
800 East 96th St., Indianapolis, Indiana, 46240 USA

Tony Sintes

Object
Oriented
Programming

in21 Days

Teach Yourself

SECOND EDITION

00 0672321092 FM 08/22/2001 2:56 PM Page i

Sams Teach Yourself Object Oriented
Programming in 21 Days

Copyright 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32109-2

Library of Congress Catalog Card Number: 2001089626

Printed in the United States of America

First Printing: September 2001

04 03 02 01 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis.

EXECUTIVE EDITOR

Michael Stephens

ACQUISITIONS EDITOR

Carol Ackerman

DEVELOPMENT EDITOR

Tiffany Taylor

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

George E. Nedeff

COPY EDITOR

Susan Hobbs

INDEXER

Tom Dinse

PROOFREADER

Harvey Stanbrough

TECHNICAL EDITOR

Mark Cashman

TEAM COORDINATOR

Lynne Williams
Pamalee Nelson

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

00 0672321092 FM 08/22/2001 2:56 PM Page ii

Contents at a Glance
Introduction 1

WEEK 1 Defining OO 3

Day 1 Introduction to Object Oriented Programming 7

Day 2 Encapsulation: Learn to Keep the Details to Yourself 25

Day 3 Encapsulation: Time to Write Some Code 53

Day 4 Inheritance: Getting Something for Nothing 75

Day 5 Inheritance: Time to Write Some Code 103

Day 6 Polymorphism: Learning to Predict the Future 125

Day 7 Polymorphism: Time to Write Some Code 151

WEEK 2 Learning to Apply OO 181

Day 8 Introduction to the UML 185

Day 9 Introduction to Object Oriented Analysis (OOA) 203

Day 10 Introduction to Object Oriented Design (OOD) 229

Day 11 Reusing Designs Through Design Patterns 249

Day 12 Advanced Design Patterns 277

Day 13 OO and User Interface Programming 305

Day 14 Building Reliable Software Through Testing 329

WEEK 3 Putting It All Together: A Complete OO Project 359

Day 15 Learning to Combine Theory and Process 363

Day 16 Blackjack Iteration 2: Adding Rules 399

Day 17 Blackjack Iteration 3: Adding Betting 429

Day 18 Blackjack Iteration 4: Adding a GUI 447

Day 19 Applying an Alternative to MVC 469

Day 20 Having Some Fun with Blackjack 485

Day 21 The Final Mile 497

00 0672321092 FM 08/22/2001 2:56 PM Page iii

Appendices 511

XA Answers 513

XB Java Primer 569

XC UML Reference 595

XD Selected Bibliography 603

XE Blackjack Code Listings 607

Index 681

00 0672321092 FM 08/22/2001 2:56 PM Page iv

Contents
Introduction 1

About the Examples ..2
What You Need to Know to Use This Book..2

Week 1 Defining OO 3

Week 1 At a Glance 5

Day 1 Introduction to Object Oriented Programming 7

Object Oriented Programming in a Historical Context ..8
Precursors to OOP..9
Object Oriented Programming ..10
How Object Oriented Programming Builds Upon the Past18

Benefits and Goals of OO..19
Natural ..19
Reliable ..19
Reusable..20
Maintainable ..20
Extendable ..20
Timely ..21

Pitfalls ..21
Pitfall 1: Thinking of OOP as Simply a Language ..21
Pitfall 2: Fearing Reuse ..21
Pitfall 3: Thinking of OO as a Cure-All ..22
Pitfall 4: Selfish Programming ..22

The Week Ahead ..22
Summary ..23
Q&A ..23
Workshop ..24

Quiz ..24
Exercises ..24

Day 2 Encapsulation: Learn to Keep the Details to Yourself 25

The Three Pillars of Object Oriented Programming ..26
Encapsulation: The First Pillar ..26

An Example of Interface and Implementation ..28
Public, Private, and Protected ..29
Why Should You Encapsulate? ..30

00 0672321092 FM 08/22/2001 2:56 PM Page v

Abstraction: Learning to Think and Program Abstractly30
What Is Abstraction? ..31
Two Examples of Abstraction ..31
Effective Abstraction ..33

Keeping Your Secrets Through Implementation Hiding34
Protecting Your Object Through the Abstract Data Type (ADT)34
Protecting Others from Your Secrets Through Implementation Hiding39
A Real-World Example of Implementation Hiding ..40

Division of Responsibility: Minding Your Own Business42
Encapsulation Tips and Pitfalls..46

Abstraction Tips and Pitfalls ..46
ADT Tips and Pitfalls ..47
Implementation Hiding Tips ..48
How Encapsulation Fulfills the Goals of OO Programming48

Caveats ..49
Summary ..50
Q&A ..50
Workshop ..51

Quiz ..51
Exercises ..52

Day 3 Encapsulation: Time to Write Some Code 53

Lab 1: Setting Up the Java Environment ..54
Problem Statement..54

Lab 2: Class Basics..54
Problem Statement..57
Solutions and Discussion..59

Lab 3: Encapsulation Roundup..60
Problem Statement..61
Solutions and Discussion..61

Lab 4: Case Study—The Java Primitive Wrappers (Optional)66
Problem Statement..70
Solutions and Discussion..70

Q&A ..71
Workshop ..72
Quiz..72
Exercises ..73

Day 4 Inheritance: Getting Something for Nothing 75

What Is Inheritance? ..76
Why Inheritance? ..78
”Is-A” Versus “Has-A”: Learning When to Use Inheritance79

vi Sams Teach Yourself Object Oriented Programming in 21 Days

00 0672321092 FM 08/22/2001 2:56 PM Page vi

Learning to Navigate Inheritance’s Tangled Web..81
Inheritance Mechanics..83

Types of Inheritance ..89
Inheritance for Implementation ..89

Implementation Inheritance Problems..89
Inheritance for Difference ..90
Inheritance for Type Substitution ..94

Tips to Effective Inheritance..97
Summary ..98
How Inheritance Fulfills the Goals of OO ..99
Q&A ..100
Workshop ..101

Quiz ..101
Exercises ..102

Day 5 Inheritance: Time to Write Some Code 103

Lab 1: Simple Inheritance..103
Problem Statement..104
Solutions and Discussion..105

Lab 2: Using Abstract Classes for Planned Inheritance106
Problem Statement..109
Solutions and Discussion..109

Lab 3: Bank Account—Practicing Simple Inheritance110
A Generic Account ..111
The Savings Account..111
The Timed Maturity Account ..111
Checking Account ..111
Overdraft Account ..112
Problem Statement..112
Extended Problem Statement ..114
Solutions and Discussion..115

Lab 4: Case Study—”Is-A,” “Has-A,” and the java.util.Stack............................120
Problem Statement..121
Solutions and Discussion..121

Summary ..123
Q&A ..123
Workshop ..123

Quiz ..124
Exercises ..124

Day 6 Polymorphism: Learning to Predict the Future 125

Polymorphism..126
Inclusion Polymorphism..130

Contents vii

00 0672321092 FM 08/22/2001 2:56 PM Page vii

Parametric Polymorphism..135
Parametric Methods..135
Parametric types ..137

Overriding ..138
Overloading..139

Coercion..141
Effective Polymorphism ..141
Polymorphic Pitfalls ..144

Pitfall 1: Moving Behaviors Up the Hierarchy ..144
Pitfall 2: Performance Overhead ..144
Pitfall 3: Blinders..145

Caveats ..146
How Polymorphism Fulfills the Goals of OO ..146
Summary ..147
Q&A ..148
Workshop ..149

Quiz ..149
Exercises ..149

Day 7 Polymorphism: Time to Write Some Code 151

Lab 1: Applying Polymorphism ..151
Problem Statement..158
Solutions and Discussion..159

Lab 2: Bank Account—Applying Polymorphism to a Familiar Example160
Problem Statement..160
Solutions and Discussion..163

Lab 3: Bank Account—Using Polymorphism to Write Future-Proof Code164
Problem Statement..166
Solutions and Discussion..167

Lab 4: Case Study—The Java Switch and Polymorphism..................................169
Fixing a Conditional ..171
Problem Statement..173
Solutions and Discussion..174

Summary ..176
Q&A ..176
Workshop ..177

Quiz ..177
Exercises ..177

Week 1 In Review 179

viii Sams Teach Yourself Object Oriented Programming in 21 Days

00 0672321092 FM 08/22/2001 2:56 PM Page viii

Week 2 Learning to Apply OO 181

Week 2 At a Glance 5

Day 8 Introduction to the UML 185

Introduction to the Unified Modeling Language ..186
Modeling Your Classes ..187

Basic Class Notation ..188
Advanced Class Notation ..189
Modeling Your Classes to Suit Your Purposes ..190

Modeling a Class Relationship ..191
Dependency ..191
Association ..193
Generalization ..197

Putting It All Together ..198
Summary ..199
Q&A ..200
Workshop ..200

Quiz ..200
Exercises ..201

Day 9 Introduction to Object Oriented Analysis (OOA) 203

The Software Development Process ..204
The Iterative Process ..205
A High-Level Methodology ..208

Object Oriented Analysis (OOA) ..208
Using Use Cases To Discover System Use ..209
Building the Domain Model ..223

So Now What? ..225
Summary ..226
Q&A ..226
Workshop ..227

Quiz ..227
Exercises ..228

Day 10 Introduction to Object Oriented Design (OOD) 229

Object Oriented Design (OOD) ..230
How Do You Apply OOD? ..231

Step 1: Generate an Initial List of Objects ..232
Step 2: Refine Your Objects’ Responsibilities..234
Step 3: Develop the Points of Interaction ..241
Step 4: Detail the Relationships Between Objects ..243
Step 5: Build Your Model ..243

Contents ix

00 0672321092 FM 08/22/2001 2:56 PM Page ix

Summary ..245
Q&A ..245
Workshop ..246

Quiz ..246
Exercises ..247

Day 11 Reusing Designs Through Design Patterns 249

Design Reuse ..250
Design Patterns ..250

The Pattern Name ..251
The Problem ..251
The Solution ..251
The Consequences ..252

Pattern Realities ..252
Patterns by Example ..253

The Adapter Pattern..253
The Proxy Pattern ..257
The Iterator Pattern ..260

Making a Pattern Yours..267
Summary ..268
Q&A ..268
Workshop ..268

Quiz ..269
Exercises ..269

Answers to Quiz ..272
Answers to Exercises ..273

Day 12 Advanced Design Patterns 277

More Patterns by Example ..278
The Abstract Factory Pattern..278
The Singleton Pattern ..283
The Typesafe Enum Pattern..289

Pattern Pitfalls..295
Summary ..296
Q&A ..296
Workshop ..297

Quiz ..297
Exercises ..297

Answers to Quiz ..299
Answers to Exercises ..300

Day 13 OO and User Interface Programming 305

OOP and the User Interface ..306
The Importance of Decoupled UIs ..306

x Sams Teach Yourself Object Oriented Programming in 21 Days

00 0672321092 FM 08/22/2001 2:56 PM Page x

How to Decouple the UI Using the Model View Controller Pattern310
The Model ..310
The View ..313
The Controller ..317

Problems with the Model View Controller ..319
An Emphasis on Data ..320
Tight Coupling..321
Inefficiency ..321

Summary ..321
Q&A ..322
Workshop ..322

Quiz ..323
Exercises ..323

Day 14 Building Reliable Software Through Testing 329

Testing OO Software ..330
Testing and the Iterative Software Development Process330
Forms of Testing ..333

Unit Testing ..333
Integration Testing ..334
System Testing..334
Regression Testing..335

A Guide to Writing Reliable Code ..335
Combining Development and Testing ..335
Writing Exceptional Code ..350
Writing Effective Documentation ..352

Summary ..354
Q&A ..355
Workshop ..356

Quiz ..356
Exercises ..356

Week 2 In Review 357

Week 3 Putting It All Together: A Complete OO Project 359

Week 3 At a Glance 361

Day 15 Learning to Combine Theory and Process 363

Blackjack..364
Why Blackjack?..364
Vision Statement ..365
Overriding Requirements ..365

Contents xi

00 0672321092 FM 08/22/2001 2:56 PM Page xi

Initial Blackjack Analysis ..365
The Blackjack Rules ..366
Identifying the Actors ..368
Creating a Preliminary List of Use Cases ..369

Planning the Iterations ..369
Iteration 1: Basic Game Play..370
Iteration 2: Rules ..370
Iteration 3: Betting..371
Iteration 4: User Interface ..371

Iteration 1: Basic Game Play ..372
Blackjack Analysis ..372
Blackjack Design..376
The Implementation..381
Testing ..395

Summary ..396
Q&A ..396
Workshop ..396

Quiz ..397
Exercises ..397

Day 16 Blackjack Iteration 2: Adding Rules 399

Blackjack Rules ..399
Rules Analysis ..400
Rules Design ..404
Rules Implementation ..412
Testing ..425

Summary ..425
Q&A ..426
Workshop ..426

Quiz ..426
Exercises ..427

Day 17 Blackjack Iteration 3: Adding Betting 429

Blackjack Betting ..430
Betting Analysis..430
Betting Design ..433
Betting Implementation ..436
A Little Testing: A Mock Object..444

Summary ..445
Q&A ..445
Workshop ..446

Quiz ..446
Exercises ..446

xii Sams Teach Yourself Object Oriented Programming in 21 Days

00 0672321092 FM 08/22/2001 2:56 PM Page xii

Day 18 Blackjack Iteration 4: Adding a GUI 447

Blackjack Presentation ..447
Command Line Tweaks ..448
Blackjack GUI Analysis ..449

GUI Use Cases ..450
GUI Visual Mock Ups ..452
Blackjack GUI Design..453
GUI CRC Cards..454
GUI Structure ..455
Refactoring ..456
GUI Class Diagram ..456
Blackjack GUI Implementation..457
Implementing the VCard, VDeck, and CardView..457
Implementing the PlayerView ..460
Implementing the OptionView and the OptionViewController461
Implementing the GUIPlayer ..461
Putting It All Together with the BlackjackGUI..464

Summary ..465
Q&A ..466
Workshop ..466

Quiz ..466
Exercises ..466

Day 19 Applying an Alternative to MVC 469

An Alternative Blackjack GUI ..469
The PAC Layers..470
The PAC Philosophy ..470
When to Use the PAC Design Pattern ..471

Analyzing the PAC Blackjack GUI ..471
Designing the PAC Blackjack GUI ..471

Identifying the Presentation Layer Components..472
Designing the Abstraction Layer Components ..473
Designing the Control ..474
Using the Factory Pattern to Avoid Common Errors474

Implementing the PAC Blackjack GUI ..476
Implementing the VCard and VHand ..476
Implementing the VBettingPlayer ..478
Implementing the VBlackjackDealer ..480
Implementing the GUIPlayer ..481
Putting It All Together with the Control ..481

Summary ..483

Contents xiii

00 0672321092 FM 08/22/2001 2:56 PM Page xiii

Q&A ..484
Workshop ..484

Quiz ..484
Exercises ..484

Day 20 Having Some Fun with Blackjack 485

Having Fun with Polymorphism..485
Creating a Player ..486
The Safe Player ..486
Adding the SafePlayer to the GUI ..486
Polish ..487

OOP and Simulations ..488
The Blackjack Players ..488

Summary ..493
Q&A ..493
Workshop ..494

Quiz ..494
Exercises ..494

Day 21 The Final Mile 497

Tying Up the Loose Ends ..497
Refactoring the Blackjack Design for Reuse in Other Systems498
Identifying the Benefits the OOP Brought to the Blackjack System504
Industry Realities and OOP..505

Summary ..506
Q&A ..506
Workshop ..506

Quiz ..506
Exercises ..507

Week 3 In Review 509

Appendices 511

Appendix A Answers 513

Day 1 Quiz Answers ..513
Answers to Quiz ..513

Day 2 Quiz and Exercise Answers ..515
Answers to Quiz ..515
Answers to Exercises..517

Day 3 Quiz and Exercise Answers ..517
Answers to Quiz ..517
Answers to Exercises..518

xiv Sams Teach Yourself Object Oriented Programming in 21 Days

00 0672321092 FM 08/22/2001 2:56 PM Page xiv

Day 4 Quiz and Exercise Answers ..521
Answers to Quiz ..521
Answers to Exercises..523

Day 5 Quiz Answers ..523
Answers to Quiz ..523

Day 6 Quiz and Exercise Answers ..524
Answers to Quiz ..524
Answers to Exercises..525

Day 7 Quiz Answers ..526
Answers to Quiz ..526

Day 8 Quiz and Exercise Answers ..527
Answers to Quiz ..527
Answers to Exercises..528

Day 9 Quiz and Exercise Answers ..530
Answers to Quiz ..530
Answers to Exercises..532

Day 10 Quiz and Exercise Answers ..533
Answers to Quiz ..533
Answers to Exercises..535

Day 11 Quiz and Exercise Answers ..535
Answers to Quiz ..535
Answers to Exercises..536

Day 12 Quiz and Exercise Answers ..538
Answers to Quiz ..538
Answers to Exercises..539

Day 13 Quiz and Exercise Answers ..542
Answers to Quiz ..542
Answers to Exercises..543

Day 14 Quiz and Exercise Answers ..545
Answers to Quiz ..545
Answers to Exercises..547

Day 15 Quiz and Exercise Answers ..547
Answers to Quiz ..547
Answers to Exercises..548

Day 16 Quiz and Exercise Answers ..548
Answers to Quiz ..548
Answers to Exercises..549

Day 17 Quiz and Exercise Answers ..550
Answers to Quiz ..550
Answers to Exercises..551

Day 18 Quiz and Exercise Answers ..554
Answers to Quiz ..554
Answers to Exercises..554

Contents xv

00 0672321092 FM 08/22/2001 2:56 PM Page xv

Day 19 Quiz and Exercise Answers ..558
Answers to Quiz ..558
Answers to Exercises..559

Day 20 Quiz and Exercise Answers ..562
Answers to Quiz ..562
Answers to Exercises..562

Day 21 Quiz and Exercise Answers ..567
Answers to Quiz ..567
Answers to Exercises..567

Appendix B Java Primer 569

Java Developer’s Kit: J2SE 1.3 SDK ..569
Development Environment Configuration ..570

SDK Tools Overview ..571
Java Compiler: javac ..571
Java Interpreter: java ..572
Java Archive Utility: jar..572
Java Documentation and the Documentation Generator: javadoc573

Java Playpen: Your First Java Program..574
Compiling and Running ..575
Creating a .jar File ..576
Generating javadoc ..577

Java Language Mechanics ..578
Simple Java Class ..578
Data Types ..580
Variables ..581
Constants ..582
Operators ..583
Conditional Statements ..584
Loops ..585

Classes and Interfaces—Building Blocks of Java ..586
Using Existing Classes ..586
Creating Your Own Classes ..587
Interfaces ..590
Inner Classes and Anonymous Inner Classes ..591

Summary ..593

Appendix C UML Reference 595

UML Reference ..595
Classes..595

Object..596
Visibility ..596
Abstract Classes and Methods..596

xvi Sams Teach Yourself Object Oriented Programming in 21 Days

00 0672321092 FM 08/22/2001 2:56 PM Page xvi

Notes ..597
Stereotypes ..597
Relationships..598

Dependency ..598
Association ..598
Aggregation ..599
Composition ..600
Generalization ..600

Interaction Diagrams..600
Collaboration Diagrams..600
Sequence Diagrams ..601

Appendix D Selected Bibliography 603

Analysis, Design, and Methodologies ..603
C++ Programming ..604
Design Patterns ..604
General OO Principals and Theory ..604
”Hard Core” Theory (But Don’t Let That Scare You!)605
Java Programming ..605
Miscellaneous ..605
Smalltalk ..605
Testing..606

Appendix E Blackjack Code Listings 607

blackjack.core ..608
blackjack.core.threaded..633
blackjack.exe..635
blackjack.players..641
blackjack.ui ..649
blackjack.ui.mvc ..650
blackjack.ui.pac..663

Index 681

Contents xvii

00 0672321092 FM 08/22/2001 2:56 PM Page xvii

About the Author
TONY SINTES has worked with object-oriented technologies for 7 years. In that time, Tony
has been part of many large-scale object-oriented development efforts. Currently, Tony
works for First Class Consulting, a company that he founded in order to help large enter-
prises integrate their various systems under a unified framework. Before starting First
Class Consulting Tony worked at BroadVision as a Senior Principal Consultant, where he
has helped build some of the world’s largest Web sites. Today, Tony’s main responsibili-
ties are as architect, technical lead, and as team mentor, helping build the skills of less-
experienced developers.

Tony is a widely published technical author whose works have appeared in JavaWorld,
Dr. Dobb’s Journal, LinuxWorld, JavaOne Today, and Silicon Prairie, where he co-
authored a highly-regarded monthly column on object-oriented programming. Tony cur-
rently writes JavaWorld’s monthly Q&A column. You can contact Tony at
styoop@firstclassconsulting.net.

00 0672321092 FM 08/22/2001 2:56 PM Page xviii

Dedication
For Amy

Acknowledgments
Writing a book is a process like none other. The number of people who contribute to a
book, the number of people that it takes to produce the final copy that you are reading
right now, is simply amazing. I would like to extend my gratitude to the entire Sams pub-
lishing team. Without their hard work this book simply would not exist.

By name, I would like to thank Michael Stephens, Carol Ackerman, Tiffany Taylor, and
George Nedeff. Carol’s guidance and gentle prods are truly what kept this book moving
towards completion. Tiffany’s ability to structure and word technical material clearly and
concisely is simply amazing. Not only did Tiffany’s editing make this book more under-
standable, but I feel that her editing taught me some valuable lessons about technical
writing. I would also like to thank William Brown. William contacted me about the STY
OOP project in early August of 2000. Trusting such a project to a relatively unknown
author was risky and I thank William for giving me the chance to write this book.

Special thanks go out to the technical editors, Mark Cashman and Richard Baldwin, who
made sure that the material presented was technically sound. Thank you for your techni-
cal input.

To my colleagues, thank you. I’d like to extend special thanks to David Kim and Michael
Han. I began this book while at BroadVision and I would like to thank David Kim for
allowing me those panic vacations when deadlines began to loom. I would also like to
thank Michael Han for his technical insight and for writing the Java appendix for this
book.

Last but not least I’m privileged to thank my wonderful wife, Amy, for her unyielding
support, proofreading, and patience. Thanks are also due to my family and friends who
offered their support and listened to my complaining.

00 0672321092 FM 08/22/2001 2:56 PM Page xix

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can
email or write me directly to let me know what you did or didn’t like about this book—
as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail:

Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

00 0672321092 FM 08/22/2001 2:56 PM Page xx

Introduction
Sams Teach Yourself Object Oriented Programming in 21 Days takes a practical approach
to teaching object-oriented programming (OOP). Rather than teaching OOP at an acade-
mic level, this book presents accessible, user-friendly lessons and examples designed to
let you begin applying OOP right away. Instead of trying to teach every agonizing, theo-
retical detail, this book highlights those topics that you need to know to be able to apply
OOP to your daily projects—and not waste your time fighting some theoretical debate.

The goal of this book is to provide you with a solid foundation in object-oriented pro-
gramming. After 21 days you should have a good footing in the basic concepts of OOP.
Using this foundation you can begin to apply OOP concepts to your daily projects as
well as continue to build your OO knowledge through additional study. You will not
learn all there is to know about OOP in 21 days—that’s simply not possible. It is possi-
ble, however, to build a solid foundation and get off on the right foot. This book helps
you do just that.

I’ve divided this book into three parts. Week 1 presents the three tenets of OOP (also
known as the three pillars of OOP). These three tenets form the basis of object-oriented
theory. Understanding of these three tenants is absolutely critical to understanding OOP.
The week’s lessons are split between presenting the theory and giving you hands on
experience through labs.

Week 2 presents the OO software development process. While the lessons of Chapter 1,
“Introduction to Object Oriented Programming,” are important, sending you out to pro-
gram without any other guidance is like giving you lumber, a saw, a hammer, and some
nails, and telling you to go build a house. Week 2 shows you how to apply the tools pre-
sented in the lessons of Week 1.

Week 3 steps you through a full case study of an OO card game. This study will allow
you to go through an entire OO development cycle from beginning to completion, as
well as to get your hands dirty with some code. It is my hope that this case study will
help bring the OO theory down from the clouds and into something concrete.

There are also a number of appendices at the end of the book. Of special important is the
Java primer in Appendix B and the selected bibliography in Appendix D. Appendix B
serves as an excellent primer to the Java programming language. The bibliography points
you to the resources that you’ll want to consult as you continue your study of OOP.
These resources were certainly invaluable while writing this book.

01 0672321092 Intro 08/22/2001 2:54 PM Page 1

2 Sams Teach Yourself Object Oriented Programming in 21 Days

About the Examples
All source code examples are written in Java. Some Java experience will help; however,
Appendix B should help bring you up to speed if you’re rusty or have never seen the lan-
guage before. Great pains were taken to make the examples as accessible as possible, as
long as you have some programming knowledge. Special Java features and tricks were
especially avoided in the examples.

What You Need to Know to Use This Book
This book does assume some previous programming experience, and it does not attempt
to teach basic programming. This book takes the knowledge that you already have and
shows you how you can use it to write object-oriented software. or write better object-
oriented software. This isn’t to say that you need to be a programming guru to read and
understand this book—an introductory programming course or simply reading through
one of Sams’ Teach Yourself programming books is all the background that you should
need.

To be able to take full advantage of the examples and exercises, you will also need a
computer with Internet access. The choice of operating environment and editor is com-
pletely up to your personal taste. The only requirement is that you can download, install,
and run Java. Appendix B walks you through the process of obtaining a Java SDK.

Finally, you need determination, dedication, and an open mind. Object-oriented program-
ming is not easy, and it will take longer than 21 days to master, but you can get a good,
solid start here.

The wonderful world of OOP awaits….

01 0672321092 Intro 08/22/2001 2:54 PM Page 2

Defining OO
1 Introduction to Object Oriented Programming

2 Encapsulation: Learn to Keep the Details to Yourself

3 Encapsulation: Time to Write Some Code

4 Inheritance: Getting Something for Nothing

5 Inheritance: Time to Write Some Code

6 Polymorphism: Learning to Predict the Future

7 Polymorphism: Time to Write Some Code

WEEK 1 1

2

3

4

5

6

7

02 0672321092 Part1 08/22/2001 2:56 PM Page 3

02 0672321092 Part1 08/22/2001 2:56 PM Page 4

At a Glance
The next seven days provide you with a solid foundation in
object-oriented programming. Day 1 describes the basics of
OO. You learn about object oriented from a historical per-
spective and see how OO evolved from existing programming
languages. You also learn basic terminology as well as bene-
fits and pitfalls of object-oriented programming.

Days 2, 4, and 6 introduce you to the three pillars of object-
oriented programming: encapsulation, inheritance, and poly-
morphism. These chapters not only explain the basics of
object-oriented programming, but how and when to use them
as well as mistakes to avoid.

Days 3, 5, and 7 provide labs corresponding to each of the
three pillars. Each lab chapter provides hands on experience
that allows you to get familiar with the pillars introduced on
Days 2, 4, and 6.

After finishing the first week, you should have a thorough
understanding of what constitutes an object-oriented program.
You should be able to identify the three pillars of OO, and be
able to apply them to your code.

Quizzes and exercises follow each day’s lesson to help further
your understanding of the topics covered. The answers to
each quiz question and exercise appear in Appendix A.

WEEK 1 1

2

3

4

5

6

7

03 0672321092 Week AAG 1 08/22/2001 2:52 PM Page 5

03 0672321092 Week AAG 1 08/22/2001 2:52 PM Page 6

DAY 1

WEEK 1

Introduction to Object
Oriented Programming

Although object-oriented languages have been around since the 1960s, the past
10 years have seen unparalleled growth in the use and acceptance of object
technologies throughout the software industry. Although it began as an under-
dog, recent successes such as Java, CORBA, and C++ have propelled object-
oriented (OO) techniques to new levels of acceptance. That’s no accident. After
years of being stuck in academia and having to fight an uphill battle against
entrenched practices, object-oriented programming (OOP) has matured to a
point where people are finally able to realize the promises that the technique
holds. In the past, you would have had to convince your boss to let you use an
object-oriented language. Today, many companies mandate its use. It is safe to
say that people are finally listening.

If you’re reading this book you’ve finally come around. You’re probably some-
one with an intermediate level of programming experience. Whether your back-
ground is in C, Visual Basic, or FORTRAN, you’ve been around the block but
you’ve decided that you have to give object-oriented programming a serious
look and make it part of your skill set.

04 0672321092 CH01 08/22/2001 2:55 PM Page 7

Even if you do have some experience with an object-oriented language, this book can
help you solidify your understanding of OO. But don’t panic if you are not familiar with
an OO language. Although this book uses Java to teach OO concepts, pre-existing Java
knowledge isn’t necessary. If you ever do feel confused or need a syntax refresher, sim-
ply consult Appendix B, “Java Primer.”

Whether you need OO to keep yourself marketable, get yourself through your newest
project, or satisfy your own curiosity, you’ve come to the right place. Although no book
can possibly teach you everything there is to know about OO, this book promises to give
you a solid OO foundation. With this foundation, you can start practicing OOP. More
importantly, the foundation will give you the lasting basis that you need in order to con-
tinue to learn and eventually master this programming paradigm.

Today you will learn

• Object-oriented programming in a historical context

• The basics of object-oriented programming

• The benefits and goals of object-oriented programming

• The common fallacies and pitfalls associated with object-oriented programming

Object Oriented Programming in a
Historical Context

In order to understand the current state of OOP, you must know a little about the history
of programming. No one conceived of OOP overnight. Instead, OOP is just another stage
in the natural evolution of software development. Over time, it becomes easier to pick
out the practices that work and those that prove themselves to fail. OOP combines
proven, time-tested practices as efficiently as possible.

OO is shorthand for object-oriented. OO is an umbrella term that includes any
development style that is based on the concept of an “object”—an entity that

exhibits characteristics and behavior. You can apply an object oriented approach to pro-
gramming as well as to analysis and design.

You can also say that OO is a state of mind, a way of looking at the world and seeing
everything terms of objects.

Simply, OO contains everything that can be prefixed as object-oriented. You’ll see the
term OO a lot in this book.

8 Day 1

NEW TERM

04 0672321092 CH01 08/22/2001 2:55 PM Page 8

Introduction to Object Oriented Programming 9

1
Precursors to OOP
Today, whenever you use a computer you benefit from 50 years of refinement. Early pro-
gramming was ingenious: Programmers entered programs directly into the computer’s
main memory through banks of switches. Programmers wrote their programs in the
machine’s binary languages. Such machine language programming was extremely error
prone, and the lack of overriding structure made code maintenance nearly impossible. In
addition, machine language code was not very accessible.

As computers became more common, higher-level, procedural languages began to
appear; the first was FORTRAN. However, later procedural languages such as ALGOL
had more influence on OO. Procedural languages allow the programmer to boil a pro-
gram down to a number of fine-grained procedures for processing data. These fine-
grained procedures define the program’s overall structure. Sequential calls to these proce-
dures drive a procedural program’s execution. The program terminates once it is done
calling its list of procedures.

This paradigm presented a number of improvements over machine language, including
the addition of an overriding structure: the procedure. Smaller functions are not only eas-
ier to understand, they are easier to debug. On the other hand, procedural programming
limits code reuse. And, too often, programmers produced spaghetti code—code whose
execution path resembled a bowl of spaghetti. Finally, procedural programming’s data-
centric nature caused some problems of its own. Because data and procedure are sepa-
rate, there is no encapsulation of data. This requires each procedure to know how to
properly manipulate the data. Unfortunately, a misbehaving function could introduce
errors if it didn’t manipulate the data just right. Since each procedure needed to duplicate
the knowledge of how to access the data, a change to the data representation would
require changes in each place that accesses the data. So, even a small change can lead to
a cascade of changes throughout the program—in other words, a maintenance nightmare.

Modular programming, with a language such as Modula2, attempts to improve on some
of the deficiencies found in procedural programming. Modular programming breaks pro-
grams down into a number of constituent components or modules. Unlike procedural
programming, which separates data and procedures, modules combine the two. A module
consists of data and the procedures for manipulating that data. When other parts of the
program need to use a module, they simply exercise the module’s interface. Because
modules hide all of the internal data from the rest of the program, it is easy to introduce
the idea of state: A module holds onto state information that might change over time.

An object’s state is the combined meaning of an object’s internal variables.NEW TERM

04 0672321092 CH01 08/22/2001 2:55 PM Page 9

An internal variable is a value held within an object.

But modular programming suffers from major shortcomings of its own. Modules are not
extendable, meaning that you cannot make incremental changes to a module without
breaking open the code and making changes directly. You also cannot base one module
on another other than through delegation. And, although a module might define a type,
one module cannot share another module’s type.

In modular and procedural languages, structured and unstructured data has a “type.” The
type is most easily thought of as the in-memory format of the data. Strongly-typed lan-
guages require that every object has a specific and defined type. However, types cannot
be extended to create another type except through a style called “aggregation.” For
instance, in C, we might have two related data types:

typedef struct
{

int a;
int b;

} aBaseType;

typedef struct
{

aBaseType Base;
int c;

} aDerivedType;

In this example, aDerivedType is based on aBaseType, but a structure of aDerivedType
cannot be treated directly as an structure of aBaseType. One can only reference the Base
member of an aDerivedType structure. Unfortunately, this arrangement leads to code that
relies heavily on case and if/else blocks because the application must know how to
manipulate each module that it encounters.

Finally, modular programming is also a procedural hybrid that still breaks a program into
a number of procedures. Now instead of acting upon raw data, these procedures manipu-
late modules.

Object Oriented Programming
OOP takes the next logical step after modular programming by adding inheritance and
polymorphism to the module. OOP structures a program by dividing it into a number of
high-level objects. Each object models some aspect of the problem that you are trying to
solve. Writing a sequential lists of procedure calls to direct program flow is no longer the
focus of programming under OO. Instead, the objects interact with one another in order
to drive the overall program flow. In a way, an OOP program becomes a living simula-
tion of the problem that you are trying to solve.

10 Day 1

NEW TERM

04 0672321092 CH01 08/22/2001 2:55 PM Page 10

Introduction to Object Oriented Programming 11

1
An OOP Approach to Software Using Objects
Imagine that you had to develop an OOP program to implement an online shopping cart
or a point-of-sales terminal. An OOP program will contain item, shopping cart, coupon,
and cashier objects. Each of these objects will interact with one another in order to drive
the program. For example, when the cashier totals an order, it will check each item for its
price.

Defining a program in terms of objects is a profound way of viewing software. Objects
force you to see everything at the conceptual level of what an object does: its behaviors.
Viewing an object from the conceptual level is a departure from looking at how some-
thing is done: the implementation. This mindset forces you to think of your programs in
natural, real-world terms. Instead of modeling your program as a set of separate proce-
dures and data (terms of the computer world), you model your program in objects.
Objects allow you to model your programs in the nouns, verbs, and adjectives of your
problem domain.

Implementation defines how something is done. In programming terms, imple-
mentation is the code.

The domain is the space where a problem lives. The domain is the set of con-
cepts that represent the important aspects of the problem you are trying to solve.

When you step back and think in the terms of the problem you are solving, you avoid
getting bogged down in implementation details. Sure, some of your high-level objects
will need to interact with the computer in some low-level, computer-oriented ways.
However, the object will isolate those interactions from the rest of the system. (Day 2,
“Encapsulation: Learn to Keep the Details to Yourself,” explores these benefits further.)

NEW TERM

NEW TERM

In terms of the shopping cart, implementation hiding means that the cashier
doesn’t look at raw data when totaling an order. The cashier doesn’t know
to check a certain array of memory location for item numbers and another
variable for a coupon. Instead, the cashier interacts with item objects. It
knows to ask the item how much it costs.

Note

At this point you can formally define object:

An object is a software construct that encapsulates state and behavior. Objects
allow you to model your software in real-world terms and abstractions.

Strictly speaking, an object is an instance of a class. The next section will introduce the
OOP concept of class.

NEW TERM

04 0672321092 CH01 08/22/2001 2:55 PM Page 11

Just as the real world is made up of objects, so too is object-oriented software. In a pure
OO programming language, everything is an object, from the most basic types such as
integers and Booleans to the most complex class instances; not all object oriented lan-
guages go so far. In some (such as Java), simple primitives such as int and float are not
treated as objects.

What Is a Class?
Just like objects in the real world, the OOP world groups objects by their common
behaviors and attributes.

Biology classifies all dogs, cats, elephants, and humans as mammals. Shared characteris-
tics give these separate creatures commonality. In the software world, classes group
related objects in the same way.

A class defines all of those characteristics common to a type of object. Specifically, the
class defines all of those attributes and behaviors exposed by the object. The class
defines specifically what messages its objects respond to. When one object wants to exer-
cise another object’s behavior it does not do so directly but asks the other object to
change itself, usually based on some additional information. Often this is referred to as
“sending a message.”

A class defines the common attributes and behaviors shared by a type of object.
Objects of a certain type or classification share the same behaviors and attributes.

Classes act very much like a template or cookie cutter in that you use a class to create or
instantiate object instances.

Attributes are the outwardly visible characteristics of a class. Eye color and hair
color are example of attributes.

An object can expose an attribute by providing a direct link to some internal variable or
by returning the value through a method.

A behavior is an action taken by an object when passed a message or in response
to a state change: It’s something that an object does.

One object can exercise another object’s behavior by performing an operation on that
object. You might see the terms method call, function call, or pass a message used in
place of performing an operation. What is important is that each of these actions elicits
an object’s behavior.

12 Day 1

NEW TERM

NEW TERM

NEW TERM

04 0672321092 CH01 08/22/2001 2:55 PM Page 12

Introduction to Object Oriented Programming 13

1

Putting It All Together: Classes and Objects
Take an item object for example. An item has a description, id, unit price, quantity, and
an optional discount. An item will know how to calculate its discounted price.

In the OOP world you would say that all item objects are instances of the Item class. An
Item class might look something like this:

public class Item {

private double unit_price;
private double discount; // a percentage discount to apply to the price
private int quantity;
private String description;
private String id;

public Item(String id, String description, int quantity, double price) {
this.id = id;
this.description = description;

if(quantity >= 0) {
this.quantity = quantity;

}
else {

this.quantity = 0;
}

this.unit_price = price;
}

public double getAdjustedTotal() {

Message passing, operation, method call, and function call; which you use
often depends upon your background.

Thinking in terms of message passing is a very object oriented way of think-
ing. Message passing is dynamic. It conceptually separates the message from
the object. Such a mindset can help when thinking about your objects’ inter-
actions.

Languages such as C++ and Java come from procedural heritages where
function calls are static. As a result, these languages often refer to one
object performing a method call upon another. A method call is tightly
coupled to the object.

This book will normally use method call because of its close Java ties.
However, there may be times when message is used interchangeably.

Note

04 0672321092 CH01 08/22/2001 2:55 PM Page 13

double total = unit_price * quantity;
double total_discount = total * discount;
double adjusted_total = total - total_discount;

return adjusted_total;
}

// applies a percentage discount to the price
public void setDiscount(double discount) {

if(discount <= 1.00) {
this.discount = discount;

}
else {

this.discount = 0.0;
}

}

public double getDiscount() {
return discount;

}

public int getQuantity() {
return quantity;

}

public void setQuantity(int quantity) {
if(quantity >= 0) {

this.quantity = quantity;
}

}

public String getProductID() {
return id;

}

public String getDescription() {
return description;

}
}

Methods such as

public Item(String id, String description, int quantity, double price)

are called constructors. Constructors initialize an object during its creation.

Constructors are methods used to initialize objects during their instantiation. You
call object creation instantiation because it creates an object instance of the class.

14 Day 1

NEW TERM

04 0672321092 CH01 08/22/2001 2:55 PM Page 14

Introduction to Object Oriented Programming 15

1

Methods such as setDiscount(), getDescription(), and getAdjustedTotal() are all
behaviors of the Item class that return or set attributes. When a cashier wants to total the
cart, the cashier simply takes each item and sends the object the getAdjustedTotal()
message.

unit_price, discount, quantity, description, and id are all internal variables of the
Item class. These values comprise the object’s state. An object’s state may vary over time.
For example, while shopping a shopper may apply a coupon to the item. Applying a
coupon to the item will change the item’s state since it will change the value of discount.

Behaviors such as getAdjustedTotal() and getDiscount() are called accessors since
they allow you to access an object’s internal data. The access may be direct as in the
getDiscount() case. On the other hand, the object may perform processing before
returning a value, such as in the getAdjustedTotal() case.

Accessors give you access to an object’s internal data. However, accessors hide
whether the data is in a variable, a combination of variables, or is calculated.

Accessors allow you to change or retrieve the value and to have “side-effects” on the
internal state.

Behaviors such as setDiscount() are called mutators since they allow you to alter the
object’s internal state. A mutator may process its input as it sees fit before altering the
object’s internal state. Take setDiscount() for example. setDiscount() makes sure that
the discount is not greater than 100% before applying the discount.

Mutators allow you to alter an object’s internal state.

When running, your programs use classes such as Item to create, or instantiate, the
objects that make up the application. Each new instance is a duplicate of the last.
However, once instantiated the instance carries out behaviors and keeps track of its state.
So what begins its life as a clone might behave very differently over its lifetime.

For example, if you create two item objects from the same Item class, one item object
may have a 10% discount while the second may not have a discount. Some items are also
a bit pricier than others. One item might cost $1,000, while another might only cost

In the constructor and throughout the Item example you might notice the
use of this. this is a reference that points to the object instance. Each
object has its own reference to itself. The instance uses that reference to
access its own variables and methods.

Note

NEW TERM

NEW TERM

04 0672321092 CH01 08/22/2001 2:55 PM Page 15

$1.98. So while the state of an item might vary over time, the instance is still an Item.
Think back to the biology example; a gray colored mammal is just as much of a mammal
as a brown colored mammal.

Putting Objects to Work
Consider the following main() method:

public static void main(String [] args) {
// create the items
Item milk = new Item(“dairy-011”, “1 Gallon Milk”, 2, 2.50);
Item yogurt = new Item(“dairy-032”, “Peach Yogurt”, 4, 0.68);
Item bread = new Item(“bakery-023”, “Sliced Bread”, 1, 2.55);
Item soap = new Item(“household-21”, “6 Pack Soap”, 1, 4.51);

// apply coupons
milk.setDiscount(0.15);

// get adjusted prices
double milk_price = milk.getAdjustedTotal();
double yogurt_price = yogurt.getAdjustedTotal();
double bread_price = bread.getAdjustedTotal();
double soap_price = soap.getAdjustedTotal();

// print receipt
System.out.println(“Thank You For Your Purchase.”);
System.out.println(“Please Come Again!”);
System.out.println(milk.getDescription() + “\t $” + milk_price);
System.out.println(yogurt.getDescription() + “\t $” + yogurt_price);
System.out.println(bread.getDescription() + “\t $” + bread_price);
System.out.println(soap.getDescription() + “\t $” + soap_price);

// calculate and print total
double total = milk_price + yogurt_price + bread_price + soap_price;
System.out.println(“Total Price\t $” + total);

}

This method shows you what a small program that uses Items might look like. First, the
program instantiates four Item objects. In a real program, the program might create these
items as a user browses an online catalog or as a cashier scans groceries.

This program creates a number of items, applies discounts, and then prints out a receipt.
The program performs all object interaction by sending various messages to the items.
For example, the program applies a 15% discount to the milk by sending the
setDiscount() message to the item. The program totals the items by first sending each
item the getAdjustedTotal() message.

Finally, this program sends a receipt to the screen. Figure 1.1 illustrates the sample output.

16 Day 1

04 0672321092 CH01 08/22/2001 2:55 PM Page 16

Introduction to Object Oriented Programming 17

1

It is important to realize that all the programming was done in terms of Items and the
behaviors exposed by the Item’s methods —the nouns and verbs of the shopping cart
domain.

Object Relationships
How objects relate is a very important component of OOP. Objects can relate in two
important ways.

First, objects can exist independently of one another. Two Item objects can appear in the
shopping cart at the same time. If these two separate objects ever do need to interact,
they will interact by passing each other messages.

Objects communicate with one another through messages. Messages cause an
object to do something.

“Passing a message” is the same as calling on a method to change the state of the object
or to exercise a behavior.

Second, one object might contain other objects. Just as objects make up an OOP pro-
gram, objects can make up other objects through aggregation. From the Item example
you might notice that the item object contains many other objects. For example, the item
object also contains a description and id. Description and id are both String objects. Each
of these objects has an interface that offers methods and attributes. Remember, in OOP
everything is an object, even those pieces that make up an object!

Communication works the same way between an object and those objects that it con-
tains. When the objects need to interact, they will do so by sending each other messages.

Messages are an important OO concept. Messages allow objects to remain independent.
When one object sends a message to another object, it does not generally care how the
object chooses to carry out the requested behavior. The requesting object just cares that
the behavior happens.

You’ll learn more about how objects interrelate next week.

NEW TERM

FIGURE 1.1
Printing a receipt.

04 0672321092 CH01 08/22/2001 2:55 PM Page 17

How Object Oriented Programming Builds
Upon the Past
Just as the other paradigms attempt to leverage the strengths and correct the faults of the
preceding paradigms, OOP builds upon procedural and modular programming.

Modular programming structures a program into a number of modules. Likewise, OOP
breaks a program into a number of interacting objects. Just as modules hide data repre-
sentations behind procedures, objects encapsulate their state behind their interface. OOP
borrows this concept of encapsulation directly from modular programming.
Encapsulation differs greatly from procedural programming. Procedural programming
does not encapsulate data. Instead, data is opened for all procedures to access. Unlike
procedural programming, object-oriented programming tightly couples data and behavior
together in the object. You’ll learn more about encapsulation on Day 2 and Day 3,
“Encapsulation: Time to Write Some Code.”

Although objects are similar in concept to modules, they differ in a number of important
ways. First, modules do not readily support extension. Object-oriented programming
introduces the concept of inheritance to clean up this deficiency. Inheritance allows you
to easily extend and enhance your classes. Inheritance also allows you to classify your
classes. You’ll learn more about inheritance on Day 4, “Inheritance: Getting Something
for Nothing” and Day 5, “Inheritance: Time to Write Some Code.”

OOP also leverages the concept of polymorphism, which helps build flexible programs
that do not resist change. Polymorphism adds this flexibility by cleaning up the module’s
limited typing system. You’ll learn more about polymorphism on Day 6, “Polymorphism:
Learning to Predict the Future” and Day 7, Polymorphism: Time to Write Some Code.”

18 Day 1

The definition of object is open to debate. Some people do not define an
object as an instance of a class. Instead, they define everything in terms of
being an object: From this point of view, a class is an object that creates
other objects. Treating a class as an object is important for concepts such as
the meta-class.

Whenever this book encounters a disagreement in terminology, we will pick
one definition and stick to it. The choice will very often be a pragmatic one.
Here, we have chosen to use the definition of object as instance. This is the
Unified Modeling Language (UML) definition and the one most encountered
in industry. (You’ll learn more about UML later.) Unfortunately, the other
definition is a purer object-oriented definition. However, you will not run
into it very often, and the concept of a meta-class is beyond the scope of
this book.

Caution

04 0672321092 CH01 08/22/2001 2:55 PM Page 18

Introduction to Object Oriented Programming 19

1
OOP certainly did not invent encapsulation and polymorphism. Instead, OOP combines
these concepts in one place. Throw in OOP’s notion of objects, and you bring these tech-
nologies together in a way never done before.

Benefits and Goals of OO
Object-oriented programming sets six overriding goals for software development. OOP
strives to produce software that has the following characteristics:

1. Natural

2. Reliable

3. Reusable

4. Maintainable

5. Extendable

6. Timely

Let’s look at how it works to meet each of these goals.

Natural
OOP produces natural software. Natural programs are more understandable. Instead of
programming in terms of an array or region of memory, you can program using the ter-
minology of your particular problem. You don’t have to get bogged down in the details of
the computer while designing your program. Instead of force-fitting your programs into
the language of the computer world, OO frees you to express your program in the terms
of your problem.

Object-oriented programming allows you to model a problem at a functional level, not at
the implementation level. You do not need to know how some piece of software works in
order to use it: You simply concentrate on what it does.

Reliable
In order to create useful software, you need to create software that is as reliable as other
products, such as refrigerators and television sets. When was the last time that your
microwave crashed?

Well-designed, carefully written, object-oriented programs are reliable. The modular
nature of objects allows you to make changes to one part of your program without affect-
ing other parts. Objects isolate knowledge and responsibility where they belong.

One way to increase reliability is through thorough testing. OO enhances testing by
allowing you to isolate knowledge and responsibility in one place. Such isolation allows

04 0672321092 CH01 08/22/2001 2:55 PM Page 19

you to test and validate each component independently. Once you validate a component,
you can reuse it with confidence.

Reusable
Does a builder invent a new type of brick each time he builds a house? Does an electrical
engineer invent a new type of resistor each time she designs a circuit? Then, why do pro-
grammers keep “re-inventing the wheel?” Once a problem is solved, you should reuse
the solution.

You can readily reuse well-crafted object-oriented classes. As with modules, you can
reuse objects in many different programs. Unlike modules, OOP introduces inheritance
to allow you to extend existing objects and polymorphism to allow you to write generic
code.

OO does not guarantee generic code. Creating well-crafted classes is a difficult skill that
requires focus and attention to abstraction. Programmers do not always find that easy.

Through OOP you can model general ideas and use those general ideas to solve specific
problems. Although you will build objects to solve a specific problem, you will often
build these specific objects using generic pieces.

Maintainable
A program’s life cycle does not end when you ship it out the door. Instead, you must
maintain your code base. In fact, between 60% and 80% of the time spent working on a
program is maintenance. Development is only 20% of the equation!

Well-designed object-oriented code is maintainable. In order to fix a bug, you simply
correct the problem in one place. Since a change to the implementation is transparent, all
other objects will automatically benefit from the enhancement. The natural language of
the code should enable other developers to understand it as well.

Extendable
Just as you must maintain a program, your users will call upon you to add new function-
ality to your system. As you build a library of objects, you’ll also want to extend your
own objects’ functionality.

OOP addresses these realities. Software is not static. Software must grow and change
over time in order to remain useful. OOP presents the programmer with a number of fea-
tures in order to extend code. These features include inheritance, polymorphism, overrid-
ing, delegation, and a variety of design patterns.

20 Day 1

04 0672321092 CH01 08/22/2001 2:55 PM Page 20

Introduction to Object Oriented Programming 21

1
Timely
The life cycle of the modern software project is often measured in weeks. OOP aids
these quick development cycles. OOP trims time off of the development cycle by provid-
ing reliable, reusable, and easily extendable software.

Natural software simplifies the design of complex systems. While you cannot ignore
careful design, natural software can streamline design cycles because you can concen-
trate on the problem that you are trying to solve.

When you break down a program into a number of objects, the development of each
piece can go on in parallel. Multiple developers can work on classes independently. Such
parallel development leads to quicker development times.

Pitfalls
When you first learn OO, there are four pitfalls that you need to avoid falling into.

Pitfall 1: Thinking of OOP as Simply a Language
Often people equate object-oriented languages with OOP. The mistake arises in assuming
that you are programming in an object-oriented way simply because you use an object-
oriented language. Nothing could be further from the truth.

OOP is much more than simply using an object-oriented language or knowing a certain
set of definitions. You can write horribly non–object-oriented code in an object-oriented
language. True OOP is a mindset that challenges you to see your problems as a group of
objects and to use encapsulation, inheritance, and polymorphism correctly.

Unfortunately, many companies and programmers assume that if they simply use an
object-oriented language they will enjoy all of the benefits that OOP offers. When they
fail, they tend to blame the technology, not the fact that they didn’t train their employees
properly or that they latched onto a popular programming concept without truly under-
standing what it meant.

Pitfall 2: Fearing Reuse
You must learn to reuse code. Learning to reuse without guilt is often one of the hardest
lessons to learn when you first pick up OOP. Three problems lead to this difficulty.

First, programmers like to create. If you look at reuse the wrong way, it will seem to take
some of the joys of creation away. However, you need to remember that you are reusing
pieces in order to create something larger than the piece that you reuse. It may not seem
exciting to reuse a component, but it will enable you to build something even better.

04 0672321092 CH01 08/22/2001 2:55 PM Page 21

Second, many programmers suffer from the sentiment of “not written here”—meaning
that they don’t trust software they didn’t write. If a piece of software is well tested and it
fulfills your need, you should reuse it. Do not dismiss a component out of hand because
you did not write it. Remember that reusing a component will free you to write other
wonderful software.

Pitfall 3: Thinking of OO as a Cure-All
Although OOP offers many benefits, it is not the cure-all of the programming world.
There are times when you should not use OO. You still need to use judgment in picking
the right tool for the job at hand. Most importantly, OOP does not guarantee success of
your project. Your project will not automatically succeed just because you use an OO
language. Success only comes with careful planning, design, and coding.

Pitfall 4: Selfish Programming
Don’t be selfish when you program. Just as you must learn to reuse, you must learn to
share the code that you create. Sharing means that you will encourage other developers
to use your classes. However, sharing also means that you will make it easy for others to
reuse those classes.

Keep other developers in mind when you program. Craft clean, understandable inter-
faces. Most importantly, write documentation. Document assumptions, document method
parameters, document as much as you can. People will not reuse what they cannot find
or understand.

The Week Ahead
In the week ahead, you will continue your introduction to OOP by learning about the
three pillars that form the basis of OOP theory: encapsulation, inheritance, and
polymorphism.

Each pillar will be broken over two lessons. The first lesson will introduce the pillar and
the theory behind it. The second lesson will give you hands-on experience with the con-
cepts introduced the day before. This approach mirrors the lecture/lab approach used suc-
cessfully by many universities and colleges.

You will complete all of these labs using Sun Microsystem’s Java programming lan-
guage. You can obtain all of the tools used within this book free of charge over the World
Wide Web. Day 3 as well as Appendix B, “Java Primer,” at the end of the book will step
you through obtaining and setting up your development environment.

22 Day 1

04 0672321092 CH01 08/22/2001 2:55 PM Page 22

Introduction to Object Oriented Programming 23

1

Summary
Today you took a tour of object-oriented programming. You began by taking a look at the
evolution of the major programming paradigms, and you learned some of the basics of
OOP. By now you should understand the conceptual ideas behind OO, such as what a
class is and how objects communicate.

Definitions are important, but we must never lose track of what we are trying to accom-
plish by using OO by getting stuck in the “hows” of what we are doing. The six benefits
and goals summarize what object-oriented programming hopes to accomplish:

1. Natural

2. Reliable

3. Reusable

4. Maintainable

5. Extendable

6. Timely

You must never lose sight of these goals.

Q&A
Q What can I do to master OOP?

A Books such as this are a good way to get started on your road to OO mastery. It’s
important to build a solid foundation; one that you can build upon.

Once you have a foundation, you need to start actively practicing OO. True mas-
tery only comes through experience. Start as a developer on an OO project. Learn
the ropes. As you become more familiar with OO, begin to involve yourself in the
analysis and design of your projects.

Why Java?

There are two reasons to use Java as a teaching tool. First, Java nicely
abstracts you away from machine and operating system details. Instead of
having to worry about memory allocation and de-allocation, you can simply
concentrate on learning about objects. Finally, learning good object-oriented
practices in Java is practical. You can take the knowledge and get a job.
Some languages are more object-oriented than Java. However, it’s easy to
find Java work.

Note

04 0672321092 CH01 08/22/2001 2:56 PM Page 23

It also helps to find a mentor. Find someone who is willing to take the time to
impart wisdom. Learning from others is the best and fastest way to learn OOP.

Finally, continue your personal study. Read books, read articles, attend confer-
ences. You can never absorb enough information.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. What is procedural programming?

2. What benefit does procedural programming have over unstructured programming?

3. What is modular programming?

4. What benefits does modular programming have over procedural programming?

5. List a shortcoming of procedural and modular programming.

6. What is object-oriented programming?

7. What are the six benefits and goals of object-oriented programming?

8. Explain one of the goals of object-oriented programming.

9. Define the following terms:

Class

Object

Behavior

10. How do objects communicate with one another?

11. What is a constructor?

12. What is an accessor?

13. What is a mutator?

14. What is this?

Exercises
Rejoice! For today, you have no written exercises. Instead, go for a walk.

24 Day 1

04 0672321092 CH01 08/22/2001 2:56 PM Page 24

DAY 2

WEEK 1

Encapsulation: Learn to
Keep the Details to
Yourself

Hopefully, Day 1, “Introduction to Object Oriented Programming,” piqued your
interest, and you probably have many questions. As you can guess, there is a lot
more to object-oriented programming than a few simple definitions. When tak-
ing an OO approach to software development, you can’t simply plod and hack
your way along. Instead, you must have careful planning and a sound ground-
ing in the important theories behind OOP. Unfortunately, there is no practical
way to become an OOP expert in a few years, let alone in 21 days! Instead, you
need to step back and ask, “What am I trying to accomplish?” Are you trying to
become a theoretical expert or a practical practitioner? You see, you need to be
a bit more practical if you ever want to learn enough OO to do your job.
Fortunately, you don’t need a Ph.D. to understand and apply OO to your soft-
ware projects effectively. What you do need is an open mind and the willing-
ness to learn—or unlearn in many cases.

05 0672321092 CH02 08/22/2001 2:50 PM Page 25

Today and for the rest of the week, you will take a practical look at the theories behind
OOP: the tools of OO. These theories should give you enough background to begin
experimenting with OOP. Mastery will not come quickly, however. Like any other skill,
your OOP skills will improve and grow only with study and practice.

Today you will learn

• About the three pillars of object-oriented programming

• How to apply encapsulation effectively

• How to program abstractly

• How the Abstract Data Type forms the basis of encapsulation

• The difference between interface and implementation

• About the importance of responsibility

• How encapsulation fulfills the goals of OO

The Three Pillars of Object Oriented
Programming

In order to build your understanding and mastery of OO, you must first lay down a solid
foundation upon which you can expand your understanding. First, you’ll need to identify,
define, and explore the basic concepts of OO. Only when you are fully grounded in the
basic theories of OO can you properly apply OO to the software that you write. Such a
discussion naturally brings you to the three concepts that must be present for a language
to be considered truly object oriented. These three concepts are often referred to as the
three pillars of object-oriented programming.

The three pillars of object-oriented programming are encapsulation, inheritance,
and polymorphism.

Because OOP builds upon them, the three pillars are a lot like a tower of blocks: Remove
the bottom block and everything else will come crashing down. Encapsulation, which
you will cover today, is an extremely important piece of the puzzle because it forms the
basis for inheritance and polymorphism.

Encapsulation: The First Pillar
Instead of looking at a program as one large monolithic entity, encapsulation allows you
to break down a program into a number of smaller, independent pieces. Each piece is
self-contained and does its job independently of the other pieces. Encapsulation maintains

26 Day 2

NEW TERM

05 0672321092 CH02 08/22/2001 2:50 PM Page 26

Encapsulation: Learn to Keep the Details to Yourself 27

2

this independence by hiding each piece’s internal details, or implementation, through an
external interface.

Encapsulation is the OO characteristic of self-containment. Encapsulation allows
you to build self-contained pieces of software by taking some piece of function-

ality and hiding its implementation details from the outside world.

NEW TERM

If you are not familiar with the term encapsulation, you might recognize the
terms module, component, or bean. You can use these terms in place of
“encapsulated piece of software.”

Note

Once encapsulated, you can view a software entity as a black box. You know what the
black box does since you know the box’s external interface. As Figure 2.1 illustrates, you
simply send the black box messages. You don’t really care what happens inside of the
box; you just care that it happens.

FIGURE 2.1
A black box.

?
INTERFACE

INTERFACE

IN
T

E
R

FA
C

E

IN
T

E
R

FA
C

E

M
es

sa
ge

M
es

sa
ge

Message

Message

Message

Mess
age

MessageMessa
ge

An interface lists the services provided by a component. The interface is a con-
tract with the outside world that defines exactly what an outside entity can do to

the object. An interface is the control panel for the object.

NEW TERM

05 0672321092 CH02 08/22/2001 2:50 PM Page 27

The implementation defines how a component actually provides a service. The
implementation defines the internal details of the component.

An Example of Interface and Implementation
Consider the following Log class:

public class Log {

public void debug(String message) {
print(“DEBUG”, message);

}

public void info(String message) {
print(“INFO”, message);

}

public void warning(String message) {
print(“WARNING”, message);

}

public void error(String message) {
print(“ERROR”, message);

}

public void fatal(String message) {
print(“FATAL”, message);
System.exit(0);

}

private void print(String message, String severity) {

28 Day 2

An interface is important because it tells what you can do to the compo-
nent. Of more interest is what an interface does not tell you: how the com-
ponent will do its job. Instead, the interface hides the actual implementa-
tion from the outside world. This frees the component to change its imple-
mentation at any time. Changes to the implementation don’t require
changes to code that uses the class, so long as the interface remains
unchanged. Changes to the interface will necessitate changes in the code
that exercises that interface.

Note

You might be familiar with the programming term application program
interface (API). An interface is akin to the API for an object. The interface
lists all of those methods and arguments that it understands.

Note

NEW TERM

05 0672321092 CH02 08/22/2001 2:50 PM Page 28

Encapsulation: Learn to Keep the Details to Yourself 29

2

System.out.println(severity + “: “ + message);
}

}

The Log class provides your objects with a way to report debugging, informational,
warning, and error messages during runtime. Log’s interface is made up of all the behav-
iors available to the outside world. The behaviors available to the outside world are
known as the public interface. Log’s public interface includes the following methods:

public void debug(String message)
public void info(String message)
public void warning(String message)
public void error(String message)
public void fatal(String message)

Everything else in the class definition besides these five method declarations is imple-
mentation. Remember, implementation defines how something is done. Here the how is
the fact that Log prints to the screen. However, the interface completely hides the how.
Instead, the interface defines a contract with the outside world. For example, public
void debug(String message) is a way of telling the outside world that if you pass it
a String it will report a debug message.

What is important to note is what the interface does not say. debug() does not say that it
will print to the screen. Instead, what it does with the message is left up to the imple-
mentation. The actual implementation might write to the screen, dump to a file, write to
a database, or send a message to a network-monitoring client.

Public, Private, and Protected
You might have noticed that the public interface does not include

private void print(String message, String severity)

Instead, the Log object restricts access to print()to itself.

What does and does not appear in the public interface is governed by a number of key-
words. Each OO language defines its own set of keywords, but fundamentally these key-
words end up having similar effects.

Most OO languages support three levels of access:

• Public—Grants access to all objects

• Protected—Grants access to the instance and to any subclasses (more about sub-
classes on Day 4, “Inheritance: Getting Something for Nothing”)

• Private—Grants access to the instance only

05 0672321092 CH02 08/22/2001 2:50 PM Page 29

What access level you choose is very important to your design. Any behavior that you
want to make visible to the world needs to have public access. Anything that you wish to
keep from the outside world needs to have either protected or private access.

Why Should You Encapsulate?
When used carefully, encapsulation turns your objects into pluggable components. For
another object to use your component, it only needs to understand how to use the compo-
nent’s public interface. Such independence has three valuable benefits:

• Independence means that you can reuse the object anywhere. When you properly
encapsulate your objects, they will not be tied to any particular program. Instead,
you can use them wherever their use makes sense. In order to use the object else-
where, you simply exercise its interface.

• Encapsulation allows you to make transparent changes to your object. As long as
you don’t alter your interface, all of the changes will remain transparent to those
that are using the object. Encapsulation allows you to upgrade your component,
provide a more efficient implementation, or fix bugs—all without having to touch
the other objects in your program. The users of your object automatically benefit
from any changes that you make.

• Using an encapsulated object won’t cause unexpected side effects between the
object and the rest of the program. Since the object is self-contained, it won’t have
any other interaction with the rest of the program beyond its interface.

You are now at a point where we can make a few generalities about encapsulation. You
have seen that encapsulation enables you to write self-contained software components.
The three characteristics of effective encapsulation are

• Abstraction

• Implementation hiding

• Division of responsibility

Let’s look closely at each characteristic in order to learn how to best achieve encapsulation.

Abstraction: Learning to Think and
Program Abstractly

While OO languages encourage encapsulation, they do not guarantee it. It is easy to
build dependent, fragile code. Effective encapsulation comes only with careful design,

30 Day 2

05 0672321092 CH02 08/22/2001 2:50 PM Page 30

Encapsulation: Learn to Keep the Details to Yourself 31

2

abstraction, and experience. One of the first steps to effective encapsulation is to learn
how to abstract software and the concepts behind it effectively.

What Is Abstraction?
Abstraction is the process of simplifying a difficult problem. When you set out to solve a
problem, you don’t overwhelm yourself with every detail. Instead, you simplify it by
addressing only those details germane to a solution.

Imagine that you have to write a traffic flow simulator. It is conceivable that you would
model classes for streetlights, vehicles, road conditions, highways, two-way streets, one-
way streets, weather conditions, and so on. Each of these elements would affect the flow
of traffic. However, you wouldn’t model insects and birds into the system even though
they might appear on an actual road. Furthermore, you would leave out specific types of
cars. You simplify the real world and include only those pieces that actually affect the
simulation. A car is very important to the simulation, but a Cadillac or having the car
track its gas level is superfluous to the traffic simulation.

Abstraction has two benefits. First, it allows you to solve a problem easily. More impor-
tantly, abstraction helps you achieve reuse. Software components are often overly spe-
cialized. This specialization, combined with unnecessary interdependency between the
components, makes it difficult to reuse an existing piece of code elsewhere. When possi-
ble, you should strive to create objects that can solve an entire domain of problems.
Abstraction allows you to solve a problem once and then use that solution throughout
that problem domain.

Although it is desirable to write abstract code and avoid over specialization,
writing abstract code is hard to do, especially when you first start practicing
OOP.

There is a very fine line between too much and too little specialization. The
line can be discerned only with experience. However, you need to be aware
of this powerful concept.

Note

Two Examples of Abstraction
Consider two examples.

First, imagine people in line at a bank waiting for a teller. As soon as a teller becomes
available, the first person in line advances to the open window. People always leave the
line in a first-in, first-out (FIFO) order: This order is always maintained.

05 0672321092 CH02 08/22/2001 2:50 PM Page 31

Second, consider a fast food burger establishment. As a new burger comes off the line, it
is placed behind the last burger in the steamer; see Figure 2.3. That way, the first burger
pulled out is also the oldest burger. FIFO is the restaurant’s motto.

32 Day 2

FIGURE 2.2
A line at a bank. Bank of 00

$

Patron 1
Incoming Patrons

Patron 5

OUT

Patron 4 Patron 3

Patron 2

Teller 1

Teller 2

Teller 3

IN

FIGURE 2.3
Burgers coming
off the line.

Although each of these examples is specific, you can come up with a generic description
that will work in each situation. In other words, you can arrive at an abstraction.

Each domain is an example of a first-in, first-out queue. It doesn’t really matter what
kind of elements appear in the queue. What does matter is that elements enter at the back
of the queue and leave the queue from the front, as illustrated in Figure 2.4.

05 0672321092 CH02 08/22/2001 2:50 PM Page 32

Encapsulation: Learn to Keep the Details to Yourself 33

2

By abstracting the domains, you can create a queue once and reuse it in any problem that
models a domain where there is a FIFO ordering of elements.

Effective Abstraction
At this point you can formulate a few rules for effective abstraction:

• Address the general case, not the specific case.

• When confronting a number of different problems, search for commonality. Try to
see a concept, not a specific case.

• Don’t forget that you have a problem to solve. Abstraction is valuable, but don’t
neglect the problem in hopes of writing abstract code.

• Abstraction might not be readily apparent. Abstraction might not jump out at you the
first, second, or third time you solve a problem that is subject to being abstracted.

• Prepare for failure. It is almost impossible to write an abstraction that will work in
every situation. You’ll see why later in this day.

FIGURE 2.4
An abstraction of
both domains.

IN OUT

Do not fall into abstraction paralysis. Solve the problems that you face first.
Look at abstraction as a bonus, not the end goal. Otherwise you face the
possibility of missed deadlines and incorrect abstraction. There are times to
abstract and times when abstraction is not appropriate.

A good rule of thumb is to abstract something you’ve implemented three
times similarly. As you gain experience you will learn to pick out abstraction
sooner.

Caution

Abstraction can make an encapsulated component more reusable because it is tailored to
a domain of problems, not one specific use. However, there is more to encapsulation than

You might not always recognize opportunities for abstraction. You might
have to solve a problem several times before an abstraction becomes appar-
ent. Sometimes, different situations help to bring out an effective abstrac-
tion and, even then, the abstraction might need some coercion. Abstraction
might take time to mature.

Note

05 0672321092 CH02 08/22/2001 2:50 PM Page 33

simple component reuse. It is also important to hide the internal details. The Abstract
Data Type is a good place to look next in the search for effective encapsulation.

Keeping Your Secrets Through
Implementation Hiding

Abstraction is only one characteristic of effective encapsulation. You can write abstract
code that isn’t encapsulated at all. Instead, you also need to hide your objects’ internal
implementations.

Implementation hiding has two benefits:

• It protects your object from its users.

• It protects the users of your object from the object itself.

Let’s explore the first benefit—object protection.

Protecting Your Object Through the
Abstract Data Type (ADT)
The Abstract Data Type is not a new concept. ADTs, along with OO itself, grew from the
Simula programming language introduced in 1966. In fact, ADTs are decidedly non-OO;
instead, they are a subset of OO. However, ADTs present two interesting characteristics:
abstraction and type. It is this idea of type that is important, because without it, you can-
not have true encapsulation.

34 Day 2

True encapsulation is enforced at the language level through built-in lan-
guage constructs. Any other form of encapsulation is simply a gentlemen’s
agreement that is easily circumvented. Programmers will work around it
because they can!

Note

An ADT is a set of data and a set of operations on that data. ADTs allow you to
define new language types by hiding internal data and state behind a well-defined

interface. This interface presents the ADT as a single atomic unit.

ADTs are an excellent way to introduce encapsulation because they free you to consider
encapsulation without the extra baggage of inheritance and polymorphism: You can focus
on encapsulation. ADTs also allow you to explore the idea of type. Once type is under-
stood, it is easy to see that OO offers a natural way of extending a language by defining
custom user types.

NEW TERM

05 0672321092 CH02 08/22/2001 2:50 PM Page 34

Encapsulation: Learn to Keep the Details to Yourself 35

2

What Is a Type?
When you program you will create a number of variables and assign values to them.
Types define the different kinds of values that are available to your programs. You use
types to build your program. Examples of some common types include integers, longs,
and floats. These type definitions tell you exactly what kinds of types are available, what
the types do, and what you can do to them.

We will use the following definition of type:

Types define the different kinds of values that you can use in your programs. A
type defines the domain from which valid values of the type can be drawn. For

positive integers, this is numbers with no fractional parts, and which are greater than or
equal to 0. For structured types the definition is more complex. In addition to the
domain, the type definition includes which operations are valid on the type and what
their results are.

NEW TERM

The formal treatment of type is well beyond the scope of an entry-level
book on OOP.

Note

Types are atomic units of computation. This means that a type is a single self-contained
unit. Take the integer, for example. When you add two integers, you don’t think about
adding individual bits; you just think about adding two numbers. Even though bits repre-
sent the integer, the programming language presents the integer as just one number to the
programmer.

Take the Item example from the Day 1. Creating the Item class adds a new type to your
programming vocabulary. Instead of thinking about a product id, a product description,
and a price as separate entities, probably disconnected regions of memory or variables,
you simply think in terms of Item. Thus, types allow you to represent complex structures
at a simpler, more conceptual level. They protect you from the unnecessary details. This
frees you to work at the problem level instead of the implementation level.

While it is true that a type protects the programmer from underlying details, types offer
you an even more important advantage. The definition of a type protects the type from
the programmer. A type definition guarantees that any object that interacts with the type
will interact in a correct, consistent, safe manner. The constraints imposed by a type pre-
vent objects from inconsistent, possibly destructive interaction. The type declaration
prevents the type from unintended and arbitrary use. A type declaration guarantees
proper use.

05 0672321092 CH02 08/22/2001 2:50 PM Page 35

Without a clear definition of the allowed operations, one type could interact with another
type in any way that it wanted to. Often such undefined interaction can be destructive.

Think about the Item from Day 1 again. Imagine that we altered the Item definition a
bit:

public class UnencapsulatedItem {

// ...

public double unit_price;
public double discount; // a percentage discount to apply to the price
public int quantity;
public String description;
public String id;

}

You’ll notice that all of the internal variables are now publicly available. What if some-
one wrote the following program using the new UnencapsulatedItem:

public static void main(String [] args) {
UnencapsulatedItem monitor =

new UnencapsulatedItem(“electronics-012”,
“17\” SVGA Monitor”,
1,
299.00);

monitor.discount = 1.25; // invalid, discount must be less than 100%!

double price = monitor.getAdjustedTotal();

System.out.println(“Incorrect Total: $” + price);

monitor.setDiscount(1.25); // invalid
// however the setter will catch the error

price = monitor.getAdjustedTotal();

System.out.println(“Correct Total: $” + price);
}

Figure 2.5 shows what happens when you execute the main() method.

36 Day 2

05 0672321092 CH02 08/22/2001 2:50 PM Page 36

Encapsulation: Learn to Keep the Details to Yourself 37

2

By opening the UnencapsulatedItem type to unfettered access, others can come along
and leave an UnencapsulatedItem instance in an invalid state. In this case, main() cre-
ates an UnencapsulatedItem and then directly applies an invalid discount. The result is a
negative adjusted price!

ADTs are valuable tools of encapsulation because they enable you to define new lan-
guage types that are safe to use. Just as new words are added to the English language
each year, an ADT enables you to create new programming words whenever you need to
express a new idea.

Once it is defined, you can use a new type as any other type. Just as you may pass an
integer to a method, you can pass an ADT to a method as well. This is known as being a
first class object. You can pass first class objects around as parameters.

A first-class object is one that can be used exactly the same way as a built-in type.

A second-class object is a type of object that you can define but not necessarily
use as you would a built in type.

An Example ADT
Let’s consider the example of the abstract queue presented earlier. When implementing a
queue, you have a number of implementation choices. You can implement the queue as a
linked list, a doubly linked list, or as an array. However, the underlying implementation
does not change a queue’s defined behavior. Regardless of implementation, items still
enter and exit in a FIFO manner.

The queue is a prime candidate for an ADT. You’ve already seen that you do not need to
know the underlying implementation in order to use the queue. In fact, you don’t want to
have to worry about the implementation. If you don’t turn the queue into an ADT, each

FIGURE 2.5
An invalid total.

NEW TERM

NEW TERM

05 0672321092 CH02 08/22/2001 2:50 PM Page 37

object that needs a queue will need to reimplement the data structure. Each object that
wants to manipulate the data on the queue will need to understand the implementation
and understand how to interact with it correctly. You’ve already seen the dangers of unin-
tended use!

Instead, you should construct the queue as an ADT. A well-encapsulated queue ADT
guarantees consistent, safe access to the data.

When sitting down to design an ADT, you need to ask yourself what the ADT does. In
this case, what can you do to a queue? You can

• Place elements into the queue: enqueue

• Remove elements from the queue: dequeue

• Query the state of the queue

• Look at the front element without removing it: peek

Each of the bullets will translate to an entry in Queue’s public interface.

You also need to name the ADT. In this case, the ADT’s name is Queue. The ADT is
defined as follows:

public interface Queue {
public void enqueue(Object obj);
public Object dequeue();
public boolean isEmpty();
public Object peek();

}

Notice that the queue interface doesn’t say anything about how the queue holds its inter-
nal data. Also note that the interface does not provide unfettered access to any of the
internal data. All of those details are hidden.

Instead, you now have a new type, a queue. You can now use this type in any of your
programs.

Since it is a first-class object, you can use the queue as a parameter. You can treat the
abstraction as one unit because all the pieces are self-contained. This is powerful; it
allows the programmer to be more expressive. Instead of thinking in terms of pointers
and lists, the programmer can think at a much higher level: in terms of the problem to be
solved. When the programmer says queue, the word includes all the details of a list and
pointer but also allows the programmer to ignore those details and think of a high-level
FIFO data structure.

38 Day 2

05 0672321092 CH02 08/22/2001 2:50 PM Page 38

Encapsulation: Learn to Keep the Details to Yourself 39

2

Let’s consider the interface a bit more. Note that this interface is very generic. Instead of
saying that this is a queue of ints or hamburgers, the interface simply queues and
enqueues Objects. In Java, you can treat all objects as Object. However, each language
provides its own similar mechanism. By declaring the parameters in this way, you can
queue any object that you want on the queue. Thus, this definition makes the Queue type
useable in many different situations.

As you’ll see as you continue, a type might be composed of other types
through containment. Although this hides details, it also furthers your
expressability. Types that contain other types can encompass many concepts.

For example, when you program and say int, the meaning is very simple;
you have simply declared a single integer. However, when you say Queue
your statement is much more expressive. There is much more going on
inside of Queue than inside of int.

Note

Generic interfaces have dangers of their own. A Queue of Integers is very
exact. You know that each element on the Queue is an Integer. A Queue of
Objects however, is weakly-types. When you pull off an element, you might
not know what type it is.

Caution

For truly effective encapsulation, there are a few more characteristics that you’ll need to
address. We’ve touched on one aspect of implementation hiding. But what about the
other side of the coin—protecting the users of your objects?

