that will be acceptable by the data member.

• In the “old” version of the data contract, the Order property should not be set. Any
new members added in subsequent versions should have their Order property set
to that version. For example, version 2 of the data contract should have the Order
property set to 2, version 3 to 3, and so on. The order of all the newly added mem-
bers should be after the existing members; you can use the Order property to
ensure this.

CHAPTER 11 ■ WORKING WITH DATA 361

7028Ch11.qxp 12/11/06 8:32 PM Page 361

• Data members should not be removed even if the IsRequired property is set to false.

• The IsRequired property cannot be changed between versions.

• The EmitDefaultValue property cannot be changed for the required data members (that
is, have the IsRequired property set to true) between versions.

• When creating a new version, do not create a branched version hierarchy.

• Enumerations are just like any other data members, and the same practices for reorder-
ing, adding, removing, and so on, apply as stated previously.

Putting It All Together: Quote Client Sample
Application
We have introduced many different concepts in this chapter. In the following sections, we
will show how to create a sample application that illustrates the concepts that we have
discussed in this chapter. This sample consists of a service and a client. The service called
QuickReturnQuoteService is quite straightforward and exposes two operations called
GetPortfolio and GetQuote. The data contract for the service is exposed via a class called
StockQuote. The first operation, GetPortfolio, accepts an array of stock tickers, which makes
up the portfolio and returns an array of type StockQuote, which contains the details of each
of the stocks in the portfolio. Similarly, GetQuote accepts one ticker and returns the type
StockQuote.

Creating the Service
As mentioned, the service is quite simple and exposes the interface called
IQuickReturnQuoteService. Listing 11-15 shows this interface. The service also has two
endpoints—one over HTTP and the other a MEX endpoint. In this example, the service
resides in a folder called wcf, which is part of inetpub and resides at C:\inetpub\wwwroot\wcf.

Listing 11-15. IQuickReturnQuoteService Interface

[ServiceContract]
public interface IQuickReturnQuoteService
{

[OperationContract]
StockQuote[] GetPortfolio(string[] portfolioTickers);

[OperationContract]
StockQuote GetQuote(string ticker);

}

The QuoteService class shown in Listing 11-16 is the concrete implementation for the
IQuickReturnQuoteService interface for the service.

CHAPTER 11 ■ WORKING WITH DATA362

7028Ch11.qxp 12/11/06 8:32 PM Page 362

Listing 11-16. QuoteService Concrete Implementation

public class QuoteService : IQuickReturnQuoteService
{

public StockQuote[] GetPortfolio(string[] portfolioTickers)
{

ArrayList tickers = new ArrayList();

foreach (string stockTicker in portfolioTickers)
{

StockQuote stockQuote = new StockQuote(stockTicker);
tickers.Add(stockQuote);

}

return (StockQuote[])tickers.ToArray(typeof(StockQuote));
}

public StockQuote GetQuote(string ticker)
{

StockQuote quote = new StockQuote(ticker);

return quote;
}

}

You can access the two endpoints exposed by the service via the http://localhost/wcf/
QuickReturnQuoteService.svc and http://localhost/wcf/QuickReturnQuoteService.svc/mex
URLs. Listing 11-17 and Listing 11-18 show the .svc file and the Web.config files. Note for a
production system, it is recommended you switch off the debug options; this is enabled only
for development purposes.

Listing 11-17. QuickReturnQuoteService.svc File

<%@ServiceHost language=c# Debug="true" Service="QuickReturn.QuoteService" %>

Listing 11-18. Web.config

<?xml version="1.0"?>
<configuration>

<system.serviceModel>
<services>

<service name="QuickReturn.QuoteService"
behaviorConfiguration="QuoteServiceBehavior">
<endpoint address=""

binding="wsHttpBinding"
contract="QuickReturn.IQuickReturnQuoteService"

/>

CHAPTER 11 ■ WORKING WITH DATA 363

7028Ch11.qxp 12/11/06 8:32 PM Page 363

<endpoint address="mex"
binding="mexHttpBinding"
contract="IMetadataExchange"

/>
</service>

</services>

<behaviors>
<serviceBehaviors>

<behavior name="QuoteServiceBehavior">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug

includeExceptionDetailInFaults="true"/>
</behavior>

</serviceBehaviors>
</behaviors>

</system.serviceModel>
</configuration>

The data contract is implemented via the StockQuote class, as shown in Listing 11-19. To
show some of the versioning concepts, we have two versions of the data contract. Version 1 is
simple and consists of just three data members: LastTrade, CompanyName, and TickerSymbol.
Version 2 of the data contracts, which is shown in Listing 11-19, adds data members. Since we
are not hooking into a stock exchange, to simulate this feed the constructor takes a few ticker
symbols and randomly generates a number from 10 to 100 for the stock price. Note that we
have abbreviated Listing 11-19 for clarity.

Listing 11-19. Version 2 of the StockQuote Data Contract

[DataContract]
public class StockQuote
{

//Constructor – simulates the changes when connected to an exchange
public StockQuote(string ticker)
{

Random rnd = new Random();
int deltaTrade = rnd.Next(100);

switch (ticker)
{

case "MSFT":
symbol = ticker;
companyName = "Microsoft";
lastTrade = 35.0M + deltaTrade;
break;

CHAPTER 11 ■ WORKING WITH DATA364

7028Ch11.qxp 12/11/06 8:32 PM Page 364

case "IBM":
symbol = ticker;
companyName = "IBM";
lastTrade = 34.0M + deltaTrade;
break;

case "INTU":
symbol = ticker;
companyName = "Intuit";
lastTrade = 33.0M + deltaTrade;
break;

case "GOOG":
symbol = ticker;
companyName = "Google";
lastTrade = 32.0M + deltaTrade;
break;

}
}

private string symbol;
[DataMember(Name = "TickerSymbol")]
public string Symbol { ... }

private string companyName;
[DataMember]
public string CompanyName { ... }

private decimal lastTrade;
[DataMember]
public decimal LastTrade { ... }

private decimal change;
[DataMember]
public decimal Change { ... }

private decimal previousClose;
[DataMember]
public decimal PreviousClose { ... }

private decimal avgVol;
[DataMember(Name = "AverageVolume")]
public decimal AvgVol { ... }

private double marketCap;
[DataMember(Name = "MarketCapital")]
public double MarketCap { ... }

CHAPTER 11 ■ WORKING WITH DATA 365

7028Ch11.qxp 12/11/06 8:32 PM Page 365

private decimal peRatio;
[DataMember(Name = "PriceEarningRatio")]
public decimal PERatio { ... }

private decimal eps;
[DataMember(Name = "EarningsPerShare")]
public decimal EPS { ... }

private decimal fiftyTwoWeekHigh;
[DataMember(Name = "52WkHigh")]
public decimal FiftyTwoWeekHigh { ... }

private decimal fiftyTwoWeekLow;
[DataMember(Name = "52WkLow")]
public decimal FiftyTwoWeekLow { ... }

}

Creating the Client
The client is a simple Windows form application that contains a DataGridView. There are two
buttons each for invoking the GetPortfolio or GetQuote operation on the service. The data con-
tract returned by the service is bound to this DataGridView. The client consumes both versions
of the service, simulating a real-world situation where some consumers of the service would be
using the newer version while others might still be using the old version of the service. This
simulation can be done in two ways. The first way is to create two different client projects. The
second is to create two different proxies. We chose the second way and have generated two
proxies for the service. Each proxy is in a different code file called QuoteService1.cs and
QuoteService2.cs. The first file, QuoteService1.cs, is used for version 1 of the service, and
QuoteService2.cs is the proxy for version 2. If you download the sample application from the
book’s website, you can include only one of these files in the solution at any time.

We used the SvsUtil.exe tool to generate both the proxy and the service configuration for
the service. The service configuration is saved in the App.config file for the client. Listing 11-20
shows the command line to use the SvsUtil.exe tool. Note that this assumes the service lives at
http://localhost/wcf.

Listing 11-20. Command Line to Generate Service Proxy

svcutil /language:c# /config:App.config
http://localhost/wcf/QuickReturnQuoteService.svc?wsdl

Listing 11-21 shows the App.config file that is automatically created by the SvcUtil.exe
tool. Note, this tool adds many of the defaults such as service timeouts, buffer pool sizes, and
so on. Depending on your operational requirements in a production environment, you might
want to either handcraft these settings or modify the configuration file that the SvcUtil.exe
tool generated.

CHAPTER 11 ■ WORKING WITH DATA366

7028Ch11.qxp 12/11/06 8:32 PM Page 366

Listing 11-21. App.config Generated by SvcUtil.exe

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<system.serviceModel>
<bindings>

<wsHttpBinding>
<binding name="WSHttpBinding_IQuickReturnQuoteService"

closeTimeout="00:01:00"
openTimeout="00:01:00" receiveTimeout="00:10:00"

sendTimeout="00:01:00"
bypassProxyOnLocal="false" transactionFlow="false"

hostNameComparisonMode="StrongWildcard"
maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8"

useDefaultWebProxy="true"
allowCookies="false">
<readerQuotas maxDepth="32" maxStringContentLength=

"8192" maxArrayLength="16384"
maxBytesPerRead="4096"
maxNameTableCharCount="16384" />

<reliableSession ordered="true" inactivityTimeout=
"00:10:00"
enabled="false" />

<security mode="Message">
<transport clientCredentialType="Windows"

proxyCredentialType="None"
realm="" />

<message clientCredentialType="Windows"
negotiateServiceCredential="true"
algorithmSuite="Default"
establishSecurityContext="true" />

</security>
</binding>

</wsHttpBinding>
</bindings>
<client>

<endpoint address="http://localhost/wcf/
QuickReturnQuoteService.svc"

binding="wsHttpBinding"
bindingConfiguration=
"WSHttpBinding_IQuickReturnQuoteService"

contract="IQuickReturnQuoteService"
name="WSHttpBinding_IQuickReturnQuoteService">

CHAPTER 11 ■ WORKING WITH DATA 367

7028Ch11.qxp 12/11/06 8:32 PM Page 367

<identity>
<servicePrincipalName value=

"host/AmitBahree-PC " />
</identity>

</endpoint>
</client>

</system.serviceModel>
</configuration>

The code for the client where the service is invoked is fairly straightforward, as shown in
Listing 11-22. Because you do not have any persistence storage, the tickers are hard-coded and
the service is then invoked. The result from the service is bound to the data grid on the form.

Listing 11-22. Calling the Service and Binding Data Contract to the Grid

private void buttonGetPortfolio_Click(object sender, EventArgs e)
{

this.Cursor = Cursors.WaitCursor;

//We hard-code an array of a few stocks that we want the service
//to return. In the real world, this would be retrieved
//from some persistent store
string[] stocks = { "INTU", "MSFT", "GOOG", "IBM" };

//Invoke the Service
StockQuote[] portfolio = theService.GetPortfolio(stocks);

//Bind the data contract returned by the service to the grid.
BindData(ref dataGridView, portfolio);

}

private void BindData(ref DataGridView dataGrid, object data)
{

BindingSource bindingSource = new BindingSource();
bindingSource.DataSource = data;

dataGrid.DataSource = bindingSource;
dataGrid.Columns["ExtensionData"].Visible = false;

}

As stated earlier, the client consumes two versions of the service. When you talk to the
simpler version 1 of the service, you can see the result for both the GetPortfolio and GetStock
operations in Figure 11-3 and Figure 11-4, respectively. Only three elements are known by the
client—LastTrade, CompanyName, and TickerSymbol. To implement this old version, include the
QuoteService1.cs file in the solution.

CHAPTER 11 ■ WORKING WITH DATA368

7028Ch11.qxp 12/11/06 8:32 PM Page 368

Figure 11-3. Sample portfolio using version 1 of the service

Figure 11-4. Sample quote using version 1 of the service

On the other hand, if the client is aware of the updated service and wants to consume
version 2, then as you can see in Figure 11-5 and Figure 11-6 there are more data members
returned by each of the operations. To implement this new version, include the
QuoteService2.cs file in the solution instead of QuoteService1.cs.

Also note that no elements on the service end have changed in the sample—only the
client elements have been changing to simulate a client that either consumes the old version
or consumes the new version of the service.

Figure 11-5. Sample portfolio using version 2 of the service

Figure 11-6. Sample quote using version 2 of the service

CHAPTER 11 ■ WORKING WITH DATA 369

7028Ch11.qxp 12/11/06 8:32 PM Page 369

Summary
In conclusion, for any data to be passed to or from a service, first it needs to be serialized.
Although both .NET and ASP.NET in general support serialization, WCF truly extends this con-
cept and makes it easy to implement. Of the various options you examined, data contracts are
the default and one of the most flexible serialization engines designed with change and ver-
sioning in mind. The WCF runtime flexibility allows you to switch to legacy support when
required.

The ability to map your business components to data members in a natural OOP para-
digm is a powerful feature. This makes the development, testing, and maintenance of data
contracts along with versioning intuitive and easier. You also examined the powerful ability to
filter the messages based on one or more criteria, allowing you to support scenarios, which
earlier would require a lot of effort.

Today’s needs demand application components that are available across the organiza-
tion. The need for collaboration, online or offline, is the mandate for all companies. The next
chapter will cover the aspects of developing peer-to-peer computing with WCF.

CHAPTER 11 ■ WORKING WITH DATA370

7028Ch11.qxp 12/11/06 8:32 PM Page 370

Developing Peer-to-Peer
Applications with WCF

In this chapter, we will dive into the concepts of peer-to-peer computing (also known as P2P).
We will cover what P2P means, the advantages that it brings you, and the challenges that you’ll
face when working with P2P. We will also cover what a typical development environment looks
like when writing P2P applications. We will explore some of the options provided by Microsoft
in enabling P2P, both in the context of WCF and in Windows in general.

Introducing Peer-to-Peer Computing
Peer-to-peer computing is a term that has gained a lot of popularity in recent times. Today,
organizations and businesses are increasingly depending on collaboration between individu-
als and groups to perform essential tasks. As a result, collaboration has become more essential
at an individual level because these applications form more ad hoc online groups for business,
entertainment, and cultural purposes.

Peer-to-peer computing essentially is a set of networked computers that rely on the com-
puting power and bandwidth of the individual computers on the network as opposed to the
traditional approach of relying on a smaller number of more powerful server computers on
the network. A computer connected to a P2P network is called a node or peer. The nodes in a
P2P network usually are connected on an ad hoc basis, and the real power in a P2P network
lies in these nodes. The peers are responsible for uploading and downloading data among
themselves without the need for a server.

Two types of P2P networks exist: a pure network and a hybrid network. A pure P2P net-
work has no concept of a client or a server; it has only nodes, which act in the capacity of both
a server and a client as needed. A hybrid P2P network, on the other hand, has a central server
that keeps track of the various peers on the network. This server responds to requests from the
peers for information only and does not store any data. The peers are responsible for hosting
the information. For example, in a file-sharing P2P application, the files are stored by the peer,
and the server is aware only of what files are stored at what peer.

In the real world, pure P2P solutions that implement only peering protocols and do not
rely on the concept of clients and server are rare. Most P2P solutions rely on some nonpeer
elements in the solution such as Domain Name System (DNS, used to translate computer
hostnames to IP addresses). Some of the P2P solutions also have the notion of a superpeer,
where other peers are connected to this superpeer in a star-like fashion. Over time, these

371

C H A P T E R 1 2

■ ■ ■

7028Ch12.qxp 12/11/06 8:33 PM Page 371

superpeers could also be used as local servers. The networks in P2P applications are also
called meshes (or sometimes a mesh network), akin to a wire mesh. Each node in a mesh at a
minimum has bidirectional communication capability with its neighbors. A cloud is a mesh
network with a specific address scope. These scopes are closely related to IPv6 scopes, and the
peers in a cloud are those that can communicate within the same IPv6 scope.

Why Use P2P?
Usually, the nodes, or peers, in a P2P network are ordinary computers that most people use in
their day-to-day life at home or work. Often these computers are on a home Internet connec-
tion (such as dial-up or broadband), and on average most of them are available only for a
relatively short period of time in a day. Setting up a P2P network is relatively easy, and you do
not need to have a technical background in computer science or be an ubergeek. As a result,
P2P is popular and has a wide adoption rate among all categories of users.

One of the guiding principles for P2P solutions is that all nodes provide resources to the
group such as processing power, bandwidth, storage, and so on. Therefore, when the overall
demand increases with the addition of more nodes, so does the capacity. This is significantly
different from a traditional client-server model, where adding more clients would slow every-
one because more clients are competing for the same set of resources on the server. In
addition, the distributed, ad hoc nature of the P2P network increases the resilience of the
overall system by eliminating single points of failures by distributing data over multiple peers.
Because of this, data can be shared effectively, and a network can be scaled up at a relatively
low cost. By its nature, a P2P solution allows support for ad hoc and disconnected networks.

■Note Although most users might have come across P2P applications that are used for sharing files, pos-
sibly using the likes of Gnutella, Kazaa, Napster, BitTorent, and so on, P2P applications are used across many
problem domains and industries such as telephony and video, gaming, data replication, anonymity (such as
Publius, Freenet, and so on), instant messaging, distributed computing (such as Distributed.net), and so on.

Broadly speaking, P2P solutions can fall into one of the following solution domains:

Real-time communication: P2P enables services such as serverless instant messaging and
real-time game play. You can use instant messaging with voice and video today, but most
implementations require the use of a server to function. If you are in an isolated network
environment (such as those defined by many enterprises), then you would not be able to
use most instant messaging solutions; but with serverless instant messaging, you could
overcome these boundaries. Similarly, the real-time gaming networks are more aligned
toward the enthusiastic gamer, allowing them to go head to head with other gamers. How-
ever, if you are not a hard-core gamer or if you want to set up an ad hoc game that can
communicate in a variety of networking situations, without P2P networking this would be
a significant challenge in today’s environment.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF372

7028Ch12.qxp 12/11/06 8:33 PM Page 372

Collaboration: P2P allows you to share files, workspaces, and experiences with others.
Sharing workspaces allows a user to create an ad hoc workspace that can be populated
with content and tools that can be used for solving a common goal. These can also pro-
vide collaborative functionality such as message boards; sharing files becomes just
another aspect of this workspace. A P2P network allows one to share files in an easy and
user-friendly way. Sharing your experiences with others in near real-time is a new oppor-
tunity using P2P networks. With the wide availability of wireless networks, it is becoming
easier for people to share their day-to-day experiences in a more real-time fashion such
as a music concert, snowfall whilst on a holiday, and so on. Similarly, using Groove (which
is part of Microsoft Office 2007), a team does not need to be physically in the same office
or even country, but they can still work in a secure environment in a virtual office or
workspace. This allows them to share and synchronize files, manage projects, host discus-
sion threads, schedule meetings, share text in real-time, and so on.

Content distribution: P2P allows for the easy distribution of content. This content could
be software updates, text, audio, video, and so on. If you want to distribute a large amount
of audio and video today, you need fairly big bandwidth requirements that can handle the
volume. But when using a P2P, only a small number of peers would need to get the data
from the centralized servers, and then they will propagate the content out on the mesh to
the next closest peer that would want the content. Similarly, product updates, say, within
an organization can be propagated quickly to everyone. For example, many enterprises
use this model to distribute leadership content, patches, software updates, policy
updates, and so on, throughout the organization. Many of the open source and Linux
implementations also use this model to distribute their builds.

Distributed processing: P2P computing allows one to distribute computing tasks among
various peers on the network and aggregate the results later. A large task usually is broken
into smaller chunks that the peers can handle. Once each peer is finished with their task,
they send the results to a central aggregation point. The peers can be configured to
process these tasks only when it is idle if need be, so they do not use the resources of the
machine when it is being used. One of the pioneers of this was the SETI@home project
(run by the University of California). The SETI@home project brought this concept to the
general public to the extent of sparking off contests between peers to see who could
process more data in a given unit of time. Some of these contests effectively became brag-
ging rights and showed off either that they had very powerful machines that could crunch
more data or that they had more peers connected that collectively did more work.

The Challenges of P2P
P2P challenges can broadly be categorized in two segments: technical and legal. The technical
aspects might cover topics such as difficult and complex to build, how one should achieve
universal connectivity, and so on. The legal controversy is based on sharing music and movies
originally made popular by file-sharing networks such as Napster. P2P networks, like most
networks, can also be open to attacks. More specifically, some of the attacks are specifically
designed for P2P networks such as poison attacks, polluting attacks, defection attacks, denial
of service, and so on. We will cover these challenges and their possible solutions when we
explore a typical P2P application stack in the next section.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 373

7028Ch12.qxp 12/11/06 8:33 PM Page 373

■Note Poison attacks are attacks where the contents are different from the description of that content.
Polluting attacks are those where invalid chunks are added to an otherwise valid file. Defection attacks are
those where users or software use the network without contributing resources to the network.

P2P faces many other challenges other than the immediate technical implementation
details. Currently, there are no standards defined, which means interoperability between differ-
ent P2P meshes is something that is difficult to achieve. Firewalls are becoming increasingly
sophisticated, and although a P2P network can be based purely on IP, there are still many sym-
metric NAT firewalls out there. This might give the impression that these NATed addresses will
cause the P2P mesh to not reach all endpoints. However, this rarely causes any issues and for
the majority of the solutions is not a concern. Management and diagnostics are still issues.
Because of the nondeterministic flow in a network, trying to diagnose a bug, for example,
becomes a daunting task. Also, if you need to manage a P2P network and apply something like
a distributed policy, then that also becomes a challenge. For example, many enterprises do not
have control because of not being able to apply a distributed policy and because, indirectly, of
the accountability. In many situations, this is not acceptable because of various regulatory,
legal, and compliance requirements. This also makes it difficult to isolate and locate individual
users who can cause security concerns (again because of the lack of user accountability).

On the legal challenges front, there is a perception because of the media coverage that all
P2P is illegal and bad. And anonymous P2P networks allow one to share content easily,
whether legal or not, so that does not help the cause. Although various companies and entities
such as RIAA, Movie Studios, and so on, are fighting the battle in the courts, there is a lot of
confusion to the end user. This is partly because the laws are different from country to coun-
try, and there is a lot of gray area and interpretation. For example, RIAA has gone after a few
thousand users in the United States and is also looking to target some of those in the United
Kingdom and other countries. However, certain countries such as France had legalized P2P at
one time and later changed the local laws without absolute clarification. All this has led to
more blurred distinction between what is legal and what is not.

■Note We have kept the legal perception of P2P intentionally vague in this section. Since the local laws
change so much based on the jurisdiction, it is not possible to cover all the situations here. The important
part to remember is that the legal issues have nothing to do with the technology; rather, P2P is one specific
implementation of the technology.

P2P Development Life Cycle
When developing and deploying P2P applications, you face three primary issues: how to
achieve end-to-end connectivity; how to provide a common foundation consisting of various
state data, identity management, and so on, for peers to use when exchanging state; and how
to deploy and scale the solution in a secure manner. Each of these is an important piece of the
puzzle to enable the P2P solution to work.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF374

7028Ch12.qxp 12/11/06 8:33 PM Page 374

End-to-end connectivity: Because of the loose and disparate nature of a mesh, from a
development and debugging perspective, ensuring that the various peers can seamlessly
connect to each other is a challenge. Furthermore, complicating this is the fact that the
peers connecting to the mesh might be using one or more communication technologies.
Because of the nature of P2P applications, this also needs to support communication over
various networks.

Common foundation: This is the “administrative” functionality that every P2P application
needs in order to manage the various peers on the mesh. This includes identity manage-
ment, contact management, node discovery, node naming, secure session management,
multipeer communication, and so on.

Secure and scalable deployment: This is the ability to build on protocols specifically engi-
neered for large-scale deployment, and it provides built-in security.

How Are Nodes Identified?
On a mesh, each node needs to be identified by a unique ID usually called a peer ID or mesh
ID. To resolve these peer IDs to their corresponding Internet address, the Peer Name Resolu-
tion Protocol (PNRP) is used instead of DNS. Each peer node irrespective of type (such as
computer, user, group, device, service, and so on) can have its own peer ID. This list of IDs is
distributed among the peers using a multilevel cache and referral system that allows name
resolution to scale to billions of IDs while requiring minimal resources on each node.

An endpoint is defined as a combination of a peer ID, port number, and communication
protocol. Using an endpoint, data can be sent between nodes in two ways. One of these is for a
peer to directly send the data to another peer. And the other is for a peer to send the data to all
the other peers on the same mesh; this is also known as flooding. A flooded message could
arrive at the same peer multiple times via different routes on the mesh.

Installing the Windows P2P Networking Stack
Windows P2P networking stack is not installed on Windows XP by default. If you are running
Windows XP with Service Pack 2, then perform the following steps to install the P2P network-
ing stack:

1. Click Start ➤ Control Panel ➤ Add/Remove Programs.

2. Click Add/Remove Components.

3. In Components, click Networking Services, and then select Details.

4. Select the Peer-to-Peer check box, and then select OK.

5. Click Next, and follow the instructions on the screen.

If you are running Windows XP with SP1, then you will need install the Windows Advanced
Networking Pack for Windows XP, which is a free download available at http://tinyurl.com/6ze98.

If you are running Windows Vista, then this is already installed; however, you might have
to enable the firewall exceptions. To do so, follow these steps:

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 375

7028Ch12.qxp 12/11/06 8:33 PM Page 375

1. Click Start ➤ Control Panel ➤ Security.

2. Under Windows Firewall, select Allow a Program Through Windows Firewall.

3. Click the Exceptions tab.

4. Check Windows Peer to Peer Collaboration Foundation.

5. Click OK.

Windows P2P Networking
Microsoft introduced the Windows peer-to-peer networking stack as a developer platform in
Windows XP SP1. This stack is not installed by default; to install it on Windows XP (with SP2),
you need to select the Peer-to-Peer option as part of the Networking Services within the
Windows components that are available via the Add/Remove Programs option in the Control
Panel. If you have only Windows XP SP1, then you need to install the Advanced Networking
Pack to get the peer-to-peer networking stack.

Figure 12-1 shows the architecture for P2P networking as defined by Microsoft. The
significant components that make up this stack are graphing, grouping, Name Service
Provider (NSP), PNRP, and the identity manager. It is worth pointing out that this stack is
unmanaged code with only a subset of the functionality exposed via WCF.

Figure 12-1. Windows PNRP, graphing, grouping, and identity manager networking architecture

Identity Management
P2P solutions usually do not use DNS because of the transient nature of the mesh. In theory,
using Dynamic DNS is an option, but in actuality few DNS servers on the Internet support this
in the real world. This raises an interesting question about how to resolve peer names to their
network addresses (including ports, protocols, and so on). To allow this, Windows P2P

Identity
Manager

Crypto APIWinSock API

TCP/IP

PNRP

NSP

GroupingGraphing

Flood &
Synchronization

Store

Group Security

Group SSP
Graph Maintenance

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF376

7028Ch12.qxp 12/11/06 8:33 PM Page 376

networking is using PNRP. Some of the key attributes of PNRP that make it ideal for resolving
names are as follows:

Name resolution is distributed and serverless: Each peer on the mesh caches a portion of
the list of names on the mesh and further refers to other peers. Although this is not a true
serverless environment, because there is a root node that is used to initiate the process,
this node is not used for name resolutions.

Use IDs and not names: IDs identify peers instead of names. Since IDs are numbers, there
are no language or locale issues.

Use multiple IDs: Since every service on the mesh can have its own identifier, the same
node might end up having more than one ID.

Scale to large number of IDs: Because the list of IDs can grow to a large number, a multi-
level cache and referral system is implemented between the peers that does not need
significant resources.

Peer Names
Peer names can be registered either as secured or as unsecured. Unsecured names are recom-
mended for use in a private network only, because the names are strings and can easily be
spoofed. However, secured names need to be registered and are protected with a certificate
and digital signature.

