

Programming Linux Games

Programming Linux Games

Loki Software, Inc.
with John R. Hall

An imprint of No Starch Press, Inc.
San Francisco

Programming Linux Games. Copyright c© 2001 by Loki Software, Inc.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10—04 03 02 01

Trademarked names are used throughout this book. Rather than including a funny little trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

Co-publishers: William Pollock and Phil Hughes
Project Editor: Karol Jurado
Assistant Editor: Nick Hoff
Cover and Interior Design: Octopod Studios
Copyeditor: Rebecca Pepper
Proofreader: Ken DellaPenta

Distributed to the book trade in the United States by Publishers Group West, 1700 Fourth Street,
Berkeley, California 94710, phone: 800–788–3123 or 510–528–1444, fax: 510–528–3444

Distributed to the book trade in Canada by Jacqueline Gross & Associates, Inc., One Atlantic Avenue,
Suite 105, Toronto, Ontario M6K E7 Canada, phone: 416–531-06737, fax: 416–531–4259

For information on translations or book distributors outside the United States, please contact
No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250
San Francisco, CA 94107
phone: 415–863–9900; fax: 415–863–9950;
info@nostarch.com; http://www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

Library of Congress Cataloging-in-Publication Data

Programming linux games / Loki Software, Inc.

p. cm.

Includes index.

ISBN 1-886411-48-4 (pbk.)

1. Computer games--programming. 2. Linux. I. Loki Software, Inc.

QA76.76.C672 .L56 2001 00-052689

794.8’15268--dc21

Contents

Foreword i

Preface iii

Who This Book Is For . iv

Online Resources . iv

Acknowledgements . v

1 The Anatomy of a Game 1

A Quick Survey of Game Genres . 2

Simulation Games . 2

First-Person Shooters . 4

Real-time Strategy Games . 6

Turn-Based Strategy Games . 7

Role-Playing Games . 7

Puzzle Games . 9

Multiuser Dungeons . 10

A Quick Look Under the Hood . 11

The Input Subsystem . 12

The Display Subsystem . 12

2 CONTENTS

The Audio Subsystem . 13

The Network Subsystem . 14

The Update Subsystem . 14

The Game Loop . 15

2 Linux Development Tools 17

Programming Editors . 17

vi . 18

Emacs . 19

NEdit . 20

Compiling Programs Under Linux . 20

Using the Make Utility . 24

Creating Makefiles . 24

Error Handling . 28

Working with Libraries . 29

Static Libraries . 29

Shared Libraries . 29

Linux Linker Quirks . 32

Debugging Linux Applications . 33

Compiling for Debugging . 33

gdb . 34

ddd . 41

Bug Tracking . 42

Project Management with CVS . 42

A Brief Tutorial on CVS . 43

Other Useful Tools . 49

Rapid Text Searching with grep . 49

CONTENTS 3

Updating Source with diff and patch . 50

3 Linux Gaming APIs 53

Graphics APIs . 55

SVGALib . 55

GGI . 56

SDL . 56

ClanLib . 57

OpenGL . 57

Plib . 57

Glide . 58

Xlib . 58

Graphical User Interface Toolkits . 59

GTK+ . 59

Tk . 59

Fltk . 60

Qt . 60

SDL GUI Support . 60

Audio APIs . 61

OSS . 61

ALSA . 62

ESD . 62

OpenAL . 63

Scripting Libraries . 63

Tcl . 63

Guile and MzScheme . 63

Python and Perl . 64

4 CONTENTS

Networking APIs . 64

BSD Sockets . 65

OpenPlay . 65

IPX and SPX . 65

File Handling . 66

libpng and libjpeg . 66

libaudiofile and libsndfile . 67

Ogg Vorbis . 67

The SDL MPEG Library, SMPEG . 68

zlib . 68

4 Mastering SDL 69

Computer Graphics Hardware . 70

The Framebuffer . 71

The SDL Video API . 72

Setting Up the Display . 74

Direct Surface Drawing . 77

Drawing with Blits . 83

Colorkeys and Transparency . 87

Loading Other Image Formats . 92

Alpha Blending . 92

Achieving Smooth Animation with SDL 97

Input and Event Processing . 107

Processing Mouse Events . 108

Processing Keyboard Events . 112

Processing Joystick Events . 116

Multithreading with SDL . 120

CONTENTS 5

SDL Audio Programming . 125

Representing Sound with PCM . 125

Feeding a Sound Card . 128

An Example of SDL Audio Playback . 129

Integrating OpenGL with SDL . 140

Penguin Warrior . 144

Creating Graphics . 146

Implementing a Parallaxing Scroller in SDL 147

A Simple Particle System . 153

Game Timing . 158

5 Linux Audio Programming 161

Competing APIs . 162

Introducing Multi-Play . 163

Loading Sound Files . 164

Using libsndfile . 164

Other Options . 170

Using OSS . 170

Reality Check . 175

Achieving Higher Performance with Direct DMA Buffer Access 178

Playing Sound with ALSA . 187

Sharing the Sound Card with ESD . 195

Building Multi-Play . 200

Environmental Audio with OpenAL . 206

OpenAL Basics . 207

Adding Environmental Audio to Penguin Warrior 213

Implementing Game Music with Ogg Vorbis . 222

6 CONTENTS

Working with Vorbis Files . 223

Adding Music to Penguin Warrior . 227

6 Game Scripting Under Linux 237

A Crash Course in Tcl . 238

Built-in Tcl Commands . 241

Interfacing Tcl with C . 245

Linking Against Tcl . 246

Executing Scripts . 246

Understanding Commands and Objects 250

A Simple Scripting Engine . 252

Designing a Game Script . 258

Applying Scripting to the Real World . 265

Single Versus Multiple Contexts . 266

Can We Trust the Script? . 267

Script Performance . 267

Who’s Writing the Script? . 268

7 Networked Gaming with Linux 271

’Tis a Big Net, Quoth the Raven . 272

Internet Protocols . 272

Addresses and Ports . 273

Name Resolution . 274

Socket Programming 101 . 275

Sockets . 275

Connecting TCP Sockets . 276

Receiving TCP Connections . 285

CONTENTS 7

Working with UDP Sockets . 292

Multiplayer Penguin Warrior . 300

Network Gaming Models . 301

Penguin Warrior’s Networking System . 302

Network Game Performance . 311

Security Issues . 312

8 Gaming with the Linux Console 315

Pros and Cons of the Linux Framebuffer . 316

Setting Up a Framebuffer Device . 318

A First Foray into Framebuffer Programming 318

Setting Framebuffer Video Modes . 326

How Video Scanning Works . 327

The Mode Database . 330

An Example . 330

Use the Source, Luke! . 337

Console Input Handling . 337

Keyboard Input from a Terminal . 338

Mouse Input with GPM . 348

9 Finishing Penguin Warrior 355

Adding Weapons . 355

Drawing Phasers . 356

Detecting Phaser Hits . 362

Imposing a Sane Rate of Fire . 364

Creating Status Displays . 364

In Retrospect . 375

8 CONTENTS

10 To Every Man a Linux Distribution 379

Source or Binary? . 380

Local Configuration . 381

Linux Isn’t Alone: Supporting FreeBSD . 383

Packaging Systems . 384

Graphical Installation Goodness: Loki’s Setup Program 387

Understanding the Linux Filesystem Standard 393

Glossary of Terms 399

Bibliography 405

Foreword

I was honored when John asked me to write the foreword for this book. I’ve
spent the last few years in an opportunity that few have had, the opportunity to
get up close and personal with the source code to quite a few of the world’s most
popular (and some less popular) games. I’ve had the chance to port these games
to the Linux operating system, something that has been a source of sweat and
sometimes swearing, but always of pride and joy.

In these pages you will find the jewels of wisdom that John has picked up over a
year of picking our brains, experimenting, and experience. Much of the
information contained here has never been documented all in one place, so
whether you’re a beginner looking to start an open source game or a seasoned
professional, I think you’ll find something to interest you. John has done a great
job presenting the tools available for developing your games on Linux.

Enjoy!

Sam Lantinga
Author of SDL

Preface

A few years ago I was browsing the computer section at a local bookstore when I
bumped into another computer enthusiast. He introduced himself as a game
programmer, mentioned a few of the projects he had worked on, and told me
about his latest fascination: Linux. It meant little to me at the time, but I filed
the conversation away for future reference, and eventually I remembered the
name and installed Linux on my home computer.

The first few months were not easy. Linux is vastly different from DOS or
Windows, and it took some getting used to. But persistence paid off, and soon I
felt confident enough with Linux to make the permanent switch. The
development tools rocked, and I was impressed by the fact that code mistakes
almost never led to system crashes. Once I realized what I’d been missing, I
never wanted to go back to Windows again.

Except to play games. A group of friends from school used to hold networked
gaming parties (netfetes, in the parlance of the crowd), and all of the games they
played relied on Windows and DOS. I reluctantly kept a minimal copy of
Windows on one of my drives so I wouldn’t be left out of netfeting.

Linux is a great operating system for developers, and even for casual users who
don’t mind the initial learning curve. But until recently, Linux has been lousy
for gaming. This isn’t due to any technical shortcoming; Linux has plenty of
performance and stability to support high-performance multimedia applications.
It did, however, lack support from game developers. Thanks to portable game
programming toolkits like SDL and OpenAL, this is beginning to change. Linux
still hasn’t seen very much original game development, but Linux users now have
access to ported (converted) versions of a number of major commercial games,
produced mainly by Loki Software, Inc.

iv PREFACE

Game programming has been one of my hobbies ever since my first Commodore
64 computer, and I wasn’t about to leave it behind when I left the Windows
world for Linux. The SVGALib library held me over for a while, but SDL
quickly took over as my favorite way to write Linux games. After meeting the
Loki crew at a Linux trade show, I decided that Linux gaming meant business,
and got the idea to write a book about it. A year later, it is finally finished, and
I hope you enjoy reading it.

Who This Book Is For

This book is for anyone who wants to learn how to write games for Linux. I
assume that you know the basics of working with Linux; if you know enough to
start X, open a terminal, copy files around, and fire up a text editor, you’re good
to go. I also assume that you have a reasonable grasp of the C programming
language. Flip through the book and see if you can decipher the syntax of the
examples. We’ll go through all of the necessary library calls, so don’t worry if
you see a bunch of unfamiliar function names, but you should be able to
understand the majority of the actual code. No prior experience with
multimedia programming is assumed, so don’t worry if you’ve never had the
perverse pleasure of hacking a graphics register or shoving a pixel into memory.
All in good time!

Although this isn’t a reference manual in the traditional sense, chapters 4, 5, 6,
and 8 provide reference boxes for most of the API functions we cover. I hope
that even experienced multimedia programmers can find something useful here.

I will not discuss 3D programming in this book. There are already plenty of
excellent books on OpenGL, and only a small bit of OpenGL programming is
directly related to Linux. However, I will demonstrate how to use SDL as an
effective replacement for the GLUT toolkit; see page 140.

Online Resources

I made the decision to not include a CD-ROM with this book. This choice was
both personal and pragmatic. Books CDs tend to get lost or damaged, no
matter how hard one tries to keep them in a safe place. CD inserts are usually
impossible to open without damaging the book in some way. And finally, the

PREFACE v

data that would be contained on the CD (presumably the libraries and examples
we’ll talk about in this book) would be obsolete by the time the book hit the
press.

Instead, we’ve put together a Web site with all the book’s examples and links to
various libraries you’ll need. You can access this site from either
http://www.nostarch.com or http://www.lokigames.com. Feel free to share
the example code with your friends and colleagues, and use it in your projects;
license details are included in the code archive.

Acknowledgements

This book would not have been possible without help from a lot of people.
No Starch Press was a pleasure to work with, even when I switched from SGML
to LATEX in the middle of the project and mentioned that I would need printouts
instead of Word documents for copyedit. I thank everyone at
No Starch—especially Karol Jurado and Bill Pollock—for their patience and
willingness to accomodate a first-time author. Thanks also to Amanda Staab for
making Programming Linux Games known to the world.

I’d like to thank the Loki crew for keeping my life interesting during the summer
of 2000; especially Sam Lantinga for tolerating my never-ending SDL and
framebuffer console questions, Joe Valenzuela for helping me get up to speed on
OpenAL, and Lance Colvin for providing me with a place to stay during the
summer. Scott Draeker was always there to answer questions and provide
feedback, even in the midst of slipping deadlines an an ever-changing table of
contents. This book would not have happened without his ongoing support.

The following people deserve a virtual beer for helping me in various ways. The
list is long, but so was the process of writing this book. Here goes:
Martin Donlon for starting the SDL Documentation Project and providing me
with helpful hints as I wrote Chapter 4, Ray Kelm for for commenting on Win32
portability issues, Matt Friedly of http://phluid.acid.org for allowing me to
use some of his tracker music (reflux.ogg) in Penguin Warrior, my Georgia Tech
roommates Daniel Larsen, Matt Might, Anthony Chen, and Frank Cheng for
tolerating my odd hacking hours and fits of frustration over badly-documented
APIs, Mike Phillips for obtaining excellent screenshots (which unfortunately I
could not use due to the virtual impossibility of dealing with game company

vi PREFACE

legal departments), my IBM Model M keyboard for not breaking regardless of
the velocity of my fist, Andy Mecham of Loki for pyrotechnic entertainment,
Nicholas Vining for helping me test code and getting me involved with the
Kosmos Online project, Steve Shack for pointing out inaccuracies, Mathew Lang
for scouring Chapter 1 with an avid gamer’s eye, Lee Nau for pointing out
errors, David Megginson and Andreas Umbach for screenshots, Damon Ragno,
Michele Bini, and Mitch Allmond for helping me test the networking code,
Terry Hendrix for telling me I was insane (apologies for forgetting your real
name; everyone online knows you as the ubiquitous “Mongoose”),
Erik de Castro Lopo for libsndfile, Jason Wong, Andrew Buckner, and the rest of
the netfeters for screenshots and comments, David Hedbor, Steven Fuller,
Dan Olson, Mike Delaney, Anoakie Turner, and a bot named Nerf for making
IRC interesting, Brian Crowder, Ryan Gordon, Michael Vance,
Andrew Henderson the assembly guru, Daniel Vogel, Bernd Kreimeier,
Terry Warner, David Ranger, Kris Doyle, Brad Harris, Steven Reinemund,
Patrick Buchanan (definitely not to be confused with the presidential candidate
by the same name), Kyle Johnson, Josh Litherland, Ola Nordström,
Amir Ebrahimi, Sonny Rao, David Shea, Moshe Jacobson, Lincoln Durey,
Stéphane Peter, Mike Imamura, Pedro Pla, and anyone else whom I may have
left out. Writing a book is a long and fairly dull process. You made it a lot
easier.

I’d also like to thank all of my professors from years past. I can’t hope to name
them all here (nor are you likely interested in viewing such a catalog), but in
particular I would like to acknowledge Dr. Richard Newcomb, for being a truly
remarkable high school calculus teacher as well as getting me started with TEX,
Greg Novinski for guiding me away from trouble for eight years at Cistercian, Fr.
Gregory Schweers, Jackie Greenfield, Gary Nied, and Dr. Tom Pruit for
teaching me how to write, Fr. Mark Ripperger for feeding my programming and
electronics addiction, and Fr. Denis Farkasfalvy for a certain incident a few years
ago that I’m sure he recalls.

And of course my parents. I simply could not have written this book without
their encouragement and support.

John Hall
Atlanta, GA

Chapter 1

The Anatomy of a Game

In 1991 a Finnish university student named Linus Torvalds began working on a
new operating system in his spare time. He didn’t work in isolation, nor did he
make a big deal about what he was doing; rather, he modestly invited
programmers from all over the world to join his project, which he dubbed
“Linux.” This loosely knit team of students, professionals, and hobbyists
collaborated through the Internet, with the expectation of learning a bit about
programming and having a good time. Linus never thought that his project
would spawn an entire industry.

Since then, Linux has grown into a general-purpose operating system for a wide
variety of hardware platforms. With more than 10 million users (a number that
is constantly growing), the Linux platform offers a sizable audience for computer
games. It is now capable of accelerated 3D graphics, environmental audio, and
seamless game controller handling, in addition to the server tasks that UNIX-like
operating systems generally carry out. Although Linux is still evolving, it is
already a solid environment for serious game development.

This book describes the toolkits and the environments that allow programmers
to write 2D and 3D games for Linux. We will learn how to draw animated
graphics on the screen, how to play high-quality digital sound through several
different software libraries, and how to set up OpenGL to create fluid 3D
graphics. By the end of this book, you will know what makes Linux games tick,
and how to create your own games for this platform.

2 CHAPTER 1

This book is not about game design, the mathematics of 3D graphics, or
advanced OpenGL programming. These topics are best left to books of their
own; I could not hope to do them justice here. However, with the knowledge you
will gain from this book, you will be prepared to tackle these topics later on.

Before we begin our discussion of Linux game programming, let’s take a quick
glance at our surroundings in the gaming industry so that you can better
understand what goes into this type of project.

A Quick Survey of Game Genres

Computer games tend to fall into any one of a number of distinct genres. Many
players have strong preferences for certain genres, which makes this an
important issue for game designers to consider. And, the presentation of a game
concept can make an enormous difference in its success.

Simulation Games

The simulation genre encompasses a wide variety of games, from flight
simulators to Mech combat scenarios. An ideal simulator provides a high level of
realism in graphics, sound, and game physics. Some popular simulation games
are Heavy Gear II, MechWarrior, and Microsoft Flight Simulator. The basic goal
of any simulation game is to put the player behind the controls of something
exciting, something that he or she probably would not have access to in real life.
Simulations strive for immersion.

Simulation games (sims) are basically at two extremes. Some simulations aim for
absolute realism, seeking to entertain the player with an almost completely
accurate portrayal of real life. These “games” are sometimes even used for
real-life training purposes. Other sims, like the Heavy Gear and MechWarrior
series, trade realism for pure entertainment value. These games are based only
loosely on reality; they simulate imaginary vehicles with extraordinary but
rather impossible capabilities. (Interestingly, the MechWarrior and Heavy Gear
computer games are based on pencil-and-paper role-playing games.)

Simulations pose a serious development challenge. Since a good modern
simulation requires high-quality 3D graphics, detailed vehicle models, a game

THE ANATOMY OF A GAME 3

physics system for simulating the physics of the real world, realistic input
response, network capabilities, and possibly a certain amount of artificial
intelligence for the computer-controlled players, a contemporay sim is not trivial
to construct.

What makes a simulation game successful? Let’s look at a couple of examples: a
“realistic” simulator and an “action” simulator. Microsoft Flight Simulator is a
popular flight simulator for the PC (and is in fact the current iteration of a long
line of flight simulators by the same developers, dating back to the Commodore
64) that combines realistic control with excellent 3D graphics and interesting
airplanes, and the terrain looks reasonably close to the real world’s.1 An
experienced pilot could certainly tell the difference between Microsoft Flight
Simulator and a real airplane, but it’s nonetheless an enjoyable simulation.

Microsoft Flight Simulator tries to make the players feel like they were in the
cockpit, not just collecting cellulite behind the keyboard of a fast computer.
Although this game will not run under Linux (except possibly under WINE2),
it’s certainly worth a look if you’re thinking of writing a flight simulator.

On another front, the Flight Gear project is presently developing a free flight
simulator for Linux. The simulator already sports a realistic physics model and
an excellent terrain engine, and it is slated to eventually become one of the best
flight simulators ever. Flight Gear is portable to many platforms, as it is based
almost entirely on open technology.

Heavy Gear II from Activision is a good example of an action simulator. It puts
the player behind the controls of a multiton Gear (a two-legged walking vehicle
with big guns) and succeeds because of its realistic graphics, simple but capable
control system, damage simulation, and interesting gameplay. The player is in
complete control of his or her Gear and is free to do anything during the game

1 One of the first rules of game design (and, to some extent, of computer graphics in general)
is that it doesn’t matter if something is realistic as long as it looks realistic. Unfortunately,
most people don’t have 5-terahertz machines, so game creators have to take a few shortcuts.
Most flight simulators really aren’t that realistic when it comes down to it, but they sure
seem realistic.

2 http://www.winehq.com.

4 CHAPTER 1

Screen shot from Flight Gear
Image courtesy of David Megginson

(although accomplishing the mission without getting killed is usually the best
plan). Heavy Gear II creates a sense of power and euphoria in the player, and
this makes it a pleasant experience. Activision has also published several
MechWarrior titles that are very similar to the Heavy Gear series.

Finally, one of my personal favorite simulation games (from many years ago) is
Corncob 3D, a completely unrealistic shareware, DOS-based flight simulator.
Guised as a flight simulator, this is a classic “Defend Earth from Space Invasion”
game with lots of missions, missiles, and mayhem. By today’s standards, of
course, this game is laughable. But it ran well on the low-end hardware of the
day, and it was a lot of fun to play. Corncob 3D is a good example of a simulator
that trades realism for entertainment value.

First-Person Shooters

First-person shooters are some of the most popular games today. They typically
involve a weak story line (with exceptions, of course), hordes of enemies, big
explosions, and lots of blood. The basic premise of most first-person shooters is
to give the player an adrenaline rush by putting him in the middle of a hostile

THE ANATOMY OF A GAME 5

Screen shot from GLTron, based on an 80’s sci-fi movie
Image courtesy of Andreas Umbach

environment with insidious monsters and powerful weapons. These games have
improved in quality over the years and are beginning to reach a very high level of
realism. Some popular ones are Quake 3, Half-Life, and Soldier of Fortune, all of
which are available for Linux (although Half-Life is not native to Linux, and
requires the WINE library to run).

High-quality first-person shooters are difficult to produce, not just because
they’re hard to program (facilitated by standard 3D libraries such as OpenGL),
but also because they require detailed 3D character models and levels. 3D
game-engine programming requires a solid knowledge of linear algebra and a firm
grasp of certain types of data structures. However, mathematically inclined
people are likely to find 3D game programming both challenging and rewarding.

6 CHAPTER 1

Valve’s Half-Life is one of the most successful first-person shooters, combining
the thrill of a typical FPS with a compelling storyline, amazingly realistic
enemies, and an excellent multiplayer mode. Half-Life is based on Quake II’s
rendering technology, but that is where the similarities end. Unlike the Quake
series, Half-Life has a plot, an excellent single-player mode as well as network
game support, and a more complex virtual environment (complete with
moveable objects and vehicles).

Another interesting first-person shooter (also based on the Quake II engine) is
Activision’s Soldier of Fortune. Decried by critics as gratuitously violent (and
hence “indexed” in Germany and classified as an adult title elsewhere), Soldier
of Fortune combines traditional first-person shooter action with frightening
realism, even going so far as to correctly simulate bodily damage due to gunshot
wounds. It also has a solid plot that develops throughout the game. Overall, a
very enjoyable title, if you’re not disturbed by the violence. (I won’t go into the
highly emotional politics surrounding this subject.)

A current trend is to mix first-person 3D technology with the role-playing game.
Deus Ex is one such example, a role-playing game based on the Unreal engine.
Deus Ex has been ported to Linux, and I strongly recommend giving it a try.

Real-time Strategy Games

The genre of games known as Real-Time Strategy (RTS) games includes such
popular titles as StarCraft, Command and Conquer, and Total
Annihilation—games that allow the player to command individual parts of an
army from an overhead view, with success in battle usually leading to better
equipment and soldiers. Because success is usually determined by a player’s
tactics, these are considered strategy games. RTS games often have a high replay
value; they’re fun to play again and again.

RTS games are comparatively easy to program, because, with some exceptions,
they do not involve 3D graphics or complicated mathematics; however, good RTS
games are hard to produce, and they tend to be few and far between. They often
involve a certain amount of artificial intelligence (AI) programming for
controlling the simulated opponents in single-player games—a fascinating field,
but one that we’ll leave to other sources.

THE ANATOMY OF A GAME 7

StarCraft is by far the most successful RTS game, combining pleasing graphics, a
large selection of well-balanced units, and interesting battlefields in a very
well-rounded game and exciting game. Solid game design is by far the most
important issue in creating a real-time strategy game, and StarCraft is an
excellent example. This is not the first notable game from Blizzard
Entertainment, and it will be interesting to see what Blizzard comes up with in
the future.

Turn-Based Strategy Games

Turn-Based Strategy (TBS) games are like real-time strategy games, but the
gameplay is divided into turns, usually with no time limit, thus giving the player
time to think and relax, and lending the game an entirely different feel from the
faster-paced strategy games. TBS games are not decided by reflexes, but rather
by careful planning, which often makes them more difficult, and more attractive
to many players. Sid Meier’s Civilization II is widely regarded as the best
turn-based strategy game, because of its balance and replay value.

Deceptively Complex

I once thought that TBS games were easy to write, but then I saw the
source code to Sid Meier’s Alpha Centauri (SMAC). Most players don’t
realize it, but SMAC actually uses a 3D technique called voxels to
render its units on the fly and to draw a height-sensitive landscape with
perspective texture mapping and dynamic palette mapping (made
possible by self-modifying assembly code). Sid Meier’s Alpha Centauri
was obviously not easy to port to Linux. While it’s possible to write a
good TBS game without such sophistication, don’t think of the TBS
genre as an easy way out—its complexity can be deceiving.

Role-Playing Games

Role-Playing Games (RPGs) stem from the Dungeons and Dragons role-playing
system.3 In this type of game, the player assumes the role of one or more

3 There are lots of similar role-playing systems; I just give DND as an example.

8 CHAPTER 1

Screen shot from FreeCiv, a free TBS game
Image courtesy of Paul Zastoupil

characters on some sort of quest. Role-playing games put the player in a world
with many possibilities; a good RPG gives its players a sense of immersion and
true interaction, and allows them to effectively become someone else.

The quality of a role-playing game depends much more on its storyline,
interaction, and depth than on its graphics. Ultima Online is an example of a
good online RPG. While its graphics are not spectacular, the depth of its
gameplay is incredible, because it allows for complex interactions between
players in a virtual universe. Ultima is not exactly a “hard core” RPG, however;
true die-hard RPG gamers often prefer other types of RPGs, such as those
published by Simutronics (http://www.simutronics.com).

THE ANATOMY OF A GAME 9

Screen shot from NetHack, a very strange free RPG project

Puzzle Games

Puzzle games receive less attention than the other game genres, but they deserve
to be mentioned. Puzzle games challenge the player with problems that require
thought and patience. This genre includes everything from simple box-pushing
games (Boxxel and the dangerously addictive Sokoban) to the animated and
ubiquitous Tetris.

A successful puzzle game is usually challenging (but not impossible), pleasant to
look at (graphics should not be ignored), and replayable (one-shot puzzle games
are usually not very enjoyable the second time around, and players don’t
appreciate that). The difficulty involved in creating a puzzle game depends on
the particular game; some are extremely complex, involving massive amounts of
artwork and graphics processing, while others are simple to implement.

10 CHAPTER 1

Screen shot from KSokoban, a version of Sokoban for KDE

Multiuser Dungeons

Multiuser Dungeons (commonly known as MUDs) are massively multiplayer
games, typically hosted on Internet servers and accessed with special MUD client
programs. MUDs are extremely popular because one’s opponents are real people,
not computer-controlled robots. MUDs are essentially text-based role-playing
games, immersing their players in worlds with magical objects, wizardry, and
battle. MUD fans wishing to host a game of their own often obtain a prewritten
MUD server program and develop their own “world” through configuration files
and scripting languages. If they do a good job, they may attract lots of players,
which is very satisfying. Two popular MUD server programs are ROM and
DikuMud, which may be downloaded from the Internet. There are untold
thousands of private ROM-based MUDs on the Internet.

MUDs are relatively easy to create, though writing a MUD server is not trivial,
requiring a solid background in C or similar and a knowledge of network
programming. Creating MUD datafiles requires little programming knowledge
but a lot of creativity. A good MUD has an interesting game world to explore
and a good balance of races and abilities. Also, some MUDs are prone to “god
moding,” or abuse by the person running the server; while this obviously
depends on the players, good design can lessen this undesirable effect.

THE ANATOMY OF A GAME 11

If you’ve never been “mudding,” give it a try. A good MUD can provide a truly
interesting experience. You can find MUDs all over the Internet; just search the
Web for the word “mud.”

A Quick Look Under the Hood

Most games have a lot in common behind the scenes. The engine, or main code,
of a “typical” game (if there is such a thing) can be logically divided into several
subsystems: the input subsystem, the display subsystem, the audio subsystem,
the networking subsystem, the update subsystem, and the main loop. These
subsystems are rarely labelled as such, but you are likely to find all of these
components in any given game engine. Each subsystem is most often
implemented with several separate source files; two or three in small games, but
easily a hundred or more in a large production. We’ll look briefly at each of
these subsystems now, and throughout the rest of the book we will explore
possible ways to implement each.

This Code Is Awful!

If you ever get a peek at the code behind a major commercial game,
please do not take it as a treatise on proper software design or coding!
Games often start out as well-designed software, and they sometimes
even make it to the shelves in a tolerable state of internal organization,
but more often than not a game’s code falls into disarray during the last
few months of development.

Why, you might ask? The gaming industry is volatile, dangerous, and
extremely competitive. Game studios seem to find themselves in a
perpetual struggle to meet release deadlines, get their games out ahead
of their competitors, and implement the features that players demand,
lest they be left in the dust with a stack of unsold games. This often
results in extremely hurried and sloppy code. Unfortunately, this often
causes serious problems if someone later tries to add an expansion pack
to the game or port the game to another operating system.

12 CHAPTER 1

The Input Subsystem

The input subsystem receives the user’s commands through an input device (like
the keyboard or a joystick) and records these commands for further processing.
While input device programming is not difficult, it should be done carefully,
because flawed input processing can easily ruin an otherwise excellent game. The
first version of Apogee’s Rise of the Triad (a first-person shooter from several
years ago) suffered from particularly bad input handling, and the game was
aggravating to play until this problem was fixed.

One of the input subsystem’s most important jobs is to simultaneously support a
variety of input devices. A well-written input subsystem should be able to
integrate just about any type of oddball game controller with minimal effort (this
is made a bit easier by libraries like SDL, but it’s still something to keep in mind
as you code). Some players prefer to use joysticks rather than mice, and an input
subsystem should be able to accommodate this preference without modification
to the main game code. As far as the game is concerned, the joystick should
appear as a generic device, capable of producing “left,” “right,” “up,” and
“down” commands. We will discuss SDL’s input handling and abstraction in
Chapter 4, and we’ll touch on the lower levels of input handling in Linux later on.

Nearly every game on the market allows you to remap the keyboard and other
input devices to your liking, and this is a feature that players demand. Many
people have non-US keyboards with different key locations, and you’ll end up
cutting off a lot of would-be players unless you allow them to configure the game
to work with their keyboards. Fortunately, this is not difficult; it can be
accomplished with a simple lookup table. It is also a good idea to allow the
player to store and retrieve multiple key mappings, in case a friend prefers a
different configuration.

The Display Subsystem

The display subsystem conveys the game’s status to the player in a visually
impressive way, whether through simple 2D graphics, or advanced 3D rendering
(the type of graphics you use doesn’t matter, as long as they are appropriate for
the game). Regardless of the type of graphics produced by the display
subsystem, the structure of the code is substantially the same.

THE ANATOMY OF A GAME 13

The display subsystem is responsible for taking advantage of the available
display hardware. Serious gamers often equip their machines with snazzy 3D
graphics cards, which can bring enormous performance and quality improvement
to 3D games. However, this performance boost is not automatic and requires
special effort by the programmer, which is usually accomplished through an API
(application programming interface, essentially a big library of routines) like
OpenGL. 3D acceleration is beyond the scope of this book, but we’ll
demonstrate how to get OpenGL up and running in Chapter 4.

Before you can show off your graphics code, you’ll need something to display.
Although it is common for programmers to develop temporary artwork for
testing purposes, few are skilled artists, and they usually find it necessary to
enlist the help of a skilled digital artist to produce acceptable game artwork.
Players are a finicky bunch, and they are most intolerant of subpar graphics.
Game programmers should spend a great deal of time developing a good
graphics engine, and a designer should place a high priority on obtaining quality
artwork for a game.

The Audio Subsystem

Although computer audio technology has not been hyped as much as computer
rendering technology during the past few years, a game’s audio subsystem is
every bit as important as its graphics subsystem. Fortunately, producing
high-quality sound on a computer is not as difficult as producing high-quality
graphics.

Sound is easy to play back (usually a simple matter of a few function calls with a
multimedia toolkit), but creating production-quality sound effects for a game is
as much an art as creating graphics, and should be left to a specialist. Stellar
sound effects can boost a game’s atmosphere, and lousy sound effects can
seriously damage a game’s potential.

3D enhanced audio is one of the latest trends in computer sound technology with
modern sound cards (like Creative’s SB Live! series) supporting four-speaker
surround-sound, and 3D-aware sound-processing to simulate the Doppler effect
and other complex sound wave interactions. (Simple two-channel stereo sound
just falls short of the immersive environments of today’s 3D games.) In fact,
some sound cards can even accelerate these effects in hardware. Several

14 CHAPTER 1

competing 3D sound APIs have emerged, and we will discuss one of these
(OpenAL) in Chapter 5.

The Network Subsystem

Multiplayer gaming is very popular these days, and it is reasonable to assume
that this trend will continue. The network subsystem connects a game to other
computers over a network so that multiple players can participate in the action.
Network programming is not as difficult as it used to be, especially with the
advent of the Internet as we know it. Still, the network subsystem must be
extremely robust and flexible, as, not surprisingly, gamers are rather intolerant
of network failures during games.

Basically, the network subsystem informs the other computers in a network of
the current state of the game so that the players stay synchronized. This can be
quite a trick, and so it is wise to develop the game with network capabilities in
mind. You may find that a networking library such as Apple’s OpenPlay makes
this job a bit easier.

Above all, do not implement network support as an afterthought, because it
often affects the entire design of the game. Decide whether your game lends
itself to netwok play and build this requirement into the fundamental game
design; doing so will save headaches later on when the designer invariably
demands that multiplayer capabilities be added.

The Update Subsystem

Games generally have to track a lot of rapidly changing data, including the state
of the player and the condition of each enemy—information that must be
updated frame by frame to keep the game moving. The update subsystem
manages this data.

The update subsystem is the game’s brain. It enforces the game’s rules for
movement upon the player, “plays” the role of each enemy (which might involve
a certain amount of artificial intelligence), ensures that every object is within the
allowed boundaries, and inflicts injuries. It could almost be said that the other
game modules are merely interfaces to the update subsystem.

THE ANATOMY OF A GAME 15

Input Subsystem

Keyboard

Mouse

Game Pad

Network Subsystem
LAN or
Internet

Display Subsystem
3D Hardware /
Framebuffer

Audio Subsystem Sound Card

Update Subsystem

Figure 1–1: A typical game loop

Although it may be tempting to haphazardly throw the update subsystem into
the game loop (discussed in the next section), do not do so. Game projects tend
to get out of hand quickly if they are not kept in a reasonable amount of order,
and the update subsystem usually grows steadily throughout the development
cycle; make the update system a separate module to begin with. If you don’t pay
attention to code organization, you’ll end up with code that looks like the
500,000 lines of spaghetti behind (no offense, Activision) Civilization: Call To
Power.

The Game Loop

The game (see Figure 1–1) loop is the “glue” that binds the various game
subsystems. It is simply a while loop that runs throughout the entire game,
looping anywhere from 30 to 60 times per second. The game loop invokes the
correct routines to gather input from the player and from the network, updates

16 CHAPTER 1

the status of all objects in the game, draws the next frame of graphics, and
produces audio. While this process may sound complicated, it is actually quite
trivial, because all of this functionality is provided by the game’s input, network,
graphics, and audio subsystems.

The game loop should start as soon as the game’s other subsystems have been
initialized, and should end when the player exits the game. It may be a good
idea to separate the menu system from the main game loop in some cases, but
doing so could actually complicate the game’s code. With a properly written
game loop, a game becomes a “state machine” that acts on its current state
based on the player’s input.

Organization is important too, since the game loop sequences the other
subsystems. This should not be a haphazard decision; for instance, the data
gathered from the networking subsystem often influences the decisions of the
other subsystems, so it should be invoked first. The graphics subsystem should
probably be last, since it reflects the data generated by all of the other
subsystems.

As you can see, a game engine is conceptually simple, but the devil is in the
details. In the next chapter we’ll become familiar with the tools we’ll use for
Linux game programming, and then we’ll start to work with the libraries and
interfaces that make it all possible. If you’re already familiar with development
tools like gcc and gdb, you may wish to skim over Chapter 2 and move on to
Chapter 3 or 4.

Chapter 2

Linux Development Tools

As an operating system created by computer geeks, Linux provides a particularly
nice programming environment. Although it may be a bit intimidating and
confusing at first, it provides a great deal of power after the initial learning
curve. In this chapter we will examine the basic Linux programming tools from
the perspective of a game developer.

If you are already experienced with Linux or UNIX programming, some parts of
this chapter will be of less interest to you. We will cover specific details of these
tools later as we encounter them, so you will not be at a loss for skipping over
sections of this chapter.

Programming Editors

Before we can dive into the subject of Linux game coding, we’ll need a way to
write our source code. Although simple editors such as pico and joe are sufficient
for some simple tasks, they are inadequate for programming. It would be
preferable to use a text editor with support for syntax highlighting, brace
matching, and other features. Let’s take a look at several of the more popular
code editors. If you have never written code with a UNIX-like system, it would
be a good idea to try out these editors to see which one best suits your
programming style. This chapter is not meant to be a reference manual or
tutorial for these editors; rather, it is starting point for those who have never
written code on a UNIX-like platform.

18 CHAPTER 2

vi

vi (pronounced “vee-eye” or “vie”) is a rather old text editor with a strong
following. It is difficult to master, but once you have learned its keystrokes and
its quirks, it is hard to use anything else. vi works well on just about any Linux
configuration; it requires almost no processor power and very little memory. It
also has the nice advantage of being present on nearly every UNIX-like system
you’ll encounter, including most Linux systems. vi is a standard component of
every major Linux distribution.

Although vi is an old editor from the days when everyone worked over slow text
terminals, it has been improved substantially by its users, and some modern
versions (such as vim) are capable of syntax highlighting and other niceties.
Several versions of this editor are also available for the X Window System,
featuring pull-down menus and convenient shortcuts. However, these versions
defeat one of the greatest features of vi: that it can be used over nearly any type
of terminal. vi can be used efficiently over low-speed telnet connections, within
local terminals, and even from Palm Pilots and other unusual devices. Its
minimalistic interface requires very little functionality from the terminal.
Graphical versions of vi throw this feature away and so can hardly be considered
substitutes for the original vi editor.

vi is actually a full-screen interface to the command-based ex editing engine. ex
can also be used outside of the vi editor as a command-line tool, and it can be
used to add editing capabilities to shell scripts. For instance, a shell script might
invoke ex to edit a configuration file automatically. ex commands can be
specified within the vi editor, although a tutorial on the nuts and bolts of ex is
beyond the scope of this chapter.

vi is a mode-based editor, and this is a major source of confusion. vi has two
main modes: command mode and insertion mode. Command mode is strictly for
issuing commands to vi. For instance, one might use this mode to move to a
certain line in the document and delete a word. Command mode may not be
used for typing text into the document. Anything you type in command mode
will be interpreted as a vi command (and indeed there are so many possible vi
commands that nearly anything you type in command mode will do something).
Insertion mode, on the other hand, is strictly for typing text into the document.
Most commands are not recognized in this mode, and anything you type will be
inserted into the document.

LINUX DEVELOPMENT TOOLS 19

vi initially starts up into command mode. To enter insertion mode, press i. To
switch back into command mode, press Escape. This mode switching may seem
like quite a hassle, but it becomes second nature after a bit of practice.

Emacs

GNU Emacs is uncontested as the behemoth of text editors (indeed, some think
of it as an operating system in itself). It is based on its own variant of the Lisp
programming language; almost all of the editor’s functionality is implemented in
customizable Emacs Lisp. Emacs has a loyal following among programmers,
partly because absolutely every aspect of this editor can be changed by the user.
I started writing this book with NEdit, but I eventually switched over to Emacs
because it works well on the Linux console and doesn’t require a mouse. (I’m
also a bit of a Lisp enthusiast, and in that regard Emacs is a perfect match.)

Emacs is not as difficult as vi to learn initially; there is simply a lot more to
learn. Its basic commands and keystrokes are not hard to get used to, but
becoming fluent with Emacs is a major undertaking. Emacs includes a mail and
news client, editing modes for nearly every language you’d ever want to use,
several types of documentation readers, and even optional IRC clients and web
browsers. Many of these features define their own sets of command keys, leaving
much for the would-be user to learn. In return for this hassle, Emacs provides an
enormous amount of power; it’s quite literally possible to set your login shell to
Emacs and never leave its environment.

To get started with Emacs, run the editor (the command is usually emacs), press
Ctrl-h, and then t. The Emacs tutorial will open, and you can use it to learn
the basic keys and editing modes.

In addition to the “real” GNU Emacs, there are several other editors that are
very similar in capabilities and usage. XEmacs1 is a code fork from GNU Emacs
with a number of added features and an improved interface. JED2 is a
programmer’s editor that closely resembles Emacs but has fewer features and a
smaller memory footprint.

1 http://www.xemacs.org

2 http://space.mit.edu/%7Edavis/jed.html

20 CHAPTER 2

Emacs is an ideal editor for people who appreciate a large (perhaps
overwhelming) amount of functionality and don’t mind a bit of a learning curve.
It is excellent for those who would like to use a scripting language to add custom
abilities to their editor (entire applications have in fact been written in Emacs
Lisp). Emacs is available as part of nearly every Linux distribution, and it can
also be obtained directly from the GNU project’s FTP server3 or one of its
mirrors.

NEdit

NEdit, the “Nirvana Editor,” is a very slick code editor from Fermilab.4 It is
neither as absurdly customizable as Emacs nor as ubiquitous as vi, but it is
much easier to learn (since its keystrokes are similar to those of many popular
word processors) and powerful enough for serious work. NEdit’s main downside
is that it requires the X Window System to run. It is a good idea to have at
least a working knowledge of another editor if you choose to use NEdit for your
daily work. This book was written partly with NEdit (though I later switched to
Emacs). Although previous versions of NEdit were encumbered by a license that
was not palatable to most Linux distributors, the NEdit license was changed to
the GNU General Public License with the 5.1 release. The editor is now truly
free software, and it is currently under active development by a team of
volunteers.

Compiling Programs Under Linux

We’re here to talk about game programming, not the basics of C programming,
so we won’t discuss the language itself; however, it’s quite possible that you’ve
never worked with a C compiler under UNIX. This section demonstrates how to
compile and link programs in the Linux (or more accurately, GNU/Linux)
programming environment. There really isn’t much to it; the compiler provides
hundreds of possible command-line options, but most of them aren’t necessary
for our purposes.

3 ftp://ftp.gnu.org

4 http://www.nedit.org

LINUX DEVELOPMENT TOOLS 21

The Nirvana Editor

gcc is the most popular C compiler for Linux. It was developed by the Free
Software Foundation for the GNU project, and it is available on many platforms.
gcc is free software, and it is included as a standard component of nearly every
Linux distribution. There are several other C/C++ compilers for Linux (such as
Kai C++ and the as-yet-unreleased Metrowerks CodeWarrior), but gcc is used
for the vast majority of Linux software development. Some eschew gcc (and its
C++ brother, g++) as quirky or incomplete, but in reality it’s at least as good as
the other mainstream C compilers.

gcc’s basic job is to compile C source code into executable programs. To compile
one or more files, simply pass them to gcc on the command line as follows:

$ gcc file1.c file2.c file3.c

If there are no serious errors, gcc will create an executable file named a.out in
the current directory. Otherwise, you will receive warning and error messages
describing the problems the compiler encountered, and gcc will not produce any
compiled output. If you list multiple files on the command line, gcc will compile
them separately and attempt to link them into one executable, stopping if any

22 CHAPTER 2

individual file produces an error. If gcc is given files that end in .o (object files)
or .a (static libraries), it will link them directly into the executable. This allows
gcc to serve as a simple interface to the linker.

Warning

You may be in the habit of using the shell’s tab-completion feature to
fill in filenames. Be careful when you do this with gcc; it’s easy to
accidentally overwrite your source files by accidentally tab-completing
the wrong filenames. This may seem obvious, but I’ve lost work because
of it.

It is often useful to compile a C source file into an object file instead of an
executable. Object files are not directly executable, but they contain the
machine code translation of the source, and multiple object files can be pieced
together into complete programs. To create object files, supply gcc with the -c
option. This will instruct gcc to skip its final linking phase and to write one
object file for each source file listed on the command line.

gcc is a complex and capable tool, and it supports a large number of
command-line options. We list the most important ones here.

-ansi Disable non-ANSI extensions, such as the asm and inline
keywords. This option might be a good idea if you are concerned
with portability between ANSI C compilers. However, most
programmers aren’t this careful about standards, and strict ANSI
mode tends to break a lot of existing software.

-c Compiles to an object (.o) file instead of an executable. This is
important for creating libraries.

-D symbol Define the given symbol in the preprocessor. This option is
convenient for setting up conditional compilation based on the
system’s configuration. We’ll use it in some of our examples to
switch between different versions of code.

LINUX DEVELOPMENT TOOLS 23

-o filename

Outputs to the given filename instead of the default a.out. For
instance, -o foo will cause the program to be compiled into an
executable named foo (or foo.exe under Windows).

-l libname Attempts to link in the given library, following the standard
library naming convention. For instance, -lSDL would link in
libSDL.so. See the discussion of shared libraries later in this
chapter for more information.

-L path Specifies an additional directory for libraries. For instance,
/usr/X11R6/lib is not normally in the library path, so it is
common for X programs to specify -L/usr/X11R6/lib.

-O n Sets the optimization level (from 1 to 6). The default is to
perform no optimization. It’s reasonable to make a practice of
compiling code with -O2; it doesn’t mess with the structure of the
code too much, and you can still (usually) debug it with gdb. In
some cases this option can really speed up the compiled code.
Finished products should almost always be compiled with
optimization enabled.

-pedantic Enables a strict interpretation of the ANSI C Standard. Compile
with -pedantic -W -Wall if you want gcc to nag you about
sloppy programming.

That’s it for gcc! It has a few quirks and obscure features, but we’ll get to those
as we need them.5 Like most GNU tools, gcc comes with excellent online
documentation. In particular, refer to the manpage or info node for a description
of gcc’s command-line options.

5 Richard Stallman’s book Using and Porting gcc is the authoritative guide to hacking gcc.

24 CHAPTER 2

Using the Make Utility

Most game development projects consist of multiple source files, for the simple
reason that it is impractical to manage thousands of lines of code in a single file.
Since a large project can involve many source files, it would be wasteful to
recompile everything if only one file had been changed since the program was
last compiled. This happens, however, if all of the files are given to gcc at once
on the command line. For instance, the Linux version of Civilization: Call To
Power consists of more than 500,000 lines of C++ code in well over 100 files, and
a full recompile of the entire source tree takes nearly an hour (whereas a partial
rebuild assisted by Make usually takes 15 to 20 minutes).

The Make utility speeds up software development by automatically determining
which files actually need to be recompiled after changes have been made. Make
also eliminates the need to type long command lines to rebuild programs, since it
stores all of the required commands and invokes them as needed.

Although Make has a lot of functionality, its basic usage is quite simple. It is
based on targets, which are sets of directions for maintaining the components
(object files, libraries, and so on) of a program. Targets specify the name of the
component to track, the source files and other targets that the component
depends on, and the commands for rebuilding the target. The instructions for
building a component are called rules, and the list of files that a component
depends on are called dependencies. When make is invoked upon a certain target,
it checks that target’s dependency list first. If any of the dependencies have been
changed since the target was last rebuilt, the target’s rules are executed. Make
also recursively rebuilds any out-of-date targets in the dependency list. This is
extremely convenient for large, modular programming projects.

Creating Makefiles

Make looks for targets and rules in a file called Makefile or makefile. This file
can contain any number of targets. If Make is started with no command-line
options, it automatically attempts to rebuild the first target it encounters.
Consider the following makefile:

program: file1.c file2.c graphics.a
gcc -c file1.c file2.c
gcc file1.o file2.o graphics.a -lSDL -o program

LINUX DEVELOPMENT TOOLS 25

graphics.a: graphics.c draw.c
gcc -c graphics.c draw.c
ar rcs graphics.a graphics.o draw.o
ranlib graphics.a

This file describes how to build an executable called program and a static
library called graphics.a. (Don’t worry about the commands for building the
library—we’ll discuss libraries later in this chapter.) program depends on
file1.c, file2.c, and graphics.a. If any of these have been modified since
program was last built, Make will rebuild program. graphics.a is also a target,
and it depends on graphics.c and draw.c. The indented lines under each target
are rules. If program needs to be rebuilt, Make will execute the two rules that
have been provided. These lines must be indented with tab characters; spaces
will not work. Make is rather particular about syntax.

Variable Substitution

The Make utility provides convenient access to environment variables. Makefiles
can set, combine, and retrieve environment variables as text strings and can
include these variables in targets and rules. It is common to use the variable CC
to represent the C compiler command (which in our case is gcc), CFLAGS to
represent the standard set of command-line options to pass to the compiler, and
LDFLAGS to represent the options to pass to the linker (which is normally just the
C compiler but is sometimes explicitly invoked with the ld command). For
example, the previous makefile can be rewritten as follows to take advantage of
variable substitution:

CC=gcc
CFLAGS=-O2 -W -Wall -pedantic
LIBS=-lSDL -lpthread

program: file1.c file2.c graphics.a
$(CC) $(CFLAGS) -c file1.c file2.c
$(CC) file1.o file2.o graphics.a $(LIBS) -o program

26 CHAPTER 2

graphics.a: graphics.c draw.c
$(CC) $(CFLAGS) -c graphics.c draw.c
ar rcs graphics.a graphics.o draw.o
ranlib graphics.a

As you can see, variables are substituted into the makefile with the $(VARNAME)
notation. This is a literal text substitution, and it takes place before the rule is
otherwise processed. What if you want to add to the end of a variable without
destroying its old contents? You might try something like this:

FOO=bar
FOO=$(FOO) baz
FOO=$(FOO) qux

At a glance, it would appear that the FOO variable would end up with the value
bar baz qux. However, Make does not normally evaluate variables until they
are used (in targets), so FOO actually ends up with the string $(FOO) qux. There
are two solutions to this problem. GNU Make (the default Make on Linux
systems) provides a := operator for assignments, which causes its right-hand side
to be evaluated before the variable is assigned. It also provides a += operator for
directly appending to variables. A more portable solution would be to assign
bar, baz, and qux to three different variables and to combine them all at once:

BAR=bar
BAZ=baz
QUX=qux
FOO=$(BAR) $(BAZ) $(QUX)

This (hacked) solution allows the variable FOO to be constructed correctly when
it is used in a rule. It is a rather ugly way to do so, however, so we suggest using
the GNU Make extensions.

Although the use of variables might lengthen a makefile, they can provide a nice
bit of abstraction. Variables make it easy to modify the options used throughout
the build process without changing the whole makefile.

LINUX DEVELOPMENT TOOLS 27

Implied Rules

Since C files are almost always compiled with the cc command (which is a
symbolic link to the gcc command on Linux machines), there is really no need to
specify build rules for each source file in the project. Make allows for implied
build rules. That is, if a target is followed by no rules and does not specify any
dependencies (or it simply does not exist), Make will attempt to use a default
build rule based on the target’s file extension.

For example, let’s say that foo.c is a C source file containing the function bar
and that main.c is a C source file containing a main function that calls bar.
The following makefile will build the program. Notice that there is no target for
foo.o—it is referenced by the foo target, and Make assumes that it should create
the target by compiling the file foo.c. (Actually, Make knows of several different
source file types, C being perhaps the most common.) When Make automatically
invokes the C compiler, it adds the CFLAGS variable to the command line.

CFLAGS=-O2 -W -Wall -pedantic
foo: foo.o main.c

gcc foo.o main.c -o foo

Phony Targets

Programmers often use Make for purposes other than building executables. It’s
really a general-purpose project management tool. For instance, I’m currently
using a makefile so that I don’t have to delete a bunch of files and then run
LATEX, MakeIndex, and dvips every time I want a preview of this book. Consider
the following makefile:

foo: foo.c
gcc foo.c -o foo

clean:
rm *.o
rm foo

The clean target has no dependencies and is therefore built only when it is
specifically requested on the command line. The command make clean causes

28 CHAPTER 2

all object files as well as the executable foo to be deleted and therefore serves to
force a complete rebuild of the project. Programmers commonly include a clean
target in their makefiles for convenience.

In a more general sense, Make is often used as a simple interface to complex
commands. Targets used for this purpose do not actually describe a build
process but rather a set of commands to be executed when the target is
requested. But what happens if such a “phony” target has the same name as a
file in the current directory? For instance, what if there is a file called clean?
Make would detect that this file exists and would decide not to build the target.

Make provides a special pseudo-target called .PHONY for this purpose. .PHONY
takes a dependency list, just as other targets do, but no build rules. .PHONY’s
dependencies are marked as phony targets and will always be built when
requested, regardless of any existing file by the same name. Here is the previous
makefile, rewritten to use the .PHONY target.

foo: foo.c
gcc foo.c -o foo

.PHONY: clean

clean:
rm *.o
rm foo

Error Handling

In the event of an error, Make immediately stops and prints an error message (in
addition to whatever was printed by the command that failed). Make detects
errors by the return codes of the rules it executes: a return code of zero indicates
success, and anything else indicates an error. Most UNIX commands follow this
convention. If there is a syntax error in the makefile itself, Make will complain
about it and exit.

LINUX DEVELOPMENT TOOLS 29

Working with Libraries

Libraries provide a way to package code into reusable binary modules. Linux
software can use two types of libraries: static and shared. A static library is
simply a collection of object files that have been archived into one file with a
symbol table. Static libraries have a file extension of .a, and they can be linked
into programs as normal object files. A shared library is similar to a static
library, except that it permanently resides in a separate file and is never directly
linked into an application. Shared libraries are linked at runtime by the
operating system’s dynamic linker.

Static Libraries

Static libraries are extremely simple to create and use. Once you have created
the object files you wish to package as a library, combine them with the ar utility:

$ ar rcs something.a file1.o file2.o file3.o

ar is a simple archiving utility. The r option specifies an operating mode: it tells
ar to add the given files to the archive, replacing any existing files with the same
names. The c option specifies that the archive should be created if it does not
already exist. Finally, s informs ar that this is an archive of object files (that is,
a static library) and that a symbol table should be added. Optionally, you can
leave out the s flag and use the ranlib utility to add the symbol table; the
resulting file will be equivalent.

To use a static library, pass it to gcc just as you would pass a normal object file.
gcc will recognize the .a file extension as an archive of object files.

Shared Libraries

Shared libraries are a bit more complex to manage than static libraries, but they
are often worth the extra effort. Shared libraries are not stored in executables
that use them; they are independent files that are linked into executables at
runtime. In many cases shared libraries can be updated without recompiling the
programs that depend on them. It is possible for the operating system to load a
shared library into memory once, for use by multiple applications.

30 CHAPTER 2

Shared libraries follow a very specific naming scheme designed to keep
incompatible versions separate. Each shared library should be given a unique
base name (or soname) of the form libFooBar.so.n , where n is a major release
number. The major release number should be incremented whenever backward
compatibility is broken. Minor version and release numbers (indicating slight
revisions that shouldn’t affect compatibility) are added to the end of the base
name, so that the final name looks something like libFooBar.so.2.1.3.

The ldconfig utility imposes sanity upon the various versions of a library that
might exist. It searches for libraries in a certain set of directories, usually
specified in /etc/ld.so.conf or the environment variable LD LIBRARY PATH. For
each library it finds with a name in the form libSomething.so.m.n.r , it
creates a symbolic link for libSomething.so.m . If two libraries have the same
base name, ldconfig creates a symbolic link to the later version. Applications
reference these symbolic links rather than the full names of the libraries. If a
new release of a library is installed, ldconfig updates the symbolic link, and all
applications that use the library will automatically reference the new version.

Creating Shared Libraries

Shared libraries are simple to create. First, compile your sources into object files
with the -fPIC flag. This causes gcc to output position-independent code, which
is more palatable to the dynamic linker. Then link with gcc’s -shared flag. You
will also need to inform the linker of the soname you wish to use. To see how
this is done, take a look at the following example:

$ gcc -fPIC -c foo.c bar.c
$ gcc -shared -Wl,-soname,libFooBar.so.1 foo.o bar.o -o \

libFooBar.so.1.1.1
$ su
Password:
install -m 0755 libFooBar.so.1.1.1 /usr/lib
ldconfig
ln -s /usr/lib/libFooBar.so.1 /usr/lib/libFooBar.so
exit

The first command produces the object files foo.o and bar.o, and the second
creates the shared library. Note the use of the -Wl flag to send options directly

LINUX DEVELOPMENT TOOLS 31

to the linker. The library is then installed to the standard location with a
reasonable set of permissions (note: this step will require write permission to
/usr/lib), and ldconfig is executed to set up the proper symbolic link. Finally,
another symbolic link is created to the base name of the library. This allows the
library to be linked into a program with the -lFooBar gcc option.

Using Shared Libraries

Shared libraries are extremely versatile. Once they are linked into an
application, they act as part of the program, except that the actual linking is
done at runtime. Shared libraries can also be manually loaded and accessed via
the dlopen C interface.

To link a properly installed shared library into an application, use gcc’s -l
option. For instance, to link with /usr/lib/libFooBar.so (which is a symbolic
link to /usr/lib/libFooBar.so.1), specify -lFooBar. If the library resides in a
nonstandard directory (such as the X libraries in /usr/X11R6/lib), use the -L
option (-L/usr/X11R6/lib). When the application is run, the runtime linker
attempts to locate the library (by name) and match its symbols with the
symbols the application thinks it should have. If any symbols are missing, the
linker reports an error, and the application fails to load. Otherwise, the shared
library becomes part of the application.

dlopen/dlsym is another approach to using shared libraries. This interface
allows you to manually open and access shared object files. For example,
suppose that libfoo.so is a shared object file containing a function bar. The
following example will open the file and call the function:

#include <dlfcn.h>
/* dlfcn.h provides the dlopen() interface */

int main()
{

void *handle;
void (*bar)(void);

/* Open the library and save the handle */
handle = dlopen("libfoo.so",RTLD_NOW);
if (handle == NULL) {

32 CHAPTER 2

/* dlerror() returns an error message */
printf("dlopen failed: %s\n",dlerror());
return 1;

}

/* Attempt to find the address of bar() */
bar = dlsym(handle,"bar");
if (bar == NULL) {

printf("dlsym failed: %s\n",dlerror());
return 1;

}

/* Good, we found bar(), so call it */
bar();

/* Close libfoo.so */
dlclose(handle);

return 0;
}

The RTLD NOW flag in dlopen indicates that dlopen should attempt to resolve all
symbols that the shared library depends on immediately. (Shared libraries can
depend on other libraries, so this is a serious concern.) The other option is
RTLD LAZY, which instructs the dynamic linker to resolve symbols as it
encounters them.

Sometimes a dynamically loaded library needs to access symbols in the parent
application. To allow these symbols to be resolved, compile the application with
the -rdynamic option and the --export-dynamic linker option. (The correct
syntax is -wl,--export-dynamic.) The -rdynamic option allows unresolved
symbols in a shared library to be matched with symbols in the parent
application, and the --export-dynamic option instructs the linker to generate
extra symbol information suitable for this purpose.

Linux Linker Quirks

The Linux linker, GNU ld, is a complex but quirky tool. Although a complete
discussion of ld is far beyond the scope of this book, here are some hints that
might make your life easier.

LINUX DEVELOPMENT TOOLS 33

ld (and therefore gcc) is sensitive about the order in which libraries and object
files are specified on the command line. If libfoo.so depends on libbar.so, you
must specify libfoo.so first (as counterintuitive as this may be). The reason is
that ld keeps track only of unresolved symbols as it links. If libfoo.so and
libbar.so depend on each other, one of the libraries will have to be specified
twice (for example, -lfoo -lbar -lfoo). This is different from the behavior of
Visual C++’s linker, and it causes headaches when porting games from Windows.
If the linker can’t find a symbol but you’re sure that you’ve given it the right
libraries, double-check the order in which they’re specified on the command line.

The Linux runtime linker does not respect the LD LIBRARY PATH environment
variable with setuid root executables. This is a bit annoying, but it is important
for security; consider the implications of allowing users to modify the library
search path for executables that are run as the root user.

Name collisions are annoying, especially because they can be extremely hard to
trace. The -warn-common flag causes a warning to be printed whenever symbols
(global variables, for instance) are combined between object files.

Finally, keep in mind that some Linux distributions (notably Red Hat, at least
as of the time of this writing) do not recognize /usr/local/lib as a library
directory, and hence any libraries placed there will not be accessible. You can fix
this by editing /etc/ld.so.conf. Remeber to run the ldconfig program after
editing the library path list.

Debugging Linux Applications

Linux’s programming environment provides support for interactive debugging.
The gcc compiler can generate symbol information for debugging, and several
debuggers are available. We will begin by demonstrating how to add debugging
information to an executable and then take a brief tour of two popular
debugging environments for Linux.

Compiling for Debugging

In order for a debugger to analyze an executable’s behavior in a way that is
useful to humans, it needs to determine the exact locations of the program’s

34 CHAPTER 2

variables and function entry points. This requires a bit of help from the
compiler; applications must be specifically compiled for debugging, or symbolic
debuggers will be useless. To compile a program with the necessary debugging
support (and in particular, support for the gdb debugger), use the -ggdb flag:

$ gcc -ggdb foo.c -o foo

It is a good idea to disable optimization when debugging (that is, do not use the
-On compiler option). Although gcc and gdb allow you to debug optimized
executables, the results might be a bit surprising (since optimization, by
definition, changes the internals of a program).

Although programmers sometimes use the -fomit-frame-pointer compiler
option in the hope of improving performance, this option is incompatible with
debugging in most cases. (It causes the compiler to omit the instructions that
usually keep track of an important piece of position information.) Compiling an
executable for debugging will increase its size and most likely decrease its
performance; executables intended for public release should not be compiled for
debugging.

gdb

The GNU debugger, known as gdb, is the primary debugger for Linux. It allows
you to single-step programs, inspect variables while programs are running, and
analyze core files (memory dump files, usually named core, generated
automatically when applications crash, affectionately dubbed “core pies”). gdb
is an extremely powerful tool, but its interface is likely to throw beginners for a
loop.

gdb is a text-based interactive debugger. Once a program is loaded into the
debugger, gdb accepts commands to direct the program’s operation. There are
lots of commands, but there is also a nice online help facility. Simply type help
for an index.

LINUX DEVELOPMENT TOOLS 35

A Trivial Example

The following program is supposed to print the numbers from 0 to 9. However, it
has a bug. There is an extra semicolon after the for loop, which causes the
printf statement to be separated from the loop. This is a fairly common error,
simple to fix but often hard to locate. gdb is great for pinpointing this type of
error, since it lets you see exactly what’s happening in the program.

#include <stdio.h>

int main()
{

int i;
for (i = 0; i < 10; i++);

printf("Counter is now %i\n",i);
return 0;

}

First, we compile the program and test it:

$ gcc -ggdb buggy.c -o buggy
$./buggy
Counter is now 10

Yikes! That shouldn’t have happened—we’ll use gdb to figure out what’s going
on. To load a program into gdb, pass the name of the program on the command
line:

$ gdb buggy
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.

license notice removed

This GDB was configured as "i386-redhat-linux"...}

gdb is now ready to accept commands. We will set a breakpoint (a position at
which gdb suspends the process for inspection) and then start the program:

36 CHAPTER 2

(gdb) b main
Breakpoint 1 at 0x80483d6: file buggy.c, line 6.
(gdb) r
Starting program: /home/overcode/book/test/buggy

Breakpoint 1, main () at buggy.c:6
6 for (i = 0; i < 10; i++);

The b command (short for breakpoint) sets a breakpoint at the specified function
name. We also could have specified a line number or an actual memory address.
In this case, gdb reports that breakpoint #1 has been successfully added for line
6 of the source file buggy.c. The r command starts the program’s execution.
Since we have set a breakpoint on the function main, gdb immediately suspends
the program and prints the current line (which happens to be the for loop with
the error). We will now use the n (next) command to single-step the program:

(gdb) n
7 printf("Counter is now %i\n",i);

The n command runs the program until it reaches a different line of code, so this
is the expected result. After executing this line of code, the program should
continue through the loop. Let’s see what happens:

(gdb) n
Counter is now 10
8 return 0;

That’s not good—the program moved on to line 8, meaning that the loop is no
longer running. It is now fairly obvious that line 7 is not part of the loop. We
can take a quick look at the source code with the l (list) command:

(gdb) l
3 int main()
4 {
5 int i;
6 for (i = 0; i < 10; i++);
7 printf("Counter is now %i\n",i);
8 return 0;
9 }

LINUX DEVELOPMENT TOOLS 37

Hopefully, at this point the programmer would notice the extra semicolon and fix
the problem. (One would hope that the programmer would have found it before
the gdb session, but we all make dumb mistakes.) gdb doesn’t eliminate the need
to study the source code for errors—it just helps you focus on the right areas.

Accessing Data

gdb can report the value of any variable that is accessible from the current scope
in the program. It can also modify variables while the program is running. To
view a variable, use the p (codeprint) command. p foo would report the current
value of foo (if foo is visible from the current location in the program). There is
also a printf command, which behaves much like its C namesake. To modify a
variable, use the set var varname=value command.

Programmers frequently need to track variables as they change throughout the
program. With gdb, you can define a list of variables to display each time the
program is suspended. The display command adds variables to this list, and
the undisplay command removes them.

gdb’s watchpoints are useful for tracing variable corruption. A watchpoint is a
hardware trap placed on a memory location. If that memory location is read
from or written to, gdb will catch the access and pause the program for
inspection. Since watchpoints are independent of the semantics of a particular
programming language, they can be used to trace memory corruption from
misplaced pointers. There are three types of watchpoints: write-only, read-only,
and access. Write-only watchpoints detect modifications but not reads, read-only
watchpoints detect reads but not modifications, and access watchpoints detect
any type of access to the given memory address. The watch, rwatch, and
awatch commands correspond to these types of watchpoints. These three
commands take a symbol name as an argument. Use the enable and disable
commands to toggle watchpoints. info breakpoints prints a list of all
breakpoints and watchpoints.

Viewing the Stack

It is often useful to examine the call stack. Programs often crash because of
invalid data passed to the C library (notably the free function), and a normal

38 CHAPTER 2

gdb crash report will list the name and memory address only of the function
where the crash actually occurred. This is essentially useless in a typical
program that makes hundreds of calls to these functions; the bewildered
programmer would have no idea where the erroneous library call took place. For
instance, the following is the late-night programmer’s worst nightmare (other
than a copy of eggdrop found running in an unknown account):

Program received signal SIGSEGV, Segmentation fault.
0x401371eb in free () from /lib/libc.so.6

This message indicates a crash in the C library itself, resulting from an invalid
call to free. This information is almost useless to us, since most nontrivial C
programs make hundreds of calls to free. Since the segmentation fault occurred
in a function outside of our program (and, more importantly, in one that does
not contain debugging information), gdb cannot simply tell us the line number of
the crash location.

gdb solves this problem with its backtrace command. When a program crashes
under gdb, backtrace will display the names of all functions that are currently
active on the stack. In this particular program, backtrace provides us with the
following information:

(gdb) backtrace
#0 0x401371eb in free () from /lib/libc.so.6
#1 0x804b85e in ParseSurf (f=0x8112568, buf=0xbfffd6f0 "SURF 0x10")

at ac3dfile.c:252
#2 0x804c71f in ParseObject (scene=0x8112620, f=0x8112568,

buf=0xbfffe34c "OBJECT poly") at ac3dfile.c:545
#3 0x804c7c3 in ParseObject (scene=0x8112620, f=0x8112568,

buf=0xbffff380 "OBJECT world") at ac3dfile.c:559
#4 0x804cb74 in AC3D_LoadSceneFile (filename=0xbffff957 "crash.ac")

at ac3dfile.c:829
#5 0x804d7a2 in main (argc=3, argv=0xbffff7e4) at ac3dembed.c:15

Aha! The invalid free call occurred while the program was executing line 252 of
ac3dfile.c, in the function ParseSurf. We now know exactly where the
erroneous call to free was made, and we can use standard debugging techniques
to figure out why this particular line caused a crash. (A hint, in case you find

LINUX DEVELOPMENT TOOLS 39

yourself in this situation: crashes in free are usually due to heap corruption,
which can result when a program overruns allocated memory buffers.)

backtrace’s output will be useless if the program has corrupted the stack in
some way. If this happens, you’re in for a challenge, but at least you’ll know to
look for memory accesses that might cause stack corruption. If you’re feeling
particularly adventurous, you can try setting a watchpoint on an address in the
stack, but it could easily be triggered by legitimate accesses as well as bugs.

Remote Debugging

Linux is a network-enabled multiuser operating system, and it makes remote
debugging extremely easy. Remote debugging (that is, debugging from a
different console than the one on which the program is running) is useful when
you’re dealing with applications that take over the screen or keyboard (as is
frequently the case with games). Anyone who has had to debug a full-screen
OpenGL game can attest to the importance of remote debugging.

gdb supports two types of remote debugging. It provides support for debugging
over a serial connection, which is useful for kernel debugging but probably
overkill for game development. Serial debugging is important when one cannot
count on the stability of the operating system itself (and therefore the stability
of the debugger). gdb also has the ability to attach to programs that are already
running. You start the buggy application (compiled for debugging) normally and
launch gdb via a remote login from a second computer. You then attach gdb to
the buggy application. Now you can use the debugger without fear of losing
control of the console. Note that gdb is running on the same computer as the
application; it is just controlled from a remote terminal.

To attach gdb to a running program, first use the file command with the name
of the executable you want to debug:

(gdb) file foo
Reading symbols from foo...done.

gdb is now ready to attach to a running copy of foo. Use the attach command
with the process ID of the running application:

40 CHAPTER 2

(gdb) attach 3691
Attaching to program: /home/overcode/test/foo, Pid 3691
Reading symbols from /usr/X11R6/lib/libX11.so.6...done.
Reading symbols from /lib/libc.so.6...done.
Reading symbols from /lib/ld-linux.so.2...done.
0x4016754e in __select () from /lib/libc.so.6

The debugger has suspended foo, and you can now use the normal gdb
debugging commands, just as if you had started foo under gdb directly.

Debugging Multithreaded Applications

Games frequently use multiple threads of execution to smoothly coordinate the
various parts of the game engine. Unfortunately, multithreading has always been
a thorn in the side of source-level debuggers. gdb can debug multithreaded
applications locally, but it cannot attach to more than one thread of an
application that is already running. This is because threads under Linux are
implemented as separate processes that share an address space, and each thread
has a separate process ID. gdb needs to catch threads as they are created in
order to debug them.

When gdb suspends a multithreaded application, it suspends all of its threads at
once. This allows you to switch between threads and examine the program
without the fear that something will change in the background. Keep in mind,
however, that single-stepping a multithreaded application may result in more
than one line of code being executed in some threads; gdb only directly controls
the execution of one of the threads.

Working with threads in gdb is not particularly difficult. The info threads
command prints a list of threads owned by the application, and the thread id
command switches between threads. gdb assigns its own thread IDs to a
program’s threads; these are listed in the leftmost column of the info threads
display. To apply a gdb command to one or more threads, use thread apply
ids, where ids is a list of thread IDs or “all.”