Protecting Others from Your Secrets Through
Implementation Hiding
So far, you’ve seen that an interface can hide an object’s underlying implementation.
When you hide the implementation behind an interface you protect your object from
unintended or destructive use. Protecting your object from unintended use is one benefit
of implementation hiding. However, there is another side to the story: the users of your
object.

Implementation hiding leads to a more flexible design because it prevents the users of
your object from becoming tightly coupled to the object’s underlying implementation.
So, not only does implementation hiding protect your object, it also protects those that
use your object by encouraging loosely coupled code.

05 0672321092 CH02 08/22/2001 2:51 PM Page 39

Loosely coupled code is independent of the implementation of other components.

Tightly coupled code is tightly bound on the implementation of other components.

You might wonder, “What good is loosely coupled code?”

Once a feature appears in an object’s public interface, anyone who uses the feature
becomes dependent upon the feature being there. If the feature suddenly goes away
you’ll need to change the code that had grown dependent on that behavior or attribute.

Dependent code is dependent on the existence of a given type. Dependent code
is unavoidable. However, there are degrees to acceptable dependence and over

dependence.

There are degrees to dependence. You cannot eliminate dependence totally. However, you
should strive to minimize inter-object dependence. Normally, you limit such dependence
by programming to a well-defined interface. Users can only become dependent upon
what you decide to place in the interface. However, if some of the object’s implementa-
tion becomes part of the interface, the users of the object might become dependent upon
that implementation. Such tightly coupled code removes your freedom to change the
implementation of your object as you see fit. A small change to your object’s implemen-
tation might necessitate a cascade of changes throughout all of the users of the object.

40 Day 2

NEW TERM

NEW TERM

NEW TERM

Encapsulation and implementation hiding are not magic. If you need to
change an interface, you will need to update the code that is dependent
upon the old interface. By hiding the details and writing software to an
interface, you create software that is loosely coupled.

Caution

Tightly coupled code defeats the point of encapsulation: creating independent, reusable
objects.

A Real-World Example of Implementation Hiding
A concrete example of implementation hiding will drive this lesson home. Consider the
following class definition:

public class Customer {
// ... various customer methods ...
public Item [] items; // this array holds any selected items

}

05 0672321092 CH02 08/22/2001 2:51 PM Page 40

Encapsulation: Learn to Keep the Details to Yourself 41

2

A Customer holds onto selected items. Here, Customer makes the Item array part of its
external interface:

public static void main(String [] args) {
Customer customer = new Customer();

// ... select some items ...

// price the items
double total = 0.0;
for(int i = 0; i < customer.items.length; i++) {

Item item = customer.items[i];
total = total + item.getAdjustedTotal();

}
}

This main() takes a customer, adds some items, and totals the order. Everything works,
but what happens if you want to change the way a Customer holds onto items? Suppose
that you would like to introduce a Basket class. If you change the implementation you’ll
need to update all of the code that accesses the Item array directly.

Without implementation hiding you lose your freedom to enhance your objects. In the
Customer example you should make the Item array private. Provide access to the items
through accessors.

Implementation hiding does have its downsides. There are times that you
might need to know a bit more than what the interface can tell you.

In the programming world, you will want a black box that works within a
certain tolerance or uses the right amount of precision. You might know
that you need 64-bit integers because you are dealing with very large num-
bers. When defining your interface, it is important not only to provide an
interface but to document these types of specifics about the implementation
as well. However, like any other part of the public interface, once you
declare a behavior, you cannot change it.

Note

Implementation hiding allows you to write code that is independent and loosely coupled
with other components. Loosely coupled code is less fragile and more flexible to change.
Flexible code facilitates reuse and enhancement since changes to one part of a system
will not affect other unrelated parts.

05 0672321092 CH02 08/22/2001 2:51 PM Page 41

Division of Responsibility: Minding Your
Own Business

Implementation hiding naturally evolves into a discussion of the division of responsibili-
ty. In the previous section, you saw how you could uncouple code by hiding implementa-
tion details. Implementation hiding is only one step toward writing loosely coupled code.

In order to have truly loosely coupled code, you must also have a proper division of
responsibility. Proper division of responsibility means that each object must perform one
function—its responsibility—and do it well. Proper division of responsibility also means
that the object is cohesive. In other words, there is no point in encapsulating a random
bunch of functions and variables. They need to have a tight conceptual bond to each
other. The functions must all work toward a common responsibility.

42 Day 2

How do you achieve effective implementation hiding and loosely coupled
code?

Here are a few tips:

• Only allow access to your ADT through a method based interface. Such
an interface ensures that you do not expose information about the
implementation.

• Do not give inadvertent access to inner data structures by accidentally
returning pointers or references. After someone gets a reference, he
can do anything to it.

• Never make assumptions about the other types that you use. Unless a
behavior appears in the interface or in the documentation, do not rely
on it.

• Be careful while writing two closely related types. Do not accidentally
program in assumptions and dependencies.

Tip

Implementation hiding and responsibility go hand in hand. Without imple-
mentation hiding, responsibility can seep out of an object. It is the object’s
responsibility to know how to do its job. If you leave the implementation
open to the outside world, a user might begin to act on the implementation
directly—thus duplicating responsibility.

Note

05 0672321092 CH02 08/22/2001 2:51 PM Page 42

Encapsulation: Learn to Keep the Details to Yourself 43

2Let’s consider a real-life example of the division of responsibilities: the relationship
between manager and programmer.

Imagine that your manager comes to you, gives you the specs of your piece of a project,
and then leaves you to your work. He knows that you have a job to do and that you know
how to do your job best.

Now imagine that your boss isn’t so clever. He explains the project and what you’ll be
responsible for. He assures you that he’s there to facilitate your work. But when you
begin, he pulls up a chair! For the rest of the day, your boss sits over your shoulder and
gives you step-by-step instruction as you code.

While the example is a bit extreme, programmers program this way in their code all the
time. Encapsulation is like the efficient manager. As in the real world, knowledge and
responsibility need to be delegated to those who know how to do the job best. Many pro-
grammers structure their code like an overbearing boss treats his workers. This example
is easily translated to programming terms. Let’s consider such an example:

public class BadItem {

private double unit_price;
private double adjusted_price;
private double discount; // a percentage discount to apply to the price
private int quantity;
private String description;
private String id;

public BadItem(String id, String description,
int quantity, double price) {

this.id = id;
this.description = description;

if(quantity >= 0) {
this.quantity = quantity;

}
else {

this.quantity = 0;
}

As soon as two objects begin doing the same task, you know that you do
not have a proper division of responsibility. Whenever you notice redundant
logic, you’ll need to rework your code. But don’t feel bad; rework is an
expected part of the OO development cycle. As your designs mature, you’ll
find many opportunities to improve it.

05 0672321092 CH02 08/22/2001 2:51 PM Page 43

this.unit_price = price;
}

public double getUnitPrice() {
return unit_price;

}

// applies a percentage discount to the price
public void setDiscount(double discount) {

if(discount <= 1.00) {
this.discount = discount;

}
}

public double getDiscount() {
return discount;

}

public int getQuantity() {
return quantity;

}

public void setQuantity(int quantity) {
this.quantity = quantity;

}

public String getProductID() {
return id;

}

public String getDescription() {
return description;

}

public double getAdjustedPrice() {
return adjusted_price;

}

public void setAdjustedPrice(double price) {
adjusted_price = price;

}
}

BadItem no longer contains the responsibility of calculating adjusted price. So how do
you generate an adjusted price? Consider the following main():

public static void main(String [] args) {
// create the items
BadItem milk = new BadItem(“dairy-011”, “1 Gallon Milk”, 2, 2.50);

// apply coupons

44 Day 2

05 0672321092 CH02 08/22/2001 2:51 PM Page 44

Encapsulation: Learn to Keep the Details to Yourself 45

2

milk.setDiscount(0.15);

// get adjusted prices
double milk_price = milk.getQuantity() * milk.getUnitPrice();
double milk_discount = milk.getDiscount() * milk_price;
milk.setAdjustedPrice(milk_price - milk_discount);

System.out.println(“Your milk costs:\t $” + milk.getAdjustedPrice());
}

Now instead of simply asking the Item for its adjusted price you have to behave like the
inefficient manager. You need to tell the item object what to do step by step.

Having to call multiple functions to calculate the adjusted total moves the responsibility
out of the item and places it in the hands of the user. Moving responsibility around in
this way is just as bad as exposing internal implementations. You end up with responsi-
bility duplicated throughout your code. Each object that wishes to calculate the adjusted
total will need to repeat the logic found in the main().

When writing your interfaces, you have to be sure that you are not simply presenting the
implementation through a different set of names. Think back to the queue—you don’t
want methods named addObjectToList(), updateEndListPointer(), and so on. These
types of behaviors are implementation specific. Instead, you hide the implementation
through the higher level enqueue() and dequeue() behaviors (even though internally you
might update pointers and add the object to a list). In terms of BadItem, you wouldn’t
want to have to call a calculateAdjustedPrice() method before you could retrieve the
adjusted price through the getAdjustedPrice() method. Instead, getAdjustedPrice()
should know to do the calculation.

When you have objects that do not properly divide responsibility you end up with proce-
dural, datacentric code. The main for calculating the adjusted price is very procedural. A
main that would instruct a Queue in each step of its enqueue() process is procedural. If
you simply send a message to an object and trust it to do its job, it is true object-oriented
development.

Encapsulation is all about hiding details. Responsibility places knowledge of certain
details where it belongs. It is important for objects to have only one or a small number of
responsibilities. If an object has too many responsibilities, its implementation becomes
very confusing and difficult to maintain and extend. In order to alter one responsibility,
you’ll run the risk of inadvertently altering another behavior if an object contains many
behaviors. It also centralizes a lot of knowledge that would be better spread out. As an
object gets too large, it almost becomes a program in its own right and falls into proce-
dural traps. As a result, you face all the problems that you would face in a program that
doesn’t use encapsulation at all.

05 0672321092 CH02 08/22/2001 2:51 PM Page 45

When you find that an object performs more than one responsibility, you need to move
that responsibility into its own object.

46 Day 2

Implementation hiding is only one step to efficient encapsulation. Without
proper divisions of responsibility, you simply end up with a list of
procedures.

Caution

At this point, you can enhance the definition of encapsulation.

Effective encapsulation is abstraction plus implementation hiding plus
responsibility.

Take away abstraction, and you have code that is not reusable. Take away implementa-
tion hiding, and you are left with fragile, tightly coupled code. Take away responsibility,
and you are left with datacentric, procedural, tightly coupled, decentralized code.

Without all three pieces, you cannot have effective encapsulation, but a lack of responsi-
bility leaves you with the biggest mess of all: procedural programming in an object-
oriented environment.

Encapsulation Tips and Pitfalls
When applying encapsulation there are a number of tips to follow and traps to avoid.

Abstraction Tips and Pitfalls
When writing a class, you might get yourself into trouble if you try to work too abstract-
ly. It is impossible to write a class that will satisfy all users and each situation. Imagine
that you had to write a person object for an enterprise payroll system. That person
object is going to be a lot different than a person object in the traffic flow simulator that
we discussed earlier.

NEW TERM

Abstraction can be dangerous. Even if you have abstracted some element, it
might not work in every case. It is very difficult to write a class that will sat-
isfy every user’s needs. Don’t fall into abstraction fixation—solve your prob-
lems first!

Caution

It all comes back to doing enough to solve the problem at hand. To include all the details
necessary for the person object to work in both contexts would be very expensive. It

05 0672321092 CH02 08/22/2001 2:51 PM Page 46

Encapsulation: Learn to Keep the Details to Yourself 47

2

opens you up to all the problems that you saw today because of muddled responsibility.
Although you can plug your person into two situations, it is no longer an abstract per-
son. You lose all of the simplification that abstraction offers.

Don’t put more into a class than is necessary to solve the problem. Don’t set
out to solve all problems, solve the problem at hand. Only then should you
look for ways to abstract what you have done.

Caution

Of course, there are times where a problem is complex, such as a difficult calculation or
an intricate simulation. I’m talking about complexity from a responsibility point of view.
The more responsibilities an object takes on, the more complex it is and the harder it will
be to maintain.

Remember that adding a new class to your system is the same as creating a
new type. Keeping this idea in mind helps focus on what you are actually
doing. When talking about your problem, you will find that you talk in
terms of the objects and interactions, not data and methods.

Tip

Finally, true abstraction can only come with time.

True abstraction normally is born from real-life uses, not a programmer sitting down and
deciding to create a reusable object. As the saying goes, invention is born of necessity.
Objects work the same way. You cannot normally sit down and write a truly abstract
reusable object the first time. Instead, reusable objects are normally derived from mature
code that has been put through its paces and faced many changes.

True abstraction also comes with experience. It is a goal to strive for in your mastery
of OOP.

ADT Tips and Pitfalls
Transforming an ADT into a class is language specific. However, there are a few lan-
guage-independent points that you can make about classes.

Most OO languages provide keywords that help you define encapsulated classes. First,
there is the class definition itself. The class is kind of like the ADT but with some impor-
tant features that you will see in the coming days.

Within a class, you normally have methods and internal variables—the data. Access to
these variables and methods is provided by access functions. Everything in the ADT
interface should appear as part of the object’s public interface.

05 0672321092 CH02 08/22/2001 2:51 PM Page 47

Implementation Hiding Tips
What to expose and what to hide in your interface is not always easy to decide. However,
we can make a few language-independent points on access. Only methods that you
intend others to use should be in the public interface. Methods that only the type will use
should be hidden. In the queue example, dequeue() and enqueue() should be in the pub-
lic interface. However, you should hide helper methods such as updateFrontPointer()
and addToList().

You should always hide internal variables unless they are constants. I maintain that they
should not only be hidden but accessible only by the class itself. You’ll explore this con-
cept more closely on Day 4. Opening internal variables to outside access exposes your
implementation.

48 Day 2

ADTs are not directly analogous to the OO class. ADTs lack inheritance and
polymorphic capabilities. The importance of these capabilities will become
evident as you study Day 4 and Day 6, “Polymorphism: Learning to Predict
the Future.”

Caution

You can open internal variables to outside use only if your language treats
these values the same as methods. Both Delphi and Borland C++ treat inter-
nal variables this way.

If outside users can access methods and values without knowing they are
touching a value, it is okay to open it up. In such a language, an exposed
internal variable would look the same as a method that takes no parame-
ters. Unfortunately, not many OO languages treat values and methods the
same way.

Note

Finally, do not create interfaces that just present the internal representation with a differ-
ent name. The interface should present high-level behaviors.

How Encapsulation Fulfills the Goals of OO
Programming
Day 1 states that the goal of OO programming is to produce software that is

1. Natural

2. Reliable

05 0672321092 CH02 08/22/2001 2:51 PM Page 48

Encapsulation: Learn to Keep the Details to Yourself 49

2

3. Reusable

4. Maintainable

5. Extendable

6. Timely

Encapsulation fulfills each of these goals:

• Natural: Encapsulation allows you to divide responsibility in a way that is natural
to the way people think. Through abstraction, you are free to model the problem in
terms of the problem, not in terms of some specific implementation. Abstraction
allows you to think and program in the general.

• Reliable: By isolating responsibility and hiding the implementation, you can vali-
date each individual component. Once the piece is validated, you can use it with
confidence. This allows for thorough unit testing. You still need to perform integra-
tion testing to make sure that the software that you construct works properly.

• Reusable: Abstraction gives you code that is flexible and usable in more than one
situation.

• Maintainable: Encapsulated code is easier to maintain. You can make any change
that you like to the implementation of a class without breaking dependent code.
These changes can include changes to the implementation as well as adding new
methods to the interface. Only changes that violate the semantics of the interface
will require changes to dependent code.

• Extendable: You can change implementations without breaking code. As a result
you can make performance enhancements and change functionality without break-
ing the existing code. Furthermore, since the implementation is hidden, the code
that uses the component will automatically be upgraded to take advantage of any
new features that you introduce. If you do make such changes, be sure to run your
unit tests again! Breaking an object can have a domino effect throughout all of the
code that uses the object.

• Timely: By breaking your software into self-contained pieces, you can split the
task of creating the pieces between multiple developers, thereby speeding
development.

Once these components are constructed and validated, they will not need to be rebuilt.
Thus, the programmer is free to reuse functionality without having to re-create it.

Caveats
You might be thinking, “But I don’t need OO to abstract and encapsulate my code.” You
know what? You’re right—you do not need OO to have encapsulated code. ADTs them-

05 0672321092 CH02 08/22/2001 2:51 PM Page 49

selves are not OO. It is very possible to have encapsulation in just about any language.

However, there is a problem. In other types of languages, you often need to create your
own mechanisms for encapsulation. Since there is nothing in the language that forces
you to respect your standards, you need to be vigilant. You have to force yourself to fol-
low your guidelines. You’ll also have to re-create your guidelines and mechanism for
each program that you write.

That’s fine for one developer. What about two developers? Ten? An entire enterprise? As
more developers are added, the harder it is to get everyone on the same page.

A true OO language provides a mechanism for encapsulation. It enforces the mechanism
so that you do not have to. The language encapsulates the details of the encapsulation
mechanism from the user. An OO language provides some keywords. The programmer
simply uses the keywords, and the language takes care of all the details.

When working with the features provided by the language, the language presents all pro-
grammers with the same consistent mechanism.

Summary
Now that you understand encapsulation, you can begin programming with objects. By
using encapsulation you can leverage the benefits of abstraction, implementation hiding,
and responsibility in your day-to-day code.

With abstraction, you can write objects that are usable in a number of situations. If you
properly hide your object’s implementation, you are free to make any enhancements to
your code that you want—at any time. Finally, if you properly divide responsibility
among your objects, you’ll avoid duplicate logic and procedural code.

If you put this book down now and never came back to it, you’ve learned enough new
OO skills to write self-contained components. However, the OO story does not end with
encapsulation. Stick around and you’ll learn how to take advantage of all the features
offered by OOP.

Q&A
Q How do you know what methods to include in an interface?

A It’s simple to know what methods to include. You need to include only those meth-
ods that make the object useful; the methods that you need in order for another
object to get its job done.

50 Day 2

05 0672321092 CH02 08/22/2001 2:51 PM Page 50

Encapsulation: Learn to Keep the Details to Yourself 51

2

When you set out to write an interface you’ll want to produce the smallest interface
that still satisfies your needs. Make your interface as simple as possible. Don’t
include methods that you “might” need. You can add those when you truly need
them.

Beware of certain types of convenience methods. If you’re object holds onto other
objects, you’ll normally want to avoid creating methods that simply forward a
method call onto one of the contained objects.

For example, say that you have a shopping cart object that holds onto items. You
shouldn’t add a convenience method on the cart that will query an item for its rice
and return it. Instead, you should have a method that allows you to obtain the item.
Once you have the item you can request the price yourself.

Q You mentioned the public, protected, and private keywords. Are there any
other access modifiers?

A Each language defines its access modifiers in its own way. However, most OO lan-
guages define those three levels. Java also has a default package access modifier.
You specify this level by leaving a modifier off. This level restricts access to only
those classes in the same package. For more information about packages check out
Appendix B, “Java Primer.”

Q Do the access modifiers double as a security mechanism?

A No. The access modifiers only restrict how other objects may interact with a given
object. Modifiers have nothing to do with computer security.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. How does encapsulation fulfill the goals of object-oriented programming?

2. Define abstraction and give an example demonstrating abstraction.

3. Define implementation.

4. Define interface.

5. Describe the difference between interface and implementation.

6. Why is the clear division of responsibility important to effective encapsulation?

7. Define type.

8. Define ADT.

05 0672321092 CH02 08/22/2001 2:51 PM Page 51

9. How do you achieve effective implementation hiding and loosely coupled code?

10. What are some dangers inherent in abstraction?

Exercises
1. Consider the classical stack data structure. A stack is a “Last In First Out” (LIFO)

structure. Unlike a LIFO queue, you can only add and remove elements from the
same end of a stack. Like a queue, a stack allows you to check to see if it is empty
and to peek at the first element that you can remove.

Define an ADT for the stack class.

2. Take the stack ADT from Exercise 1 and sketch out an implementation. When
done, define a second implementation.

3. Look back at Exercises 1 and 2. Was the interface that you designed in Exercise 1
adequate for both implementations that you formulated in Exercise 2? If so, what
benefits did the interface provide? If not, what was lacking in the original
interface?

52 Day 2

05 0672321092 CH02 08/22/2001 2:51 PM Page 52

DAY 3

WEEK 1

Encapsulation: Time to
Write Some Code

Yesterday, you learned all about encapsulation. As you begin today’s lessons,
you should have a good idea of what encapsulation is, how to apply it effective-
ly, and what common mistakes to keep an eye out for. What you don’t have at
this point is hands-on experience with the technique. Sure, you know the theo-
ry, but nothing beats getting down and dirty with code. For the rest of the day,
you’ll complete a number of labs that should cement the lessons of Day 2.

Today you will learn

• How to set up the Java environment

• About class basics

• How to implement encapsulation

• About the Java primitive wrappers

06 0672321092 CH03 08/22/2001 2:46 PM Page 53

Lab 1: Setting Up the Java Environment
You will use the Java programming language to complete all of the labs this week as
well as the final project. In order to program in Java, you need to obtain a version of the
Java 2 Platform, Standard Edition. To complete these labs, you need to have at least ver-
sion 1.2 of the SDK.

If you don’t already have one, you’ll have to download and install a development kit
now. There are many different development kits available. However, you can easily
obtain the newest version from http://www.javasoft.com/j2se/.

Sun supports three main platforms: Solaris, Linux, and Windows. At the time of this
writing, Sun’s newest version is Java 2 SDK, Standard Edition, v 1.3.

IBM also offers a number of development kits at
http://www.ibm.com/java/jdk/index.html.

In addition to the platforms supported by Sun, IBM also provides support for a number
of platforms, such as OS/2, AS/400, and AIX.

Each development kit comes with adequate installation instructions. Please follow these
instructions in order to install the kit on your development machine. You can also refer to
Appendix B, “Java Primer,” for more help.

You can also choose to use a popular Java IDE such as Forte, JBuilder, or Visual Age for
Java. These examples and labs will work in these environments as well.

This book assumes a basic familiarity with programming, but you do not need a deep
understanding of Java to complete these labs. If you do need some help getting up to
speed on Java basics, please see Appendix B.

Problem Statement
Indeed, you need the horse before you get the cart. Before you can program you need to
obtain and set up a Java development environment. If you have not already done so,
obtain a Java development kit and follow the steps outlined in Appendix B in order to
install it. Once installed, the appendix will step you through setting your classpath as
well as compiling and running your first Java program. Once you complete this lab
you’ll know that your Java installation works. You’ll also know all that you need to know
in order to compile and run your Java programs.

Lab 2: Class Basics
It is very important that you keep the lessons of Days 1 and 2 in mind as you write your
first classes.

54 Day 3

06 0672321092 CH03 08/22/2001 2:46 PM Page 54

Encapsulation: Time to Write Some Code 55

3

In Day 1 you learned some basics about classes and objects. Day 2 showed you how you
can leverage encapsulation to produce well-defined objects.

The Java class library contains a rich set of classical data structures such as lists and
hashtables. Consider the DoubleKey class of Listing 3.1.

LISTING 3.1 DoubleKey.java

public class DoubleKey {

private String key1, key2;

// a no args constructor
public DoubleKey() {

key1 = “key1”;
key2 = “key2”;

}

// a constructor with arguments
public DoubleKey(String key1, String key2) {

this.key1 = key1;
this.key2 = key2;

}

// accessor
public String getKey1() {

return key1;
}

// mutator
public void setKey1(String key1) {

this.key1 = key1;
}

// accessor
public String getKey2() {

return key2;
}

// mutator
public void setKey2(String key2) {

this.key2 = key2;
}

// equals and hashcode omitted for brevity
}

When you place an object into any implementation of java.util.Map you can specify any
object as a key to that object. When you need to retrieve an object you simply use the key
to retrieve the value. DoubleKey allows you to hash on two String keys instead of one.

06 0672321092 CH03 08/22/2001 2:46 PM Page 55

You’ll notice that DoubleKey has two constructors:

public DoubleKey() {
key1 = “key1”;
key2 = “key2”;

}

public DoubleKey(String key1, String key2) {
this.key1 = key1;
this.key2 = key2;

}

Constructors come in two forms: those without arguments (noargs constructors) and
those with arguments.

Noarg constructors are constructors that do not take any arguments.

56 Day 3

NEW TERM

Noarg constructor is a Java term. The C++ equivalent is default constructor.Note

No argument constructors instantiate an object with default values, whereas those that
accept arguments use the arguments to initialize the objects internal state.

public DoubleKey() is an example of a noargs constructor, whereas public
DoubleKey(String key1, String key2) accepts arguments.

As Day 1 taught you, methods such as public String getKey1() and public String

getKey2() are known as accessors because they allow you to access the internal values
of the object.

The Java world recognizes two types of accessors: setters and getters. Setters
allow you to set an instance variable, whereas getters allow you to read an
instance variable.

Sun Microsystems has developed an entire naming convention around set-
ters and getters known as JavaBean Design Patterns. JavaBeans is a standard
way of writing your components. If your components conform to this stan-
dard, you can plug them into any JavaBean compatible IDE. Such an IDE
could allow you to construct your programs visually using the beans.

The Java naming conventions are simple. The JavaBean convention for nam-
ing getters and setters is

public void set<VariableName>(<type> value)
public <type> get<VariableName>()

Note

06 0672321092 CH03 08/22/2001 2:46 PM Page 56

Encapsulation: Time to Write Some Code 57

3

Finally, you call methods such as public void setKey1(String key1) and public

void setKey2(String key2) mutators because they allow you to alter the internal
state of the object.

DoubleKey demonstrates the proper use of encapsulation. By employing a well-defined
interface, DoubleKey hides its implementation from the outside world. DoubleKey is also
fairly abstract. You can reuse DoubleKey anywhere you need to hash by two String keys.
Finally, DoubleKey properly divides responsibility by only providing those methods nec-
essary to act as a map key.

Problem Statement
On Day 2 you saw the Bank of OO. At the Bank of OO, customers enter a queue while
waiting for a teller. But don’t worry, you won’t be writing a Queue class. Java has plenty
of built-in support for classical data structures. Instead, you’ll program an account
class—Java still leaves the programmer with a few jobs to do.

Whether it is a brokerage account, a checking account, or a money market account, all
accounts have a few shared characteristics. All accounts have a balance. An account will
also allow you to deposit funds, withdraw funds, and query the balance.

Today you will write an account class. Lab 2 comes complete with a Teller class. The
Teller class has a main() that you will use to test your account implementation.

The Teller expects a specific public interface. Here are the rules:

• You must name the account class Account.

• The class must have the following two constructors:
public Account()
public Account(double initial_deposit)

The noargs constructor will set the initial balance to 0.00. The second constructor
will set the initial balance to initial_deposit.

• The class must have the following three methods. The first method credits the
account with the value of funds:
public void depositFunds(double funds)

where <type> is the type of the instance variable and <VariableName> is the
name of the instance variable.

Take a Person object as an example. A Person has a name. The name getter
and setter might take the following format:

public void setName(String name)
public String getName()

06 0672321092 CH03 08/22/2001 2:46 PM Page 57

The next method debits the account by the value of funds:
public double withdrawFunds(double funds)

However, withdrawFunds() should not allow an overdraft. Instead, if funds is
greater than the balance, only debit the remainder of the balance. withdrawFunds()
should return the actual amount withdrawn from the account.

The third method retrieves the account’s current balance:
public double getBalance()

Beyond these few rules you can add any other methods that you might think helpful.
However, be sure to implement each of the methods exactly as listed above. Otherwise,
the teller cannot do its job!

Once you are done writing the Account class be sure to compile both the Account and
Teller classes. Once you do that, execute the main in Teller by typing java Teller.

If you’ve done your work correctly you should see the output shown in Figure 3.1.

58 Day 3

FIGURE 3.1
The proper output from
Teller.

The next section discusses the solutions to Lab 2. Do not proceed until you
complete Lab 2!

Caution

06 0672321092 CH03 08/22/2001 2:46 PM Page 58

Encapsulation: Time to Write Some Code 59

3

Solutions and Discussion
Listing 3.2 presents one possible implementation of Account.

LISTING 3.2 Account.java

public class Account {

// private data
private double balance;

// constructor
public Account(double init_deposit) {

balance = init_deposit;
}

public Account() {
// no need to do anything, _balance will default to 0

}

// deposit monies into account
public void depositFunds(double amount) {

balance = balance + amount;
}

// query the balance
public double getBalance() {

return balance;
}

// withdraw funds from the account
public double withdrawFunds(double amount) {

if(amount > balance) { // adjust the amount
amount = balance;

}

balance = balance - amount;
return amount;

}
}

The Account class illustrates the important concepts behind encapsulation. Account is
fairly abstract. It will work as the basis for many different types of accounts. The
Account hides its implementation behind a well-defined interface. Finally, the Account
shows a proper division of responsibility since it contains all of the knowledge of how to
debit and credit the account balance. Knowledge of how to accomplish these tasks does
not “leak” outside of the object.

06 0672321092 CH03 08/22/2001 2:46 PM Page 59

However, Account is not perfect; there is still some room for improvement. For the sake
of brevity, this Account class solution skips argument validation beyond simple overdraft
checking. For use in the real world you would need to include code to validate all
method parameters.

Lab 3: Encapsulation Roundup
Day 2 covered three characteristics of effective encapsulation:

• Abstraction

• Implementation hiding

• Division of responsibility

Each characteristic is an important skill to master while designing and writing your
classes. You need to apply all three characteristics in order to have well encapsulated
objects.

Let’s apply these three characteristics to a game of cards.

First, let’s apply abstraction. Remember not to overdo abstraction. You still have a prob-
lem to solve and you can’t solve all problems. So you should first try to solve the prob-
lems that you know about!

What can you say generically about card games played with a standard poker deck?

A good place to start is the deck of cards itself. A standard deck contains 52 cards. You
can shuffle a deck as well as pick a card out of the deck from any position. Likewise,
you can return a card to any position in the deck. Any other draw is just a specialization
on picking a card from any part of the deck.

What can you say about the cards themselves?

All cards share a common structure. Each card has a suit: diamonds, hearts, spades, or
clubs. Each card also has a value: 2–10, Jack, Queen, King, or Ace. The only difference
from one card to the next is the value of these two attributes.

Taken to an extreme you could try to describe every type of card deck whether they are
baseball cards or tarot cards. Again, when you start abstracting you need to be sure not to
over abstract.

How about implementation hiding?

Unless you cheat while playing cards you never get to see inside of the deck until you
are dealt a card. You also do not get to insert cards that are not part of the deck.

60 Day 3

06 0672321092 CH03 08/22/2001 2:46 PM Page 60

Encapsulation: Time to Write Some Code 61

3

Finally, what about responsibility?

In the real world, cards themselves do not do too much. A card simply displays its suit
and value. A card does have a state: face-up or face-down. Likewise, a deck does not do
too much in the real world. Instead, the dealer is the one who does all of the shuffling
and dealing. The deck simply contains the playing cards.

In the computer world, a card will hold onto its suit, value, and state. In a simple pro-
gram, a card will also know how to display itself. A deck will create and hold onto the
cards. Finally, the dealer will know how to shuffle the cards and deal a card.

Later you will learn the importance of separating display from your
model/data. However, for your purposes here you can mix the two.

Note

Problem Statement
Use the poker card description design classes to represent the cards, the deck of cards,
and the dealer. You should then write a small main() that instantiates the dealer and your
deck of cards, shuffles the cards, and then prints out the deck.

This lab leaves you with a great deal of leeway while designing your cards, deck, and
dealer. When thinking about the classes that you will create, be sure to consider imple-
mentation hiding and division of responsibility. Only place responsibility where it
belongs and once you do place it, make sure it does not “leak” out.

Please see java.lang.Math.random() for generating random numbers. ran-
dom() will come in handy for shuffling the deck. You can obtain full docu-
mentation of the Java APIs from http://www.javasoft.com/.

For example, (int)(Math.random() * 52) will give you a number between 0
and 51.

Note

The next section discusses the solutions to Lab 3. Do not proceed until you
complete Lab 3!

Caution

Solutions and Discussion
Listing 3.3 presents one possible Card class.

06 0672321092 CH03 08/22/2001 2:46 PM Page 61

LISTING 3.3 Card.java

public class Card {

private int rank;
private int suit;
private boolean face_up;

// constants used to instantiate
// suits
public static final int DIAMONDS = 4;
public static final int HEARTS = 3;
public static final int SPADES = 6;
public static final int CLUBS = 5;
// values
public static final int TWO = 2;
public static final int THREE = 3;
public static final int FOUR = 4;
public static final int FIVE = 5;
public static final int SIX = 6;
public static final int SEVEN = 7;
public static final int EIGHT = 8;
public static final int NINE = 9;
public static final int TEN = 10;
public static final int JACK = 74;
public static final int QUEEN = 81;
public static final int KING = 75;
public static final int ACE = 65;

// creates a new card - only use the constants to initialize
public Card(int suit, int rank) {

// In a real program you would need to do validation on the arguments.

this.suit = suit;
this.rank = rank;

}

public int getSuit() {
return suit;

}

public int getRank() {
return rank;

}

public void faceUp() {
face_up = true;

}

public void faceDown() {

62 Day 3

06 0672321092 CH03 08/22/2001 2:46 PM Page 62

Encapsulation: Time to Write Some Code 63

3

LISTING 3.3 continued

face_up = false;
}

public boolean isFaceUp() {
return face_up;

}

public String display() {
String display;

if(rank > 10) {
display = String.valueOf((char) rank);

} else {
display = String.valueOf(rank);

}

switch (suit) {
case DIAMONDS:

return display + String.valueOf((char) DIAMONDS);
case HEARTS:

return display + String.valueOf((char) HEARTS);
case SPADES:

return display + String.valueOf((char) SPADES);
default:

return display + String.valueOf((char) CLUBS);
}

}
}

The Card class definition starts by defining a number of constants. These constants enu-
merate the valid card values and suits.

You’ll notice that once instantiated you cannot change the value of the card. Card
instances are immutable. By making the card immutable, someone cannot come along
and wrongly change a card’s value.

An immutable object is an object whose state does not change once constructed.

The Card class is responsible for holding onto its suit as well as value. The card also
knows how to return a String representation of itself.

Listing 3.4 presents one possible Deck implementation.

NEW TERM

06 0672321092 CH03 08/22/2001 2:46 PM Page 63

LISTING 3.4 Deck.java

public class Deck {

private java.util.LinkedList deck;

public Deck() {
buildCards();

}

public Card get(int index) {
if(index < deck.size()) {

return (Card) deck.get(index);
}
return null;

}

public void replace(int index, Card card) {
deck.set(index, card);

}

public int size() {
return deck.size();

}

public Card removeFromFront() {
if(deck.size() > 0) {

Card card = (Card) deck.removeFirst();
return card;

}
return null;

}

public void returnToBack(Card card) {
deck.add(card);

}

private void buildCards() {

deck = new java.util.LinkedList();

deck.add(new Card(Card.CLUBS, Card.TWO));
deck.add(new Card(Card.CLUBS, Card.THREE));
deck.add(new Card(Card.CLUBS, Card.FOUR));
deck.add(new Card(Card.CLUBS, Card.FIVE));
// full definition clipped for brevity
// see source for full listing

}

}

64 Day 3

06 0672321092 CH03 08/22/2001 2:46 PM Page 64

Encapsulation: Time to Write Some Code 65

3

The Deck class is responsible for instantiating the cards and then providing access to the
cards. The Deck provides methods for retrieving and returning the cards.

Listing 3.5 presents the Dealer implementation.

LISTING 3.5 Dealer.java

public class Dealer {

private Deck deck;

public Dealer(Deck d) {
deck = d;

}

public void shuffle() {
// randomize the card array
int num_cards = deck.size();
for(int i = 0; i < num_cards; i ++) {

int index = (int) (Math.random() * num_cards);
Card card_i = (Card) deck.get(i);
Card card_index = (Card) deck.get(index);
deck.replace(i, card_index);
deck.replace(index, card_i);

}
}

public Card dealCard() {
if(deck.size() > 0) {

return deck.removeFromFront();
}
return null;

}

}

The Dealer is responsible for shuffling the deck and dealing cards. This Dealer imple-
mentation is honest. Another Dealer implementation might deal from the back of the
deck!

All three classes have a clear division of responsibility. The Card represents poker cards,
the Deck holds onto cards, and the Dealer deals the Cards out. All three classes also hide
their implementation. Nothing suggests that the Deck actually has a LinkedList of cards.

Although Card may define a number of constants, this does not compromise its imple-
mentation integrity since the Card is free to use the constants however it likes. It is also
free to change the values of the constants at any time.

06 0672321092 CH03 08/22/2001 2:46 PM Page 65

The Deck’s buildCards() method does highlight a shortcoming of implementation hid-
ing. You could instantiate cards with rank 2–10 in a for loop. If you look at the constants
you will see that TWO through TEN count from 2 to 10 sequentially. Such a loop is much
simpler than instantiating each card individually.

However, such an assumption ties you to the current values of the constants. You should
not allow your program to become dependent on a certain value behind the constant.
Instead, you should blindly use the constant by calling Card.TWO, Card.THREE, and so on.
You should not make any kinds of assumptions about the value. Card could redefine the
constant values at anytime. In the case of buildCards() it is easy to become tempted
and use the constant values directly.

Here, the contract between Card and the user of the Card constants is the constant names,
not their underlying value. Day 12, “Advanced Design Patterns,” will present a solution
that is a bit more elegant than this use of constants.

Lab 4: Case Study—The Java Primitive
Wrappers (Optional)

66 Day 3

Lab 4 is an optional lab. Although completing the lab will offer you addi-
tional insights into object-oriented programming, its completion is not nec-
essary in order for you to succeed in the coming days.

Note

Each object-oriented language has its own rules for determining what is and what is not
an object. Some object-oriented languages are more “pure” than others. A purely object-
oriented language, such as Smalltalk, considers everything an object, even operators and
primitives.

A pure object-oriented language supports the notion that everything is an object.

In a purely object-oriented language everything—classes, primitives, operators, even
blocks of code—is considered an object.

Java has its own rules for determining what is and is not an object. In Java not everything
is an object. For example, the Java language declares a number of primitive values. The
primitives are not considered objects in Java. These primitives include boolean, char,
byte, short, int, long, float, and double.

NEW TERM

06 0672321092 CH03 08/22/2001 2:46 PM Page 66

Encapsulation: Time to Write Some Code 67

3

An object-enabled language does not consider everything an object.

Primitives do provide some benefits over objects. In order to use a primitive you do not
need to instantiate a new instance using new. As a result, using a primitive is much more
efficient than using an object because it does not suffer from the overhead associated
with objects.

On the other hand, you’ll find using primitives limiting at times. You cannot treat primi-
tives as objects. This means that you cannot use them in places that require an object.
Consider java.util.Vector from the generic collection classes. In order to place a
value in the vector, you need to call the vector’s add() method:

public boolean add(Object o);

In order to store a value on the vector, the value must be an object. Put plainly, if you
want to place a primitive on a vector you’re out of luck.

In order to get around these shortcomings, Java has a number of primitive wrappers
including Boolean, Character, Byte, Double, Float, Integer, Long, and Short. These
classes are called wrappers because they contain, or wrap, a primitive value.

A wrapper is an object whose sole purpose is to contain another object or
primitive. A wrapper will provide any number of methods for obtaining and

manipulating the wrapped value.

Let’s consider the Boolean’s public interface, which is outlined in Listing 3.6.

LISTING 3.6 java.lang.Boolean

public final class Boolean implements Serializable {
public Boolean(boolean value);
public Boolean(String s);

public static final Boolean FALSE;
public static final Boolean TRUE;
public static final CLASS TYPE;

public static boolean getBoolean(String name);
public static Boolean valueOf(String s);

public boolean booleanValue();
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

NEW TERM

NEW TERM

06 0672321092 CH03 08/22/2001 2:46 PM Page 67

Internally, the Boolean wrapper will contain a boolean primitive. So in order to pass a
boolean to a vector you would need to first instantiate a Boolean wrapper, wrap the
boolean primitive, and pass that wrapper to the vector.

68 Day 3

Final refers to the concept of preventing descendant classes from changing
this element when inherited. Inheritance is discussed in Day 4, “Inheritance:
Getting Something for Nothing.”

Implements has to do with the special “interface” construct of Java, dis-
cussed in Appendix B, “Java Primer.”

Note

The Boolean interface introduces another feature of object-oriented languages: class
methods and class variables.

Up until now all of the methods and variables that you have seen are instance methods
and instance variables. That is, each variable and each method is tied to some object
instance. In order to call the method or access the variable you must have an instance of
the object.

The fact that you need an instance is often logical. Consider Boolean’s booleanValue()
method. The booleanValue() method is an instance method. The value that the method
returns will depend upon the internal state of the individual Boolean instances. One
instance may wrap true, another may wrap false. The value returned will depend on
which value the instance holds internally.

Now consider Boolean’s getBoolean() method. This is a class method. If you study the
definition of getBoolean() you will notice the keyword static. In Java, the keyword sta-
tic declares that the method or variable is a class method or variable.

Unlike instance variables and methods, class methods and variables are not tied to any
one instance. Instead, you access class methods through the class itself. So to call
getBoolean() you do not need an instance (though you could still call the method as if it
were an instance method). Instead, you can simply call Boolean.getBoolean(). The
response to getBoolean() is not dependent upon the state of any one instance. For that
reason it can get away with being declared as a class method.

Class variables are variables that belong to the class, not a specific instance.
Class variables are shared among all instances of the class.

Class methods are methods that belong to the class, not a specific instance.
The operation performed by the method is not dependent upon the state

of any instance.

Class variables work the same way. You do not need an instance to access them. However,
they have another use as well. Because the variable is kept at the class level, all instances
share the same variable (and if it is public, every object can share it). Class variables cut
down on memory requirements. Consider public static final Boolean FALSE. This is a

NEW TERM

NEW TERM

06 0672321092 CH03 08/22/2001 2:46 PM Page 68

3

Encapsulation: Time to Write Some Code 69

constant that wraps false. Because it is static, all instances share this same constant.
Each instance does not need its own copy.

Consider the following class, CountedObject:

public class CountedObject {

private static int instances;

/** Creates new CountedObject */
public CountedObject() {

instances++;
}

public static int getNumberInstances() {
return instances;

}

public static void main(String [] args) {
CountedObject obj = null;
for(int i = 0; i < 10; i++) {

obj = new CountedObject();
}
System.out.println(“Instances created: “ +

obj.getNumberInstances());
// note that this will work too
System.out.println(“Instances created: “ +

CountedObject.getNumberInstances());
}

}

CountedObject declares a class variable named instances. It also declares a class method
for retrieving the value, getNumberInstances(). Within the constructor, the value is
incremented each time an instance is created. Because all instances share the variable,
the instances variable acts as a counter. As each object is created it increments the
counter.

The main() creates 10 instances. You’ll note that you can either use an instance to make
the call to getNumberInstances() or the class itself.

Whether or not to declare a method or variable static is a design decision. If the method
or variable is independent of the state of any instance, it is probably a good idea to
make it a class method or variable. However, you may not declare variables and methods
that are instance dependent as static, such as Boolean’s booleanValue().

You might have made a few observations regarding Boolean. If you study the interface
you will notice that there is no way to change the wrapped boolean value once you’ve
instantiated the Boolean instance! Because you cannot change its value, instances of
Boolean are said to be immutable.

06 0672321092 CH03 08/22/2001 2:46 PM Page 69

There are times when using an immutable object is valuable. If you are familiar with
threading, an immutable object is inherently thread-safe since its state can never change.

However, there are times when immutable objects cause more harm than good. In the
case of the primitive wrappers, the overhead of instantiating a wrapper for each primitive
can become expensive.

Problem Statement
For Lab 4 you need to create a mutable Boolean primitive wrapper. At a minimum, this
wrapper should allow you to get and set the wrapped value. The wrapper should also
provide two constructors: a noargs constructor and a constructor that takes the wrapper’s
initial value.

Feel free to add any other methods that you would find convenient. However, do not for-
get to follow the rules of effective encapsulation.

You may find it helpful to review Appendix B’s discussion of the keyword static if you
decide to provide all of the methods provided by the Boolean primitive wrapper.

70 Day 3

The next section discusses the solutions to Lab 4. Do not proceed until you
complete Lab 4!

Caution

Solutions and Discussion
Listing 3.7 presents one possible solution for Lab 4.

LISTING 3.7 MyBoolean.java

public class MyBoolean {

// some constants for convenience
public static final Class TYPE = Boolean.TYPE;

private boolean value;

// no arg constructor - default to false
public MyBoolean() {

value = false;
}

// set the initial wrapped value to value
public MyBoolean(boolean value) {

this.value = value;

06 0672321092 CH03 08/22/2001 2:46 PM Page 70

Encapsulation: Time to Write Some Code 71

3

LISTING 3.7 continued

}

public boolean booleanValue() {
return value;

}

public void setBooleanValue(boolean value) {
this.value = value;

}

// for getBoolean and valueOf we can simply delegate to Boolean
// you’ll learn more about delegation in chapter 4
public static boolean getBoolean(String name) {

return Boolean.getBoolean(name);
}

public static MyBoolean valueOf(String s) {
return new MyBoolean(Boolean.getBoolean(s));

}

// definitions of hashCode, equals, and toString omitted for brevity
}

MyBoolean maintains the public interface found in Boolean with three exceptions:

• MyBoolean adds a mutator: public void setBooleanValue(boolean value).
This mutator allows you to change the wrappers value.

• MyBoolean redefines valueOf() so that it returns an instance of MyBoolean instead
of Boolean.

• MyBoolean removes the constants TRUE and FALSE. Now that MyBoolean is mutable,
those values do not make adequate constants since their values may be changed by
anyone at any time.

The solution to Lab 4 also gives you some sneak peaks into Day 4, “Inheritance: Getting
Something for Nothing.” Methods such as valueOf() demonstrate delegation. The full
source solution to Lab 4 also gives you some early exposure to inheritance and overrid-
ing through the toString(), hashCode(), and equals() methods.

Q&A
Q In lab 3 you wrote, “This Dealer implementation is honest. Another Dealer

implementation might deal from the back of the deck!” What do you mean by
another implementation?

06 0672321092 CH03 08/22/2001 2:46 PM Page 71

A You can say that the shuffle() and dealCard() methods make up the Dealer’s
public interface. The Dealer presented is honest. He deals from the front of the
deck. You could write another dealer named DishonestDealer that has the same
public interface. However, this dealer might deal from the bottom of the deck.

You call this dealer another implementation because it reimplements the same
interface as the one found in Dealer. However, this class implements the function-
ality behind the method slightly differently.

Q Can encapsulation be harmful?

A Indeed, encapsulation can be harmful. Imagine that you have a component that per-
forms mathematical calculations. Suppose that you need to keep a certain precision
as you complete your calculation. Unfortunately, the component may completely
encapsulate the amount of precision that it keeps. You might end up with an incor-
rect value if the implementation uses a different precision than the one that you
need. You can end up with strange bugs if someone comes along and alters the
component.

So encapsulation can be harmful if you need precise control over the ways that an
object handles your requests.

The only defense is good documentation. You should document any important
implementation details and assumptions. Once documented, you can not easily
make changes to any documented details or assumptions. Like the mathematical
component, if you make a change, you risk breaking all of the users of that object.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. Look back at the Account class from Lab 2. Which method(s) is a mutator? Which

method(s) is an accessor?

2. What are the two types of constructors? From the lab solutions, find an example of
each type of constructor.

3. (Optional) Boolean as discussed in Lab 4 declares three public variables. In this
case the use of public variables is acceptable. Can you explain why public is okay
in this case?

72 Day 3

06 0672321092 CH03 08/22/2001 2:46 PM Page 72

Encapsulation: Time to Write Some Code 73

3

4. (Optional) How can you make the solution to Lab 3 more efficient?

5. Why do you think that the solution to Lab 3 didn’t create a separate Card class for
each suit?

6. In Lab 3 you explored division of responsibility. What benefits did dividing up
responsibility give to the Card, Deck, and Dealer classes?

Exercises
1. (Optional) Take Lab 2 and abstract DoubleKey further. Redesign DoubleKey so that

it can accept any sort of object as a key—not just a String.

In order for your new DoubleKey to work, you’ll need to alter the definition of the
equals() and hashCode() methods. These methods were left out for brevity in the
printed solutions. However, the methods are available in the full source to the
solutions.

2. (Optional) In Lab 3, Card instances know how to display themselves. However, the
Deck does not know how to display itself. Redesign Deck so that Deck instances
know how to display themselves.

06 0672321092 CH03 08/22/2001 2:46 PM Page 73

06 0672321092 CH03 08/22/2001 2:46 PM Page 74

DAY 4

WEEK 1

Inheritance: Getting
Something for Nothing

For the past three days, you’ve concentrated on learning about the first pillar of
object-oriented programming: encapsulation. Although encapsulation is a fun-
damental concept in OOP, there is more to the story than supporting simple
ADTs and modules. In fact, OOP would offer very little over older-style pro-
gramming if all it did was offer simple encapsulation. Of course, OOP offers
much more.

OOP goes further by adding two other features: inheritance and polymorphism.
You will spend the next two days considering inheritance, the second pillar of
OOP.

Today you will learn

• What inheritance is

• The different types of inheritance

• Some of the pitfalls of inheritance

07 0672321092 CH04 08/22/2001 2:54 PM Page 75

• Tips to effective inheritance

• How inheritance fulfills the goals of OO

What Is Inheritance?
Yesterday, you saw how encapsulation allows you to write well-defined, self-contained
objects. Encapsulation allows one object to use another object through messages. Use is
only one way that objects may relate in OOP. OOP also provides a second way for
objects to interrelate: inheritance.

Inheritance allows you to base a new class’s definition upon a pre-existing class. When
you base a class on another, the new class’s definition automatically inherits all of the
attributes, behavior, and implementations present in the pre-existing class.

Inheritance is a mechanism that allows you to base a new class upon the defini-
tion of a pre-existing class. By using inheritance, your new class inherits all of

the attributes and behaviors present in the pre-existing class. When one class inherits
from another, all the methods and attributes that appear in the pre-existing class’s inter-
face will automatically appear in the new class’s interface.

Consider the following class:

public class Employee {

private String first_name;
private String last_name;
private double wage;

public Employee(String first_name, String last_name, double wage) {
this.first_name = first_name;
this.last_name = last_name;
this.wage = wage;

}

public double getWage() {
return wage;

}

public String getFirstName() {
return first_name;

}

public String getLastName() {
return last_name;

}
}

76 Day 4

NEW TERM

07 0672321092 CH04 08/22/2001 2:54 PM Page 76

Inheritance: Getting Something for Nothing 77

4

Instances of a class such as Employee may appear in a payroll database application. Now
suppose that you needed to model a commissioned employee. A commissioned employee
has a base salary plus a small commission per sale. Other than this simple requirement,
the CommissionedEmployee is exactly the same as Employee. A CommissionedEmployee
is an Employee, after all.

Using straight encapsulation, there are two ways that you can write the new
CommissionedEmployee class. You could simply repeat the code found in Employee and
add the code necessary to track commissions and calculate pay. However, if you do that
you’ll have to maintain two separate but similar code bases. If you need to fix a bug,
you’ll have to do it in each place.

So simply copying and pasting the code is not really an option. You’ll need to try some-
thing else. You could have an employee variable inside the CommissionedEmployee class
and delegate all messages such as getWage() and getFirstName() to the Employee
instance.

Delegation is the process of one object passing a message to another object in
order to fulfill some request.

However, delegation still forces you to redefine all of the methods found in Employee’s
interface in order to pass on all messages. So neither of these two options seems
satisfactory.

Let’s see how inheritance can fix this problem:

public class CommissionedEmployee extends Employee {

private double commission; // the $ per unit
private int units; // keep track of the # of units sold

public CommissionedEmployee(String first_name, String last_name,
double wage, double commission) {

super(first_name, last_name, wage); // call the original
// constructor in order to
// properly initialize

this.commission = commission;
}

public double calculatePay() {
return getWage() + (commission * units);

}

public void addSales(int units) {
this.units = this.units + units;

}

NEW TERM

07 0672321092 CH04 08/22/2001 2:54 PM Page 77

public void resetSales() {
units = 0;

}
}

Here CommissionedEmployee bases its definition on the existing Employee class. Because
CommissionedEmployee inherits from Employee, getFirstName(), getLastName(),
getWage(), first_name, last_name, and wage all become part of its definition.

Because Employee’s public interface becomes part of CommissionedEmployee’s interface,
you can send any message to CommissionedEmployee that you could send to Employee.
Consider the following main(), which does just that:

public static void main(String [] args) {
CommissionedEmployee c =

new CommissionedEmployee(“Mr.”,”Sales”,5.50,1.00);
c.addSales(5);
System.out.println(“First Name: “ + c.getFirstName());
System.out.println(“Last Name: “ + c.getLastName());
System.out.println(“Base Pay: $” + c.getWage());
System.out.println(“Total Pay: $” + c.calculatePay());

}

Figure 4.1 illustrates what you will see upon execution of this code.

78 Day 4

FIGURE 4.1
Output generated
from the
CommissionedEmployee.

Why Inheritance?
As you saw in the last example, sometimes encapsulation’s simple use relationship isn’t
enough. However, there’s more to inheritance than simply inheriting a public interface
and implementation.

As you will see later today, inheritance allows the inheriting class to redefine any behav-
ior that it does not like. Such a useful feature allows you to adapt your software as your
requirements change. If you need to make a change, you simply write a new class that
inherits the old functionality. Then, override the functionality that needs to change or add

07 0672321092 CH04 08/22/2001 2:54 PM Page 78

Inheritance: Getting Something for Nothing 79

4

the functionality that is missing and you’re done. Overriding is valuable because it allows
you to change the way an object works without touching the original class definition!
You can leave your well-tested, validated code base intact. Overriding even works if you
don’t have the original source to a class.

Inheritance has another very important use. On Day 1, “Introduction to Object Oriented
Programming,” you saw how a class groups related objects. Inheritance allows you to
group related classes. OOP always strives to produce natural software. Like the real
world, OOP allows you to group and classify your classes.

”Is-A” Versus “Has-A”: Learning When
to Use Inheritance

In order to introduce you to the mechanisms of inheritance, the first section covered what
is known as implementation inheritance. As you saw, implementation inheritance allows
your classes to inherit the implementation of other classes. However, just because one
class can inherit from another doesn’t mean that it should!

So how do you know when you should use inheritance? Luckily, there is a rule of thumb
to follow in order to avoid incorrect inheritance.

Whenever you are considering inheritance for reuse or any other reason, you have to first
ask yourself if the inheriting class is the same type as the class being inherited. Thinking
in terms of type while inheriting is often referred to as the “Is-a” test.

Is-a describes the relationship in which one class is considered the same type as
another.

To use “Is-a” you say to yourself, “A CommissionedEmployee ‘Is-an’ Employee.” This
statement is true and you would know right away that inheritance is valid in this situa-
tion. Now stop and consider the Java Iterator:

public interface Iterator {
public boolean hasNext();
public Object next();
public void remove();

}

Say that you would like to write a class that implements this interface. If you think back
to Day 2 you might realize that a Queue implementation might be useful in constructing
your Iterator. You could use all of the pre-existing Queue implementation to hold onto
the elements in the Iterator. When you need to check hasNext() or remove(), you can
simply call the proper Queue method and return the result.

NEW TERM

07 0672321092 CH04 08/22/2001 2:54 PM Page 79

Inheritance in this case will provide a quick way to implement an Iterator. However,
before you begin coding, don’t forget the “Is-a” test.

“An Iterator ‘Is-a’ Queue.” Clearly this statement is false. Forget about inheriting from
Queue!

80 Day 4

A Queue may “have an” Iterator that knows how to traverse over the
elements.

Note

There will be many situations where the “Is-a” test fails when you want to reuse some
implementation. Luckily, there are other ways to reuse implementation. You can always
use composition and delegation (see the following sidebar). The “Has-a” test saves the
day.

Has-a describes the relationship in which one class contains an instance of
another class.

Composition means that a class is implemented using internal variables (called
member variables) that hold onto instances of other classes.

NEW TERM

NEW TERM

Composition is a form of reuse that you have seen before. If you can’t inherit, nothing
prevents you from using instances of the other class inside of the new class. Whenever
you want to use the features of another class, you simply use an instance of that class as
one of your constituent pieces. Of course, you do suffer the limitations presented earlier.

Consider the Queue/Iterator example again. Instead of inheriting from Queue, the
Iterator can simply create an instance of Queue and store it in an instance variable.
Whenever the Iterator needs to retrieve an element or check whether it is empty, it can
simply delegate the work to the Queue instance as demonstrated in Figure 4.2.

FIGURE 4.2
An Iterator

delegating method
calls to the Queue.

Iterator Instance

IsEmpty()HasNext() Queue
Instance

07 0672321092 CH04 08/22/2001 2:54 PM Page 80

Inheritance: Getting Something for Nothing 81

4

Learning to Navigate Inheritance’s
Tangled Web

The concepts of “Is-a” and composition change the nature of the discussion of inheri-
tance from one of greedy implementation reuse to one of class inter-relationships. A
class that inherits from another must relate to that class in some way so that the resulting
relationships, or inheritance hierarchies, make sense.

An inheritance hierarchy is a treelike mapping of relationships that form
between classes as a result of inheritance. Figure 4.3 illustrates a real-life

hierarchy taken from Java.

When you use composition, you get to pick and choose what you use. Through delega-
tion, you may expose some or all features of your constituent objects. Figure 4.2 illus-
trates how the Iterator routes the hasNext() method to the Queue’s isEmpty() method.

It is important to point out that delegation differs from inheritance in two important
ways:

1. With inheritance you only have one object instance. There is only one indivisible object
because what is inherited becomes an intrinsic part of the new class.

2. Delegation generally only supplies the user with what is in the public interface. Regular
inheritance gives you more access to the internals of the inherited class. We’ll talk
about such access in detail toward the end of today’s lesson.

NEW TERM

FIGURE 4.3
A sample hierarchy
from java.text.

Format

MessageFormatDateFormat

SimpleDateFormat

NumberFormat

DecimalFormatChoiceFormat

Inheritance defines the new class, the child, in terms of an old class, the parent. This
child parent relationship is the simplest inheritance relationship. In fact, all inheritance
hierarchies begin with a parent and child.

07 0672321092 CH04 08/22/2001 2:54 PM Page 81

The child class is the class doing the inheriting; also known as the subclass.

The parent class is the class that the child directly inherits from; it’s also known
as the superclass.

Figure 4.4 illustrates a parent/child relationship. NumberFormat is the parent of the two
children ChoiceFormat and DecimalFormat.

82 Day 4

NEW TERM

NEW TERM

FIGURE 4.4
A parent with multiple
children.

NumberFormat

DecimalFormatChoiceFormat

Now that you’ve seen a few more definitions, you can refine the definition of inheritance.

Inheritance is a mechanism that allows you to establish “Is-a” relationships
between classes. This relationship also allows a subclass to inherit its super-

class’s attributes and behaviors.

NEW TERM

When a child inherits from a parent, the child will get any attributes and
behaviors that the parent might have inherited from another class.

Note

As you have seen, in order for the inheritance hierarchy to make sense, you must be able
to do everything to the child that you can do to its parent. That is what the “Is-a” test
really tests. A child is only allowed to augment functionality and add functionality. A
child is never allowed to remove functionality.

If you do find that a child needs to remove functionality, this is an indication
that the child should appear before the parent in the inheritance hierarchy!

Caution

Like real-life parents and children, class children and class parents will resemble one
another. Instead of sharing genes, classes share type information.

07 0672321092 CH04 08/22/2001 2:54 PM Page 82

Inheritance: Getting Something for Nothing 83

4

Like flesh-and-blood children, child classes may add new behaviors and attributes to
themselves. For example, a flesh-and-blood child may learn to play the piano even
though the parent never did. Likewise, a child may redefine an inherited behavior. For
example, the parent may have been a poor math student. A child can study extra hard and
become a good math student. When you want to add new behavior to a class, you can do
so by adding a new method to the class or by redefining an old one.

Inheritance Mechanics
When one class inherits from another, it inherits implementation, behaviors, and attribut-
es. This means that all the methods and attributes available in the parent’s interface will
appear in the child’s interface. A class constructed through inheritance can have three
important kinds of methods and attributes:

• Overridden: the new class inherits the method or attribute from the parent but pro-
vides a new definition

• New: the new class adds a completely new method or attribute

• Recursive: the new class simply inherits a method or attribute from the parent

Most OO languages do not allow you to override an attribute. However, the
overridden attribute is included here in order to be thorough.

Caution

First, let’s consider an example. Then we’ll explore each type of method and attribute.

public class TwoDimensionalPoint {

private double x_coord;
private double y_coord;

public TwoDimensionalPoint(double x, double y) {
setXCoordinate(x);

Unlike real life children, a class may have only one physical parent. It all
depends on how the language implements inheritance.

Some languages allow a class to have more than one parent. That is known
as multiple inheritance.

Some languages constrain the child to one parent.

Other languages, such as Java, allow only one parent for implementation,
but provide a mechanism to inherit multiple interfaces (but no implementa-
tion, just the method signatures).

Note

07 0672321092 CH04 08/22/2001 2:55 PM Page 83

setYCoordinate(y);
}

public double getXCoordinate() {
return x_coord;

}

public void setXCoordinate(double x) {
x_coord = x;

}

public double getYCoordinate() {
return y_coord;

}

public void setYCoordinate(double y) {
y_coord = y;

}

public String toString() {
return “I am a 2 dimensional point.\n” +

“My x coordinate is: “ + getXCoordinate() + “\n” +
“My y coordinate is: “ + getYCoordinate();

}
}

public class ThreeDimensionalPoint extends TwoDimensionalPoint {

private double z_coord;

public ThreeDimensionalPoint(double x, double y, double z) {
super(x, y); // initialize the inherited attributes

// by calling the parent constructor
setZCoordinate(z);

}

public double getZCoordinate() {
return z_coord;

}

public void setZCoordinate(double z) {
z_coord = z;

}

public String toString() {
return “I am a 3 dimensional point.\n” +

“My x coordinate is: “ + getXCoordinate() + “\n” +
“My y coordinate is: “ + getYCoordinate() + “\n” +
“My z coordinate is: “ + getZCoordinate();

}

}

84 Day 4

07 0672321092 CH04 08/22/2001 2:55 PM Page 84

Inheritance: Getting Something for Nothing 85

4

Here you have two point classes that represent geometric points. You might use points in
a graphing tool, a visual modeler, or a flight planner. Points have many practical uses.

Here, TwoDimensionalPoint holds onto an x and y coordinate. The class defines meth-
ods for getting and setting the points as well as creating a String representation of the
point instance.

ThreeDimensionalPoint inherits from TwoDimensionalPoint. ThreeDimensionalPoint
adds a z coordinate as well as a method for retrieving the value and setting the value. The
class also provides a method to obtain a String representation of the instance. Because
ThreeDimensionalPoint inherits from TwoDimensionalPoint, it also has the methods
contained within TwoDimensionalPoint.

This example demonstrates each type of method.

Overridden Methods and Attributes
Inheritance allows you to take a pre-existing method or attribute and redefine it.
Redefining a method allows you to change the object’s behavior for that method.

An overridden method or attribute will appear in both the parent and the child. For exam-
ple, ThreeDimensionalPoint redefines the toString() method that appears in
TwoDimensionalPoint:

// from TwoDimensionalPoint
public String toString() {

return “I am a 2 dimensional point.\n” +
“My x coordinate is: “ + getXCoordinate() + “\n” +
“My y coordinate is: “ + getYCoordinate();

}

TwoDimensionalPoint defines a toString() method that identifies the instance as a 2-
dimensional point and prints out its 2-piece coordinate.

ThreeDimensionalPoint redefines the toString() method to identify the instance as a
3-dimensional point and print out its 3-piece coordinate:

// from ThreeDimensionalPoint
public String toString() {

return “I am a 3 dimensional point.\n” +
“My x coordinate is: “ + getXCoordinate() + “\n” +
“My y coordinate is: “ + getYCoordinate() + “\n” +
“My z coordinate is: “ + getZCoordinate();

}

Consider the following main():

public static void main(String [] args) {
TwoDimensionalPoint two = new TwoDimensionalPoint(1,2);

07 0672321092 CH04 08/22/2001 2:55 PM Page 85

ThreeDimensionalPoint three = new ThreeDimensionalPoint(1,2,3);

System.out.println(two.toString());
System.out.println(three.toString());

}

Figure 4.5 illustrates what you will see after executing the main().

86 Day 4

FIGURE 4.5
Testing the overridden
toString() method.

As you can see in Figure 4.5, ThreeDimensionalPoint returns its overridden String
representation.

Overriding a method is also known as redefining a method. By redefining a method, the
child provides its own tailored implementation of the method. This new implementation
will provide new behavior for the method. Here the ThreeDimensionalPoint redefines
the behavior of the toString() method so that it is properly translated into a String.

Overriding is the process of a child taking a method that appears in the parent
and rewriting it in order to change the method’s behavior. Overriding a method is

also known as redefining a method.

So how does the object know which definition to use?

The answer depends on the underlying OO plumbing. Most OO systems will first look
for the definition in the object that is passed the message. If a definition is not found
there, the runtime will travel up the hierarchy until a definition is found. It is important
to realize that this is how a message is handled and that’s why overriding works. The
child’s definition will be the one called because that is the first one found. The mecha-
nism is the same for recursive methods and attributes, which you will cover later.

Figure 4.6 illustrates the method propagation among the point objects for a call to
getXCoordinate(). A method call to getXCoordinate() will go up the hierarchy until it
finds a definition for the method.

NEW TERM

07 0672321092 CH04 08/22/2001 2:55 PM Page 86

Inheritance: Getting Something for Nothing 87

4

When considering overriding a method or attribute, it is important to realize that not all
methods and attributes are available for your child to override, let alone use. Most object-
oriented languages have some idea of access control. Access control keywords define just
who is allowed to see and access methods and attributes. Generically, these access levels
fall into three categories, as discussed briefly on Day 2:

• Private: An access level that restricts access only to the class.

• Protected: An access level that restricts access to the class and to children.

• Public: An access level that allows access to everyone and anyone.

Protected methods and attributes are those methods or attributes to which you only want
subclasses to have access. Do not leave such methods public. Only those with extensive
knowledge of the class should use protected methods and attributes.

You should make all non-constant attributes and any method meant solely for the class
itself private. Private prevents any other object from calling the method except for the
object itself. Don’t make private methods protected just in case some subclass might
want access to them someday. Only use protected for those methods that you know a
subclass wants to use. Otherwise, use private or public. Such a rigid practice will mean
that you might have to go back into your code at a later time and change a method’s
access level. However, this leads to a tighter design than one that opens everything up to
a subclass.

FIGURE 4.6
Message propagation
among the point
objects.

OneDimensionalPoint
getXCoordinate()

TwoDimensionalPoint

ThreeDimensionalPoint

getXCoordinate()

getXCoordinate()

getXCoordinate()

OneDimensionalPoint

TwoDimensionalPoint
getYCoordinate()

ThreeDimensionalPoint

getYCoordinate()

getYCoordinate() getZCoordinate()

OneDimensionalPoint

TwoDimensionalPoint

ThreeDimensionalPoint
getZCoordinate()

Going back and changing access levels may seem like a bad practice.
However, inheritance hierarchies should never happen by accident. Instead,
hierarchies should develop naturally as you program. There is no shame in
refactoring your hierarchies over time. Real-life OOP is an iterative process.

Remember though, making everything private is a rule of thumb. There are
cases in which this advice will not work to your advantage. It really all
depends on what you are programming. For example, if you sell generic

Note

07 0672321092 CH04 08/22/2001 2:55 PM Page 87

Using these definitions and rules, it is easy to see that protected and public
methods/attributes are the most important to inheritance.

New Methods and Attributes
A new method or attribute is a method or attribute that appears in the child but does not
appear in the parent. The child adds the new method or attribute to its interface. You saw
new methods in the ThreeDimensionalPoint example. ThreeDimensionalPoint adds
new getZCoordinate() and setZCoordinate() methods. You can add new functionality
to your child’s interface by adding new methods and attributes.

Recursive Methods and Attributes
A recursive method or attribute is defined in the parent or some other ancestor but not in
the child. When you access the method or attribute, the message is sent up the hierarchy
until a definition of the method is found. The mechanism is the same as the mechanism
introduced in the section about overridden methods and attributes.

You saw recursive methods in the source for TwoDimensionalPoint and
ThreeDimensionalPoint. getXCoordinate() is an example of a recursive method
because it is defined by TwoDimensionalPoint, not by ThreeDimensionalPoint.

Overridden methods may also behave recursively. While an overridden method will
appear in the child, most object-oriented languages provide a mechanism that allows an
overridden method to call the parent’s (or some ancestor’s) version of the method. This
ability allows you to leverage the superclass’s version while defining new behavior in the
subclass. In Java, the keyword super gives you access to a parent’s implementation. You’ll
get a chance to use super in the labs on Day 5, “Inheritance: Time to Write Some Code.”

88 Day 4

class libraries without supplying source code you should probably default to
protected so that your customers can use inheritance to extend your classes.

In fact, there are times when you will want to design a subclass with inheri-
tance in mind. In such a case it makes sense to establish an inheritance pro-
tocol. An inheritance protocol is an abstract structure only visible through
the protected elements of the class. The parent class will call these methods,
and the child class can override these methods to augment behavior. You’ll
see such an example tomorrow.

Not all languages provide a super keyword. For those languages you will
need to be careful to properly initialize any inherited code.

Not properly referencing the inherited classes can be a subtle source of bugs.

Note

07 0672321092 CH04 08/22/2001 2:55 PM Page 88

Inheritance: Getting Something for Nothing 89

4

Types of Inheritance
In all, there are three main ways to use inheritance:

1. For implementation reuse

2. For difference

3. For type substitution

Be forewarned, some types of reuse are more desirable than others! Let’s explore each
use in detail.

Inheritance for Implementation
You’ve already seen that inheritance allows a new class to reuse implementation from
another class. Instead of cutting and pasting code or instantiating and using a component
through composition, inheritance makes the code automatically available as part of the
new class. Like magic, your new class is born with functionality.

Both the Employee hierarchy and the misguided Queue/Iterator demonstrate implemen-
tation reuse. In both cases, the child reused a number of behaviors found in the parent.

Remember that when you program with implementation inheritance, you
are stuck with whatever implementation you inherit. Choose the classes that
you inherit from carefully. You’ll need to weigh the benefits of the reuse
against any negatives in actually reusing some implementations.

However, a class that is properly defined for inheritance will make heavy use
of fine-grained protected methods. An inheriting class can override these
protected methods in order to alter the implementation. Overriding can
lessen the impact of inheriting a poor or inappropriate implementation.

Tip

Implementation Inheritance Problems
So far, implementation inheritance seems great. Beware, though—what seems like a use-
ful technique on the surface proves to be a dangerous practice in use. In fact, implemen-
tation inheritance is the weakest form of inheritance and you should normally avoid it.
The reuse may be easy, but as you will see, it comes at a high price.

To understand the shortcomings, you have to consider types. When one class inherits
another, it automatically takes on the type of the inherited class. Proper type inheritance
should always take precedence when designing class hierarchies. You’ll see why later,
but for now take it as truth.

07 0672321092 CH04 08/22/2001 2:55 PM Page 89

Take a look at the Queue/Iterator example again. When Iterator inherits from Queue it
becomes a Queue. This means that you can treat the Iterator as if it were of type Queue.
Since the Iterator is also a Queue, the Iterator has all of the functionality that was
present in the Queue. That means that methods such as enqueue() and dequeue() are
also part of the Iterator’s public interface.

On the surface this does not seem like a problem, but take a closer look at the definition
of Iterator. An Iterator simply defines two methods, one for retrieving an element
and another to test whether the iterator has any elements left. By definition, you cannot
add items to an iterator; however, Queue defines the enqueue() method for just such a
case. Instead, you may only remove elements. You cannot take an element and at the
same time leave it inside the Iterator. Again, the Queue defines the peek() method for
just such a case. It is simple to see that using Queue as an inherited base for Iterator
isn’t a good choice; it gives you behaviors that just do not belong in an Iterator.

90 Day 4

Some languages allow a class to simply inherit implementation without
inheriting the typing information. If your language allows such inheritance
then the Queue/Iterator example isn’t that much of a problem. However,
most languages do not allow the separation of interface and implementa-
tion while inheriting. Of the languages that do make the separation some
do it automatically. Yet others, such as C++, will allow the separation, but
require the programmer to explicitly request it. Such a language requires
the programmer to design and request the separation explicitly while cod-
ing the class. Obviously, it can be fairly easy to overlook the fact that you’ll
need to separate the implementation and type if you are not careful.

Note

This book uses a simple definition of inheritance. The discussion of inheri-
tance assumes that inheritance includes both implementation and interface
when one class inherits from another.

Note

Poor inheritance is the Frankenstein’s monster of programming. When you use inheri-
tance solely for implementation reuse without any other considerations, you may often
end up with a monster constructed from parts that do not belong together.

Inheritance for Difference
You saw inheritance for difference in the TwoDimensionalPoint and
ThreeDimensionalPoint example. You also saw it in the Employee example.

07 0672321092 CH04 08/22/2001 2:55 PM Page 90

Inheritance: Getting Something for Nothing 91

4

Programming by difference allows you to program by only specifying how a child class
differs from its parent class.

Programming by difference means inheriting a class and only adding code that
makes the new class different from the inherited class.

In the case of the ThreeDimensionalPoint, you see that it differs from its parent class by
adding a Z coordinate. In order to support the Z coordinate, ThreeDimensionalPoint
adds two new methods for setting and retrieving the attribute. You also see that
ThreeDimensionalPoint redefines the toString() method.

Programming by difference is a powerful concept. It allows you to only add enough code
necessary to describe the difference between the parent and the child class. This allows
you to program incrementally.

Smaller, more manageable code causes your designs to be simpler. And since you pro-
gram fewer lines of code you should, theoretically, introduce fewer bugs. So when you
program by difference, you write more correct code in a shorter amount of time. Like
implementation inheritance, you can make these incremental changes without altering
existing code.

Through inheritance, there are two ways to program by difference: adding new behaviors
and attributes and redefining old behaviors and attributes. Either case is known as spe-
cialization. Let’s take a closer look at specialization.

Specialization
Specialization is the process of a child class defining itself in terms of how it is
different from its parent. When all is said and done, the child’s class definition

includes only those elements that make it different from its parent.

A child class specializes upon its parent by adding new attributes and methods to its
interface as well as redefining pre-existing attributes and methods. Adding new methods
or redefining existing ones allow the child to express behaviors that are different from its
parent.

Don’t become confused over the term specialization. Specialization only allows you to
add to or redefine the behaviors and attributes that the child inherits from its parent.
Specialization, contrary to what the name might suggest, does not allow you to remove
inherited behaviors and attributes from the child. A class does not get selective
inheritance.

What specialization does is restrict what can and cannot be a three-dimensional point. A
ThreeDimensionalPoint can always be a TwoDimensionalPoint. However, it is incor-
rect to say that a TwoDimensionalPoint can always be a ThreeDimensionalPoint.

NEW TERM

NEW TERM

07 0672321092 CH04 08/22/2001 2:55 PM Page 91

Instead, a ThreeDimensionalPoint is a specialization of a TwoDimensionalPoint and a
TwoDimensionalPoint is a generalization of a ThreeDimensionalPoint.

Figure 4.7 illustrates the difference between generalization and specialization. As you
travel down a hierarchy, you specialize. As you travel up the hierarchy, you generalize.
As you generalize, more classes can fall under that grouping. As you specialize, fewer
classes can meet all criteria to be categorized at that level.

92 Day 4

FIGURE 4.7
As you travel up a
hierarchy, you general-
ize. As you travel down
a hierarchy, you
specialize. S

pe
ci

al
iz

at
io

n

G
en

er
al

iz
at

io
n

So you see, specialization does not mean restricting functionality, it means restricting
type categorization.

The specialization does not have to end with ThreeDimensionalPoint. In fact, it does
not necessarily even need to begin with TwoDimensionalPoint. Inheritance can go as
deeply as you want it to. You can use inheritance to form complex class hierarchy struc-
tures. The idea of hierarchy that was introduced earlier leads to two more new terms:
ancestor and descendant.

Just because you can have complicated hierarchies does not mean that you
should. You should strive to have shallow hierarchies as opposed to overly
deep hierarchies. As a hierarchy deepens, it becomes more difficult to
maintain.

Caution

Given some child, an ancestor is a class that appears in the class hierarchy before
the parent. As Figure 4.8 illustrates, Format is an ancestor of DecimalFormat.

Given a class, any class appearing after it in the class hierarchy is a descendant
of the given class. As Figure 4.8 illustrates, DecimalFormat is a descendant of

Format.