A PNRP ID is 256 bits long; the high-order 128 bits are a hash of the peer name assigned to
the endpoint, and the lower 128 bits of the PNRP ID are an autogenerated number used for
service location. The format for the peer name is Authority.Classifier. When using a secured
network, the Authority is a secure hash (using Secure Hash Algorithm, SHA) of the public key of
the peer name in hex. When using an unsecured network, the Authority is the single character 0
(zero). The Classifier is a Unicode string up to 150 characters long that identifies the applica-
tion. The autogenerated number, used by the lower 128 bits, uniquely identifies different
instances using the classifier participating in the same mesh. The combination of 256 bit mesh
ID and the service location allow multiple PNPR IDs to be registered from a single computer.

PNRP Name Resolution
When a peer wants to resolve the peer name, it constructs the peer ID as discussed earlier and
tries to find that entry in its cache for the ID. If a match is found, then it sends a PNRP request
message to the peer and waits for a response. This approach ensures that the target peer node,
with which another peer is trying to communicate, is active in the cloud. If no match is found,
then an iterative process is used with the target peer that informs the sender of the peer that is
the closest match to the ID that is trying to be resolved. It is up to the original sender at this
stage to send the same request to the matching peer as the one to which it was pointing. If
that new peer the sender was pointed to is also not the correct one, then that in turn will
return the next closest matching peer to the sender, and so on.

When a PNRP request message is forwarded, both the nodes that are forwarded to and
the responses received are cached. This prevents the situation where things could get into an
endless loop. The name records have built-in security because of the public-private key pair.
NSP is a mechanism by which you can access an arbitrary name provider; in the Windows P2P
network stack, this provider interface is PNRP.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 377

7028Ch12.qxp 12/11/06 8:33 PM Page 377

Graphing
A graph is a collection of peer nodes where one node may communicate to another using the
neighbor’s peer connections. A peer graph is built on the concept of flooding, which makes it
possible to send data to all peers connected to that specific graph. To be able to handle deltas
in this data, the flooding protocol sends these changes in data to all the peers. This is achieved
by associating a unique GUID to each peer, which has an increasing version number or
sequence number, and is further qualified by an age or a status. A synchronous process in a
graph ensures that peers have the same set of data. The graphs themselves are insecure, and
the P2P stack’s architecture provides pluggable modules that provide security. These modules
can define various aspects both at the connection and at the message level such as authenti-
cation, confidentiality, integrity, and so on.

Grouping
Grouping is nothing but a combination of graphing, PNRP, and the peer grouping “security
provider” from Microsoft. This security provider provides management of the credentials of
the members that are part of the group and supports the secure publication of records. Every
group is identified by a unique ID that is used by peers on the network for identification. For
groups, the PNRP secure names are used as IDs. Every peer has a set of two credentials—the
first of which is to prove ownership to a peer’s identity, a unique peer name, and credentials.
The second set of credentials proves that a peer is a member of a group. For secure groups,
participation is restricted to a known set of peers. Information is spread through the groups
using records. A record consists of many pieces of information such as the peer’s validity, data
for record validity when challenged, a time stamp for validation, and the actual payload con-
taining the record information. Security is a combination of the following:

• Peer name

• Group membership certificates

• Roles

• Secure publishing

• Security policies

• Secure connections

How Does a P2P Mesh Work?
As stated earlier, a mesh network is nothing but a P2P network and is responsible for routing
data between nodes. A mesh network also allows for continuous connection, and if there are
any blocked paths, they can be reconfigured in a hopping manner, from peer to peer, until a
connection is established. This property makes them self-healing, allowing them to continue
to operate even when a peer drops out. All peers in a mesh propagate the same mesh name,
which gives new peers joining the mesh visibility into other nodes that are on the mesh.
Figure 12-2 shows a sample mesh network with multiple peers connected.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF378

7028Ch12.qxp 12/11/06 8:33 PM Page 378

Figure 12-2. Mesh network

Mesh Flavors
Broadly speaking, two types of mesh networks are available, namely, the grouping and peer
channel. Each of these options has their respective service models. Grouping is primarily used
by the Data Replication service and is available in Windows XP (with SP2). The various peers,
in the mesh, exchange messages by replicating records containing the data. Peer channel, on
the other hand, is primarily a message-based service and is available in WCF. The peers in the
mesh share data by building synchronous services. Both meshes have built-in security; group-
ing is implemented via a password and grouped certificates that are managed by the mesh.
Peer channel security is also implemented via a password (to join the mesh) and individual
certificates that are managed directly by the applications in the mesh. Both types of meshes
support PNRP for node discovery; however, only peer channel supports a developer-supplied
model such as web service. While a grouping mesh implementation is unmanaged and
accessed via the Win32 API library, the peer channel is part of WCF, which is managed code.

The connection types between the peers in a mesh can also be of two topology types: full
or partial. In full topology, each peer is connected to every other peer on the mesh. In partial
topology, a peer is connected only to a handful of other peers—most likely those with which it
exchanges the most data and has affinity. The example in Figure 12-2 shows a partial mesh
because every peer is not connected to every other peer on the network. It is rare to come
across a full topology mesh because it is not practical to operate in that mode. If there are
N nodes in a full topology mesh, then each node is connected to N – 1 nodes at the same time.
In other words, if there are 1,000 nodes in a mesh, each of the 1,000 nodes has a connection

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 379

7028Ch12.qxp 12/11/06 8:33 PM Page 379

open to 999 other nodes at the same time. This would lead to a situation where the mesh
would soon start running out of resources as more nodes joined the network.

Three types of P2P applications exist: one-to-one, one-to-many, and many-to-many.
Figure 12-3 shows the normal flow of a P2P application. When one peer in a mesh wants to
communicate with another, the steps are to find the other peer, send an invitation, and create
a session between the two.

Figure 12-3. P2P application flow

Let’s examine each of the previous steps in a little more detail:

1. Find peer: Essentially to “talk” to some other peer, the first task you need to do is find it.
You have two ways to go about this. The first is to find other peers on the LAN you are
part of. The other is to find peer or peer groups using PNRP. If you are finding other
peers on the LAN, you should use the People Near Me feature and integrate that into
your application. People Near Me uses WS-Discovery to find users who are signed in.
People Near Me is out of the scope of this book, but at a high level it is collaboration
with people located nearby. There are many requirements for this to work, such as
people discovery, application discovery, metadata discovery, security, invitation, and
so on. When using PNPR, on the other hand, it is a serverless name resolution that can
be either on the local network or over the Internet.

2. Send invitation: Invitations are real-time and can go to People Near Me or peers over
the Internet, via either a user message or some application data such as mesh name,
endpoint, and so on. A listener at the other end detects this incoming invitation
request and launches the appropriate application.

3. Join mesh: The last step to establish a session is to specify the mesh name and creden-
tials (if applicable) that one is intending to join.

Figure 12-4 shows the scenario where you have peers that are part of a mesh and are try-
ing to communicate with each other.

Find Peer

Send Invitation

Create Session

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF380

7028Ch12.qxp 12/11/06 8:33 PM Page 380

Figure 12-4. P2P one-to-many application flow

What Is Peer Channel?
The P2P networking stack that we have been discussing so far is unmanaged code, and a
developer needs to use C++ to be using it to its full potential. This stack is part of Windows XP
and will be improved as part of Windows Vista and Longhorn Server. Microsoft also has a
managed code implementation for a subset of the functionality that is exposed by the P2P
networking stack, called peer channel, and is released as part of WCF. Since peer channel is a
managed stack, you can use any .NET language, which makes implementing P2P applications
easier and more productive when compared to unmanaged code.

A typical channel in WCF has two participants, a client and a server, but a peer channel can
have any number of participants. A message that is sent by one participant will be received by
all other participants on the channel. However, certain mechanisms in peer channel allow you
to send a message to only part of the mesh, instead of the whole mesh. To resolve the addresses
of a node in a peer channel mesh, you can use either PNRP or a custom resolver. When a node
is resolved, that target node can either accept or decline the connection. If the connection is
accepted by the target node, it sends it a welcome message that among other things will con-
tain the list of other nodes that are part of the mesh. If the connection is refused, then the
existing node sends the prospective node a refusal message containing the reason and a list of
the addresses of the other nodes in the mesh.

In WCF, a node that will be part of a mesh is defined via the PeerNode class in your applica-
tion. The endpoint address for that node is defined via the PeerNodeAddress class (which
internally implements the EndpointAddress class). The number of neighbors of each node
dictate the overall structure of a peer channel mesh that is actively maintained, resulting in an
evenly distributed mesh. For example, a node in the mesh tried to maintain from two to seven
connections to its neighbors. Although an ideal state for the node is to have three connec-
tions, it will accept up to seven connections. Once a node has reached that threshold, it will
start refusing any new connections. If a node loses all its neighbors, it will enter a mainte-
nance cycle where it tries to acquire new neighbors to get to its optimum state of three

Find Peer

Send Invitation

Create Session

Learn Mesh Name

One-to-One One-to-Many
Many-to-Many

Join Mesh

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 381

7028Ch12.qxp 12/11/06 8:33 PM Page 381

connections. Also note, you cannot change or configure either the thresholds or the underly-
ing mesh because the peer channel owns and maintains this.

The peer channel also tries to improve efficiency by limiting communication within the
mesh by keeping repetitive messages passed to a minimum. When a node sends a message to
the mesh, it sends it to the neighbors to which it is connected. These neighbors in turn inspect
the message and then forward it to their neighbors, but they do not forward it to the neighbor
from whom they got the message to start. In addition, a connection to a neighbor might be
terminated if it keeps trying to resend a message that has been processed previously. Inter-
nally each node keeps an idempotent local cache of the WS-Addressing message ID and the ID
of the neighbor that delivered that message. This allows an optimized mesh network that does
not waste resources with repeating data.

A node can send messages to a subset of the mesh by assigning a hop count to the message.
A hop count keeps a count of the number of nodes to which a message has been forwarded. This
count is expressed as an integer within the message header and is decremented with each hop
until it reaches a value of zero, after which it is not forwarded.

■Note NetShell is available only when you have the P2P networking option installed in Windows XP. Although
NetShell is installed by default on Windows Vista, you need to allow that as an exception in the firewall for it to
work.

QuickReturnTraderChat Sample
To get a better understanding of how everything comes together using the peer channel, let
us start with a simple application called QuickReturnTraderChat. We have a few traders spread
across a stock exchange who need the ability to chat with each other. The exchange, being
a secure environment, does not allow any access to IM clients and wants to use the
QuickReturnTraderChat to talk to each other. This application allows more than one trader to
broadcast a message to the other traders, similar to an IRC channel. You will first look at the
nonsecure version of this sample and then later update that to make it secure so no one else
can eavesdrop on the conversation.

The application is simple and is implemented as a Windows application containing one
form. For clarity, we will not show the Windows form boilerplate code so you can concentrate
on the peer channel aspects. You can always get the latest version of the complete source code
from this book’s website.

Message Interface
A peer channel service contract is just a WCF service contract with one requirement that the
OperationContract attribute is set up as one-way, as shown in Listing 12-1. The interface is
called IQuickReturnTraderChat and has only one operation called Say, which accepts two
parameters: user and message.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF382

7028Ch12.qxp 12/11/06 8:33 PM Page 382

Listing 12-1. IQuickReturnTraderChat Service Contract

[ServiceContract()]
public interface IQuickReturnTraderChat
{

[OperationContract(IsOneWay = true)]
void Say(string user, string message);

}

Service Configuration
Listing 12-2 shows the service side of the configuration. This application listens at the net.p2p//
QuickReturnTraderChat address. Being a P2P application, the binding is set to netPeerTcpBinding,
and the contract for the endpoint is set to QuickReturnTraderChat.IQuickReturnTraderChat,
which follows the Namespace.Interface format. The binding configuration is intentionally kept
separate (shown later in Listing 12-3).

Listing 12-2. Service Configuration

<service name="QuickReturnTraderChat.Main">
<host>

<baseAddresses>
<add baseAddress="net.p2p://QuickReturnTraderChat"/>

</baseAddresses>
</host>

<endpoint
name="QuickTraderChat"
address=""
binding="netPeerTcpBinding"
bindingConfiguration="BindingUnsecure"
contract="QuickReturnTraderChat.IQuickReturnTraderChat"

/>
</service>

Binding Configuration File
As we stated earlier, a P2P application’s binding is set to netPeerTcpBinding and the resolver
mode to Pnrp (see Listing 12-3). Since this application is not secure, we have the security mode
switched off by setting this to None.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 383

7028Ch12.qxp 12/11/06 8:33 PM Page 383

Listing 12-3. Binding Configuration

<bindings>
<netPeerTcpBinding>

<binding name="BindingUnsecure">
<security mode="None"/>
<resolver mode="Pnrp"/>

</binding>
</netPeerTcpBinding>

</bindings>

Main Application
The main application, as shown in Figure 12-5, consists of a Windows form that has two
textboxes, one for the message being sent (called textBoxMessage) and the other to show the
conversation (called textBoxChat). The form also contains one Send button (called buttonSend).

Figure 12-5. QuickReturnTraderChat application

The class implementing the Windows form is called Main and is implemented as shown
in Listing 12-4. This form inherits from the .NET Form class and also implements the
IQuickReturnTraderChat interface that was defined earlier. Since this is a WCF service, the
class is decorated with the ServiceBehavior attribute and the InstanceContextMode controlling
when a new service object should be created. In our case, we want this to behave as a Single-
ton; as a result, the InstanceContextMode is set to Single.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF384

7028Ch12.qxp 12/11/06 8:33 PM Page 384

Listing 12-4. Service Host Class Definition

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public partial class Main : Form, IQuickReturnTraderChat
{
}

The class Main implements, as shown in Listing 12-5, two methods called StartService
and StopService, which start and stop the service host. The class Main also has a few member
variables exposing the Channel, ServiceHost, and ChannelFactory.

Listing 12-5. Service Host Implementation

IQuickReturnTraderChat channel;
ServiceHost host = null;
ChannelFactory<IQuickReturnTraderChat> channelFactory = null;
string userID = "";
private void StartService()
{

//Instantiate new ServiceHost
host = new ServiceHost(this);

//Open ServiceHost
host.Open();

//Create a ChannelFactory and load the configuration setting
channelFactory = new ChannelFactory<IQuickReturnTraderChat>

("QuickTraderChatEndpoint");
channel = channelFactory.CreateChannel();

//Lets others know that someone new has joined
channel.Say("Admin", "*** New User " + userID + " Joined ****" +

Environment.NewLine);
}
private void StopService()
{

if (host != null)
{

channel.Say("Admin", "*** User " + userID + " Leaving ****" +
Environment.NewLine);

if (host.State != CommunicationState.Closed)
{

channelFactory.Close();
host.Close();

}
}

}

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 385

7028Ch12.qxp 12/11/06 8:33 PM Page 385

IQuickReturnTraderChat Implementation (the Receiver)
You have both the service side and the receiver side of things in the same class. Listing 12-6
shows the configuration for the receiver, which is quite similar to the sender configuration and
uses the same binding.

Listing 12-6. Receiver Configuration

<client>
<endpoint

name="QuickTraderChatEndpoint"
address="net.p2p://QuickReturnTraderChat"
binding="netPeerTcpBinding"
bindingConfiguration="BindingUnsecure"
contract="QuickReturnTraderChat.IQuickReturnTraderChat"

</client>

The receiver here is fairly simple because all it does is echo out the message to the chat
textbox on the Windows form, as shown in Listing 12-7.

Listing 12-7. Receiver Implementation

void IQuickReturnTraderChat.Say(string user, string message)
{

textBoxChat.Text += user + " says: " + message;
}

Invoking the Service
The service is invoked in the Click event of the Send button, as shown in Listing 12-8. The
second line is where you invoke the service. As you might recall, the channel is of type
IQuickReturnTraderChat and is defined in the class Main (shown in Listing 12-4 earlier in this
chapter).

Listing 12-8. Service Invocation

private void buttonSend_Click(object sender, EventArgs e)
{

string temp = textBoxMessage.Text + Environment.NewLine;

//Invoke the Service
channel.Say(userID, temp);

textBoxMessage.Clear();
}

As you can see, creating a P2P application with WCF is fairly trivial, and you do not need
to do anything with the Windows P2P networking stack. Although we have kept the applica-
tion QuickReturnTraderChat fairly simple to show you how to implement a P2P application, if

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF386

7028Ch12.qxp 12/11/06 8:33 PM Page 386

you need to do some more advanced tasks such as cloud management, detecting and repair-
ing network splits, and so on, then you will need to use the P2P networking stack and C++. At
the time of writing this, Microsoft does not have any .NET wrappers for the P2P stack, and you
would need to interop to unmanaged code.

P2P Security
Security in a P2P network is an interesting challenge. When securing a P2P network, there are
two points of interest from an application point of view. First, only authorized users get on the
network. Second, the message you received originated from a known and trusted source, and
the message itself has not been tampered with during transmission. The first option is relatively
simple to achieve: when a new application or user logs onto the mesh, they are challenged to
authenticate before they are allowed to join the mesh. The second aspect is a little more diffi-
cult because you are not directly connected to another peer in the mesh. However, with WCF
this is relatively straightforward because the PeerSecuritySettings class is exposed via the
Security property part of the NetPeerTcpBinding class.

So, how does it all come together with WCF? For OutputChannels, which reside on the sender,
each message that is sent is signed using a certificate, and all messages, before being sent to an
application, are validated for this credential. The certificate that is needed is provided by using the
PeerCredential.Certificate property. The validation stated earlier can be implemented via an
instance of the X509CertificateValidator class, which is provided as part of PeerCredential.
MessageSenderAuthentication. When the message arrives on the other end, peer channel ensures
the validity of the message before forwarding it up the chain to the application.

Peer Channel Security
As mentioned earlier, you specify the security settings for peer channel using the property
called Security, which is available on NetPeerTcpBinding. This property operates like any
other standard binding in WCF. You can apply four types of security at this level, and they are
exposed via the Mode property; the underlying class is in the PeerSecuritySettings class. These
four options for security are as follows:

None: No security is required.

Transport: No message security is implemented; only neighbor-to-neighbor security is
required.

Message: Only message authentication is required when communicating over an open
channel.

TransportWithMessageCredential: This is essentially a combination of Transport and
Message, defined previously. This would require that the message be secure and that
authentication is required over secure neighbor-to-neighbor channels.

■Note If the security is enabled on the binding and is set to Message or
TransportWithMessageCredential, then all messages that pass through both on the outbound
and on the inbound need to be secured using X.509Certificate.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 387

7028Ch12.qxp 12/11/06 8:33 PM Page 387

Peer channel provides two ways to authenticate two peers, which are configured using the
PeerTransportSecurityElement.CredentialType property. This is either Password or Certificate.
When this is set to Password, then every peer needs a password to connect. The owner of the
mesh is responsible for setting the password initially and communicating the same to peers who
you would allow to join the mesh. On the other hand, when this is set to Certificate, then
authentication is based on X509Certificate.

When an application initiates a peer channel instance, an instance of the peer channel
transport manager is started. The transport manager resolves the endpoint address of the
requested peers and the mesh. PNRP acts as the default resolver for this; however, you can
choose to implement a custom resolver as well. Once the address is resolved, the transport
manager initiates a connection request to each of the peers.

Password-Based Authentication
When using the password-based authentication, the steps to initiate a connection are the
same with the transport manager. The main difference is that when a peer initiates a
connection request, the link between the two peers is over a SSL connection. Also, as the first
step after initiating connection between the two peers, the initiator peer will send a custom
handshake message that authenticates the password. If the responder peer is satisfied with
this, it accepts the connection and sends a similar response to the originating peer. If the
initiator peer is satisfied with this, the connection is established; if not, the connection is
abandoned. This aforementioned handshake needs to contain some metadata for it to
function. First, the certificate with the secure connection can be established, and second the
password for the handshake can be established. The class PeerCredential is exposed as the
Peer property on the ChannelFactory.Credentials property. This is demonstrated in the
secure version of the chat sample that was discussed earlier in this chapter. This secure ver-
sion is called QuickReturnSecureTraderChat, and you’ll see it a little later in the
“QuickReturnSecureTraderChat Sample” section.

Certificate-Based Authentication
When using the certificate-based authentication mode, the application has control of the
authentication process as compared to the WCF runtime. There is no custom handshake
involved; instead, the transport manager, after receiving the certificate, passes that on to the
application to authenticate. To get this functionality, the application needs to provide a couple
of certificates. The first certificate establishes the SSL connection and the identity between the
peers. And, the second certificate provides a concrete implementation by the application for
the X509CertificateValidator abstract class. Note, this is also demonstrated in the secure ver-
sion of the chat sample a little later in the chapter.

Message Security
If you are interested in securing the message itself to ensure that it has not been tampered
with during transmission, then you need to use the Message security option. Effectively, when
this is requested, the peer channel on every outbound message includes a signature and, vice
versa, on every inbound message validates the signature. The signature is validated against the
same certificate (without the specific private keys, of course). The signatures added to the
message are compatible with all the peers on the mesh.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF388

7028Ch12.qxp 12/11/06 8:33 PM Page 388

■Note How can peer channel verify signatures that are application specific? Well, it can verify signatures
that are specific to the application because it provides a “hook” that allows you to participate in its signature
verification routine. This hook is in a concrete implementation of the abstract X509CertificateValidator
class. This allows you to have any criteria for the pass or fail validation.

QuickReturnSecureTraderChat Sample
The QuickReturnSecureTraderChat application essentially is the same as the
QuickReturnTraderChat sample discussed earlier in the chapter with the exception that this one
uses security. For the sake of simplicity, we implemented this as a separate solution. In the real
world, you would probably read the security information via a configuration setting and based
on that either enable or disable the security options.

You can set security, as discussed earlier, using either a password or an X.509 certificate.
For this sample, we will use a password, but you will see how easy it is to change this to use a
certificate.

Service Configuration
Listing 12-9 shows the service side of the configuration, which is similar to the service
configuration used in the earlier example. Although the address and the namespace have
been updated, the real configuration change is using a different binding depicted by the
bindingConfiguration parameter.

Listing 12-9. Service Configuration

<service name="QuickReturnSecureTraderChat.Main">
<host>

<baseAddresses>
<add baseAddress="net.p2p://QuickReturnSecureTraderChat"/>

</baseAddresses>
</host>

<endpoint
name="QuickTraderChatSecurePasswordEndPoint"
address=""
binding="netPeerTcpBinding"
bindingConfiguration="BindingSecurePassword"
contract="QuickReturnSecureTraderChat.IQuickReturnTraderChat"
/>

</service>

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 389

7028Ch12.qxp 12/11/06 8:33 PM Page 389

Binding Configuration
The updated binding configuration used both by the host and by the client in this example
is called BindingSecurePassword. The main difference between this and the previous example
is the addition of the security details, as shown in Listing 12-10. As you can see, we have the
security mode set to Transport and the type to Password.

Listing 12-10. Secure Binding Configuration

<binding name="BindingSecurePassword">
<security mode="Transport">

<transport credentialType="Password"/>
</security>

<resolver mode="Pnrp"/>
</binding>

Main Application
The main application is the same as shown in Figure 12-5. The only difference between this
and the earlier example is the addition of a new member variable to hold the password, which
is read from the App.config file.

■Note It is not recommended to save the password in App.config in clear text because then anyone can
open it and read the password. It is recommended to save the password in an encrypted storage or possibly
accept the password from the user at runtime. To hold the password in memory, use the SecureString
class, which was introduced in .NET 2.0.

Listing 12-11 shows the updated member variable used by the solution. The channel is of
the type IQuickReturnTraderChat, which as you know is the contract implemented by the
service. The members host and channelFactory are the service host and the channel factory,
respectively. And the two string variables store the user and password that are read from the
App.config file using ConfigurationManager.AppSettings in the constructor for the class Main.

Listing 12-11. Member Variable List

IQuickReturnTraderChat channel;
ServiceHost host = null;
ChannelFactory<IQuickReturnTraderChat> channelFactory = null;
string userID = "";
string password = null;

The StartService method in the class Main has been updated slightly, as shown in
Listing 12-12. This now uses a different endpoint configuration file and sets the password for both
the host and the channel. The StopService method remains the same as earlier and is not listed

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF390

7028Ch12.qxp 12/11/06 8:33 PM Page 390

again here. As you can see in the listing, the password for both the host and the ChannelFactory is
set via the Credentials.Peer.MeshPassword property. The binding configuration has been
updated and is read from QuickTraderChatSecurePasswordEndPoint.

Listing 12-12. Service Host Implementation

private void StartService()
{

//Instantiate new ServiceHost
host = new ServiceHost(this);

//Set the password
host.Credentials.Peer.MeshPassword = password;

//Open ServiceHost
host.Open();

//Create a ChannelFactory and load the configuration setting
channelFactory = new ChannelFactory<IQuickReturnTraderChat>

("QuickTraderChatSecurePasswordEndPoint");

//Set the password for the ChannelFactory
channelFactory.Credentials.Peer.MeshPassword = password;

//Create the Channel
channel = channelFactory.CreateChannel();

//Lets others know that someone new has joined
channel.Say("Admin", "*** New User " + userID +

" Joined ****" + Environment.NewLine);
}

One interesting behavior with the security is that if you have a set of peers listening on the
same endpoint but with different passwords, then they will be isolated from each other. For
example, say you have four users called User1, User2, User3, and User4. Say User1 and User2
are chatting and connected to the mesh using “password1.” If User3 and User4 start chatting
with another password, say “password2,” then even though all four users are on the mesh and
listening on the same endpoint, the messages between User1 and User2 cannot be seen by
Users3 and User4, and vice versa.

■Tip To use an X.509 certificate instead of a password to secure a mesh, set the transport credentialType
in the binding to Certificate, and set the Credentials.Peer.Certificate property to the certificate on
both the host and the client.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 391

7028Ch12.qxp 12/11/06 8:33 PM Page 391

Working with NetShell
NetShell, also known as netsh, is an indispensable command-line utility for both administra-
tors and developers. Although netsh is primarily aimed at administrators because it allows
them to administer network services, it is equally useful to a developer. To start netsh, open a
command prompt, and type netsh.

■Note NetShell is available only when you have P2P networking option installed in Windows XP. Although
NetShell is installed by default on Windows Vista, you need to allow that as an exception in the firewall for it
to work.

The commands in netsh work with the concept of a “context” that determines the network-
ing aspect within which you want to operate and accumulates various possible commands in
that context. In most situations, you would switch to some context for the specific operation in
which you are interested. Contexts can have subcontexts, which in turn can have further sub-
contexts, forming a tree-like hierarchy. Figure 12-6 shows how we switch the context to P2P ➤
PNRP ➤ Cloud.

Figure 12-6. netsh context

The commands you enter in netsh factor into the context on which you are working. For
example, the command show entered (as shown in Figure 12-6) knows the context is cloud
within a PNRP network and shows the commands for that context. You can switch from one
context to another at any time.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF392

7028Ch12.qxp 12/11/06 8:33 PM Page 392

Listing Clouds
If you want to see the clouds to which you are currently connected, then you will use the show
list command, as shown in Figure 12-7. In this example, you can see two clouds, where one
of those clouds was synchronizing, which later you can see has finished synchronizing.

Figure 12-7. Listing of clouds

To see the configuration and status of the cloud, you use show initialization (or the
short form show init). If a computer is connected to the Internet, then it is part of the global
cloud called Global_. If a cloud is connected to one or two LANs, then individual clouds are
available for each network adapter (or link). In Listing 12-13, you can see two clouds called
Global_ and LinkLocal_ff00::%8/8.

Listing 12-13. Cloud Listing

Scope Id Addr State Name
----- ----- ----- ---------------- -----

1 0 1 Active Global_
Synchronize server: pnrpv2.ipv6.microsoft.com;pnrpv21.ipv6.microsoft.com
Use Server: Used
Use SSDP: No addresses
Use Persisted cache: No addresses
Cloud Configured Mode: Auto
Cloud Operational Mode: Full Participant

Scope Id Addr State Name
----- ----- ----- ---------------- -----

3 8 1 Alone LinkLocal_ff00::%8/8

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 393

7028Ch12.qxp 12/11/06 8:33 PM Page 393

Synchronize server:
Use Server: Disabled
Use SSDP: No addresses
Use Persisted cache: No addresses
Cloud Configured Mode: Auto
Cloud Operational Mode: Full Participant

Scope, as the name suggests, represents the scope of the cloud and essentially shows the
PNRPCLOUDINFO data structure that is part of the P2P SDK. The following list defines each of the
columns in the previous data:

Scope: This is the scope of the cloud and can be one of the four values shown in Table 12-1
(in the next section).