Unfortunately, multithreading causes problems with watchpoints. gdb can
reliably detect memory changes only within the current thread; it might fail to
detect a change caused by another thread. Watchpoints can still be useful in
multithreaded applications, but you will have to determine which thread is
causing the change on your own.

LINUX DEVELOPMENT TOOLS 41

Screen shot of ddd

ddd

Many people find the gdb interface hard to live with, and so several front ends
have been created. Perhaps the best-known front end is the Data Display
Debugger, or ddd. This program adds a nice interface to gdb, perhaps limiting
its usefulness to hardcore gdb fans but certainly making life considerably easier
for beginners.

ddd requires only a minimal introduction, because it closely mirrors the
functionality provided by gdb (and with good reason; it is gdb, inside a GUI
wrapper). To begin a debugging session with ddd, choose Open Program from
the File menu. You may then set breakpoints and control execution with ddd’s
toolbar and menus. ddd allows you to attach to running programs after the
corresponding executables have been opened. If you need a piece of functionality
provided by gdb but not ddd, you can send commands directly to gdb with the
console at the bottom of the screen.

42 CHAPTER 2

Bug Tracking

A very important but often overlooked aspect of debugging is keeping track of
the information pertaining to identified bugs. A game development team might
easily receive hundreds of bug reports during the course of a game’s development
and beta test, and it is essential to organize these reports so that the developers
can easily verify and resolve the bugs. Bug-tracking software is every bit as
important to a serious game development operation as the debugger itself.

The Mozilla project’s Bugzilla has emerged as one of the best and most widely
used bug-tracking systems. Bugzilla is a Web-based system written in Perl and
designed for use with the popular Apache Web server and MySQL database
server. With it, users can report bugs, check to see if a reported bug has been
resolved, and browse through other bugs that have been reported. Bugzilla is
covered under the Mozilla Public License, and it can be freely used and modified.
It is relatively simple to install if MySQL and Apache are already configured. To
see Bugzilla in action, visit http://bugzilla.mozilla.org.

Project Management with CVS

Collaboration is the only way to accomplish a large programming task in any
reasonable amount of time, but coordination can become difficult even with only
two or three developers working on a project. In particular, care must be taken
to ensure that one programmer’s work does not overwrite another’s. It is also
important to keep development and release versions of a piece of software
separate.

These problems are addressed by version control software. The capabilities of
these tools vary, but we will discuss the most popular tool, the Concurrent
Version System (CVS). CVS is a tool for managing repositories, which are
simply directory trees of source code with a bit of extra control information.
Each project in a repository is called a module. Modules are initially imported
into the repository, and additional files can subsequently be added. Individual
developers can check out modules, make changes, and commit the updated files
back into the master source repository when they are finished. CVS keeps a
record of the changes made to each file and allows individual files or entire trees
to be tagged with version designations. Developers can also create separate

LINUX DEVELOPMENT TOOLS 43

branches of a source tree if they intend to make substantial and possibly
dangerous modifications. Successful branches can later be merged back into the
main source tree.

What if two developers make (conflicting) modifications to the same file? Some
version control systems physically prevent this with “strong” file locking, but
CVS allows it. In the case of a conflict, CVS will prevent the most recent
modification from being committed to the repository. Instead, it will provide the
developer with a reject file listing the source code lines in question. The
developer must then merge the two sets of changes by hand and then recommit
the file. This would obviously be a continuous hassle without a bit of
coordination between developers; CVS does not replace communication and
management. It is best to avoid conflicts in the first place, but they are
sometimes inevitable.

CVS is a free tool, a fact that has played a role in its almost universal
acceptance in the Linux development community. Free software would not be
where it is today without CVS.

A Brief Tutorial on CVS

We will now work through a complete example of using CVS to manage a small
project. Suppose that we have four files: Makefile, foo.c, foo.h, and main.c.
These constitute a small programming project, but their contents are not
relevant for our purposes. We would like to create a CVS module out of these
files so that other developers can join in. For now we’ll assume that all
developers have local access to the machine hosting the repository, though it is
possible to use CVS remotely.

Creating a CVS Module

The first step is to create a repository, if one does not already exist. A repository
can host any number of modules, and it is common for software teams to use one
central repository for all of their projects (this facilitates routine backups, among
other things). To create a repository, set the CVSROOT environment variable to a
suitable location and issue the command cvs init. This will create the CVS
repository directory and initialize several important control files. The location of

44 CHAPTER 2

CVSROOT is not especially important, but make sure that your account has write
access to it. If a repository already exists, make sure the CVSROOT environment
variable is set to the repository’s location.

$ export CVSROOT=/home/overcode/cvs
$ cvs init

Warning

Do not create a CVS repository in the same directory as a project you
wish to add to the repository. This would result in an infinite loop.
CVS is remarkably brain-dead about some things, but it’s a useful tool
nonetheless.

Now we need to import the initial set of source files to the repository. Assuming
that we are in the project’s directory and that CVSROOT is set correctly, we use
the command cvs import -m "Some descriptive comment" projname
vendor label, where projname is the name of the project (“foobar” for now),
vendor is the name of the organization responsible for the project (which doesn’t
matter too much to us), and label is an indication of the software’s progress,
such as initial or start. This command will copy the project’s files into the
CVS repository under the given project name. The project is now controlled by
CVS, and the original files can safely be deleted.

For the purposes of our tutorial, the correct import command is cvs import -m
"CVS Example" example xyz start. This command must be executed from the
directory containing the four source files, and CVSROOT must point to the
initialized repository.

$ cvs import -m "CVS Example" example xyz start
N example/foo.h
N example/foo.c
N example/main.c
N example/Makefile

No conflicts created by this import

LINUX DEVELOPMENT TOOLS 45

Working with a CVS Project

Once a project is in CVS, multiple developers can safely access the project’s files
without too much fear of colliding with one another. Each developer should
make his or her own working copy of the project (with the cvs checkout
projname command). For our tutorial, switch to a new directory and type cvs
checkout example. CVS will copy the four example files to a new directory
called example. You can now make any modifications you like to the files, and
other developers can join in by checking out their own copies of the project.

Warning

Try to avoid editing files in a CVS repository directly. Doing so defeats
the whole purpose of CVS, and it is sure to cause massive headaches for
the next person to commit a working copy to the repository.
CVS-controlled files are marked read-only to help prevent this from
happening. CVS is not designed to be a nuisance (quite the opposite,
actually), but it requires a bit of cooperation from its users.

When you have finished making modifications to a project’s files, you should
commit them back into the repository for everyone else to use. For example,
suppose that we have corrected an error in foo.c, and we want to integrate this
modification back into the master source tree. From the directory containing our
working copy, we would type cvs commit -m "Description of changes".

$ cvs commit -m "Fixed a typo."
cvs commit: Examining .
Checking in foo.c;
/home/overcode/testcvs/example/foo.c,v <-- foo.c
new revision: 1.1; previous revision: 1.0
done

What if someone has made conflicting modifications to the master copy of
foo.c? It would be bad to simply overwrite those changes; that person may have
spent a lot of time on them. CVS obviously doesn’t know how to rewrite source
code to integrate changes (beyond a certain, very limited capability), so we must
intervene and merge the changes ourselves. The transaction might look
something like this:

46 CHAPTER 2

$ cvs commit
cvs commit: Examining .
cvs commit: Up-to-date check failed for ‘foo.c’
cvs [commit aborted]: correct above errors first!

This response indicates that somebody else has modified foo.c, and so this file
requires special attention. To correct the problem we need to perform a CVS
update, which will compare our modified version with the one on the server and
produce a list of conflicts.

$ cvs update
cvs update: Updating .
RCS file: /home/overcode/testcvs/example/foo.c,v
retrieving revision 1.4
retrieving revision 1.5
Merging differences between 1.4 and 1.5 into foo.c
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in foo.c
C foo.c

The file foo.c now contains diff-like information showing which lines need to be
merged. We should edit the file, decide how to resolve the conflicting lines of
code, remove CVS’s information, and perform another cvs commit. Unless more
modifications have been made to the master file, CVS will accept the second
commit.

CVS Revision Numbers

CVS automatically assigns revision numbers to the files in a source
repository. These numbers are incremented after each successful
commit. They are intended for reference within the CVS system, and
they generally do not correspond to a product’s actual version numbers.

Adding and Removing Files

To add a file to a CVS module (that is, to ask CVS to start controlling a newly
added file from your working directory), use the cvs add command. For

LINUX DEVELOPMENT TOOLS 47

instance, to add a file named qux.c to the foo module, you would use the
command cvs add qux.c. You can specify wildcards, but be careful when doing
so. To add a directory to a CVS module, simply add one or more files within
that directory.

Removing files from CVS is a bit trickier. There is a cvs remove command, but
it can be used only if the file in question no longer exists. For example, suppose
that you erroneously added qux.c to CVS. To remove it, you would first have to
delete or rename your working copy of qux.c and then run the cvs remove
command. This is truly annoying, but it does at least make you think twice
before ripping a file out of the source tree. CVS never actually deletes these files;
instead, it stores them in a special directory called Attic, from which they can
usually be recovered.

Branching Source Trees

Developers often have great ideas, but they’re sometimes risky or difficult to
implement. CVS allows developers to create branches of source trees so that
they can test these ideas without jeopardizing everyone else’s work. If these
experimental branches work out, CVS can merge them back into the main source
tree. Branches are also good for creating release snapshots of a source tree so
that individual releases can be maintained while the main development process
continues. For instance, if the Linux kernel team were to use CVS (which it does
not), the “cutting edge” kernel would probably be in the main tree, while each
major release (2.2, 2.4, and so on) would have its own branch for continued
maintenance (such as security patches and driver backports).

To branch a source repository, use the cvs rtag (remote tag) command with the
-b (branch) option. This will create a new branch of the current source tree and
tag it with a name. For example, suppose we want to add a gltweak branch
(presumably for OpenGL tweaking) to the example tree:

$ cvs rtag -b gltweak example
cvs rtag: Tagging example/foo.h
cvs rtag: Tagging example/foo.c
cvs rtag: Tagging example/main.c
cvs rtag: Tagging example/Makefile

48 CHAPTER 2

Most CVS commands allow you to select a branch with the -r option. To check
out the new gltweak branch, use cvs co -r gltweak example. (Likewise, you
would use cvs update -r gltweak example to update an already checked-out
source tree to a new copy of the branch.) Once you’ve checked out a tagged
branch, all further updates and commits from that directory will automatically
refer to the branch rather than to the master source tree. It is possible to merge
a branch back into the main tree with the cvs update -j branchname
command (of course, this is likely to produce conflicts, just as any other merge
might).

You may have noticed that the cvs rtag command operates on the CVS
repository rather than on a checked-out copy of the code. You can tag an
existing directory just as easily (in which case the branch will actually be created
whenever it is committed). This might be useful if you decide that things are
getting out of hand halfway into a major hacking session. The command for this
is simply cvs tag.

Branching is certainly useful, but use it with care. It’s easy to make a mess of a
source repository unless you manage this sort of thing carefully.

Accessing CVS Remotely

CVS is well suited to the Internet’s massively distributed environment. It
supports remote access with its client/server mode. Setting up a CVS server is
not too difficult, but it is beyond the scope of this section.6 However, it is
important to know how to access remote CVS servers, since they are frequently
used for Linux-related projects on the Internet.

CVSROOT normally points to a directory on the local machine, but it may also
specify a remote CVS site. The general syntax of a remote CVSROOT is

:pserver:username@hostname:path

6 SourceForge (http://www.sourceforge.net) offers free remote CVS repositories to open
source developers.

LINUX DEVELOPMENT TOOLS 49

The username must exist on the remote CVS site, though many projects provide
a username for the general public to use. The path specifies the directory
location of the CVS repository on the remote machine.

Remote CVS access is similar to local access, but you must first log in to the
remote site with the cvs login command. For example, suppose you want to
obtain the latest version of SDL from Loki Software’s public CVS server:

$ export CVSROOT=:pserver:guest@cvs.lokigames.com:/cvs
$ cvs login
(Logging in to guest@cvs.lokigames.com)
CVS password: guest
$ cvs checkout SDL
cvs server: Updating SDL
...

Since source modules can grow quite large, CVS provides a compression option
for bandwidth-deprived users. The -zn option asks CVS to use compression for
its downloads, where n is a number from 0 to 9. CVS actually uses GNU’s gzip
program for its compression, and n specifies the gzip compression level to use.
Compression is a very good idea for performing CVS updates over slow
connections.

Other Useful Tools

UNIX is full of useful programming tools; unfortunately we can’t cover them all
here. This section points out several standard shell utilities that often come in
handy for programming projects. A full explanation of these utilities is left to
the appropriate online manual pages.

Rapid Text Searching with grep

Programmers often need to search source code for specific strings. For instance,
a programmer might need to check the way that a certain OpenGL function is
implemented but might not know which source file contains the function’s code.
The grep utility can quickly search any number of files for a given piece of text.

50 CHAPTER 2

grep is based on regular expressions. A regular expression (regex) is a pattern for
matching text.7 A regex matches a string of text if all of the string’s characters
are described by the regular expression in some way. grep’s basic job is to search
text files and print out all lines that match a given regex. For an explanation of
regular expressions, see the grep(1) manpage (type man grep at a shell prompt).

Updating Source with diff and patch

If you’ve worked with CVS, you’ve probably seen diff and patch (or a close
equivalent) in action. Source code tends to change quickly, though specific
changes are often small and isolated. If another developer is collaborating on a
project, it doesn’t make sense to trade entire source trees; it would be better to
send just the parts of a source tree that have changed since the last update. diff
is a utility for comparing two files or directories and generating a delta (or patch)
that can be used to change one into the other. Deltas can be applied with the
patch utility. CVS uses this patching technique internally to keep track of
project revisions without maintaining multiple copies of the entire project. The
Linux kernel development team uses patches to exchange code improvements.

The basic usage of diff is very simple. To create a delta file that describes how to
convert the file foo into the file bar, simply feed the two files to diff and catch
diff’s output with redirection:

$ diff foo bar > foo.patch

foo.patch now contains a description of the differences between the files foo
and bar, and this file is sufficient for the patch utility to convert foo into bar.

7 Do not confuse regular expressions with globs, which provide a much simpler (and less
powerful) way to match strings. Most UNIX shells (such as bash) use globs for matching
filenames, and this throws many UNIX users for a loop.

LINUX DEVELOPMENT TOOLS 51

Warning

When you specify files to diff on the command line, be sure to put the
original file first and the new file second. Programmers often generate
deltas in the wrong order. This is a bad thing!

To patch a file with a delta, supply the patch utility with the name of the file on
the command line and the delta information on standard input. The following
example uses the delta we just generated to patch foo into bar:

$ cat foo.patch | patch foo

Or, equivalently,

$ patch foo < foo.patch

The patch utility generally prints status information to indicate its success or
failure. Patching usually succeeds, but it can fail if the file to be patched has
been otherwise modified since the delta was generated. The patch utility tries to
recover from this situation, but sometimes it is necessary to perform the patch
yourself. It’s not too hard, but it’s a situation you’ll want to avoid if possible.

patch can also handle entire directories. Suppose you’ve made modifications to a
source tree in the new/ directory, and there is a copy of the original source tree
in the old/ directory. You can generate a complete diff of the two directories
with the following command:

$ diff -ubr old/ new/ > foo.patch

This command causes diff to recursively scan through each directory, comparing
files with the same name and outputting a complete chunk of patch data for the
entire set. The -b option instructs diff to ignore changes in whitespace (such as
indentation). You would obviously leave this option out if your code involves a
language in which indentation is significant (such as Python). To apply the
patch generated with this command, change to the directory containing the
source tree you want to patch, and feed the file to the patch utility:

52 CHAPTER 2

$ patch -p1 < foo.patch

The -p1 option tells patch that it is already in the directory to be patched
(which, in all likelihood, has a different name than the directory from which the
patch file was generated) and that it should ignore the first part of each filename
it encounters.

Time to Move On

There are a lot of useful utilities that we haven’t mentioned (or just haven’t done
justice to) here, but we have covered the most valuable tools for game
programming. gcc and gdb are the most important by far (after a
programmer-friendly text editor, of course), and you would do yourself a favor to
become proficient with them.

It’s time to move on. The next chapter concerns the programming toolkits
you’re likely to use for programming Linux games, and after that we’ll get into
programming with the SDL library.

Chapter 3

Linux Gaming APIs

I still remember the first game programming book I ever read. By Dave Roberts,
it was entitled PC Game Programming Explorer, and it demonstrated game
programming with a game called Alien Alley. This was actually a neat game,
especially for one intended as a book example: its graphics were smooth, the
artwork was top-notch, and it ran well on my rather underpowered system. It
would be easy for me to write such a game today, even in a matter of a few
hours. But to a neophyte game programmer, it seemed a towering monolith.

Back in the days of DOS-based gaming, programmers generally wrote games by
issuing commands directly to the computer’s hardware. There were only a few
popular types of sound cards on the market, and many were at least partially
compatible with Creative Labs’ Sound Blaster. Input devices were trivial to
program: accessing the mouse required only a few assembly language
instructions (interrupt 33h, for those who remember), reading the joystick’s
position was a matter of a dozen lines of code, and there were several easy ways
to collect keyboard input. Video programming was the hardest part of game
development at the time: Although nearly every computer had a
VGA-compatible display chip, coaxing fast and smooth graphics out of it took a
significant amount of skill (due to some of the brain-dead limitations of the PC
architecture). In fact, Alien Alley was mostly video code.

Times have changed, arguably for the better. Very few game programmers
actually write register-level video code these days; instead, they rely on

54 CHAPTER 3

prewritten interfaces (such as OpenGL, SDL, and DirectDraw). Direct hardware
hacking is fun, but it slows down game development and usually produces
unportable code (with the unfortunate effect that many “old school” games are
extremely difficult to port to modern environments). Even if I could find the
floppy disk that came with my copy of PC Game Programming Explorer, I
doubt that I could port Alien Alley to Linux in any reasonable amount of time,
simply because it depends on certain hardware-level features of the original VGA
graphics adapter.

DOS programs are given free reign of the entire system; they can freely access
memory or hardware ports, and they are effectively allowed to shove the
operating system out of the way. Linux programs, on the other hand, are not
generally allowed direct access to the system’s hardware; they must either use
interfaces provided by the Linux kernel or obtain special permissions, requiring
the program to be executed under the godlike root account (a potential security
risk). The Linux kernel also prevents programs from directly accessing certain
areas of the system’s memory. In return for these restrictions, Linux is able to
prevent applications from interfering with one another, thereby ensuring the
system’s stability and security.

The bottom line is that we’ll probably want to avoid talking directly to the
system’s multimedia hardware, but instead use one of many existing libraries for
the purpose. It saves time and effort, and libraries are usually more fully
developed and stable than code written for a particular game.

This chapter tours the variety of game-programming toolkits available under
Linux. Most are free and open (indeed, I am wary of any Linux toolkit that isn’t
these days). If you intend to use these toolkits, familiarize yourself with the
terms of the GNU Library General Public License (LGPL): It is possible to
legally develop closed source, commercial software using LGPL libraries under
certain conditions; something that has been a frequent source of confusion
among developers.

Multimedia programming is a broad field, and so we have divided our tour into
several categories. Some packages provide several types of functionality, and they
will be mentioned more than once. Finally, some capabilities are provided by the
Linux kernel itself, in which case we will simply refer to “the kernel” or “Linux.”

LINUX GAMING APIS 55

Graphics APIs

Linux offers several options for graphics programming. Most of today’s Linux
games use the X Window System in some way, as it is almost universally
available, well supported, and at least tolerably fast.1 Recently the Linux
framebuffer device interface has been making inroads into gaming, and this
interface has a lot of potential. Finally, SVGALib provides a way to get
extremely fast access to SVGA-compatible video devices.

SVGALib

As its name implies, SVGALib is a library for programming Super
VGA-compatible video hardware, which is extremely fast because it directly
accesses the system’s video hardware. SVGALib has fallen out of favor recently,
due to its inconvenient interface, its failure to fully support many of today’s
video chipsets, and its demand for root privileges. Furthermore, it is known to
conflict with the X Window System, and in some cases it is incompatible with
Linux’s new framebuffer device system. While SVGALib is still under
development, it is reasonable to predict that its use will continue to decline.

SVGALib is distributed with a sister library called vgagl (not to be confused
with the OpenGL library). The vgagl library provides higher-level drawing and
blitting functions that make an SVGALib programmer’s life a bit easier.
SVGALib also includes sublibraries for keyboard and mouse access.

If you really want to mess with SuperVGA video cards, don’t mind locking up
your console occasionally, and don’t care too much about wide compatibility,
SVGALib may be worth looking into. Otherwise, your hacking effort is probably
better spent elsewhere.

1 The X Window System is incredibly flexible, and it’s really not a bad platform for gaming.
However, its design requires all graphics data to pass through certain predefined channels,
and the use of extensions is required to achieve acceptable game performance in most cases
(among these extensions are shared memory access and the XVideo extension). X was never
really intended for today’s level of high-speed graphics processing. Some people think X
should be replaced with a new system, but I believe that it just needs a bit of reworking in
some areas. X has a lot going for it.

56 CHAPTER 3

GGI

General Graphics Interface (GGI) is a massive, general-purpose, multitargeted
graphics library that provides a complete graphics system for games and other
applications. Its companion library, GII, provides portable input device support,
and games that use it are meant to be easily portable to any platform. GGI does
not depend on any one method of accessing graphics devices; instead, it provides
a system of “back ends” that can support just about anything remotely
resembling a graphics device. The GGI Project is also working on a kernel-based
graphics infrastructure, KGI. GGI is free software, distributed under the GNU
LGPL. The GGI Project’s Web site is http://www.ggi-project.org.

SDL

Simple DirectMedia Layer (SDL) is a cross-platform multimedia library
developed with commercial game porting in mind. (In fact, it has already been
used to port a number of games from Windows to Linux, including most of
Loki’s titles.) SDL supports almost all of the major operating systems, including
Linux, Windows, BeOS, and MacOS. In addition to fast graphics support, SDL
provides interfaces for playing sound, accessing CD-ROM drives, and achieving
portable multithreading.

SDL is also an excellent library for free software projects: Released under the
GNU LGPL, it has everything a programmer needs to write fast, portable
games. SDL has accumulated a collection of user-contributed libraries that
provide additional functionality for game developers.

We will discuss the SDL library in detail later. SDL’s Web site is
http://www.libsdl.org, and a helpful group of SDL enthusiasts (including
myself)2 gathers on IRC at irc.openprojects.net, #sdl.

2 My name on IRC is “overcode.” I’m not difficult to find.

LINUX GAMING APIS 57

ClanLib

ClanLib is a C++ game-programming library that, like SDL, stresses platform
independence and optimal use of the system’s underlying multimedia resources.
Released under the GNU LGPL, ClanLib’s design is very clean and extensible.

ClanLib is a higher-level library than SDL: Whereas SDL provides a relatively
small set of C functions for accessing the computer’s hardware in a portable way,
ClanLib provides a complete C++ infrastructure for game development. We will
cover SDL rather than ClanLib in this book, but ClanLib is certainly a worthy
contender. You can find more information about ClanLib at
http://www.clanlib.org.

OpenGL

OpenGL is a 3D graphics API designed by Silicon Graphics and developed by an
Architecture Review Board (ARB) of graphics industry leaders. Although it was
not originally intended as a game-programming library, OpenGL has found a
place as a convenient interface standard for hardware-accelerated 3D graphics,
and therefore lends itself well to gaming. The Mesa 3D Graphics Library is a
free implementation of the OpenGL specification, and there are Mesa-based
Linux drivers for several popular 3D accelerator cards.

Unfortunately, we can’t cover OpenGL here in the detail it deserves (3D graphics
is a subject of its own), but we’ll at least demonstrate how to gain access to
OpenGL from within SDL programs. This particular combination allows us to
use the rendering power of hardware-accelerated OpenGL with the various
amenities provided by SDL, and it is an excellent platform for developing games.
Loki Software has successfully used SDL and OpenGL to port several
commercial games to Linux, including Heavy Gear II and Soldier of Fortune.

For more information on OpenGL, see the most recent version of the OpenGL
ARB’s OpenGL Programming Guide, or visit http://www.opengl.org.

Plib

Plib is the collective name for several individual game-programming libraries
written by Steve Baker. The purpose of this library is to build a usable game

58 CHAPTER 3

programming environment out of the OpenGL GLUT toolkit (more on GLUT in
the next chapter). This collection includes sg (“Simple Geometry,” routines for
fast 3D math), ssg (“Simple Scene Graph,” for manipulating 3D scene data), pui
(“Picoscopic User Interface,” a simple menu and dialog box system), sl (“Sound
Library”, a portable sound interface), and several other useful components. Plib
is available at http://plib.sourceforge.net. These libraries are free software,
available under the GNU LGPL.

Glide

Glide is 3Dfx’s native 3D programing library, designed specifically for 3Dfx
graphics chips. It is a much lower-level library than OpenGL, serving mainly as
a consistent interface for all video cards based on 3Dfx chipsets. Since 3Dfx no
longer has a virtual monopoly in the 3D accelerator business, Glide has lost a
certain amount of popularity recently. With the advent of accelerated OpenGL
under Linux, there are very few good reasons to use Glide for new game projects,
and now that 3Dfx is out of business it’s even less of an issue. It is mentioned
here only because it has been an influential API during the past few years.

Xlib

Some game programmers eschew all of these “programmer-friendly” libraries in
favor of using the X Window System directly (via the native Xlib API). While
experienced programmers may achieve small performance gains this way, they do
so at the expense of portability and simplicity.

Xlib is not particularly difficult to use, but it is meant to be used as a base for
constructing other toolkits, rather than as a library for writing actual
applications. Xlib is a bit too verbose for my taste, but you might find it
enjoyable. If you’ve ever written an application with the Win32 API, you have a
good idea of what Xlib programming is like, except that in most cases Xlib
requires even more library calls to get anything done. Remember that toolkits
such as SDL and ClanLib already use a number of Xlib’s tricks to achieve their
level of performance, and if you code for Xlib directly, you’ll be duplicating this
work.

LINUX GAMING APIS 59

If you’re interested in learning Xlib (perhaps not a bad exercise, whether or not
you actually intend to use it), you’ll want to get one or two of the books from
the official X Window System documentation series. See the Bibliography for
more info.

Graphical User Interface Toolkits

Many games use menus and dialogs to let the user make configuration changes
and select the type of game to play. In many cases it’s practical to build an ad
hoc interface for a particular project, but games with complex settings might
benefit from a more substantial user interface toolkit. There are plenty of good
GUI packages to choose from.

GTK+

Originally developed to serve as the GNU Image Manipulation Program’s user
interface, GTK+ (formerly just GTK) is an enormous GUI library that
somewhat resembles the time-tested Motif toolkit. GTK+ is implemented on top
of an abstraction layer called GDK, freeing GTK+ from low-level concerns like
input gathering and pixel format conversion.

GTK+ is implemented in pure C, but C++ wrapper libraries are available. Its
programming model takes a bit of getting used to, but it is powerful enough for
building interfaces for large applications. It would be a major hassle to port
GDK/GTK+ to work with anything but the X Window System or Microsoft
Windows, so you can pretty much forget about using it to develop games for the
framebuffer console.

The GTK+ project is online at http://www.gtk.org.

Tk

The Tk toolkit was originally created as a windowing interface for the Tcl
scripting language, but it’s since found its way into a number of other
environments. It is an extensible and flexible GUI toolkit for X11, Windows, and
MacOS. Tk is tied to Tcl, but you can still develop your application in C and
only use Tcl to build the interface. (If you don’t mind a bit of extra effort, you
can bypass Tcl entirely, but Tk wasn’t really designed for this.)

60 CHAPTER 3

Tk is available under the same (extremely liberal) license as Tcl, and it can be
modified and used in any type of application with very few restrictions. More
information is available on http://www.tcltk.org.

Fltk

Fltk stands for “fast, light toolkit.” It is a very small C++ GUI toolkit that
works on several different platforms (and is easily portable to others). Fltk
requires very little of the underlying platform, and this makes it a good
candidate for integrating into existing graphics systems (games, for instance).
This toolkit is released under the GNU LGPL, and more information is available
from http://www.fltk.org.

Qt

Qt is a comprehensive, portable application development system for C++. It
shares some similarities with Microsoft’s MFC toolkit, but it’s refreshingly
different in implementation. Qt is portable between UNIX and Windows, and
there is even an embeddable version of Qt for handheld devices. It’s really not
fair to call Qt a GUI toolkit; it does serve that purpose, but it also provides
basic data structures, file I/O, networking, and image loading and saving.

TrollTech (a free software–friendly Norwegian company) created and maintains
Qt as a commercial product, and you need to buy a license if you intend to use
Qt in proprietary software. The Linux version is available under both the GNU
General Public License and the custom Q Public License, but these require all
unlicensed Qt applications to be free. Qt is great for creating free software and
for serious commercial development, but it’s probably not what you want if
you’re interested in small-scale, nonfree development.

More information on Qt is available at http://www.trolltech.com.

SDL GUI Support

There’s no “official” SDL GUI toolkit, but there are a few user-contributed
libraries that fill this niche. The SDL gui library provides basic things like
frames, menus, and widgets, while the SDL console library implements a

LINUX GAMING APIS 61

Quake-like popup console system. Both of these libraries are free software, and
you can hack them to your liking (provided, of course, that you contribute your
modifications back to the community at large).

These and other user-contributed SDL addons are available on
http://www.libsdl.org.

Audio APIs

Linux supports most of today’s sound cards. There are two competing standards
for kernel-level sound support—OSS and ALSA—but fortunately neither is
difficult to work with, and games commonly support both.

OSS

The Open Sound System (OSS) is the original sound-programming interface for
Linux. Maintained by 4Front Technologies, OSS provides a consistent
kernel-based interface to sound hardware. Its API is not especially pretty, but if
you close your eyes and pretend you’re doing something fun you can almost
forget about it.

OSS supports most of today’s sound cards, but some of the newer drivers are not
free and require a commercial OSS license. The free portions of OSS (OSS/Free)
are included in the Linux kernel (and are no longer directly maintained by
4Front).

There are two types of OSS programs: “nice” and “rude.” Nice OSS programs
are likely to work on just about anything that remotely claims to be OSS
compatible, including vendor-supplied drivers, FreeBSD’s sound system, and
ALSA’s OSS emulation module. In fact, most OSS programs are basically nice.
Rude OSS programs do unusual things with the driver, such as memory-mapping
the driver’s DMA buffer. While the maintainers of OSS discourage this, some
people do it anyway (Quake 3 is a notable example). We’ll discuss a variety of
OSS programming techniques in Chapter 5.

More information on OSS is available from 4Front Technologies at
http://www.4front.com.

62 CHAPTER 3

ALSA

Advanced Linux Sound Architecture (ALSA) is a community project that seeks
to surpass OSS in all areas. The ALSA team has created a complete set of
kernel-level sound card drivers, an easy-to-use programming interface, and a
facility for emulating OSS. ALSA is not without its fair share of quirks, but it is
a viable alternative to OSS for sound support and, with few exceptions, games
that support OSS are also compatible with ALSA. It would be good to see
ALSA grow in popularity since it has a lot of functionality and a lot of promise.
The only serious problem with ALSA is that it is somewhat of a moving target;
its API changes frequently. For more information on ALSA, visit
http://www.alsa-project.org. We’ll address ALSA programming in Chapter
5.

ESD

The Enlightened Sound Daemon (ESD, also called EsounD) is a sound server
that allows multiple applications to share a single sound card. ESD-aware
applications send their sound streams to ESD, and ESD mixes them internally
into a single output stream. Some people love ESD, and some hate it; it has its
fair share of technical problems, but results are acceptable in most cases. The
main problem with ESD (other than its bugginess and lack of documentation) is
the basic fact that it takes time for audio data to travel over a network, and this
results in a significant delay before sound actually gets to the soundcard. ESD
currently uses a fixed-sized buffer, regardless of the type of network or sound
card. This latency can be rather disruptive for gameplay, but it’s usually not a
problem for music playback and other things that don’t need to be precisely
timed.

Recently some sound card drivers have started to support multiple device opens;
that is, the driver allows multiple programs to use the sound card at once. This
renders ESD more or less obsolete, but these drivers are in the minority right
now.

ESD is an excellent software package, but programming information is very
sparse, other than a few spare comments in the header file and various
ESD-enabled projects that users have written. We will cover the basics of ESD
programming in Chapter 5.

LINUX GAMING APIS 63

OpenAL

The Open Audio Library (OpenAL) is an environmental 3D audio library that
supports just about every major platform. It aims to provide an open
replacement for proprietary (and generally incompatible) 3D audio systems such
as EAX and A3D. OpenAL can add realism to a game by simulating attenuation
(degradation of sound over distance), the Doppler effect (change in frequency as
a result of motion), and material densities. OpenAL has been used in several
Linux game ports, including Heavy Gear II and Sid Meier’s Alpha Centauri.

The OpenAL Web site is http://www.openal.org, and we will cover its API in
Chapter 5.

Scripting Libraries

Tcl

Tool Command Language (Tcl) is a very simple extension language designed to
automate a variety of tools. It often loses out because some people try to use it
as a replacement for Perl (which it is not), but its simple syntax and convenient
extension mechanism make it an ideal candidate for game scripting. Tcl is good
at processing strings, but it is a poor choice for high-volume number crunching
and data manipulation. We will implement a game scripting engine with Tcl in
Chapter 6.

The command-line Tcl interpreter and extension libraries are available as source
and binaries from http://www.scriptics.com. Although Tcl is commercially
maintained, it is free software.

Guile and MzScheme

Scheme is a modern programming language that draws heavily from Lisp. It was
designed primarily by Guy Steele in 1979, and it has evolved quite a bit since
then. Scheme tends to scare away novices due to its prefix notation, its heavy use
of recursion, and the simple fact that it is a Lisp derivative, but advanced users
generally find it an amazingly expressive language. Scheme can be parsed and
executed very quickly, and it is sufficiently powerful to serve as an excellent game

64 CHAPTER 3

scripting language. The decision to use Tcl instead of Scheme for our scripting
examples was difficult, but I felt that Tcl would make for more straightforward
examples. However, Scheme would probably provide better performance.

Guile is the official GNU extension language. It is a reasonably complete Scheme
implementation, but its documentation is extremely sparse. You can find it at
http://www.gnu.org/guile.

MzScheme is a complete and actively maintained Scheme system from Rice
University (and others). It implements the latest official Scheme standard
(R5RS) almost completely, and it extends the language in various ways to make
it more practical as a general-purpose programming language. MzScheme
functions both as a standalone Scheme interpreter and an embeddable scripting
library. If you’re interested in using Scheme as an extension language, MzScheme
would be an excellent choice. It is available at http://www.cs.rice.edu/PLT.

Python and Perl

You’re probably familiar with Python and Perl, and you may already be
proficient in one of these languages. While most commonly used as standalone
scripting languages, Python and Perl can also be embedded in applications to
provide modular scripting support. We won’t be using these languages in this
book (we’ll use Tcl instead), but their scripting interfaces are not terribly
difficult (very similar to Tcl, which we’ll discuss in Chapter 6). Perl is superb at
string processing, and Python has a bit of an object-oriented slant. Which
language is better suited to game development is anybody’s guess.

Perl and Python are available from http://www.perl.org and
http://www.python.org, respectively, and each language comes with plenty of
online documentation.

Networking APIs

Networked gaming is big, and it is here to stay. There are several networking
interfaces for Linux, but almost all of them revolve around the BSD sockets API
that became a standard part of UNIX years ago.

LINUX GAMING APIS 65

BSD Sockets

A socket is a UNIX file descriptor that designates a network connection rather
than a file on disk. Sockets can be thought of as telephone handsets; they are
communication endpoints through which data can be transferred in either
direction. Sockets are most commonly used with TCP/IP, the stack of protocols
behind the Internet.

The advantage of programming with TCP/IP sockets is that TCP/IP is an
incredibly versatile protocol. Some version of the BSD sockets API can be found
in nearly every operating system, including Linux, Windows, BeOS, and Mac
OS. TCP/IP can be used for both local (LAN) and wide-area (WAN)
networking, and the protocol can be adapted to the nature of a particular game.

Chapter 7 focuses on socket programming. Even if you decide to use an
additional toolkit for convenience, it is important to understand how sockets and
the underlying network protocols operate.

OpenPlay

OpenPlay is the successor to NetSprocket, Apple’s network gaming support
library. It is a cross-platform library (implemented in C), and it compiles on
Linux as well as Windows and MacOS. OpenPlay is released under the terms of
the Apple Public Source License, which is a corporate-friendly license that seems
to be remotely inspired by the GNU GPL. OpenPlay is a substantial API
designed to compete with Microsoft’s closed and proprietary DirectPlay.
OpenPlay shows promise, but its Linux port is still under development.

It remains to be seen whether OpenPlay for Linux will catch on. Some Linux
developers seem to distrust Apple (not always for rational reasons), but the
finished port of OpenPlay will have a lot to offer. OpenPlay is available on
Apple’s public source site, http://publicsource.apple.com.

IPX and SPX

Internetwork Packet Exchange (IPX) is a simple networking protocol similar to
the Internet’s underlying IP protocol, and Sequenced Packet Exchange (SPX) is
a higher-level protocol similar to the Internet’s TCP protocol. These protocols

66 CHAPTER 3

(often collectively referred to as IPX) were designed by Novell for its NetWare
line of products. IPX has fallen out of favor, but it is still used in a number of
games. IPX is fine for small private LANs, but it is not ideal for large networks.
Should you choose to support IPX in your games, the Linux kernel provides the
necessary networking code (via the normal BSD sockets interface). It is not
terribly difficult to support both TCP/IP and IPX with the same networking
code.

File Handling

Games often need to load images and audio samples from files. This can be a bit
of a trick with today’s complex file formats and compression techniques.
Fortunately, you can usually avoid doing this decoding yourself—there are
Linux-compatible libraries for just about every type of image or sound file you
could possibly want to load. Many of these libraries are free software.

libpng and libjpeg

These two libraries allow you to load Portable Network Graphic (.png) and
JPEG (.jpg) images, respectively. PNG is an excellent general-purpose image
format that compresses images without loss in detail. It is based on a completely
open specification, and it is widely supported by image manipulation programs.
JPEG is an older, “lossy” image format that does a good job with landscapes
and other natural scenes but produces noticeably lousy results with precise
images such as line art. JPEG is also an open standard.

If you need to add support for PNG or JPEG images to a game, these libraries
are the way to go. It would not be a good idea to try to implement either format
yourself unless you have a lot of time on your hands. We’ll use these libraries in
this book, albeit indirectly: the SDL image library (Chapter 4) links against
them to provide seamless PNG and JPEG loading support.

libpng is the offical PNG reference library, and it is available at
http://www.libpng.org. libjpeg is maintained by the Independent JPEG
Group at http://www.ijg.org. These libraries are included in most Linux
distributions.

LINUX GAMING APIS 67

libaudiofile and libsndfile

libaudiofile and libsndfile are libraries for loading audio data from files. Each can
read and write a wide assortment of file formats. There is a lot of functional
overlap between these two libraries, but they have different interfaces. libsndfile
is probably the more convenient of the two, and we will use it for loading wave
files in Chapter 5. libaudiofile has a slightly more arcane (but perhaps more
powerful) interface, but it can be a bit annoying to use.

libsndfile was designed and written by Erik de Castro Lopo, and it is available
under the GNU LGPL license. libaudiofile was originally implemented by Silicon
Graphics for its multimedia workstations, but it has since been largely
reimplemented as free software, and it has been officially adopted by the
GNOME project.

You can find more information about libsndfile in Chapter 5 or at the library’s
home page, http://www.zip.com.au/%7Eerikd/libsndfile/.

libaudiofile is available at http://www.68k.org/%7Emichael/audiofile/, but it
is included in most Linux distributions. You’ll probably have to download
libsndfile yourself. It’s worth the trouble.

Ogg Vorbis

Ogg Vorbis is a new audio compression scheme designed to compete with MP3
and the upcoming (stymied) SDMI format. Vorbis is patent-free, and support for
it can easily be dropped into an application with the libvorbis library. Although
Ogg Vorbis is still under development, the bitstream format is finalized (meaning
that future versions of Vorbis will not break compatibility), and, at this writing,
it already compresses audio data slighly better than MP3 (with further
improvements expected soon). Let’s hear a round of applause for the people
behind the Ogg project!

We will use Ogg Vorbis to implement game music in Chapter 5. The Vorbis
library is available for free download online at http://www.vorbis.com.

68 CHAPTER 3

The SDL MPEG Library, SMPEG

The SDL MPEG library is a free MPEG-1 video and audio library with a heavy
SDL slant. If you want to add MPEG-1 video or MP3 audio playback to your
SDL-based game or application, SMPEG is an excellent choice. It may or may
not be a viable solution for non-SDL programs, though (since SMPEG outputs
directly to SDL surfaces).

MPEG-1 is popular compressed video format based on the discrete cosine
transform and motion prediction. It is lossy (that is, it discards video data that
it judges to be of less importance), but it generally produces good results, and it
is commonly used for game cinematics. MPEG-2 is a newer video codec that
produces higher-quality results at the expense of a lower compression ratio, but
it is encumbered by patents and is therefore not supported by SMPEG.

The SMPEG library is available in the Development section of
http://www.lokigames.com. Loki Software commercially maintains it for use in
its games, but SMPEG is free software.

zlib

zlib (pronounced zee-lib or zeta-lib) is a general-purpose data compression
library that implements the gzip format. It features an interface very similar to
the stdio codefopen and codefwrite functions, and it is often used as a drop-in
replacement for such. zlib is a good option when you need decent compression
and don’t want to code it yourself.

This library is very widely used, and there’s a very good chance that it’s already
present on your Linux installation. You can download zlib’s source code from
http://www.gzip.org.

On to the Code!

Enough groundwork. It’s time to throw around some code. In the next chapter
we’ll talk about the SDL library, a one-stop shop for portable graphics and
audio. We’ll also get started on Penguin Warrior, a complete Linux game that
we’ll develop over several chapters.

Chapter 4

Mastering SDL

Simple DirectMedia Layer (SDL) is a cross-platform multimedia library that has
been used in countless free games and several commercial projects. SDL works
with a platform’s underlying multimedia capabilities to provide a consistent and
open API across multiple operating systems. In this chapter we will tour the
various facets of SDL with respect to Linux game programming.

SDL’s full name, Simple DirectMedia Layer, summarizes the design of the
library. SDL is simple to learn and use: its API is well defined (if a bit sparsely
documented in the recently added areas), uncluttered, and to the point. It
provides direct access to the computer’s multimedia capabilities where possible
and does its best to compensate if the computer’s underlying support is missing
in some area. Finally, SDL is a thin and well-behaved layer of code rather than a
subsuming beast. It is possible and often desirable to use individual components
of SDL separately, and it is possible to integrate SDL into applications other
than games to provide special multimedia capabilities. For instance, a game
might use SDL for audio and some other toolkit for graphics, or an office suite
might use SDL to display video clips. The most important use of SDL, though,
is game programming.

The SDL library consists of several sub-APIs, providing cross-platform support
for video, audio, input handling, multithreading, OpenGL rendering contexts,
and various other amenities. We’ll begin our tour with graphics programming.
Before we jump into the world of surfaces and pixels, however, let’s take a look
at the hardware that makes it all possible.

70 CHAPTER 4

Computer Graphics Hardware

Every personal computer is equipped with a video controller of some sort. This
set of chips is responsible for producing images on the screen, based on the data
contained in a certain area of memory (the framebuffer). In addition to this
basic drudgery, the video controller often assists software by providing
hardware-accelerated drawing functions. Video controllers usually reside on
replaceable video cards that can be easily upgraded as video technology
progresses.

Video cards contain a unit called a CRTC, an acronym for cathode ray tube
controller. This device (either a separate chip or part of another chip) instructs
the monitor to redraw its picture at regular intervals. The image on a computer
screen is composed of horizontal lines on a fluorescent surface, and the monitor’s
hardware updates these from top to bottom. Each completed image is called a
refresh. The CRTC instructs the monitor to perform a new refresh at least 60
times each second. The brief pause between refreshes is known as the vertical
retrace, because this is when the monitor’s electron beam returns to the top of
the screen. No matter how quickly the data in the framebuffer changes, the
monitor is not updated until the next refresh. The video hardware’s refresh rate
is therefore of great interest to a game developer.

The image on a computer screen is divided into discrete colored areas called
pixels (short for pictorial elements). Each pixel can be individually controlled by
the video card. The resolution of a display specifies the number of pixels across
and down; for instance, a screen with a resolution of 640 by 480 is a matrix of
640 columns and 480 rows. The video card uses a device called a RAMDAC
(random access memory digital-analog converter) to pump these individual
pixels from the framebuffer memory to the monitor. Video card manufacturers
like to brag about the speed of their RAMDAC components.

Since there are a lot of pixels on the screen (anywhere from 64,000 to more than
a million), producing complete images can be an intensive process, especially if a
program needs to change the entire contents of the screen several times every
second. Video chip manufacturers have invested a large amount of research in
this problem and have created video accelerator chips to help with this work.
Video accelerators can speed up graphical applications (such as games) by
performing time-consuming updates with dedicated hardware. For instance,
video accelerators can often help out by performing high-speed copying between

MASTERING SDL 71

the framebuffer and other areas of memory. Computer memory is fast, but
today’s video games need every bit of performance they can get.

The Framebuffer

The framebuffer is an area of memory that describes the image on the screen,
with each on-screen pixel corresponding to one memory location. The exact
format of the framebuffer is determined by the video chipset, but it is most
commonly a simple array (this is known as a linear framebuffer). To change the
color of a pixel on the screen, a program must calculate the location of the pixel
in the array (with the formula width× y + x), determine the correct
representation of the desired color, and store the color representation in the
framebuffer. The video card then sends the new pixel color to the monitor
during its next screen refresh.

Pixels are almost always represented by one- to four-byte values, but the exact
format of these values depends on the current video mode. The following
schemes are used to specify pixel colors in the framebuffer:

Indexing Pixel values are indices into a preset table of color values, which is
called the colormap or palette. Each entry in this table consists of
a red, green, and blue intensity level. The video card converts the
indices into actual color intensities (signals for the monitor’s
electron guns) as it goes. These video modes generally use one
byte per pixel, allowing for a meager 256 colors on the screen at
once. The palette can usually be changed at will (but updates to
the palette will not show up until the next refresh). Clever
programmers occasionally use the palette to implement animation
tricks and special effects. Indexed modes offer extremely fast
performance but relatively few simultaneous colors.

Hicolor Pixel values are 16 bits (2 bytes) each. These bits are divided into
red, green, and blue fields. It is common for hicolor modes to
allocate 5 bits to red, 6 bits to green, and 5 bits to blue, but you
cannot assume that this will be the case. Hicolor offers excellent
performance potential and a decent representation of the color
spectrum, and it is frequently used for game programming.

72 CHAPTER 4

However, it lacks the color depth necessary for professional
graphics. This is currently the most important pixel format for
game programming. Hicolor is also known as High Color, but
most people use the shorter term.

True Color Pixel values are 24 bits each, allotting 1 byte to each color
channel. True Color modes are extremely easy to program (since
they do not require bit shifting or masking), but they tend to be
rather slow due to the increased amount of video data. Some True
Color modes use 32 bits for each pixel, simply wasting the 4th
byte. This improves performance in many cases, because 32-bit
processors are usually more efficient at accessing data aligned on
4-byte boundaries.

Direct Color
Pixel values are divided into three bit fields, each of which is an
index into a palette for a particular color channel. That is, Direct
Color provides a separate palette for red, green, and blue. This
scheme combines the advantages of indexing with the excellent
color depth of True Color. Direct Color is rarely used for game
programming (it is mainly a feature of high-end graphics
workstations) and is mentioned here only for the sake of
completeness.

Although the variety of video modes may appear to be a serious programming
nightmare, many games simply pick one mode to support (such as hicolor), and
inform the video card of that mode when they start. If a video card does not
allow a certain mode, it is often possible to perform on-the-fly conversion
between pixel formats with only a minor performance loss. It is sometimes
possible to write programs in a depth-independent manner.

The SDL Video API

SDL uses structures called surfaces for manipulating graphical data. A surface is
simply a block of memory for storing a rectangular region of pixels. You can
think of a surface as a generic chunk of video data. Surfaces have widths,
heights, and specific pixel formats, just as framebuffers do. In fact, SDL

MASTERING SDL 73

represents the video card’s framebuffer as a special surface. The rectangular
regions of data stored in surfaces are often called bitmaps or pixmaps.

The most important property of surfaces is that they can be copied onto each
other very quickly. That is, one surface’s pixels can be transferred to an
identically sized rectangular area of another surface. This operation is called a
blit, or block image transfer. Blits are a fundamental part of game programming
because they allow complete images to be composed out of predrawn graphics
(generally created by artists with image-processing software). Since the
framebuffer is a surface, entire images can be sent to the screen with a single
blitting operation. SDL provides a function for performing fast blits between
surfaces, and it can even convert between surfaces of different pixel formats on
the fly.

Most games rely almost exclusively on surface blits for their drawing (as opposed
to drawing with individual pixels). For example, consider the game Civilization:
Call To Power (which was ported to Linux using SDL). Other than the lines
used to indicate paths and gridpoints, every character and building that you can
see is stored in memory with surfaces, and they are drawn on the screen with
blits. All of the game’s artwork was created by artists and stored in files. The
game assembles its screen images almost entirely out of these predrawn graphics.

We will now examine a series of SDL video-programming examples. It would be
a good idea to compile and run each of these examples and to tweak them until
you understand how they work. Don’t worry about typing in all of the examples;
they are available on the book’s Web page. Throughout the rest of the chapter
(and throughout chapters to come) we’ll make note of important structures and
functions with references like this:

Function PrepNuke(kilotons, target)

Synopsis Sets up a tactical nuke and aims it at target.

Parameters kilotons—Power rating of the desired nuke.
target—Target of the nuke. 0 picks a random
destination. Be careful.

Don’t worry if you don’t understand the relevance of a particular function or
member of a structure at first; some are presented as a reference for advanced
SDL users. Most of them should make sense by the end of the chapter.

74 CHAPTER 4

Setting Up the Display

Before we can begin writing to the framebuffer, we need to tell the video card
what we expect of it. It needs to know the screen resolution we want, as well as
the pixel format to expect in the framebuffer. SDL can handle this for us with
the SDL SetVideoMode function. The following example demonstrates how to set
the display to a particular video mode and prepare the framebuffer for drawing:

Code Listing 4–1 (initializing-sdl.c)

/* Example of initializing SDL. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;

/* Initialize SDL’s video system and check for errors */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 640x480 hicolor video mode */
screen = SDL_SetVideoMode(640, 480, 16, SDL_FULLSCREEN);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

/* If we got this far, everything worked */
printf("Success!\n");

return 0;
}

MASTERING SDL 75

This program includes the SDL.h header file, in the SDL subdirectory. This is
the master header file for SDL; it should be included in all SDL applications. It
also includes two standard headers, for the printf and atexit functions.

We begin by calling SDL Init to initialize SDL. This function takes an ORed list
of arguments to indicate which subsystems should be initialized; we are
interested only in the video subsystem, so we pass SDL INIT VIDEO. Unless an
error occurs, this function should return zero to indicate success. We also use C’s
atexit facility to request that SDL Quit be called before the program exits. This
function makes sure that SDL shuts down properly.

Function SDL Init(flags)

Synopsis Initializes one or more subsystems of SDL.

Returns Zero on success, a negative number on failure.

Parameters flags—Subsystems to initialize. This is an ORed list
of flags. Possible flags are SDL INIT VIDEO and
SDL INIT AUDIO, among others.

Next, we use the SDL SetVideoMode function to inform the display of our desired
resolution and color depth. There is a catch here: SDL will try to set up the
display as requested, but it might fail. If this happens, SDL won’t tell us;
instead it will emulate the requested mode internally. This is usually acceptable,
since the emulation code is relatively fast and we would usually rather not deal
with multiple modes ourselves. SDL SetVideoMode returns a pointer to the
surface that represents the framebuffer. If something goes wrong, this function
returns NULL.

Function SDL SetVideoMode(width, height, bpp, flags)

Synopsis Creates a window or initializes the video adapter to
prepare for SDL video output.

Returns Pointer to a valid SDL Surface structure on success,
NULL on failure.

Parameters width—Width (x-resolution) of the desired video
mode.

76 CHAPTER 4

height—Height (y-resolution) of the desired video
mode.

bpp—Desired color depth. Likely values are 8, 15, 16,
24, or 32. 0 lets SDL pick any supported mode.

flags—Mode flags. Possible values are
SDL FULLSCREEN (requests a fullscreen video mode),
SDL DOUBLEBUF (requests a double buffered video
setup), SDL HWSURFACE (requests a hardware
framebuffer for fast updates), SDL OPENGL (requests an
OpenGL context), and others. We’ll discuss most of
these later.

Finally, we report success and exit. The C library calls SDL Quit automatically
(since we registered it with atexit), and SDL returns the video display to its
original mode.

Function SDL Quit()

Synopsis Shuts down SDL cleanly, regardless of its present
state.

Function SDL QuitSubSystem()

Synopsis Shuts down a particular component of SDL, leaving
the others untouched. It is safe to shut a subsystem
down twice; SDL keeps track of its state internally.

Parameters flags—ORed bitmask of subsystems to shut down.
These are the same flags you would pass to SDL Init.
To shut down the audio subsystem without touching
the video subsystem, you would use
SDL QuitSubSystem(SDL INIT AUDIO).

Now that we’ve created an SDL application, we need to compile it. SDL
applications are easy to compile; assuming a proper installation of SDL, they
require just a few flags and libraries. The standard SDL distribution includes a

MASTERING SDL 77

program called sdl-config (similar to the gtk-config and glib-config scripts
that ship with the GTK+ toolkit) for supplying the appropriate command-line
arguments to gcc. The command sdl-config --cflags produces a list of the
options that should be passed to the compiler, and sdl-config --libs
produces a list of libraries that should be linked in. These options allow SDL
applications to compile correctly regardless of the location or version of the
library. The following command will correctly build an SDL application:

$ gcc sdltest.c -o sdltest `sdl-config --cflags --libs`

Or, to separately compile and link multiple source files that use the SDL library,

$ gcc -c file1.c `sdl-config --cflags`
$ gcc -c file2.c `sdl-config --cflags`
$ gcc file1.o file2.o -o mygame `sdl-config --libs`

Note the use of backtick substitution (a standard shell feature) to insert the
output of sdl-config into the command line. Of course, it is also possible to run
sdl-config yourself and insert its output into the command line by hand, but
this would reduce the portability of your makefile. sdl-config produces the
following output on one particular Linux installation:

$ sdl-config --cflags
-I/usr/include/SDL -D_REENTRANT
$ sdl-config --libs
-L/usr/lib -lSDL -lpthread

Direct Surface Drawing

Putting data into an SDL surface is simple. Each SDL Surface structure
contains a pixels member. This is a void * to the raw image, and we can write
to it directly if we know the type of pixel that the surface is set up for. We must
call the SDL LockSurface function before accessing this data (because some
surfaces reside in special memory areas and require special handling). When we
are finished with the surface, we must call SDL UnlockSurface to release it. The

78 CHAPTER 4

width and the height of the image are given by the w and h members of the
structure, and the pixel format is specified by the format member (which is of
type SDL PixelFormat). SDL often emulates nonstandard screen resolutions
with higher resolutions, and the pitch member of the pixel format structure
indicates the actual width of the framebuffer. You should always use pitch
instead of w for calculating offsets into the pixels buffer, or else your
application might not work on some configurations.

Structure SDL Surface

Synopsis Represents a video surface.

Members flags—ORed bitmask of surface flags. For instance,
the SDL HWSURFACE bit of flags will be set if this is a
hardware (video memory) surface. Read-only.
format—Pointer to this surface’s pixel format
information (a SDL PixelFormat structure).
Read-only.
w—Width of this surface (in pixels). Read-only.
h—Height of this surface (in pixels). Read-only.
pitch—Number of pixels per scanline in memory. This
is often different from the surface’s width – beware!
Always use pitch for pixel offset calculations.
Read-only.
pixels—void pointer to the actual data that makes up
this image. Read-write only after you call
SDL LockSurface.

Function SDL LockSurface(surf)

Synopsis “Locks” a surface, making its pixels available for
direct access. You can use SDL MUSTLOCK(surf) to
determine whether a particular surface requires
locking; some surfaces don’t. Do not call
SDL BlitSurface on a locked surface.

Returns Non-NULL on success, NULL on failure.

Parameters surf—Surface to lock.

MASTERING SDL 79

Function SDL UnlockSurface(surf)

Synopsis “Unlocks” a surface. Use this as soon as you have
finished drawing on a locked surface.

Parameters surf—Surface to unlock.

Our next example uses the SDL pixel format information to draw individual
pixels on the screen. We have chosen to use a 16-bit (hicolor) mode for
demonstration purposes, but other modes are equally simple to program. Bear in
mind that plotting pixels in this way is invariably slow—don’t even think of
using this code for any substantial amount of drawing in a real program!

Code Listing 4–2 (direct-pixel-drawing-sdl.c)

/* Example of direct pixel access with SDL. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

Uint16 CreateHicolorPixel(SDL_PixelFormat * fmt, Uint8 red,
Uint8 green, Uint8 blue)

{
Uint16 value;

/* This series of bit shifts uses the information from the
SDL_Format structure to correctly compose a 16-bit pixel
value from 8-bit red, green, and blue data. */

value = ((red >> fmt->Rloss) << fmt->Rshift) +
((green >> fmt->Gloss) << fmt->Gshift) +
((blue >> fmt->Bloss) << fmt->Bshift);

return value;
}

int main()
{

SDL_Surface *screen;
Uint16 *raw_pixels;
int x, y;

80 CHAPTER 4

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 256x256 hicolor (16-bit) video mode.
This will set some type of 16-bit mode, but we won’t
know which particular pixel format ahead of time. If
the video card can’t handle hicolor modes, SDL will
emulate it. */

screen = SDL_SetVideoMode(256, 256, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

/* Video memory can be strange, and it’s sometimes necessary to
"lock" it before it can be modified. SDL abstracts this with
the SDL_LockSurface function. */

SDL_LockSurface(screen);

/* Get a pointer to the video surface’s memory. */
raw_pixels = (Uint16 *) screen->pixels;

/* We can now safely write to the video surface. We’ll draw a
nice gradient pattern by varying our red and blue components
along the X and Y axes. Notice the formula used to calculate
the offset into the framebuffer for each pixel.
(The pitch is the number of bytes per scanline in memory.) */

for (x = 0; x < 256; x++) {
for (y = 0; y < 256; y++) {

Uint16 pixel_color;
int offset;
pixel_color = CreateHicolorPixel(screen->format,

x, 0, y);
offset = (screen->pitch / 2 * y + x);
raw_pixels[offset] = pixel_color;

MASTERING SDL 81

}
}

/* We’re finished drawing, so unlock the surface. */
SDL_UnlockSurface(screen);

/* Inform SDL that the screen has been changed. This is
necessary because SDL’s screen surface is not always the real
framebuffer; it is sometimes emulated behind the scenes. */

SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Pause for a few seconds as the viewer gasps in awe. */
SDL_Delay(3000);

return 0;
}

The code’s comments give the play-by-play, but a few points should be clarified.
This program employs a very general routine for constructing hicolor pixel
values; this routine will work with any hicolor format that SDL recognizes.
Although we could write a separate (faster) routine for each possible hicolor data
layout, doing so would require a lot of work and would only marginally improve
performance. The 565 (5 red bits, 6 green bits, and 5 blue bits) pixel format is
perhaps the most widely used format and could be reasonably optimized, but 556
and 555 are not uncommon. In addition, there is no guarantee that the bit fields
will be in the red-green-blue order. Our CreateHicolorPixel routine solves this
problem by referring to the data in the SDL PixelFormat structure. For instance,
the routine uses the Rloss member of the structure to determine how many bits
to drop from the 8-bit red component, and it then uses the Rshift member to
determine where the red bits should be located within the 16-bit pixel value. For
an interesting experiment, have the program print out these fields, and
determine which particular hicolor layout your video card has given to SDL. My
video card (a Matrox G400 under XFree86 3.3.6) happens to use the 565 format.

82 CHAPTER 4

Structure SDL PixelFormat

Synopsis Contains information about a surface’s pixel
composition.

Members palette—Pointer to this surface’s palette (of type
SDL Palette, if this is a paletted image.

BitsPerPixel—Color depth of this surface. Possible
values are 8, 15, 16, 24, or 32.

BytesPerPixel—Number of bytes needed for each
pixel. This is usually BitsPerPixel / 8, rounded up
to the nearest integer.

Rloss—Number of bits to remove from an 8-bit red
color value in order for it to fit in the allotted space.
For instance, a 565 video mode allows for 5 bits of red
color data, so the Rloss would be 3. SDL PixelFormat
also contains Gloss, Bloss, and Aloss members for
the green, blue, and alpha channels.

Rshift—Number of bits to shift the red value in order
to position it in the correct bit field. There are similar
Gshift, Bshift, and Ashift members.

Rmask—Bitmask for extracting the red component
from a pixel value. There are similar Gmask, Bmask,
and Amask members.

colorkey—Color value for colorkey blitting. Set this
with SDL SetColorKey. More on colorkey blitting
later.

alpha—Transparency value for the surface associated
with this SDL PixelFormat structure. Set this with
SDL SetAlpha. More on alpha blitting later.

Another important issue involves the SDL UpdateRect function. As we
mentioned earlier, SDL sometimes emulates video modes if the video card is
unable to provide a certain mode itself. If the video card does not support a
requested 24-bit mode, for instance, SDL might select a 16-bit mode instead and
return a fake framebuffer set up for 24-bit pixels. This would allow your program

MASTERING SDL 83

to continue normally, and SDL would handle the conversion from 24 bits to 16
bits on the fly (with a slight performance loss). The SDL UpdateRect function
informs SDL that a portion of the screen has been updated and that it should
perform the appropriate conversions to display that area. If a program does not
use this function, it may still work. It is better to be on the safe side, however,
and call this function whenever the framebuffer surface has been changed.

Function SDL UpdateRect(surface, left, top, right,
bottom)

Synopsis Updates a specific region of a surface. Normally used
to make changes appear on the screen (see text above).

Parameters surface—Surface to update. Usually the screen.

left—Starting x coordinate of the region to update.
If all coordinates are zero, SDL UpdateRect will
update the entire surface.

top—Starting y coordinate of the region to update.

right—Ending x coordinate of the region to update.

bottom—Ending y coordinate of the region to update.

Finally, if you run the program, you might notice that it runs in a window
instead of taking over the entire screen. To change this, replace the zero in the
SDL SetVideoMode call with the constant SDL FULLSCREEN. Be careful, though;
full-screen applications are harder to debug, and they tend to mess things up
badly when they crash. It’s a good idea to use normal windowed mode until
you’re pretty sure your app isn’t going to crash.

Drawing with Blits

You’ve seen how to draw pixels directly to a surface, and there’s no reason you
couldn’t create an entire game with this technique alone. However, there is a
much better way to draw large amounts of data to the screen. Our next example
will load an entire surface from a file and draw it with a single SDL
surface-copying function. Without further ado, here is the code.

84 CHAPTER 4

Code Listing 4–3 (blitting-surfaces-sdl.c)

/* Example of simple blitting with SDL. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;
SDL_Surface *image;
SDL_Rect src, dest;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 256x256 hicolor (16-bit) video mode.
Since 256x256 is rarely a valid video mode, SDL will
most likely emulate this resolution with a different
video mode. */

screen = SDL_SetVideoMode(256, 256, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

/* Load the bitmap file. SDL_LoadBMP returns a pointer to a
new surface containing the loaded image. */

image = SDL_LoadBMP("test-image.bmp");
if (image == NULL) {

printf("Unable to load bitmap.\n");
return 1;

}

MASTERING SDL 85

/* The SDL blitting function needs to know how much data
to copy. We provide this with SDL_Rect structures, which
define the source and destination rectangles. The areas
should be the same; SDL does not currently handle image
stretching. */

src.x = 0;
src.y = 0;
src.w = image->w; /* copy the entire image */
src.h = image->h;

dest.x = 0;
dest.y = 0;
dest.w = image->w;
dest.h = image->h;

/* Draw the bitmap to the screen. We are using a hicolor video
mode, so we don’t have to worry about colormap silliness.
It is not necessary to lock surfaces before blitting; SDL
will handle that. */

SDL_BlitSurface(image, &src, screen, &dest);

/* Ask SDL to update the entire screen. */
SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Pause for a few seconds as the viewer gasps in awe. */
SDL_Delay(3000);

/* Free the memory that was allocated to the bitmap. */
SDL_FreeSurface(image);

return 0;
}

As you can see, the bitmap file is loaded into memory with the SDL LoadBMP
function. This function returns a pointer to an SDL Surface structure containing
the image, or a NULL pointer if the image cannot be loaded. Once this file has
been successfully loaded, the bitmap is represented as an ordinary SDL surface,
and a program can draw it onto the screen or any other surface. Bitmaps use
dynamically allocated memory, and they should be freed when they are no longer
needed. The SDL FreeSurface function frees the memory allocated to a bitmap.

86 CHAPTER 4

Function SDL LoadBMP(filename)

Synopsis Loads a .bmp image file from disk into an SDL
surface.

Returns Pointer to a newly allocated SDL Surface containing
the loaded image.

Parameters filename—Name of the bitmap file to load.

The SDL BlitSurface function performs a blit of one surface onto another,
converting between pixel formats as necessary. This function takes four
arguments: a source surface (the image to copy from), an SDL Rect structure
defining the rectangular region of the source surface to copy, a destination
surface (the image to copy to), and another SDL Rect structure indicating the
coordinates on the destination to which the image should be drawn. These two
rectangles must be of the same width and height (SDL does not currently
perform stretching), but the x and y starting coordinates of the regions can be
different.

Function SDL BlitSurface(src, srcrect, dest, destrect)

Synopsis Blits all or part of one surface (the source) onto
another (the destination).

Parameters src—Source surface. Pointer to a valid SDL Surface
structure.

srcrect—Region of the source surface to copy. This
is a pointer to an SDL Rect structure. If this is NULL,
SDL will try to copy the entire surface.

dest—Destination surface.

destrect—Region of the destination surface to
replace with the source surface. The width and height
of the destination surface don’t matter; SDL only
cares about the x and y coordinates.

MASTERING SDL 87

Structure SDL Rect

Synopsis Specifies regions of pixels. Used for clipping and
blitting.

Members x—Starting x coordinate.

y—Starting y coordinate.

w—Width of the region, in pixels.

h—Height of the region, in pixels.

There is really nothing complicated about producing graphics with SDL, once
you understand the basics of working with surfaces. If you don’t feel comfortable
with the SDL BlitSurface function yet, you might want to work with the
previous example a bit before moving on. For instance, load several bitmaps and
draw them onto each other before blitting them to the screen.

Colorkeys and Transparency

Games often need to simulate transparency. For instance, suppose that you have
a bitmap of a game character against a solid background, and you want to draw
the character in a game level. The character would look silly drawn as is; the
background would be drawn too, and the character would be surrounded by a
block of solid color. It would be much better to draw only the pixels that are
actually part of the character, and not its solid background. You can do this
with a colorkey blit. SDL provides support for this technique, and it even
provides support for run-length colorkey acceleration (a nice trick for speeding
up drawing). RLE (run-length encoding) provides an enormous performance
boost for blitting colorkeyed images, but it is practical only for bitmaps that will
not be modified during the course of the program (since modifying an RLE
image necessitates unpacking and repacking the image).

A colorkey is a particular pixel value that a program declares to be transparent.
(In SDL, this is done with the SDL SetColorKey function.) Pixels that match an
image’s colorkey are not copied when the image is blitted. In our example of a
game character, you could set the colorkey to the color of the solid background,
and it would not be drawn. Colorkeys therefore make it simple to combine
rectangular images of nonrectangular objects.

88 CHAPTER 4

Tuxedo T. Penguin, hero of the Linux world

Function SDL SetColorKey(surface, flags, colorkey)

Synopsis Adjusts the colorkey information for an SDL Surface.

Parameters surface—Surface to modify.

flags—ORed bitmask of colorkey flags.
SDL SRCCOLORKEY enables colorkey blitting for this
surface. SDL RLEACCEL enables run-length
acceleration, which can speed up colorkey operations
(but can also slow down SDL LockSurface
significantly).

colorkey—If SDL SRCCOLORKEY is set, this specifies
the pixel value to use as a colorkey.

The following example uses a colorkey blit to draw an image of Tux, the Linux
penguin, against another image. Tux is stored against a solid blue background,
and so we will use blue (RGB 0, 0, 255) as our colorkey. For comparison, we will
also draw the same penguin image without a colorkey.

MASTERING SDL 89

Code Listing 4–4 (colorkeys-sdl.c)

/* Example of blitting with colorkeys in SDL. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;
SDL_Surface *background;
SDL_Surface *image;
SDL_Rect src, dest;
Uint32 colorkey;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 640x480 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(640, 480, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

/* Load the bitmap files. */
background = SDL_LoadBMP("background.bmp");
if (background == NULL) {

printf("Unable to load bitmap.\n");
return 1;

}

image = SDL_LoadBMP("penguin.bmp");
if (image == NULL) {

printf("Unable to load bitmap.\n");

90 CHAPTER 4

return 1;
}

/* Draw the background. */
src.x = 0;
src.y = 0;
src.w = background->w;
src.h = background->h;
dest.x = 0;
dest.y = 0;
dest.w = background->w;
dest.h = background->h;
SDL_BlitSurface(background, &src, screen, &dest);

/* Draw the penguin without a colorkey. */
src.x = 0;
src.y = 0;
src.w = image->w;
src.h = image->h;
dest.x = 30;
dest.y = 90;
dest.w = image->w;
dest.h = image->h;
SDL_BlitSurface(image, &src, screen, &dest);

/* The penguin is stored on a blue background. We
can use the SDL_MapRGB function to obtain the
correct pixel value for pure blue. */

colorkey = SDL_MapRGB(image->format, 0, 0, 255);

/* We’ll now enable this surface’s colorkey and draw
it again. To turn off the colorkey again, we would
replace the SDL_SRCCOLORKEY flag with zero. */

SDL_SetColorKey(image, SDL_SRCCOLORKEY, colorkey);
src.x = 0;
src.y = 0;
src.w = image->w;
src.h = image->h;
dest.x = screen->w - image->w - 30;
dest.y = 90;
dest.w = image->w;
dest.h = image->h;

MASTERING SDL 91

Tux, with and without a colorkey

SDL_BlitSurface(image, &src, screen, &dest);

/* Ask SDL to update the entire screen. */
SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Pause for a few seconds as the viewer gasps in awe. */
SDL_Delay(10000);

/* Free the memory that was allocated to the bitmaps. */
SDL_FreeSurface(background);
SDL_FreeSurface(image);

return 0;
}

92 CHAPTER 4

Loading Other Image Formats

SDL provides built-in support for loading .bmp files, but this is a fairly limited
file format. In particular, it supports only minimal compression and does not
provide an alpha channel. (See the next section.) The SDL image add-on library
adds to SDL support for several different formats, including the popular .png,
.jpg, and .gif formats.

SDL image is extremely simple to use. Once you have installed the library on
your system, your program should include SDL/SDL image.h and link with
-lSDL image. Assuming this is successful, your programs can use the IMG Load
function to load any supported image file format. The next section demonstrates
this function.