NEW TERM

NEW TERM

07 0672321092 CH04 08/22/2001 2:55 PM Page 92

Inheritance: Getting Something for Nothing 93

4

Say we have the class inheritance hierarchy shown in Figure 4.9. We say that
OneDimensionalPoint is the parent of TwoDimensionalPoint and an ancestor of
ThreeDimensionalPoint and FourDimensionalPoint. We can also say that
TwoDimensionalPoint, ThreeDimensionalPoint, and FourDimensionalPoint are all
descendants of OneDimensionalPoint. All descendants share their ancestors’ methods
and attributes.

FIGURE 4.8
DecimalFormat is a
descendant of Format.

Format

NumberFormat

DecimalFormatChoiceFormat

FIGURE 4.9
The point hierarchy.

OneDimensionalPoint
TwoDimensionalPoint

ThreeDimensionalPoint

FourDimensionalPoint

We can make a few more interesting statements about the class hierarchy.
OneDimensionalPoint is the root and FourDimensionalPoint is a leaf.

The root class (also commonly referred to as a base class) is the topmost class in
the inheritance hierarchy. Figure 4.9 shows that OneDimensionalPoint is a root

class.

A leaf class is a class with no children. In Figure 4.8, DecimalFormat is a leaf
class.

It is important to note that descendants will reflect changes made to the ancestors. Say
that you find a bug in TwoDimensionalPoint. If you fix TwoDimensionalPoint, all of the
classes from ThreeDimensionalPoint down to FourDimensionalPoint will benefit from
the change. So whether you fix a bug or make an implementation more efficient, all
descendant classes in the hierarchy will benefit.

NEW TERM

NEW TERM

07 0672321092 CH04 08/22/2001 2:55 PM Page 93

Inheritance for Type Substitution
The final type of inheritance is inheritance for type substitution. Type substitution allows
you to describe substitutability relationships. What is a substitutability relationship?

Consider the Line class:

public class Line {

private TwoDimensionalPoint p1;
private TwoDimensionalPoint p2;

public Line(TwoDimensionalPoint p1, TwoDimensionalPoint p2) {
this.p1 = p1;
this.p2 = p2;

}

public TwoDimensionalPoint getEndpoint1() {
return p1;

}

public TwoDimensionalPoint getEndpoint2() {
return p2;

}

public double getDistance() {
double x =

Math.pow((p2.getXCoordinate() - p1.getXCoordinate()), 2);
double y =

Math.pow((p2.getYCoordinate() - p1.getYCoordinate()), 2);
double distance = Math.sqrt(x + y);

return distance;
}

public TwoDimensionalPoint getMidpoint() {
double new_x = (p1.getXCoordinate() + p2.getXCoordinate()) / 2;

94 Day 4

Multiple Inheritance

Throughout the examples you’ve seen single inheritance. Some implementations of
inheritance allow a single object to directly inherit from more than one other class. Such
an implementation of inheritance is known as multiple inheritance. Multiple inheritance
is a controversial aspect of OOP. Some claim it only makes software harder to understand,
design, and maintain. Others swear by it and claim that a language is not complete with-
out it.

Either way, multiple inheritance can be valuable if used carefully and correctly. There are
a number of problems introduced by multiple inheritance. However, a full discussion of
the dos and don’ts of multiple inheritance is beyond the scope of this day.

07 0672321092 CH04 08/22/2001 2:55 PM Page 94

Inheritance: Getting Something for Nothing 95

4

double new_y = (p1.getYCoordinate() + p2.getYCoordinate()) / 2;
return new TwoDimensionalPoint(new_x, new_y);

}
}

Line takes two TwoDimensionalPoints as arguments and provides some methods for
retrieving the values, a method for calculating the distance between the points, and a
method for calculating the midpoint.

A substitutability relationship means that you can pass any object to Line’s constructor
that inherits from a TwoDimensionalPoint.

Remember that when a child inherits from its parent you say that the child “Is-a” parent.
So because a ThreeDimensionalPoint “is-a” TwoDimensionalPoint you can pass a
ThreeDimensionalPoint to the constructor.

Consider the following main():

public static void main(String [] args) {
ThreeDimensionalPoint p1 = new ThreeDimensionalPoint(12, 12, 2);
TwoDimensionalPoint p2 = new TwoDimensionalPoint(16, 16);

Line l = new Line(p1, p2);

TwoDimensionalPoint mid = l.getMidpoint();

System.out.println(“Midpoint: (“ +
mid.getXCoordinate() +
“,” +
mid.getYCoordinate() +
“)”);

System.out.println(“Distance: “ + l.getDistance());
}

You’ll notice that the main passes both a TwoDimensionalPoint and a
ThreeDimensionalPoint to the line’s constructor. Figure 4.10 illustrates what you will
see if you execute the main().

FIGURE 4.10
Testing substitutability
relationships.

07 0672321092 CH04 08/22/2001 2:55 PM Page 95

Pluggability is a powerful concept. Since you can send a child any message that you
could send its parent, you can treat it as if it were substitutable for the parent. This is the
reason that you should not remove behaviors when creating a child. If you do pluggabili-
ty will break.

Using pluggability, you can add new subtypes to your program at any time. If your pro-
gram is programmed to use an ancestor it will know how to use the new objects. The
program will not need to worry about the exact type of the object. So long as it has a
substitutability relationship with the type that it expects it can use it.

96 Day 4

Try to imagine the possibilities that substitutability relationships give you. In
the example of the line it might allow for a quick way to switch from a 3D
view to a 2D view in a GUI.

Note

Be warned that substitutability relationships can only go so far up the inher-
itance hierarchy. If you program your object to accept a certain type of
object, you cannot pass it the parent of the expected object. However, you
can pass it any descendant.

Take the Line constructor as an example:

public Line(TwoDimensionalPoint p1, TwoDimensionalPoint p2)

You can pass the constructor a TwoDemensionalPoint or any decendant of
the TwoDimensionalPoint. However, you can’t pass the constructor a
OneDimensionalPoint, because that class appears in the hierarchy before
TwoDimensionalPoint.

Caution

A subtype is a type that extends another type through inheritance.

Pluggability increases your opportunity for reuse. Say that you’ve written a container for
holding TwoDimensionalPoints. Because of pluggability, you can use the container for
any descendant of TwoDimensionalPoint as well.

Pluggability is important because it allows you to write generic code. Instead of having a
number of case statements or if/else tests to see what kind of point the program was cur-
rently using, you simply program your objects to deal with objects of type
TwoDimensionalPoint.

NEW TERM

07 0672321092 CH04 08/22/2001 2:55 PM Page 96

Inheritance: Getting Something for Nothing 97

4

Tips to Effective Inheritance
Inheritance comes with its own set of design issues. While powerful, inheritance truly
gives you a rope to hang yourself when used improperly. The following tips will help
you use inheritance effectively:

• In general, use inheritance for interface reuse and for defining substitution relation-
ships. You can also use inheritance to extend an implementation, but only if the
resulting class passes the “Is-A” test.

• In general, prefer composition over inheritance for simple implementation reuse.
Only use inheritance if you can apply the “Is-A” test to the resulting hierarchy.
Don’t use inheritance for greedy implementation reuse.

• Always use the “Is-A” rule.

Proper inheritance hierarchies don’t happen by themselves. Often you will discover hier-
archies as you go along. When that happens, rework your code. Other times, you will
need to deliberately design your hierarchies. In either case, there are some design princi-
ples to follow:

• As a rule of thumb, keep your class hierarchies relatively shallow.

• Carefully design inheritance hierarchies and move commonalities out to abstract
base classes. Abstract base classes allow you to define a method without providing
an implementation. Because the base class does not specify an implementation you
cannot instantiate it. However, the abstract mechanism forces an inheriting class to
provide an implementation. Abstract classes are valuable for planned inheritance. It
helps the developer to see what they need to implement.

If your language does not provide an abstract mechanism, create empty
methods and document the fact that subclasses should fully implement
those methods.

Note

• Classes often share common code. There’s no sense in having multiple copies of
code. You should remove common code and isolate it into a single parent class.
However, don’t move it too far up. Only move it up to the first level before it is
needed.

• You simply cannot always plan your hierarchies completely. Commonality won’t
jump out at you until you write the same code a few times. When you see com-
monality, don’t be afraid to rework your classes. Such rework is often referred to as
refactoring.

07 0672321092 CH04 08/22/2001 2:55 PM Page 97

Encapsulation is just as important between parent and child as it is between unrelated
classes. Don’t get lax with encapsulation when you are inheriting. The practice of using a
well-defined interface is just as valid between parent and child as it is between complete-
ly unrelated classes. Here are some tips that will help you guard against breaking encap-
sulation when you inherit:

• Use well-defined interfaces between the parent and child just as you would use
them between classes.

• If you add methods specifically for use by subclasses, be sure to make them pro-
tected so that only the subclass can see them. Protected methods allow you to offer
your subclasses a little more control without opening that control to every class.

• In general, avoid opening your object’s internal implementation to subclasses. A
subclass can become dependent upon the implementation if you do. Such coupling
has all of the problems outlined on Day 2.

Here are some final keys to effective inheritance:

• Never lose sight that substitution is the number one goal. Even if an object should
“intuitively” appear in a hierarchy that does not mean that it should. Just because
you can or your intuition screams to do so doesn’t mean that you should.

• Program by difference in order to keep code manageable.

• Always prefer composition to inheritance for implementation reuse. It is generally
easier to change the classes involved in composition.

Summary
There are two types of relationships provided by OOP: a use relationship between
objects and an inheritance relationship between classes. Each relationship provides a
form of reuse. However, each comes with its own benefits and problems.

Simple instantiation and use often limits the flexibility of a class. Through simple reuse,
there is no way to reuse or extend a class. Instead, you are left with simple instantiation
or cut and paste. Inheritance overcomes these shortcomings by proving a built-in mecha-
nism for the safe and efficient reuse of code.

Implementation reuse gives you a quick and dirty way of using pre-existing code in your
new classes. Unlike simple cut and paste, there is only one copy of the code to maintain.
However, simply inheriting for reuse is shortsighted and limits your designs.

Implementation for difference allows you to program your new classes in terms of how
they are different from the original class. You only program those attributes that differen-
tiate the child from the parent.

98 Day 4

07 0672321092 CH04 08/22/2001 2:55 PM Page 98

Inheritance: Getting Something for Nothing 99

4

Finally, inheritance for substitution allows you to program generically. With substitution
you can swap in subclasses for the parent at any time without breaking your code. This
allows your program to be flexible to future requirements.

How Inheritance Fulfills the Goals of OO
Inheritance fulfills each of the goals of OOP. Inheritance helps produce software that is

1. Natural

2. Reliable

3. Reusable

4. Maintainable

5. Extendable

6. Timely

It accomplishes these goals as follows:

• Natural: Inheritance allows you to more naturally model the world. Through inheri-
tance you can form complex relationship hierarchies between your classes. As
humans, it is our natural tendency to want to categorize and group the objects
around us. Inheritance allows you to bring those tendencies to programming.

Inheritance also embraces the programmer’s wish to avoid repetitive work. There’s
no sense in doing redundant work.

• Reliable: Inheritance results in reliable code.

Inheritance simplifies your code. When you program by difference, you only add
the code that describes the difference between the parent and child. As a result,
each class can have a smaller footprint. Each class can be highly specialized to
what it does. Less code means fewer bugs.

Inheritance allows you to reuse well-tested, time-proven code as the basis for your
new classes. Reuse of proven code is always more desirable than writing new code.

Finally, the inheritance mechanism itself is reliable. The mechanism is built in to
the language so you don’t need to construct your own inheritance mechanism and
make sure that everyone follows your rules.

However, inheritance isn’t perfect. When subclassing, you must be vigilant against
introducing subtle bugs by inadvertently destroying unexposed dependencies.
Tread carefully while inheriting.

• Reusable: Inheritance aids reuse. The very nature of inheritance allows you to use
old classes in the construction of new classes.

07 0672321092 CH04 08/22/2001 2:55 PM Page 99

Inheritance also allows you to reuse classes in ways never imagined by the person
who wrote the class. By overriding and programming by difference you can change
the behavior of existing classes and use them in new ways.

• Maintainable: Inheritance aids maintainability. Reuse of tested code means that
you will have fewer bugs in your new code. And when you do find a bug in a class,
all subclasses will benefit from the fix.

Instead of diving into the code and adding features directly, inheritance allows you
to take pre-existing code and treat it as the basis for the construction of a new
class. All methods, attributes, and type information become a part of your new
class. Unlike cutting and pasting, there is only one copy of the original code to
maintain. This aids maintenance by decreasing the amount of code that you have to
maintain.

If you were to make changes directly to the existing code you could damage the
base class and affect portions of the system that use that class.

• Extendable: Inheritance makes class extension, or specialization, possible. You can
take an old class and add new functionality at any time. Both programming by dif-
ference and inheritance for pluggability encourage the extension of classes.

• Timely: Inheritance helps you write timely code. You’ve already seen how simple
reuse can cut down development time. Programming by difference means that there
is less code to write, thus you should finish faster. Pluggability means that you can
add new features without having to change much of the pre-existing code.

Inheritance can also make testing easier since you will only need to test new func-
tionality and any interaction with the old functionality.

Q&A
Q Today, you list three separate reasons for using inheritance. Do these reasons

need to be mutually exclusive or can I combine them? For example, when I
inherit for difference it seems that I could also be inheriting for
implementation.

A No, the reasons behind inheritance do not need to be mutually exclusive. You could
use inheritance and end up satisfying each of the reasons.

Q Inheriting for implementation reuse seems to have a negative connotation.
Isn’t reuse one of the main reason for using object oriented programming.

A Reuse is just one of the goals of OOP. OOP is an approach to programming that
allows you to model the solutions to your problems in a more natural way: through

100 Day 4

07 0672321092 CH04 08/22/2001 2:55 PM Page 100

Inheritance: Getting Something for Nothing 101

4

objects. While reuse is important, you should not simply pursue reuse while ignor-
ing the other goals of OO. Think back to the Iterator/Queue example. Is that a
natural model of an Iterator? Of course not!

Besides, inheritance for implementation reuse is only one way to achieve reuse.
Delegation is often the best way to achieve simple implementation reuse.
Inheritance is just not the right tool if your goal is to just reuse an implementation.
Inheritance is the right tool when you want to program by difference or establish
type substitutability.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. What are some of the limitations of simple reuse?

2. What is inheritance?

3. What are the three forms of inheritance?

4. Why is implementation inheritance dangerous?

5. What is programming by difference?

6. When inheriting a class can have three types of methods and attributes. What are
those three types of attributes and methods?

7. What benefits does programming by difference offer?

8. Consider the hierarchy in Figure 4.11, taken from Java security.

Permission

BasicPermission

SecurityPermission

AllPermission UnresolvedPermission

FIGURE 4.11
The Permission

hierarchy.

07 0672321092 CH04 08/22/2001 2:55 PM Page 101

If you focus your attention on the Permission class, which classes are its children?
Which are descendants?

Considering the entire hierarchy which class is the root class? Which classes are
leaf classes?

Finally, is Permission an ancestor of SecurityPermission?

9. What is inheritance for type substitution?

10. How can inheritance destroy encapsulation? How can you enforce encapsulation
when using inheritance?

Exercises
1. Given the following class definition, what problems might occur if it is inherited?

public class Point {
public Point(int x, int y) {

this.x = x;
this.y = y;

}
public Point getLocation() {

return new Point(x, y);
}
public void move(int x, int y) {

this.x = x;
this.y = y;

}
public void setLocation(int x, int y) {

this.x = x;
this.y = y;

}
public void setLocation(Point p) {

this.x = p.x;
this.y = p.y;

}
public int x;
public int y;

}

2. How would you prevent these problems?

102 Day 4

07 0672321092 CH04 08/22/2001 2:55 PM Page 102

DAY 5

WEEK 1

Inheritance: Time to Write
Some Code

Inheritance is a powerful tool. Today you will explore the use of this new tool
through a number of hands-on lab exercises. By the end of today’s lesson, you
should feel a bit more comfortable with the theory presented on Day 4.

Today you will learn

• How to use inheritance while programming

• How abstract classes help you plan inheritance

• About the importance of the “Is-A” and “Has-A”

• How Java may have violated the “Is-A” and “Has-A” relationship

Lab 1: Simple Inheritance
Listing 5.1 presents the personified MoodyObject baseclass.

08 0672321092 CH05 08/22/2001 2:49 PM Page 103

LISTING 5.1 MoodyObject.java

public class MoodyObject {

// return the mood
protected String getMood() {

return “moody”;
}

// ask the object how it feels
public void queryMood() {

System.out.println(“I feel “ + getMood() + “ today!”);
}

}

MoodyObject defines one public method: queryMood(). queryMood() prints the object’s
mood to the command line. MoodyObject also declares one protected method,
getMood(). queryMood() uses getMood() internally to get the mood that it places in its
response. Subclasses can simply override getMood() in order to specialize their mood.

If a subclass would like to change the message written to the command line it will need
to override queryMood().

Problem Statement
In this lab you will create two subclasses: SadObject and HappyObject. Both subclasses
should override getMood() in order to supply their own specially tailored mood.

SadObject and HappyObject should also add some methods of their own. SadObject
should add a method: public void cry(). Likewise, HappyObject should add a
method: public void laugh(). laugh() should write “hahaha” to the command line.
Likewise, cry() should write “boo hoo” to the command line.

Listing 5.2 sets up a test driver that you should compile and run once you have com-
pleted writing HappyObject and SadObject.

LISTING 5.2 MoodyDriver.java

public class MoodyDriver {
public final static void main(String [] args) {

MoodyObject moodyObject = new MoodyObject();
SadObject sadObject = new SadObject();
HappyObject happyObject = new HappyObject();

System.out.println(“How does the moody object feel today?”);

104 Day 5

08 0672321092 CH05 08/22/2001 2:49 PM Page 104

Inheritance: Time to Write Some Code 105

5

LISTING 5.2 continued

moodyObject.queryMood();
System.out.println(“”);
System.out.println(“How does the sad object feel today?”);
sadObject.queryMood(); // notice that overriding changes the mood
sadObject.cry();
System.out.println(“”);
System.out.println(“How does the happy object feel today?”);
happyObject.queryMood(); // notice that overriding changes the mood
happyObject.laugh();
System.out.println(“”);

}
}

The next section discusses the solutions to Lab 1. Do not proceed until you
complete Lab 1.

Caution

Solutions and Discussion
Listings 5.3 and 5.4 present one solution to the lab.

LISTING 5.3 HappyObject.java

public class HappyObject extends MoodyObject {

// redefine class’s mood
protected String getMood() {

return “happy”;
}

// specialization
public void laugh() {

System.out.println(“hehehe... hahaha... HAHAHAHAHAHA!!!!!”);
}

}

LISTING 5.4 SadObject.java

public class SadObject extends MoodyObject {

// redefine class’s mood
protected String getMood() {

return “sad”;

08 0672321092 CH05 08/22/2001 2:49 PM Page 105

LISTING 5.4 continued

}

// specialization
public void cry() {

System.out.println(“‘wah’ ‘boo hoo’ ‘weep’ ‘sob’ ‘weep’”);
}

}

When you run the test driver you should see output similar to Figure 5.1.

106 Day 5

FIGURE 5.1
The proper output of
MoodyDriver.

Of interest is the call to queryMood(). When you call queryMood() on SadObject, “I feel
sad today!” prints out to the screen. Likewise, HappyObject prints, “I feel happy today!”
Such behavior may seem surprising since neither class redefines queryMood().

You need to look closely at queryMood(). Internally queryMood() calls getMood() to
obtain the mood. Since the subclasses do redefine getMood(), queryMood() will call the
child’s version of getMood(). This behavior is an example of the process illustrated in
Figure 4.6 on Day 4.

Lab 2: Using Abstract Classes for
Planned Inheritance

There are times when you will want to develop a class specifically so that others can
inherit from it. As you develop a few related classes you may find code that is common
to all of your classes. Good practice dictates that when you see common code you move

08 0672321092 CH05 08/22/2001 2:49 PM Page 106

Inheritance: Time to Write Some Code 107

5

it out into a base class. When you wrote that base class you planned for other classes to
inherit from it.

However, once you are done moving the code around you may notice that it makes no
sense to ever instantiate the base class directly. While the base class holds common code
that is very valuable to subclasses, it may not offer any value for direct instantiation and
use. Instead, it only makes sense to use the subclasses. The subclasses specialize upon
the base class and provide what is missing.

Consider the Employee class:

public class Employee {

private String first_name;
private String last_name;
private double wage;

public Employee(String first_name, String last_name, double wage) {
this.first_name = first_name;
this.last_name = last_name;
this.wage = wage;

}

public double getWage() {
return wage;

}

public String getFirstName() {
return first_name;

}

public String getLastName() {
return last_name;

}

public double calculatePay() {
// I don’t know how to do this!
return 0;

}
public String printPaycheck() {

String full_name = last_name + “, “ + first_name;
return (“Pay: “ + full_name + “ $” + calculatePay());

}
}

You may use the Employee as a base class for CommissionedEmployees,
HourlyEmployees, and SalariedEmployees. Each subclass knows how to calculate its
pay. However, the algorithm used to calculate pay will vary depending on the employee’s
type. When I created this hierarchy, I envisioned that each subclass would need to define
its own calculatePay() method.

08 0672321092 CH05 08/22/2001 2:49 PM Page 107

There is a small problem: Employee doesn’t have any rules for calculating its pay. It
doesn’t make any sense to say calculatePay() for an Employee. There is no algorithm
to calculate pay for a generic employee.

One solution is to not define calculatePay() in the base class. However, not defining
the method in the base class would be an unfortunate decision. It does not model an
employee very well. Each employee will know how to calculate its pay. All that differs is
the actual implementation of the calculatePay() method. So the method really does
belong in the base class.

If you do not define calculatePay() in the base class, you cannot treat the employees
generically. You’ll lose subtype pluggability for the calculatePay() method. Another
solution is to simply hard-code a canned return. The method could simply return wage.

A hard-coded return is not a very clean solution. There is no guarantee that another
developer will remember to override the method when developing a new subclass. Plus,
it doesn’t make a whole lot of sense to even instantiate an Employee. Luckily, OOP offers
a special type of class meant specifically for planned inheritance: the abstract class.

An abstract class looks a lot like any other class definition. The class definition may
define behaviors and attributes just like a normal class. However, you cannot directly
instantiate an abstract class since an abstract class can leave some methods undefined.

A declared but unimplemented method is called an abstract method. Only
abstract classes can have abstract methods.

Instead, you may only instantiate the descendants of the abstract class that actually
implement the abstract methods.

Let’s take a look at an abstract Employee:

public abstract class Employee {
....

public abstract double calculatePay();
// the rest of the definition remains the same

}

The abstract Employee defines a calculatePay() method; however, it leaves it unde-
fined. Now it is up to each subclass to actually implement the method. HourlyEmployee
is one such subclass:

public class HourlyEmployee extends Employee {

private int hours; // keep track of the # of hours worked

public HourlyEmployee(String first_name, String last_name, double wage) {
super(first_name, last_name, wage);

}

108 Day 5

NEW TERM

08 0672321092 CH05 08/22/2001 2:49 PM Page 108

Inheritance: Time to Write Some Code 109

5

public double calculatePay() {
return getWage() * hours;

}

public void addHours(int hours) {
this.hours = this.hours + hours;

}

public void resetHours() {
hours = 0;

}
}

By declaring abstract methods, you force your subclasses to specialize upon the base class
by proving an implementation for the abstract methods. By making a base class abstract
and by creating abstract methods you plan in advance what the subclass must redefine.

Problem Statement
In Lab 1 you created a MoodyObject class. All of the subclasses redefine getMood(). For
Lab 2, change that hierarchy a bit. Make the getMood() method abstract. You’ll also need
to update the MoodyDriver so that it no longer attempts to directly instantiate
MoodyObject. You won’t have to make any changes to SadObject or HappyObject since
they already provide an implementation of getMood().

The next section discusses the solutions to Lab 2. Do not proceed until you
complete Lab 2.

Caution

Solutions and Discussion
Listings 5.5 and 5.6 present the restructured MoodyObject and MoodyDriver definitions.

LISTING 5.5 MoodyObject.java

public abstract class MoodyObject {

// return the mood
protected abstract String getMood();

// ask the object how it feels
public void queryMood() {

System.out.println(“I feel “ + getMood() + “ today!”);
}

}

08 0672321092 CH05 08/22/2001 2:50 PM Page 109

LISTING 5.6 MoodyDriver.java

public class MoodyDriver {
public final static void main(String [] args) {

//MoodyObject mo = new MoodyObject(); // cannot instantiate MoodyObject
SadObject so = new SadObject();
HappyObject ho = new HappyObject();

//System.out.println(“How does the moody object feel today?”);
//mo.queryMood();
//System.out.println(“”);
System.out.println(“How does the sad object feel today?”);
so.queryMood(); // notice that overriding changes the mood
so.cry();
System.out.println(“”);
System.out.println(“How does the happy object feel today?”);
ho.queryMood(); // notice that overriding changes the mood
ho.laugh();
System.out.println(“”);

}
}

The changes are fairly simple. MoodyObject defines an abstract getMood() method and
leaves it up to its subclasses to provide the real implementation. When the queryMood()
method needs to retrieve the mood it simply makes a call to the abstract method.

Using abstract classes defines the contract that subclasses must fulfill in order to use the
base class. As a developer, when you look at an abstract base class, you know exactly
what you need to specialize when you inherit it. You can specialize in addition to the
abstract methods. However, you know that by defining the abstract methods your new
class will fit into the hierarchy properly.

When a base class has many methods, it can be confusing to figure out which ones to
override. Abstract classes give you a hint.

Lab 3: Bank Account—Practicing Simple
Inheritance

Now it’s time to put your inheritance knowledge to the test. Let’s go back to the Bank of
OO and see what inheritance can do for the bank’s accounting system.

The Bank of OO offers its customers a few choices in accounts: a savings account, a
checking account, a timed maturity account, and an overdraft account.

110 Day 5

08 0672321092 CH05 08/22/2001 2:50 PM Page 110

Inheritance: Time to Write Some Code 111

5

A Generic Account
Each account type allows the user to deposit and withdraw funds as well as check the
current balance. The generic base account does not allow overdraft.

The Savings Account
The savings account specializes upon the standard bank account by applying interest to
the balance when told to do so. For example, if a depositor has a balance of $1,000 and
the interest rate is 2%, after an interest payout the balance will read $1020:

balance = balance + (balance * interest_rate)

The savings account does not allow overdraft.

The Timed Maturity Account
The timed maturity account also applies interest to the balance. However, if the account
owner withdraws any of the principal before the account matures, the bank will deduct a
percentage from the withdrawal. So, for example, if the depositor withdraws $1,000
before maturity and there is a 5% penalty on the amount withdrawn, the account balance
will decrease by $1000. However, the depositor will only receive $950. If the account is
mature, the bank will not penalize withdrawals

balance = balance - withdraw_amount

but

amount_given_to_depositor = amount - (amount * penalty_rate)

the timed maturity account does not allow overdraft.

Checking Account
Unlike savings and maturity accounts, the checking account does not apply interest to the
balance. Instead, the checking account allows the depositor to write checks and make
ATM transactions against the account. However, the bank limits the number of transac-
tions per month to some fixed number. If the depositor exceeds this monthly quota the
bank will assess a per-transaction fee. So, for example, if the depositor gets five free
transactions per month but makes eight transactions at a fee of $1 per transaction, the
bank will charge the depositor a $3 fee:

fee = (total_transactions- monthly_quota) * per_transaction_fee

The checking account does not allow overdraft.

08 0672321092 CH05 08/22/2001 2:50 PM Page 111

Overdraft Account
Finally, the overdraft account allows the depositor to draw money in excess of the
account’s balance. However, there is no free lunch. Periodically, the bank will apply an
interest charge against any negative balance. So, for example, if the depositor runs a
–$1,000 balance at the rate of 20%, he may pay a fee of $200. After the fee, his balance
will be –$1200:

balance = balance + (balance * interest_rate)

Note that the bank only calculates interest on accounts with a negative balance! If not,
the bank would end up giving money away. The Bank of OO is not in the business of
giving money away. Not even to developers.

Unlike the checking account, the overdraft account does not place a limit on the number
of monthly transactions. The bank would like to encourage withdrawals—they might get
to charge interest!

Problem Statement
Your task is to formulate an inheritance hierarchy and implement the accounts as defined
above. You must create the following account classes:

• BankAccount

• SavingsAccount

• TimeMaturityAccount

• CheckingAccount

• OverdraftAccount

BankAccount is the base class. It contains those tasks common to all accounts. That is the
only hierarchical hint that you will get! Part of the lab is for you to experiment with
inheritance hierarchies.

There are a number of simplifications that you can make. For fees, timed maturity, and
interest calculations, assume that some third party will watch the calendar. Don’t pro-
gram that kind of functionality into your classes. Instead, provide a method for another
object to call. For example, the SavingsAccount should have an addInterest() method.
An outside object will call that method when it is time to calculate interest. Likewise, the
CheckingAccount should expose an accessFees() method. When called this method
will calculate any fees and apply them against the balance.

112 Day 5

Don’t get bogged down in unnecessary details. Remember, you’re complet-
ing this lab to gain hands-on inheritance experience, not write the most

Note

08 0672321092 CH05 08/22/2001 2:50 PM Page 112

Inheritance: Time to Write Some Code 113

5

robust account system ever. To that end, don’t worry about validating input
(unless you really want to). You can assume that all argument values will
always be valid.

Day 4 briefly touched on the use of super. super is not a difficult concept. Consider the
following selection:

public CommissionedEmployee(String first_name, String last_name,
double wage, double commission) {

super(first_name, last_name, wage); // call original constructor in
// order to properly initialize

this.commission = commission;
}

When you call super from within a constructor, it allows you to call the parent’s construc-
tor. Of course, you must supply all of the arguments required by the parent’s constructor.
Most languages, Java included, require that if you call super within the constructor, you
do so before doing anything else. In fact, if you don’t call super, Java will automatically
try to call super() itself.

super allows you to leverage parent’s code that you otherwise would have simply over-
ridden. In the case of constructors, super allows the child to call its parent’s constructor.

Properly calling the parent’s constructor is something that you must not overlook. You
need to ensure that the class gets properly initialized.

You can also use super from within a method.

Imagine a VeryHappyObject class:

public class VeryHappyObject extends HappyObject {

// redefine class’s mood
protected String getMood() {
String old_mood = super.getMood();

return “very” + old_mood;
}

}

VeryHappyObject overrides getMood(). However, super.getMood() allows a
VeryHappyObject to call the parent’s version of getMood(). The VeryHappyObject special-
izes on its parent’s getMood() method by doing some extra processing on the value
returned by super.getMood().

So even if a child overrides a parent’s method, the child can still leverage the existing
code that exists in the parent.

Like a constructor, if you use super.<method>() to call a method you must supply any of
the arguments that the method may require.

You will find super useful in this lab.

08 0672321092 CH05 08/22/2001 2:50 PM Page 113

Stop now and complete the lab if you feel comfortable. If you need a little more help,
read on.

Extended Problem Statement
If you still feel lost, these interfaces should help a bit. These interfaces represent only
one way of completing the lab.

BankAccount exposes the following methods:

public void depositFunds(double amount)
public double getBalance()
public double withdrawFunds(double amount)
protected void setBalance(double newBalance)

SavingsAccount should expose the following methods:

public void addInterest()
public void setInterestRate(double interestRate)
public double getInterestRate()

TimedMaturityAccount exposes the following methods:

public boolean isMature()
public void mature()
public double getFeeRate()
public void setFeeRate(double rate)

TimedMaturityAccount will need to redefine withdrawFunds() to check maturity and
apply any applicable fees.

CheckingAccount exposes the following methods:

public void accessFees()
public double getFee()
public void setFee(double fee)
public int getMonthlyQuota()
public void setMonthlyQuota(int quota)
public int getTransactionCount()

CheckingAccount will need to override withdrawFunds() in order to keep track of the
number of transactions.

OverdraftAccount exposes the following methods:

public void chargeInterest()
public double getCreditRate()
public void setCreditRate(double rate)

OverdraftAccount may need to override withdrawFunds() if BankAccount places over-
draft checks in the method.

114 Day 5

08 0672321092 CH05 08/22/2001 2:50 PM Page 114

Inheritance: Time to Write Some Code 115

5

You may also want to start you hierarchy with the Account class that you developed for
Lab 2 back on Day 3. The only change that you’ll want to make is to the
withdrawFunds() method. You should probably put overdraft protection into the
withdrawFunds() methods.

Solutions and Discussion
Figure 5.2 illustrates the resulting account inheritance hierarchy.

The next section discusses the solutions to Lab 3. Do not proceed until you
complete Lab 3.

Caution

FIGURE 5.2
The bank account
hierarchy.

BankAccount

OverdraftAccount

TimeMaturityAccount

SavingsAccount CheckingAccount

It is important to keep this hierarchy in mind while considering the following solutions.

Listing 5.6 presents one possible BankAccount implementation. This base class keeps
track of the balance and handles deposits and withdraws.

LISTING 5.7 BankAccount.java

public class BankAccount {

// private data
private double balance;

// constructor
public BankAccount(double initDeposit) {

setBalance(initDeposit);
}
// deposit monies into account
public void depositFunds(double amount) {

// the base class applies no policy

08 0672321092 CH05 08/22/2001 2:50 PM Page 115

LISTING 5.7 continued

// does not validate input
setBalance(getBalance() + amount);

}
// query the balance
public double getBalance() {

return balance;
}
// set the balance
protected void setBalance(double newBalance) {

balance = newBalance;
}
// withdraw funds from the account
public double withdrawFunds(double amount) {

if(amount >= balance) {
amount = balance;

}
setBalance(getBalance() - amount);

return amount;
}

}

SavingsAccount, in Listing 5.8, directly inherits from BankAccount. SavingsAccount
specializes upon BankAccount by adding methods to get and set the interest rate as well
as a method to apply interest to the account balance.

LISTING 5.8 SavingsAccount.java

public class SavingsAccount extends BankAccount {

// private data
private double interestRate;

// Creates new SavingsAccount
public SavingsAccount(double initBalance, double interestRate) {

super(initBalance);
setInterestRate(interestRate);

}
// calculate and add interest to the account
public void addInterest() {

double balance = getBalance();
double rate = getInterestRate();
double interest = balance * rate;

double new_balance = balance + interest;

setBalance(new_balance);

116 Day 5

08 0672321092 CH05 08/22/2001 2:50 PM Page 116

Inheritance: Time to Write Some Code 117

5

LISTING 5.8 continued

}
// set the interest rate
public void setInterestRate(double interestRate) {

this.interestRate = interestRate;
}
// query the interest rate
public double getInterestRate() {

return interestRate;
}

}

TimeMaturityAccount, in Listing 5.9, inherits from SavingsAccount since interest may
apply to its balance. However, it too specializes upon its parent by defining methods to
set maturity level and fees. Of interest is the fact that this class redefines the
withdrawFunds() method. Through a call to super.withdrawFunds() this method still
uses the original functionality, however it adds the checks necessary to see if it needs to
access a fee against the transaction. If so, it accesses the fee and returns the withdrawn
amount minus the fee.

LISTING 5.9 TimeMaturityAccount.java

public class TimedMaturityAccount extends SavingsAccount {

// private data
private boolean mature;
private double feeRate;

// Creates new TimedMaturityAccount
public TimedMaturityAccount(double initBalance,

double interestRate,
double feeRate) {

super(initBalance, interestRate);
setFeeRate(feeRate);

}
// override BankAccount’s withdrawFunds
public double withdrawFunds(double amount) {

super.withdrawFunds(amount);
if(!isMature()) {

double charge = amount * getFeeRate();
amount = amount - charge;

}
return amount;

}
// check maturity
public boolean isMature() {

return mature;

08 0672321092 CH05 08/22/2001 2:50 PM Page 117

LISTING 5.9 continued

}
// make mature
public void mature() {

mature = true;
}
// % fee for early withdraw
public double getFeeRate() {

return feeRate;
}
// set % fee for early withdraw
public void setFeeRate(double rate) {

feeRate = rate;
}

}

CheckingAccount, in Listing 5.10, inherits directly from the BankAccount base class.
This class adds the methods necessary to set the per-transaction fee, set the monthly
quota, reset the transaction count, and query the current number of transactions. This
class also overrides the withdrawFunds() method in order to keep track of the number of
transactions. Like the TimedMaturityAccount, CheckingAccount still uses the original
logic by calling super.withdrawFunds().

LISTING 5.10 CheckingAccount.java

public class CheckingAccount extends BankAccount {

// private data
private int monthlyQuota;
private int transactionCount;
private double fee;

// Creates new CheckingAccount
public CheckingAccount(double initDeposit, int trans, double fee) {

super(initDeposit);
setMonthlyQuota(trans);
setFee(fee);

}
// override BankAccount’s withdrawFunds
public double withdrawFunds(double amount) {

transactionCount++;
return super.withdrawFunds(amount);

}
// access fees if went over transaction limit
public void accessFees() {

int extra = getTransactionCount() - getMonthlyQuota();
if(extra > 0) {

118 Day 5

08 0672321092 CH05 08/22/2001 2:50 PM Page 118

Inheritance: Time to Write Some Code 119

5

LISTING 5.10 continued

double total_fee = extra * getFee();
double balance = getBalance() - total_fee;
setBalance(balance);

}
transactionCount = 0;

}
// some getters and setters
public double getFee() {

return fee;
}
public void setFee(double fee) {

this.fee = fee;
}
public int getMonthlyQuota() {

return monthlyQuota;
}
public void setMonthlyQuota(int quota) {

monthlyQuota = quota;
}
public int getTransactionCount() {

return transactionCount;
}

}

Finally OverdraftAccount, in Listing 5.11, inherits directly from BankAccount.
However, it also adds methods for setting the overdraft interest rate and for applying any
interest charges.

LISTING 5.11 OverdraftAccount.java

public class OverdraftAccount extends BankAccount {

// private data
private double creditRate;

// Creates new OverdraftAccount
public OverdraftAccount(double initDeposit, double rate) {

super(initDeposit);
setCreditRate(rate);

}
// charge he interest on any lent monies
public void chargeInterest() {

double balance = getBalance();
if(balance < 0) {

double charge = balance * getCreditRate();
setBalance(balance + charge);

}

08 0672321092 CH05 08/22/2001 2:50 PM Page 119

LISTING 5.11 continued

}
// query the credit rate
public double getCreditRate() {

return creditRate;
}
// set the credit rate
public void setCreditRate(double rate) {

creditRate = rate;
}

// withdraw funds from the account
public double withdrawFunds(double amount) {

setBalance(getBalance() - amount);

return amount;
}

}

Each of these classes specializes upon its parent in one way or another. Some, such as
SavingsAccount, simply add new methods. Others, like CheckingAccount,
OverdraftAccount, and TimedMaturityAccount override the parent’s default behavior to
augment the functionality.

This lab exposes you to the mechanics of inheritance as well as inheritance for imple-
mentation reuse and programming by difference.

While not shown here, you can also use type pluggability since the common
BankAccount class relates all accounts. Anyone who knows how to act on the
BankAccount base class can withdraw, deposit, and check on funds from any type of
account. You’ll explore type pluggability in detail throughout Day 6, “Polymorphism:
Learning to Predict the Future” and Day 7, “Polymorphism: Time to Write Some Code.”

Lab 4: Case Study—”Is-A,” “Has-A,” and the
java.util.Stack

When new to OO it may become tempting to look at Java as an example of perfect
object-oriented design. You might say to yourself, “If Java does it, it must be correct.”
Unfortunately, placing unquestioned trust in any OO implementation is dangerous.

Let’s revisit the classical stack data structure. You can push items onto a stack, pop
objects off of a stack, and peek at the first element on the stack without removing it. You
might also want to check to see whether the stack is empty.

120 Day 5

08 0672321092 CH05 08/22/2001 2:50 PM Page 120

Inheritance: Time to Write Some Code 121

5

Java has a Stack class. Listing 5.12 illustrates the interface.

LISTING 5.12 java.util.Stack

public class Stack extends {
publiv boolean empty();
public Object peek();
public Object pop();
public Object push(Object item);
public int search(Object o);

}

You’ll notice that Java tweaks the classical stack definition a bit. Java adds a search()
method. The push() method also returns the object that you push.

However, there is a larger problem. The Java Stack also inherits from Vector. From one
point of view this is a smart decision. By inheriting Vector, Stack gets all of the imple-
mentation held in Vector. To implement Stack all you need to do is wire Stack’s meth-
ods to internally call the proper inherited Vector methods.

Unfortunately, the Java Stack is an example of poor inheritance. Does Stack pass the
“Is-a” test? “A Stack ‘Is-a’ Vector.” No—the test fails. Vector has all kinds of methods
for placing elements into the Vector and removing them. A Stack only allows you to
place elements onto the top of the Stack. The Vector allows you to insert elements and
remove elements anywhere.

Here, inheritance allows you to interact with the Stack in undefined ways that are unde-
fined for a stack.

Problem Statement
Stack passes the “Has-a” test. “A Stack ‘Has-a’ Vector.” For this lab, write a new ver-
sion of Stack that employs the proper type of implementation reuse.

The next section discusses the solutions to Lab 4. Do not proceed until you
complete Lab 4.

Caution

Solutions and Discussion
Listing 5.13 illustrates one possible implementation of Stack.

08 0672321092 CH05 08/22/2001 2:50 PM Page 121

LISTING 5.13 A New Stack Implementation

public class Stack {

private java.util.ArrayList list;

public Stack() {
list = new java.util.ArrayList();

}

public boolean empty() {
return list.isEmpty();

}

public Object peek() {
if(!empty()) {

return list.get(0);
}
return null;

}

public Object pop() {
if(!empty()) {

return list.remove(0);
}
return null;

}

public Object push(Object item) {
list.add(0, item);
return item;

}

public int search(Object o) {
int index = list.indexOf(o);
if(index != -1) {

return index + 1;
}
return -1;

}

}

If this lab teaches you anything, it is to not place complete faith on any one OO source.
Nothing is perfect.

122 Day 5

08 0672321092 CH05 08/22/2001 2:50 PM Page 122

Inheritance: Time to Write Some Code 123

5

Summary
Today you completed four labs. Lab 1 allowed you to experiment with simple inheri-
tance. After completing Lab 1 you should understand the basic mechanics inheritance.
Lab 2 allowed further exploration of inheritance through the abstract class and planned
inheritance. Lab 3 should solidify the lessons of Day 4. Labs 1 and 2 let you see rede-
fined, new, and recursive methods and attributes hands on. You also saw how even if you
override a method you could still use the parent’s implementation.

Lab 4 illustrates the importance of considering “Is-A” and “Has-A” while forming inher-
itance hierarchies. Sometimes the best course of action is to not inherit. As Day 4 stress-
es, composition is often the cleanest form of reuse. Inheritance only makes sense from
the relational or “Is-a” point of view. If two objects are not related by type, they should
not inherit. Shared implementation is not reason enough to inherit.

Within a system or application you should always plan as much inheritance as possible.
However, when you program for a specific application you are limited to that one pro-
gram. Over time, you will work on many different programs. As you start to notice that
you’re programming the same things over and over again, opportunities for inheritance
will begin to present themselves. You must always be on the lookout for these discovered
inheritance hierarchies. You should rework your code whenever you discover these new
hierarchies.

Q&A
Q In Lab 4, you point out how even Java makes OO mistakes. When I review the

Java APIs or other sources of OO examples, how can I be sure that what I see
is “good” OO?

A It is difficult to tell what constitutes “good” OO and “bad” OO, even after gaining
a lot of OO experience. The best that you can do is apply what you’ve learned and
never take an example for granted. Approach each example judiciously and if
something doesn’t seem right discuss it with your peers: Get a second opinion.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

08 0672321092 CH05 08/22/2001 2:50 PM Page 123

Quiz
1. From the lab solutions give an example of a redefined method, a recursive method,

and a new method.

2. Why would you declare a class as being abstract?

3. In Lab 4 you explored “Is-A” and “Has-A” relationships. Before you even learned
about inheritance you saw “Has-A” relationships. What “Has-A” relationships did
you see in the labs from Day 3?

4. How did these labs preserve encapsulation between the base and subclasses?

5. From the solutions, find an example of specialization.

6. How do the solutions to Lab 3 and Lab 4 take a different approach to implementa-
tion reuse?

Exercises
There are no exercises today. Do your labs!

124 Day 5

08 0672321092 CH05 08/22/2001 2:50 PM Page 124

DAY 6

WEEK 1

Polymorphism: Learning
to Predict the Future

So far, you have learned about the first two pillars of object-oriented program-
ming: encapsulation and inheritance. As you know, encapsulation enables you
to build self-contained software components and inheritance enables you to
reuse and extend those components. However, there is still something missing.
Software is always changing. Whether users demand new functionality, bugs
appear, or software needs to be integrated into new environments, the only con-
stant is change. The software lifecycle does not end when you ship a product.
You need software that can adapt to fit future needs. Wouldn’t it be great if you
could write “future proof” software?

Future proof software adapts to future requirements without alteration. Future
proof software enables you to make changes and add new features easily.
Luckily, OOP understands that successful software is not static. To that end,
OOP uses the concept of polymorphism to allow you to write that future proof
software.

09 0672321092 CH06 08/22/2001 2:45 PM Page 125

You will spend the next two days considering polymorphism, the third and final pillar of
object-oriented programming.

Today you will learn

• What polymorphism is

• What the different types of polymorphism are and what they offer your objects

• Valuable tips for effective polymorphism

• About some common polymorphic pitfalls

• How polymorphism fulfills the goals of OO

Polymorphism
If encapsulation and inheritance are the one-two punch of OOP, polymorphism is the fol-
low up knockout punch. Without those other pillars, you could not have polymorphism,
and without polymorphism, OOP would not be effective. Polymorphism is where the
object-oriented programming paradigm really shines, and its mastery is absolutely neces-
sary for effective OOP.

Polymorphism means many forms. In programming terms, polymorphism allows a single
class name or method name to represent different code selected among by some automat-
ic mechanism. Thus, a name can take many forms and since it can represent different
code, the same name can represent many different behaviors.

Polymorphism: the state of one having many forms. In programming terms, many
forms mean that a single name can represent different code selected among by

some automatic mechanism. Thus polymorphism allows a single name to express many
different behaviors.

In its own way, polymorphism is the multiple personalities disorder of the software world
because a single name can express many different behaviors.

All this talk of expressing “many different behaviors” may seem a bit abstract. Think
about the term open. You can open a door, a box, a window, and a bank account. The
word open can apply to many different objects in the real world. Each object interprets
open in its own way. However, in each case, you can simply say open to describe the
action.

Not all languages support polymorphism. A language that supports polymorphism is a
polymorphic language. In contrast, a monomorphic language does not support polymor-
phism and instead constrains everything to one, and only one, static behavior, because
each name is statically tied to its code.

126 Day 6

NEW TERM

09 0672321092 CH06 08/22/2001 2:45 PM Page 126

Polymorphism: Learning to Predict the Future 127

6

Inheritance provides the plumbing needed to make certain types of polymorphism possi-
ble. In Day 4, “Inheritence: Getting Something for Nothing,” you saw how inheritance
allows you to form substitutability relationships. Pluggability is extremely important to
polymorphism because it enables you to treat a specific type of object generically.

Consider the following classes:

public class PersonalityObject {
public String speak() {

return “I am an object.”;
}

}

public class PessimisticObject extends PersonalityObject {
public String speak() {

return “The glass is half empty.”;
}

}
public class OptimisticObject extends PersonalityObject {

public String speak() {
return “The glass is half full.”;

}
}

public class IntrovertedObject extends PersonalityObject {
public String speak() {

return “hi...”;
}

}

public class ExtrovertedObject extends PersonalityObject {
public String speak() {

return “Hello, blah blah blah, did you know that blah blah blah.”;
}

}

These classes form a fairly straightforward inheritance hierarchy. The base class,
PersonalityObject declares one method: speak(). Each subclass redefines speak() and
returns its own message based on its personality. The hierarchy forms substitutability
relationships between the subtypes and their parent.

Consider the following main():

public static void main(String [] args) {
PersonalityObject personality = new PersonalityObject();
PessimisticObject pessimistic = new PessimisticObject();
OptimisticObject optimistic = new OptimisticObject();
IntrovertedObject introverted = new IntrovertedObject();
ExtrovertedObject extroverted = new ExtrovertedObject();

09 0672321092 CH06 08/22/2001 2:45 PM Page 127

// substitutability allows you to do the following
PersonalityObject [] personalities = new PersonalityObject[5];
personalities[0] = personality;
personalities[1] = pessimistic;
personalities[2] = optimistic;
personalities[3] = introverted;
personalities[4] = extroverted;

// polymorphism makes PersonalityObject seem to have
//many different behaviors
// remember - polymorphism is the multiple personalities
//disorder of the OO world
System.out.println(“PersonalityObject[0] speaks: “ +

personalities[0].speak());
System.out.println(“PersonalityObject[1] speaks: “ +

personalities[1].speak());
System.out.println(“PersonalityObject[2] speaks: “ +

personalities[2].speak());
System.out.println(“PersonalityObject[3] speaks: “ +

personalities[3].speak());
System.out.println(“PersonalityObject[4] speaks: “ +

personalities[4].speak());
}

The first two thirds of the main() do not present anything new. As you saw in Day 4,
substitutability allows you to treat an object generically. However, the following excerpt
is where the example becomes interesting:

// polymorphism makes PersonalityObject seem to have
//many different behaviors
// remember - polymorphism is the multiple personalities
//disorder of the OO world
System.out.println(“PersonalityObject[0] speaks: “ +

personalities[0].speak());
System.out.println(“PersonalityObject[1] speaks: “ +

personalities[1].speak());
System.out.println(“PersonalityObject[2] speaks: “ +

personalities[2].speak());
System.out.println(“PersonalityObject[3] speaks: “ +

personalities[3].speak());
System.out.println(“PersonalityObject[4] speaks: “ +

personalities[4].speak());

Figure 6.1 illustrates the output.

Based on the output it seems that PersonalityObject’s speak() method has many dif-
ferent behaviors. Even though PersonalityObject defines speak() to print “I am an
object,” PersonalityObject is exhibiting more than one behavior. Even though the array
supposedly contains PersonalityObject instances, each array member behaves differ-
ently when the main calls the speak() method. This is the crux of polymorphic behavior;
PersonalityObject, the name, seems to have many behaviors.

128 Day 6

09 0672321092 CH06 08/22/2001 2:45 PM Page 128

Polymorphism: Learning to Predict the Future 129

6

personalities is an example of a polymorphic variable. A polymorphic variable
is a variable that may hold onto many different types.

FIGURE 6.1
Demonstration of
polymorphic behavior.

NEW TERM

In a typed language, polymorphic variables are constrained to holding val-
ues from a specific substitutability relationship. In a dynamically typed lan-
guage, a polymorphic variable can hold onto any value.

Note

The preceding example explains the mechanism but it might not adequately convey the
spirit behind polymorphism. After all, you know exactly what the array contains.

Instead, imagine that you have an object whose method takes a PersonalityObject as a
parameter:

public void makeSpeak(PersonalityObject obj) {
System.out.println(obj.speak());

}

Substitutability relationships allow you to pass an instance of the PersonalityObject or
any descendant of that class into the makeSpeak() method as an argument. So, as you
create specialized descendants of PersonalityObject, such as ExtrovertedObject, you
do not need to change the logic of the method in order for that method to use instances
of the new classes as argument. Instead, you can simply instantiate ExtrovertedObject
(or any descendant) and pass the instance to the method.

Polymorphism comes into play when the makeSpeak() method makes method calls on
the object passed in as argument. Polymorphism ensures that the proper method is
invoked on the PersonalityObject argument by calling the argument’s method based on
the argument’s real class type rather than the class type that the makeSpeak() method
thinks that it is using. So if you pass in an ExtrovertedObject, polymorphism will
ensure that ExtrovertedObject’s definition of speak() gets called, not the one found in

09 0672321092 CH06 08/22/2001 2:45 PM Page 129

the base class. As a result, makeSpeak() will display different messages to the screen
depending on the type of argument that it is passed.

You can leverage polymorphism to add new functionality to your system at any time. You
can add new classes that have functionality that was not even dreamt of when you first
wrote the program—all without having to change your pre-existing code. This is what
future proof software is all about.

This example is just the tip of the polymorphic iceberg. In fact, the example only repre-
sents one of polymorphism’s many forms. That’s correct polymorphism is itself
polymorphic!

Unfortunately, there is little consensus in the OO community when it comes to polymor-
phism. Instead of getting caught up in the controversy, this book will present four forms
of polymorphism. Understanding these four common forms should give you the founda-
tion that you need to begin to apply polymorphism. Today you will learn about

1. Inclusion Polymorphism

2. Parametric Polymorphism

3. Overriding

4. Overloading

Inclusion Polymorphism
Inclusion polymorphism, sometimes called pure polymorphism, allows you to treat relat-
ed objects generically. You saw inclusion polymorphism firsthand at the start of the day.

Consider the following methods:

public void makeSpeak(PessimisticObject obj) {
System.out.println(obj.speak());

}

public void makeSpeak(OptimisticObject obj) {
System.out.println(obj.speak());

}

public void makeSpeak(IntrovertedObject obj) {
System.out.println(obj.speak());

}

public void makeSpeak(ExtrovertedObject obj) {
System.out.println(obj.speak());

}

PessimisticObject, OptimisticObject, IntrovertedObject, and ExtrovertedObject
are all related because they are all PersonalityObjects. Substitutability and inclusion

130 Day 6

09 0672321092 CH06 08/22/2001 2:45 PM Page 130

Polymorphism: Learning to Predict the Future 131

6

polymorphism allow you to write one method for handling all types of
PersonalityObjects:

public void makeSpeak(PersonalityObject obj) {
System.out.println(obj.speak());

}

Substitutability allows you to pass any PersonalityObject to the method, and polymor-
phism ensures that the proper method is called on the instance. Polymorphism will call
the method based on the instance’s true type (PeronalityObject, OptimisticObject,
IntrovertedObject, ExtrovertedObject, or PessimisticObject), not on the instance’s
apparent type (PersonalityObject).

Inclusion polymorphism is useful because it cuts down on the amount of code that you
need to write. Instead of having to write a method for each concrete type of
PersonalityObject, you can simply write one method that handles all types. Inclusion
polymorphism and substitutability allow makeSpeak() to work on any object that “Is-A”
PersonalityObject.

Inclusion polymorphism makes adding new subtypes to your program easier because you
won’t need to add a method specifically for that new type. You can simply reuse
makeSpeak().

Inclusion polymorphism is also interesting because it makes it seem as if
PersonalityObject instances exhibit many different behaviors. The message displayed
by makeSpeak() will differ based on the input to the method. Through the careful use of
inclusion polymorphism, you can change the behavior of your system by introducing
new sub classes. The best part is that you can get this new behavior without having to
alter any of the pre-existing code.

Polymorphism is the reason that you shouldn’t automatically associate inheritance with
implementation reuse. Instead, you should use inheritance primarily to enable polymor-
phic behavior through substitutability relationships. If you properly define substitutability
relationships, reuse will follow. Inclusion polymorphism allows you to reuse the base
class, any descendant, as well as the methods that use the base class.

By now you probably understand the mechanism, but why would you want to use inclu-
sion polymorphism?

Consider the following logging hierarchy:

public abstract class BaseLog {

// some useful constants, don’t worry about the syntax
private final static String DEBUG = “DEBUG”;
private final static String INFO = “INFO”;

09 0672321092 CH06 08/22/2001 2:45 PM Page 131

private final static String WARNING = “WARNING”;
private final static String ERROR = “ERROR”;
private final static String FATAL = “FATAL”;

java.text.DateFormat df = java.text.DateFormat.getDateTimeInstance();

public void debug(String message) {
log(message, DEBUG, getDate());

}
public void info(String message) {

log(message, INFO, getDate());
}
public void warning(String message) {

log(message, WARNING, getDate());
}
public void error(String message) {

log(message, ERROR, getDate());
}
public void fatal(String message) {

log(message, FATAL, getDate());
}

// creates a time stamp
protected String getDate() {

java.util.Date date = new java.util.Date();
return df.format(date);

}

// let subclasses define how and where to write log to
protected abstract void log(String message, String level, String time);

}

BaseLog is an abstract log that defines a log’s public interface as well as some implemen-
tation. BaseLog is abstract because each implementer needs to customize how the log is
written out. Any BaseLog implementer must define the log() method.

By making the class abstract, you guarantee that any implementer implements the sub-
classes properly. Such an approach allows you to reuse the log design among many dif-
ferent applications. When a new application comes along, you can simply provide the
implementation needed by that application. There is no need to create a new log design.
Instead, you can reuse the log design laid out in BaseLog by providing custom
implementations.

public class FileLog extends BaseLog {

private java.io.PrintWriter pw;

public FileLog(String filename) throws java.io.IOException {
pw = new java.io.PrintWriter(new java.io.FileWriter(filename));

132 Day 6

09 0672321092 CH06 08/22/2001 2:45 PM Page 132

Polymorphism: Learning to Predict the Future 133

6

}

protected void log(String message, String level, String time) {
pw.println(level + “: “ + time + “: “ + message);
pw.flush();

}

public void close() {
pw.close();

}

public class ScreenLog extends BaseLog {
protected void log(String message, String level, String time) {

System.out.println(level + “: “ + time + “: “ + message);
}

}

FileLog and ScreenLog both inherit from BaseLog and implement the log() method.
FileLog writes to a file while ScreenLog writes to the screen.

Thinking back to the Employee example from Day 4 it is reasonable to suspect that there
is a class that knows how to retrieve Employees from a database:

public class EmployeeDatabaseAccessor {
private BaseLog error_log;

public EmployeeDatabaseAccessor(BaseLog log) throws InitDBException {
error_log = log;
try {

// initialize the db connection
} catch(DBException ex) {

error_log.fatal(“cannot access database: “ +
ex.getMessage());

throw new InitDBException(ex.getMessage());
}

}

public Employee retrieveEmployee(String first_name, String last_name)
throws EmployeeNotFoundException {
try {

// attempt to retrieve the employee
return null;

} catch(EmployeeNotFoundException ex) {
error_log.warning(“cannot locate employee: “ + last_name +

“, “ + first_name);
throw new EmployeeNotFoundException(last_name, first_name);

}

}
// and so on, each method uses error_log to log errors

}

09 0672321092 CH06 08/22/2001 2:45 PM Page 133

The EmployeeDatabaseAccessor takes a BaseLog as argument in its constructor. An
instance will use that log to record any and all important events. Consider the following
main():

public static void main(String [] args) {
BaseLog log = new ScreenLog();

EmployeeDatabaseAccessor eda = new EmployeeDatabaseAccessor(log);

Employee emp = eda.retrieveEmployee(“Employee”, “Mr.”)
}

Conceivably, the main() could pass any BaseLog subclass to the
EmployeeDatabaseAccessor. An application could do the same.
EmployeeDatabaseAccessor is future proof—as far as logging goes. Perhaps in the
future you need a log file that rolls over every 24 hours or one that creates a filename
using the date. Perhaps another log will make logs to an error handler that listens to the
network. Who can say for sure? However, with inclusion polymorphism you’re ready.

Without inclusion polymorphism, you would need a constructor for each type of log that
you would like the accessor to use. However, it doesn’t stop there. You would also need
switch code inside of the accessor so that it would know which log that it should use. An
EmployeeDatabaseAccessor that didn’t use polymorphism but wanted to support many
different logs might look like this:

public class EmployeeDatabaseAccessor {
private FileLog file_log;
private ScreenLog screen_log;
private int log_type;

// some ‘useful’ constants
private final static int FILE_LOG = 0;
private final static int SCREEN_LOG = 1;

public EmployeeDatabaseAccessor(FileLog log) throws InitDBException {
file_log = log;
log_type = FILE_LOG;
init();

}
public EmployeeDatabaseAccessor(ScreenLog log) throws InitDBException {

screen_log = log;
log_type = SCREEN_LOG;
init();

}

public Employee retrieveEmployee(String first_name, String last_name)
throws EmployeeNotFoundException {
try {

// attempt to retrieve the employee

134 Day 6

09 0672321092 CH06 08/22/2001 2:45 PM Page 134

Polymorphism: Learning to Predict the Future 135

6

return null;
} catch(EmployeeNotFoundException ex) {

if(log_type == FILE_LOG) {
file_log.warning(“cannot locate employee: “ +

last_name + “, “ + first_name);
} else if (log_type == SCREEN_LOG) {

screen_log.warning(“cannot locate employee: “ +
last_name + “, “ + first_name);

}
throw new EmployeeNotFoundException(last_name, first_name);

}

}

private void init() throws InitDBException {
try {

// initialize the db connection
} catch(DBException ex) {

if(log_type == FILE_LOG) {
file_log.fatal(“cannot access database: “ +

ex.getMessage());
} else if (log_type == SCREEN_LOG) {

screen_log.fatal(“cannot access database: “ +
ex.getMessage());

}
throw new InitDBException(ex.getMessage());

}
}
// and so on, each method uses error_log to log errors

}

You’ll need to update EmployeeDatabaseAccessor each time you would like to add sup-
port for a new log. Now, which version would you like to maintain?

Parametric Polymorphism
Parametric polymorphism allows you to create generic methods and generic types. Like
inclusion polymorphism, generic methods and types allow you to code something once
and have it work with many different kinds of arguments.

Parametric Methods
Although inclusion polymorphism affects how you look at an object, parametric poly-
morphism affects methods. Parametric polymorphism allows you to program generic
methods by deferring parameter type declarations until runtime. Consider the following
method:

int add(int a, int b)

09 0672321092 CH06 08/22/2001 2:45 PM Page 135

add() takes two integers and returns the sum. This method is very explicit; it takes two
integers as argument. You cannot pass two real numbers to this method or two matrix
objects. If you try you will get a compile time error.

If you want to add two real numbers or two matrices, you must create methods for each
type:

Matrix add_matrix(matrix a, matrix b)
Real add_real(real a, real b)

and so on for every type that you would like to add together.

It would be convenient if you could avoid having to write so many methods. First, having
to write so many methods makes your programs larger. You will need a separate method
for each type. Second, more code leads to more bugs and more to maintain. You don’t
want to make maintenance harder than it needs to be. Third, having to write separate
methods does not naturally model add(). It is more natural just to think in terms of
add(), not add_matrix() and add_real().

Inclusion polymorphism presents one solution to the problem. You could declare a type
called addable that has a method that knows how to add itself to another instance of
addable.

The type might look like this:

public abstract class Addable {
public Addable add(Addable);

}

The new method would look like this:

Addable add_addable(Addable a, Addable b)
Return a.add(b)

136 Day 6

The previous example is sometimes referred to as function polymorphism.Note

That’s all fine and well. You only need to write one method for adding, however the
method only works for Addable arguments. You also have to be sure that the Addables
that you do pass to the method are of the same type. Such a requirement is error prone
and counter to what the interface implies. Either way, you really haven’t solved the origi-
nal problem. You will still need to write methods for each type that you wish to add that
are not of type Addable. Not everything that you’ll want to add will be an Addable.

09 0672321092 CH06 08/22/2001 2:45 PM Page 136

Polymorphism: Learning to Predict the Future 137

6

Here’s where parametric polymorphism comes into play. Parametric polymorphism
allows you to write one, and only one, method for adding all types. Parametric polymor-
phism delays the declaration of the argument types.

Consider the method rewritten to take advantage of parametric polymorphism:

add([T] a, [T] b) : [T]

[T] is an argument just the same as a and b. The [T] argument specifies the type of argu-
ment for a and b. By declaring a method in this way, you defer definition of the argu-
ments’ type until runtime. You’ll also note that both a and b must have the same [T].

Internally the method may look like this:

[T] add([T] a, [T] b)
return a + b;

Polymorphism is not magical. It still expects the argument to have a certain structure. In
this case, any argument that you pass in must define + for that type.

Certain structure can be the presence of a certain method or properly
defined operator.

Note

Parametric types
Taken to its extreme conclusion, parametric polymorphism can extend its reach to types
themselves. Just as methods may have parametric parameters, types can be parametric
themselves. Consider the Queue ADT defined in Day 2:

Queue [T]
void enqueue([T])
[T] dequeue()
boolean isEmpty()
[T] peek()

The Queue is a parameterized type. Instead of writing a queue class for each type that
you would like to queue, you simply specify the types of elements that you would like
the queue to hold onto dynamically at runtime. Originally, you could say that the Queue
was a Queue of Object. Now the Queue can be a Queue of any type.

So, if you wanted to store Employees you would make the following declaration:

Queue[Employee] employee_queue = new Queue[Employee];

Now, when you use Queue you may only enqueue() and dequeue() employee instances.

09 0672321092 CH06 08/22/2001 2:45 PM Page 137

If parametric types are not possible, you would need to write a separate queue for inte-
gers, another for reals, and yet another for space aliens.

Instead, by using parameterized types, you can write the type once, in this case a queue,
and use it to hold onto all possible types.

138 Day 6

Parametric polymorphism sounds great on paper, but there is a problem:
support.

For those of you familiar with Java, the previous examples may seem
strange. As of Java 1.3, Java does not have native support for parameterized
types or parametric polymorphism in general. You can fake parameterized
types, but the price in efficiency is rather high. There are some Java exten-
sions available for parametric polymorphism support, however none are offi-
cially sanctioned by Sun.

The syntax of the previous examples is completely made up. However, it
demonstrates the ideas adequately.

Note

Overriding
Overriding is an important type of polymorphism. You saw how each
PersonalityObject subclass overrode the speak() method at the beginning of this day.
However, you got a sneak peek at an even more interesting example of overriding and
polymorphism in Day 5. Specifically, consider the MoodyObject and HappyObject class
definitions:

public class MoodyObject {

// return the mood
protected String getMood() {

return “moody”;
}

// ask the object how it feels
public void queryMood() {

System.out.println(“I feel “ + getMood() + “ today!”);
}

}

public class HappyObject extends MoodyObject {

// redefine class’s mood
protected String getMood() {

return “happy”;

09 0672321092 CH06 08/22/2001 2:45 PM Page 138

Polymorphism: Learning to Predict the Future 139

6

}

// specialization
public void laugh() {

System.out.println(“hehehe... hahaha... HAHAHAHAHAHA!!!!!”);
}

}

Here, you see that HappyObject overrides MoodyObject’s getMood() method. What’s
interesting is that MoodyObject’s definition of queryMood() internally makes a call to
getMood().

You’ll notice that HappyObject does not override the queryMood() method. Instead,
HappyObject simply inherits the method as a recursive method from MoodyObject. When
you call queryMood() on a HappyObject, instance polymorphism makes sure to call
HappyObject’s overridden version of getMood() behind the scenes.

Here polymorphism takes care of the details of what method to call. This frees you from
having to redefine queryMood() yourself so that it calls the correct version of getMood().

Later, you saw how you could make getMood() abstract in the parent:

public abstract class MoodyObject {

// return the mood
protected abstract String getMood();

// ask the object how it feels
public void queryMood() {

System.out.println(“I feel “ + getMood() + “ today!”);
}

}

Abstract methods are often referred to as deferred methods, because you defer definition
to the descendant classes. However, like any other method, the class that defines the
abstract method can make calls to the method. Just like overridden methods, polymor-
phism will ensure that the proper version of the deferred method is always called in the
subclasses.

Overloading
Overloading, also known as ad-hoc polymorphism, allows you to use the same method
name for many different methods. Each method only differs in the number and type of its
parameters.

Consider the following methods defined in java.lang.Math:

09 0672321092 CH06 08/22/2001 2:45 PM Page 139

public static int max(int a, int b);
public static long max(long a, long b);
public static float max(float a, float b);
public static double max(double a, double b);

The max() methods are all examples of overloading. You’ll notice that the max() methods
only differ in the type of parameters.

Overloading is useful when a method is not defined by its arguments. Instead, the
method is a concept that is independent of its arguments. The method transcends its spe-
cific parameters and applies to many different kinds of parameters. Take the max()
method. max() is a generic concept that takes two parameters and tells you which is
greater. This definition does not change whether you compare integers, floats, doubles, or
the pecking order among a flock of birds.

The + operation is another example of an overloaded method. The + concept is indepen-
dent of its arguments. You can add all sorts of elements.

140 Day 6

You cannot overload or override operators in Java; however, Java does have
some built in overloading.

Note

If overloading were not possible you would have to do the following:

public static int max_int(int a, int b);
public static long max_long(long a, long b);
public static float max_float(float a, float b);
public static double max_double(double a, double b);
ublic static bird max_bird(bird a, bird b);

Without overloading you must give each method a unique name. The max() methods
would no longer transcend their parameters. Max would cease to be an abstract concept.
Instead, you would have to define the method in terms of its arguments. Having to write
the max() method is this way is not a natural way of modeling the concept of max(). It
also gives the programmer more to keep straight in his mind.

Of course, naming each method differently is not polymorphic. When all methods share
the same name, you get polymorphic behavior because different methods are called
behind the scenes dependent of what types of parameters you pass. You can simply call
max() and pass your parameters. Polymorphism will take care of calling the proper
method behind the scenes.

How polymorphism routes the method call is language dependent. Some languages
resolve the method call during compilation while others bind the method call dynamically
at runtime.

09 0672321092 CH06 08/22/2001 2:45 PM Page 140

Polymorphism: Learning to Predict the Future 141

6

Coercion
Coercion and overloading often go hand in hand. Coercion can also make a method
appear as if it were polymorphic. Coercion occurs when an argument of one type is con-
verted into the expected type behind the scenes.

Consider the following definition:

public float add(float a, float b);

add() takes two float arguments and adds them together.

The following code segment creates a few integer variables and calls the add() method:

int iA = 1;
int iB = 2;

add(iA,iB);

However, the add() method calls for two float arguments. This is where coercion
comes into play.

When you call add() with int arguments the arguments are converted into floats by the
compiler. This means that before the int arguments are passed to add(), they are first
converted into floats. Java programmers will recognize this conversion as a cast.

So, coercion causes the add() method to appear polymorphic since the add() method
appears to work for floats and ints. As you saw in the last section, you could also have
an overloaded add method of the form:

public int add(int a, int b);

In that case, add(iA,iB) would not result in coercion. Instead, the properly overloaded
add() method would get called.

Effective Polymorphism
Like any other of the pillars, effective polymorphism does not happen by accident. There
are a few steps that you can take to ensure effective polymorphism.

The first step toward effective polymorphism is effective encapsulation and inheritance.

Without encapsulation your code becomes easily dependent on the implementation of
your classes. Don’t allow encapsulation to break down. If your code becomes dependent
upon some aspect of a class’s implementation you won’t be able to plug in a subclass
that reworks that implementation. Good encapsulation is the first step to polymorphism.

09 0672321092 CH06 08/22/2001 2:45 PM Page 141

Inheritance is an important factor in inclusion polymorphism. Always try to establish
substitutability relationships by programming as close to the base class as possible. This
practice will allow more types of objects to participate in your program.

One way to encourage substitutability is through well-thought-out hierarchies. Move
commonality into abstract classes and program your objects to use the abstract class, not
a specific concrete descendant. That way, you’ll be able to introduce any descendant into
your program.

142 Day 6

It is important to note that interface in this context is a bit different than
the idea of Java interfaces, though they are similar. Here, interface is used to
describe the list of messages that you can send to an object. All of those
messages comprise an object’s public interface.

A Java interface also defines the messages that you can send to a Java
object. When a Java class implements an interface, all of the methods in the
interface become part of the class’s overall public interface.

However, the Java interface is not the only way to define the messages
that you can send to an object in Java. In Java, any public method defined in
the class definition will become part of the object’s public interface. This
means that if a class implements an interface and defines additional public
methods, both sets of methods will become part of its public interface.

Using Java interfaces when you program is a good practice because it sepa-
rates the definition of the interface from the class implementation of that
interface. When you separate the two, many otherwise unrelated classes
could implement the same interface. Like inheritance, objects that share a
common interface can also take part in substitutability relationships, but
without having to be part of the same inheritance hierarchy.

Note

For effective polymorphism, follow these tips:

• Follow the tips to effective encapsulation and inheritance.

• Always program to the interface not the implementation. By pro-
gramming to an interface, you define specifically what types of
objects may participate in your program. Polymorphism will then
ensure that those objects participate properly.

• Think and program generically. Let polymorphism worry about the
specifics. If you let polymorphism do its job, you won’t need to write
as much code. It’ll take care of the specifics for you!

Tip

09 0672321092 CH06 08/22/2001 2:45 PM Page 142

Polymorphism: Learning to Predict the Future 143

6

• Lay the groundwork for polymorphism by establishing and using sub-
stitutability relationships. Substitutability and polymorphism will
ensure that you can add new subtypes to your program and that the
proper code will execute when those subtypes are used.

• If your language provides a way to completely severe interface and
implementation, favor that mechanism over inheritance. An example
of a mechanism that allows you to define and inherit interface with-
out implementation is the Java Interface. Severing the two allows for
more flexible substitutability, thus more opportunity for
polymorphism.

• Use abstract classes to separate interface from implementation. All
non-leaf classes should be abstract; only program to these abstract
classes.

The previous discussion focuses heavily on strongly typed languages such as Java. In a
strongly typed language, you must explicitly declare a variable’s type. However, some
object-oriented languages such as Smalltalk do not have this requirement. Instead, such
languages are dynamically typed. Dynamic typing means that you do not need to explicit-
ly state a variable’s type when you create the variable. Instead, type is determined
dynamically at runtime. So, in essence, every variable is polymorphic.

Polymorphism is a bit simpler in dynamically typed languages. Variables are automatically
polymorphic because they can hold any value. As long as the object has the expected
method, it can work polymorphically. Of course, everything blows up if you try to call a
method that does not exist!

Typed languages are a bit more rigorous. Dynamically typed languages allow you to treat
an object polymorphically as long as it has the method in which you are interested. The
object does not need to belong to a specific inheritance hierarchy. Strongly typed lan-
guages require that the object belong to a specific inheritance hierarchy.

However, the two cases are not really all that different. Behavior is what really defines a
type; typed languages just require the presence of all defined behaviors. So, the concepts
behind polymorphism in strongly typed and dynamic languages are really the same. It all
boils down to an object knowing how to perform some behavior.

The focus on typed languages is deliberate. Focusing directly on strong typing forces you
to concentrate on type without glossing over the details. If you can understand polymor-
phism in a typed language, you can certainly understand it in an untyped language. The
converse might not be true!

The choice to focus on type is also a pragmatic one. Most mainstream object-oriented
languages are strongly typed.

09 0672321092 CH06 08/22/2001 2:45 PM Page 143

Polymorphic Pitfalls
When using polymorphism there are three main pitfalls to look out for.

Pitfall 1: Moving Behaviors Up the Hierarchy
Too often, inexperienced developers will move behaviors up the hierarchy so as to
increase polymorphism. The zeal to treat everything polymorphically can easily blind a
developer and result in poorly designed hierarchies.

If you move a behavior too far up a hierarchy not every descendant will be able to sup-
port the behavior. Remember, descendants must never take functionality away from their
ancestors. Do not destroy good inheritance to make your programs more polymorphic.

If you find yourself with the desire to move behaviors up your hierarchy solely to
improve polymorphism: stop. You are in dangerous territory.

If you find too many limitations in your hierarchy, you may very well want to revisit it.
Move common elements into abstract classes; move functionality around. However, do
not move methods up a hierarchy past the level where they are first needed. Do not fall
into the habit of moving behaviors around at whim simply to add polymorphic support.
Be sure that you have another valid reason for the change. You might get lucky a few
times, but the practice will catch up with you later and bad programming habits are hard
to break.

When developing your hierarchies, it is important to consider the potential evolution of
the classes over time. You can break the hierarchy into functional levels. Over time, you
can evolve your hierarchy by adding new functional levels as they are needed. However,
you should only speculate based on the future requirements that you know. There are an
infinite number of undefined “what-ifs.” Only plan for the eventualities that you know of.

Pitfall 2: Performance Overhead
Everything comes with a price. True polymorphism will suffer some performance over-
head. Polymorphism cannot compete with a method that knows its arguments statically.
Instead, with polymorphism, there must be checks at runtime. For inclusion polymor-
phism, the actual implementation of the object that you send messages to must be deter-
mined at runtime. All these checks take time to complete and are slower in comparison
to values that statically know their types.

The benefits of maintenance and program flexibility should make up for any perfor-
mance loss. However, if you’re writing a time critical application, you may need to be
careful when using polymorphism. However, keep performance in perspective. Create a

144 Day 6

09 0672321092 CH06 08/22/2001 2:45 PM Page 144

Polymorphism: Learning to Predict the Future 145

6

clean OO implementation, profile the implementation, and carefully tune the perfor-
mance where profiling reveals problems.

Pitfall 3: Blinders
Inclusion polymorphism has a shortcoming. Although it is true that you can pass a sub-
class to a method expecting a base class, the method cannot take advantage of any new
methods that the subclass might add to its interface. For example, the FileLog adds a
close() method to its interface. The EmployeeDatabaseAccessor’s
retrieveEmployee() will not be able to use it. A method programmed to accept the base
class will only know how to manipulate the base class’ interface.

Figure 6.2 shows how viewing an instance is relative. Choosing to view a FileLog
instance as if it were a BaseLog instance is like putting on blinders. You only have access
to the methods declared in BaseLog. Of course, if you treat the FileLog instance as a
FileLog instance, you get all of the functionality defined or inherited by the FileLog
class as you normally would.

FIGURE 6.2
Different views of the
same object.