Id: This represents the unique identifier for that cloud.

State: This represents the state of the cloud and is represented by the PNRP_CLOUD_STATE
structure in the SDK. This can be one of the seven values shown in Table 12-2 (in the next
section).

Synchronize Server: This represents the seed server used.

Use Server: If a caching server was used to load the current state of the cloud, then this
displays the DNS name of that server.

Use SSDP: Simple Service Discovery Protocol (SSDP) is the protocol used to locate nearby
nodes. You can use this to identify neighboring nodes if a seed server is not available.

Use Persisted cache: This represents any previous cached entries loaded.

Clouds Scopes
The scope of a cloud can be one of the four values shown in Table 12-1.

Table 12-1. Cloud Scope Values

Value Description

0 The cloud can be in any scope (represented by PNRP_SCOPE_ANY).

1 The cloud is a global scope (represented by PNRP _GLOBAL_ SCOPE).

2 The cloud is a site-local scope (represented by PNRP_SITE_LOCAL_SCOPE).

3 The cloud is a link local scope (represented by PNRP_LINK_LOCAL_SCOPE).

The state of a cloud can be one of the seven values shown in Table 12-2.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF394

7028Ch12.qxp 12/11/06 8:33 PM Page 394

Table 12-2. Cloud State Values

Value Description

Virtual The cloud is not yet initialized.

Synchronizing The cloud is in the process of being initialized but is not active yet.

Active The cloud is active.

Dead The cloud has lost its connection to the network but was initialized.

Active The cloud is active.

Disabled The cloud is disabled in the registry.

No Net The cloud has lost its connection to the network but was active.

Alone The cloud is in stand-alone mode.

Listing Peers in a Cloud
To see the locally registered nodes in a cloud, use the command show names in netsh. In
Listing 12-14, you can have two peers identified by P2P Name connected to the cloud. Note the
exact list of peers you see will of course be different from the ones shown here. If you have the
QuickReturnTraderChat application running from earlier in the chapter, then you should see
that.

Listing 12-14. Peer Listing

P2P Name: 0.quickreturntraderchat
Identity: 2460f44f457b670116f55709f3e6324dd12ad70e.PnrpProtocolV2
Comment: a?????????
PNRP ID: cf284a913c76d8289f16c4fefbe18b7a.5bcca4c6a1090f379d15b0f12fc89b08
State: OK
IP Addresses: 192.168.1.73:11989 tcp

[2001:0000:4136:e37a:2847:1735:a83d:dc55]:11989 tcp

P2P Name: 0.78873591048
Identity: 2460f44f457b670116f55709f3e6324dd12ad70e.PnrpProtocolV2
Comment: Local Machine Id
PNRP ID: ad1d55aa343d35df9d118343e3c3de09.7700660055004400f956
ced74b6beb3cState: OK

The following list defines each of the columns in the previous data:

P2P Name: This is the name of the peer connected to the cloud. The first peer in Listing 12-14,
called 0.quickreturntraderchat, is the QuickReturnTraderChat application discussed earlier
in the chapter.

Identity: As the name suggests, this represents the identities. Note that the identities of
both peers are the same. This is because these peers are unsecure and the default identity
is used for them.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 395

7028Ch12.qxp 12/11/06 8:33 PM Page 395

PNRP ID: This represents the corresponding 256-bit PNRP ID.

IP Addresses: This represents the endpoints (including the ports) associated with this peer.

Cloud Statistics
To see the cloud statistics, enter the command show statistics (or the abbreviated show
stat will also work) in netsh. This will display the statistics for all the active clouds. For
example, Listing 12-15 lists statistics for the global cloud. Although most of the entries are
self-explanatory, the IP Addresses column is a list of the addresses that is used to connect to
the cloud.

Listing 12-15. Statistics

IP Addresses: [2001:0000:4136:e37a:2847:1735:a83d:dc55]:3540

Number of cache entries: 34
Estimated cloud size: 142
Number of registered names: 3
Throttled resolves: 0
Throttled solicits: 0
Throttled floods: 0
Throttled repairs: 0

There are more commands within the cloud context; we discussed only the more impor-
tant ones to give you a basic understanding. We encourage you to use the documentation and
SDK to explore other commands in netsh.

Working with Peers
To switch to the peer context from within PNRP, just type peer in netsh. The peer’s context, as
the name suggests, allows you to work with peers and gives you the ability to add, delete, and
enumerate entries, among other things. We will not be covering all the commands—just a
couple of the more interesting ones. As you know, before one peer can talk to another peer, it
needs to resolve that peer. To do this with netsh, you use the resolve command—passing it
the peer name. In this example, if you try to resolve the peer 0.quickreturntraderchat, you get
the result shown in Listing 12-16.

Listing 12-16. Peer Resolution

netsh p2p pnrp peer>resolve 0.quickreturntraderchat
Resolve started...
Found:

Comment: aD????????
Addresses: [fe80:0000:0000:0000:79ae:4fe7:e034:eac7]%8:28365
Extended payload (binary):
Comment: aD????????
Addresses: [fe80:0000:0000:0000:79ae:4fe7:e034:eac7]%8:28136

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF396

7028Ch12.qxp 12/11/06 8:33 PM Page 396

Extended payload (binary):
Comment: aD????????
Addresses: 169.254.2.2:28365

192.168.1.73:28365
[2001:0000:4136:e37a:2847:1735:a83d:dc55]%0:28365

Extended payload (binary):

We have two instances of QuickReturnTraderChat running, which you can see in the previ-
ous example. We also have two network cards, one of which is connected to the Internet and
the other of which is on an internal network. The first network adapter (which is connected to
the Internet connection) has the IP address of 192.168.1.73 (this is NATed of course), and the
local only is 169.254.2.2. Both are listening on port 28365.

The other command of interest is traceroute, which resolved a peer with path tracing. If
the name is registered, then the result is quite similar to the resolve command used earlier, as
shown in Listing 12-17.

Listing 12-17. Known Peer Traceroute

netsh p2p pnrp peer>traceroute 0.quickreturntraderchat Global_
Resolve started...
Found:

Addresses: 169.254.2.2:28365 tcp
192.168.1.73:28365 tcp
[2001:0000:4136:e37a:2847:1735:a83d:dc55]%0:28365

tcp
Extended payload (string):
Extended payload (binary):

Resolve Path:
[2001:0000:4136:e37a:2847:1735:a83d:dc55]:3540, (0), (0)

Accepted
[2001:0000:4136:e37a:2847:1735:a83d:dc55]:3540, (0), (0)

Accepted Final Inquire

However, on the other hand, if the peer is not registered, then you see more interesting
behavior, as shown in Listing 12-18. Note an invalid name (0.quickreturntraderchatwedontkow)
was provided to mimic this behavior. Also, the listing has been abbreviated for clarity. The exact
number of hops would vary on the size of your cloud.

Listing 12-18. Unknown Peer Traceroute

netsh p2p pnrp peer>traceroute 0.quickreturntraderchatwedontkow Global_
Resolve started...
Not Found.
Resolve Path:
[2001:0000:4136:e37a:2847:1735:a83d:dc55]:3540, (0), (0)

Accepted
[2001:0000:4136:e37e:140b:26c5:affa:3034]:3540, (8), (31)

Rejected (Dead end)

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 397

7028Ch12.qxp 12/11/06 8:33 PM Page 397

[2001:0000:4136:e37e:244b:1e65:abdb:f294]:3540, (7), (140)
Rejected (Dead end)

[2001:0000:4136:e37e:1c75:1b9a:bef2:f5a3]:3540, (4), (312)
Accepted Suspicious

[2001:0000:4136:e37e:0c31:07f8:5351:cf06]:3540, (4), (2000)
Rejected (Unreachable)

[2001:0000:4136:e37e:1c75:1b9a:bef2:f5a3]:3540, (4), (125)
Rejected (Dead end)

[2001:0000:4136:e37a:384f:1905:bde1:91be]:3540, (4), (297)
Rejected (Dead end)

[2001:0000:4136:e378:1cb4:2170:a795:ebd9]:3540, (3), (78)
Rejected (Dead end)

[2001:0000:4136:e37a:0c25:34ef:e7ef:9e09]:3540, (2), (203)
Accepted

SOA with P2P
As stated earlier, one of the biggest challenges with the SOA approach is knowing how to
deploy services. For example, when designing a solution, should you take the more traditional
n-tier (DNA) approach with a middle tier, should the services be implemented in a more dis-
tributed approach where each service is a completely independent entity on the network, or
should the approach be somewhere between those two extremes? Although SOA does not
impose any technologies, platforms, and protocols, traditionally we treat the various entities
involved, such as the service provider, consumer, service broker, and so on, as separate from
each other. A better approach would be to treat these roles as different aspects for the services
as opposed to explicit boundaries.

Instead of implementing a service on a server, if that service is implemented in every
node of a network (such as a peer), then all the requirements of the server such as availability,
scalability, and so on, can shift from one particular server to a function on the entire network.
Hence, as the number of services on the network increases, the capabilities of the network
increase proportionally, thus overall making it more scalable and robust. Also, unlike a tradi-
tional approach, in the P2P world, there is nothing to deploy other than the peer itself.

This is not to undermine the challenges that the services in a P2P environment face in an
enterprise where there will be a disparate set of technologies and products on numerous run-
times. These will require different authentication and authorization approaches, and in many
cases it would not be practical, because every service must also carry the weight of the network
functionality that a peer provides in a P2P implementation. Also, operation requirements such
as reliability, management, and so on, will have difficulty standardizing because of the dis-
parate technologies. Lastly, there would be a significant overhead on the development team to
ensure every service peer can deal with all the process, reliability, management, and so on,
every time a new service is built.

If an enterprise can use a single runtime environment that provides a standardized imple-
mentation and uses a common set of libraries such as WCF, that would help eliminate many of
these challenges. The caveat is that all the services need to adhere to this standard. Another
option is to be more creative and implement “smart” networking intermediaries that will take
ownership on areas of control such as security, reliability, operational management, and so on,

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF398

7028Ch12.qxp 12/11/06 8:33 PM Page 398

when delegated to by the services. This frees the service endpoints to consume and provide
services.

Effectively, we are trying to combine the best of how a centralized and a decentralized sys-
tem would work. It is quite clear that there are many synergies between an SOA implementation
and a P2P implementation. Today, the SOA implementations have concentrated a lot on web
services, which in turn rely heavily on the central computing paradigm. Similarly, most P2P
implementations today have concentrated more on their resilient paradigm. It is likely you will
see a combination where both the peer and the web services rely on a common set for service
description and invocation probably based on WSDL and SOAP. Figure 12-8 shows a high-level
view of this convergence of web- and peer-based service orientation.

Figure 12-8. Web+peer service orientation

FUTURE DIRECTION

The future of P2P is interesting, and the trend would be the convergence of grid and P2P computing. Today
these two technology stacks might seem quite different, but there is a lot of commonality overlap between
the two. Some of the problems of P2P are peer discovery and topology formation, effective resource utiliza-
tion, and standardization of APIs and interfaces.

Some of the enhancements that Microsoft is working on for P2P networking increase the mesh
capabilities to provide support services such as replicated data, distributed agreements, and voting. Another
fundamental shift is the ability to guarantee the loss of data. Today, P2P algorithms by design are built around
this idea that data loss is a fact of life and partial failure is acceptable. However, the algorithms are being
enhanced to support better real-time integration with Quality of Service (QoS) guarantees. QoS will help
bandwidth-intensive applications such as Voice over IP (VOIP) or media streaming. There are also enhance-
ments to add support for subgroups and routing controls within those.

Application/Business Process
(XML, BizTalk, Custom, and So On)

Common Grammar
(SOAP, WSDL, and So On)

Peer Service
Architecture

(Decentralized)

Web Service
Architecture
(Centralized)

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF 399

7028Ch12.qxp 12/11/06 8:33 PM Page 399

Summary
To summarize, P2P is about PCs communicating directly with each other without going
through a centralized server. Every node in a P2P network needs to carry the responsibility of
both a server and a client. It is quite common to find a centralized server that is similar to a
central registry and helps the nodes to find other nodes. This is a lightweight server and usually
does not participate in the communication between the nodes. Successful P2P implementa-
tions such as instant messaging and file sharing that include thousands to millions of peers
have proved that P2P networks are quite reliable and secure. Also, you learned that building
P2P solutions with WCF and peer channel is relatively simple but powerful and easy to imple-
ment, debug, and deploy, which will enable further adoption by both developers and users.

The next chapter will introduce interoperability with other SOA implementations and will
cover some of the “gotchas” of using J2EE, MTOM, and WS-ReliableMessaging, among others,
in a cross-platform implementation.

CHAPTER 12 ■ DEVELOPING PEER-TO-PEER APPLICATIONS WITH WCF400

7028Ch12.qxp 12/11/06 8:33 PM Page 400

Implementing SOA
Interoperability

How do you achieve the “connected systems” ideology that facilitates intelligent, stand-alone
systems communicating with each other using a universal language? Is it practical to assume
that one technology will dominate the market? Would that technology promote its proprietary
standard as the default communication model? This is highly unlikely and defeats the core of
SOA principals. Therefore, how will services on heterogeneous platforms communicate with
each other? What interoperability options are available to an enterprise? How will WCF com-
municate with these non-Microsoft SOA offerings?

The objective of this chapter is to educate you about non-Microsoft SOA offerings and
illustrate how they achieve interoperability between each other. We’ll focus primarily on what
products are available and where they stand in comparison to implementing solid interopera-
ble stacks. We will not be able to dive into deep technical issues with each alternative SOA
implementation. This chapter will merely introduce non-Microsoft offerings to increase your
awareness. We will also discuss some practical issues regarding the interoperability of binary
data, existing and emerging standards, and other competing technologies.

We’ll conclude the chapter by discussing some of the key standards in the WS-* specifica-
tions that provide a solid enterprise-ready stack. These standards provide the foundation for
rationalization in an enterprise of why WS-* and SOA are so critical for the future of integrated
architectures. These standards will assist solution architects in identifying the critical success
factors needed for investing in these technologies. We will specifically address Message Trans-
mission Optimization Mechanism (MTOM) and WS-ReliableMessaging, as well as their vendor
implementations. We will initiate the discussion by discussing the interoperability options
available in Java.

Achieving Java/J2EE Interoperability
It is safe to assume that any enterprise in the world consists of multiple software platforms,
and the stakeholders of the enterprise have made significant investments in existing solutions
based on COM, COM+, and other non-Microsoft technologies. The WCF team has provided a
comprehensive integration model to work alongside, around, and within existing COM+ solu-
tions. In Chapter 10, we focused on how WCF can work with existing COM+ applications from
both a client and a service. This chapter focuses on Java/J2EE (and other technology) interop-
erability capabilities and issues.

401

C H A P T E R 1 3

■ ■ ■

7028Ch13.qxp 12/11/06 8:35 PM Page 401

The tack for cross-platform interoperability is to work primarily with the standards as
published by industry-supported and industry-controlled committees. However, each vendor
has the tendency to implement its “interpretation” of the standard. To achieve a neutral per-
spective, the WCF team generated many compatibility tests for a subset of the different vendor
implementations. In addition to internal testing, Microsoft created the WCF Interoperability
Plug-Fest1program to work with stack vendors to achieve greater compliance and compatibility.

One of the more notable participants in the Plug-Fest program and offering general WCF
interoperability has been Sun. The Sun web services team worked alongside the WCF team on
several occasions and has publicly released an open source framework focused primarily on
interoperability with WCF. Started as Project Tango,2 it has evolved into Web Services Interoper-
ability Technology3 (WSIT), which is available today in open source form. The main capabilities
and standards provided in WSIT are as follows:

• Bootstrapping communication (WS-MetaDataExchange)

• Securing communication (WS-SecurityPolicy, WS-Security, and WS-Trust)

• Optimizing communication (MTOM and WS-SecureConversation)

• Enabling reliability (WS-ReliableMessaging)

• Enabling atomic transactions (WS-Coordination and WS-AtomicTransactions)

Another major participant in the WCF/.NET interoperability process is the Axis project
from the Apache Software Foundation.4 It’s a major participant in that the WCF team has
worked with Axis on its own, ensuring WCF compliance with the WS-* standards by leveraging
Axis. Additionally, the Axis team reports that it too has done interoperability testing for the
Axis2 1.0 release from May 2006.

Non-Microsoft SOA Platforms
We briefly discussed Sun as a commercial product vendor that has resources focused on .NET
and WCF interoperability. Sun is not alone in that commitment. We cannot cover in this short
chapter what every vendor or open source team has produced in support of WS-* and
WCF/.NET interoperability. However, we’ll focus on a few key vendors that have openly sup-
ported and worked with .NET interoperability issues. Table 13-1 lists the leading vendors and
their support of the WS-* standards within their products.5

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY402

1. You can find documents and background for the WCF Interoperability Plug-Fest program at
http://www.mssoapinterop.org/ilab/.

2. You can find Harold Carr’s blog entry about Project Tango at http://weblogs.java.net/blog/
haroldcarr/archive/2006/02/an_overview_of_1.html.

3. You can find the WSIT home page at http://java.sun.com/webservices/interop/index.jsp.

4. You can find the Apache Axis2 home page at http://ws.apache.org/axis2/.

5. Apache is listed as a vendor even though it is an open source foundation supported by community
members.

7028Ch13.qxp 12/11/06 8:35 PM Page 402

Table 13-1. Vendor Implementation of WS-* Standards

Vendor/Product MTOM? WS-Security? WS-ReliableMessaging?

Microsoft Yes Yes Yes

IBM No Yes Yes

BEA Yes Yes Yes

Sun Yes Yes No

Apache Yes Yes Yes

Tibco No Yes No

gSOAP Yes Yes No

One of the earliest interoperability efforts was to implement the WS-I Basic Profile. What
is the WS-I Basic Profile? You’ll dive into that topic now.

Interoperability with WS-I Basic Profile
In the beginning stages of the industry’s implementation of the standards, people recognized
that many of the stacks had been built upon an inconsistent foundation of technologies. Some
vendors had chosen different versions of WSDL or SOAP as examples. Even how SOAP faults
were returned by each implementation had been done differently in each implementation. So,
getting interoperability amongst different implementations was a substantial challenge. In
many instances, it was impossible without a significant amount of custom coding. Given the
amount of coding required, it precluded the need for a vendor implementation and threw the
whole “build vs. buy” question heavily in favor of in-house development when interoperabil-
ity was required.

The early vendor SOA frameworks did not conform to common open standards (in other
words, they were vendor specific). This was mostly because of both customer and market
demands. However, this was a major obstacle to achieve “true” interoperability between
multiple vendors.

The major industry participants combined resources forming the Web Services Interoper-
ability (WS-I) Organization to facilitate and move web service standards forward in a non-
proprietary and open manner. WS-I consists of a mix of products, services, and most impor-
tant, user corporations—the primary focus of why we as solution architects exist. Currently,
approximately 90 organizations are participating, with nearly 30 percent comprised of user
corporations.6 We’ll discuss the core components of the Basic Profile in the next section.

Core Components
In April 2004, WS-I released Basic Profile 1.0.7 This set of specifications laid the groundwork for
vendors and customers to begin from a sound base. The specification represents the first genera-
tion of interoperable web service specifications. The importance of the Basic Profile cannot be
minimized because with the initial release, many product companies and open source groups
recognized that the market will no longer allow stand-alone proprietary interoperability stacks.

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 403

6. This is based upon WS-I.org information as of June 12, 2006.

7. You can find the WS-I Basic Profile 1.0 home page at http://www.ws-i.org/Profiles/BasicProfile-1.0.html.

7028Ch13.qxp 12/11/06 8:35 PM Page 403

The Basic Profile 1.0 specification is built upon a consistent set of foundation specifications
that together form the core of it:8

• SOAP 1.1

• WSDL 1.1

• UDDI 2.0

• XML 1.0 (Second Edition)

• XML Schema Part 1: Structures

• XML Schema Part 2: Datatypes

• RFC 2246: The Transport Layer Security Protocol Version 1.0

• RFC 2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile

• RFC 2616: HyperText Transfer Protocol 1.1

• RFC 2818: HTTP over TLS

• RFC 2965: HTTP State Management Mechanism

• The Secure Sockets Layer Protocol Version 3.0

Given the agreement amongst the participants, interoperability at the basic level was now
a greater possibility. In April 2006, the WS-I committee updated the Basic Profile to version 1.1
with some updates and some corrections to published errata. We want to emphasize that
interoperability is not a guarantee that vendors will adhere to specifications. Given the com-
plex nature of the WS-* specifications, small variations in how each framework interprets the
specification generally lead to incompatibilities. This is why Microsoft has worked with other
vendors to validate WCF with the major competitors that also happen to be members of the
WS-I organization. We’ll now discuss the Basic Profile implementation by Microsoft starting
with ASP.NET.

ASP.NET Support of Basic Profile
Since ASP.NET 1.0/1.1 was a shipping product prior to the official specification release (it was
still a “draft” in 2002), it didn’t offer official support for Basic Profile 1.0; however, it was possi-
ble by following simple guidelines9 to implement it. With ASP.NET 2.0, you enable support for
Basic Profile 1.1 by applying the WebServiceBinding attribute to your service class, as shown in
Listing 13-1.

Listing 13-1. Enabling Basic Profile in ASP.NET 2.0

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class WebService : System.Web.Services.WebService {…}

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY404

8. You can find IBM Developer Works at http://www-128.ibm.com/developerworks/webservices/
library/ws-basicprof.html.

9. You can find WS-I Basic Profile 1.1 at http://www.ws-i.org/Profiles/BasicProfile-1.1.html.

7028Ch13.qxp 12/11/06 8:35 PM Page 404

Microsoft Web Service Extensions
During the evolution of web services, Microsoft provided an add-on framework to the core
.NET runtime (both 1.1 and 2.0) in support of the evolving web service standards. With .NET
1.1 Microsoft released version 1.0 and 2.0 of Web Services Enhancements (WSE). With the
release of .NET 2.0, Microsoft updated WSE to version 3.0.

WSE 2.0 offered no direct validation of producing services that were guaranteed to be
Basic Profile compliant. Because ASP.NET 3.0 added the WebServiceBinding attribute to
provide validation of conformance to Basic Profile 1.1, WSE 3.0 inherited that capability.

Additionally, the Microsoft Patterns and Practices team published a reference applica-
tion10 demonstrating how to build services that conform to WS-I Basic Profile along with an
implementation guidance document.11

Windows Communication Foundation Basic Profile Support
WCF enables WS-I Basic Profile 1.1 through the BasicHttpBinding class. So, with WCF, writing
base-level interoperable services that confirm to WS-I Basic Profile is as easy as leveraging the
BasicHttpBinding class through code, as shown in Listing 13-2.

Listing 13-2. Applying Basic Profile in Code

Uri baseAddress = new Uri("http://localhost:8080/MyService");
//Instantiate new ServiceHost
myServiceHost = new ServiceHost(typeof(MyService), baseAddress);
//the following for programmatic addition of Basic Profile 1.1
BasicHttpBinding binding = new BasicHttpBinding();
myServiceHost.AddServiceEndpoint(

typeof(IMyInterface,
binding,
baseAddress);

In Listing 13-2, we just add the BasicHttpBinding instance to the ServiceHost instance’s
endpoints. Again, the power of WCF is that you can also enable the same capability for Basic
Profile 1.1 support declaratively through configuration, as shown in Listing 13-3.

Listing 13-3. Applying Basic Profile Through Configuration

<bindings>
<basicHttpBinding>

<binding name="WebServiceSoap"
...
</binding>

</bindings>

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 405

10. http://msdn.microsoft.com/library/en-us/dnsvcinter/html/WSI-BP_MSDN_LandingPage.asp

11. You can find the Microsoft WS-I Basic Security Profile sample application at http://www.gotdotnet.com/
codegallery/codegallery.aspx?id=0fecd2c7-b2b1-4d85-bd66-9d07a6ecbd86.

7028Ch13.qxp 12/11/06 8:35 PM Page 405

Using the declarative, configuration-driven model allows the distinct abstraction of both
the service and the client of the service (given both sides are WCF) from the transport and the
messy details of the available bindings. Abstraction is critical to the WCF programming model
and is what sets the tools and framework apart from the competing stacks such as Axis2.
Although other stacks provide tools and a configuration-driven approach, the WCF/Visual
Studio combination enables rapid development with generally a first working model without
requiring you to learn additional object models or implementation patterns.

As the WS-* specifications advance requirements for greater control over security, reliable
messaging, and atomic transactions, WCF allows, when using the declarative model, direct
support without recoding the service or client implementation. So, with the declarative
method, you can update the application configuration file as shown in Listing 13-4.

Listing 13-4. Applying WSHttpBinding in Configuration

<bindings>
<wsHttpBinding>

<binding name="… "
...
</binding>

</wsHttpBinding>
</bindings>

Through the wsHttpBinding configuration element you can now support additional levels
of reliability and security that are demanded for both internal and external services for enter-
prise solutions.

Implementing Basic Profile ensures you of seamless integration with other services from
non-Microsoft platforms. However, one of the most common issues of transferring informa-
tion is sending attachments to another non-Microsoft platform. This is a necessity today with
substantial binary files, graphics files, and product files (such as Acrobat PDF files) being
exchanged between multiple platforms. Therefore, how do you send these binary data over
WCF services? What mechanisms are available in WCF to achieve this?

Sending Binary Data Over Web Services
Generally, when you look at most types of services, they utilize short, succinct messages that
contain primarily text. The one-way and two-way message exchange patterns that are the
most common simply pass a few parameters. The parameters are generally primitives and
possibly get another primitive or more complex type back. WCF, along with most web service
frameworks, has been optimized for these patterns.

However, since the inception of messaging technologies (such as MQSeries/WebSphere
MQ and other message-oriented middleware), solutions have required some type of large
object transfer between tiers or potentially binary data. Many times in the past while the bulk
of the solution focused on the short message exchange patterns, the large objects were sent
out of band, potentially using FTP with PGP or other convoluted solutions. Existing systems
leverage data formats that are usable cross platform in their existing forms. Image data (GIF,
JPEG, and TIF) is an example of this type of data. Also, the prevalence of PDF files is another
example of a data format that transgresses platforms easily.

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY406

7028Ch13.qxp 12/11/06 8:35 PM Page 406

Base64 Encoding
One method that can be leveraged is embedding the binary data as a Base64-encoded stream.
This is a simple method, which is directly supported by the xs:base64Binary XML schema
type. However, it has some significant drawbacks. The first is the additional overhead with the
encoding/decoding of the binary data, which adds processing cost. The other potentially
more significant issue is that the Base64 algorithm can increase the payload size by approxi-
mately 33 percent.12

Although effective, the overall issues related to size can impact the performance of services.
Given the response is generally buffered prior to transmission, large objects will consume mem-
ory resources in addition to the CPU overhead of encoding. Also, given the direct embedding of
the binary resource inside the XML document, this impacts the performance of XML parsers
that are now required to buffer or read past the embedded data in order to obtain other ele-
ments and values.

SOAP with Attachments (SwA)
An alternative to embedding binary data inside the XML document was published in December
2000.13 This specification was built upon the Multipurpose Internet Mail Extensions (MIME) speci-
fications. A similar specification, WS-Attachments, follows the same pattern, leveraging MIME at
its core. Both, as you’ll soon see, have been superseded and have minimal industry support.

MIME provides a way to transfer the binary data alongside the core SOAP response inside
a MIME message. Listing 13-5 shows a stub of a MIME message.

Listing 13-5. SwA Message Sample

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

start="<claim061400a.xml@claiming-it.com>"
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>
..

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 407

12. You can find scenarios, patterns, and implementation guidance for WSE 3.0 at http://msdn.microsoft.
com/webservices/default.aspx?pull=/library/en-us/dnpag2/html/wssp.asp.