$ gcc program.c -o program `sdl-config --libs --cflags` -lSDL image

Several other SDL add-on libraries are available, and it is worthwhile to become
familiar with them. They can save you a lot of coding footwork in many cases.
There are currently libraries for processing TrueType fonts, accessing the
network, mixing sound effects, playing music (including MIDI), and managing
graphical user interfaces. Most of these libraries are portable, but a few are
OS-specific. More information on these libraries is available at
http://www.libsdl.org.

Alpha Blending

Although graphics and sound are only part of what goes into a successful game,
visually impressive games do tend to be more fun than games with lackluster
graphics. Game programmers often add special effects to make their graphics
stand out. Alpha blending is a special effect that adds varying degrees of
translucency to surfaces.

Most images use three color channels (red, green, and blue) to describe each
pixel. Alpha blending adds a fourth, the alpha channel. For this reason,
alpha-enabled images are often called RGBA images. The alpha value of each
pixel is an indication of that pixel’s opacity. An alpha value of zero indicates
that a pixel is completely transparent, and higher alpha values indicate

MASTERING SDL 93

increasing opacity. The alpha channel can be created on the fly according to a
program’s needs, or it can be stored with an image created in a graphics package.

To draw an RGBA pixel onto another, the alpha function simply performs a
weighted average of the two pixels, processing each color channel separately.
Suppose that a pixel has RGB values (50,20,30) with an alpha value of 50. This
alpha value corresponds to approximately 20 percent opacity (80 percent
transparency), since the scale is 0 to 255. If this pixel is drawn on top of a pixel
with RGB values (60,80,100), the resulting pixel will take 20 percent of its color
from the first pixel and 80 percent of its color from the second, and so its final
RGB values will be (58,68,86). This weighted average can be computed with
simple arithmetic. Unfortunately, multiplication and division are comparatively
slow operations for most processors, so alpha blending generally involves a
significant performance hit unless it is supported by a video accelerator.

SDL provides full support for alpha blending. If an image already contains alpha
data (from an image-processing program), the SDL SetAlpha function can be
used to enable alpha blending (as you will see in the next example). If the image
does not contain an alpha channel, it can still be blended, but the entire surface
will have the same opacity value. This is called per-surface alpha blending.
Per-surface alpha blending is also set with SDL SetAlpha.

Function SDL SetAlpha(surface, flags, alpha)

Synopsis Enables alpha blending on a particular surface.

Parameters surface—The surface to modify.

flags—ORed list of alpha blending flags.
SDL SRCALPHA enables alpha blending, and
SDL RLEACCEL enables RLE acceleration (with the
same ramifications described under
SDL SetColorKey).

alpha—Per-surface alpha value. 255 represents
complete opacity, and 0 represents complete
transparency.

94 CHAPTER 4

The Great Alpha Flip

SDL used to interpret alpha values as transparency, not opacity (in
other words, alpha values now mean exactly the opposite of what they
used to – they now work like the alpha values in nearly every other
graphics system). The old style was fine within SDL circles, but it made
porting applications that depended on proper alpha support a serious
hassle. This idiosyncrasy has been fixed, and it was announced on the
SDL development mailing list as the Great Alpha Flip.

This reversal really shouldn’t matter, unless you intend to work with
truly ancient SDL code that isn’t aware of the change.

The next example demonstrates these two types of alpha blending. Since .bmp
files do not support an alpha channel,1 we will use the SDL image library to read
our images from .png (Portable Network Graphic) files instead. Our example
will require three image files: one 640 by 480 background image, one 100 by 100
image with an alpha channel, and one 100 by 100 image with no alpha channel.2

You can get these images from the book’s Web site, or make your own.

Code Listing 4–5 (alpha-sdl.c)

/* Example of alpha blending with SDL. */

#include <SDL/SDL.h>
#include <SDL/SDL_image.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;

1 Some variants of .bmp do support an alpha channel, but most image manipulation
programs do not write this format. SDL may or may not eventually support bitmap files
with alpha data.

2 I created these images with the GNU Image Manipulation Program (The GIMP,
http://www.gimp.org). This is a worthwhile program to learn, even if you’re not an artist.

MASTERING SDL 95

SDL_Surface *background;
SDL_Surface *image_with_alpha;
SDL_Surface *image_without_alpha;
SDL_Rect src, dest;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 320x200 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(320, 200, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

/* Load the bitmap files. The first file was created with
an alpha channel, and the second was not. Notice that
we are now using IMG_Load instead of SDL_LoadBMP. */

image_with_alpha = IMG_Load("with-alpha.png");
if (image_with_alpha == NULL) {

printf("Unable to load bitmap.\n");
return 1;

}

image_without_alpha = IMG_Load("without-alpha.png");
if (image_without_alpha == NULL) {

printf("Unable to load bitmap.\n");
return 1;

}

background = IMG_Load("background.png");
if (background == NULL) {

printf("Unable to load bitmap.\n");
return 1;

}

96 CHAPTER 4

/* Draw the background. */
src.x = 0;
src.y = 0;
src.w = background->w;
src.h = background->h;
dest.x = 0;
dest.y = 0;
dest.w = background->w;
dest.h = background->h;
SDL_BlitSurface(background, &src, screen, &dest);

/* Draw the first image, which has an alpha
channel. We must specifically enable alpha
blending. */

SDL_SetAlpha(image_with_alpha, SDL_SRCALPHA, 0);
src.w = image_with_alpha->w;
src.h = image_with_alpha->h;
dest.w = src.w;
dest.h = src.h;
dest.x = 40;
dest.y = 50;
SDL_BlitSurface(image_with_alpha, &src, screen, &dest);

/* Draw the second image, which has no alpha
channel. Instead, we will set a 50% transparency
factor for the entire surface. */

SDL_SetAlpha(image_without_alpha, SDL_SRCALPHA, 128);
src.w = image_without_alpha->w;
src.h = image_without_alpha->h;
dest.w = src.w;
dest.h = src.h;
dest.x = 180;
dest.y = 50;
SDL_BlitSurface(image_without_alpha, &src, screen, &dest);

/* Ask SDL to update the entire screen. */
SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Pause for a few seconds as the viewer gasps in awe. */
SDL_Delay(3000);

MASTERING SDL 97

Output of Listing 4–5

/* Free the memory that was allocated to the bitmaps. */
SDL_FreeSurface(background);
SDL_FreeSurface(image_with_alpha);
SDL_FreeSurface(image_without_alpha);

return 0;
}

Look closely at the output of this program. Notice that the background shows
through only the outer edges of the first image, but that it shows through the
entire second image equally. This is due to the fact that the first image uses a
separate alpha value for each pixel, and the second image uses the same alpha
value for all of its pixels.

Achieving Smooth Animation with SDL

You can now draw simple bitmapped graphics on SDL surfaces (and you could
easily learn to do so with other multimedia libraries as well). However, games
are not made of static displays. Most games make heavy use of animation—that

98 CHAPTER 4

is, the simulation of fluid motion—to provide the player with an enjoyable and
visually impressive experience.

The basic idea behind computer animation is to rapidly draw a sequence of
incrementally changing bitmapped images on the screen over a tightly controlled
time interval. Executed properly, this fools the human eye into perceiving
smooth movement rather than discrete steps. Each screen update in an
animation sequence is called a frame, and the number of frames drawn in a set
period of time is called the framerate. The quality of an animation depends both
on the framerate and on the distance each animated object moves between
frames.

Fooling the eye is not easy. If a bitmap moves too quickly, or if completed frames
are not displayed frequently enough, the illusion will break down, and the viewer
will begin to see each frame as a separate image. This “jittery” animation can
become very distracting and must be avoided at all costs.

A First Attempt

The code listing that follows uses SDL to animate 100 penguins on the screen.
These penguins are a bit smaller than the ones in the last example, but they are
drawn in the same way. Run this example on your computer to provide a basis
for comparison with subsequent examples.

Code Listing 4–6 (sdl-anim1.c)

/* Animation with SDL -- first attempt. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

#define NUM_PENGUINS 100
#define MAX_SPEED 6

/* This structure stores the information for one
on-screen penguin. */

typedef struct penguin_s {
int x, y; /* position on the screen */

MASTERING SDL 99

int dx, dy; /* movement vector */
} penguin_t, *penguin_p;

/* Array of penguins. */
static penguin_t penguins[NUM_PENGUINS];

/* These are now global variables, for convenience. */
static SDL_Surface *screen;
static SDL_Surface *penguin;

/* This routine loops through the array of penguins and
sets each to a random starting position and direction. */

static void init_penguins()
{

int i;

for (i = 0; i < NUM_PENGUINS; i++) {
penguins[i].x = rand() % screen->w;
penguins[i].y = rand() % screen->h;
penguins[i].dx = (rand() % (MAX_SPEED * 2)) - MAX_SPEED;
penguins[i].dy = (rand() % (MAX_SPEED * 2)) - MAX_SPEED;

}
}

/* This routine moves each penguin by its motion vector. */
static void move_penguins()
{

int i;

for (i = 0; i < NUM_PENGUINS; i++) {
/* Move the penguin by its motion vector. */
penguins[i].x += penguins[i].dx;
penguins[i].y += penguins[i].dy;

/* Turn the penguin around if it hits the edge
of the screen. */

if (penguins[i].x < 0 || penguins[i].x > screen->w - 1)
penguins[i].dx = -penguins[i].dx;

if (penguins[i].y < 0 || penguins[i].y > screen->h - 1)
penguins[i].dy = -penguins[i].dy;

}
}

100 CHAPTER 4

/* This routine draws each penguin to the screen surface. */
static void draw_penguins()
{

int i;
SDL_Rect src, dest;

for (i = 0; i < NUM_PENGUINS; i++) {

src.x = 0;
src.y = 0;
src.w = penguin->w;
src.h = penguin->h;

/* The penguin’s position specifies its
center. We subtract half of its width
and height to get its upper left corner. */

dest.x = penguins[i].x - penguin->w / 2;
dest.y = penguins[i].y - penguin->h / 2;
dest.w = penguin->w;
dest.h = penguin->h;

SDL_BlitSurface(penguin, &src, screen, &dest);
}

}

int main()
{

SDL_Surface *background;
SDL_Rect src, dest;
int frames;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

MASTERING SDL 101

/* Attempt to set a 640x480 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(640, 480, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

/* Load the bitmap files. */
background = SDL_LoadBMP("background.bmp");
if (background == NULL) {

printf("Unable to load bitmap.\n");
return 1;

}

penguin = SDL_LoadBMP("smallpenguin.bmp");
if (penguin == NULL) {

printf("Unable to load bitmap.\n");
return 1;

}

/* Set the penguin’s colorkey. */
SDL_SetColorKey(penguin,

SDL_SRCCOLORKEY,
(Uint16) SDL_MapRGB(penguin->format,
0, 0, 255));

/* Initialize the penguin position data. */
init_penguins();

/* Animate 300 frames (approximately 10 seconds). */
for (frames = 0; frames < 300; frames++) {

/* Draw the background image. */
src.x = 0;
src.y = 0;
src.w = background->w;
src.h = background->h;
dest = src;

SDL_BlitSurface(background, &src, screen, &dest);

102 CHAPTER 4

/* Put the penguins on the screen. */
draw_penguins();

/* Ask SDL to update the entire screen. */
SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Move the penguins for the next frame. */
move_penguins();

}

/* Free the memory that was allocated to the bitmap. */
SDL_FreeSurface(background);
SDL_FreeSurface(penguin);

return 0;
}

Although this animation may run smoothly on your particular system, it is not
optimal for two reasons. First, SDL might or might not be using the video card’s
actual framebuffer for drawing. If it is using the framebuffer, the penguin
graphics will be drawn directly to the screen, and the monitor’s refresh might
occur while the frame is being composed. This can lead to half-drawn or even
missing images on some frames. These problems are known as shearing and
flicker, respectively, and they are even more distracting than jittery animation.
Second, the penguin bitmap’s pixels are stored in a different format than the
screen’s pixels, forcing SDL to convert between pixel formats as it draws the
images. This is very time-consuming and therefore lowers the framerate of the
animation.

The first problem can be solved with a technique known as double buffering. By
specifying the SDL DOUBLEBUF and SDL HWSURFACE flags to SDL SetVideoMode,
you can instruct SDL to always use a fake (off-screen) framebuffer, even if a
direct one is available. This off-screen framebuffer is called a double buffer or
back buffer. The back buffer can be quickly displayed to the screen with the
SDL Flip function. (Note that the SDL UpdateRect function is not used with
double buffering.) Using a second framebuffer for composing the complete frame
ensures that everything can be drawn to the screen with one carefully timed blit,
rather than the 100 blits our penguin example performs. Double buffering thus
significantly mitigates the problems of shearing and flicker.

MASTERING SDL 103

Function SDL Flip(surf)

Synopsis Swaps the front buffer and the back buffer on a double
buffered SDL display. If the display is not double
buffered, SDL Flip just updates the entire screen.

Parameters surf—Pointer to the main video surface (returned by
SDL SetVideoMode).

Warning

The SDL DOUBLEBUF and SDL HWSURFACE flags can actually damage
performance or introduce new bugs in some cases. It wouldn’t be a bad
idea to provide a game option for turning off these flags.

The second problem is equally simple to avoid. The SDL DisplayFormat function
converts an image’s pixels to the correct format for fast blitting. This function
accepts a surface as input and creates a new surface that can be displayed
without conversion. The old surface can then be freed with SDL FreeSurface.

Function SDL DisplayFormat(surface)

Synopsis Converts an image into an optimal format for fast
blitting onto the screen.

Returns Pointer to a newly allocated SDL Surface on success,
NULL on failure. Don’t forget to free the original
surface – this function creates a new surface and
doesn’t touch the old one. This is a very common
memory leak.

Parameters surface—Pointer to the surface to convert.

Warning

The SDL DisplayFormat function destroys an image’s alpha channel,
because alpha blending more or less precludes fast blitting (at least
without hardware acceleration). Do not use this function on images
intended for alpha blending.

104 CHAPTER 4

One frame of the penguin animation

An Improved Version

Our next example integrates both of these improvements, and the resulting
animation is considerably smoother. Since the code is largely unchanged, we will
not repeat the entire example, only the main function.

Code Listing 4–7 (sdl-anim2.c)

int main()
{

SDL_Surface *temp;
SDL_Surface *background;
SDL_Rect src, dest;
int frames;

MASTERING SDL 105

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 640x480 hicolor (16-bit) video mode
with a double buffer. */

screen = SDL_SetVideoMode(640, 480, 16, SDL_DOUBLEBUF);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

/* Load the background image and convert it to the display’s
pixel format. This conversion will drastically improve the
performance of SDL_BlitSurface, as it will not have to
convert the surface on the fly. */

temp = SDL_LoadBMP("background.bmp");
background = SDL_DisplayFormat(temp);
if (background == NULL) {

printf("Unable to load bitmap.\n");
return 1;

}
SDL_FreeSurface(temp);

/* Load the penguin image. */
temp = SDL_LoadBMP("smallpenguin.bmp");
if (temp == NULL) {

printf("Unable to load bitmap.\n");
return 1;

}

/* Set the penguin’s colorkey. Ask for RLE acceleration,
a technique that can significantly speed up colorkey
blits. */

SDL_SetColorKey(temp,
SDL_SRCCOLORKEY | SDL_RLEACCEL,
(Uint16) SDL_MapRGB(temp->format, 0, 0, 255));

106 CHAPTER 4

/* Convert the penguin to the display’s format. We do this after
we set the colorkey, since colorkey blits can sometimes be
optimized for a particular display. */

penguin = SDL_DisplayFormat(temp);
if (penguin == NULL) {

printf("Unable to convert bitmap.\n");
return 1;

}
SDL_FreeSurface(temp);

/* Initialize the penguin position data. */
init_penguins();

/* Animate 300 frames (approximately 10 seconds). */
for (frames = 0; frames < 300; frames++) {

/* Draw the background image. */
src.x = 0;
src.y = 0;
src.w = background->w;
src.h = background->h;
dest = src;

SDL_BlitSurface(background, &src, screen, &dest);

/* Put the penguins on the screen. */
draw_penguins();

/* Ask SDL to swap the back buffer to the screen. */
SDL_Flip(screen);

/* Move the penguins for the next frame. */
move_penguins();

}

/* Free the memory that was allocated to the bitmap. */
SDL_FreeSurface(background);
SDL_FreeSurface(penguin);

return 0;
}

MASTERING SDL 107

The animation produced by this example is drastically improved, mainly due to
the much faster blitting. Since we are now explicitly using an off-screen surface
for our drawing, we are relatively safe from shearing and flicker. Performance is
now in the hands of the X server (which will vary depending on the underlying
hardware).

Input and Event Processing

SDL uses the notion of events to report the user’s input and
window-management actions. For instance, events are produced whenever the
user moves the mouse, presses a key, or resizes the SDL video window. A
program may use an event loop to listen to SDL’s events. SDL stores unprocessed
events in an internal list known as the event queue. This queue allows SDL to
collect as many events as possible each time it performs an event update.

There are four main categories of events: keyboard events, mouse events
(movement and button clicks), window events (gaining and losing focus, as well
as “exit” requests), and system-dependent events (raw messages from the
windowing system that SDL otherwise would ignore). SDL provides a structure
type for recording each kind of event, and these are wrapped by the SDL Event
union. The type member indicates the particular type of event stored by a
SDL Event structure. Most SDL applications use a switch statement to identify
and process the various types of events.

Structure SDL Event

Synopsis Structure for receiving events from SDL. More
specifically, a union of all possible event types.

Members type—enum indicating the type of event. Each event
type corresponds to a specialized event structure in
the SDL Event union. See SDL events.h in the SDL
API for a list of event types and their corresponding
entries in SDL Event; there are quite a few.

Because every event represents some sort of interaction with the application’s
main window or console, the SDL event subsystem is closely tied to the video
subsystem. Since the two subsystems cannot logically be separated from one

108 CHAPTER 4

another, they are both initialized with the SDL INIT VIDEO parameter to
SDL Init. It would not make sense to use the event subsystem separately from
the video subsystem.

Processing Mouse Events

The mouse is a fairly simple input device. A mouse (or trackball) reports
changes in its position with respect to a fixed unit of measure. For instance, a
movement of 1 inch forward and 2 inches to the left (with respect to the
mousepad) might correspond to 400 vertical mouse units and −800 horizontal
units. These units are called mickeys, and their exact meaning varies from mouse
to mouse. It is important to realize that, at the lowest level, the mouse has no
concept of the screen area or the pointer; it simply measures relative motion.

The code listing that follows demonstrates simple mouse event processing with
the SDL event interface.

Code Listing 4–8 (mouse-events-sdl.c)

/* Example of simple mouse input with SDL. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;
SDL_Event event;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

MASTERING SDL 109

/* Attempt to set a 256x256 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(256, 256, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

/* Start the event loop. Keep reading events until there
is an error, or the user presses a mouse button. */

while (SDL_WaitEvent(&event) != 0) {

/* SDL_WaitEvent has filled in our event structure
with the next event. We check its type field to
find out what happened. */

switch (event.type) {

/* The next two event types deal
with mouse activity. */

case SDL_MOUSEMOTION:
printf("Mouse motion. ");

/* SDL provides the current position. */
printf("New position is (%i,%i). ",

event.motion.x, event.motion.y);

/* We can also get relative motion. */
printf("That is a (%i,%i) change.\n",

event.motion.xrel, event.motion.yrel);
break;

case SDL_MOUSEBUTTONDOWN:
printf("Mouse button pressed. ");

printf("Button %i at (%i,%i)\n",
event.button.button,
event.button.x, event.button.y);

break;

/* The SDL_QUIT event indicates that
the windows "Close" button has been
pressed. We can ignore this if we
need to, but that tends to make

110 CHAPTER 4

users rather impatient. */
case SDL_QUIT:

printf("Quit event. Bye.\n");
exit(0);

}
}

return 0;
}

This program begins exactly as one of our early SDL video examples did. In
fact, it is one of our early video examples, minus the drawing code. We need to
open a window in order to receive events, but the window’s contents are
inconsequential. Once the window is open, the program kicks off the event loops
and begins to monitor the mouse.

Suppose that the user quickly moves the mouse from the coordinates (10,10) to
(25,30), relative to the position of the window. SDL would report this as an
SDL MOUSEMOTION event. The event structure’s motion.x and motion.y fields
would contain 25 and 30, respectively. The xrel and yrel fields would contain
15 and 20, since the mouse traveled 15 pixels to the right and 20 down. It is
possible that this motion would be broken into two or more mouse events
(depending on the speed at which the user moved the mouse, among other
things), but this can be dealt with by averaging mouse motion over several
animation frames.

SDL’s event-processing model is sufficient in most cases, but sometimes a
program simply needs to know the current position of the mouse, regardless of
how it got there. Programs can bypass the event interface entirely with the
SDL GetMouseState function. Unfortunately, this function does not
automatically read the mouse’s current state; it simply reports the most recently
read coordinates. If you choose to bypass the event system, you must call the
SDL PumpEvents function periodically to ensure that your program receives
up-to-date input device information.

MASTERING SDL 111

Function SDL GetMouseState(x, y)

Synopsis Returns the current coordinates of the mouse pointer.
This is the same information that would be provided
through the event interface, but sometimes it’s more
convenient to poll input devices rather than collect
event.

Returns State of the mouse buttons as a Uint8 (which you can
test by ANDing with the SDL BUTTON(num) macro).
Stores the x and y coordinates of the mouse in the
given pointers.

Parameters x—Pointer to the integer that should receive the
mouse’s x coordinate.

y—Pointer to the integer that should receive the
mouse’s y coordinate.

Function SDL WaitEvent(event)

Synopsis Retrieves the next event from SDL’s event queue. If
there are no events, waits until one is available or
something bad happens. On success, copies the new
event into the provided SDL Event structure.

Returns 1 on success, 0 on failure.

Parameters event—Pointer to the SDL Event structure that
should receive the event.

Function SDL PollEvent(event)

Synopsis Retrieves the next event from SDL’s event queue. If
there are no events, returns immediately. On success,
copies the new event into the provided SDL Event
structure.

Returns 1 if an event was available, 0 otherwise.

Parameters event—Pointer to the SDL Event structure that
should receive the event.

112 CHAPTER 4

Function SDL PumpEvents()

Synopsis Checks all input devices for new data. You only need
to call this if you intend to bypass the normal event
system; SDL WaitEvent and SDL PollEvent call this
automatically. If you don’t call this, SDL GetKeyState
and SDL GetMouseState are unlikely to return correct
information. It’s common to put this at the top of a
game loop.

Warning

SDL’s event processing is not completely thread-safe. In particular,
functions that collect new input (SDL PollEvent, SDL WaitEvent, and
SDL PumpEvents) should be called only from the thread that originally
set the video mode (with SDL SetVideoMode). However, it is safe to call
the SDL PeepEvents function (not discussed here) from another thread.

It’s possible to have SDL set up a completely separate event-processing
thread, but this is only partially implemented and generally unportable.
Your best bet is to handle input processing in your game’s main thread.

Processing Keyboard Events

SDL’s keyboard event handling is analogous to its mouse event handling, but the
keyboard event structure is a bit more complex.

SDL assigns a virtual keysym to each key on the keyboard. These codes map at
some level to the operating system’s keyboard scancodes (which in turn map to
the codes produced by the keyboard’s hardware), but SDL takes care of the
mapping behind the scenes. SDL provides a preprocessor symbol for each virtual
keysym; for instance, the Escape key corresponds to the symbol SDLK ESCAPE.
You use these codes whenever you need to directly check the state (up or down)
of a particular key, and SDL uses them to report key events. Virtual keysyms
are represented by the SDLKey type.

What about the “special” keys on the keyboard, such as Ctrl, Alt, and Shift?
These do in fact correspond to virtual keysyms, and they can be treated as

MASTERING SDL 113

ordinary keys (you can find their keysyms in SDL keysym.h); however, they
are also considered modifier keys. Each key event carries information about
which modifiers were in effect when the key was pressed. Modifiers are
represented by ORed bit flags; for instance, a combination of the left Ctrl and
Alt keys would be flagged as (KMOD LCTRL | KMOD LALT). SDL provides the
SDLMod enum for representing these combinations. Note that SDL makes a
distinction between the left and right modifier keys.

The following example prints out information about SDL keyboard events. It
prints the virtual keysym of each key, gives the key’s symbolic name, and
indicates whether the left Shift key was down when the key was pressed.

Code Listing 4–9 (keyboard-events-sdl)

/* Example of simple keyboard input with SDL. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;
SDL_Event event;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 256x256 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(256, 256, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

114 CHAPTER 4

printf("Press ’Q’ to quit.\n");

/* Start the event loop. Keep reading events until there
is an error, or the user presses a mouse button. */

while (SDL_WaitEvent(&event) != 0) {
SDL_keysym keysym;

/* SDL_WaitEvent has filled in our event structure
with the next event. We check its type field to
find out what happened. */

switch (event.type) {

case SDL_KEYDOWN:
printf("Key pressed. ");
keysym = event.key.keysym;
printf("SDL keysym is %i. ", keysym.sym);
printf("(%s) ", SDL_GetKeyName(keysym.sym));

/* Report the left shift modifier. */
if (event.key.keysym.mod & KMOD_LSHIFT)

printf("Left Shift is down.\n");
else

printf("Left Shift is up.\n");

/* Did the user press Q? */
if (keysym.sym == SDLK_q) {

printf("’Q’ pressed, exiting.\n");
exit(0);

}

break;

case SDL_KEYUP:
printf("Key released. ");
printf("SDL keysym is %i. ", keysym.sym);
printf("(%s) ", SDL_GetKeyName(keysym.sym));

if (event.key.keysym.mod & KMOD_LSHIFT)
printf("Left Shift is down.\n");

else
printf("Left Shift is up.\n");

MASTERING SDL 115

break;

case SDL_QUIT:
printf("Quit event. Bye.\n");
exit(0);

}
}

return 0;
}

It is important to note that a keystroke generates only one event, regardless of
how long a key is held down. Games generally use the keyboard as a set of
control buttons, not as character input devices, and so the normal key repeat
feature is most often of no use to them. However, you can enable key repeat
with the SDL EnableKeyRepeat function. This might be useful for implementing
text fields in dialog boxes, for instance.

Function SDL EnableKeyRepeat(delay, rate)

Synopsis Enables key repeating. This is usually disabled for
games, but it has its uses and is almost always
enabled for normal typing.

Parameters delay—Milliseconds to wait after a key is initially
pressed before repeating its event. A delay of 0
disables key repeating. A typical value is somewhere
in the range of 250–500.
rate—Milliseconds between repeats. A typical value
is 30.

As with the mouse, it is possible to read the keyboard’s state directly, bypassing
the event interface. There is no function for directly obtaining the state of an
individual key, but a program can obtain a snapshot of the entire keyboard in
the form of an array. The SDL GetKeyState function returns a pointer to SDL’s
internal keyboard state array, which is indexed with the SDLK keysym constants.
Each entry in the array is a simple Uint8 flag indicating whether that key is
currently down. Remember to call SDL PumpEvents before reading the
keyboard’s state array, or the array’s data will not be valid.

116 CHAPTER 4

Function SDL GetKeyState(numkeys)

Synopsis Retrieves a snapshot of the entire keyboard as an
array. Each entry in the array corresponds to one of
the SDLK name constants, where 1 means that the
corresponding key is currently down and 0 means that
the key is currently up. This array pointer will never
change during the course of a program; it’s one of
SDL’s internal data structures. Be sure to call
SDL PumpEvents periodically, or the keyboard state
data will never change.

Returns Pointer to SDL’s keyboard state array. Stores the size
of the array in numkeys.

Parameters numkeys—Pointer to an integer to receive the size of
the key array. Most programs don’t care about this
and just pass NULL.

Processing Joystick Events

SDL provides a complete interface for joystick management. A modern game can
no longer assume that the player will use a traditional two-button, two-axis
joystick; many joysticks are equipped with programmable buttons, hat switches,
trackballs, and throttles. In addition, some serious gamers like to use more than
one joystick at once. Aside from physical limitations (such as the number of ports
on a computer or the availability of low-level support from the kernel), SDL can
manage any number of joysticks with any number of additional buttons, hats,
and trackballs. If the Linux kernel recognizes a device as a joystick, so will SDL.

Joystick axes (directional controls) produce simple linear values indicating their
positions. SDL reports these on a scale from −32, 768 to 32, 767. For instance,
the leftmost position of a joystick would produce a value of −32, 768 on axis 0,
and the rightmost position would produce 32, 767. SDL provides the
SDL JOYAXISMOTION event type for joystick motion.

Hat switches (small directional controls on top of a joystick) are sometimes
represented as additional axes, but they are more frequently reported with a
separate SDL JOYHATMOTION event type. Hat positions are reported with respect

MASTERING SDL 117

to the four compass directions and the four diagonals. These positions are
numbered clockwise, starting with 1 as North. The center position is 0.3

Warning

Before you assume that your joystick code isn’t working, try running
the test programs included with the Linux kernel’s joystick driver. If
the kernel doesn’t know how to deal with your joystick, SDL won’t
either, and your code will not work.

The SDL joystick event interface works as you might expect: it generates an
event each time the value of a joystick axis or button changes. It also includes
functions for polling the state of a joystick directly. The SDL joystick interface is
fairly simple, so we won’t spend much more time on it.

Code Listing 4–10 (joystick-events-sdl.c)

/* Example of simple joystick input with SDL. */

#include <SDL/SDL.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{

SDL_Event event;
SDL_Joystick *js;
int num_js, i, quit_flag;

/* Initialize SDL’s joystick and video subsystems. */
if (SDL_Init(SDL_INIT_JOYSTICK | SDL_INIT_VIDEO) != 0) {

printf("Error: %s\n", SDL_GetError());
return 1;

}

3 More recent versions of SDL allow you to access joystick hat positions with a simple
bitmask instead of numbers. This change is in effect as of SDL 1.2.

118 CHAPTER 4

atexit(SDL_Quit);

/* Create a 256x256 window so we can collect input events. */
if (SDL_SetVideoMode(256, 256, 16, 0) == NULL) {

printf("Error: %s\n", SDL_GetError());
return 1;

}

/* Find out how many joysticks are available. */
num_js = SDL_NumJoysticks();
printf("SDL recognizes %i joystick(s) on this system.\n",

num_js);
if (num_js == 0) {

printf("No joysticks were detected.\n");
return 1;

}

/* Print out information about each joystick. */
for (i = 0; i < num_js; i++) {

/* Open the joystick. */
js = SDL_JoystickOpen(i);

if (js == NULL) {
printf("Unable to open joystick %i.\n", i);

} else {
printf("Joystick %i\n", i);
printf("\tName: %s\n", SDL_JoystickName(i));
printf("\tAxes: %i\n", SDL_JoystickNumAxes(js));
printf("\tTrackballs: %i\n", SDL_JoystickNumBalls(js));
printf("\tButtons: %i\n", SDL_JoystickNumButtons(js));

/* Close the joystick. */
SDL_JoystickClose(js);

}
}

MASTERING SDL 119

/* We’ll use the first joystick for the demonstration. */
js = SDL_JoystickOpen(0);
if (js == NULL) {

printf("Unable to open joystick: %s\n", SDL_GetError());
}

/* Loop until the user presses Q. */
quit_flag = 0;
while (SDL_WaitEvent(&event) != 0 && quit_flag == 0) {

switch (event.type) {

case SDL_KEYDOWN:

if (event.key.keysym.sym == SDLK_q) {
printf("Q pressed. Exiting.\n");
quit_flag = 1;

}

break;

/* This event is generated when an axis on an open
joystick is moved. Most joysticks have two axes,
X and Y (which will be reported as axes 0 and 1). */

case SDL_JOYAXISMOTION:

printf("Joystick %i, axis %i movement to %i\n",
event.jaxis.which, event.jaxis.axis,
event.jaxis.value);

break;

/* The SDL_JOYBUTTONUP and SDL_JOYBUTTONDOWN events
are generated when the state of a joystick button
changes. */

case SDL_JOYBUTTONUP:
/* fall through to SDL_JOYBUTTONDOWN */

case SDL_JOYBUTTONDOWN:

printf("Joystick %i button %i: %i\n",
event.jbutton.which,
event.jbutton.button, event.jbutton.state);

120 CHAPTER 4

break;

}
}

/* Close the joystick. */
SDL_JoystickClose(js);

return 0;
}

Multithreading with SDL

Multithreading is the ability of a program to execute multiple parts of itself
simultaneously in the same address space. This feature can be useful to game
developers; for instance, a programmer might elect to use separate threads for
video processing and music playback so that they can run simultaneously. When
properly used, multithreading can simplify game programming and make the end
result smoother and more efficient. Threads can significantly boost performance
on multiprocessor systems, since each thread can run on a separate processor
(this is up to the operating system, though).

Several different thread programming libraries exist for the mainstream
operating systems. Windows and Linux use completely different threading
interfaces, and Solaris (Sun Microsystems’ flavor of UNIX) supports both its own
threading API and the one that Linux uses. SDL solves this cross-platform
inconsistency with its own set of portable threading functions.

Threads are essentially asynchronous procedure calls that return immediately
but continue running in the background. An SDL thread entry point is simply a
pointer to a void function that takes a void pointer as a parameter. Threads
have their own stacks, but they share the application’s global variables, heap,
code, and file descriptors. You can start new threads with the
SDL CreateThread function. SDL CreateThread returns a pointer to a thread
handle (of type SDL Thread) that can be used to interact with the new thread.
SDL provides functions for terminating threads (SDL KillThread) and for
waiting for them to finish executing (SDL WaitThread). Waiting for a thread to
finish is sometimes called joining the thread.

MASTERING SDL 121

Function SDL CreateThread(func, data)

Synopsis Starts func in a separate SDL thread, with data as an
argument. Makes whatever low-level threading calls
are appropriate for the given platform
(pthread create, in the case of Linux).

Returns Pointer to an SDL Thread structure that represents
the newly created process.

Parameters func—Entry point for the new thread. This function
should take one void * argument and return an
integer.

data—void * to be passed verbatim to func. This is
for your own use, and it’s perfectly safe to pass NULL.

Function SDL KillThread(id)

Synopsis Terminates an SDL thread immediately. If the thread
could possibly be doing anything important, it might
be a good idea to ask it to end itself rather than just
terminating it.

Parameters id—Pointer to the SDL Thread structure that
identifies the thread you wish to kill.

Function SDL WaitThread(id)

Synopsis Waits for an SDL thread to terminate. This is also
known as joining a thread.

Parameters id—Pointer to the SDL Thread structure that
identifies the thread you wish to join.

Multithreaded programming requires a bit of extra caution. What happens if
two threads attempt to modify the same global variable at the same time? You
have no way of telling which thread will succeed, which can lead to strange and
elusive bugs. If there is any chance that two threads will attempt to modify an
important data structure simultaneously, it is a good idea to protect the

122 CHAPTER 4

structure with a mutex (mutual exclusion flag). A mutex is simply a flag that
indicates whether a structure is currently in use. Whenever a thread needs to
access a mutex-protected structure, it should set (lock) the mutex first. If
another thread needs to access the structure, it must wait until the mutex is
unlocked. This can prevent threads from colliding, but only if they respect the
mutex. SDL’s mutexes are advisory in nature; they do not physically block
access.

Function SDL CreateMutex

Synopsis Creates a mutex.

Returns Pointer to the newly created mutex. This mutex is
initially unlocked.

Function SDL DestroyMutex

Synopsis Frees a mutex.

Parameters mutex—Pointer to the mutex to destroy.

Function SDL mutexP(mutex)

Synopsis Locks a mutex. If the mutex is already locked, waits
until it is unlocked before locking it again. If you
dislike the traditional P/V naming, you can access
this function with the SDL LockMutex macro.

Parameters mutex—Pointer to the mutex to lock.

Function SDL mutexV(mutex)

Synopsis Unlocks a mutex. There should always be a
SDL mutexV call for every SDL mutexP call. If you
dislike the traditional P/V naming, you can access
this function with the SDL UnlockMutex macro.

Parameters mutex—Pointer to the mutex to unlock.

The example that follows creates three threads that increment a global variable
and print out its value. A mutex is used to synchronize access to the variable, so
that multiple threads can modify the variable without conflicts.

MASTERING SDL 123

Code Listing 4–11 (sdl-threading.c)

/* Example of SDL’s portable threading API. */

#include <stdio.h>
#include <stdlib.h>
#include <SDL/SDL.h>

/* We must include SDL_thread.h separately. */
#include <SDL/SDL_thread.h>

static int counter = 0;
SDL_mutex *counter_mutex;

/* The three threads will run until this flag is set. */
static int exit_flag = 0;

/* This function is a thread entry point. */
int ThreadEntryPoint(void *data)
{

char *threadname;

/* Anything can be passed as thread data.
We will use it as a thread name. */

threadname = (char *) data;

/* Loop until main() sets the exit flag. */
while (exit_flag == 0) {

printf("This is %s! ", threadname);

/* Get a lock on the counter variable. */
SDL_mutexP(counter_mutex);

/* We can now safely modify the counter. */
printf("The counter is currently %i\n", counter);
counter++;

/* Release the lock on the counter variable. */
SDL_mutexV(counter_mutex);

/* Delay for a random amount of time. */
SDL_Delay(rand() % 3000);

124 CHAPTER 4

}

printf("%s is now exiting.\n", threadname);

return 0;
}

int main()
{

SDL_Thread *thread1, *thread2, *thread3;

/* Create a mutex to protect the counter. */
counter_mutex = SDL_CreateMutex();

printf("Press Ctrl-C to exit the program.\n");

/* Create three threads. Give each thread a name
as its data. */

thread1 = SDL_CreateThread(ThreadEntryPoint, "Thread 1");
thread2 = SDL_CreateThread(ThreadEntryPoint, "Thread 2");
thread3 = SDL_CreateThread(ThreadEntryPoint, "Thread 3");

/* Let the threads run until the counter reaches 20. */
while (counter < 20)

SDL_Delay(1000);

/* Signal the threads to exit. */
exit_flag = 1;
printf("exit_flag has been set by main().\n");

/* Give them time to notice the flag and exit. */
SDL_Delay(3500);

/* Destroy the counter mutex. */
SDL_DestroyMutex(counter_mutex);

return 0;
}

If you have used another thread-programming library (such as Win32’s threads
or the POSIX pthread library), you’ll notice that SDL’s threading API is

MASTERING SDL 125

somewhat incomplete. For instance, SDL does not allow a program to change a
thread’s scheduling priority or other low-level attributes. These features are
highly dependent upon the operating system, and supporting them in a
consistent manner across platforms would be difficult. If your game needs more
complete threading abilities, you might consider using a platform-dependent
threading toolkit, but this will make your game more difficult to port to other
platforms. SDL’s threading API is sufficient for almost anything a game might
need, though.

SDL Audio Programming

An often-overlooked but essential area of game programming is sound.
Computer sound processing is as much of a science as computer graphics, but
the basics of format conversion, mixing, and playback are fairly straightforward.
This section discusses the basics of computer audio and investigates SDL’s
audio-programming interface.

Representing Sound with PCM

Computer sound is based on pulse-code modulation, or PCM. As you know,
pixels in a video surface encode the average color intensities of an optical image
at regular intervals, and more pixels allow for a closer representation of the
original image. PCM data serves the same purpose, except that it represents the
average intensities of sequential intervals in sound waves. Each “pixel” of PCM
data is called a sample. The rate at which these samples occur is the sampling
rate or frequency of the sound data. Sampling rates are expressed in the
standard SI frequency unit, hertz (Hz). A higher sampling rate allows for a
closer representation of the original sound wave.

Individual PCM samples are usually 8 or 16 bits (1 or 2 bytes) for each channel
(one channel for mono, two channels for stereo), and game-quality sound is most
often sampled at either 22,050 or 44,100 Hz. Samples can be represented as
signed or unsigned numbers. A 16-bit sample can obviously express the intensity
of a sound with much greater precision than an 8-bit sample, but it involves
twice as much data. At 44,100 Hz with 16-bit samples, one second of sound data
will consume nearly 90 kilobytes of storage, or twice that for stereo. Game

126 CHAPTER 4

Mono Stereo
8 bit 16 bit 8 bit 16 bit

11025 Hz 11,025 22,050 22,050 44,100
22050 Hz 22,050 44,100 44,100 88,200
44100 Hz 44,100 88,200 88,200 176,400

Table 4–1: Storage consumed by various sound formats (in bytes per second)

programmers must decide on a trade-off between sound quality and the amount
of disk space a game will consume. Fortunately, this trade-off has become less of
a problem in recent years, with the advent of inexpensive high-speed Internet
connections and the nearly universal availability of CD-ROM drives.

Just as raw pixel data is often stored on disk in .bmp files, raw PCM sound
samples are often stored on disk in .wav files. SDL can read these files with the
SDL LoadWAV function. There are several other PCM sound formats (such as .au
and .snd), but we will confine our discussion to .wav files for now. (There is
currently no audio file equivalent to the SDL image library—are you interested
in writing one for us?)

Function SDL LoadWAV(file, spec, buffer, length)

Synopsis Loads a RIFF .wav audio file into memory.

Returns Non-NULL on success, NULL on failure. Fills the given
SDL AudioSpec structure with the relevant
information, sets *buffer to a newly allocated buffer
of samples, and sets *length to the size of the sample
data, in bytes.

Parameters file—Name of the file to load. The more general
SDL LoadWAV RW function provides a way to load .wav
data from nonfile sources (in fact, SDL LoadWAV is just
a wrapper around SDL LoadWAV RW).

spec—Pointer to the SDL AudioSpec structure that
should receive the loaded sound’s sample rate and
format.

MASTERING SDL 127

buffer—Pointer to the Uint8 * that should receive
the newly allocated buffer of samples.

length—Pointer to the Uint32 that should receive
the length of the buffer (in bytes).

Function SDL FreeWAV(buffer)

Synopsis Frees memory allocated by a previous call to
SDL LoadWAV. This is necessary because the data
might not have been allocated with malloc, or might
be subject to other considerations. Use this function
only for freeing sample data allocated by SDL; free
your own sound buffers with free.

Parameters buffer—Sample data to free.

Structure SDL AudioSpec

Synopsis Contains information about a particular sound format:
rate, sample size, and so on. Used by SDL OpenAudio
and SDL LoadWAV, among other functions.

Members freq—Frequency of the sound in samples per second.
For stereo sound, this means one sample per channel
per second (i.e., 44,100 Hz in stereo is actually 88,200
samples per second).

format—Sample format. Possible values are
AUDIO S16 and AUDIO U8. (There are other formats,
but they are uncommon and not fully supported—I
found this out the hard way.)

silence—PCM sample value that corresponds to
silence. This is usually either 0 (for 16-bit signed
formats) or 128 (for 8-bit unsigned formats).
Calculated by SDL. Read-only.

channels—Number of interleaved channels. This will
normally be either one (for mono) or two (for stereo).

128 CHAPTER 4

samples—Number of samples in an audio transfer
buffer. A typical value is 4,096.
size—Size of the audio transfer buffer in bytes.
Calculated by SDL. Read-only.
callback—Pointer to the function SDL should call to
retrieve more sample data for playback.

PCM data is convenient to work with, despite the necessary size considerations.
The key is to realize that PCM is simply a set of measurements that
approximate a wave of energy. A strong sound wave will result in large PCM
sample values, and a weak sound wave will result in small values. To increase or
decrease the volume of a PCM sound wave, simple multiply each sample by a
constant. To create a volume-fading effect, multiply each sample by a
progressively larger or smaller value. To fade between two samples, simply
perform an average with changing weights. Waves are additive; a program can
combine (mix) sounds simply by adding (or averaging) the samples together.
Remember that binary numbers have limits; multiplying a sample by a large
constant or adding too many samples together is likely to cause an overflow,
which will result in distorted sound.

Feeding a Sound Card

A sound card is conceptually simple: it accepts a continuous stream of PCM
samples and recreates the original sound wave through a set of speakers or
headphones. Your basic task, then, is to keep the sound card supplied with PCM
samples. This is a bit of a trick. If you want 44.1 kilohertz (kHz) sound (the
quality of sound stored on audio CDs), you must supply the sound card with
44,100 samples per second, per channel. With 16-bit samples and two channels
(stereo), this comes out to 176,400 bytes of sound data (see Table 4)! In addition,
timing is critical. Any lapse of data will result in a noticeable sound glitch.

It would be both difficult and woefully inefficient to make a game stop 44,100
times each second to feed more data to the sound card. Fortunately, the
computer gives us a bit of help. Most modern computer architectures include a
feature called direct memory access, or DMA. DMA provides support for
high-speed background memory transfers. These transfers are used for a variety
of purposes, but their most common use is to shovel large amounts of data to

MASTERING SDL 129

sound cards, hard drives, and video accelerators. You can periodically give the
computer’s DMA controller buffers of several thousand PCM samples to transfer
to the sound card, and the DMA controller can alert the program when the
transfer is complete so that it can send the next block of samples.

The operating system’s drivers take care of DMA for you; you simply have to
make sure that you can produce audio data quickly enough. This is sometimes
done with a callback function. Whenever the computer’s sound hardware asks
SDL for more sound data, SDL in turn calls your program’s audio callback
function. The callback function must quickly copy more sound data into the
given buffer. This usually involves mixing several sounds together.

This scheme has one small problem: since you send data to the sound card in
chunks, there will always be a slight delay before any new sound can be played.
For instance, suppose that our program needed to play a gunshot sound. It
would probably add the sound to an internal list of sounds to mix into the
output stream. However, the sound card might not be ready for more data, so
the mixed samples would have to wait. This effect is called latency, and you
should minimize it whenever possible. You can reduce latency by specifying a
smaller sound buffer when you initialize the sound card, but you cannot
realistically eliminate it (this is usually not a problem in terms of realism; there
is latency in real life, because light travels much faster than sound).

An Example of SDL Audio Playback

We have discussed the nuts and bolts of sound programming for long enough; it
is time for an example. This example is a bit lengthier than our previous
examples, but the code is fairly straightforward.

Code Listing 4–12 (audio-sdl.c)

/* Example of audio mixing with SDL. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

130 CHAPTER 4

/* Structure for loaded sounds. */
typedef struct sound_s {

Uint8 *samples; /* raw PCM sample data */
Uint32 length; /* size of sound data in bytes */

} sound_t, *sound_p;

/* Structure for a currently playing sound. */
typedef struct playing_s {

int active; /* 1 if this sound should be played */
sound_p sound; /* sound data to play */
Uint32 position; /* current position in the sound buffer */

} playing_t, *playing_p;

/* Array for all active sound effects. */
#define MAX_PLAYING_SOUNDS 10
playing_t playing[MAX_PLAYING_SOUNDS];

/* The higher this is, the louder each currently playing sound
will be. However, high values may cause distortion if too
many sounds are playing. Experiment with this. */

#define VOLUME_PER_SOUND SDL_MIX_MAXVOLUME / 2

/* This function is called by SDL whenever the sound card
needs more samples to play. It might be called from a
separate thread, so we should be careful what we touch. */

void AudioCallback(void *user_data, Uint8 *audio, int length)
{

int i;

/* Clear the audio buffer so we can mix samples into it. */
memset(audio, 0, length);

/* Mix in each sound. */
for (i = 0; i < MAX_PLAYING_SOUNDS; i++) {

if (playing[i].active) {
Uint8 *sound_buf;
Uint32 sound_len;

/* Locate this sound’s current buffer position. */
sound_buf = playing[i].sound->samples;
sound_buf += playing[i].position;

MASTERING SDL 131

/* Determine the number of samples to mix. */
if ((playing[i].position + length) >

playing[i].sound->length) {
sound_len = playing[i].sound->length -

playing[i].position;
} else {

sound_len = length;
}

/* Mix this sound into the stream. */
SDL_MixAudio(audio, sound_buf, sound_len,

VOLUME_PER_SOUND);

/* Update the sound buffer’s position. */
playing[i].position += length;

/* Have we reached the end of the sound? */
if (playing[i].position >= playing[i].sound->length) {

playing[i].active = 0; /* mark it inactive */
}

}
}

}

/* This function loads a sound with SDL_LoadWAV and converts
it to the specified sample format. Returns 0 on success
and 1 on failure. */

int LoadAndConvertSound(char *filename, SDL_AudioSpec *spec,
sound_p sound)

{
SDL_AudioCVT cvt; /* format conversion structure */
SDL_AudioSpec loaded; /* format of the loaded data */
Uint8 *new_buf;

/* Load the WAV file in its original sample format. */
if (SDL_LoadWAV(filename,

&loaded, &sound->samples,
&sound->length) == NULL) {

printf("Unable to load sound: %s\n", SDL_GetError());
return 1;

}

132 CHAPTER 4

/* Build a conversion structure for converting the samples.
This structure contains the data SDL needs to quickly
convert between sample formats. */

if (SDL_BuildAudioCVT(&cvt, loaded.format,
loaded.channels, loaded.freq,
spec->format, spec->channels,
spec->freq) < 0) {

printf("Unable to convert sound: %s\n", SDL_GetError());
return 1;

}

/* Since converting PCM samples can result in more data
(for instance, converting 8-bit mono to 16-bit stereo),
we need to allocate a new buffer for the converted data.
Fortunately SDL_BuildAudioCVT supplied the necessary
information. */

cvt.len = sound->length;
new_buf = (Uint8 *) malloc(cvt.len * cvt.len_mult);
if (new_buf == NULL) {

printf("Memory allocation failed.\n");
SDL_FreeWAV(sound->samples);
return 1;

}

/* Copy the sound samples into the new buffer. */
memcpy(new_buf, sound->samples, sound->length);

/* Perform the conversion on the new buffer. */
cvt.buf = new_buf;
if (SDL_ConvertAudio(&cvt) < 0) {

printf("Audio conversion error: %s\n", SDL_GetError());
free(new_buf);
SDL_FreeWAV(sound->samples);
return 1;

}

/* Swap the converted data for the original. */
SDL_FreeWAV(sound->samples);
sound->samples = new_buf;
sound->length = sound->length * cvt.len_mult;

/* Success! */

MASTERING SDL 133

printf("’%s’ was loaded and converted successfully.\n",
filename);

return 0;
}

/* Removes all currently playing sounds. */
void ClearPlayingSounds(void)
{

int i;

for (i = 0; i < MAX_PLAYING_SOUNDS; i++) {
playing[i].active = 0;

}
}

/* Adds a sound to the list of currently playing sounds.
AudioCallback will start mixing this sound into the stream
the next time it is called (probably in a fraction
of a second). */

int PlaySound(sound_p sound)
{

int i;

/* Find an empty slot for this sound. */
for (i = 0; i < MAX_PLAYING_SOUNDS; i++) {

if (playing[i].active == 0)
break;

}

/* Report failure if there were no free slots. */
if (i == MAX_PLAYING_SOUNDS)

return 1;

/* The ’playing’ structures are accessed by the audio
callback, so we should obtain a lock before
we access them. */

SDL_LockAudio();
playing[i].active = 1;
playing[i].sound = sound;
playing[i].position = 0;

134 CHAPTER 4

SDL_UnlockAudio();

return 0;
}

int main()
{

SDL_Surface *screen;
SDL_Event event;
int quit_flag = 0; /* we’ll set this when we want to exit. */

/* Audio format specifications. */
SDL_AudioSpec desired, obtained;

/* Our loaded sounds and their formats. */
sound_t cannon, explosion;

/* Initialize SDL’s video and audio subsystems.
Video is necessary to receive events. */

if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO) != 0) {
printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

}

/* Make sure SDL_Quit gets called when the program exits. */
atexit(SDL_Quit);

/* We also need to call this before we exit. SDL_Quit does
not properly close the audio device for us. */

atexit(SDL_CloseAudio);

/* Attempt to set a 256x256 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(256, 256, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

}

/* Open the audio device. The sound driver will try to give
us the requested format, but it might not succeed.
The ’obtained’ structure will be filled in with the actual
format data. */

MASTERING SDL 135

desired.freq = 44100; /* desired output sample rate */
desired.format = AUDIO_S16; /* request signed 16-bit samples */
desired.samples = 4096; /* this is somewhat arbitrary */
desired.channels = 2; /* ask for stereo */
desired.callback = AudioCallback;
desired.userdata = NULL; /* we don’t need this */
if (SDL_OpenAudio(&desired, &obtained) < 0) {

printf("Unable to open audio device: %s\n", SDL_GetError());
return 1;

}

/* Load our sound files and convert them to
the sound card’s format. */

if (LoadAndConvertSound("cannon.wav", &obtained,
&cannon) != 0) {

printf("Unable to load sound.\n");
return 1;

}

if (LoadAndConvertSound("explosion.wav",
&obtained, &explosion) != 0) {

printf("Unable to load sound.\n");
return 1;

}

/* Clear the list of playing sounds. */
ClearPlayingSounds();

/* SDL’s audio is initially paused. Start it. */
SDL_PauseAudio(0);

printf("Press ’Q’ to quit. C and E play sounds.\n");

/* Start the event loop. Keep reading events until there is
an event error or the quit flag is set. */

while (SDL_WaitEvent(&event) != 0 && quit_flag == 0) {
SDL_keysym keysym;

switch (event.type) {

case SDL_KEYDOWN:
keysym = event.key.keysym;

136 CHAPTER 4

/* If the user pressed Q, exit. */
if (keysym.sym == SDLK_q) {

printf("’Q’ pressed, exiting.\n");
quit_flag = 1;

}

/* ’C’ fires a cannon shot. */
if (keysym.sym == SDLK_c) {

printf("Firing cannon!\n");
PlaySound(&cannon);

}

/* ’E’ plays an explosion. */
if (keysym.sym == SDLK_e) {

printf("Kaboom!\n");
PlaySound(&explosion);

}

break;

case SDL_QUIT:
printf("Quit event. Bye.\n");
quit_flag = 1;

}
}

/* Pause and lock the sound system so we can safely delete
our sound data. */

SDL_PauseAudio(1);
SDL_LockAudio();

/* Free our sounds before we exit, just to be safe. */
free(cannon.samples);
free(explosion.samples);

/* At this point the output is paused and we know for certain
that the callback is not active, so we can safely unlock
the audio system. */

SDL_UnlockAudio();

return 0;

MASTERING SDL 137

}

We begin by initializing SDL as usual, adding the SDL INIT AUDIO bit flag to
specify that SDL should prepare the audio subsystem for use. We also initialize
the video subsystem for the purpose of reading keyboard events. Next we install
two atexit hooks: one for the usual SDL Quit function, and one to specifically
close the audio device on shutdown. The latter hook is important, as failure to
close the audio device properly can result in a segmentation fault when the
program exits. At this point the sound card is not actually ready for output; we
have only set up SDL’s basic infrastructure.

The next step is to initialize the sound card for an appropriate sample format.
Our program builds an SDL AudioSpec structure with the desired sound
parameters and calls SDL OpenAudio to prepare the sound card. Since it is
possible that the requested sample format will not be available, SDL OpenAudio
stores the actual sample format in the SDL AudioSpec structure passed as its
second parameter. We can use this structure to convert our sound data to the
correct format for playback. Our program requests signed 16-bit samples at 44
kHz. 8-bit sound is lacking in quality, and unsigned 16-bit samples are not
supported by SDL.

Function SDL OpenAudio(desired, obtained)

Synopsis Initializes the computer’s sound hardware for playback
at the specified rate and sample format. If the
requested format isn’t available, SDL will pick the
closest match it can find. This function does not let
you select a particular sound device; if you need to do
that, check out the SDL InitAudio function (not
documented here, since SDL Init normally takes care
of that).

Returns 0 on success, −1 on failure. On success, fills obtained
with the rate and sample format of the sound device
(which may not be exactly what you requested).

Parameters desired—Pointer to an SDL AudioSpec structure
containing the desired sound parameters.

138 CHAPTER 4

obtained—Pointer to an SDL AudioSpec structure
that will receive the sound parameters that SDL was
able to obtain.

Function SDL CloseAudio()

Synopsis Closes the audio device opened by SDL OpenAudio.
It’s a good idea to call this as soon as you’re finished
with playback, so that other programs can use the
audio hardware.

Function SDL PauseAudio(state)

Synopsis Pauses or unpauses audio playback. Playback is
initially paused, so you’ll need to use this function at
least once to start playback.

Parameters state—1 to pause playback, 0 to start playback

Now that the sound card is initialized and ready for data, our program loads two
.wav sound files and converts them to the correct format for playback. It uses
the information provided by SDL OpenAudio to perform this conversion. The
only trick to using SDL’s conversion routines is to make sure that there is
enough memory to store the converted data. For example, suppose that the
sound card expects 16-bit stereo sound at 44 kHz, but the .wav file contains
11-kHz, 8-bit mono samples. The conversion would result in eight times as much
sample data. SDL performs sample conversions in place, so it is up to our
program to ensure that it has allocated a sufficiently large buffer. The end result
is that we cannot simply convert the buffer returned by the SDL LoadWAV
function; we must allocate our own buffer and copy the loaded samples into it.

Function SDL BuildAudioCVT(cvt, srcfmt, srcchan,
srcfreq, destfmt, destchan, destfreq)

Synopsis Builds a structure that contains the information
necessary for converting between sample formats (src
to dest). Use SDL ConvertAudio to actually perform
the conversion.

MASTERING SDL 139

Returns 0 on success, −1 on failure.

Parameters cvt—Pointer to an SDL AudioCVT structure that will
receive the conversion information.

srcfmt—Sample format of the source sample data.
This corresponds to the format member of
SDL AudioSpec.

srcchan—Number of channels in the source sample
data. 1 for mono, 2 for stereo.

srcfreq—Frequency in hertz of the source sample
data.

destfmt—Sample format of the destination sample
data.

destchan—Number of channels in the destination
sample data.

destfreq—Frequency in hertz of the destination
sample data.

Function SDL ConvertAudio(cvt)

Synopsis Converts the buffer of audio data in cvt->buf (of
length cvt->len bytes) in-place between sample
formats, as set up by a previous call to
SDL BuildAudioCVT. Make sure that cvt->buf is big
enough to accept the resulting sample data.

Parameters cvt—Audio conversion structure as described above.

Our program is now ready to mix and play sounds. It unpauses the SDL audio
system by calling SDL PauseAudio with an argument of zero. SDL will now call
the audio callback function several times each second to request sound data. An
SDL audio callback takes three arguments: a user-defined pointer (from the
SDL AudioSpec structure’s userdata field), an empty audio buffer, and an
integer representing the length of the buffer. The callback must fill the audio
buffer with the requested amount of audio data, which usually involves mixing
samples from several different sound effects together on the fly. Our callback

140 CHAPTER 4

function simply loops through the playing array and mixes in the next block of
samples from each currently playing sound effect. We reduce the volume of each
sound effect to prevent the end result from overflowing and becoming distorted.

Warning

SDL audio callbacks are usually called from a separate thread within
SDL. The SDL LockAudio and SDL UnlockAudio functions provide a
convenient way to protect audio-related structures from concurrency
issues. SDL LockAudio temporarily disables the audio callback, and
SDL UnlockAudio enables it. This feature is implemented with a simple
mutex.

The rest of the program simply plays sounds according to keyboard input. To
play a sound, we add it to the playing list and mark it active. The audio
callback function then starts mixing this sound into the output the next time it
executes.

Once the event loop exits, our program pauses and locks the audio system so
that the two sounds (which might otherwise still be playing) can be safely
deleted. It is a good idea to unlock the audio system before shutting it down.
atexit then shuts down SDL with SDL CloseAudio and SDL Quit.

Warning

Be careful with pointers returned by SDL LoadWAV. They might be
allocated in shared memory, and so it is unsafe to free them with the
normal free function. Instead, always use SDL FreeWAV to free these
pointers. However, it is perfectly safe to use free to free sound buffers
that you have allocated yourself—provided that the buffers are not
currently playing.

Integrating OpenGL with SDL

The OpenGL library is the de facto standard for accelerated 3D graphics under
Linux. Designed by Silicon Graphics as a programming interface for its
high-performance graphics workstations, OpenGL has been adopted as the

MASTERING SDL 141

preferred 3D API on most major platforms. It is used in many games as well as
in professional engineering applications. Microsoft’s Direct3D is OpenGL’s main
competition in the gaming industry, but Direct3D is not a cross-platform
solution. SDL hides the platform-dependent details of initializing OpenGL,
making it simple to implement accelerated 3D graphics on any major platform.

OpenGL is not difficult to use, but it is a bit tricky to initialize. It is based on
rendering contexts, structures that encapsulate information about the current 3D
view settings and the rendering acceleration hardware. In general, OpenGL
requires one rendering context for each window that will produce 3D graphics.
GLX rendering contexts are not difficult to work with, but SDL handles this for
us in a platform-independent manner.

SDL vs. GLUT

GL Utility Toolkit (GLUT) is a simple OpenGL support library that
hides the details of rendering contexts and input devices. It was created
by Mark Kilgard (of Silicon Graphics and recently of NVIDIA) as a
simple OpenGL demonstration environment. GLUT is intended as a
platform for learning OpenGL and for creating proof-of-concept
applications, but it is not designed to be a general-purpose multimedia
library. This limits its usefulness to game programmers. GLUT is great
for giving OpenGL a test drive or for trying new ideas without
unnecessary overhead, but SDL is a better platform for serious game
development.

Unfortunately, OpenGL more or less takes over the SDL video subsystem. If
OpenGL is initialized, direct access to the framebuffer, and any attempt to blit
onto the framebuffer, is likely to result in a crash. This is not a very serious
limitation, since OpenGL is a fully capable graphics library in itself. You can
still create and write to off-screen surfaces, and you can even use SDL surfaces as
OpenGL textures. The rest of SDL (audio, input, and so on) is unaffected by
OpenGL.

The following example initializes SDL with OpenGL support and renders a
colored 3D triangle. If you want to compile and run this program, you will need
a copy of the Mesa 3D graphics library (http://www.mesa3d.org) or another
Linux OpenGL implementation. Compile and link the program with the
-I/usr/X11R6/include -L/usr/X11R6/lib flags to ensure that the correct

142 CHAPTER 4

header files and libraries can be located. Furthermore, you need to compile your
copy of SDL with OpenGL video support.

Code Listing 4–13 (opengl-sdl.c)

/* Example of OpenGL rendering through SDL. */

#include <SDL/SDL.h>
#include <GL/gl.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

int i;

/* Initialize SDL as usual. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Error: %s\n", SDL_GetError());
return 1;

}

atexit(SDL_Quit);

/* Enable OpenGL double buffering. */
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

/* Set the color depth (16-bit 565). */
SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 6);
SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);

/* Create a 640x480, 16 bit window with support for
OpenGL rendering. Unfortunately we won’t know
whether this is hardware accelerated. */

if (SDL_SetVideoMode(640, 480, 16, SDL_OPENGL) == NULL) {
printf("Error: %s\n", SDL_GetError());
return 1;

}

/* Set a window title. */

MASTERING SDL 143

SDL_WM_SetCaption("OpenGL with SDL!", "OpenGL");

/* We can now use any OpenGL rendering commands. */
glViewport(80, 0, 480, 480);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 100.0);
glClearColor(0, 0, 0, 0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_TRIANGLES);
glColor3f(1.0, 0, 0);
glVertex3f(0.0, 1.0, -2.0);
glColor3f(0, 1.0, 0);
glVertex3f(1.0, -1.0, -2.0);
glColor3f(0, 0, 1.0);
glVertex3f(-1.0, -1.0, -2.0);
glEnd();
glFlush();

/* Display the back buffer to the screen. */
SDL_GL_SwapBuffers();

/* Wait a few seconds. */
SDL_Delay(5000);

return 0;
}

Our program begins by initializing SDL as usual and registering SDL Quit with
atexit. SDL Quit is especially important for programs that use OpenGL;
Linux’s OpenGL support is flaky enough as it is, and forgetting to shut it down
properly could cause serious problems. Next we use the SDL GL SetAttribute
functions to ask for a double buffer and a 565 hicolor pixel weighting. Finally, we
create a 640 by 480, 16-bit output window. We don’t care about the video
surface that SDL SetVideoMode returns, so we simply check that the returned
value is not NULL. SDL is now initialized with OpenGL support, and we can now
use any of OpenGL’s rendering commands (the semantics of which are beyond

144 CHAPTER 4

this discussion) to draw on the back buffer.4 The SDL GL SwapBuffers function
serves the same purpose as SDL Flip does for 2D graphics: it displays OpenGL’s
back buffer to the screen, allowing for smooth and flicker-free animation.

Now that a rendering context is in place, we can use OpenGL exactly as we
would with GLUT or a platform-dependent OpenGL toolkit, and we have SDL’s
powerful input and audio subsystems at our disposal. SDL gives us everything
we need to create high-quality, portable 3D games. Most of Loki Software’s 3D
game ports use SDL for their OpenGL rendering needs.

Function SDL GL SetAttribute(attr, value)

Synopsis Sets an OpenGL context attribute. Valid attributes
are defined in SDL video.h. See Listing 4–13 for
examples.

Parameters attr—Attribute to set.

value—Integer value to assign to the attribute.

Function SDL GL SwapBuffers()

Synopsis Swaps the front buffer and the back buffer in a double
buffered SDL OpenGL context. Analogous to
glutSwapBuffers.

Penguin Warrior

You should now be well versed in the mechanics of SDL. You can initialize the
display, draw pixels, blit bitmaps, and even set up SDL for OpenGL rendering.
However, these skills are of no use unless you know how to actually use them in
a real project. Throughout the rest of the book we will develop a small but

4 We will not cover the OpenGL API in this book; it is sufficient material for many books of
its own. With this knowledge, though, you could easily use SDL to run the examples in any
OpenGL book.

MASTERING SDL 145

An early version of Penguin Warrior

playable game called Penguin Warrior, complete with parallaxing graphics, a
particle system, network capabilities, background music, and environmental
audio.

That’s a lot of stuff to cram into one example. We won’t do it all at once,
however. In this chapter we will code the basic engine, with just enough to let a
single player fly a ship around and gawk at the parallaxing background. We’ll
add environmental audio, music, and network play in later chapters. By the end
of the book, we will have created a simple but enjoyable multiplayer game. Due
to the size of the source code, the entire Penguin Warrior listing is not given in
this book. You’ll find this chapter’s files in the pw-ch4/ subdirectory of the
listings archive, which is available on the book’s Web site.

Penguin Warrior was conceived to illustrate several of the topics in this book,
and as such it is not the product of a formal design process (which is a

146 CHAPTER 4

substantial and complex subject worthy of its own book). Its intent is to
demonstrate game programming, not design. The game engine is designed to be
easy to understand rather than easy to market. (However, if you think you can
make a marketable game out of it, go right ahead!)

Without further ado, let’s begin.

Creating Graphics

Any serious game development team should hire at least one artist and probably
more. A professional artist can almost always produce higher-quality game
artwork than a programmer. However, it is often useful for programmers to
create temporary artwork for the purpose of development. By creating a
low-quality set of test artwork (models, images, and even audio effects), a
programmer can get a better idea of exactly what to ask of the artist. This
temporary artwork can prevent misunderstandings and frustration on the part of
both the artist and the programmer. It also gives the programmer something to
work with while the artist comes up with higher-quality release artwork.

I created the Penguin Warrior spaceship model in the shareware AC3D modeler5

and rendered it at various angles in the free POV-Ray 3.1 raytracer.6 I drew the
starry background in the GIMP. Although these aren’t professional-quality
graphics, they serve their intended purpose, and I had fun creating them.

After creating the ship model in AC3D, I exported it to POV-Ray, manually
tweaked the camera position in the .pov file, and added a clock variable to
allow it to be rotated automatically. I wrote a script to automatically render 96
by 96 images of the model in 4-degree rotation increments (thereby saving the
tedious work of rotating the model by hand). The entire rendering process took

5 Although many Linux users (including myself) have a strong preference for free software,
AC3D is better than most of the free 3D modellers out there, and it’s only $40 (the
unregistered version lacks loading/saving capabilities). A possible free (as in beer, not
speech) alternative to AC3D is Blender, but its user interface is about as counterintuitive as
they come. Take a pick, or even better, write a new modeller and release it as free software!
You can find AC3D at http://www.ac3d.org.

6 http://www.povray.org

MASTERING SDL 147

Creating the Penguin Warrior ship model

only a few minutes on a fast laptop. Finally, I used the free ImageMagick
package to assemble the individual ship images into one long strip, saved as a
bitmap file. I developed this particular procedure throughout several of my own
projects, but there are other ways to go about the task of creating 3D graphics
with POV-Ray. POV-Ray is worth learning. It can be a great tool for creating
prototype graphics, even if you are not a graphic artist, and it can produce
amazing images in the hands of a master.

Implementing a Parallaxing Scroller in SDL

Since this game takes place in outer space, one would expect to see stars in the
background. These stars should move, or scroll, as the player flies around.
Although this scrolling bears only a faint resemblance to what a pilot would
actually see in space, it’s common in space games, and this game is not intended
to be a realistic simulator.

148 CHAPTER 4

Penguin Warrior draws its starry background by covering the screen with
individual tiles (small bitmaps) before drawing each frame of animation.
Background images tend to be rather repetitive as well as large, and programs
can often create them on the fly by putting together tiles in a predetermined
pattern. Penguin Warrior generates a two-dimensional array of random tile
indices and then draws the starry background by assembling the tiles into a
complete image. A 20 by 20 array of 64 by 64 tiles yields a virtual 1280 by 1280
image, using only a fraction of the memory it would take to store the entire
image directly. This technique lends itself nicely to random patterns, but it has
also been used to generate intricate battlefields for games such as StarCraft and
Civilization. Tiling can produce ugly results if the tiles look bad to begin with
(remember the “garbage in, garbage out” principle), but otherwise the only real
disadvantage to tiling is code complication. No matter which technique you use
to paint our game’s background, you’ll still have to redraw the entire screen for
each frame. This shouldn’t be a problem as long as you use standard SDL
optimization techniques, such as calling SDL DisplayFormat on our surfaces
before using them and avoiding alpha when you can.

Where does parallaxing fit in? Next time you’re in a moving car, look out the
side window. We tend to take for granted that objects in the distance appear to
move past us more slowly than nearby objects. This effect is known as parallax,
and you can exploit it to make your 2D graphics more convincing. Instead of
drawing one sheet of tiles in the background, you will draw two (one will
obviously have to be transparent or translucent). These layers scroll past the
player at different speeds, giving the illusion of depth. To do create a parallax
effect, you’ll need two sets of background tiles, one with a colorkey (transparent)
and one without. You’ll also need two tile index arrays, one twice as large as the
other (assuming that we want the top layer to scroll twice as fast as the bottom
layer).

There is really nothing complicated about parallax scrolling. The only trick is to
do it quickly enough to avoid destroying the smooth scrolling effect, and to
achieve this you need to squeeze every bit of performance SDL can provide.

Enough rambling; let’s dig into some code! The code that follows is from
background.c, in the Penguin Warrior source directory for this chapter. It
would be a good idea to run the game and observe parallaxing in action, since it
is hard to demonstrate motion effects with screen shots.