BaseLog bl = new FileLog(“file”);

BaseLog fl = new FileLog(“file”);

BaseLog
debug()

info()
warning()

error()
fatal()

FileLog
close()

FileLog
Instance

So, when you add new types polymorphically, your old code will be unable to use any
new methods. However, new code (or updated code) is free to use anything in the public
interface.

This pitfall again points out why a descendant must never remove behaviors from its par-
ent. A method relying on inclusion polymorphism will only know how to exercise the
methods defined on the type it is programmed to manipulate. If a behavior is missing, the
method will break.

This pitfall also points out that simply swapping a new type into your pre-existing pro-
gram is often not as easy as it might appear. In the example of the FileLog you will need
to find a way to call the close() method when your program is done with the log.

09 0672321092 CH06 08/22/2001 2:45 PM Page 145

Caveats
There is one major caveat to keep in mind while considering polymorphism. Each lan-
guage implements polymorphism differently. This discussion has outlined the theoretical
definitions behind polymorphism.

Most, if not all languages, support inclusion polymorphism to some degree. On the other
hand, few support true parametric polymorphism. Java certainly does not support para-
metric polymorphism. C++ pretends to implement it.

Most languages do have some form of overloading and coercion. However, the exact
implementation will vary from language to language.

So, when you set out to program polymorphically remember the theory but tread care-
fully. You cannot avoid the limitations of your implementation language.

How Polymorphism Fulfills the Goals of OO
Polymorphism fulfills each of the goals of OOP. Polymorphism produces software that is

1. Natural

2. Reliable

3. Reusable

4. Maintainable

5. Extendable

6. Timely

Polymorphism fulfills these goals in the following ways:

• Natural: Polymorphism enables you to more naturally model the world. Instead of
programming for special cases, polymorphism allows you to work at a more gener-
ic, conceptual level.

Overloading and parametric polymorphism enable you to model an object or
method at the conceptual level of what that object or method does, not what kinds
of parameters it might process. Inclusion polymorphism allows you to manipulate
types of objects instead of specific implementations.

Such generic programming is more natural because it frees you to program at the
conceptual level of the problem, not the specific implementations.

• Reliable: Polymorphism results in reliable code.

First, polymorphism simplifies your code. Instead of having to program special
cases for each type of object that you might manipulate, you simply write one case.

146 Day 6

09 0672321092 CH06 08/22/2001 2:45 PM Page 146

Polymorphism: Learning to Predict the Future 147

6

If you couldn’t program this way, you would have to update your code each time
you add a new subclass. Having to update code is error prone.

Second, polymorphism allows you to write less code. The less code that you write,
the fewer chances you’ll have to introduce bugs.

Polymorphism also allows you to insulate portions of the code from changes to
subclasses by ensuring that they only deal with the levels of the inheritance hierar-
chy that are critical for their function.

• Reusable: Polymorphism aids reuse. For one object to use another, the object only
needs to know the second object’s interface, not the details of the implementation.
As a result, reuse can happen more readily.

• Maintainable: Polymorphism aids maintainability. As you’ve already seen, poly-
morphism results in tighter code. So, there is less to maintain. When you do need
to maintain code, you’re not forced to maintain large case structures.

• Extendable: Polymorphic code is more extendable. Inclusion polymorphism allows
you to add new subtypes to your system without having to alter the system to use
the new subtype. Overloading allows you to add new methods without having to
worry about naming conflicts. Finally, parametric polymorphism allows you to
automatically extend your classes to support new types.

• Timely: Polymorphism helps you write timely code. If you can write less code, you
can deliver your code sooner. Because polymorphism encourages you to program
generically, you can add new types almost instantly to your programs. As a result,
maintaining and extending your programs happens at a much quicker pace.

Summary
Polymorphism is the state of one having many forms. Polymorphism is a mechanism that
allows a single name to represent different code. Because a single name can represent
different code, that name can express many different behaviors. Polymorphism allows
you to write moody code: code that exhibits different behaviors.

For the purposes of this book you learned about four different types of polymorphism:

• Inclusion Polymorphism

• Parametric Polymorphism

• Overriding

• Overloading

While there is some disagreement over polymorphism in the OO community, these types
describe some of the more common forms of polymorphism. Understanding these types
will give you a good foundation in the theory of polymorphism.

09 0672321092 CH06 08/22/2001 2:45 PM Page 147

Inclusion polymorphism allows an object to express many different behaviors at runtime.
Likewise, parameteric polymorphism allows an object or method to operate on a number
of different parameter types.

Overriding allows you to override a method and know that polymorphism will make sure
that the correct method always executes.

Finally, overloading allows you to declare the same method multiple times. Each declara-
tion simply differs in the number and type of arguments. Coercion makes a method
appear polymorphic by converting arguments into the type of arguments expected by the
method.

Polymorphism allows you to write shorter, more understandable code that is more flexi-
ble to future requirements.

Q&A
Q There are three pillars of object-oriented programming. If I don’t use all

three, is my software somehow not OO?

A At a minimum, you must always use encapsulation. Without encapsulation you
really can’t have effective inheritance, polymorphism, or OO in general.

As for the other two pillars, you should only use them when it makes sense. Don’t
use inheritance or polymorphism just so that you can say you used them in your
program.

The absence of inheritance and polymorphism doesn’t signify that a program is
necessarily not OO. However, you need to take a hard look at your program to see
if you are squandering an opportunity to properly use the other pillars.

Q Why is there so much disagreement over polymorphism in the OO com-
munity?

A There is a great deal of disagreement in the literature that still needs to be worked
through. Each author seems to have his own vocabulary. Much of this disagreement
stems from the fact that each language implements polymorphism in its own way.
All of these different implementations have fragmented the community.

What is important is that you understand the four types presented today. While
they may go under different names, these four types are fairly well agreed upon.

Q Will Java ever support parametric polymorphism?

A Only Sun can answer that question. However, there is currently a Java
Specification Request (JSR-000014) that has been accepted for development. It
adds generic types to the Java programming language. So, it’s on the way!

148 Day 6

09 0672321092 CH06 08/22/2001 2:45 PM Page 148

Polymorphism: Learning to Predict the Future 149

6

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. What are the four types of polymorphism?

2. What does inclusion polymorphism allow you to do?

3. How do overloading and parametric polymorphism more naturally model the real
world?

4. When programming, why should you program to an interface rather than an
implementation?

5. How do polymorphism and overriding work together?

6. What is another name for overloading?

7. Define overloading.

8. Define parametric polymorphism.

9. What three pitfalls are associated with polymorphism?

10. How do encapsulation and inheritance factor into inclusion polymorphism.

Exercises
1. Give a real-life example of a programming situation where you think you could use

inclusion polymorphism. It may help to think of something that you have pro-
grammed in the past that could have benefited from polymorphism.

2. Give an example of coercion. Explain why it is coercion.

3. Look through the Java APIs. Find an example of overloading and explain it. Then,
find a class hierarchy that you could leverage for inclusion polymorphism. Identify
the hierarchy and explain how you can apply inclusion polymorphism to it.

09 0672321092 CH06 08/22/2001 2:45 PM Page 149

09 0672321092 CH06 08/22/2001 2:45 PM Page 150

DAY 7

WEEK 1

Polymorphism: Time to
Write Some Code

Yesterday you learned about polymorphism. You should have a good under-
standing of the four different types of polymorphism. Today you will gain
hands-on experience with polymorphism through a number of lab exercises.
By the end of today’s lesson, you should feel a bit more comfortable with the
theory presented in Day 6, “Polymorphism: Learning to Predict the Future.”

Today you will learn

• How to apply the different forms of polymorphism

• How to write future proof software

• How polymorphism can help you avoid switch logic

Lab 1: Applying Polymorphism
In Day 5, Lab 2 introduced you to an employee hierarchy. Listing 7.1 presents
a slightly altered Employee base class.

10 0672321092 CH07 08/22/2001 2:49 PM Page 151

LISTING 7.1 Employee.java

public abstract class Employee {

private String first_name;
private String last_name;
private double wage;

public Employee(String first_name, String last_name, double wage) {
this.first_name = first_name;
this.last_name = last_name;
this.wage = wage;

}

public double getWage() {
return wage;

}

public String getFirstName() {
return first_name;

}

public String getLastName() {
return last_name;

}

public abstract double calculatePay();

public void printPaycheck() {
String full_name = last_name + “, “ + first_name;
System.out.println(“Pay: “ + full_name + “ $” + calculatePay());

}
}

The new Employee class now has an abstract calculatePay() method. Each subclass
must define its own calculatePay() implementation. Listings 7.2 and 7.3 present two
possible subclasses.

LISTING 7.2 CommissionedEmployee.java

public class CommissionedEmployee extends Employee {

private double commission; // the $ per unit
private int units; // keep track of the # of units sold

public CommissionedEmployee(String first_name, String last_name,
double wage, double commission) {
super(first_name, last_name, wage);
// call the original constructor in order to properly initialize

152 Day 7

10 0672321092 CH07 08/22/2001 2:49 PM Page 152

Polymorphism: Time to Write Some Code 153

7

LISTING 7.2 continued

this.commission = commission;
}

public double calculatePay() {
return getWage() + (commission * units);

}

public void addSales(int units) {
this.units = this.units + units;

}

public int getSales() {
return units;

}

public void resetSales() {
units = 0;

}

}

LISTING 7.3 HourlyEmployee.java

public class HourlyEmployee extends Employee {

private int hours; // keep track of the # of hours worked

public HourlyEmployee(String first_name, String last_name,
double wage) {

super(first_name, last_name, wage);
// call the original constructor in order to properly initialize

}

public double calculatePay() {
return getWage() * hours;

}

public void addHours(int hours) {
this.hours = this.hours + hours;

}

public int getHours() {
return hours;

}

public void resetHours() {

10 0672321092 CH07 08/22/2001 2:49 PM Page 153

LISTING 7.3 continued

hours = 0;
}

}

Each subclass provides its own implementation of calculatePay(). HourlyEmployee
simply calculates its pay by multiplying the hours worked by the hourly rate. A
CommissionedEmployee is paid a base wage plus a bonus for each unit sold. Each sub-
class also adds some of its own methods. For example, HourlyEmployee has a method
for resetting hours. Likewise, CommissionedEmployee has a method for adding sales.

As you learned in Day 4, “Inheritance: Time to Write Some Code,”
CommissionedEmployee and HourlyEmployee allow the instances of the two classes to
share a substitutability relationship. You can use a CommissionedEmployee instance or an
HourlyEmployee instance in place of Employee. However, what does polymorphism
allow you to do?

Consider, the Payroll class shown in Listing 7.4.

LISTING 7.4 Payroll.java

public class Payroll {

private int total_hours;
private int total_sales;
private double total_pay;

public void payEmployees(Employee [] emps) {
for(int i = 0; i < emps.length; i ++) {

Employee emp = emps[i];
total_pay += emp.calculatePay();
emp.printPaycheck();

}
}

public void recordEmployeeInfo(CommissionedEmployee emp) {
total_sales += emp.getSales();

}

public void recordEmployeeInfo(HourlyEmployee emp) {
total_hours += emp.getHours();

}

public void printReport() {

154 Day 7

10 0672321092 CH07 08/22/2001 2:49 PM Page 154

Polymorphism: Time to Write Some Code 155

7

Consider the payEmployees(Employee [] emps) method. Substitutability relation-
ships enable you to pass any subclass of Employee to the method. This method treats
HourlyEmployees and CommissionedEmployees generally by treating them as simple
Employee instances.

Polymorphism is what makes this example interesting. When the payEmployees() meth-
ods says

total_pay += emp.calculatePay()

Polymorphism makes it seem that Employee has many different behaviors. When
emp.calculatePay() is called on an object that is really an HourlyEmployee,
calculatePay() calculates the pay by multiplying the hourly rate by the number of
hours worked. Likewise, when the underlying instance is a CommissionedEmployee,
calculatePay() returns the wage plus any sales bonus.

payEmployees() is an example of inclusion polymorphism. This method works for any
employee. The method doesn’t need special code, you won’t need to update it each time
you add a new subclass to your system—it simply works on all Employees.

Too many get and set methods indicate a bad OO design. In general, you
very rarely want to ask an object for its data. Instead, you should ask an
object to do something with its data.

In the employee example, it would have been better OO to pass the
Employee objects a Report object where they could log their hours, sales,
etc. Although this would be better OO, it would have detracted from the
example.

“Good OO” is also relative. If you are writing generic objects that will be
used in many different situations you may want to add get/set methods so
that you can keep the class interface manageable.

Caution

LISTING 7.4 continued

System.out.println(“Payroll Report:”);
System.out.println(“Total Hours: “ + total_hours);
System.out.println(“Total Sales: “ + total_sales);
System.out.println(“Total Paid: $” + total_pay);

}

}

10 0672321092 CH07 08/22/2001 2:49 PM Page 155

Methods such as

recordEmployeeInfo(CommissionedEmployee emp)

and

recordEmployeeInfo(HourlyEmployee emp)

demonstrate overloading. Overloading allows a method to appear polymorphic. For
example, it allows the following:

Payroll payroll = new Payroll();
CommissionedEmployee emp1 = new CommissionedEmployee(“Mr.”, “Sales”,

25000.00, 1000.00);
HourlyEmployee emp2 = new HourlyEmployee(“Mr.”, “Minimum Wage”, 6.50);

payroll.recordEmployeeInfo(emp2);
payroll.recordEmployeeInfo(emp1);

recordEmployeeInfo() appears polymorphic because it can handle both types of
employee.

Overloading is a bit more limited than inclusion polymorphism. With inclusion polymor-
phism you saw that you only needed one method, payEmployees(), to calculate pay for
any Employee. No matter how many subclasses of Employee that you introduce, the
method will always work. That’s the power of inclusion polymorphism.

Methods that employ overloading are not nearly as robust. Take the
recordEmployeeInfo() method as an example. Each time that you add a new subclass to
the Employee hierarchy, you will have to add a new recordEmployeeInfo() method for
the new type. While a few extra methods may be acceptable for a small hierarchy, you
may have to rework your hierarchy so that you can write a generic
recordEmployeeInfo() as the number of Employee subclasses increases.

Listing 7.5 provides a small main that exercises the Payroll methods.

LISTING 7.5 PayrollDriver.java

public class PayrollDriver {
public static void main(String [] args) {

// create the payroll system
Payroll payroll = new Payroll();

// create and update some employees
CommissionedEmployee emp1 = new CommissionedEmployee(“Mr.”, “Sales”,

25000.00, 1000.00);

156 Day 7

10 0672321092 CH07 08/22/2001 2:49 PM Page 156

Polymorphism: Time to Write Some Code 157

7

LISTING 7.5 continued

CommissionedEmployee emp2 = new CommissionedEmployee(“Ms.”, “Sales”,
25000.00, 1000.00);

emp1.addSales(7);
emp2.addSales(5);

HourlyEmployee emp3 = new HourlyEmployee(“Mr.”, “Minimum Wage”, 6.50);
HourlyEmployee emp4 = new HourlyEmployee(“Ms.”, “Minimum Wage”, 6.50);
emp3.addHours(40);
emp4.addHours(46);

// use the overloaded methods
payroll.recordEmployeeInfo(emp2);
payroll.recordEmployeeInfo(emp1);
payroll.recordEmployeeInfo(emp3);
payroll.recordEmployeeInfo(emp4);

// stick the employees in an array
Employee [] emps = new Employee[4];
emps[0] = emp1; emps[1] = emp2; emps[2] = emp3; emps[3] = emp4;

payroll.payEmployees(emps);
payroll.printReport();

}
}

Figure 7.1 shows the output of the main.

FIGURE 7.1
The proper output of
PayrollDriver.

10 0672321092 CH07 08/22/2001 2:49 PM Page 157

If you step through and manually calculate the pay for each employee you see that
payEmployees() pays out the proper amount. Likewise, all the employee information is
properly recorded.

Problem Statement
Day 5 had you work with MoodyObjects. Listing 7.6 presents a slightly modified
MoodyObject.

LISTING 7.6 MoodyObject.java

public abstract class MoodyObject {

// return the mood
protected abstract String getMood();

// ask the object how it feels
public void queryMood() {

System.out.println(“I feel “ + getMood() + “ today!”);
}

}

Listings 7.7 and 7.8 present two subclasses: HappyObject and SadObject.

LISTING 7.7 HappyObject.java

public class HappyObject extends MoodyObject {

// redefine class’s mood
protected String getMood() {

return “happy”;
}

// specialization
public void laugh() {

System.out.println(“hehehe... hahaha... HAHAHAHAHAHA!!!!!”);
}

}

LISTING 7.8 SadObject.java

public class SadObject extends MoodyObject {

// redefine class’s mood

158 Day 7

10 0672321092 CH07 08/22/2001 2:49 PM Page 158

Polymorphism: Time to Write Some Code 159

7

LISTING 7.8 continued

protected String getMood() {
return “sad”;

}

// specialization
public void cry() {

System.out.println(“‘wah’ ‘boo hoo’ ‘weep’ ‘sob’ ‘weep’”);
}

}

Your job is to practice polymorphism. Write a PsychiatristObject class.
PsychiatristObject should have three methods. examine() should take any
MoodyObject instance and ask it how it feels. PsychiatristObject should also have an
overloaded observe() method. observe() should call the object’s cry() or laugh()
methods. The PsychiatristObject should make a medical comment for each behavior.

Be sure to use the provided PsychiatristDriver to test your solution!

The next section discusses the solutions to Lab 1. Do not proceed until you
complete Lab 1.

Caution

Solutions and Discussion
Listing 7.9 presents one possible PsychiatristObject.

LISTING 7.9 PsychiatristObject.java

public class PsychiatristObject {

// use inclusion polymorphism to examine all moody objects generically
public void examine(MoodyObject obj) {

System.out.println(“Tell me, object, how do you feel today?”);
obj.queryMood();
System.out.println();

}

// use overloading to observe objects specifically,
//but with a generically named method
public void observe(SadObject obj) {

obj.cry();
System.out.println(

“Hmm... very, very interesting. Something makes this object sad.”);

10 0672321092 CH07 08/22/2001 2:49 PM Page 159

LISTING 7.9 continued

System.out.println();
}
public void observe(HappyObject obj) {

obj.laugh();
System.out.println(

“Hmm... very, very interesting. This object seems very happy.”);
System.out.println();

}
}

examine(MoodyObject obj) treats all MoodyObjects generically. The
PsychiatristObject asks the MoodyObject how it feels and calls its queryMood()
method. The PsychiatristObject needs an observe() method for each type of
MoodyObject that it would like to observe.

After completing this lab you should begin to feel comfortable with the basic mecha-
nisms of polymorphism.

Lab 2: Bank Account—Applying
Polymorphism to a Familiar Example

In Lab 2 you’re going to take what you learned in Lab 1 and apply it to a slightly more
involved problem. This lab centers on the BankAccount hierarchy presented in Day 5.
The hierarchy presented here remains nearly the same as the one presented in Day 5. The
only difference is that BankAccount is now an abstract class. You can no longer directly
instantiate a BankAccount.

Making BankAccount abstract more closely models how bank accounts work. When you
open an account you open a checking account or a money market account. You do not
open a generic bank account. Listing 7.10 lists the only change to the hierarchy.

LISTING 7.10 BankAccount.java

public abstract class BankAccount {
// the rest is the same

}

Problem Statement
In this lab you need to write a Bank class. The Bank class has a number of methods.

160 Day 7

10 0672321092 CH07 08/22/2001 2:49 PM Page 160

Polymorphism: Time to Write Some Code 161

7

Bank instances hold onto accounts. However, you need a way to keep track of to whom
the accounts belong. addAccount() enables you to specify an owner each time you add a
new account:

public void addAccount(String name, BankAccount account);

You can use the owner name to access the proper account later.

totalHoldings() enables the Bank to report the total amount of money in the bank:

public double totalHoldings();

totalHoldings() should loop through all the accounts and total the amount held in the
bank.

totalAccounts() enables you to query the Bank instance to see how many accounts it
currently holds:

public int totalAccounts();

deposit() allows you to deposit funds into a specific bank account:

public void deposit(String name, double amount);

deposit() is a convenience method that frees you from having to retrieve a specific
account before you can add funds to it. Instead, deposit() allows you to deposit funds
directly through the bank.

balance() allows you to retrieve the balance of a specific account:

public double balance(String name)

Like deposit(), balance() is a convenience method.

addAccount() stores an account under a given name. There are a number of ways to
implement this functionality. However, some approaches are easier to implement than
others.

For this lab you will want to consider java.util.Hashtable. Hashtable allows you to
store and retrieve key/value pairs.

Consider this consolidated API:

public Object get(Object key);
public Object put (Object key, Object value);
public int size();
public java.util.Enumeration elements();

Here is an example of Hashtable:

java.util.Hashtable table = new java.util.Hashtable();

10 0672321092 CH07 08/22/2001 2:49 PM Page 161

Like Lab 1, Lab 2 provides a driver to help you test your solution. Be sure to check out
BankDriver.

162 Day 7

table.put(“LANGUAGE”, “JAVA”);
String name = table.get(“LANGUAGE”);

This example stores the value JAVA under the key LANGUAGE. To retrieve the value later,
you simply call get() and pass the proper key.

By studying the API you’ll notice that the get() and put() methods return Object. So if
you were to store a String, you will get the value back as an Object.

In Java, all objects inherit from Object. The Hashtable was written to deal in Objects so
that it will work for all Java objects. However, what if you store a CheckingAccount in the
Hashtable and would like to treat it as a CheckingAccount after you retrieve it? How
would you do that in Java?

Java provides a way for you to turn an Object reference back to its proper type. The
mechanism is known as casting. The following statement is illegal in Java:

CheckingAccount account = table.get(“CHECKING_ACCOUNT”);

Instead, you will need to perform a cast before you can store an Object reference to a
CheckingAccount variable:

CheckingAccount account = (CheckingAccount) table.get(“CHECKING_ACCOUNT”
);

You have to be careful while casting. Casting can be dangerous. For example, the follow-
ing cast is illegal:

HappyObject o = new HappyObject();
table.put(“HAPPY”, o);
(CheckingAccount) table.get(“HAPPY”);

When you cast, you must be certain that the Object that you are casting is truly the type
(CAST_TYPE). So, for this lab, when you retrieve a BankAccount from the Hashtable you’ll
want to cast to BankAccount. As an example, consider the following cast:

BankAccount b = (BankAccount) table.get(“ACCOUNT1”);

If you try to perform an illegal cast in Java, Java will throw a ClassCastException.

The next section discusses the solutions to Lab 2. Do not proceed until you
complete Lab 2.

Caution

10 0672321092 CH07 08/22/2001 2:49 PM Page 162

Polymorphism: Time to Write Some Code 163

7

Solutions and Discussion
Listing 7.11 presents one possible Bank implementation.

LISTING 7.11 Bank.java

public class Bank {

private java.util.Hashtable accounts = new java.util.Hashtable();

public void addAccount(String name, BankAccount account) {
accounts.put(name, account);

}

public double totalHoldings() {
double total = 0.0;

java.util.Enumeration enum = accounts.elements();
while(enum.hasMoreElements()) {

BankAccount account = (BankAccount) enum.nextElement();
total += account.getBalance();

}
return total;

}

public int totalAccounts() {
return accounts.size();

}

public void deposit(String name, double amount) {
BankAccount account = retrieveAccount(name);
if(account != null) {

account.depositFunds(amount);
}

}

public double balance(String name) {
BankAccount account = retrieveAccount(name);
if(account != null) {

return account.getBalance();
}
return 0.0;

}

private BankAccount retrieveAccount(String name) {
return (BankAccount) accounts.get(name);

}
}

10 0672321092 CH07 08/22/2001 2:49 PM Page 163

Internally, this solution uses java.util.Hashtable to hold onto all the BankAccounts.
Instead of providing its own mechanism for storage and retrieval, this implementation
takes advantage of reuse by using those classes supplied by Java.

balance(), deposit(), addAccount(), and totalHoldings() all demonstrate inclusion
polymorphism. These methods will work for any subclass of BankAccount that you
might create.

After completing this lab you should gain further insight into the mechanisms of poly-
morphism. In Day 5, BankAccounts showed you the convenience of inheritance.
Inheritance enabled you to quickly create subclasses by just programming what was dif-
ferent between accounts. Polymorphism further simplifies your code by providing a
mechanism for generic programming.

Lab 3: Bank Account—Using Polymorphism
to Write Future-Proof Code

Throughout the discussion of polymorphism you’ve heard the term future-proof software.
What exactly is future-proof software? Simply, future-proof software is software that eas-
ily adapts to changing requirements.

Requirements change all the time. When you first set out to write a program the require-
ments can change as you learn more about the problem you are solving. Once written, your
users will expect and demand new features from your software. If you create future-proof
software, you won’t have to completely rewrite it each time you get a new requirement.

Let’s consider an example of changing requirements. Listing 7.12 presents a new
MoodyObject: CarefreeObject.

LISTING 7.12 CarefreeObject.java

public class CarefreeObject extends MoodyObject {

// redefine class’s mood
protected String getMood() {

return “carefree”;
}

// specialization
public void whistle() {

System.out.println(“whistle, whistle, whistle...”);
}

}

164 Day 7

10 0672321092 CH07 08/22/2001 2:49 PM Page 164

Polymorphism: Time to Write Some Code 165

7

Listing 7.13 shows the updated PsychiatristDriver.

LISTING 7.13 PsychiatristDriver.java

public class PsychiatristDriver {

public static void main(String [] args) {
HappyObject happy = new HappyObject();
SadObject sad = new SadObject();
CarefreeObject carefree = new CarefreeObject();
PsychiatristObject psychiatrist = new PsychiatristObject();

// use inclusion polymorphism
psychiatrist.examine(happy);
psychiatrist.examine(sad);
psychiatrist.examine(carefree);

// use overloading so that we can observe the objects
psychiatrist.observe(happy);
psychiatrist.observe(sad);

}

}

Figure 7.2 shows the output that you will see when executing PsychiatristDriver.

FIGURE 7.2
The proper output of
PsychiatristDriver.

Here you see that the PsychiatristObject is future-proof. You can add new
MoodyObjects, all with their own customized behavior, at any time. The
PsychiatristObject can simply use the new subtypes.

10 0672321092 CH07 08/22/2001 2:49 PM Page 165

MoodyObject is a simple example. However, try to imagine how you could extend this
idea to more complex programs!

Problem Statement
Your task is to witness future proof programming first hand. In the last lab you wrote a
Bank class. The Bank class can work on any BankAccount subtype. Your task is to create
a new BankAccount type: the RewardsAcount.

Like a SavingsAccount, the RewardsAccount applies interest to the balance. However, to
increase the number and size of deposits, the bank would like to introduce a rewards
system.

The RewardsAccount keeps track of the number of deposits over a certain dollar amount:
the reward deposit level. For example, say that the reward deposit level is $500 dollars.
Each time the depositor deposits $500 or more, the depositor will earn a reward point.

166 Day 7

You may notice that this example focuses on the examine() method.
Inclusion polymorphism allows for truly future-proof software. However, if
the PsychiatristObject wants to observe() a new subtype, you will need
to update the PsychiatristObject as well.

Note

Keep the RewardsAccount simple. If the reward deposit level is $500 and the
depositor deposits $500 the depositor earns one reward point. If the deposi-
tor deposits $3,000, the depositor still should only earn one reward point.

Note

Along with the methods defined by BankAccount, RewardsAccount should also provide a
mechanism for retrieving and resetting the number of reward points earned. The
RewardsAccount also needs a way to set and get the reward deposit level.

For this lab you might want to go back to Day 5 and reread the SavingsAccount and
BankAccount descriptions. This lab also includes a RewardsAccountDriver and an updat-
ed BankDriver. Be sure to use these to test your solution. You’ll also want to look over
the BankDriver. The BankDriver demonstrates how you can add a new object type to
your program without having to update any of the other objects.

The next section discusses the solutions to Lab 3. Do not proceed until you
complete Lab 3.

Caution

10 0672321092 CH07 08/22/2001 2:49 PM Page 166

Polymorphism: Time to Write Some Code 167

7

Solutions and Discussion
Listing 7.14 presents one possible RewardsAccount solution.

LISTING 7.14 RewardsAccount.java

public class RewardsAccount extends SavingsAccount {
private double min_reward_balance;
private int qualifying_deposits;

public RewardsAccount(double initDeposit, double interest, double min) {
super(initDeposit, interest);
min_reward_balance = min;

}

public void depositFunds(double amount) {
super.depositFunds(amount);
if(amount >= min_reward_balance) {

qualifying_deposits++;
}

}

public int getRewardsEarned() {
return qualifying_deposits;

}

public void resetRewards() {
qualifying_deposits = 0;

}

public double getMinimumRewardBalance() {
return min_reward_balance;

}

public void setMinimumRewardBalance(double min) {
min_reward_balance = min;

}
}

RewardsAccount overrides depositFunds() so that it can check the balance and reward
points. The class also adds methods for retrieving the rewards balance, resetting the bal-
ance, as well as getting and setting the reward deposit level.

Listing 7.15 presents the updated BankDriver.

10 0672321092 CH07 08/22/2001 2:49 PM Page 167

LISTING 7.15 BankDriver.java

public class BankDriver {

public static void main(String [] args) {
CheckingAccount ca = new CheckingAccount(5000.00, 5, 2.50);
OverdraftAccount oa = new OverdraftAccount(10000.00, 0.18);
SavingsAccount sa = new SavingsAccount(500.00, 0.02);
TimedMaturityAccount tma = new TimedMaturityAccount(

10000.00, 0.06, 0.05);

Bank bank = new Bank();
bank.addAccount(“CHECKING”, ca);
bank.addAccount(“OVERDRAFT”, oa);
bank.addAccount(“SAVINGS”, sa);
bank.addAccount(“TMA”, tma);

System.out.println(“Total holdings(should be $25500.0): $” +
bank.totalHoldings());

System.out.println(“Total accounts(should be 4): “ +
bank.totalAccounts());

RewardsAccount ra = new RewardsAccount(5000.00, .05, 500.00);
bank.addAccount(“REWARDS”, ra);

System.out.println(“Total holdings(should be $30500.0): $” +
bank.totalHoldings());

System.out.println(“Total accounts(should be 5): “ +
bank.totalAccounts());

bank.deposit(“CHECKING”, 250.00);
double new_balance = bank.balance(“CHECKING”);
System.out.println(“CHECKING new balance (should be 5250.0): $” +

new_balance);
}

}

To use the new account class there are two steps that you must take.

For the first step you must create your new subtype. After you create your new subtype,
you need to alter your program to create new instances of the object.

In the case of RewardsAccount you must update the BankAccount main() to go out and
create instances of RewardsAccount. However, you do not have to change anything else!

When you’re programming a real program you will go through the same steps to intro-
duce new subtypes to your program. First you’ll need to create the new subtype.

168 Day 7

10 0672321092 CH07 08/22/2001 2:49 PM Page 168

Polymorphism: Time to Write Some Code 169

7

Secondly, you’ll need to alter your code to get it to create your new subtype. But that’s it.
You do not need to alter the rest of your program.

Later on you’ll see ways to make your programs so flexible that you might not need to
alter any of your program’s code at all for the program to find and start using new
subtypes.

Lab 4: Case Study—The Java Switch and
Polymorphism

Java, as well as many other languages, provides a switch mechanism. Consider the fol-
lowing day_of_the_week() method:

public void day_of_the_week(int day) {
switch (day) {

case 1:
System.out.println(“Sunday”);
break;

case 2:
System.out.println(“Monday”);
break;

case 3:
System.out.println(“Tuesday”);
break;

case 4:
System.out.println(“Wednesday”);
break;

case 5:
System.out.println(“Thursday”);
break;

case 6:
System.out.println(“Friday”);
break;

case 7:
System.out.println(“Saturday”);
break;

default:
System.out.println(day + “ is not a valid day.”);
break;

}
}

The method takes one parameter: an int representing the day of the week. The method
then switches over all of the valid days of the week. If the day argument matches one of
the days, the method prints the day’s name.

10 0672321092 CH07 08/22/2001 2:49 PM Page 169

Generally speaking you use switches to perform conditional logic. With conditional
logic, you check a piece of data for a certain condition. If that condition is met you do
something. If another condition is met you do something else entirely. Anyone from a
procedural background should be familiar with such an approach to programming.

If you’re comfortable with conditionals, it’s time for you to do some unlearning. Switch
logic is generally considered bad OO practice. It is so bad in fact, that many OO lan-
guages do not provide a switch mechanism. Conditional logic does have one benefit; it
helps you to detect poor design!

Switches are almost always bad by nature. However, conditionals often sneak up on you,
because they come in many forms. Consider a slightly different day_of_the_week()
method.

public void day_of_the_week(int day) {
if (day == 1) {

System.out.println(“Sunday”);
} else if (day == 2) {

System.out.println(“Monday”);
} else if (day == 3) {

System.out.println(“Tuesday”);
} else if (day == 4) {

System.out.println(“Wednesday”);
} else if (day == 5) {

System.out.println(“Thursday”);
} else if (day == 6) {

System.out.println(“Friday”);
} else if (day == 7) {

System.out.println(“Saturday”);
} else {

System.out.println(day + “ is not a valid day.”);
}

}

So what’s so wrong with conditionals?

Conditionals are contrary to the concepts of OO. In OO you’re not supposed to ask an
object for its data and then do something to that data. Instead, you’re supposed to ask an
object to do something to its data. In the case of the day_of_the_week() method you
probably obtain day from some object. You shouldn’t be processing raw data. Instead, you
should ask the object for a string representation. Conditionals force you to muddle respon-
sibilities. Each place that uses the data will have to apply the same conditional logic.

There are times when conditionals are absolutely necessary. So, how do you detect “bad”
conditionals?

There are ways to know when a “good” conditional goes “bad.” If you find yourself
updating a switch or if/else blocks each time you add a new subtype, chances are the

170 Day 7

10 0672321092 CH07 08/22/2001 2:49 PM Page 170

Polymorphism: Time to Write Some Code 171

7

conditional is “bad.” Not only is this a bad OO practice it is a maintenance nightmare.
You’ll have to make sure to update each conditional that switches over the data. It will
take a lot of time to guarantee that you didn’t forget to update something!

Fixing a Conditional
Consider the following method:

public int calculate(String operation, int operand1, int operand2) {
if (operation.equals(“+”)) {

return operand1 + operand2;
} else if (operation.equals(“*”)) {

return operand1 * operand2;
} else if (operation.equals(“/”)) {

return operand1 / operand2;
} else if (operation.equals(“-”)) {

return operand1 - operand2;
} else {

System.out.println(“invalid operation: “ + operation);
return 0;

}
}

Such a method might appear in a calculator problem. The calculate() method takes the
operation as well as the two operands as argument. It then performs the requested
calculation.

So how might you fix the problem? You can fix the problem with objects, of course!

When you set out to eliminate switch logic, start with the data that you’re switching over.
Turn the data into an object.

In this case, you should create add, subtract, multiply, and divide objects. All these
objects are operations. So they should all inherit from a common base class. As you’ve
seen throughout this day, substitutability and polymorphism will allow you to do some
clever things to these objects.

All the objects that you should create are operations, so you know that you need an
Operation base class. But what does an Operation do? An Operation calculates some
value given two operands. Listing 7.16 presents an Operation class.

LISTING 7.16 Operation.java

public abstract class Operation {
public abstract int calculate(int operand1, int operand2);

}

10 0672321092 CH07 08/22/2001 2:49 PM Page 171

Listings 7.17, 7.18, 7.19, and 7.20 present the various operation objects.

LISTING 7.17 Add.java

public class Add extends Operation {
public int calculate(int operand1, int operand2) {

return operand1 + operand2;
}

}

LISTING 7.18 Subtract.java

public class Subtract extends Operation {
public int calculate(int operand1, int operand2) {

return operand1 - operand2;
}

}

LISTING 7.19 Multiply.java

public class Multiply extends Operation {
public int calculate(int operand1, int operand2) {

return operand1 * operand2;
}

}

LISTING 7.20 Divide.java

public class Divide extends Operation {
public int calculate(int operand1, int operand2) {

return operand1 / operand2;
}

}

Each operation implements the calculate() method in its own way. Now that you have
an object for each operation you can rewrite the original calculate() method.

public int calculate(Operation operation, int operand1, int operand2) {
return operation.calculate(operand1, operand2);

}

By turning the operation into an object you’ve gained a good deal of flexibility. In the
past you would have had to update the method each time you wanted to add a new

172 Day 7

10 0672321092 CH07 08/22/2001 2:49 PM Page 172

Polymorphism: Time to Write Some Code 173

7

operation. Now, you can simply create the new operation and pass it to the method. You
do not have to alter the method in any way for it to work with the new operation—it sim-
ply works.

Problem Statement
Java provides an operator called instanceof. instanceof allows you to check the under-
lying type of a reference.

String s = “somestring”;
Object obj = s;
System.out.println((obj instanceof String));

This code segment prints true. obj holds onto an instance of String. Most OOP lan-
guages provide a similar mechanism.

Now, consider the new Payroll class in Listing 7.21.

LISTING 7.21 Payroll.java

public class Payroll {

private int total_hours;
private int total_sales;
private double total_pay;

public void payEmployees(Employee [] emps) {
for(int i = 0; i < emps.length; i ++) {

Employee emp = emps[i];
total_pay += emp.calculatePay();
emp.printPaycheck();

}
}

public void calculateBonus(Employee [] emps) {
for(int i = 0; i < emps.length; i ++) {

Employee emp = emps[i];
if(emp instanceof HourlyEmployee) {

System.out.println(“Pay bonus to “ + emp.getLastName() +
“, “ + emp.getFirstName() + “ $100.00.”);

} else if (emp instanceof CommissionedEmployee) {
int bonus = ((CommissionedEmployee) emp).getSales() * 100;
System.out.println(“Pay bonus to “ + emp.getLastName() + “, “ +

emp.getFirstName() + “ $” + bonus);
} else {

System.out.println(“unknown employee type”);
}

}
}

10 0672321092 CH07 08/22/2001 2:49 PM Page 173

LISTING 7.21 continued

public void recordEmployeeInfo(CommissionedEmployee emp) {
total_sales += emp.getSales();

}

public void recordEmployeeInfo(HourlyEmployee emp) {
total_hours += emp.getHours();

}

public void printReport() {
System.out.println(“Payroll Report:”);
System.out.println(“Total Hours: “ + total_hours);
System.out.println(“Total Sales: “ + total_sales);
System.out.println(“Total Paid: $” + total_pay);

}

}

This Payroll class has a calculateBonus() method. This method takes an array of
Employees, figures out what type each is, and calculates a bonus. HourlyEmployees
receive a flat $100 bonus while CommissionedEmployees receive $100 for each sale.

Your job is to eliminate the conditional logic found in calculateBonus(). Start by
attacking the data the method is switching over. In this case, it’s switching over an
object. So what’s wrong?

Rather than asking the object for the bonus, the method asks the object for some data and
then calculates a bonus using that data. Instead, the method should ask the object for the
data.

You can download the source to the Payroll, Employee, HourlyEmployee, and
CommissionedEmployee classes. There is also a PayrollDriver provided so that you can
easily test your solution.

174 Day 7

The next section discusses the solutions to Lab 4. Do not proceed until you
complete Lab 4.

Caution

Solutions and Discussion
To solve this problem you should add a calculateBonus() method directly to each
Employee. This might seem like you’re breaking pitfall 1 from Day 6. However, it’s okay

10 0672321092 CH07 08/22/2001 2:49 PM Page 174

Polymorphism: Time to Write Some Code 175

7

to move the method into the base class, because all subclasses know how to calculate
their bonus. Really, it should have been in the base class all along.

Listings 7.22, 7.23, and 7.24 present the required changes.

LISTING 7.22 Employee.java

public abstract class Employee {
public abstract double calculateBonus();
// snipped for brevity, the rest stays the same

}

LISTING 7.23 HourlyEmployee.java

public class HourlyEmployee extends Employee {
public double calculateBonus() {

return 100.00;
}
// snipped for brevity, the rest stays the same

}

LISTING 7.24 CommissionedEmployee.java

public class CommissionedEmployee extends Employee {
public double calculateBonus() {

return 100.00 * getSales();
}
// snipped for brevity, the rest stays the same

}

With these changes you can update the Payroll class, as Listing 7.25 demonstrates.

LISTING 7.25 Payroll.java

public class Payroll {
public void calculateBonus(Employee [] emps) {

for(int i = 0; i < emps.length; i ++) {
Employee emp = emps[i];
System.out.println(“Pay bonus to “ + emp.getLastName() + “, “ +

emp.getFirstName() + “ $” + emp.calculateBonus()
);

}
}
// snipped for brevity, the rest stays the same

}

10 0672321092 CH07 08/22/2001 2:49 PM Page 175

Voila! No more nasty conditional logic!

176 Day 7

Switch tips:

• Avoid the use of switch.

• Look at large if/else blocks with skepticism.

• Beware of cascading changes. If a change requires many conditional
changes, you might have a problem.

• instanceof is a very large red flag.

• if/else, switch, and instanceof are “guilty until proven innocent.”

Tip

Tips to switch elimination:

• Objectify the data.

• If the data is already an object, add a method to the object.

• Avoid instanceof checks; use polymorphism instead.

Tip

Summary
Today you completed four labs. Lab 1 gave you a chance to experiment with some of the
basic mechanisms of polymorphism. Lab 2 enabled you to apply what you learned in
Lab 1 to a more complicated example. Lab 3 should have finally answered the question,
“What exactly is future-proof software.” Lab 3 really sums up why you want to use poly-
morphism. Finally, Lab 4 gave you something to look out for while programming. It also
showed how useful polymorphism can be when leveraged correctly.

Together all these labs reinforced the lessons of polymorphism. They give you what you
need to know to properly take advantage of the concept. Hopefully, after completing
these labs, you will look at your programs from a polymorphism viewpoint. True OO
programming requires a different way of thinking about software. The strengths of OO
truly come through when you can think polymorphically.

Q&A
Q It seems that inclusion polymorphism is more convenient that overloading

since I only need to write one method and have it work with many different
types. Why would I ever use overloading instead?

10 0672321092 CH07 08/22/2001 2:49 PM Page 176

Polymorphism: Time to Write Some Code 177

7

A There are times where overloading is a better choice. A method that uses inclusion
only works if it’s processing related objects. Overloading allows you to reuse a
method name among a group of methods whose arguments may not relate at all.
You can’t do that with inclusion (although you can use a combination of inclusion
and overloading).

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. From the lab solutions, give an example of an overloaded method.

2. What problem does overriding present?

3. What steps do you need to take in order to alter behavior in a polymorphic
hierarchy?

4. From the labs, find an example of inclusion polymorphism.

5. How do you eliminate conditional logic?

6. What is the benefit of inclusion polymorphism over overloading?

7. In OO what is the relationship between objects and data?

8. What’s wrong with conditionals?

9. What is a good indication that a conditional is “bad?”

10. In your own words, explain polymorphism.

Exercises
There are no exercises today. Do your labs!

10 0672321092 CH07 08/22/2001 2:49 PM Page 177

10 0672321092 CH07 08/22/2001 2:49 PM Page 178

In Review
In week one, you not only learned the basics of object-orient-
ed programming, but how and when to apply them.

You learned that the three pillars of object-oriented program-
ming are encapsulation, inheritance, and polymorphism.
Encapsulation allows you to build self-contained pieces of
software. Encapsulation is accomplished through abstraction,
implementation hiding, and division of responsibility.
Inheritance allows you to reuse and extend existing code. You
learned that there are three methods of inheritance: for imple-
mentation reuse, for difference, and for type substitution.
Polymorphism allows a single name to represent different
code. Four different types of polymorphism are inclusion
polymorphism, parametric polymorphism, overloading, and
overriding.

Using the three pillars of object-oriented programming allows
you to create code that is

• Natural

• Reliable

• Reusable

• Maintainable

• Extendable

• Timely

While this information is presented in Days 2, 4, and 6, the
labs from Day 3, 5, and 7 are what really bring everything
together. The hands-on experience in these labs furthered
your understanding of how to write object-oriented code that
fulfills the above goals.

WEEK 1 1

2

3

4

5

6

7

11 0672321092 Week Review 1 08/22/2001 2:48 PM Page 179

11 0672321092 Week Review 1 08/22/2001 2:48 PM Page 180

Learning to
Apply OO

8 Introduction to the UML

9 Introduction to Object Oriented Analysis (OOA)

10 Introduction to Object Oriented Design (OOD)

11 Reusing Designs Through Design Patterns

12 Advanced Design Patterns

13 OO and User Interface Programming

14 Building Reliable Software Through Testing

WEEK 2 8

9

10

11

12

13

14

12 0672321092 Part2 08/22/2001 2:49 PM Page 181

12 0672321092 Part2 08/22/2001 2:49 PM Page 182

At a Glance
In the first week, you learned the basics of writing object-ori-
ented code. While this is a first step in creating an object-ori-
ented program, there is still much you need to learn before
you can start coding.

This week, you move beyond simply coding and cover the
entire software development process. The software develop-
ment process steps that you will cover are analysis, design,
implementation, and testing.

Object-oriented analysis (OOA) is the first step in the devel-
opment process. OOA allows you to understand the problem
you are trying to solve. After completing OOA, you should
know the requirements for your program as well as any
domain specific terminology.

After you have analyzed the problem, you may begin to
design your solution. Day 10 describes object-oriented
design, the process of taking the domain model and creating
the objects model you will use during implementation. Days
11 and 12 present some design short cuts.

The next step is implementation, writing the code. This is
where you put to use the information presented in the first
week.

Testing is the final stage in the development process. It is
important to test throughout the implementation stage as well
as at the end to be able to ensure a defect-free system.

These topics will complement the knowledge you gained in
the first week, and allow you to take an idea and follow
through the development process until you have a fully devel-
oped object-oriented program.

WEEK 2 8

9

10

11

12

13

14

13 0672321092 Week AAG 2 08/22/2001 2:48 PM Page 183

13 0672321092 Week AAG 2 08/22/2001 2:48 PM Page 184

DAY 8

WEEK 2

Introduction to the UML
Last week you learned the basic theories of object-oriented programming.
However, simply knowing a few techniques and definitions will not adequately
prepare you to actually apply them. Do you simply show someone tools,
explain their use and purpose, and then send that person to build a home? Of
course not! Programming is no different. Successful programming only comes
with experience and sound methodology. This week, you will learn how to
properly apply the OO tools that you saw last week.

Today you will explore the Unified Modeling Language (UML) as well as
some of the finer aspects of object inter-relationship. Today’s lessons will give
you the common language that you will use while learning how to analyze your
problems and design OO solutions.

Today you will learn

• Why you should care about the Unified Modeling Language

• How to model your classes using UML

• How to model the various relationships between classes

• How to put it all together

14 0672321092 CH08 08/22/2001 2:44 PM Page 185

Introduction to the Unified
Modeling Language

When a builder builds a home he doesn’t make it up as he goes along. Instead, the
builder builds the house according to a set of detailed blueprints. These blueprints
explicitly lay out the house’s design. Nothing is left to chance.

Now how many times have you, or someone you’ve known, made it up as you went
along while programming? How many times has this practice gotten you into trouble?

The Unified Modeling Language (UML)attempts to bring blueprints to the software
world. The UML is an industry-standard modeling language. The language consists of a
number of graphical notations that you can use to describe the entire architecture of your
software. Programmers, software architects, and analysts use modeling languages to
graphically describe the design of software.

A modeling language is a graphical notation for describing software design. The
language also includes a number of rules to distinguish between correct and

incorrect drawings. It is these rules that make UML a modeling language rather than just
a bunch of symbols for drawing.

A modeling language is not the same as a process or methodology. A methodology tells
you how to design software. Instead, a modeling language illustrates the design you will
create while following a methodology.

A methodology sets out a procedure for designing software. Modeling languages
capture that design graphically.

The UML is not the only modeling language. However, it is a widely accepted standard.
When modeling software, it is important to do so in a common language. That way, other
developers can quickly and easily understand your design diagrams. In fact, creators of
the UML brought together their three competing modeling languages—thus the U(nified)
in UML. The UML provides a common vocabulary that developers can use to convey
their designs.

The UML is an industry standard modeling language. The UML consists of nota-
tion for describing each aspect of a software design.

186 Day 8

NEW TERM

NEW TERM

NEW TERM

It is not the purpose of this book to present an exhaustive introduction to
the UML. Instead, this book will present those practical pieces that you can
use right away to describe your software.

Note

14 0672321092 CH08 08/22/2001 2:44 PM Page 186

Introduction to the UML 187

8
It is important to note that a modeling language doesn’t tell you anything about how to
arrive at your design. Methodology or processes lay out guidelines for how to analyze
and design software.

A methodology or process describes how to design software. A methodology
often contains a modeling language.

NEW TERM

The UML presents a rich set of modeling tools. As a result there is quite a lot
of information that you can put into your models. Beware of trying to use
every single notation while modeling. Only use enough notation to convey
your design.

Always keep in mind that the purpose of your model is to convey your
design. Do what you need to do to convey it and be done with it.

Caution

Modeling Your Classes
Last week you saw quite a bit of code. When you get down to it, the code is the lowest
level of documentation for your software. If your code works, you are guaranteed to have
your design documented.

Although the code is the most complete documentation of your design, it can be
extremely difficult for others to get their hands around—especially if they are unfamiliar
with the code. The “documentation” is also useless for someone who might not know the
implementation language.

Instead, you need a notation that allows you to document your design so that others can
understand it at a glance. That way, others can see the high-level class structure and only
dive into the details when they need to. In a way, a graphical notation encapsulates you
from the details so that you can free yourself to understand the high-level structure of a
program.

Creating documentation separate from the code requires a commitment to
keep it in sync with the code.

Caution

One way that the UML helps you convey your design is by providing a rich set of nota-
tion for describing your classes. By using this notation, others can easily see the main
classes that make up your program’s design. As you will see, the UML allows you to
define the classes, as well as describe the high level relationships between the classes.

14 0672321092 CH08 08/22/2001 2:44 PM Page 187

Basic Class Notation
The UML provides a rich set of notation for modeling classes. In the UML, a box repre-
sents the class. The topmost box always contains the class’s name. The center box con-
tains any attributes, and the bottom contains the operations. Graphical notes about your
model appear in boxes with folded corners. Figure 8.1 sums up the basic class structure.

188 Day 8

FIGURE 8.1
The UML class
notation.

<<Class Name>>

<<Attribute>>

<<Operations>>

Class Name

Operations

Attributes

Within the model, you can use the characters -, #, and +. These characters convey an
attribute’s or operation’s visibility. The hyphen (-) means private, the pound sign (#)
means protected, and plus (+) means public (see Figure 8.2).

The UML differentiates between operation and methods. In the UML, an
operation is a service that you can request from any object of a class while a
method is a specific implementation of the operation. Today’s lessons will
stay true to the UML usage.

Note

FIGURE 8.2
The UML’s notation
to specify visibility.

Visibility
+ public_attr
protected_attr
- private_attr

+ public_opr()
protected_opr()
- private_opr()

Figure 8.3 illustrates the complete BankAccount class from Days 5 and 7.

14 0672321092 CH08 08/22/2001 2:44 PM Page 188

Introduction to the UML 189

8

Sometimes a note will help to convey meaning that would otherwise get lost or over-
looked, such as the note in Figure 8.4.

FIGURE 8.3
A fully described class.

BankAccount
- balance : double

+ depositFunds (amount : double) : void
+ getBalance () : double
setBalance () : void
+ withdrawFunds (amount : double) : double

FIGURE 8.4
A detailed example
of a note.

Bank

+ addAccount ()
+ totalHoldings ()
+ totalAccounts ()
+ deposit ()
+ balance ()

The Bank holds onto a number of
accounts and provides operations
for manipulating those accounts.

These notes are modeling analogs of the real-world sticky note.

Advanced Class Notation
The UML also defines a few other, more advanced, notations. The proper use of this
notation helps you create more descriptive models.

The UML helps you to be more descriptive by allowing you to extend the vocabulary of
the language itself through the use of stereotypes.

A stereotype is a UML element that allows you to extend the vocabulary of the
UML language itself. A stereotype consists of a word or phrase enclosed in

guillemets (<< >>). You place a stereotype above or to the side of an existing element.

For example, Figure 8.1 shows the stereotype <<Attribute>>. This stereotype illustrates
where to add attributes to a class rectangle. Figure 8.5 illustrates another stereotype that
tells you a bit about the operation.

NEW TERM

FIGURE 8.5
A stereotype that
qualifies the operation.

BankAccount

<<accessor>> + getBalance()
+ depositFunds()
+ withdrawFunds()

Finally, you may remember that the BankAccount class was originally defined as a con-
crete class. However, Day 7 redefined the BankAccount as an abstract class. The UML

14 0672321092 CH08 08/22/2001 2:44 PM Page 189

provides a notation to convey that a class is abstract: the abstract class’s name is italicized.
In the case of BankAccount, the name should be italicized as illustrated in Figure 8.6.

190 Day 8

FIGURE 8.6
The abstract
BankAccount.

BankAccount
- balance : double

+ depositFunds (amount : double) : void
+ getBalance () : double
setBalance () : void
+ withdrawFunds (amount : double) : double

Modeling Your Classes to Suit Your Purposes
The previous two sections presented many different notation choices. Given all these
options, how do you know what notations to use?

You always need to go back to the questions, “What am I trying to convey?” and “Who
am I trying to convey it to?” The whole purpose of a model is to convey your design as
effectively (and as simply) as possible.

Perhaps your purpose is to convey the public interface of a class. Figure 8.7 might suf-
fice. It adequately conveys the public interface of Bank without encumbering you without
the details of method arguments or hidden attributes. Such notation will suffice if you
would like to simply convey what other objects might do to Bank instances.

FIGURE 8.7
A simple notation
for Bank.

Bank

addAccount ()
totalHoldings ()
totalAccounts ()
deposit ()
balance ()

However, take Figure 8.3 as another example. This figure completely documents all
attributes and operations (public, protected, and private) for the BankAccount class. You
might model a class to this detail if you would like to convey the class’s entire definition
to another developer. Or maybe as you progress in you OO career you might become an
architect. You might give such a model to a developer so that he can go out and create
the class.

So the answer to the question “How do I know what notations to use?” is that it depends.
When a nontechnical person asks you what you do, you answer in a way that that person
will understand. When a peer asks you what you do, you generally give a technical
answer. Modeling your design is no different. Use the vocabulary that is appropriate for
what you are trying to do.

14 0672321092 CH08 08/22/2001 2:44 PM Page 190

Introduction to the UML 191

8

Modeling a Class Relationship
Classes do not exist in a vacuum. Instead, classes have complex relationships with one
another. These relationships describe how classes interact with one another.

A relationship describes how classes interact with one another. In the UML, a
relationship is a connection between two or more notational elements.

The UML recognizes three high-level types of object relationships:

• Dependency

• Association

• Generalization

Although the UML may provide notation for each of these relationships, the relationships
are not UML specific. Instead, the UML simply provides a mechanism and common
vocabulary for describing the relationships. Understanding the relationships indepen-
dently of the UML is valuable by itself in your study of OO. In fact, if you simply
ignore the notation and understand the relationships, you’ll be well ahead of the game.

Dependency
Dependency is the simplest interobject relationship. Dependency indicates that one
object depends on another object’s specification.

Tips for effective modeling:

• Always ask yourself the question “What am I trying to convey?” The
answer will help you decide exactly what pieces you need to model.

• Always ask yourself the question “To whom am I trying to convey this
information?” The answer will dictate how you model.

• Always try to produce the simplest model that still succeeds in convey-
ing your design.

• Don’t get caught up in the modeling language. Although you
shouldn’t be too loose in the semantics you shouldn’t let following
the notation perfectly stop you from completing your diagrams. The
dangers of paralysis while modeling are real—especially when you
first start. Don’t worry if your model isn’t 100% perfect. Only worry
if your model doesn’t properly convey the design.

• Finally, remember that the UML (or any modeling language) is simply
a tool to help you convey design. It is not a means unto itself. At the
end of the day, you still need to produce code.

Tip

NEW TERM

14 0672321092 CH08 08/22/2001 2:44 PM Page 191

In a dependency relationship one object is dependent on another object’s specifi-
cation. If the specification changes you will need to update the dependent object.

Think back to the labs in Day 7. You can say that the PsychiatristObject depends on
the MoodyObject for two reasons. First, the PsychiatristObject’s examine() method
takes a MoodyObject as argument. Secondly, the examine() method calls the
MoodyObject’s queryMood() method. If the name or argument list of the queryMood()
method changes you will need to update how the PsychiatristObject calls the method.
Likewise, if the name of the MoodyObject class changes, you’ll have to update the
examine() method’s argument list.

Figure 8.8 illustrates the UML notation of the dependency relationship between
PsychiatristObject and MoodyObject.

192 Day 8

Specification is a fancy way of saying interface or behavior.Note

NEW TERM

FIGURE 8.8
A simple dependency
relationship.

PsychiatristObject

+ examine()

IVbodyObject

+ queryMood() : String

Take note of what Figure 8.8 does not tell you. The PsychiatristObject ele-
ment does not contain every method found in the PsychiatristObject. The
same holds true for MoodyObject. Instead, this dependency model only con-
tains those features necessary to describe the dependency relationship.

Remember, the UML notation is there to convey information. It is not there
for you to try to use every modeling trick in the UML book!

Note

Through OOP you always try to minimize dependencies as much as possible. However,
it is impossible to remove all dependencies between your objects. Not all dependencies
are created equal. Interface dependencies are generally okay, while dependencies to
implementation are almost never acceptable.

When do you model dependencies?

You normally model dependencies when you want to show that one object
uses another object. A common place where one object uses another is

Tip

14 0672321092 CH08 08/22/2001 2:44 PM Page 192

Introduction to the UML 193

8

Association
Association relationships run a bit deeper than dependency relationships. Associations
are structural relationships. An association indicates that one object contains—or is con-
nected to—another object.

An association indicates that one object contains another object. In the UML
terms, when in an association relationship one object is connected to another.

Because the objects are connected you can traverse from one object to another. Consider
the association between a person and a bank as illustrated in Figure 8.9.

through a method argument. For example, the PsychiatristObject’s exam-
ine() method takes a MoodyObject as argument. You can say that the
PsychiatristObject uses MoodyObject.

NEW TERM

FIGURE 8.9
An association
between a person
and a bank.

Person Bank
Borrows From

Figure 8.9 shows that a Person Borrows From a Bank. In the UML notation every associ-
ation has a name. In this case the association is named Borrows From. The arrow indi-
cates the direction of the association.

The association name is a name that describes the relationship.

Each object in an association also has a role as indicated in Figure 8.10.

NEW TERM

FIGURE 8.10
The roles in the
association.

Person Bank
borrower lender

In the association the Person’s role is borrower and the Bank’s role is lender.

The association role is the part that an object plays in a relationship.

Finally, multiplicity indicates how many objects may take part in an association.

NEW TERM

NEW TERM

14 0672321092 CH08 08/22/2001 2:44 PM Page 193

The multiplicity indicates how many objects may take part in the instance of an
association.

Figure 8.11 illustrates the multiplicity of the association between Person and Bank.

194 Day 8

NEW TERM

FIGURE 8.11
Multiplicity.

Person Bank
1..* *

This notation tells us that a Bank may have 1 or more borrowers and that a Person may
bank at 0 or more Banks.

You specify your multiplicities through a single number, a list, or with an
asterisk (*).

A single number means that given number of objects—no more and no
less—may participate in the association. So, for example, a 6 means that 6
objects and only 6 objects may participate in the association.

* means that any number of objects may participate in the association.

A list defines a range of objects that may participate in the association. For
example, 1..4 states that 1 to 4 objects may participate in the association.
3..* indicates that 3 or more objects may participate.

Note

When do you model associations?

You should model associations when one object contains another object—
the has-a relationship. You can also model an association when one object
uses another. An association allows you to model who does what in a
relationship.

Tip

The UML also defines two types of association: aggregation and composition. These two
subtypes of association help you to further refine your models.

Aggregation
An aggregation is a special kind of association. An aggregation models a has-a (or part-
of in UML speak) relationship among peers. Has-a means that one object contains anoth-
er. Peer means that one object is no more important than the other.

A whole/part relationship describes the interobject relationship where one object
contains another object.

NEW TERM

14 0672321092 CH08 08/22/2001 2:44 PM Page 194

Introduction to the UML 195

8
An aggregation is a special type of association that models has-a of whole/part
relationships among peers.

Importance, in the context of an aggregation, means that the objects can exist indepen-
dently of one another. No one object is more important than the other in the relationship.

Consider the aggregation illustrated by Figure 8.12.

NEW TERM

FIGURE 8.12
Aggregation between
a Bank and its
Customers.

Bank

Customer

1..*

*

Here you see that a Bank may hold onto any number of Customer objects. The open dia-
mond helps your model indicate which object is the whole and which is the part. Here
the diamond tells you that the Bank is the whole. The Bank is the object that has-a in the
relationship. The Bank holds onto Customers. In programming terms this might mean
that the Bank contains an array of Customer objects.

A clear diamond symbolizes aggregation. The diamond touches the object
that is considered the whole of the relationship: the class that refers to the
other class. The whole is made up of parts. In the previous example the Bank
is the whole and the Customers are the parts.

Another example of aggregation is a car and its engine. A car has-an
engine. In this aggregation the car is the whole and the part is the engine.

Note

Because the Bank and Customer are independent they are peers. You can say that the
Bank and the Customer objects are peers because the Customer objects can exist indepen-
dently of the Bank object. This means that if the bank goes out of business the customers
will not disappear with the bank. Instead, the customers can become another bank’s cus-
tomers. Likewise, a customer can withdraw his funds and the bank will carry on.

Aggregation among objects works the same as these real-life examples. One object may
contain another independent object. The Queue or Vector is an example of an object that
may hold onto other objects through aggregation.

14 0672321092 CH08 08/22/2001 2:44 PM Page 195

Composition
Composition is a bit more rigorous than aggregation. Composition is not a relationship
among peers. The objects are not independent of one another.

Figure 8.13 illustrates a composition relationship.

196 Day 8

When do you model aggregation?

You should model an aggregation when the point of your model is to
describe the structure of a peer relationship. An aggregation explicitly states
the structural whole/part relationship.

However, if you are more interested in modeling who does what in a rela-
tionship you are better off using a plain association: one without the
diamond.

Tip

FIGURE 8.13
Composition between a
Bank and its Branches.

Bank Branch
1 *

Here you see that a Bank may contain many Branches. The darkened diamond tells you
that this is a composition relationship. The diamond also tells you who has-a. In this
case, the Bank has-a, or holds onto, Branches.

A blackened diamond symbolizes composition. The diamond touches the
object that is considered the whole of the relationship. The whole is made
up of parts. In the previous example the Bank is the whole and the Branches
are the parts.

Note

Because this is a composition relationship the Branches cannot exist independently of the
Bank. Composition tells you that if the bank goes out of business, the branches will close
as well. However, the converse is not necessarily true. If a branch closes, the bank may
remain in business.

An object may participate in an aggregation and composition relationship at the same
time. Figure 8.14 models such a relationship.

14 0672321092 CH08 08/22/2001 2:45 PM Page 196

Introduction to the UML 197

8

Generalization
A generalization relationship is a relationship between the general and the specific. It is
inheritance.

A generalization relationship indicates a relationship between the general and the
specific. If you have a generalization relationship you know that you can substi-

tute a child class for the parent class.

Generalization embodies the is-a relationship that you first learned about in Day 4. As
you learned in Day 4, is-a relationships allow you to define substitutability relationships.

FIGURE 8.14
The Bank in an aggre-
gation and composi-
tion relationship at
the same time.

Bank Branch
1 *

Customer

1..*

*

When do you model composition?

Like aggregation, you should model composition when the point of your
model is to describe the structure of a relationship. A composition explicitly
states the structural whole/part relationship.

Unlike aggregation, composition does not model peer whole/part relation-
ships. Instead, the part is dependent on the whole. Going back to the Bank
example, this means that when the bank goes out of business the branches
go out of business.

In programming terms this means that when the Bank is destroyed, the
Branches are destroyed as well.

Again, if the point of your model is to capture the roles of the objects in the
association, you should use a plain association.

Tip

Remember that aggregation and composition are simply refinements or sub-
types of association. This means that you can model aggregation and com-
position relationships as a plain association. It all depends on what you are
trying to model in your diagram.

Note

NEW TERM

14 0672321092 CH08 08/22/2001 2:45 PM Page 197

Through substitutability relationships you can use descendants in place of their ancestors,
or children in place of their parents.

The UML provides a notation for modeling generalization. Figure 8.15 illustrates how
you would model the BankAccount inheritance hierarchy.

198 Day 8

FIGURE 8.15
The BankAccount
Inheritance Hierarchy.

BankAccount

CheckingAccountOverdraftAccount

RewardsAccount

SavingsAccount

TimedMaturityAccount

A solid line with a closed hollow arrow indicates a generalization relationship.

Putting It All Together
Now that you’ve seen basic class modeling and relationships you can begin to craft fairly
expressive models. Figure 8.8 presented a simple example of dependency. Taking what
you have learned throughout the day, you can make that model a bit more expressive.
Figure 8.16 expands on the relationship modeled in Figure 8.8.

FIGURE 8.16
A more expressive
dependency model.

SadObject

+ queryMood ()

HappyObject

+ queryMood ()

PsychiatristObject

+ examine ()

MoodyObject

+ queryMood ()

Figure 8.16 adds generalization so that you can see which objects you can substitute for
the MoodyObject in this relationship.

Likewise, Figure 8.17 expands on the inheritance hierarchy presented in Figure 8.15.

14 0672321092 CH08 08/22/2001 2:45 PM Page 198

Introduction to the UML 199

8

By looking at this model you can see exactly what each class adds to the hierarchy. Such
a model could help other developers see what each class offers above and beyond its
descendants.

All these models have one common element. Each model contains just enough informa-
tion, just enough notation, to get the idea across. The point of these models is not to use
every available notation.

All these models also combine different elements of the UML. Like a programming lan-
guage, the UML allows you to combine its various pieces in unique ways. Through com-
bining various elements you can create very expressive models.

Summary
Today you learned the basics of class and relationship modeling. After practicing today’s
exercises you should be able to begin drawing simple class models using the UML.

The UML provides notations for modeling classes as well as the relationships between
objects. The UML provides notations to describe three types of relationships:

• Dependency

• Association

• Generalization

FIGURE 8.17
A more detailed
BankAccount

Inheritance Hierarchy.

BankAccount

+ depositFunds (amount : double) : void
+ getBalance () : double
setBalance () : void
+ withdrawFunds (amount : double) : double

OverdraftAccount

+ chargeInterest () : void
+ getCreditRate () : double
+ setCreditRate (rate : double) : void

CheckingAccount

+ accessFees () : void
+ getFee () : double
+ setFee (fee : double) : void
+ getMonthlyQuota () : int
+ setMonthlyQuota (quota : int) : void
+ getTransactionCount () : int

SavingsAccount

+ addInterest () : void
+ setInterestRate (rate : double) : double
+ getInterestRate () : double

TimedMaturityAccount

+ isMature () : boolean
+ mature () : void
+ getFeeRate () : double
+ setFeeRate (rate : double) : void

RewardsAccount

+ getRewardsEarned () : int
+ resetRewards () : void
+ getMinimumRewardBalance () : double
+ setMinimumRewardBalance (deposit : double) : void

14 0672321092 CH08 08/22/2001 2:45 PM Page 199

The UML also recognizes two association subtypes: aggregation and composition. By
combining all of these elements you can generate expressive class diagrams. Your mas-
tery of UML is important to documenting and conveying your designs to others.

Q&A
Q Can you mix the three types of relationships within the same model?

A Yes. Your model can illustrate any combination of the relationships outlined in this
day. The model is there to describe the relationships between your classes. You
should model the relationships between your classes.

Q How do you use the UML? Are there specific tools?

A You can use the UML however you want. You can draw your diagrams on a model-
ing tool, on a white board, or on a paper napkin. It really depends upon the situa-
tion. If you are having an interactive discussion about the a design, you’ll probably
want to use a white board since updating a computer can be distracting.

Computer modeling tools are best used when you want to formally document a
design.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. What is the UML?

2. What is the difference between a methodology and a modeling language?

3. What type of relationship exists between Employee and Payroll in Lab 1 of Day 7?

4. Look carefully at the model in Figure 8.15. Using only the model, what can you
say about the MoodyObject?

5. Look through the labs from Day 7. Find an example of a dependency.

6. In the UML, what do the following symbolize: +, #, -?

7. Day 2 presented the following interface:
public interface Queue {

public void enqueue(Object obj);
public Object dequeue();
public boolean isEmpty();
public Object peek();

}

200 Day 8

14 0672321092 CH08 08/22/2001 2:45 PM Page 200

Introduction to the UML 201

8
What sort of relationship does a Queue have to the elements that it holds?

8. In Day 3, Lab 3, the Deck class creates a number of cards. What type of has-a
relationship does this represent?

9. How do you illustrate that a class or method is abstract?

10. What is the end goal of modeling? What consequences does this goal have?

11. Explain association, aggregation, and composition.

12. Explain when you should use association, aggregation, and composition.

Exercises
1. Model the Queue class defined in question 7.

2. Model a honeybee/hive composition relationship.

3. Model the relationship between Bank and BankAccount from Lab 2, Day 7.

4. Model the association between a shopper and a merchant. Specify the roles, multi-
plicity, and dependency name.

5. Model the employee hierarchy from Lab 2 of Day 5. Through your model, convey
what each class adds above and beyond its descendants.

6. Look back at Day 6. Model the PersonalityObject inheritance hierarchy.

14 0672321092 CH08 08/22/2001 2:45 PM Page 201

14 0672321092 CH08 08/22/2001 2:45 PM Page 202

DAY 9

WEEK 2

Introduction to Object
Oriented Analysis (OOA)

Yesterday you learned how to visualize your class designs through class mod-
els. You saw how class models can help other developers better understand your
design by highlighting the different kinds of objects and relationships that they
will find in your software. Modeling languages such as the UML give you and
your fellow developers a common language in which to speak about design.

However, the question still remains; how do you design object oriented soft-
ware? Models simply capture a snap shot of your design. Models do not help
you understand your problems or formulate a solution. Instead, models are sim-
ply the end result of software design. How do you get there?

Over the course of the next two days you will learn about Object Oriented
Analysis (OOA) and Object Oriented Design (OOD). OOA is an object-
oriented approach to understanding a problem. You use OOA to help you get
to the meat of the problem you wish to solve. After you understand your prob-
lem you can begin to design a solution. That’s where OOD comes in. For the
rest of today’s lesson you will learn about OOA.

15 0672321092 CH09 08/22/2001 2:53 PM Page 203

Today you will learn:

• About the software development process

• How OOA helps you to understand your software problems

• How to arrive at an understanding of your problem using Use Cases

• How to use the UML to visualize your analysis

• How to build your domain model

• What to do with everything you create during OOA

The Software Development Process
There are as many ways to develop software as there are developers. However, a soft-
ware development team needs a unified approach to software development. Nothing will
get done if each developer is off doing his own thing. Software methodologies define a
common way to approach software development. A methodology will often contain a
modeling language (such as the UML) and a process.

A software process lays out the various stages of software development.

A familiar example of a software process is the waterfall process.

204 Day 9

NEW TERM

FIGURE 9.1
The waterfall process.

Requirements
Analysis

Design

Implementation

Test

As Figure 9.1 illustrates the waterfall process is a sequential, one-way process. The
process is made up of four discrete stages:

1. Requirements Analysis

2. Design

3. Implementation

4. Test

15 0672321092 CH09 08/22/2001 2:53 PM Page 204

Introduction to Object Oriented Analysis (OOA) 205

9

When you follow the waterfall process you go from one stage to the next. However, once
you complete a stage there is no going back—just like falling down a waterfall or off a
cliff! The waterfall process tries to avoid change by prohibiting change once a stage
completes. Such an approach protects developers from constantly changing requirements.
However, such a rigid process often results in software that isn’t quite what you, or your
customer, wants.

As you analyze a problem, design a solution, and begin implementation your understand-
ing of the problem continually deepens. Better understanding of your problem may very
well invalidate earlier analysis or design. Requirements may even change while you
develop (maybe a competitor has added a new feature to its product). Unfortunately,
the waterfall process cannot cope with the reality of modern software development—
constantly changing requirements.

Although this book doesn’t try to force any specific methodology on you, there is one
process that has proven very effective for object-oriented development: the iterative
process. This book forces this process on you!

The Iterative Process
The iterative process is the complete opposite of the waterfall process. The iterative
process allows change at any point in the development process. The iterative process
allows change by taking an iterative and incremental approach to software development.

An iterative process is an iterative and incremental approach to software devel-
opment. Another way to think about the process is as an “evolutionary”

approach. Each iteration gradually perfects and elaborates a core product into a mature
product.

An Iterative Approach
Unlike the waterfall process, the iterative process allows you to continually go back and
refine each stage of development. For example, if you discover that the design just does
not work while performing implementation, you can go back and perform additional
design and even analysis. It is this continual refinement that makes the process iterative.
Figure 9.2 illustrates the approach.

An Incremental Approach
When following an iterative process, you don’t simply complete one large iteration that
builds the entire program. Instead, the iterative process breaks the development effort
into a number of small iterations. Figure 9.3 illustrates this incremental approach.

NEW TERM

15 0672321092 CH09 08/22/2001 2:53 PM Page 205

Each iteration of the process introduces a small, incremental, improvement to the pro-
gram. This improvement might be a new feature or a refinement of an existing feature.

206 Day 9

FIGURE 9.2
An iteration.

Implementation

Iteration End

Analysis

Design

Implementation

Test

FIGURE 9.3
The iterative process.

Iteration 1

Iteration 2

Iteration N

Delivery

…

15 0672321092 CH09 08/22/2001 2:53 PM Page 206

Introduction to Object Oriented Analysis (OOA) 207

9

Either way, the iteration has a specific purpose and at the end of the iteration you have a
noticeable improvement in functionality.

Imagine that you are creating an MP3 player. During one iteration of the project you
might finish the component that plays an MP3 file. To determine that the player works
you might hardcode the it to open and play a specific music file. In the next iteration you
can add the capability to choose which file to play. At each iteration you have measur-
able progress. At the end of the first iteration you can hear the component play a song.
At the end of the next iteration you have a mechanism that allows you to dynamically
choose a song to play.

By following an iterative approach you get to constantly see progress. On the other hand,
if you try to do everything at once it can be difficult to see any measurable form of
progress. Instead, the project will seem constantly mired in one place—there are never
any results. If a project never moves forward morale will slip and it will become difficult
to determine what needs to be done next. Low morale and confusion about what to do
next will fragment and kill a project.

Iterative processes need to be carefully monitored to make sure that they
are not simply reduced to “hacking” out a solution. OOA and OOD provide
such a sanity check.

Caution

Constant progress gives you constant feedback. You can use this feedback as a way to be
sure that you are on the right track. If you try to complete the entire project at once, you
won’t know whether you’ve created the right solution until you’re done. Going back and
fixing something that wasn’t done right is much more expensive if you have to go back
and rewrite the whole program! Iteration, on the other hand, makes going back and fix-
ing something much cheaper. Because you receive constant feedback you are more likely
to catch a problem sooner than later. If you catch your problems sooner, it is easier to
redo an iteration or two to fix it. It’s always more desirable to rewrite an iteration than to
rewrite an entire program! If you keep your iterations small, you will not lose too much
time if you have to throw a few of them out.

If a problem reaches all the way back to the foundation of the original iter-
ation, an iterative approach may not save you. Such a fundamental problem
may be too expensive to fix and may damage product quality.

Caution

15 0672321092 CH09 08/22/2001 2:53 PM Page 207

A High-Level Methodology
This book presents an informal object-oriented development methodology. The method-
ology picks and chooses those techniques that have proven themselves successful from
other methodologies. The methodology consists of an iterative process in which an itera-
tion has four stages:

• Analysis

• Design

• Implementation

• Test

208 Day 9

After the test stage, you may also have release and maintenance stages.
These are important stages in the life cycle of a software project. However,
for the purposes of today’s lesson, these stages are omitted.

Today you will focus on analysis, design, implementation, and test.

Note

“Real” methodologies often enumerate additional stages. However, when you’re first
learning, these four stages are the ones that matter most. For that reason this book con-
centrates on these four stages. The remainder of this day covers Object Oriented
Analysis.

Object Oriented Analysis (OOA)
Object Oriented Analysis (OOA) is the process that you go through to understand the
problem that you are trying to solve. After you complete analysis, you should understand
the requirements of the problem as well as the problem domain’s vocabulary.

Object Oriented Analysis is a process that uses an object-oriented approach to
help you understand the problem that you are trying to solve. At the end of

analysis you should understand the problem domain and it’s requirements in terms of
classes and object interactions.

To design a solution to a problem you need to understand how the users will use the sys-
tem. The answer to this question is the system’s requirements. The requirements tell you
what the users want to do to the system and what kind of responses they expect back.

System is the OOA term for a set of interacting objects. You can say that these
objects make up a system or model of the problem.

NEW TERM

NEW TERM

15 0672321092 CH09 08/22/2001 2:53 PM Page 208

Introduction to Object Oriented Analysis (OOA) 209

9

These objects are instances of classes that are derived from concrete or abstract objects
in the problem domain under study.