13. You can find MIME, Section 6.8, Base64 Content-Transfer-Encoding, at http://www.ietf.org/rfc/
rfc2045.txt.

7028Ch13.qxp 12/11/06 8:35 PM Page 407

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <claim061400a.tiff@claiming-it.com>

...binary TIFF image...
--MIME_boundary--

As shown in Listing 13-5, the section in bold is the body of the SOAP response. That
response body contains an element called theSignedForm with a relative reference of cid:....
The cid represents the Content-ID that is present within the MIME message. What SwA does
provide is a way to optimize access to the XML body without forcing parsers and readers to
consume the binary data until absolutely necessary.

SwA has several issues. One primary issue is that the URI reference outside the SOAP body
bypasses any message-level security. To alleviate this, it’s necessary to provide transport-level
encryption or security such as SSL or S/MIME. However, these URI references could be out-
side the MIME message itself and not be required to be relative to the current message.

Direct Internet Message Encapsulation (DIME)
When Microsoft shipped WSE 1.0 for .NET 1.1, it provided a method for passing attachments in
a SOAP message but outside the SOAP envelope. As a result of its presence as an attachment, it
falls outside the capabilities of SOAP security and consequently requires transmission or trans-
port-level security such as SSL. While only Microsoft submitted it to the Internet Engineering
Task Force, both IBM and Microsoft authored it. Because of a variety of reasons, it didn’t gain
industry backing.

Direct Internet Message Encapsulation (DIME) leveraged fixed field size, and bytes are
ordered according to network byte order, or big-endian. This works well for Windows and most
Unix variants but requires additional overhead on platforms that don’t conform to the same
sequencing methods. DIME also supported chunking of a message, which is splitting a mes-
sage over multiple DIME records.

The WSE 2.0 programming model requires developers to manipulate the SOAP response
by adding attachments programmatically. Listing 13-6 is a snippet of WSE 2.0 code that adds
the file attachment, along with its content type (image/jpeg) directly to the SOAP response.

Listing 13-6. Using DIME in WSE 2.0

[WebMethod]
public void GetFile(string fileName)
{

SoapContext respContext = ResponseSoapContext.Current;
DimeAttachment dimeAttach = new DimeAttachment("image/jpeg",

TypeFormat.MediaType, fileName);
respContext.Attachments.Add(dimeAttach);

}

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY408

7028Ch13.qxp 12/11/06 8:35 PM Page 408

As you can see in Listing 13-6, the implementation details are not abstracted from the
service implementation. The service developer is now forced to understand the implications
and requirements of transferring binary or large objects through the service tier. A more natu-
ral method signature would be just to return the binary data as a stream or an array of bytes.

Microsoft realized the transitional status of DIME, and when WSE 3.0 (for .NET 2.0) was
released, Microsoft terminated the support of DIME. The technology that replaced it is called
Message Transmission Optimization Mechanism (MTOM). Listing 13-7 is a similar interface
but implemented with MTOM-expected support as part of WSE 3.0.

Listing 13-7. Using MTOM in WSE 3.0

[WebMethod]
public byte[] GetFile(string fileName)
{

byte[] response;
String filePath = AppDomain.CurrentDomain.BaseDirectory +

@"App_Data\" + fileName;
response = File.ReadAllBytes(filePath);
return response;

}

As you’ll soon see, the transition from the WSE 3.0 implementation of MTOM to the WCF
implementation of MTOM is nearly seamless given the more natural way of implementing
service interfaces without implementation-dependant details. Also, the WSE 3.0 MTOM is
wire-level compatible with WCF’s initial release.

Message Transmission Optimization Mechanism (MTOM)
With the limitations of the attachment-oriented approaches, industry participants developed a
new specification that alleviated many of the issues of past specifications while ensuring com-
patibility with the emerging WS-* standards. Along with MTOM, XML-binary Optimization
Packaging (XOP) is managed by the WCF encoding class MtomMessageEncodingBindingElement.
This is controlled by setting the messageEncoding attribute on the binding with alternatives of
Text or Binary. Listing 13-8 is an example of an application configuration that establishes
through the declarative model that MTOM encoding should be used.

Listing 13-8. Using MTOM Through Configuration

<system.serviceModel>
<services>
<service name="MtomSvc.MtomSample">
<endpoint binding="wsHttpBinding"

contract="MtomSvc.IMtomSample"
bindingConfiguration="MyBinding"/>

</service>
</services>

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 409

7028Ch13.qxp 12/11/06 8:35 PM Page 409

<bindings>
<wsHttpBinding>
<binding name="MyBinding" messageEncoding="Mtom" />

</wsHttpBinding>
</bindings>

</system.serviceModel>

In the configuration file shown in Listing 13-8, we’ve applied the Mtom value to the
messageEncoding attribute for the default settings of wsHttpBinding. This now tells the WCF
framework that it should apply MTOM (with XOP) on the messages during normal channel pro-
cessing inside the WSHttpBinding instance. The optimization of the content is then based upon
how the XOP implementation is applied within WSHttpBinding by using the internal class
System.ServiceModel.Channels.MtomMessageEncoder. What traverses the wire, across the chosen
transport, is a series of MIME message consisting of a SOAP request and for the final response
from the server a binary stream (marked as Content-Type: application/octet-stream).

In the Chapter 13 sample code, MtomTest provides a WCF client and server using configu-
ration, and WSHttpBinding does its message exchange, leveraging the MTOM capabilities of
WCF. The sample code contains a single service method that returns an array of bytes, as
shown in Listing 13-9.

Listing 13-9. WCF GetFile Service Contract

namespace MtomSvc
{

[ServiceContract()]
public interface IMtomSample
{

[OperationContract(
ProtectionLevel=System.Net.Security.ProtectionLevel.None)]

byte[] GetFile(string fileName);
}

public class MtomSample : IMtomSample
{

public byte[] GetFile(string fileName)
{

byte[] result = File.ReadAllBytes(
Path.Combine(

AppDomain.CurrentDomain.BaseDirectory, fileName));

return result;
}

}

We’ve taken the same method signature as illustrated in the WSE 3 example (Listing 13-7)
that leveraged MTOM, and we defined an interface and provided an implementation in a con-
crete class. We’ve also applied an OperationContract property of ProtectionLevel.None to the
operation so the only protection is authentication (the alternatives being Sign and
EncryptAndSign).

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY410

7028Ch13.qxp 12/11/06 8:35 PM Page 410

■Tip Check the requirements for running the samples on the MSDN site at http://windowssdk.msdn.
microsoft.com/en-us/library/ms751525.aspx. Many of the samples from the SDK, including this
book’s code, have certain requirements for security and when running in workgroup mode.

The service class just reads the filename passed on the request into an array of bytes and
then returns that to the caller. The MtomTest client application displays the results in a text box
or, for the image request, converts it into an image and updates the Image control.

You’ll now look at what occurs during the request and reply from the client. Figure 13-1
illustrates the calling sequence from client to server over the life of the request. This will illustrate
the initial key exchange (and subsequent token generation) between the client and services. This
also illustrates how the token is utilized to invoke a GetFile() command at the service.

Figure 13-1. MTOM message exchange

The MtomTest sample directory contains several Ethereal14 capture logs along with a series of
text files taken from the MIME parts of the requests. Those text files are labeled 1.txt through
6.txt—they match Figure 13-1, with each odd-numbered file representing the request coming
from the client and each even-numbered file representing the response from the server.

The first two request-reply pairs represent the key exchange as part of the WS-Security
implementation within WCF. This is primarily for establishing a token exchange that will be
used later for message signing. The third and fourth requests illustrate the token being used to
inquire about endpoints. This objective of this call is to illustrate how the token is utilized by
the client to communicate with the server. The following code snippet illustrates the binary
token that is used to pass on credentials to the service:

(1) Request

Client Service

Key Exchange

Addressing

GetFile()
Functionality

(2) Response with Token

(3) Request with Token

(4) Response

(5) GetFile()

(6) Stream from Service

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 411

14. You can find the W3C’s Soap with Attachments at http://www.w3.org/TR/SOAP-attachments.

7028Ch13.qxp 12/11/06 8:35 PM Page 411

<s:Body>
<t:RequestSecurityTokenResponse Context="uuid-af1f0d7a-6fd7-4c06-9ce0-
7a5acb18669f-2" xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust"
xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">
<t:BinaryExchange ValueType="http://schemas.microsoft.com/net/2004/07/
secext/WS-SPNego">TlRMTVNTUAADAAAAGAAYAHgAAAAYABgAkAAAA
BAAEABIAAAAEAAQAF
gAAAAQABAAaAAAABAAEACoAAAANYKY4gUBKAoAAAAPQwBMAFcAQw
BGAFgAUAAxAGMAaQBjAG8AcgBpAGEAcwBDAEwAVwBDAEYAWABQAD
EA5OLHzcQEcZYAAAAAAAAAAAAAAAAAAAAAsz6BrLvbKI9JA2UWtQEQolh
SFoU9HXfU0vvvDPQuWoNlKxIgckKTwQ==
</t:BinaryExchange>
</t:RequestSecurityTokenResponse>
</s:Body>

The fifth request is the actual SOAP request using an action of http://tempuri.org/
IMtomSample/GetFile. The body of the SOAP request contains an unencrypted request value
inside the SOAP body:

<fileName>LogoText.JPG</fileName>

If you look at the file 6.txt, you’ll see a MIME message consisting of two parts. The first part is
the SOAP envelope representing the GetFileResponse message, as shown in Listing 13-10. Inside
that element is an xop:Include element that points to the second part of the MIME message.

Listing 13-10. GetFileResult with XOP Reference

<GetFileResult>
<xop:Include
href="cid:http%3A%2F%2Ftempuri.org%2F1%2F632858870617208016"
xmlns:xop="http://www.w3.org/2004/08/xop/include"/>

</GetFileResult>

The second part of the MIME message is the raw binary stream as read initially from the
file system into the byte[]. If you look in the file 6.txt, you can see the MIME content header
for the binary stream, as shown in Listing 13-11.

Listing 13-11. Binary Content Part of MIME Message

--uuid:c336b34f-7c2b-4ca6-9534-141723adcf4c+id=9
Content-ID: <http://tempuri.org/1/632858870617208016>
Content-Transfer-Encoding: binary
Content-Type: application/octet-stream

ÿØÿà JFIF ` ` ÿÛ C \\ \ (binary data)

The Content-ID in this part of the MIME message is not HTML encoded, while in the
SOAP response part (Listing 13-10) it is. The other aspect is that the encoding type is binary
and marked as an octet-stream. What follows the customary set of two CR/LF (0x0D, 0x0A) is

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY412

7028Ch13.qxp 12/11/06 8:35 PM Page 412

the raw binary data directly from the byte[]. The content length matches the original file size
(you can examine this with the Ethereal logs) without any compression or modification.

The exchange used in Listing 13-10 doesn’t apply any message level to either the request
or the reply. If you update the OperationContract attribute’s ProtectionLevel property to
EncryptAndSign, you get message-level encryption on both the SOAP envelope and the binary
data that is contained in the second part of the MIME message. The capture results with
EncryptAndSign for the final response are contained in the file 6-WithEncryptAndSign.txt.

MTOM Industry Acceptance
The W3C published the MTOM specification in January 2005.15 Since that time, several other
key vendors have signed on to ship products that contain support for MTOM. Microsoft had
been one of the first to support it with Visual Studio 2005 and WSE 3.0. Microsoft continues
that support up through WCF.

At the time of this writing, many of the non-Microsoft frameworks have either indicated
an intention to support MTOM in future versions of their application server software or have
shipped early adopter (EA) code.

If you look at the Java technology stack, some competing technologies provide the foun-
dation for web services. As a result, how you enable MTOM support in the Java environment
varies by what choice you make with regard to the primary application server and develop-
ment tools.

Sun’s Tango project, along with its NetBeans tools and frameworks, provides a similar
model to Microsoft. Both provide a metadata-driven approach and tools to abstract and
simplify developing web services based upon the emerging standards.

Apache’s Axis2 Support of MTOM

You’ll now look at how Axis2 1.0 provides support for MTOM. Axis2 1.0 was released as an early
adopter version in May 2006.16 The Axis2 project was a major rewrite from the initial Axis web
services project. Axis2 leverages a pipeline handler model for message handling (similar to
Axis) with an extensibility model that allows both the community and enterprises to extend
Axis2.

The Axis2 project has more of a code generation model with the use of tools to facilitate
developing web services. Additionally, Axis2 uses the Axis Object Model Element (AXIOM
OMElement) that becomes the primary message that is passed through the participants in a
distributed architecture. The Axis2 project also has an Eclipse17 plug-in wizard for helping
generate code either from WSDL or from Java classes (WSDL2Java or Java2WSDL).18

So, using the MtomTest sample, you can first generate the WSDL using the SvcUtil.exe
utility as provided with WCF using the following command line (after starting the WCFHost
project):

svcutil /t:metadata http://localhost:8080/ FileService

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 413

15. You can find the Ethereal network protocol analyzer at http://www.ethereal.com/.

16. You can find MTOM and XOP at http://www.w3.org/TR/soap12-mtom/ and at
http://www.w3.org/TR/xop10/.

17. You can find the Axis2 project at http://ws.apache.org/axis2/.

18. You can find the Eclipse IDE at http://www.eclipse.org.

7028Ch13.qxp 12/11/06 8:35 PM Page 413

This creates three output files representing the base WSDL with the two imports. Using
this WSDL, you can now create the Java classes for consuming the MtomTest web service, as
shown in Figure 13-2.

Figure 13-2. Accessing Axis2 Code Generator from Eclipse

The wizard lists the Axis2 Code Generator that’s accessed from the New menu option. We
won’t cover in too much detail the capabilities of Code Generator. The next step is to choose
either to generate a Java class from a WSDL or to generate a Java class to a WSDL. We will
choose to generate a WSDL to a Java class (the Generate Java Source Code from a WSDL File
option), as shown in Figure 13-3.

Figure 13-3. Generating Java code from WSDL

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY414

7028Ch13.qxp 12/11/06 8:35 PM Page 414

Click Next, and you will then be prompted to choose the input WSDL file. This will be the
file you created using the SvcUtil.exe utility. Then click Next again, and you will see the choices
for code generation, as shown in Figure 13-4.

Figure 13-4. Axis2 code generation options

Enter the service name in the Service Name box shown in Figure 13-5. For this example,
we’ll just generate the client-side proxy along with a test case class that will demonstrate the
calling paradigm provided by the Axis2 framework. We’ve just enabled synchronous calling
and enabled the generation of a test case. The next page of the wizard asks for the output
directory. Although the Finish button is enabled, you must specify a directory, or the wizard
will complete without an error but won’t produce any results. We’ve included the generated
code as part of the chapter sample code; it’s in the MtomTest\Java directory, and the WSDL
used is in the MtomTest\Wsdl directory. Please note the WSDL2Java-generated class is called
FileServiceTest.

Listing 13-12 shows the test case–generated code directly from the WSDL2Java wizard.

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 415

7028Ch13.qxp 12/11/06 8:35 PM Page 415

Listing 13-12. Axis2 WSDL2Java-Generated Code

public class FileServiceTest extends junit.framework.TestCase {
public void testGetFile() throws java.lang.Exception {

org.tempuri. FileServiceStubstub = new org.tempuri.FileServiceStub ();
org.apache.axiom.om.OMElement param4 =

(org.apache.axiom.om.OMElement)
getTestObject(org.apache.axiom.om.OMElement.class);

// todo Fill in the param4 here
assertNotNull(stub.GetFile(param4));

}

//Create an OMElement and provide it as the test object
public org.apache.axiom.om.OMElement getTestObject(java.lang.Object dummy) {
org.apache.axiom.om.OMFactory factory =

org.apache.axiom.om.OMAbstractFactory.getOMFactory();
org.apache.axiom.om.OMNamespace defNamespace =

factory.createOMNamespace("", null);

return org.apache.axiom.om.OMAbstractFactory.getOMFactory()
.createOMElement("test", defNamespace);

}
}

As you can see in the code, the main interaction from the developer perspective is navi-
gating the OMElement, which is a hierarchical object model representing an XML InfoSet.19

Compare the coding approach presented by Axis2 and AXIOM to the experience pre-
sented by WCF. The .NET Framework from its initial inception has provided methods to
develop against a strongly typed object model representation of XML data as well as through
hierarchical navigation using XML technologies. Microsoft has provided tools to make the
serialization and representation of XML data more seamless using a user-friendly integrated
development environment (in other words, Visual Studio 2005). The key result is that you can
do more with less coding, leaving the intricacies of working with XML to the framework.

Sun Microsystems’ Support of MTOM

Sun, the creator of Java, has worked with Microsoft on WCF interoperability testing, as men-
tioned previously. The WSIT project, as of this writing, is in early adaptor form and source
code only.20 However, given the marketing from Sun’s team and the demonstration at the
JavaOne 2006 conference, it is clear Sun is committed to a viable and working framework.

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY416

19. You can find the Axis2 Eclipse plug-in at http://ws.apache.org/axis2/tools/1_0/eclipse/
wsdl2java-plugin.html.

20. You can find an AXIOM tutorial at http://ws.apache.org/axis2/1_0/OMTutorial.html#OM.

7028Ch13.qxp 12/11/06 8:35 PM Page 416

WSIT relies on two foundational Java technologies: JAX-WS21 and JAXB.22 The combination
of these technologies provides a similar development experience to the WCF model. Both rely
on attributes and metadata for web service definition, and along with JAXB, they provide a
strongly typed development experience that increases developer productivity.

Sun’s NetBeans project, which is an open source stepchild of the Java community, provides
a development environment that additionally alleviates the requirements that developers
understand hand-coding to a new API or understand navigating an object graph. The NetBeans
WSIT module,23 as shown in Figure 13-5, hides the intricacies of the framework requirements.

Figure 13-5. NetBeans WSIT module

Before moving on, we’ll make a few important observations regarding the state of the Java
community and the vendor support of a consistent approach to working with web services
and the emerging standards: JBoss, acquired by Red Hat in 2006, has stated that it will no
longer work with the Axis project and will proceed with the development of its own SOAP
stack.24 At the time of this writing, JBoss supports only 30 percent of the MTOM specifica-
tion.25 Additionally, neither IBM nor BEA has published or shipped a product that supports
MTOM, although both companies were part of the W3C specification committee. Marketing
and news releases indicate they are expected to ship products by 2007.

These are the options available to transfer binary data between Microsoft and non-
Microsoft SOA offerings. We’ll now discuss how WS-ReliableMessaging is used in
non-Microsoft SOA offerings.

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 417

21. You can find GlassFish Project Tango/WSIT information at https://wsit.dev.java.net/.

22. http://jax-ws.dev.java.net/

23. http://jaxb.dev.java.net/

24. http://websvc.netbeans.org/wsit/

25. http://wiki.jboss.org/wiki/Wiki.jsp?page=WebServiceStacks

7028Ch13.qxp 12/11/06 8:35 PM Page 417

Using WS-ReliableMessaging
Solutions are questionable without reliability. If a system is either unavailable or loses requests
for processing, the users of that system will eventually demand explanations. For example, if
you’re buying a book on Amazon and you get through the order process, think you’ve pur-
chased the book, and then wait weeks for its pending arrival, how many times do you think
you’ll shop at Amazon again before investigating alternative services?

The situation is even worse if you’re booking a trade that could be worth a considerable
amount of money and the message to the clearance system gets lost. If you have a trader who
just purchased 100,000 shares of Microsoft (MSFT), what happens if that ticket never makes it
to the back-office system?

Since the inception of web services, their attraction for loosely coupled platform interop-
erability has been amazing. Web services represent a neutral technology that no one vendor
owns or controls at the expense of both competitors and clients. Vendors can’t hold clients to a
single platform. However, web services have one significant drawback that we view as critical
for the further acceptance of web services in the enterprise. This limitation has held back web
services as the enabling glue for tying applications together in a loosely coupled manner. That
limitation is reliability.

What is reliability? Well, the analogy of buying a book on Amazon or losing a trade while
being handed off between systems certainly sounds familiar. The foundation of web services,
for many implementations, has been HTTP. SOAP over HTTP is generally considered the
default mechanism for web services. However, HTTP doesn’t guarantee reliability when deal-
ing with duplication, ordering, or system outages.

The WS-ReliableMessaging26 (WS-RM) specification was created to address the needs of
reliability for solutions that span applications across heterogeneous platforms. With WS-RM, it
is possible to interact across applications in a reliable manner but, to clarify, not with durability.

The WS-RM specification addresses reliability from within a session or more specifically a
service exchange between a client and a server. What WS-RM provides is a guarantee through
delivery assurance that a message sent is received. That leaves the implementation, not the
WS-RM specification, to fulfill the delivery assurance or raise a SOAP fault.

The key delivery assurances that can be provided by each WS-RM implementation are as
follows:

AtMostOnce: Delivered without duplication but does not deal with lost messages

AtLeastOnce: Delivered once, or more; otherwise, if not delivered, raises a fault

ExactlyOnce: Delivered only once; otherwise fault

InOrder: Delivered in sequence sent; does not address duplication or dropped messages

■Note The current WCF implementation supports ExactlyOnce with the InOrder capability optional. This
is enabled by applying the reliableSession element in configuration or in code for a custom binding or on
a binding that supports reliable sessions (such as WSHttp, WSDual, or NetTcp).

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY418

26. http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossWSSpecStatus

7028Ch13.qxp 12/11/06 8:35 PM Page 418

Durability of the message once it has been sent or system availability is not part of the
WS-RM specification or currently available in WCF.27 A suggestion on how to approach the
durability and system availability aspect, which is out of the scope of the WS-RM specification,
has been to leverage MSMQ in conjunction with reliable sessions, but that doesn’t address the
cross-platform issues. However, by using gateway technologies such as Host Integration
Server (HIS) or other MSMQ to IBM MQSeries bridges, it is possible. But again, the limitations
on the stack from each vendor on each side of the channel come into play. So, unless you have
an extensible stack and you’re prepared to develop customized bindings on the receiving end,
the current shipping limitation is WCF in conjunction with MSMQ.

Network availability is addressed by dealing with timeouts on acknowledgments. Inactiv-
ity timeout settings, when exceeded without acknowledgment, will result in failure. Therefore,
if a session is interrupted by an unreliable network connection, the WCF stack and any WS-RM
implementation that supports AtLeastOnce or ExactlyOne will raise a fault.

WS-ReliableMessaging Example
You’ll now look at the WsReliableMessaging sample that’s part of the Chapter 13 downloadable
samples. Using the MTOM sample as a base, we’ve modified the bindings to indicate that we
require reliable sessions on the service interface. Using the WCF Service Configuration Editor
(SvcConfigEditor.exe) that’s part of the Windows SDK (select Tools ➤ WCF SvcConfigEditor in
Visual Studio), you can modify the App.config file for the WcfHost application in the sample, as
shown in Figure 13-6.

Figure 13-6. Enabling WS-ReliableMessaging on WcfHost

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 419

27. http://specs.xmlsoap.org/ws/2005/02/rm/

7028Ch13.qxp 12/11/06 8:35 PM Page 419

This configuration translates to the application configuration file shown in Listing 13-13.

Listing 13-13. WS-ReliableMessaging Enabled via Configuration

<system.serviceModel>
<services>
<service name="PracticalWcf.FileService">
<endpoint
binding="wsHttpBinding"
bindingConfiguration="MyBinding"
contract="PracticalWcf.IFileService" />

</service>
</services>
<bindings>
<wsHttpBinding>
<binding
name="MyBinding"
messageEncoding="Mtom">
<reliableSession
inactivityTimeout="00:05:00"
enabled="true" />

<security>
<message
clientCredentialType="Windows"
negotiateServiceCredential="true"
establishSecurityContext="true" />

</security>
</binding>

</wsHttpBinding>
</bindings>

</system.serviceModel>

RELIABLE MESSAGING AND WS-SECURITY

The WS-ReliableMessaging specification “strongly recommends” securing reliable scenarios. The following is
part of section 5 of the specification located at http://specs.xmlsoap.org/ws/2005/02/rm/
ws-reliablemessaging.pdf:

It is strongly recommended that the communication between services be secured using

the mechanisms described in WS-Security. In order to properly secure messages, the body

and all relevant headers need to be included in the signature….

The specification goes on to clarify the suggestion based upon sequencing and in the end to alleviate
message replay concerns. Given the “strong” suggestions from the committee and the significant IBM repre-
sentation on the committee as part of the WCF architects, it’s no surprise the requirement exists with WCF.

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY420

7028Ch13.qxp 12/11/06 8:35 PM Page 420

The reliableSession element shown in Listing 13-13 enables WS-ReliableMessaging
on all the service interface interactions that leverage WSHttpBinding. Note that the
establishSecurityContext attribute is set to true (the default) for the binding. At this
time, WCF requires a combination of WS-Security with reliable sessions. If you set the
establishSecurityContext attribute to false, when starting the host, you will receive a
System.InvalidOperation exception with the message “{"Cannot establish reliable session
without secure conversation. Enable secure conversation."}.”

Keeping with the WCF core ability to support both a declarative and a programmatic-
driven implementation, it is also possible via code to enable reliable sessions, as shown in
Listing 13-14.

Listing 13-14. WS-ReliableMessaging Using Code

WSHttpBinding binding =
new WSHttpBinding(SecurityMode.Message, true);

myServiceHost.AddServiceEndpoint(
typeof(IFileService),
binding,
baseAddress);

The code in Listing 13-14 uses the WSHttpBinding constructor override that accepts a
SecurityMode value along with a Boolean value that enables reliable sessions on the binding.
An alternate override is to specify a configuration name, which allows a mix of a program-
matic-driven approach and a configuration-driven approach to development.

If you examine the HTTP traffic for the service exchange, you now see an overall increase
(doubling) of the request-reply between the client and server for the same service interface call.
What is happening is that with each request, additional acknowledgment messages are indicating
success on each message. These additional messages are the delivery assurance mechanism as
part of WS-ReliableMessaging. An example of one of these messages is contained in the \Capture
directory as the file Ack.txt. This message contains the CreateSequenceResponse as a reply to an
initial CreateSequence initiation that establishes the reliable session. The full Ethereal capture is
present in the file wsrm.log in the \Capture directory. You can find full details of the exchange of
messages in section 2.4 of the WS-ReliableMessaging specification.28

Platform Support of WS-ReliableMessaging
Industry and platform support of WS-ReliableMessaging is a critical aspect of overall web service
adoption in the enterprise. Prior to web services, applications were coupled using varied means,
with some being file based and many using queued messaging technologies such as MQSeries
or Tibco. Most of the time, the coupling was tighter than ideal.

As web services became more prevalent, the desire to connect systems both within an
enterprise and outside the firewall has been a critical success factor to the technologies’ over-
all adoption. However, the reliability of the underlying protocol, primarily HTTP, has left it for
low-value and low-risk scenarios.

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY 421

28. You can find Shy Cohen's blog about demystifying reliable messaging at http://blogs.msdn.com/
shycohen/archive/2006/02/20/535717.aspx.

7028Ch13.qxp 12/11/06 8:35 PM Page 421

With WS-ReliableMessaging, you now have a means, theoretically, to connect these hetero-
geneous systems using orthogonal approaches that aren’t incompatible “on the wire.” Now,
when dealing with varied application architects and organizations, you can converse in a lan-
guage that is consistent across implementations. You can discuss the web service contract and
not the details of how you plan to converse. You can publish your metadata on your services or
consume the metadata of the partners you need to interact with, all using a common language.

The differences between each implementation, however, are stark at the time of this
writing. IBM, for example, has indicated only a “statement of direction” in its 6.1 release of
WebSphere Application Server,29 with a target date of “early 2007.” JBoss (now part of Red Hat)
has not provided any support in its JBossWS 1.0 as of this writing. Also, given JBoss’s stated
direction away from Axis and that Red Hat has dropped its application server in favor of JBoss,
it’s not clear what target it has.30 BEA Systems’ WebLogic application server has no publicly
announced support or a timeframe for it.

The two most notable implementations are the Sun Tango/WSIT project, previously
mentioned, and Axis2. Both teams, along with the WCF teams, are working on platform inter-
operability tests to ensure that at shipping time (or close to it) there will be viable frameworks
that support interoperability with WCF.