MASTERING SDL 149

Code Listing 4–14 (background.c)

#include <time.h>
#include "gamedefs.h"
#include "background.h"
#include "resources.h"

/* Two-dimensional arrays for storing the world’s tiles
(by index). */

static int front_tiles[PARALLAX_GRID_WIDTH][PARALLAX_GRID_HEIGHT];
static int back_tiles[PARALLAX_GRID_WIDTH][PARALLAX_GRID_HEIGHT];

/* This is a simple custom pseudorandom number generator.
It’s not a very good one, but it’s sufficient for our
purposes. Never trust the rand() included with the C library.
Its quality varies between implementations, and it’s easy to
run into patterns within the generated numbers. At least this
one is somewhat consistent.
(Note: You can get fairly decent randomness by taking the high
order bits of rand()’s output, but you would still be at the
mercy of the implementation.) */

static Sint32 seed = 0;

static void initrandom()
{

seed = time(NULL);
}

static unsigned int getrandom()
{

Sint32 p1 = 1103515245;
Sint32 p2 = 12345;
seed = (seed * p1 + p2) % 2147483647;
return (unsigned) seed / 3;

}

/* Sets up the starry background by assigning random tiles.
This should be called after LoadGameData(). */

void InitBackground()
{

int x, y;

150 CHAPTER 4

initrandom();
for (x = 0; x < PARALLAX_GRID_WIDTH; x++) {

for (y = 0; y < PARALLAX_GRID_HEIGHT; y++) {
front_tiles[x][y] = getrandom() % num_star_tiles;
back_tiles[x][y] = getrandom() % num_star_tiles;

}
}

}

/* Draws the background on the screen, with respect to the
global "camera" position. The camera marks the 640x480
section of the world that we can see at any given time.
This is usually in the vicinity of the player’s ship. */

void DrawBackground(SDL_Surface * dest, int camera_x, int camera_y)
{

int draw_x, draw_y; /* drawing position on the screen */
int start_draw_x, start_draw_y;

int tile_x, tile_y; /* indices in the back_tiles[][] array */
int start_tile_x, start_tile_y;

/* Map the camera position into tile indices. */
start_tile_x = ((camera_x / PARALLAX_BACK_FACTOR) /

TILE_WIDTH) % PARALLAX_GRID_WIDTH;
start_tile_y = ((camera_y / PARALLAX_BACK_FACTOR) /

TILE_HEIGHT) % PARALLAX_GRID_HEIGHT;

start_draw_x = -((camera_x / PARALLAX_BACK_FACTOR) %
TILE_WIDTH);

start_draw_y = -((camera_y / PARALLAX_BACK_FACTOR) %
TILE_HEIGHT);

/* Use nested loops to scan down the screen, drawing
rows of tiles. */

tile_y = start_tile_y;
draw_y = start_draw_y;
while (draw_y < SCREEN_HEIGHT) {

tile_x = start_tile_x;
draw_x = start_draw_x;
while (draw_x < SCREEN_WIDTH) {

SDL_Rect srcrect, destrect;

MASTERING SDL 151

srcrect.x = TILE_WIDTH * back_tiles[tile_x][tile_y];
srcrect.y = 0;
srcrect.w = TILE_WIDTH;
srcrect.h = TILE_HEIGHT;
destrect.x = draw_x;
destrect.y = draw_y;
destrect.w = TILE_WIDTH;
destrect.h = TILE_HEIGHT;

SDL_BlitSurface(back_star_tiles, &srcrect,
dest, &destrect);

tile_x++;
tile_x %= PARALLAX_GRID_WIDTH;
draw_x += TILE_WIDTH;

}
tile_y++;
tile_y %= PARALLAX_GRID_HEIGHT;
draw_y += TILE_HEIGHT;

}
}

void DrawParallax(SDL_Surface * dest, int camera_x, int camera_y)
{

int draw_x, draw_y; /* drawing position on the screen */
int start_draw_x, start_draw_y;

int tile_x, tile_y; /* indices in the back_tiles[][] array */
int start_tile_x, start_tile_y;

/* Map the camera position into tile indices. */
start_tile_x = ((camera_x / PARALLAX_FRONT_FACTOR) /

TILE_WIDTH) % PARALLAX_GRID_WIDTH;
start_tile_y = ((camera_y / PARALLAX_FRONT_FACTOR) /

TILE_HEIGHT) % PARALLAX_GRID_HEIGHT;

start_draw_x = -((camera_x / PARALLAX_FRONT_FACTOR) %
TILE_WIDTH);

start_draw_y = -((camera_y / PARALLAX_FRONT_FACTOR) %
TILE_HEIGHT);

152 CHAPTER 4

/* Use nested loops to scan down the screen, drawing
rows of tiles. */

tile_y = start_tile_y;
draw_y = start_draw_y;
while (draw_y < SCREEN_HEIGHT) {

tile_x = start_tile_x;
draw_x = start_draw_x;
while (draw_x < SCREEN_WIDTH) {

SDL_Rect srcrect, destrect;

srcrect.x = TILE_WIDTH * front_tiles[tile_x][tile_y];
srcrect.y = 0;
srcrect.w = TILE_WIDTH;
srcrect.h = TILE_HEIGHT;
destrect.x = draw_x;
destrect.y = draw_y;
destrect.w = TILE_WIDTH;
destrect.h = TILE_HEIGHT;

SDL_BlitSurface(front_star_tiles, &srcrect,
dest, &destrect);

tile_x++;
tile_x %= PARALLAX_GRID_WIDTH;
draw_x += TILE_WIDTH;

}
tile_y++;
tile_y %= PARALLAX_GRID_HEIGHT;
draw_y += TILE_HEIGHT;

}
}

The InitBackground function initializes the background drawing system by
randomly generating maps of tiles for the top and bottom background layers. It
stores this data in the front tiles and back tiles arrays (which can hold 20
by 20 and 40 by 40 tiles, respectively). This code does not seed the random
number generator, so the generated maps will be the same each time.

DrawBackground fills the screen with the appropriate background tiles, relative
to the coordinates in the camera x and camera y variables. These variables are
updated elsewhere; they usually track the position of the ship within the world.

MASTERING SDL 153

DrawParallax is similar to DrawBackground, but it draws the (transparent)
parallax layer. It scales the camera coordinates to make the parallax layer move
more quickly than the solid layer. These two functions get their starfield tiles
from the front star tiles and back star tiles arrays, which are strips of
multiple 64 by 64 tiles stored in the same surface and loaded from the same
bitmap file. The tile-drawing loops use a simple calculation to determine the
location of the desired tile within the strip, and they rely on SDL BlitSurface
to copy the correct rectangle of the strip onto the screen. This is a common and
powerful technique—instead of loading graphics as individual surfaces, it is often
more convenient to use an image editor to assemble them into a strip and to
copy from sections of the strip as needed.

If you don’t quite understand how this code works, try charting out the drawing
process on graph paper. The basic idea is very simple, but it’s easy to make
mistakes.

A Simple Particle System

A particle system is a set of tiny objects, usually drawn with single pixels or
small alpha-blended images, that move under the control of a simulated system
of physics. Particle systems can be used for simulated smoke trails, flying sparks,
dust effects, and just about anything else that involves small bits of matter. With
a little help from a graphics accelerator, particle systems can be used to create
breathtaking effects. They can be implemented in many ways, and the particle
system implementation in Penguin Warrior is only one possible approach.

Penguin Warrior uses a particle system to simulate explosions. Whenever an
object explodes, Penguin Warrior releases thousands of individual visible specks
(particles) onto the playing field. Each particle is assigned a random direction
and velocity, originating from the center of the explosion. Each particle is also
given a color according to its velocity (roughly approximating the heat of the
particle). This is actually a pretty bad simulation of an explosion, but it looks
impressive, and that’s all that matters (since the particles have no bearing on
the actual gameplay).

We’ve drawn the particles in Penguin Warrior as single pixels, but it might be an
interesting experiment to use alpha blits of small images instead. (This would be
slower, and you’d probably want to reduce the number of particles in the system

154 CHAPTER 4

to avoid losing performance.) Alpha-blended particles can result in high-quality
eye candy.

Let’s take a look at Penguin Warrior’s particle code.

Code Listing 4–15 (particle.c)

#include <math.h>
#include <stdlib.h>
#include "gamedefs.h"
#include "particle.h"

particle_t particles[MAX_PARTICLES];
int active_particles = 0;

static void AddParticle(particle_p particle);
static void DeleteParticle(int index);
static Uint16 CreateHicolorPixel(SDL_PixelFormat * fmt, Uint8 red,

Uint8 green, Uint8 blue);

static void AddParticle(particle_p particle)
{

/* If there are already too many particles, forget it. */
if (active_particles >= MAX_PARTICLES)

return;

particles[active_particles] = *particle;
active_particles++;

}

/* Removes a particle from the system (by index). */
static void DeleteParticle(int index)
{

/* Replace the particle with the one at the end
of the list, and shorten the list. */

particles[index] = particles[active_particles - 1];
active_particles--;

}

/* Draws all active particles on the screen. */
void DrawParticles(SDL_Surface * dest, int camera_x, int camera_y)

MASTERING SDL 155

{
int i;
Uint16 *pixels;

/* Lock the target surface for direct access. */
if (SDL_LockSurface(dest) != 0)

return;
pixels = (Uint16 *) dest->pixels;

for (i = 0; i < active_particles; i++) {
int x, y;
Uint16 color;

/* Convert world coords to screen coords. */
x = particles[i].x - camera_x;
y = particles[i].y - camera_y;
if ((x < 0) || (x >= SCREEN_WIDTH))

continue;
if ((y < 0) || (y >= SCREEN_HEIGHT))

continue;

/* Find the color of this particle. */
color = CreateHicolorPixel(dest->format,

particles[i].r,
particles[i].g,
particles[i].b);

/* Draw the particle. */
pixels[(dest->pitch / 2) * y + x] = color;

}

/* Release the screen. */
SDL_UnlockSurface(dest);

}

/* Updates the position of each particle. Kills particles with
zero energy. */

void UpdateParticles(void)
{

int i;

for (i = 0; i < active_particles; i++) {

156 CHAPTER 4

particles[i].x += particles[i].energy *
cos(particles[i].angle * PI / 180.0) * time_scale;

particles[i].y += particles[i].energy *
-sin(particles[i].angle * PI / 180.0) * time_scale;

/* Fade the particle’s color. */
particles[i].r--;
particles[i].g--;
particles[i].b--;
if (particles[i].r < 0)

particles[i].r = 0;
if (particles[i].g < 0)

particles[i].g = 0;
if (particles[i].b < 0)

particles[i].b = 0;

/* If the particle has faded to black, delete it. */
if ((particles[i].r + particles[i].g +

particles[i].b) == 0) {
DeleteParticle(i);

/* DeleteParticle replaces the current particle with
the one at the end of the list, so we’ll need to
take a step back. */

i--;
}

}
}

/* Creates a particle explosion of the given relative
size and position. */

void CreateParticleExplosion(int x, int y, int r, int g, int b,
int energy, int density)

{
int i;
particle_t particle;

/* Create a number of particles proportional to the size
of the explosion. */

for (i = 0; i < density; i++) {

particle.x = x;

MASTERING SDL 157

particle.y = y;
particle.angle = rand() % 360;
particle.energy = (double)(rand() % (energy * 1000)) /

1000.0;

/* Set the particle’s color. */
particle.r = r;
particle.g = g;
particle.b = b;

/* Add the particle to the particle system. */
AddParticle(&particle);

}
}

/* This is directly from another code listing. It creates a
16-bit pixel. */

static Uint16 CreateHicolorPixel(SDL_PixelFormat * fmt,
Uint8 red, Uint8 green,
Uint8 blue)

{
Uint16 value;

/* This series of bit shifts uses the information from the
SDL_Format structure to correctly compose a 16-bit pixel
value from 8-bit red, green, and blue data. */

value = (((red >> fmt->Rloss) << fmt->Rshift) +
((green >> fmt->Gloss) << fmt->Gshift) +
((blue >> fmt->Bloss) << fmt->Bshift));

return value;
}

Our particle system is limited to 10,000 particles. That should be plenty, since
there will rarely be more than two or three explosions on the screen at once. It is
an arbitrary limit; I have tested this code with five times that many particles,
but after a point it takes a noticeable toll on the game’s framerate.

CreateParticleExplosion is the main interface to the particle system. This
function creates the requested number of particles of a given color and maximum
velocity, blasting outward from a given origin. We’ll create explosions by calling

158 CHAPTER 4

CreateParticleExplosion several times, with different velocities and colors.
This will allow us to simulate a colorful explosion, with hotter particles closer to
the center of the blast. Remember that we care little about proper physics—it’s
been said that game programming is all about taking as many shortcuts as
possible without cheating the player of a good experience. If an explosion looks
good, it is good.

The other two important particle system routines are UpdateParticles and
DrawParticles. The former recalculates the position and color of each particle
and checks to see whether it should be removed from the system. Particles are
removed when they have faded to black and are therefore invisible (since the
backdrop is also mostly black). The latter draws a pixel for each currently
visible particle. Note that we use the CreateHicolorPixel routine from a
previous example and therefore commit to using a 16-bit framebuffer. It would
be fairly simple to modify this to work for 8- or 24-bit surfaces as well, but I
doubt it would be worth the effort.

Particle systems are amazingly versatile, and you could easily create custom
versions of CreateParticleExplosion to simulate various types of explosions.
The game Heavy Gear II uses dozens of different types of particle simulations for
everything from rain to smoke.

Game Timing

Try running our SDL animation examples on a computer with a slow video
system, and then on a computer with a cutting-edge accelerator supported by X.
You will notice a large speed difference between the two, and this disparity can
be a serious problem for games. While it is important to draw frames as quickly
as possible (30 to 60 per second, if possible), it is also important to make sure
that this does not give players with slow hardware an unfair advantage (since
speed often corresponds to difficulty).

You have two options for dealing with this disparity in performance: you can
lock the framerate at a certain value and simply refuse to run on machines that
can’t keep up, or you can measure the framerate and adjust the speed of the
game accordingly. Most games use the latter option, so as not to exclude gamers
with slow computers. It turns out that this is not terribly difficult to implement.

MASTERING SDL 159

Instead of specifying game object movement in pixels per frame, Penguin
Warrior uses pixels per unit of time (Just about any unit of time would work,
but we’ll use 1/30th of a second as our baseline, so that a performance of 30
frames per second will result in no adjustment to the game’s speed.) To calculate
how far each game object should move in a frame, we determine how much time
has passed since the last update and scale our movement accordingly. We update
a global time scale variable with this information at the start of each frame.
Each time we need to move an object, we scale the distance by this amount. We
also apply this scaling to acceleration and turning.

Take a look at the Penguin Warrior code to see how this is done. It’s not too
complicated, and it lets the game run at its highest performance on any
computer.

With the parallaxing code, the particle system, a timing mechanism, and a bit of
other SDL voodoo, we now have a working game engine, albeit a simple one. It
lacks sound, other players, and weaponry, but we’ll add these later on. It’s time
to take a break from SDL and Penguin Warrior for a tour of the slightly
maddening world of Linux audio.

Chapter 5

Linux Audio Programming

Hardware manufacturers are often reluctant to release programming
specifications to independent developers. This has impeded Linux’s development
at times and has resulted in less than optimal drivers for certain devices.
However, the recent explosion in Linux’s popularity has drawn attention to the
project, and hardware support has improved considerably of late. Most
consumer audio hardware is now fully supported under Linux, and some
manufacturers have even contributed their own open source drivers for their
hardware. This chapter discusses the ups and downs of Linux sound
programming with several important APIs.

If you haven’t yet read Chapter 4, it would be a good idea to flip back to its
basic explanation of sound samples, buffers, and frequencies (beginning on page
125). This chapter will assume that you are familiar with these basics, and we
won’t spend any more time on the subject.

This chapter describes the development of a complete Linux sound file player,
dubbed Multi-Play. In the course of developing this real-world application, we
will look at how to load sound data from disk and discuss four common methods
of playing sound under Linux. By the end of the chapter, you will know how to
integrate sound into a Linux game using any of the major APIs. The chapter
ends with a discussion of the OpenAL environmental audio library, which is very
useful for producing realistic sound effects in 3D environments.

162 CHAPTER 5

Competing APIs

Linux is home to two competing sets of sound drivers. While Linux skeptics are
likely to shout, “Aha! Fragmentation!” upon hearing this, the competition has
raised the bar and has resulted in a much higher-quality set of sound drivers.
Linux now supports almost every sound card on the market. One set of drivers is
very consistent, complete, and stable, while the other set frequently breaks
compatibility in order to cleanly integrate cutting-edge features. These two sets
are largely interoperable, and so Linux users can enjoy the best of both worlds.

The original Linux sound API is the Open Sound System (OSS). OSS consists of
a set of kernel modules that provide a common programming interface to
hundreds of different sound cards. Some of these modules (OSS/Free) are
distributed for free with the Linux kernel, and some are available in binary-only
form for a fee from 4Front Technologies1. The OSS modules are well written and
commercially supported, but the OSS programming interface leaves something to
be desired. Nonetheless, OSS is more or less a de facto standard for Linux audio,
and supporting OSS virtually guarantees that your application will work on
most sound hardware.

The Advanced Linux Sound Architecture (ALSA) project2 has created an
alternate set of Linux sound drivers. ALSA consists of a set of kernel modules as
well as a programming library, providing support for a substantial and ever
increasing number of sound cards. The ALSA library is much more convenient
than the OSS’s ioctl-based interface, and there is a simple emulation driver to
support programs that don’t use the native ALSA API. Perhaps the most
significant difference between ALSA and OSS is that ALSA is a free software
project maintained by volunteers, whereas OSS is a commercial venture that can
support the latest hardware through nondisclosure agreements. Each approach
has advantages. ALSA’s biggest problem is that it is not quite ready to go
mainstream yet; its programming interface changes with every major release
(but this is slowing down). Many people use ALSA exclusively for its OSS
compatibility mode, since many applications don’t support ALSA directly.

1 http://www.4front-tech.com

2 http://www.alsa-project.org

LINUX AUDIO PROGRAMMING 163

With this brief comparison in mind, which sound interface should your games
use? ALSA is a bit more programmer-friendly, if you can tolerate its evolving
API. It has a well-designed (albeit changing) interface with lots of bells and
whistles. OSS currently has a wider base of users but a rather crude
programming interface. If providing support for both APIs is out of the
question, I recommend coding for OSS and then testing with the ALSA
emulation facility. An alternate approach would be to use a higher-level library
such as SDL or OpenAL that can work with either interface.

Introducing Multi-Play

Multi-Play is a simple command-line sound file player. It works with normal
OSS, OSS using direct DMA buffer access, ESD, and ALSA and supports a large
number of sound file formats. Since it is designed to clearly demonstrate audio
programming, Multi-Play lacks a few of the features one might find in an
end-user player program, such as support for nonstandard frequencies and
sample sizes. Feel free to use pieces of the Multi-Play code in your own projects
or even to develop the complete player into a finished product. It’s meant to be
a Rosetta stone of sorts, performing the same basic task (sound playback) in
several different ways.

Since Multi-Play is meant to demonstrate the mechanics of audio programming
(and is not really intended for day-to-day use), it doesn’t compensate for certain
types of “errors.” For instance, ESD does not properly handle 8-bit samples in
some cases, but Multi-Play will attempt to use them anyway (whereas an
end-user player might automatically change 8-bit samples into 16-bit samples for
ESD playback). It also blindly tries to set the driver to the sample rate indicated
by the sound file. This will not work in some cases, since drivers often don’t
support oddball sample rates. A high-quality sound player should try to
compensate for this problem. However, doing so shouldn’t be necessary for most
game development situations.

The complete code for Multi-Play is available on the Web site; it is excerpted as
appropriate here. It is a good idea to obtain and compile a copy of the code.
Experimentation is the best way to learn any new area of programming.

164 CHAPTER 5

Loading Sound Files

SDL provides a convenient SDL LoadWAV function, but it is of little use to
programs that don’t use SDL, and it reads only the wave (.wav) file format. A
better option is the libsndfile library maintained by Erik de Castro Lopo, which
contains routines for loading nearly every common sound format. This library is
easy to use, and it is available under the GNU LGPL (formerly the more
restrictive GPL). You might also consider Michael Pruett’s libaudiofile library, a
free implementation of an API originally developed by Silicon Graphics. It is a
bit less straightforward than libsndfile, however.

Using libsndfile

The libsndfile library makes it easy to read sample data from a large number of
sound file formats. Sound files in any supported format are opened with a single
library function, and individual samples can then be read with a common
interface, regardless of the file format’s encoding or compression. Your program
must still take the size and signedness of the sample data into account, but
libsndfile provides the necessary information.

The sf open read function opens a sound file for reading. This function accepts
a filename and a pointer to an SF INFO structure and returns a pointer to a
SNDFILE structure. The SF INFO structure represents the format of the sound
data: its sample rate, sample size, and signedness. sf open read fills in this
structure; your program does not need to supply this information in most cases.
The SNDFILE structure returned by sf open read is a file handle; its contents
are used internally by libsndfile, and they are not important to us. sf open read
returns NULL if the requested file cannot be opened. For the curious, libsndfile
does provide a sf open write facility for writing sound files, but this facility is
beyond our present needs.

After opening a sound file and obtaining a SNDFILE pointer, your program can
read samples from it. libsndfile provides functions for reading samples as short
integers, integers, or doubles. Each sample (8- or 16-bit) is called an item, and a
pair of stereo samples (or one mono sample) is a frame. libsndfile allows you to
read individual items or complete frames. The sf readf short, sf readf int,
and sf readf double functions read frames from a SNDFILE into buffers of
various types. sf readf double can optionally scale samples to the interval

LINUX AUDIO PROGRAMMING 165

[−1..1], which is convenient for advanced audio processing. We will demonstrate
this function in the next example.

When your program is finished reading sound data from a SNDFILE, it should
close the file with the sf close function.

Function sf open read(filename, info)

Synopsis Opens a sound file, such as a .wav or .au file, for
reading.

Returns Pointer to a SNDFILE structure that represents the
open file. Fills in the provided SF INFO structure with
information about the sound data.

Parameters filename—The name of the file to open.

info—Pointer to the SF INFO structure that should
receive information about the sound data.

Structure SF INFO

Synopsis Information about the data contained in a sound file.

Members samplerate—Sample rate of the sound data, in hertz.

samples—Number of samples contained in each
channel of the sound file. (The total number of
samples is channels * samples.)

channels—Number of channels contained in the sound
file. This is usually 1 for mono or 2 for stereo.

pcmbitwidth—Number of bits per sample.

format—Sample format. Format constants are defined
in sndfile.h. This chapter only uses a small portion of
libsndfile’s capabilities—it can understand a wide
variety of encoding formats, not just raw PCM.

166 CHAPTER 5

Function sf readf type (sndfile, buffer, frames)

Synopsis Reads PCM data from an open sound file and returns
it as a particular data type (regardless of the sample’s
original format). Possible types are short, int, and
double. The double version of this function takes an
extra boolean flag that indicates whether libsndfile
should normalize sample values to the range [−1..1].

Returns Number of frames successfully read.

Parameters sndfile—Pointer to an open SNDFILE handle.

buffer—Pointer to a buffer for the data.

frames—Number of frames to read. (A frame consists
of one sample from each channel.)

Function sf close(sndfile)

Synopsis Closes a sound file.

Parameters sndfile—Pointer to the SNDFILE to close.

Code Listing 5–1 (mp-loadsound.c)

/* Sound loader for Multi-Play. */

#include <stdio.h>
#include <stdlib.h>
#include <sndfile.h>

/* Loads a sound file from disk into a newly allocated buffer.
Sets *rate to the sample rate of the sound, *channels to the
number of channels (1 for mono, 2 for stereo), *bits to the
sample size in bits (8 or 16), *buf to the address of the
buffer, and *buflen to the length of the buffer in bytes.
16-bit samples will be stored using the host machine’s
endianness (little endian on Intel-based machines, big
endian on PowerPC, etc.)

LINUX AUDIO PROGRAMMING 167

8-bit samples will always be unsigned. 16-bit will always
be signed.

Channels are interleaved.

Requires libsndfile to be linked into the program.

Returns 0 on success and nonzero on failure. Prints an error
message on failure. */

int LoadSoundFile(char *filename, int *rate, int *channels,
int *bits, u_int8_t **buf, int *buflen)

{
SNDFILE *file;
SF_INFO file_info;
short *buffer_short = NULL;
u_int8_t *buffer_8 = NULL;
int16_t *buffer_16 = NULL;
int i;

/* Open the file and retrieve sample information. */
file = sf_open_read(filename, &file_info);
if (file == NULL) {

printf("Unable to open ’%s’.\n", filename);
return -1;

}

/* Make sure the format is acceptable. */
if ((file_info.format & 0x0F) != SF_FORMAT_PCM) {

printf("’%s’ is not a PCM-based audio file.\n",
filename);

sf_close(file);
return -1;

}

if ((file_info.pcmbitwidth != 8) &&
(file_info.pcmbitwidth != 16)) {
printf("’%s’ uses an unrecognized sample size.\n",

filename);
sf_close(file);
return -1;

}

168 CHAPTER 5

/* Allocate buffers. */
buffer_short = (short *)malloc(file_info.samples *

file_info.channels *
sizeof (short));

buffer_8 = (u_int8_t *)malloc(file_info.samples *
file_info.channels *
file_info.pcmbitwidth / 8);

buffer_16 = (int16_t *)buffer_8;

if (buffer_short == NULL || buffer_8 == NULL) {
printf("Unable to allocate enough memory for ’%s’.\n",

filename);
fclose(file);
free(buffer_short);
free(buffer_8);
return -1;

}

/* Read the entire sound file. */
if (sf_readf_short(file,buffer_short,file_info.samples) ==

(size_t)-1) {
printf("Error while reading samples from ’%s’.\n",

filename);
fclose(file);
free(buffer_short);
free(buffer_8);
return -1;

}

/* Convert the data to the correct format. */
for (i = 0; i < file_info.samples * file_info.channels; i++) {

if (file_info.pcmbitwidth == 8) {
/* Convert the sample from a signed short to an

unsigned byte */
buffer_8[i] = (u_int8_t)((short)buffer_short[i] + 128);

} else {
buffer_16[i] = (int16_t)buffer_short[i];

}
}

LINUX AUDIO PROGRAMMING 169

/* Return the sound data. */
*rate = file_info.samplerate;
*channels = file_info.channels;
*bits = file_info.pcmbitwidth;
*buf = buffer_8;
*buflen = file_info.samples * file_info.channels *

file_info.pcmbitwidth / 8;

/* Close the file and return success. */
sf_close(file);
free(buffer_short);

return 0;
}

This routine serves as Multi-Play’s file loader. It begins by opening a sound file
with sf open, checking that the samples are in plain PCM format (libsndfile
does support other sample types), and verifying that the samples are either 8-bit
or 16-bit (again, other sample types are possible but less common). It then
allocates memory for the samples. Since the size of short integers can vary from
platform to platform, this routine takes a safe approach of allocating a
temporary buffer of type short for loading the file and then copying the samples
to a buffer of either int16 t or u int8 t. This is a bit wasteful, and a
production-quality sound player should probably take a different approach (such
as using sizeof to determine the size of short and handling particular cases).
With the sample data now in memory, the routine passes the relevant data back
to its caller and returns zero.

libsndfile treats all PCM samples as signed and reads them as short, int, or
double. The actual number of bits used by each sample is indicated in the
pcmbitwidth field of the SF INFO structure. Since our sound player will treat all
8-bit samples as unsigned and all 16-bit samples as signed (the usual convention
for sound playback), our loader converts 8-bit samples to unsigned by adding 128
(bringing them into the range [0..255]). Sixteen-bit samples need no special
handling, since libsndfile returns samples in the host machine’s endianness (little
endian on Intel-based machines and big endian on many others).

170 CHAPTER 5

Other Options

If for some reason libsndfile doesn’t appeal to you, there are several other
options. You could use the libaudiofile library, which has a slightly different API
and similar capabilities. libaudiofile has been around for a long time, and it is
widely used. You could implement your own wave file loader, but this is extra
work. The original wave file format has a very simple structure, consisting of
little more than a RIFF header and a block of raw sample data. Unfortunately,
some wave files are encoded in strange ways, and these must be either
specifically handled or rejected. Libraries such as libsndfile and libaudiofile
handle these quirks automatically.

Another option is to convert your sound files into a simpler format that is trivial
to load. The SoX (Sound eXchange) utility is handy for this purpose. SoX can
rewrite sound files as raw, headerless data, which you can then load with the C
library’s fopen and fread functions. The main drawbacks to this approach are
that the sound will be completely uncompressed (assuming that it was
compressed to begin with) and that you will have to keep track of the sound’s
sample format by hand. This is a general nuisance, and so it’s better to use a
library for loading sound files.

Using OSS

The OSS API is based on device files and the ioctl facility. UNIX device files
are files that represent devices in the system rather than ordinary data storage
space. To use a device file, an application typically opens it by name with the C
library’s open function and then proceeds to exchange data with it using the
standard read and write functions. The kernel recognizes the file as a device
and intercepts the data. In the instance of a sound card, this data would consist
of raw PCM samples. Device files are traditionally located in the /dev directory
on UNIX systems, but they can technically exist anywhere in the filesystem. The
main OSS device files are /dev/dsp and /dev/audio.

This explains how a program can get samples into the sound card, but what
about the sound card’s other attributes, such as the sample format and sampling
rate? This is where ioctl comes in. The ioctl function (a system call, just like
read or write) allows you to send special commands to device files, usually to

LINUX AUDIO PROGRAMMING 171

configure the device before sending data with write. ioctl is a low-level
interface, but there is really nothing difficult about it, so long as you have plenty
of documentation about the device file you are working with (hence this book).
OSS provides a header file (soundcard.h) with symbols for the various ioctl
calls it supports. Be careful with ioctl; its data goes directly to the kernel, and
you could possibly throw a wrench into the system by sending unexpected data
(though this would be considered a bug in the kernel; if you find such a bug,
please report it).

Before we discuss ways to improve OSS’s performance for gaming, let’s examine
the code for Multi-Play’s OSS back end.

Code Listing 5–2 (mp-oss.c)

/* Basic sound playback with OSS. */

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/soundcard.h>
#include <sys/mman.h>

/* Plays a sound with OSS (/dev/dsp), using default options.
samples - raw 8-bit unsigned or 16-bit signed sample data
bits - 8 or 16, indicating the sample size
channels - 1 or 2, indicating mono or stereo
rate - sample frequency
bytes - length of sound data in bytes
Returns 0 on successful playback, nonzero on error. */

int PlayerOSS(u_int8_t *samples, int bits, int channels,
int rate, int bytes)

{
/* file handle for /dev/dsp */
int dsp = 0;

/* Variables for ioctl’s. */
unsigned int requested, ioctl_format;
unsigned int ioctl_channels, ioctl_rate;

172 CHAPTER 5

/* Playback status variables. */
int position;

/* Attempt to open /dev/dsp for playback (writing). */
dsp = open("/dev/dsp",O_WRONLY);

/* This could very easily fail, so we must handle errors. */
if (dsp == -1) {

perror("OSS player: error opening /dev/dsp for playback");
return -1;

}

/* Select the appropriate sample format. */
switch (bits) {
case 8: ioctl_format = AFMT_U8; break;
case 16: ioctl_format = AFMT_S16_NE; break;
default: printf("OSS player: unknown sample size.\n");

return -1;
}

/* We’ve decided on a format. We now need to pass it to OSS.
ioctl is a very generalized interface. We always pass data
to it by reference, not by value, even if the data is a
simple integer. */

requested = ioctl_format;
if (ioctl(dsp,SNDCTL_DSP_SETFMT,&ioctl_format) == -1) {

perror("OSS player: format selection failed");
close(dsp);
return -1;

}

/* ioctl’s usually modify their arguments. SNDCTL_DSP_SETFMT
sets its integer argument to the sample format that OSS
actually gave us. This could be different than what we
requested. For simplicity, we will not handle this
situation. */

if (requested != ioctl_format) {
printf("OSS player: unsupported sample format.\n");
close(dsp);
return -1;

}

LINUX AUDIO PROGRAMMING 173

/* We must inform OSS of the number of channels
(mono or stereo) before we set the sample rate. This is
due to limitations in some (older) sound cards. */

ioctl_channels = channels;
if (ioctl(dsp,SNDCTL_DSP_CHANNELS,&ioctl_channels) == -1) {

perror("OSS player: unable to set the number of channels");
close(dsp);
return -1;

}

/* OSS might not have granted our request, even if the ioctl
succeeded. */

if (channels != ioctl_channels) {
printf("OSS player: unable to set the number of channels.\n");
close(dsp);
return -1;

}

/* We can now set the sample rate. */
ioctl_rate = rate;
if (ioctl(dsp,SNDCTL_DSP_SPEED,&ioctl_rate) == -1) {

perror("OSS player: unable to set sample rate");
close(dsp);
return -1;

}

/* OSS sets the SNDCTL_DSP_SPEED argument to the actual
sample rate, which may be different from the requested rate.
In this case, a production-quality player would upsample or
downsample the sound data. We’ll simply report an error. */

if (rate != ioctl_rate) {
printf("OSS player: unable to set the sample rate.\n");
close(dsp);
return -1;

}

/* Feed the sound data to OSS. */
position = 0;
while (position < bytes) {

int written, blocksize;

174 CHAPTER 5

/* We’ll send audio data in 4096-byte chunks.
This is arbitrary, but it should be a power
of two if possible. This conditional just makes
sure we properly handle the last chunk in the
buffer. */

if (bytes-position < 4096)
blocksize = bytes-position;

else
blocksize = 4096;

/* Write to the sound device. */
written = write(dsp,&samples[position],blocksize);
if (written == -1) {

perror("\nOSS player: error writing to sound device");
close(dsp);
return -1;

}

/* Update the position. */
position += written;

/* Print some information. */
WritePlaybackStatus(position, bytes, channels, bits, rate);
printf("\r");
fflush(stdout);

}

printf("\n");
close(dsp);

return 0;
}

This is the first of five Multi-Play player back ends, and one of three relating to
OSS. These players are self-contained and handle all necessary initialization and
cleanup internally. Their parameters are self-explanatory: the sound buffer to
play is passed as a u int8 t pointer, and various information about the sample
format and playback rate is passed in as integers.

Our player begins by opening the /dev/dsp device file. A production-quality
player would likely provide some sort of command-line option to specify a

LINUX AUDIO PROGRAMMING 175

different OSS device, but /dev/dsp is valid on most systems. If the file is
opened successfully, the player begins to set the appropriate playback parameters
with the ioctl interface.

The first step in configuring the driver is to set the sample size. Our loader
recognizes both 8-bit unsigned and 16-bit signed samples, and these are the only
cases our player needs to account for. After selecting the appropriate constant
(codeAFMT S16 NE for 16-bit signed with default endianness, or AFMT U8 for
8-bit unsigned), it calls ioctl with SNDCTL DSP SETFMT. This ioctl call could
fail if the driver does not support the requested format, but this is unlikely to
happen unless the user has an extremely old sound card. We could instead use
AFMT S16 LE or AFMT S16 BE to explicitly set little or big endianness,
respectively. If this ioctl succeeds, the player sets the number of channels and
the sample rate in a similar fashion. It is important to set the number of
channels before the sample rate, because some sound cards have different
limitations in mono or stereo mode.

The sound driver is now configured, and our player can begin sending samples to
the device. Our player uses the standard UNIX write function to transfer the
samples in 4,096-byte increments. Since sound cards play samples at a limited
rate (specified by the sampling frequency), it is possible that these write calls
will block (delay until the sound card is ready for more samples) and thereby
limit the speed of the rest of the program. This would not be acceptable in a
game, since games typically have better things to do than wait on the sound
card. We will discuss ways to avoid blocking in the next section.

When the entire set of samples has been transferred to the sound card, our
player closes the /dev/dsp device and returns zero.

Reality Check

The OSS Web site has two main documents about OSS programming: Audio
Programming and Making Audio Complicated. The former describes the basic
method of OSS programming and is fairly simple to understand. The latter is
aptly named; sound programming can quickly devolve into a messy subject. We
will now cover some of the ugly details that are necessary for real-world game
development. Unfortunately, the simple example we just discussed is woefully
inadequate.

176 CHAPTER 5

Perhaps the stickiest issue in game sound programming (particularly with OSS)
is keeping the sound playback stream synchronized with the rest of the game.
SDL provided a nice callback that would notify your program whenever the
sound card was hungry for more samples, but OSS doesn’t have a callback
system. If you try to write too many samples before the card has a chance to
play them, the write function will block (that is, it will not return until it can
complete). As a result, the timing of your entire program will depend on OSS’s
playback speed. This is not good.

A closely related issue is latency. It is inevitable that a game’s sound will lag
slightly behind the action on the screen; all games experience this, and it is not a
problem so long as the latency is only a small fraction of a second (preferably
under 1

10 second). Unfortunately, OSS has quite a bit of internal buffer space,
and if you were to fill it to capacity by blindly calling write, your latency would
go through the roof. Imagine playing Quake and hearing a gunshot sound several
seconds after firing the gun—you would probably laugh and switch to a different
game!

OSS stores samples in an internal buffer that is divided into fragments of equal
size. Each fragment stores approximately 1

2 second of audio data (resulting in a
potential latency of 1

2 second). When the sound card is finished playing a
fragment, it jumps to the next. If the next fragment has not been filled with
samples, the sound card will play whatever happens to be there, which results in
audio glitches. Ideally, you want to stay just a few fragments ahead of the sound
card, to avoid skipping while keeping latency to a minimum. You can, within
limits, specify the number of fragments and the size of each.

To set OSS’s internal fragment size, send the SNDCTL DSP SETFRAGMENT ioctl
with a bitfield-encoded argument:

int ioctl_frag;

/* Set the fragment parameters. See the text for an explanation. */
ioctl_frag = 10; /* fragment size is 2^10 = 1024 bytes */
ioctl_frag += 3 * 65536; /* fragment count is 3 */
if (ioctl(dsp,SNDCTL_DSP_SETFRAGMENT,&ioctl_frag) != 0) {

/* handle error */
}

LINUX AUDIO PROGRAMMING 177

This ioctl should be called as soon as possible after opening the audio device; it
will not work after the first write call has been made, and it might not work
after other settings have been applied. Its unsigned integer argument is divided
into two bit fields. The lower 16 bits specify the fragment size as a power of 2.
For instance, a value of 10 in the lower 16 bits requests a fragment size of 210, or
1,024 bytes. The high 16 bits of the argument specify the number of fragments
to allocate. In this case we request only three fragments, meaning that we will
have to be fairly attentive to the audio device if we want to avoid glitches.

Our next task is to get rid of the blocking write call. We can use OSS’s buffer
information ioctl to avoid blocking:

for (;;) {
audio_buf_info info;

/* Ask OSS if there is any free space in the buffer. */
if (ioctl(dsp,SNDCTL_DSP_GETOSPACE,&info) != 0) {

perror("Unable to query buffer space");
close(dsp);
return 1;

}

/* Any empty fragments? */
if (info.fragments > 0) break;

/* Not enough free space in the buffer. Waste time. */
usleep(100);

}

This addition to the main player loop (right before the actual write call) simply
queries OSS to check for an empty fragment. If at least one fragment is
available, we can safely write a chunk of sample data without blocking. If there
is no space in the outgoing sound buffer, we kill time with the usleep function.
A game would probably use this time to do something productive, such as
updating the video display. We use the SNDCTL DSP GETOSPACE ioctl to check
for the availability of a fragment. This ioctl returns a structure (defined in
soundcard.h) with various statistics about OSS’s internal buffers.

178 CHAPTER 5

Warning

Generally speaking, minor tweaks to OSS parameters (such as setting a
custom fragment size) are safe; they are unlikely to break compatibility
with most drivers or even ALSA’s OSS emulator. I used a laptop with
the ALSA sound driver to create these code examples. ALSA’s OSS
emulation is less than perfect, and the examples worked slightly
differently under ALSA and OSS. It is important to test audio code on
as many systems as possible and with both ALSA and OSS. Audio
programming involves a lot of fine-tuning; in a world with thousands of
different audio cards, it is far from a precise science.

Achieving Higher Performance with Direct DMA Buffer Access

Sometimes OSS’s basic mechanism of writing samples to the sound device does
not provide sufficient performance. OSS provides an alternative, but it is neither
pretty nor simple. It is possible to use the UNIX mmap function to gain direct
access to the sound driver’s DMA buffer. The DMA buffer is a region of memory
that the sound system’s hardware scans for samples at regular intervals; it is the
audio equivalent of the raw video framebuffer. If your program can somehow
gain access to the DMA buffer, it can mix and send its own fragments directly to
the sound card, without any driver intervention. Latency is still a concern, but
this technique bypasses the driver’s internal buffering and therefore gives you the
power to push latency as close to the line as you wish (at the risk of skipping or
other anomalies).

Direct DMA buffer access is absolutely not portable. It is known to be
incompatible with certain configurations (including my laptop, much to my
chagrin), but it will probably work on most Linux-based systems with “normal”
sound hardware. This particular example did work on my FreeBSD 4.1 system,
but with a noticeable choppiness. So far it has worked on one of my Linux
systems. We recommend avoiding this technique if possible, or at least providing
a “safe” alternative in case DMA initialization fails. Have you ever been
frustrated that an OSS application (such as Quake 3) would not work with the
ALSA or ESD emulation drivers? Direct DMA access was likely the cause.
However, these applications do enjoy improved audio performance with less CPU
usage.

LINUX AUDIO PROGRAMMING 179

The next player back end accesses the DMA buffer directly. It uses the basic
technique presented in 4Front Technologies’ original mmap test.c example, but
with a slightly different buffering scheme in the main loop. This player back end
has been tested successfully on a number of sound cards, but it is not compatible
with ALSA’s OSS emulation driver.

Code Listing 5–3 (mp-dma.c)

/* DMA sound playback with OSS. */

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/soundcard.h>
#include <sys/mman.h>

/* Plays a sound with OSS (/dev/dsp), using direct DMA access.
Returns 0 on successful playback, nonzero on error. */

int PlayerDMA(u_int8_t *samples, int bits,
int channels, int rate, int bytes)

{
/* file handle for /dev/dsp */
int dsp = 0;

/* Variables for ioctl’s. */
unsigned int requested, ioctl_format, ioctl_channels,

ioctl_rate, ioctl_caps, ioctl_enable;
audio_buf_info ioctl_info;

/* Buffer information. */
int frag_count, frag_size;
u_int8_t *dmabuffer = NULL;
int dmabuffer_size = 0;
int dmabuffer_flag = 0;

/* Playback status variables. */
int position = 0, done = 0;

180 CHAPTER 5

/* Attempt to open /dev/dsp for playback. We need to open for
read/write in order to mmap() the device file. */

dsp = open("/dev/dsp",O_RDWR);

/* This could very easily fail, so we must handle errors. */
if (dsp < 0) {

perror("DMA player: error opening /dev/dsp for playback");
goto error;

}

/* Select the appropriate sample format. */
switch (bits) {
case 8: ioctl_format = AFMT_U8; break;
case 16: ioctl_format = AFMT_S16_NE; break;
default: printf("DMA player: unknown sample size.\n");

goto error;
}

/* We’ve decided on a format. We now need to pass it to OSS. */
requested = ioctl_format;
if (ioctl(dsp,SNDCTL_DSP_SETFMT,&ioctl_format) == -1) {

perror("DMA player: format selection failed");
goto error;

}

/* ioctl’s usually modify their arguments. SNDCTL_DSP_SETFMT
sets its integer argument to the sample format that OSS
actually gave us. This could be different than what we
requested. For simplicity, we will not handle this
situation. */

if (requested != ioctl_format) {
printf("DMA player: unsupported sample format.\n");
goto error;

}

/* We must inform OSS of the number of channels (mono or stereo)
before we set the sample rate. This is due to limitations in
some (older) sound cards. */

ioctl_channels = channels;
if (ioctl(dsp,SNDCTL_DSP_CHANNELS,&ioctl_channels) == -1) {

perror("DMA player: unable to set the number of channels");
goto error;

LINUX AUDIO PROGRAMMING 181

}

/* OSS might not have granted our request, even if the ioctl
succeeded. */

if (channels != ioctl_channels) {
printf("DMA player: unable to set the number of channels.\n");
goto error;

}

/* We can now set the sample rate. */
ioctl_rate = rate;
if (ioctl(dsp,SNDCTL_DSP_SPEED,&ioctl_rate) == -1) {

perror("DMA player: unable to set sample rate");
goto error;

}

/* OSS sets the SNDCTL_DSP_SPEED argument to the actual sample rate,
which may be different from the requested rate. In this case, a
production-quality player would upsample or downsample the sound
data. We’ll simply report an error. */

if (rate != ioctl_rate) {
printf("DMA player: unable to set the sample rate.\n");
goto error;

}

/* Now check for DMA compatibility. It’s quite possible that the
driver won’t support this. It would be a *very* good idea to
provide a fallback in case DMA isn’t supported - there are some
sound cards that simply don’t work with the DMA programming
model at all. */

if (ioctl(dsp,SNDCTL_DSP_GETCAPS,&ioctl_caps) != 0) {
perror("DMA player: unable to read sound driver capabilities");
goto error;

}

/* The MMAP and TRIGGER bits must be set for this to work.
MMAP gives us the ability to access the DMA buffer directly,
and TRIGGER gives us the ability to start the sound card’s
playback with a special ioctl. */

if (!(ioctl_caps & DSP_CAP_MMAP) ||
!(ioctl_caps & DSP_CAP_TRIGGER)) {
printf("DMA player: this sound driver is not capable of DMA.");

182 CHAPTER 5

goto error;
}

/* Query the sound driver for the actual fragment
configuration so that we can calculate the total size of
the DMA buffer. Note that we haven’t selected a particular
fragment size or count. Fragment boundaries are meaningless
in a mapped buffer; we’re really just interested in the
total size. */

if (ioctl(dsp,SNDCTL_DSP_GETOSPACE,&ioctl_info) != 0) {
perror("DMA player: unable to query buffer information");
goto error;

}

frag_count = ioctl_info.fragstotal;
frag_size = ioctl_info.fragsize;
dmabuffer_size = frag_count * frag_size;

/* We’re good to go. Map a buffer onto the audio device. */
dmabuffer = mmap(NULL,

dmabuffer_size, /* length of region to map */
PROT_WRITE, /* select the output buffer

(PROT_READ alone selects
input) */

/* NOTE: I had to add PROT_READ to
make this work with FreeBSD.
However, this causes the code to
fail under Linux. SNAFU. */

MAP_FILE | MAP_SHARED, /* see the mmap()
manual page */

dsp, /* opened file to map */
0); /* start at offset zero */

/* This could fail for a number of reasons. */
if (dmabuffer == (u_int8_t *)MAP_FAILED) {

perror("DMA player: unable to mmap a DMA buffer");
goto error;

}

/* Clear the buffer to avoid static at the beginning. */
memset(dmabuffer, 0, dmabuffer_size);

LINUX AUDIO PROGRAMMING 183

/* The DMA buffer is ready! Now we can start playback by
toggling the device’s PCM output bit. Yes, this is a
very hacky interface. We’re actually using the OSS
"trigger" functionality here. */

ioctl_enable = 0;
if (ioctl(dsp, SNDCTL_DSP_SETTRIGGER, &ioctl_enable) != 0) {

perror("DMA player: unable to disable PCM output");
goto error;

}

ioctl_enable = PCM_ENABLE_OUTPUT;
if (ioctl(dsp, SNDCTL_DSP_SETTRIGGER, &ioctl_enable) != 0) {

perror("DMA player: unable to enable PCM output");
goto error;

}

/* The done variable simply makes sure that the last chunk
actually gets played. We’ll play a brief period of silence
after the last data chunk. */

while (done < 4) {
struct count_info status;
int i;

/* Find the location of the DMA controller within the
buffer. This will be exact at least to the level of
a fragment. */

if (ioctl(dsp, SNDCTL_DSP_GETOPTR, &status) != 0) {
perror("DMA player: unable to query playback status");
goto error;

}

/* Our buffer is comprised of several fragments. However,
in DMA mode, it is safe to treat the entire buffer as
one big block.
We will divide it into two logical chunks. While the
first chunk is playing, we will fill the second with
new samples, and vice versa. With a small buffer, we
will still enjoy low latency.

status.ptr contains the offset of the DMA controller
within the buffer. */

if (dmabuffer_flag == 0) {

184 CHAPTER 5

/* Do we need to refill the first chunk? */
if (status.ptr < dmabuffer_size/2) {

int amount;

/* Copy data into the DMA buffer. */
if (bytes - position < dmabuffer_size/2) {

amount = bytes-position;
} else amount = dmabuffer_size/2;

for (i = 0; i < amount; i++) {
dmabuffer[i+dmabuffer_size/2] =

samples[position+i];
}

/* Zero the rest of this half. */
for (; i < dmabuffer_size/2; i++) {

dmabuffer[i+dmabuffer_size/2] = 0;
}

/* Update the buffer position. */
position += amount;

/* Next update will be the first chunk. */
dmabuffer_flag = 1;

/* Have we reached the end? */
if (position >= bytes) done++;

}
} else if (dmabuffer_flag == 1) {

/* Do we need to refill the first chunk? */
if (status.ptr >= dmabuffer_size/2) {

int amount;

/* Copy data into the DMA buffer. */
if (bytes - position < dmabuffer_size/2) {

amount = bytes-position;
} else amount = dmabuffer_size/2;

for (i = 0; i < amount; i++) {
dmabuffer[i] = samples[position+i];

}

LINUX AUDIO PROGRAMMING 185

/* Zero the rest of this half. */
for (; i < dmabuffer_size/2; i++) {

dmabuffer[i] = 0;
}

/* Update the buffer position. */
position += amount;

/* Next update will be the second chunk. */
dmabuffer_flag = 0;

/* Have we reached the end? */
if (position >= bytes) done++;

}
}

WritePlaybackStatus(position, bytes, channels, bits, rate);
printf(" (%i)\r", dmabuffer_flag);
fflush(stdout);

/* Wait a while. A game would normally do the rest of its
processing here. */

usleep(50);
}

printf("\n");

munmap(dmabuffer,dmabuffer_size);
close(dsp);

return 0;

/* Error handler. gotos are normally bad,
but they make sense here. */

error:
if (dmabuffer != NULL)

munmap(dmabuffer,dmabuffer_size);
if (dsp > 0) close(dsp);

return -1;
}

186 CHAPTER 5

The program begins as usual, loading a sound file and setting a few OSS
parameters via ioctl. It then queries the OSS device’s capabilities and checks
for DMA compatibility. If the sound card is capable of this type of DMA access,
the SNDCTL DSP MMAP and SNDCTL DSP TRIGGER bits will be set. (Initialization
can still fail, however.) The program queries OSS for the size and number of
buffer fragments, multiplying them to obtain the total size of the sound buffer in
bytes. Next it uses mmap to map a buffer onto the sound device.

mmap is a strange beast. It can be used for a variety of purposes, but its most
common use is to map buffers of memory onto files (so that accesses to the
memory will result in accesses to the file). This provides a very convenient way
to load large data structures from disk; you can simply map the file into memory
and grab the data with memcpy. OSS uses it to provide a convenient way to map
the sound card’s DMA buffer into a program’s address space. We will leave a full
discussion of mmap to other sources, but its use in this case is fairly
straightforward.

With a DMA buffer in place and the card properly configured, the program
“triggers” the sound card’s DMA by toggling the driver’s PCM output enable
bit. The trigger feature is designed to allow applications to gain precise control
over playback timing, but it doubles as a way to set off DMA transfers. Once the
DMA controller has been started, it cannot be stopped without shutting down
OSS. This is a flaw, in my opinion, but it is only a minor issue. (To effectively
stop playback, simply fill the buffer with zeros.) After this bit has been cleared
and then reset, the DMA controller (either part of the sound card or a
component of the motherboard’s chipset) will repeatedly loop over the DMA
buffer and send whatever it finds directly to the sound card. To play sound, we
simply have to copy our samples into the DMA buffer.

This is the tricky part. The DMA controller is a separate piece of hardware, and
we have little control over its operation once it has been started. It sweeps across
the DMA buffer at a predictable rate, returning to the start of the buffer when it
reaches the end. We need to make sure that we always keep a fresh set of sample
data in front of the DMA controller’s path. We have chosen a simple method
that seems to work fairly well. The DMA buffer contains several (probably four
or five) fragments of data, each 1,024 bytes. We disregard this organization and
treat the buffer as one chunk. While the DMA controller is busy scanning the
first half of the buffer, we (quickly) fill the second half with new samples. When

LINUX AUDIO PROGRAMMING 187

the controller crosses the halfway mark, we update the first half of the buffer.
We could reduce latency by dividing the buffer into more sections, but this
should rarely be necessary. When the entire sound clip has been played, our
program unmaps the DMA buffer and shuts down OSS.

As you’ve seen, direct access to the DMA buffer is a powerful tool for squeezing
performance out of OSS, but you should not count on its availability or even on
reliable detection. Don’t be surprised if it doesn’t work on a given sound card or
under different operating systems. The SDL toolkit uses DMA if the user
specifically asks for it (with an environment variable), but it’s not a safe
mechanism to use by default.

That’s it for OSS! It all boils down to configuring a file descriptor with ioctl
and sending samples with write. See Table 5 for a list of OSS ioctl calls.

Playing Sound with ALSA

ALSA is a well-designed API, but unfortunately its design is still in progress.
The native ALSA API seems to change slightly with each major release, and so
it’s somewhat of a moving target. We will describe the release that is current at
the time of this writing, the 0.5.x series. For those who are frustrated with
ALSA’s evolution, remember that OSS provides a somewhat ugly but consistent
API that is ready now, while the ALSA project is trying to decide how to do it
right (and from what I’ve seen, they are doing an excellent job). The finished
product will be much more polished and more pleasant to use than OSS. For the
time being, ALSA’s OSS emulation module seems to work well enough, and the
adventurous might enjoy using its API directly.

With that in mind, let’s look at the Multi-Play ALSA back end.

Code Listing 5–4 (mp-alsa.c)

/* Sound playback with ALSA. */

#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/asoundlib.h>

188 CHAPTER 5

ioctl call Purpose
SNDCTL DSP SETFMT Sets OSS to use a particular sample for-

mat. Takes a pointer to an integer con-
taining an AFMT format constant (defined in
sys/soundcard.h). Changes this integer to
reflect the format that OSS was able to ob-
tain.

SNDCTL DSP CHANNELS Sets the number of channels. Takes a pointer
to an integer containing 1 for mono, 2 for
stereo.

SNDCTL DSP SPEED Sets the sound device’s sampling rate. Takes
a pointer to an integer containing the desired
sampling rate. Changes this integer to reflect
the closest match that OSS could obtain.

SNDCTL DSP SETFRAGMENT Sets the sound driver’s fragment size. Takes
a pointer to an integer. The top 16 bits de-
fine the number of fragments desired, and the
lower 16 bits define the size of each fragment
as a power of 2 (for instance, a value of 10
would result in a fragment size of 210, or 1, 024
bytes). There are reasonable limits on the
minimum and maximum number of fragments
and the size of each, and OSS reserves the
right to reject your selection.

SNDCTL DSP GETOSPACE Queries the amount of buffer space avail-
able in the sound driver. Takes a pointer
to an audio buf info structure (defined in
sys/soundcard.h). Fills the structure with
information about the driver’s buffer frag-
ments.

SNDCTL DSP GETCAPS Queries the sound driver’s capabilities. Takes
a pointer to an integer. Sets the integer to a
bitmask of supported DSP CAP func functions
(defined in sys/soundcard.h).

Table 5–1: A few important OSS ioctl calls

LINUX AUDIO PROGRAMMING 189

/* Plays a sound with the Advanced Linux Sound Architecture, ALSA.
Returns 0 on successful playback, nonzero on error. */

int PlayerALSA(u_int8_t *samples, int bits,
int channels, int rate, int bytes)

{
int i;

/* ALSA is a bit verbose, and it tends to require
lots of structures. */

int alsa_device, alsa_card;
char *alsa_card_name;
snd_ctl_t *alsa_ctl;
snd_ctl_hw_info_t alsa_hw_info;
snd_pcm_t *alsa_pcm;
snd_pcm_channel_params_t alsa_params;

/* Playback status variables. */
int position;

/* Scan for ALSA cards and devices. Each card has an integer
ID less than snd_cards(). We scan for the first available
card in order to demonstrate ALSA’s organization, but we
could find the default card and PCM device numbers
immediately with the snd_defaults_pcm_card() and
snd_defaults_pcm_device() functions. */

alsa_pcm = NULL;
for (alsa_card = 0; alsa_card < snd_cards(); alsa_card++) {

/* Try to open this card. */
if (snd_ctl_open(&alsa_ctl,alsa_card) < 0)

continue;

/* Retrieve card info. */
if (snd_ctl_hw_info(alsa_ctl,&alsa_hw_info) < 0) {

snd_ctl_close(alsa_ctl);
continue;

}

snd_ctl_close(alsa_ctl);

190 CHAPTER 5

/* Find a suitable device on this card. */
alsa_pcm = NULL;
for (alsa_device = 0; alsa_device < alsa_hw_info.pcmdevs;

alsa_device++) {
if (snd_pcm_open(&alsa_pcm,alsa_card,

alsa_device,SND_PCM_OPEN_PLAYBACK) < 0)
continue;

/* Device successfully opened. */
break;

}

if (alsa_pcm != NULL) break;
}

/* Were we able to open a device? */
if (alsa_card == snd_cards()) {

printf("ALSA player: unable to find a configured device.\n");
return -1;

}

/* Print info about the device. */
if (snd_card_get_longname(alsa_card,&alsa_card_name) < 0)

alsa_card_name = "(unknown)";
printf("ALSA player: using device %i:%i (%s)\n",

alsa_card, alsa_device, alsa_card_name);

/* Configure the device for the loaded sound data. */
memset(&alsa_params,0,sizeof (alsa_params));
alsa_params.channel = SND_PCM_CHANNEL_PLAYBACK;

/* Use stream mode. In this mode, we don’t have to give ALSA
complete blocks; we can send it data as we get it. Block
mode is needed for mmap() functionality. Unlike OSS, ALSA’s
mmap() functionality is quite reliable, and easily accessible
through library functions.
We won’t use it here, though; there’s no need. */

alsa_params.mode = SND_PCM_MODE_STREAM;
alsa_params.format.interleave = 1;

LINUX AUDIO PROGRAMMING 191

/* We’ll assume little endian samples. You may wish to use
the data in the GNU C Library’s endian.h to support other
endiannesses. We’re ignoring that case for simplicity. */

if (bits == 8)
alsa_params.format.format = SND_PCM_SFMT_U8;

else if (bits == 16)
alsa_params.format.format = SND_PCM_SFMT_S16_LE;

else {
printf("ALSA player: invalid sample size.\n");
return -1;

}
alsa_params.format.rate = rate;
alsa_params.format.voices = channels;
alsa_params.start_mode = SND_PCM_START_DATA;
alsa_params.stop_mode = SND_PCM_STOP_ROLLOVER;
alsa_params.buf.block.frag_size = 4096;
alsa_params.buf.block.frags_min = 1;
alsa_params.buf.block.frags_max = 2;

if ((i = snd_pcm_plugin_params(alsa_pcm,&alsa_params)) < 0) {
printf("ALSA player: unable to set parameters.\n");
snd_pcm_close(alsa_pcm);
return -1;

}

if (snd_pcm_plugin_prepare(alsa_pcm.
SND_PCM_CHANNEL_PLAYBACK) < 0) {

printf("ALSA player: unable to prepare playback.\n");
snd_pcm_close(alsa_pcm);
return -1;

}

/* Feed the sound data to ALSA. */
position = 0;
while (position < bytes) {

int written, blocksize;
int fd;

if (bytes-position < 4096)
blocksize = bytes-position;

else
blocksize = 4096;

192 CHAPTER 5

/* Write to the sound device. */
written = snd_pcm_plugin_write(alsa_pcm,

&samples[position],
blocksize);

/* If ALSA can’t take any more data right now, it’ll
return -EAGAIN.
If this were sound code for a game, we’d probably
just contine the game loop and try to write data the
next time around. In a game, you’d probably also want
to put the device in nonblocking mode (see the
snd_pcm_nonblock_mode() function). */

if (written == -EAGAIN) {
/* Waste some time.

This keeps us from using 100% CPU. */
usleep(1000);

written = 0;
} else {

if (written < 0) {
perror("\nALSA player: write error");
snd_pcm_close(alsa_pcm);
return -1;

}
}

/* Update the position. */
position += written;

/* Print some information. */
WritePlaybackStatus(position, bytes,

channels, bits, rate);
printf("\r");
fflush(stdout);

}

printf("\n");

LINUX AUDIO PROGRAMMING 193

/* Wait until ALSA’s internal buffers are empty,
then stop playback.
This will make sure that the entire sound clip
has played. */

snd_pcm_channel_flush(alsa_pcm, SND_PCM_CHANNEL_PLAYBACK);
snd_pcm_close(alsa_pcm);

return 0;
}

ALSA is a bit of a change from OSS. A welcome change, to be certain: it
presents a library-based interface, not a system of semi-intuitive and
inadequately documented ioctls. ALSA is based on cards and devices. A card
is simply a piece of sound hardware, and a device is a logical piece of
functionality provided by that card (such as PCM sampling or MIDI
sequencing). A card generally encompasses multiple devices. Cards and devices
are numbered, starting with zero. The first step in writing an ALSA sound
player is to locate a suitable card and device. Our program loops through the
possible cards, from zero to the limit returned by the snd cards function,
attempting to find an available PCM output device on each. If this loop is
successful, the alsa pcm variable will end up pointing to an open PCM playback
device. We could save some work by jumping directly to the card and device
suggested by the snd defaults pcm card and snd defaults pcm device
functions, but the loop does a better job of illustrating ALSA’s organization.

ALSA devices are marked with states. A PCM playback device can be not ready
(uninitialized), ready (initialized but not capable of processing sound), prepared
(ready to start immediately upon receiving audio data), running (actually
playing back samples), underrun (in limbo because samples were not received
quickly enough), or paused. A PCM device moves to the ready state when it
receives its initial configuration data, and to the prepared state when
snd pcm playback prepare is called. You must put the ALSA device into the
prepared state before you can play samples. This system of states might seem
like overkill, but they make ALSA programming much more predictable than
OSS programming. Given a particular state, you can always expect a certain set
of responses from the sound device. The distinction between prepared and ready

194 CHAPTER 5

allows you to set up an ALSA device to start playback with almost no advance
notice. This is hardly an issue for games, but it could be important for other
applications.

After opening a PCM output device, our player clears a
snd pcm channel params structure and fills in the relevant pieces of information
about our sound data. It is important to zero this memory first; some fields in
the structure are considered valid only if a certain bit is set, and we generally
don’t want to mess with these. Take note of the mode, start mode, and
stop mode fields. mode should be either SND PCM MODE STREAM or
SND PCM MODE BLOCK. The block mode can allow for higher performance, but it
requires all of our data transfers to be even multiples of the fragment size (4,096
bytes in this case), and it disallows the use of the plugin functions. These
instructions won’t really be a problem; if we run out of samples, we can just send
zeros (for silence), and we can handle format conversions by hand. Block mode
also allows you to use snd pcm mmap, which is nice but overkill for our example.
The start and stop modes tell ALSA when to start playback and how to handle
underrun conditions. Our player uses SND PCM START DATA to instruct ALSA to
begin playback as soon as we send the first chunk of data, and it uses
SND PCM STOP ROLLOVER to ask ALSA not to stop playback if it runs out of data.
(Instead, it will loop over the data it already has until it gets more.) In theory,
underruns should never happen unless the application can’t keep up with the
sound card (which is unlikely). When all of the required information has been set
in the structure, our program sends it to ALSA with snd pcm plugin params.

Finally, our program shifts the sound device into the prepared state with the
snd pcm plugin prepare3 function and begins writing PCM data. We detect
errors from snd pcm plugin write, and we handle the EAGAIN condition
separately. This error occurs when the device is (probably) not in a state of

3 The “plugin” functions we’ve used here provide a few advantages over the normal ALSA
functions. In particular, they can handle format conversions when the underlying hardware
would normally be incapable of using a particular sample format. This would allow you to,
say, use 16-bit samples with an 8-bit sound device. The plugin functions come at the
expense of direct buffer access—you can’t use ALSA’s mmap functionality with them. Don’t
be fooled by the name; the plugin functions are part of the ALSA library, and they don’t
require any extra work on your part.

LINUX AUDIO PROGRAMMING 195

error, but unable to respond immediately, such as when it’s not ready for more
data. If this happens, we waste a bit of time with usleep and try again. If you
remove the usleep, the program will probably eat up a lot of CPU in a tight
loop. In a game programming situation you’d probably want to use this time to
do useful work (for instance, you might continue the game loop and try the
audio write again on another pass).

When our player has finished writing samples to the ALSA device, it calls
snd pcm channel flush to make sure that the output buffer has finished
playing, and then it closes the device with the snd pcm close function.

ALSA is an enormously powerful audio system, and this simple player only
scratches the surface of its capabilities. It offers a lot to game programmers, but
unfortunately it’s not supported as universally as OSS just yet. With any luck,
this API will catch on and we can be free of OSS’s lousy interface forever.4

Sharing the Sound Card with ESD

OSS and ALSA share a serious weakness: they allow the sound card to be used
by only one application at a time. This exclusivity can be quite an annoyance,
since many users like to listen to MP3 music or streaming radio while they use
the computer, and these compete with other applications for the sound card.
Some third-party OSS drivers (such as the Sound Blaster Live driver from
Creative) allow multiple applications to share the sound device, but the 4Front
Technologies drivers don’t generally permit this.

ESD is a network-enabled real-time sound mixer. Any number of ESD-capable
applications can share the computer’s sound hardware seamlessly; ESD mixes
their sound streams together, just as we mixed several samples together in the
SDL sound demo. ESD is a server-based sound toolkit, and a running ESD
server can even accept connections from remote machines. The ESD interface is

4 In an ideal world, 4Front Techonologies would throw its full support behind the ALSA
project and start writing commercial ALSA drivers instead of OSS drivers. Competition is
good, but there’s no reason that it can’t take place within a single, well-designed API. Alas,
this is unlikely to happen, but it would be great for Linux.

196 CHAPTER 5

a bit less flexible than the low-level OSS interface (for instance, it doesn’t allow
direct access to a sound card’s DMA buffers), but it provides the basic
functionality needed to select sample formats and send samples to the card. ESD
also has the ability to cache samples, so that they can be played back with a
single command. It does not directly interface with the system’s sound hardware
but uses whichever low-level sound API happens to be present (OSS or ALSA).

Unfortunately, ESD has a serious latency problem; delays of more than half a
second are common, which is entirely unacceptable for most games. There is no
simple way to reduce this latency. ESD uses a fixed buffer (currently 4,096 bytes,
specified by the ESD BUF SIZE constant), which cannot be changed. Even if the
buffer size could be reduced, ESD would still experience high latency due to its
internal mixing and network overhead. It is therefore not well suited for gaming;
its real use is for playing background music without obstructing the audio
device. Nonetheless, several audio toolkits such as OpenAL and the SDL audio
subsystem provide optional support for ESD. We discuss a possible workaround
for the latency problem after the next example.

The next player plays sound through a local ESD connection. It would be trivial
to modify the code to connect to ESD servers on remote machines; the
programming interface is the same. If you play around with this code a bit,
you’ll notice the extreme latency inherent in ESD.

Code Listing 5–5 (mp-esd.c)

/* Sound playback with ESD. */

#include <unistd.h>
#include <stdio.h>
#include <esd.h>

/* Plays a sound with the Enlightened Sound Daemon (ESD).
Returns 0 on successful playback, nonzero on error. */

int PlayerESD(u_int8_t *samples, int bits,
int channels, int rate, int bytes)

{
/* ESD data socket. */
int esd = 0;

int esd_flags;

LINUX AUDIO PROGRAMMING 197

/* Playback status variables. */
int position;

/* Select the appropriate ESD flags. */
switch (channels) {
case 1: esd_flags = ESD_MONO; break;
case 2: esd_flags = ESD_STEREO; break;
default:

printf("ESD player: unknown number of channels.\n");
return -1;

}

switch (bits) {
/* ESD sometimes has problems with 8-bit sound. */

case 8: esd_flags |= ESD_BITS8; break;
case 16: esd_flags |= ESD_BITS16; break;
default:

printf("ESD player: unknown sample size.\n");
return -1;

}

/* Open ESD with the desired parameters. */
esd = esd_play_stream(esd_flags | ESD_PLAY | ESD_STREAM,

rate, NULL ,"PlayerESD");

if (esd < 0) {
printf("ESD player: unable to connect to ESD.\n");
return -1;

}

/* Feed the sound data to ESD. */
position = 0;
while (position < bytes) {

int written, blocksize;

/* ESD has a fixed buffer size. */
if (bytes-position < ESD_BUF_SIZE)

blocksize = bytes-position;
else

blocksize = ESD_BUF_SIZE;

198 CHAPTER 5

/* Write to the sound device. */
written = write(esd, &samples[position], blocksize);
if (written == -1) {

perror("\nESD player: write error");
close(esd);
return -1;

}

/* Update the position. */
position += written;

/* Print some information. */
WritePlaybackStatus(position, bytes,

channels, bits, rate);
printf("\r");
fflush(stdout);

}

printf("\n");
close(esd);

return 0;
}

Having already battled our way through OSS’s slightly testy interface, ESD is no
surprise. Our modified player opens a connection to the ESD server with
esd play stream and then simply feeds samples to ESD through the returned
socket. (For more about sockets, see Chapter 7; for now, think of a socket as a
simple file handle.) When it is finished playing the sound clip, it closes the
socket with esd close. This is very similar to our first OSS programming
example. You will notice that the sound continues playing up to a full second
after the program exits, due to ESD’s internal buffering. Remember that ESD is
a server that your program communicates with through a network socket; the
ESD server does not shut down when your program exits.

As we briefly mentioned earlier, ESD allows applications to cache samples in the
server itself, so that they can be quickly retrieved and played without actually
being written again. This is convenient, since it delegates the task of mixing to
ESD and reduces latency considerably. It would be a markedly bad idea to

LINUX AUDIO PROGRAMMING 199

upload hundreds of large samples into the ESD server (since they remain
resident in memory until they are deleted), but there should be no problem with
uploading a set of reasonably small sound clips for the duration of a game. As
useful as this may seem, however, there is a problem: it is not possible to adjust
the volume of a sound clip once it has been uploaded. Games frequently vary the
volume of sounds to indicate their relative distance from the listener’s position,
and this is not possible with ESD sample caching. Nonetheless, this limitation
may not be an issue for some games, and sample caching may provide a practical
way to avoid extreme latency.

The ESD library actually supports two types of server connections. We have
already seen the first type, which is used for sound playback. Most ESD
applications need only this type of connection. The second type provides a
channel for controlling the server. After obtaining a control connection handle
with esd open sound, an application can lock the ESD daemon (block all other
clients from connecting), temporarily shut down ESD’s sound playback
capabilities (and release the /dev/dsp device), or manage the sample cache.
Control connections should be closed with esd close when they are no longer
needed.

To upload a sample to ESD’s cache, establish a control connection and call
esd sample cache. This will return an integer cache ID that you can use to
reference the sound clip in the future. Upload the complete sample with write,
making sure to check write’s return values to verify that the entire sample has
been uploaded. Finally, call esd confirm sample cache with the clip’s ID to
check that ESD received all of the data. After the sample has been uploaded,
you can play it by calling esd sample play with the sample’s ID. A program
should explicitly delete all of its cached samples before it exits by calling
esd sample free with each sample ID.

ESD is a useful but somewhat flawed sound interface, and you should support it
if you can do so without giving yourself a headache. Many games support ESD
with the understanding that its latency will be annoying, but that some users
will want to use it anyway.

Function esd play stream(flags, rate, host, progname)

Synopsis Opens a connection to a local or remote ESD server
and prepares to play an audio stream.

200 CHAPTER 5

Returns Open file descriptor connected to the ESD server. This
might be a pipe or a socket. Returns < 0 on failure.

Parameters flags—ESD playback flags. See Listing 5–5 for a
typical set of flags.

rate—Playback sampling rate.

host—Hostname of a remote ESD server, or NULL to
connect to a local server.

progname—Name of this program (to appear in ESD’s
client list).