Analysis also helps you become familiar with the problem domain. By studying the
domain you begin to identify the objects that you need to properly model the system.

OOA, as the name suggests, is an object-oriented approach to requirements analysis.
OOA takes an OO-based approach by modeling the problem through objects and their
interactions. There are two main models. The use case model describes how a user inter-
acts with the system. The Domain model captures the main vocabulary of the system.
Using the domain model you begin to identify those objects that belong in your system.
A properly constructed domain model can solve many problems in the same domain.

Using Use Cases to Discover System Use
When setting out to analyze a problem you first need to understand how your users will
use, or interact, with the system. These uses comprise the system’s requirements and dic-
tate the system that you create. By fulfilling your users’ requirements you produce a use-
ful system.

The requirements are those features that the system must have to solve a given
problem.

One way of discovering these uses is through use case analysis. Through use
case analysis you will define a number of use cases. A use case describes how a

user will interact with the system.

Use case analysis is the process of discovering use cases through the creation of
scenarios and stories with the potential or existing users of a system.

A use case describes the interaction between the user of the system and the
system—how the user will use the system from the user’s point of view.

Creating use cases is an iterative process. There are a number of steps that you must take
during each iteration to formalize your use cases. To define your use cases you must

1. Identify the actors.

2. Create a preliminary list of use cases.

3. Refine and name the use cases.

4. Define each use case’s sequence of events.

5. Model your use cases.

NEW TERM

NEW TERM

NEW TERM

NEW TERM

15 0672321092 CH09 08/22/2001 2:53 PM Page 209

Identify the Actors
The first step in defining your use cases is to define the actors that will use the system.

An actor is anything that interacts with the system. It can be a human user,
another computer system, or a chimp.

You need to ask your customers to describe the users of the system. Questions might
include the following:

• Who will primarily use the system?

• Are there any other systems that will use the system? For example, are there any
nonhuman users?

• Will the system communicate with any other system? For example, is there an
existing database that you need to integrate?

• Does the system respond to nonuser-generated stimulus? For example, does the
system need to do something on a certain calendar day each month? A stimulus
can come from sources not normally considered when thinking from a purely user
point of view.

Consider an online Web store. An online store allows guest users to browse the product
catalog, price items, and request further information. The store also allows registered
users to purchase items, as well as track their order and maintain user information.

210 Day 9

You do not create use cases in a vacuum! While deriving your use cases you
must consult those who will use the system—your customers. Customer
input is absolutely critical to discovering the use cases (unless you are writ-
ing the software for yourself).

Your customers are the domain experts. They know their business space well
and know what they need in their software. Always be sure to tap their
knowledge and use it to drive your software requirements.

Getting the users to make up stories about their ideal day of interacting
with the system can be a good way to break the ice on this activity.

Note

Before you continue with the day it is important to point out that the exam-
ples do not attempt to perform a complete analysis of an online Web site.
Instead, the examples teach the steps that you will take while performing an
actual analysis. So, many use cases will be left out.

Next week you will work through a complete object-oriented analysis.

Caution

NEW TERM

15 0672321092 CH09 08/22/2001 2:53 PM Page 210

Introduction to Object Oriented Analysis (OOA) 211

9

From this brief description you can identify two actors: guest users and registered users.
These two actors each interact with the system.

Figure 9.4 illustrates the UML notation for an actor: a stick figure with a name. You
should give each of your actors an unambiguous name.

FIGURE 9.4
The UML actors.

Guest User

Registered User

It is important to avoid confusion while naming your actors. Give each actor
a name that uniquely identifies and distinguishes the actor.

Good naming is critical. Names should be simple and easy to remember.

Caution

It is important to note that a given user of the system may take on the role of many dif-
ferent actors. An actor is a role. For example, a user might enter the site as a guest but
later on log in as a registered guest so that he can make a purchase.

A user may take on many different roles while interacting with a system. An
actor describes a role that the user may take on while interacting with the
system.

Note

Actors are the instigators of use cases. Now that you’ve identified some actors, you can
start defining what use cases they perform.

When you first set out to define your use cases, create a preliminary list of
actors. Don’t get mired while identifying the actors. It will be difficult to
find all the actors the first time through.

Instead, find enough actors to get started and add the others as you dis-
cover them.

Caution

15 0672321092 CH09 08/22/2001 2:54 PM Page 211

Create a Preliminary List of Use Cases
To define your use cases you need to ask a few questions. Start with your list of known
actors. You need to ask what each actor does to the system.

In the case of the online Web store you have registered users and guest users. What does
each of these actors do?

Guest users can do the following:

1. Browse the product catalog

2. Search the product catalog

3. Search for a specific item

4. Search the site

5. Add items to a shopping cart and specify the quantity

6. Price the selected items

7. Change the quantity of items in their cart

8. View the popular and new products list

9. Browse other users’ wish lists

10. Request further product information

Registered users can do the following:

1. Everything the guest user can do

2. Make a purchase

3. Add items to their wish list

4. View a personalized recommended list

5. Maintain their account

6. Sign up for notifications

7. Take advantage of personalized special offers

8. Track their orders

9. Sign up for various mailing lists

10. Cancel an order

212 Day 9

There probably are quite a few more use cases. However, for your purposes
here, and for the sake of brevity, this gives you a good start.

Note

15 0672321092 CH09 08/22/2001 2:54 PM Page 212

Introduction to Object Oriented Analysis (OOA) 213

9

Whenever you try to identify use cases you should also ask the question, “How does an
actor change its role?”

In the case of the online store, a guest user can become a registered user in these ways:

• The guest user can log into the site.

• The guest user can register with the site.

A registered user becomes a guest user as follows:

• A registered user can log out of the site.

So far, these questions are interaction oriented. You can also take a results-oriented
approach to the discovery. For example, you can say that a registered user receives a
notification. A second point of view can help you discover use cases that you might have
missed if you simply stuck with the first viewpoint.

Finally, consider the various entities that the users manipulate. Here you see products,
account information, and various product lists and discounts. How do all these entities
get into the system? Who adds new products and edits or deletes old ones?

This system will need a third actor, the administrator. Going through the process that you
went through above, you might find that administrators can do the following:

1. Add, edit, and delete products

2. Add, edit, and delete incentives

3. Update account information

Questions may lead to other questions. For example, who updates the popular product
list? Who sends out notifications and mailings to the mailing lists? A fourth actor, the
system itself, performs all these actions.

Refine and Name the Use Cases
Now that you have a preliminary list of use cases you need to refine the list. In particular,
you’ll want to look for opportunities to split or combine the use cases.

Splitting Use Cases

Each use case should accomplish one main goal. When you find a use case that’s doing
too much, you’ll want to split it up into two or more use cases. Consider the following
use case:

Guest users can add items to a shopping cart and specify the quantity.

15 0672321092 CH09 08/22/2001 2:54 PM Page 213

You should really split this use case into two use cases:

• Guest users can add items to a shopping cart.

• Guest users can specify an item’s quantity.

You can get away with splitting use cases because of the way they can relate to one
another. Use cases are a lot like classes. One use case can contain another. So if one use
case instance requires another to gets its job done, it can use it.

A use case can also extend the behavior of another use case. As a result, you can place
common behavior into one use case and then develop other use cases that specialize on
the original. Take “Registered users can make a purchase” as an example. A use case
may specialize on order by creating a gift order use case. A gift order might ship without
a receipt.

Combining Use Cases

You do not want redundant use cases. One way to avoid redundancy is to keep an eye out
for use case variants. When you find them, you should combine the variants into one use
case.

A use case variant is a specialized version of another more general, use case.

Consider the following two use cases:

• Guest users can search the product catalog.

• Guest users can search for a specific item.

Here, the second is simply a variant of the more general first use case.

In this case, the use case only differs by the search parameters. It is better to simply have
one use case and document the variant in the use case models that you will build later.

A variant is much like an instance of a class. Think back to the BankAccount example. A
BankAccount with a $10,000 balance may have more money that a BankAccount with
$100. However, both are still BankAccounts. All that differentiates one BankAccount
from another is the value of its attributes. Use cases work much the same way.

The Resulting Use Cases

After you finish refining your use cases you should name each use case. Just as naming
actors, you should strive to name your use cases in a way that avoids confusion.

214 Day 9

NEW TERM

15 0672321092 CH09 08/22/2001 2:54 PM Page 214

Introduction to Object Oriented Analysis (OOA) 215

9

Here are the resulting use cases for guest users and registered users after splitting and
combining:

1. Browse the Product Catalog

2. Search the Product Catalog

3. Search the Site

4. Add Item to the Shopping Cart

5. Price the Items

6. Change the Item Quantity

7. View the Highlighted Products List

8. Browse a Wish List

9. Request Product Information

10. Order

11. Maintain Order

12. Add Items to Wish List

13. Update Account

14. Sign Up for Correspondence

15. Apply Incentives

16. Login

17. Logout

18. Register

At this point you have a fairly well-developed list of use cases. Now all you need to do is
fully specify each use case.

Define Each Use Case’s Sequence of Events
The brief list of use cases only tells part of the story. Internally, a lot more might be
going on within a use case. Take Order for example. A user cannot place an order in one
step. Instead, the user must take a sequence of steps to successfully complete an order
(such as providing a payment method).

The sequence of steps that a user takes to complete a use case is known as a scenario. A
use case is made up of a number of scenarios.

A scenario is a sequence or flow of events between the user and system.

As part of your use case analysis you must specify each use cases’ scenarios.

NEW TERM

15 0672321092 CH09 08/22/2001 2:54 PM Page 215

Let’s develop the Order use case. First, begin by describing the use case in a paragraph:

The registered user proceeds to the checkout to purchase the items in his shopping
cart. Once at the checkout page, the user provides shipping information. Once provid-
ed, the system totals and displays the order. If everything is correct the customer can
choose to continue with the order. Once the user continues with the order the system
queries the user for payment information. Once supplied, the system authorizes pay-
ment. It then displays a final order conformation page for the user’s records and sends
a confirmation e-mail.

There are a few interesting aspects to this use case. First, it says nothing about the under-
lying implementation. Second, you can use it to identify the use case’s preconditions and
post conditions.

Preconditions are those conditions that must be met for a use case to begin. Post
conditions are the results of a use case.

216 Day 9

NEW TERM

One of the problems with this type of system is that you are probably not
gathering use cases from the users of the system, but from the people who
want you to write it. Keep in mind that modern Web applications and other
customer-facing apps like kiosks may require you to go out and work with
focus groups.

Note

Here the precondition is that the user has already placed items in the cart. The Order use
case orders the items in the cart. The post condition is an order. After completing the use
case the system will contain an order for the user.

At this point it helps to consider any alternative paths in the order use case. Perhaps pay-
ment authorization will fail or the user will decide to cancel the order before completion.
You need to capture these alternate paths.

After you feel comfortable with the use case you should write it out formally. One way to
write out the use case is to list the steps sequentially. After the steps you should list the
preconditions, post conditions, and alternate paths. Consider the Order use case again:

• Order

1. Registered user proceeds to the checkout

2. Registered user provides shipping information

3. System displays the order total

15 0672321092 CH09 08/22/2001 2:54 PM Page 216

Introduction to Object Oriented Analysis (OOA) 217

9

4. Registered user provides payment information

5. System authorizes payment

6. System confirms the order

7. System sends a confirmation e-mail

• Preconditions

• A nonempty shopping cart

• Post Conditions

• An order in the system

• Alternative: Cancel Order

During Steps 1–4 the user chooses to cancel the order. The user is returned to the
homepage.

• Alternative: Authorization Failed

At Step 5 the system fails to authorize the payment information. The user can re-
enter the information or cancel the order.

You will need to complete the same process for each use case. Formally defining the
scenarios helps you to see the flow of events in the system as well as solidify your under-
standing of the system.

When writing out your use cases only include the information that makes
sense. Just as in class modeling, your purpose is to convey some kind of
information. Only include the information to convey what you are trying to
get across.

Only include the preconditions necessary for the use case to begin. Don’t
include extra, unnecessary information.

Be sure to check out other texts on use cases. There are many ways to write
out a use case (there is no standard).

When first writing your use cases consider using an index card with pencil.
This way you don’t have to be in front of a computer while generating your
initial use cases. Depending on who your customers are, it may be difficult
to work with them in front of a computer.

Tip

Use-Case Diagrams
Just as the UML provides a way to document and convey class design, there are also for-
mal ways to capture your use cases. Of special interest are use case diagrams, interaction
diagrams, and activity diagrams. Each helps visualize the various use cases.

15 0672321092 CH09 08/22/2001 2:54 PM Page 217

Use case diagrams model the relationships between use cases and the relationships
between use cases and actors. Although a use case’s textual description may help you to
understand an isolated use case, a diagram helps you to see how use cases interrelate to
one another.

Figure 9.4 shows you how to model actors. Figure 9.5 illustrates the UML notation for a
use case: a labeled oval.

218 Day 9

FIGURE 9.5
The UML use case.

Order

Put an actor and a use case together in the same diagram and you are left with a use case
diagram. Figure 9.6 diagrams the Order use case.

FIGURE 9.6
The Order use case. Order

Registered User

This diagram is fairly simple, however by looking at it you can see that the Registered
User performs the Order use case.

Diagrams can be a bit more complicated. The diagram can also show the relationships
that exist among use cases themselves. As you’ve read, one use case may contain and use
another. Figure 9.7 illustrates such a relationship.

FIGURE 9.7
A uses relationship. Order

Registered User

<<uses>>

Sign Up for Correspondence

Here you see that the Register use case uses the Sign Up for Correspondence use case.
As part of the registration process the user may elect to receive e-mails and notifications.

Figure 9.8 illustrates the second type of relationship, the extends relationship.

15 0672321092 CH09 08/22/2001 2:54 PM Page 218

Introduction to Object Oriented Analysis (OOA) 219

9

View Personalized Product Recommendations extends the generic View The Highlighted
Products List by presenting the registered user with a list of products customized to his
shopping preferences. The normal View the Highlighted Products List as seen by a Guest
User may simply show the best selling or most requested items. This extension presents
the user with products in which his profile suggest he might be interested.

Just like classes it is possible to have an abstract use case. An abstract use case is a use
case that other use cases use or extend, but is never directly used by an actor itself.
Abstractions are normally discovered after you’ve done your initial use case analysis. As
you study your use cases you may find ways to extract commonality and place them into
abstract use cases.

Interaction Diagrams
Use case diagrams help model the relationships between use cases. Interaction diagrams
help capture the interactions between the various actors participating in the system.

Let’s expand on the use cases that you saw earlier. Let’s add a new actor, the Customer
Service Representative. Too often, a Registered User may forget his password. The
Customer Service Representative is there to help the user regain access to his account.
Let’s create a new use case, Forgot Password:

A Registered User calls up the Customer Service Representative and informs the rep
that he has lost his password. The Customer Service Representative takes the users
full name and pulls up the user’s account information. The Customer Service
Representative then asks the Registered User a number of questions to establish his
identity. After passing a number of challenges, the Customer Service Representative
deletes the old password and creates a new one. The user is then e-mailed the new
password.

FIGURE 9.8
An extends
relationship.

Registered User

<<extends>>

View Personalized Product Recommendations

Consult the Highlighted Products List

15 0672321092 CH09 08/22/2001 2:54 PM Page 219

This use case can also be described as follows:

• Forgot Password

1. Registered user calls the Customer Service Representative

2. Registered user provides full name

3. The Customer Service Representative retrieves the customer’s information

4. Registered user answers a number of identifying questions

5. The Customer Service Representative creates a new password

6. The user receives the new password by e-mail

• Preconditions

• The user forgot his password

• Post Conditions

• A new password is emailed to the user

• Alternative: Identification Failed

The user may fail to answer the identifying questions in Step 4 correctly. If so, the
call terminates.

• Alternative: User Not Found

At Step 2 the name provided may not be the name of a known user. If so the
Customer Service Representative offers to register the caller.

There are two types of interaction diagrams: sequence diagrams and collaboration dia-
grams. Let’s explore each.

Sequence Diagrams

A sequence diagram models the interactions between the Registered User, the Customer
Service Representative, and the Web site over time. You should use sequence diagrams
when you want to bring attention to the sequence of events of a use case over time.
Figure 9.9 presents a sequence diagram for the Forgot Password use case.

As you can see from the illustration, a sequence diagram represents the events between
each actor and the system (the Web site). Each participant in the use case is represented
at the top of the diagram as either a box or a stick figure (but you can call both a box).

A dashed line known as a life line descends from each box. The lifeline represents the
box’s lifetime during the use case. So if one of the actors goes away during the use case,
the line would terminate at the last arrow that either ends or originates from the actor.
When an actor leaves a use case you can say that its lifetime has ended.

220 Day 9

15 0672321092 CH09 08/22/2001 2:54 PM Page 220

Introduction to Object Oriented Analysis (OOA) 221

9

A life line is a dashed line that descends from a box in a sequence diagram. The
life line represents the lifetime of the object represented by the box.

Arrows originate from the life line to indicate that the actor has sent a message to anoth-
er actor or to the system. As you move down the life line, you can see the messages as
they originate sequentially over time. Time moves from top to bottom in a sequence dia-
gram. So by moving up the life line you can play the sequence of events backward.

Collaboration Diagrams

You should use sequence diagrams if it is your intention to focus attention on the
sequence of events over time. If you would rather model the relationships between the
actors and the system you should create a collaboration diagram.

Figure 9.10 models the Forgot Password use case as a collaboration diagram.

In a collaboration diagram you model an interaction by connecting the participants with
a line. Above the line you label each event that the entities’ generate along with the
event’s direction (who it is directed to). It also helps to number the events so that you
know in which order they come.

FIGURE 9.9
The Forgot Password
sequence diagram.

Registered User

1: Report Forgotten Password

2: Ask for Full Name

3: Provide Full Name

4: Retrieve User Information

5: Return Record

6: Ask Identifying Questions

7: Answer Questions

8: Generate New Password

9: Send Password by E-mail

Customer Service Representative

:Web Site

NEW TERM

15 0672321092 CH09 08/22/2001 2:54 PM Page 221

Activity Diagrams
Interaction diagrams model sequential actions well. However, they cannot model pro-
cesses that can run in parallel. Activity diagrams help you to model processes that can
run in parallel with one another.

Consider another use case Search. Search searches both the Web site and the product cat-
alog at the same time using the Search the Product Catalog use case and the Search the
Site use case. There is no reason that these two searches cannot run at the same time.
The user would get impatient if he had to wait for the searches to complete sequentially.

Figure 9.11 models these processes through an activity diagram.

An oval represents each state of the process. The thick black bar represents a point where
the processes must synchronize—or meet up—before the flow of execution can resume.
Here you see that the two searches run in parallel and then meet up before the site can
display the results.

222 Day 9

FIGURE 9.10
The Forgot Password
collaboration diagram.

Registered User

9: Send Password by E-mail

1: R
eport F

orgotte
n Passw

ord

3: P
rovid

e Full N
ame

2: A
sk

 fo
r F

ull N
ame

7: A
nsw

er Q
uesti

ons

6: A
sk

 Id
entify

ing Q
uesti

ons

4: R
etrieve U

ser Inform
ation

8: G
enerate N

ew
 P

assw
ord

5: R
eturn R

ecord

Customer Service Representative

:Web Site

Use sequence diagrams to model the sequence of events in a scenario over
time.

Use collaboration diagrams to model the relationships between the actors in
a scenario.

Tip

15 0672321092 CH09 08/22/2001 2:54 PM Page 222

Introduction to Object Oriented Analysis (OOA) 223

9

We’ll take a closer look at interaction diagrams and activity diagrams in the coming
days. However, they both prove useful while analyzing a system.

Building the Domain Model
Through use case analysis you capture the system interactions. However, use cases also
help you to capture the vocabulary of the system. This vocabulary makes up the problem
domain. The domain’s vocabulary identifies the main objects in the system.

The domain model lists those objects that you need to properly model the system. Take
the online store. Through the use cases you can identify quite a few objects. Figure 9.12
visualizes some of those objects.

At this point you can model the relationships between the domain objects. Figure 9.13
summarizes some of those relationships.

FIGURE 9.11
The Search Activity
diagram.

Start Search

Display Search Results

Search the Site Search the Product Catalog

15 0672321092 CH09 08/22/2001 2:54 PM Page 223

The domain model is important for a number of reasons. First, the domain model models
your problem independently from any implementation concerns. Instead, it models the
system at a conceptual level. This independence gives you the flexibility to use the
domain model that you build to solve many different problems within the domain.

Second, the domain model builds the foundation of the object model that will eventually
become your system. The final implementation may add new classes and remove others.
However, the domain gives you something to start and build your design from—a skeleton.

224 Day 9

FIGURE 9.12
The domain objects.

Web Site

Catalog

Account Information

Registered User

Order
Customer Service Rep

Guest User

Item

FIGURE 9.13
The domain objects’
relationships.

Web Site Catalog

Account Information

Registered User OrderCustomer Service Rep Guest User

ItemUser

1

1

*

*

15 0672321092 CH09 08/22/2001 2:54 PM Page 224

Introduction to Object Oriented Analysis (OOA) 225

9

Finally, a well-defined domain model clearly establishes a common vocabulary for your
problem. By finding a common vocabulary everyone involved in the project can
approach it from an equal footing and understanding.

So Now What?
You’ve collected use cases. You’ve created interaction diagrams. You’ve even begun a
domain model. What’s next?

Use cases have three main uses. The first use deals with functionality. The use cases tell
you how the system will function. The use cases tell you who will use the system, what
those users will do to it, and what the users expect back from the system. Use case analy-
sis helps you learn about the system that you intend to build.

Second, use cases provide a list of “to-do” tasks as you develop the system. You can start
by prioritizing each use case and provide an estimate of how long each will take to com-
plete. You can then plan your development timeline around the use cases. Completing a
use case can become a milestone. Use cases can also become bargaining chips. Often,
time constraints will force you to sacrifice one use case for another.

Finally, use cases help you build your domain model. The domain model will serve as
the skeleton of your fledgling system. (And if you’ve done it right, you might be able to
reuse that model elsewhere!)

Once you feel that the domain model and use case analysis is nearly complete you can
begin to prototype different parts of the system. However, don’t prototype everything.
You should only prototype those aspects of the system that seem confusing or risky.
Prototyping can deepen knowledge as well as find out if an idea is even possible, thus
identifying and reducing risk.

Tips to effective OOA

• Avoid analysis paralysis. Analysis paralysis sets in whenever you try to
perform the perfect analysis. You never move forward because you
keep trying to perfectly understand the problem. Sometimes full under-
standing is not possible without some design and implementation.

• Iterate. Iterate everything. When you first start analysis generate a
preliminary list of use cases. Prioritize the use cases and then flesh
them out through iterations. Each iteration should encompass a cer-
tain amount of analysis, design, and implementation. The amount of
implementation will increase as the project moves along: very little in
the beginning, much more during later stages.

Tip

15 0672321092 CH09 08/22/2001 2:54 PM Page 225

Summary
Object-oriented analysis applies objects to the process of problem analysis. OOA helps
you uncover the requirements of the system that you intend to build.

Use cases help you identify how the users will interact with the system. The use cases
describe the interaction, as well as what the users expect back from the system.

Models such as interaction diagrams and activity diagrams help visualize these interac-
tions. Each type of model views the system from a slightly different vantage point. So
you’ll need to keep the differences in mind and use each kind when appropriate.

Use cases help you define your domain model. The domain model serves as the skeleton
of the system that you eventually build. The domain model has the advantage of being
free from any specific implementation or use. As a result, you can apply your domain
model to many different problems.

It is important to realize that OOA is truly an object-oriented way of viewing a problem.
Use cases are nothing more than objects. A use case can relate to other use cases through
use or generalization. Variants of use cases are no different than the difference between
class instances. Actors are objects as well.

OOA deconstructs a problem into a number of use cases and domain objects. Once
broken down, you can iterate your way to a final solution.

Q&A
Q What happens if you miss a use case?

A If you find that you have missed a use case go back and add it. If you need the use
case right away, you should add it right away. If it can wait, make a note and
explore it during the next iteration.

Q When elaborating a use case do you always need to do sequence, collabora-
tion, and activity diagrams?

A No. You do not always need to do all three. Do whatever is necessary to help your
understanding of the use case.

226 Day 9

• Include the domain experts in your analysis—even if the expert is a
customer. Unless you are an expert in the domain you will need the
input to properly model the system.

• Don’t introduce implementation into your analysis. Don’t let imple-
mentation sneak into your analysis.

15 0672321092 CH09 08/22/2001 2:54 PM Page 226

Introduction to Object Oriented Analysis (OOA) 227

9

However, you should probably at least sketch out one of the diagrams. You never
know what problems or unknowns that you might discover.

Normally, I always do at least a sequence diagram unless it makes more sense to
start with one of the others.

Q How do you know when you have enough use cases?

A Really, you never know if you’ve found all of the use cases. Knowing when to stop
comes with experience. However, you probably have enough use cases when you
feel that you have an adequate understanding of the problem and that you feel con-
fident that you can move on.

If you miss a use case you can always go back and add it to your analysis.
However, you must be ware of over analyzing a problem. Don’t succumb to analy-
sis paralysis.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. What is a software process?

2. What is an iterative process?

3. At the end of OOA, what should you have accomplished?

4. What do the system requirements tell you?

5. What is a use case?

6. What steps must you take to define your use cases?

7. What is an actor?

8. What are some questions that you can ask to discover the actors?

9. How can use cases relate to one another?

10. What is a use case variant?

11. What is a scenario?

12. What are some ways that you can model your use cases?

13. Describe the differences between the various models used to visualize use cases.

14. What good is a domain model?

15. What good are use cases?

15 0672321092 CH09 08/22/2001 2:54 PM Page 227

Exercises
1. What other use cases might you add to the list of use cases for the online store?

2. Take one of the use cases from Question 1 and develop it.

3. A use case variant is a specific case of a more general use case. What variants can
you identify in the guest user and registered user use cases.

4. What other domain objects can you find?

228 Day 9

15 0672321092 CH09 08/22/2001 2:54 PM Page 228

DAY 10

WEEK 2

Introduction to Object
Oriented Design (OOD)

Yesterday, you saw how Object Oriented Analysis (OOA) helps you to under-
stand a problem and its requirements. Through the analysis of use cases and the
construction of a domain model you can capture the “real-world” or domain
level details of your problem. However, OOA is only part of the overall devel-
opment story.

Object Oriented Design (OOD) helps you to take the domain that you found in
OOA and design a solution. While the OOA process helped you to discover
many of the problem’s domain objects, OOD helps you to discover and design
the objects that will appear in the problem’s specific solution.

Today you will learn

• How to transform your analysis into a solution

• How to identify and design the objects that will appear in your solution

• How Class Responsibility Collaboration (CRC) cards can help you to dis-
cover object responsibilities and relationships

• How you can use the UML to capture your design

16 0672321092 CH10 08/22/2001 2:58 PM Page 229

Object Oriented Design (OOD)
OOD is the process of constructing a solution’s object model. Said another way,
OOD is the process of breaking down a solution into a number of constituent

objects.

The object model is the design of the objects that appear in a problem’s solution.
The final object model may contain many objects not found in the domain. The

object model will describe the various object’s responsibilities, relationships, and
structure.

The OOD process helps you to figure out how you will implement the analysis that you
completed during OOA. Mainly, the object model will contain the main classes in the
design, their responsibilities, and a definition of how they will interact and get their
information.

Think of OOD in terms of building a single-family home. Before you build the home of
your dreams, you decide what kinds of rooms that you want in your house. Through your
analysis you might find that you want a home that has a kitchen, two bedrooms, two and
a half bathrooms, a living room, and a dining room. You might also need a den, a two-car
garage, and a Jacuzzi. All of the rooms and the Jacuzzi comprise the idea and design of
your home.

What do you do next? Does a builder just start building? No. First, an architect figures
out how the rooms best fit together, how the wiring should be run, and what beams are
necessary to hold the house up. Then the architect prepares a set of detailed blueprints
that capture the design. The builder then uses those blueprints as a guide while construct-
ing the house.

Using the terms of the construction world, you use OOD to create your program’s
blueprints.

A formal design process helps you to determine what objects will appear in your pro-
gram, and how they will interact or fit together. The design will tell you the structure of
your objects, and a design process will help you discover many of the design issues that
you will encounter while coding.

When working as part of a team, it is important to identify and solve as many design
issues as possible before you begin construction. By solving problems up front, everyone
will work under the same set of assumptions. A consistent approach to the design will
make it easier to put all components together later. Without a clear design, each develop-
er will make his own set of, assumptions, often incompatible with other sets of assump-
tions. Work will be duplicated, and the proper balance of responsibility between the

230 Day 10

NEW TERM

NEW TERM

16 0672321092 CH10 08/22/2001 2:58 PM Page 230

Introduction to Object Oriented Design (OOD) 231

10

objects will break down. All in all, the design that emerges could easily become a mud-
dled mess if everyone isn’t on the same page.

In addition, mistakes are exponentially more expensive to fix, the later in the develop-
ment sequence they are discovered. Errors in design are very low cost to fix.

While designing your solution, you will find that there is often more than one solution to
the problem. OOD allows you to explore each interesting solution and decide upfront
what path to follow. Through design you can make well-informed decisions, and through
your documentation you can document why you decided upon the choices that you
made.

The object model identifies the significant objects that appear in the solution; however,
the object model is a superset of the domain. While many of the objects that appear in
the domain model will find their way into the design, many objects not found in the
domain will also appear. Likewise, objects not found in the analysis may find their way
into the design, just as wiring does not appear in the initial analysis of a new home. Once
you have your design, you can begin coding.

With that being said, don’t take design to the extreme. Just as OOA can suffer from
analysis paralysis, OOD can suffer from design paralysis.

You should avoid over-designing your solution. It’s simply not possible to foresee every
design decision you will need to make before you make it, and some design can be left
until construction. You don’t want to get caught up trying to create the perfect design;
you need to start coding at some time. What you need to do is design the architecturally
significant aspects of the system.

How do you know what aspects of your system are architecturally significant? The sig-
nificant pieces are those aspects of the system where a different decision would com-
pletely alter the structure or behavior of the system.

Think back to the online store and the shopping cart discussed yesterday. Knowing that
you have a shopping cart object in your analysis, you need to design what specific
abstractions will be used to represent the shopping cart—such as a pricer, a persistent
store, and an expiration monitor. But you don’t need to design whether a hash table or
vector will be used to represent the cart contents—that is an appropriate subject for a
detailed (implementation) design phase, but is too detailed for this phase.

How Do You Apply OOD?
OOD is an iterative process that identifies the objects and their responsibilities in your sys-
tem, and how these objects relate. You continually refine the object model as you iterate

16 0672321092 CH10 08/22/2001 2:58 PM Page 231

through the design process. Each iteration should give you a deeper insight into the
design and perhaps even the domain itself.

232 Day 10

As you learn more about the problem that you are trying to solve during
design, you may need to apply additional analysis. Remember, there’s no
shame in going back and refining your analysis! The only shame is in
creating useless software.

Note

There are a number of loosely defined steps that you can follow to build your object
model. Normally you will

1. Generate an initial list of objects.

2. Refine your objects’ responsibilities.

3. Develop the points of interaction.

4. Detail the relationships between objects.

5. Build your model.

Your understanding of the design will increase as you complete these steps and repeat
the process.

There are many ways to complete OOD. The steps outlined above make up
an informal process that combines aspects from many different
methodologies.

The actual methodology that you follow will depend on experience, the
domain, company edict, and good taste. By the end of OOD, you should
have decomposed the solution into a number of objects. How you get to
those objects is up to you and your design team.

Note

Step 1: Generate an Initial List of Objects
When you start designing your system, you need to start with the domain that you
defined during analysis. Each domain object and each actor should become a class in
your fledgling object model. You will find that some of the domain objects will not find
their way into your final object model; however, at this point you can’t be sure which
will go, so you need to include all of them.

Think back to the online store of Day 9, “Introduction to Object Oriented Analysis
(OOA).” Figure 10.1 illustrates the core classes that will appear in your early object model.

16 0672321092 CH10 08/22/2001 2:58 PM Page 232

Introduction to Object Oriented Design (OOD) 233

10

When searching for the initial list of classes, you’ll also want to consider any events that
may affect your system. Each of these events should appear initially as a class. The same
holds true for any reports, displays, and devices. All of these elements should translate
into a class.

FIGURE 10.1
The core online store
classes.

CustomerServiceRep
ShoppingCart

AccountInformation GuestUser

RegisteredUserItem

Incentive

Order Catalog WishList

Here are a few tips for flushing out that initial list of classes:

• Turn each actor into a class.

• Turn each domain object into a class.

• Turn any event into a class.

• Consider how the system will display information, and turn each dis-
play into an object.

• Represent any third party systems or devices that the system interacts
with as classes.

Tip

At this point you cannot say too much about the classes that you’ve listed. You might
have a general idea of the objects’ responsibilities and relationships; however, you need
to do a little more digging before you can finalize your understanding of the new classes.

16 0672321092 CH10 08/22/2001 2:58 PM Page 233

Step 2: Refine Your Objects’ Responsibilities
A list of objects is a good start, but it’s only a small part of your overall design. A com-
plete design will capture each object’s responsibilities as well as the object’s structure
and relationships. A design will show how everything fits together.

To work towards this understanding you need to identify what each object does. There
are two aspects that you need to explore so you can answer the question, “What does the
object do?”

You first need to explore responsibility. Through encapsulation you know that each
object should have a small number of responsibilities. During design you need to identify
each object’s responsibilities and break the object up when it starts doing too much. You
also need to make sure that each responsibility only appears once, and that knowledge is
evenly spread among all of the objects.

Next, you need to explore how each object gets its work done. Objects will often delegate
work to other objects. Through your design you need to identify these collaborations.

An object delegates work to collaborators.

Collaboration is the relationship where objects interact in order to accomplish
some purpose.

A deep understanding of an object’s relationships and responsibilities is important. On a
practical level, responsibilities will translate into methods. Relationships will translate
into structure; however, an overall understanding of responsibility will help you effec-
tively divide responsibility among the objects. You need to avoid having a small set of
large objects. Through design you’ll be sure to spread out responsibilities.

What Are CRC Cards?
One way to flesh out responsibilities and collaborations is through the use of CRC (Class
Responsibility Collaboration) cards. As the name suggests, a CRC card is nothing more
than a lined 4×6 index card.

When you first start the design, it is difficult to simply start listing methods and attri-
butes. Instead, you need to start by identifying each object’s purpose.

CRC cards help define an object’s purpose by drawing attention to the object’s responsi-
bilities. When you use CRC cards, you simply create a card for each class. You write the
class name at the top of the card and then divide the card into two sections. List responsi-
bilities on the left side, and list any other object that the card needs to perform its respon-
sibility on the right side.

Figure 10.2 illustrates a CRC card template.

234 Day 10

NEW TERM

NEW TERM

16 0672321092 CH10 08/22/2001 2:58 PM Page 234

Introduction to Object Oriented Design (OOD) 235

10

CRC cards are intentionally low tech. You are intentionally limited by the size of the
card. If you find that the card is not large enough, chances are good that you need to
break up the class. One big advantage of CRC cards is that you are not tied to a comput-
er. Believe it or not, having to design in front of a computer is not always desirable.
Design is not a solitary exercise, and can require conversation and discussion among the
designers. CRC cards free you and your fellow designers to design whenever and wher-
ever you want. Design over lunch; go to a conference room, or to a park bench. As long
as you can bring your cards, you can design.

CRC cards also free you from having to keep an electronic model up to date. Early on,
your model will change frequently and having to keep the model up to date can be a
major inconvenience. Instead, you simply take your cards and erase, scratch out, bend,
write on, and rip them up as necessary. The cost of changing a card is much cheaper (and
more immediate) than having to update something on your computer. Having to stop the
CRC session and update a computer can bring the flow of the session to a screeching
halt.

Finally, CRC cards appeal to our more primitive instincts. It just helps to have something
concrete that you can hold. Instead of having to model various design alternatives, you
can just move your cards around. To model interactions, you can sit with other designers,
divide up cards, and step through the interactions. Such an interactive process encourages
discussion.

How Do You Apply CRC Cards?
Creating CRC cards is not a solitary exercise. Instead, you should hold CRC sessions
with other designers/developers so that the design process is as interactive as possible.

FIGURE 10.2
A CRC card template.

Class Name

Collaborations

Responsibilities

16 0672321092 CH10 08/22/2001 2:58 PM Page 235

You begin a session by choosing a number of use cases. The number that you choose
depends upon the amount of time that you have and the difficulty of the use cases. If you
have a few very large use cases, it might make sense to have one session per use case. If
you have many small ones you’ll want to tackle multiple use cases during the session.
What is important is that you handle related use cases and that you make noticeable
progress in your design. Don’t let the process get bogged down.

Once you choose the use cases, identify the main classes and create a card for each one.
Once you have the cards, divide them among the designers and then begin the session.
During the session you will trace through each use case’s scenario. As you go through
the scenario, each designer should concentrate on the responsibilities and collaborations
of his class. When his class is needed in the scenario, he will note its use and tell any
other designer if he needs to delegate to another object.

The approach that you take to the design session is one of personal preference. Some
methodologies call for role-playing where each designer takes a card and acts out the
class’s role. Other methodologies are a bit more formal. The approach that you choose is
up to you and your design team. What is important is that everyone stays engaged in the
process, and that no one hides in the corner or gets shouted down. It is during these ses-
sions that you will discuss design alternatives, discover new objects, and build team
camaraderie.

An Example CRC Card
Let’s consider the Order use case from Day 9, and see how you might use CRC cards to
assign responsibility for it.

• Order

• Registered user proceeds to the checkout.

• Registered user provides shipping information.

• System displays the order total.

• Registered user provides payment information.

• System authorizes payment.

• System confirms the order.

• System sends a confirmation email.

• Preconditions

• A non-empty shopping cart.

• Post Conditions

• An order in the system.

236 Day 10

16 0672321092 CH10 08/22/2001 2:58 PM Page 236

Introduction to Object Oriented Design (OOD) 237

10

• Alternative: Cancel Order

• During steps 1-4, the user chooses to cancel the order. The user is returned to
the homepage.

• Alternative: Authorization Failed

• At step 5, the system fails to authorize the payment information. The user
can reenter the information or cancel the order.

Start by identifying the classes. Right away you’ll see: RegisteredUser, Order, Payment,
OrderConfirmation, ShoppingCart, ShippingInformation. You might also want to
include System; however, there is a problem. In the use cases, anything not done by an
actor was done by the “all inclusive” system. The point of analysis was to understand the
problem. So instead of trying to break the system into its parts, analysis treated it as a
big black box. Through design you will decompose the system into its pieces.

Whether or not to include a system card really depends on the complexity of the system.
It may help to list all of the system responsibilities on one card and then break that card
into a number of classes at a later time. In this case, however, you can try to deconstruct
the system before you begin. If you miss something, you can always add it in later.

Begin by reading the steps in the scenario. Here the system authorizes payment, displays
the order, and confirms the order. The system also creates and enters the order. You can
start by breaking the system into a Clerk, OrderDisplay, and PaymentTerminal.

Once you feel comfortable with your list of classes you can create the CRC cards, as
illustrated in Figure 10.3.

FIGURE 10.3
Some of the CRC cards
for Order.

Clerk ShoppingCart RegisteredUser

The next step is to go through each step of the scenario and identify responsibilities. Step
1, “Registered user proceeds to the checkout,” is simply a click of a link in the interface.
For simplicity we’ll ignore the UI. Step 2, “Registered user provides shipping informa-
tion,” is a bit more interesting. Here you see that the RegisteredUser is responsible for
providing its shipping information to the Clerk.

Figure 10.4 illustrates the resulting card.

16 0672321092 CH10 08/22/2001 2:58 PM Page 237

Step 3, “System displays the order total,” is a bit more involved. Before the system can
display anything, the Clerk must enter the order, price the order, and total the order.

The Clerk will use the ShoppingCart to retrieve the items and the OrderDisplay to dis-
play the resulting order; however, the Clerk probably shouldn’t also be responsible for
pricing or totaling the order. These tasks are better delegated to another object.
Remember, an object should only have a small number of responsibilities.

The Order object should take care of pricing and totaling the order. Figure 10.5 summa-
rizes the Clerk’s responsibilities so far.

The Order object should also hold onto the items being purchased. The Item object was
overlooked during the creation of the class list, so you should add it now. The Item con-
tains pricing and product information as well as a quantity. The Item will also hold onto
any incentives that the user may have applied. Incentive is another class that you should
add to the list.

The remaining steps are much like the others. The RegisteredUser provides Payment
information, the Clerk authorizes the payment and finalizes the order.

Figures 10.6 and 10.7 summarize the responsibilities for the Clerk and RegisteredUser.

238 Day 10

FIGURE 10.4
The CRC card for
RegisteredUser.

RegisteredUser
provides shipping information ShippingInformation

Whenever you see that an object “provides” or “supplies” something, you
need to be sure that the object isn’t acting as a simple data structure.

If the object does nothing but provide access to information, you’ll want to
combine that object with the one that manipulates the data.

Note

16 0672321092 CH10 08/22/2001 2:58 PM Page 238

Introduction to Object Oriented Design (OOD) 239

10

How Many Responsibilities Per Class?
When developing your CRC cards, you need ensure that each class has only two or three
main responsibilities. If you have any more responsibilities, you should break the class
into two or more separate classes.

FIGURE 10.5
The CRC card for
Clerk.

Clerk
retrieve shipping and payment information

enter the order

display the order

ShippingInformation

OrderDisplay

ShippingCart
Order

FIGURE 10.6
The complete CRC
card for Clerk.

Clerk
retrieve shipping and payment information

enter the order

display the order

authorize the order

confirm the order

RegisteredUser

OrderDisplay

PaymentTerminal

Order

ShippingCart
Order

You should consider breaking up the class, but in real systems this is not nec-
essarily realistic.

Caution

16 0672321092 CH10 08/22/2001 2:58 PM Page 239

Take the Clerk class, for example. The Clerk is responsible for:

• Retrieving payment and shipping information.

• Entering the order.

• Displaying the order.

• Authorizing payment.

• Confirming the order.

As Figure 10.8 illustrates, however, all of these responsibilities fall under the “Process
Order” responsibility.

240 Day 10

FIGURE 10.7
The CRC card for
RegisteredUser.

RegisteredUser
provides shipping information

provides payment information

ShippingInformation

Payment

FIGURE 10.8
Process Order.

Clerk
retrieve shipping and payment information

enter the order

display the order

authorize the order

confirm the order

RegisteredUser

OrderDisplay

PaymentTerminal

Order

ShippingCart
Order Process Order

16 0672321092 CH10 08/22/2001 2:58 PM Page 240

Introduction to Object Oriented Design (OOD) 241

10

It is important to list sub-tasks; however, you don’t want to over do it. What is important
is that all of the sub-responsibilities work towards a common goal. Here, all of the tasks
work toward processing an order.

While working with CRC cards, you also need to keep in mind that they fulfill a specific
purpose: defining responsibilities and simple collaboration relationships. Do not use
CRC cards to describe complex relationships.

You should also keep CRC cards low tech—don’t try to automate the CRC card process.

CRC Card Limitations
Like any good tool, CRC cards have their uses as well as limitations.

CRC cards were originally developed as a teaching tool. As a result, they are an excellent
way to approach the initial design of a system—especially if you are new to OO.

CRC cards, however, are difficult to use as the design becomes more complicated.
Complex inter-object interactions can be difficult to track simply through the use of CRC
cards. A large number of classes also make the use of cards unwieldy. It can also become
difficult to continue to use CRC cards once you begin modeling. Keeping the two in sync
can be a challenge.

The best advice is to use what works. Use CRC cards until they no longer add to the
design process. At that time, simply stop using them.

When should you use CRC cards?

• During the initial stages of design.

• When you’re still new to OO.

• To flesh out responsibilities and collaborations.

• To walk through a scenario. Not only will the cards find responsibili-
ties and collaboration, they may help you to understand the scenario
better.

• On smaller projects or to focus in on a smaller section of a larger pro-
ject. Don’t try to tackle an entire project with CRC cards.

Tip

Step 3: Develop the Points of Interaction
Once you have completed your CRC cards for a set of use cases, you need to develop the
points of interaction. A point of interaction is any place where one object uses another.

16 0672321092 CH10 08/22/2001 2:58 PM Page 241

A point of interaction is any place where one object uses another.

There are a number of issues to consider at the point of interaction.

Interfaces
You need a well-defined interface wherever one object uses another. You want to be sure
that a change in one implementation will not break the other object.

Agents
You also need to look at the interactions critically. Take a library, for example. A library
has shelves and books. When it comes time to remove a book from the shelf, does the
book call a removeBook() method on the shelf, or does the shelf call a removeBook()
method on the book? Really, the responsibility doesn’t belong to the book or the shelf.
Neither choice adequately models the real world. In the real world a librarian or patron
will remove the book. Librarians and patron can appear in the OO world as well; howev-
er, the OO world calls such actors agents or intermediaries.

An agent mediates between two or more objects to accomplish some goal.

When developing points of interaction, you’ll want to keep an eye out for places to use
agents.

Future Considerations
When considering interactions you’ll want to look for places where the object being used
may change. If you can pinpoint such places, you’ll want to design the interaction in
such a way that it won’t break if you introduce new objects. Planning for change is what
future proof software is all about. In such places you’ll want to establish pluggability
relationships, and use polymorphism so that you can introduce new objects at any time.

Like anything else, however, don’t overdo it. Plan for change only in places where you
absolutely know change will occur. There are two general ways to predict the future:

• Change is a requirement. If the requirements call for future changes, design for the
change.

• If you’re using a third party library, and you want to upgrade to a new version
seamlessly in the future, plan for change.

The first case is best solved through establishing some sort of substitutability relationship
through inheritance. The second takes a bit more work. You’ll want to wrap the library in
classes that you’ve created. You should be careful to design these wrappers to take
advantage of pluggability and polymorphism.

242 Day 10

NEW TERM

NEW TERM

16 0672321092 CH10 08/22/2001 2:58 PM Page 242

Introduction to Object Oriented Design (OOD) 243

10

Data Transformation
During design you may find places where you need to translate data before you pass it to
another object. Normally, you would delegate such data transformation to another object;
if you need to alter the transformation, you’ll only need to update the transformation
class. This practice also helps to spread out responsibilities.

As you consider these points of interaction and add new classes, you may need to revisit
and update your CRC cards or object model (if you’ve begin formal modeling).

Step 4: Detail the Relationships Between Objects
Once you’ve established responsibility and basic collaboration relationships, you need to
detail the complex relationships between the classes. This is where you define the depen-
dencies, associations, and generalizations. Detailing these relationships is an important
step because it defines how the objects fit together. It also defines the internal structure
of the various objects.

Start with the CRC cards. While these do not capture every relationship, they do capture
collaboration. They will also suggest some of the other relationships.

Look for classes that share similar responsibilities. If two or more classes shares the
same set of responsibilities, chance are good that you can factor the commonality out
into a base class. You’ll also want to revisit step 3 and consider any substitutability rela-
tionships that you might need.

Step 5: Build Your Model
By the time you reach step 5, you are ready to formally model the system. A complete
model will consist of class diagrams and interaction diagrams. These diagrams will
describe the structure and relationship of the various classes in the system. The UML
also defines models for modeling interactions, state transition, and activities. For the pur-
poses of this book, however, you will concentrate on class and interaction diagrams.
You’ve seen both types in previous days.

Figure 10.9 models the Order structure.

The Order model illustrates all of the important relationships between the Order and the
classes that display it. Conceivably, you will also have models that illustrate the relation-
ships between the Clerk, Orders, and the RegisteredUser.

Again, you only want to model what makes sense—the architecturally interesting com-
ponents. Keep in mind that you are trying to convey specific information through your
models, not simply churn out models for the sake of documentation.

Figure 10.10 illustrates the updated sequence diagram for the Order use case.

16 0672321092 CH10 08/22/2001 2:58 PM Page 243

You can also create sequence and collaboration diagrams to model the important interac-
tions in the system.

When you are done creating the models, you should have descriptions of all of the major
structures and interactions found in the system. These models tell you how the various
objects are structured, how they relate, and how they fit together to model the solution to
the problem elaborated during analysis.

244 Day 10

FIGURE 10.9
Order model.

Display

+ display (): HTML

OrderDisplay

Description

Item

Order

OrderDescription
Displays

+getItems():ItemIterator
+getTotal():float
+getShippingInformation,etc():
+addItem(item:Item):void
+getOrderDescription():OrderDescription
+confirm(auth:long):void

ShippingInformation

+calculatCost():float
+getStreet,getCity,etc():

Payment

+getExpDate():Date
+getCardNumber():long
+isExpired():Boolean

Incentive

+calculateDiscouint(item:Item):float

-quantity :int
-price :float

1

1

1

1

1

*

* *

FIGURE 10.10
Order sequence
diagram.

:RegisteredUser :ShoppingCartIterator :ShoppingCart :PaymentTerminal :OrderConfirmation:OrderDisplay:Clerk :Order

placeOrder(cart:ShoppingCart):void

getAccountInformation():AccountInformation

create(user:AccountInformation)

getItems():ShoppingCartIterator

addItem(item:item):void

next():Item

display():HTML

confirm(auth:long):void

createAndSend(order:Order)

getOrderDescription():OrderDescription

authorize(payment:Payment):boolean

getPaymentInformation():Payment

16 0672321092 CH10 08/22/2001 2:58 PM Page 244

Introduction to Object Oriented Design (OOD) 245

10

Summary
OOD picks up where OOA leaves off by taking the domain and transforming it into a
solution to your problem. Through the process of OOD, you take your domain model and
construct the object model of your solution. The object model describes the architecturally
significant aspects of your system, such as object structure and object relationships—
how the objects fit together. By the end of OOD, you should have a good idea of what
you will implement in code.

Roughly, there are five iterative steps that you can follow while performing OOD:

Step 1: Generate an initial list of objects.

Step 2: Refine your objects’ responsibilities through CRC cards.

Step 3: Develop the points of interaction.

Step 4: Detail the relationships between objects.

Step 5: Build your model.

Each step further refines your object model and brings you closer to the blueprint of your
system.

Q&A
Q Why is it important to design the system before you begin coding?

A There are a number of factors that make design important. Design helps you fore-
see implementation problems before you start to code. It is much easier to fix a
problem in a model than to go through all of your code to fix a problem.

Design also ensures that all of the developers on a development team are on the
same page. The design will clarify many of the architecturally important assump-
tions that would have otherwise been decided during development. By leaving
architectural decisions until implementation, you risk having each developer make
his own, incompatible decisions.

Q Why is it important to model your design before you begin coding?

A Modeling is important for the same reason that most people write out a speech
before delivering it. By modeling the design, you can see how the pieces fit together.
By having a visual view of the design, you can decide if you’re comfortable with
it. You can check that everything fits together nicely and sanely.

Sometimes the solution to a problem will seem simple when you think about it.
Taking the solution and formally writing it down forces you to be intellectually
honest about the solution. Having to formally translate a problem forces you to

16 0672321092 CH10 08/22/2001 2:58 PM Page 245

think critically and exactly about the solution. What seems simple in your head
may have you tearing out your hair before you are done!

Q How do you know when your design is finished?

A There are no hard and fast rules that govern when a design is done. If you worry
about having a perfect design, you can easily fall into design paralysis.

It all goes back to what you are trying to convey through your models, your experi-
ence level, and the experience level of your team. If you have an experienced team,
you can probably get away with simply modeling the high level architecture of the
system. If you or the members of your team are new to objects, you’ll probably
want to spend more time designing. Either way, you are done when you feel confi-
dent enough that you can take the design and implement the solution.

The OO development process is iterative. You should use that to your advantage
and iterate toward your final architecture.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. What are the three benefits of a formal design?

2. What is OOD?

3. What is the object model?

4. What are the downsides to over-design?

5. How do you know what aspects of your system are architecturally significant?

6. What are the five basic steps to OOD?

7. How do you generate the initial list of objects?

8. What does a complete design capture?

9. What do CRC cards help you identify?

10. What is a collaboration?

11. Why is a deep understanding of an object’s relationships and responsibilities
important?

12. What is a CRC card?

13. Describe one reason that CRC cards are intentionally low-tech.

14. When should you use CRC cards?

246 Day 10

16 0672321092 CH10 08/22/2001 2:58 PM Page 246

Introduction to Object Oriented Design (OOD) 247

10

15. What is a major problem with CRC cards?

16. What is a point of interaction?

17. What four considerations can you make at a point of interaction?

18. What is an agent?

19. What will you do as you detail the complex relationships among the objects, and
why is it important?

20. What type of models might you create?

Exercises
1. In Day 9, Exercise 2, you developed the following use case:

• Remove Item

• Guest user selects an item from the shopping cart.

• Guest user asks the cart to remove the item.

• Preconditions

• The cart contains an item to remove.

• Post Conditions

• The item no longer appears in the cart.

• Alternative: Operation Canceled

• The user may opt to cancel the transaction after step #1.

To the best of your abilities, use CRC cards to flesh out the responsibilities. What
responsibilities will the ShoppingCart have?

16 0672321092 CH10 08/22/2001 2:58 PM Page 247

16 0672321092 CH10 08/22/2001 2:58 PM Page 248

DAY 11

WEEK 2

Reusing Designs Through
Design Patterns

In yesterday’s chapter, you saw how Object Oriented Design helps you design a
solution for a problem. Through OOD you build a blueprint that diagrams the
objects that comprise your system. Once you have this design, you can begin to
implement your solution.

You probably have a few questions, however.

• How do you know that yours is a good design?

• Will your design have unforeseen consequences in the future?

• How have other designers solved this or a similar problem in the past?

• What about reuse? OOP gives you code reuse, but does OOD allow for
reuse?

This chapter will help you answer these questions and more as you explore the
topic of design patterns.

17 0672321092 CH11 08/22/2001 2:52 PM Page 249

Today you will learn

• How to use design patterns

• How to apply four common patterns

• How a design can benefit from the use of patterns

• How to avoid a common pattern pitfall

Design Reuse
An important goal of OOP is code reuse. When you reuse code you gain peace of mind,
knowing that your software is built on a foundation of reliable, time-tested code.
Furthermore, you know that the code you reuse will solve your problem. Such peace of
mind while you program is great, but what about peace of mind while you design? How
do you know if your design is any good?

Luckily, design patterns can help put to rest many of the doubts that you will encounter
as you design. As time has gone by, many designers and programmers have noticed that
the same design elements appear over and over again throughout their designs. The OO
community has made it a point to identify, name, and describe these recurring design
concepts. The result is an ever-growing list of design patterns.

A design pattern is a reusable design concept.

It turns out that you can reuse design patterns throughout your design just as you would
reuse a class within your program. This reuse brings the benefits of OOP reuse to OOD.
When you use design patterns, you know that you have based your design on a founda-
tion of reliable, time-proven designs. Such reuse enables you to know that you’re on the
right track to a reliable solution. When you reuse a design pattern, you’re using a design
that others have successfully used many times before.

Design Patterns
Design Patterns—Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, and Vlissides first introduced the concept of design patterns to many in the OO
community. This groundbreaking work not only defined a set of reusable design patterns,
but also formally defined design pattern.

According to this work, a design pattern consists of four elements:

• The pattern name

• The problem

250 Day 11

NEW TERM

17 0672321092 CH11 08/22/2001 2:52 PM Page 250

Reusing Designs Through Design Patterns 251

11

• The solution

• The consequences

The Pattern Name
A name uniquely identifies each design pattern. Just as the UML gives you a common
design language, pattern names gives you a common vocabulary for describing your
design elements to others. Other developers can understand your design quickly and
easily when you use a common vocabulary.

A simple name reduces an entire problem, solution, and consequences to a single term.
Just as objects help you program at a higher, more abstract level, these terms allow you
to design from a higher, more abstract level and not get caught up in details that repeat
themselves from design to design.

The Problem
Each design pattern exists to solve some discrete set of design problems, and each design
pattern describes the set of problems that it is designed to solve. That way, you can use
the problem description to determine whether the pattern applies to the specific problem
that you face.

The Solution
The solution describes how the design pattern solves the problem, and identifies the
architecturally significant objects in the solution as well as the responsibilities and rela-
tionships that those objects share.

It is important to note that you can apply a design pattern to an entire class
of problems. The solution is a general solution, and does not present an
answer to a specific or concrete problem.

Suppose that you would like to find the best way to scan over the items in
the shopping cart from Chapter 10, “Introduction to Object Oriented Design
(OOD).” The Iterator design pattern proposes a way to do just that; howev-
er, the solution stated by the Iterator pattern is not given in terms of shop-
ping carts and items. Instead, the solution describes the process of scanning
over any list of elements.

When you set out to use a design pattern, you must map the general solu-
tion to your specific problem. Sometimes it can be difficult to make that
mapping; however, the design pattern itself needs to remain generic so that
it remains applicable to many different specific problems.

Note

17 0672321092 CH11 08/22/2001 2:52 PM Page 251

The Consequences
There is no such thing as the perfect design. Every good design will have good compro-
mises, and every compromise you make has its own special set of consequences. A
design pattern will enumerate the major consequences inherent in the design.

Consequences are nothing new. You make tradeoffs every time you choose between two
alternatives when you program. Consider the difference between using an array and
using a linked list. An array provides for quick lookup by index, but works very slowly
when you need to shrink or expand the array to insert or delete elements. On the other
hand, the linked list provides for quick additions and deletions, but has a higher memory
overhead and slower index lookups. Here, the consequences of a linked list are memory
overhead and slower lookups. The consequence of using an array is the fact that resizing
the array is costly, but indexed lookups are very quick. Which you choose depends on the
importance of memory and speed in your design, if you’ll be doing a lot of addition and
deletion of elements, and if you will do many lookups.

It is always important to document your design decisions as well as the resulting conse-
quences. Having these decisions documented helps others to understand the choices that
you have made, and determine whether the design can help solve their own problems.
Likewise, design pattern consequences will factor heavily into your decision of whether
to use the pattern. If a design pattern has consequences that do not match your design
goals, you should not use it—even if it might otherwise solve your problem.

Pattern Realities
When you first begin to learn about patterns it is important to know what patters can and
cannot do. The following lists can help keep the intentions behind patterns straight.

Patterns are

• Reusable designs that have proven to work in the past

• Abstract solution to a general design problem

• Solutions to recurring problems

• A way to build a design vocabulary

• A public record of design experience

• A solution to one problem

Patterns are not

• A solution to a specific problem

• The magical answer to all of your problems

252 Day 11

17 0672321092 CH11 08/22/2001 2:52 PM Page 252

Reusing Designs Through Design Patterns 253

11

• A crutch, you still need to do your design work yourself

• Concrete classes, libraries, pre made solutions

Patterns by Example
There are many books that catalog design patterns. There’s no reason to formally repeat
those catalogs here; however, there is a set of design patterns that you will encounter
almost daily. No introductory OO text would be complete without presenting those pat-
terns to you.

Instead of formally presenting these patterns, let’s take a more informal approach
through example.

Today, this chapter will introduce three important patterns:

• Adapter

• Proxy

• Iterator

The Adapter Pattern
Chapter 4, “Inheritance: Getting Something for Nothing,” introduced the concept of sub-
stitutability relationships. Chapter 6, “Polymorphism: Learning to Predict the Future,”
showed you how you can use those relationships to add new objects to your system at
any time. When you use inheritance to define substitutability, however, your objects can
become constrained by the resulting hierarchies. To be able to plug into your program, an
object must be part of the substitutability hierarchy.

So what do you do if you would like to plug an object into your program, but it doesn’t
belong to the proper hierarchy? One solution is to take the class that you would like to
use and then edit it so that it inherits from the right class. This solution is not optimal for
a couple of reason.

You will not always have the source code to the classes that you want to use.
Furthermore, if that class already uses inheritance, you’ll be in trouble if your language
doesn’t support multiple inheritance.

Even if you do have the source code, it’s simply not practical or reasonable to rewrite an
object each time you would like it to be part of the “proper” hierarchy. The definition of
the “proper” hierarchy will change for each program. If you have a reasonably abstracted
class, you won’t want to keep editing it each time that you want to reuse it. Instead, you
should simply use it unaltered. Rewriting it each time defeats the purposes of reuse and

17 0672321092 CH11 08/22/2001 2:52 PM Page 253

abstraction. If you keep creating special editions of a class, you’ll be left with a lot of
redundant classes to maintain.

The Adapter pattern presents an alternative solution that solves the problem of incompat-
ibility by transforming the incompatible interface into the one that you need. The
Adapter pattern works by wrapping the incompatible object inside of a compatible
adapter object. The adapter object holds onto an instance of the object, and exposes the
object through the interface that fits into your program. Because the adapter class wraps
an object, this pattern is sometimes referred to as the Wrapper pattern.

An adapter is an object that transforms the interface of another object.

Implementing an Adapter
Figure 11.1 summarizes the MoodyObject hierarchy presented in Chapter 7,
“Polymorphism: Time to Write Code.”

254 Day 11

NEW TERM

FIGURE 11.1
The MoodyObject
hierarchy.

MoodyObject

+ queryMood ()
getMood () : String

HappyObject

getMood () : String

CarefreeObject

getMood () : String

SadObject

getMood () : String

PsychiatristObject

+ examine (obj : MoodyObject)

The PsychiatristObject can only examine an object if it is a MoodyObject. The
PsychiatristObject’s examine() method depends upon MoodyObject’s queryMood()
method. Any other type of object will need to find a different psychiatrist.

Figure 11.2 presents the new Pet hierarchy.

Pet

+ speak () : String

Dog

+ speak () : String

Cat

+ speak () : String

Bird

+ speak () : String

FIGURE 11.2
The Pet hierarchy.

17 0672321092 CH11 08/22/2001 2:52 PM Page 254

Reusing Designs Through Design Patterns 255

11

Each Pet speaks in its own specialized way, and provides its own implementation of
speak().

So, what’s the problem?

Today, even pets go to psychiatrists, but the PsychiatristObject cannot examine a Pet
because a Pet is not a MoodyObject. For the PsychiatristObject to be able to examine
a Pet, you’ll need to create a Pet adapter.

Listing 11.1 presents one possible Pet adapter.

LISTING 11.1 PetAdapter.java

public class PetAdapter extends MoodyObject {

private Pet pet;

public PetAdapter(Pet pet) {
this.pet = pet;

}

protected String getMood() {
// only implementing because required to by
// MoodyObject, because also override queryMood
// we don’t really need it
return pet.speak();

}

public void queryMood() {
System.out.println(getMood());

}
}

The PetAdapter wraps a Pet instance. Instead of exposing the Pet interface, the adapter
hides the Pet interface behind the MoodyObject interface, in essence transforming Pet’s
interface. Whenever a request comes into the PetAdapter, the adapter delegates to the
Pet instance as needed.

Listing 11.2 shows the adapter in action.

LISTING 11.2 Using the Adapter

PetAdapter dog = new PetAdapter(new Dog());
PetAdapter cat = new PetAdapter(new Cat());
PetAdapter bird = new PetAdapter(new Bird());

17 0672321092 CH11 08/22/2001 2:52 PM Page 255

LISTING 11.2 continued

PsychiatristObject psychiatrist = new PsychiatristObject();

psychiatrist.examine(dog);
psychiatrist.examine(cat);
psychiatrist.examine(bird);

Once wrapped, the Pet instance looks like any other MoodyObject to the
PsychiatristObject. This solution is more efficient than the alternatives because it
requires you to only write one adapter class. This adapter class can handle any Pet that
comes along. The tricky part is to make sure that the PetAdapter wraps any Pet
instances before you pass the Pet to the PsychiatristObject.

256 Day 11

The implementation provided above is called an object adapter because the adapter uses
composition to transform the interface of an instance. You can also implement an
adapter through inheritance. Such an adapter is known as a class adapter since it adapts
the class definition itself.

If your language supports multiple inheritances, you can always inherit from the class you
want to use as well as from a class in the hierarchy.

If your language lacks multiple inheritance, like Java, your choices may be limited
depending on how the hierarchy was constructed. In fact, you may have to forego inheri-
tance entirely and use composition, at which point you might as well create an object
adapter.

While multiple inheritance works, this solution is limited. Creating a new subclass for
each class that you want to use can lead to an unacceptable proliferation in wrapper
classes.

Each approach has its own limitation. A class adapter will only work for the class that it
inherits. You’ll need a separate adapter for each subclass.

Likewise, while an object adapter can work with each subclass, you’ll need subclasses of
the adapter if you want to change the way it wraps various subclasses.

When to Use the Adapter Pattern
The Adapter pattern is useful when you want to use an object that has an incompatible
interface. The Adapter pattern allows you to directly reuse objects that you would have
otherwise needed to alter or throw away.

Adapters are also useful in a proactive sense. From time to time, you will need to employ
third-party libraries in your programs. Unfortunately, the APIs of third-party tools can

17 0672321092 CH11 08/22/2001 2:52 PM Page 256

Reusing Designs Through Design Patterns 257

11

vary dramatically between releases, especially for new products or maturing technolo-
gies. The APIs can also vary greatly from the libraries of a competing product.

The Adapter pattern can help insolate your program from changing APIs and from ven-
dor lock in. By creating an adapter interface that you control, you can swap in new ver-
sions of a library at any time. Simply create a subclass of the adapter for each library that
you would like to use.

It’s also important to point out that an adapter can be simple or complicated, and the level
of complexity depends on the object being wrapped. Some adapters will boil down to sim-
ply mapping a request to the proper method. Others will need to do more processing.

Use the Adapter pattern when

• You want to use incompatible objects in your program.

• You want your program to remain independent of third party libraries.

Table 11.1 outlines the user of the Adapter pattern.

TABLE 11.1 The Adapter Pattern

Pattern Name Adapter, Wrapper

Problem How to reuse incompatible objects

Solution Provides an object that converts the incompatible interface into a
compatible one

Consequences Makes incompatible objects compatible; results in extra classes—perhaps
many—if you use inheritance or need to handle each subclass differently

The Proxy Pattern
Normally, when an object wants to interact with another object, it does so by acting
directly upon the other object. In most cases this direct approach is the best approach, but
there are times when you will want to transparently control access between your objects.
The Proxy pattern addresses such cases.

Publish/Subscribe and the Proxy Pattern
Consider the problem of a publish/subscribe event service where an object will register
its interest in an event. Whenever the event occurs, the publisher will notify the subscrib-
ing objects of the event.

Figure 11.3 illustrates one possible publish/subscribe relationship.

17 0672321092 CH11 08/22/2001 2:52 PM Page 257

In Figure 11.3, many Listeners register their interest in events generated by an
EventGenerator. Whenever the EventGenerator generates an event, it will push the
event to each of its Listeners.

While this solution works, it places a great burden on the EventGenerator. Not only
does the EventGenerator have the responsibility of generating events, it is also respon-
sible for keeping track of all its listeners and pushing them the events.

The Proxy pattern presents an elegant solution to this problem. Consider Figure 11.4.

258 Day 11

FIGURE 11.3
A publish/subscribe
relationship.

EventGenerator

+ register (listener : Listener) :

Listener

+ receiveEvent (event : Event) :

publisher subscriber

* *

FIGURE 11.4
A proxy solution.

AbstractListener

+ receiveEvent (event : Event) :

ListenerProxy

+ receiveEvent (event : Event) :

Listener

+ recieveEvent (event : Event) :

EventGenerator

+ register (listener : Listener) :

Subscriber

Subscriber

Publisher

Publisher

1 1

* *

Instead of holding onto its listeners directly, the EventGenerator can hold onto one
ListenerProxy. Whenever the generator needs to push an event, it pushes it once to the
proxy. It is then up to the proxy to track and update all of the listeners.

The General Proxy Pattern
The publish/subscribe scenario describes one possible use for a proxy; however, you can
use proxies in many places.

First, what is a proxy?

17 0672321092 CH11 08/22/2001 2:52 PM Page 258

Reusing Designs Through Design Patterns 259

11

A proxy is a surrogate or placeholder that brokers access to the actual object of interest.
You can use a proxy anyplace where you need a surrogate or placeholder for another
object. Instead of using an object directly, you use the proxy. The proxy takes care of all
the details of communicating with the actual object or objects.

A proxy is a surrogate or placeholder that brokers access to the actual object of
interest. For all intents and purposes, the proxy is indistinguishable from the actu-

al object that it brokers.

A proxy brokers access to an underlying object (or objects) transparently. You can think
of a proxy as a way of tricking your objects. For example, while the EventGenerator
thinks that it is only communicating with one Listener, the ListenerProxy might actu-
ally broadcast the message to many different Listeners.

Being able to trick your objects is an important ability because it allows you to perform
all kind of magic behind the scenes. A proxy enables you to put responsibilities in the
proxy without having to embed those responsibilities in the user of the proxy. More
importantly, your proxy can perform all of these responsibilities without the other objects
being aware of what you are doing.

The responsibilities that you can put in the proxy are endless; however, common use
includes adding optimizations, performing housekeeping tasks, making remote resources
appear local, and for deferring expensive operations.

When to Use the Proxy Pattern
Use proxies when

• You want to defer an expensive operation. Consider an object that pulls back infor-
mation from a database. While your program may need to know about the objects
that it can pull back, the program doesn’t need to pull all of the information back
until it actually access the object. A proxy can stand in for the actual object and
load the extra information once it is needed.

Another example is a file proxy that allows you to write to a file, but only does the
actual file IO when you are done. Instead of making a multiple number of slow
writes, the proxy will do one large write.

• You want to transparently protect how an object is used. Most objects are mutable,
such as Java’s collection classes. A protective proxy could make a collection
immutable by intercepting requests that would otherwise alter a collection. By fil-
tering all method invocations through a proxy, you can transparently govern the
allowable operations on an object.

NEW TERM

17 0672321092 CH11 08/22/2001 2:52 PM Page 259

• The actual object exists remotely across a network or process. Proxies are impor-
tant to distributed computing. A proxy can make a distributed resource appear as if
it were a local resource by forwarding requests over a network or across a process
space.

• When you want to perform additional actions transparently when using an object.
For example, you may want to count the number of times that a method is called
without the caller knowing. A counting proxy could track access to an object.

Table 11.2 outlines the user of the Proxy pattern.

TABLE 11.2 The Proxy Pattern

Pattern Name Proxy, Surrogate

Problem Need to control access to an object

Solution Provides an object that transparently brokers access to an object

Consequences Introduces a level of indirection to object use

The Iterator Pattern
Design patterns often describe solutions to common problems. When you program,
chances are good that you will spend a lot of time writing code that loops over objects in
a collection. As you learned in Chapter 8, “Introduction to the UML,” the relationship
between a collection and its elements is an aggregation. The collection contains items.

Listing 11.3 presents a familiar method that loops over the contents of a deck of cards (a
collection) and constructs a string representation of the deck.

LISTING 11.3 Looping Over the Contents of a Deck of Cards

public String deckToString(Deck deck) {
String cards = “”;
for(int i = 0; i < deck.size(); i ++) {

Card card = deck.get(i);
cards = cards + card.display();

}
return cards;

}

Suppose that you wanted to loop over an array of cards. Listing 11.4 shows the method
that can handle just that case.

260 Day 11

17 0672321092 CH11 08/22/2001 2:52 PM Page 260

Reusing Designs Through Design Patterns 261

11

LISTING 11.4 Looping Over the Contents of an Array

public String deckToString(Card [] deck) {
String cards = “”;
for(int i = 0; i < deck.length; i ++) {

cards = cards + deck[i].display();
}
return cards;

}

Finally, what if you want to loop over the deck of cards in reverse order? You’ll need to
add yet another method. Listing 11.5 shows a method that loops over the deck in reverse.

LISTING 11.5 Looping Over the Contents of a Deck of Cards in Reverse

public String reverseDeckToString(Deck deck) {
String cards = “”;
for(int i = deck.size() - 1; i > -1; i —) {

Card card = deck.get(i);
cards = cards + card.display();

}
return cards;

}

If you think back to the lessons on coupling and responsibilities, you should hear a voice
in your head screaming, “Bad code!” Every time that you would like to loop over a col-
lection of cards, you need to add a method that knows how to loop over that specific type
of collection. In fact, the logic isn’t really all that different from case to case. The only
elements that do change are the methods and attributes you access on the collection.
Right away you see a warning: repeated code.

The problem is that each of the methods listed above is dependent on the implementation
of the collection, such as a Deck or an Array. When you program, you always want to
make sure that you don’t get coupled to a specific implementation. Coupling makes your
program resistant to change.

Think about it. What happens if you want to change the collection that holds your cards?
You’ll need to update or add a new method that performs the loop. If you’re not lucky,
simply changing the collection’s implementation could necessitate changes throughout
your program.

While a single object might only contain one loop, your entire program will
probably repeat the loops many times in many different places.

Note

17 0672321092 CH11 08/22/2001 2:52 PM Page 261

Another problem with these examples stems from the fact that the mechanics of the tra-
versal is hard coded into the method. That’s why you need one method for forward loop-
ing and yet another for reverse looping. If you want to randomly loop over the cards,
you’ll need a third method (and one for each collection type). Not only will you need
multiple methods, you’ll need to reimplement the traversal logic each time you define a
loop. Unfortunately, such logic replication is a symptom of responsibility muddling. The
traversal logic should appear in one place and one place only.

Luckily, the Iterator pattern solves many of the problems of tight coupling and responsi-
bility muddling by placing the loop, or iteration, logic into its own object.

Figure 11.5 illustrates the Iterator interface.

262 Day 11

FIGURE 11.5
The Iterator

interface.

Iterator

+ first () : void
+ next () : void
+ isDone () : boolean
+ currentItem () : Object

The Iterator interface provides a generic interface for iterating over a collection.
Instead of writing your loops and methods to use a specific collection, you can simply
program to the Iterator’s generic interface. The Iterator interface completely hides
the underlying collection implementation.

Java defines a slightly different iterator interface: java.util.Iterator. The
Java Iterator only defines three methods: public boolean hasNext(),
public void remove(), and public Object next().

The Java Iterator interface only allows you to iterate in one direction. Once
you reach the end, you cannot go back to the beginning. Other than that
shortcoming, the Java Iterator is similar to the one presented earlier.

When writing Java programs you should use java.util.Iterator so that
other Java programs can use your iterator implementations. For the purpos-
es of this book, however, this lesson will stay true to the classical iterator
definition provided in Figure 11.5.

Note

Listing 11.6 presents an alternative deckToString() that loops over an instance of
Iterator.

17 0672321092 CH11 08/22/2001 2:52 PM Page 262

Reusing Designs Through Design Patterns 263

11

LISTING 11.6 Looping Over the Contents of an Iterator Instance

public String deckToString(Iterator i) {
String cards = “”;
for (i.first(); !i.isDone(); i.next()) {

Card card = (Card) i.currentItem();
cards = cards + card.display();

}
return cards;

}

Just because an object passes back an iterator doesn’t mean that the object actually stores
its items inside of the iterator. Instead, an iterator will provide access to the object’s
contents.

There are three benefits to using an iterator to traverse a collection.

First, an iterator will not tie you to a specific collection. The original methods all looped
over specific collection implementations. As a result, each method only differed in the
methods that it calls on the collection. If those methods had looped over an iterator, such
as Listing 11.4, you would only have needed to write one deckToString() method.

Second, the iterator can return its elements in any order that it sees fit. This means that
one iterator implementation might return the elements in order. Another iterator could
return the elements in reverse order. By using an iterator, you can write the traversal
logic once and have it appear in only one place: the iterator itself.

Finally, an iterator makes it simple to change the underlying collection whenever you
need to. Because you haven’t programmed to a specific implementation, you can swap in
a new collection at any time, as long as the collection knows how to return an instance of
Iterator.

Implementing an Iterator

Most Java collections already provide access to an iterator. For example the
LinkedList used internally by the Deck object already has an iterator()
method that returns a java.util.Iterator; however, it helps to see an actu-
al iterator implementation and this pattern is not specific to Java. So please,
ignore the Java LinkedList iterator() method for a moment.

Note

Listing 11.7 lists an implementation of Iterator that allows a user to scan over the ele-
ments of a LinkedList collection.

17 0672321092 CH11 08/22/2001 2:52 PM Page 263

LISTING 11.7 An Iterator Implementation

public class ForwardIterator implements Iterator {

private Object [] items;
private int index;

public ForwardIterator(java.util.LinkedList items) {
this.items = items.toArray();

}

public boolean isDone() {
if(index == items.length) {

return true;
}
return false;

}

public Object currentItem() {
if(!isDone()) {

return items[index];
}
return null;

}

public void next() {
if(!isDone()) {

index++;
}

}

public void first() {
index = 0;

}

}

Another implementation might provide a reverse iteration (please see the full source for
such an example).

Listing 11.8 illustrates the changes that you will need to make to Deck so that it can
return an Iterator.

LISTING 11.8 An Updated Deck

public class Deck {
private java.util.LinkedList deck;

public Deck() {

264 Day 11

17 0672321092 CH11 08/22/2001 2:52 PM Page 264

Reusing Designs Through Design Patterns 265

11

LISTING 11.8 continued

buildCards();
}

public Iterator iterator() {
return new ForwardIterator(deck);

}
// snipped for brevity

}

Alternatively, it is fully valid from an OO point of view to consider an iterator as an
extension of the collection that it provides access to. As a result, you have a few other
implementation options.