Summary
One of the key objectives of SOA is to obtain interoperability between heterogeneous platforms.
WCF achieves this objective by implementing common standards that are endorsed by competi-
tive vendors. IBM, Sun, BEA, and the Tibco products comply with WCF by implementing WSIT
standards. These are available today as open source offerings. WCF also complies with Basic
Profile to be compatible with the early web service offerings.

Some of these WSIT standards include bootstrapping communication (WS-
MetaDataExchange), securing communication (WS-SecurityPolicy, WS-Security, and
WS-Trust), optimizing communication (MTOM and WS-SecureConversation), enabling
reliability (WS-ReliableMessaging), and enabling atomic transactions (WS-Coordination and
WS-AtomicTransactions). MTOM also helps developers transfer binary attachments from one
platform to another (that is, from Microsoft WCF to Apache Axis2). WS-ReliableMessaging
implemented by WCF offers “guaranteed delivery” similar to traditional Tibco or MQSeries
offerings. Therefore, WCF offers a wide variety of interoperability options to integrate with
non-Microsoft platforms through these various WS-* standards to achieve service-oriented
computing.

CHAPTER 13 ■ IMPLEMENTING SOA INTEROPERABIL ITY422

29. http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

30. You can find the IBM WebSphere 6.1 software announcement from April 11, 2006, at http://www-306.
ibm.com/common/ssi/rep_ca/6/897/ENUS206-076/ENUS206-076.PDF.

31. Get the status of the JBoss WS specification at http://wiki.jboss.org/wiki/
Wiki.jsp?page=JBossWSSpecStatus

7028Ch13.qxp 12/11/06 8:35 PM Page 422

Appendixes

P A R T 4

■ ■ ■

7028AppA.qxp 12/11/06 8:21 PM Page 423

7028AppA.qxp 12/11/06 8:21 PM Page 424

QuickReturns Ltd.

QuickReturns Ltd. is the sample company we use throughout this book to explain the con-
cepts of the Windows Communication Foundation. This appendix contains the high-level
architecture that we created.

The following is a simplified model of an equity trading market and participants. We have
combined some of the roles in order to simplify the perspective. This model is not meant to
replicate the real interorganizational structure; it’s just a basic representation for demonstra-
tion needs.

The following are the primary participants along with a general description of what serv-
ices they provide or expect from other participants:

Asset Manager: This is an individual providing portfolio management and issuing trades
to buy or sell stock through a market. Asset Managers make decisions about what specific
securities to buy or sell in order to establish a portfolio that meets their client’s needs.

Market Maker: This is an individual providing execution and market-making activities on
a set of stocks listed on an exchange. Market Makers provide orderly market monitoring
by maintaining two-sided displayed quotes, ensuring the quote is not inverted in the
spread. They provide liquidity needs for investors. They clear and settle transactions
through the Depository.

Exchange: This is an entity that provides an organized forum for Market Makers to publish
market prices on listed securities. The Exchange provides execution services and systems
that match, capture, record, and track security transactions amongst market participants.

Depository/Securities Processing System: This is an entity that keeps track of open posi-
tions for all market participants on the listed securities. Generally, each participant would
have their own securities-processing system or subscribe to a corresponding service from
another participant. However, for this example, the model is simplified, and the Deposi-
tory provides all the necessary needs.

425

A P P E N D I X A

■ ■ ■

7028AppA.qxp 12/11/06 8:21 PM Page 425

Market Overview
Figure A-1 shows an overview of how the example stock-trading market works.

Figure A-1. Market overview

Services and Collaboration
The following sections list each entity with the primary service they publish along with the
primary consumers of that service (in parenthesis).

Asset Manager
The following are the specifics of the Asset Manager.

Exchange

Depository

Asset Manager Market Maker

Publish QuoteGet Quote

Trade Security Trade Security

Settle Trade
Execute TradeSettle Trade

Get Position Get Position

APPENDIX A ■ QUICKRETURNS LTD.426

7028AppA.qxp 12/11/06 8:21 PM Page 426

Settle Trade (Depository)
This is where a participant is notified by the Depository that a trade has settled; this includes
the settlement details.

public void SettleTrade (Settlement settlement);

Market Maker
The following are the specifics of the Market Maker.

Trade Security (Exchange)
This is where a participant is notified that another participant has “hit” either a bid or an asking
price on a listed security based upon the published quote.

public Execution TradeSecurity (Trade trade);

Settle Trade (Depository)
This is where a participant is notified by the Depository that a trade has settled; this includes
the settlement details.

public void SettleTrade (Settlement settlement);

Exchange
The following are the specifics of the Exchange.

Publish Quote (Market Maker)
This is the process where a Market Maker announces what their bid is and asks for a particular
security.

public void PublishQuote (Quote quote);

Get Quote (Asset Manager)
This is where an exchange provides the announced bid. We use this to inquire about the listed
securities by the participants.

public Quote GetQuote (String ticker);

Trade Security (Asset Manager)
This is where a participant chooses to buy or sell, based upon an asking or bid quote, respec-
tively, as published on the Exchange.

public Execution TradeSecurity (Trade trade);

APPENDIX A ■ QUICKRETURNS LTD. 427

7028AppA.qxp 12/11/06 8:21 PM Page 427

Depository
The following are the specifics of the Depository.

Execute Trade (Exchange)
This is when a trade occurs on an Exchange, and the Depository is notified in order to update
appropriate positions, both cash and security, and provide notification to the respective par-
ticipants through settlement reporting.

public void ExecuteTrade (Execution execution);

Get Position (Asset Manager, Market Maker)
This is where a participant requests the position on either a security position or a cash posi-
tion. Positions can be reported in either positive (long) or negative (short) numbers, but
fractional shares are not allowed.

public Position GetPosition (String ticker);

Data Contracts
The following are the data contracts in the application.

Quote
A quote represents what the “market” is for a given listed security. Table A-1 shows the quote
data contract.

Table A-1. Quote Data Contract

Field Format Description

Ticker String Primary exchange security identifier

Bid Decimal The price at which the publisher is willing to buy the security

Ask Decimal The price at which the publisher is willing to sell the security

Publisher String Identifier of publisher

Update Time DateTime Update time in GMT for the published quote

Trade
A trade represents a commitment to buy or sell a set quantity of shares for a specific listed
security by a specific publisher. Table A-2 shows the trade data contract.

APPENDIX A ■ QUICKRETURNS LTD.428

7028AppA.qxp 12/11/06 8:21 PM Page 428

Table A-2. Trade Data Contract

Field Format Description

Ticker String Primary exchange security identifier

Type Character B or S for Buy or Sell

Publisher String Identifier of publisher

Participant String Identifier of participant

Quoted price Decimal Price from original quote corresponding to either the bid price or
the ask price when the trade is a sell or buy type, respectively

Quantity Integer Quantity of shares as part of the trade

Trade Time DateTime Time stamp in GMT of when the trade was requested using the
exchange’s clock as the master

Execution
An execution represents a committed exchange of a security amongst market participants at a
set price and quantity. An execution is generally provided as a result of a trade and to the
Depository for position tracking. Table A-3 shows the execution data contract.

Table A-3. Execution Data Contract

Field Format Description

Trade Trade Type The corresponding trade

Settlement Date DateTime The expected settlement date

Settlement
A settlement represents the final update, cash, and position, at settlement time (T+1 in our
model), on an executed trade between market participants. Table A-4 shows the settlement
data contract.

Table A-4. Settlement Data Contract

Field Format Description

Execution Execution Type The corresponding execution type

Status Enum Indicator of settlement status: Cleared, Failed, DK (do not know)

APPENDIX A ■ QUICKRETURNS LTD. 429

7028AppA.qxp 12/11/06 8:21 PM Page 429

Position
A position represents a long or short (+/–) quantity that is registered in a specific market par-
ticipant’s account at the Depository. Positions are impacted by execution reports. Table A-5
shows the position data contract.

Table A-5. Position Data Contract

Field Format Description

Ticker String Primary exchange security identifier

Participant String Identifier of participant

Quantity Integer Quantity of shares on an account for the market participant

Unsettled Quantity Integer Summary quantity of any unsettled trades

Unsettled Trades Execution [] List of unsettled trades encapsulated in execution type array

APPENDIX A ■ QUICKRETURNS LTD.430

7028AppA.qxp 12/11/06 8:21 PM Page 430

History of Microsoft Web Service
Implementations

Microsoft web services have evolved over the years from the initial release with .NET 1.0 to
the release of WCF today. Figure B-1 shows how the framework has evolved and, at a high
level, the features that were added with each iteration.

Figure B-1. Evolution of web services in .NET

When .NET Framework 1.x was released, it was the first runtime implementation from
Microsoft that provided rich web service support out of the box for developers. Even today it
provides the easiest way to code, debug, and deploy web services in the industry. To support
web services natively, the .NET runtime also has to support all the underlying protocols and
infrastructure required such as XML, HTTP, XSD, SOAP, and so on, out of the box. Version 1.x of
the .NET Framework introduced web services as part of ASP.NET pages. Although web services
were the catalyst, the .NET runtime provides the ease of development so developers can build
efficient, secure, and reliable web services. Visual Studio .NET provides a robust environment
that allows you to easily create, deploy, and maintain applications developed using XML web
services.

ASMX Pages
ASP.NET was designed to provide a web service infrastructure and programming model that
allows developers to create, deploy, and maintain web services without the need to understand
SOAP, WSDL, and so on. ASP.NET accomplished this goal through the introduction of XML web
services, which is built on top of ASP.NET and the .NET Framework. Developers can easily cre-
ate web services by creating files with .asmx extensions (for example, Customers.asmx) and
deploying them as part of a web application. Like ASPX files, ASMX files are intercepted by an

Evolution

ASMX ASMX + WSE 2.0

Adds Support for Security,
Policy, and Other Transports

Basic SOAP and WSDL
Over HTTP

Adds WS-I BP, Fully
Integrates WSE, Adds TRNS
and Visual Studio Designers

Full WS-* Support,
Fully Unified Stack

ASMX 2.0 WCF

431

A P P E N D I X B

■ ■ ■

7028AppB.qxp 12/11/06 8:20 PM Page 431

ISAPI extension (aspnet_isapi.dll) and processed in a separate ASP.NET worker process. The
ASMX file must either reference a .NET class or contain the class itself. The only mandatory
entry in the ASMX file is the WebService directive, which specifies the class and the language.
Listing B-1 shows an example of the directive where the class being used is Customers.

Listing B-1. WebService Directive in an .asmx File

<% WebService Language="c#" Class="Customers" Codebehind="Customers.cs" %>

You can set the default XML namespace for the web service by applying the WebService
attribute to the class implementing the web service; in addition, you should change the
default namespace from http://tempuri.org to something unique. Methods of this class do
not have the ability to process web service requests. To make the methods available through a
web service, you need to apply a WebMethod attribute to the public method. Once these meth-
ods are decorated with the WebMethod attribute, they are called web methods and can
communicate over the wire. This class can also optionally derive from the WebService class,
which allows the web service to gain access to the common ASP.NET objects such as User,
Context, Session, Application, and so on. Listing B-2 shows a sample containing two public
methods; one is a web service, and the other is not because we have the WebMethod attribute
on only one method.

Listing B-2. Defining Web Service Methods

<%@ WebService Language="C#" Class="Util" %>
using System.Web.Services;
using System;
[WebService(Namespace="http://www.quickreturn.com/")]
public class CalculateReturn: WebService
{

[WebMethod]
public int Multiply(int a, int b)
{

return a * b;
}
public int Add(int a, int b)
{

return a + b;
}

}

Web Services Enhancements (WSE)
Web Services Enhancements (WSE, pronounced as “wizzy”) is a set of .NET class libraries;
WSE is an add-on to the .NET Framework and provides support for several WS-* specifica-
tions, such as WS-Security, WS-Routing, DIME, WS-Attachments, and so on. WSE is installed
as a set of .NET assemblies. These are implemented as filters that integrate with ASP.NET web
services. Clients that consume these web services can expand and interrogate the SOAP mes-
sage headers using WSE.

APPENDIX B ■ HISTORY OF MICROSOFT WEB SERVICE IMPLEMENTATIONS432

7028AppB.qxp 12/11/06 8:20 PM Page 432

WSE provides its functionality by writing headers to outbound SOAP messages and read-
ing headers from inbound SOAP messages. In some cases, it might also need to transform the
SOAP message body (such as for encrypt/decrypt as per the WS-Security specification if secu-
rity is enabled). The functionality is encapsulated as a set of filters, one each for outbound and
inbound messages. As shown in Figure B-2, all messages are intercepted by these filters.

Figure B-2. WSE input/output filters

You can access the WSE filter chain via the Pipeline class and integrate it with the
ASP.NET web service runtime. New proxy base classes called WebServicesClientProtocol
expose the new inbound and outbound filters. This new base class extends the default base
class (SoapHttpClientProtocol). This new proxy ensures that the filters have a chance to
process the SOAP message when a client invokes a remote web service call.

The WebServicesClientProtocol proxy class is implemented using two new classes called
SoapWebRequest and SoapWebResponse. The SoapWebRequest implementation is quite straight-
forward; it parses the incoming request stream for the SOAP message using the SoapEnvelope
class and passes the request through the chain of output filters, where each filter gets a chance
to process the headers and modify them as needed. The behavior of each filter in turn is con-
trolled via the SoapContext class. Figure B-3 shows the interaction between the various objects.

Figure B-3. SoapWebRequest processing an output filter

Basic SOAP
Message

Input
Stream

SOAP Message
with Protocols

Applied

Specific Protocol
Properties

Output Filters

Modified
Input

StreamOu
tp

ut
Fi

lte
r

Ou
tp

ut
Fi

lte
r

Ou
tp

ut
Fi

lte
r

Ou
tp

ut
Fi

lte
r

Pipeline

SoapContext

SoapWeb-
Request

ServerClient Website

Output
Filters

Input
Filters

Input
Filters

Output
Filters

APPENDIX B ■ HISTORY OF MICROSOFT WEB SERVICE IMPLEMENTATIONS 433

7028AppB.qxp 12/11/06 8:20 PM Page 433

On the other hand, the behavior of SoapWebResponse is just the opposite of
SoapWebRequest. SoapWebResponse parses a response stream for the SOAP message through
each filter where the filter can examine and modify the data as needed. Figure B-4 shows the
interaction between the various components.

Figure B-4. SoapWebResponse processing an output filter

WSE filters are exposed to ASP.NET web services through a SOAP extension via Microsoft.
Web.Services.WebServicesExtension on the server. This class copies the inbound or outbound
messages to a temporary memory stream, allowing the filters to modify the headers as needed
before serialization/deserialization. Figure B-5 shows the integration with ASP.NET.

Figure B-5. WSE integrating with ASP.NET

Web Service

In
pu

tF
ilt

er

In
pu

tF
ilt

er

In
pu

tF
ilt

er

Pipeline

SoapContext

SoapContext

HttpSoapContext

W
eb

Se
rv

ic
es

En
ha

nc
em

en
ts

RequestContext

ResponseContext

Ou
tp

ut
Fi

lte
r

Ou
tp

ut
Fi

lte
r

Ou
tp

ut
Fi

lte
r

Basic SOAP
Message

Modified
Output
Stream

SOAP Message
with Protocols

Applied

Specific Protocol
Properties

Input Filters

Output
Stream

In
pu

tF
ilt

er

In
pu

tF
ilt

er

In
pu

tF
ilt

er

In
pu

tF
ilt

er

Pipeline

SoapContext

SoapWeb-
Response

APPENDIX B ■ HISTORY OF MICROSOFT WEB SERVICE IMPLEMENTATIONS434

7028AppB.qxp 12/11/06 8:20 PM Page 434

■Tip To make ASP.NET web services compatible with WCF services, you can embrace Basic Profiling (BP) con-
formance, use SOAP 1.1, and keep interoperable schemas as simple as possible. Try avoiding RPC/encoded,
because it is not BP compliant. Also try avoiding SOAP extensions because they are harder to migrate.

WSE 1.0
WSE 1.0 replaced the Microsoft Web Services Development Kit (WSDK) and provided support
for WS-Security, WS-Routing, WS-Attachments, and DIME specifications for the .NET Frame-
work. The support came only from Microsoft and not from OASIS because OASIS was still
ratifying the specification and because other vendors had yet to add support in their respective
implementations. With this release, developers now could support various security features
such as digital signatures, encryption, message routing capabilities, and the ability to include
message attachments that are not serialized in XML.

WSE 2.0
WSE 2.0 is a different assembly and namespace from WSE 1.0. The new assembly name is
Microsoft.Web.Services2 instead of Microsoft.Web.Services. The name of the WSE 2.0
configuration element is <microsoft.web.services2>, and the WSE 2.0 root namespace is
microsoft.web.services2. Although WSE 2.0 tries to maintain compatibility with the older
version, it introduces some noncompatible and breaking changes because it is a major revi-
sion from version 1.0 and it keeps up with the rapidly moving web service standards. If there
are two different versions of WSE implementations on either end of a web service call, a
SOAP fault will always be returned as the two implement different versions of the specifica-
tion. WSE 1.0 implements WS-Routing and WS-Security, while the new WSE 2.0 implements
WS-Addressing and the new OASIS WS-Security standard. To make the transition as easy as
possible from WSE 1.0 to 2.0, Microsoft supports side-by-side deployment of both versions.
One caveat to this, however, is that any given web service cannot use both WSE 1.0 and 2.0 at
the same time—it can be configured to use only one or the other. Consumers of the web
service can use either version, though. A few other areas that have changed are as follows:

• Messaging enhancements

• WSDL support

• Security enhancements

• WS-Trust and WS-SecureConversation support

• Next-hop routing

Messaging Enhancements
WSE extends the basic web service functionality of ASP.NET (via the SoapExtension framework)
and adds features such as security. The catch to this is that the solution is then tied to using
only HTTP as the transport protocol when using ASP.NET web services. WSE, however, provides
lower-level APIs (via SoapSender and SoapReceiver) that are transport neutral.

APPENDIX B ■ HISTORY OF MICROSOFT WEB SERVICE IMPLEMENTATIONS 435

7028AppB.qxp 12/11/06 8:20 PM Page 435

WSDL Support
WSE 2.0 adds complete support both for generating and for consuming WSDL. It can automati-
cally generate WSDL definitions of endpoints when requested. It also has a new command-line
tool called WseWsdl2.exe that can generate proxy classes from WSDL definitions and that
currently supports HTTP and TCP.

Security Enhancements
WSE 2.0 adds support for the OASIS WS-Security standard, which affects only the message
format and not the overall functionality. This adds a role-based authentication model for
restricted access and is implemented via the IPrincipal interface along with the IsInRole
method for authentication-specific user roles. WSE 2.0 also improves the security token and
has a new Security Setting tool that helps create a policy file describing the security require-
ments of the application.

Support for WS-Trust and WS-SecureConversation
WSE 2.0 also adds support for WS-Trust and WS-SecureConversation, which define how to
derive a session token that can be used over multiple operations and hence make the process
more efficient and scalable.

Next-Hop Routing
WSE 2.0 supports a next-hop routing model where routing decisions are made on a node-to-node
basis without requiring an explicit routing path in the header. Because of this all, WS-Routing
functionality has been replaced by a new routing model based on WS-Addressing headers.

WSE 3.0
Unlike WSE 1.0 and 2.0, whose main objective was to provide a practical and usable imple-
mentation of the emerging WS-* security specifications, the strongest emphasis in WSE 3.0 is
the simplification of message-level security and the implementation of interoperability.
Broadly, the WSE 3.0 had the following design goals:

• Providing a way to build secure web services easily

• Simplifying the building of SOA solutions

• Future proofing and adding interoperability

Policy and Turnkey Security Profiles
In WSE 2.0 there was no correlation between the code written to secure a message and the
declarative policy in place. In WSE 3.0, however, both the declarative and imperative program-
ming models have been provided to secure the message. This is achieved either by using a
Policy attribute or by using the SetPolicy method on the client-generated proxy class. Listing
B-3 shows an example of how to set the policy to QuickReturnsServerPolicy.

APPENDIX B ■ HISTORY OF MICROSOFT WEB SERVICE IMPLEMENTATIONS436

7028AppB.qxp 12/11/06 8:20 PM Page 436

Listing B-3. Setting the Policy

[WebService(Namespace = "http://quickreturns.com/samples")]
[Policy("QuickReturnsServerPolicy")]
public class WSSecurityUsernameService : System.Web.Services.WebService
{

[WebMethod]
public List<StockQuote> StockQuoteRequest([XmlArray(),

XmlArrayItem("Symbol"] string[] symbols)
{

// Business logic here...
}

}

Table B-1 lists the turnkey security profiles that over time have become standard in many
implementations. For most situations, you would pick one of these policies and devote your
time to implementing your business logic.

Table B-1. Turnkey Security Profiles

Turnkey Security Profile Description

UsernameOverTransport The client is identified against an external store such as Active
Directory, SQL Server, or ADAM. The message is secured at the
transport level through SSL.

UsernameForCertificate The client is identified against an external store such as Active
Directory, SQL Server, or ADAM. The message is secured via an
X.509 server certificate.

AnonymousForCertificate The client is anonymous, and anyone can access the server. The
message is secured via an X.509 server certificate.

MutualCertificate10 and 11 X.509 certificates are exchanged between the client and server in
order to secure the data exchange between them.

Kerberos Kerberos is a way to securely communicate identity across an
insecure network and is supported by Windows domains. Kerberos
tickets are used for authentication and message protection. Ker-
beros also supports features such as impersonation and delegation
in order to execute the service on behalf of the user.

■Note WSE 3.0 does not support WS-SecurityPolicy because the specification has changed since WSE 2.0.
WSE 3.0 also does not implement WS-MEX for metadata exchange.

APPENDIX B ■ HISTORY OF MICROSOFT WEB SERVICE IMPLEMENTATIONS 437

7028AppB.qxp 12/11/06 8:20 PM Page 437

Hosting ASMX Web Services Without IIS
In WSE 3.0, ASMX web services can be hosted outside IIS and can be in hosted in any type of
process called via TCP such as console applications, Windows services, COM+ components,
WinForms, and so on. More custom transports such as UDP, MSMQ, and SMTP have also been
published.

Using MTOM
Message Transport Optimization Mechanism (MTOM) enables you to send large amounts of
binary data efficiently in a SOAP message. MTOM is W3C standardized and replaces DIME and
WS-Attachments as the mechanism for sending large amounts of data. One advantage of
MTOM is that it composes messages in the context of a security policy, so both the data and
the SOAP message are secure. You also get reduced wire size with MTOM because binary char-
acters are sent as MIME attachments over the wire.

Future Proofing
One of the main features of WSE 3.0 is to provide a path to WCF to facilitate the ability to build
service-oriented applications based on web services. WSE 3.0 offers wire-level compatibility
with WCF and can run side by side with WCF.

■Note WSE 3.0 is wire-level compatible with WCF when using HTTP as the transport protocol along with
corresponding turnkey security profiles. This compatibility and interoperability is not guaranteed when using
any other transport protocol.

SOA and .NET v2.0
WSE 3.0 runs only with .NET 2.0 (because it extended ASP.NET 2.0 web services), integrates
into Visual Studio 2005, and is supported by Microsoft. WSE 3.0 also ensures interoperability
with WCF services when using the turnkey security profiles, ensuring that the investment you
make today is still usable with Windows Vista.

Sample XML Schema
Listing B-4 shows an example of a schema describing a country, and Listing B-5 shows a sam-
ple XML document implementing that schema.

Listing B-4. Simple Schema Sample

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="country">
<xs:complexType>
<xs:sequence>

APPENDIX B ■ HISTORY OF MICROSOFT WEB SERVICE IMPLEMENTATIONS438

7028AppB.qxp 12/11/06 8:20 PM Page 438

<xs:element name="name" type="xs:string"/>
<xs:element name="population" type="xs:decimal"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Listing B-5. Sample XML Document Conforming to Previous Schema

<country
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="country.xsd">
<name>France</name>
<population>69.5</population>
</country>

Sample Complex Schema
In Listing B-6, Address is defined as a complex type, with five elements and one attribute
declared. As a result, any instance of type Address must consist of these five elements (that is,
name, street, city, state, and zip) and one attribute (that is, country). In addition, complex
types can be nested and also define occurrence constraints in the schema.

Listing B-6. Sample Complex Type Schema

<xsd:complexType name="Address" >
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

</xsd:complexType>

SOAP Message Example
To illustrate what SOAP messages look like, we’ll show an example of a web service used by an
online retailer that accepts a unique product identifier and returns details about the product
such as the name, description, price, and availability. Listing B-7 shows an example of such a
service called GetProductDetails that accepts one parameter called ProductID. The Envelope
namespace will always point to http://schemas.xmlsoap.org/soap/envelope, as described in
the specification.

APPENDIX B ■ HISTORY OF MICROSOFT WEB SERVICE IMPLEMENTATIONS 439

7028AppB.qxp 12/11/06 8:20 PM Page 439

Listing B-7. Sample SOAP Request Message from a Client

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<getProductDetails xmlns="http://www.quickreturns.com/ws">
<productID>5820948</productID>

</getProductDetails>
</soap:Body>

</soap:Envelope>

The response from the service also has the same structure of an envelope with the
two headers. Listing B-8 shows an example of what the response of the previous
GetProductDetails will contain. In this example, the service sends some additional
attributes such as Product Name, Description, Price, and a Boolean stating whether the
product is in stock.

Listing B-8. Sample Response SOAP Message from a Server

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<getProductDetailsResponse xmlns="http://www.quickreturns.com/ws">
<getProductDetailsResult>
<productName>Wireless Keyboard</productName>
<productID>123321</productID>
<description>RF Wireless Keyboard, available in Black</description>
<price>96.50</price>
<inStock>true</inStock>

</getProductDetailsResult>
</getProductDetailsResponse>

</soap:Body>
</soap:Envelope>

Summary
This appendix gave you a high-level overview of the history of the Microsoft web service stack.
We covered several evolutions from plain SOAP to ASMX to WSE.

APPENDIX B ■ HISTORY OF MICROSOFT WEB SERVICE IMPLEMENTATIONS440

7028AppB.qxp 12/11/06 8:20 PM Page 440

WCF and .NET Framework
Installation Steps

This appendix shows how to install the necessary components for supporting a .NET 3.0
Framework development environment. Several steps are required, but if you follow the steps
presented in this appendix, the setup and configuration will be trouble free. (Chapter 4 details
the base installation and system requirements.)

Installing Internet Information Services
Although not required for WCF development or hosting, IIS is one of the hosting options, and
some of the book examples leverage IIS for hosting.

You can install IIS on both Windows XP and Windows 2003 by selecting Start ➤ Control
Panel ➤ Add or Remove Programs. This opens the Add or Remove Programs dialog box.

Once the Add or Remove Programs dialog box appears, click Add/Remove Windows Com-
ponents. At this point, slight differences between Windows 2003 and Windows XP exist.

Windows 2003
On Windows 2003, you add or modify ASP.NET support by using the Application Server config-
uration component. Once the Windows Component Wizard appears, select Application Server
in the list, and click the Details button on the lower right. This installation is IIS 6.0.

This displays the Application Server Component dialog box. Ensure that the ASP.NET
checkbox is selected. If it’s not selected, you need to enable it and click through the wizard.
You’ll need the installation media if you are doing this for the first time. As usual, the installa-
tion wizard may prompt you for the location of the installation files.

■Note Selecting ASP.NET in the Application Server Components dialog box automatically selects the nec-
essary IIS components on both Windows 2003 and Windows XP.

441

A P P E N D I X C

■ ■ ■

7028AppC.qxp 12/11/06 8:30 PM Page 441

Windows XP
Windows XP doesn’t support ASP.NET from an initial base installation perspective because it’s
not part of the operating system installation process. Installing IIS and ASP.NET is handled a
bit differently. Here are the instructions. After choosing Add/Remove Windows Components,
the Windows Component Wizard appears. Scroll down to the Internet Information Services
(IIS) option if it’s not visible. Ensure that the checkbox is enabled.

■Note Selecting IIS in the dialog box selects all the default options to support IIS and subsequently ASP.NET.