Function esd close(fd)

Synopsis Closes an ESD connection.

Parameters fd—File descriptor to close.

Building Multi-Play

You’ve seen how Multi-Play handles its output; now it’s time to flesh out the
application. Multi-Play is simple. It comes with almost no frills other than the
ability to play sound in five different ways. Without further ado, here is the
main Multi-Play code:

Code Listing 5–6 (multi-play.c)

/* Multi-Play’s main file. */

/* Selectively enable compilation of parts of the player. */
#ifndef DISABLE_OSS
#define ENABLE_OSS
#endif

#ifndef DISABLE_ESD
#define ENABLE_ESD
#endif

LINUX AUDIO PROGRAMMING 201

#ifndef DISABLE_ALSA
#define ENABLE_ALSA
#endif

#include <stdio.h>
#include <sndfile.h>
#include <endian.h>

/* sys/types.h provides convenient typedefs, such as int8_t. */
#include <sys/types.h>

/* ESD header. */
#ifdef ENABLE_ESD
#include <esd.h>
#endif

/* ALSA header. */
#ifdef ENABLE_ALSA
#include <sys/asoundlib.h>
#endif

/* Prototypes. */
void WritePlaybackStatus(int position, int total, int channels,

int bits, int rate);
int LoadSoundFile(char *filename, int *rate, int *channels,

int *bits, u_int8_t **buf, int *buflen);

int PlayerOSS(u_int8_t *samples, int bits,
int channels, int rate, int bytes);

int PlayerOSS2(u_int8_t *samples, int bits,
int channels, int rate, int bytes);

int PlayerDMA(u_int8_t *samples, int bits,
int channels, int rate, int bytes);

int PlayerESD(u_int8_t *samples, int bits,
int channels, int rate, int bytes);

int PlayerALSA(u_int8_t *samples, int bits,
int channels, int rate, int bytes);

/* The loader code is in a separate file for book organization. */
#include "mp-loadsound.c"

202 CHAPTER 5

/* Optionally include the OSS player code. */
#ifdef ENABLE_OSS
include "mp-oss.c"
include "mp-oss2.c"
include "mp-dma.c"
#endif

/* Optionally include the ESD player code. */
#ifdef ENABLE_ESD
include "mp-esd.c"
#endif

/* Optionally include the ALSA player code. */
#ifdef ENABLE_ALSA
include "mp-alsa.c"
#endif

/* Writes a playback status line, with no \n. This is purely for
aesthetic value. */

void WritePlaybackStatus(int position, int total,
int channels, int bits, int rate)

{
int i;

printf("[");
for (i = 0; i < (10*position/total); i++)

printf("-");
printf("|");
for (; i < 10; i++)

printf("-");
printf("] %3i%% ", (100*position/total));
printf("%2i-bit %s @ %i KHz",

bits,
(channels == 1 ? "mono " : "stereo"),
rate/1000);

}

/* Prints a summary of command-line usage. */
void usage(char *progname)
{

printf("Usage: %s player filenames\n", progname);
printf(" Available players are:\n");

LINUX AUDIO PROGRAMMING 203

#ifdef ENABLE_OSS
printf(" --oss Normal OSS output, somewhat latent.\n");
printf(" --oss2 Normal OSS output, less latency.\n");
printf(" --dma Direct DMA access with OSS.\n");

#endif
#ifdef ENABLE_ESD

printf(" --esd Output to ESD.\n");
#endif
#ifdef ENABLE_ALSA

printf(" --alsa Normal ALSA output.\n");
#endif
}

/* The main player program. */
int main(int argc, char *argv[])
{

char *filename;
int arg;
enum { OSS, OSS2, OSSDMA, ESD, ALSA } player;

/* Variables for the loaded sound. */
u_int8_t *samples = NULL;
int sample_size;
int sample_rate;
int sample_bytes;
int num_channels;

if (argc < 3) {
usage(argv[0]);
return 1;

}

/* Decide which player to use. */
if (0) { }

#ifdef ENABLE_OSS
else if (!strcmp(argv[1],"--oss"))

player = OSS;
else if (!strcmp(argv[1],"--oss2"))

player = OSS2;
else if (!strcmp(argv[1],"--dma"))

player = OSSDMA;
#endif

204 CHAPTER 5

#ifdef ENABLE_ESD
else if (!strcmp(argv[1],"--esd"))

player = ESD;
#endif
#ifdef ENABLE_ALSA

else if (!strcmp(argv[1],"--alsa"))
player = ALSA;

#endif
else {

usage(argv[0]);
return 1;

}

/* Treat the rest of the command line as filenames to play. */
for (arg = 2; arg < argc; arg++) {

filename = argv[arg];

/* Load the sound data. */
if (LoadSoundFile(filename, &sample_rate, &num_channels,

&sample_size, &samples,
&sample_bytes) != 0) {

printf("Skipping ’%s’.\n", filename);
continue;

}

switch (player) {
#ifdef ENABLE_OSS

case OSS:
if (PlayerOSS(samples, sample_size, num_channels,

sample_rate, sample_bytes) != 0)
printf("Sound playback with OSS failed.\n");

break;

case OSS2:
if (PlayerOSS2(samples, sample_size, num_channels,

sample_rate, sample_bytes) != 0)
printf("Sound playback with OSS2 failed.\n");

break;

case OSSDMA:
if (PlayerDMA(samples, sample_size, num_channels,

sample_rate, sample_bytes) != 0)

LINUX AUDIO PROGRAMMING 205

printf("Sound playback with DMA failed.\n");
break;

#endif

#ifdef ENABLE_ESD
case ESD:

if (PlayerESD(samples, sample_size, num_channels,
sample_rate, sample_bytes) != 0)

printf("Sound playback with ESD failed.\n");
break;

#endif
#ifdef ENABLE_ALSA

case ALSA:
if (PlayerALSA(samples, sample_size, num_channels,

sample_rate, sample_bytes) != 0)
printf("Sound playback with ALSA failed.\n");

break;
#endif

default:
printf("Bug!\n");
return 1;

}

free(samples);
}

return 0;

}

The main file uses the fairly common technique of selective compilation to allow
the various back ends to be individually disabled. This is useful, for instance, if
you want to build the player on a system with OSS but not ALSA or ESD. In
this case, you would compile the player with -DDISABLE ALSA -DDISABLE ESD.
(The -D option, as you may recall, adds the equivalent of a preprocessor #define
to the top of your program.) The player back ends are simply added to the main
file with #include. This is an acceptable way to assemble a small project, but a
larger project would more appropriately use separate header and object files for
each module.

206 CHAPTER 5

Multi-Play requires at least two command-line options: the name of a player
back end and a list of filenames to play. The player back ends are --oss (the
simple OSS player), --oss2 (the low-latency version of the OSS player), --dma
(the DMA-enabled player), --alsa (the ALSA player), and --esd (the ESD
player). The rest of the command-line arguments are treated as filenames and
are played in sequence.

Compiling Multi-Play is trivial, but it requires several libraries to link properly.
In addition to the libsndfile.so shared library, Multi-Play needs libraries for
ALSA and ESD (if it is compiled with support for these players). The following
command builds Multi-Play on my particular configuration (Linux, with working
installations of ALSA and ESD):

$ gcc multi-play.c -o multi-play -lasound -lesd -lsndfile

Or, to build without ALSA support,

$ gcc -DDISABLE_ALSA multi-play.c -o multi-play -lesd -lsndfile

Since these files can be in various places on different Linux configurations, it
might be worthwhile to set up a GNU Autoconf script for this program. Chapter
10 talks about the capabilities of Autoconf but leaves a full discussion to other
sources.

Once you’ve compiled Multi-Play, give it a spin. It can handle just about any
common (uncompressed) audio file format. Multi-Play’s main limitation is that
it cannot stream audio data directly from disk, so the entire sound file must be
loaded into memory. Streaming might make for an interesting project. We won’t
discuss Multi-Play further here, since our main coding project in this book is
Penguin Warrior.

Environmental Audio with OpenAL

OpenAL (AL for short) is a portable environmental audio library. In addition to
interacting with the sound card (most likely through another audio API, such as
OSS), it provides the ability to simulate real-world physics on audio, including

LINUX AUDIO PROGRAMMING 207

the Doppler shift (a change in a sound’s apparent frequency due to relative
motion) and attenuation (a loss in intensity over distance). These effects can add
a great deal of depth and realism to game environments. OpenAL is designed to
be hardware accelerated on multiple platforms by multiple vendors, and as such
it is a completely open standard (under the control of a review board very
similar to that of OpenGL). OpenAL is free to be downloaded, modified, and
used in any type of application, subject to the terms of the GNU LGPL.
Although OpenAL is still evolving rapidly, it is usable right now on Linux,
Windows, and several other platforms.

Not every application needs environmental audio, and sometimes it’s a better
idea to stick with SDL’s audio system, OSS, or ALSA. For instance, it would
probably be silly to use OpenAL for a sound file player or a recording program.
However, OpenAL is flexible enough to handle just about any environmental
audio situation as well as basic items like background music, so it’s well suited as
a general-purpose audio library for games. Later in this chapter we’ll use
OpenAL to add environmental audio and music support to Penguin Warrior.
First, let’s talk out about the basic terminology and philosophy of OpenAL.

OpenAL Basics

OpenAL is an audio rendering library (as opposed to a simple buffer playback
system like OSS). It plays sound as it would be heard from a certain point,
known as the listener, in a 3D world. Sounds come from points in space called
sources, each of which can be stationary or moving. Each source is attached to a
buffer, a chunk of raw PCM sound data that describes what the source sounds
like when the listener is right on top of it. Multiple sources can share the same
buffer (just as multiple brick walls can use the same texture in a game such as
Quake), but it’s not possible to assign multiple buffers to the same source.5

Sources, buffers, and the listener are all considered objects, and they’re all easy
to work with after you know which properties (position, velocity, and so forth)
are relevant to each type.

5 This makes sense—a source is supposed to represent a particular noise coming from a
certain point in space. If you want multiple sounds coming from the same place, put
multiple sources at that position.

208 CHAPTER 5

Source

Source

Source

Source
Source

Buffer (phaser.wav)Buffer (explosion.wav) Buffer (kaboom.wav)

Listener

3D World (Top-Down View)

An OpenAL world

Object properties are the key to getting along with OpenAL. Rather than
providing separate functions to set each possible property of a given object,
OpenAL defines symbolic names for each property an object can have and
supplies a few generic functions for accessing them by name. Instead of functions
like alSetSourcePosition and alSetSourceOrientation, for instance,
OpenAL provides a single alSourcefv function for modifying the vector
properties of source objects. alSourcefv(obj, AL POSITION, pos) would set
the position of the source object obj to the vector in pos. (A vector in this case
is just an array of three ALfloat values.) The OpenAL specification lists all of
the possible properties each type of object can have, and you can find some of
the more important ones in the Penguin Warrior code later in this chapter.

LINUX AUDIO PROGRAMMING 209

This Looks Familiar. . .

If you think OpenAL’s design is a cheap knockoff of the OpenGL 3D
graphics library, you’re right! OpenGL is an amazingly clean and
well-designed API with a wide following, and OpenAL’s designers
thought they’d do well to follow its style. This makes a lot of sense,
especially since OpenAL is also used to provide audio support in
OpenGL applications. OpenGL-oriented data structures tend to carry
over to OpenAL without much trouble.

In particular, OpenAL uses OpenGL’s peculiar function naming scheme;
for instance, a function call that sets the AL BAR property of a Foo-type
object to the first few entries of an array of floats would look something
like alFoofv(foo id, AL BAR, position). In this case foo id is the
“name” (integer identifier) of the object to be modified, AL BAR is the
property of the object to modify, and fv signifies that the function deals
with a vector of floats. OpenAL function names are always prefixed
with al or AL.

Once you understand the basics, OpenAL is even simpler to use than OSS. First
you need a device and a context. A device represents an initialized sound card
(with possible hardware acceleration features), and a context is piece of data
that represents OpenAL’s current state. Each context represents one listener and
multiple sources, and all commands dealing with these objects affect the current
context. Since nearly everything relevant to OpenAL is stored in the current
context, it’s possible to maintain several contexts and swap them out as you
please. (This probably won’t be useful in most cases, however.) Only one
context can be current at a time.

The alcOpenDevice function opens an audio device and prepares it for
OpenAL’s use. It typically does this by looking for a supported audio interface
(OSS, ALSA, or ESD) and performing whatever initialization steps the interface
requires. This function takes a single argument, a device specifier. In most cases
you can set this to NULL; it’s useful only if you want to request a particular
output device (and doing so is a quick way to kill portability). alcOpenDevice
returns NULL if it can’t find a usable device and returns a pointer to a device
structure if all goes well. If you can’t open a device, don’t bother with any more
OpenAL calls; nearly everything requires a valid context, and a context requires
a valid audio device.

210 CHAPTER 5

Once you’ve obtained a usable device, you should create a context.
alcCreateContext creates an OpenAL context and associates it with a
particular audio device. It takes two parameters: an open device and a list of
attributes. The attributes let you request a particular sampling frequency or
refresh rate; in most cases, NULL is a sufficient answer. Even with a valid audio
device, alcCreateContext could fail, so be sure to check for errors. Once you
have an OpenAL context, you’re in business. It’s a good idea to explicitly set
your new context as current with alcMakeContextCurrent. (It’s possible, but
not common, to use multiple contexts within a single application; in this case,
only one will be current at any given time, and you need to switch between them
manually.)

With a context in place, you can add sources and buffers, configure the listener,
and start playback. Once OpenAL is in motion, you can add, remove, or modify
objects at any time; whatever changes you make will affect the outgoing audio
stream almost immediately. OpenAL runs continuously in the background and
requires no attention unless you decide to change something in its 3D world.
Sources and the listener are specific to a particular context, and changes you
make to these types of objects won’t affect other contexts. Buffers don’t belong
to any particular OpenAL context, but you need to have a context before you
can create them (since OpenAL uses the current context for error reporting). It
follows that you need to destroy all of your buffers before you delete the last
context. You should be wary of doing anything with OpenAL without a valid
context.

Now that you know a bit about the API and its capabilities, let’s put OpenAL
to work as a sound engine for Penguin Warrior.

Function alcOpenDevice(device)

Synopsis Opens an audio device suitable for OpenAL output.

Returns Pointer to an ALCdevice structure on success, NULL on
failure. On failure, you can retrieve error information
with alcGetError.

Parameters device—Platform-dependent device specifier. This
should be NULL unless you have a good reason to use
something else.

LINUX AUDIO PROGRAMMING 211

Function alcCloseDevice(device)

Synopsis Closes a device opened by a previous call to
alcOpenDevice. Never close a device that is currently
in use; destroy any context that is using it first.

Parameters device—Pointer to the ALCdevice to close.

Function alcCreateContext(device, params)

Synopsis Creates an OpenAL context.

Returns A valid OpenAL context (as an ALvoid pointer) on
success, NULL on failure. On failure, you can retrieve
error information with alcGetError.

Parameters device—Pointer to a valid ALCdevice.
params—Pointer to an array of configuration flags, as
described in the OpenAL specification. NULL is usually
sufficient. (OpenAL will pick the best sampling rate
and format it can find, so there’s little need to
interfere.)

Function alcMakeContextCurrent(context)

Synopsis Makes a context current. Only one context can be
current at a time, and you must set a current context
before you make any non-alc OpenAL calls. This is
not likely to fail, but you can check for errors with
alcGetError() != ALC NO ERROR.

Parameters context—Pointer to the context to make current.

Function alcDestroyContext(context)

Synopsis Destroys an OpenAL context. It’s a good idea to do
this before your program exits. Never destroy the
current context; call alcMakeContextCurrent(NULL)
first.

Parameters context—Pointer to the context to destroy.

212 CHAPTER 5

Function alGenSources(count, buffer)

Synopsis Creates count sources in the current OpenAL context
and stores their names (integer IDs) in buffer. This
is unlikely to fail, but you can test for errors with
alGetError() != AL NO ERROR. It’s not necessary for
a program to clean up its sources before it exits
(destroying the context does that), but you can do
this with the alDeleteSources function (which takes
identical parameters).

Parameters count—Number of sources to generate.
buffer—Pointer to an ALuint buffer big enough to
hold the generated source names.

Function alGenBuffers(count, buffer)

Synopsis Generates count buffers. Buffers are not tied to any
particular OpenAL context, but alGenBuffers must
be an active context for error-handling purposes. This
is not likely to fail, but as usual you can test for errors
with the alGetError function. You can delete buffers
with the alDeleteBuffers function (which takes
identical parameters).

Parameters count—Number of buffers to generate.
buffer—Pointer to an ALuint buffer big enough to
hold the generated buffer names.

Function alSourcePlay(sourceid)

Synopsis Starts playback on a source. Uses the buffer assigned
to the source with the AL BUFFER property. If the
AL LOOPING attribute of the source is nonzero,
playback will never stop; otherwise it will stop when
the buffer has been played once.

Parameters sourceid—Name of the source in the current context
to play.

LINUX AUDIO PROGRAMMING 213

Function alSourceStop(sourceid)

Synopsis Stops playback on a source immediately.

Parameters sourceid—Name of the source in the current context
to stop.

Function alBufferData(bufferid, format, data, size,
freq)

Synopsis Sets a buffer’s PCM sample data. This is akin to
sending texture data to OpenGL.

Parameters bufferid—Name of the buffer to modify.

format—Format of the sample data. Valid formats
are AL FORMAT MONO8, AL FORMAT MONO16,
AL FORMAT STEREO8, and AL FORMAT STEREO16.
OpenAL converts between formats as necessary;
there’s no need to supply data to it in a particular
format.

data—ALvoid pointer to the raw sample data.
OpenAL copies this data into its own buffer; you can
free this pointer immediately after the alBufferData
call.

size—Size of the sample data, in bytes.

Adding Environmental Audio to Penguin Warrior

How can Penguin Warrior take advantage of environmental audio? Well, right
now it’s pretty hard to navigate in the game world. Locating the opponent ship
can be quite an annoyance, since there’s currently no radar or direction pointer.
The opponent could be anywhere, and the only way to find him, her, or it is to
fly around randomly until you make visual contact. We can make the game a lot
more interesting by using OpenAL to simulate the opponent’s engine noise and

214 CHAPTER 5

weapon sounds.6 To do this, of course, we’d place the listener at the player’s
position and orientation in the world, place a source on top of the opponent ship,
and attach this source to a buffer that sounds something like an engine. To
simulate weapon sounds, we would create another source on top of the opponent
and select appropriate buffers for the weapon. Simple? Yes. Effective? OpenAL
does an amazing job.7

Source Files

We add the source files audio.c, audio.h, music.c, and music.h to
Penguin Warrior in this chapter. In addition, we now need to link the
game against libsndfile, libopenal, and libvorbis (-lsndfile -lopenal
-lvorbis). To compile this chapter’s version of Penguin Warrior, you’ll
need a recent copy of OpenAL from http://www.openal.org, as well
as the Vorbis audio compression library from http://www.vorbis.com.
We’ll discuss the Vorbis code later in this chapter; for now, we’ll
concentrate on the OpenAL side of things.

In addition to the main work in audio.c, we’ll make a few simple
modifications to main.c and resources.c. These should be easy to
spot and simple to understand.

You can find this chapter’s Penguin Warrior code in the pw-ch5/
subdirectory of the source archive.

6 Sound doesn’t travel in space, but neither do highly maneuverable ships with curved wings
and laser cannons. At least not yet.

7 OpenAL’s filtering and output are reasonably solid, but some of its effects can produce
strange results on low-end sound hardware. Penguin Warrior’s environmental audio works
quite well on my primary computer (which has an Ensoniq ES1373 card), but
Doppler-shifted audio sounds awful on my laptop (which has an integrated Yamaha sound
chip and tiny speakers). OpenAL can add a lot to a game, but some players might
appreciate an option for disabling advanced environmental effects.

LINUX AUDIO PROGRAMMING 215

Code Listing 5–7 (audio.c)

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "audio.h"
#include "resources.h"

/* Include the OpenAL headers. */
#include <AL/al.h>
#include <AL/alc.h>

/* Factor to control attenuation of audio.
We’ll divide all coordinates by this factor each time we update
the source positions. OpenAL does provide a cleaner way to do
this, but it changed recently. */

#define DISTANCE_FACTOR 50.0

/* We’ll set this flag to 1 after audio has been
successfully initialized. */

int audio_enabled = 0;

/* Our OpenAL context. This is just like an OpenGL context,
if you’re familiar with GL’s workings. A context represents
a combination of a particular output device, a sampling
frequency, and so on. */

ALvoid *audio_context = NULL;

/* An output device. We’ll set this to AL’s default
in InitAudio(). */

ALCdevice *audio_device = NULL;

/* Our sources. Sources are objects in 3D space that emit sound.
We’re ignoring the fact that there’s no sound in space. */

static ALuint opponent_engine_source;
static ALuint opponent_phaser_source;
/* There is no player engine source; see note

in StartAudio below. */
static ALuint player_phaser_source;

void InitAudio()
{

216 CHAPTER 5

int err;

/* Create a context with whatever settings are available.
We could replace NULL with a list of parameters.

We use alcGetError instead of alGetError for error detection.
This is because error conditions are stored within contexts,
and it’s pretty meaningless to retrieve an error code from
something that does not yet exist. */

audio_device = alcOpenDevice(NULL);
if (audio_device == NULL)

fprintf(stderr, "Warning: NULL device.\n");
else

fprintf(stderr, "Got a device.\n");
audio_context = alcCreateContext(audio_device, NULL);

err = alcGetError();
if (err != ALC_NO_ERROR || audio_context == NULL) {

fprintf(stderr, "Unable to create an OpenAL context (%s).\n",
alGetString(err));

return;
}

/* Make sure we have a chance to clean up. */
atexit(CleanupAudio);

/* Now make the context current. The current context is the
subject of all OpenAL API calls. Some calls will even
segfault if there isn’t a valid current context. */

alcMakeContextCurrent(audio_context);
if (alcGetError() != ALC_NO_ERROR) {

fprintf(stderr, "Unable to make OpenAL context current.\n");
goto error_cleanup;

}

/* Good. Now create some sources (things that make noise).
These will be assigned buffers later. Sources don’t do
anything until you associate them with buffers (which
contain PCM sound data). */

alGenSources(1, &opponent_engine_source);
alGenSources(1, &opponent_phaser_source);
alGenSources(1, &player_phaser_source);

LINUX AUDIO PROGRAMMING 217

if (alGetError() != AL_NO_ERROR) {
fprintf(stderr, "Unable to allocate audio sources.\n");
goto error_cleanup;

}

/* Ready to go. */
audio_enabled = 1;
printf("Audio enabled. OpenAL information:\n");
printf(" Version: %s\n", alGetString(AL_VERSION));
printf(" Renderer: %s\n", alGetString(AL_RENDERER));
printf(" Vendor: %s\n", alGetString(AL_VENDOR));
printf(" Extensions: %s\n", alGetString(AL_EXTENSIONS));

return;

/* Invoked on error. Cleans up the context. */
error_cleanup:

alcMakeContextCurrent(NULL);
alcDestroyContext(audio_context);

}

void CleanupAudio()
{

/* If OpenAL is initialized, clean up. */
if (audio_enabled) {

/* Never try to destroy an active context. */
alcMakeContextCurrent(NULL);

alcDestroyContext(audio_context);
alcCloseDevice(audio_device);
audio_context = NULL;

audio_enabled = 0;
}

}

void UpdateAudio(player_p player, player_p opponent)
{

ALfloat position[3];
ALfloat velocity[3];

218 CHAPTER 5

ALfloat orientation[6];

/* Is audio enabled? */
if (!audio_enabled)

return;

/* The player is the listener. Set the listener’s position to
the player’s position. */

position[0] = (ALfloat)player->world_x / DISTANCE_FACTOR;
position[1] = (ALfloat)player->world_y / DISTANCE_FACTOR;
position[2] = (ALfloat)0.0;
alListenerfv(AL_POSITION, position);

/* Set the player’s orientation in space. The first three
values are the "up" vector (sticking out of the ship’s
cockpit), and the next three are the "at" vector (stickout
out of the ship’s nose). */

orientation[0] = 0;
orientation[1] = 0;
orientation[2] = 1.0;
orientation[3] = cos(player->angle*PI/180.0);
orientation[4] = -sin(player->angle*PI/180.0);
orientation[5] = 0;
alListenerfv(AL_ORIENTATION, orientation);

/* To properly simulate the Doppler effect, OpenAL needs to
know the listener’s velocity (as a vector). */

velocity[0] = (ALfloat)player->velocity *
cos(player->angle*PI/180.0) / DISTANCE_FACTOR;

velocity[1] = (ALfloat)player->velocity *
-sin(player->angle*PI/180.0) / DISTANCE_FACTOR;

velocity[2] = (ALfloat)0.0;
alListenerfv(AL_VELOCITY, velocity);

/* The player’s weapon is obviously at the location of the
player. This source won’t do anything until we add
weapons to the game. */

alSourcefv(player_phaser_source, AL_POSITION, position);
alSourcefv(player_phaser_source, AL_VELOCITY, velocity);

/* Now for the enemy’s information. */
position[0] = (ALfloat)opponent->world_x / DISTANCE_FACTOR;

LINUX AUDIO PROGRAMMING 219

position[1] = (ALfloat)opponent->world_y / DISTANCE_FACTOR;
position[2] = (ALfloat)0.0;
alSourcefv(opponent_engine_source, AL_POSITION, position);
alSourcefv(opponent_phaser_source, AL_POSITION, position);

velocity[0] = (ALfloat)opponent->velocity *
cos(opponent->angle*PI/180.0) / DISTANCE_FACTOR;

velocity[1] = (ALfloat)opponent->velocity *
-sin(opponent->angle*PI/180.0) / DISTANCE_FACTOR;

velocity[2] = (ALfloat)0.0;
alSourcefv(opponent_engine_source, AL_VELOCITY, velocity);
alSourcefv(opponent_phaser_source, AL_VELOCITY, velocity);

}

void StartAudio()
{

/* Activate the opponent’s engine noise. We won’t attach an
engine noise to the player, because quite frankly it would
be annoying, though perhaps a bit more realistic. */

if (audio_enabled) {
alSourcei(opponent_engine_source, AL_BUFFER,

engine_sound.name); /* assign a buffer */
alSourcei(opponent_engine_source, AL_LOOPING,

1); /* enable looping */
alSourcePlay(opponent_engine_source);

/* set it to playback mode */
}

}

void StopAudio()
{

/* Stop all sources. */
if (audio_enabled) {

alSourceStop(opponent_engine_source);
alSourceStop(opponent_phaser_source);
alSourceStop(player_phaser_source);

}
}

220 CHAPTER 5

Penguin Warrior’s audio interface is straightforward. main.c calls InitAudio
during startup and CleanupAudio at exit. During each frame of animation, the
game loop calls UpdateAudio with pointers to the current player data structures
to update the positions and velocities of the audio sources. StartAudio actually
starts playback (by setting the relevant sources to playback mode with
alSourcePlay), and StopAudio stops playback on all sources. We’ll need to add
more to this interface in Chapter 9 so that we can trigger weapon and explosion
sound effects, but this is sufficient for now.

InitAudio does most of the OpenAL setup work. It opens a device with
alcOpenDevice, creates a context with alcCreateContext, and makes the
context current with alcMakeContextCurrent. It then uses alcGenSources to
create sources for all of the sound-emitting objects in the game (the opponent’s
engine and weapons for both players). Sources and buffers are always
represented by integer handles (type ALuint or just unsigned int). The actual
source, listener, and buffer data structures are of no consequence to us; they’re
hidden inside OpenAL, and we access them by passing their handles to the
various OpenAL object functions. Finally, InitAudio sets a few environmental
parameters (relative distances for the Doppler effect and distance attenuation),
prints a bit of information about the OpenAL library, and returns successfully.

UpdateAudio keeps OpenAL informed about the state of the game world. It uses
alListenerfv to set the listener to the position and direction of the player’s
ship, and it uses alSourcefv to position each source. These functions expect
their information as vectors: a three-element 3D < x, y, z > vector for position
and velocity and a six-element < ux, uy, uz > < fx, fy, fz > pair of 3D vectors
for orientation (indicating the “up” and “forward” vectors of the object in
question). Since the game takes place in a two-dimensional plane, the z
coordinates of these vectors will always be constant. (See Figure 5–1 for an idea
of what the game looks like if we bring it into 3D space with a constant z
coordinate.)

CleanupAudio is charged with shutting down OpenAL safely. This isn’t too
difficult; it deactivates and destroys the current context, closes the audio device,
and marks audio as disabled. As with any multimedia toolkit, it’s a good idea to
close OpenAL cleanly when you’re finished with it. It’s probably safe to leave an
OpenAL context hanging when your program exits, but doing so could be messy
if your OpenAL library happens to be using the sound card’s hardware
acceleration features.

LINUX AUDIO PROGRAMMING 221

Figure 5–1: Penguin Warrior, rendered in 3D space

Finally, resources.c has some new sound file loading code. The LoadSoundFile
function (not shown here) is adapted from Multi-Play’s libsndfile-based loader
code. Instead of returning a buffer of loaded samples, LoadSoundFile creates a
new OpenAL buffer and copies the sample data into it. The code should be
self-explanatory; buffers work like sources for the most part, since they are also
OpenAL objects. There’s one important stipulation when calling
LoadSoundFile, though: since it uses the OpenAL API, it’s important to make
sure that OpenAL is initialized first. This means that we need to call InitAudio
before LoadResources at startup.

Voila! Penguin Warrior now has environmental audio. Give it a try. You should
be able to locate the opponent without even looking at the screen, especially if
your sound card supports surround sound. Now for some music.

222 CHAPTER 5

Implementing Game Music with Ogg Vorbis

Unless you’ve been living under a rock for the past few years, you’ve probably
heard of MP3. Since high-quality PCM audio data can take up an enormous
amount of space (over a megabyte every 10 seconds, in some cases), raw PCM
samples are not an ideal way to store music and other long audio clips. A typical
music album is likely to occupy several hundred megabytes. This is not a
problem when music is distributed on physical media—ordinary compact discs
can hold around 650 megabytes—but it is an impractical way to download music
over the Internet. The MP3 compression system offers a solution to this problem
by compressing audio data (sometimes by as much as 90%) while preserving
most of the audio’s original quality.8 MP3 is an open standard (meaning that
anyone can learn how it works), but it is encumbered by patents (meaning that
anyone who writes MP3 encoding software without purchasing a license is likely
to be sued). Needless to say, this has been the cause of great consternation
among some segments of the (generally antipatent) online community. Although
the free SMPEG library can handle MP3 audio (and has been used for that
purpose in at least one commercial title), there is a better option.

The Xiphophorous Company, an oddly named team of smart hackers previously
known for the popular CD Paranoia program, has created an alternative to MP3
called Ogg Vorbis. The Vorbis codec (coder/decoder) offers audio compression
very similar to MP3 (slightly better in some cases), free of patents and available
to everyone. Ogg, the streaming media infrastructure, provides support for
multiple Vorbis streams within a single bitstream or file and provides robustness
against many types of corruption. The Ogg Vorbis team has created a
libvorbisfile library to allow programmers to easily add Ogg Vorbis support to
applications, and they have created a set of utilities for working with Ogg Vorbis
(.ogg) files from the command line. The Vorbis code is still in development, but
the bitstream format is finalized, and future releases will be backward

8 MP3 compression does trash some audio frequency ranges, and it is certainly possible to
hear a difference in a side-by-side comparison of CD and MP3 music. However, this is
usually not a severe problem. MP3 compression is not all-or-nothing; music can be
compressed only slightly (with very little loss in quality) or can be heavily compressed
(reducing the audio to telephone quality or worse).

LINUX AUDIO PROGRAMMING 223

compatible. (That is, your Vorbis-enabled software will be able to process all
future versions of the Vorbis bitstream specification.)

To my knowledge, there are no real drawbacks to using Ogg Vorbis for
high-quality game music, except perhaps that the decoding takes a significant
amount of CPU horsepower (especially on antiquated, register-poor CPU
architectures like the x86). MP3 generally provides better performance than
Vorbis at low data rates (significant in the quality/size trade-off) and on low-end
processors, but these are both improving in Vorbis’s favor. Modern Linux boxes
should have no trouble decoding high-quality Vorbis streams in the background.

More information on the Ogg Vorbis project is available on the Web at
http://www.xiph.org/ogg/vorbis/index.html or in #vorbis on
irc.openprojects.net.

Working with Vorbis Files

Although SDL supports Ogg Vorbis music (through the external SDL mixer
library), this doesn’t help much if you’re using OSS or OpenAL. Fortunately, the
Vorbis API is straightforward, and a complete Vorbis client can be written in
fewer than 50 lines of code, with a bit of help from the libvorbisfile utility library.

Decoding Ogg Vorbis streams is just as you’d imagine: the Vorbis libraries take
in a stream of encoded packets and return a stream of PCM samples. There’s a
small amount of extra complication involving multiple logical bitstreams within
a single physical stream, but you can more or less avoid this if you’re interested
only in implementing game music (though you could use this capability to store
more than one soundtrack in the same music data file). Logical bitstreams are
easy to create—just shove two .ogg files into a single file with the cat command.

We’ll get to the nuts and bolts of working with Ogg Vorbis streams in the next
section, but here’s a basic overview of what’s required:

1. Install the Ogg Vorbis development kit, available from
http://www.xiph.org/ogg/vorbis/index.html. At the time of this
writing, you need at least libao, libogg, libvorbis, and libvorbisfile. These
are all rather easy to configure and install.

2. Include vorbis/vorbisfile.h and vorbis/codec.h (assuming a standard
installation of the Ogg Vorbis libraries).

224 CHAPTER 5

3. Link in libvorbisfile.so, libvorbis.so, and libogg.so in that order
(-lvorbisfile -lvorbis -logg).

4. Create a buffer for storing the decoded PCM data. The Xiphophorous
documentation recommends a 4,096-byte buffer, but games usually need
larger chunks of music than that.

5. Open the .ogg file you wish to play with the normal stdio (fopen)
interface, and prepare an OggVorbis File structure with ov open. After
ov open succeeds, don’t touch the original FILE structure. Find out
relevant facts about the stream with the ov info function.

6. Fill buffers of PCM samples with ov read. This function does not always
return the requested amount of data;9 if it doesn’t, call it repeatedly to
build up a sufficient amount of data. Play the buffers with your audio API
of choice. Repeat until ov read returns zero, indicating the end of the
stream.

7. Close the OggVorbis File with ov clear. libvorbisfile will close the
original file automatically.

That’s it! You’ll need to add a bit more code if you care about properly handling
logical bitstreams, but there’s not much to that. Now let’s put Ogg Vorbis to
work with, you guessed it, Penguin Warrior.

Function ov open(file, ovfile, initial, initialsize)

Synopsis Prepares an OggVorbis File structure for decoding.
If you need to use a data source other than a file, you
probably want the ov open callbacks interface, not
ov open.

Returns Zero on success, an error code on failure.

9 It seems that ov read never processes more than 4,096 bytes, regardless of how much data
you request. I’m sure there’s a perfectly good reason for this, but it escapes me.

LINUX AUDIO PROGRAMMING 225

Parameters file—Pointer to an open FILE (from fopen). You do
not need to close this file—libvorbisfile takes care of
that.

ovfile—Pointer to an OggVorbis File structure.

initial—char * to any data you’ve already read
from file. Usually NULL.

initialsize—Size of initial in bytes. Usually zero.

Function ov clear(ovfile)

Synopsis Closes an OggVorbis File.

Parameters ovfile—OggVorbis File to close.

Function ov info(ovfile, stream)

Synopsis Retrieves information about an Ogg Vorbis stream.

Returns Pointer to a vorbis info structure that describes the
given stream.

Parameters ovfile—Pointer to the OggVorbis File to query.

stream—Logical bitstream number. −1 selects the
current bitstream.

Function ov read(ovfile, buffer, length, beflag,
samplesize, signedflag, stream)

Synopsis Reads PCM data from an Ogg Vorbis stream.

Returns Number of bytes successfully decoded on success,
OV HOLE on any type of (probably recoverable) data
glitch, OV EBADLINK if the requested logical stream is
invalid, or zero if there is no more data to decode.

Parameters ovfile—Pointer to the OggVorbis File to decode.

buffer—Pointer to the buffer to receive the decoded
samples. This is prototyped as a char *, but of course
you can use any type of buffer you wish.

226 CHAPTER 5

length—Maximum number of bytes to decode. There
is no guarantee that libvorbisfile will return this much
data—it’s only an upper limit. libvorbisfile seems to
return at most 4,096 bytes per call to ov read.

beflag—1 to request big endian samples, 0 otherwise.
(Intel-based machines are little endian; many others
aren’t. You can find this out from the endian.h
header file.)

samplesize—Bytes per sample. libvorbisfile is nice
enough to give us a choice so we don’t have to convert
between sample sizes ourselves. This will obviously be
1 for 8-bit samples and 2 for 16-bit samples.

signedflag—1 to request signed samples, 0 to
request unsigned samples. In practice, 16-bit samples
are almost always signed (−32, 768..32, 767) and 8-bit
samples are almost always unsigned (0..255).

stream—Pointer to an integer to receive the number
of the logical bitstream that libvorbisfile is currently
working on.

Structure vorbis info

Synopsis Contains basic information about an Ogg Vorbis
stream.

Members version—Vorbis encoder version. This is mostly
useless, since today’s decoder is designed to be
compatible with all future Vorbis encoder releases.

channels—Number of channels in this stream. 1 for
mono and 2 for stereo.

rate—PCM sampling frequency of this stream.
Although the bit rate (bits of encoded data per second
of audio) can change throughout the stream, the
sampling frequency will stay constant throughout. The
sampling rate can change between logical bitstreams.

LINUX AUDIO PROGRAMMING 227

Adding Music to Penguin Warrior

Penguin Warrior needs some music. Music can add a lot of atmosphere to a
game, and it can dramatically affect the player’s mood. Would the first level of
Doom have been quite as exciting without the fast-paced soundtrack, or the first
level of Descent as enthralling without the mysterious, cold, and robotic
background tune? Matt Friedly of http://phluid.acid.org kindly gave us
permission to use some of his music for this game, and we need to write some
code to play it. The music was originally an .s3m (Scream Tracker) module,10

but it’s now an Ogg Vorbis stream (reflux.ogg in this chapter’s Penguin
Warrior directory).

We need a way to play Ogg Vorbis music through OpenAL.

This would be straightforward with just about any other audio API, but we’ll
have to nudge OpenAL a bit to get it to play streaming stereo music without
unwanted environmental effects. Background music shouldn’t really come from
any particular point in space, and it should be played in stereo. There’s no such
thing as stereo environmental audio, since the effect we call stereo is really just a
product of speaker positioning. Fortunately, OpenAL does provide a “back
door” (via an extension) for injecting stereo sound into a buffer. We’ll use this
back door in a moment.

We have another problem: since music files tend to be enormous and
time-consuming to decode, it would be a bad idea to load entire tracks into
OpenAL buffers. It might work for small files (a few megabytes or less), but
that’s still a lot of wasted memory. How else can we play music? Until now we’ve
worked only with simple OpenAL buffers that never change. It turns out that
OpenAL defines a special type of buffer for streaming audio data. Streaming
buffers don’t take fixed-size pieces of PCM data, as most buffers do; instead,
they start out empty and play data as it arrives (so long as it arrives in a timely
fashion). This lets us incrementally decode music throughout the program. We
just have to make sure we decode it quickly enough to stay ahead of OpenAL.

10 Scream Tracker is a rather old but well-written program for assembling music from
pre-recorded samples.

228 CHAPTER 5

Streaming buffers are simple to work with. The alGenStreamingBuffers LOKI
function creates one or more streaming buffers in the current OpenAL context,
and the alBufferAppendData LOKI family of functions adds PCM data to the
end of a streaming buffer.

Function alGenStreamingBuffers LOKI(count, buffers)

Synopsis Generates count streaming buffers. Semantics are
identical to alGenBuffers.

Parameters count—Number of buffers to generate.

buffer—Pointer to an ALuint buffer big enough to
hold the generated buffer names.

Now that we have a basic idea of how OpenAL music playback works, let’s dig
into the Penguin Warrior music code.

Code Listing 5–8 (music.c)

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <AL/al.h>
#include <AL/alext.h> /* for alBufferAppendWriteData_LOKI */
#include <vorbis/codec.h>
#include <vorbis/vorbisfile.h>

#include "audio.h"
#include "music.h"
#include "resources.h"

/* We’ll set this flag to 1 after music has been
successfully initialized. */

int music_enabled = 0;

/* We’ll set this to 1 as soon as we start playback,
and to 0 when there’s no more data. */

int music_playing = 0;

LINUX AUDIO PROGRAMMING 229

/* OpenAL source and buffer for streaming music. */
static ALuint music_source = 0;
static ALuint music_buffer = 0;

/* Ogg Vorbis stream information. */
static OggVorbis_File music_file;
static vorbis_info *music_info = NULL;
static int music_section = -1; /* Streams can have multiple

sections. This lets Ogg Vorbis
tell us which section
we’re dealing with. */

static int music_file_loaded = 0; /* 1 if a file is loaded,
0 if not. */

/* Buffer for decoding music. We use an ALshort because we’ll
always request 16-bit samples from Vorbis. If you experience
skipping or other anomalies, increase the size of this buffer. */

#define MUSIC_BUF_SIZE 65536
static ALshort buf[MUSIC_BUF_SIZE];
static int buf_count = 0; /* Number of samples in the buffer. */
static int buf_pos = -1; /* Playback position within buffer. */

void InitMusic()
{

/* Check that InitAudio was successful. We’ll be using
a multichannel OpenAL streaming buffer for output,
so OpenAL needs to be initialized. */

if (!audio_enabled) {
printf("Unable to initialize music.\n");
return;

}

/* Generate a streaming buffer. */
alGenStreamingBuffers_LOKI(1, &music_buffer);

/* Create a source for the music. */
alGenSources(1, &music_source);

/* Set the source’s position to be considered relative
to the listener. This way we won’t have to update its
position each time the listener moves. */

alSourcei(music_source, AL_SOURCE_RELATIVE, AL_TRUE);

230 CHAPTER 5

/* Assign the streaming buffer to the music source. */
alSourcei(music_source, AL_BUFFER, music_buffer);

/* Check for errors. */
if (alGetError() != AL_NO_ERROR) {

printf("Music initialization failed.\n");
return;

}

printf("Music enabled.\n");
music_enabled = 1;

}

void CleanupMusic()
{

if (music_enabled) {
/* Stop music playback. */
alSourceStop(music_source);

/* Delete the buffer and the source. */
alDeleteBuffers(1, &music_buffer);
alDeleteSources(1, &music_source);

/* Close the music file, if one is open. */
if (music_file_loaded) {

ov_clear(&music_file);
music_file_loaded = 0;

}

music_enabled = 0;
}

}

int LoadMusic(char *filename)
{

FILE *f;

/* First, open the file with the normal stdio interface. */
f = fopen(filename, "r");
if (f == NULL) {

printf("Unable to open music file %s.\n", filename);

LINUX AUDIO PROGRAMMING 231

return -1;
}

/* Now pass it to libvorbis. */
if (ov_open(f, &music_file, NULL, 0) < 0) {

printf("Unable to attach libvorbis to %s.\n", filename);
fclose(f);
return -1;

}

/* Retrieve information about this stream. */
music_info = ov_info(&music_file, -1);

printf("Reading %li Hz, %i-channel music from %s.\n",
music_info->rate,
music_info->channels,
filename);

music_file_loaded = 1;

return 0;
}

void StartMusic()
{

/* If music is enabled and a file is ready to go,
start playback. */

if (music_enabled && music_file_loaded) {
alSourcePlay(music_source);
music_playing = 1;

}
}

void StopMusic()
{

if (music_enabled) {
alSourceStop(music_source);
music_playing = 0;

}
}

232 CHAPTER 5

void UpdateMusic()
{

int written;
int format;

if (music_enabled && music_file_loaded) {

/* Do we need to fetch more data? */
if (buf_pos == -1) {

buf_count = 0;
buf_pos = 0;

if (music_playing) {
/* libvorbisfile does not always return the

full amount of data requested, so loop
until we have a full block. */

while (music_playing && buf_count <
MUSIC_BUF_SIZE) {

int amt;
amt = ov_read(&music_file,

(char *)&buf[buf_count],
(MUSIC_BUF_SIZE-buf_count)*2,
0, 2, 1, &music_section) / 2;

buf_count += amt;

/* End of the stream? */
if (amt == 0) {

printf("End of music stream.\n");
music_playing = 0;
break;

}
}

} else {
/* No more music, so fill the buffer

with zeroes. */
buf_count = MUSIC_BUF_SIZE;
memset(buf, 0, MUSIC_BUF_SIZE*2);

}
}

LINUX AUDIO PROGRAMMING 233

/* Determine the correct format.
This can change at any time.
(it probably won’t, but Vorbis allows for this) */

if (music_info->channels == 1)
format = AL_FORMAT_MONO16;

else
format = AL_FORMAT_STEREO16;

/* If we have a buffer of data, append it to the playback
buffer. alBufferAppendWriteData_LOKI is similar to the
well-documented alBufferAppendData, but it allows us to
specify the internal storage format for the data. This
prevents OpenAL from converting stereo data to mono.
(With this function, we should get stereo playback.) */

if (buf_count != 0) {

written = alBufferAppendWriteData_LOKI(music_buffer,
format,
&buf[buf_pos],
MUSIC_BUF_SIZE-buf_pos,
music_info->rate,
format);

/* Check for (unlikely) errors. If something went wrong,
disable music. */

if (written < 0 || alGetError() != AL_NO_ERROR) {
printf("OpenAL error, disabling music.\n");
CleanupMusic();

}

/* Update the buffer position based on how much data
we wrote. If we’ve played the entire buffer, set
the position to -1 so that the next call to
UpdateMusic will refill the buffer. */

buf_pos += written;
if (buf_pos >= buf_count)

buf_pos = -1;
}

}
}

234 CHAPTER 5

The overall structure of music.c should be pretty clear. InitMusic creates a
streaming buffer and a source to go along with it. It sets the source to relative
mode, which means that its position will be determined as a vector relative to
the listener (and hence the default position of < 0, 0, 0 > will remain directly on
top of the listener, no matter where the listener moves). This will keep
environmental audio effects out of our music stream—you obviously can’t detect
attenuation or the Doppler effect from a pair of headphones.

CleanupMusic deletes the streaming buffer and the relative source. Nothing
breathtaking here.

LoadMusic sets up the music system to play a new Ogg Vorbis file. It opens the
file with fopen, makes it into an OggVorbis File structure with ov open, and
gets information about the sampling rate and number of channels with ov info.
Once the file is ready to go, LoadMusic sets the music file loaded flag to let
the playback code know it’s OK to start playing.

StartMusic calls alSourcePlay to begin playback. Nothing will actually
happen until UpdateMusic gets around to decoding and writing some PCM data
to the streaming buffer, but at this point it’s primed and ready to go.
StopMusic does just the opposite; it calls alSourceStop to end playback.

Finally, the meat of the music system: UpdateMusic is responsible for actually
decoding and writing music data. It decodes chunks of data with ov read,
looping until it gets as much data as it wants, and writes the data to the
streaming buffer with alBufferAppendWriteData LOKI. This function is easy to
understand, despite its long-winded name: it adds a buffer of PCM data to the
end of a streaming buffer, preserving the requested sample format. This is the
back door we mentioned earlier. The LOKI at the end of the function name
means that this is a vendor-specific OpenAL extension and not part of the core
specification. However, since Loki Software is responsible for most of the
OpenAL specification, it’s a safe bet that LOKI extensions will be part of any
future OpenAL implementations.

Function alBufferAppendWriteData LOKI(buffer, format,
data, size, freq, iformat)

Synopsis Adds PCM data to the end of a streaming buffer,
preserving the requested sample format internally.
This is generally used to preserve multichannel

LINUX AUDIO PROGRAMMING 235

(stereo) sound, which is normally converted to mono
in OpenAL.

Returns Number of samples successfully appended to the
buffer. Since streaming buffers have a limited amount
of space, it’s necessary to check for partial writes.

Parameters buffer—Name (integer id) of the buffer to append
the data to.

format—Sample format of the incoming data. One of
the AL FORMAT fmt constants.

data—Pointer to the raw PCM data to append.

size—Length of the data in samples (not bytes, not
frames). One stereo frame is two samples.

freq—Sampling frequency of the incoming data.

iformat—Desired internal storage format. OpenAL
will store the data in this format internally.

The game loop is supposed to call UpdateMusic very frequently. If you take a
look at main.c, you’ll see that we’ve actually put UpdateMusic in its own
thread, launched with SDL CreateThread. This makes sure that UpdateMusic
gets called at regular intervals (timed with SDL Delay), regardless of the speed of
the game loop. Since streaming buffers do store a few seconds of audio in
advance, the timing isn’t absolutely critical, but slowdowns in the game loop
might cause sporadic glitches in the music. This isn’t a problem when the music
system runs in a separate thread. OpenAL is thread safe, so there’s no harm in
calling OpenAL functions from more than one thread at a time.

That’s all there is to it. OpenAL’s streaming buffer interface might change in the
near future, but the changes should be easy to integrate into our music system.
The new system is already in place, but an evening of frustration has proven
that it is not production-quality yet. If the streaming buffer interface disappears,
you’ll be able to find updated source listings on the book’s Web site.

Wow, that was a long ride. It’s time for a game of Command and Conquer for
me, and then hopefully some fresh air. The next chapter talks about scripting
systems and what they can do for a game. In it, we’ll put scripting to work by
adding a scripted opponent to Penguin Warrior.

Chapter 6

Game Scripting Under Linux

Games tend to be extremely large these days, and it is usually impractical for
programmers to worry about the details of level design and character behavior.
For example, the game Soldier of Fortune (which has been ported to Linux)
weighs in at over 700 megabytes of disk space, and only a small fraction of this
data contains actual code. The bulk of this space is consumed by 3D world data,
character models, and scripts.

Scripts allow game creators to control the behavior and artificial intelligence of
maps and game characters without actually modifying the game’s compiled code.
Just as high-level languages (such as C and Java) allow programmers to
accomplish tasks that would be practically impossible in pure assembly language
(due to development time and complexity), game-scripting languages allow game
developers to quickly implement features that would not be practical to
implement directly in the game engine. Scripts are simply special-purpose
programs, usually written in customized scripting languages, that tie game
worlds together. Game-scripting languages are often specially designed for a
particular game, but programmers sometimes opt to use off-the-shelf scripting
languages for their games. Scripting also allows nonprogrammers to create game
worlds, and it can add a great deal of realism to games.

In this chapter we’ll use the Tcl scripting language to add a scripted opponent to
Penguin Warrior. Although Tcl is neither the fastest scripting language nor the
most popular, it is extremely simple to embed into a program and extend with

238 CHAPTER 6

custom commands, and the language is trivial to learn. Before we learn how to
weld the Tcl library into our game engine, however, let’s look at the Tcl
language itself. If you’re interested only in learning how to hook up a scripting
engine or you happen to have a distaste for Tcl, you may wish to skim over the
next section.

A Crash Course in Tcl

Tcl is an extremely simple language to learn; in fact, the single biggest problem
with Tcl is that people often try to second-guess its trivial syntax. Once we’ve
gone over the basics of Tcl syntax, we will examine the embeddable Tcl scripting
library and learn how to add its functionality to Penguin Warrior. We’ll keep
this brief; this is not a book on scripting languages, nor is it a treatise on the fine
points of Tcl coding.

Tcl is based almost entirely on substitution. It has no notion of data types;
numbers and strings are the same thing, represented internally as strings and
converted as necessary.1 Tcl programs consist of words. The first word on each
line is a command, and the rest of the words on each line are arguments to that
command. Many commands are provided by Tcl, but you can also easily add
your own, either as scripts or as native C code. Tcl has no keywords; everything
is implemented with commands, even such high-level constructs as codefor and
codewhile.

There are two types of strings in Tcl. The first type is delimited by curly braces
({ }). These strings are not affected by Tcl’s normal substitution rules (which
we discuss shortly). The second type is delimited by double quotes. These are
subject to substitution and backslash escapes. (Backslash escapes work just like
they do in C.) The first type of strings are processed a bit more quickly, so it is a

1 Performance-minded readers need not be concerned about the implications of treating all
variables as strings. Tcl does a bit of voodoo internally to avoid unnecessary conversions; for
instance, if it becomes apparent to Tcl that a certain variable contains a floating-point
number, it will store it in an appropriate binary format, rather than as a string. This
improves memory usage and performance. However, this optimization takes place behind
the scenes, and you can treat everything as a string.

GAME SCRIPTING UNDER LINUX 239

good idea to use them whenever possible. They’re also a bit more convenient for
enclosing entire scripts, since you don’t have to escape quotes.

Let’s take a look at a simple Tcl script.

Code Listing 6–1 (basictcl.tcl)

A very basic Tcl example.

Print "Hello, world!" using the two string types.
puts "Hello, world! (using quotes)"
puts {Hello, world! (using braces)}

Demonstrate simple variable substitution.
set foo {Foo!}
puts "This is the variable foo: $foo"

This won’t be substituted, since the string is in curly braces.
puts {This is not the variable foo: $foo}

Change the value of the variable foo.
set foo {Bar!}
puts "The variable foo is now $foo."

Read a string from the console (stdin).
puts -nonewline {Please enter your name: }
flush stdout
set name [gets stdin]
puts "You entered: $name"

Give this script a try by feeding it to the Tcl shell (tclsh). tclsh is simply a
command-line utility that provides an interface to an embedded Tcl interpreter
(the same interpreter library that we will build into Penguin Warrior). From the
script’s output you can see that strings enclosed in curly braces are not scanned
for substitution, whereas strings enclosed in quotes are processed. Variables are
inserted into strings with the $name notation ($name also works, and this
notation can be useful if the name of a variable contains special characters).
Variable substitution also works outside of strings.

This script also uses command substitution, which is invoked with square
brackets ([]). Any text within a set of square brackets is evaluated as a

240 CHAPTER 6

separate Tcl script, and the brackets are replaced by the result of the script. Our
example uses command substitution to assign a variable to the output of the
gets command. Command substitution is allowed both inside and outside of
quoted strings.

In case you don’t have access to a Tcl interpreter, the output of the script should
look something like this:

$ tclsh basictcl.tcl
Hello, world! (using quotes)
Hello, world! (using braces)
This is the variable foo: Foo!
This is not the variable foo: $foo
The variable foo is now Bar!.
Please enter your name: John
You entered: John

Commercially Maintained Free Software

Tcl is free and open source software with almost no usage restrictions,
but it is commercially supported by Scriptics, Inc. (recenty acquired by
Ajuba and then by Interwoven). Tcl is included with most Linux
distributions, and you can also download it separately from
ftp://ftp.scriptics.com. In addition to the embeddable scripting
library, the Tcl distribution comes with a command-line script loader
and shell called tclsh. This shell is good for learning Tcl and for writing
scripts for quick jobs. Tcl can actually serve as a powerful replacement
for traditional shell scripting languages. Scriptics developed but no
longer maintains a commercial Tcl development system called TclPro.
It’s now open source and available to the public on SourceForge2.
TclPro includes a bytecode compiler, a graphical debugger, a code
checker, and other utilities that might be of interest for large-scale Tcl
development.

2 http://www.sourceforge.net

GAME SCRIPTING UNDER LINUX 241

Built-in Tcl Commands

Let’s look at a few of Tcl’s built-in commands. Some of these commands are
essential and some are just nice to have around. In general, you should use as
many built-in commands as possible, rather than write your own, since C code
executes much more quickly than interpreted Tcl. Performance is very much a
concern when writing scripts for real-time games, especially when working with a
language that isn’t remarkably fast to begin with.

Recursive Evaluation

It’s sometimes nice to be able to evaluate arbitrary pieces of text as separate
scripts. The eval command evaluates its argument (or arguments) as a complete
script, returning the result of the script if there are not showstopping errors. In
addition to providing a clean way to implement control structures, eval is useful
for forcing the interpreter to perform multiple passes of substitution over a
string. Tcl’s power lies in the fact that it treats everything as text, and it
performs substitution before execution. If a variable containing the text “$foo”
is substituted into a string and the string is evaluated again (with eval), Tcl will
try to substitute the value of the variable foo into the final string. Consider the
following:

$ tclsh
% set foo {$bar}
$bar
% set bar {Hello, world!}
Hello, world!
% eval puts $foo
Hello, world!

Tcl automatically performs substitution on each line of code before it actually
evaluates the code, and this immediately transforms the last line of input in the
example into eval puts $bar. The explicit call to eval forces another
substitution pass, which transforms the code into puts Hello, world!. This
trick is quite useful for game scripting; Tcl has very weak array support, and it is
often more practical to create variable names (such as missile3 and ship5) on
the fly. You can abuse eval in any number of ways. You’ll see how to use eval
to create control structures shortly.

242 CHAPTER 6

Evaluating Mathematical Expressions

Tcl itself has no support for mathematical operations; instead, mathematical
expressions are passed as input to the expr command, which returns its result as
a string. expr introduces a mini-language of its own (documented in its
manpage), and it can handle just about any expression you would expect a
command-line calculator to understand. You can use normal Tcl substitution to
introduce variables into mathematical expressions. For example, set bar [expr
$foo + sin($angle)] adds the sine of the angle variable to foo, and saves the
result in the variable bar. You could then use this value by substituting it into a
statement as $bar.

If you just need to increment or decrement a variable, the incr command is
much more efficient than expr. For instance, incr foo -2 is equivalent to set
foo [expr $foo - 2], but a bit faster.

expr is not as slow as you might think, but it’s certainly a good idea to avoid it
when you can. Tcl is designed for flexibility and simplicity, not speed. It is much
better at string processing than number crunching; keep this in mind if you
decide to use Tcl for your own projects.

Lists

Tcl does not have built-in support for lists or arrays. Instead, it provides a set of
functions for treating specially formatted strings as lists. This is clearly not the
most efficient way to manage large sets of data, but it is fairly elegant, and it fits
well with Tcl’s philosophy of simplicity and consistency. Tcl does perform a
certain amount of runtime optimization on its data storage mechanisms, but
don’t count on this optimization to do very much. If you need to store a large
amount of data in your script, consider using associative arrays (which we won’t
cover here) or storing the data in your C program.

A Tcl list is simply a string of space-separated elements. For instance, the string
foo bar baz qux can be considered a four-element list. If an individual element
contains spaces, enclose it in braces to prevent it from being treated as multiple
elements. For instance, foo {Hello, world!} bar is a three-element list. You
can create lists by hand or with Tcl’s list command. For instance, list foo
{Hello, world} bar would return a three-element list. However, since Tcl lists

GAME SCRIPTING UNDER LINUX 243

are just strings, list is really just a command for quickly assembling a bunch of
strings into one. This is handy for strange constructs involving multiple passes of
substitution.

The lindex command retrieves an element of a Tcl list by index, starting with
zero. For instance, lindex {foo bar baz qux} 2 returns baz, the third
element of the list. The lreplace command allows you to edit elements in a list,
and the linsert command allows you to insert elements into a list. See the Tcl
manpages for more information about these commands.

Control Commands

Tcl doesn’t have an if statement (a feature of just about every other language
out there), but it does have an if command. This distinction is really only a
technicality; the command works exactly as you might expect. It takes an
expression (of the same format expected by the expr command) and one or two
pieces of code. If the expression evaluates to a value that is considered “true”
(nonzero), the first piece of code is executed recursively. If the expression
evaluates to “false” (zero) and a second piece of code is provided, preceded by
the token else, it is executed instead. These pieces of code are simply strings
contained in curly braces.

Likewise, Tcl provides a while command that executes a piece of code while an
expression holds true. This is self-explanatory. It would be extremely simple to
implement the while command in Tcl yourself (but rather pointless).

The last Tcl control command we’ll discuss is the switch command, which allows
a program to quickly compare a string against several other strings and execute
a piece of code as soon as one of the strings matches. This matching can be done
with exact comparison (codestrcmp), globbing (the type of matching most UNIX
shells use for comparing filenames, allowing asterisks and question marks for
wildcards), and regular expressions. For example, the following switch command
compares the string in the variable foo against the strings bar, baz, and qux:

switch $foo {
bar { puts "Bar!" }
baz { puts "Baz!" }
qux { puts "Qux!" }
default { puts "Nothing!" }

}

244 CHAPTER 6

The switch command’s other matching modes are even more powerful. To use
globbing or regex matching, add -glob or -regexp as the first argument to
switch. These modes are not likely to be useful in a game script, however, and
they aren’t nearly as fast as normal string matching.

Procedures

Tcl procedures are commands that are implemented in Tcl rather than in C.
They can take any number of arguments, and they can optionally return a single
value. Tcl provides a proc command for creating procedures. Once you have
created a procedure, you can invoke it by name, just as you can any other Tcl
command. For instance, the following script creates an avg command for
averaging two numbers:

proc avg { a b } {
return [expr ($a + $b) / 2]

}

proc takes three arguments: the name of the command to define, a list of the
parameters it takes, and a script to associate with the command (as a string).
Since all Tcl variables (except for associative arrays, which we won’t discuss
here) are strings, there is no need to specify anything about the parameters,
other than the names. When the command is executed, the arguments passed to
the command will be available as variables with these names.

Tcl handles local and global variables a bit differently than most other
languages. All variable names are assumed to be local unless you specify
otherwise; that is, global variables are not normally visible from procedure
bodies. For example, the following code is incorrect:

set status {Ok}

proc printstatus { } {
puts "Status: $status"

}

Here, status is a global variable, and so by default it is not available to
printstatus. To remedy this, use the global command to bring in the global
variables you need to access:

GAME SCRIPTING UNDER LINUX 245

set status {Ok}

proc printstatus { } {
global status
puts "Status: $status"

}

This is annoying, but it does allow Tcl to optimize its variable namespace
searching a bit. It is a good idea to avoid excessive use of global variables, since
they often lead to unwanted side effects and sloppy programming.

Tcl also provides two other commands, upvar and uplevel, which allow you to
link variables between stack frames. This is important for implementing control
structures (for instance, a pure Tcl implementation of the while command
would most likely rely on uplevel to keep variables from disappearing), but
we’ll leave these commands to Tcl’s online documentation.

Error Handling

Tcl commands can fail for a number of reasons, and it’s a good idea to be ready
to handle this when it happens. Error conditions normally stop the interpreter,
but you can use the catch command to trap errors and keep them from bringing
your script down. This command is extremely simple; if you enclose a block of
code in a catch block, it won’t be able to crash the interpreter. The catch
command returns zero if nothing disastrous happens and nonzero if something
failed. You can even nest catch blocks for fine-grained error detection. Keep in
mind that catch is just another Tcl command, rather than special syntax.

Interfacing Tcl with C

Enough about the Tcl language; our main interest is to add a scripting engine to
our game. Penguin Warrior is pretty boring at the moment. There’s really
nothing to do except fly around. It’s now time to add a computer-controlled
opponent, scripted in Tcl, of course, and some heavy weaponry for doing battle.
To do this we’ll need to link the Tcl library into our program and use its C
interface to create a few Penguin Warrior–specific commands.

246 CHAPTER 6

Linking Against Tcl

First things first: we need access to the Tcl library before we can use it as an
extension language. Fortunately, this is pretty easy. Once you’ve installed the
library and C headers on your system, you can include tcl.h and link your
programs against libtcl.so (with the -ltcl flag). You’ll also need to link in the
standard math library (-lm). Beware that some distributions try to be clever by
renaming their Tcl libraries to reflect a particular version number, so you may
have to look around a bit. Try compiling a simple “Hello, world!” program with
the Tcl library. If this works, you’re ready to go. For the purposes of this
chapter, we’ll assume that your system has an appropriate libtcl.so and that
you know where to find it. You may have to modify Penguin Warrior’s makefile
accordingly.

If your Linux distribution didn’t come with a working Tcl library, you can
download one from ftp://ftp.scriptics.com. Follow the installation
instructions included with the package. The current version at the time of this
writing is 8.3, but later versions will probably work just as well.

Executing Scripts

Each Tcl session is represented internally by a Tcl Interp structure. This
structure keeps track of the script’s text, its activation stack, and its variables.
Everything in Tcl is dynamically allocated, so there’s no harm in creating as
many of these structures as you might find useful. (One will usually suffice,
however.) Tcl CreateInterp returns a pointer to a new Tcl Interp structure,
and Tcl DeleteInterp gets rid of an interpreter that’s no longer needed.
Penguin Warrior is a simple game, and it will run all of its scripting out of one
interpreter.

Once you have a Tcl Interp to play with, you can feed it a script. There are
two ways to get Tcl code into an interpreter: you can load the script file ahead
of time and pass it to Tcl (as a string) with the Tcl Eval function, or you can
use the Tcl EvalFile function to run a script directly from a file. The choice is
really just a matter of convenience; Tcl doesn’t care how it gets its input. Once
Tcl has a script to chew on, it will rip through the script as quickly as possible,
adding any newly defined commands or variable assignments to its repertoire
and executing anything else it finds. Tcl Eval saves the result of the last
command it executed for later use (it’s the return value of the script, in a sense).

GAME SCRIPTING UNDER LINUX 247

Let’s see exactly how this is done.

Code Listing 6–2 (tclshell.c)

/* A simple but functional Tcl shell. */

#include <stdio.h>
#include <stdlib.h>
#include <tcl.h>

int main()
{

Tcl_Interp *interp;
char input[16384];

/* Create an interpreter structure. */
interp = Tcl_CreateInterp();
if (interp == NULL) {

printf("Unable to create interpreter.\n");
return 1;

}

/* Add custom commands here. */

/* Loop indefinitely (we’ll break on end-of-file). */
for (;;) {

int result;
char *message;

/* Print a prompt and make it appear immediately. */
printf("> ");
fflush(stdout);

/* Read up to 16k of input. */
if (fgets(input, 16383, stdin) == NULL) {

printf("End of input.\n");
break;

}

/* Evaluate the input as a script. */
result = Tcl_Eval(interp, input);

248 CHAPTER 6

/* Print the return code and the result. */
switch (result) {
case TCL_OK:

message = " OK ";
break;

case TCL_ERROR:
message = "ERR ";
break;

case TCL_CONTINUE:
message = "CONT";
break;

default:
message = " ?? ";
break;

}

printf("[%s] %s\n", message, Tcl_GetStringResult(interp));
}

/* Delete the interpreter. */
Tcl_DeleteInterp(interp);

return 0;
}

This program implements a very simple command-line Tcl shell. It collects input
from standard input (up to 16K of it), evaluates it with Tcl Eval, and prints the
result, along with any errors that occurred.

To compile this Tcl shell, you’ll need the Tcl library and the floating-point math
library:

$ gcc -W -Wall -pedantic tclshell.c -o tclshell -ltcl -lm

Your Tcl library may be named differently; if it refuses to link with -ltcl, try
-ltcl8.2 or -ltcl8.3. Failing these, look for something starting with libtcl in
/usr/lib or /usr/local/lib and use that name. (This is the kind of situation in
which Autoconf would be handy; more on this in Chapter 10.)

GAME SCRIPTING UNDER LINUX 249

Go ahead and give this program a try. Feed it some of the scripts from earlier in
the chapter or anything else you can think of. Remember that this simple shell
can’t handle partial statements; for instance, you can’t enter proc foo { } { on
one line and expect to continue it on the next. You can exit with an end-of-file
character (Ctrl-D) or with the built-in exit command.

Structure Tcl Interp

Synopsis Encapsulates a Tcl interpreter’s stack, variables, and
script. Tcl Interp is a large structure, but most of it
is meant to be internal to Tcl.

Members result—Most recently set result, as a string. (You
may retrieve a Tcl interpreter’s most recent result as a
Tcl object with Tcl GetObjResult.)

freeProc—Function to call if Tcl DeleteInterp is
ever invoked on this interpreter. You only need to use
this if you’ve set the result pointer to memory that
you own and you’d like a chance to free it before the
pointer is lost.

errorLine—If Tcl Eval returns TCL ERROR, this will
contain the line number of the error. Read-only.

Function Tcl CreateInterp()

Synopsis Allocates a new Tcl Interp structure and prepares it
to receive a script.

Returns Pointer to a new Tcl Interp, or NULL on error.

Function Tcl DeleteInterp(interp)

Synopsis Shuts down and deletes a Tcl interpreter.

Parameters interp—Pointer to the Tcl Interp to delete.

250 CHAPTER 6

Function Tcl Eval(interp, script)

Synopsis Evaluates a string in the given interpreter.

Returns One of several codes on success (usually TCL OK), and
TCL ERROR on failure.

Parameters interp—Tcl interpreter to evaluate script in.

script—String containing a complete Tcl script to
evaluate.

Function Tcl EvalFile(interp, filename)

Synopsis Evaluates a script file in the given interpreter.

Returns One of several codes on success (usually TCL OK), and
TCL ERROR on failure.

Parameters interp—Tcl interpreter to evaluate the script file in.

filename—Filename of the script to execute.

Understanding Commands and Objects

Tcl represents data as objects (of type Tcl Obj). This abstract structure allows
Tcl to deal with strings, integers, and floating-point numbers without having to
convert between types more than necessary. Tcl Obj is an abstract datatype,
and you should avoid touching it directly. Tcl supplies functions for creating and
accessing Tcl Obj variables as strings, integers, and doubles. The library can
convert Tcl Obj objects between variable types whenever it needs to; for
instance, if you create a variable as an integer and then try to access it as a
string, Tcl will perform this conversion behind the scenes. There is no real limit
to the number of variables you can create, but you should probably think twice
about creating more than a few hundred (it’s rarely necessary and performance
could suffer).

GAME SCRIPTING UNDER LINUX 251

Tcl CreateObjCommand creates a new command and adds it to a given
interpreter.3 It takes a pointer to a Tcl Interp, a command name, a pointer to
a handler function, an optional piece of “client data” (an integer), and a pointer
to a cleanup function. Whenever the new command is called from within Tcl, the
interpreter will give control to the handler function and await a result. It also
passes the client data for the particular command to the handler; this data serves
no defined purpose, so you can use it for just about anything. For instance, you
could implement several distinct commands in one handler function, and use the
client data to decide which body of code to execute. The cleanup function is
optional. Tcl calls it when it’s time to delete a command from the interpreter,
but it is useful in only a few cases. We’ll generally set this to NULL.

Function Tcl CreateObjCommand(interp, name, proc,
clientdata, deleteproc)

Synopsis Adds a new command to the given Tcl interpreter.
See Listing 6–3 for the exact usage of this function.

Returns Command handle of type Tcl Command.

Parameters interp—Interpreter to receive the new command.

name—Name of the new command, as a string.

proc—Command handler procedure. See Listing 6–3
for an example of a command handler.

clientdata—Data of type ClientData (integer) for
your own usage. Tcl will pass this integer value to
proc each time it is called. You can use this to
“multi-home” commands (serve several commands
with the same handler).

deleteproc—Function to call when this command is
deleted (or the interpreter containing this command is

3 There is also a Tcl CreateCommand function, but this interface is obsolete for performance
reasons. In fact, you’ll notice that a lot of Tcl library functions are obsolete. The entire
library was given a serious overhaul a while back, which improved performance drastically
but left a mound of obsolete interfaces behind. They still work, but it’s better to avoid them.

252 CHAPTER 6

deleted). This function should return void and accept
one argument of type ClientData (the same
clientdata listed above). If this command doesn’t
require any particular cleanup, just pass NULL.

Pretty easy, huh? Don’t worry about the details; they’ll become apparent when
we implement Penguin Warrior’s scripting engine. Let’s do it!