Java allows for a construct known as the inner class. An inner class is a class that is
defined within another class. Because the inner class is defined within another class, it
has full access to all of that class’ public, as well as protected and private methods and
internal variables. The closest analogy in C++ is a friend class. friend gives special access
to other trusted object.

Both the friend and inner class are easy to abuse since they can easily destroy encapsula-
tion; however, an iterator is really part of the collection. Listing 11.9 shows an inner class
implementation of the Iterator for the Deck class.

LISTING 11.9 An Inner Class Iterator Implementation

public class Deck {

private java.util.LinkedList deck;

public Deck() {

buildCards();

}

public Iterator iterator() {

return new ForwardIterator();

}

//snipped for brevity

private class ForwardIterator implements Iterator {

int index;

17 0672321092 CH11 08/22/2001 2:52 PM Page 265

When to Use the Iterator Pattern
There are a number of reasons to use the Iterator pattern:

• You can use an iterator when you want to hide the implementation of a collection.

• You can use an iterator when you want to provide different kinds of loops over a
collection (such as forward loop, reverse loop, filtered loop, and so on).

• You can use an iterator to keep a collection’s interface simple. You will not need
to add methods to aid looping over the contents. Just let the object’s users use an
iterator.

266 Day 11

LISTING 11.9 An Inner Class Iterator Implementation

public boolean isDone() {

// notice that the inner class has unfettered

// access to Deck’s internal variable deck

if(index == deck.size()) {

return true;

}

return false;

}

public Object currentItem() {

if(!isDone()) {

return deck.get(index);

}

return null;

}

public void next() {

if(!isDone()) {

index++;

}

}

public void first() {

index = 0;

}

}

}

17 0672321092 CH11 08/22/2001 2:52 PM Page 266

Reusing Designs Through Design Patterns 267

11

• You can define a base collection class that returns an iterator. If all of your collec-
tions inherit from this base the iterator allows you to treat all of your collections
generically. In fact, java.util.Collection does just that. This usage is also the
general form of the Iterator pattern. The Deck example is an abridged version of the
Iterator pattern. The Deck does not inherit from an abstract base collection class,
thus you cannot treat it generically.

• Iterators are also useful for providing optimized access to collections. Some data
structures, such as the hashtable, do not provide an optimized way of iterating over
the elements. An iterator can provide such an ordering at the cost of a little extra
memory. However, depending upon your application, the time savings might more
than make up for the memory overhead.

Table 11.3 outlines the user of the Iterator pattern.

TABLE 11.3 The Iterator Pattern

Pattern Name Iterator, Cursor

Problem Looping over a collection without becoming dependent upon the collec-
tion’s implementation

Solution Provides an object that handles the iteration details, thus hiding the details
from the user

Consequences Decoupled traversal, simpler collection interface, encapsulated looping
logic

Making a Pattern Yours
Some patterns are harder to understand than others; however, complexity can be decep-
tive. Before you can apply or even think about altering a pattern, you need to understand
the pattern: In other words “make it yours.” There are a few steps that you must take to
be able to master a pattern:

1. Read the pattern

2. Read the pattern again paying close attention to the main participants and the sam-
ple code

3. Practice implementing the pattern

4. Apply the pattern to a real life problem

Once you have completed these four steps, you probably have full understanding of the
pattern. At this point you can start to alter the pattern to fit the specific needs of your

17 0672321092 CH11 08/22/2001 2:52 PM Page 267

problem; however, you shouldn’t attempt to augment a pattern with which you are still
unfamiliar.

Summary
Design patterns are a useful aid while designing your solutions. In their own way, pat-
terns are the collective conscience of the OO community that tap years of design experi-
ence. Design patterns can provide valuable guidance while designing.

You need to keep the limits of design patterns in mind when you use them. A design pat-
tern addresses one abstract problem, and one problem only. A design pattern does not
provide the solution to a specific problem. Instead, the pattern provides an abstract solu-
tion to a general problem. It is up to you to provide the mapping between the abstract
problem and your specific problem.

Mapping a design pattern is probably the greatest challenge that you will face while
using patterns. It is a skill that only comes through time, study, and practice.

Q&A
Q Does the Java language use patterns?

A Yes, many of the Java APIs employ patterns. In fact, each of the patterns that you
read about today are represented in Java. Here is a brief list of the patterns that you
have seen:

Iterator: the Java Collection classes

Proxy: Java’s RMI

Adapter: used extensively for event listeners

Q Do all patterns translate to all languages?

A No. Every language is different. Some patterns are impossible to implement under
certain languages, while other patterns are unnecessary because of built-in lan-
guage features.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

268 Day 11

17 0672321092 CH11 08/22/2001 2:52 PM Page 268

Reusing Designs Through Design Patterns 269

11

Quiz
1. What is an adapter class?

2. What problem does the Iterator pattern solve?

3. Why would you use the Iterator pattern?

4. What problem does the Adapter pattern solve?

5. Why would you use the Adapter pattern?

6. What problem does the Proxy pattern solve?

7. Why would you use the Proxy pattern?

8. Consider the following situation; what pattern would you use and why?

Sun Microsystems, IBM, and Apache all provide libraries for parsing XML docu-
ments. You have chosen to use the Apache library in your XML application. In the
future, though, you might decide to go with a different vendor.

9. Consider the following situation; what pattern would you use and why?

You must write an application that retrieves data from a file-based datastore.
Sometimes your application will run locally and can access the datastore through
direct means. Other times, the client will run remotely and will need to talk to a
server in order to read the datastore.

10. The Adapter pattern transforms an interface. Does the Proxy pattern change an
object’s interface?

Exercises
1. Listings 11.10 and 11.11 present a shopping cart class and an item class. Listing

11.12 presents an iterator interface. Use these definitions to create an iterator that
will allow you to iterate over the contents of the shopping cart.

LISTING 11.10 Item.java

public class Item {

private int id;
private int quantity;
private float unit_price;
private String description;
private float discount;

/**
* Create a new item with the given quantity, price,
* description, and unit discount.

17 0672321092 CH11 08/22/2001 2:52 PM Page 269

LISTING 11.10 continued

* @param id the product id
* @param quantity the number of items selected
* @param unit_price the before discount price
* @param description the product description
* @param discount the dollar amount to subtract per item
*/
public Item(int id, int quantity, float unit_price, float discount,

String desc) {
this.id = id;
this.quantity = quantity;
this.unit_price = unit_price;
this.discount = discount;
this.description = desc;

}

/**
* @return int the item quantity
*/
public int getQuantity() {

return quantity;
}

/**
* @param quantity the new quantity
*/
public void setQuantity(int quantity) {

this.quantity = quantity;
}

/**
* @return the item unit price
*/
public float getUnitPrice() {

return unit_price;
}

/**
* @return float the total price of the item minus any discounts
*/
public float getTotalPrice() {

return (unit_price * quantity) - (discount * quantity);
}

/**
* @return String the product description
*/
public String getDescription() {

return description;
}

270 Day 11

17 0672321092 CH11 08/22/2001 2:52 PM Page 270

Reusing Designs Through Design Patterns 271

11

LISTING 11.10 continued

/**
* @return int the product id
*/
public int getID() {

return id;
}

LISTING 11.11 ShoppingCart.java

public class ShoppingCart {

java.util.LinkedList items = new java.util.LinkedList();

/**
* adds an item to the cart
* @param item the item to add
*/
public void addItem(Item item) {

items.add(item);
}

/**
* removes the given item from the cart
* @param item the item to remove
*/
public void removeItem(Item item) {

items.remove(item);
}

/**
* @return int the number of items in the cart
*/
public int getNumberItems() {

return items.size();
}

/**
* retrieves the indexed item
* @param index the item’s index
* @retun Item the item at index
*/
public Item getItem(int index) {

return (Item) items.get(index);
}

}

17 0672321092 CH11 08/22/2001 2:52 PM Page 271

LISTING 11.12 Iterator.java

public interface Iterator {
public void first();
public void next();
public boolean isDone();
public Object currentItem();

}

2. The PetAdapter presented earlier in the chapter is limited to only wrap one Pet
instance. Alter the adapter so that you can change the object that it wraps at any
time.

Why might you want a mutable adapter?

Answers to Quiz
1. An adapter class transforms an object’s interface to one expected by your program.

An adapter contains an object and delegates messages from the new interface to the
contained object’s interface.

2. The Iterator pattern describes a mechanism for looping over elements in a
collection.

3. You would use the Iterator pattern to contain traversal logic in one place, provide a
standard way for traversing collections, and to hide the implementation of the col-
lection from the user.

4. The Adapter pattern describes a mechanism that allows you to transform an objects
interface.

5. You would use the Adapter pattern whenever you need to use an object that has an
incompatible interface. You can also proactively use wrappers to isolate your code
from API changes.

6. The Proxy pattern transparently brokers access to an object. Proxies add indirection
to object use.

7. You would use the Proxy pattern any time that you would like to broker access to
an object in a way that a simple reference does not allow. Common examples
include remote resources, optimizations, and for general object housekeeping such
as reference counting or usage statistics collecting.

8. In this situation you can use the Adapter pattern to create an interface that is indepen-
dent of the one provided by Sun, IBM, or Apache. By creating your own interface,
you can remain independent of each vendor’s slightly different API. By wrapping the

272 Day 11

17 0672321092 CH11 08/22/2001 2:52 PM Page 272

Reusing Designs Through Design Patterns 273

11

library you are free to switch the library at any time whether to upgrade to a new
version or to switch vendors since you control the adapter’s interface.

9. In this situation you can use the Proxy pattern to hide the identity of the datastore
object that your objects talk to. Depending upon the client’s location, you can
instantiate a networked proxy or a local proxy. Either way, the rest of the program
will not know the difference, so all your objects can use one proxy interface with-
out having to worry about the underlying implementation.

10. The Proxy pattern does not change an interface in that it doesn’t take anything
away from it. A proxy is free to add additional methods and attributes to the inter-
face, however.

Answers to Exercises
1.

LISTING 11.13 ShoppingCart.java

public class ShoppingCart {

java.util.LinkedList items = new java.util.LinkedList();

/**
* adds an item to the cart
* @param item the item to add
*/
public void addItem(Item item) {

items.add(item);
}

/**
* removes the given item from the cart
* @param item the item to remove
*/
public void removeItem(Item item) {

items.remove(item);
}

/**
* @return int the number of items in the cart
*/
public int getNumberItems() {

return items.size();
}

/**

17 0672321092 CH11 08/22/2001 2:52 PM Page 273

LISTING 11.13 continued

* retrieves the indexed item
* @param index the item’s index
* @retun Item the item at index
*/
public Item getItem(int index) {

return (Item) items.get(index);
}

public Iterator iterator() {
// ArrayList has an iterator() method that returns an iterator
// however, for demonstration purposes it helps to see a simple iterator
return new CartIterator(items);

}
}

LISTING 11.14 CartIterator.java

public class CartIterator implements Iterator {

private Object [] items;
private int index;

public CartIterator(java.util.LinkedList items) {
this.items = items.toArray();

}

public boolean isDone() {
if(index >= items.length) {

return true;
}
return false;

}

public Object currentItem() {
if(!isDone()) {

return items[index];
}
return null;

}

public void next() {
index++;

}

public void first() {

274 Day 11

17 0672321092 CH11 08/22/2001 2:52 PM Page 274

Reusing Designs Through Design Patterns 275

11

LISTING 11.14 continued

index = 0;
}

}

2. By making the adapter mutable, you can use the same wrapper to wrap many dif-
ferent objects, and you don’t need to instantiate a wrapper for each object that
needs to be wrapped. Wrapper reuse makes better use of memory, and frees your
program from having to pay the price of instantiating many wrappers.

LISTING 11.15 MutableAdapter.java

public class MutableAdapter extends MoodyObject {

private Pet pet;

public MutableAdapter(Pet pet) {
setPet(pet);

}

protected String getMood() {
// only implementing because required to by
// MoodyObject, since also override queryMood
// we don’t really need it
return pet.speak();

}

public void queryMood() {
System.out.println(getMood());

}

public void setPet(Pet pet) {
this.pet = pet;

}
}

17 0672321092 CH11 08/22/2001 2:52 PM Page 275

17 0672321092 CH11 08/22/2001 2:52 PM Page 276

DAY 12

WEEK 2

Advanced Design
Patterns

In yesterday’s chapter, you saw how design patterns allow you to reuse time-
tested designs. Today, you will continue your study of design patterns by exam-
ining three more patterns.

Today you will learn

• About three important design patterns

• How to make sure that your objects remain single

• How to enhance a previous example

• About some common pattern pitfalls that you should avoid

18 0672321092 CH12 08/22/2001 2:47 PM Page 277

More Patterns by Example
Let’s continue your study of design patterns by considering three important patterns:

• Abstract Factory

• Singleton

• Typesafe Enum

Each of these patterns find their way into almost every design. In fact, you can use the
Typesafe Enum pattern to fix up an example from Chapter 3, “Encapsulation: Time to
Write Code!”

The Abstract Factory Pattern
Chapter 7, “Polymorphism: Time to Write Code,” showed you how you can combine
inheritance and polymorphism to write “future-proof” software. Inheritance’s pluggabili-
ty relationships combined with polymorphism allows you to plug new objects into your
program at any time; however, there is a downside.

For your program to be able to instantiate these new objects, you must go into the code
and alter it so that it instantiates the new objects instead of the old ones. (And you’ll
need to do this in every place where the old objects are instantiated!) Wouldn’t it be nice
if there was an easier way to plug in your new objects?

The Abstract Factory pattern solves this problem through delegation. Instead of instanti-
ating objects throughout your program, you can delegate that responsibility to an object
called a factory. Whenever an object needs to create another object, it will ask the factory
to do it. By using a factory, you can isolate all object creation in one place. When you
need to introduce new objects into your system, you’ll only need to update the factory so
that it creates instance of your new classes. The objects that use the factory will never
know the difference.

Figure 12.1 illustrates the general design of the Abstract Factory pattern.

The Abstract Factory pattern uses inheritance and pluggability. The base factory class
defines all of the object creation methods, and each factory subclass defines which
objects it creates by overriding the methods.

Implementing an Abstract Factory
There are times when you will need to use third-party libraries within your program.
Unfortunately, when it comes time to upgrade to a new version, you may find that the
libraries’ public APIs have changed slightly. Luckily, the Abstract Factory pattern offers a
solution that makes upgrading the library painless.

278 Day 12

18 0672321092 CH12 08/22/2001 2:47 PM Page 278

Advanced Design Patterns 279

12
Imagine that you are working on a project that uses an XML parser. An XML parser will
take an XML document as a String and return an object representation of the document
known as Document. If you know that you will update the library in the future, and that
the API will change, there are a few steps that you can take to protect yourself.

FIGURE 12.1
The Abstract Factory
Pattern.

AbstractFactory

+ factoryMethodA () : A
+ factoryMethodB () : B

ConcreteFactory1

+ factoryMethodA () : A
+ factoryMethodB () : B

ConcreteFactory2

+ factoryMethodA () : A
+ factoryMethodB () : B

B

B1 B2

A

A1 A2

<<creates>>

<<creates>>

<<creates>>

<<creates>>

XML

XML, the Extensible Markup Language, is a language for writing tags that describe data.
Just as HTML offers you tags for formatting and displaying your data, XML allows you to
define your own custom tags to describe the conceptual meaning of your data.

HTML is an excellent way of marking up data for display. However, HTML lacks the ability
to convey the meaning of the data. HTML can tell you to make a word bold, but HTML
cannot tell you that the word that is bold is the title of the document. Instead, you have
to apply that meaning externally to the document.

18 0672321092 CH12 08/22/2001 2:47 PM Page 279

An XML parser takes an XML document and transforms it into an object
representation.

You initially need to wrap the parser in an object that you control.

280 Day 12

XML, on the other hand, provides you with a mechanism that lets you say that some
word in a document is a title. If you use these tags to markup your data different pro-
grams can read your documents and know what each piece of data means. So, for exam-
ple, you can write a program that knows to format titles as bold. Or you can write anoth-
er program that reads through a list of documents and formulates a list of titles for your
selection. Trying to write the same programs to read an HTML document would be much
more difficult.

Over the past few years XML has become an important standard for the interchange of
data. Two unrelated entities can communicate as long as they both understand the XML
tags. As a result, XML has emerged as the standard for business-to-business communica-
tion. In order to buy and sell, two businesses can agree on a set of common tags. Once
they have these tags they can exchange XML documents freely.

Consider the following recipe XML document:

<Recipe>
<Name>Chicken Tacos</Name>
<Ingredients>

<Ingredient>
<Name>Chicken</Name>
<Quantity UOM=”lb”>1</Quantity>

</Ingredient>
<!— cut for brevity —>

</Ingredients>
</Recipe>

This XML document has tags that describe the data in a recipe. If you understand the tag
markup you know that the data between the <Name> tags is the name of the recipe. Any
data between the <Ingredients> tags contains ingredient information.

You can write programs that recognize the Recipe markup. One program might allow
you to select the recipes that you would like to cook over the course of a week. This pro-
gram could use the Recipe documents that you choose to formulate and print out a
shopping list. Another program might print out the week’s menu.

In order for a program to read and understand an XML document, it must parse the docu-
ment. An XML parser will take a document and convert it into a tree of objects. Each object
will contain part of the document. Your program can simply traverse these objects to pull
out information from the document. So, if you write a program that reads recipes, it can
traverse through all of the Ingredient objects in order to construct a list of ingredients.

Currently, many different XML parsers are available to choose from. Each parser has a
slightly different API, so once you write a program to use a specific parser, it can be diffi-
cult to switch parsers at a later time. The Abstract Factory pattern presents a way for you
to protect from becoming locked into using any one particular parser.

NEW TERM

18 0672321092 CH12 08/22/2001 2:47 PM Page 280

Advanced Design Patterns 281

12

Because you control the wrapper’s API, you guarantee a stable API that your program
can use. Listing 12.1 illustrates a possible parser wrapper.

LISTING 12.1 Parser.java

public interface Parser {
public org.w3c.dom.Document parse(String document);

}

Remember, a wrapper is an adaptor. A wrapper converts an object’s inter-
face into an alternative interface. Normally, you use a wrapper to convert
the interface into one expected by your program.

Note

org.w3c.dom.Document is an interface defined by the W3C for representing
an XML document as a structure of objects. You can find more information
about the Document interface at http://www.w3.org/TR/2000/
CR-DOM-Level-2-20000510/java-binding.html.

Note

Listings 12.2 and 12.3 show two possible implementations: VersionOneParser that uses
version 1.0 of the library, and VersionTwoParser that uses version 2.0 of the library.

LISTING 12.2 VersionOneParser.java

public class VersionOneParser implements Parser{

public org.w3c.dom.Document parse(String document) {
// instantiate the version 1 parser
// XMLParser p = new XMLParser();
// pass the document to the parser and return the result
// return p.parseXML(document);

}

}

LISTING 12.3 VersionTwoParser.java

public class VersionTwoParser implements Parser{

public org.w3c.dom.Document parse(String document) {
// instantiate the version 2 parser

18 0672321092 CH12 08/22/2001 2:47 PM Page 281

LISTING 12.3 continued

// DOMParser parser = new DOMParser();
// pass the document to the parser and return the result
// return parser.parse(document);

}

}

Your program can use the Abstract Factory pattern to create the proper version of the
parser each time it needs to parse a document. Listing 12.4 presents the base factory
interface.

LISTING 12.4 ParserFactory.java

public interface ParserFactory {
public Parser createParser();

}

You will need two concrete factory implementations because there are two parser imple-
mentations. Listing 12.5 and 12.6 present those implementations.

LISTING 12.5 VersionOneParserFactory.java

public class VersionOneParserFactory implements ParserFactory {
public Parser createParser() {

return new VersionOneParser();
}

}

LISTING 12.6 VersionTwoParserFactory.java

public class VersionTwoParserFactory implements ParserFactory {
public Parser createParser() {

return new VersionTwoParser();
}

}

Now, instead of instantiating parsers directly, your program can use one of the factories
to retrieve parser objects whenever it needs to parse a document. You’ll simply need to
instantiate the proper factory at the beginning of the program, and make it available to
the objects in your program.

282 Day 12

18 0672321092 CH12 08/22/2001 2:47 PM Page 282

Advanced Design Patterns 283

12

When to Use the Abstract Factory Pattern
Use the Abstract Factory pattern when

• You want to hide how an object is created.

• You want to hide the actual class of the object created.

• You want a set of objects used together. This prevents you from using incompatible
objects together.

• You want to be able to use different versions of a class implementation. An abstract
factory allows you to swap these different versions in and out of your system.

Table 12.1 outlines the user of the Abstract Factory pattern.

TABLE 12.1 The Abstract Factory Pattern

Pattern Name Abstract Factory

Problem Need a way to transparently swap in pluggable objects

Solution Provides an abstract interface that provides methods for instantiating the
objects

Consequences Allows you to easily swap new class types into your system; however, it
is expensive to add unrelated types

The Singleton Pattern
As you design your systems, you will find that some classes should logically only have
one instance, such as a factory or an object that accesses some unshareable resource
(database connection, region of memory, and so on). Nothing, however, will prevent one
object from instantiating another object. How do you enforce your design?

The Singleton pattern provides the answer to this question. The Singleton pattern
enforces your design by placing the responsibility of creating and brokering access to the

The Factory Method pattern is closely related to the Abstract Factory pattern. In fact, an
abstract factory can use factory methods to create the objects that it returns.

A factory method is nothing more than a method that creates objects. createParser() is
an example of a factory method. You can also find examples of factory methods through-
out the Java API.

Class.newInstance() is an example of a factory method.

As you can see a factory method can appear in an ordinary class or in an abstract factory.
In either case, it creates objects, thus hiding the actual class of the created object.

18 0672321092 CH12 08/22/2001 2:47 PM Page 283

instance in the object itself. Doing so guarantees that only one instance will get created,
plus it provides a single point of access for that instance. Figure 12.2 illustrates the sig-
nature of a singleton class.

284 Day 12

FIGURE 12.2
The Singleton Pattern

Singleton

+ getInstance () : Singleton

Listing 12.7 illustrates a possible singleton class.

LISTING 12.7 An Implementation of the Singleton pattern

public class Singleton {

// a class reference to the singleton instance
private static Singleton instance;

// the constructor must be hidden so that objects cannot instantiate
// protected allows other classes to inherit from Singleton
protected Singleton() {}

// a class method used to retrieve the singleton instance
public static Singleton getInstance() {

if(instance == null) {
instance = new Singleton();

}
return instance;

}

}

The Singleton class holds onto a static Singleton instance and provides access to the
Singleton instance through the getInstance() class method.

Implementing a Singleton
Chapter 7, lab 1 introduced a Payroll class. A “real life” payroll class would probably
access an employee database. It might be a good idea to only have one Payroll instance
to avoid resource conflicts. The Payroll is a good candidate for the Singleton pattern.

Listing 12.8 presents a Payroll singleton.

18 0672321092 CH12 08/22/2001 2:48 PM Page 284

Advanced Design Patterns 285

12

LISTING 12.8 A Payroll Singleton

public class Payroll {

// a class reference to the single singleton instance
private static Payroll instance;

private int total_hours;
private int total_sales;
private double total_pay;

// hide the constructor so that other objects cannot instantiate
protected Payroll() {}

// note the use of static, you don’t have an instance when you go to
retrieve

// an instance, so the method must be a class method, thus static
public static Payroll getInstance() {

if(instance == null) {
instance = new Payroll();

}
return instance;

}

public void payEmployees(Employee [] emps) {
for(int i = 0; i < emps.length; i ++) {

Employee emp = emps[i];
total_pay += emp.calculatePay();
emp.printPaycheck();

}
}

public void calculateBonus(Employee [] emps) {
for(int i = 0; i < emps.length; i ++) {

Employee emp = emps[i];
System.out.println(“Pay bonus to “ + emp.getLastName() + “, “ +

emp.getFirstName() + “ $” + emp.calculateBonus());
}

}

public void recordEmployeeInfo(CommissionedEmployee emp) {
total_sales += emp.getSales();

}

public void recordEmployeeInfo(HourlyEmployee emp) {
total_hours += emp.getHours();

}

public void printReport() {
System.out.println(“Payroll Report:”);

18 0672321092 CH12 08/22/2001 2:48 PM Page 285

LISTING 12.8 continued

System.out.println(“Total Hours: “ + total_hours);
System.out.println(“Total Sales: “ + total_sales);
System.out.println(“Total Paid: $” + total_pay);

}

}

The Payroll singleton adds a getInstance() method. This method is responsible for
creating and providing access to the singleton instance. Take special note of the
constructor; here, the constructor is protected so that other objects cannot inadvertently
instantiate additional Payroll objects. Because it is protected, other objects may inherit
from Payroll.

Listing 12.9 provides an example of how you can use the singleton.

LISTING 12.9 Using the Payroll Singleton

// retrieve the payroll singleton
Payroll payroll = Payroll.getInstance();

// create and update some employees
CommissionedEmployee emp1 = new CommissionedEmployee(“Mr.”, “Sales”, 25000.00,
1000.00);
CommissionedEmployee emp2 = new CommissionedEmployee(“Ms.”, “Sales”, 25000.00,
1000.00);
emp1.addSales(7);
emp2.addSales(5);

HourlyEmployee emp3 = new HourlyEmployee(“Mr.”, “Minimum Wage”, 6.50);
HourlyEmployee emp4 = new HourlyEmployee(“Ms.”, “Minimum Wage”, 6.50);
emp3.addHours(40);
emp4.addHours(46);

// use the overloaded methods
payroll.recordEmployeeInfo(emp2);
payroll.recordEmployeeInfo(emp1);
payroll.recordEmployeeInfo(emp3);
payroll.recordEmployeeInfo(emp4);

Once you have a singleton instance, it works just like any other instance. What is inter-
esting about Listing 12.9 is:

Payroll payroll = Payroll.getInstance();

Note that you no longer say

Payroll payroll = new Payroll();

286 Day 12

18 0672321092 CH12 08/22/2001 2:48 PM Page 286

Advanced Design Patterns 287

12

Inheritance and the Singleton Pattern
The Singleton pattern introduces some inheritance difficulties. Specifically, who manages
the singleton instance, the parent or the child? You have a few choices.

The first choice is to simply create the singleton subclass and update the parent to instan-
tiate the child. Listings 12.10 and 12.11 outline this approach.

LISTING 12.10 The ChildSingleton

public class ChildSingleton extends Singleton {

protected ChildSingleton() {}

public String toString() {
return “I am the child singleton”;

}

}

LISTING 12.11 The Updated Singleton

public class Singleton {

// a class reference to the singleton instance
private static Singleton instance;

// the constructor must be hidden so that objects cannot instantiate
// protected allows other classes to inherit from Singleton
protected ParentSingleton() {}

// a class method used to retrieve the singleton instance
public static Singleton getInstance() {

if(instance == null) {
instance = new ChildSingleton();

}
return instance;

}

public String toString() {
return “I am the singleton”;

}
}

This solution has the drawback of requiring changes in the parent class. An alternative
solution includes having the singleton read a configuration variable the first time

18 0672321092 CH12 08/22/2001 2:48 PM Page 287

getInstance() gets called. The singleton can instantiate whatever object is specified in
the configuration value.

You can also let each child provide its own implementation of getInstance(). This
approach will not require changes to the parent.

288 Day 12

This sidebar relies on a Java trick, although there is an analog in C++. It is an interesting
solution that takes advantage of the fact that static blocks are executed as a class is
loaded in Java.

Through another approach you can add a protected register(Singleton s) method to
the parent. You can put a static block in the child that instantiates the child. Within the
constructor, the child can register itself with the parent singleton.

Here is the code to the updated Singleton:

public class Singleton {

// a class reference to the singleton instance
private static Singleton instance;

// the constructor must be hidden so that objects cannot instantiate
// protected allows other classes to inherit from Singleton
protected Singleton() {}

// a class method used to retrieve the singleton instance
public static Singleton getInstance() {

if(instance == null) {
// default value
instance = new Singleton();

}
return instance;

}

protected static void register(Singleton s) {
if(instance == null) {

instance = s;
}

}
}

And the updated ChildSingleton:

public class ChildSingleton extends Singleton {

static {
new ChildSingleton();

}

protected ChildSingleton() {

18 0672321092 CH12 08/22/2001 2:48 PM Page 288

Advanced Design Patterns 289

12

When to Use the Singleton Pattern
Use the Singleton pattern when you want to constrain a class to only having one
instance.

Table 12.2 outlines the user of the Singleton pattern.

TABLE 12.2 The Singleton Pattern

Pattern Name Singleton

Problem Only one instance of an object should exist in the system at any one
time.

Solution Enables the object to manage its own creation and access through a class
method.

Consequences Controlled access to the object instance. Can provide access to a set
number of instances as well (such as only six instances) with a slight
change to the pattern. It is a bit more difficult to inherit a singleton.

The Typesafe Enum Pattern
Listing 12.12 lists a selection from the Card class, first introduced in Chapter 3, Lab 3.

LISTING 12.12 A Selection from Card.java

public class Card {

private int rank;
private int suit;
private boolean face_up;

// constants used to instantiate

Singleton.register(this);
}

}

To make all of this work, you will need to call Class.forName(“ChildSingleton”)
before calling the singleton’s getInstance() method. Here’s an example:

Class.forName(“ChildSingleton”);
Singleton s = Singleton.getInstance();
System.out.println(s.toString());

18 0672321092 CH12 08/22/2001 2:48 PM Page 289

LISTING 12.12 continued

// suits
public static final int DIAMONDS = 4;
public static final int HEARTS = 3;
public static final int SPADES = 6;
public static final int CLUBS = 5;
// values
public static final int TWO = 2;
public static final int THREE = 3;
public static final int FOUR = 4;
public static final int FIVE = 5;
public static final int SIX = 6;
public static final int SEVEN = 7;
public static final int EIGHT = 8;
public static final int NINE = 9;
public static final int TEN = 10;
public static final int JACK = 74;
public static final int QUEEN = 81;
public static final int KING = 75;
public static final int ACE = 65;

// creates a new card - only use the constants to initialize
public Card(int suit, int rank) {

// In a real program you would need to do validation on the arguments.

this.suit = suit;
this.rank = rank;

}

When instantiating Card objects, you have to pass in a valid rank and suit constant. The
usage of constants in this way can lead to a host of problems. Nothing prevents you from
passing in any int that you wish. And while you should just reference the constant
name, this does open up the Card’s internal representation. For example, to be able to
learn the Card’s suit, you must retrieve the int value and then compare it to the constants.
While this works, this is not a clean solution.

The problem really stems from the fact that suit and rank are objects in their own right.
int doesn’t cut it because you need to apply a meaning to the int. Again, this muddles
responsibility because you’ll need to re-apply that meaning every time that you
encounter an int that represents a rank or a suit.

Languages such as C++ have a construct known as an enumeration; however, enums sim-
ply boil down to shorthand for declaring a list of integer constants. These constants are
limited. For example, they cannot provide behavior. It is also difficult to add additional
constants.

290 Day 12

18 0672321092 CH12 08/22/2001 2:48 PM Page 290

Advanced Design Patterns 291

12

Instead, the Typesafe Enum pattern provides an OO way to declare your constants.
Instead of declaring simple integer constants, you create classes for each type of con-
stant. For the Card example, you would create a Rank class and a Suit class. You then
create an instance for each constant value that you would like to represent and make it
publicly available from the class (through public final just like other constants).

Implementing the Typesafe Enum Pattern
Let’s look at the implementation of the Rank and Suit classes in Listings 12.13 and
12.14.

LISTING 12.13 Suit.java

public final class Suit {

// statically define all valid values of Suit
public static final Suit DIAMONDS = new Suit((char)4);
public static final Suit HEARTS = new Suit((char)3);
public static final Suit SPADES = new Suit((char)6);
public static final Suit CLUBS = new Suit((char)5);

// helps to iterate over enum values
public static final Suit [] SUIT = { DIAMONDS, HEARTS, SPADES, CLUBS };

// instance variable for holding onto display value
private final char display;

// do not allow instantiation by outside objects
private Suit(char display) {

this.display = display;
}

// return the Suit’s value
public String toString() {

return String.valueOf(display);
}

}

Suit is straightforward. The constructor takes a char that represents the Suit. Because
Suit is a full-fledged object, it can also have methods. Here, the Suit provides a
toString() method. A typesafe enumeration can add any methods that prove useful.

You’ll also notice that the constant is private. This prevents objects from instantiating
Suit objects directly. Instead, you are restricted to only use the constant instances
declared by the class. The class is also declared final so that other classes cannot subclass
it. There are times where you would allow inheritance. At those times make the construc-
tor protected and remove the final declaration.

18 0672321092 CH12 08/22/2001 2:48 PM Page 291

You’ll notice that the Suit class defines a number of constant instances, one for each of
the valid suits. When you need a constant Suit value, you can say Suit.DIAMONDS.

The Rank class in Listing 12.14 works similar to Suit; however, it adds a few more
methods. The getRank() method returns the value of the Rank. This value can be impor-
tant for calculating the value of a hand. Unlike the original constants, you no longer have
to apply meaning to the Rank or Suit constants. Instead, they hold onto their own mean-
ing because they are objects.

LISTING 12.14 Rank.java

public final class Rank {

public static final Rank TWO = new Rank(2, “2”);
public static final Rank THREE = new Rank(3, “3”);
public static final Rank FOUR = new Rank(4, “4”);
public static final Rank FIVE = new Rank(5, “5”);
public static final Rank SIX = new Rank(6, “6”);
public static final Rank SEVEN = new Rank(7, “7”);
public static final Rank EIGHT = new Rank(8, “8”);
public static final Rank NINE = new Rank(9, “9”);
public static final Rank TEN = new Rank(10, “10”);
public static final Rank JACK = new Rank(11, “J”);
public static final Rank QUEEN = new Rank(12, “Q”);
public static final Rank KING = new Rank(13, “K”);
public static final Rank ACE = new Rank(14, “A”);

public static final Rank [] RANK =
{ TWO, THREE, FOUR, FIVE, SIX, SEVEN,
EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE };

private final int rank;
private final String display;

private Rank(int rank, String display) {
this.rank = rank;
this.display = display;

}

public int getRank() {

292 Day 12

Because of the way Java works, be sure to provide final versions of equals()
and hashCode() that call super if you open your enum to inheritance. If not,
you’ll open yourself to weird problems if your subclasses redefine these
methods incorrectly.

Note

18 0672321092 CH12 08/22/2001 2:48 PM Page 292

Advanced Design Patterns 293

12

LISTING 12.14 continued

return rank;
}

public String toString() {
return display;

}
}

For example, you no longer need to apply meaning to the int 4 and know that 4 stands
for DIAMONDS. When you need to determine the constant’s value, you can do object com-
parisons using equals().

Listing 12.15 shows the changes that you would need to make to Card to be able to use
the new constants. (Updated Deck and Dealer classes are available from the source to
this chapter).

LISTING 12.15 The Updated Card.java

public class Card {

private Rank rank;
private Suit suit;
private boolean face_up;

// creates a new card - only use the constants to initialize
public Card(Suit suit, Rank rank) {

// In a real program you would need to do validation on the arguments.
this.suit = suit;
this.rank = rank;

}

public Suit getSuit() {
return suit;

}

public Rank getRank() {
return rank;

}

public void faceUp() {
face_up = true;

}

public void faceDown() {

18 0672321092 CH12 08/22/2001 2:48 PM Page 293

LISTING 12.15 continued

face_up = false;
}

public boolean isFaceUp() {
return face_up;

}

public String display() {
return rank.toString() + suit.toString();

}
}

You might have also noticed that both Rank and Suit declare arrays of constants. This
makes it easy to loop over the available constant values. Listing 12.16 shows how this
fact greatly simplifies the Deck’s buildCards() method.

LISTING 12.16 The Updated buildCards() Method

private void buildCards() {

deck = new java.util.LinkedList();

for(int i = 0; i < Suit.SUIT.length; i ++) {
for(int j = 0; j < Rank.RANK.length; j ++) {

deck.add(new Card(Suit.SUIT[i], Rank.RANK[j]));
}

}
}

When to Use the Typesafe Enum Pattern
Use the Typesafe Enum pattern when:

• You find yourself writing numerous public primitive or String constants.

• You find yourself enforcing identity on a value instead of deriving the identity
from the value itself.Table 12.3 outlines the user of the Typesafe Enum pattern.

TABLE 12.3 The Typesafe Enum Pattern

Pattern Name Typesafe Enum.

Problem Integer constants are limited.

294 Day 12

18 0672321092 CH12 08/22/2001 2:48 PM Page 294

Advanced Design Patterns 295

12

TABLE 12.3 continued

Solution Creates a class for each constant type and then provide constant
instances for each constant value.

Consequences Extendible OO constants. Useful constants that have behavior. You still
need to update code to use new constants as they are added. Requires
more memory than a simple constant.

Pattern Pitfalls
You can abuse design patterns like you can any other tool by using them incorrectly.
Design patterns do not guarantee a good design; in fact, including a pattern in a place
where it really doesn’t belong will ruin your design. You have to be judicious in your
decision to include a pattern in your design.

Design patterns have recently come under an increasing amount of criticism.
Unfortunately, there is a tendency, especially among beginners, to get caught up in trying
to apply as many patterns to a design as possible. The enthusiasm to use patterns has
caused many developers to lose sight of the point of patterns, and even the design
process itself. Do not fall into this trap! Do not be blinded by a zest to apply patterns,
and let design boil down to a race to cram as many patterns into your design as possible.
You won’t win points from your peers for using the most patterns, but you will win
points from your peers for producing a clean, coherent design. Such a design might not
even use patterns!

There are some guidelines that will help you avoid pattern pitfall:

Tip 1: Placing Round Pegs In Square Holes. If you find yourself thinking,
“How can I use <insert your favorite pattern here> in my design?” you’re in
trouble. Instead, you should be thinking, “I’ve seen this design before; I
think there is a pattern that solves it.” Now, go and look through a book of
patterns. Always start from the point of view of the problem, not the solu-
tion (the pattern).

Tip 2: Fits Of Amnesia. You’re in trouble if you can’t explain, in two sen-
tences or less, why you’ve chosen a pattern and what benefits it offers. You
should easily be able to explain why you included a pattern, and what it
contributes to a design. The situation is hopeless if you can’t think of any
explanation whatsoever.

Tip

18 0672321092 CH12 08/22/2001 2:48 PM Page 295

There is a second, more subtle pitfall to patterns: pattern babble. Don’t use patterns in an
attempt to appear smart, and try not to suggest the use of a pattern that you have not
studied. You might mention the pattern, but be clear if you are not familiar with it. You
should not only use patterns appropriately in your design, but also in your conversation
as well. It’s not a good idea to contribute to the factors that harm the practice of using
patterns.

Summary
Design patterns are a useful aid while designing your solutions. In their own way, pat-
terns are the collective conscience of the OO community that tap years of design
experience.

Keep in mind the limits of design patterns when you use them. A design pattern address-
es one abstract problem, and one problem only. A design pattern does not provide the
solution to a specific problem. Instead, the pattern provides an abstract solution to a gen-
eral problem. It is up to you to provide the mapping between the abstract problem and
your specific problem.

Mapping a design pattern is probably the greatest challenge that you will face while
using patterns. It is a skill that only comes through time, study, and practice.

Q&A
Q How do you pick a design pattern?

A Each design pattern has a problem and related patterns. Study the pattern if the
problem description seems to match your problem,. It will also help if you review
any related patterns. If, after studying the pattern, it seems to address your prob-
lem, try to apply the pattern to your problem. Be sure to review the consequences.
If any of the consequences clash with your requirements, you should probably pass
on the pattern.

Q How do you know when to use a design pattern?

A There’s no easy answer to this question.

You can’t use a pattern if you don’t know about it, and no one can know about
every design pattern available. As you design, try to get as much input as possible.
Ask other people if they know of any patterns that might help you make your
design decisions.

Study patterns. The more patterns that you know, the more opportunities you will
see for using them.

296 Day 12

18 0672321092 CH12 08/22/2001 2:48 PM Page 296

Advanced Design Patterns 297

12

Q Does Java use any of the patterns covered today?

A Yes. Java uses many of the patterns covered today.

Factory Method Pattern: Many Java classes have factory methods (a pattern closely
related to the Abstract Factory pattern).

Singleton Pattern: java.lang.System is an example of a singleton in Java.

Typesafe Enum Pattern: The Typesafe Enum pattern was not yet defined when
many of the Java APIs were created. Future additions to the Java API will use the
Typesafe Enum pattern.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. What is a wrapper class?

2. What problem does the Abstract Factory pattern solve?

3. Why would you use the Abstract Factory pattern?

4. What problem does the Singleton pattern solve?

5. Why would you use the Singleton pattern?

6. What problem does the Typesafe Enum pattern solve?

7. Why would you use the Typesafe Enum pattern?

8. Will patterns ensure a perfect design? Why, or why not?

Exercises
Listing 12.17 presents the Bank from Chapter 7. Turn Bank into a singleton.

LISTING 12.17 Bank.java

public class Bank {

private java.util.Hashtable accounts = new java.util.Hashtable();

public void addAccount(String name, BankAccount account) {
accounts.put(name, account);

}

public double totalHoldings() {

18 0672321092 CH12 08/22/2001 2:48 PM Page 297

LISTING 12.17 continued

double total = 0.0;

java.util.Enumeration enum = accounts.elements();
while(enum.hasMoreElements()) {

BankAccount account = (BankAccount) enum.nextElement();
total += account.getBalance();

}
return total;

}

public int totalAccounts() {
return accounts.size();

}

public void deposit(String name, double ammount) {
BankAccount account = retrieveAccount(name);
if(account != null) {

account.depositFunds(ammount);
}

}

public double balance(String name) {
BankAccount account = retrieveAccount(name);
if(account != null) {

return account.getBalance();
}
return 0.0;

}

private BankAccount retrieveAccount(String name) {
return (BankAccount) accounts.get(name);

}
}

2. Consider the Error class presented in Listing 12.18. This class defines a number of
level constants. Apply the Typesafe Enum pattern to this class’s design.

LISTING 12.18 Error.java

public class Error {

// error levels
public final static int NOISE = 0;
public final static int INFO = 1;
public final static int WARNING = 2;
public final static int ERROR = 3;

298 Day 12

18 0672321092 CH12 08/22/2001 2:48 PM Page 298

Advanced Design Patterns 299

12

LISTING 12.18 continued

private int level;

public Error(int level) {
this.level = level;

}

public int getLevel() {
return level;

}

public String toString() {
switch (level) {

case 0: return “NOISE”;
case 1: return “INFO”;
case 2: return “WARNING”;
default: return “ERROR”;

}
}

}

3. Design and create an abstract factory for the BankAccount hierarchy presented as a
solution to Chapter 7, lab 3.

Answers to Quiz
1. A wrapper class transforms an object’s interface to one expected by your program.

A wrapper contains an object and delegates messages from the new interface to the
contained object’s interface.

2. The Abstract Factory pattern provides a mechanism that instantiates specific
descendant class instances without revealing which descendant is actually created.
This allows you to transparently plug in different descendants into your system.

3. You use the Abstract Factory pattern to hide the details of instantiation, to hide
which class of object gets instantiated, and when you want a set of objects used
together.

4. The Singleton pattern ensures that an object is instantiated only once.

5. You use the Singleton pattern when you want an object to be instantiated only
once.

6. Using primitive constants is not an OO approach to programming, because you
have to apply an external meaning to the constant. You saw how much trouble the
breakdown of responsibility could cause!

18 0672321092 CH12 08/22/2001 2:48 PM Page 299

The Typesafe Enum pattern solves this problem by turning the constant into a high-
er-level object. By using a higher-level object, you can better encapsulate responsi-
bility within the constant object.

7. You should use the Typesafe Enum pattern whenever you find yourself declaring
public constants that should be objects in their own right.

8. No, patterns do not ensure a perfect design because you could end up using a pat-
tern incorrectly. Also, correctly using a pattern does not mean that the rest of your
design is valid. Many valid designs might not even contain a pattern.

Answers to Exercises
1.

LISTING 12.19 Bank.java

public class Bank {

private java.util.Hashtable accounts = new java.util.Hashtable();

private static Bank instance;

protected Bank() {}

public static Bank getInstance() {
if(instance == null) {

instance = new Bank();
}
return instance;

}

public void addAccount(String name, BankAccount account) {
accounts.put(name, account);

}

public double totalHoldings() {
double total = 0.0;

java.util.Enumeration enum = accounts.elements();
while(enum.hasMoreElements()) {

BankAccount account = (BankAccount) enum.nextElement();
total += account.getBalance();

}
return total;

}

public int totalAccounts() {
return accounts.size();

}

300 Day 12

18 0672321092 CH12 08/22/2001 2:48 PM Page 300

Advanced Design Patterns 301

12

LISTING 12.19 continued

public void deposit(String name, double ammount) {
BankAccount account = retrieveAccount(name);
if(account != null) {

account.depositFunds(ammount);
}

}

public double balance(String name) {
BankAccount account = retrieveAccount(name);
if(account != null) {

return account.getBalance();
}
return 0.0;

}

private BankAccount retrieveAccount(String name) {
return (BankAccount) accounts.get(name);

}
}

2.

LISTING 12.20 Level.java

public final class Level {

public final static Level NOISE = new Level(0, “NOISE”);
public final static Level INFO = new Level(1, “INFO”);
public final static Level WARNING = new Level(2, “WARNING”);
public final static Level ERROR = new Level(3, “ERROR”);

private int level;
private String name;

private Level(int level, String name) {
this.level = level;
this.name = name;

}

public int getLevel() {
return level;

}

public String getName() {
return name;

}
}

18 0672321092 CH12 08/22/2001 2:48 PM Page 301

LISTING 12.21 Error.java

public class Error {

private Level level;

public Error(Level level) {
this.level = level;

}

public Level getLevel() {
return level;

}

public String toString() {
return level.getName();

}
}

3. The solution consists of an abstract bank account factory (written as an interface;
however, it can be an abstract class as well) and a concrete bank account factory.
The factory has a method for creating each type of bank account.

This factory hides the details of instantiation, not necessarily the object’s subtype.

LISTING 12.22 AbstractAccountFactory.java

public interface AbstractAccountFactory {

public CheckingAccount createCheckingAccount(double initDeposit, int trans,
double fee);

public OverdraftAccount createOverdraftAccount(double initDeposit, double
rate);

public RewardsAccount createRewardsAccount(double initDeposit, double
interest, double min);

public SavingsAccount createSavingsAccount(double initBalance, double
interestRate);

public TimedMaturityAccount createTimedMaturityAccount(double initBalance,
double interestRate, double feeRate);

}

302 Day 12

18 0672321092 CH12 08/22/2001 2:48 PM Page 302

Advanced Design Patterns 303

12

LISTING 12.23 ConcreteAccountFactory.java

public class ConcreteAccountFactory implements AbstractAccountFactory {

public CheckingAccount createCheckingAccount(double initDeposit, int trans,
double fee) {

return new CheckingAccount(initDeposit, trans, fee);
}

public OverdraftAccount createOverdraftAccount(double initDeposit, double
rate) {

return new OverdraftAccount(initDeposit, rate);
}

public RewardsAccount createRewardsAccount(double initDeposit, double
interest, double min) {

return new RewardsAccount(initDeposit, interest, min);
}

public SavingsAccount createSavingsAccount(double initBalance, double
interestRate) {

return new SavingsAccount(initBalance, interestRate);
}

public TimedMaturityAccount createTimedMaturityAccount(double initBalance,
double interestRate, double feeRate) {

return new TimedMaturityAccount(initBalance, interestRate, feeRate);
}

}

18 0672321092 CH12 08/22/2001 2:48 PM Page 303

18 0672321092 CH12 08/22/2001 2:48 PM Page 304

DAY 13

WEEK 2

OO and User Interface
Programming

The user interface (UI) provides the interface between the user and your sys-
tem. Almost every modern system will have some form of UI, whether graphi-
cal, command-line driven, or even phone or speech based. (Some systems may
combine all four types!). In any case, you need to take special care in the
design and implementation of your user interfaces. Luckily, OOP can bring the
same benefits to your UI that it brings to other aspects of the system.

Today you will learn

• How OOP and UI construction interrelate

• About the importance of a decoupled UI

• What patterns help you to decouple the UI

19 0672321092 CH13 08/22/2001 2:57 PM Page 305

OOP and the User Interface
The process of designing and programming user interfaces is fundamentally no different
than the process of designing and programming any other aspect of your system. You
may need to learn some new APIs so that you can construct your UIs, but in the end you
need to apply the same object-oriented principles to the UI as you would to the other
parts of your system.

306 Day 13

You will learn how to approach UI development from the point of view of a
developer. As a developer, you will design and implement the classes that
make up and support the user interface.

Today’s lesson will not cover the general subject of UI design. UI design
encompasses all aspects of how the capabilities of a program are made
available to a user. The general subject of UI design is one that is completely
removed from programming, and more rooted in graphic arts and psycholo-
gy. The ACM Special Interest Group on Computer-Human Interaction
(SIGCHI) is an excellent resource for information on the topic of UI design
and usability.

Note

The point deserves emphasis: When designing and programming your user interfaces you
must apply the same OO principals to your UIs that you would apply to the rest of your
system! Too often, user interfaces are simply thrown together and tacked onto the system
as an after thought.

Instead, your UI code needs to be just as object-oriented as the code in the rest of the
system. The UI implementation has to use encapsulation, inheritance, and polymorphism
properly.

You also need to consider the UI while performing OOA and OOD. Without a proper
analysis and design, you may miss certain requirements and find that you’ve written a UI
that isn’t flexible enough to provide the desired level of functionality, or a UI that can’t
adapt to future changes.

The Importance of Decoupled UIs
You will find that the same system often requires many different, often unrelated, user
interfaces. For example, a provisioning system may allow people to place orders over the
Web, by phone, by PDA, or through a custom desktop application. Each of these inter-
faces will hook into the same system; however, each approach will hook into the system
and display the information in its own way.

19 0672321092 CH13 08/22/2001 2:57 PM Page 306

OO and User Interface Programming 307

13

You will also find that user interface requirements can become a moving target. Systems
mature over time as new features are added and as users expose areas of weakness. In
response, you will need to continually update the user interface to be able to expose each
new feature and correct any shortcomings. This reality calls for a user interface whose
design is flexible and can readily accept change.

The best way to achieve flexibility is to design a system that is completely decoupled
from its UI. A decoupled design allows you to add any UI to the system, and to make
changes to the existing UIs without having to make corresponding changes to the system
itself. A decoupled design also allows you to test the capabilities of the system even if
you have not finished developing the UI. Furthermore, a decoupled design allows you to
pinpoint bugs as either being UI bugs or being system errors.

Luckily, OOP is the perfect solution to these problems. By properly isolating responsibil-
ities, you can lessen the impact of changes on unrelated parts of the system. By isolating
functionality, you should be able to add any interface to your system at any time without
making changes to the underlying system. The key is to not embed the UI code inside of
the system itself. The two must be separate.

Let’s take a look at an example that improperly decouples the UI. Listing 13.1 shows
how not to write a UI.

LISTING 13.1 VisualBankAccount.java

import javax.swing.JPanel;
import javax.swing.JLabel;
import java.awt.BorderLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JTextField;
import javax.swing.JButton;

public class VisualBankAccount extends JPanel implements ActionListener {

// private data
private double balance;

// UI elements
private JLabel balanceLabel = new JLabel();
private JTextField amountField = new JTextField(10);
private JButton depositButton = new JButton(“Deposit”);
private JButton withdrawButton = new JButton(“Withdraw”);

public VisualBankAccount(double initDeposit) {
setBalance(initDeposit);
buildUI();

19 0672321092 CH13 08/22/2001 2:57 PM Page 307

LISTING 13.1 Continued

}

// handles the events from the buttons
public void actionPerformed(ActionEvent e) {

if(e.getSource() == depositButton) {
double amount = Double.parseDouble(amountField.getText());
depositFunds(amount);

} else if(e.getSource() == withdrawButton) {
double amount = Double.parseDouble(amountField.getText());
if(amount > getBalance()) {

amount = getBalance();
}
withdrawFunds(amount);

}
}

private void buildUI() {

setLayout(new BorderLayout());

// build the display
JPanel buttons = new JPanel(new BorderLayout());
JPanel balance = new JPanel(new BorderLayout());
buttons.add(depositButton, BorderLayout.WEST);
buttons.add(withdrawButton, BorderLayout.EAST);
balance.add(balanceLabel, BorderLayout.NORTH);
balance.add(amountField, BorderLayout.SOUTH);
add(balance, BorderLayout.NORTH);
add(buttons, BorderLayout.SOUTH);

// set up the callbacks so that the buttons do something
// the deposit button should call depositFunds()
depositButton.addActionListener(this);
// the withdraw button should call withdrawFunds
withdrawButton.addActionListener(this);

}

public void depositFunds(double amount) {
setBalance(getBalance() + amount);

}

public double getBalance() {
return balance;

}

protected void setBalance(double newBalance) {
balance = newBalance;
balanceLabel.setText(“Balance: “ + balance);

}

308 Day 13

19 0672321092 CH13 08/22/2001 2:57 PM Page 308

OO and User Interface Programming 309

13

LISTING 13.1 Continued

public double withdrawFunds(double amount) {
setBalance(getBalance() - amount);
return amount;

}

}

The VisualBankAccount uses Java’s Swing library to display itself. Every OO language has
libraries for creating and displaying graphical user interfaces (GUI). Don’t worry if you
don’t understand everything in this example. It’s just important that you understand the
general meaning of the example.

A bit of background may help. Swing provides a class for each major GUI element, such
as buttons (JButton), labels (JLabel), and entry fields (JTextField). You put those elements
together, such as inside of panels (JPanel), to build your UI.

Each GUI element has an addActionListener() method. This method allows you to regis-
ter an object that implements the ActionListener interface as a callback. Whenever the
GUI element generates an event (usually as a result of a mouse click), it will inform each
of its action listeners. Here, the VisualBankAccount acts as the listener. When it receives
an event from one of the buttons, it takes the proper action and then either deposits or
withdraws money.

VisualBankAccount provides all of the functionality of the BankAccount class presented
in earlier lessons. The VisualBankAccount also knows how to display itself, as shown in
Figure 13.1.

FIGURE 13.1
The
VisualBankAccount

embedded within a
frame.

Whenever you type in an amount and click the Deposit or Withdraw button, the bank
account will extract the amount from the entry field and either call its withdrawFunds()
or depositFunds() method with the value.

Because VisualBankAccount is a Jpanel, you can embed it in any Java GUI.
Unfortunately, the UI is not decoupled from the bank account class. Such tight coupling
makes it impossible to use the bank account in other forms of user interfaces, or to pro-
vide a different UI without having to alter the VisualBankAccount class itself. In fact,

19 0672321092 CH13 08/22/2001 2:57 PM Page 309

you’ll need to create a separate version of the class for each type of UI that you would
like to have it participate within.

How to Decouple the UI Using
the Model View Controller Pattern

The Model View Controller (MVC) design pattern provides one approach to the design of
user interfaces that completely decouples the underlying system from the user interface.

310 Day 13

MVC is only one approach to designing object-oriented user interfaces.
There are other valid approaches to user interface design; however, MVC is a
time-tested approach that is popular in the software industry. If you end up
doing user interface work, especially in relation to the Web and Sun’s J2EE,
you will encounter MVC.

Both the Document/View Model popularized by the Microsoft Foundation
Classes and the Presentation Abstraction Control (PAC) design pattern pro-
vide alternatives to the MVC. See Pattern–Oriented Software Architecture A
System of Patterns by Frank Buschmann, et al (Wiley, ISBN 0-471-95869-7) for
a complete presentation of these alternatives.

Note

The MVC pattern decouples the UI from the system by breaking the UI design into three
separate pieces:

• The model, which represents the system

• The view, which displays the model

• The controller, which processes user input

Each piece of the MVC triad has its own set of unique responsibilities.

The Model
The model is responsible for providing

• Access to the system’s core functionality

• Access to the system’s state information

• A state change notification system

The model is the layer of the MVC triad that manages the core behavior and state of the
system. The model responds to queries about its state from the view and controller and to
state change requests from the controller.

19 0672321092 CH13 08/22/2001 2:57 PM Page 310

OO and User Interface Programming 311

13

The controller is the layer of the MVC triad that interprets user input. In response to the
user input, the controller may command the model or the view to change or perform
some action.

The view is the layer of the MVC triad that displays the graphical or textual representation
of the model. The view retrieves all state information about the model from the model.

In either case, the model is completely unaware that a view or controller is making a
method call. The model is only aware that an object is calling one of its methods. The
only connection that a model maintains to the UI is through the state change notification
system.

If a view or controller is interested in state change notification, it will register itself with
the model. When the model changes its state, it will go through its list of registered
objects (often called listeners or observers) and inform each object of the state change.
To construct this notification system, models will normally employ the Observer pattern.

A system may have many different models. For example a banking system
may be made up of an account model and a teller model. A number of
smaller models breaks up responsibility better than one large model.

Don’t let the term model confuse you. A model is just an object that repre-
sents the system.

Note

The Observer Pattern

The Observer pattern provides a design for a publish/subscribe mechanism among
objects. The Observer pattern allows an object (the observer) to register its interest in
another object (the observable). Whenever the observable wants to notify its observers
of a change, it will call an update() method on each observer.

Listing 13.2 defines the Observer interface. All observers that want to register with the
observable object must implement the Observer interface.

LISTING 13.2 Observer.java

public interface Observer {

public void update();
}

An observable will provide a method through which the observers can register and
deregister their interest in updates. Listing 13.3 presents a class that implements the
Observer pattern.

19 0672321092 CH13 08/22/2001 2:57 PM Page 311

Implementing The Model
Applying the MVC pattern to the VisualBankAccount can make it much more flexible.
Let’s start by ripping the core “system” functionality out of the display code to be able to
create the model.

Listing 13.3 presents the core bank account functionality—the model.

LISTING 13.3 BankAccountModel.java

import java.util.ArrayList;
import java.util.Iterator;

public class BankAccountModel {

// private data
private double balance;
private ArrayList listeners = new ArrayList();

public BankAccountModel(double initDeposit) {
setBalance(initDeposit);

}

public void depositFunds(double amount) {
setBalance(getBalance() + amount);

}

public double getBalance() {
return balance;

}

protected void setBalance(double newBalance) {
balance = newBalance;
updateObservers();

}

public double withdrawFunds(double amount) {
if(amount > getBalance()) {

amount = getBalance();
}
setBalance(getBalance() - amount);
return amount;

}

public void register(Observer o) {
listeners.add(o);
o.update();

}

312 Day 13

19 0672321092 CH13 08/22/2001 2:57 PM Page 312

OO and User Interface Programming 313

13

LISTING 13.3 Continued

public void deregister(Observer o) {
listeners.remove(o);

}

private void updateObservers() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

Observer o = (Observer) i.next();
o.update();

}
}

}

The BankAccountModel is similar to the original BankAccount class presented in earlier
lessons; however, the model also uses the Observer pattern to add support for registering
and updating objects that are interested in state change notification.

You’ll also notice that this class contains all of the system logic. withdrawFunds() now
checks the withdraw amount ensure that it is not greater than the balance. It’s critical to
keep such domain rules within the model. If these rules were to leak out into the view or
controller, each view and controller for this model would need to maintain the rule. As
you’ve seen, having each view or controller enforce this rule is a muddling of responsi-
bilities, and is error prone. Muddling the responsibility also makes it difficult to change
the rule because you must change it in each place.

Substitutability relationships also make placing rules in the view a dangerous practice.
Because of substitutability relationships, a view will work for any subclass; however, if
you put the withdraw rules into the view, the view will no longer work for an
OverdraftAccount. This is because the OverDraftAccounts allow you to withdraw
amounts greater than the current balance.

The View
The view is responsible for

• Displaying the model to the user

• Registering with the model for state change notification

• Retrieving state information from the model

The view is the layer of the MVC triad that displays information to the user. The view
obtains display information from the model using the model’s public interface, and will
also register itself with the model so that it can be informed of state change and update
itself accordingly.

19 0672321092 CH13 08/22/2001 2:57 PM Page 313

Implementing the View
Now that there is a model it’s time to implement the bank account view. Listing 13.4 pre-
sents the BankAccountModel’s view.

LISTING 13.4 BankAccountView.java

import javax.swing.JPanel;
import javax.swing.JLabel;
import java.awt.BorderLayout;
import javax.swing.JTextField;
import javax.swing.JButton;

public class BankAccountView extends JPanel implements Observer {

public final static String DEPOSIT = “Deposit”;
public final static String WITHDRAW = “Withdraw”;

private BankAccountModel model;
private BankAccountController controller;

// GUI Elements, pre-allocate all to avoid null values
private JButton depositButton = new JButton(DEPOSIT);
private JButton withdrawButton = new JButton(WITHDRAW);
private JTextField amountField = new JTextField();
private JLabel balanceLabel = new JLabel();

public BankAccountView(BankAccountModel model) {
this.model = model;
this.model.register(this);
attachController(makeController());
buildUI();

}

// called by model when the model changes
public void update() {

balanceLabel.setText(“Balance: “ + model.getBalance());
}

// provides access to the amount entered into the field
public double getAmount() {

// assume that the user entered a valid number
return Double.parseDouble(amountField.getText());

}

314 Day 13

A single model may have many different views.Note

19 0672321092 CH13 08/22/2001 2:57 PM Page 314

OO and User Interface Programming 315

13

LISTING 13.4 Continued

// wires the given controller to the view, allows outside object to set con-
troller

public void attachController(BankAccountController controller) {
// each view can only have one controller, so remove the old one first
if(this.controller != null) { // remove the old controller

depositButton.removeActionListener(controller);
withdrawButton.removeActionListener(controller);

}

this.controller = controller;
depositButton.addActionListener(controller);
withdrawButton.addActionListener(controller);

}

protected BankAccountController makeController() {
return new BankAccountController(this, model);

}

private void buildUI() {

setLayout(new BorderLayout());

// associate each button with a commend string
// the controller will use this string to interpret events
depositButton.setActionCommand(DEPOSIT);
withdrawButton.setActionCommand(WITHDRAW);

// build the display
JPanel buttons = new JPanel(new BorderLayout());
JPanel balance = new JPanel(new BorderLayout());
buttons.add(depositButton, BorderLayout.WEST);
buttons.add(withdrawButton, BorderLayout.EAST);
balance.add(balanceLabel, BorderLayout.NORTH);
balance.add(amountField, BorderLayout.SOUTH);
add(balance, BorderLayout.NORTH);
add(buttons, BorderLayout.SOUTH);

}
}

The BankAccountView’s constructor accepts a reference to a BankAccountModel. Upon cre-
ation, the BankAccountView registers itself with the model, creates and attaches itself to its
controller, and constructs its UI. The view uses the model to retrieve all of the information
that it needs for display. Whenever the balance changes, the model will call the view’s
update() method. When this method gets called, the view will update its balance display.

Normally a view will create its own controller, as BankAccountView does within the
makeController() factory method. Subclasses can override this factory method to create

19 0672321092 CH13 08/22/2001 2:57 PM Page 315

a different controller. Within the attachController() method the view registers the con-
troller with the deposit and withdraw buttons so that the controller can receive user event.

You will notice, however, that the view first removes any pre-existing controller. A view
will normally have only one controller.

You’ll also notice that attachController() is a public method. Using this method you
can switch the controller without having to subclass the view. This method allows you to
create different controllers and pass them to the view. The controller that you see in the
next section will interpret the user events just as VisualBankAccount interpreted them
(with only slight modification). Nothing stops you from writing controllers that lock out
the user, or limit what the user can do.

Unlike a view that can only have one controller at a time, a model may have many
different views. Listing 13.5 presents a second view for the bank account.

LISTING 13.5 BankAccountCLV.java

public class BankAccountCLV implements Observer {

private BankAccountModel model;

public BankAccountCLV(BankAccountModel model) {
this.model = model;
this.model.register(this);

}

public void update() {
System.out.println(“Current Balance: $” + model.getBalance());

}
}

BankAccountCLV simply prints the balance to the command line. While this behavior is
simple, BankAccountCLV is an alternate view into the BankAccountModel. You’ll notice
that this view does not require a controller because it does not accept user events. You do
not always need to provide a controller.

316 Day 13

A view may not always display to the screen.

Take a word processor as an example. The model of the word processor will
keep track of the entered text, formatting, footnotes, and so on. One view
will display the text in the main editor; however, another view may convert
the data in the model into PDF, HTML, or Postscript and then write it out to
a file. The view that writes to a file doesn’t display to the screen; instead,
the view displays to a file. Other programs can then open, read, and display
the data in the file.

Tip

19 0672321092 CH13 08/22/2001 2:57 PM Page 316

OO and User Interface Programming 317

13

The Controller
The controller is responsible for

• Intercepting user events from the view

• Interpreting the event, and calling the proper methods on the model or the view

• Registering with the model for state change notification, if interested

The controller acts as the glue between the view and the model. The controller intercepts
events from the view and then translates them into requests for the model or the view.

A view only has one controller, and a controller only has one view. Some
views allow you to set their controller directly.

Note

Each view has one controller, and all user interaction goes through that controller. If the
controller is dependent upon state information, it will also register with the model for
state change notification.

Implementing the Controller
With a model and view already created, all that is left to construct is the
BankAccountView’s controller. Listing 13.6 presents the view’s controller.

LISTING 13.6 BankAccountController.java

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class BankAccountController implements ActionListener {

private BankAccountView view;
private BankAccountModel model;

public BankAccountController(BankAccountView view, BankAccountModel model)
{

this.view = view;
this.model = model;

}

public void actionPerformed(ActionEvent e) {

String command = e.getActionCommand();
double amount = view.getAmount();

19 0672321092 CH13 08/22/2001 2:58 PM Page 317

LISTING 13.6 Continued

if(command.equals(view.WITHDRAW)) {
model.withdrawFunds(amount);

} else if(command.equals(view.DEPOSIT)) {
model.depositFunds(amount);

}

}

}

Upon construction the controller accepts a reference to both the view and model. The
controller will use the view to obtain the amounts entered into the entry field. The con-
troller will use the model to actually withdraw and deposit money into the account.

The BankAccountController itself is fairly simple. The controller implements the
ActionListener interface so that it can receive events from the view. The view takes
care of registering the controller for events, so the controller doesn’t need to do anything
other than interpret events as it receives them.

Whenever the controller does receive an event, it checks the event’s command to deter-
mine whether the event is a withdraw or deposit event. In either case, it makes the corre-
sponding call on the model. Unlike the original VisualBankAccount, the controller only
needs to call depositFunds() or withdrawFunds(). It no longer needs to make sure that
the withdraw amount is not greater than the balance because the model now takes care of
this domain detail.

Putting the Model View and Controller Together
Listing 13.7 presents a small main that glues the model and two views together. The
main doesn’t need to do anything to the controller because the view takes care of that
detail.

LISTING 13.7 Putting the Model, Views, and Controller Together

import java.awt.event.WindowListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import javax.swing.JFrame;

public class MVCDriver {

public static void main(String [] args) {

BankAccountModel model = new BankAccountModel(10000.00);

318 Day 13

19 0672321092 CH13 08/22/2001 2:58 PM Page 318

OO and User Interface Programming 319

13

LISTING 13.7 Continued

BankAccountView view = new BankAccountView(model);
BankAccountCLV clv = new BankAccountCLV(model);

JFrame frame = new JFrame();

WindowAdapter wa = new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

};

frame.addWindowListener(wa);

frame.getContentPane().add(view);
frame.pack();
frame.show();

}

}

The main first creates an instance of the model. When the main has the model, the main
can then create the various views. In the case of the BankAccountView, the main also
needs to imbed the view in a frame so that the view can be displayed. Figure 13.2
illustrates the resulting output.

FIGURE 13.2
A bank account model
with multiple views.

If you execute MVCDriver, you will see two separate views into the same model. Using
the MVC pattern you can create as many views of your underlying models that you need.

Problems with the Model View Controller
As with any design, the Model View Controller has its shortcomings and its critics alike.
The problems include

19 0672321092 CH13 08/22/2001 2:58 PM Page 319

• An emphasis on data

• A tight coupling between the view/controller and the model

• An opportunity for inefficiency

The severity of these shortcomings depends upon the problem that you are solving and
its requirements.

An Emphasis on Data
On an OO scale of purity, the MVC pattern does not rate near the top because of its
emphasis on data. Instead of asking an object to do something with its data, the view
asks the model for data and then displays it.

You can lessen the severity of this problem by displaying only the data that you remove
from the model. Do not perform additional processing on the data. If you find yourself
doing extra processing on the data after you retrieve it, or before you call a method on
the model, chances are good that the model should do that work for you. There is a fine
line between doing too much and doing what is necessary to the data. Over time you will
learn to differentiate between too much to the data and only doing what is necessary.

320 Day 13

If you find that you repeat the same code in each view, consider moving
that logic into the model.

Tip

Avoiding the MVC pattern solely for purity reasons can fly in the face of some programming
realities. Take a Web site as an example. Some companies mandate a clear separation between
presentation (the view) and business logic (the model). Forcing such a separation has a valid
business basis: The programmers can program and the content people can write content.
Taking the content out of the programming layer means that non-programmers can create
content. Forcing content into the programming layer means that the person writing content
must either be a programmer, or that a programmer has to take the content and embed it with-
in the code. It is much harder to update a site if you embed content in the code.

Reality also tells you that requirements are not written in stone, much less known. Again,
the Web site provides an excellent example. A Web site has to generate HTML for dis-
play in a desktop web browser. What about PDAs, cell phones, and other display
devices? None of those displays use basic HTML. How about six months into the future?
Chances are good there will be other forms of display. To meet unknown requirements,
you need a design that is flexible. If you have a fairly static system with well-defined
requirements, you can use an alternative such as PAC. If you aren’t lucky enough to have
such clear requirements, you’ll need to consider MVC.

19 0672321092 CH13 08/22/2001 2:58 PM Page 320

OO and User Interface Programming 321

13

Tight Coupling
Both the view and controller are tightly coupled to the model’s public interface. Changes
to the model’s interface will require changes in both the view and the controller. When
you use the MVC pattern, you implicitly make the assumption that the model is stable,
and that the view is likely to change. If this is not the case, you will either need to pick a
different design, or be prepared to make changes to the view and controller.

The view and controller are also closely related to one another. A controller is almost
always used exclusively with a specific view. You can try to find reuse through careful
design; but even if you don’t, the MVC pattern still provides a good division of responsi-
bility between the objects. OO is not simply a means for reuse.

Inefficiency
You must be careful to avoid inefficiencies when designing and implementing an MVC-
based UI. Inefficiencies can find their way into the system in any piece of the MVC
triad.

The model should avoid propagating unnecessary state change notifications to its
observers. A model can queue related change notifications so that one notification may
signify many state changes. Java’s Abstract Window Toolkit (AWT) event model uses
this approach for redrawing the screen. Instead of redrawing after each event, the AWT
queues up the events and does one redraw.

When designing the controller and view you may want to consider caching the data, if
data retrieval from the model is slow. After a state change notification, only retrieve the
state that has changed. You can augment the observer pattern so that the model passes an
identifier to the update() method. The view can use that identifier to decide whether or
not it needs to update itself.

Summary
The user interface is an important part of any system. To some it may be the only part of
the system with which they interact; to them, the UI is the system. You should always
approach the UI’s analysis, design, and implementation just as you approach any other
part of the system. A UI should never be an afterthought, or something tacked onto the
system at the last minute.

While there are many approaches to UI design, the MVC pattern provides a design that
offers flexibility by decoupling the UI from the underlying system. But as with any other
design decision, you’ll still need to weigh the pros and cons of MVC before you decide
to use it. The MVC does not decouple you from the realities of your system.

19 0672321092 CH13 08/22/2001 2:58 PM Page 321

Q&A
Q Your BankAccountModel class contains all of the system logic. Does the model

always have to hold the logic or can it act as a gateway into the actual system?

A It depends. Sometimes the model will act as a gateway into the system; other
times, the model will actually be embedded within the real system. It all boils
down to a design decision. In either case, the UI has no way of knowing if the
model acts as a gateway or not.

Q In Listing 13.6 you wrote
if(command.equals(view.WITHDRAW)) {

model.withdrawFunds(amount);
} else if(command.equals(view.DEPOSIT)) {

model.depositFunds(amount);
}

Isn’t this case logic? I thought that you said case logic is “bad” OO.

A Yes. That is an example of case logic.

To keep this example simple, I decided to make the controller an ActionListener
that would handle both events. In a real implementation, you can avoid the case
logic by catching the original event inside of the view itself and having the view
generate its own custom events. For example, the view could generate deposit and
withdraw events. The controller could listen for each of these events separately.
Perhaps the controller would implement a depositPerformed() and
withdrawPerformed() methods. The view would call the proper method on the
controller depending on the event; thus, no more case statement, but a much harder
example to understand.

Q Okay. Your previous answer makes me feel a little better. But if you imple-
ment the controller as explained above, doesn’t the view have to do case logic
to figure out which button fired the event?

A No. The view can avoid case logic by providing a separate listener for each button.
When there is a one-to-one correspondence between an element and its listener,
you do not need to do case logic to figure out where the event originates. (See
exercise 2 for the alternative implementation.)

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

322 Day 13

19 0672321092 CH13 08/22/2001 2:58 PM Page 322

OO and User Interface Programming 323

13

Quiz
1. How are the UI’s analysis, design, and implementation different from that of the

rest of the system?

2. Why should you decouple the UI from the underlying system?

3. What are the three components of the MVC triad?

4. What are two alternatives to the MVC pattern?

5. Describe the model’s responsibilities.

6. Describe the view’s responsibilities.

7. Describe the controller’s responsibilities.

8. How many models can a system have? How many views can a model have? How
many controllers can a view have?

9. What inefficiencies must you avoid while using the MVC pattern?

10. What assumptions does the MVC pattern make?

11. What is the history of the MVC pattern? (Please note that this question requires
you to do a quick web search.)

Exercises
1. Listing 13.8 presents an employee class. Alter the employee class so that it can reg-

ister and unregister listeners, as well as inform them of state changes. Listing 13.2
presents an Observer interface that you can use for this exercise.

LISTING 13.8 EmployeeModel.java

public abstract class Employee {

private String first_name;
private String last_name;
private double wage;

public Employee(String first_name,String last_name,double wage) {
this.first_name = first_name;
this.last_name = last_name;
this.wage = wage;

}

public double getWage() {
return wage;

}

public void setWage(double wage) {

19 0672321092 CH13 08/22/2001 2:58 PM Page 323

LISTING 13.8 Continued

this.wage = wage;
}

public String getFirstName() {
return first_name;

}

public String getLastName() {
return last_name;

}

public abstract double calculatePay();

public abstract double calculateBonus();

public void printPaycheck() {
String full_name = last_name + “, “ + first_name;
System.out.println(“Pay: “ + full_name + “ $” + calculatePay());

}
}

2. Using Listing 13.9 and 13.10 as a starting point, write a new
BankAccountController that implements the new BankActivityListener inter-
face and handles the events without case logic.

Listing 13.9 presents a BankActivityEvent and its corresponding
BankActivityListener.

LISTING 13.9 BankActivityListener.java and BankActivityEvent.java

public interface BankActivityListener {

public void withdrawPerformed(BankActivityEvent e);

public void depositPerformed(BankActivityEvent e);

}

public class BankActivityEvent {

private double amount;

public BankActivityEvent(double amount) {
this.amount = amount;

}

324 Day 13

19 0672321092 CH13 08/22/2001 2:58 PM Page 324

OO and User Interface Programming 325

13

LISTING 13.9 Continued

public double getAmount() {
return amount;

}

}

Listing 13.10 presents an updated BankAccountView. This BankAccountView inter-
cepts the button’s ActionEvents and forwards the new BankActivityEvent to the
controller.