Once done, click OK, and then click through the rest of the wizard. You’ll need the instal-
lation media if the bits have not been configured before. The installation wizard may prompt
you for the location of the installation files.

Installing Visual Studio 2005 or the .NET 2.0 SDK
The installation steps for Windows XP and Windows 2003 from this point forward are identical.

.NET 3.0 (the distribution components that contain WCF) is built for .NET 2.0; however,
the version of the common language runtime (CLR) that comes with Windows 2003 is .NET
Framework 1.1. Also, for Windows XP, the base installation has no version of .NET. So, some
prerequisites need to be in place before you’re ready to start developing.

Visual Studio 2005 provides developers with an integrated development environment
(IDE) that is capable of producing WCF services and additional projects; it also provides the
developer with a productive environment where development time is significantly reduced.
The additional .NET Framework 3.0 Development Tools for Visual Studio 2005 project tem-
plates provide the base generation of the required components and references for creating
.NET 3.0 (WCF) applications and components.

Although Visual Studio 2005 is not required, it is recommended as the primary develop-
ment environment for all .NET 2.0 and .NET 3.0 applications. As a reminder, the .NET 3.0
components and supporting .NET Framework 3.0 development tools for Visual Studio 2005
are supported on all versions of Visual Studio 2005, including Visual Studio 2005 Express,
which is available for free from the Microsoft Visual Studio site.1

.NET 2.0 SDK
The .NET 2.0 SDK gives you all the necessary tools, utilities, documentation, and samples to
get you started developing. The primary missing part is an IDE that’s tailored for .NET devel-
opment. Although the SDK provides a debugger, it’s not at the level of what Visual Studio 2005
can offer; it lacks many of the capabilities for stepping through code and easily establishing
simple and more complex breakpoints.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS442

1. http://msdn.microsoft.com/vstudio/express/default.aspx

7028AppC.qxp 12/11/06 8:30 PM Page 442

.NET 2.0 Runtime Installation
The SDK relies on the redistributable package for the processor architecture you have. If you
haven’t installed the .NET 2.0 runtime, the SDK installation informs you of the missing depend-
encies and exits. Other than accepting the licensing agreement, the runtime installation is
straightforward. Then, if everything goes right, you’ll see the Setup Complete dialog box to con-
firm a successful installation. Once the runtime is installed, the SDK installation is then run.

■Note The runtime actually provides the compilers for VB .NET, C#, and Jscript; this provides support for
the runtime compilation of source into .NET assemblies. You’ll see with the SDK installation the added
compilers for VC++ and J#, which are not provided with the runtime.

.NET 2.0 SDK Installation
The SDK is also available from the same download location as the runtime components. The
runtime components are utilized to execute .NET 2.0 code. However, if you are curious about
what the .NET Framework 2.0 offers, you need to install the 2.0 SDK. There are no additional
fees, other than the operating system license.

Once again, the SDK installation is fairly straightforward, with only a few options that you
can control. Again, you’ll see the obligatory licensing dialog box. Once past that, you get to
choose what part of the SDK you require. For testing, you can leave the defaults; however, the
only required option is the Tools and Debugger option, because this provides the necessary
compilers for turning source code into .NET assemblies (Microsoft Intermediate Language
and metadata) that the runtime can leverage in the CLR.

After selecting the options, you can choose the target location. If you’re resource starved
(you have limited disk space), have multiple disks, or just need to take more control of the
location, you can alter the location; however, we’ve chosen the default (that is, c:\Program
Files\Microsoft.NET\SDK). If everything goes OK, you now have an environment that supports
creating .NET assemblies along with hosting ASP.NET applications inside ASP.NET. At this
point, you can skip to the “Registering ASP.NET” section later in the chapter.

■Note The .NET 2.0 SDK installation interestingly installs many of its tools to the C:\Program Files\

Microsoft Visual Studio 8 directory in addition to the C:\Program Files\Microsoft.NET\

SDK\v2.0 directory. There’s a good document on all the SDK tools located in the Bin directory for the SDK
named C:\Program Files\Microsoft.NET\SDK\v2.0\Bin\StartTools.htm.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS 443

7028AppC.qxp 12/11/06 8:30 PM Page 443

Visual Studio 2005
Given the relatively low cost of Visual Studio Express 2005 (“free forever”),2 most developers
are likely to leverage Visual Studio 2005 for .NET 3.0 development. Although not required, it
does provide a well-integrated and productive environment to facilitate the development of
.NET 3.0, WCF, ASP.NET, and .NET applications.

■Note For this book, we’ve created all the samples, code, and development with Visual Studio 2005 Pro-
fessional or Team Suite.

Installing Visual Studio 2005 is fairly straightforward. For the most part, accepting the
default options provides all the necessary components for developing .NET 3.0 and WCF
applications and supporting .NET Windows and web applications.

If you’re installing from the DVD and have autorun enabled for the device, the Visual
Studio 2005 Setup screen automatically appears. If not, browse to the installation directory
(<drive or unc>\vs\), and launch autorun.exe.

Click Install Visual Studio 2005, and then you’ll see a series of questions about reporting
your setup experiences to Microsoft and the obligatory licensing screen and product key. On
this screen, you are informed of any Visual Studio 2005 dependencies that are missing; the
Visual Studio 2005 Smart Installer will detect and download these missing components as
required, making installation far easier than it has been in the past.

After clicking Next, you can choose the default or full set of features to install; both pro-
vide the necessary components needed. If you choose Default or Full, the next step is to just
click Install; however, if you decide to customize the installation, the Next button appears, and
you’re required to select or deselect options as you require.

When customizing the installation, ensure you’ve chosen a programming language that
you are working with (C# or VB .NET); to provide ASP.NET web project support and the
ASP.NET development server (ASP.NET outside of IIS), select Visual Web Developer. This fea-
ture adds all the project template support as required.

■Note The Default option installs Crystal Reports, Microsoft SQL Server 2005 Express, and other options; it
does not install the .NET 2.0 Quick Start applications that are a great set of examples of .NET-related tech-
nologies. So, if you have SQL running already or you would like to explore the examples, ensure you select
Custom and deselect the other options as required.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS444

2. http://msdn.microsoft.com/vstudio/express/

7028AppC.qxp 12/11/06 8:30 PM Page 444

At this point, clicking Install starts the installation process. Depending upon your
machine’s resources (CPU, disk speed, and so on), installation can take some time. At comple-
tion, the Success screen appears; clicking Finish returns you to the Visual Studio Setup dialog
box where you can choose to install the MSDN documentation.

The next section shows how to validate the ASP.NET part of the installation.

■Note If you choose to not install the product documentation during the platform SDK installation, you are
prompted during the .NET Framework 3.0 Development Tools for Visual Studio 2005 installation that you are
missing documentation. It is also recommended that you check for service releases to gain access to the lat-
est patches for Visual Studio 2005.

Registering ASP.NET
If you installed IIS before installing either Visual Studio 2005 or the .NET 2.0 SDK (or .NET 2.0
runtime), then you have an environment that is ready to support ASP.NET 2.0 applications
hosted within IIS.

To verify that ASP.NET 2.0 is registered correctly on the development or runtime machine,
you can perform a couple of steps. The verification steps are identical for both Windows XP
and Windows 2003.

First, from Administrative Tools (Start ➤ Control Panel ➤ Administrative Tools), double-
click Internet Information Services. This opens the Internet Information Services
Management Console. Expand the local computer until you can see Default Web Site and all
the folders below it. Click it once to select. Choose File ➤ Properties from the main menu;
alternatively, right-click, and choose Properties.

At this point, the Default Web Site Properties dialog box appears. The appearance of an
ASP.NET tab in this dialog box indicates a successful .NET 2.0 runtime installation. That tab, if
you select it, allows you to configure features related to .NET 2.0. Additionally, it allows you to
switch the version of ASP.NET on each virtual path. Figure C-1 shows the dialog box for the
root website that has its ASP.NET version set to the RTM version of .NET 2.0.

■Note The ASP.NET Version drop-down box lists all the versions of .NET that are installed; however, the
only version of ASP.NET 2.0 and .NET 2.0 that .NET 3.0 (and consequently WCF) supports is .NET 2.0.

While you’re developing WCF applications hosted in IIS, you’ll get used to seeing this dia-
log box. You’ll need to set this every time if you have mixed installs of .NET such as an earlier
version of the .NET Framework (we have both 1.1 and 2.0 installed, with 1.1 as the root version).

If you don’t see the ASP.NET tab, there’s an issue with the ASP.NET 2.0 registration. At this
point, please review the sidebar “ASP.NET Registration Issues.”

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS 445

7028AppC.qxp 12/11/06 8:30 PM Page 445

Figure C-1. ASP.NET Website Configuration dialog box

ASP.NET REGISTRATION ISSUES

Generally, it’s a little bit easier to configure a development environment if you have IIS installed prior to
installing Visual Studio or the SDK. If you’ve already installed Visual Studio or the .NET 2.0 SDK on your devel-
opment environment or machine before installing IIS, you’ll be missing the ASP.NET application configuration
mappings that are managed within the IIS administration console.

Fortunately, a utility that comes with the .NET runtime can fix the problem. This utility is installed with
the .NET runtime, and a specific version matches the particular version for each runtime. Specifically, there’s
one for 1.0, 1.1, and 2.0; for our needs, make sure it’s the 2.0 version.

You must be an administrator on the machine where you run this utility. Open a command prompt by
selecting Start ➤ Run, and enter cmd in the text box. Then click OK. Change to the .NET 2.0 Runtime direc-
tory using the following command:

cd %windir%\Microsoft.NET\Framework\v2.0.50727

The last directory name (v.2.0.50727) could change to reflect the latest .NET 2.0 version build number.
At this point, if you don’t get any errors, you should be in the runtime directory. In that directory is a util-

ity named aspnet_regiis.exe. All the command-line options for the utility are available by just running
the utility. But for our needs, we’ll show how to install using the –i switch. So, at the command prompt, enter
the following command:

aspnet_regiis.exe –i <enter>

You’ll see a bunch of messages indicating the installation. If you get any errors, you’ll need to consult
the documentation. It is important to note that this will upgrade the root website and all the virtual directo-
ries. If you are running this command on a web server with virtual directories, you will need to ensure that
you are not going to break any existing applications by upgrading them to the 2.0 framework.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS446

7028AppC.qxp 12/11/06 8:30 PM Page 446

Installing .NET Framework 3.0 Runtime
Components for XP and Windows 2003
The .NET 3.0 Framework RTC is an add-on for Windows XP and Windows 2003. The .NET 3.0
components are part of the Vista operating system and are included in the base installation.
However, for Windows XP and Windows 2003, they are an additional installation that provides
the managed API for the following:

• Windows Presentation Framework (WPF)

• Windows Workflow Foundation (WF3)

• Windows Communication Foundation (WCF)

The managed APIs are .NET assemblies that abstract the base Win32 API and provide a more
consistent way for working with base services of the operating system. They remove the need for
having to use the Platform Invoke (PInvoke) capability as in previous .NET Frameworks.

The .NET 3.0 components are distributed either through an intelligent installer that down-
loads a “stub” user interface and leverages Background Intelligent Transfer (BITS) or as a large,
single installation file. This stub user interface downloads in real time (during the installation)
the necessary components required for a full install of .NET 3.0 from the Microsoft website.

The other option is to get the full install, which is a better option if installing multiple
times or there are restrictions on accessing the Internet from workstations or servers that
require the components.

Again, the .NET 3.0 RTC is the necessary managed .NET assemblies that are required at
runtime (on users’ workstations or servers) that any application built to leverage .NET 3.0
must find at runtime.

Installing .NET 3.0 RTC
Installing the .NET 3.0 RTC is a straightforward process. Once you have access either to the full
installer or to the Smart Installer, just launch and accept the license agreement. You can
choose to also send a log of the setup to Microsoft for any post-installation analysis.
Microsoft’s plan is to compile the results and then improve the setup experience and correct
or provide support for any exceptions or errors.

During the installation, the Setup dialog box will minimize to the taskbar, and the status will
appear in taskbar “bubble” dialog boxes. If you want, you can click the taskbar icon and view the
installation progress at any time. Minimizing the dialog box just hides the installation dialog box,
and the taskbar icon continues with the installation. Figure C-2 illustrates this taskbar icon.

After completing the .NET 3.0 RTC setup, you’ll be notified that it’s done. Click the bubble,
and dismiss the dialog box. At this point, the machine has an environment that is ready to run
applications based upon the .NET 3.0 managed APIs (WPF, WCF, and WF). Note that the only
production requirements for running .NET 3.0 applications are the .NET 2.0 runtime and the
.NET 3.0 RTC.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS 447

3. It’s WF, not WWF. They couldn’t use WWF because that was taken by the World Wildlife Foundation, which
had successfully sued the World Wrestling Foundation, forcing the wrestling folks to change to WWE.

7028AppC.qxp 12/11/06 8:30 PM Page 447

Figure C-2. .NET 3.0 runtime components setup taskbar status bubble

Installing Microsoft Windows SDK for Windows
Vista
.NET 3.0, WPF, and WCF are considered to be the next-generation managed APIs provided by
Microsoft for the Windows operating system. Microsoft has bundled additional tools, utilities,
and documentation in the Microsoft Platform SDK package for Windows. With the release of
the .NET 3.0 managed APIs, it is now known as the Microsoft Windows SDK.

The Microsoft Windows SDK contains a great set of technology examples that span the
Win32 API, covering most aspects of the Windows platform in addition to the new set of .NET
3.0 managed APIs. Tools, samples, and documentation are provided in the Platform SDK, and
although not a requirement, they facilitate developers working with .NET 3.0 applications. In
addition to the Platform SDK, the debugging tools for Windows, PowerShell,4 and other tools
are installed.

Installing Windows SDK for All Platforms
The Windows SDK is installed either from a CD/DVD, from an ISO image, or from the Windows
SDK installation website using the web installation method for Windows XP, Windows 2003, and
Windows Vista.

If using an ISO image, you can mount the ISO image using a tool that can create a virtual
CD/DVD drive and then follow the same CD/DVD installation steps.5 The CD/DVD installation
steps leverage autorun; or once the CD/DVD or ISO image is mounted (inserted), just double-
click Setup.exe that is located in the root of the drive.

You can run the web installation method by accessing the web installer located on the
Microsoft Downloads site. That location is currently http://www.microsoft.com/downloads/
details.aspx?FamilyId=A55B6B43-E24F-4EA3-A93E-40C0EC4F68E5&displaylang=en, but it may
change in future releases.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS448

4. Check out http://www.microsoft.com/technet/scriptcenter/hubs/msh.mspx for good resources on the
PowerShell.

5. One of the best tools that many developers leverage is Daemon Tools, located at http://www.
daemon-tools.cc/dtcc/download.php?mode=ViewCategory&catid=5. Many have stuck with the 3.47
release because the 4.x release of Daemon Tools includes some additional ad-supported software that
helps defray the costs for the developer (this is free stuff).

7028AppC.qxp 12/11/06 8:30 PM Page 448

WINDOWS SDK INSTALLATION COMPONENTS

The Windows SDK contains a “chained” installation setup program. What happens during the installation is
that the master Setup.exe file calls a series of Microsoft installation packages. These packages are present
in the Setup directory of the image. The current collection of installation packages includes the following:

• Windows SDK

• MSDN Document Explorer

• Windows Debugging Tools

• .NET Compact Framework

• PowerShell, .NET-enabled command shell

It’s important to note that the only required package is the Windows SDK, which is required for the tools
and utilities that support WCF development. The MSDN Document Explorer is required if you install the asso-
ciated documentation for the SDK.

During installation, there have been some issues with some of the subpackages failing because of
unexpected prior installations (betas, prior releases, and so on). To work around those issues, it is possible to
execute the MSI for the Windows SDK directly or for any of the subpackages you require. In fact, during the
prolonged CTP and beta releases of WCF and .NET 3.0/WinFx, numerous issues were reported on the installa-
tion packages, which should be expected during the beta periods. Most of the issues we’ve encountered
have been dutifully corrected by the SDK team.

After launching the Setup Wizard, you’re presented with the welcome screen and licensing
agreements. Then after accepting the license agreement, you’re presented with the directories
to which you want to install. Generally accepting the default directories makes things a bit eas-
ier to find when moving from machine to machine. Change it if you’re resource starved or want
the samples put somewhere else. After that, click through to the option screen, and ensure you
select the .NET 3.0 tools or other options you require.

When the option screen is selected, select the suboptions related to the documentation,
samples, and tools. The documentation and samples are provided in the .NET 3.0 or Win32
legacy version. For our needs, the .NET 3.0 set is what you require. Ensure that the option to
install the tools for .NET 3.0 is selected.

Again, these parts are not required for WCF development. The SDK components provide
helpful development tools, documentation, and samples that facilitate the development of
WCF and .NET 3.0, as well as Win32-based applications.

Once the options are selected, click Next to proceed with the installation. During the
installation, the Setup Wizard will provide feedback about what parts are being installed.

At the completion of the installation, if there were no errors, the Installation Complete
screen will appear. If any installation errors occur, the left panel displays the specific failure
information. At that point, it is possible to bypass some parts of the installation by running the
subparts of the SDK directly. That is unless that part was the failing item. Please see the side-
bar “Windows SDK Installation Components” for more information.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS 449

7028AppC.qxp 12/11/06 8:30 PM Page 449

Installing .NET Framework 3.0 Development Tools
The .NET Framework 3.0 Development Tools provide the necessary template and add-in sup-
port for creating and managing projects that target the .NET 3.0 managed API extensions.
These are supported only with Visual Studio 2005.

The installation is again straightforward with few options available. Launch the installer
package, which you obtain directly from Microsoft. If you’ve installed the Visual Studio docu-
mentation, you’ll jump right into the installation process.

After clicking through the welcome screen, you’re prompted for the obligatory licensing
agreement. Choose to accept or exit the installation; if you exit now, then you won’t have proj-
ect and add-in support inside Visual Studio 2005.

If you’ve decided not to install the Visual Studio 2005 documentation, you’ll be presented
with a message box or two indicating such, as shown in Figure C-3.

Figure C-3. .NET 3.0 Visual Studio extensions warning of no documentation

Regardless of whether the documentation is missing, you can still develop .NET 3.0 appli-
cations; you just lose the support of the integrated documentation within Visual Studio (or,
more precisely, the MSDN local documentation).

During the installation, if you’ve installed the documentation, the MSDN collection
merge will take place. That process can be time-consuming and depends upon the resources
available on your machine (CPU, RAM, and so on).

Once the installation completes, you should verify whether the installation is complete.
First, launch Visual Studio (Start ➤ All Programs ➤ Microsoft Visual Studio 2005 ➤ Microsoft
Visual Studio 2005). Start a new project (File ➤ New ➤ Project), and confirm the existence of
the .NET 3.0 templates. Figure C-4 shows the templates for C# and Windows (.NET 3.0).

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS450

7028AppC.qxp 12/11/06 8:30 PM Page 450

Figure C-4. .NET 3.0 templates in Visual Studio

In Figure C-4, the template WCF service library is a WCF template for creating a class
library based upon WCF. The other templates are all related to WPF.

The next template to check is the website WCF service project templates. Start the new
Web Site dialog box by choosing File ➤ New Web Site. If you see the project type WCF Service
under Visual Studio Installed Templates, you have a good .NET 3.0 installation.

You use the WCF Service template to create the base “site” for an ASP.NET-hosted WCF service.
The Location option at the bottom of the dialog box (File System ➤ HTTP ➤ FTP) determines how
the development project is generated. If you’re choosing File System, Visual Studio will leverage the
Visual Studio development web server for your development and debugging needs. This is a great
feature if you’re limited to one installation of IIS on your machine.6

Making Windows Firewall Changes
All versions of Windows since Windows XP SP2 provide a built-in firewall. Additionally,
depending upon your installation, you may have your own firewall software provided by a
third party such as BlackICE or Symantec.

The following sections walk you through how to modify the Windows Firewall so you can
host services or duplex clients on the machine being configured. This modification is required
for IIS to listen on the network for external clients requesting services. If you’ll be using only
the ASP.NET development server as part of Visual Studio and not allowing external clients to
access your services, you don’t need to make firewall changes.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS 451

6. We’ve consulted for several clients that had hard restrictions on not installing IIS on workstations; get-
ting IIS installed required significant effort and communication with the appropriate technology
support groups to finally, begrudgingly, get it installed. This will reap major benefits in the future.

7028AppC.qxp 12/11/06 8:30 PM Page 451

■Note If you will be developing 100 percent on a local machine and not providing access to services’ or
clients’ hosting services on your machine, you can skip modifying the Windows Firewall settings. Windows
allows any localhost requests without going through the firewall.

Firewall Primer
Firewalls provide administrative control over Internet Protocol (IP)–level communications
amongst network-connected computers. That communication is leveraging either Transmis-
sion Control Protocol (TCP) or User Datagram Protocol (UDP).

Firewall software (or hardware) provides a way to manage the IP ports and type of traffic
(TCP/UDP) that is permitted to pass through these ports. Entry-level firewalls, such as the one
provided with Windows, provide nonstateful packet inspection. To put it simply, they can pro-
vide either blocked or unblocked access from network-based computers, based upon their
source address or network (scope setting) to the machine that is being configured.

Stateful packet inspection firewalls provide for tracking of packets amongst network
machines over time (that’s the state) and dives beyond the IP header into the application layer
of the “conversation.” This allows for greater rule-based restrictions and security. However,
with that stateful inspection, there’s significant overhead in the processing power required to
manage the state and in providing the same or similar latency times that come with nonstate-
ful firewalls.

Given the processing overhead associated with firewall software, if performance is a key
requirement, you need to consider the impact a firewall (and the type of firewall) will have on
the overall application architecture.

WCF Requirements
WCF is all about communication. Communication can occur between programs on the same
system or different systems. However, it is generally between two or more network-based
computers that are either present on the same LAN (same subnet) or located across a WAN or
the Internet.

Depending upon the protocol and transport choices (the binding part of the ABCs of
WCF), you’ll need to think through, and perhaps diagnose, issues related to firewall restric-
tions. These firewalls may be Windows based, or they could be network appliances, such as
Check Point or Pix from CISCO. Regardless, you need to be aware of the base-level network
and port requirements of the binding choices that are made at deployment time in order to
communicate with the network support groups so they can administer the changes necessary
in the network topology to support your distributed WCF-based applications.

For our needs here, we’ll focus on the built-in firewall that comes with Windows XP SP2
and later versions of Windows.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS452

7028AppC.qxp 12/11/06 8:30 PM Page 452

IIS Hosting and Activation
The Web has a default protocol, Hypertext Transport Protocol (HTTP), that runs on IP port 80
using TCP as the transport and session layer protocol.7 That’s the “default” port if not overrid-
den in requests. IIS by default listens on port 80 for non-SSL traffic.

So, if you choose to host your WCF Services inside IIS, you need to ensure that port 80 is
open as required in the firewall. You simply do that by accessing the Windows Firewall settings.
To access the Windows Firewall configuration wizard, access it through the Control Panel (Start
➤ Control Panel ➤ Windows Firewall). At that point, you’ll see the Windows Firewall configura-
tion. Ensure that the firewall is set to Off (not recommended unless troubleshooting) or, if set to
On, that the Don’t Allow Exceptions option is not checked.

If the Don’t Allow Exceptions option is enabled, the firewall restrictions are absolute. The
policy for the Windows Firewall in this scenario is to not allow any unsolicited inbound requests
to any services hosted on this machine. So, for our needs, if you require any requests from off the
machine to access services listening on this machine, you need to modify the Exception list.

One quick but not recommended way is to completely turn off exceptions. We recom-
mend that option only when troubleshooting issues related to network communication
failures and to confirm it’s the Windows Firewall that is the issue. The recommended approach
is to disable the setting Don’t Allow Exceptions and edit the Programs and Services list.

Now, with the Windows Firewall permitting exceptions, you can add the necessary ports
to the Exception list. Next, click the Exceptions tab at the top of the Windows Firewall configu-
ration wizard. Then click the Add Port button.

We don’t use Add Program because that is designed for use only with client-type applica-
tions and not servers. Since we’ll be opening ports required for IIS, we just want to open the
default port 80. So, after clicking Add Port, enter the details as shown in Figure C-5.

Figure C-5. Adding port 80 rule

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS 453

7. For more information about the seven layers of the OSI model, see http://en.wikipedia.org/wiki/
OSI_model.

7028AppC.qxp 12/11/06 8:30 PM Page 453

The Name field is an arbitrary value that allows you to easily identify the rule name in the
Exception list. We’ve chosen WWW for World Wide Web. The port number is the critical value.
Since IIS uses port 80 over TCP as its default, we’ve used 80 and ensured TCP is selected as the
type of protocol. For now, you don’t need to modify the scope of the request because the rule
we’ve just entered will allow any computer to access port 80, which IIS is listening on.

You’re now ready to host a WCF service inside IIS. Again, if you’re developing locally using
only either IIS or the ASP.NET development server that comes with Visual Studio, you can skip
the Windows Firewall configuration changes. We want to stress the base comprehension
needed for understanding how the network, specifically IP, works for troubleshooting and
configuring WCF solutions.

Summary
This appendix detailed the installation process for WCF components and infrastructure. You
investigated initially how to install IIS. Then you went through the installation process of
Visual Studio 2005. (We used Visual Studio 2005 as our IDE for WCF applications.) Then you
investigated the installation process for .NET 3.0 and Windows SDK to create an environment
to execute WCF-compliant code.