A Simple Scripting Engine

It’s time for some results. We know enough about Tcl and its library to create a
simple but practical scripting interface for our game. We’ll then be able to
implement the computer player’s brain as an easily modifiable script.

Source Files

We will add three files to Penguin Warrior in this chapter: scripting.c,
scripting.h, and pw.tcl. The first is the C source code that embeds
the Tcl library, the second is a header file that declares our scripting
interface, and the third is the Tcl script that our scripting engine will
execute automatically. In addition, we will link Penguin Warrior against
the libtcl.so shared library.

The basic job of the scripting engine is to provide an interface between the game
engine and a script. Ideally, the script will act just like any other player, from
the game engine’s perspective. It will observe its surroundings, formulate a plan,
provide the game engine with input for controlling a ship, and eventually destroy
its target. We’ll talk more about writing the Tcl side of this project in the next
section. For now we’ll concentrate on building the Tcl library interface.

Our script will need several pieces of information, as well as the ability to cause
changes in the game world. First, we’ll need to give it the positions of the two
players in the world, as well as their headings and velocities. This will give the
script enough information to figure out where the opponent ship is relative to
the human player. The script also needs a way to control the opponent ship’s
throttle, heading, and weapons. There are several possible ways to make this
control available to the script.

GAME SCRIPTING UNDER LINUX 253

We could define Tcl commands for getting this information and controlling the
opponent ship. Tcl commands are easy to create, they provide decent
performance, and we can have them return information in any format we desire.
However, handler functions can get a bit messy, especially if we want one handler
function to process more than one Tcl command. Instead, we’ll communicate
using global variables. Our scripting engine will define variables with the
information about each ship, and it will update these each time the script is
called. Our script will be able to make modifications to some of these variables
(its throttle and angle, for instance), and the scripting engine will give these
back to the main game engine at each frame. Tcl makes this simple with the
Tcl LinkVar command.

Function Tcl LinkVar(interp, name, addr, type)

Synopsis Links a Tcl variable to a C variable, so that any
accesses to the Tcl variable will result in accesses to
the C variable. This is a convenient way to share data
between scripts and C programs.

Returns TCL OK on success, TCL ERROR on failure.

Parameters interp—Tcl interpreter to perform the link in.

name—Name of the Tcl variable to create.

addr—Pointer to the C variable that name should
reference.

type—Data type of the C variable. Valid types are
TCL LINK INT, TCL LINK DOUBLE, TCL LINK BOOLEAN
(int), and TCL LINK STRING.

To demonstrate a custom Tcl command, we’ll create a command for controlling
the opponent ship’s weapons. It’ll be called fireComputerWeapons, and it will
have to respect the same firing limitations as the human player. This function
won’t actually do anything until we add weapons (in Chapter 9).

Thanks to the Tcl library, none of this is too hard to implement. Here’s our
scripting system (scripting.c) in its entirety:

254 CHAPTER 6

Code Listing 6–3 (scripting.c)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <tcl.h>
#include "scripting.h"

/* Our interpreter. This will be initialized by InitScripting. */
static Tcl_Interp *interp = NULL;

/* Prototype for the "fireWeapon" command handler. */
static int HandleFireWeaponCmd(ClientData client_data,

Tcl_Interp * interp,
int objc, Tcl_Obj * CONST objv[]);

/* Ship data structures (from main.c). */
extern player_t player, opponent;

/* Sets up a Tcl interpreter for the game. Adds commands
to implement our scripting interface. */

void InitScripting(void)
{

/* First, create an interpreter and make sure it’s valid. */
interp = Tcl_CreateInterp();
if (interp == NULL) {

fprintf(stderr, "Unable to initialize Tcl.\n");
exit(1);

}

/* Add the "fireWeapon" command. */
if (Tcl_CreateObjCommand(interp, "fireWeapon",

HandleFireWeaponCmd, (ClientData) 0,
NULL) == NULL) {

fprintf(stderr, "Error creating Tcl command.\n");
exit(1);

}

/* Link the important parts of our player data structures
to global variables in Tcl. (Ignore the char * typecast;
Tcl will treat the data as the requested type, in this

GAME SCRIPTING UNDER LINUX 255

case double.) */
Tcl_LinkVar(interp, "player_x", (char *) &player.world_x,

TCL_LINK_DOUBLE);
Tcl_LinkVar(interp, "player_y", (char *) &player.world_y,

TCL_LINK_DOUBLE);
Tcl_LinkVar(interp, "player_angle", (char *) &player.angle,

TCL_LINK_DOUBLE);
Tcl_LinkVar(interp, "player_accel", (char *) &player.accel,

TCL_LINK_DOUBLE);
Tcl_LinkVar(interp, "computer_x", (char *) &opponent.world_x,

TCL_LINK_DOUBLE);
Tcl_LinkVar(interp, "computer_y", (char *) &opponent.world_y,

TCL_LINK_DOUBLE);
Tcl_LinkVar(interp, "computer_angle", (char *) &opponent.angle,

TCL_LINK_DOUBLE);
Tcl_LinkVar(interp, "computer_accel", (char *) &opponent.accel,

TCL_LINK_DOUBLE);

/* Make the constants in gamedefs.h available to the script.
The script should play by the game’s rules, just like the
human player.

Tcl_SetVar2Ex is part of the Tcl_SetVar family of functions,
which you can read about in the manpage. It simply sets a
variable to a new value given by a Tcl_Obj structure. */

Tcl_SetVar2Ex(interp, "world_width", NULL,
Tcl_NewIntObj(WORLD_WIDTH), 0);

Tcl_SetVar2Ex(interp, "world_height", NULL,
Tcl_NewIntObj(WORLD_HEIGHT), 0);

Tcl_SetVar2Ex(interp, "player_forward_thrust", NULL,
Tcl_NewIntObj(PLAYER_FORWARD_THRUST), 0);

Tcl_SetVar2Ex(interp, "player_reverse_thrust", NULL,
Tcl_NewIntObj(PLAYER_REVERSE_THRUST), 0);

}

/* Cleans up after our scripting system. */
void CleanupScripting(void)
{

if (interp != NULL) {
Tcl_DeleteInterp(interp);

}
}

256 CHAPTER 6

/* Executes a script in our customized interpreter. Returns 0
on success. Returns -1 and prints a message on standard error
on failure.

We’ll use this to preload the procedures in the script. The
interpreter’s state is maintained after Tcl_EvalFile. We will
NOT call Tcl_EvalFile after each frame - that would be
hideously slow. */

int LoadGameScript(char *filename)
{

int status;

status = Tcl_EvalFile(interp, filename);
if (status != TCL_OK) {

fprintf(stderr, "Error executing %s: %s\n", filename,
Tcl_GetStringResult(interp));

return -1;
}

return 0;
}

/* Handles "fireWeapon" commands from the Tcl script. */
static int HandleFireWeaponCmd(ClientData client_data,

Tcl_Interp * interp,
int objc, Tcl_Obj * CONST objv[])

{
/* Do nothing for now. We’ll add weapons to the game later on. */
fprintf(stderr, "Computer is firing weapon. Not implemented.\n");

/* Return nothing (but make sure it’s a valid nothing). */
Tcl_ResetResult(interp);

/* Succeed. On failure we would set a result with Tcl_SetResult
and return TCL_ERROR. */

return TCL_OK;
}

/* Runs the game script’s update function (named "playComputer").
Returns 0 on success, -1 on failure. */

int RunGameScript()

GAME SCRIPTING UNDER LINUX 257

{
int status;

/* Call the script’s update procedure. */
status = Tcl_Eval(interp, "playComputer");
if (status != TCL_OK) {

fprintf(stderr, "Error in script: %s\n",
Tcl_GetStringResult(interp));

return -1;
}

/* Enforce limits on the script. It can still "cheat" by turning
its ship more quickly than the player or by directly modifying
its position variables, but that’s not too much of a problem.
We can more or less trust the script (it’s part of the game). */

if (opponent.accel > PLAYER_FORWARD_THRUST)
opponent.accel = PLAYER_FORWARD_THRUST;

if (opponent.accel < PLAYER_REVERSE_THRUST)
opponent.accel = PLAYER_REVERSE_THRUST;

while (opponent.angle >= 360)
opponent.angle -= 360;

while (opponent.angle < 0)
opponent.angle += 360;

return 0;
}

In addition to this code, we’ll need to add some fairly obvious hooks into main.c
(to initialize the scripting engine and call RunGameScript at each frame) and
create a pw.tcl script. We’ll talk about the script shortly. Let’s break this code
down.

InitScripting sets up a fresh Tcl interpreter and adds our game’s interface to
the interpreter. At this point our interface consists of only one function (which is
empty for now) and a few variables. We take advantage of Tcl’s variable linking
feature, which causes a Tcl variable to track a C variable. Every access to a
linked variable within a Tcl script translates into an access to the corresponding
C variable.

The next function of interest is LoadGameScript. Our game uses this function to
load the script in pw.tcl at startup. Tcl EvalFile works just like Tcl Eval,

258 CHAPTER 6

except that it reads its input from a file instead of a string. If it returns anything
but TCL OK, LoadGameScript prints an error message and reports failure.

RunGameScript is the heart of our scripting engine. This function is responsible
for giving control to the script once each frame to let the enemy ship steer itself
and fire its weapons. To do this, RunGameScript calls Tcl Eval to invoke the
playComputer script command. If there are no errors, RunGameScript performs
some basic checks on the script’s actions and then returns. Tcl Eval takes care
of the rest.

Finally, the CleanupScripting function frees the Tcl interpreter. No surprises
here.

We now have a working scripting engine. If you want to see it run, you can find
this version of the Penguin Warrior code in the ph-ch6 subdirectory of the
source archive.

Now let’s talk about creating a decent game script. We won’t quite reach a Star
Trek level of artificial intelligence, but hopefully we can make life difficult for the
(human) player.

Designing a Game Script

Our game script is charged with one simple mission: to track down and blow up
the player. It has the ability to steer a ship, control its thrust, and activate its
weapons. It also has access to the player’s current position in the world. At a
glance, our script should look something like this:

1. Figure out where the player is with respect to our script’s ship, and find
the angle that will point us in that direction.

2. Decide whether a clockwise or counterclockwise turn would reach that
angle the fastest.

3. If the player is in front of us, fire our weapons.

4. Lather, rinse, repeat.

These steps shouldn’t be too difficult to implement in Tcl. Let’s give it a try.

GAME SCRIPTING UNDER LINUX 259

Code Listing 6–4 (pwscript-firsttry.tcl)

Penguin Warrior game script (Tcl).
A first attempt.

proc playComputer { } {
global computer_x computer_y computer_angle computer_accel
global player_x player_y player_angle player_accel

Global constants. These are initially set by InitScripting().
global world_width world_height
global player_forward_thrust player_reverse_thrust

Find our distance from the player.
set distance [getDistanceToPlayer]

If we’re close enough to the player, fire away!
if {$distance < 200} {

fireWeapon
}

Figure out the quickest way to aim at the player.
set target_angle [getAngleToPlayer]
set arc [expr {$target_angle - $computer_angle}]
if {$arc < 0} {

set arc [expr {$arc + 360}]
}

Turn 15 degrees at a time, same as the player.
if {$arc < 180} {

set computer_angle [expr {$computer_angle + 15}]
} else {

set computer_angle [expr {$computer_angle - 15}]
}

Apply a reasonable amount of thrust.
set computer_accel 5

That’s it! Exit from Tcl_Eval and go back to the C-based engine.
}

260 CHAPTER 6

Returns the distance (in pixels) between the player and the opponent.
This is just the Pythagorean formula.
proc getDistanceToPlayer { } {

global computer_x computer_y player_x player_y

set xdiff [expr {$computer_x - $player_x}]
set ydiff [expr {$computer_y - $player_y}]

return [expr {sqrt($xdiff * $xdiff + $ydiff * $ydiff)}]
}

Returns the angle (in degrees) to the player from
the opponent. Uses basic trig (arctangent).
proc getAngleToPlayer { } {

global computer_x computer_y player_x player_y

set x [expr {$player_x - $computer_x}]
set y [expr {$player_y - $computer_y}]

set theta [expr {atan2(-$y,$x)}]
if {$theta < 0} {

set theta [expr {2*3.141592654 + $theta}]
}

return [expr {$theta * 180/3.141592654}]
}

Give this script a go. (It’s in the pw-chapter6 directory as
pwscript-firsttry.tcl; you’ll need to symlink or copy it to pw.tcl for the game
to find it.) As you can guess by the name, it’s not quite what we’re looking for.
Yes, the computer’s ship does follow the player around, and with weapons it
would probably win pretty quickly. The problem is that the script is too
good—it doesn’t give the player a fair chance. The computer’s ship is basically
impossible to avoid. Once it manages to get behind the player, it’s very difficult
to get rid of. This would make for a very boring game (aside from the fact that
the weapons don’t work yet).

So we need to make the computer a little bit worse at the game. A few things
come to mind. We could limit its speed or rate of turning, but that would be
cheesy (and probably very easy to notice). It would be better to give the

GAME SCRIPTING UNDER LINUX 261

Seek player, fire if close Seek random target

ATTACK state EVADE state

Reached random target

Too close to player

Figure 6–1: State diagram for Penguin Warrior’s improved script

computer’s AI a bit more depth, so that it would act more like a human and less
like a machine with a one-track mind. A human player makes a conscious effort
to avoid the enemy’s line of fire and periodically seizes an opportunity to attack.
Our script would be more interesting if it were to follow this behavior.

To accomplish this, we’ll use a simple state machine. The computer’s ship will
always be in either attack or evade mode, and it might switch between these two
states at any time based on its position in the world and the position of the
player’s ship. In attack mode it will steer in the direction of the player, firing its
weapons if it gets close enough, and in evade mode it will home in on a random
target (other than the player) somewhere in the game world. It will switch into
evade mode whenever it gets too close to the player, and it will switch back into
attack mode whenever it reaches a randomly chosen point in the world. From
the player’s point of view, the computer-controlled ship will seem to dive in for
an attack and then quickly run off. Properly tuned, this looks surprisingly
similar to what a human player would do.

Here’s the code to make it happen:

Code Listing 6–5 (pwscript-improved.tcl)

Penguin Warrior game script (Tcl).
This version of the script implements two states:
attack and evade. In the attack state, the opponent
homes in on the player and fires its weapons. After it
gets within a certain proximity of the player, it switches

262 CHAPTER 6

to the evade state, in which it aims at a random point in the
world.

The name of our current state, attack or evade.
set state attack

Coordinates to aim towards. In the attack state these will
be set to the player’s position. In the evade state these
will be set to random values.
set target_x 0
set target_y 0

proc playComputer { } {
global computer_x computer_y computer_angle computer_accel
global player_x player_y player_angle player_accel
global target_x target_y state

Global constants. These are initially set by InitScripting().
global world_width world_height
global player_forward_thrust player_reverse_thrust

if {[string equal $state attack]} {
#
Code for the attack state
#

In attack mode, our target is the player.
set target_x $player_x
set target_y $player_y

If we’re too close to the player, switch to evade.
set distance [getDistanceToTarget]
if {$distance < 30} {

set state evade

Set an invalid target so the evade state will
come up with a new one.
set target_x -1

return
}

GAME SCRIPTING UNDER LINUX 263

If we’re far away, speed up. If we’re close, lay off
#the throttle.
if {$distance > 100} {

set computer_accel $player_forward_thrust
} elseif {$distance > 50} {

set computer_accel [expr {$player_forward_thrust/3}]
} else {

set computer_accel 0
}

If we’re close enough to the player, fire away!
if {$distance < 200} {

fireWeapon
}

} else {
#
Code for the evade state
#

Have we hit our target yet?
#(within a reasonable tolerance)
if {abs($target_x - $computer_x) < 10 &&

abs($target_y - $computer_y) < 10} {
puts "Going back into ATTACK mode."
set state attack
return

}

Do we need to find a new target?
if {$target_x < 0} {

Select a random point in the world
#as our target.
set target_x [expr {int(rand()*$world_width)}]
set target_y [expr {int(rand()*$world_height)}]

puts "Selected new EVADE target."
}

set computer_accel $player_forward_thrust
}

264 CHAPTER 6

#
State-independent code
#

Figure out the quickest way to aim at our destination.
set target_angle [getAngleToTarget]
set arc [expr {$target_angle - $computer_angle}]
if {$arc < 0} {

set arc [expr {$arc + 360}]
}

if {$arc < 180} {
set computer_angle [expr {$computer_angle + 3}]

} else {
set computer_angle [expr {$computer_angle - 3}]

}

}

Returns the distance (in pixels) between the target
coordinate and the opponent.
proc getDistanceToTarget { } {

global computer_x computer_y target_x target_y

set xdiff [expr {$computer_x - $target_x}]
set ydiff [expr {$computer_y - $target_y}]

return [expr {sqrt($xdiff * $xdiff + $ydiff * $ydiff)}]
}

Returns the angle (in degrees) to the target coordinate from
the opponent. Uses basic trig (arctangent).
proc getAngleToTarget { } {

global computer_x computer_y target_x target_y

set x [expr {$target_x - $computer_x}]
set y [expr {$target_y - $computer_y}]

set theta [expr {atan2(-$y,$x)}]
if {$theta < 0} {

set theta [expr {2*3.141592654 + $theta}]
}

GAME SCRIPTING UNDER LINUX 265

return [expr {$theta * 180/3.141592654}]
}

We use a global variable to keep track of the state we’re currently in, and we test
the current state with a simple conditional. It would be a simple matter to add
more states to make for a more realistic opponent. (This might make for an
interesting project.) Note that our script no longer causes the opponent to run
after the player, per se, but rather has it move toward a target coordinate. In
attack mode, the target coordinate is changed each time the script is called to
reflect the player’s current position, so it’s all the same.

Most games would employ much more complex state machines (also known as
automatons) to give life to computer-controlled characters; indeed, Penguin
Warrior’s state machine is very simple. It’s also quite effective, however. If you
haven’t done so already, give this new script a try (rename pw-improved.tcl to
pw.tcl), and observe the opponent’s behavior. Much better! Now if there were
some weapons, it would be a worthy fight. Don’t worry; we’ll add this when we
finish off Penguin Warrior in Chapter 9.

Applying Scripting to the Real World

Penguin Warrior is a bit of a pedagogical example. Sure, it’s a playable game (or
will be soon enough), but it’s not something you’d expect to find on the shelf at
a computer store or given a good review on a gaming site. But the ingredients
we’ve used to create Penguin Warrior are industrial grade, and this book would
be pointless if we couldn’t apply them in the “real world.” To that end, let’s look
at some of the problems involved in implementing a scripting system in larger
projects. Bear in mind that this discussion applies to any scripting language:
Tcl, Scheme, Perl, Python, librep, or anything else you can grab Freshmeat4.

4 http://www.freshmeat.net

266 CHAPTER 6

calls to multiple interpreters
to handle characters.

Game engine makes multiple
Tcl interpreter

Tcl interpreter

Tcl interpreter

calls to one interpreter to
to handle characters

Game engine makes multiple Script is passed some sort
of identifier to select which

character to update.

Game engine makes
one call to the scripting
engine in each frame.

Script iterates through
each character and

performs update.

Game engine (C) Tcl interpreter

Game engine (C) Tcl interpreter

Game engine (C)

Multiple calls to a single context

Multiple scripting contexts

One call to a single context

Figure 6–2: Several possible scripting models

Single Versus Multiple Contexts

Suppose that you are making a game similar to StarCraft (a real-time strategy
game with hundreds of computer-controlled opponents in the world
simultaneously), and that you want to implement the scripting with Tcl. You’ll
obviously want to call Tcl Eval on part of the script at least once each frame.
The question is, do you create a separate Tcl Interp for each character in the
game, or do you run all of them through the same interpreter? In the latter case,
do you invoke the interpreter once for each character or once for the entire
group? (For lack of a better term, we’ll call an interpreter with a loaded script a
context.)

In the case of something like StarCraft, it would probably be a bad idea to use a
separate interpreter for each character in the game; that would be a horrendous
waste of memory and script loading time, even though it might make the
scripting system a bit easier to organize. In cases with only a few characters,
though, it might be desirable to use multiple scripting contexts.

If you decide to use a single interpreter for the whole thing, you still need to
decide whether you’ll make a single call to it at each frame and let it sort out all
of the different characters (through a loop of some sort, probably) or call the

GAME SCRIPTING UNDER LINUX 267

script once for each game character. The former has the advantage of fewer calls
to the scripting library (which can be expensive, depending on the language),
and the latter has the advantage of potentially simpler scripting. It’s hard to
predict how well either scenario will perform; if you’re faced with this question,
you might want to write some timing code to measure the total amount of time
spent in the scripting engine per frame.

Can We Trust the Script?

Security really doesn’t matter for a single-player game; if a player wants to
cheat, so what? For that matter, you might as well publish a list of cheat codes.
But it is a huge problem in multiplayer games. You can pretty much count on a
few lamers trying to mess up the game for everyone else. If the game depends on
an interpreted (rather than compiled) script for its rules, there’s a problem.
Someone will figure out how to change the code, and without proper safeguards,
this can make the game unfair for the rest of the players.

This problem becomes even worse in open source software. Everyone has access
to all of the code, and anyone can change it to their liking. Unless the other
players have some way of telling when someone’s copy of the game has been
modified, there’s no hope of preventing cheaters from spoiling the fun, unless the
players trust one other from the start.

Penguin Warrior is wide open to script abuse. The script can essentially take
direct control of either ship, and no limits are imposed. If security were an issue,
we would have to add a limit-checking system to prevent the script from making
illegal moves. Even then, the source code to the game would be available for all
to see and modify. Multiplayer games can avoid this problem by having all
players connect to a trusted central server. We’ll touch on multiplayer security in
the next chapter.

Script Performance

Script interpreters are usually pretty well optimized, but unless scripts are
compiled, they are always separated from the processor by at least one layer of
code. The exact speed ratio of interpreted code to native code varies among
languages, but don’t be surprised if a script runs at about a tenth the speed of

268 CHAPTER 6

equivalent C code. (Again, it could be better or worse, depending on a lot of
factors; if you’re concerned, benchmark it.) To achieve decent performance,
you’ll need to take the properties of your chosen language into account. Tcl, for
instance, isn’t very fast at list processing (though this has gotten much better of
late), while Scheme excels at lists. It probably wouldn’t be a good idea to use
the “one interpreter, one call” model mentioned previously with Tcl, but this
model would be quite natural in Scheme. Also, don’t be fooled by the
“compilation” modes of most scripting systems; TclPro and MzScheme can both
“compile” programs, but this does little more than hide the source. The code is
still interpreted in the same way it normally would be, except for the initial
parsing stage. (However, TclPro’s .tbc or MzScheme’s .zo bytecode formats
might be useful if you want to hide the source to your scripts.)

Another performance issue has to do with memory management. Tcl uses
reference counting to know when it can safely reclaim unused variable memory,
while Scheme and most other Lisp-like languages use much more complicated
“garbage collection” techniques. Scheme has plenty of reasons to use garbage
collection, but it means that a Scheme program will typically use more memory
than it really needs at any given time. Garbage collection often takes place very
suddenly, and it can cause noticeable delays in your program. There are ways to
avoid this problem (such as running the scripting system in a separate thread or
scheduling garbage collection yourself at safe times), but you would do well to
become informed about these quirks before you try to use one of these libraries.

Who’s Writing the Script?

As a final thought, it’s important to note that the people who write game scripts
often aren’t programmers. Scripting is part of creating maps and characters, and
this task often falls to artists and game designers. These are smart people, no
doubt, but they might not be up to speed on programming. This is actually one
of the main reasons for using scripting languages in games: they allow
nonprogrammers to make minor changes to the way a game behaves without
actually messing with the main source code. Scripting languages are usually
much simpler than C and C++. But even with a well-designed scripting system,
some people might have trouble grokking the language or the interface. The only
real solution is to document your scripting interface well, pick an intuitive
language, and be prepared to teach it to your scripters. Almost anyone can pick
up something like Tcl without too much effort, so be patient.

GAME SCRIPTING UNDER LINUX 269

We’ve covered a lot in this chapter, but there’s a lot more to game scripting than
we’ve mentioned here. If game scripting systems interest you, point your browser
to Gamasutra5 and search for articles on scripting. Gamasutra frequently
publishes retrospective accounts from game teams after the release of major
products, and one can glean a lot of insight from the experiences of these
professionals.

5 http://www.gamasutra.com

Chapter 7

Networked Gaming with Linux

It all started with id Software’s Doom. Once the number of computers with
modems (mainly for surfing the bulletin board (BBS) systems of the time) had
reached critical mass, it became feasible to build multiplayer games in which the
players weren’t sitting at the same monitor or even in the same room. There
were others, but Doom was the one that really got people thinking about
networked gaming.

Quite frankly, modem-to-modem Doom was a huge hassle. The two players had
to have exactly the same version of the game, the same map (.wad) files, and
compatible modems with correct parameters. It was difficult or impossible to
change game settings after the connection was established, so the players
generally had to agree on these over the phone ahead of time. If the connection
failed, as would frequently happen, it was hard to know whether the next phone
ring would be your friend calling to explain the problem or his computer trying
to redial. Nonetheless, the allure of playing against a real human halfway across
town was enough to make deathmatch Doom one of the most popular games of
the time and to usher in a new era of online gaming.

You’re in luck! Today you don’t have to mess with modem init strings or design
your own transport protocol to add multiplayer support to your games. Instead,
you can rely on the operating system’s support for TCP/IP (the Internet’s
workhorse protocol) and the user’s existing Internet connection. It’s no longer
necessary to play with interrupts, serial ports, or flaky lines (though admittedly

272 CHAPTER 7

it was fun while it lasted—there’s nothing quite like programming a buggy
UART chip in assembly). Thanks to the Internet, it’s easy to write code that
communicates reliably with the other side of the world. And, of course, we all
know that the primary purpose of computers and the Internet is gaming, right?

This chapter looks at the protocols and techniques that make it possible to write
multiplayer games for Linux. We’ll start with a quick tour of TCP/IP and the
basic layout of the Internet; then we’ll discuss the Linux networking interface.
Finally, we’ll add two-player network support to Penguin Warrior.

’Tis a Big Net, Quoth the Raven

If you’re reading this book (which you presumably are, or else I’m talking to
myself again), there’s a good chance you’re an experienced netizen and are more
or less familiar with the Internet’s architecture. Or perhaps you’re just getting
into the whole mess and aren’t familiar with protocols, packets, and routing. In
any case, a quick refresher won’t hurt.

Internet Protocols

The Internet is just a bunch of computers that are set up to talk to one another.
The language of the Internet is TCP/IP, a set of protocols (communications
standards) that provides reliable data exchange over a wide area. Internet
Protocol (IP) is a simple addressing and routing system that lets computers send
short messages to one another, without any guarantee that the messages will
arrive intact or even show up at all. Transmission Control Protocol (TCP) is a
higher-level system that sits on top of IP and manages reliable point-to-point
data transmission. You can use IP without TCP, but TCP depends on IP. Other
protocols, such as Internet Control Message Protocol (ICMP) provide error
reporting and other useful services. Together, the protocols that make up
TCP/IP provide everything you need to send data anywhere in the world and to
make sure it got there.

From an application (game) programming perspective, we have two main
protocols to work with. TCP, as we just mentioned, is good for establishing
reliable data transfer connections between two computers. At the cost of a bit of
overhead, it ensures that each byte sent from one end will arrive undamaged and

NETWORKED GAMING WITH LINUX 273

in order at the other end. TCP is called a stream protocol because it implements
a protected stream of data between two points. This is the flagship protocol of
the Internet. Almost everything uses TCP, including the Web (HTTP) and file
transfers (FTP). We’ll use TCP to link our multiplayer version of Penguin
Warrior together.

User Datagram Protocol (UDP), on the other hand, is not reliable and not
connection based. It is a datagram protocol—that is, it allows applications to
send brief messages known as datagrams over the Internet, with no guarantee as
to when the data will arrive at the other end (the assumption being that it will
probably get there, if network resources can accomodate it). Packets may arrive
out of order, much later, or not at all. If they do arrive, however, UDP
guarantees that they will be correct and uncorrupted. UDP provides no flow
control. It’s easy to send UDP packets faster than the network can handle them,
in which case some will probably disappear. Furthermore, there is a maximum
(system-dependent) size for datagrams. This is never too low (or UDP would be
useless), but you can’t count on UDP to send more than a few hundred bytes per
packet. Even though UDP is unreliable, it’s useful in many cases. We won’t use
UDP in Penguin Warrior, as it would greatly increase the code’s complexity for
only marginal performance gains.

Addresses and Ports

Every computer on the Internet, whether connected through a high-speed line or
with a lowly dialup modem, has a unique IP address. This four-byte number
identifies the computer’s exact network location and provides the underlying IP
protocol with enough information to route pieces of data to that computer from
anywhere in the world. Some computers (mainly dedicated servers) keep the
same (static) IP address indefinitely, but in most cases computers are assigned
new (dynamic) addresses each time they log on to the network. Before you can
exchange data with a remote host over the Internet, you need to know its IP
address. IP addresses are usually written as four one-byte parts, separated by
periods (for instance, my building’s router has the address 128.61.59.1). This is
known as the dotted representation of an IP address. We’ll leave a more complete
discussion of IP addresses and the mechanics of routing to other sources, since
it’s mostly irrelevant to our game programming needs (and quite dry).

274 CHAPTER 7

What happens if more than one program on a single computer needs to send and
receive packets at the same time? It seems as though the networking software
might have trouble deciding which packets should go to which program. This
would be quite a mess, especially on servers that need to handle hundreds of
clients at a time. TCP/IP fixes this with the notion of ports. A port is just a
number that identifies a particular receiving program. Certain port numbers are
reserved for basic networking services like FTP and HTTP, but most of them are
available for programs to request and use. You can think of ports as loading
dock numbers in a large shipping center. Packets are always marked with both a
destination IP address and a receiving port number. When packets come in, the
networking software sorts them out by port number and sends them to the
corresponding programs. We’ll see how this works when we dig into some socket
code later on.

Name Resolution

Humans are better at remembering names than numbers. As a result, IP
addresses can be hard to keep track of. Domain Name System (DNS) makes the
Internet easier for humans to grok by associating a short name with an IP
address. DNS is a distributed database—it’s spread out all over the Internet.
The DNS name for an IP address is called a hostname, and hostnames usually
belong to a top-level domain name (TLD). For instance, my system’s hostname is
neutron, and it belongs to the patentburner.com domain (for a complete name
of neutron.patentburner.com). If you type this name into a Web browser or
any other network client,1 the program realizes that you did not type an IP
address and calls DNS into play. DNS first searches the enormous com database,
finds contact information for the patentburner DNS server, and queries this
server for a machine by the name of neutron. The patentburner DNS server
(which resides on a friend’s Linux box) locates neutron in a table, finds its IP
address, and returns this information via the UDP protocol. All of this happens
behind the scenes – the network client has to make only a single system call to
initiate the lookup. We’ll demonstrate this process later in the chapter.

1 Please, not nmap!

NETWORKED GAMING WITH LINUX 275

Keep in mind that DNS is not part of the TCP/IP protocol stack, and the
Internet would work just fine without it (but humans would have a lot more
trouble finding the sites they’re interested in).

Simple enough? Good, let’s give it a spin.

Socket Programming 101

The BSD sockets API is one of the most popular TCP/IP networking interfaces
today.2 There are others, but BSD sockets has become the de facto standard for
Linux and UNIX systems. The BSD sockets API isn’t pretty, but it works well
enough to have caught on. (You could also say this about UNIX as a whole.)

The following is a rather condensed tour. Network programming is a big subject,
and it’s not really the focus of this book.

Sockets

A socket is just a file descriptor (similar to one returned by the ordinary open
function) that represents a networking context. Usually a socket acts as an
endpoint for a TCP connection, but they’re also useful for UDP transactions.
Once a socket is ready to go, you can use the familiar read and write functions
to transfer data over the network, just as you’d access a normal file. To use an
analogy that’s been beaten to death over the years, a socket is like a handset
connected to a telephone network. Once it’s connected to another endpoint (by
initiating or receiving a call), you can use the handset to talk or listen to
whoever or whatever is at the other end.

You can create a new, unconnected socket with the socket function. This
function takes three parameters that control the socket’s properties. The first
specifies the socket’s communication domain; there are several possibilities, but
PF INET is probably what we want. This asks for a socket configured for IP
version 4, suitable for the Internet. The next parameter can be either

2 The socket interface isn’t limited to any particular protocol, but it’s most often used with
TCP/IP.

276 CHAPTER 7

SOCK STREAM or SOCK DGRAM, to request a stream or datagram socket,
respectively. The final parameter specifies the socket’s communication protocol.
IPPROTO TCP is an appropriate choice (for both TCP and UDP).

Function socket(domain, type, protocol)

Synopsis Creates a new socket, a communication endpoint that
acts like a file descriptor.

Returns A new socket file descriptor (a small integer of type
short), or −1 on error.

Parameters domain—Communication domain. See the socket
manpage or system header files for a list of
possibilities. The most likely choice is PF INET, for an
Internet socket.
type—Socket type. For PF INET, valid choices are
SOCK DGRAM (for a UDP socket) or SOCK STREAM (for a
TCP socket).
protocol—Protocol that this socket will speak. For
TCP and UDP, this should be IPPROTO IP.

Continuing the analogy, a telephone is of no use unless it’s connected to
something. Likewise, a socket is dead in the water until you set up a connection,
either by requesting a new connection to a remote host or by accepting an
incoming connection. Neither is hard, but the sockets API makes it a bit ugly.

Connecting TCP Sockets

To originate an Internet connection, you first need to fill in a sockaddr in
structure with information about the remote host—most importantly its IP
address and the desired remote port number. With this information ready, you
can call connect to initiate a connection attempt. This is likely to fail, so be
prepared – the Internet isn’t exactly an archetype of reliability. connect takes
three parameters. The first is the socket to connect, the second is a pointer to a
valid sockaddr in structure, and the third is the length of the address structure
(this is necessary since connect isn’t specific to any particular protocol, and
different protocols use different address lengths). connect returns 0 on success
and −1 on failure.

NETWORKED GAMING WITH LINUX 277

Function connect(sock, addr, addr len)

Synopsis Attempts to establish a network connection with the
server at the given address.

Returns 0 on success, −1 on failure. As with most old UNIX
functions, connect sets the global errno variable to
the relevant error code on failure.

Parameters sock—Socket to connect.

addr—Address structure. Different protocols use
different versions of the address structure.
sockaddr in is the correct version for Internet sockets.

addr len—Size of the address structure, in bytes.
sizeof(addr) should do the trick.

sockaddr in specifies the intended destination of a connection attempt. This is
an Internet-specific version of the more general sockaddr address structure. To
use it, set its sin family field to AF INET (Internet address family), set
sin addr to the desired IP address, and set sin port to the port number you
wish to connect to. There’s a catch, though. We’ve already touched on
endianness—byte ordering on different CPU architectures—and it becomes a real
problem in networking. Should the four-byte IP address 128.61.41.1 go across
the network as the bytes 128, 61, 41, 1, or as 1, 41, 61, 128? It sounds like a silly
problem, but the “obvious” way for a human to store information is irrelevant to
a CPU, and it’s not safe to make assumptions about how any given processor
architecture will do it. The same problem affects port numbers, since they are
two-byte integers.

TCP/IP has a well-defined network byte order that specifies the proper
orientation of multibyte values. It doesn’t really matter what this order is.3

Every system that supports BSD sockets has a set of macros for converting
values to and from this byte order. On systems that use a compatible byte
ordering natively, these macros do nothing, but they still exist for portability.

3 Big endian. For comparison, Intel x86 processors use little endian ordering, meaning that
this will bite you if you develop on x86 and you aren’t careful.

278 CHAPTER 7

Macro Purpose
htons(value) Converts value (a 16-bit integer) to network

byte order. Use this macro to convert port
numbers for the sockaddr in structure.

htonl(value) Converts value (a 32-bit integer) to network
byte order. Use this macro to convert IP ad-
dresses for the sockaddr in structure.

ntohs(value) Converts value (a 16-bit integer in network
byte order) back to the system’s native byte
order.

ntohl(value) Converts value (a 32-bit integer in network
byte order) back to the system’s native byte
order.

Table 7–1: Macros for converting to and from network byte order

See Table 7–1 for a list of these macros. We’ll use them in examples throughout
this chapter. You should always use these macros where appropriate, even if
your machine already uses network byte ordering.

There are several functions associated with the sockets API that help you
convert strings to IP addresses, perform DNS lookups, and so forth. Take a look
at Listing 7–1. It is a simple TCP/IP client that establishes a TCP connection
to a given hostname or IP address and reads data until it’s stopped. You can
test this program with any simple TCP server. It will not work with Telnet
servers, since Telnet uses a simple but unreadable handshaking protocol. We’ll
develop a server program in the next section.

Structure sockaddr in

Synopsis Specifies the destination of a connection attempt.

Members sin port—Port on the remote system to connect to.
A 16-bit integer in network byte order.
sin addr—IP address of the remote system. This is a
structure of type in addr, containing a single s addr
member. s addr is the desired 32-bit IP address in
network byte order.

NETWORKED GAMING WITH LINUX 279

Code Listing 7–1 (tcpclient.c)

/* A simple TCP/IP client program that uses sockets. */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include <unistd.h> /* Tasty UNIX mojo. */
#include <netinet/in.h> /* IPv4 socket address structres. */
#include <netdb.h> /* Access to DNS lookups. */
#include <arpa/inet.h> /* inet_ntop function. */
#include <sys/socket.h> /* Socket functions. */

struct hostent *hostlist; /* List of hosts returned
by gethostbyname. */

char dotted_ip[15]; /* Buffer for converting
the resolved address to
a readable format. */

int port; /* Port number. */
int sock; /* Our connection socket. */
struct sockaddr_in sa; /* Connection address. */

/* This function gets called whenever the user presses
Ctrl-C. See the signal(2) manpage for more information. */

void signal_handler(int signum)
{

switch (signum) {
case SIGINT:

printf("\nReceived interrupt signal. Exiting.\n");
close(sock);
exit(0);

default:
printf("\nUnknown signal received. Ignoring.\n");

}
}

280 CHAPTER 7

int main(int argc, char *argv[])
{

/* Make sure we received two arguments,
a hostname and a port number. */

if (argc < 3) {
printf("Simple TCP/IP client.\n");
printf("Usage: %s <hostname or IP> <port>\n", argv[0]);
return 1;

}

/* Look up the hostname with DNS. gethostbyname
(at least most UNIX versions of it) properly
handles dotted IP addresses as well as hostnames. */

printf("Looking up %s...\n", argv[1]);
hostlist = gethostbyname(argv[1]);
if (hostlist == NULL) {

printf("Unable to resolve %s.\n", argv[1]);
return 1;

}

/* Good, we have an address. However, some sites
are moving over to IPv6 (the newer version of
IP), and we’re not ready for it (since it uses
a new address format). It’s a good idea to check
for this. */

if (hostlist->h_addrtype != AF_INET) {
printf("%s doesn’t seem to be an IPv4 address.\n",

argv[1]);
return 1;

}

/* inet_ntop converts a 32-bit IP address to
the dotted string notation (suitable for printing).
hostlist->h_addr_list is an array of possible addresses
(in case a name resolves to more than on IP). In most
cases we just want the first. */

inet_ntop(AF_INET, hostlist->h_addr_list[0], dotted_ip, 15);
printf("Resolved %s to %s.\n", argv[1], dotted_ip);

/* Create a socket for the connection. */
sock = socket(PF_INET, SOCK_STREAM, IPPROTO_IP);

NETWORKED GAMING WITH LINUX 281

if (sock < 0) {
printf("Unable to create a socket: %s\n",

strerror(errno));
return 1;

}

/* Fill in the sockaddr_in structure. The address is
already in network byte order (from the gethostbyname
call). We need to convert the port number with the htons
macro. Before we do anything else, we’ll zero out the
entire structure. */

memset(&sa, 0, sizeof(struct sockaddr_in));

port = atoi(argv[2]);
sa.sin_port = htons(port);

/* The IP address was returned as a char * for
various reasons.
Just memcpy it into the sockaddr_in structure. */

memcpy(&sa.sin_addr, hostlist->h_addr_list[0],
hostlist->h_length);

/* This is an Internet socket. */
sa.sin_family = AF_INET;

/* Connect! */
printf("Trying %s on port %i...\n", dotted_ip, port);
if (connect(sock, (struct sockaddr *)&sa, sizeof(sa)) < 0) {

printf("Unable to connect: %s\n",
strerror(errno));

return 1;
}

printf("Connected! Reading data. Press Ctrl-C to quit.\n");

/* Install a signal handler for Ctrl-C (SIGINT).
See the signal(2) manpage for more information. */

signal(SIGINT, signal_handler);

/* Read data until we encounter an error. */
for (;;) {

char ch;

282 CHAPTER 7

int amt;

/* Read one byte at a time.
This is quite inefficient. */

amt = read(sock, &ch, 1);

/* ALWAYS check for errors on network reads.
They are MUCH less reliable than local
file accesses. */

if (amt < 0) {
printf("\nRead error: %s\n",

strerror(errno));
break;

} else if (amt == 0) {
/* A zero-byte read means the connection

has been closed. read waits until it
can return at least one byte. */

printf("\nConnection closed by remote system.\n");
break;

}

/* Write the character to stdout. */
putchar(ch);
fflush(stdout);

}

/* Close the connection. */
printf("Closing socket.\n");
close(sock);

return 0;
}

Let’s start from the top. Networking programs generally include a lot of extra
headers. In addition to the usual stdio.h and stdlib.h, we need (in no
particular order) unistd.h (useful UNIXish functions), netinet/in.h (for the
in addr and sockaddr in types), netdb.h (for DNS), arpa/inet.h (for
inet ntop and other conversion functions), and sys/socket.h (for socket and
related functions). To make our lives even more complicated, these headers may
vary between sockets implementations (between UNIX flavors). This is one case
in which the “shotgun include” strategy might not be a bad idea—when in
doubt, include them all. (A better idea is to use Autoconf.)

NETWORKED GAMING WITH LINUX 283

We begin main by looking up the IP address of the remote system. The user can
pass either an IP address or a hostname on the command line, and we use
gethostbyname to convert this to a 32-bit IP address. gethostbyname takes a
string, which can be either an IP address in dotted notation or a hostname, and
returns a pointer to a structure that contains a list of possible addresses.

Function gethostbyname(hostname)

Synopsis Performs a DNS or /etc/hosts lookup on the given
hostname. UNIX implementations properly handle
dotted IP addresses as well. (A recent version of
Windows did not; this may have changed by now,
though.)

Returns Pointer to a hostent structure that contains a list of
possible IP addresses. It’s possible for a single
hostname to correspond to multiple IP addresses. In
most cases you should just take the first address in the
list. If the lookup fails, gethostbyname returns NULL.

Parameters hostname—Hostname to look up (such as
neutron.patentburner.com), or an IP address in
dotted notation (such as 128.61.59.45).

Once we have a valid IP address for the remote system, we prepare a
sockaddr in structure. sockaddr in requires values in network byte order. The
IP address returned by gethostbyname is ready to go, but we need to convert
the port number manually (with htons). We’re working with the Internet (IPv4)
as opposed to an IPv6 or IPX network, so we set the address family of the
sockaddr in structure to AF INET.

Now it’s time to actually make the connection. We call connect with the socket
and the address structure. If the connection succeeds, the socket is ready to go,
and we can read and write data with it.

A more interesting TCP client might actually do something with the socket at
this point, but our client just reads data until it loses the connection. With
normal files, you can be fairly certain that read will return the full amount of
data you requested, unless it hits the end of the file. Sockets are considerably
more volatile. The Internet is not a reliable medium, and it takes time to

284 CHAPTER 7

transfer data. It is very likely that read won’t return as many bytes of data as
you requested (though it’ll always return at least one byte as long as the
connection is still alive).

Finally, we close the socket and exit. close attempts to cleanly shut down the
given socket, sending any remaining data before it does so. By default, close
returns immediately and lets the networking system perform the shutdown in the
background.

Signal Handlers

Listing 7–1 catches interrupts (Ctrl-C keypresses) with a signal
handler. If you’re new to UNIX programming, this is probably new to
you; signals don’t show up much in other operating systems. A signal is
just a way for the operating system to notify a running program about
an important event, such as an interrupt (SIGINT), a program-requested
timed alarm (SIGALRM), or even a memory access violation (SIGSEGV).
By default most signals are ignored or handled without your program’s
involvement, but you can use the signal function to associate a handler
function with a particular signal.

Function read(sock, ptr, len)

Synopsis Attempts to read len bytes of data from the given
socket into buf.

Returns Number of bytes read, or −1 on error. If the socket is
closed (usually because the other end disconnected),
read returns zero. read also returns zero if it is
interrupted by a signal (which is not necessarily an
error). If this happens, the global errno variable (in
errno.h) will be set to EINTR.

Parameters sock—Socket to read from.

ptr—Buffer to fill with data.

len—Maximum number of bytes to read. read may or
may not actually return this much data.

NETWORKED GAMING WITH LINUX 285

Function write(sock, buf, len)

Synopsis Attempts to write len bytes of data from buf to the
given socket.

Returns Same as read. Small writes will usually process the
full amount of data, but it’s possible to exceed the
networking system’s buffer space with larger write
calls.

Parameters sock—Socket to write to.

buf—Buffer containing the data to send.

len—Amount of data in the buffer. Be ready for
write to not handle all of this data at once.

Receiving TCP Connections

Receiving network connections is just a little trickier than initiating them. First
you have to create a socket and bind it to an address. Binding simply tells the
networking software that a socket should be associated with a certain port on
the local system. (Otherwise, the kernel will chose a random one, which is no
good for most types of servers.) You can bind a socket to a local port with the
bind function. After binding the socket, you should inform the networking
system that this is a listening socket (not one that will be used for initiating
connections) and that the networking system should pay attention to connection
requests on its port number. You can do this with the listen function.

Once the socket is ready, you can enter an accept loop, in which you call accept
repeatedly to handle incoming connections. Each accept call returns a new
socket (separate from the one you bound to the port) that’s connected with a
client. You use close to close each of these client sockets when you’re finished
with them. When you’re ready to stop accepting new connections, close the
listening socket.

It’s worth noting that more than one client can connect to any given port number
at a time. The networking software makes sure that data gets routed to the
correct sockets. The exact mechanics of this are beyond our present discussion.

286 CHAPTER 7

Function bind(sock, addr, addr len)

Synopsis Associates (binds) a socket with a port on a local
interface.

Returns 0 on success, −1 on failure.

Parameters sock—Socket (file descriptor) to bind.

addr—Local address to bind the socket to. This is a
pointer to a sockaddr structure. For Internet sockets,
this should be a sockaddr in structure. sin addr
should be set to the desired local IP address (or to
INADDR ANY for all local IP addresses), and sin port
should be set to the desired port number. Most
systems have only one IP address, but this call also
supports systems with multiple network devices. Use
INADDR ANY unless you have a reason to do otherwise.

addr len—Size of the address structure, in bytes. For
Internet sockets, this should just be sizeof(struct
sockaddr in).

Function listen(sock, queue)

Synopsis Informs the networking system (the kernel, in the case
of Linux) that sock is a listening (server) socket and
not a normal client socket. This allows the socket to
accept incoming connections. listen also sets the
number of incoming connections that the networking
system should allow to stack up in the connection
queue.

Parameters sock—Socket to make into a listener.

queue—Desired size of the connection queue. This is
the number of clients that can try to connect to this
server without being accepted. If you’re using threads
to handle clients in the background, a reasonable
number might be 5 or 10. Otherwise, you’ll have to
base this value on your expected client load.

NETWORKED GAMING WITH LINUX 287

Function accept(sock, addr, addr len)

Synopsis Receives an incoming connection from the given
socket. Stores information about the client (its IP
address and port number) in addr. If there are no
pending connections (nobody has tried to connect),
accept waits (unless it’s in nonblocking mode, which
is beyond our present scope).

Returns 0 on success, −1 on failure.

Parameters sock—Listening socket to check for incoming
connections.

addr—Pointer to a sockaddr structure (sockaddr in
for Internet sockets) that will receive information
about the connecting client.

addr len—Pointer to an integer to receive the size of
the address structure. For Internet sockets, this will
be sizeof(struct sockaddr in).

Now let’s make a server that can talk to the client we wrote in the previous
section.

Code Listing 7–2 (tcpserver.c)

/* Simple TCP/IP server program. */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <sys/socket.h>

char dotted_ip[15]; /* Buffer for converting the resolved
address to a readable format. */

288 CHAPTER 7

int listener; /* Our listening socket. */
int client; /* The current client’s socket. */
int port; /* Port we’re accepting connections on. */
struct sockaddr_in sa; /* Connection address. */
socklen_t sa_len; /* Length of sa. This is a bit redundant

in simple cases, but sockets aren’t just
for TCP/IP. */

/* This function gets called whenever the user presses Ctrl-C.
See the signal(2) manpage for more information. */

void signal_handler(int signum)
{

switch (signum) {
case SIGINT:

printf("\nReceived interrupt signal. Exiting.\n");
close(client);
close(listener);
exit(0);

default:
printf("\nUnknown signal received. Ignoring.\n");

}
}

int main(int argc, char *argv[])
{

/* Make sure we received two arguments,
a hostname and a port number. */

if (argc < 2) {
printf("Simple TCP/IP uptime server.\n");
printf("Usage: %s <port>\n", argv[0]);
return 1;

}

port = atoi(argv[1]);

/* Create the listener socket. This socket will queue
incoming connections. */

listener = socket(PF_INET, SOCK_STREAM, IPPROTO_IP);
if (listener < 0) {

printf("Unable to create a listener socket: %s\n",

NETWORKED GAMING WITH LINUX 289

strerror(errno));
return 1;

}

/* Now bind the listener to a local address. This uses
the same sockaddr_in structure as connect. */

sa_len = sizeof(sa);
memset(&sa, 0, sa_len);
sa.sin_family = AF_INET;
sa.sin_port = htons(port);
sa.sin_addr.s_addr = htonl(INADDR_ANY); /* Listen on

all interfaces. */

if (bind(listener, &sa, sa_len) < 0) {
printf("Unable to bind to port %i: %s\n",

port,
strerror(errno));

return 1;
}

/* Let the networking system know we’re accepting
connections on this socket. Ask for a connection
queue of five clients. (If more than five clients
try to connect before we call accept, some will
be denied.) */

if (listen(listener, 5) < 0) {
printf("Unable to listen: %s\n",

strerror(errno));
return 1;

}

/* Ready! Now accept connections until the user presses
Ctrl-C. */

signal(SIGINT, signal_handler);

for (;;) {
char sendbuf[1024];
int sent, length;
FILE *uptime;

client = accept(listener, &sa, &sa_len);
if (client < 0) {

290 CHAPTER 7

printf("Unable to accept: %s\n",
strerror(errno));

close(listener);
return 1;

}

/* We now have a live client. Print information
about it and then send something over the wire. */

inet_ntop(AF_INET, &sa.sin_addr, dotted_ip, 15);
printf("Received connection from %s.\n", dotted_ip);

/* Use popen to retrieve the output of the
uptime command. This is a bit of a hack, but
it’s portable and it works fairly well.
popen opens a pipe to a program (that is, it
executes the program and redirects its I/O
to a file handle). */

uptime = popen("/usr/bin/uptime", "r");
if (uptime == NULL) {

strcpy(sendbuf, "Unable to read system’s uptime.\n");
} else {

sendbuf[0] = ’\0’;
fgets(sendbuf, 1023, uptime);
pclose(uptime);

}

/* Figure out how much data we need to send. */
length = strlen(sendbuf);
sent = 0;

/* Repeatedly call write until the entire
buffer is sent. */

while (sent < length) {
int amt;

amt = write(client, sendbuf+sent, length-sent);

if (amt <= 0) {
/* Zero-byte writes are OK if they

are caused by signals (EINTR).
Otherwise they mean the socket
has been closed. */

NETWORKED GAMING WITH LINUX 291

if (errno == EINTR)
continue;

else {
printf("Send error: %s\n",

strerror(errno));
break;

}
}

/* Update our position by the number of
bytes that were sent. */

sent += amt;
}

close(client);
}

return 0;
}

Our server starts by creating a socket and binding it to a local port. It specifies
INADDR ANY for an address, since we don’t have any particular network interface
in mind. (You could use this to bind the socket to just one particular IP address
in a multihomed system, but games usually don’t need to worry about this.) It
then uses listen to set the socket up as a listener with a connection queue of
five clients.

Next comes the accept loop, in which the server actually receives and processes
incoming connections. It processes one client for each iteration of the loop. Each
client gets a copy of the output of the Linux uptime program. (Note the use of
popen to create this pipe.) The server uses a simple write loop to send this data
to the client.

If you feel adventurous, you might try modifying this program to deal with
multiline output (for instance, the output of the netstat program).

292 CHAPTER 7

Handling Multiple Clients

Linux is a multitasking operating system, and it’s easy to write
programs that handle more than one client at a time. There are several
ways to do this, but in my opinion the simplest is to create a separate
thread for each client. (See the pthread create manpage.) Be careful,
though—some sockets API functions are not thread-safe and shouldn’t
be called by more than one thread at a time.

If you’re interested in learning how to write solid UNIX-based network
servers, I suggest the book UNIX Network Programming [9]. It was of
great assistance as I wrote this chapter. Another useful reference is The
Pocket Guide to TCP/IP Sockets [3], a much smaller and more concise
treatment of the sockets API.

Working with UDP Sockets

UDP is a connectionless protocol. While TCP can be compared to a telephone
conversation, UDP is more like the postal service. It deals with individually
addressed packets of information that are not part of a larger stream. UDP is
great for blasting game updates across the network with reckless abandon. They
probably won’t all get there, but enough should arrive to keep the game running
smoothly.

As we did with TCP, we’ll demonstrate UDP with a sender and receiver. Here
goes:

Code Listing 7–3 (udpsender.c)

/* Simple UDP packet sender. */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netdb.h>

NETWORKED GAMING WITH LINUX 293

#include <arpa/inet.h>
#include <sys/socket.h>

struct hostent *hostlist; /* List of hosts returned
by gethostbyname. */

char dotted_ip[15]; /* Buffer for converting
the resolved address to
a readable format. */

int port; /* Port number. */
int sock; /* Our connection socket. */
struct sockaddr_in sa; /* Connection address. */

int packets_sent = 0;

/* This function gets called whenever the user presses Ctrl-C.
See the signal(2) manpage for more information. */

void signal_handler(int signum)
{

switch (signum) {
case SIGINT:

printf("\nReceived interrupt signal. Exiting.\n");
close(sock);
exit(0);

default:
printf("\nUnknown signal received. Ignoring.\n");

}
}

int main(int argc, char *argv[])
{

/* Make sure we received two arguments,
a hostname and a port number. */

if (argc < 3) {
printf("Simple UDP datagram sender.\n");
printf("Usage: %s <hostname or IP> <port>\n", argv[0]);
return 1;

}

/* Look up the hostname with DNS. gethostbyname
(at least most UNIX versions of it) properly

294 CHAPTER 7

handles dotted IP addresses as well as hostnames. */
printf("Looking up %s...\n", argv[1]);
hostlist = gethostbyname(argv[1]);
if (hostlist == NULL) {

printf("Unable to resolve %s.\n", argv[1]);
return 1;

}

/* Good, we have an address. However, some sites
are moving over to IPv6 (the newer version of
IP), and we’re not ready for it (since it uses
a new address format). It’s a good idea to check
for this. */

if (hostlist->h_addrtype != AF_INET) {
printf("%s doesn’t seem to be an IPv4 address.\n",

argv[1]);
return 1;

}

/* inet_ntop converts a 32-bit IP address to
the dotted string notation (suitable for printing).
hostlist->h_addr_list is an array of possible addresses
(in case a name resolves to more than one IP). In most
cases we just want the first. */

inet_ntop(AF_INET, hostlist->h_addr_list[0], dotted_ip, 15);
printf("Resolved %s to %s.\n", argv[1], dotted_ip);

/* Create a SOCK_DGRAM socket. */
sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
if (sock < 0) {

printf("Unable to create a socket: %s\n",
strerror(errno));

return 1;
}

/* Fill in the sockaddr_in structure. The address is already
in network byte order (from the gethostbyname call).
We need to convert the port number with the htons macro.
Before we do anything else, we’ll zero out the entire
structure. */

memset(&sa, 0, sizeof(struct sockaddr_in));

NETWORKED GAMING WITH LINUX 295

port = atoi(argv[2]);
sa.sin_port = htons(port);

/* The IP address was returned as a char * for various reasons.
Just memcpy it into the sockaddr_in structure. */

memcpy(&sa.sin_addr, hostlist->h_addr_list[0],
hostlist->h_length);

/* This is an Internet socket. */
sa.sin_family = AF_INET;

printf("Sending UDP packets. Press Ctrl-C to exit.\n");

/* Install a signal handler for Ctrl-C (SIGINT).
See the signal(2) manpage for more information. */

signal(SIGINT, signal_handler);

/* Send packets at 1s intervals until the user pressed Ctrl-C. */
for (;;) {

char message[255];

sprintf(message, "Greetings! This is packet %i.", packets_sent);

/* Send a packet containing the above string.
This could just as easily be binary data,
like a game update packet. */

if (sendto(sock, /* initialized UDP socket */
message, /* data to send */
strlen(message)+1, /* msg length + trailing NULL */
0, /* no special flags */
&sa, /* destination */
sizeof(struct sockaddr_in)) <= (int)strlen(message)) {

printf("Error sending packet: %s\n",
strerror(errno));

close(sock);
return 1;

}

printf("Sent packet.\n");

296 CHAPTER 7

/* To observe packet loss, remove the following
sleep call. Warning: this WILL flood the network. */

sleep(1);

packets_sent++;
}

/* This will never be reached. */
return 0;

}

This program starts out very much like the TCP client. It looks up the remote
system’s IP address with DNS, prepares an address structure, and creates a
socket. However, it never calls connect. The address structure is like an address
stamp that UDP slaps onto each outgoing packet. This example uses the sendto
function to send data over UDP. There are other ways to go about it, but
sendto is the most common. It takes an initialized UDP socket, a buffer of data,
and a valid address structure. sendto attempts to compose a UDP packet and
send it on its way across the network. Since this is UDP, there is no guarantee as
to whether or not this packet will actually be sent.

Function sendto(sock, buf, length, flags, addr,
addr len)

Synopsis Sends a UDP datagram to the specified address.

Returns Number of bytes sent, or −1 on error. There is no
guarantee that the message will actually be sent
(though it’s likely).

Parameters sock—Initialized SOCK DGRAM socket.

buf—Buffer of data to send.

length—Size of the buffer. This is subject to
system-dependent size limits.

flags—Message flags. Unless you have a specific
reason to use a flag, this should be zero.

addr—sockaddr in address structure that specifies
the message’s destination.

NETWORKED GAMING WITH LINUX 297

addr len—Size of the address structure. sizeof
(addr) should work.

If you want to test out your network’s capacity (or just irritate the sysadmin),
take the sleep call out of the sender program. This will make the program fire
off packets as quickly as possible. It’s not a good idea to do this in a game—it
would be wise to limit the transmission speed so that other applications can
coexist with your game on the network. (I tried this, and my network hub lit up
like a Christmas tree.)

And now the receiver:

Code Listing 7–4 (udpreceiver.c)

/* Simple UDP packet receiver. */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <sys/socket.h>

int port; /* Port number. */
int sock; /* Our connection socket. */
struct sockaddr_in sa; /* Connection address. */
socklen_t sa_len; /* Size of sa. */

/* This function gets called whenever the user presses Ctrl-C.
See the signal(2) manpage for more information. */

void signal_handler(int signum)
{

switch (signum) {
case SIGINT:

printf("\nReceived interrupt signal. Exiting.\n");
close(sock);

298 CHAPTER 7

exit(0);

default:
printf("\nUnknown signal received. Ignoring.\n");

}
}

int main(int argc, char *argv[])
{

/* Make sure we received one argument,
the port number to listen on. */

if (argc < 2) {
printf("Simple UDP datagram receiver.\n");
printf("Usage: %s <port>\n", argv[0]);
return 1;

}

/* Create a SOCK_DGRAM socket. */
sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
if (sock < 0) {

printf("Unable to create a socket: %s\n",
strerror(errno));

return 1;
}

/* Fill in the sockaddr_in structure. The address is already
in network byte order (from the gethostbyname call).
We need to convert the port number with the htons macro.
Before we do anything else, we’ll zero out the entire
structure. */

memset(&sa, 0, sizeof(struct sockaddr_in));

port = atoi(argv[1]);
sa.sin_port = htons(port);
sa.sin_addr.s_addr = htonl(INADDR_ANY); /* listen on

all interfaces */

/* This is an Internet socket. */
sa.sin_family = AF_INET;

/* Bind to a port so the networking software will know

NETWORKED GAMING WITH LINUX 299

which port we’re interested in receiving packets from. */
if (bind(sock, (struct sockaddr *)&sa, sizeof(sa)) < 0) {

printf("Error binding to port %i: %s\n",
port,
strerror(errno));

return 1;
}

printf("Listening for UDP packets. Press Ctrl-C to exit.\n");

/* Install a signal handler for Ctrl-C (SIGINT).
See the signal(2) manpage for more information. */

signal(SIGINT, signal_handler);

/* Collect packets until the user pressed Ctrl-C. */
for (;;) {

char buf[255];

/* Receive the next datagram. */
if (recvfrom(sock, /* UDP socket */

buf, /* receive buffer */
255, /* max bytes to receive */
0, /* no special flags */
&sa, /* sender’s address */
&sa_len) < 0) {

printf("Error receiving packet: %s\n",
strerror(errno));

return 1;
}

/* Announce that we’ve received something. */
printf("Got message: ’%s’\n", buf);

}

/* This will never be reached. */
return 0;

}

The UDP receiver program starts up much like our TCP server, except that it
doesn’t call listen or accept (since UDP is, of course, connectionless). After

300 CHAPTER 7

binding to a local port, the program calls recvfrom to retrieve datagrams.
Datagrams are individual packages; you have to receive them either all at once
or not at all (unlike TCP, which provides a stream of bytes that you can pick off
one at a time). recvfrom is a blocking call; it will wait until a datagram arrives
before it returns.

Function recvfrom(sock, buf, length, flags, addr,
addr len)

Synopsis Receives a UDP datagram from a local port.

Returns Number of bytes received, or −1 on error.

Parameters sock—Initialized SOCK DGRAM socket that has been
associated with a local port with bind.
buf—Buffer to receive incoming data.
length—Maximum number of bytes to receive.
flags—Message flags. Unless you have a specific
reason to use a flag, this should be zero.
addr—sockaddr in address structure to receive
information about the sender of the message.
addr len—Size of the address structure. sizeof
(addr) should work.

That’s it for UDP! Now it’s time to apply this stuff (TCP at least) to Penguin
Warrior.

Multiplayer Penguin Warrior

So far, Penguin Warrior has supported only a computer-controlled opponent,
and a fairly unintelligent one at that. However, it’s a lot more fun to play
against humans than against Tcl scripts.

This will be a simple networking system, as games go. It will use a simple TCP
scheme to keep the game in sync, and it will not make use of UDP. (That would
be overkill for a game like Penguin Warrior.) It will trust that the clients are
secure (that is, that they have not been hacked for the purpose of cheating).
Nonetheless, it should give you an idea of what goes into a network-ready game.

NETWORKED GAMING WITH LINUX 301

Network Gaming Models

The ultimate goal of a networked game is to allow two or more players to
participate in a single game universe at the same time. Whether they are
competing against each other or cooperating in a battle against other opponents
is of little consequence. All networkable games need to solve the same basic
problem of keeping the players informed about the state of the running game.
Here are some of the more common approaches to this problem:

Client/server
Each player uses a local copy of the game (a client) to connect to
a single central machine (the game server or dedicated server)
that knows the game’s rules and serves as a master authority on
the game’s state. Clients send updates to the server, and the
server sends authoritative updates back to each client. In this
model, the server is always right. It is very difficult to cheat in a
client/server gaming situation, because every client talks to the
same server, and the server applies the same rules to everyone.
This is the most common setup for major online games.

Peer-to-peer
This approach is good for small games like Penguin Warrior. Each
player’s computer maintains a local copy of the game’s state and
informs all of the other computers whenever anything changes.
The main problem with this system is that it is very easy for
players to cheat by modifying their local copies of the game. There
is no centralized “referee” in peer-to-peer multiplayer games.

Client is a server
In some cases it is convenient to build the game server code into
the game itself, so that any player with a fast computer and a
reasonably fast network connection can “host” a multiplayer game
for friends. This method is a little less prone to cheating than the
peer-to-peer model, but an untrustworthy player could covertly
modify the server to gain an advantage.

It is fallacious to think that closed source binary games are immune to cheaters;
Ultima Online and Diablo are evidence to the contrary. Any sufficiently idle

302 CHAPTER 7

Player Player

Player

Player

Player

Game server
(game universe)

Player Player

Player Player

Player and
game server

(same computer)

Peer-to-peer model

Client-server model

Client doubling as server

Figure 7–1: Three ways to set up a network game

3r33t h@x0ring d00d with a hex editor can have a field day with these games. If
you are concerned about possible cheating, the only real solution is to use a
design that enforces equality between the players. (Penguin Warrior does not use
such a design; it would be trivial to cheat in a multiplayer game.)

Penguin Warrior’s Networking System

In the interest of simplicity, Penguin Warrior will use the peer-to-peer model.
One copy of the game will act as a TCP server, and the other will connect as a
TCP client. It does not matter which role goes to which player; the players are
completely equal after the link is established. Once the two players are linked,
they will begin to exchange update packets with one another. Each update
packet will contain the world coordinates of the player that sent it (in other
words, it says, “I’m at this position; now reply with your position”). The players
will send these packets back and forth as quickly as possible (with a small speed
brake to keep from flooding the network). The game will end when the
connection is broken (that is, when one of the players exits the game). It’s

NETWORKED GAMING WITH LINUX 303

simple, but it should work well given a reasonably fast network (not a modem
connection).

Source Files

The Penguin Warrior networking system consists of network.c,
network.h, and some heavy modifications to main.c. You can find
this chapter’s code in the pw-ch7/ directory of the book’s source
archive. No additional libraries are needed for networking support;
that’s built into the operating system.

What happens when a player fires or gets hit by a shot? Update packets also
contain fields for this information. Whenever a player fires, the networking
system sends a packet with the “fire” flag set. The other player should then
display an appropriate moving projectile. Players keep track of their own
projectiles; if you press the fire button and launch a volley at your opponent,
your copy of Penguin Warrior is responsible for tracking the projectiles to their
respective destinations.4 If your copy of the game decides that the other player
has been hit, it sends this information in the next outgoing network packet.

For reference, here’s the Penguin Warrior update packet structure:

typedef struct net_pkt_s {
Sint32 my_x, my_y;
Sint32 my_angle;
Sint32 my_velocity;
Uint8 fire;
Uint8 hit;

} net_pkt_t, *net_pkt_p;

There’s not much to it (which is good, since this structure is sent over the wire
many times each second). Note that the values are sent as Sint32 (the SDL
signed 32-bit integer type) instead of double (which the game uses internally).

4 Weapons are not actually present in this version of the game. We’ll add them in Chapter 9.
Our protocol for handling weapons is in place, though.

304 CHAPTER 7

The exact meaning and encoding of double can vary between platforms. It
probably won’t (it’s a standard IEEE double-precision floating-point number on
most platforms), but Murphy’s Law indicates that we shouldn’t take anything
for granted. By applying a simple network encoding formula (given by macros in
network.h), we ensure that our coordinates will always reach the other end
intact, regardless of the CPU types involved.

Warning

You can often ignore endianness issues when you’re writing a
single-player game or coding for a particular type of machine, but unlike
Microsoft’s flagship products, Linux is not limited to the arcane x86
CPU architecture. If there’s any possibility at all that your networked
game or application will need to exchange data with another type of
system (for instance, a multiplayer game between a PC and an
UltraSPARC), it’s important to watch out for endianness and other
encoding issues. Never assume that basic datatypes will be exactly the
same on any two platforms. The sockets API can help with its network
byte order macros, and SDL provides similar macros for ensuring a
particular endianness.

Coding time! Here’s network.c, which implements the basic two-player protocol
over TCP.

Code Listing 7–5 (network.c)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <string.h>
#include <errno.h>
#include <netdb.h>
#include "network.h"

void CreateNetPacket(net_pkt_p pkt, player_p player,
int firing, int hit)

{

NETWORKED GAMING WITH LINUX 305

/* Fill in all of the relevant values, calling
our conversion macro to preclude endianness
problems. */

pkt->my_x = DOUBLE_TO_NET(player->world_x);
pkt->my_y = DOUBLE_TO_NET(player->world_y);
pkt->my_angle = DOUBLE_TO_NET(player->angle);
pkt->my_velocity = DOUBLE_TO_NET(player->velocity);
pkt->fire = (Uint8)firing;
pkt->hit = (Uint8)hit;

}

void InterpretNetPacket(net_pkt_p pkt,
double *remote_x, double *remote_y,
double *remote_angle,
double *remote_velocity,
int *firing, int *hit)

{
/* Decode the values in the packet and store

them in the appropriate places. */
*remote_x = NET_TO_DOUBLE(pkt->my_x);
*remote_y = NET_TO_DOUBLE(pkt->my_y);
*remote_angle = NET_TO_DOUBLE(pkt->my_angle);
*remote_velocity = NET_TO_DOUBLE(pkt->my_velocity);
*firing = (int)pkt->fire;
*hit = (int)pkt->hit;

}

int ConnectToNetgame(char *hostname, int port, net_link_p link)
{

int sock;
struct sockaddr_in addr;
struct hostent *hostlist;

/* Resolve the host’s address with DNS. */
hostlist = gethostbyname(hostname);
if (hostlist == NULL || hostlist->h_addrtype != AF_INET) {

fprintf(stderr, "Unable to resolve %s: %s\n",
hostname,
strerror(errno));

return -1;

306 CHAPTER 7

}

/* Save the dotted IP address in the link structure. */
inet_ntop(AF_INET, hostlist->h_addr_list[0],

link->dotted_ip, 15);

/* Load the address structure with the server’s info. */
memset(&addr, 0, sizeof (struct sockaddr_in));
addr.sin_family = AF_INET;
memcpy(&addr.sin_addr, hostlist->h_addr_list[0],

hostlist->h_length);
addr.sin_port = htons(port);

/* Create a TCP stream socket. */
sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
if (sock < 0) {

fprintf(stderr, "Unable to create socket: %s\n",
strerror(errno));

return -1;
}

printf("Attempting to connect to %s:%i...\n",
link->dotted_ip, port);

/* Ready to go! Connect to the remote machine. */
if (connect(sock, (struct sockaddr *)&addr,

sizeof (addr)) < 0) {
fprintf(stderr, "Unable to connect: %s\n",

strerror(errno));
close(sock);
return -1;

}

/* Copy the socket and the address into the link structure. */
link->sock = sock;
link->addr = addr;

printf("Connected!\n");

return 0;
}

NETWORKED GAMING WITH LINUX 307

int WaitNetgameConnection(int port, net_link_p link)
{

int listener, sock;
struct sockaddr_in addr;
socklen_t addr_len;

/* Create a listening socket. */
listener = socket(PF_INET, SOCK_STREAM, IPPROTO_IP);
if (listener < 0) {

fprintf(stderr, "Unable to create socket: %s\n",
strerror(errno));

return -1;
}

/* Set up the address structure for the listener. */
addr_len = sizeof (addr);
memset(&addr, 0, addr_len);
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(INADDR_ANY);

/* Bind the listener to a local port. */
if (bind(listener, &addr, addr_len) < 0) {

fprintf(stderr, "Unable to bind to port %i: %s\n",
port, strerror(errno));

close(listener);
return -1;

}

/* Make this a listening socket. */
if (listen(listener, 1) < 0) {

fprintf(stderr, "Unable to listen: %s\n",
strerror(errno));

close(listener);
return -1;

}

printf("Waiting for connection on port %i.\n", port);

/* Accept a connection. */
if ((sock = accept(listener, (struct sockaddr *)&addr,

&addr_len)) < 0) {

308 CHAPTER 7

fprintf(stderr, "Unable to accept connection: %s\n",
strerror(errno));

close(listener);
return -1;

}

/* Ready to go! Save this info in the link structure. */
link->sock = sock;
link->addr = addr;
inet_ntop(AF_INET, &addr.sin_addr, link->dotted_ip, 15);

printf("Connected!\n");

return 0;
}

int ReadNetgamePacket(net_link_p link, net_pkt_p pkt)
{

int remaining, count;

remaining = sizeof (struct net_pkt_s);
count = 0;

/* Loop until a complete packet arrives.
This could block indefinitely, but it
typically won’t, and it’s of less importance
since the networking code runs in a separate
thread. */

while (remaining > 0) {
int amt;

/* Read as much as possible. */
amt = read(link->sock, ((char *)pkt)+count, remaining);

/* If read returns a positive value, or zero
with errno == EINTR, there is no error. */

if (amt <= 0 && errno != EINTR) {
fprintf(stderr, "ReadNetgamePacket: read failed: %s\n",

strerror(errno));
return -1;

}

NETWORKED GAMING WITH LINUX 309

/* Increment the counters by the amount read. */
remaining -= amt;
count += amt;

}

return 0;
}

int WriteNetgamePacket(net_link_p link, net_pkt_p pkt)
{

int remaining, count;

remaining = sizeof (struct net_pkt_s);
count = 0;

/* Loop until we’ve written the entire packet. */
while (remaining > 0) {

int amt;

/* Try to write the rest of the packet.
Note the amount that was actually written. */

amt = write(link->sock, ((char *)pkt)+count, remaining);

/* Same error semantics as ReadNetgamePacket. */
if (amt <= 0 && errno != EINTR) {

fprintf(stderr, "WriteNetgamePacket: read failed: %s\n",
strerror(errno));

return -1;
}

/* Increments the counters by the number of
bytes written. */

remaining -= amt;
count += amt;

}

return 0;
}

void CloseNetgameLink(net_link_p link)
{

310 CHAPTER 7

/* Close the socket connection. */
close(link->sock);
link->sock = -1;

}

The first two functions, CreateNetPacket and InterpretNetPacket, help us
deal with network packets. We can pretty much be as sloppy as we want about
our internal game state variables, but organization is very important when we’re
communicating with another program at a high speed over network. These
functions convert between a game’s state and network packet structures so that
our main code doesn’t need to worry about the “wire format” of the data.