LISTING 13.10 BankAccountView.java

import javax.swing.JPanel;
import javax.swing.JLabel;
import java.awt.BorderLayout;
import javax.swing.JTextField;
import javax.swing.JButton;
import java.util.ArrayList;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class BankAccountView extends JPanel implements Observer {

public final static String DEPOSIT = “Deposit”;
public final static String WITHDRAW = “Withdraw”;

private BankAccountModel model;
private BankAccountController controller;

// GUI Elements, pre-allocate all to avoid null values
private JButton depositButton = new JButton(DEPOSIT);
private JButton withdrawButton = new JButton(WITHDRAW);
private JTextField amountField = new JTextField();
private JLabel balanceLabel = new JLabel();

public BankAccountView(BankAccountModel model) {
this.model = model;
this.model.register(this);
attachController(makeController());
buildUI();

}

// called by model when the model changes
public void update() {

balanceLabel.setText(“Balance: “ + model.getBalance());
}

19 0672321092 CH13 08/22/2001 2:58 PM Page 325

LISTING 13.10 Continued

// wires the given controller to the view, allows outside object to set
controller

public void attachController(BankAccountController controller) {
this.controller = controller;

}

protected BankAccountController makeController() {
return new BankAccountController(this, model);

}

// provides access to the amount entered into the field
private double getAmount() {

// assume that the user entered a valid number
return Double.parseDouble(amountField.getText());

}

private void fireDepositEvent() {
BankActivityEvent e = new BankActivityEvent(getAmount());
controller.depositPerformed(e);

}

private void fireWithdrawEvent() {
BankActivityEvent e = new BankActivityEvent(getAmount());
controller.withdrawPerformed(e);

}

private void buildUI() {

setLayout(new BorderLayout());

// associate each button with a commend string
depositButton.setActionCommand(DEPOSIT);
withdrawButton.setActionCommand(WITHDRAW);

// build the display
JPanel buttons = new JPanel(new BorderLayout());
JPanel balance = new JPanel(new BorderLayout());
buttons.add(depositButton, BorderLayout.WEST);
buttons.add(withdrawButton, BorderLayout.EAST);
balance.add(balanceLabel, BorderLayout.NORTH);
balance.add(amountField, BorderLayout.SOUTH);
add(balance, BorderLayout.NORTH);
add(buttons, BorderLayout.SOUTH);

depositButton.addActionListener(
new ActionListener() {

public void actionPerformed(ActionEvent e) {
fireDepositEvent();

}

326 Day 13

19 0672321092 CH13 08/22/2001 2:58 PM Page 326

OO and User Interface Programming 327

13

LISTING 13.10 Continued

}
);

withdrawButton.addActionListener(
new ActionListener() {

public void actionPerformed(ActionEvent e) {
fireWithdrawEvent();

}
}

);
}

}

19 0672321092 CH13 08/22/2001 2:58 PM Page 327

19 0672321092 CH13 08/22/2001 2:58 PM Page 328

DAY 14

WEEK 2

Building Reliable
Software Through Testing

When you use object-oriented programming, you strive to write software that is natur-
al, reliable, reusable, maintainable, extendable, and timely. To be able to meet these
goals, you must understand that good OO does not happen by accident. You must
attack your problems through careful analysis and design, at the same time never los-
ing sight of the core tenets of OOP. Only then can OO begin to deliver on its promis-
es. Even with careful analysis and design, however, OOP is not a magical formula. It
will not protect you from your own mistakes or the mistakes of others. And mistakes
will happen! To produce reliable software, you need to test the software.

Today you will learn

• Where testing falls in the iterative process

• About the different types of testing

• How to test your classes

• How to test incomplete software

• What you can do to write more reliable code

• How to make your testing more effective

20 0672321092 CH14 08/22/2001 2:46 PM Page 329

Testing OO Software
OO won’t prevent bugs from finding their way into your software. Even the best pro-
grammers make mistakes. Bugs are commonly thought of as a software defect arising
from a typo, an error in logic, or just a silly mistake made while coding. While the
implementation of an object is a common source of errors, bugs can come in other forms.

Bugs can also result when one object uses another object incorrectly. Bugs may even
come about from fundamental flaws in the analysis or design itself. By its very nature, an
OO system is full of interacting objects. These interactions can be the source of all kinds
of errors.

Luckily, you can protect your software from bugs through software testing where you
can validate your software’s analysis, design, and implementation.

330 Day 14

Like OO, testing is not a magical solution; it is extremely difficult to com-
pletely test your software. The total number of possible paths through a
non-trivial program makes it difficult and time consuming to achieve total
coverage of the code. So even tested code may harbor hidden bugs.

The best that you can do is to perform an amount of testing that ensures
the quality of your code while also allowing you to meet your deadlines and
stay within budget. The actual “amount” of testing that you perform will
depend on the scope of the project and your own comfort levels.

Caution

Testing and the Iterative Software
Development Process

Figure 14.1 illustrates the iteration first presented in Chapter 9, “Introduction to Object
Oriented Analysis.” Testing is the last step of an iteration.

Before you leave an iteration, testing is an important step. The testing stage verifies that
any changes you made during that iteration do not break any existing functionality. The
testing stage also verifies that any new functionality you have added now works correct-
ly. For these reasons, the tests performed before leaving an iteration are often referred to
as functional or acceptance testing.

20 0672321092 CH14 08/22/2001 2:47 PM Page 330

Building Reliable Software Through Testing 331

14

If bugs are found, you must go back and fix them. Normally you will go back to the
implementation and try to fix the problem in the code. Sometimes, that is all you will
need to do: simply fix the implementation, retest everything, and move on. Bugs, how-
ever, may actually stem from a design flaw, or even an overlooked or misunderstood
requirement. You may need to go all the way back to design or analysis before you can
fix a bug in the implementation.

FIGURE 14.1
An iteration.

Iteration Start

Iteration End

Analysis

Design

Implementation

Test

Testing at the end of an iteration is an important milestone. To leave the
iteration, your system must pass the tests; however, testing must also occur
during other stages of an iteration. Today’s lessons will show you how to
effectively use testing during the implementation and testing stages of the
iteration.

Make testing a goal, and something that you do throughout development.
If you give no thought to testing until the end of development, you may
find that it is not possible to test your software. Instead, you need to devel-
op with testing in mind. You must make testing an integral part of the
development process.

Note

After fixing a bug, it is not sufficient to simply test for the fixed bug.
Instead, you need to perform all tests. While fixing one bug you can easily
introduce one or more new ones!

Caution

20 0672321092 CH14 08/22/2001 2:47 PM Page 331

A misunderstanding in the analysis means that the system will not function as the cus-
tomer expects. A system must work as expected, and the customer that drives the system
must agree with what behavior is expected. Not only do you need to test the code for
implementation flaws, you also need to test that the code to see if it functions as expected.

To be able to test a system, you need to write and run test cases. Each test case will test a
specific aspect of the system.

A test case is the basic building block of the testing process. The testing process
runs a number of test cases to be able to completely validate a system. Each test

case consists of a set of inputs and expected outputs. The test will either execute a spe-
cific path through the system (white box) or test some defined behavior (black box).

A test case exercises a specific piece of functionality to see if the system behaves as it
should. If the system behaves as expected, the test case passes. If the system does not
behave as expected, the test case fails. A failed test case indicates that there is a bug in
the system. You always want all of your test cases to pass 100% of the time. Don’t be
tempted to ignore a failed test case if a hundred other cases pass. Every test must pass or
you cannot continue your work!

There are two ways to base your test cases: black box and white box testing. An effective
test strategy will have a mix of black box- and white box-based test cases.

Black box testing tests that the system functions as expected. Given a specific
input black box testing tests that the proper externally visible output or behavior

results as defined by the class’ or system’s specification.

In white box testing, the tests are based solely on a method’s implementation.
White box tests try to achieve 100% code coverage.

When testing individual classes, black box testing is based upon the functional require-
ments of the class. When testing the entire system, black box testing is based upon the
use cases. In either case, black box testing verifies that an object or system behaves as
expected. For example, if a method is supposed add two numbers, a black box test will
send two numbers to the method and then verify whether or not the output is the correct
sum of the two numbers. If a system is supposed to allow you to add and remove items
from a shopping cart, a black box test will attempt to add and remove items from the
cart.

White box testing, on the other hand, is based upon the implementation of a method. Its
purpose is to ensure that every branch of the code is executed. Black box testing is esti-
mated to only cover a third to a half of the actual code. With white box testing, you
design your tests so that you exercise each branch of code, and hopefully flush out any
latent errors.

332 Day 14

NEW TERM

NEW TERM

NEW TERM

20 0672321092 CH14 08/22/2001 2:47 PM Page 332

Building Reliable Software Through Testing 333

14

For example, if a method divides two numbers, and there is an error branch that executes
when you try to divide by 0, you’ll need to ensure that you have a test case that exercises
that error condition. Unless specified in the interface’s documentation, you would only
know about this branch by looking at the code itself. So white box tests must be based
upon the code itself.

In either case, black box and white box testing govern how you create your test cases.
Each plays an important part in the form of testing that you can perform.

Forms of Testing
In all, there are four important forms of testing. These tests range from lower-level tests
that examine the individual objects, to upper-level tests that examine the entire system.
Performing each will help to ensure the overall quality of your software.

Unit Testing
Unit testing is the lowest level unit of testing. A unit test examines only one feature at a
time.

A unit test is the lowest level testing device. A unit test sends a message to an
object and then verifies that it receives the expected result from the object. A unit

test only checks one feature at a time.

In OO terms, a unit test examines a single class of object. A unit test checks an object by
sending that object a message and verifying that the object returns the expected result.
You can base unit tests on both black box and white box testing. In fact, you should do
both to ensure that your objects work properly. While each class that you write should
have a corresponding unit test, you should probably write the test case before you write
the class. You’ll read more on that point later.

Today, we will focus on unit testing because it is so central to writing reliable OO soft-
ware. In fact, you should perform unit testing throughout development.

White box testing, except for the simplest programs, can rarely attain even
reasonable coverage of the combination of paths through the program.
There are two steps that you can take to improve the efficiency of your
tests:

Write you programs so that they have a minimal number of paths.

Identify critical paths and be sure to test them.

Tip

NEW TERM

20 0672321092 CH14 08/22/2001 2:47 PM Page 333

Integration Testing
OO systems are made up of interacting objects. While unit testing examines each class of
object in isolation, integration testing checks that the objects that make up your system
interact properly. What might work in isolation may blow up when combined with other
objects! Common sources of integration errors stem from errors in or misunderstanding
about input/output formats, resource conflicts, and the incorrect sequence of method
calls.

An integration test checks that two or more objects work together properly.

Like unit tests, the tests that you perform during integration testing can be based on both
white box and black box testing concepts. You should have an integration test for each
important interaction in the system.

System Testing
System testing verifies that the entire system performs as described by the use cases.
While performing system tests, you must also test the system in ways not described by
the use cases. By doing so, you can verify that the system handles and recovers from
unforeseen conditions gracefully.

334 Day 14

NEW TERM

Try throwing these tests at your system when testing:

Random Action Tests

Random access tests consist of trying operations in random order.

Empty Database Tests

Empty database tests ensure that the system can fail gracefully if there is a
major problem with the database.

Mutant Use Cases

A mutant use case changes a valid use case into an invalid use case and
ensures that the system can properly recover from the interaction.

Tip

You would be surprised at what a user might try to do to your system. It may not fall
under one of the “normal” use cases, so it is better to be prepared for the worst.

A system test examines the entire system. A system test verifies that the system
works as stated in the use cases, and that it can handle unusual and unexpected

situations gracefully.

NEW TERM

20 0672321092 CH14 08/22/2001 2:47 PM Page 334

Building Reliable Software Through Testing 335

14

System testing also includes stress and performance tests. These tests ensure that the sys-
tem satisfies any performance requirements and can function under expected loads. If
possible, it is best to run these tests in an environment that matches the production envi-
ronment as closely as possible.

System tests are an important aspect of acceptance testing. System testing checks entire
functional units at once, so a single test may touch many different objects and subsys-
tems. To be able to leave an iteration, the system must pass these tests successfully.

Regression Testing
A test is only valid as long as the tested piece doesn’t change. When an aspect of a sys-
tem does change, that piece—as well as any dependent pieces—must be retested.
Regression testing is the process of repeating unit, integration, and system tests after
changes are made.

Regression tests examine changes to parts of the system that have already been
validated. Whenever a change is made, the piece that was changed—as well as

any dependent pieces—must be retested.

It is absolutely critical to retest even after a small change. A small change can introduce
a bug that could potentially break the entire system. Luckily, regression testing is as easy
as rerunning your unit, integration, and system tests.

A Guide to Writing Reliable Code
While each form of testing is important to the overall quality of your software, today you
will focus on what you can do best in your day-to-day work to ensure the quality of the
systems that you write. To be able to write reliable code, you need to unit test, learn to
differentiate between error conditions and bugs, and write useful documentation.

Combining Development and Testing
One fact lost in Figure 14.1 is that testing should be an ongoing process. Testing should
not be something avoided, put off until the end, done by someone else, or skipped entire-
ly. In fact, it can be impossible to suddenly begin testing once the system is done.
Instead, you need to learn to begin testing while you develop. To test as you develop, you
need to write unit tests for each class that you create.

An Example Unit Test
Let’s take a look at a unit test for the SavingsAccount class first presented in Chapter 5,
“Inheritance: Time to Write Code.” Listing 14.1 presents the SavingsAccountTest class.

NEW TERM

20 0672321092 CH14 08/22/2001 2:47 PM Page 335

LISTING 14.1 SavingsAccountTest.java

public class SavingsAccountTest {

public static void main(String [] args) {
SavingsAccountTest sat = new SavingsAccountTest();
sat.test_applyingInterest();

}

public void test_applyingInterest() {

SavingsAccount acct = new SavingsAccount(10000.00, 0.05);

acct.addInterest();

print_getBalanceResult(acct.getBalance(), 10500.00, 1);

}

private void print_getBalanceResult(double actual, double expected, int
➥test) {

if(actual == expected) { // passed
System.out.println(“PASS: test #” + test + “ interest applied

➥properly”);
System.out.println();

} else { // failed
System.out.println(“FAIL: test #” + test + “ interest applied

➥incorrectly”);
System.out.println(“Value returned: “ + actual);
System.out.println(“Expected value: “ + expected);
System.out.println();

}

}

}

The SavingsAccountTest is a unit test that examines the SavingsAccount class. A unit test
can be made up of a number of test cases. Here, the SavingsAccountTest class only has one
test case: test_applyingInterest. The test_applyingInterest test case checks to be sure
that a SavingsAccount instance properly applies interest to its balance. A unit test can have
many test cases, but each test case should only check one feature of the object.

SavingsAccountTest is referred to as a unit test because it examines the lowest level
building block, or unit, in the OO world: the object. A unit test should only examine one
object at a time. This means that each object must be testable as well as a standalone
entity. If not, you may not be able to test the object at all. Even if you can, you may end
up inadvertently testing many objects at the same time.

336 Day 14

20 0672321092 CH14 08/22/2001 2:47 PM Page 336

Building Reliable Software Through Testing 337

14

When writing unit tests you should avoid manual validation of the output as much as
possible. As you can see in test_applyingInterest, the test case does all of the neces-
sary validation automatically. Manual validation is often time consuming and error
prone. When running test cases, you want accurate results as fast as possible, and with
the least amount of effort. Otherwise, you may start to neglect testing.

Why You Should Write Unit Tests
Unit tests help you to detect errors. If you break something in your class, you’ll know
right away because the unit test will tell you. The unit test is your first line of defense
against bugs. Catching a bug at the unit level is much easier to handle than trying to trace
a bug during integration or system test.

Unit tests also enable you to know when you are done writing a class: A class is done
when your unit tests all pass! As a developer, it can be extremely helpful to have such a
clear-cut end point. Otherwise, it can be difficult to know when a class is “done.”
Knowing that you are done and can move on prevents you from being tempted to add
more functionality than you need to a class.

Writing unit tests can help you to think about the design of your classes, especially if
you write your test case before you write your class; however, to be able to write the test
case, you have to use your imagination and pretend that the class already exists. Doing
so gives you great freedom to experiment with your classes interface. Once you finish
writing the test you can write the class and then everything will compile.

Unit tests can help you to refactor your code. It is easier to make changes to your code if
you have a unit test because you have instant feedback on your changes. You don’t have
to worry as much about introducing bugs; you can simply rerun your test to see if any-
thing broke. By using unit tests you don’t have to be haunted by the nagging question,
“Did I break something?” You can make changes with more confidence.

Finally, you might not always be around to test the system. You may move onto other
projects, or other members of your team may need to perform testing. Unit tests allow
someone other than the author to test an object.

Writing Unit Tests
SavingsAccountTest and test_applyingInterest() are fairly straightforward exam-
ples of a unit test and test case; however, writing unit tests from scratch for each class
can become time consuming. Imagine a system where you must write hundreds of test
cases. If you write each unit test from scratch, you’ll end up doing a lot of redundant
work. You need to either create or reuse a testing framework.

20 0672321092 CH14 08/22/2001 2:47 PM Page 337

A framework is a reusable domain model. The framework contains all of the
classes common to an entire domain of problems, and serves as the basis for a

specific application in the domain.

The classes in a framework define the general design of an application. As a developer,
you simply extend these classes and then provide your own problem-specific classes to
create an application.

In the case of a testing framework, the framework defines a skeleton that you can reuse
for writing and executing unit tests. A testing framework allows you to write unit tests
quickly and conveniently by eliminating redundant, error-prone work. Remember, any-
thing that you program can contain bugs, even your test code. Having a well-tested test-
ing framework can take care of a lot of testing errors. Without a framework, the extra
overhead of testing could be enough to keep you from doing it.

A complete testing framework will contain base classes for writing unit tests, built-in sup-
port for test automation, and utilities to help interpret and report output. Today you will
learn to use JUnit, a free testing framework released under the “IBM Public License” for
testing Java classes. You can download JUnit from http://www.junit.org/.

338 Day 14

NEW TERM

The JUnit download includes source code. JUnit has an excellent design, and
you would be well served by studying the code and included documenta-
tion. In particular, the documentation does an excellent job of documenting
the design patterns used to write JUnit.

Note

JUnit
JUnit provides classes for writing unit tests, for validating output, and for running the
test cases in a GUI or command line environment. junit.framework.TestCase is the
base class for defining unit tests. To write unit tests, you simply write a class that inherits
from TestCase, overrides a few methods, and provides its own test case methods.

When writing JUnit test cases, you should begin the name of any test case
method with test. JUnit provides a mechanism that will automatically load
and run any method that begins with test.

Note

Listing 14.2 presents a JUnit version of SavingsAccountTest.

20 0672321092 CH14 08/22/2001 2:47 PM Page 338

Building Reliable Software Through Testing 339

14

LISTING 14.2 SavingsAccountTest.java

import junit.framework.TestCase;
import junit.framework.Assert;

public class SavingsAccountTest extends TestCase {

public void test_applyingInterest() {

SavingsAccount acct = new SavingsAccount(10000.00, 0.05);

acct.addInterest();

Assert.assertTrue(“interest applied incorrectly”, acct.getBalance() ==
➥10500.00);

}

public SavingsAccountTest(String name) {
super(name);

}

}

The JUnit version of SavingsAccountTest is much simpler than the original. When
using JUnit, there is no reason to reproduce display code or logical tests. You can simply
use JUnit’s supplied Assert class. The Assert class provides a number of methods that
take a boolean as argument. If the boolean is false, an error is recorded. So here, the test
passes Assert the boolean returned by the comparison acct.getBalance() ==
10500.00. If the comparison evaluates to false, JUnit will flag an error.

So, how do you run these tests?

JUnit offers you a number of options for running your test cases. These options fall into
two categories: static and dynamic. If you choose to use the static method, you will need
to override the runTest() method to call the test that you want to run.

In Java, the most convenient way is to write an anonymous class so that you won’t have
to create a separate class for each test that you would like to run. Listing 14.3 shows the
anonymous declaration:

LISTING 14.3 An Anonymous SavingsAccountTest

SavingsAccountTest test =
new SavingsAccountTest(“test_applyingInterest”) {

public void runTest() {

20 0672321092 CH14 08/22/2001 2:47 PM Page 339

LISTING 14.3 Continued

test_applyingInterest();
}

};
test.run();

Anonymous classes are convenient because they allow you to override a method as you
instantiate an object, all without having to create a named class in a separate file. Here,
the main instantiates a SavingsAccountTest, but overrides the runTest() method to run
the test_applyingInterest() test case.

An anonymous class is a class that does not have a name. Anonymous classes
lack a name because they are simply defined when they are instantiated. They are

not declared in a separate file or as an inner class.

Anonymous classes are an excellent choice for one-time use classes (if the class is
small). By using an anonymous class, you avoid having to create a separate named class.

As convenient as they are, anonymous classes have shortcomings. You will need to create
one for each test case method that you would like to call. If you have a lot of test cases,
using anonymous classes can call for a lot of redundant code.

To overcome that shortcoming, JUnit also provides a dynamic mechanism that will
search for and run any method that begins with test. For the purposes of today’s lesson,
we will rely on this dynamic mechanism.

340 Day 14

NEW TERM

JUnit also provides a mechanism known as a test suite for running multiple
test cases. JUnit provides a mechanism for statically defining the set of tests
to run as a suite; however, the dynamic mechanism will search out and find
each test method. Today, we will rely on this automatic mechanism to find
and run the tests.

Note

JUnit also provides a few other convenient features. Consider the updated version of
SavingsAccountTest in Listing 14.4 that also tests the withdrawFunds() method.

LISTING 14.4 SavingsAccountTest.java

import junit.framework.TestCase;
import junit.framework.Assert;

public class SavingsAccountTest extends TestCase {

20 0672321092 CH14 08/22/2001 2:47 PM Page 340

Building Reliable Software Through Testing 341

14

LISTING 14.4 Continued

private SavingsAccount acct;

public void test_applyingInterest() {

acct.addInterest();

Assert.assertTrue(“interest applied incorrectly”, acct.getBalance() ==
➥10500.00);

}

public void test_withdrawFunds() {

acct.withdrawFunds(500.00);

Assert.assertTrue(“incorrect amount withdrawn”, acct.getBalance() ==
➥9500.00);

}

protected void setUp() {

acct = new SavingsAccount(10000.00, 0.05);

}

public SavingsAccountTest(String name) {
super(name);

}

}

In this version, you will notice that the test contains two new methods:
test_withdrawFunds() and setUp(). setUp() overrides a method in the TestCase
base class. Each time that JUnit calls a test method, it will first make a call to setUp()
to establish the testing fixture.

A testing fixture defines the set of objects on which a test will operate. Establishing a
testing fixture can consume most of the time it takes to write test cases.

The testing fixture prepares the set of objects upon which a test case will act.
Fixtures are also convenient because they allow you to share the same fixture

among an entire set of test cases without having to duplicate code.

JUnit guarantees that the fixture objects will be in a known state by calling setUp()
before running each test. JUnit also supplies a corresponding tearDown() method for
performing any cleaning up of the fixture after the test runs.

NEW TERM

20 0672321092 CH14 08/22/2001 2:47 PM Page 341

To be able to run your test cases, JUnit provides test runners for exercising and collecting
the results from a test. JUnit provides both a graphical and command-line based version
of this utility.

To run SavingsAccountTest graphically, simply type

java junit.swingui.TestRunner

Figure 14.2 illustrates the JUnit main window.

342 Day 14

FIGURE 14.2
The main JUnit UI.

Using the UI, you can browse for the SavingsAccountTest class. Once loaded, you can
simply run the test by hitting the run button.

As Figure 14.3 shows, the JUnit UI displays the number of tests run as well as the num-
ber of failed tests. The UI also provides a graphical bar that display whether or not any
tests failed.

JUnit is a great tool because it allows you to receive clear, instant feedback from your
test cases. So if that little voice in your head ever nags you with, “What if I broke some-
thing?” you can find out quickly by rerunning your unit tests.

Writing Advanced Unit Tests
Let’s consider a slightly more complicated example. Exercise 1 from Chapter 11,
“Reusing Design through Design Patterns,” presented one possible implementation of an
Item. Currently, to be able to display an Item, you must call a number of getter methods
and process the data for display. Unfortunately, asking an object for its data is not the
best OO approach. You should ask the object to do something with its data.

20 0672321092 CH14 08/22/2001 2:47 PM Page 342

Building Reliable Software Through Testing 343

14

Consider Listing 14.5, which presents an alternative implementation of Item.

LISTING 14.5 Item.java

public class Item {

private int id;
private int quantity;
private float unitPrice;
private String description;
private float discount;

public Item(int id, int quantity, float unitPrice, float discount, String
➥desc) {

this.id = id;
this.quantity = quantity;
this.unitPrice = unitPrice;
this.discount = discount;
this.description = desc;

}

public void display(ItemDisplayFormatter format) {

format.quantity(quantity);
format.id(id);
format.unitPrice(unitPrice);
format.discount(discount);
format.description(description);
format.adjustedPrice(getTotalPrice());

FIGURE 14.3
The main JUnit UI
after successfully run-
ning the test cases.

20 0672321092 CH14 08/22/2001 2:47 PM Page 343

LISTING 14.5 Continued

}

public float getTotalPrice() {
return (unitPrice * quantity) - (discount * quantity);

}

}

Here, you can ask the Item to display itself using a display formatter. The formatter will
take care of formatting the data for display. Having a separate formatting object is a bet-
ter approach than having another object call getters, or embedding the display logic in
the Item object itself. When display requirements change, you can simply create new
implementations of ItemDisplayFormatter.

Listing 14.6 defines the ItemDisplayFormatter interface, and Listing 14.7 presents one
possible implementation of the interface.

LISTING 14.6 ItemDisplayFormatter.java

public interface ItemDisplayFormatter {
public void quantity(int quantity);
public void id(int id);
public void unitPrice(float unitPrice);
public void discount(float discount);
public void description(String description);
public void adjustedPrice(float total);
public String format();

}

LISTING 14.7 ItemTableRow.java

public class ItemTableRow implements ItemDisplayFormatter {

private int quantity;
private int id;
private float unitPrice;
private float discount;
private String description;
private float adjPrice;

public void quantity(int quantity) {
this.quantity = quantity;

}

344 Day 14

20 0672321092 CH14 08/22/2001 2:47 PM Page 344

Building Reliable Software Through Testing 345

14

LISTING 14.7 Continued

public void id(int id) {
this.id = id;

}

public void unitPrice(float unitPrice) {
this.unitPrice = unitPrice;

}

public void discount(float discount) {
this.discount = discount;

}

public void description(String description) {
this.description = description;

}

public void adjustedPrice(float total) {
this.adjPrice = total;

}

public String format() {
String row = “<tr>”;
row = row + “<td>” + id + “</td>”;
row = row + “<td>” + quantity + “</td>”;
row = row + “<td>” + description + “</td>”;
row = row + “<td>$” + unitPrice + “</td>”;
row = row + “<td>$” + adjPrice + “</td>”;
row = row + “</tr>”;
return row;

}
}

The ItemTableRow formatter creates an HTML table row representation for the Item
using US currency symbols. Other formatters could format the data in other ways.

This example presents some interesting testing challenges as well as some opportunities.
For these classes, simply calling a method and checking an output won’t do the job.

Testing Item’s display() method is of special interest because a unit test should only
check one class in isolation; however, to be able to test display(), you must also pass an
ItemDisplayFormatter to it.

Luckily, mock objects offer an alternative that will still allow you to test Item in isolation.

A mock object is a simplistic substitute for a real object. It’s called a mock object
because the object has been mocked-up for testing purposes. While the mock object

may have a simplistic implementation, it can hold extra functionality to aid in testing.

NEW TERM

20 0672321092 CH14 08/22/2001 2:47 PM Page 345

Mock objects are closely related to stubs. However, mock objects differ in that they actu-
ally perform some function instead of simply accepting a call and returning some canned
value.

Mock objects are sometimes called simulators.

A mock object provides a simplistic substitute for a real object. This substitute will not
appear in the actual system, just in the test code.

The point of a mock object isn’t to provide the actual functionality of the object that it
mimics. Instead, the mock object should provide a simplistic implementation that may
have added support for testing.

346 Day 14

Keep mock objects as simple as possible. A mock object should normally be a
standalone object that does not rely on any other mock objects. If your
mock object has too many dependencies, it is probably too complicated.

Caution

For example, consider a database accessor that returns Item objects. You would hardcode
the mock accessor to return the same Item over and over; however, if you’re unit testing
an object that retrieves Items using the accessor, it will not know the difference. Such an
approach isolates the object being tested from defects in the objects that it uses.

You can use a mock object to test whether the Item’s display() method properly uses
ItemDisplayFormatter objects. Listing 14.8 presents a mock ItemDisplayFormatter.

LISTING 14.8 MockDisplayFormatter.java

import junit.framework.Assert;

public class MockDisplayFormatter implements ItemDisplayFormatter {

private int test_quantity;
private int test_id;
private float test_unitPrice;
private float test_discount;
private String test_description;
private float test_adjPrice;

private int quantity;
private int id;
private float unitPrice;
private float discount;
private String description;
private float adjPrice;

20 0672321092 CH14 08/22/2001 2:47 PM Page 346

Building Reliable Software Through Testing 347

14

LISTING 14.8 Continued

public void verify() {
Assert.assertTrue(“quantity set incorrectly”, test_quantity == quantity

);
Assert.assertTrue(“id set incorrectly”, test_id == id);
Assert.assertTrue(“unitPrice set incorrectly”, test_unitPrice ==

➥unitPrice);
Assert.assertTrue(“discount set incorrectly”, test_discount == discount

);
Assert.assertTrue(“description set incorrectly”, test_description ==

➥description);
Assert.assertTrue(“adjPrice set incorrectly”, test_adjPrice == adjPrice

);
}

public void test_quantity(int quantity) {
test_quantity = quantity;

}

public void test_id(int id) {
test_id = id;

}

public void test_unitPrice(float unitPrice) {
test_unitPrice = unitPrice;

}

public void test_discount(float discount) {
test_discount = discount;

}

public void test_description(String description) {
test_description = description;

}

public void test_adjustedPrice(float total) {
test_adjPrice = total;

}

public void quantity(int quantity) {
this.quantity = quantity;

}

public void id(int id) {
this.id = id;

}

public void unitPrice(float unitPrice) {
this.unitPrice = unitPrice;

20 0672321092 CH14 08/22/2001 2:47 PM Page 347

LISTING 14.8 Continued

}

public void discount(float discount) {
this.discount = discount;

}

public void description(String description) {
this.description = description;

}

public void adjustedPrice(float total) {
this.adjPrice = total;

}

public String format() { // we’re not testing formatter functionality
return “NOT IMPLEMENTED”;

}
}

MockDisplayFormatter is similar in some ways to the actual implementation; however,
you’ll notice that it does not implement a true format() method. You will also notice
that it adds a number of methods for setting the expected values as well as a method for
checking the inputs from Item against those values.

Listing 14.9 illustrates how you might use the mock display to unit test the Item class.

LISTING 14.9 ItemTest.java

import junit.framework.TestCase;
import junit.framework.Assert;

public class ItemTest extends TestCase {

private Item item;

// constants for constructor values
private final static int ID = 1;
private final static int QUANTITY = 10;
private final static float UNIT_PRICE = 100.00f;
private final static float DISCOUNT = 5.00f;
private final static String DESCRIPTION = “ITEM_TEST”;

protected void setUp() {
item = new Item(ID, QUANTITY, UNIT_PRICE, DISCOUNT, DESCRIPTION);

}

348 Day 14

20 0672321092 CH14 08/22/2001 2:47 PM Page 348

Building Reliable Software Through Testing 349

14

LISTING 14.9 Continued

public void test_displayValues() {
MockDisplayFormatter formatter = new MockDisplayFormatter();
formatter.test_id(ID);
formatter.test_quantity(QUANTITY);
formatter.test_unitPrice(UNIT_PRICE);
formatter.test_discount(DISCOUNT);
formatter.test_description(DESCRIPTION);

float adj_total = (UNIT_PRICE * QUANTITY) - (DISCOUNT * QUANTITY);
formatter.test_adjustedPrice(adj_total);

item.display(formatter);

formatter.verify();
}

public ItemTest(String name) {
super(name);

}
}

ItemTest’s test_displayValues() method creates a MockDisplayFormatter, sets the
expected inputs, passes it to the Item, and uses the formatter to validate the input.
Internally, the formatter’s verify() method uses JUnit’s Assert class to validate the input.

Mock objects are a powerful concept because you can program them to do anything. You
may have mock objects that count the number of times a method is called, or one that
keeps track of the amount of data an object sends over a network. It all depends upon
your application and what you need to monitor. Mock objects allow you to perform all
kinds of monitoring and testing that isn’t possible if an object simply creates all of the
objects that it needs itself.

This raises the question, “What if my objects create the objects that they themselves
need?” Most of the examples in this book actually fall into that category (hopefully that
kept the examples more understandable, though!). One solution is to edit the classes so
that the objects instantiate a mock object instead of the real object. Such an approach,
however, isn’t clean because it forces you to alter code that you’re testing. If you change
the implementation of the code before you test, you’re not really testing the class that
will find its way into your system. The best solution is to write code that is easy to test.

Such advice may seem backwards. Conventional wisdom dictates that you normally write tests
to test code that you have already written. You don’t write code so that you can test! The Item
example illustrates an important lesson. Designing your classes so that they are easy to test can
actually result in code that is more OO! In this case, passing in the dependent objects actually
made the object less dependent on a specific class, thus more pluggable.

20 0672321092 CH14 08/22/2001 2:47 PM Page 349

While it is true that Item’s display() method is dependent upon the
ItemDisplayFormatter interface, it is not dependent upon a specific implementation of
the interface, such as TableRowFormatter or even MockDisplayFormatter. Instead, Item
is free to use any ItemDisplayFormatter implementation because it doesn’t force itself
to use any specific one by creating the instance itself.

350 Day 14

Design your classes so that you can test them easily. Design with mock
objects in mind. Your code may actually become more object-oriented!

Tip

Write your classes so that dependent objects are passed in, not instantiated
within the object itself. This practice leads to stand alone objects.

Tip

Tips to effective testing:

• You should optimize your tests for speed. Quick tests provide instant
feedback, so you might be more apt to use them.

• Compile your test cases along with your normal classes. This practice
will force you to keep your test cases up to date with the code.

• Avoid visual/manual validation of test output because it is error
prone. Use some automatic mechanism instead.

• If you have to maintain a codebase that lacks unit tests, write the
tests as you need them.

Tip

Writing Exceptional Code
Testing is an important way to ensure the quality of the code that your write; however,
it is not the only step that you can take. You also need to learn to tell the difference
between an error condition and a bug. An error condition and a bug are not the same!

You know what a bug is; a bug is a defect. An error condition is slightly different. An
error condition, or exception, is a predictable failure that happens under certain circum-
stances in the domain. Take the online store, for example. Network outages happen all of
the time. A network outage is not a bug (unless your code causes it!). Instead of treating
error conditions as bugs, you need to code around them.

20 0672321092 CH14 08/22/2001 2:47 PM Page 350

Building Reliable Software Through Testing 351

14

For example, if your database connection fails, you need to try reconnecting. If it is still
down, you need to handle the condition gracefully, and inform the user of the error.

Every language has its own way of reporting error conditions. Java and C++ employ a
mechanism known as exceptions to signal error conditions. Languages such a C rely on
return codes. Whatever language you use, you must write your code to detect and recover
gracefully from error conditions.

Java and C++ exceptions work similarly. Exceptions are just another type of object; how-
ever, the Java compiler forces you to handle them if it determines that an exception may
occur and you do not handle it.

Here is one of the methods from Java’s URL class:

public URLConnection openConnection() throws IOException

You see that the method has some extra information. The method indicates that it may
throw IOException, meaning that under normal conditions the method will return a
URLConnection. If there is an error opening the connection, however, the method will
throw an IOException instead.

In Java, you handle exceptions in try/catch blocks. Listing 14.10 shows how you could
handle a call to openConnection.

LISTING 14.10 Handling an Exception

java.net.URL url = new java.net.URL(“http://www.samspublishing.com/”);
java.net.URLConnection conn;
try {

conn = url.openConnection();
} catch (java.io.IOException e) { // an error has occurred

// log an error, write something out to the screen
// do something to handle the error

}

When you make a call to openConnection, you do so normally; however, you must
make the call within try/catch blocks or explicitly state that the method the call is made
in also throws an IOException.

If the call to openConnection() results in an exception being thrown, conn will not be
set. Instead, execution will continue within the catch block where you can try to recover,
log an error, print a message to the screen, or throw another exception.

If you do not explicitly catch the exception or throw a new exception, the exception will
bubble up the call stack until it reaches the top or someone finally catches it.

20 0672321092 CH14 08/22/2001 2:47 PM Page 351

What is important is that you program for error conditions by using whatever mechanism
is built into your language. This means that when you design your classes, you should
also give consideration to the various error conditions, model them through exception
objects, and have your methods throw them.

Writing Effective Documentation
There is one more step that you can take to improve the quality of your work: document
it. There are many forms of documentation, each with its own level of effectiveness.

Source Code as Documentation
The source code, even your unit tests, is a form of documentation. When others have to
take and maintain your code, it is important that it is readable and well laid out.
Otherwise, no one will be able to make any sense out of it.

Source code is the most important form of documentation, because it is the only docu-
mentation that you must maintain.

Coding Conventions

The first step that you can take to turning your code into good documentation is to pick a
coding convention and stick to it. Coding conventions can cover everything from how
you indent your braces to how you name your variables. The specific convention is not
all that important. What is important is that your project team, and preferably your com-
pany, pick a convention and stick with it. That way, anyone can pick up a piece of code
and follow it—well, at least not be distracted by the formatting.

Listing 14.11 presents one way of declaring Java classes.

LISTING 14.11 An Example Class

public class <ClassName>
extends <ParentClassName>
implements <LIST OF INTERFACES>

{
// public variables
// protected variables
// private variables
// constants

// public methods
// protected methods
// private methods

}

352 Day 14

20 0672321092 CH14 08/22/2001 2:47 PM Page 352

Building Reliable Software Through Testing 353

14

Here’s one way to declare methods and nest if/else statements:

public void method() {
if(conditional) {

} else {

}
}

Constants

Constants can also serve as a form of documentation. Use constants wherever you find
yourself using a hard coded value. A well-named constant can provide insight into the
purpose of your code.

Comments

Like a well-placed constant, nothing helps make code more understandable than a well-
placed comment; however, you need to find a balance in your commenting. Comment
too much, and your comments will lose meaning.

Here’s a useless, but common, commenting mistake:

public void id(int id) {
this.id = id; // set id

}

Useless comments tell you what code is doing. If you need to explain code, the code may
be too complicated. Comments should tell you what the code is for. Comments should
describe non-intuitive implementations.

Class names should always begin with an uppercase letter. Method names
should always begin with a lowercase letter. Variable names should always
begin with a lowercase letter.

Any name containing multiple words should begin nested words with caps.
For example: someMethod() and HappyObject.

Constants should always be in CAPS. Normal variables should be in lower-
case.

(Please note that these conventions are Java centric. Smalltalk and C++
conventions may differ.)

Tip

Please note that a comment under a method signature is no substitute for a
good, clear method name.

Note

20 0672321092 CH14 08/22/2001 2:47 PM Page 353

Names

Variable, method, and class names should be meaningful. Spell them out and be consis-
tent in your spelling. For example, always capitalize the second word in a multi-word
name such as testCase. As an alternative, you can split the words with a hyphen (-),as in
test-case. Again, the most important aspect is consistency. Make your naming rule part
of your convention and then use it consistently.

Method and Class Headers

When you write a class or method, always be sure to include a header. A method header will
include a description, a list of arguments, a description of the return, as well as an exception
conditions and side effects. A header may even include pre-conditions. A class header will
normally include a description, version number, author list, and revision history.

When you program in Java, be sure to take advantage of Javadoc. (See Appendix B for
more information.) Javadoc provides a number of tags for writing headers. If you use
Javadoc, you can simply run your classes through a processor that will automatically
generate convenient Web-based API documentation for your classes.

354 Day 14

When you have documented something you have committed yourself to
keeping that documentation up to date, whether it is Javadoc, a design doc-
ument, or a comment. Out-of-date documentation is worthless. Keep it up
to date!

Tip

Summary
Today you learned about testing and what you can do as a developer to ensure the quality
of your work. In all, there are four overall forms of testing:

• Unit Testing

• Integration Testing

• System Testing

• Regression Testing

In your day-to-day work, the unit test is your first line of defense against bugs. Unit test-
ing also has the benefits of forcing you to consider your design from the point of view of
testing, and provides you with a mechanism that makes refactoring easier.

You also saw the importance of handling error conditions properly and keeping docu-
mentation. All of these practices add up to higher quality code.

20 0672321092 CH14 08/22/2001 2:47 PM Page 354

Building Reliable Software Through Testing 355

14

Q&A
Q Why do developers hate to test?

A There does seem to be a culture of “test avoidance” among programmers. I feel
that this is a cultural problem. In most companies the Quality Assurance (QA)
group is a group separate from the developers. They come in, test the system, and
write up bug reports. This approach puts the programmer on the defensive, espe-
cially if the project manager puts an undo amount of pressure on the developer. In
a way, testing becomes punishment, and a source of extra work.

Viewing testing as extra work is also part of the problem. Many project teams put
off testing until the end of development thus it becomes something that you do
when you’re done with the “real” work. Unfortunately, the more that you delay
testing, the harder it will be to do. When you do start testing, you will likely
encounter a large number of bugs because you hadn’t tested up to that point. This
puts you back in the punishment phase, especially because you’re probably close to
your deadline. And if you’re close to your deadline, the pressure from the project
manager will increase.

Test avoidance is a problem that feeds itself.

Q Why is testing often done by a separate Quality Assurance group?

A Independent testing helps to ensure that the testers don’t subconsciously avoid
areas where problems may exist—a failing to which developers can be prone.

Q Throughout today’s lessons you used JUnit. Why did you choose JUnit?

A JUnit is a free testing tool that does its job well. JUnit is designed well and is small
enough that you can get your hands around the design easily. It also lacks the bells
and whistles that many other products have.

In my opinion, avoiding the bells and whistles during unit testing is a benefit. JUnit
puts you closer to the code because you have to write your own tests, set up the
data, and validate the output. It forces you to consider your design, and even aug-
ment it so that it is easy to test.

With some of the more automated testing tools, you can lose these benefits; how-
ever, JUnit is a unit-testing framework. You will need to find other tools for some
of the integration and system testing.

Q Unit testing seems like a burden. I don’t have time to unit test. What should I do?

A Unit testing may seem like a burden the first time that you write a unit test. In all
honesty, at times, unit tests are expensive to write. Unit tests pay off over time.
When you write a test, you can reuse it over and over again. Each time that you
change the implementation of your class, you simply rerun your unit test. Unit tests
make it much easier to make changes to your code.

20 0672321092 CH14 08/22/2001 2:47 PM Page 355

Not having time is a weak argument. Imagine how much more time it will take to
find, trace, and fix bugs if you put off testing until the end—a time when you are
usually under even more pressure.

Q How do you know if you’ve tested enough?

A You’ve tested at a minimal level when you have a unit test for each class, an inte-
gration test for each major interaction in the system, and a system test for each use
case. Whether or not you do additional testing depends on your deadline as well as
your comfort level.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. How can bugs find their way into your software? (Or maybe the question should

be, “How do you cause bugs in your software?”)

2. What is a test case?

3. What are the two ways upon which you can base your tests?

4. Define white box and black box testing.

5. What are the four forms of testing?

6. Define unit test.

7. What is the point behind integration testing and system testing?

8. Why should you avoid delaying testing until the end of a project?

9. Why should you avoid manual or visual validation while testing? What is the
alternative?

10. What is a framework?

11. What is a mock object?

12. Why should you use mock objects?

13. What is the difference between a bug and an error condition?

14. When writing your code, how can you ensure its quality?

Exercises
1. Download JUnit and read cookstour, which is found in the doc directory.

2. Write a unit test for the HourlyEmployee from Chapter 7, “Polymorphism: Time to
Write Code,” that tests the calculatePay() method.

356 Day 14

20 0672321092 CH14 08/22/2001 2:47 PM Page 356

In Review
This week, you learned about the iterative approach to the
software development process. The software development
process includes analysis, design, implementation, and testing
stages. You learned that the iterative approach to the software
development allows you to go back and refine any stage in
the process. This continual refinement leads to a more com-
plete, correct solution to your problem.

Day 8 introduced you to the Unified Modeling Language. In
Day 9 you learned about OOA, the first step in the develop-
ment process. OOA allows you to understand the problem
you are trying to solve. One method of OOA is through the
use of use cases to describe how the users will use the sys-
tem. Once you have your use cases mapped out, you can use
modeling languages such as the UML to graphically visualize
your problem domain.

Day 10 describes OOD, the process of taking the domain
model and creating the objects model you will use during
implementation. The following list presents the basic steps
necessary to complete OOD.

1. Generate an initial list of objects

2. Refine your objects’ responsibilities

3. Develop the points of interaction

4. Detail the relationships between objects

5. Build your model

CRC cards aid you in mapping out the responsibilities of and
interactions between each object. The next two days covered
design patterns, reusable design concepts that provide short-
cuts to OOD. You learned about patterns, such as the Adapter,

WEEK 2 8

9

10

11

12

13

14

21 0672321092 Week Review 2 08/22/2001 2:48 PM Page 357

358 Week 2

Proxy, Iterator, Abstract Factory, Singleton, and Typesafe Enum, and when it is appropri-
ate to use them.

Day 13 explains UI design with the MVC pattern. The MVC pattern provides flexibility
be decoupling the UI from the underlying system. It also stresses the need to carry out
the software design process for the UI as for any other part of the system.

Finally, Day 14 introduced you to testing in the implementation and testing stages of
each iteration. You learned about the two way of testing your code: white box and black
box testing. You also learned the four forms of testing: unit, integration, system, and
regression testing. Testing is the final way to ensure the quality of your code. If it is not
taken into consideration throughout the development process, you could face serious
consequences.

Now that you have finished this week’s lessons, you should understand the software
development process.

21 0672321092 Week Review 2 08/22/2001 2:48 PM Page 358

Putting It All
Together: A
Complete OO
Project

15 Learning to Combine Theory and Process

16 Blackjack Iteration 2: Adding Rules

17 Blackjack Iteration 3: Adding Betting

18 Blackjack Iteration 4: Adding a GUI

19 Applying an Alternative to MVC

20 Having Some Fun with Blackjack

21 The Final Mile

WEEK 3 15

16

17

18

19

20

21

22 0672321092 Part3 08/22/2001 2:44 PM Page 359

22 0672321092 Part3 08/22/2001 2:44 PM Page 360

At a Glance
In the first week, you learned the theory behind OOP. The
second week gave you a process to follow while applying that
theory. This week, you will put the lessons of the first two
weeks together in a complete OOP project. This project will
step you through all phases of development—from project
inception to completion.

Your final project is the development of a Blackjack card
game. Day 15, the first day this week, will step you through
the first iteration of the game and add basic functionality from
OOA through implementation and testing. In Days 16 and 17,
you will add more functionality to the game through two
more iterations. Day 18 shows you how to add a GUI to the
system.

Day 19 provides an alternate way to implement a GUI
through the PAC design pattern. In Day 20 you will learn how
to add multiple non-human players and see how to turn your
game into a simulator. Finally, Day 21 pulls everything
together and ties up any loose ends.

WEEK 3 15

16

17

18

19

20

21

23 0672321092 Week AAG 3 08/22/2001 2:43 PM Page 361

23 0672321092 Week AAG 3 08/22/2001 2:43 PM Page 362

DAY 15

WEEK 2

Learning to Combine
Theory and Process

Week 1 helped you understand the theory behind OOP. Week 2 gave you a
process to follow while applying that theory. Week 3 will show you how to put
the lessons of Week 1 and Week 2 together by presenting a complete OOP pro-
ject. This project will step you through all phases of development, all the way
from project inception to completion.

Today’s lesson introduces you to Blackjack, a popular card game. By the end of
today’s lesson, you will complete an initial analysis, design, and working
implementation of the game. You will not create an entire Blackjack game in
one large step. Instead, you will apply the iterative process over the course of
the week as you work towards a complete Blackjack game.

Today you will learn how to:

• Apply OO analysis and design to a real life card game

• Use the iterative process to achieve and see quick results

• Avoid many common development temptations

• Prevent procedural characteristics that can sneak into your program

24 0672321092 CH15 08/22/2001 2:56 PM Page 363

Blackjack
Blackjack is a popular card game where the goal is to get a higher count of cards than
the dealer without going over 21. This week’s goal is to create a fairly complete
Blackjack game written in Java using the OOP concepts that you have learned through-
out the book. While some features will be left out for the sake of clarity and brevity, you
should be left with a game as addictive and time-consuming as the Solitaire or FreeCell
games that are shipped with many popular operating systems.

364 Day 15

The author does not assume any liability for the time lost while playing this
game!

Caution

Why Blackjack?
The question may come to mind, “Why Blackjack?”

The goal of programming Blackjack is not to turn you into a professional gambler. There
are two reasons for using Blackjack as an introductory OOP project:

• Almost everyone is familiar with at least one card game.

• It just so happens that the game of Blackjack fits well into the OOP paradigm.

In general, most people are familiar with the card game domain. An important part of
OOA and OOD is to have a domain expert present while fleshing out the use cases and
domain model. It is simply not possible for you to obtain a domain expert as part of
completing these lessons.

A card game does not require a domain expert. Instead, your own experience and a good
rules book or web site provides everything you need to complete the analysis and design
on your own. If you get confused, you can even take out a pack of cards and work
through a scenario.

As a result, a card game is much more accessible than trying to learn a completely unfa-
miliar domain. A familiar domain will not distract you from the true point of these
lessons—learning to apply OO principles.

Blackjack—in fact, most card games in general—also tend to fit well into the OOP para-
digm. The interactions between dealers, players, their hands, and the cards can help you
to see that an OO system is made up by the interactions between the various objects.

Card games also tend to retain enough procedural characteristics that it is easy to see
how an OOP approach can differ vastly from a procedural one, especially when applying
game rules.

24 0672321092 CH15 08/22/2001 2:56 PM Page 364

Learning to Combine Theory and Process 365

15
Vision Statement
When beginning a project it often helps to start out with a statement of vision or objec-
tive. The point of the statement is to frame the overall purpose of the system that you
will create. The point of the statement is not to capture every aspect of the problem that
you’re trying to solve. Instead, the statement simply states the intent and gives you a
starting point for analysis.

The vision statement frames the overall purpose of the system that you will cre-
ate and the problem that you are trying to solve.

Here is the statement of vision for the Blackjack system:

The Blackjack game allows a player to play a game of Blackjack according to com-
mon casino rules.

While seemingly obvious, this statement serves as an excellent catalyst to analysis.

Overriding Requirements
Before beginning analysis it helps to enumerate any overriding requirements. There are
just a handful of constrains to the game of Blackjack. The only constraint that is impor-
tant now is how the user will interact with the system.

The Blackjack game will allow the user to interact with the system through either a com-
mand line or graphical UI. Of course, the initial iterations will only allow interaction
through a command line interface.

The Blackjack game must also be implemented in the Java programming language.

It is important to list such constraints up front so that you do not come up with a design
that makes adhering to these constraints impossible.

Initial Blackjack Analysis
Chapter 9, “Introduction to Object Oriented Analysis,” introduced you to OOA as well as
the iterative development process. Staying true to the information in Chapter 9, this pro-
ject will follow an iterative development process and will begin each iteration of that
process with analysis.

When beginning analysis it is often helpful to start with the vision statement stated earlier:

The Blackjack game allows a player to play a game of Blackjack according to com-
mon casino rules.

NEW TERM

24 0672321092 CH15 08/22/2001 2:56 PM Page 365

You can use the statement to generate an initial list of questions. It is these questions that
will drive your analysis.

The Blackjack Rules
From the Blackjack vision statement, you can naturally ask, “What are the common casi-
no rules of Blackjack?” You will use these rules to model the game of Blackjack.

The main goal of Blackjack is to collect a hand of cards whose value is greater than that
of the dealer’s hand without exceeding 21. Each card is assigned a numeric value from 1
to 11, where the ace is worth 1 or 11 (depending on which gives you a better hand),
number cards are worth their respective number value, and all picture cards are worth 10.
Suit has no bearing on card value.

Figure 15.1 shows some example hands.

Of course the actual game is a bit more involved. Let’s look at each major component of
the game.

Betting
Before the dealer deals any cards, each player must place a bet. Normally betting is
capped off by some limit such as $25 or $50 per game.

Dealing
After each player has placed a bet, the dealer may deal the cards. Beginning with the first
player the dealer deals one card face up to each player, finishing with himself.

The dealer then repeats this process, but deals his own card face down. The dealer’s
down card is known as the hole card.

Dealing ends once the dealer deals each player, including himself, two cards. Play com-
mences once the deal is through.

Playing
Play may differ depending upon the dealer’s up card. If the dealer’s up card is worth 10
(called a 10-count) or it is an ace (worth 11), the dealer must check his hole card. If the
hole card gives him a total of 21 (called a natural 21 or Blackjack) play automatically
ends and the game moves to settlement. If the hole card does not give him 21, play com-
mences normally.

If the dealer’s up card is not a 10-count or an ace, play automatically moves to the first
player. If the player has a natural 21, the player has Blackjack and play skips to the next
player. If the player does not have 21, the player has two choices: to hit or to stand:

366 Day 15

24 0672321092 CH15 08/22/2001 2:56 PM Page 366

Learning to Combine Theory and Process 367

15

hit—If the player is not satisfied with his hand, he may choose to draw another card,
which is called a hit. The player may hit until he goes over 21 (busts) or stands (stops
needing cards).

stand—If the player is satisfied with his hand, he may choose to stand and receive no
further cards.

After the player busts or stands, play moves on to the next player. This process repeats
itself until each player has played. After each player plays, the dealer then plays his
hand. When the dealer completes his turn, the game moves into settlement where scoring
and payout occur.

FIGURE 15.1
Example Blackjack
hands.

10 of Hearts Ace of Clubs

= 21

5 of Diamonds 2 of Hearts 10 of Spades

= 17

King of
Diamonds

Queen of
Hearts

Aces of
Spades

= 21

9 of Spades 6 of Clubs Jack of Spades

= 25

24 0672321092 CH15 08/22/2001 2:57 PM Page 367

Settlement
After the dealer finishes his turn (or learns that he has Blackjack), play moves into settle-
ment. During settlement each busted player loses his bet; each player with a hand less
than the dealer’s loses his bet; each player with a hand better than the dealer wins his
bet; and each player with a count equal to the dealer’s is said to standoff and no payout is
made. Bets are paid off evenly.

If a player has a Blackjack and the dealer does not, the player is paid off at three to two
odds. For example, if the player had bet $100 he is paid $150 ([100 * 3]/2).

Miscellaneous
I need to mention a few more important details about the game of Blackjack:

The Deck—Blackjack is played with four standard 52-card decks. These four decks
are combined into one large pile of cards.

Number of players—One to seven players may play Blackjack.

Doubling Down—After being dealt his two cards, the player may choose to double
down. When the player double downs, he doubles his bet, receives one more card, and
ends his turn.

Insurance—When the dealer’s face up card is an ace the player may elect to place an
insurance bet. The insurance bet is equal to half of the original bet. If the dealer’s hole
card gives the dealer a natural 21, the player breaks even. If the dealer’s hole card
does not give the dealer 21, the player loses his insurance bet.

Splitting pairs—A player is said to have a pair if the initial two cards dealt have the
same value. If the player is dealt a pair, he may choose to split the hand into two new
hands. If the player splits the pair, the dealer deals each new hand one additional card
and then the player must place an equal bet on the new hand. A player can split any
pair that results from a subsequent split (except for a pair of aces). Also of note is the
fact that any 21-count resulting from a split is not treated as a natural 21. Once split,
the player goes on normally to hit or to stand for each hand in turn.

Identifying the Actors
There are two reasons for performing analysis. Through analysis, you create the use case
model: the description of how the user will use the system. Through analysis, you also
create the domain model: a description of the main vocabulary of the system.

The first step in defining your use cases is to define the actors that will use the system.
Going by the description in the last section, it is easy to see that there are two main
actors in the game of Blackjack—the player(s) and the dealer.

368 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 368

Learning to Combine Theory and Process 369

15
These two actors answer the question, “Who will primarily use the system.” Through use
cases, you can define how these actors will use the system.

Creating a Preliminary List of Use Cases
An effective way of generating the initial use cases is to ask what each of these actors
can do.

Players can do the following:

1. Place bets

2. Hit

3. Stand

4. Bust

5. Get Blackjack

6. Place insurance

7. Split pairs

8. Double down

9. Decide to play again

10. Quit

The dealer can do the following:

1. Deal cards

2. Fulfill the game

3. Hit

4. Stand

5. Bust

6. Get Blackjack

There may be more use cases but this list provides you with plenty of starting material.

Planning the Iterations
Chapter 9 introduced you to the iterative development process. Following an iterative
development process will allow you to quickly build a bare bones Blackjack implementa-
tion. Each iteration will continue to add additional functionality to the game.

Such an approach allows for quick, quantifiable results. Following such an approach allows
you to deal with issues as they come up—not all at once at the end of development. An

24 0672321092 CH15 08/22/2001 2:57 PM Page 369

iterative approach prevents you from being overwhelmed by an avalanche of problems at
the end of development.

Key to an iterative development is planning the iterations as best you can from the begin-
ning. As additional facts present themselves it is fully acceptable to revisit the plan; how-
ever, a rough sketch of the iterations from the start gives a project direction, goals—and
more importantly, it gives you a feeling of achievement as the goals are met.

Normally you plan your iterations by rating the use cases by importance. When working
with a customer it is best to let the customer rank the importance of each use case. In the
case of Blackjack, you should rank the use cases based on its importance to game play.
Pick the use cases absolutely necessary for game play, and do those use cases first. Other
use cases can wait for later iterations. Such an approach allows you to create a working
game as soon as possible.

For the purposes of the Blackjack project there will be four main iterations.

Iteration 1: Basic Game Play
Iteration 1 will create the basic game play. Iteration 1 will refine and implement the fol-
lowing preliminary use cases.

Player use cases:

1. Hit

2. Stand

3. Bust

Dealer use cases:

1. Deal cards

2. Hit

3. Stand

4. Bust

At the end of Iteration 1, you should have a game that plays on the command line. The
game will have two participants: the dealer and one player. The dealer will deal the cards
and allow each player to hit until the player decides to stand or busts. After each player
plays, the game will terminate.

Iteration 2: Rules
Iteration 2 will add rules to the game. Iteration 2 will refine and implement the following
preliminary use cases:

370 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 370

Learning to Combine Theory and Process 371

15
Player use cases:

1. Get Blackjack

The dealer can

1. Fulfill the game (detect winners, losers, and standoff)

2. Get Blackjack

At the end of Iteration 2, everything from Iteration 1 will still work. In addition the game
will detect and indicate when a player has blackjack, busts, stands, wins, loses, and
standoffs.

Iteration 3: Betting
Iteration 3 will add basic betting and doubling down to the game. Iteration 3 will refine
and implement the following preliminary use cases:

Player use cases:

1. Place bets

2. Double down

Dealer use cases:

1. Fulfill the game (for betting)

At the end of Iteration 3, everything from Iterations 2 and 1 will still work. In addition
the game will allow basic betting and doubling down.

Iteration 4: User Interface
Iteration 4 will put some final touches on the command line UI and build a graphical UI.
Iteration 4 will refine and implement the following preliminary use cases:

Player use cases:

1. Decide to play again

2. Quit

For the purposes of this project, insurance betting and split pairs are omit-
ted. These features are left wholly as an exercise to the reader. Blackjack is a
game with many variants. Often, insurance is not allowed and splitting over-
ly complicates the system. Think of this variant as the Teach Yourself Object
Oriented Programming in 21 Days Blackjack variant!

Just remember that you heard it here first.

Note

24 0672321092 CH15 08/22/2001 2:57 PM Page 371

Iteration 1: Basic Game Play
Today’s lesson will step you through the first iteration of the Blackjack card game. By
the end of today’s lesson you will have the basic skeleton of a Blackjack game.

372 Day 15

Before each section you may want to put the book down and try your hand
at the analysis, design, or implementation.

If you experiment on your own be sure to come back, read each section, and
compare your work with the presented materials before continuing. Try to
judge any discrepancies between your solution and the book’s solution judi-
ciously. While you may have a superior solution (there are many ways to
approach this game), be sure that you are correct and that your solution fol-
lows the tenets of OOP.

Note

Blackjack Analysis
Today’s iteration will refine and implement the following use cases:

Player use cases:

1. Hit

2. Stand

3. Bust

Dealer use cases:

1. Deal cards

2. Hit

3. Stand

4. Bust

After you have a set of refined use cases, you can create an initial model of the domain
and begin design.

Refining the Use Cases
Let’s begin with the dealer’s deal use case as this action starts the game.

You first need to describe the use case in a paragraph:

Beginning with the first player, the dealer deals one card face up to each player, fin-
ishing with himself. The dealer then repeats this process, but deals his own card face

24 0672321092 CH15 08/22/2001 2:57 PM Page 372

Learning to Combine Theory and Process 373

15
down. Dealing ends and then play commences once the dealer has dealt each player,
including himself, two cards.

• Deal cards:

1. Dealer deals one card face up to every player including himself.

2. Dealer deals a second card face up to all non-dealer players.

3. Dealer deals a card face down to himself.

• Preconditions:

• New game

• Post conditions:

• All players and the dealer have a hand with two cards

The Player Hits and Player Stands use cases naturally follow. Let’s start with the Player
Hits use case:

The player decides he is not satisfied with his hand. The player has not yet busted, so
the player decides to hit. If the player does not bust, he can choose to either hit again
or stand. If the player does bust, play transfers to the next player.

• Player hits:

1. Player decides he is not satisfied with his hand.

2. The player requests another card from the dealer.

3. The player can decide to hit again, or stand if his hand totals less than or
equal to 21.

• Preconditions:

• Player has a hand whose total value is less than or equal to 21

• Post conditions:

• A new card is added to the player’s hand

• Alternative: Player busts:

New card causes player’s hand to exceed 21. Player busts (loses). Next
player’s/dealer’s turn begins.

Player Stands is a simple use case:

The player decides he is satisfied with his hand and stands.

• Player stands:

1. Player decides he is happy with his hand and stands

24 0672321092 CH15 08/22/2001 2:57 PM Page 373

• Preconditions:

• Player has a hand whose value is less than or equal to 21

• Post conditions:

• Player’s turn ends

At this point it is becoming apparent that Player/Dealer Busts is not a use case because it
is a byproduct of other actions. The dealer and player will never take a bust action; how-
ever, the players will choose to take a hit or stand.

With the bust use cases removed only the Dealer Hits and Dealer Stands use cases
remain. Let’s start with the Dealer Hits use case:

The dealer must hit if his hand’s total is less than 17. If the dealer does not bust after
the hit and his hand’s total is still less than 17, he must hit again. The dealer must
stand on any total greater than or equal to 17. When the dealer busts or stands, play
terminates.

• Dealer hits:

1. The dealer hits if his hand is less than 17

2. New card added to dealer’s hand

3. If the total is less than 17, dealer must hit again

• Preconditions:

• Dealer has a hand whose total is less than 17

• Post conditions:

• New card in dealer’s hand

• Play ends

• Alternative: Dealer busts:

New card causes dealer’s hand to be greater than 21. Dealer busts.

• Alternative: Dealer stands:

New card causes dealer’s hand to be greater than or equal to 17. Dealer stands.

Like Player Stands, Dealer Stands is relatively simple:

The dealer has a hand total greater than or equal to 17 and stands.

• Dealer stands:

4. Dealer’s hand has a total greater than or equal to 17 and stands.

374 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 374

Learning to Combine Theory and Process 375

15
• Preconditions:

• Dealer’s hand greater than or equal to 17

• Post conditions:

• Play ends

Modeling the Use Cases
For Iteration 1, the use cases are fairly simple. Use case models would be more overhead
then they are worth, so they will be omitted.

The interactions between the dealer and players are a bit more interesting. Figure 15.2
shows the sequence of events followed within the Deal Cards use case. Figure 15.3
shows the sequence of event followed within the Player Hits use case.

FIGURE 15.2
The sequence diagram
for Deal Cards use
case.

Dealer Player

Retrieve card

Deal card up

Retrieve card

Deal card up

Retrieve card

a card

a card

a card

a card

Card Pile

Deal card up

Deal card up

Retrieve card

24 0672321092 CH15 08/22/2001 2:57 PM Page 375

Modeling The Domain
Using the use cases as a basis for the domain model, you can isolate seven distinct
domain objects: BlackjackGame, Dealer, Player, Card, Deck, DeckPile, and Hand.
Figure 15.4 diagrams the resulting domain model.

Blackjack Design
By applying object-oriented design to the previous analysis, you will arrive at a model of
the main classes in the design, their responsibilities, and a definition of how they will
interact and get their information. You can then take the design and work on the
implementation.

CRC Cards
The domain model gives you a good starting point for an initial list of objects. With this
list of objects you can use CRC cards to flesh out the object’s various responsibilities and
collaborations.

376 Day 15

FIGURE 15.3
The sequence diagram
for Player Hits use
case.

Player Dealer

Request hit

Retrieve card

a card

Add card to hand

Card Pile

Before continuing it may be a good exercise to try and generate a list of
CRC cards on your own.

Note

24 0672321092 CH15 08/22/2001 2:57 PM Page 376

Learning to Combine Theory and Process 377

15

Figures 15.5 through 15.11 illustrates the possible output from a CRC card session.

FIGURE 15.4
The Blackjack domain
model.

Blackjack Game

Player

DealerHand

Card Deck

Deckpile

1 1

1

1

52 1

1

1

1...7

0...19

1

11

4

create players

create hands
create dealer

create Deckpile

start game

connect all of the players, dealer, and console together

Player

Blackjack

Hand
Dealer

Deck, Deckpile

Dealer

Console, Dealer, Player,
Deckpile

FIGURE 15.5
The Blackjack game
CRC card.

24 0672321092 CH15 08/22/2001 2:57 PM Page 377

378 Day 15

FIGURE 15.6
The Deck CRC card.

add itself to the Deckpile

construct 52 cards

Deckpile

Deck

Card

hold a suit

hold a rank
display itself

hold and toggle a face state: up or down

Suit

Card

Rank

Rank, Suit, Console

FIGURE 15.7
The Card CRC card.

24 0672321092 CH15 08/22/2001 2:57 PM Page 378

Learning to Combine Theory and Process 379

15
FIGURE 15.8
The Player CRC card.

hold a hand

add cards to hand
decide whether to hit or stand

inform dealer when done playing
update observers
display itself

detect busted hand

Hand

Player

Hand, Card

Hand

Hand

Dealer

Player Listener
Hand, Console

FIGURE 15.9
The Dealer CRC card.

hit a player

pass the turn to the next player/self
track players in game

start a new game
deal cards

decide whether to hit or stand
tell players when they can play

Player

Dealer inherits from Player

Players/self

Player

Player/self

Deckpile, Card, Player,
self

24 0672321092 CH15 08/22/2001 2:57 PM Page 379

The Command Line UI
Chapter 13, “OO and User Interface Programming,” presented the MVC design pattern.
The Blackjack game’s UI will utilize the MVC design pattern. As a result of this design
decision, you need to add an observer mechanism to the Player as well as a Console
object for displaying the players and retrieving user input.

Because there is only one Console, the Console object is a candidate for the Singleton
pattern.

380 Day 15

FIGURE 15.10
The Hand CRC card.

hold onto cards

add cards to itself
reset itself

turn all cards over
display itself
calculate its total

detect bust

Card

Hand

Card

Card

Card
Card, Rank

Card, Console

FIGURE 15.11
The Deckpile card.

accept cards to hold onto

shuffle the cards
deal cards up

deal cards down
reset itself

Card

Deckpile

Card

Card
Card

24 0672321092 CH15 08/22/2001 2:57 PM Page 380

Learning to Combine Theory and Process 381

15
The Blackjack Model
In all, nine classes and two interfaces make up the complete Blackjack class model.
Figure 15.12 illustrates the model.

FIGURE 15.12
The Blackjack class
model.

Hand

+ addCard (card:Card)
+ bust():boolean
+ total():int

PlayerListener

+ handChanged (player:Player)

Deck

+ addToStack (pile:Deckpile)

Player

+ addCard (card:Card)
+ play (dealer:Dealer)
+ addListener (I:PlayerListener)
hit():boolean Dealer

+ passTurn ()
+ hit (player:Player)

Deckpile

+ addCards (cards:Card [])
+ shuffle()
+ dealUp():Card
+ dealDown():Card

Card

+ getSuit():Suit
+ getRank():Rank
+ isFaceUp():boolean
+ setFaceUp (up:boolean)

Blackjack

Console

<<Interface>>

<<Interface>>

HumanPlayer

hit():boolean BlackjackDealer

hit():boolean
+ addPlayer (p:Player)
+ newGame()

<<Singleton>>

holds 1

1...7

1...7

holds 1

1

1

1 1

1

1

1

52

1

*

holds

1

deals from

*
creates/holds

The next section details the implementation of this model.

The Implementation
The following sections provide the implementation for the major parts of the model illus-
trated in Figure 15.12.

All source code is available for download from this book’s Web page. Visit
www.samspublishing.com, and search for ISBN number 0672321092; then,
click the Source Code link on the book’s page.

Note

24 0672321092 CH15 08/22/2001 2:57 PM Page 381

The Card

The Card is implemented much as the Card class presented in Chapter 12, “Advanced Design
Patterns”. Rank has changed a bit. Listing 15.1 presents the new implementation of Rank.

LISTING 15.1 Rank.java

import java.util.Collections;
import java.util.List;
import java.util.Arrays;

public final class Rank {

public static final Rank TWO = new Rank(2, “2”);
public static final Rank THREE = new Rank(3, “3”);
public static final Rank FOUR = new Rank(4, “4”);
public static final Rank FIVE = new Rank(5, “5”);
public static final Rank SIX = new Rank(6, “6”);
public static final Rank SEVEN = new Rank(7, “7”);
public static final Rank EIGHT = new Rank(8, “8”);
public static final Rank NINE = new Rank(9, “9”);
public static final Rank TEN = new Rank(10, “10”);
public static final Rank JACK = new Rank(10, “J”);
public static final Rank QUEEN = new Rank(10, “Q”);
public static final Rank KING = new Rank(10, “K”);
public static final Rank ACE = new Rank(11, “A”);

private static final Rank [] VALUES =
{ TWO, THREE, FOUR, FIVE, SIX, SEVEN,
EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE };

// provide an unmodifiable list to loop over
public static final List RANKS =

Collections.unmodifiableList(Arrays.asList(VALUES));

private final int rank;
private final String display;

private Rank(int rank, String display) {
this.rank = rank;
this.display = display;

}

public int getRank() {
return rank;

}

public String toString() {
return display;

}
}

382 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 382

Learning to Combine Theory and Process 383

15
You will notice that the Rank constants have been updated to reflect the numeric values
of Blackjack. The class has also been changed to hold onto a public unmodifiable List
instead of the modifiable array presented in Chapter 12. Using an unmodifiable List pre-
vents inadvertent modifications of the enumeration List.

The Deck and Deckpile

Deck has changed considerably from the one presented in Chapter 12. Listing 15.2 pre-
sents the new implementation.

LISTING 15.2 Deck.java

import java.util.Iterator;
import java.util.Random;

public class Deck {

private Card [] deck;
private int index;

public Deck() {
buildCards();

}

public void addToStack(Deckpile stack) {
stack.addCards(deck);

}

private void buildCards() {

deck = new Card[52];

Iterator suits = Suit.SUITS.iterator();

int counter = 0;
while(suits.hasNext()) {

Suit suit = (Suit) suits.next();
Iterator ranks = Rank.RANKS.iterator();
while(ranks.hasNext()) {

Rank rank = (Rank) ranks.next();
deck[counter] = new Card(suit, rank);
counter++;

}
}

}

}

24 0672321092 CH15 08/22/2001 2:57 PM Page 383

The Deck simply knows how to construct its Cards and then add itself to a Deckpile.
Listing 15.3 presents the Deckpile.

LISTING 15.3 Deckpile.java

import java.util.ArrayList;
import java.util.Iterator;
import java.util.Random;

public class Deckpile {

private ArrayList stack = new ArrayList();
private int index;
private Random rand = new Random();

public void addCards(Card [] cards) {
for(int i = 0; i < cards.length; i ++) {

stack.add(cards[i]);
}

}

public void shuffle() {
reset();
randomize();
randomize();
randomize();
randomize();

}

public Card dealUp() {
Card card = deal();
if(card != null) {

card.setFaceUp(true);
}
return card;

}

public Card dealDown() {
Card card = deal();
if(card != null) {

card.setFaceUp(false);
}
return card;

}

public void reset() {
index = 0;
Iterator i = stack.iterator();
while(i.hasNext()) {

Card card = (Card) i.next();
card.setFaceUp(false);

384 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 384

Learning to Combine Theory and Process 385

15
LISTING 15.3 continued

}
}

private Card deal() {
if(index != stack.size()) {

Card card = (Card) stack.get(index);
index++;
return card;

}
return null;

}

private void randomize() {
int num_cards = stack.size();
for(int i = 0; i < num_cards; i ++) {

int index = rand.nextInt(num_cards);
Card card_i = (Card) stack.get(i);
Card card_index = (Card) stack.get(index);
stack.set(i, card_index);
stack.set(index, card_i);

}
}

}

The Deckpile knows how to shuffle its Cards, deal its Cards, and add Cards to itself.
Unlike the original Deck the Deckpile maintains a reference to all of the Cards that it
returns. That way it can easily retrieve all Cards and reset itself. While this does not
completely model the real world, it simplifies card management greatly.

Understanding the rationale behind these changes is important. Both the Deck and
Deckpile only implement the behaviors that the game needs. These classes do not pro-
vide additional functionality “just in case we need it someday.” It’s impossible to tell the
future and you don’t have any requirements for extra functionality, so you should not add
it until you know that you need it.

If you try to implement every “what if” possibility or perform premature abstraction
you’ll never finish implementing your classes. If you do manage to finish them, chances
are good that the added functionality or abstraction is not correct. Plus you’ll only make
more work for yourself because you’ll have to maintain functionality that no one else
needs or uses.

Trying to program for every “what if” is a common problem encountered by program-
mers new to OO. You must avoid the temptation to add more functionality that absolutely
required to your objects! However, you should insulate those parts of the system that you
know will change.

24 0672321092 CH15 08/22/2001 2:57 PM Page 385

The Player and HumanPlayer

The Player class holds onto a Hand. Listing 15.4 presents the Hand class.

LISTING 15.4 Hand.java

import java.util.ArrayList;
import java.util.Iterator;

public class Hand {

private ArrayList cards = new ArrayList();
private static final int BLACKJACK = 21;

public void addCard(Card card) {
cards.add(card);

}

public boolean bust() {
if(total() > BLACKJACK) {

return true;
}
return false;

}

public void reset() {
cards.clear();

}

public void turnOver() {
Iterator i = cards.iterator();
while(i.hasNext()) {

Card card = (Card)i.next();
card.setFaceUp(true);

}
}

public String toString() {
Iterator i = cards.iterator();
String string = “”;
while(i.hasNext()) {

Card card = (Card)i.next();
string = string + “ “ + card.toString();

}
return string;

}

public int total() {
int total = 0;
Iterator i = cards.iterator();

386 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 386

Learning to Combine Theory and Process 387

15
LISTING 15.4 continued

while(i.hasNext()) {
Card card = (Card) i.next();
total += card.getRank().getRank();

}
return total;

}

}

The Hand knows how to add Cards to itself, reset itself, turn its cards over, calculate its
total, and represent itself as a String. You might notice that the Hand only counts aces as
11. The next iteration will add support for counting aces as 1 or 11.

Listing 15.5 and 15.6 present the Player and HumanPlayer respectively.

LISTING 15.5 Player.java

import java.util.ArrayList;
import java.util.Iterator;

public abstract class Player {

private Hand hand;
private String name;
private ArrayList listeners = new ArrayList();

public Player(String name, Hand hand) {
this.name = name;
this.hand = hand;

}

public void addCard(Card card) {
hand.addCard(card);
notifyListeners();

}

public void play(Dealer dealer) {
// as before, play until the player either busts or stays
while(!isBusted() && hit()) {

dealer.hit(this);
}
// but now, tell the dealer that the player is done, otherwise nothing
// will happen when the player returns
stopPlay(dealer);

}

public void reset() {

24 0672321092 CH15 08/22/2001 2:57 PM Page 387

LISTING 15.5 continued

hand.reset();
}

public boolean isBusted() {
return hand.bust();

}

public void addListener(PlayerListener l) {
listeners.add(l);

}

public String toString() {
return (name + “: “ + hand.toString());

}

protected Hand getHand() {
return hand;

}

protected void notifyListeners() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.handChanged(this);

}
}

/**
* The call to passTurn MUST be inside of a protected method. The Dealer
* needs to override this behavior! Otherwise it will loop forever.
*/
protected void stopPlay(Dealer dealer) {

dealer.passTurn();
}

protected abstract boolean hit();

}

LISTING 15.6 HumanPlayer.java

public class HumanPlayer extends Player {

private final static String HIT = “H”;
private final static String STAND = “S”;
private final static String MSG = “[H]it or [S]tay”;
private final static String DEFAULT = “invalid”;

388 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 388

Learning to Combine Theory and Process 389

15
LISTING 15.6 continued

public HumanPlayer(String name, Hand hand) {
super(name, hand);

}

protected boolean hit() {
while(true) {

Console.INSTANCE.printMessage(MSG);
String response = Console.INSTANCE.readInput(DEFAULT);
if(response.equalsIgnoreCase(HIT)) {

return true;
} else if(response.equalsIgnoreCase(STAND)) {

return false;
}
// if we get here loop until we get meaningful input

}
}

}

The Player abstract class defines all of those behaviors and attributes common to both
Players and Dealers. These behaviors include manipulating the Hand, tracking
PlayerListeners, and playing a turn.

Player defines one abstract method: public boolean hit(). While playing, the Player
base class will make a call to this method to determine whether to hit or to stand.
Subclasses can implement this method to provide their own specific behaviors. For
example, the HumanPlayer asks the user whether or not to hit or stand. When the Player
is done playing it informs the Dealer by calling the Dealer’s passTurn() method. When
the Player calls this method, the Dealer tells the next Player to play.

The Dealer
Dealer is an interface that specifies the extra methods that a Dealer will expose. Listing
15.7 presents the Dealer interface.

LISTING 15.7 Dealer.java

public interface Dealer {

public void hit(Player player);

public void passTurn();
}

Listing 15.8 presents the BlackjackDealer.