APPENDIX C ■ WCF AND .NET FRAMEWORK INSTALLATION STEPS454

7028AppC.qxp 12/11/06 8:30 PM Page 454

■A
ABCs

addresses
base, 57
description of, 53–55
HTTP, 55
MSMQ, 56
Named Pipes, 56
TCP, 56
versioning, 55

bindings
changing, 257
custom, building, 216
description of, 20, 53, 57–58
early, 328–329
interoperable, 58
late, 329
MsmqIntegrationBinding, 270–272
NetMSMQ binding stack, 260
predefined, 58
security features of, 215–216

contracts
data, 63–65
description of, 59
designing, 17
message, 65
messaging exchange patterns, 59–60
service, 60–63
SOAP, 9

overview of, 53–54
abstraction, and programming model, 406
accessing

Axis2 code generator from Eclipse, 414
remote components, 44–45

ACID (atomic, consistent, independent,
durable) behavior, 277–278

activation process in WAS, 170
Add Install function of Windows service

project, 153
Add New Item dialog box, 182
Add or Remove Programs dialog box, 260
Add Project Output Group dialog box

(Solution Explorer), 155
Add Service Reference dialog box, 113, 174,

314, 323
Add Service Reference menu option, 112

adding
claim access code to ExchangeService

class, 218
filter to message log, 193
performance counters, 196
references to services, 174
security mode, 222

address model (IIS), 157
addresses

base, 57
description of, 53–55
HTTP, 55
MSMQ, 56
Named Pipes, 56
TCP, 56
versioning, 55

analyzing message-level security, 229
anonymous requests, 118
Apache Software Foundation Axis project

JBoss and, 417
MTOM, support of, 413–416
WCF team and, 402

App.config file
client code, 79
Client, modifying for transactions, 287
generated by SvcUtil.exe, 366
host application, 205
Host, modifying for transactions, 291
Microsoft Service Configuration Editor

and, 114
ServiceHost, 72, 255
setting WSAtomicTransaction binding

configuration in, 291–292
TradeServiceHost, 192
WcfSimpleClient project, 189–190, 224

application. See also COM+ applications;
peer-to-peer (P2P) applications

definition of, 302
legacy, 260, 272
library, 47
recycling, 163–164
security issues with, 213
server, 47
testing, 256
WinForms, 150

application log for AuthAuditHost service, 241
application pool (IIS), 157

Index

455

7028Index.qxd 12/11/06 8:36 PM Page 455

Application Server dialog box, 261
applying behaviors

channel, 87
contract, 86
operation, 88
overview of, 83
service, 84–86
service metadata, 88–89

architecture for P2P networking, 376
ASMX

description of, 44–45
pages, 431–432

ASMX (ASP.NET web) services
hosting and, 156
hosting without IIS, 438

ASMX to WCF connectivity, 38
ASP.NET

compatibility model, 164–165
evolution of web services and, 431–432
HttpHandler, 102
registering, 445–446
web service framework, 156
web services

code example, 107–109
programming model compared to, 107

Website Configuration dialog box, 445
WS-I Basic Profile and, 404
WSE and, 434

AspNetCompatibilityRequirements attribute,
164

Asset Manager, 425–426
asynchronous communication, 5, 45–46
atomic, consistent, independent, durable

(ACID) behavior, 277–278
attachments. See binary data
attribute-based development features, 36–37
attributes

AspNetCompatibilityRequirements, 164
assembly, for COM+, 320
ContractBehavior, 86
DataContract, 64, 134, 143
description of, 36
EndpointBehavior, 87
header (SOAP), 354
KnownType, 345
MessageContract, 143
.NET Framework 3.0, 106
OperationBehavior, 88, 127, 284–285
OperationContract, 62, 123–126
ReleaseServiceInstanceOnTransaction-

Complete, 284
Required transaction, 307
Serializable, 129
ServiceBehavior, 84–86, 126, 283, 349
ServiceContract, 61, 119–123
ServiceMetadataBehavior, 88–89

TransactionAutoCompleteOnSessionClose,
284

TransactionFlow, 283
XMLSerialization control, 133

audit log for AuthAuditClient instance, 241
auditing for security features, 240–242
AuthAuditClient instance, audit log entries

for, 241
AuthAuditClient project, running under

Administrator account, 238
AuthAuditHost project

host.cs file of, 236
program.cs file of, 237

AuthAuditHost service, application log
entries for, 241

authentication
See also certificate-based authentication;

password-based authentication
authorization compared to, 234
credentials, claims, and, 217
description of, 215
.NET Framework and, 234

authorization
authentication compared to, 234
by certificate, 226–229
description of, 215, 234
IPrincipal interface, 234–238
.NET Framework and, 234
one-way communication options,

239–240
autonomy of services, 8
Axis project (Apache Software Foundation)

JBoss and, 417
MTOM, support of, 413–416
WCF team and, 402

■B
base addresses, 57
Base64 encoding, 407
BasicHttpBinding binding, 215
BasicHttpBinding class, 405
batch processing with queues using sessions,

269
BEA Systems

MTOM specification and, 417
WebLogic application server, 422

behaviors
applying, 83
channel, 87
contract, 86
controlling, 119
interface of, 84
operation, 88
service, 84–86
service metadata, 88–89
service model layer and, 69

■INDEX456

7028Index.qxd 12/11/06 8:36 PM Page 456

best practices
for defining and implementing contracts,

110
for implementing service contracts, 109
for security, 156
for service library, 120
for versioning data contracts, 360–362

binary data
Base64 encoding, 407
Direct Internet Message Encapsulation

(DIME), 408–409
Message Transmission Optimization

Mechanism (MTOM), 409–416
sending over Web services, 406
SOAP with Attachments (SwA), 407–408

binary serialization, 338, 351
binding support for credentials, 221–222
bindings

changing, 257
custom, building, 216
description of, 20, 53, 57–58
early, 328–329
interoperable, 58
late, 329
MsmqIntegrationBinding, 270–272
NetMSMQ binding stack, 260
predefined, 58
security features of, 215–216

BizTalk Server, integration with, 43
blank solution file, creating, 181
body of SOAP message, 15
boundaries, crossing, 8
BPEL (Business Process Execution

Language), 9
breaking changes to data contracts, 346–347
buffering, 257
building

custom binding, 216
custom code to monitor activity, 181–188

business drivers, 180
business drivers, security, 214–215
Business Process Execution Language

(BPEL), 9

■C
cards (Windows CardSpace), 243
certificate authorization, 226–229
certificate-based authentication, P2P

networks, 388
changing data contracts, 346–347
channel stack, 335
ChannelFactory

description of, 69
instantiation of, 76–81

channels
description of, 66–67
dual HTTP, 258
flavors of, 68
integration, 260, 270–274
shapes of, 67–68
transport, 264–270

chunking, 256
claim sets, 217
ClaimClient application, running, 219
ClaimHost application, running, 219
claims

description of, 217
ExchangeService class and, 217–220
presenting to WCF, 220–221

classes
BasicHttpBinding, 405
DataContractSerializer, 142, 337, 349
description of, 39
ExchangeService, 218–220, 235
Execution, and data contract, 139
Message, 335–336, 357–359
MessageFilter, 359
MessageFilterTable, 360
MtomMessageEncodingBindingElement,

409
PeerCredentials, 388
PeerNode, 381
PeerNodeAddress, 381
PeerSecuritySettings, 387
QuickReturnStockQuote, 338
ReliableSessionBindingElement, 257
SecureString, 390
serviced component, 47
ServiceHost

accessing in IIS, 161
description of, 145
as host agnostic, 148–149
IIS and, 159
processes, application domains, and,

147
Windows Service hosting, 151

System.ServiceModel.Activation.Http-
Handler, 102

Trade
data contract, 138
with DataContract attribute, 134
with DataMember attributes on fields

and properties, 135–136
first few lines of code for, 128
schema with no members, 134

TradeSecurityRequest, 139
TradeSecurityResponse, 140
TransactionScope, 280
XML Web Service, example of, 44
XmlSerializer, 349–350

■INDEX 457

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 457

client code, service client proxy, 115
client proxy generation

.NET Enterprise Services and COM+
integration, 323–324

using SvcUtil.exe, 79–80
WCF COM+ integration, 314–315

clouds
description of, 372
listing, 393–394
listing peers in, 395–396
scope of, 394
statistics, viewing, 396

code examples, ASP.NET 2.0 web services
compared to WCF, 107–109

collaboration and P2P, 373
COM (Component Object Model), 26, 301
COM+

consuming services from
overview of, 324
QuickReturns Ltd. Quote service

example, 325–332
security credentials with

IChannelCredentials, 332–334
description of, 47–48
features of, 301
integration with, 302
interacting with and reusing applications,

38
COM+ applications, running as WCF services

client proxy generation, 314–315
ComSvcConfig.exe utility, 313
leveraging utilities, 308
.NET Enterprise Services and, 317–324
overview of, 302
SvcConfigEditor.exe utility, 308–313
Visual Basic 6 example, 303–307
Visual Basic 6 hidden interfaces, 315–317

COM+ integration summary page, 311
COM+ Integration Wizard, 309
command-line implementation and

consuming services, 176–177
commands

GetFile(), 410
resolve, 396
runas, 238
traceroute, 397

Common Object Request Broker Architecture
(CORBA), 301

communication
asynchronous, 5, 45–46
one-way, authorization options for,

239–240
real-time, and P2P, 372
reliable messaging and, 251
remote, 6

compatibility of services, 9
compensating transactions, 279
Component Object Model (COM), 26, 301
Component Services, selecting properties for

My Computer in, 293
component technology, history of, 301
component-based development, SOA

compared to, 4
components, services compared to, 10, 39–40
ComSvcConfig.exe utility

COM+ applications and, 313
description of, 38, 308

confidentiality of information, 215
configuration files

requirements for, 109
security and, 223
SvcConfigEditor.exe, 188–190

configuration, ServiceHost instantiation
based on, 71

configuring
diagnostics, 91–93
instrumentation, 95

connection drops, 251
connectivity, ASMX to WCF, 38
constructors, 304
consumers, 7
consuming messages, 67
consuming services

command-line implementation, 176–177
from COM+

overview of, 324
QuickReturns Ltd. Quote service

example, 325–332
security credentials, 332–334

options for, 172
service proxies and, 173–174
Visual Studio 2005 and, 174–176

content distribution and P2P, 373
ContractBehavior attribute, 86
Contract-First Programming (Visual Basic 6),

315–316
contracts

data, 63–65
description of, 53, 59
designing, 17
message, 65
messaging exchange patterns, 59–60
service, 60–63
SOAP, 9

convergence of web- and peer-based service
orientation, 399

CORBA (Common Object Request Broker
Architecture), 301

Create an Empty Application button, 306
CreateVirtualDirs.bat script, 110

■INDEX458

7028Index.qxd 12/11/06 8:36 PM Page 458

credentials
binding support for, 221–222
description of, 217
federated, 232–233
message-level security and, 225–229
presenting to WCF, 220–221
transport-level security and, 222–223

cross-platform integration, 5
cross-platform interoperability, approach to,

402
Custom Actions view (Solution Explorer), 156
custom binding, building, 216
custom performance counters, creating,

199–207
CustomServiceHostFactory listing, 162

■D
data

See also binary data; data contracts;
message contracts

filtering mechanism, 359–360
moving large amounts of between

endpoints, 256
overview of, 335
QuickReturnQuoteService example

client, creating, 366–369
service, creating, 362–366

streaming, 256
data contracts

description of, 61–65, 127, 337–338
equivalence of, 341–345
leveraging, 134–137
message contracts and, 139
names of, 340
nonbreaking and breaking changes to,

346–347
QuickReturns Ltd., 428–429
round-tripping feature, 348–349
versioning, best practices for, 360–362
XML serialization

managing, 127–134
overview of, 349–351
security and, 351

data transfer and Message class, 357–359
data transfer architecture, 335–336
data types, 352
DataContract attribute, 64, 134, 143
DataContractSerializer class, 142, 337, 349
datagram, 295
DataGridView, 366
DataMember attribute, 64, 135–136, 143
DCOM (Distributed Component Object

Model), 26–27
dead letter queue (DLQ), 262–263, 298
deadlocks, avoiding and resolving, 277

debugging
start-up or shutdown code, 152
tracing process, 49

defection attacks, 374
defining

transactions
OperationBehavior attribute, using,

284–285
overview of, 282
in QuickReturns Ltd., 286–293
ServiceBehavior attribute, using, 283
TransactionFlow attribute, using, 283

web service methods, 432
definitions, WSDL, 20
demultiplexing and filtering, 359
Depository/Securities Processing System,

425, 428
deserialization, 335–336
designing

service contracts, 17
services, 10–11, 33, 106–107

desktop, interprocess communication on, 148
developer productivity features, 36
developing P2P applications, 374–375
development environment, 52
development tool, WCF as, 33–35
Diagnostics window (Microsoft Service

Configuration Editor), 93
diagnostics, configuring, 91–93
DIME (Direct Internet Message

Encapsulation), 408–409
disconnected operations, 260
dispatchers, 82
Distributed Component Object Model

(DCOM), 26–27
distributed processing and P2P, 373
distributed systems, implementing, 3
distributed technologies

See also existing technologies
ASMX, 44–45
Enterprise Services, 47–48
MSMQ, 45–46
unifying, 48–50
WSE, 46

distributed transactions, 282
DLQ (dead letter queue), 262–263, 298
DNS (Domain Name System), 371
document structure, WSDL, 19
document style for SOAP messages, 17
downloading SQL Server Express, 286
dual HTTP channels, 258
duplex messaging exchange patterns, 60
durability of queue, 274
durable storage, 260
dynamic discovery, 329

■INDEX 459

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 459

■E
early binding, 328–329
Eclipse, accessing Axis2 code generator from,

414
Edit Alias dialog box, 117
embedding binary data in XML document, 407
enabling

auditing for service, 240
Basic Profile in ASP.NET 2.0, 404
message logging, 191–193
performance counters, 196–198
SSL on IIS, 333
tracing, 193–195
transaction flow, 283
Windows CardSpace, 244
Windows Management Instrumentation,

207
WS-Atomic transactions, 293
WS-ReliableMessaging on WcfHost, 419

encoders, 69
encoding

Base64, 407
description of, 215
Section 5, 17

end-to-end security, 6
EndpointBehavior attribute, 87
endpoints

description of, 18–19, 54, 375
moving large amounts of data between,

256
one service with multiple, 42

enterprise, standardization in, 11
Enterprise Services

COM+ components and, 317–324
description of, 28, 47–48

enterprise-ready hosts, 148
envelopes, 15
equivalence of data contracts, 340–345
error page for nonserializable or missing data

contract, 129
Event Viewer, leveraging, 240–242
evolution of web services

ASMX pages and, 431–432
in .NET, 431
SOA and .NET 2.0, 438–439
SOAP message and, 439–440
WSE 1.0 and, 435–438
WSE and, 432–434

Exchange, 425–427
ExchangeService class

claims and, 218–220
code to include authorization, 235

ExchangeService sample, 82
Execution class, data contract, 139
execution data contract, 429

existing technologies
See also distributed technologies
coexisting with, 37
hosting services, 37
migration/integration with, 38–39
unification of, 30

explicit data contracts, 63
exposed behavior of services, 60
extensibility of SOAP, 14
ExtensionData property, 348

■F
failure isolation, 259
fault codes, SOAP, 17
federated credentials, 232–233
filter, adding to message log, 193
filtering mechanism, 359–360
Firewall (Windows), 451–454
flavors

of channels, 68
of mesh networks, 379–380

flooding, 375
flow control, 258
format of service addresses, 55
full topology, 379

■G
generating

client proxies, 79–80, 314–315, 323–324
Java code from WSDL, 414
Output.config, 81
service proxies, 112–115, 366

GetFile() command, 410
GetPortfolio operation, 368
GetStock operation, 368
global unique identifiers (GUIDs), 26
granularity of services, 33
graphing in Windows P2P networking, 378
green pages (UDDI), 21
grouping in Windows P2P networking, 378
grouping type of mesh networks, 379
GUIDs (global unique identifiers), 26

■H
hard disk space, minimum requirements for,

100
hardware requirements, 99–100
header attributes (SOAP), 354
“Hello, World” with interfaces

overview of, 110
service client proxy

client code, 115
generating using SvcUtil.exe, 115
generating using Visual Studio 2005

add-in, 112–114
WCF service, 110–112

hidden interfaces, 315–317

■INDEX460

7028Index.qxd 12/11/06 8:36 PM Page 460

hop count, 382
host.cs file

AuthAuditHost project, 236
configuration file for, 186
TradeServiceHost project, 223, 227

hosting
ASMX web services without IIS, 438
on IIS, 116–119

hosting services
environment features, 147
environment requirements, 148
IIS

accessing ServiceHost class in, 161
ASP.NET compatibility model, 164–165
Benefits of, 172
configuring, 160–161
core architecture, 158
core features, 157
enabling SSL on, 333
hosting ASMX web services without IIS,

438
hosting in, 116–119, 156–160
hosting in version 7.0, 167–170
installing, 441–442
recycling, 163–164
version 7.0, 167–170
virtual directories, choosing, 311
Windows Activation Service (WAS) and,

170–171
Windows Server 2003 and, 167
Windows XP and, 166

options for, 145–146, 172
overview of, 37
robustness of services and, 145
self-hosting, 149–150
in Windows services, 150–156

hosts, enterprise-ready, 148
HTTP API, 103
HTTP services, addressing, 55
hybrid P2P network, 371

■I
IBM

MTOM specification and, 417
WebSphere Application Server, 422

IChannelCredentials interface, 332–334
identity management in Windows P2P

networking, 376
identity metasystem, 242–245
IDL (Interface Description Language), 19
IExtensibleDataObject interface, 348
IIS (Internet Information Services)

accessing ServiceHost class in, 161
ASP.NET compatibility model, 164–165
benefits of, 172

configuring WCF services in, 160–161
core architecture, 158
core features, 157
enabling SSL on, 333
hosting ASMX web services without IIS,

438
hosting in, 116–119, 156–160
hosting in version 7.0, 167–170
installing

on Windows 2003, 441
on Windows XP, 442

recycling, 163–164
uses of, 102, 156–160
virtual directories, choosing, 311
Windows Activation Service (WAS) and,

170–171
Windows Server 2003 and, 167
Windows XP and, 166

IIS Manager
creating and setting properties for

application in, 169
launching, 118

imperative calls
ServiceHost instantiation based on, 69
subclassed ServiceHost instantiation

based on, 75
implementing

authorization, 235–238
distributed systems, 3
message contract, 352
mixed mode in service, 230
reliable messaging, 251–252
service contract, 120
SOAP, 14, 18

implicit data contracts, 63
Indigo. See WCF
Inetinfo.exe (IIS), 158
inheritance and message contracts, 355
initializing performance counters, 201
installing

Internet Information Services (IIS)
on Windows 2003, 441
on Windows XP, 442

Microsoft Windows SDK for Windows
Vista, 448–449

MSMQ, 260–262
.NET 2.0 SDK, 442–443
.NET 3.0 development components, 102
.NET Framework 3.0

Development Tools, 450–451
Runtime Components for Windows XP

and Windows 2003, 447
server certificate, 333
SQL Server Express, 286
Visual Studio 2005, 442–445

■INDEX 461

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 461

Windows
P2P networking stack, 375
Service Control Manager, 153

WMI CIM Studio, 208
instantiation

of ChannelFactory, 76–81
of ServiceHost, 69–72

instrumentation, configuring, 95
integration

with COM+, 302
with existing technology, 38–39
of multiple applications, challenges of, 5

integration channels
description of, 260
MSMQ and, 270–274

integrity of information, 215
Interface Description Language (IDL), 19
interface of behaviors, 84
interfaces, hidden, 315–317. See also specific

interfaces
Internet Information Services. See IIS
Internet Information Services (IIS) Manager

creating and setting properties for
application in, 169

launching, 118
interoperability

across platforms, 31–33
with COM+, 308
cross-platform, approach to, 402
Java/J2EE

binary data, sending over Web services,
406–416

overview of, 401
vendor implementation of WS-*

standards, 402
WS-I Basic Profile, 403–406

overview of, 401
serialization and, 336
SOA and, 4
web services and, 28
WS-ReliableMessaging, 418–421

interoperability layer around COM+
components, creating, 309–313

interoperable bindings, 58
interprocess communication on desktops,

148
IPrincipal interface, 234–238
IQuickReturnQuoteService interface, 362
ITradeService interface, 254, 288–289
ITradeService.cs listing, 183

■J
Java code, generating from WSDL, 414
Java/J2EE interoperability

binary data, sending over Web services,
406–416

overview of, 401
vendor implementation of WS-*

standards, 402
WS-I Basic Profile, 403–406

JBoss
MTOM specification and, 417
WS 1.0, 422

■K
Kernel Transaction Manager (KTM), 279
keywords, using, 115
KnownType attribute, 345

■L
late binding, 329
latency of network, 257
launching

IIS Manager, 118
.NET Framework command prompt, 293
WMI CIM Studio, 208

layered framework, 66
legacy applications

integrating MSMQ client and WCF service,
272

MSMQ and, 260
legal challenges of P2P, 373–374
leveraging

data contracts, 134–137
Event Viewer, 240–242
utilities, 308–313

Library Application option, 306
library applications, 47
life cycle, phases of, 179
Lightweight Transaction Manager (LTM), 280
listing

clouds, 393–394
peers in clouds, 395–396

listings
*.svc mapping for WCF handler, 103
App.config file

for client code, 79
generated by SvcUtil.exe, 366
for host application, 205
for ServiceHost, 72
setting WSAtomicTransaction binding

configuration in, 291–292
WcfSimpleClient project, 224

application configuration
with instrumentation enabled, 95
with tracing enabled, 91–93

ASP.NET 2.0 web service code example,
108

ASP.NET compatibility enabled, 165
AspNetCompatibilityRequirements

attribute, 164

■INDEX462

7028Index.qxd 12/11/06 8:36 PM Page 462

AuthAuditHost project
host.cs file of, 236
program.cs file of, 237

Axis2 WSDL2Java-generated code, 415
Basic Profile

applying in code, 405
applying through configuration, 405
enabling in ASP.NET 2.0, 404

binary content of MIME message, 412
calling service and binding data contract

to grid, 368
changing bindings, 257
channel interfaces to support different

shapes, 68
Client App.config file, modifying for

transactions, 287
client code

using ChannelFactory, 76–78
using proxy generated by SvcUtil.exe,

79–80
client program.cs

catch block on fault exception, 142
modifying for transactions, 286–287

cloud listing, 393
cloud statistics, 396
command line to generate service proxy,

366
coordinate data contract equivalence

QuickReturnQuote, 346
QuickReturnStockQuote, 343–344

data contract example, 63
data contract using KnownType attribute,

345
defining web service methods, 432
DIME, using in WSE 2.0, 408
early bound Visual Basic 6 client, 329
enabling auditing for service, 240
ExchangeService class

adding claim access code to, 218
code to include authorization, 235

ExchangeServiceInline.svc file
with external code, 160
with inline code, 159

Execution class, data contract, 139
GetFileResult with XOP reference, 412
Host App.config file, modifying for

transactions, 291
host.cs, configuration file for, 186
IContractBehavior interface, 86
IEndpointBehavior interface, 87
ignoring ExtensionDataObject at service

level, 349
IntegrationBinding configuration, 271, 273
interface of behaviors, 84

IQuickReturnQuoteService interface, 362
IQuickReturnTraderChat service contract,

382
IServiceBehavior interface, 84
ITradeService interface, 254, 288–289
ITradeService.cs, 183
ITradeServiceMessage interface using

Message Object, 62
known peer traceroute, 397
late-bound VBScript with security, 333
Message class in operations, 357
message contract example, 65
message log, adding filter to, 193
messages, creating from objects, 358
mixed mode security

client code for, 231
implementing in service, 230

MSMQ receiver interface, 271
msmqIntegrationBinding, 272
MTOM, 409
MyService.svc, 110
MyStockQuote data contract, 342
OldHorse Visual Basic 6 COM position

IDL, 316
OldHorse.PositionManagement.svc, 312
OldHorse2

assembly attributes for COM+, 320
.NET IDL, 321
Position.cs, 319
PositionManagement client, 324
PositionManagement.cs, 318

OperationBehavior attribute, setting, 284
Output.config generated by SvcUtil.exe, 81
peer listing, 395
peer resolution, 396
policy, setting, 436
PositionManagement interface.cls, 304
proxy sample for TradeService service, 173
QueueMessagingClient, 295
QuickReturnQuoteService.svc file, 363
QuickReturns Ltd. script using service

monitor, 330
QuickReturnSecureTraderChat

member variable list, 390
secure binding configuration, 390
service configuration, 389
service host implementation, 391

QuickReturnsScriptClient.vbs, 328
QuickReturnStockQuote

implemented for optimal performance,
356

implementing message contract, 352
SOAP message representation of, 353
using legacy SOAP encoding, 354
using XmlSerializer class, 350

■INDEX 463

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 463

QuickReturnStockQuote data contract
code for, 338
with names specified, 340

QuickReturnTraderChat
binding configuration, 383
receiver configuration, 386
receiver implementation, 386
service configuration, 383
service host class definition, 384
service host implementation, 385
service invocation, 386

QuoteService concrete implementation,
362

schema with XmlSerializer support, 131
self-hosting code, 185
service application configuration file for

CardSpace support, 244
service contract example, 60
Service Host App.config, modifying, 255
service host, creating, 273
service metadata in configuration, 89
ServiceContract for trade-tracking service,

150
serviced component class, 47
ServiceHost instantiation

based on configuration, 71
based on imperative calls, 69

SOAP request message from client, 439
SOAP response message from server, 440
StockQuote data contract, version 2 of,

364–366
subclassed ServiceHost instantiation, 74
.svc file with CustomServiceHostFactory,

162
SwA message sample, 407
Trade class

data contract, 138
with DataContract attribute, 134
with DataMember attributes on fields

and properties, 135–136
first few lines of, 128
schema with no members, 134

Trade data contract with DataMember
properties, 136

Trade schema
contract-only serializable, 130
using XML Serialization control

attributes, 133
Trade Service

client code for, 186
client configuration settings for, 187

Trade type with Serializable attribute, 129
TradePerfMon.cs, 200–201
TradeSecurityRequest class, 139
TradeSecurityResponse class, 140

TradeService
client App.config, modifying, 267–268
client, modifying, 266
header check implementation, 141
modifying for MSMQ, 264–265
NetMsmqBinding, 266
with Trade parameter, 127
updated, 140
WSDL definition, 130
with XmlSerializer support, 131

TradeService.cs
code, altering, 184
implementation, 121–122
with OperationContract properties,

124–125
WSDL before and after property

changes, 125–126
TradeServiceCustomHostFactory and

TradeServiceCustomHost, 162
TradeServiceHost App.config file,

additional code in, 192
TradeServiceHost project, host.cs file of,

223, 227
TradeServiceHost service, client code to

run, 228
TradingServicePerfMonHost, code for

program.cs file in, 204
transaction flow

configuring, 292
enabling, 283

transaction isolation level, setting, 285,
290

transaction scope, setting, 290
unknown peer traceroute, 397
Visual Basic 6, Position Class, 304
WCF code example, 108
WCF COM+ integration client, 314
WCF GetFile service contract, 410
WcfClinet program.cs, 115
Web.config file

for configuring service hosted in IIS,
160–161

with hostingenvironment section for
recycling settings, 164

QuickReturnQuoteService, 363
security-enabled, 332
for WCF service, 111

WebService directive in .asmx file, 432
Website Web.config file, 122
Windows Service hosting the WCF

ServiceHost, 151
WS-ReliableMessaging

enabled via configuration, 420
using code, 421

WSHttpBinding, applying in
configuration, 406

■INDEX464

7028Index.qxd 12/11/06 8:36 PM Page 464

XML document conforming to schema,
439

XML schema
complex, 439
simple, 438

XML Web Service Class example, 44
load leveling, 260
loose coupling

description of, 8
MSMQ and, 259
sending messages between services, 22–23
SOA and, 4–6

lost messages, 251–252
Lsass.exe (IIS), 158
LTM (Lightweight Transaction Manager), 280

■M
managing WCF services

building custom code to monitor activity,
181–188

business drivers and, 180
configuration files, 188–190
message logging, 190–193
overview of, 179
performance counters

custom, creating, 199–207
enabling, 196–198
overview of, 195–196

tracing, 193–195
Windows Management Instrumentation,

207–210
Market Maker, 425–427
marshaling, 6
MaxPendingChannels property, 258
mediation, 6
members, order of, in data contracts, 343
memory

holding password in, 390
minimum requirements for, 100
performance counters and, 196

MEPs (message exchange patterns), 15,
59–60, 216

mesh ID, 375
mesh network. See peer-to-peer (P2P)

network
Message class

data transfer and, 357–359
overview of, 335–336

message contracts
data contracts and, 139
description of, 65, 137
examples of, 137–142
fine-tuning SOAP and, 353–355
implementing, 352–353
inheritance and, 355

overview of, 351
performance and, 356
security and, 355–356

message definitions, WSDL, 20
message exchange patterns (MEPs), 15,

59–60, 216
message level

credentials and, 221
security features, 225–299

message logging
enabling, 191–193
overview of, 190
read access and, 191

Message object and service contracts, 62
message queuing, 258
Message Transmission Optimization

Mechanism (MTOM)
Apache Axis2 support of, 413–416
industry acceptance of, 413
message exchange, 411
overview of, 409–413
Sun support of, 416
WSE 3.0 and, 438

MessageContract attribute, 143
MessageFilter class, 359
MessageFilterTable class, 360
messages

advantages of, 5–6
constraints for, 5
out-of-order, 251
request-response, 16
security of, in P2P networks, 388
sending between services, 22–23
SOAP

description of, 351
evolution of web services and, 439–440
format of, 17
structure of, 15

writing, 16, 358
messaging

See also reliable messaging
WSE 2.0, 435

messaging layer, 66–68
messaging stack, 66
Metadata Exchange (MEX), 13
methods

OldHorse2 PositionManagement
interface, 322

for reading messages, 359
for writing messages, 358

MEX (Metadata Exchange), 13. See also WS-
Metadata Exchange (MEX)

Microsoft
See also Windows
Developer Network, 52
Enterprise Services, 28, 47–48, 317–324

■INDEX 465

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 465

P2P networking and, 399
security provider, 378
Service Configuration Editor

App.config file and, 114
COM+ applications and, 308–313
description of, 90, 175, 308
Diagnostics window, 93
enabling message logging using,

191–193
features of, 188
improving example using, 189–190
with instrumentation enabled, 95
performance counters, enabling, 196