ConnectToNetgame tries to connect to another copy of Penguin Warrior over the
network. After resolving the remote system’s IP address with DNS, it attempts
a normal TCP socket connection and stores the connected socket in the provided
net link t structure. Penguin Warrior performs no synchronization or
negotiation; it assumes that whatever answers the connection request is a copy of
Penguin Warrior that speaks the same protocol. It would be a simple matter to
exchange some small piece of data over the link to make sure of this before
starting the game.

The next function, WaitNetgameConnection, waits for a copy of Penguin
Warrior to connect on a given port number. This is the counterpart of
ConnectToNetgame. It consists of simple TCP server code that we’ve already
discussed. It is important to realize that this is not a client/server game; the
“server” is called that only because it waits for another player, the “client,” to
connect. After the connection, there is no difference between the two sides of the
connection.

ReadNetgamePacket and WriteNetgamePacket send and receive complete game
update packets over the network. We could probably get away with using simple
read or write calls, but there’s no guarantee that either of these calls will
process the full amount of data requested. To handle this, ReadNetgamePacket
and WriteNetgamePacket keep track of the amount of data transferred and loop
until a complete packet has been processed. It would be simple to adapt these
routines into general-purpose socket reading and writing utilities.

Finally, CloseNetgameLink closes a multiplayer game link. It uses the normal
close function to shut down the socket. The TCP/IP protocol handles this
without further interaction.

NETWORKED GAMING WITH LINUX 311

That’s it for the networking code. Everything else is in main.c. We won’t
reprint it here, since it would be largely redundant, but it’s worth taking a look
at to see the changes. We’ve added UpdateNetworkPlayer to send and receive
update packets and a new thread (launched with NetworkThread) to run the
networking in the background (so that the speed of our main loop isn’t limited
by the latency of the network). Note also that the player data structures are now
protected by a mutex so that the network thread and the main loop can safely
access them without bumping into each other.

Network Game Performance

Anyone who’s ever played a multiplayer action game has probably felt the
frustration of lining up for a kill and having the game suddenly slow to an
unplayable crawl. The Internet is enormous, and its performance range is
anywhere from solid to flaky. Multiplayer games unfortunately require a very
high level of sustained performance, and it’s left to the game developer to make
ends meet in this turbulent medium. In this section we’ll make some
observations about network performance and suggest ways to squeeze acceptable
performance out of the Internet.

Gamers often grumble about slow network performance. Two primary factors
play into this problem. Packet loss is the tendency of overloaded or unreliable
networks to lose information at random. We’ve already mentioned this with
respect to UDP—if you send a UDP packet across the network, it might get
there, and it might not. TCP detects and corrects missing packets, but they
throw a monkey wrench into the communication process and kill performance.
There’s not a lot you can do to prevent packet loss, unless you intend to install
your own high-speed communication lines; you can only minimize its effects on
your games. The most common way of dealing with packet loss is simply to
ignore it. TCP holds up the transmission pipeline until packets arrive at the
other end intact, at which point it’s probably past time to send the next update
anyway. (In this case, error correction actually hurts game performance.) UDP
does not have this problem.

Another culprit of lousy network performance is latency, the time it takes a
given piece of information to travel across the network. Latency depends both on
the speed of the underlying network and on its current traffic load. Unless your

312 CHAPTER 7

game uses prediction or another clever strategy, players will always be out of
sync by the amount of time it takes them to exchange network packets. A
reasonable average latency for Internet games on fast connections is 100
milliseconds (ms), and any game should be able to handle this amount. However,
the average latency can easily rise to the vicinity of 500 to 1000 ms if slow
network devices (modems) are involved, and at this level it can become quite
distracting. (For instance, a player might fire a weapon and see the effects a full
second later.) Some games use statistics to guess what the other players will do
during the next update interval, which can make a multiplayer game much
smoother. Prediction would be overkill for something like Penguin Warrior, but
Quake and Half-Life make heavy use of this technique.

Security Issues

For some reason, many players get a thrill out of disrupting the normal course of
a game for others. Players of Diablo and Ultima Online have access to any
number of programs that mess with the underlying game code to give them an
unfair advantage. Fans of the Half-Life multiplayer modification Counter-Strike
constantly run into “skin cheaters” who modify their player models to make
themselves invisible or make their enemies easier to spot. Cheating is an
unfortunate part of online gaming. There are a lot of smart people out there
who get a kick out of gaining an unfair advantage in the games they play. As if
this weren’t bad enough, these people often make their cheats available to their
friends, and the problem grows exponentially. Although no game is perfectly
secure against the determined cheater, good design can make cheating very
difficult.

The problem is pretty simple, actually. Most major online games use a
client/server model (see page 301). Client/server games should theoretically do
all of the game world’s processing and error checking on the server side, leaving
nothing important to the clients. If this were always the case, hacked clients
would be of no consequence, and games like Half-Life would be free of cheaters.

For basic performance reasons, however, very few games actually work this way.
If a client had to run everything through the server, performance would be
abysmal. Most games at least let the client do a bit of preloading, prediction, or
collision detection. This work stays hidden from the player, unless someone

NETWORKED GAMING WITH LINUX 313

hacks the program to make unfair use of this information. This is exactly what
happened to Quake when id Software released its source code. Quake placed a
bit too much trust in the game client, and unscrupulous gamers were quick to
take advantage of this.

The only way to get around this problem is to make sure that any
responsibilities assigned to a client can be verified by the server and to limit the
amount of information the client gets about the state of the game. Players can
and will figure out how to modify a game to report false update information or
to misuse the information it receives. In a world of hex editors, protocol sniffers,
and bored college students like myself, no game is safe from modification. Plan
on it, and make sure it can’t hurt anything.

We’ll now put Penguin Warrior on hold for a little while so we can hack some
framebuffer console code. We’ll pick the game back up in Chapter 9 and add all
of the goodies it’s missing, including weapons, player-to-player chat, and score
counters. We’ll also combine the code from chapters 5, 6, and this chapter into a
final version with all of the subsystems present. By the end of Chapter 9,
Penguin Warrior will be a fully operational Linux game.

Chapter 8

Gaming with the Linux Console

Although the X Window System is by far the most common graphics system for
Linux, the Linux 2.2 kernel introduced a new option for game programming. The
Linux kernel team wanted to port Linux to systems that lacked video adapters
with native text modes (the Macintosh, for instance), and so they devised a
framebuffer console system for emulating a suitable character mode on top of
ordinary pixel-based display devices. It soon became apparent that the
framebuffer console could be useful even on display adapters with text mode
capabilities, and now the kernel can perform this emulation on a wide variety of
video hardware. The underlying framebuffer device (fbdev) system provides a
generic kernel-based interface to video hardware, and it’s useful for much more
than fake text consoles.

The framebuffer device interface isn’t as programmer-friendly as SDL, but it’s a
refreshing trip into low-level pixel hacking. SDL provides conversion routines for
every possible 8-, 16-, 24-, and 32-bit pixel format. The framebuffer console does
not; it tries to set the video mode you ask for, but it can’t make guarantees, and
it’s up to you to deal with whatever it returns. On the upside, framebuffer
devices are managed by the kernel, and they can be quite fast. Linux still needs
a better kernel-based graphics solution, in my opinion, but the framebuffer
device is an immediately useful step in the right direction.

This chapter tours the Linux framebuffer device interface, as well as looking at a
few other things necessary for writing Linux console games. You’ll need a

316 CHAPTER 8

working framebuffer device for this chapter to be of much use, and you probably
shouldn’t try these examples from within X (since the kernel will quite happily
overwrite X’s graphics output). If you’re not sure whether or not you have a
working framebuffer device, look for the file /dev/fb0, and prod it with the
touch command. If you can touch the file, your framebuffer device is probably
alive and well. A more risky (and entertaining) way to check for a framebuffer
device is the following:

$ cat /dev/urandom > /dev/fb0

If your screen is flooded with random garbage, you definitely have a working
framebuffer. (This could also trash your console, do mean things to the kernel,
or cause exploding monkeys to overrun your place of residence; do it at your own
risk. I’ve never had any of these happen, though.)

Pros and Cons of the Linux Framebuffer

The Linux framebuffer device wasn’t designed for gaming. It can be bent to that
end, but its primary purpose is to support the framebuffer console system. What
makes it any different from an interface like SDL? Here are a few of the
framebuffer device’s less agreeable features:

• It’s Linux-specific. You won’t find the fbdev interface anywhere else.
That’s fine for our present purposes, since this is primarily a book about
Linux game programming, but you wouldn’t be able to use framebuffer
device code on FreeBSD, for instance.

• It doesn’t do pixel conversions. It hands you a chunk of framebuffer
memory and expects you to sort it all out.

• Its mode-setting interface is unbelievably obtuse. To switch video modes,
you actually have to program new video timings via an ioctl call. You
can get lists of valid timings from a number of places, but it’s up to your
code to handle them. I’m sure many would call this a feature, since there’s
little between you and the video signal generator, but it’s quite a nuisance
if you just want to write some quick video code and you don’t want to use

GAMING WITH THE LINUX CONSOLE 317

whatever mode the framebuffer device is currently in. (In fact, most
programs just leave the mode alone and try to accommodate whatever
they end up with.)

• Not all framebuffer devices support mode switching. Want a 1024x768
mode, as opposed to the 640x480 mode the user currently has selected?
Too bad! Some devices do allow this, but you can’t count on it.

There are good reasons to use the framebuffer device, though:

• Many users have an aversion to the X Window System and prefer to use
the console whenever they can. Chances are they’re using a framebuffer
console, since its output is far superior to most “true” text modes (with
higher resolution).

• SVGALib, the traditional Linux console-based graphics solution, is hardly
up-to-date with today’s hardware. It’s great when it works, but past
experience holds that to be a rare occurrence.

• If you don’t require the ability to change video modes or perform
hardware-accelerated blits, it’s absurdly simple to program.

• With a bit of care and feeding (read: a lot of footwork), you can sometimes
drive fbdev much faster than X11. If fbdev happens to support
acceleration features for your video card, it can truly scream. See the
current Linux kernel for a list of supported cards.

• SDL supports fbdev as a video target. Most SDL applications will work on
the framebuffer console out of the box. SDL squeezes as much performance
as possible out of the framebuffer device, even going so far as to issue
register-level commands directly to Matrox G400 and 3Dfx Voodoo cards.

• The framebuffer device is the de facto graphics interface on many
Linux-based embedded devices and handhelds. You can use fbdev to access
the screen on the VTech Helio, Compaq iPaq, Casio Cassiopia, and Sega
Dreamcast, for instance.

In short, if you’re willing to put forth the extra coding effort, deal with a lack of
portability to non-Linux platforms, and forgo the ability to set an exact video

318 CHAPTER 8

mode, you might take a liking to the framebuffer console. Otherwise, your time
is probably better spent with another interface, such as SDL or GGI.

Setting Up a Framebuffer Device

Although kernel configuration is beyond the scope of this book, a few notes are
in order here.

At present, the Linux kernel has framebuffer device support for 3Dfx Voodoo3,
3DLabs Permedia2, ATI Mach64, and several Matrox video cards. It also
supports generic VESA 2.0-compliant cards (with reduced functionality, such as
no mode switching). More cards are added with each kernel release. If yours is a
supported video card, you can recompile your kernel with framebuffer device
support. Read the information in the kernel source tree’s Documentation/fb
directory for instructions.

Once you’ve booted with a working framebuffer device, you can use the fbset
utility (http://www.cs.kuleuven.ac.be/%7Egeert/) to change the video mode
and adjust various framebuffer parameters. Make sure you install an appropriate
/etc/fb.modes file (more on this later).

If your video card isn’t directly supported, not all is lost. You may still be able
to get framebuffer support with the generic VESA 2.0 driver. This doesn’t work
on all video cards (since many are not VESA 2.0 compliant), but it’s worth a try.
If the VESA driver doesn’t work, you’re out of luck for now.

A First Foray into Framebuffer Programming

We’ll start with a quick example of how to interact with the framebuffer console.
This example won’t do anything complicated—it’ll just plot a single white pixel
in the middle of the framebuffer. We’ll look at mode switching and pixel packing
later on.

GAMING WITH THE LINUX CONSOLE 319

Code Listing 8–1 (simplefb.c)

/* A simple framebuffer console example. */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <asm/page.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <asm/page.h>
#include <linux/fb.h>

int main(int argc, char *argv[])
{

char *fbname;
int fbdev;
struct fb_fix_screeninfo fixed_info;
struct fb_var_screeninfo var_info;
struct fb_cmap colormap;
u_int16_t r, g, b;
u_int8_t pixel_r, pixel_g, pixel_b;
int x, y;
u_int32_t pixel_value;
void *framebuffer;
int framebuffer_size;
int ppc_fix;

/* Let the user specify an alternate framebuffer
device on the command line. Default to
/dev/fb0. */

if (argc >= 2)
fbname = argv[1];

else
fbname = "/dev/fb0";

printf("Using framebuffer device %s.\n", fbname);

320 CHAPTER 8

/* Open the framebuffer device. */
fbdev = open(fbname, O_RDWR);
if (fbdev < 0) {

printf("Error opening %s.\n", fbname);
return 1;

}

/* Retrieve fixed screen info.
This is information that never changes for
this particular display. */

if (ioctl(fbdev, FBIOGET_FSCREENINFO, &fixed_info) < 0) {
printf("Unable to retrieve fixed screen info: %s\n",

strerror(errno));
close(fbdev);
return 1;

}

/* Print out some of the fixed info. */
printf("Framebuffer ID: %s\n", fixed_info.id);
printf("Framebuffer type: ");
switch (fixed_info.type) {

case FB_TYPE_PACKED_PIXELS:
printf("packed pixels\n"); break;

case FB_TYPE_PLANES:
printf("planar (non-interleaved)\n"); break;

case FB_TYPE_INTERLEAVED_PLANES:
printf("planar (interleaved)\n"); break;

case FB_TYPE_TEXT:
printf("text (not a framebuffer)\n"); break;

case FB_TYPE_VGA_PLANES:
printf("planar (EGA/VGA)\n"); break;

default: printf("no idea what this is\n");
}
printf("Bytes per scanline: %i\n", fixed_info.line_length);

printf("Visual type: ");
switch (fixed_info.visual) {

case FB_VISUAL_TRUECOLOR:
printf("truecolor\n"); break;

case FB_VISUAL_PSEUDOCOLOR:
printf("pseudocolor\n"); break;

case FB_VISUAL_DIRECTCOLOR:

GAMING WITH THE LINUX CONSOLE 321

printf("directcolor\n"); break;
case FB_VISUAL_STATIC_PSEUDOCOLOR:

printf("fixed pseudocolor\n"); break;
default: printf("other (mono perhaps)\n");

}

/* Now get the variable screen info.
This contains more info about the current video mode.
(Note that this is effectively fixed on some framebuffer
devices -- many don’t support mode switching.) */

if (ioctl(fbdev, FBIOGET_VSCREENINFO, &var_info) < 0) {
printf("Unable to retrieve variable screen info: %s\n",

strerror(errno));
close(fbdev);
return 1;

}

/* Print out some info. */
printf("Bits per pixel: %i\n", var_info.bits_per_pixel);
printf("Resolution: %ix%i (virtual %ix%i)\n",

var_info.xres, var_info.yres,
var_info.xres_virtual, var_info.yres_virtual);

printf("Scrolling offset: (%i,%i)\n",
var_info.xoffset, var_info.yoffset);

printf("Red channel: %i bits at offset %i\n",
var_info.red.length, var_info.red.offset);

printf("Green channel: %i bits at offset %i\n",
var_info.red.length, var_info.green.offset);

printf("Blue channel: %i bits at offset %i\n",
var_info.red.length, var_info.blue.offset);

/* Now memory-map the framebuffer.
According to the SDL source code, it’s necessary to
compensate for a buggy mmap implementation on the
PowerPC. This should not be a problem for other
architectures. (This fix is lifted from SDL_fbvideo.c) */

ppc_fix = (((long)fixed_info.smem_start) -
((long) fixed_info.smem_start & ~(PAGE_SIZE-1)));

framebuffer_size = fixed_info.smem_len + ppc_fix;
framebuffer = mmap(NULL,

framebuffer_size,
PROT_READ | PROT_WRITE,

322 CHAPTER 8

MAP_SHARED,
fbdev,
0);

if (framebuffer == NULL) {
printf("Unable to mmap framebuffer: %s\n",

strerror(errno));
close(fbdev);
return 1;

}

printf("Mapped framebuffer.\n");

/* Ok, now we’ll get ready to plot the pixel.
We have several possible situations:
a) The current mode is indexed (pseudocolor).

We’ll need to set a palette entry.
b) The current mode is truecolor (packed pixel).

No need to mess with the palette; there is none.
c) The current mode is directcolor (per-channel palettes).

We’ll need to set a palette entry.
d) The current mode is static pseudocolor

(indexed, but with a fixed palette that we can’t change).
This might be found on VGA adapters in 16-color mode.
We will IGNORE this case (gaming on 16-color devices
leaves much to be desired, and it’s a hassle). */

,
/* Take the appropriate action based on the visual type. */
if ((fixed_info.visual == FB_VISUAL_PSEUDOCOLOR) ||

(fixed_info.visual == FB_VISUAL_DIRECTCOLOR)) {
/* We want a white pixel.

Palette values are 16 bits each. */
r = 0xFFFF;
g = 0xFFFF;
b = 0xFFFF;

/* Set a single palette entry.
Hijack color 255. */

colormap.start = 255;
colormap.len = 1;
colormap.red = &r;
colormap.green = &g;

GAMING WITH THE LINUX CONSOLE 323

colormap.blue = &b;
colormap.transp = NULL;

if (ioctl(fbdev, FBIOPUTCMAP, &colormap) < 0) {
printf("WARNING: unable to set colormap.\n");
/* This isn’t really fatal, but our pixel

probably won’t show up correctly. */
}

pixel_r = 255;
pixel_g = 255;
pixel_b = 255;

/* This will work in both pseudocolor and
directcolor modes. */

pixel_value = 0xFFFFFFFF;

} else if (fixed_info.visual == FB_VISUAL_TRUECOLOR) {
/* White pixel. */
pixel_r = 0xFF;
pixel_g = 0xFF;
pixel_b = 0xFF;

/* We used this same pixel-packing technique
back when we were working with SDL. */

pixel_value = (((pixel_r >> (8-var_info.red.length)) <<
var_info.red.offset) +
((pixel_g >> (8-var_info.green.length)) <<
var_info.green.offset) +
((pixel_b >> (8-var_info.blue.length)) <<
var_info.blue.offset));

} else {
printf("Unsupported visual.\n");
pixel_value = 0;

}

/* Now plot the pixel. The framebuffer interface allows
some modes to use a larger framebuffer than the
monitor’s resolution (this is called a virtual resolution).
In this case some of the framebuffer isn’t visible. We
can retrieve the starting coordinates of the visible
rectangle from the variable info structure. */

324 CHAPTER 8

x = var_info.xres / 2 + var_info.xoffset;
y = var_info.yres / 2 + var_info.yoffset;

switch (var_info.bits_per_pixel) {
case 8:

*((u_int8_t *)framebuffer +
fixed_info.line_length * y + x) =

(u_int8_t)pixel_value;
break;

case 16:
*((u_int16_t *)framebuffer +

fixed_info.line_length/2 * y + x) =
(u_int16_t)pixel_value;

break;
case 24:

/* 24-bit modes are generally slower than others
because pixels are not aligned on word boundaries.
This is why 32-bit modes often outperform
24-bit modes. */

*((u_int8_t *)framebuffer +
(fixed_info.line_length * y + 3 * x)) =

(u_int8_t)pixel_r;
*((u_int8_t *)framebuffer +
(fixed_info.line_length * y + 3 * x) + 1) =

(u_int8_t)pixel_g;
*((u_int8_t *)framebuffer +
(fixed_info.line_length * y + 3 * x) + 2) =

(u_int8_t)pixel_b;
break;

case 32:
*((u_int32_t *)framebuffer +
fixed_info.line_length/4 * y + x) =

(u_int32_t)pixel_value;
default:

printf("Unsupported depth.\n");
}

/* Close the fbdev. */
munmap(framebuffer, framebuffer_size);
close(fbdev);

GAMING WITH THE LINUX CONSOLE 325

return 0;
}

Ok, maybe that’s not so simple after all. It’s not as bad as it looks, though.
Here’s a rundown.

First we open a framebuffer device. This is usually represented by the file
/dev/fb0. Some users may prefer a different device, so we accept an optional
device name from the command line. We open with the open function and the
O RDWR (read/write) flag.

Once the device is open, we can query it for information and prepare it for use.
We do this with the ioctl system call (see page 170). Framebuffer device
information comes in two flavors: fixed and variable. Fixed information is
read-only; you can get it with the FBIOGET FSCREENINFO ioctl, but you can’t
change it. This fixed information is represented by the fb fix screeninfo
structure, and it includes framebuffer device identification, information about
the visual (pixel format) supported by this device, and addresses for
memory-mapping the framebuffer.

Variable framebuffer information is represented by the fb var screeninfo
structure and describes the geometry and timings of the current video mode.
You can retrieve it with FBIOGET VSCREENINFO. You can also make adjustments
to this structure and send it back to the framebuffer driver with
FBIOPUT VSCREENINFO. (This is actually the only way to change video modes
with the framebuffer console—quaint, isn’t it?)

Now that we have all the information we could possibly want about the current
framebuffer device, we’d like to draw something. To do this we’ll have to
memory-map (see page 186) the framebuffer device into our address space. It’s a
bit strange, for sure, but we end up with a direct pointer to the video card’s
framebuffer memory. This is all we need for any kind of 2D graphics
programming. Once we have access to the framebuffer, the screen is ours for
blitting or plotting.

All that’s left is to figure out the offset and drop the correct pixel value into the
framebuffer, right? Well, yes, but not so fast. There are a lot of details to attend
to, especially since we can’t be sure of the framebuffer’s pixel format or even its
color depth ahead of time. First we have to discern between indexed

326 CHAPTER 8

(pseudocolor) and packed pixel (Hicolor and True Color) modes. In the case of
the former, we need to configure the color palette for our purposes. We then
need to account for the various bit depths and pixel-packing schemes a
framebuffer might use. Pixel packing is no big deal, since the
fb var screeninfo structure gives us all the bit-shifting offsets we need. Most
color depths are easy to account for. The only real oddball is 24-bit True Color
(since C does not provide a 24-bit datatype).

Once we’ve plotted a single pixel in the middle of the screen (that’s one
hard-earned pixel!), we unmap the memory-mapped framebuffer with munmap
and close the framebuffer device. The rest is history.

Setting Framebuffer Video Modes

Most graphics interfaces allow programs to change video modes simply by
specifying the desired resolution and color depth for the new mode. The
framebuffer device is completely different. To set a new video mode, you have to
specify low-level video timings for the desired mode. This isn’t as bad as it
sounds. A database of mode timings and resolutions is in /etc/fb.modes on
most framebuffer-compatible systems, and these timings are standardized
enough that they’ll probably work on most systems, even without a properly
configured mode database. Ideally, though, every system would have a properly
configured /etc/fb.modes file containing only valid mode definitions for the
system’s particular video hardware and monitor.

Once you know the timings for the mode you want to set, you can feed them to
the framebuffer driver with an ioctl call. If the driver supports mode switching
(not all of them do), the video card will switch into the new mode and you can
start drawing to the resized framebuffer. It’s not a bad idea to remap the
framebuffer after a mode switch.

Warning

The framebuffer device is a shared resource, and it does not clean up
after programs that use it. If your programs change the video mode or
edit palette entries, they should replace them before they exit. It would
be prudent to install an atexit handler for this purpose (along the lines
of SDL Quit).

GAMING WITH THE LINUX CONSOLE 327

Personally I think this design is seriously misguided (a program can
easily leave the console in an unusable state), but it’s entrenched at this
point. It might be a good idea to create a script to restore the
framebuffer’s state, in case you find yourself without a working display
after a failed program run.

Some programs partially overcome the problem by opening a new
virtual terminal before setting the video mode and then switching back
to the old one when they exit.

How Video Scanning Works

A video mode can be described by several key properties. Users and even
programmers usually just speak of video modes in terms of resolution and color
depth, with an occasional mention of refresh rate.

A more precise way of describing a video mode is to list the various time
intervals involved in the video scanning process. This information has to be
provided at some point, regardless of how it is presented to the user or
programmer; the CRTC unit needs it in order to scan an image on the display.
Although these numbers may seem mysterious at first, they’re pretty simple to
work with once you understand what they mean.

Figure 8–1 illustrates the different components involved in a single video refresh.
The monitor’s electron beam (see the beginning of Chapter 4) starts in the
upper left corner, sweeping from left to right repeatedly as it moves from the top
of the screen to the bottom. Each horizontal sweep is called a scanline. The
process begins with a few wasted sweeps. This period is called the upper margin,
and it serves to get the electron beam in position for the actual image-drawing
process. The upper margin is measured in scanlines.

Now that the beam is positioned at the upper left corner of the visible portion of
the monitor, it can start producing pixels. It proceeds to generate a complete
image by performing a number of sweeps equal to the vertical resolution of the
display mode (480 scanlines, in the case of Figure 8–1). Each sweep begins with
a blanking period (dead zone) called the left margin and ends with another
blanking period called the right margin. These two margins are measured in
pixels, and actual drawing takes place between them. Immediately after the
right margin, a brief horizontal sync pulse from the video card instructs the

328 CHAPTER 8

Upper margin (33 hidden scanlines)

Left m
argin (48 hidden pixels)

R
ight m

argin (16 hidden pixels)

Lower margin (10 hidden scanlines)

X resolution (640 pixels)

Y
 resolution (480 pixels)

Vertical retrace pulse (time equiv. to 2 scanlines)

H
orizontal retrace pulse (tim

e equiv. to 96 pixels)

Electron beam scanning direction

Figure 8–1: Components used to describe video timings

monitor to begin a new scanline. The interval between the sync pulse and the
start of the next scanline is known as the horizontal retrace.

A complete refresh ends with a lower margin and a final vertical sync pulse, both
timed in scanlines. After receiving the vertical sync pulse, the monitor prepares
for another refresh by moving the electron beam back to the upper left corner.
The time between the start of the lower margin and the end of the subsequent
upper margin is known as the vertical retrace. (This is an ideal time to update
video memory, since the video hardware isn’t updating the display.)

GAMING WITH THE LINUX CONSOLE 329

To fully describe a video mode, then, we need the following pieces of information:

dotclock Dotclock frequency (the time it takes to draw one pixel)

hres Horizontal resolution (in dotclocks)

vres Vertical resolution (in dotclocks)

hsync Horizontal sync pulse length (in dotclocks)

vsync Vertical sync pulse length (in dotclocks)

left Left margin (in dotclocks)

right Right margin (in dotclocks)

upper Upper margin (in scanlines)

lower Lower margin (in scanlines)

We can use this information to calculate another important attribute of a video
mode: its refresh rate. A high-quality video mode should refresh at least 75
times per second to reduce eye strain. Let’s calculate the refresh rate of the
video mode illustrated in Figure 8–1, which has a dotclock frequency of 25.175
MHz (an arbitrary value particular to this mode; these timings are from a
standard video mode database). If there are 25.175 million dotclocks per second,
each dotclock lasts for approximately 39,722 picoseconds (one picosecond is
10−12 seconds). Each complete scanline (including both margins and the sync
pulse), then, takes (48 + 640 + 16 + 96)× 39, 722 = 31, 777, 600 picoseconds to
draw. The entire refresh consists of 33 + 480 + 10 scanlines plus 2 scanlines for
the vertical sync pulse, which comes to a total of 525 scanlines. If each scanline
lasts for 31,777,600 picoseconds, the entire process takes about 0.01668 seconds
to complete, for a refresh rate of 59.9 Hz (usually rounded up to 60 Hz in
documentation). This is not a very good refresh rate, but it’s acceptable for
some applications.

330 CHAPTER 8

The Mode Database

If the current framebuffer device is capable of mode switching and you know the
exact timings for the mode you’d like to set, changing video modes is a matter of
a single ioctl call. You’ll see that in the next example. But finding the right
timings can be a bit of a hassle.

As I already mentioned, the framebuffer device system (more specifically the
fbset utility) keeps a database of valid mode timings in the file /etc/fb.modes.
Although the structure of this file leaves a bit to be desired from a parser-writing
point of view, it’s easy enough to figure out. fb.modes is a plain text database
containing one or more mode sections. Here’s a sample mode section from my
copy of fb.modes:

mode "640x480-60"
D: 25.175 MHz, H: 31.469 kHz, V: 59.94 Hz
geometry 640 480 640 480 8
timings 39722 48 16 33 10 96 2

endmode

Lines beginning with a hash (#) are comments, lines beginning with geometry
specify the mode’s geometry (physical resolution, virtual resolution, and color
depth), and lines beginning with timings specify the mode’s timing parameters.

It is the responsibility of the system administrator (or whoever installed the
fbset utility) to provide correct modes and timings for the local system. The
default mode database distributed with fbset is valid for most video cards, and
in all honesty most people don’t bother to change it. It contains reasonable
values for most video cards and monitors.

fbmodedb.c and fbmodedb.h contain code for parsing /etc/fb.modes. You
can find the code in the listings archive; it’s not interesting enough to include
here.

An Example

We’re ready to set a video mode. We’ll use fbmodedb.c to handle the
/etc/fb.modes database, and the FBIOPUT VSCREENINFO ioctl to convey our
desired mode to the framebuffer driver. Here’s the code:

GAMING WITH THE LINUX CONSOLE 331

Code Listing 8–2 (modeswitch.c)

/* An example of framebuffer mode switching. */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <asm/page.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <asm/page.h>
#include <linux/fb.h>
#include "fbmodedb.h"

int main(int argc, char *argv[])
{

char *fbname;
int fbdev;
struct fb_fix_screeninfo fixed_info;
struct fb_var_screeninfo var_info, old_var_info;
FbModeline *modelist;
FbModeline *selected;
u_int8_t pixel_r, pixel_g, pixel_b;
int x, y;
u_int32_t pixel_value;
void *framebuffer;
int framebuffer_size;
int ppc_fix;

/* Let the user specify an alternate framebuffer
device on the command line. Default to
/dev/fb0. */

if (argc >= 2)
fbname = argv[1];

else
fbname = "/dev/fb0";

printf("Using framebuffer device %s.\n", fbname);

332 CHAPTER 8

/* Open the framebuffer device. */
fbdev = open(fbname, O_RDWR);
if (fbdev < 0) {

printf("Error opening %s.\n", fbname);
return 1;

}

/* Get the variable screen info. */
if (ioctl(fbdev, FBIOGET_VSCREENINFO, &var_info) < 0) {

printf("Unable to retrieve variable screen info: %s\n",
strerror(errno));

close(fbdev);
return 1;

}

/* Back up this info so we can restore it later. */
old_var_info = var_info;

/* Load the modes database. */
modelist = FB_ParseModeDB("/etc/fb.modes");
if (modelist == NULL) {

printf("Unable to load /etc/fb.modes.\n");
close(fbdev);
return 1;

}

/* Switch into a 640x480 mode. Take the first one we find. */
selected = modelist;
while (selected != NULL) {

if (selected->xres == 640 && selected->yres == 480)
break;

selected = selected->next;
}

if (selected == NULL) {
printf("No 640x480 modes found in /etc/fb.modes.\n");
FB_FreeModeDB(modelist);
close(fbdev);
return 1;

}

GAMING WITH THE LINUX CONSOLE 333

/* Copy the timing data into the variable info structure. */
var_info.xres = selected->xres;
var_info.yres = selected->yres;
var_info.xres_virtual = var_info.xres;
var_info.yres_virtual = var_info.yres;
var_info.pixclock = selected->dotclock;
var_info.left_margin = selected->left;
var_info.right_margin = selected->right;
var_info.upper_margin = selected->upper;
var_info.lower_margin = selected->lower;
var_info.hsync_len = selected->hslen;
var_info.vsync_len = selected->vslen;

/* Ask for 16bpp. */
var_info.bits_per_pixel = 16;

/* This is a bitmask of sync flags. */
var_info.sync = selected->hsync * FB_SYNC_HOR_HIGH_ACT +

selected->vsync * FB_SYNC_VERT_HIGH_ACT +
selected->csync * FB_SYNC_COMP_HIGH_ACT +
selected->extsync * FB_SYNC_EXT;

/* This is a bitmask of mode attributes. */
var_info.vmode = selected->laced * FB_VMODE_INTERLACED +

selected->doublescan * FB_VMODE_DOUBLE;

var_info.activate = FB_ACTIVATE_NOW;

/* Set the mode with an ioctl. It may not accept the exact
parameters we provide, in which case it will edit the
structure. If our selection is completely unacceptable,
the ioctl will fail. */

if (ioctl(fbdev, FBIOPUT_VSCREENINFO, &var_info) < 0) {
printf("Unable to set variable screen info: %s\n",

strerror(errno));
close(fbdev);
return 1;

}

printf("Mode switch ioctl succeeded.\n");
printf("Got resolution %ix%i @ %ibpp.\n",

var_info.xres,

334 CHAPTER 8

var_info.yres,
var_info.bits_per_pixel);

/* Retrieve the fixed screen info. */
if (ioctl(fbdev, FBIOGET_FSCREENINFO, &fixed_info) < 0) {

printf("Unable to retrieve fixed screen info: %s\n",
strerror(errno));

close(fbdev);
return 1;

}

/* Now memory-map the framebuffer.
According to the SDL source code, it’s necessary to
compensate for a buggy mmap implementation on the
PowerPC. This should not be a problem for other
architectures. (This fix is lifted from SDL_fbvideo.c) */

ppc_fix = (((long)fixed_info.smem_start) -
((long) fixed_info.smem_start & ~(PAGE_SIZE-1)));

framebuffer_size = fixed_info.smem_len + ppc_fix;
framebuffer = mmap(NULL,

framebuffer_size,
PROT_READ | PROT_WRITE,
MAP_SHARED,
fbdev,
0);

if (framebuffer == NULL) {
printf("Unable to mmap framebuffer: %s\n",

strerror(errno));
close(fbdev);
return 1;

}

printf("Mapped framebuffer.\n");

if ((fixed_info.visual == FB_VISUAL_TRUECOLOR) &&
(var_info.bits_per_pixel == 16)) {
/* White pixel. */
pixel_r = 0xFF;
pixel_g = 0xFF;
pixel_b = 0xFF;

GAMING WITH THE LINUX CONSOLE 335

/* We used this same pixel-packing technique
back when we were working with SDL. */

pixel_value = (((pixel_r >> (8-var_info.red.length)) <<
var_info.red.offset) +
((pixel_g >> (8-var_info.green.length)) <<
var_info.green.offset) +
((pixel_b >> (8-var_info.blue.length)) <<
var_info.blue.offset));

/* Draw a pixel in the center of the screen. */
x = var_info.xres / 2 + var_info.xoffset;
y = var_info.yres / 2 + var_info.yoffset;

*((u_int16_t *)framebuffer +
fixed_info.line_length/2 * y + x) =

(u_int16_t)pixel_value;

} else {
printf("Unsupported visual. (Asked for 16bpp.)\n");
pixel_value = 0;

}

/* Wait a few seconds. */
sleep(5);

/* Restore the old video mode. */
old_var_info.activate = FB_ACTIVATE_NOW;
if (ioctl(fbdev, FBIOPUT_VSCREENINFO, &old_var_info) < 0) {

printf("Warning: Unable to restore video mode: %s\n",
strerror(errno));

}

/* Close the fbdev. */
munmap(framebuffer, framebuffer_size);
close(fbdev);

return 0;
}

We start off by opening the framebuffer device and reading information about
the display, just as we did in Listing 8–1. Instead of trying to adapt to the

336 CHAPTER 8

existing video mode, however, we try to force a 640x480, 16-bit mode based on
the mode data in /etc/fb.modes.

The routines in fbmodedb.c make this easy.1 FB ParseModeDB takes the name
of a framebuffer mode database file (almost always /etc/fb.modes) and returns
a linked list of FbModeline mode structures (defined in fbmodedb.h). To set
one of these modes, we simply have to copy the FbModeline values into a
fb var screeninfo structure and call an appropriate ioctl. If the ioctl
succeeds, we’re in business. If it fails, we might have better luck with a different
mode. In this program, though, we just exit on failure.

After we plot a pixel and wait a few seconds for the user to observe our
masterpiece, we restore the old mode by calling the FBIOPUT VSCREENINFO ioctl
on the original fb var screeninfo structure (with the FB ACTIVATE NOW flag
set). This should never fail, since those values were reported by the driver in the
first place, and they are known to be valid.

Note that this program is much simpler now that we support only 16-bit Hicolor
drawing. Writing cross-mode video code is tedious and time-consuming.
However, this restriction means that the user must have a framebuffer capable of
switching to a 16-bit mode; VESA framebuffers cannot switch modes at all.

You should compile this program together with fbmodedb.c:

$ gcc -W -Wall -pedantic fbmodedb.c modeswitch.c -o modeswitch

This whole process feels a bit “messy,” and truth be told, it has a rather high
failure rate. Another approach to mode switching is to shell to the fbset program
(with popen), passing the desired mode on the command line. For instance,
popen("fbset -g 1024 768 1024 768 16", "r") would attempt to set a
1024x768, 16-bit video mode. Be sure to close popen pipes with pclose. The
return code of the program is reported by pclose.

The only other problem is how to restore the original video mode when you’re
finished. One possible option is to invoke the fbset utility to enter a video mode

1 Permission is granted to use fbmodedb.c and fbmodedb.h in any program, so long as
credit is given in the source code. I originally wrote it for inclusion in SDL.

GAMING WITH THE LINUX CONSOLE 337

and to use a backed-up copy of the fb var screeninfo structure to restore the
original mode later on.

Use the Source, Luke!

The Linux framebuffer interface is not very well documented. In order to gain a
clear enough understanding of the API to write this section of the book, I had to
read through quite a bit of source code. It was actually rather enjoyable; blazing
a trail through uncharted and undocumented territory is what programming is
all about.

The best framebuffer reference I came across is the SDL source code. Its
framebuffer-handling routines are well written, widely tested, and fairly
comprehensive. Although it certainly is possible to pick up framebuffer
programming by studying the fb.h header and the small amount of
documentation included with the kernel, SDL made the overall structure of the
interface much easier to understand. If you find yourself in a difficult or obscure
coding situation, look for some code that already does what you’re trying to
accomplish. You just might save yourself a considerable amount of time.

Console Input Handling

In previous chapters we’ve used SDL to manage our input device handling. With
the framebuffer console, however, we’re distant from such creature comforts.
Therefore, we need to develop alternate means of accessing the keyboard and
other input devices.

First things first: keyboard input. We can accomplish this by putting the
terminal in raw mode and setting a few attributes. It’s ugly, but it works. The
next issue is mouse support, which comes from the GPM program (present on
nearly every Linux system as a standard console mouse interface). We’ll look at
each of these briefly and leave a longer dissertation on the subject to the kernel’s
header files and the SDL source code.

338 CHAPTER 8

Keyboard Input from a Terminal

When a program runs under the framebuffer console, it is really running under a
specially configured Linux virtual terminal (VT) and is therefore subject to
normal terminal keyboard handling. This is fine if we just want to read lines of
text (with fgets, for instance), but games require much more sophisticated
input processing than this. Fortunately, it is possible to reconfigure virtual
terminals (with ioctl calls) to gain nearly direct access to keyboard scancodes.

This can get hairy, so we’ll delve only into the basics here. If your
input-handling needs are more complex, you might try either SDL’s input code
or the libgii library (an input device interface meant to complement the GGI
graphics library).

Scancode Madness

At the hardware level, a keyboard is nothing but a set of buttons connected to a
grid, a small microcontroller for detecting button presses, and a serial cable to
talk to the computer. When you press a key, the microcontroller detects a short
in its grid and generates a kscan (keyboard scan) code. It sends this code over
the wire to the computer’s motherboard, where another microcontroller
translates it into one or more scancode bytes. The operating system reads
scancodes from the motherboard’s keyboard controller through port 60h.

The X Window System deals with scancodes directly (they’re easy to get from
the kernel if you’re so inclined), but the kernel can optionally take the process a
step further by translating scancodes into keycodes. Keycodes are eight-bit
values, in which the lower seven bits indicate the key (no problem, since most
keyboards contain fewer than 128 keys) and the eighth bit indicates a press or a
release.

So far this seems quite easy to handle; where does the madness come in? The
problem lies in associating values in the local character set (ASCII, for instance)
with keycodes. Even though we may not need to generate text in response to key
presses,2 we probably do need to know which of the 128 possible keycodes

2 If you do need to generate text in response to key presses, it might be a good idea to set the

GAMING WITH THE LINUX CONSOLE 339

corresponds to, say, the left arrow key. This is a particular hassle because the
keyboard’s modifier keys (Shift, Alt, Ctrl, etc) can affect the generated symbol.
There are eight possible modifiers, and any combination of them can result in a
different symbol for a key press. Each of these keycode/modifier combinations is
associated with a keymap that contains the character to generate for that key
press. In the general case, we have to deal with 28 = 256 possible keymaps if we
want to generate local character set codes for each keycode (though most games
can get away with using only the first keymap, since they usually just need to
uniquely identify each key, not generate printable text). The kernel provides an
ioctl for looking up the symbol associated with a particular key on a particular
map.

The Raw Deal

The kernel provides three main keyboard operating modes: xlate, mediumraw,
and raw. The xlate mode is the default mode, which is completely unsuitable for
gaming because it reports only key presses and ignores releases (thus making it
impossible to maintain a keyboard state table à la SDL GetKeyState).
Mediumraw mode reports keycode data for both presses and releases. Finally,
raw mode provides direct scancode data. The best mode for gaming is probably
mediumraw mode, since it informs us of both presses and releases and saves us
from having to interpret scancode sequences (which are a bit obtuse). If you’re
trying to port an old DOS game to Linux, raw mode might be a better bet (since
it’ll give you the same scancodes as these games used to read from the hardware
directly).

To put the keyboard in mediumraw mode, we first need its file descriptor. This
is actually the file descriptor of the current TTY (which needs to be a virtual
terminal) or system console. After we locate a suitable file descriptor (see the
example code), we can send the KDSKBMODE ioctl with an argument of
K MEDIUMRAW (for raw mode, you’d use K RAW). Note that this doesn’t affect the
keyboard itself in any way—it just adjusts the kernel’s reporting of key events.

keyboard back into xlate mode (leaving line buffering disabled; see the tcsetattr call in
Listing 8–3). You can do full translation yourself, but there are lots of annoying quirks to
deal with.

340 CHAPTER 8

In mediumraw mode, each key on the keyboard (including the left and right
Shift, Ctrl, and Alt keys) generates a unique keycode on both presses and
releases. We can read this data as bytes from the terminal’s file descriptor.

Listing 8–3 demonstrates putting the keyboard driver into mediumraw mode and
reading keycode data. This program is very similar to the showkey program
included with most Linux distributions. (In fact, the source to showkey was
helpful to me in figuring out how this mess works.)

Code Listing 8–3 (keycodes.c)

/* Simple keycode viewer, very similar to the showkey program.
Run it from a virtual terminal. If something goes wrong and
you can’t use your console, press Alt-SysRq-R to get the
keyboard out of raw mode (this assumes Magic SysRq is
compiled into your kernel -- it’s very useful!)
This code was not derived from showkey, but credit goes to
its authors for guidance. */

#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <termios.h>
#include <sys/ioctl.h>
#include <linux/keyboard.h>
#include <linux/kd.h>

/* Checks whether or not the given file descriptor is associated
with a local keyboard.
Returns 1 if it is, 0 if not (or if something prevented us from
checking). */

int is_keyboard(int fd)
{

int data;

/* See if the keyboard driver groks this file descriptor. */
data = 0;
if (ioctl(fd, KDGKBTYPE, &data) != 0)

return 0;

GAMING WITH THE LINUX CONSOLE 341

/* In current versions of Linux, the keyboard driver always
answers KB_101 to keyboard type queries. It’s probably
sufficient to just check whether the above ioctl succeeds
or fails. */

if (data == KB_84) {
printf("84-key keyboard found.\n");
return 1;

} else if (data == KB_101) {
printf("101-key keyboard found.\n");
return 1;

}

/* Sorry, this didn’t check out. */
return 0;

}

int main()
{

struct termios old_term, new_term;
int kb = -1; /* keyboard file descriptor */
char *files_to_try[] = {"/dev/tty", "/dev/console", NULL};
int old_mode = -1;
int i;

/* First we need to find a file descriptor that represents the
system’s keyboard. This should be /dev/tty, /dev/console,
stdin, stdout, or stderr. We’ll try them in that order.
If none are acceptable, we’re probably not being run
from a VT. */

for (i = 0; files_to_try[i] != NULL; i++) {

/* Try to open the file. */
kb = open(files_to_try[i], O_RDONLY);
if (kb < 0) continue;

/* See if this is valid for our purposes. */
if (is_keyboard(kb)) {

printf("Using keyboard on %s.\n", files_to_try[i]);
break;

}

342 CHAPTER 8

close(kb);
}

/* If those didn’t work, not all is lost. We can try the
3 standard file descriptors, in hopes that one of them
might point to a console. This is not especially likely. */

if (files_to_try[i] == NULL) {

for (kb = 0; kb < 3; kb++) {
if (is_keyboard(i)) break;

}

printf("Unable to find a file descriptor associated with "\
"the keyboard.\n" \
"Perhaps you’re not using a virtual terminal?\n");

return 1;

}

/* Find the keyboard’s mode so we can restore it later. */
if (ioctl(kb, KDGKBMODE, &old_mode) != 0) {

printf("Unable to query keyboard mode.\n");
goto error;

}

/* Adjust the terminal’s settings. In particular, disable
echoing, signal generation, and line buffering. Any of
these could cause trouble. Save the old settings first. */

if (tcgetattr(kb, &old_term) != 0) {
printf("Unable to query terminal settings.\n");
goto error;

}

new_term = old_term;
new_term.c_iflag = 0;
new_term.c_lflag &= ~(ECHO | ICANON | ISIG);

/* TCSAFLUSH discards unread input before making the change.
A good idea. */

if (tcsetattr(kb, TCSAFLUSH, &new_term) != 0) {
printf("Unable to change terminal settings.\n");

}

GAMING WITH THE LINUX CONSOLE 343

/* Put the keyboard in mediumraw mode. */
if (ioctl(kb, KDSKBMODE, K_MEDIUMRAW) != 0) {

printf("Unable to set mediumraw mode.\n");
goto error;

}

printf("Reading keycodes. Press Escape (keycode 1) to exit.\n");

for (;;) {
unsigned char data;

if (read(kb, &data, 1) < 1) {
printf("Unable to read data. Trying to exit nicely.\n");
goto error;

}

/* Print the keycode. The top bit is the pressed/released
flag, and the lower seven are the keycode. */

printf("%s: %2Xh (%i)\n",
(data & 0x80) ? "Released" : " Pressed",
(unsigned int)data & 0x7F,
(unsigned int)data & 0x7F);

if ((data & 0x7F) == 1) {
printf("Escape pressed.\n");
break;

}
}

/* Shut down nicely. */
printf("Exiting normally.\n");

ioctl(kb, KDSKBMODE, old_mode);
tcsetattr(kb, 0, &old_term);

if (kb > 3)
close(kb);

return 0;

error:

344 CHAPTER 8

printf("Cleaning up.\n");
fflush(stdout);

/* Restore the previous mode. Users hate it when they can’t
use the keyboard. */

if (old_mode != -1) {
ioctl(kb, KDSKBMODE, old_mode);
tcsetattr(kb, 0, &old_term);

}

/* Only bother closing the keyboard fd if it’s not stdin, stdout,
or stderr. */

if (kb > 3)
close(kb);

return 1;
}

We begin by searching for a file descriptor that can talk to the keyboard driver.
For each candidate, we query the keyboard type with the KDGKBTYPE ioctl. This
will fail if the file descriptor does not represent a local keyboard. Once we have a
usable file descriptor, we use tcgetattr and tcsetattr to turn off buffering,
echoing, and signal generation. This puts the terminal into a much simpler
mode—anything that comes in will show up as input immediately (whereas the
input system would normally provide a simple line editing mode and print each
character to the terminal automatically). We complete our setup phase by
switching the keyboard driver into mediumraw mode with the KDSKBMODE ioctl.

Now we simply read and print data from the terminal’s file descriptor, using a
mask of 0x80 (10000000 in binary) to distinguish key presses from releases. We
can’t really infer anything about the meaning of any particular key, except that
the Escape key is in all likelihood mapped as 1. Users can remap their keyboards
to their liking, but in almost all cases the nonletter keys will have the same
keycodes as ASCII mappings. Letters are a bit of a challenge, though, since
standard ASCII doesn’t account for accents, umlauts, and other
language-specific variations of characters. I’ll demonstrate one approach to the
problem in the next example.

When the user presses the Escape key (or whatever keycode 1 has been
remapped to), we exit mediumraw mode, restore the old terminal attributes, and

GAMING WITH THE LINUX CONSOLE 345

exit. That’s all there is to reading keycodes! In a game, you might want to
collect input in a separate thread, or perhaps use select to avoid blocking on
the read call. But the mechanics of input collection are quite simple.

Avoiding Console Lockups

At some point in your game development forays, you’ll have a program
crash without cleanly restoring the keyboard’s state. It happens to
everyone. Fortunately, Linux recently (as of version 2.2, at least) added
a “magic SysRq” feature for regaining control of the system in such
emergencies. If this feature is compiled into your kernel (and I strongly
recommend it), you can switch your keyboard driver back to xlate mode
by pressing Alt-SysRq-R. You can get a list of other SysRq functions
with Alt-SysRq-Q.

The only real reason to not enable the Magic SysRq feature is local
security, but this is not a problem for most workstations. If someone
can get physical access to your machine, security is already defeated.

Interpreting Keycodes

Keycodes are of little use if we don’t know which keys they correspond to on the
actual keyboard. It’s easy to just write down the codes for whatever keymap you
happen to be using, but chances are they’ll be different on a foreign keymap.
Fortunately, the kernel has a record of what goes where, and we can query this
with (yet another) ioctl. The next example extends Listing 8–3 with key
identification. It doesn’t handle everything on the keyboard, but the rest should
be simple enough to add. This code should work in any locale that doesn’t
require Unicode (UTF-8). It would be possible to add that translation as well,
but it would make the code considerably more complex. SDL performs Unicode
translation, if you’re in need of a reference.

Code Listing 8–4 (keynames.c)

/* Our key-mapping table. This will contain printable characters
for some keys. */

char keymap[NR_KEYS];

346 CHAPTER 8

/* We’ll assign names to certain keys. */
char *keynames[NR_KEYS];

/* Locates the arrow keys and the Escape key in the kernel’s keymaps.
Fills in the appropriate globals. */

void init_keymap(int kb)
{

struct kbentry entry;
int keycode;

for (keycode = 0; keycode < NR_KEYS; keycode++) {

keymap[keycode] = ’ ’;
keynames[keycode] = "(unknown)";

/* Look up this key. If the lookup fails, ignore.
If it succeeds, KVAL(entry.kb_value) will be the
8-bit representation of the character the kernel
has mapped to this keycode. */

entry.kb_table = 0;
entry.kb_index = keycode;
if (ioctl(kb, KDGKBENT, &entry) != 0) continue;

/* Is this a printable character?
NOTE: we do not handle Unicode translation here.
See the SDL source (SDL_fbevents.c) for
an example of how this can be done.

Add in KT_LATIN and KT_ASCII if you want a wider
range of characters. They’re omitted here because
some characters do not print cleanly. */

if (KTYP(entry.kb_value) == KT_LETTER) {
keymap[keycode] = KVAL(entry.kb_value);
keynames[keycode] = "(letter)";

}

/* Since the arrow keys are useful in games, we’ll pick
them out of the swarm. While we’re at it, we’ll grab
Enter, Ctrl, and Alt. */

if (entry.kb_value == K_LEFT)
keynames[keycode] = "Left arrow";

GAMING WITH THE LINUX CONSOLE 347

if (entry.kb_value == K_RIGHT)
keynames[keycode] = "Right arrow";

if (entry.kb_value == K_DOWN)
keynames[keycode] = "Down arrow";

if (entry.kb_value == K_UP)
keynames[keycode] = "Up arrow";

if (entry.kb_value == K_ENTER)
keynames[keycode] = "Enter";

if (entry.kb_value == K_ALT)
keynames[keycode] = "Left Alt";

if (entry.kb_value == K_ALTGR)
keynames[keycode] = "Right Alt";

}

/* Manually plug in keys that the kernel doesn’t
normally map correctly. */

keynames[29] = "Left control";
keynames[97] = "Right control";
keynames[125] = "Left Linux key"; /* usually mislabelled */
keynames[126] = "Right Linux key"; /* with a Windows(tm) logo */
keynames[127] = "Application key";

}

The main addition to this program is the init keymaps function, so we haven’t
reprinted the rest of the program. This function uses the KDGKBENT ioctl to
look up information about every keycode in the first keymap. (If we were doing
Unicode translation, we’d need to look at the other 255 keymaps as well and
perform lookups in the context of which modifiers were currently pressed.) For
characters we identify as printable (letters), we record the kernel-provided
character value in a table. We also attempt to identify a few other important
keys and label them with strings. The kernel inexplicably fails to differentiate
the left and right Ctrl keys (it treats them as a single keysym, even though they
have different keycodes), so we handle these and other oddball keys by hand.

Hopefully, you’ve now seen enough of the Linux console keyboard interface to
implement keyboard input for framebuffer console games. As a closing remark,
I’ll suggest that locking up the user’s keyboard is a very bad idea, and so it
would probably be wise to install signal handlers and an atexit callback to
return the keyboard to xlate mode in a pinch. If you’re going to write buggy
code at any point, please try to keep it out of your console input subsystem!

348 CHAPTER 8

Warning

When the keyboard driver is in the raw or mediumraw modes, it does
not recognize the Alt+Fn combinations normally used for switching
between virtual terminals. Since games often run for a long time, it’s
essential that you implement this ability yourself. This is left as an
exercise to the reader. (Hint: Use the VT ACTIVATE ioctl to switch
between virtual terminals, and VT WAITACTIVE to wait for the user to
switch back to your console. The kernel will handle video mode
switching, but it won’t necessarily preserve the contents of the screen or
the color palette. If you get stuck, take a look at SDL fbevents.c in
the SDL source.)

Mouse Input with GPM

Keyboard input is sufficient for getting your feet wet with fbcon game
programming, but more advanced projects usually require mouse input as well.
There are two options: implement a complete mouse driver yourself (reading and
processing data packets for multiple types of mice) or require the user to run the
GPM console mouse server. I recommend the latter—it comes with nearly every
Linux distribution, and it supports almost every common type of mouse. SDL
does both, and so it can support GPM’s wide variety of hardware and still work
on systems without GPM.

Programming mouse hardware is beyond our present scope. It’s simple enough
to implement in a dozen or so lines of code, but the details vary between mouse
types. If you’re interested in doing this, I refer you once again to SDL’s source
code. The GPM source might also be of interest.

GPM is a small daemon (detached background process) that’s usually loaded in
a system’s startup scripts. Once GPM is activated, it decodes mouse input and
makes this data available to other programs (GPM clients) through the libgpm
client library. Depending on your application’s needs, GPM can operate at two
levels of abstraction. The lower-level interface provides simple mouse event
polling. In this mode the application uses Gpm GetEvent to retrieve Gpm Event
structures that contain information about the mouse’s current state.
Gpm GetEvent blocks until data is available, but an application can use the
select system call to check for data before it enters the blocking read.

GAMING WITH THE LINUX CONSOLE 349

In case this simple event interface doesn’t fit your application’s needs, GPM also
provides a high-level callback interface based on regions of interest (ROIs). This
interface is primarily intended for adding mouse support to existing character
mode applications, and it’s not particularly relevant to game programming. The
mechanism is discussed in detail in the documentation distributed with GPM.

Both of these interfaces are supplied by the gpm.h header and the libgpm client
library.

Listing 8–5 shows how to read mouse input with GPM.

Code Listing 8–5 (mouse.c)

/* Very basic example of reading mouse data from GPM. */

#include <sys/time.h>
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <stdio.h>
#include <gpm.h>

/* Signal handler and a global variable for
detecting Ctrl-C and shutting down. */

int quit = 0;

void sighandler(int sig)
{

quit = 1;
}

int main(int argc, char *argv[])
{

int gpm;
Gpm_Connect gpm_connect;
Gpm_Event gpm_event;
char spinner[] = "|/-\\";

350 CHAPTER 8

int spinner_pos = 0;

/* Exit on Ctrl-C. */
signal(SIGINT, sighandler);

/* This specifies the events we’re interested in. */
gpm_connect.eventMask = GPM_MOVE | GPM_UP | GPM_DOWN;

/* Don’t give a "default" treatment to any events. */
gpm_connect.defaultMask = 0;

/* These are used for multiple clients on a single console. */
gpm_connect.minMod = 0;
gpm_connect.maxMod = 0xFFFF;

/* Connect to the GPM server. */
gpm = Gpm_Open(&gpm_connect, 0);
if (gpm < 0) {

printf("Unable to connect to GPM.\n");
return 1;

}

/* Now read mouse events until the user presses Ctrl-C. */
while (!quit) {

int result;
struct timeval tv;
fd_set fds;

/* The return value of Gpm_Open is a file descriptor,
and there’s no point in polling for input if there’s
no data waiting on this descriptor. We use select to
wait for data. */

FD_ZERO(&fds);
FD_SET(gpm, &fds);
tv.tv_sec = 0;
tv.tv_usec = 10000; /* Brief timeout to slow things down

a bit. This would be zero in a
game loop. */

result = select(gpm+1, &fds, NULL, NULL, &tv);

if (result < 0) {

GAMING WITH THE LINUX CONSOLE 351

if (errno == EINTR) continue; /* EINTR is not bad. */
printf("select failed: %s\n",

strerror(errno));
break;

}

if (result > 0) {
/* Get the next mouse event. */
if (Gpm_GetEvent(&gpm_event) != 1) {

printf("Unable to read an event.\n");
break;

}

/* Print out the event.
X and Y are the coordinates of the mouse pointer.
DX and DY are the relative motion of the mouse since
the last event. Games are probably more interested in
this than the actual position (especially since the
X and Y coordinates are constrained to an arbitrary
range).
Buttons gives a bitmask of pressed mouse buttons. */

printf("X: %4i Y: %4i DX: %4i DY: %4i Buttons: %3i\n",
gpm_event.x, gpm_event.y,
gpm_event.dx, gpm_event.dy,
gpm_event.buttons);

} else {
/* If no data is ready, burn time with a dumb little

spinning character. */
printf("%c\r", spinner[spinner_pos++]);
fflush(stdout);
if (spinner[spinner_pos] == ’\0’) spinner_pos = 0;

}

}

/* Shut down the GPM connection. */
Gpm_Close();

return 0;
}

352 CHAPTER 8

This program is almost self-explanatory, but a few comments are necessary.
GPM’s client library is absurdly flexible. I can’t fathom a game-related use for
most of its functionality (and indeed we won’t scratch the surface of most of it).
A lot of effort went into making multiple GPM clients on the same console
interact properly. GPM programming gets a lot simpler when you realize that
you actually need only three of its API functions and that you can ignore most
of the options associated with them.

The Gpm Open function opens a new connection to GPM. An application can
connect to GPM as many times as it wants (they grow as a stack), but we only
need one connection. Gpm Open takes a Gpm Connect structure, which contains
information about the events and modifier keys this connection should report.
eventMask tells GPM which events to report. There are two types of GPM
events: raw and cooked. Raw events are basic mouse actions, such as motion and
button clicks. We want to hear about all of these. Cooked events are higher-level
interpreted actions, such as double and triple clicks. These are of less interest.
An event mask of GPM MOVE | GPM UP | GPM DOWN asks GPM to report all
motion, button presses, and button releases, but nothing else. We set minMod
and maxMod to 0 and 65,535, respectively. GPM has the ability to multiplex
mouse input according to modifiers (Ctrl, Alt, and so on), but we can ignore this
because we want events regardless of which keys are pressed.

Gpm Open returns a file descriptor connected to the GPM server. The protocol
spoken over this file descriptor doesn’t matter; the GPM library handles that for
us. But this is a valid UNIX file descriptor, and we can do all sorts of interesting
things with it, particularly select. See the code’s comments to understand how
this fits in.

Once we’re connected to the GPM server, we can read mouse events with
Gpm GetEvent. This function reports any mouse events that match the
eventMask we supplied to Gpm Open. With the event mask we mentioned earlier,
Gpm GetEvent will return a new event for just about anything that happens to
the mouse. Be aware that Gpm GetEvent is a blocking function; it waits until an
event is available before it returns.

Finally, Gpm Close disconnects from the GPM daemon. If multiple connections
were open, this would remove the most recent one from the stack. That’s all
there is to it, unless you want GPM to help with fullscreen text-based interface
management. However, unless you’re trying to write the next great Nethack
clone, I doubt this will be of interest.

GAMING WITH THE LINUX CONSOLE 353

Warning

GPM is released under the GNU General Public License. This means
that non-GPL applications cannot legally link against the libgpm
library. If you need console mouse support for an application that is not
free software, you’ll need to support the devices yourself or use GPM’s
repeater option (which translates the mouse’s protocol to the fairly
simple MSC protocol and makes it available through a named pipe—see
the gpm(8) manpage).

The GNU GPL may seem like a serious nuisance, but just like the
Prime Directive in Star Trek, it serves a higher purpose than may be
immediately apparent. I’m not here to preach about the virtues of free
software, though, so I’ll leave it at that.

This concludes our discussion of framebuffer console programming. If you
survived this chapter, you now know how to write games for the Linux
framebuffer console, complete with fast video, keyboard, and mouse processing. I
still recommend SDL for most things, but it’s fun to do things at a lower level
from time to time.

In the next chapter, we’ll bring everything from Chapters 4, 5, and 6 together
into a final, playable version of Penguin Warrior. We’ll finally add weapons,
shields, and score counters. At long last, Penguin Warrior will progress from a
testbed to a full multiplayer game!

Chapter 9

Finishing Penguin Warrior

Over the course of this book, we have developed a small Linux game called
Penguin Warrior. Right now, however, it lacks many of the features that would
make it an enjoyable game. Players can fly around a small world, but there’s not
much else to do. In this chapter we will turn Penguin Warrior into a complete,
playable video game. Most of the machinery is in place already, so this will be a
rather short discussion. In the process of finishing Penguin Warrior, we’ll touch
on some topics that don’t really fit anywhere else. We’ll start by adding weapons
to the game.

Adding Weapons

What’s a parallaxing shooter without weapons? The ships in Penguin Warrior
need some phaser cannons. We’ve already added the requisite support to the
network and audio subsystems, so this feature won’t be difficult to add. We’ll
need the following:

• A routine to draw a phaser beam to the framebuffer. We’ll use a beam
weapon rather than a projectile weapon. Beams look neat, and they
require less bookkeeping than projectiles.

• Collision detection code to determine whether a phaser beam hits its
target. This will involve solving a quadratic equation for the distance

356 CHAPTER 9

between the ray and the center of the target. If this distance is less than
the approximate radius of the object, the routine will report a hit.

• Code to limit each player’s rate of fire. We obviously don’t want players to
sit in one place and hold down the fire button for a continuous revolving
death ray. It’s annoying enough when robots do this in the game
MindRover; we won’t allow this in Penguin Warrior.

We’ll address each of these issues in turn.

Drawing Phasers

For our purposes, a phaser beam is a ray (that is, a line that starts at a certain
point and continues forever in a particular direction).1 To draw these Penguin
phaser beams, we’ll need a general-purpose line-drawing routine.

How should we go about drawing a line between two points on the framebuffer?
It may not seem like a difficult problem at a glance, but doing it quickly is a bit
of a trick. From the given starting point, we need to iterate across the
framebuffer in steps so that we land exactly at the ending coordinate. At each
step, we draw one pixel. The challenge is to do this without drawing the same
point more than once and without leaving holes in the line. One possible
algorithm is as follows:

• Determine which axis has the larger span. This is the major axis, and the
other is the minor axis. A mostly vertical line, for instance, has a vertical
major axis and a horizontal minor axis.

• Calculate the ratio r = minor
major , accounting for the special case where the

major axis span is zero.

• Iterate from the starting point to the ending point. For each step, move
one pixel in the major direction and r pixels in the minor direction. (r will

1 The television documentary Star Trek tells us that a phaser is really a special type of
particle beam, but we’ll forgo that bit of realism for now.

FINISHING PENGUIN WARRIOR 357

be less than 1, so this needs to be done with floating-point math.) Plot a
pixel at each step.

This algorithm works (code it up if you wish), but it’s not very fast.
Performance might be acceptable if you replace the floating-point math with
fixed point (a useful technique that we leave to other sources), but there’s a
better way to draw lines.

Let’s analyze our algorithm. At each step, we move one pixel in the major
direction, and r = minorspan

majorspan pixels in the minor direction. The method we’ve
just outlined calculates r at the start of the routine and repeatedly adds it to the
coordinate of the minor axis. This floating-point operation is one of the major
costs of the algorithm, and we’d like to get rid of it if at all possible.2

To optimize this algorithm out of the loop, we need to look at the nature of
division. Suppose you want to divide 15 by 4. An obvious approach is to simply
add up 4s until you break 15, then take 1 less than that number as your answer
(which in this case is 3, with a remainder of 3). This is called incremental
division, and we can leverage it for faster line drawing.

At each step along the line’s major axis, we’ll perform one step of incremental
division by adding the line’s minor span to a running total. When this total
exceeds the span of the major axis, we’ll take one step along the minor axis and
subtract the major span from the total. With variables, the algorithm looks
something like this:

1. Set x and y to the starting coordinates, major and minor to the major
and minor spans, and sum to 0.

2. Draw a pixel at (x, y).

3. Add 1 to the coordinate of the major axis (x or y).

2 Actually, the addition is rather cheap on today’s processors. The killer is the inevitable
conversion of the floating-point coordinate to an integer at each step. To be perfectly
honest, today’s processors are fast enough that you could get away with using this algorithm
in a game. But we can do better.

358 CHAPTER 9

4. Add minor to sum.

5. If sum ≥ major, add 1 to the coordinate of the minor axis (x or y) and
subtract major from sum. (By subtracting major instead of setting sum
to 0, we preserve the remainder. This is important.)

6. If (x, y) has reached the final coordinate, plot the last pixel and exit.
Otherwise, go back to step 2.

This is called the Bresenham line algorithm, and variants of this algorithm are in
wide use today. The key advantage of this algorithm is that it uses purely
integer math and thereby avoids costly floating-point-to-integer conversions.
Other texts frequently present this algorithm at more of a conceptual level
(labeling sum as error and describing it as the deviation of the plotted pixels
from the true path of the line), but I find these descriptions somewhat confusing.

Listing 9–1 implements the Bresenham algorithm with SDL.

Code Listing 9–1 (bresline.c)

/* Example of Bresenham line drawing with SDL. */

#include <SDL/SDL.h>
#include <stdlib.h>
#include <stdio.h>

/* Draws a line of the given color on surf from (x0, y0)
to (x1, y1). Does not perform clipping against the
edges of the surface.
Uses the Bresenham line drawing algorithm. */

void DrawLine16(SDL_Surface *surf, int x0, int y0,
int x1, int y1, Uint16 color)

{
Uint16 *buffer;
int drawpos;
int xspan, yspan;
int xinc, yinc;
int sum;
int i;

FINISHING PENGUIN WARRIOR 359

/* If we need to lock this surface before drawing
pixels, do so. */

if (SDL_MUSTLOCK(surf)) {
if (SDL_LockSurface(surf) < 0) {

printf("Error locking surface: %s\n",
SDL_GetError());

abort();
}

}

/* Get the surface’s data pointer. */
buffer = (Uint16 *)surf->pixels;

/* Calculate the x and y spans of the line. */
xspan = x1-x0+1;
yspan = y1-y0+1;

/* Figure out the correct increment for the major axis.
Account for negative spans (x1 < x0, for instance). */

if (xspan < 0) {
xinc = -1;
xspan = -xspan;

} else xinc = 1;

if (yspan < 0) {
yinc = -surf->pitch/2;
yspan = -yspan;

} else yinc = surf->pitch/2;

i = 0;
sum = 0;

/* This is our current offset into the buffer. We use this
variable so that we don’t have to calculate the offset at
each step; we simply increment this by the correct amount.

Instead of adding 1 to the x coordinate, we add one to drawpos.
Instead of adding 1 to the y coordinate, we add the surface’s
pitch (scanline width) to drawpos. */

drawpos = surf->pitch/2 * y0 + x0;

360 CHAPTER 9

/* Our loop will be different depending on the
major axis. */

if (xspan < yspan) {

/* Loop through each pixel along the major axis. */
for (i = 0; i < yspan; i++) {

/* Draw the pixel. */
buffer[drawpos] = color;

/* Update the incremental division. */
sum += xspan;

/* If we’ve reached the dividend, advance
and reset. */

if (sum >= yspan) {
drawpos += xinc;
sum -= yspan;

}

/* Increment the drawing position. */
drawpos += yinc;

}

} else {

/* See comments above. This code is equivalent. */
for (i = 0; i < xspan; i++) {

buffer[drawpos] = color;

sum += yspan;

if (sum >= xspan) {
drawpos += yinc;
sum -= xspan;

}

drawpos += xinc;
}

}

FINISHING PENGUIN WARRIOR 361

/* Unlock the surface. */
SDL_UnlockSurface(surf);

}

int main()
{

SDL_Surface *screen;

/* Fire up SDL. */
if (SDL_Init(SDL_INIT_VIDEO) < 0) {

printf("Error initializing SDL: %s\n", SDL_GetError());
return 1;

}
atexit(SDL_Quit);

/* Set a 640x480 video mode. Force 16-bit hicolor. */
if ((screen = SDL_SetVideoMode(640, 480, 16, 0)) == NULL) {

printf("Error setting a 640x480, 16-bit video mode: %s\n",
SDL_GetError());

return 1;
}

/* Draw a diagonal line across the screen. */
DrawLine16(screen, 0, 0, 639, 479, 0xFFFF);
SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Pause. */
SDL_Delay(5000);

return 0;
}

I would include a screen shot, but there’s not much to see (it looks very much
like a white line). If you don’t understand the exact mechanics of the algorithm,
don’t worry. Bresenham is the sort of algorithm you can implement from canned
code without too much trouble. Of course, it’s always best to understand exactly
what your code is doing, so I suggest picking up a book on graphics algorithms
at your convenience if you’re still puzzled.3

362 CHAPTER 9

As a side note, the Bresenham algorithm can be applied to many types of
interpolation problems, including texture mapping and bitmap scaling. There
are several more optimized variants of the Bresenham algorithm than the simple
one I’ve presented here.

What happens if a line does not lie entirely within the bounds of the screen?
DrawLine16 assumes that the line’s coordinates are inside the screen. If you
called DrawLine16 with the coordinates (−10,−20) and (1000, 3000), it would
probably crash. Since the Penguin Warrior display shows only a small part of a
large game world, it’s very likely that a given phaser beam will start or end
outside of the currently displayed area.

We can handle this problem by clipping phaser beams against the screen’s
rectangle. The ClipLineAgainstRectangle function takes a line segment and a
rectangle as input and adjusts the segment’s coordinates to encompass only its
visible section. If the line segment is at least partially visible,
ClipLineAgainstRectangle returns 1; otherwise it returns 0. We’ll filter phaser
beams through this function to make sure that we don’t give DrawLine16 invalid
coordinates.

Source Files

The code from this section is available in the lines/ directory of the
source archive. bresline.c is a simple implementation of the Bresenham
algorithm with SDL, and lineclip.c contains the
ClipLineAgainstRectangle routine. The latter is long and boring, so
we haven’t included its code in this chapter.

Detecting Phaser Hits

Now we need a way to figure out whether a phaser shot met its mark. But what
exactly is a “hit” and what is a “miss”? A phaser hits its target if the beam
passes through the target’s bounding circle (a circle that encloses the object).

3 Books about graphics algorithms are always an interesting read. In particular, I recommend
the Graphics Gems series and Alan Watt’s 3D Computer Graphics.

FINISHING PENGUIN WARRIOR 363

For the purposes of Penguin Warrior, this bounding circle will have a diameter
equal to the width of the ship graphic.

How do we find the distance between the center of an object and a line? Look at
Figure 9–1. We’ll treat the phaser beam as a vector v1, and we’ll call the vector
that points from the source to the target v2. We want to find the length of the
shortest line segment from a point on v1 to the target (the end of v2). The
shortest segment (which we’ll call the distance from the phaser beam to the
target) forms a 90-degree angle with v1.

We can find the position of this segment along v1 with a projection. We’ll leave
the math behind this to other sources, but we can find this point with the
following:

v1x = x2 − x1

v1y = y2 − y1

v2x = a− x1

v2y = b− y1

px =
(v1xv2x + v1yv2y)v1x

(v1xv1x)2 + (v1yv1y)2

py =
(v1xv2x + v1yv2y)v1y

(v1xv1x)2 + (v1yv1y)2

This is essentially the normalized vector v1 scaled by the dot product of v1 and
v2. It works because the dot product of two vectors is proportional to the cosine
of the angle between the vectors. Once we know the coordinate (px, py), we can
easily calculate the distance d between the phaser beam and the target:

d =
√

(px − a)2 + (py − b)2

The routine CheckPhaserHit in the source file weapon.c implements this
formula. With the math just shown, the code is straightforward.

364 CHAPTER 9

Target

Source (edge of world)
Endpoint

d

v1

v2

Projection

Figure 9–1: Testing phaser proximity

Imposing a Sane Rate of Fire

As much fun as it would be to lean on the Fire button and project a line of
death from the front of your ship, this wouldn’t make for a very competitive
game. To avoid this problem, we’ll implement a phaser “charging” system. A
player can fire only when the phasers have a certain level of charge, indicated by
a small on-screen meter. Phasers take a few seconds to recharge fully, and they
discharge quickly when they are fired.

Each player has a running charge count that is incremented by 30 each second.
To accomplish this charging in a uniform way, the main loop adds the global
time scale variable (see page 158) to the count at the start of each frame.
Whenever a player fires, the charge count loses a certain amount. The player can
employ a number of strategies to deal with the limited amount of charge.

With a bit more voodoo throughout main.c, network.c, and weapon.c,
Penguin Warrior now has functional phasers. It’s not finished yet, though—it
still needs score and weapon charge counters. We’ll add those next.

Creating Status Displays

At this point you can fly a ship around the Penguin Warrior world and fire at a
human or computer opponent. However, unless you keep a console visible behind
the game’s window, it’s hard to tell what’s going on in the game. Penguin

FINISHING PENGUIN WARRIOR 365

Figure 9–2: The LED simulator

Warrior needs an on-screen status display.

But why use an ordinary font-based4 status display when we can do something a
bit unusual? In the course of another project (a random caffeine-driven coding
session, actually), I wrote a set of routines for simulating light-emitting diodes
(LEDs) on top of SDL surfaces. The library takes any 8-bit SDL surface as input
and draws a simulated board of LEDs that represents the image. In addition to
image handling, the library also has limited support for drawing characters to
simulated displays. The code is simple, but the effect is neat.

The LED library isn’t really an SDL add-on package; it’s just a few routines that

4 Should you ever need to draw TrueType fonts in an SDL application, the SDL ttf library
may be helpful. I won’t discuss it further in this book, but it carries my recommendation as
a well-written and easy-to-use library.

366 CHAPTER 9

happen to follow SDL’s naming conventions. It’s not substantial enough to
release as an SDL extension library. We’ll bring its routines directly into the
Penguin Warrior source code as status.c.

LED displays are represented as 8-bit SDL surfaces. Each light in the display
corresponds to one pixel of the surface. If the pixel has a color value of 0, the
corresponding light is off; otherwise it is on. The surface’s palette is ignored,
since a light has only two possible states.5 The use of 8-bit SDL surfaces is
convenient because it lets us draw to simulated LED displays with SDL’s normal
SDL BlitSurface function. We can access an LED display’s lights individually
by locking the surface and editing its pixels member.

Listing 9–2 uses the LED simulator to implement a status display system for
Penguin Warrior.

Code Listing 9–2 (status.c)

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>
#include "gamedefs.h"
#include "font5x5.h" /* A simple 5x5 ASCII font, stored

as strings of X’s.
The font gets compiled into
the program. */

/* =====================
LED display routines.
===================== */

typedef struct LED_Display {
SDL_Surface *led_surface;
int phys_w, phys_h;
int virt_w, virt_h;
int virt_x, virt_y;

5 Actually, SDL does use the palette for blitting. The actual colors don’t matter, as long as
entry 0 (off-LED) is different from the others.

FINISHING PENGUIN WARRIOR 367

SDL_Surface *on_image;
SDL_Surface *off_image;

} LED_Display;

static int LED_CreateDisplay(LED_Display *disp, int cols, int rows,
int vcols, int vrows, char *on, char *off);

static void LED_FreeDisplay(LED_Display *disp);
static void LED_DrawDisplay(LED_Display *disp, SDL_Surface *dest,

int x, int y);
static void DrawChar5x5(SDL_Surface *dest, char ch, Uint8 color,

int x, int y);

/* Initializes an LED display. The parameters are as follows:
cols, rows - Physical size of the LED display, in LEDs.
vcols, vrows - Size of the LED display’s framebuffer, in LEDs.

The visible area of the display can be scrolled.
on, off - Filenames of the bitmaps to use for the "on" LED and

the "off" LED.
Returns 0 on success, -1 on error. */

static int LED_CreateDisplay(LED_Display *disp, int cols, int rows,
int vcols, int vrows, char *on, char *off)

{
SDL_Color c;
int i;

memset(disp, 0, sizeof (LED_Display));

disp->led_surface = SDL_CreateRGBSurface(SDL_SWSURFACE, vcols, vrows,
8, 0, 0, 0, 0);

if (disp->led_surface == NULL)
return -1;

disp->virt_w = vcols;
disp->virt_h = vrows;
disp->phys_w = cols;
disp->phys_h = rows;
disp->virt_x = 0;
disp->virt_y = 0;

for (i = 0; i < 256; i++) {
c.r = i;
c.g = i;

368 CHAPTER 9

c.b = i;
SDL_SetColors(disp->led_surface, &c, i, 1);

}

SDL_LockSurface(disp->led_surface);
memset(disp->led_surface->pixels, 0,

disp->led_surface->pitch * vrows);

SDL_UnlockSurface(disp->led_surface);

disp->on_image = SDL_LoadBMP(on);
if (disp->on_image == NULL) return -1;

disp->off_image = SDL_LoadBMP(off);
if (disp->off_image == NULL) return -1;

/* Add alpha for a nice overlay effect. */
SDL_SetAlpha(disp->off_image, SDL_SRCALPHA, 128);

return 0;
}

/* Frees an LED display’s memory. */
static void LED_FreeDisplay(LED_Display *disp)
{

if (disp->led_surface != NULL)
SDL_FreeSurface(disp->led_surface);

if (disp->on_image != NULL)
SDL_FreeSurface(disp->on_image);

if (disp->off_image != NULL)
SDL_FreeSurface(disp->off_image);

memset(disp, 0, sizeof (LED_Display));
}

/* Renders an LED display to an SDL surface, starting
at (x,y) on the destination. */

static void LED_DrawDisplay(LED_Display *disp,

FINISHING PENGUIN WARRIOR 369

SDL_Surface *dest, int x, int y)
{

int row, col;
SDL_Rect srcrect, destrect;
Uint8 *leds;

srcrect.w = disp->on_image->w;
srcrect.h = disp->on_image->h;
srcrect.x = 0;
srcrect.y = 0;
destrect = srcrect;

SDL_LockSurface(disp->led_surface);
leds = (Uint8 *)disp->led_surface->pixels;

for (row = 0; row < disp->phys_h; row++) {
for (col = 0; col < disp->phys_w; col++) {

int led;

destrect.x = col * disp->on_image->w + x;
destrect.y = row * disp->on_image->h + y;
led = leds[(row + disp->virt_y) *

disp->led_surface->pitch + col + disp->virt_x];
if (led) {

SDL_BlitSurface(disp->on_image, &srcrect,
dest, &destrect);

} else {
SDL_BlitSurface(disp->off_image, &srcrect,

dest, &destrect);
}

}
}

SDL_UnlockSurface(disp->led_surface);
}

/* Draws a 5x5 bitmapped character to the given 8-bit
SDL surface. */

static void DrawChar5x5(SDL_Surface *dest, char ch,
Uint8 color, int x, int y)

{

370 CHAPTER 9

char *data;
Uint8 *pixels;
int sx, sy;

data = Font5x5[(int)ch];

if (SDL_MUSTLOCK(dest))
SDL_LockSurface(dest);

pixels = (Uint8 *)dest->pixels;

for (sy = 0; sy < 5; sy++) {
for (sx = 0; sx < 5; sx++) {

if (data[5*sy+sx] != ’ ’) {
pixels[dest->pitch*(y+sy)+x+sx] = color;

} else {
pixels[dest->pitch*(y+sy)+x+sx] = 0;

}
}

}

SDL_UnlockSurface(dest);
}

/* =====================================
End of LED stuff.
Back to the world of Penguin Warrior.
===================================== */

/* A temporary buffer for the characters currently on the display. */
#define SCROLLER_BUF_SIZE 10
char scroller_buf[SCROLLER_BUF_SIZE];

/* Message to scroll. This can be changed. */
const char *scroller_msg = "Welcome to Penguin Warrior";
int scroller_pos = 0;
int scroller_ticks = 0;

/* Various LED displays that appear on the Penguin Warrior screen. */
LED_Display player_score, player_shields, player_charge;
LED_Display opponent_score, opponent_shields;
LED_Display status_msg;

FINISHING PENGUIN WARRIOR 371

int InitStatusDisplay(void)
{

if (LED_CreateDisplay(&player_score, 12, 5, 12, 5,
"led-red-on.bmp", "led-red-off.bmp") < 0)

return -1;
if (LED_CreateDisplay(&player_shields, 12, 1, 12, 1,

"led-red-on.bmp", "led-red-off.bmp") < 0)
return -1;

if (LED_CreateDisplay(&player_charge, 80, 1, 80, 1,
"led-red-on.bmp", "led-red-off.bmp") < 0)

return -1;
if (LED_CreateDisplay(&opponent_score, 12, 5, 12, 5,

"led-red-on.bmp", "led-red-off.bmp") < 0)
return -1;

if (LED_CreateDisplay(&opponent_shields, 12, 1, 12, 1,
"led-red-on.bmp", "led-red-off.bmp") < 0)

return -1;
if (LED_CreateDisplay(&status_msg, 56, 5, 66, 5,

"led-green-on.bmp", "led-green-off.bmp") < 0)
return -1;

memset(scroller_buf, 0, SCROLLER_BUF_SIZE);

return 0;
}

void CleanupStatusDisplay(void)
{

LED_FreeDisplay(&player_score);
LED_FreeDisplay(&player_shields);
LED_FreeDisplay(&player_charge);
LED_FreeDisplay(&opponent_score);
LED_FreeDisplay(&opponent_shields);
LED_FreeDisplay(&status_msg);

}

void SetStatusMessage(const char *msg)

372 CHAPTER 9

{
scroller_pos = 0;
scroller_msg = msg;

}

void SetPlayerStatusInfo(int score, int shields, int charge)
{

char buf[3];
Uint8 *pixels;
int i;

/* Set the score counter. */
sprintf(buf, "%2i", score);
DrawChar5x5(player_score.led_surface, buf[0], 1, 0, 0);
DrawChar5x5(player_score.led_surface, buf[1], 1, 6, 0);

/* Set the shield bar. */
SDL_LockSurface(player_shields.led_surface);
pixels = (Uint8 *)player_shields.led_surface->pixels;
for (i = 0; i < 12; i++) {

if (i < shields * 12 / 100)
pixels[i] = 1;

else
pixels[i] = 0;

}
SDL_UnlockSurface(player_shields.led_surface);

/* Set the phaser charge bar. */
SDL_LockSurface(player_charge.led_surface);
pixels = (Uint8 *)player_charge.led_surface->pixels;
for (i = 0; i < 80; i++) {

if (i < charge * 80 / PHASER_CHARGE_MAX)
pixels[i] = 1;

else
pixels[i] = 0;

}
SDL_UnlockSurface(player_charge.led_surface);

}

void SetOpponentStatusInfo(int score, int shields)

FINISHING PENGUIN WARRIOR 373

{
char buf[3];
Uint8 *pixels;
int i;

/* Set the score counter. */
sprintf(buf, "%2i", score);
DrawChar5x5(opponent_score.led_surface, buf[0], 1, 0, 0);
DrawChar5x5(opponent_score.led_surface, buf[1], 1, 6, 0);

/* Set the shield bar. */
SDL_LockSurface(opponent_shields.led_surface);
pixels = (Uint8 *)opponent_shields.led_surface->pixels;
for (i = 0; i < 12; i++) {

if (i < shields * 12 / 100)
pixels[i] = 1;

else
pixels[i] = 0;

}
SDL_UnlockSurface(opponent_shields.led_surface);

}

void UpdateStatusDisplay(SDL_Surface *screen)
{

int i;

/* Update the scroller.
This is not linked to the global time_scale, since speed
really doesn’t matter. The only effect of a high framerate
would be that the scrolling message would move faster. */

if ((scroller_ticks % 6) == 0) {
char ch;
for (i = 0; i < SCROLLER_BUF_SIZE-1; i++) {

scroller_buf[i] = scroller_buf[i+1];
}
if (scroller_msg[scroller_pos] == ’\0’) {

ch = ’ ’;
scroller_pos--;

} else {
ch = scroller_msg[scroller_pos];

}

374 CHAPTER 9

scroller_pos++;
scroller_buf[i] = ch;
status_msg.virt_x = 0;
for (i = 0; i < SCROLLER_BUF_SIZE; i++) {

DrawChar5x5(status_msg.led_surface, scroller_buf[i],
1, 6 * i, 0);

}
} else {

status_msg.virt_x++;
}

scroller_ticks++;

LED_DrawDisplay(&player_score, screen, 0, 0);
LED_DrawDisplay(&player_shields, screen, 0, 48);
LED_DrawDisplay(&player_charge, screen, 0, 471);
LED_DrawDisplay(&opponent_score, screen, 544, 0);
LED_DrawDisplay(&opponent_shields, screen, 544, 48);
LED_DrawDisplay(&status_msg, screen, 96, 0);

}

status.c is divided into two parts. The first part implements the LED simulator
described earlier, and the second part uses the simulator to create game status
displays for Penguin Warrior. Penguin Warrior’s status display consists of six
pieces: a scoreboard and shield block for each player, a scrolling message banner,
and a phaser charge readout for the local player. Each piece has its own
LED Display structure.

To use the status display system, the game engine calls InitStatusDisplay at
startup and then executes UpdateStatusDisplay during each frame. Whenever
a game statistic (score, shield level, or phaser charge) changes, the game calls
SetPlayerStatusInfo or SetOpponentStatusInfo to update the information.
It can set new banner messages with SetStatusMessage. The LED simulator
redraws the boards at each frame. Although alpha-blended blits are relatively
slow, this update is negligible in comparison to the rest of the game loop. Figure
9–3 shows the new status display system.

Penguin Warrior is complete, at long last! It’s a relatively small game, but it
contains all of the major ingredients you’d find in a larger production, and the
engine performs reasonably well. The next section discusses some of the things I

FINISHING PENGUIN WARRIOR 375

Figure 9–3: Penguin Warrior’s status display

could have done differently throughout the project.

In Retrospect

I created Penguin Warrior to demonstrate game programming in the Linux
environment. I started writing it while I was trying to decide where to go with
Chapter 4, and I’ve added features throughout the book to demonstrate various
topics that came up. There was no formal design process, other than the
planning that went into the book as a whole. Penguin Warrior turned out well
enough, but it’s an incredibly simple game compared to most. At the risk of
hypocrisy, I strongly recommend that you put considerable thought into the
design of your games. It’s easy to write games that look good; it’s much harder
to write games that play well. Admittedly, Penguin Warrior doesn’t have much
depth.

376 CHAPTER 9

What could I have done differently? Here are a few things that come to mind.

• I could have used C++ instead of C. C++ lends itself well to game
programming, since games usually simulate interactions between physical
objects to some extent. In fact, any object-oriented programming language
would be beneficial in that regard. There are plenty of arguments for and
against C++, and it’s the topic of many mailing list holy wars.

• Penguin Warrior would benefit from a more sophisticated networking
system. The current TCP-based system, in which the clients take turns
exchanging packets, is simple, but its performance is highly dependent
upon the quality of the underlying network. A UDP-based protocol would
be more complex to implement, but it could potentially offer better
performance.

• In hindsight, Tcl was not an especially good choice for the scripting engine.
It works in this case, but it’s not a very good solution for number
crunching or managing large amounts of data. If I were to rewrite Chapter
6, I would probably choose a Lisp variant such as Scheme.

• Resource management is always a challenge. The present implementation
of Penguin Warrior uses an ad hoc resource-loading routine, but this task
could be performed in a more general and flexible way. Each resource (a
sound clip or a graphic) could have a symbolic name, and the resource
manager could load them on demand.

• The source tree would be much easier to build if it had a GNU Autoconf
script. As it stands, you usually need to tweak the makefile to build the
game. While this is fine for developers, it might be confusing for end users.

There are also some gameplay features that would make nice additions to
Penguin Warrior (and perhaps good weekend projects for interested readers):

• More weapons. Many games allow the player to pick up “power-ups” from
the playing field. Perhaps Penguin Warrior could have floating Power
Penguins for the players to find.

• A radar screen for tracking the opponent. Alpha blending could add a nice
effect to such a display.

FINISHING PENGUIN WARRIOR 377

• The ability to have two scripted opponents play each other over the
network. This would be useless but fun to watch.

That’s it for Penguin Warrior. The next chapter talks about the various Linux
distributions and package managers you have to contend with, as well as
FreeBSD portability. It also discusses the Loki Setup tool, a program for
installing games in a distribution-independent way.

Chapter 10

To Every Man a Linux
Distribution

You’ve probably noticed that there are a lot of Linux distributions floating
around the Internet. Some of these are major commercial operations (Red Hat,
SuSE, Caldera), some are massive community efforts (Debian), and some don’t
really fit into either category (my personal favorite, Slackware). Competition is
good, but this assortment sometimes leads to incompatibilities between
distributions, which you’ll have to contend with when you release your work to
the public.

Once your game is ready to see the light of day, you’ll need to come up with a
way for users to install it. This could be as simple as a .tar.gz archive (tarball)
containing your game’s source code and data files, or it could be as complex as a
CD-ROM-based graphical setup system. Whatever you decide to do, you’d be
well advised to respect the Linux filesystem standard and account for the
differences between various Linux distributions. If you don’t, you’ll irritate users
at the very least and possibly cause serious problems. On the brighter side, a
well-packaged program can make a good first impression.

380 CHAPTER 10

Source or Binary?

The first decision you’ll have to make is whether you want to release the source
code to your game. Generally speaking, it’s a nice thing to do, and it’s more or
less a requirement if you’re using libraries covered under the GNU General
Public License.1 Releasing the source code to your project means that bugs will
probably turn up much more quickly (since everyone will be able to pitch in and
help you track them down), and other programmers will have the opportunity to
learn from your code. Linux exists because of its open source development
model, and many Linux advocates feel strongly about open versus closed source.
For various viewpoints on free software, open source software, and the rationale
of each, refer to the Free Software Foundation2 and the Open Source Initiative3.

Sometimes it’s either impossible or impractical to release the code to a project.
For instance, nondisclosure agreements, publishing contracts, and game engine
licenses might prevent you from making a project’s code available to the public.
In this case you’ll have to settle for a binary distribution of your game.
Unfortunately, in doing so, you’ll probably alienate a certain number of
hard-core open source and free software advocates.

Binary-only distribution is possible, but you’ll have to give a bit of thought to
preparing the binary files. Binary distribution under Linux is a bit different than
binary distribution under Windows (where source distribution is almost unheard
of). With source distribution, a user can adjust the game to work well on a
particular machine (and can modify the game to his or her liking), but binary
releases are generally one-size-fits-all. Since various Linux distributions ship with
different versions of basic supporting software (in particular the C library), a
given binary might not get along with some systems.4

1 The GNU GPL is much stricter in this sense than the LGPL. See http://www.gnu.org for
more information on these licenses. SDL is released under the LGPL, which can be used in
closed games, under certain conditions.

2 http://www.fsf.org

3 http://www.opensource.org

4 Microsoft Windows has the same problem. Most application vendors fix this by shipping
basic system libraries (the MFC runtime, the Visual Basic library, and the Visual C++
runtime in particular) with each copy of the application. You’re likely to find several copies
of the same library on any given Windows system, and Windows users sometimes run into

TO EVERY MAN A LINUX DISTRIBUTION 381

Local Configuration

As we’ve said, each Linux distribution is slightly different, with its own ideas
about how the Linux filesystem standard should be implemented (more on this
later), and with a slightly different etc/ directory tree. In addition, users are
generally given a choice of which libraries and other supporting packages to
install, meaning that you can’t count on the presence of any particular
development library. For these reasons, getting a large program to compile and
link correctly on a given Linux installation can be quite a challenge.

There are several ways to approach this problem. Some developers opt to specify
local configuration options directly in a project’s makefile. For instance, the
following lines might show up in a makefile for an OpenGL-based project:

Configuration section

CC= gcc
CFLAGS= -O2 -W -Wall -pedantic
X11LIBS= -L/usr/X11R6/lib -lX11 -lXt -lXext
GLLIBS= -lGL -lGLU -lglut

End of configuration.

This is a bit of a hack, but it’s sufficient in some cases. All of the necessary
libraries are listed in an easy-to-find spot in the makefile, so that a user can
quickly configure the project to compile on his or her system. The program
would presumably come with a README file explaining how to do this. Users
who don’t know anything about makefiles, C, or programming in general might
find this solution a bit intimidating, however.

A better option is the GNU Autoconf facility. Autoconf is a sophisticated set of
m4 scripts5 that automatically configure source trees for compilation on a variety
of systems. Based on information in Makefile.am files throughout a source tree,
Autoconf (more specifically the Automake program) generates a script called

problems with incorrect library versions.

5 m4 is a very simple but powerful macro language that people seem to either love or hate.

382 CHAPTER 10

configure that will configure the project’s makefiles to correctly build and
install everything for the current system. Ideally, Autoconf-enabled programs are
very easy to install, with a sequence of commands like the following:

$ tar xvfz fooblaster-1.1.tar.gz
$ cd fooblaster-1.1
$./configure
$ make
$ make install

If you’ve ever installed software on a Linux system, this probably looks familiar.
Of course this example is just meant to illustrate how convenient Autoconf can
be—it’s probably a bad idea to install a program blindly without reading the
docs (or without typing ./configure --help to get a list of configuration
options).

What exactly does this black box of a script do? You may have noticed that
Autoconf-enabled source trees are full of files called Makefile.in. The
configure script first gathers information about the local system, and then goes
through the source directory and converts these files into final makefiles for the
project. As it copies each Makefile.in to a corresponding Makefile, configure
adds a bunch of environment variables that describe the system, as well as
special preprocessor symbols that C programs can use for customization. A
simple invocation of the Make utility can then build the fully configured
program. It’s worth noting that you should never need to alter a configure
script by hand; the proper way to make changes is to edit Makefile.am and
generate a new script.

Autoconf can be fairly complex to set up, and we’ll leave a discussion of its
specifics to other sources. Learning Autoconf is definitely worth the effort if you
plan to make a large source tree available to your users.

TO EVERY MAN A LINUX DISTRIBUTION 383

Linux Isn’t Alone: Supporting FreeBSD

Linux isn’t the only contender in the free OS arena.6 FreeBSD is a very similar
system with an active and knowledgeable user community. Although FreeBSD
can theoretically run Linux binaries out of the box, a few differences sometimes
prevent Linux applications (and games) from working. Aside from these minor
glitches, FreeBSD is rather easy to support (and certainly worthwhile, given its
userbase), so it’s a good idea to keep a few things in mind as you develop:

• Half of the work in supporting FreeBSD is getting your build environment
set up. This should be easy: almost all Linux libraries are also available
under FreeBSD, as well as all of the familiar GNU development utilities.
Once you get your application to compile under FreeBSD, the rest is a
piece of cake. This is a good reason to use Autoconf; with a bit of help
from the configure script, there’s a good chance that your project will
require no modifications whatsoever for FreeBSD.

Note that the GNU Make utility is called gmake under FreeBSD. The
Make utility distributed with FreeBSD is actually BSD Make, which is
somewhat incompatible with GNU Make. If you plan to use Autoconf, you
definitely want GNU Make.

• FreeBSD’s filesystem is very similar to a typical Linux distribution’s
filesystem, and you should treat it accordingly. We’ll discuss filesystem
politeness later in this chapter.

• As a descendent of the original BSD, FreeBSD has no proc/ filesystem
(which the Linux kernel uses to publish live information about the system).
You probably shouldn’t mess with proc/ in most cases (since its exact
layout depends on the current version of the kernel), but it’s sometimes the
only sane way to get statistics about the system. If your program depends
on proc/, you’ll probably have to do some porting.

6 Although I speak of Linux here as a complete operating system, the more correct term
would be “Linux-based system,” or as the Free Software Foundation would prefer,
“Linux-based GNU system.” FreeBSD is the whole shabang—that is, unlike Linux,
FreeBSD encompasses a complete operating system, including a kernel and a set of software.
There is only one FreeBSD distribution, coordinated by a well-defined team of volunteers.

384 CHAPTER 10

• FreeBSD has no /etc/mtab file (which normally contains a list of
currently mounted filesystems). This discrepancy broke Loki Software’s
CD-ROM detection code when we tried to port it from Linux to FreeBSD.
I fixed it with a quick hack based on the output of the mount program, but
another programmer later found out that FreeBSD has a convenient
system call for retrieving the same information.

• FreeBSD has a completely different kernel than Linux. Slight internal
differences might cause quirky behavior when you run your newly ported
program. For instance, networking, memory mapping (mmap), and thread
scheduling might behave differently, since these functions are closely tied
into the kernel. These usually aren’t show-stopping issues, but it’s a good
idea to test your application thoroughly if you intend to officially support
FreeBSD.

• Unfortunately, FreeBSD currently has no framebuffer device interface. Of
course this won’t matter if your application uses an abstraction layer such
as SDL, but programs that require the Linux framebuffer interface are out
of luck. However, FreeBSD does support the Direct Rendering
Infrastructure, a lightning-fast 3D driver system originally created for
Linux.

Several other free UNIX-like operating systems (particularly NetBSD and
OpenBSD) are available, and it is nice to support these as well. You’ll have to
decide how much development time and energy you want to spend on porting
your work. If you’re developing free software, other people will probably help
you with this job. Everyone likes to see new software for his or her favorite
operating system, and porting a substantial chunk of code to a new platform can
be very satisfying.

Packaging Systems

A simple tarball of source code is probably the easiest way to distribute a Linux
application or game, and this is perfectly acceptable in some cases (especially if
the project takes advantage of Autoconf). However, source tarballs have several
disadvantages:

TO EVERY MAN A LINUX DISTRIBUTION 385

• Although they’re developer-friendly, source tarballs aren’t exactly
newbie-friendly. New Linux users often aren’t comfortable with building
and installing software from source. (They’ll probably want to learn how to
do this eventually, of course; it really isn’t too difficult.)

• Some systems aren’t meant to be developer workstations and therefore
don’t have the necessary compilers and libraries to build a source tree.

• A lot of people just want to download and install software without having
to compile anything. In addition to the time it takes to build a project from
source, binary distributions are often smaller than source distributions.

For these and other reasons, many Linux developers make precompiled packages
of their software available. Each Linux distribution has its own idea of what
exactly constitutes a “package,” and so developers often choose just one or two
major distributions to support. The two most commonly supported package
types are Red Hat’s RPM and Debian’s DEB. Neither of these are specific to
their “parent” Linux distributions; SuSE, Caldera, and TurboLinux are
RPM-based, and Debian’s packaging system has found its way into Corel Linux
and Storm Linux (which are actually Debian offshoots).

Package systems provide a bit of extra functionality over source tarballs.
Package managers can usually install a package with a single command (in the
case of RPM, the command rpm -i package.rpm does everything), they keep
track of all files that were installed so that they can be removed later, and they
can facilitate version upgrades. Most importantly, package managers can help
enforce dependencies. If your game needs version 1.1.6 or later of the SDL
library, for instance, a package manager will make sure that the system has it
before allowing the user to install the game.

If you want to learn how to make your own RPM packages, take a look at the
book Maximum RPM by Edward C. Bailey. (This book is also available in its
entirety online at http://www.rpmdp.org/rpmbook/.) RPM is not a simple tool
by any means, but, like Autoconf, it’s worth learning if you intend to maintain
complicated Linux software packages. Debian packages are even a bit trickier to

386 CHAPTER 10

roll than RPMs, but they are explained in detail on the Debian project’s
developer Web site7.

Making Slackware Packages

Unlike RPM and Debian packages, packages for Slackware Linux are
quite easy to create. To make a Slackware package, install your program
into a fake root. (For instance, copy files into tmp/foobar/usr/bin/
instead of usr/bin/.) All of your program’s installable files should be
there, but nothing else; there’s no need to duplicate anything not
related to your program. Make sure that the permissions on each file
are correct and that all symbolic links are in place. When the fake root
tree is ready to go, run the makepkg script (included with Slackware) to
create a .tgz package that can be installed with Slackware’s installpkg
script. .tgz packages are really just tarballs with a bit of extra
information; you can even install them manually (but that’s a bad idea).

Users really appreciate it when you take the time to create packages for their
favorite distribution—it can save them a lot of work and help them keep their
systems organized. However, maintaining packages does take a bit of work. If
you have to choose just one package type to support, it should probably be
RPM. If you’d like to maintain packages for a particular distribution, but don’t
have the time to do so, just ask around online. Chances are good that someone
enjoys making packages for that distribution and wouldn’t mind lending a hand.

As a closing thought, I’d like to point out that it is a very bad idea to release
your software in .rpm or .deb packages without providing a simple .tar.gz
option as well; many users (myself included) prefer to avoid package managers
entirely and install everything by hand.

7 http://www.debian.org/devel

TO EVERY MAN A LINUX DISTRIBUTION 387

Graphical Installation Goodness: Loki’s Setup
Program

Packages and tarballs are the staples of open source and free software
distribution, but they might not meet your needs. Off-the-shelf, boxed software
generally includes a nice, graphical installation program that copies the software
from its CD-ROM to the user’s hard drive and performs various setup tasks.
This would be easy to accomplish with a simple shell script, but it wouldn’t be
pretty (the Linux version of Maple, an excellent computer-assisted mathematics
system, uses a shell script for installation, and it is indeed ugly). A badly
written installation script could leave a first-time player with a bad impression of
the game as a whole, and the game industry is far too competitive for us to let
that happen.

Loki Software, Inc. developed Loki Setup to satisfy its need for a simple,
consistent, and portable installation system. Setup reads a product-specific
installation script from an XML file and then presents the user with a
GTK-based installation wizard. If X11 isn’t available, Setup provides an
equivalent terminal-based interface. Setup can check disk space, copy files, run
scripts, and launch the newly installed application when everything is finished.
Loki Setup is free software, released under the GNU GPL. (And since the Setup
program is separate from the software it installs, you can still use Loki Setup for
nonfree software without being affected by the GPL.)

To understand how to use Setup for a CD-ROM title, let’s take a look at Loki’s
Heavy Gear II CD. This is a major commercial title, originally written for
Windows but later ported to Linux. We’ll start with the top-level directory:

./autorun.inf

./binaries.tar.gz

./data.tar.gz

./icon.bmp

./icon.xpm

./README

./setup.sh

setup.sh is a shell script that invokes the appropriate setup binary for the
system’s architecture. These binaries are located in subdirectories of

388 CHAPTER 10

setup.data, which we’ll examine in a moment. The script locates the correct
subdirectory with the output of the uname -m command. autorun.inf is a
Windows autorun file to deal with users who mistakenly try to install this Linux
game on a Windows machine. The various icons and tarballs are game-specific.

And now the bin/ directory:

./bin

./bin/x86

./bin/x86/glibc-2.1

./bin/x86/glibc-2.1/hg2

./bin/x86/glibc-2.1/libMesaMatroxGL.so.3.2.000121

./bin/x86/glibc-2.1/libMesaVoodooGL.so.1.2.030300

./bin/x86/glibc-2.1/libMesaVoodooGL.so.1.2.030100

This directory contains the x86 binary for Heavy Gear II, as well as precompiled
OpenGL drivers for Matrox and 3Dfx graphics cards. Since Linux OpenGL
support is changing rapidly, it’s a good idea to include a working copy of the
appropriate drivers with any packaged game, in case the next release of the
drivers doesn’t work correctly. (3D graphics support under Linux is expected to
stabilize a bit in the near future as the DRI becomes the new standard, but now
is a rough time for 3D graphics in Linux.)

Next is the setup.data/ directory, where Setup gets most of its information:

./setup.data

./setup.data/bin

./setup.data/bin/alpha

./setup.data/bin/alpha/glibc-2.1

./setup.data/bin/alpha/glibc-2.1/setup.gtk

./setup.data/bin/alpha/setup

./setup.data/bin/ppc

./setup.data/bin/ppc/glibc-2.1

./setup.data/bin/ppc/glibc-2.1/setup.gtk

./setup.data/bin/ppc/setup

./setup.data/bin/sparc64

./setup.data/bin/sparc64/glibc-2.1

./setup.data/bin/sparc64/glibc-2.1/setup.gtk

./setup.data/bin/sparc64/setup

./setup.data/bin/x86

TO EVERY MAN A LINUX DISTRIBUTION 389

./setup.data/bin/x86/glibc-2.1

./setup.data/bin/x86/glibc-2.1/setup.gtk

./setup.data/bin/x86/setup

./setup.data/linkGL.sh

./setup.data/setup.glade

./setup.data/setup.xml

./setup.data/splash.xpm

This directory tree contains Setup binaries for four different architectures, with
both GTK- and terminal-based interfaces. The GTK binary requires GNU libc
2.1 or later, and so it’s placed in its own directory. The setup.sh script will run
this binary only if glibc 2.1 is available. The plain terminal-based version is
statically linked, and setup.sh will run it regardless of the system’s C library
version. setup.glade is a Glade GUI template for the Setup wizard,
splash.xpm is a version of the Heavy Gear II logo for the setup screen, and
setup.xml is the XML installation script.

The rest of the CD consists of Heavy Gear II’s datafiles and cinematics. Setup
just copies these files to the selected installation directory (probably
usr/local/games/hg2/), according to the setup.xml script.

setup.xml is pretty simple. XML may be overhyped, but this script is actually
a good use of the language.8 Here’s the Heavy Gear II installation script:

<?xml version="1.0" standalone="yes"?>
<install product="hg2" desc="Heavy Gear II" version="1.0"

readme="README" postinstall="sh setup.data/linkGL.sh $*">
<option install="true" help="Required for play"

arch="x86" libc="glibc-2.1">
Base Install
<binary arch="any" libc="any" symlink="hg2"

icon="icon.xpm" name="Heavy Gear II">
hg2

</binary>

8 Don’t worry, you don’t need to know much about XML to use Setup. You can just copy an
existing script and tweak it for your particular application. If you’ve ever written Web pages
or documentation in HTML or SGML, XML’s syntax should look quite familiar.

390 CHAPTER 10

<files>
data.tar.gz
binaries.tar.gz
icon.bmp
icon.xpm
README

</files>
</option>
<option install="true">

GL Drivers (STRONGLY recommended)
<option>

3dfx Voodoo Mesa 3.2 GL library
<binary arch="any" libc="any">

libMesaVoodooGL.so.1.2.030100
</binary>

</option>
<option>

3dfx Voodoo Mesa 3.3 GL library
<binary arch="any" libc="any">

libMesaVoodooGL.so.1.2.030300
</binary>

</option>
<option>

Matrox G200/G400 Mesa 3.2 GL library
<binary arch="any" libc="any">

libMesaMatroxGL.so.3.2.000121
</binary>

</option>
</option>
<option>

Movies
<files>

shell/movies/asteroid.mpg
shell/movies/flight.mpg
shell/movies/gate.mpg
shell/movies/intro.mpg

(more MPEG movies)

shell/movies/sc37.mpg
shell/movies/sc3j.mpg
shell/movies/title.mpg

TO EVERY MAN A LINUX DISTRIBUTION 391

</files>
</option>

</install>

The root element of this XML file is labeled install, and it contains the options
needed for the complete installation process. Flags to the install section
include the name of the product, its version number, a brief description, the
name of an information file (in this case README), and a shell script to run
after the files have been copied to the user’s hard drive. You can optionally
include a preinstall script (to be executed before copying files), a default
installation path other than /usr/local/games, preuninstall and
postuninstall scripts for uninstalling the product (by default, Setup will just
remove the directory tree it installed), and several other flags (documented in
the Setup source package).

install usually contains several option elements. These elements specify sets
of files that may be installed. If an option node contains the install="true"
attribute, Setup will install it by default. You can nest option sections to
specify logical groups of files. If the user unchecks an option, Setup will block
out any nested options. You can also specify libc or architecture requirements
for options, making it easy to release a CD with support for several different
architectures. Setup also provides support for internationalization.

After the user selects the appropriate sets of files and clicks the Begin Install
button, Setup performs the following tasks:

1. Runs the preinstall script, if any (none in this case).

2. Creates the installation directory, in this case usr/local/games/hg2/.
Obviously, the user must have write access to this part of the filesystem;
Setup will refuse to continue otherwise.

3. Copies the selected file sets from the CD-ROM to the installation directory.

4. Writes an uninstall script in the installation directory. This script simply
removes all of the files that were copied and provides a quick way to
uninstall the software. The script also executes any requested
preuninstall or postuninstall scripts that were specified in setup.xml.

392 CHAPTER 10

Figure 10–1: Loki Setup in action

5. Runs the postinstall script, if any.

6. Offers the user a chance to view the README file, if one was given in
setup.xml.

7. Offers to run the program immediately.

Although Setup was designed primarily for CD-ROM titles, you could easily
make it work in other situations, as long as it can find the files it needs. You can
get your own copy of Loki Setup at Loki’s Web site9. The Setup package
includes source code as well as full documentation for the XML script format.

9 http://www.lokigames.com

TO EVERY MAN A LINUX DISTRIBUTION 393

Understanding the Linux Filesystem Standard

Linux evolved from Linus Torvald’s pet project into a full-blown multiuser
operating system, and its filesystem has gone through a long period of evolution.
A while back people decided that it wouldn’t do for each Linux distribution to
use a different filesystem, and so an effort was made to settle on a standard.
Originally dubbed the Linux Filesystem Standard, this document has grown into
the Filesystem Hierarchy Standard (FHS), and it is meant to apply to all
UNIX-like operating systems. Most Linux distributions do a fairly decent job of
adhering to the FHS, which makes life easier for application (and game)
programmers who would like to support as many systems as possible.

We won’t duplicate the FHS here; it’s pretty long, and you can browse the whole
thing at http://www.pathname.org/fhs. We’ll simply offer a brief overview of
the filesystem and then give a few hints about where your game should put its
files. Following these hints will keep your users happy and hopefully reduce the
possibility of your game damaging someone’s filesystem. We’ll start with an
overview of the top-level directories on a typical Linux box.10

/ The top-level directory. Don’t put anything here.11

bin/ Important binaries that the system needs to boot. Don’t touch
this directory unless you have a really good reason (which is
unlikely if your product is a game).

boot/ The Linux kernel and various bootloader information.

dev/ Device files, such as dsp. You may need to access some of these,
but it’s unlikely that you’ll need to modify them.

etc/ Systemwide configuration files. Game configuration files almost
certainly do not belong here.

10 Much of this information is directly from the Filesystem Hierarchy Standard, version 2.1.

11 The FHS forbids compliant distributions from adding new top-level directories, but some do
anyway.

394 CHAPTER 10

home/ Home directories for each user. For instance, my home directory is
home/overcode/. Programs and scripts can retrieve the current
user’s home directory with the HOME environment variable. home/
is sometimes actually stored in usr/home/ and linked to home/.

lib/ System libraries and kernel modules. Don’t put anything here
unless your application requires special kernel modules (which is
very unlikely and potentially very dangerous).

mnt/ A temporary filesystem mount point. For instance, floppies and
CD-ROMs are frequently mounted here.

opt/ A somewhat controversial (but standardized) place for applications
to add their own directory trees. Very similar to /usr/local, and
roughly equivalent to the Program Files folder in Windows.

proc/ Dynamically generated system information. Look, but don’t touch.

root/ The root user’s little cave. Unless this happens to be the current
HOME, don’t mess with it (it’ll probably be read/write protected
anyway).

sbin/ System administration binaries. I don’t see why a game would
ever need to touch this directory, except perhaps to collect
information about the system.

tmp/ A scratch pad directory. You can put anything here, but it’s polite
to clean up after yourself. Don’t count on anything remaining in
tmp/ for too long. Some systems purge tmp/ weekly.

usr/ Billed by the FHS as the “secondary hierarchy,” usr/ contains a
second directory structure very similar to the root directory but
with a different purpose. We’ll look at some of usr/’s
subdirectories shortly.

var/ Variable data, according to the FHS. var/ is home to logs, email,
state information, and temporary files that are too important for
tmp/. (Files in var/tmp/ are guaranteed to be preserved
between system reboots.)

TO EVERY MAN A LINUX DISTRIBUTION 395

usr/ is typically the largest top-level directory on the system. It houses almost
all of the system’s datafiles, application binaries (those that aren’t in opt/, at
least), and some local configuration files. Here’s a typical usr/ structure:

usr/X11R6/
The X Window System. It would more correctly be elsewhere, but
this location is well established, and the FHS makes an exception
for it.

usr/bin/ User binaries. In some cases it’s acceptable for your installation
program to put binaries or symlinks here; see below.

usr/games/
Games. If your game is small (one or two files), you might want to
have it install itself here. If you’re not using a package manager,
though, usr/local/games/ is probably a better idea.

usr/include/
Directory of .h files for the C compiler. If your game needs to
install a development library of some sort (perhaps as part of a
source build), its header files should go here so the C compiler can
find them. It’s polite to put them in a subdirectory of
usr/include/, though. SDL puts its headers in
usr/include/SDL or usr/local/include/.

usr/lib/ Noncritical libraries. The system should be able to run without
the libraries stored in usr/lib/. Packages such as SDL and GTK
usually put their shared libraries here (or in usr/local/lib/). The
distinction between critical (lib/) and noncritical (usr/lib/)
libraries is very important for maintaining a Linux system.

usr/local/ Similar in function to opt/. This directory is not supposed to be
under the control of any package manager. (RPM packages
usually install to usr/ rather than usr/local/.) If you intend to
use Loki’s Setup program for your installation, you’ll probably
want to install to usr/local/. It’s not uncommon for applications
to create their own subdirectories under usr/local/ (whereas
creating a subdirectory under usr/ is very bad style). usr/local/

396 CHAPTER 10

contains include/ and lib/ subdirectories that are more or less
equivalent to usr/include/ and usr/lib/, respectively. The FHS
specifies that usr/local/ should be left empty by the
distribution’s installer and should not be touched during system
upgrades.

usr/sbin/ Additional system administration binaries. Although this
directory contains the same sort of programs as sbin/ (that is,
programs primarily intended for use by root), it shouldn’t contain
anything that’s absolutely critical to the system. For instance,
network traffic monitors and improved versions of basic
networking utilities might go in usr/sbin/, while the basic system
administration programs common to all Linux systems should go
in sbin/.

usr/share/ Architecture-independent data, according to the FHS. This
directory usually contains assorted program datafiles. For
instance, Emacs’ Lisp scripts reside in usr/share/emacs/. It’s
not unreasonable to put your own datafiles here (in a separate
subdirectory).

Where should your game install itself? If you’re installing with a package
manager that has the ability to remove and verify the files it installs, it’s
acceptable to use usr/ directly (including usr/bin/, usr/games/, usr/lib/,
and usr/share/). If your game were FooBall, for instance, it might install its
executable to usr/games/fooball and its datafiles to usr/share/fooball/.
However, if your game uses its own installation system rather than a package
manager, it’s best to use usr/local/games/fooball and
usr/local/share/fooball/. It would also be OK to install to opt/fooball/.
The basic rule is that you shouldn’t touch usr/ without involvement from a
package manager; instead, you should use usr/local/ and opt/.

These places are fine for executables and datafiles, but what about configuration
information? Most users don’t have write permission to anything in usr/ (and
certainly not to etc/), and it’s a very bad idea to require your program to be
run under the root account (mainly for security reasons). Per-user configuration
files (high scores, window/video mode info, saved games, and so on) can go in
each user’s home directory, which you can grab from the HOME environment

TO EVERY MAN A LINUX DISTRIBUTION 397

variable (in C, getenv("HOME") should do the trick). All of Loki’s games, for
instance, use $HOME/.loki/ for this purpose. Systemwide configuration files,
if any, can go in usr/local/etc. But you’ll probably want to leave most options
up to the individual user.

This concludes our discussion of installing software under Linux. In the next
chapter we’ll talk about... Wait, there are no more chapters!

We’ve thoroughly scratched the surface of game programming with Linux.
There’s a lot we haven’t covered, but hopefully you’ve now seen enough that you
can pick up the rest on your own. Whether or not Linux will become a major
gaming platform is anyone’s guess, but if we want that to happen, it is our
responsibility to lead the charge. Happy game hacking.

Glossary of Terms

alpha blending
An operation that combines two pixel values together so as to
simulate a certain degree of transparency. This is done on a
per-pixel basis with an additional piece of data called an alpha
value that represents each pixel’s translucency. Page 92.

animation The art of fooling the human eye into perceiving motion.
Chapter 4.

artifact A (usually minor) audio or display glitch, often caused by an
unexpected situation, insufficient performance, or a heavy system
load. Some common artifacts are shearing and flicker. Artifacts
are bad.

blit A fast copy between two pieces of graphics data. Blitting is one of
the most basic operations in 2D computer graphics. The word
itself comes from block image transfer. Page 83.

colormap See palette.

direct color
Somewhat uncommon but powerful display mode in which each
pixel value is divided into three bitfields, each of which indexes a
separate table. The values retrieved from these tables are used as
the red, green, and blue components for the pixel. Direct color is
essentially a powerful hybrid of indexed and true color modes.
Page 71.

400 GLOSSARY

double buffering
Technique of drawing the next frame of animation in an off-screen
buffer and blitting it quickly to the screen at the appropriate time.
This reduces the possibility of various display artifacts by
confining all actual display updates to a very short and carefully
timed interval. Page 102.

engine The core of a game. A game engine coordinates input processing,
graphics, audio, networking, and game rules to present the player
with an interesting experience. Engines are frequently licensed
between game companies to speed up game development. For
instance, id Software has licensed derivatives of its Quake engine
to several other game development studios. Page 11.

first-person shooter (FPS)
A game genre in which the player controls a character from a first
person perspective (that is, through the character’s eyes).
Examples are the id’s Quake series, Activision’s Soldier of
Fortune, and Valve’s Half-Life. Page 4.

framebuffer
Block of memory that represents the data on the screen. A
framebuffer usually contains one or two bytes of information for
each pixel on the screen. Page 71.

hicolor Also known as high color. Family of 16-bit RGB display modes
with five or six bits for each color component. Page 71.

indexed display mode
Display mode in which each pixel value is interpreted as an index
into a table (palette) of predefined red, green, and blue values.
Page 71.

latency In computer audio playback, the amount of time it takes a newly
played sample to actually reach the speakers. This should only be
a small fraction of a second. Network sound mixers like ESD and
(to a lesser degree) aRts are known to produce high latency.
Pages 176, 196.

GLOSSARY 401

mutex Mutual exclusion lock. Used in multithreaded programming to
keep two threads from trying to modify the same piece of data at
once. Page 121.

packed pixel
Synonymous with hicolor or true color. The term refers to the fact
that the color components of each pixel are packed into bitfields.
Page 71.

page flipping
Hardware-accelerated version of double buffering. In this case the
offscreen buffer and framebuffer are identical and can be switched
(“flipped”) at any time by updating a graphics card register. This
obviates the need for blitting. SDL tries to use hardware page
flipping if both SDL HWSURFACE and SDL DOUBLEBUF are specified
when the video mode is set. (Use the SDL Flip function to
perform the page flip each frame.)

palette Used in indexed video modes to specify the red, green, and blue
components of each possible color value. A palette is simply a
table of RGB values, usually stored in graphics card registers.
Page 71.

particle system
A group of individual, tiny objects, each with a position and path
of motion. Particle systems can be used to simulate anything from
flying debris to vehicle exhaust. Page 153.

PCM Pulse-coded modulation. The most common way of storing and
playing digital audio samples. Each PCM sample represents the
amplitude of the sound wave at a given instant. Page 125.

pixel One blotch of color on the screen. Pixels are arranged in a precise
grid on the screen, and their colors are updated between 50 and
100 times each second. Each pixel has a distinct color, usually
specified in terms of its red, green, and blue components, and this
color data is stored in memory accessible to the computer’s
graphics hardware. Less commonly known as pels. The name
comes from pictorial element. Page 70.

402 GLOSSARY

real-time strategy (RTS)
A game genre in which the player controls a group of characters in
some sort of conquest or battle, usually from an overhead view.
Examples are Westwood Studios’ Command and Conquer series
and Blizzard Entertainment’s StarCraft. Page 6.

RGB display mode
Display mode in which each pixel value is directly expressed in
terms of its red, green, and blue intensities. Each component is
usually specified with five to eight bits, depending on the
particular mode. Two popular RGB formats are hicolor and true
color. Page 71.

sample A single piece of audio data. Analogous to a pixel. A computer
sound clip consists of thousands of samples taken at regular time
intervals. See also PCM.

shearing A common display artifact that occurs when a program tries to
draw on the screen while the video controller is refreshing the
screen. The result is that an image is only partially drawn on the
screen for a split second. This isn’t disastrous and often goes
unnoticed, but it can become distracting.

surface In SDL, a structure that represents a piece of graphics data.
DirectX calls them buffers. Page 72.

triple buffering
Technique similar to double buffering that uses two off-screen
surfaces instead of one (three surfaces total). Triple buffering can
be useful for taking advantage of graphics acceleration. Some
video adapters are capable of copying data in the background, and
triple buffering allows a program to draw to a third buffer while
the video hardware is busy swapping the other two.

true color 24-bit RGB display mode with 8 bits for each color component.
Page 71.

turn-based strategy (TBS)
A game genre similar in some ways to the real-time strategy genre,

GLOSSARY 403

except that the game is divided into distinct turns, often with no
time limit imposed. At the risk of generalizing, TBS games involve
more thought and careful planning, while RTS games require
quick thinking. Examples are the Civilization series and Sid
Meier’s Alpha Centauri (SMAC). Page 7.

voxel Short for Volumetric Pixel. Voxels are used to create fast but
detailed renderings of complex objects. The most familiar use of
voxels is terrain rendering, but the technique has also been applied
in many other situations (for example, character rendering in Sid
Meier’s Alpha Centauri, based on the Caviar animation library).
Voxels are essentially pixels in three-dimensional space, and entire
scenes of voxels can be rendered extremely quickly if some limits
are placed on the scene’s geometry.

Bibliography

[1] Michael Abrash. Zen of Graphics Programming. The Coriolis Group, second
edition, 1996. A compendium of loosely related and somewhat revised
magazine articles written by Mike Abrash, an authority on graphics
programming and code optimization. Thorough explanations of fundamental
graphics techniques, such as the Bresenham algorithms.

[2] Robert J. Chassell. Programming in Emacs Lisp: An Introduction. Free
Software Foundation, Boston, MA, 1997. A guide to making the most of
GNU Emacs through its Lisp scripting mechanism.

[3] Michael J. Donahoo and Kenneth R. Calvert. The Pocket Guide to TCP/IP
Sockets. Morgan Kaufmann Publishers, San Francisco, CA, 2001. A concise
guide to socket programming.

[4] Michael K. Johnson and Erik W. Troan. Linux Application Development.
Addison Wesley Longman, Reading, MA, 1998. Billed by the authors as a
UNIX programming book written from a Linux perspective. I recommend
this book to anyone who desires to learn more about traditional UNIX
programming and how it applies to the Linux world.

[5] Leslie Lamport. LATEX: A Document Preparation System. Addison Wesley
Longman, Reading, MA, second edition, 1994. The authoritative guide to
LATEX. It bears mention here simply because it significantly affected my
brain patterns as I wrote.

[6] John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley Longman,
Reading, MA, 1994. The original book about Tcl/Tk, by the creator of the

406 BIBLIOGRAPHY

language. Not updated in a while, but provides considerable insight into the
philosophy and design of the language.

[7] Dave Roberts. PC Game Programming Explorer. The Coriolis Group,
Scottsdale, AZ, 1994. Though certainly dated by today’s technology, this
book provides insight into various video techniques and the design of a
scrolling game engine.

[8] Bruce Schneier. Applied Cryptography. John Wiley and Sons, New York,
second edition, 1996. An excellent book about cryptography and computer
security. Explains cryptosystems at many levels. Potentially useful for
understanding how to implement secure multiplayer games.

[9] W. Richard Stevens. UNIX Network Programming, volume 1. Prentice Hall
PTR, Upper Saddle River, NJ, second edition, 1998. A ludicrously detailed
and complete guide to TCP/IP and related protocols under UNIX. Covers
socket programming at an extreme level of juicy detail.

[10] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL
Programming Guide. Addison Wesley Longman, Reading, MA, third
edition, 1999. A very thorough and precise tour of the OpenGL rendering
API. A must-have for any 3D graphics programmer.

Index

4Front Technologies, 162

accept, 287
alBufferAppendWriteData LOKI, 234
alBufferData, 213
alcCloseDevice, 211
alcCreateContext, 210, 211
alcDestroyContext, 211
alcMakeContextCurrent, 210, 211
alcOpenDevice, 209, 210
alGenBuffers, 212
alGenSources, 212
alGenStreamingBuffers, 228
alpha blending, 92–97, 399
Alpha Centauri, 7
ALSA, 62, 162

example, 187–193
organization, 193
overview, 162
philosophy, 187
playback states, 193
using, 187–195

alSourcePlay, 212
alSourceStop, 213
animation, 97–107, 399
Apple Public Source License, 65
ar, 29
artifact, 399
audio subsystem, see engine, audio

subsystem
audiofile library, see libaudiofile
Autoconf, 381
automatons, 265

binary versus source distribution, 380
bind, 286
binding (to local ports), 285
bitmap, 73
blitting, 73, 83–87, 399
bug tracking, 42

CC (variable), 25
CD Paranoia, 222
CFLAGS (variable), 25
Civilization II, 7
ClanLib, 57

compared with SDL, 57
codec, 222
colorkeys, 87–91
colormap, 71, 399
Command and Conquer, 6
compiling, 20–23
configure script, see GNU Autoconf
connect, 277
core pies, 34
Corncob 3D, 4
CRTC, 70
CVS, 42–49

adding files, 46

408 INDEX

branching, 47
committing, 45
compression, 49
example, 43–48
locking, 43
modules, 42
overview, 42
project setup, 43–45
remote, 48
removing files, 47
resolving conflicts, 45
revision numbers, 46
tagging, 47

CVSROOT (variable), 43

debugging, 33–41
bug tracking, 42
compiling for, 33
with ddd, 41
with gdb, 34–40

Deus Ex, 6
device files, 170
diff utility, 50–52
DikuMud, 10
direct color (display mode), 72, 399
display modes, 71–72
display subsystem, see engine, display

subsystem
distributions (of Linux), 379, 381
dlopen, 31
DMA, 128
DNS, 274–275
Doppler effect, 13, 207
DOS, 53, 54
double buffering, 102, 399
Dungeons and Dragons, 7

editors, 17–20

Emacs, 19–20
JED, 19
NEdit, 20
vi, 18–19
XEmacs, 19

Emacs (operating system), 19–20
endianness, 169, 175, 277
engine, 400

audio subsystem, 13–14
defined, 11
display subsystem, 12–13
game loop, 15–16
input subsystem, 12
network subsystem, 14
update subsystem, 14–15

environmental audio, 13
ESD, 62, 163

caching samples, 199
control connection, 199
example, 196–198
latency, 196
overview, 195

esd close, 198, 200
esd confirm sample cache, 199
esd open sound, 199
esd play stream, 198, 199
esd sample cache, 199
esd sample play, 199

fb.modes, 326, 330
fb fix screeninfo, 325
fb var screeninfo, 325
fbdev, 315
filesystem hierarchy, see Filesystem

Hierarchy Standard
Filesystem Hierarchy Standard,

393–397

INDEX 409

first-person shooters, see genres,
first-person shooters

flicker, 102
Flight Gear, 3
Fltk, 60
frame, 164
framebuffer, 70–71, 400

linear, 71
framebuffer device, 315–337

checking for, 316
configuring, 318
drawing pixels, 318
pros and cons, 316
setting video modes, 326–337

free software, 380
FreeBSD

supporting, 383–384

game loop, 15–16
gcc, 20–23

adding static libraries, 29
basic usage, 21
command-line options, 22–23
creating object files, 22
as linker interface, 22

gdb, 34–40
adding breakpoints, 36
attaching to processes, 39
backtracing, 38
capabilities, 34
examining the stack, 37
example, 35–37
listing source, 36
remote debugging, 39
single-stepping, 36
snooping on data, 37
threads, 40

watchpoints, 37
GDK, 59
genres, 2

first-person shooters, 4–6, 400
MUD, 10–11
puzzle, 9
real-time strategy, 6–7, 401
role-playing, 7–8
simulation, 2–4
turn-based strategy, 7, 402

gethostbyname, 283
GGI, 56

KGI, 56
Glide, 58
GLUT

compared with SDL, 141
GNU Autoconf, 381
GPM, 348–353

clients, 348
events, 348
ROIs, 349

Gpm Close, 352
Gpm Connect, 352
Gpm Event, 348
Gpm GetEvent, 348
Gpm Open, 352
graphics hardware, 70–71

acceleration, 70
grep utility, 49–50
GTK+, 59
Guile, 64

Half-Life, 5
heap corruption, 39
Heavy Gear II, 2
hicolor (display mode), 71, 400
host byte order, 277

410 INDEX

hostnames, see dns

ICMP (Internet Control Message
Protocol), 272

indexed (display mode), 71, 400
input customization, 12
input subsystem, see engine, input

subsystem
ioctl, 170
IP address, 273

dynamic, 273
static, 273

IPX/SPX, 65–66

JED (text editor), 19
joe (text editor), 17
JPEG images, 66

compared with PNG, 66

keyboard input
from terminals, 338–348

keyboard input modes, 339
keycodes, 338

translating to characters, 345–348
KGI, see GGI, KGI

latency, 129, 311, 400
ld, 32–33

name collisions, 33
search path, 33

LD LIBRARY PATH (variable), 33
ldconfig, 30
LDFLAGS (variable), 25
LGPL license, 54
libaudiofile, 67, 164, 170

compared with libsndfile, 67
libjpeg, 66
libpng, 66

libraries, 29–32
shared, 29–32

advantages, 29
creating, 30–31
installing, 30
naming, 29
using, 31–32

static, 29
using, 29

libsndfile, 67, 164
closing files, 165
compared with libaudiofile, 67
example, 166–169
opening files, 164
reading data, 164
using, 164–169

libvorbisfile, 222
lines, 356–362

Bresenham algorithm, 358
distance from object, 363

Linux
capabilities, 1
origin, 1

Linux filesystem, see Filesystem
Hierarchy Standard

listen, 286
Loki Setup, 387–392

XML format, 389

Make utility, 24–28
advantages, 24
dependencies, 24
environment, 25
error handling, 28
makefile, 24

example, 24
indentation, 25

INDEX 411

rules, 24
implied, 27

targets, 24
phony, 27–28

variables, 25–26
MechWarrior, 2
memory protection, 54
mickeys, 108
Microsoft Flight Simulator, 2
mmap, 178, 186
mouse input from consoles, see GPM
MP3, 67, 68, 222

patent issues, 222
quality loss, 222

MPEG-1, 68
Multi-Play, 163–206

ALSA back end, 187–193
command-line options, 205
compiling, 206
example, 166–169
main file, 200–205
OSS back end, 171–174

Multiuser Dungeons, see genres, MUD
mutex, 400
MzScheme, 64

NEdit (text editor), 20
network byte order, 277
network game security, 312–313
network gaming models, 301–302
network subsystem, see engine,

network subsystem

object files
creating, 22

Ogg (bitstream format), see Ogg
Vorbis

Ogg Vorbis, 67, 222–235

CPU usage, 223
linking against, 223–224
patent issues

lack thereof, 222
supporting, 223–235

Open Sound System, see OSS
open source, 380
OpenAL, 63, 206–221

buffers, 207
creating, 212
loading, 213

contexts, 209
design philosophy, 209
devices, 209

opening, 209
listener, 207
naming convention, 209
objects, 207

properties, 207
overview, 206–207
sources, 207

creating, 212
starting playback, 212
stopping, 213

OpenGL, 57
OpenPlay, 65
OSS, 61, 162

blocking, 175, 177
compatibility, 61
fragments, 176

adjusting, 176–177
ioctl list, 187
latency, 176
licensing, 61
memory mapped DMA, 178

example, 179–185
overview, 162

412 INDEX

setting sample format, 175
simple example, 171–174
synchronization, 175
using, 170–187

OSS/Free, 162
ov clear, 225
ov info, 225
ov open, 224
ov read, 225

packed pixel (display mode), 401
packet loss, 311
page flipping, 401
palette, 71, 401
parallaxing, 148
particle systems, 153–158, 401
patch utility, 50–52
PCM, 125, 401

mixing, 128
Penguin Warrior

(lack of) design process, 145
graphics, 146–147
overview, 144, 145
parallaxing scroller, 147–153
particle system, 153, 158
timing, 158–159

Perl, 64
.PHONY (Make target), see Make

utility, targets, phony
pico (text editor), 17
pitch, see SDL, surfaces, pitch
pixels, 70, 401
pixmap, 73
Plib, 57–58
PNG images, 66

compared with JPEG, 66
ports (TCP/IP), 274

proc/ filesystem, 383
puzzle games, see genres, puzzle
Python, 64

Qt, 60
licensing, 60

Quake 3, 5, 178

RAMDAC, 70
ranlib, 29
read, 284
real-time strategy games, see genres,

real-time strategy
refresh, 70
regular expressions, 50
resolution, 70
RGB (display mode), 402
Rise of the Triad, 12
role-playing games, see genres,

role-playing
ROM (MUD system), 10

samples, 125, 402
signed versus unsigned, 169
versus frames, 164

sampling rate, 125
scancodes, 338
Scheme, 63–64

Guile, 64
MzScheme, 64

Scriptics, Inc., 240
scripting engine

contexts, 266–267
data exchange, 252
performance, 267–268
security, 267
task, 252

scripts

INDEX 413

automatons, 265
designing, 258–265
skill level of writers, 268
state machines, 261

SDL, 56
alpha blending, 92–97
animation, 97–107
audio, 125–140

callback, 129
example, 129–140
initializing, 137
latency, 129
mixing, 128

basic usage, 74–77
blitting, 83–87
colorkeys, 87–91
compared with ClanLib, 57
compared with GLUT, 141
compiling with, 76–77
direct drawing, 77
direct keyboard access, 115
double buffering, 102
event queue, 107
events, 107–120

event types, 107
joystick, 116–120
keyboard, 112–116
mouse, 108–112
thread safety, 112

fbdev target, 317
full screen, 83
GUI toolkits, 60–61
hat switches, 116
input, see SDL, events
loading BMP images, 85
loading non-BMP images, 92
modifier keys, 112

OpenGL contexts, 140–144
overview, 69
page flipping, 401
pixel packing, 81
platforms, 56
surfaces, 402

blitting, 73
overview, 72
pitch, 78

threads, 120–125
entry point, 120
joining, 120
synchronization, 121

transparency, see SDL, colorkeys
video programming, 72–107
virtual keysyms, 112

sdl-config utility, 77
SDL AudioSpec, 127, 137
SDL BlitSurface, 86
SDL BuildAudioCVT, 138
SDL CloseAudio, 138, 140
SDL ConvertAudio, 139
SDL CreateMutex, 122
SDL CreateThread, 120, 121
SDL DestroyMutex(mutex), 122
SDL DisplayFormat, 103
SDL EnableKeyRepeat, 115
SDL Event, 107
SDL Flip, 102, 103, 401
SDL FreeWAV, 127
SDL Gasbag, see Andy Mecham
SDL GetKeyState, 115, 116
SDL GetMouseState, 110, 111
SDL GL SetAttribute, 143, 144
SDL GL SwapBuffers, 144
SDL image library, 66
SDL Init, 75

414 INDEX

SDL INIT AUDIO, 75
SDL INIT VIDEO, 75
SDL KillThread, 120, 121
SDL LoadBMP, 85, 86
SDL LoadWAV, 126, 138, 164
SDL LockMutex, 122
SDL LockSurface, 77, 78
SDL mixer, 223
SDL mutexP(mutex), 122
SDL mutexV(mutex), 122
SDL OpenAudio, 137
SDL PauseAudio, 138, 139
SDL PixelFormat, 78, 82
SDL PollEvent, 111
SDL PumpEvents, 112, 115
SDL Quit, 75, 76
SDL Rect, 86, 87
SDL SetAlpha, 93
SDL SetColorKey, 87, 88
SDL SetVideoMode, 74, 75
SDL Surface, 78
SDL Thread, 120
SDL UnlockMutex, 122
SDL UnlockSurface, 77, 79
SDL UpdateRect, 82, 83
SDL WaitEvent, 111
SDL WaitThread, 120, 121
SDLMod, 113
sf close, 165, 166
SF INFO, 164, 165
sf open read, 164, 165
sf readf type , 164
sf readf type, 166
shearing, 102, 402
signal handlers, 284
simulations, see genres, simulation
Slackware

making packages, 386
sloppy coding, 11
SMPEG library, 68, 222
SNDFILE, 164
sndfile library, see libsndfile
sockaddr in, 276, 278
socket, 276
sockets, 65, 275–300
Sokoban, 9
Soldier of Fortune, 5
sound hardware, 128
source versus binary distribution, 380
SoX, 170
StarCraft, 6
state machines, 261
stream protocol, 273
surface, 402
SVGALib, 55

tab completion, 22
tarball distribution, 384

versus packages, 385
Tcl, 59, 63

built-in commands, 241–245
command substitution, 239
data, 238
executing code, 246
as extension language, 245–258
interpreter object, 246
linking against, 246, 248
objects, 250
obtaining, 240
performance concerns, 238
simple example, 239
strings, 238
tclsh, 239
tutorial, 238–245

INDEX 415

variable linking, 253
variable substitution, 239

Tcl CreateInterp, 249
Tcl CreateObjCommand, 251
Tcl DeleteInterp, 249
Tcl Eval, 250
Tcl EvalFile, 250
Tcl Interp, 249
Tcl LinkVar, 253
tclsh, 239
TCP (Transmission Control Protocol),

272
TCP clients, 276–285
TCP servers, 285–292
TCP/IP, 65, 272
Tetris, 9
threads, 120–125
timing, 158–159
Tk, 59–60
Torvalds, Linus, 1
Total Annihilation, 6
triple buffering, 402
true color (display mode), 72, 402
turn-based strategy games, see genres,

turn-based strategy

UDP (User Datagram Protocol), 273,
292–300

Ultima Online, 8
update subsystem, see engine, update

subsystem

version control, 42
vertical retrace, 70
vi (text editor), 18–19
video card, 70
video modes, see display modes
video scanning, 327–329

Vorbis (audio codec), see Ogg Vorbis
vorbis info, 226
voxels, 7, 403

.wav files, 164
write, 285

X Window System, 55
Xlib, 58–59
XVideo extension, 55

XEmacs (text editor), 19
Xiphophorus, 222

zlib, 68