Service Trace Viewer, 94
Web Service Extensions (WSE), 405

Microsoft Message Queuing. See MSMQ
migration with existing technology, 38–39
MIME (Multipurpose Internet Mail

Extensions), 407
mixed mode security, 230–232
monitoring activity, building custom code

for, 181–188
moving large amounts of data between

endpoints, 256
MS DTC, 28
MSMQ (Microsoft Message Queuing)

addressing, 56
conceptual usage with WCF, 259
description of, 45–46, 258
features of, 259
guidelines for using, 274
installing, 260–262
integration channels and

MSMQ client and WCF service, 272–274
WCF client and MSMQ receiver,

270–271
peek method, 263
transaction scenarios, 295–296
transport channels and, 264–270
Windows Server 2007 and, 262–263

MsmqIntegrationBinding binding, 270–272
MTOM (Message Transmission Optimization

Mechanism)
Apache Axis2 support of, 413–416
industry acceptance of, 413
message exchange, 411
overview of, 409–413
Sun support of, 416
WSE 3.0 and, 438

MtomMessageEncodingBinding Element
class, 409

Multipurpose Internet Mail Extensions
(MIME), 407

MyStockQuote data contract, 342

■N
n-tier approach, 335
name resolution in Windows P2P

networking, 377
Named Pipes services, addressing, 56
namespaces

for data contracts, 340
System.ServiceModel, 282
System.ServiceModel.Channels, 216
System.Transactions, 280

naming services, 10
.NET 2.0 SDK, installing, 442–443
.NET application domains, 146
.NET Enterprise Services

COM+ components and, 317–324
description of, 28, 47–48

.NET Framework 2.0, evolution of web
services and, 438–439

.NET Framework 3.0
attributes, 106
authentication, authorization, and, 234
command prompt, opening, 293
as core API, 30
description of, 25, 101
development components, installing, 102
Development Tools, installing, 450–451
evolution of web services in, 431
operating systems supported by, 52
Runtime Components for Windows XP

and Windows 2003, installing, 447
serialization and, 336
transactions in, 280
Visual Studio 2005 and, 41
WSE and, 46

.NET Passport system, 242–243

.NET Remoting
description of, 27
web services compared to, 28

NetBeans WSIT module, 417
NetMSMQ binding stack, 260
NetShell (netsh) utility

availability of, 382
cloud scopes, 394
cloud statistics, 396
listing clouds, 393–394
listing peers in clouds, 395–396
overview of, 392
peers, working with, 396–398

networks
See also peer-to-peer (P2P) networks
latency of, 257
self-healing, 378
stability of, and reliable messaging, 260

New Application option, 305

■INDEX466

7028Index.qxd 12/11/06 8:36 PM Page 466

New Component option, 307
next hop routing model, 436
nodes

description of, 371
identification of, 375

non breaking changes to data contracts,
346–347

nonfunctional requirements, 148

■O
object model, 53
object-oriented (OO) model, SOA compared

to, 4
object-oriented programming, service-

oriented programming compared to,
34–35

objects, creating messages from, 358
OldHorse COM+ application, creating,

305–307
OldHorse position-tracking system, 302
OldHorse2 .NET COM+ registration, 320
OldHorse2 PositionManagement interface

methods, 322
OldHorse2 WCF COM+ Integration Wizard,

322
OldHorse.PositionManagement properties,

313
OleView.exe utility, 317
one-to-many P2P application flow, 380
one-way communication, authorization

options for, 239–240
one-way messaging exchange patterns, 60
opening

IIS Manager, 118
.NET Framework command prompt, 293
WMI CIM Studio, 208

operating systems supported by .NET
Framework 3.0, 52

OperationBehavior attribute, 88, 127,
284–285

OperationContract attribute, 62, 123–126
OperationContractAttribute class, 60
operations, WSDL, 20
order of members in data contracts, 343
out-of-order messages, 251
outsourcing server farms, 213

■P
P2P. See peer-to-peer (P2P) applications;

peer-to-peer (P2P) computing; peer-
to-peer (P2P) networks

parameters
DataContract attribute, 64
DataMember attribute, 64
OperationContract attribute, 62
ServiceContract attribute, 61

partial topology, 379

password, holding in memory, 390
password-based authentication and P2P

networks, 388
payload, 355
peek method (MSMQ), 263
peer channel type of mesh networks

overview of, 379–382
QuickReturnTraderChat example

binding configuration, 383
main application, 384–385
message interface, 382
overview of, 382
receiver configuration and

implementation, 386
service configuration, 383
service invocation, 386–387

security, 387–388
peer context of NetShell, 396–398
peer ID, 375
Peer Name Resolution Protocol (PNRP),

375–377
peer names in Windows P2P networking, 377
peer-to-peer (P2P) applications

development life cycle, 374–375
normal flow of, 380
types of, 380
Windows P2P networking stack, 375–378

peer-to-peer (P2P) computing
challenges of, 373–374
future of, 399
overview of, 371–372
purpose of, 372
solution domains, 372–373

peer-to-peer (P2P) networks
flavors of, 379–380
NetShell utility

availability of, 382
cloud scopes, 394
cloud statistics, 396
listing clouds, 393–394
listing peers in clouds, 395–396
overview of, 392
peers, working with, 396–398

peer channel
overview of, 381–382
QuickReturnTraderChat example,

382–387
security

certificate-based authentication, 388
of message, 388
overview of, 387
password-based authentication, 388
peer channel, 387–388
QuickReturnSecureTraderChat

application, 389–391
as self-healing, 378
SOA with, 398–399

■INDEX 467

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 467

PeerCredentials class, 388
PeerNode class, 381
PeerNodeAddress class, 381
PeerSecuritySettings class, 387
performance and message contracts, 356
performance counters

custom, creating, 199–207
enabling, 196–198
overview of, 195–196

platforms, interoperability across, 31–33
PNRP (Peer Name Resolution Protocol),

375–377
point-to-point architectures, SOA and, 4
poison attacks, 374
poison message handling, 262–263
poison queue, 298
policy assertions, 9
policy expressions, 9
policy, setting, in WSE 3.0, 436
polluting attacks, 374
ports, 20
Position component, 304
position data contract, 430
PositionManagement interface

consuming from client, 315
description of, 304
OldHorse, 309

predefined bindings, 58
Principal object, 234
process model (IIS), 157
process model architecture (IIS), 166–167
process recycling, 163
processing issues in reliable messaging, 252
processor, minimum requirements for, 100
program.cs file

AuthAuditHost project, 237
Client, 142, 286–287
TradeServicePerfMonHost, 204
WcfClient, 115

programming model
See also ABCs
abstraction and, 406
ASP.NET 2.0 web services and WSE

compared to, 107
benefits of, 51
hosting and, 157
SOAP and, 15

programming, approach to, 53
properties

ExtensionData, 348
MaxPendingChannels, 258
OldHorse.PositionManagement, 313
OperationBehavior attribute, 88
OperationContract attribute, 123

poison message handling, 262
ProtectionLevel, 216, 355
ServiceBehavior attribute, 85–86
ServiceContractAttribute, 119

Properties dialog box, Web Sharing tab, 117
Properties window, 154
protection levels, 216–217
ProtectionLevel property, 216, 355
protocol stack for web services, 12
protocols

description of, 69
SOAP, 13–15

providers, 7
proxies

description of, 54
generating

client, 79–80, 314–315, 323–324
service, 112–115, 366

regenerating, 125
typed, 82

pure P2P network, 371

■Q
Quality of Service guarantees, 399
queue

durability of, 274
working with, 295–298

queue management, 49
queue provider, 297
QueueMessagingClient, 295
queuing, 259
QuickReturnQuoteService

client, creating, 366–369
service, creating, 362–366

QuickReturns Ltd.
architecture of

data contracts, 428–429
market overview, 426
participants, 425
services and collaboration, 426–428

defining transactions in, 286–293
description of, 51
OldHorse COM+ application, creating,

305–307
OldHorse position-tracking system, 302
Quote service

overview of, 325
typed contract early binding, 328–329
typed contract late binding, 329
typed contract service moniker,

325–328, 332
WS-MetadataExchange contract service

monitor, 330
WSDL contract service monitor,

330–331

■INDEX468

7028Index.qxd 12/11/06 8:36 PM Page 468

reliable messaging, 249
transaction mechanism, 278
WCF proxy in GAC, 326

QuickReturnSecureTraderChat application
binding configuration, 390
main application, 390–391
service configuration, 389

QuickReturnStockQuote
implemented for optimal performance, 356
implementing message contract, 352
SOAP message representation of, 353
using legacy SOAP encoding, 354
XmlSerializer class, 350

QuickReturnStockQuote class, 338
QuickReturnStockQuote data contract

code for, 338
with names specified, 340

QuickReturnTraderChat application
binding configuration, 383
main application, 384–385
message interface, 382
receiver configuration and

implementation, 386
service configuration, 383
service invocation, 386–387

quote data contract, 428

■R
RAM, minimum requirements for, 100
read access, assigning, 191
reading messages, 359
real-time communication and P2P, 372
records, 378
recoverability of transactions, 277
recycling, 163–164
references, adding to services, 174
regenerating proxies, 125
registering ASP.NET, 445–446
ReleaseServiceInstanceOnTransaction-

Complete attribute, 284
reliability, 6, 418
reliable messaging

See also WS-ReliableMessaging
guidelines for, 257–259
implementing, 251–252
need for, 250–251
overview of, 249
QuickReturns Ltd. scenario, 249
stability of network and, 260

reliable sessions
enabling WCF Web service with, 254–255
overview of, 252–253
as stateful, 258

ReliableSessionBindingElement class, 257

remote communication, 6
remote components, accessing, 44–45
remote object invocation model

COM and, 26
DCOM and, 26–27
.NET Remoting, 27

Remote Procedure Call (RPC), 15
repositories, 7
request-reply messaging exchange patterns,

59
request-response SOAP message, 16
Required transaction attribute, 307
requirements

environment, for hosting services, 148
hardware, 99–100
software, 100–102

resilience, 252
resolve command, 396
resource managers, 280
reusing services

levels of, 11
naming conventions and, 10
overview of, 39–40

RIAA, 374
robustness of services, 145
round-tripping feature of data contracts,

348–349
routing and filtering, 359
RPC (Remote Procedure Call), 15
RPC style for SOAP messages, 17
runas command, 238
running COM+ applications as WCF services

client proxy generation, 314–315
leveraging utilities, 308–313
.NET Enterprise Services and, 317–324
overview of, 302
Visual Basic 6

example, 303–307
hidden interfaces, 315–317

■S
SAML token, 233, 243
scalability of transactions, 277
schema validation

versioning data contracts with, 360
versioning data contracts without,

361–362
schemas

SOAP, 9
with XmlSerializer support, 131

SDK (software development kit), 52
Section 5 encoding, 17
secure sessions, 232
SecureString class, 390

■INDEX 469

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 469

security
See also security features; security issues
best practices for, 156
end-to-end, 6
WSE 2.0 and, 436

security credentials for COM+, 332–334
security features

See also bindings
auditing for, 240–242
authorization

by certificate, 226–229
IPrincipal interface, 234–238
one-way communication options,

239–240
overview of, 234

bindings, 215–216
configuration files and, 223
credentials and claims

binding support for, 221–222
overview of, 217–220
presenting to WCF, 220–221

federated credentials, 232–233
message-level security, 225–229
mixed mode, 230–232
overview of, 215
protection levels, 216–217
transport-level security, 222–225
Windows CardSpace

checking availability of, 243
enabling, 244
.NET Passport system compared to, 243
overview of, 242–243
request dialog box, 245

security issues
applications, 213
business drivers, 214–215
message contracts, 355–356
overview of, 213
P2P networks

overview of, 387–388
QuickReturnSecureTraderChat

application, 389–391
physical level, 213
XML serialization, 351

security levels, 217
security mode, adding, 222
security provider (Microsoft), 378
selecting performance counters, 196
self-healing networks, 378
self-hosting services, 37, 149–150
Serializable attribute, 129
serialization

See also XML serialization
binary, 338, 351
definition of, 335
options for, 336–337
ServiceContract attribute, 119

server applications, 47
server certificate, installing, 333
server farms, securing, 213
service bindings, WSDL, 21
service client proxies, 112–115, 366
Service Configuration Editor. See

SvcConfigEditor.exe
service contract inheritance, 347
service contracts

characteristics of, 142–143
contract first vs. code first service

development, 105–106
description of, 103–104
implementing, 120
operations, 60–63

service description, 82
service framework, 335
Service Host App.config file, 72, 255
service host console, displaying claim

information at, 220
service invocation, 22–23
service level, message logging at, 191
service model layer, 66, 69
service orientation, 8, 33
service orientation mapping, 40
service providers, 7
service proxies, consuming services and,

173–174
service runtime layer, 82–83
Service-Oriented Architecture. See SOA
service-oriented programming, object-

oriented programming compared to,
34–35

service-wide settings, 72
ServiceBehavior attribute

data contracts and, 349
defining transactions using, 283
description of, 84–86, 126

ServiceContract attribute
description of, 119
implementing service contract, 120
parameters for, 61
properties, 119
serialization options, 119
TradeService example, 123
TradeService.cs implementation listing,

121–122
Website Web.config file listing, 123

ServiceContractAttribute class, 60
serviced component classes, 47
ServiceDescription

description of, 82
in ServiceHost, 73–76

ServiceHost
instantiation of, 69–72
representation of, in memory, 73
ServiceDescription, 73–76

■INDEX470

7028Index.qxd 12/11/06 8:36 PM Page 470

ServiceHost class
accessing in IIS, 161
description of, 145
as host agnostic, 148–149
IIS and, 159
processes, application domains, and, 147
Windows Service hosting, 151

ServiceMetadataBehavior attribute, 88–89
ServicePointManager.ServerCertificate-

ValidationCallback delegate, 232
services

See also managing WCF services; web
services

autonomy of, 8
boundaries and, 8
as building blocks, 4
compatibility of, 9
components compared to, 10, 39–40
consuming from COM+

overview of, 324
QuickReturns Ltd. Quote service

example, 325–332
description of, 6–7
designing, 10–11, 106–107
endpoints and, 42
exposed behavior of, 60
granularity of, 33
naming, 10
references, adding to, 174
reusing, 10–11, 39–40
robustness of, 145
running COM+ applications as

client proxy generation, 314–315
ComSvcConfig.exe utility, 313
leveraging utilities, 308
.NET Enterprise Services and, 317–324
overview of, 302
SvcConfigEditor.exe utility, 308–313
Visual Basic 6 example, 303–307
Visual Basic 6 hidden interfaces,

315–317
schemas, contracts and, 9
sending messages between, 22–23
web services compared to, 11
Windows, hosting in, 150–156

ServiceSecurityAuditBehavior, 241
session state, 164
sessiongram, 295
settlement data contract, 429
shapes of channels, 67–68
sites (IIS), 157
SOA (Service-Oriented Architecture)

advantages of, 5–6
constraints for messages, 5
description of, 3–4
designing services and, 10–11
evolution of web services and, 438–439

loose coupling and, 8
P2P and, 398–399
services and, 7–9
web services and, 6–7, 11–12

SOA interoperability
Java/J2EE

binary data, sending over Web services,
406–416

overview of, 401
vendor implementation of WS-*

standards, 402
WS-I Basic Profile, 403–406

overview of, 401
WS-ReliableMessaging, 418–421

SOAP
description of, 13
extensibility of, 14
fault codes, 17
fine-tuning, 353–355
header attributes, valid, 354
implementations of, 14, 18
interoperability and, 32
message exchange patterns and, 13
programming model and, 15
transport protocols and, 14

SOAP message
description of, 351
evolution of web services and, 439–440
format of, 17
structure of, 15
writing, 16

SOAP with Attachments (SwA), 407–408
SoapWebRequest implementation, 433
SoapWebResponse implementation, 434
software development kit (SDK), 52
software requirements, 100–102
solution, 302
Solution Explorer

Add Project Output Group dialog box, 155
Custom Actions view, 156

solution file, empty, creating, 116
SQL Server Express, downloading and

installing, 286
SSL, 223, 333
standardization in enterprise, 11
streaming data, 256
Sun Microsystems

interoperability and, 402
MTOM, support of, 416

superpeer, 371
SvcConfigEditor.exe utility

App.config file and, 114
COM+ applications and, 308–313
description of, 90, 175, 308
Diagnostics window, 93
enabling message logging using, 191–193
features of, 188

■INDEX 471

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 471

improving example using, 189–190
with instrumentation enabled, 95
performance counters, enabling, 196

SvcHost.exe (IIS), 158
SvcTraceView.exe, 194–195, 229
SvcUtil.exe utility

App.config file generated by, 366
COM+ applications and, 314–315
description of, 79
service contracts and, 104
using to generate proxies, 115

SwA (SOAP with Attachments), 407–408
System.ServiceModel assembly, 30
System.ServiceModel namespace, 282
System.ServiceModel.Activation.HttpHandler

class, 102
System.ServiceModel.Channels namespace,

216
System.Transactions namespace, 280

■T
TCP services, addressing, 56
technical architecture, 52
technical challenges of P2P, 373
technologies. See distributed technologies;

existing technologies
testing applications, 256
Thread management, 6
three-tier approach, 335
token and claim set, 217
traceroute command, 397
tracing

description of, 49
enabling, 193
example of, 91–93
read access and, 191
SvcTraceViewer.exe, 194–195

Trade class
data contract, 138
with DataContract attribute, 134
with DataMember attributes on fields and

properties, 135–136
first few lines of code for, 128
schema with no members, 134

trade data contract, 428
TradePerfMon.cs listing, 200–201
TradeQueue, viewing messages in, 268
TradeSecurity function, 203
TradeSecurityRequest class, 139
TradeSecurityResponse class, 140
TradeService

client App.config, modifying, 267–268
client, modifying, 266
custom counters, 206
modifying for MSMQ, 264–265
NetMsmqBinding, 266

with Trade parameter, 127
WSDL definition, 130
with XmlSerializer support, 131

TradeService.cs, code, altering, 184
TradeServiceClient, running, 187
TradeServiceCustomHost listing, 162
TradeServiceCustomHostFactory listing, 162
TradeServiceDB database, 286
TradeServiceHost project, host.cs file of, 223,

227
TradeServiceHost service

client code to run, 228
running, 187
selecting performance counters for, 198

TradeServicePerfMonHost
code for program.cs file in, 204
running, 205

transaction managers, role of, 280
TransactionAutoCompleteOnSessionClose

attribute, 284
TransactionFlow attribute, defining

transactions using, 283
transactions

compensating, 279
defining

OperationBehavior attribute, using,
284–285

overview of, 282
QuickReturns Ltd., 286–293
ServiceBehavior attribute, using, 283
TransactionFlow attribute, using, 283

distributed, 282
MS DTC and, 282
in .NET Framework 3.0, 280
overview of, 277–278
participants in, 278
two-phase commit, 281–282
types of, 280
working with queues and, 295–298

TransactionScope class, 280
transport channels, MSMQ and, 264–270
transport level

credentials and, 220
message logging at, 191
security features, 222–225

transport protocols, SOAP and, 14
transports

description of, 69, 215
predefined bindings mapped on, 58

turnkey security profiles, 437
two-phase commit transaction protocol,

281–282
typed contract

early binding, 328–329
late binding, 329
service moniker, 325–328, 332

■INDEX472

7028Index.qxd 12/11/06 8:36 PM Page 472

typed object, 359
typed proxies, 82
TypedServiceProxy

ITypeLib Viewer for, 327
registered in COM, 326

■U
UDDI, 21–22
unifying distributed technologies, 30, 48–50
unmarshaling, 6
using (keyword), 115
utilities

ComSvcConfig.exe
COM+ applications and, 313
description of, 38, 308

leveraging, 308
Microsoft Service Trace Viewer, 94
NetShell (netsh)

cloud scopes, 394
cloud statistics, 396
listing clouds, 393–394
listing peers in clouds, 395–396
overview of, 392
peers, working with, 396–398

OleView.exe, 317
SvcConfigEditor.exe

App.config file and, 114
COM+ applications and, 308–313
description of, 90, 175, 308
Diagnostics window, 93
enabling message logging using,

191–193
features of, 188
improving example using, 189–190
with instrumentation enabled, 95
performance counters, enabling, 196

SvcTraceView.exe, 194–195, 229
SvcUtil.exe

App.config file generated by, 366
COM+ applications and, 314–315
description of, 79
service contracts and, 104
using to generate proxies, 115

■V
vendor implementation of WS-* standards,

402
verifying certificates, 227
versioning

addresses, 55
data contracts

best practices for, 360–362
non breaking and breaking changes,

346–347
decision tree for, 347

viewing
cloud statistics, 396
messages in TradeQueue, 268

Vista
CreateVirtualDirs.bat script, 110
dead letter queue (DLQ), 263
installing Microsoft Windows SDK for,

448–449
.NET Framework 3.0 and, 30
Visual Studio 2005 and, 102

Visual Basic 6
COM+ component example, 303–307
Contract-First Programming, 315–316
early binding, 328–329
hidden interfaces, 315–317
late binding, 329

Visual Studio 2005
add-in, using to generate proxies, 112–114
consuming services and, 174–176
CreateVirtualDirs.bat script, 110
as development environment, 52
installing, 442–445
.NET Framework 3.0 Development Tools

and, 450
setup project template, 154
support of, 41
Vista and, 102
Windows Service project template, 151

■W
W3wp.exe (IIS), 158
WAS (Windows Activation Service), 167,

170–171
WCF (Windows Communication

Foundation)
attribute-based development features,

36–37
description of, 25
developer productivity features, 36
as development tool, 33–35
goals of, 29
interoperability across platforms and,

31–33
as messaging infrastructure, 335
unification of existing technologies and,

30
WCF Interoperability Plug-Fest, 402
WCFSimpleClient App.config file, 189–190,

224
web garden environment, 164
web services

See also evolution of web services
aspects of, 11
ASP.NET, 107–109
as catalyst for SOA, 11

■INDEX 473

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 473

consuming, 12
description of, 6–7
life cycle of, 23
metadata and, 13
.NET Remoting compared to, 28
open standards stack and, 12
as preferred option, 28
protocol stack for, 12
reliability of, 418
SOAP and, 13–15
UDDI and, 21–22

Web Services Description Language. See
WSDL

Web Services Enhancements (WSE)
1.0, evolution of web services and, 435
2.0, evolution of web services and, 435–436
3.0

evolution of web services and, 436–438
programming model compared to, 107

ASP.NET web service and, 156
description of, 46
evolution of web services and, 432–434
WS-I Basic Profile and, 405

Web Services Interoperability (WS-I)
Organization, 31, 403

Web Services Interoperability Technology
(WSIT)

capabilities and standards of, 402
Java technologies and, 416

Web Sharing tab (Properties dialog box), 117
Web sites

Microsoft Developer Network, 52
Microsoft hardware requirements, 100
.NET 2.0 runtime and SDK, 102
.NET 3.0 components, 102
web service implementations, 18
WS-MEX, 103
WSDL, 103
WSE, 47

Web.config file
configuring service hosted in IIS, 160–161
with hostingenvironment section for

recycling settings, 164
QuickReturnQuoteService, 363
security-enabled, 332

WebLogic application server (BEA Systems),
422

WebSphere Application Server (IBM), 422
well-defined services and SOA, 4
white pages (UDDI), 21
Windows and P2P networking stack

graphing, 378
grouping, 378
identity management, 376
installing, 375
name resolution, 377
peer names, 377

Windows 2003
installing IIS on, 441
installing .NET Framework 3.0 Runtime

Components for, 447
Windows Activation Service (WAS), 167,

170–171
Windows CardSpace

checking availability of, 243
enabling, 244
.NET Passport system compared to, 243
overview of, 242–243
request dialog box, 245

Windows Communication Foundation.
See WCF

Windows Firewall, 451–454
Windows Management Instrumentation

(WMI), 207–210
Windows Server 2003 and IIS 6.0, 167
Windows Server 2007 and MSMQ, 262–263
Windows Service Control Manager

advantages of, 152
description of, 150
installing, 153
Management Console snap-in, 156

Windows Service project template (Visual
Studio 2005), 151

Windows services
description of, 150
hosting in, 150–156

Windows Vista
CreateVirtualDirs.bat script, 110
dead letter queue (DLQ), 263
installing Microsoft Windows SDK for,

448–449
.NET Framework 3.0 and, 30
Visual Studio 2005 and, 102

Windows XP
IIS 5.1 and, 166
installing .NET Framework 3.0 Runtime

Components for, 447
installing IIS on, 442

WinForms application, self-hosting example,
150

WMI (Windows Management
Instrumentation), 207–210

WMI CIM Studio, 208–210
working with transactions and queues, 295–298
wrapping

COM+ application PositionManagement
interface in service and hosting
inside IIS/WAS, 313

of SOAP body parts, 353
writing

messages, 16, 358
WCF applications, 50

WS-* standards, vendor implementation of,
402

■INDEX474

7028Index.qxd 12/11/06 8:36 PM Page 474

WS-Addressing, 55
WS-Atomic protocol, 278
WS-Atomic transactions, enabling, 293
WS-I (Web Services Interoperability)

Organization, 31, 403
WS-I Basic Profile

ASP.NET support of, 404
core components of, 403–404
Microsoft Web Service Extensions, 405
WCF support of, 405–406

WS-MetadataExchange (WS-MEX)
contract service moniker, 330
request, 89
service contracts and, 103

WS-ReliableMessaging
enabling on WcfHost, 419
example of, 419–421
industry and platform support of, 421
overview of, 250, 418–419
WS-Security and, 420

WS-SecureConversation and WSE 2.0, 436
WS-Security and WS-ReliableMessaging, 420
WS-Trust and WSE 2.0, 436
WsatUI.dll user interface, 293
WSDL (Web Services Description Language)

contract service moniker, 330–331
definitions, 20
description of, 19
document structure, 19
endpoints and, 18–19
generating Java code from, 414
message contract support and, 355
message definitions, 20
operations, 20
service bindings, 21
service contracts and, 103
WSE 2.0 and, 436

WSE (Web Services Enhancements)
1.0, evolution of web services and, 435
2.0, evolution of web services and,

435–436
3.0, evolution of web services and,

436–438
programming model compared to, 107

ASP.NET web service and, 156
description of, 46
evolution of web services and, 432–434
WS-I Basic Profile and, 405

WSHttpBinding binding, 217, 406
WSIT (Web Services Interoperability

Technology)
capabilities and standards of, 402
Java technologies and, 416

■X
X.509 certificate, using to secure mesh

networks, 391
XML document, embedding binary data in,

407
XML schema, 438–439
XML serialization

data contracts and, 349–351
managing, 127–134
summary of, 142

XML Web Service class, example of, 44
XML web services. See web services
XML-binary Optimization Packaging (XOP),

409
XmlSerializer class, 349–350
XP

IIS 5.1 and, 166
installing .NET Framework 3.0 Runtime

Components for, 447
installing IIS on, 442

■Y
yellow pages (UDDI), 21

■INDEX 475

Find
itfasterathttp://superindex.apress.com

/

7028Index.qxd 12/11/06 8:36 PM Page 475

	Pro WCF: Practical Microsoft SOA Implementation
	Table of Content
	Introduction
	PART 1 Introducing Windows Communication Foundation
	Chapter 1 Introducing Service-Oriented Architecture
	Chapter 2 Introducing WCF Basics
	Chapter 3 Exploring the WCF Programming Model

	PART 2 Programming with WCF
	Chapter 4 Installing and Creating WCF Services
	Chapter 5 Hosting and Consuming WCF Services
	Chapter 6 Managing WCF Services

	PART 3 Advanced Topics in WCF
	Chapter 7 Implementing WCF Security
	Chapter 8 Implementing Reliable Messaging and Queue-Based Communications
	Chapter 9 Using Transactions in WCF
	Chapter 10 Integrating with COM+
	Chapter 11 Working with Data
	Chapter 12 Developing Peer-to-Peer Applications with WCF
	Chapter 13 Implementing SOA Interoperability

	PART 4 Appendixes
	Appendix A QuickReturns Ltd.
	Appendix B History of Microsoft Web Service Implementations
	Appendix C WCF and .NET Framework Installation Steps

	Index