24 0672321092 CH15 08/22/2001 2:57 PM Page 389

LISTING 15.8 BlackjackDealer.java

import java.util.ArrayList;
import java.util.Iterator;

public class BlackjackDealer extends Player implements Dealer {

private Deckpile cards;
private ArrayList players = new ArrayList();
private int player_index;

public BlackjackDealer(String name, Hand hand, Deckpile cards) {
super(name, hand);
this.cards = cards;

}

public void passTurn() {
if(player_index != players.size()) {

Player player = (Player) players.get(player_index);
player_index++;
player.play(this);

} else {
this.play(this);

}
}

public void addPlayer(Player player) {
players.add(player);

}

public void hit(Player player) {
player.addCard(cards.dealUp());

}

// override so that the dealer shows his cards before he starts play
public void play(Dealer dealer) {

exposeCards();
super.play(dealer);

}

public void newGame() {
// deal the cards and tell the first player to go
deal();
passTurn();

}

public void deal() {

cards.shuffle();

390 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 390

Learning to Combine Theory and Process 391

15
LISTING 15.8 continued

// reset each player and deal 1 card up to each and self
Player [] player = new Player[players.size()];
players.toArray(player);
for(int i = 0; i < player.length; i ++) {

player[i].reset();
player[i].addCard(cards.dealUp());

}
this.addCard(cards.dealUp());

// deal 1 more up card to each player and one down to self
for(int i = 0; i < player.length; i ++) {

player[i].addCard(cards.dealUp());
}
this.addCard(cards.dealDown());

}

protected void stopPlay(Dealer dealer) {
// do nothing here in the dealer, simply let the game stop
// if this were not overridden it would call passTurn() and
// loop forever

}

protected boolean hit() {
if(getHand().total() <= 16) {

return true;
}
return false;

}

private void exposeCards() {
getHand().turnOver();
notifyListeners();

}

}

BlackjackDealer inherits from Player because a Dealer is also a Player. In addition to
the behaviors provided by a Player, the dealer also holds onto the Player, deals cards
to those Players, and tells each Player to play when its turn starts. When a Player calls
the Dealer’s passTurn() method, it knows to let the next Player play.

Figure 15.13 illustrates the interaction between the dealer and the players.

24 0672321092 CH15 08/22/2001 2:57 PM Page 391

The BlackjackDealer overrides its stopPlay() method so that it terminates play. The
dealer also implements the hit() method so that it returns true when the hand is less
than 17, and true when the hand is equal to or greater than 17.

The BlackjackGame

Listing 15.9 and 15.10 presents the Blackjack game and Console classes respectively.

LISTING 15.9 Blackjack.java

public class Blackjack {

public static void main(String [] args) {

Deckpile cards = new Deckpile();
for(int i = 0; i < 4; i ++) {

cards.shuffle();
Deck deck = new Deck();
deck.addToStack(cards);

392 Day 15

FIGURE 15.13
The interaction
between players and
the dealer.

Blackjack Dealer Player Player

addCard (card)

play (dealer)

hit (player)

hit()

stopPlay()

passTurn()

play (dealer)

While
! busted and

hit()

24 0672321092 CH15 08/22/2001 2:57 PM Page 392

Learning to Combine Theory and Process 393

15
LISTING 15.9 continued

cards.shuffle();
}

Hand dealer_hand = new Hand();
BlackjackDealer dealer = new BlackjackDealer(“Dealer”, dealer_hand,

cards);
Hand human_hand = new Hand();
Player player = new HumanPlayer(“Human”, human_hand);
dealer.addListener(Console.INSTANCE);
player.addListener(Console.INSTANCE);
dealer.addPlayer(player);

dealer.newGame();
}

}

LISTING 15.10 Console.java

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class Console implements PlayerListener {

// console singleton
public final static Console INSTANCE = new Console();

private BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));

public void printMessage(String message) {
System.out.println(message);

}

public String readInput(String default_input) {
String response;
try {

return in.readLine();
} catch (IOException ioe) {

return default_input;
}

}

public void handChanged(Player player) {
printMessage(player.toString());

}

24 0672321092 CH15 08/22/2001 2:57 PM Page 393

LISTING 15.10 continued

// private to prevent instantiation
private Console() {}

}

The Blackjack game constructs the Dealer, Hands, Deckpile, Decks, and connects them
all together. Once connected, it starts the game by telling the Dealer to start a new game.

The Console is a singleton that provides access to the command line. It also listens to the
Players and then prints them to the screen each time they are updated.

A Procedural Pitfall
If you come from a procedural background it could be tempting to implement the
BlackjackDealer’s newGame() method as illustrated in Listing 15.11.

LISTING 15.11 A Procedural Implementation of BlackjackDealer

public void newGame() {

cards.shuffle();

// reset each player and deal 1 card up to each and self
Player [] player = new Player[players.size()];
players.toArray(player);
for(int i = 0; i < player.length; i ++) {

player[i].reset();
player[i].addCard(cards.dealUp());

}
this.addCard(cards.dealUp());

// deal 1 more up card to each player and one down to self
for(int i = 0; i < player.length; i ++) {

player[i].addCard(cards.dealUp());
}
this.addCard(cards.dealDown());

// have each player play and then dealer
for(int i = 0; i < player.length; i ++) {

player[i].play(this);
}
exposeCards();
this.play(this);

}

394 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 394

Learning to Combine Theory and Process 395

15
This implementation removes the need for the passTurn() method; however, this is a
procedural approach to the game loop. Instead of Player objects communicating to the
Dealer that they are done playing, the Dealer simply loops sequentially through the
Players.

Figure 15.14 illustrates the interaction between the Dealer and its Players.

FIGURE 15.14
The procedural inter-
action between players
and the dealer.

Dealer Player Player

addCard (card)

play (dealer)

hit (player)

hit()

hit()
hit (player)

addCard (card)

play (dealer)

play (dealer)

loopuntil
bust or
stand

…

You will notice that the interactions in Figure 15.13 are much more dynamic than the
interactions taking place in Figure 15.14. Figure 15.13 is truly a system of interacting
objects. In 15.14 the Dealer simply waits for the Player to return and then sequentially
calls the next Player. There is no interaction beyond the Dealer statically telling each
Player to play in turn. While this approach does work, it is not very flexible and it is
certainly not as object-oriented as the approach presented in 15.13.

Testing
As Chapter 14, “Building Reliable Software Through Testing,” showed testing should be
an ongoing process. A complete set of tests is available along with the source code for

24 0672321092 CH15 08/22/2001 2:57 PM Page 395

download. These tests consist of a set of unit tests and mock objects that thoroughly test
the Blackjack system. Studying the tests is left as an important exercise to the reader.

Summary
Today you analyzed, designed, and implemented a basic game of Blackjack. By using an
iterative approach you were able to gain results that you could see quickly. Over the
course of the week, you will continue to add functionality to this Blackjack game.

You also learned a few new lessons today. When programming, you need to avoid falling
into procedural traps even though a procedural approach may seem like the natural solu-
tion. You must also learn to avoid the temptation of adding more to a class definition
than you need.

Q&A
Q If testing is so important, why did you skip it?

A I did not skip testing at all. All downloadable sources are packed full of test cases.

The text did skip the discussion of testing for space and efficiency constraints. I
don’t think that you would have appreciated it if you were forced to read through
countless pages of test code. Studying and understanding the test code (and all
code really) is left as an exercise to the reader.

Q There seems to be a lot more code than the code published in the chapter—
what’s up with that?

A There is a lot more code. It’s simply not possible to cover all of the code effective-
ly within the text. Think of the text as the “highlights film” of the code. You will
need to expend a considerable amount of personal study to fully understand the
code.

The purpose of these final chapters is to present an overall project of which code is
only one component. Analysis and design are equally as important. You will need
to spend extra time within that framework studying the code, if you want to fully
understand it.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

396 Day 15

24 0672321092 CH15 08/22/2001 2:57 PM Page 396

Learning to Combine Theory and Process 397

15
Quiz

1. List two of the design patterns that you saw today. Where were the patterns used?

2. Find one example of polymorphism from the source.

3. Find one example of inheritance from the source.

4. How does the Deck encapsulate its cards?

5. How do both the BlackjackDealer and HumanPlayer act polymorphically?

Exercises
1. Download the source code for today’s iteration. After you have the code, compile

it, run it by executing Blackjack, and then try to understand how it works. Gaining
a full understanding of the code will take some time and patience.

2. Today lesson was rather long. There are no other exercises. Be sure to review the
source and lesson.

24 0672321092 CH15 08/22/2001 2:57 PM Page 397

24 0672321092 CH15 08/22/2001 2:57 PM Page 398

DAY 16

WEEK 3

Blackjack Iteration 2:
Adding Rules

Yesterday you performed the initial analysis and design of a Blackjack game.
Today you will continue that process and add additional rules to the Blackjack
game.

Today you will learn how to

• Model the Blackjack game states

• Use states to remove conditional logic

Blackjack Rules
Yesterday you built a simple Blackjack game. The game that you designed and
built dealt cards and allowed a player to play until he either stood or busted. A
real Blackjack game will do a bit more. In a real Blackjack game, aces are
worth 1 or 11 points. Players can get blackjack, bust, standoff, lose, or win. A
dealer won’t even play if all of the players bust or he is dealt a blackjack hand.

25 0672321092 CH16 08/22/2001 2:51 PM Page 399

Today you will add the necessary logic to support these and other additional game fea-
tures. As always, you will begin by analyzing the use cases.

Rules Analysis
To fully understand all of the rules of Blackjack, you’ll need to revisit each of yester-
day’s use cases and add any required new use cases. Once the use cases are fleshed out,
you’ll need to update the domain model.

Blackjack Rules Use Case Analysis
The addition of rules affects many of the use cases fleshed out yesterday. There is also
one new use case: Dealer Fulfills Game. Let’s begin with the Deal Cards use case that
you discovered yesterday:

Beginning with the first player, the dealer deals one card face up to each player,
finishing with himself. The dealer then repeats this process but deals his own card
face down. Dealing ends and then play commences once the dealer has dealt each
player, including himself, two cards.

• Deal cards

1. Dealer deals one card face up to every player including himself

2. Dealer deals a second card face up to all non-dealer players

3. Dealer deals a card face down to himself

• Preconditions

• New game

• Post conditions

• All players and the dealer have a hand with two cards

• The turn of the first player who does not have blackjack (two cards totaling
21) begins

• Play continues for each player who does not have blackjack

• Alternative: Dealer has blackjack

If the dealer has a natural 21 or blackjack, the game moves to fulfillment. The
players do not get to take a turn.

The Deal Cards use case now adds a number of new post conditions as well as an alter-
native. What is important to note is that if the dealer has blackjack the game automatical-
ly ends. Likewise, any player with blackjack does not play.

Next, revisit Player Hits:

400 Day 16

25 0672321092 CH16 08/22/2001 2:51 PM Page 400

Blackjack Iteration 2: Adding Rules 401

16

The player decides he is not satisfied with his hand. The player has not yet busted so the
player decides to hit. If the player does not bust he can choose to either hit again or
stand. If the player does bust, play transfers to the next player.

• Player hits

1. Player decides he is not satisfied with his hand

2. The player requests another card from the dealer

3. The player can decide to hit again or stand if his hand totals less than or
equal to 21

• Preconditions

• Player has a hand whose total value is less than or equal to 21

• Player does not have blackjack

• Dealer does not have blackjack

• Post conditions

• A new card is added to the player’s hand

• Alternative: Player busts

New card causes player’s hand to be greater than 21. Player busts (loses); next
player’s/dealer’s turn begins

• Alternative: Player’s hand > 21, but player has an ace

New card causes player’s hand to be greater than 21. Player has an ace. Value of
the ace changes from 11 to one, bringing the player’s hand to less than or equal to
21. The player can decide to hit again or stand.

Of note is the fact that a player can only play if he or the dealer does not have blackjack.
This use case also introduces the fact that an ace can have a value of 1 or 11, depending
on which makes the hand better.

Player stands also gets some additional preconditions.

The player decides he is satisfied with his hand and stands.

• Player stands

1. Player decides he is happy with his hand and stands

• Preconditions

• Player has a hand whose value is less than or equal to 21

• Player does not have blackjack

• Dealer does not have blackjack

25 0672321092 CH16 08/22/2001 2:51 PM Page 401

• Post conditions

• Player’s turn ends

Like Player Hits, you’ll need to update Dealer Hits:

• The dealer must hit if his hand’s total is < less than 17. If the dealer does not bust
after the hit and his hand’s total is still less than< 17 he must hit again. The dealer
must stand on any total >= greater than or equal to 17. When the dealer busts or
stands, play terminates.

• Dealer hits

1. The dealer hits if his hand less than 17

2. New card added to dealer’s hand

3. Total is less than 17, dealer must hit again

• Preconditions

• Dealer has a hand whose total is less than 17

• Must be a player in the standing state

• Post conditions

• New card in dealer’s hand

• Play ends

• Alternative: Dealer busts

New card causes dealer’s hand greater than 21; dealer busts

• Alternative: Dealer stands

New card causes dealer’s hand to be greater than or equal to 17; dealer stands

• Alternative: Dealer has ace, stands

New card causes dealer’s hand to be greater than or equal to 21, but includes an
ace. The value of the ace changes from 11 to 1 bringing the dealer’s total to 17;
dealer stands.

• Alternative: Dealer has ace, hits

New card causes dealer’s hand to be greater than or equal to 21, but includes an
ace. The value of the ace changes from 11 to 1 bringing the dealer’s total to less
than 17; dealer hits.

This use case adds a number of preconditions and variants. The precondition, “Must be a
player in the standing state,” signifies that a dealer will only hit if there is a player to
beat. If no player is standing, that means that all of the players are either busted or have

402 Day 16

25 0672321092 CH16 08/22/2001 2:51 PM Page 402

Blackjack Iteration 2: Adding Rules 403

16

blackjack. In addition, the new alternatives take the fact that an ace can be counted as a 1
or an 11.

Likewise, a dealer will automatically stand if there are no other standing players.

The dealer has a hand total greater than or equal to >= 17 and stands.

• Dealer stands

1. Dealer’s hand has a total greater than or equal to 17 and stands

• Preconditions

• Dealer’s hand greater than or equal to 17

• Must be a player in the standing state

• Post conditions

• Play ends

• Alternative: No standing players

If there are no standing players the dealer will automatically stand regardless of
hand count

When the game is done the dealer needs to figure out who has won, lost, and standoffs.
The Dealer Fulfills Game use case handles that use:

After all playing in done, the dealer checks each hand and determines for each player
if they win or lose or if the game is a standoff.

• Dealer fulfills game

1. Dealer checks the first player’s hand and compares it with his own

2. The player’s hand is greater than the dealer, but not busted; the player wins

3. The dealer repeats this comparison for all players

• Preconditions

• Each player has passed their turns

• The dealer has passed his turn

• Post conditions

• Player’s final results determined

• Alternative: Player loses

• Dealer checks the player’s hand and compares it with his own. The player’s
hand is less than the dealer’s. The player loses.

25 0672321092 CH16 08/22/2001 2:51 PM Page 403

• Alternative: Standoff

• Dealer checks the player’s hand and compares it with his own. The player’s
hand is equal to the dealer’s. The game is a standoff.

• Alternative: Dealer busts

• If the dealer is busted, every standing and blackjack player wins. All others
lose.

Modeling the Use Cases
Most of the changes to the use cases are straightforward. It may be helpful to draw the
sequence of events for the Dealer Fulfills Game, however. Figure 16.1 illustrates the
sequence of events found in the Dealer Fulfills Game use case.

404 Day 16

FIGURE 16.1
The sequence diagram
for Dealer Fulfills
Game use case.

Dealer Player

Request hand

Request hand

hand

hand

Inform player of outcome

Compare hands

Inform player of outcome

Compare hands

Player

Updating the Blackjack Domain Model
From a domain perspective these new and updated use cases do not change the domain.

Rules Design
At this point it can be extremely tempting to go directly into implementation. On the sur-
face, it seems as if you can implement the rules through conditionals. In fact, you can
implement the rules through conditionals. Listing 16.1 presents what one of those condi-
tionals might look like.

25 0672321092 CH16 08/22/2001 2:51 PM Page 404

Blackjack Iteration 2: Adding Rules 405

16

LISTING 16.1 Conditional Rules Inside the BlackjackDealer

protected void stopPlay(Dealer dealer) {
// the game is over, pick the winners and point out the losers
if(isBusted()) {

Iterator i = players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
if(!player.isBusted()) {

Console.INSTANCE.printMessage(player.toString() + “ WINNER!”);
}

}
} else {

if(hasBlackjack()) {
Iterator i = players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
if(player.hasBlackjack()) {

Console.INSTANCE.printMessage(player.toString() +
“ STANDOFF!”);

} else {
Console.INSTANCE.printMessage(player.toString() +

“ LOSER!”);
}

}
} else { // deal is not busted and does not have blackjack

Iterator i = players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
if(player.hasBlackjack()) {

Console.INSTANCE.printMessage(player.toString() +
“ WINNER WITH BLACKJACK!”);

} else if(player.isBusted()) {
Console.INSTANCE.printMessage(player.toString() +

“ BUSTED!”);
} else if(player.getHand().greaterThan(getHand())){

Console.INSTANCE.printMessage(player.toString() +
“ WINNER!”);

} else if(player.getHand().equalTo(getHand())) {
Console.INSTANCE.printMessage(player.toString() +

“ STANDOFF!”);
} else {

Console.INSTANCE.printMessage(player.toString() +
“ LOSER!”);

}
}

}
}

}

25 0672321092 CH16 08/22/2001 2:51 PM Page 405

Of course, this conditional only deals with fulfilling the game. The dealer will need
many more conditionals to know whether or not to start play after the deal, and whether
or not to let a player play. For example, if a dealer has blackjack hand, play should auto-
matically end. You will need a conditional for that and all other branches of play.

Such an approach is fragile, difficult to maintain, error prone, and simply ugly. When
dealing with conditionals you will often find that the addition of a new conditional caus-
es an old behavior to fail. It is also extremely difficult to understand code that is packed
with conditionals. Good luck to anyone who has to maintain such a conditional mess.

Conditionals are not particularly object-oriented. The improper use of conditionals
breaks down the proper divisions of responsibility that are so key to OOP. When using
conditionals the dealer devolves into a procedural function that checks a flag on the play-
er, makes a decision, and then tells the player what to do. OO does not work that way!
Conditionals do have their uses; however, they should never extract responsibilities from
an object.

Instead, the knowledge of whether a player busted or was dealt blackjack should be con-
tained within the Player object itself; then, when one of those events does occur, the
Player object can take the proper action and inform the BlackjackDealer, if appropri-
ate. Instead of the dealer instructing the players in what to do, the players should use
their own internal states to make those decisions. Such an approach more closely models
the real-world Blackjack game anyway.

The first step to getting rid of conditionals is the realization that events and states drive
the game of Blackjack. Throughout a game of Blackjack, the various players move
through states. At one point the player is waiting; then he is playing. After playing the
player either moves into a standing or busted state. Likewise, the dealer moves from
dealing, to waiting for his turn, to playing, and finally to standing or busted.

There are also alternative state transitions. After being dealt his cards, the dealer or play-
er may automatically transition to the blackjack state if he is dealt a blackjack hand.

To gain a full understanding of the various states as well as the events that move the
player from state to state, it helps to model the various states through a state diagram.

State Diagrams
The UML defines a rich set of notations for modeling state diagrams. Instead of getting
lost in the details, we’ll only use those aspects necessary for modeling the Blackjack
game.

For the purposes of Blackjack modeling, there are states, transitions, events, activities,
and conditions.

406 Day 16

25 0672321092 CH16 08/22/2001 2:51 PM Page 406

Blackjack Iteration 2: Adding Rules 407

16

In Blackjack a state is the current playing condition for a player. Such conditions include
waiting, playing, busted, standing, and blackjack, among others.

Transitions occur when a player moves among its states. For example a player transitions
from the playing state to the busted state when he busts.

Events are one type of stimulus that can cause a player to transition among its states. For
example, when the player’s hand busts, the player will move from the playing to busted
state.

Activities are those actions taken when in a state. For example, when playing in the play-
ing state a player will choose to hit until he either decides to stand or busts.

Guard Conditions are a boolean expression that place some kind of constraint on a transi-
tion. For example, a player will move to standing if he decides not to hit.

Figure 16.2 presents the notation that you will use to model the Blackjack states.

FIGURE 16.2
The state diagram
notation.

[condition]
State

activity

event [condition]

event [condition]

State State

In the model, transitions are symbolized through arrows. Transitions can occur as a result
of an event or a condition (or a combination of the two). The event and condition should
appear on the transition arrow so that it is obvious why the transition occurs.

You’ll also notice that a transition can transition right back to the current state. Such a
transition is known as a self transition.

Finally, if the object takes a certain action when in the state, the action is recorded as an
activity inside of the state symbol. It is completely valid for a state to lack an activity.

Modeling the Player States
Figure 16.3 presents the player state diagram.

The player has five main states: Waiting, Blackjack, Playing, Standing, and Busted. The
player begins in the Waiting state. After the deal the player either moves into the
Blackjack or Playing state, depending upon the hand he is dealt.

25 0672321092 CH16 08/22/2001 2:51 PM Page 407

When it is his turn to play, the player plays (the activity of the Playing state). While play-
ing the player decides to either hit or stay. If the player decides to stay, he transitions into
the Standing state. If the player hits, he transitions to the Busted state if his hand busts,
or goes back to the Playing state if the hand remains playable. This continues until the
player either busts or stands.

Modeling the Dealer States
Figure 16.4 presents the dealer state diagram.

The dealer has six main states: Dealing, Waiting, Blackjack, Playing, Standing, and
Busted. The dealer begins in the Dealing state and deals cards to each player and him-
self. After the deal the dealer either moves into the Blackjack or Waiting state, depending
upon the hand he is dealt.

While in the Waiting state the dealer waits for all players to finish their turns. When all
players have finished, the dealer transitions to the Playing state and begins his turn.

Like the player the dealer decides whether to hit or to stay in the Playing state. Unlike
the players, however, the dealer is constrained to hit when his hand is less than 17 and
stand when his hand is greater than or equal to 17.

Like the player if the dealer hits and busts, he automatically transitions into the Busted
state. If the dealer decides to stand, he moves into the Standing state.

408 Day 16

FIGURE 16.3
The player state
diagram.

[!hit()]

Blackjack

inform dealer

Standing

inform dealer

Busted

inform dealer

hand is blackjack [hand == 21]

Playing

hit or stand

hand is playable
[hand <= 21]

[hand is playable [hand < 21]

hand is busted
[hand > 21]

Waiting

25 0672321092 CH16 08/22/2001 2:51 PM Page 408

Blackjack Iteration 2: Adding Rules 409

16

Of note are the activities in the Blackjack, Busted, and Standing states. While in these
states, the dealer fulfills the game and ends play.

The Updated Blackjack Model
When the game states are modeled and fully understood, you need to decide how to fit
them into the design. Start by turning each game state into its own class. Next, you’ll
need to figure out what generates the events.

This use of the term state fits with the original definition presented earlier. Here you just
base an object around each state that the Player may have at a given time. This frees you
from having to have many different internal variables. Instead, the state object nicely
encapsulates all of those different values inside one object that has both state and
behavior.

You’ll quickly realize that all events revolve around the hand’s state. So you should prob-
ably let the Hand generate and send these events as Cards are added to the Hand. You’ll
also need to establish a mechanism for the states to receive events from the Hand.

States themselves are fairly simple and have three responsibilities. States are responsible for

• Performing any activities

• Listening for and responding to events

• Knowing what state to transition to in response to an event or condition

Figure 16.5 illustrates the class diagram for the State interface.

Standing

fulfill

Busted

fulfill

[hand > 16 < 22]

Dealing

for each player/deal

Blackjack

fulfill

hand is blackjack [hand == 21]

Waiting

for each player/tell to play

Playing

hit or stand

[no waiting players]

[waiting players] hand is playable
[hand < 17]

[hand is playable [hand < 21]

hand is busted
[hand > 21]

FIGURE 16.4
The dealer state
diagram.

25 0672321092 CH16 08/22/2001 2:51 PM Page 409

You’ll note that each event has a corresponding method on the state. The Hand will call
one of these methods depending on what state the Hand would like to report. The State
also adds an execute() method. This method is called when the State should perform
its actions.

Figure 16.6 models the relationships between the Player, Hand, and States.

410 Day 16

HandListener

+ handPlayable ()
+ handBlackjack ()
+ handBusted ()
+ handChanged ()

PlayerState

+ execute (d : Dealer)

FIGURE 16.5
The State class
diagram.

FIGURE 16.6
The State framework
class diagram.

Player

ImplClass

Hand

+ setHolder (l : HandListener)
+ addCard (c : Card)
+ isEqual (h : Hand) : boolean
+ isGreaterThan (h : Hand) : boolean
+ total () : int
+ isBlackjack () : boolean

HandListener

+ handPlayable ()
+ handBlackjack ()
+ handBusted ()
+ handChanged ()

PlayerState

+ execute (d : Dealer)

1 1

1

1

1

1
listens to

holds

The Player holds onto a State object. When it is the Player’s turn to do something, the Player will
simply execute the State’s execute() method. The State will then perform any activities, listen to the

25 0672321092 CH16 08/22/2001 2:51 PM Page 410

Blackjack Iteration 2: Adding Rules 411

16

Hand, and transition to the next State as appropriate. Once transitioned, the next State
will perform any activities, listen to the Hand, and transition as appropriate. This pattern
will repeat itself until the game is over.

Figure 16.7 illustrates the complete class diagram for the Blackjack card game.

e

FIGURE 16.7
The complete
Blackjack class
diagram.

Blackjack

Hand

+ setHolder (l : HandListener)
+ addCard (c : Card)
+ isEqual (h : Hand) : boolean
+ isGreaterThan (h : Hand) : boolean
+ total () : int
+ isBlackjack () : boolean

HandListener

+ handPlayable ()
+ handBlackjack ()
+ handBusted ()
+ handChanged ()

PlayerState

+ execute (d : Dealer)

1

1

1

1

1

1 1

1…7holds

1

1

1

listens to

deals from

Player

+ win ()
+ lose ()
+ standoff ()
+ blackjack ()
+ play (d : Dealer)
+ addCard (c : Card)
+ addListener (l : PlayerListener)
hit() : boolean

HumanPlayer

+ hit () : boolean

Dealer

+ hit (p : Player)
+ blackjack (p : Player)
+ busted (p : Player)
+ standing (p : Player)

PlayerListener

+ playerChanged (p : Player)
+ playerBusted (p : Player)
+ playerBlackjack (p : Player)
+ playerStanding (p : Player)
+ playerWon (p : Player)
+ playerLost (p : Player)
+ playerStandoff (p : Player)

BlackjackDealer

+ addPlayer (p : Player)
+ newGame ()
hit () : boolean

1

1

1

52

Deckpile

+ addCards (c : Card[])
+ shuffle ()
+ dealUp () : Card
+ dealDown () : Card

Card

+ getSuit () : Suit
+ getRank () : Rank
+ isFaceUp () : boolean
+ setFaceUp (up : boolean)

Deck

+ addToStack (pile : Deckpile)

ImplClass

Console

«interface»

«interface»

«singleton» *
listens to

*

25 0672321092 CH16 08/22/2001 2:52 PM Page 411

While the addition of a State framework is the major change taken during this iteration,
other interfaces and classes have been updated to be able to support the reporting and
display of the new game conditions.

Rules Implementation
To support the new game features, changes are required in the Player, Dealer,
BlackjackDealer, and Hand classes. A number of new classes and interfaces need to be
added, as well. The following sections will review every major change.

Changes to Hand
To support the new game features, a Hand must report its state to a listener. Listing 16.2
presents the new HandListener interface.

LISTING 16.2 HandListener.java

public interface HandListener {

public void handPlayable();

public void handBlackjack();

public void handBusted();

public void handChanged();

}

Listing 16.3 presents the updated Hand class.

LISTING 16.3 Hand.java

import java.util.ArrayList;
import java.util.Iterator;

public class Hand {

private ArrayList cards = new ArrayList();
private static final int BLACKJACK = 21;
private HandListener holder;
private int number_aces;

public Hand() {
// set the holder to a blank listener so it will not be null if not
// externally set
setHolder(

new HandListener() {

412 Day 16

25 0672321092 CH16 08/22/2001 2:52 PM Page 412

Blackjack Iteration 2: Adding Rules 413

16

LISTING 16.3 continued

public void handPlayable() {}
public void handBlackjack() {}
public void handBusted() {}
public void handChanged() {}

}
);

}

public void setHolder(HandListener holder) {
this.holder = holder;

}

public Iterator getCards() {
return cards.iterator();

}

public void addCard(Card card) {
cards.add(card);

holder.handChanged();

if(card.getRank() == Rank.ACE) {
number_aces++;

}

if(bust()) {
holder.handBusted();
return;

}
if(blackjack()) {

holder.handBlackjack();
return;

}
if (cards.size() >= 2){

holder.handPlayable();
return;

}
}

public boolean isEqual(Hand hand) {
if(hand.total() == this.total()) {

return true;
}
return false;

}

public boolean isGreaterThan(Hand hand) {
return this.total() > hand.total();

25 0672321092 CH16 08/22/2001 2:52 PM Page 413

LISTING 16.3 continued

}

public boolean blackjack() {
if(cards.size() == 2 && total() == BLACKJACK) {

return true;
}
return false;

}

public void reset() {
cards.clear();
number_aces = 0;

}

public void turnOver() {
Iterator i = cards.iterator();
while(i.hasNext()) {

Card card = (Card)i.next();
card.setFaceUp(true);

}
}

public String toString() {
Iterator i = cards.iterator();
String string = “”;
while(i.hasNext()) {

Card card = (Card)i.next();
string = string + “ “ + card.toString();

}
return string;

}

public int total() {
int total = 0;
Iterator i = cards.iterator();
while(i.hasNext()) {

Card card = (Card) i.next();
total += card.getRank().getRank();

}
int temp_aces = number_aces;
while(total > BLACKJACK && temp_aces > 0) {

total = total - 10;
temp_aces--;

}
return total;

}

private boolean bust() {

414 Day 16

25 0672321092 CH16 08/22/2001 2:52 PM Page 414

Blackjack Iteration 2: Adding Rules 415

16

LISTING 16.3 continued

if(total() > BLACKJACK) {
return true;

}
return false;

}

}

Changes to the Hand’s total() method now makes it possible for an ace to have either a
value of 1 or 11. Likewise, changes to the addCard() method now allow the Hand to
inform its listener of changes to the Hand contents as they happen.

Finally, the addition of isEqual() and isGreaterThan() methods allow for the easy,
encapsulated comparison of Hands.

Changes to Player
The biggest change to the Player hierarchy revolves around the addition of States.
Listing 16.4 presents the new PlayerState interface.

LISTING 16.4 PlayerState.java

public interface PlayerState extends HandListener {
public void execute(Dealer dealer);

}

PlayerState inherits from HandListener and adds an execute() method. A
PlayerState implementation will implement PlayerState, respond appropriately to any
of the HandListener events, and execute its activities within execute().

The Player maintains a reference to its current state through the variable
current_state. The play() method has been changed to simply execute the current
state:

public void play(Dealer dealer) {
current_state.execute(dealer);

}

Instead of defining some behavior inside of the play() method, the Player simply dele-
gates to its state. That way you can provide new behavior by simply swapping in differ-
ent state objects. Swapping in different states is a much more elegant solution than
switching through a list of conditional logic.

25 0672321092 CH16 08/22/2001 2:52 PM Page 415

Listings 16.5 through 16.9 present the default Player PlayerState implementations.
These states directly implement the state models from the previous section.

LISTING 16.5 The Default Waiting State

private class Waiting implements PlayerState {
public void handChanged() {

notifyChanged();
}
public void handPlayable() {

setCurrentState(getPlayingState());
// transition

}
public void handBlackjack() {

setCurrentState(getBlackjackState());
notifyBlackjack();
// transition

}
public void handBusted() {

// not possible in waiting state
}
public void execute(Dealer dealer) {

// do nothing while waiting
}

}

LISTING 16.6 The Default Busted State

private class Busted implements PlayerState {
public void handChanged() {

// not possible in busted state
}
public void handPlayable() {

// not possible in busted state
}
public void handBlackjack() {

// not possible in busted state
}
public void handBusted() {

// not possible in busted state
}
public void execute(Dealer dealer) {

dealer.busted(Player.this);
// terminate

}
}

416 Day 16

25 0672321092 CH16 08/22/2001 2:52 PM Page 416

Blackjack Iteration 2: Adding Rules 417

16

LISTING 16.7 The Default Blackjack State

private class Blackjack implements PlayerState {
public void handChanged() {

// not possible in blackjack state
}
public void handPlayable() {

// not possible in blackjack state
}
public void handBlackjack() {

// not possible in blackjack state
}
public void handBusted() {

// not possible in blackjack state
}
public void execute(Dealer dealer) {

dealer.blackjack(Player.this);
// terminate

}
}

LISTING 16.8 The Default Standing State

private class Standing implements PlayerState {
public void handChanged() {

// not possible in standing state
}
public void handPlayable() {

// not possible in standing state
}
public void handBlackjack() {

// not possible in standing state
}
public void handBusted() {

// not possible in standing state
}
public void execute(Dealer dealer) {

dealer.standing(Player.this);
// terminate

}
}

LISTING 16.9 The Default Playing State

private class Playing implements PlayerState {
public void handChanged() {

notifyChanged();
}

25 0672321092 CH16 08/22/2001 2:52 PM Page 417

LISTING 16.9 continued

public void handPlayable() {
// can ignore in playing state

}
public void handBlackjack() {

// not possible in playing state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

if(hit()) {
dealer.hit(Player.this);

} else {
setCurrentState(getStandingState());
notifyStanding();

}
current_state.execute(dealer);
// transition

}
}

All of these states are implemented as Player inner classes because they are, in essence,
extensions of the Player class. As inner classes, these states have full access to all meth-
ods and variables of the Player class. Inner classes allow you to efficiently encapsulate
state logic within its own class without having to break the encapsulation of the Player
class.

Subclasses can provide their own state implementation by overriding the following meth-
ods in Player:

protected PlayerState getBustedState() {
return new Busted();

}
protected PlayerState getStandingState() {

return new Standing();
}
protected PlayerState getPlayingState() {

return new Playing();
}
protected PlayerState getWaitingState() {

return new Waiting();
}
protected PlayerState getBlackjackState() {

418 Day 16

25 0672321092 CH16 08/22/2001 2:52 PM Page 418

Blackjack Iteration 2: Adding Rules 419

16

return new Blackjack();
}
protected PlayerState getInitialState() {

return new WaitingState();
}

As long as the states use these methods to retrieve the other states, subclasses can intro-
duce their own custom states. getInitialState() is used by the Player base class to set
the Player’s initial state. If a subclass starts in another state, it will need to override this
method as well.

Finally, a number of notify methods have been added to the Player class. The states use
these methods to inform any listener of changes. These methods correspond to the new
methods found in the PlayerListener interface. New methods were added to the listener
in order to support the new game functionality. Listing 16.10 presents the update
PlayerListener interface.

LISTING 16.10 PlayerListener.java

public interface PlayerListener {

public void playerChanged(Player player);

public void playerBusted(Player player);

public void playerBlackjack(Player player);

public void playerStanding(Player player);

public void playerWon(Player player);

public void playerLost(Player player);

public void playerStandoff(Player player);

}

Because the Console is a PlayerListener, the following methods are added to the
Console:

public void playerChanged(Player player) {
printMessage(player.toString());

}

public void playerBusted(Player player) {
printMessage(player.toString() + “ BUSTED!”);

}

25 0672321092 CH16 08/22/2001 2:52 PM Page 419

public void playerBlackjack(Player player) {
printMessage(player.toString() + “ BLACKJACK!”);

}

public void playerStanding(Player player) {
printMessage(player.toString() + “ STANDING”);

}

public void playerWon(Player player) {
printMessage(player.toString() + “ WINNER!”);

}

public void playerLost(Player player) {
printMessage(player.toString() + “ LOSER!”);

}

public void playerStandoff(Player player) {
printMessage(player.toString() + “ STANDOFF”);

}

These changes allow the Console to display all of the major game events.

A few new methods have been added to the Player as well:

public void win() {
notifyWin();

}

public void lose() {
notifyLose();

}

public void standoff() {
notifyStandoff();

}

public void blackjack() {
notifyBlackjack();

}

These methods allow the Dealer to tell the Player if he won, lost, tied, or had blackjack.

Changes to Dealer and BlackjackDealer

Both the Dealer and BlackjackDealer need to be updated to fit into the new state
framework. Listing 16.11 presents the updated Dealer interface.

420 Day 16

25 0672321092 CH16 08/22/2001 2:52 PM Page 420

Blackjack Iteration 2: Adding Rules 421

16

LISTING 16.11 Dealer.java

public interface Dealer {
// used by the player to interact with the dealer
public void hit(Player player);

// used by the player to communicate state to dealer
public void blackjack(Player player);
public void busted(Player player);
public void standing(Player player);

}

The Player uses these new methods to report state to the Dealer. So, for example, when
the Player has blackjack, the Player will call the Dealer’s blackjack() method. The
Dealer can then pass the turn to the next player. These methods are akin to the previous
passTurn() method. They are just more specific.

The Dealer uses calls to these methods to filter the Players into buckets based on their
state. This makes fulfilling the game much easier for the Dealer.

For example, here is an implementation of busted() from the BlackjackDealer:

public void busted(Player player) {
busted_players.add(player);
play(this);

}

The other methods work similarly.

The BlackjackDealer adds a DealerDealing state. It also customizes many of the
default Player states. Listings 16.12 through 16.16 present these modified states.

LISTING 16.12 The Customized Dealer Busted State

private class DealerBusted implements PlayerState {
public void handChanged() {

// not possible in busted state
}
public void handPlayable() {

// not possible in busted state
}
public void handBlackjack() {

// not possible in busted state
}
public void handBusted() {

// not possible in busted state
}

25 0672321092 CH16 08/22/2001 2:52 PM Page 421

LISTING 16.12 continued

public void execute(Dealer dealer) {
Iterator i = standing_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.win();

}
i = blackjack_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.win();

}
i = busted_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.lose();

}
}

}

LISTING 16.13 The Customized Dealer Blackjack State

private class DealerBlackjack implements PlayerState {
public void handChanged() {

notifyChanged();
}
public void handPlayable() {

// not possible in blackjack state
}
public void handBlackjack() {

// not possible in blackjack state
}
public void handBusted() {

// not possible in blackjack state
}
public void execute(Dealer dealer) {

exposeHand();
Iterator i = players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
if(player.getHand().blackjack()) {

player.standoff();
} else {

player.lose();
}

}
}

}

422 Day 16

25 0672321092 CH16 08/22/2001 2:52 PM Page 422

Blackjack Iteration 2: Adding Rules 423

16

LISTING 16.14 The Customized Dealer Standing State

private class DealerStanding implements PlayerState {
public void handChanged() {

// not possible in standing state
}
public void handPlayable() {

// not possible in standing state
}
public void handBlackjack() {

// not possible in standing state
}
public void handBusted() {

// not possible in standing state
}
public void execute(Dealer dealer) {

Iterator i = standing_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
if(player.getHand().isEqual(getHand())) {

player.standoff();
} else if(player.getHand().isGreaterThan(getHand())) {

player.win();
} else {

player.lose();
}

}
i = blackjack_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.win();

}
i = busted_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.lose();

}
}

}

LISTING 16.15 The Customized Dealer Waiting State

private class DealerWaiting implements PlayerState {
public void handChanged() {

// not possible in waiting state
}
public void handPlayable() {

// not possible in waiting state

25 0672321092 CH16 08/22/2001 2:52 PM Page 423

LISTING 16.15 continued

}
public void handBlackjack() {

// not possible in waiting state
}
public void handBusted() {

// not possible in waiting state
}
public void execute(Dealer dealer) {

if(!waiting_players.isEmpty()) {
Player player = (Player) waiting_players.get(0);
waiting_players.remove(player);
player.play(dealer);

} else {
setCurrentState(getPlayingState());
exposeHand();
getCurrentState().execute(dealer);
// transition and execute

}
}

}

LISTING 16.16 The customized Dealer Dealing state

private class DealerDealing implements PlayerState {
public void handChanged() {

notifyChanged();
}
public void handPlayable() {

setCurrentState(getWaitingState());
// transition

}
public void handBlackjack() {

setCurrentState(getBlackjackState());
notifyBlackjack();
// transition

}
public void handBusted() {

// not possible in dealing state
}
public void execute(Dealer dealer) {

deal();
getCurrentState().execute(dealer);
// transition and execute

}
}

424 Day 16

25 0672321092 CH16 08/22/2001 2:52 PM Page 424

Blackjack Iteration 2: Adding Rules 425

16

You might notice that the BlackjackDealer does not define its own playing state.
Instead, it uses the Player’s default playing state; however, to use its custom states, the
BlackjackDealer must override the state getters found in the Player base class:

protected PlayerState getBlackjackState() {
return new DealerBlackjack();

}
protected PlayerState getBustedState() {

return new DealerBusted();
}
protected PlayerState getStandingState() {

return new DealerStanding();
}
protected PlayerState getWaitingState() {

return new DealerWaiting();
}

Testing
As with the code for Chapter 15, “Learning to Combine Theory and Process” a complete
set of tests is available for download from www.samspublishing.com along with the
source code for this chapter. These tests consist of a set of unit tests and mock objects
that thoroughly test the Blackjack system.

Testing is an important part of the development process; however, study of the test code
is left as an exercise for the reader.

Summary
Today you completed the second iteration of the Blackjack game. By stepping through
this exercise you got to see first hand how you could use the iterative process to incre-
mentally work towards a complete solution.

Each prior iteration acts as the basis or foundation for the next. Instead of beginning
analysis or design anew today, you started by building on the use cases and design dis-
covered yesterday.

Tomorrow you will further build on top of this foundation as you add betting features to
the Blackjack program.

25 0672321092 CH16 08/22/2001 2:52 PM Page 425

Q&A
Q If states are so important, why did you want until this iteration to include

them?

A The initial iteration was simple. The initial iteration played a basic game of
Blackjack that did not detect natural blackjack hands, winners, or losers (though it
did detect busts). There was no reason to attack the problem with a complex solu-
tion. The requirements of this iteration justify a more complicated solution,
because it adds blackjack detection as well as game fulfillment.

Q Could you have implemented the states outside of the Player and
BlackjackDealer or must they be inner classes?

A You can implement the states outside of the class. But if you do define them out-
side of the Player you may need to add some new methods so that the states can
retrieve all of the data that they need.

I would warn against such an approach for three reasons:

First, moving the state definition outside of the class doesn’t really buy you all that
much. In fact, it causes extra work because of the methods that you will need to
add.

Second, adding extra methods so that the states can retrieve data breaks
encapsulation.

Finally, moving the states out of the Player class does not model the state/player
relationship very well. States are in essence an extension of Player. As such, the
states act as the Player’s brains. Brains are best left within the body.

It is important to note that the implementation of states as inner classes works nice-
ly in Java. Other languages may require a slightly different approach.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. When are conditionals dangerous?

2. List two ways to remove conditionals.

3. The version of Hand presented today is better encapsulated than yesterday’s. How
does the new version of Hand encapsulate itself?

426 Day 16

25 0672321092 CH16 08/22/2001 2:52 PM Page 426

Blackjack Iteration 2: Adding Rules 427

16

4. What pattern does the Hand and HandListener implement?

5. Search the web for more information on the State pattern.

Exercises
1. Download the source code for today’s iteration. When you have the code, compile

it, run it by executing Blackjack, and then try to understand how it works. Gaining
a full understanding of the code will take some time and patience.

2. The following code appears in the Player class definition:
protected void notifyChanged() {

Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerChanged(this);

}
}

protected void notifyBusted() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerBusted(this);

}
}

protected void notifyBlackjack() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerBlackjack(this);

}
}

protected void notifyStanding() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerStanding(this);

}
}

protected void notifyStandoff() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerStandoff(this);

}
}

25 0672321092 CH16 08/22/2001 2:52 PM Page 427

protected void notifyWin() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerWon(this);

}
}

protected void notifyLose() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerLost(this);

}
}

The methods work. Functionally there is nothing wrong with them; however, each
method performs the exact same action up until the point a call is made on the
PlayerListener.

How might you use objects so that you only have to write one notify method?
Design and implement a solution.

428 Day 16

25 0672321092 CH16 08/22/2001 2:52 PM Page 428

DAY 17

WEEK 3

Blackjack Iteration 3:
Adding Betting

In yesterday’s chapter you saw how to take a fairly primitive Blackjack imple-
mentation and iterate it towards a more mature game. Today you will build
upon the same Blackjack game by adding simple betting support.

Today’s lesson will give you further experience with the iterative process as
well as with OOA and OOD. By the end of today’s lesson, you should also
begin to feel more comfortable with the state-based architecture presented yes-
terday. In fact, one of today’s exercises will ask you to add a new state to the
system.

Today you will learn

• How to extend the Blackjack game’s state architecture in order to add
functionality

• About the benefits that a true OO approach can bring to a system by
working on an OO based system

26 0672321092 CH17 08/22/2001 2:46 PM Page 429

Blackjack Betting
Yesterday’s iteration produced a fairly full-featured game of Blackjack. Almost every
nonbetting-related feature is now part of the game. Today you will add some of those
missing betting features.

As with the other lessons this week we will follow the process outlined in Chapter 9,
“Introduction to Object Oriented Analysis (OOA).” Let’s start by exploring the betting
use cases.

Betting Analysis
To fully understand betting you’ll need to finalize the Place Bets and Double Down use
cases identified during the initial analysis of Blackjack. You’ll also need to revisit the
other use cases to make sure that they do not require updating. Once you have finished
the use cases you’ll need to update the domain model.

Blackjack Betting Use Case Analysis
Let’s begin with the new Player Places Bet use case:

Players begin the game with $1000 in their pot. Before any cards are dealt, each play-
er must place a bet. Beginning with the first player, each player bets an amount of
$10, $50, or $100.

• Player places bet

1. Player places a bet of $10, $50, or $100

2. Moves to the next player and repeats until all players have placed a bet

• Preconditions

• New game

• Post conditions

• Player has placed bet

In the real game of Blackjack, every game has its own rules about betting. These rules
will include a minimum bet, a maximum bet, and the bet increment. In this game of
Blackjack a player can bet $10, $50, or $100. For the sake of simplicity this game will
offer the player an unlimited line of credit. Each player will start out with $1000. When
the player exhausts his pot, his balance will become negative; however, the player is
allowed to play as long as he wishes.

The other new betting use case is Player Doubles Down:

430 Day 17

26 0672321092 CH17 08/22/2001 2:46 PM Page 430

Blackjack Iteration 3: Adding Betting 431

17

The player decides he is not satisfied with his initial hand. Instead of simply hitting,
the player decides to double down. This doubles the player’s bet and adds one card
to the hand. The player’s turn ends and play moves to the next player/dealer.

• Player doubles down

1. Player decides he is not satisfied with his initial hand

2. The player wants to double down

3. The player’s bet is doubled

4. The dealer adds another card to his hand

• Preconditions

• This is the player’s initial hand and has not yet taken a hit or stand

• Player does not have blackjack

• Dealer does not have blackjack

• Post conditions

• Player’s hand has three cards

• Player’s turn ends

• Alternative: Player busts

New card causes player’s hand to bust (loses)

• Alternative: Player’s hand is greater than 21, but player has an ace

New card causes player’s hand to be greater than 21. Player has an ace. Value of
the ace changes from 11 to 1, bringing the player’s hand to less than or equal to 21.

The only pre-existing use cases affected by the addition of betting are the Deal Cards use
case and the Dealer Fulfills Game use case. The other use cases remain unchanged:

Beginning with the first player the dealer deals one card face up to each player, finish-
ing with himself. The dealer then repeats this process but deals his own card face
down. Dealing ends and play commences once the dealer has dealt each player,
including himself, two cards.

• Deal cards

1. Dealer deals one card face up to every player including himself

2. Dealer deals a second card face up to all non-dealer players

3. Dealer deals a card face down to himself

• Preconditions

• All players have placed their bets

26 0672321092 CH17 08/22/2001 2:46 PM Page 431

• Post conditions

• All players and the dealer have a hand with two cards

• Alternative: Dealer has blackjack

If the dealer has a natural 21 or blackjack, the game moves to fulfillment. The
players do not get to take a turn.

Dealing will now not begin until every player has placed a bet. Let’s see how betting
changes game fulfillment:

After all playing in done, the dealer checks each hand and determines for each player
if they win or lose or if the game is a standoff.

• Dealer fulfills game

1. Dealer checks the first player’s hand and compares it with his own

2. The player’s hand is greater than the dealer, but not busted; the player wins

3. The amount of the bet is added to the player’s pot

4. The dealer repeats this comparison for all players

• Preconditions

• Each player has passed their turns

• The dealer has passed his turn

• Post conditions

• Player’s final results determined

• Alternative: Player loses

Dealer checks the player’s hand and compares it with his own. The player’s hand is
less than the dealer’s. The player loses. The bet is removed from the player’s pot.

• Alternative: Standoff

Dealer checks the player’s hand and compares it with his own. The player’s hand is
equal to the dealer’s. The game is a standoff. Nothing is added or subtracted from
the player’s pot.

• Alternative: Dealer busts

If the dealer is busted every standing and blackjack player wins. All else lose.
Winners receive the amount the bet.

• Alternative: Player wins with blackjack

If the player has blackjack and the dealer does not, the player wins and gets paid
3:2 (for example, if the player bet $100, the player would win $150).

432 Day 17

26 0672321092 CH17 08/22/2001 2:46 PM Page 432

Blackjack Iteration 3: Adding Betting 433

17

That concludes the changes to the use cases. All of these use cases are relatively straight-
forward. Interaction diagrams would probably be overkill. Let’s see how these updated
use cases have changed the domain model.

Updating the Blackjack Domain Model
The betting analysis does require you to update the domain model, but only slightly.
You’ll need to add one additional domain object: the Bank. Every Player in the game has
his own personal Bank. Figure 17.1 illustrates the updated domain model.

FIGURE 17.1
The Blackjack domain
model.

Blackjack Game

PlayerBank

Hand

Card

DeckpileDealer

Deck

1 1

1
1

0…19

1

1

4

1

1

152

1

11

1…7

Betting Design
You should begin design by designing the new Bank class. When the Bank is done you’ll
need to figure out how to work betting into the game. For the purposes of today’s lesson,
the use case Player Doubles Down is left as an exercise at the end of the lesson.

Designing the Bank
When setting out to design the Bank, you must first identify the Bank’s responsibilities.
Figure 17.2 illustrates the resulting CRC card for the Bank class.

26 0672321092 CH17 08/22/2001 2:46 PM Page 433

Good OO calls for the proper division of responsibility. As such, the Bank is responsible
for keeping track of all betting activities. The Bank keeps all betting details internal and
provides access to the bet and balance through a well-defined interface. Figure 17.3 illus-
trates the class diagram for the Bank as well as the Bank’s relationship with the Player.

434 Day 17

FIGURE 17.2
The Bank CRC card.

Bank
hold total $ for player

place $100 bet

place $10 bet

payoff win

payoff blackjack

settle loss

settle standoff

represent itself as a string String

place $50 bet

FIGURE 17.3
The Bank class
diagram.

Bank

+ place100Bet():
+ place50Bet():
+ place10Bet():
+ win():
+ lose():
+ blackjack():
+ standoff():

The Betting Design
As it turns out, betting should fit well into the state architecture that you saw yesterday.
Both the player and dealer will need one additional state to support basic betting. The
dealer will need a CollectingBets state, and the player will need a Betting state. Figures
17.4 and 17.5 illustrate the new state diagrams for the dealer and player respectively.

As you can see, the player now starts off in the Betting state while the dealer begins in
the CollectingBets state. When all bets are collected, the dealer moves into the Dealing
state as before. When done betting, the players move into the Waiting state.

26 0672321092 CH17 08/22/2001 2:46 PM Page 434

Blackjack Iteration 3: Adding Betting 435

17

Refactoring the Player Hierarchy
At this point of the design it seems that the Player and BlackjackDealer are diverging.
While the BlackjackDealer extends Player, it does not need a Bank. This is unlike a
HumanPlayer because the dealer does not bet. If you add betting support directly to the
Player, BlackjackDealer will inherit all kinds of useless behavior that it will need to
override (plus Player will get awfully cluttered).

This is a good time to refactor the Player inheritance hierarchy by breaking common
elements out into subclasses. In the new hierarchy, no betting support should be added to
the base Player class. Instead, a new class, BettingPlayer, should inherit from Player
and then add the necessary states and methods for betting support.

BlackjackDealer can continue to inherit from Player; however, HumanPlayer should
now inherit from BettingPlayer. Figure 17.6 illustrates the resulting hierarchy.

FIGURE 17.4
The state diagram for
the dealer.

Standing

fulfill

Busted

fulfill

[hand > 16 < 22]

CollectingBets

for each player/collect bet

Dealing

for each player/deal

Blackjack

fulfill

hand is blackjack [hand == 21]

Dealing

for each player/tell to play

Playing

hit or stand

[no waiting players]

[player still needs to bet]

[waiting players] hand is playable
[hand < 17]

[all players have bet]

[hand is playable [hand < 21]

hand is busted
[hand > 21]

26 0672321092 CH17 08/22/2001 2:46 PM Page 435

The Updated Blackjack Model
Now that you are finished with design, it’s a good idea to update the Blackjack class
diagram. Figure 17.7 illustrates the class diagram.

You are now ready to move on to the implementation.

Betting Implementation
Implementing betting will require the creation of the Bank and BettingPlayer classes as
well as changes to the BlackjackDealer, Dealer, and HumanPlayer. Let’s begin with the
Bank class.

436 Day 17

FIGURE 17.5
The state diagram for
the players.

[!hit()]

Blackjack

inform dealer

Standing

inform dealer

Busted

inform dealer

hand is blackjack [hand == 21]

Playing

hit or stand

hand is playable
[hand <= 21]

[done betting]

hand is playable [hand < 21]

hand is busted
[hand > 21]

Betting

bet

Waiting

26 0672321092 CH17 08/22/2001 2:46 PM Page 436

Blackjack Iteration 3: Adding Betting 437

17

The Bank Implementation
As you discovered the Bank is responsible for holding onto a total as well as managing
bets. Listing 17.1 presents one possible Bank implementation.

FIGURE 17.6
The Player hierarchy.

Player

+ addCard (c : card)
+ play (d : Dealer)
+ addListener (l : PlayerListener)
+ win ()
+ lose ()
+ standoff ()
+ blackjack ()
getInitialState () : PlayerState
hit () : boolean

BettingPlayer

+ win ()
+ lose ()
+ standoff ()
+ blackjack ()
getInitialState () : PlayerState
bet ()

HumanPlayer

+ hit () : boolean
+ bet ()

Dealer

+ hit (P : Player)
+ blackjack (p : Player)
+ busted (p : Player)
+ standing (p : Player)
+ doneBetting (p : Player)

BlackjackDealer

hit () : boolean
getInitialState () : PlayerState
+ addPlayer (p : Player)
+ newGame ()

26 0672321092 CH17 08/22/2001 2:46 PM Page 437

LISTING 17.1 Bank.java

public class Bank {

private int total;
private int bet;

public Bank(int amount) {
total = amount;

}

public void place100Bet() {
placeBet(100);

}

public void place50Bet() {

438 Day 17

FIGURE 17.7
The Blackjack class
diagram.

Deck

Blackjack

Console

Deckpile

BlackjackDealer

PlayerListener

ImplClass

HandListener

BettingPlayer

HumanPlayer

PlayerState

Player

Dealer

Hand

Bank

Card

«interface»

«interface»

«interface»

«singleton»

listens to

deals from

1

1
1

1

1

1

1

1

1

*

52

1
11

1

1…7

26 0672321092 CH17 08/22/2001 2:46 PM Page 438

Blackjack Iteration 3: Adding Betting 439

17

LISTING 17.1 continued

placeBet(50);
}

public void place10Bet() {
placeBet(10);

}

public void win() {
total += (2 * bet);
bet = 0;

}

public void lose() {
// already taken out of total
bet = 0;

}

public void blackjack() {
total += (((3 * bet) / 2) + bet);
bet = 0;

}

public void standoff() {
total += bet;
bet = 0;

}

public String toString() {
return (“$” + total + “.00”);

}

private void placeBet(int amount) {
bet = amount;
total -= amount;

}

}

When the player needs to place a bet, it does so through the Bank interface. Of note is
how the Bank completely hides the details of the bet. When the player wins, loses, hits
blackjack, or standoffs he simply informs the Bank. The Bank does the rest.

The BettingPlayer Implementation
The BettingPlayer needs to inherit from Player, define a Betting state, make sure that
it’s initial state gets set to the Betting state, and add support for a Bank (as well as updat-
ing it properly). Listing 17.2 presents the new BettingPlayer.

26 0672321092 CH17 08/22/2001 2:46 PM Page 439

LISTING 17.2 BettingPlayer.java

public abstract class BettingPlayer extends Player {

private Bank bank;

public BettingPlayer(String name, Hand hand, Bank bank) {
super(name, hand);
this.bank = bank;

}

//**
// overridden behavior
public String toString() {

return (getName() + “: “ + getHand().toString() + “\n” +
bank.toString());

}

public void win() {
bank.win();
super.win();

}

public void lose() {
bank.lose();
super.lose();

}

public void standoff() {
bank.standoff();
super.standoff();

}

public void blackjack() {
bank.blackjack();
super.blackjack();

}

protected PlayerState getInitialState() {
return getBettingState();

}

//**
// newly added for BettingPlayer
protected final Bank getBank() {

return bank;
}

protected PlayerState getBettingState() {
return new Betting();

440 Day 17

26 0672321092 CH17 08/22/2001 2:46 PM Page 440

Blackjack Iteration 3: Adding Betting 441

17

LISTING 17.2 continued

}

protected abstract void bet();

private class Betting implements PlayerState {
public void handChanged() {

// not possible in busted state
}
public void handPlayable() {

// not possible in busted state
}
public void handBlackjack() {

// not possible in busted state
}
public void handBusted() {

// not possible in busted state
}
public void execute(Dealer dealer) {

bet();
setCurrentState(getWaitingState());
dealer.doneBetting(BettingPlayer.this);
// terminate

}
}

}

You’ll also note that the BettingPlayer adds a new abstract method: protected
abstract void bet(). The bet() method is called within the Betting state’s activity.
Each subclass must override this method as it sees fit.

Changes to Dealer and HumanPlayer

From reviewing the code for the BettingPlayer, you probably noticed that a new
method has been added to the Dealer: public void doneBetting(Player p).

The BettingPlayer calls this method to inform the Dealer that it is done betting. That
way the Dealer can know that the player is done, and the next player can begin betting.

The changes to HumanPlayer are rather tame. Listing 17.3 lists the new HumanPlayer.

LISTING 17.3 HumanPlayer.java

public class HumanPlayer extends BettingPlayer {

private final static String HIT = “H”;
private final static String STAND = “S”;

26 0672321092 CH17 08/22/2001 2:46 PM Page 441

LISTING 17.3 continued

private final static String PLAY_MSG = “[H]it or [S]tay”;
private final static String BET_MSG = “Place Bet: [10] [50] or [100]”;
private final static String BET_10 = “10”;
private final static String BET_50 = “50”;
private final static String BET_100 = “100”;
private final static String DEFAULT = “invalid”;

public HumanPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

protected boolean hit() {
while(true) {

Console.INSTANCE.printMessage(PLAY_MSG);
String response = Console.INSTANCE.readInput(DEFAULT);
if(response.equalsIgnoreCase(HIT)) {

return true;
} else if(response.equalsIgnoreCase(STAND)) {

return false;
}
// if we get here loop until we get meaningful input

}
}

protected void bet() {
while(true) {

Console.INSTANCE.printMessage(BET_MSG);
String response = Console.INSTANCE.readInput(DEFAULT);
if(response.equals(BET_10)) {

getBank().place10Bet();
return;

}
if(response.equals(BET_50)) {

getBank().place50Bet();
return;

}
if(response.equals(BET_100)) {

getBank().place100Bet();
return;

}
// if we get here loop until we get meaningful input

}
}

}

442 Day 17

26 0672321092 CH17 08/22/2001 2:46 PM Page 442

Blackjack Iteration 3: Adding Betting 443

17

HumanPlayer now inherits from BettingPlayer rather than directly from Player.
HumanPlayer also provides an implementation of bet(). Whenever bet() gets called, it
queries the command line for feedback from the user.

Changes to BlackjackDealer
BlackjackDealer implements the new doneBetting() method defined in Dealer. When
this method is called, the BlackjackDealer takes the player and inserts him into a wait-
ing players bucket.

The BlackjackDealer also defines a new state: DealerCollectingBets. Too,
DealerCollectingBets acts as the BlackjackDealer’s new initial state. Listing 17.4
presents the new state.

LISTING 17.4 The New DealerCollectingBets State

private class DealerCollectingBets implements PlayerState {
public void handChanged() {

// not possible in betting state
}
public void handPlayable() {

// not possible in betting state
}
public void handBlackjack() {

// not possible in betting state
}
public void handBusted() {

// not possible in betting state
}
public void execute(Dealer dealer) {

if(!betting_players.isEmpty()) {
Player player = (Player) betting_players.get(0);
betting_players.remove(player);
player.play(dealer);

} else {
setCurrentState(getDealingState());
getCurrentState().execute(dealer);
// transition and execute

}
}

}

The new state goes through and tells each player to bet. Of note is that this state does not
loop. Instead, the activity gets executed each time a player indicates that he is done bet-
ting. This behavior is defined within the doneBetting() method:

public void doneBetting(Player player) {
waiting_players.add(player);

26 0672321092 CH17 08/22/2001 2:46 PM Page 443

play(this);
}

Remember that a call to play() executes the current state.

Miscellaneous Changes
The only other change of note is the fact that the Player method getInitialState() is
now declared abstract in the Player base class. Making the method abstract works as a
form of documentation that enables anyone who subclasses the class to know that they
should provide their own initial state definition.

The practice of making a method abstract so that it works as a form of documentation is
an effective way to establish an inheritance protocol.

A Little Testing: A Mock Object
As usual, test cases are available along with the source; however, it is valuable to take a
look at one clever use of mock objects. Listing 17.5 presents a Deckpile mock object
that ensures that the dealer is dealt a blackjack.

LISTING 17.5 DealerBlackjackPile.java

public class DealerBlackjackPile extends Deckpile {

private Card [] cards;
private int index = -1;

public DealerBlackjackPile() {
cards = new Card[4];
cards[0] = new Card(Suit.HEARTS, Rank.TWO);
cards[1] = new Card(Suit.HEARTS, Rank.ACE);
cards[2] = new Card(Suit.HEARTS, Rank.THREE);
cards[3] = new Card(Suit.HEARTS, Rank.KING);

}

public void shuffle() {
// do nothing

}

public Card dealUp() {
index++;
cards[index].setFaceUp(true);
return cards[index];

}

public Card dealDown() {
index++;

444 Day 17

26 0672321092 CH17 08/22/2001 2:46 PM Page 444

Blackjack Iteration 3: Adding Betting 445

17

LISTING 17.5 continued

return cards[index];
}

public void reset() {
// do nothing

}

}

You can use this mock object to test that the game responds correctly when the dealer
receives a blackjack hand. This mock object truly stacks the deck.

Summary
Today you completed the third iteration of the Blackjack game project—only one more
to go!

In this chapter, you saw how you could extend the state architecture to support simple
gambling in the game. You also saw that it is sometime necessary to revisit and refactor a
hierarchy as new requirements present themselves. Though refactoring presents a little
extra work upfront, refactoring when appropriate tends to pay for itself as you
move forward.

Because you did refactor the hierarchies now, the code base will be much easier to
understand, extend, and maintain later.

Tomorrow, you will put a graphical UI on top of the game.

Q&A
Q Why didn’t you model fulfillment as a state?

A You could have modeled fulfillment as a state; however, a fulfillment state would
have amounted to design noise. Activities within the Busted, Blackjack, and
Standing states can fulfill the game adequately. Furthermore, these states can fulfill
the game very specifically.

If the dealer were to transition into a fulfillment state, it would lose its previous
state information. If you fulfill within a specific state, however, the dealer can
score the game easily because the dealer will know what state he ended in.

26 0672321092 CH17 08/22/2001 2:46 PM Page 445

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. How can you effectively establish inheritance protocols?

2. The lesson on inheritance during week 1 pointed out that inheritance hierarchies
are often discovered, not planned out from the beginning. What hierarchy did you
discover today?

3. Given quiz question #2, why should you wait to perform abstraction until you’ve
done something a few times?

4. Today you refactored the Player hierarchy. List two of the benefits that you gained
by making the changes.

Exercises
1. Download the source code for today’s iteration. When you have the code, compile

it, run it by executing Blackjack, and then try to understand how it works. Gaining
a full understanding of the code will take some time and patience.

2. Design and implement the Player Doubles Down use case. Base your solution on
the source for today’s lesson.

446 Day 17

26 0672321092 CH17 08/22/2001 2:46 PM Page 446

DAY 18

WEEK 3

Blackjack Iteration 4:
Adding a GUI

So far this week you’ve analyzed, designed, and built a Blackjack card game.
By working from a simple implementation and iterating towards a more com-
plex application, you’ve been able to add rules and betting capabilities to the
game. Today you will continue the iterative process and make improvements to
the game’s presentation layer.

Today you will learn how to

• Apply analysis, design, and implementation when writing user interfaces

• Apply the MVC pattern to the Blackjack game

Blackjack Presentation
So far the only interface into the Blackjack card game has been a rudimentary
command-line-based user interface (UI). Not much has been said about this UI.
In fact, very little, if any, analysis or design has been applied to the UI beyond

27 0672321092 CH18 08/22/2001 2:56 PM Page 447

stating that you will use the MVC pattern. Instead of going through a round of analysis
and design for the command line UI, the simplest possible UI was created to allow you
to interact with the Blackjack system.

During development you will often find that you need to develop supporting materials,
such as stubs, or system harnesses, such as the UI. Often these materials will not be dri-
ven by the analysis. Instead, these items are driven by necessities that present themselves
during implementation. In the case of Blackjack you absolutely needed a way to interact
with the system; however, writing a graphical UI from the beginning was just not practi-
cal. Because the command line UI wasn’t meant to be part of the final system, there was
no need to perform additional analysis for it.

Today you will make one final tweak to the original command line UI and then go into
the analysis, design, and implementation of a full fledged graphical UI (GUI) for the
Blackjack game.

Command Line Tweaks
Before moving on to working on the actual GUI for the Blackjack game, it is valuable to
make one final tweak to the command line UI.

It’s an inconvenience, having to restart the game each time you would like to play.
Listing 18.1 presents a new main that allows you to play as many Blackjack games as
you like without having to restart.

LISTING 18.1 Blackjack.java

public class Blackjack {

public static void main(String [] args) {
Deckpile cards = new Deckpile();
for(int i = 0; i < 4; i ++) {

cards.shuffle();
Deck deck = new Deck();
deck.addToStack(cards);
cards.shuffle();

}

Hand dealer_hand = new Hand();
BlackjackDealer dealer = new BlackjackDealer(“Dealer”, dealer_hand,

cards);
Bank human_bank = new Bank(1000);
Hand human_hand = new Hand();
Player player = new CommandLinePlayer(“Human”, human_hand, human_bank

);

448 Day 18

27 0672321092 CH18 08/22/2001 2:56 PM Page 448

Blackjack Iteration 4: Adding a GUI 449

18

LISTING 18.1 continued

dealer.addListener(Console.INSTANCE);
player.addListener(Console.INSTANCE);
dealer.addPlayer(player);

do {
dealer.newGame();

} while(playAgain());

Console.INSTANCE.printMessage(“Thank you for playing!”);

}

private static boolean playAgain() {
Console.INSTANCE.printMessage(“Would you like to play again? [Y]es

[N]o”);
String response = Console.INSTANCE.readInput(“invalid”);
if(response.equalsIgnoreCase(“y”)) {

return true;
}
return false;

}

}

Adding this functionality to the Blackjack main has a practical value because it helps us
to detect any errors that might be hidden in the program when you play multiple games.
For example, each hand needs to be properly reset before the next game. By flushing out
any errors now, you won’t be caught by the bug later and think that the new GUI is to
blame.

Blackjack GUI Analysis
To be able to complete the analysis of the GUI, you must perform use case analysis just
as you did during the past iterations. When performing GUI analysis it is also imperative
that you sit down with your customers, users, and usability experts to design the layout
of the GUI. In reality, the less say that you have as a developer in the actual layout of the
GUI the better. Everyone has his or her own specialty. As a developer your specialty is
normally to analyze problems, design solutions, and implement those solutions. When
you sit down with your customer, you will discover how he wants his GUI set out.

Unfortunately, usability experts, customers, and users do not come in a convenient book
form, so you’ll need to make do without them today. Instead we’ll work out a rough
sketch of the screen before moving on to design.

27 0672321092 CH18 08/22/2001 2:56 PM Page 449

GUI Use Cases
Unlike the Blackjack use cases that you analyzed during the previous iterations the GUI
use cases do not affect the Blackjack domain per se. Instead, the GUI use cases help
establish how the user will manipulate the ongoing Blackjack game through the UI.

As such, the first use case that you need to investigate is the use case that begins a new
game:

When the program is first starting or the player has just finished a game, he may elect
to play a new game

• GUI new game

1. Player clicks the New Game button and a new game starts

• Preconditions

• Player must have either just started the program or just finished a game

• Post conditions

• New game started

As you can see this use case does not alter the Blackjack domain. It simply sets the
ground rules for the UI. The next UI use case analyzes betting:

Players begin the game with $1000 in their pot. Before any cards are dealt, each play-
er must place a bet. Beginning with the first player, each player bets an amount of
$10, $50, or $100. If a player goes below $0, he is still allowed to play. The amount in
his pot is reflected as a negative number.

• GUI player places bet

1. Player selects one of the following bet levels: 10, 50, or 100, which immedi-
ately places the bet.

2. Bet moves to the next player and repeats until all players have placed a bet

• Preconditions

• New game started

• Post conditions

• Player has placed bet

• Dealer may begin to deal

You still need support for hitting and standing. The next use case fleshes out hitting:

450 Day 18

27 0672321092 CH18 08/22/2001 2:56 PM Page 450

Blackjack Iteration 4: Adding a GUI 451

18

The player decides he is not satisfied with his hand. The player has not yet busted so
the player decides to hit. If the player does not bust, he can choose to either hit again
or stand. If the player does bust, play transfers to the next player.

• GUI player hits

1. Player decides he is not satisfied with his hand

2. The player clicks the Hit button, which requests another card from the dealer

3. The player can decide to hit again or stand if his hand totals less than or
equal to 21

• Preconditions

• Player has a hand whose total value is less than 21

• Player does not have blackjack

• Dealer does not have blackjack

• Post conditions

• A new card is added to the player’s hand

• Alternative: Player busts

New card causes player’s hand to be greater than 21. Player busts (loses). Next
player’s/dealer’s turn begins.

• Alternative: Player’s hand greater than 21, but player has an ace

New card causes player’s hand to be greater than 21. Player has an ace. Value of
the ace changes from 11 to one, bringing the player’s hand to be less than or equal
to 21. The player can decide to hit again or stand.

If a payer does not hit, he must stand. The next use case analyzes using the GUI to stand:

The player decides he is satisfied with his hand and stands.

• Player stands

1. Player decides he is happy with his hand and clicks the Stand button.

• Preconditions

• Player has a hand whose value is less than or equal to 21

• Player does not have blackjack

• Dealer does not have blackjack

• Post conditions

• Player’s turn ends

27 0672321092 CH18 08/22/2001 2:56 PM Page 451

And last but not least, you need to consider quitting the game:

The player decides that he doesn’t want to play anymore and quits.

• GUI player quits

1. Player clicks the Quit button

2. Game closes

• Preconditions

• Game must not be in progress (either no games have been played or a game
has been finished)

• Post conditions

• Game shutdown

GUI Visual Mock Ups
Based on the use cases enumerated in the previous section, you’ll need to design the
GUI’s layout. Figure 18.1 presents one possible GUI that fulfills all of the requirements
discovered during analysis.

452 Day 18

FIGURE 18.1
The Blackjack GUI.

Card Card • • •

Dealer

Card Card • • •

Player Name $ Bank

$10 $50 $100

Hit Stand New Game Quit

There are some additional GUI behaviors that you can work out now. Figure 18.2 illus-
trates the status of the buttons when the user first starts the game.

27 0672321092 CH18 08/22/2001 2:56 PM Page 452

Blackjack Iteration 4: Adding a GUI 453

18

All buttons are visible when the game first starts up; however, only New Game and Quit
are active. Figure 18.3 illustrates the status of the buttons after clicking New Game.

FIGURE 18.2
The initial button
status.

$10 $50 $100

Hit Stand New Game Quit

FIGURE 18.3
The button status after
clicking New Game.

$10 $50 $100

Hit Stand New Game Quit

The player must place a bet after clicking New Game. As a result only the betting but-
tons are active. Figure 18.4 illustrates the status of the buttons after playing a game.

FIGURE 18.4
The button status after
placing a bet.

$10 $50 $100

Hit Stand New Game Quit

After placing a bet a user may hit or stand. Thus, only the Hit and Stand buttons are
active after placing a bet. All of the other buttons are disabled. The buttons remain in
such a state until the player stands or busts, at which point the game ends and the buttons
return to the status illustrated in 18.2.

After the completion of a game, the cards remain on the screen until the user clicks New
Game. The cards are then removed from the screen. During play, the player’s graphical
hand is updated whenever a card is dealt to the player.

This GUI layout will factor heavily into the views that you design in the next section.

Blackjack GUI Design
Designing the classes that make up a GUI is no different from designing any other type
of class. You must identify the individual classes and their responsibilities.

Using Figure 18.1 as a starting point, you can generate an initial list of classes. You will
need a class for the main display, a class to view a player, and a class to visualize the
player’s options.

27 0672321092 CH18 08/22/2001 2:56 PM Page 453

GUI CRC Cards
A CRC card session may or may not be warranted here. It really depends on your own
comfort level. For a larger GUI you’ll definitely want to go through a number of sessions
to ensure that you’ve done a good job splitting up responsibilities.

For our purposes the Blackjack GUI is simple enough that it is okay to skip a full-
fledged CRC session. Instead, we will list the responsibilities here.

PlayerView

The PlayerView is responsible for visualizing a Player in the Blackjack game. The view
must display the Player’s hand, name, and pot balance (if applicable). The PlayerView
is simply a visualization vehicle. As such, it does not require a controller. It simply needs
to listen to and display its Player.

OptionView and OptionViewController

The OptionView is responsible for visualizing the human player’s options. The
OptionView also needs to respond to user interaction so it requires a controller:
OptionViewController.

CardView

The CardView is responsible for visualizing the individual Card objects. The CardView is
not interactive, thus it does not require a controller. The PlayerView will use CardView
to visualize the Hand.

BlackjackGUI

The BlackjackGUI is responsible for aggregating and displaying all of the various views.
Because the BlackjackGUI acts as a simple shell, it does not require a controller.

Miscellaneous
The CardView will need a way to map a Card to an image for display. You can implement
a lengthy if/else if switch to map the Card inside of CardView; however, such an
approach is fairly ugly (not to mention slow).

Instead of creating a conditional solution you should subclass Deck and Card. You can
call the two resulting classes VDeck and Vcard, respectively. VCard will take an extra
constructor argument, the name of a bitmap file. VDeck will construct VCards.

Because you pass the Deckpile to the BlackjackDealer instead of letting the
BlackjackDealer create its own pile, you can transparently pass the visual cards to the
dealer instead.

454 Day 18

27 0672321092 CH18 08/22/2001 2:56 PM Page 454

Blackjack Iteration 4: Adding a GUI 455

18

You will also need to create a new human player for the GUI. This new GUIPlayer can
inherit directly from BettingPlayer; however, it will need to provide its own custom
Betting and Playing states.

Instead of basing a decision on the hit() or bet() method the GUIPlayer will need to
get this information from the GUI. As a result you’ll need methods that the GUI can call
for betting, hitting, and standing. When these methods get called, they’ll put the player
into the proper states and communicate any information to the dealer.

In all, you’ll need to add or override the following methods to the GUIPlayer:
place10Bet(), place50Bet(), place100Bet(), takeCard(), stand(),
getBettingState(), and getPlayingState().

GUI Structure
Sometimes when working with a GUI it helps to sketch out how the pieces will fit
together. Because the GUI is itself visual, sketching the GUI out can actually be a bit
more powerful than standard class diagrams. Figure 18.5 visualizes the PlayerView.

FIGURE 18.5
Visualizing the
PlayerView.

Card Card • • •

Player Name $ Bank

Player View

You see that the PlayerView in Figure 18.5 is made up of a number of CardViews. The
PlayerView also draws a border around itself with the Player’s name and pot balance (if
applicable) in the upper-left corner.

Luckily, Java’s javax.swing.JPanel provides all of the functionality that you need to
lay out other components as well as draw a labeled border.

Continuing, Figure 18.6 visualizes the OptionView.

FIGURE 18.6
Visualizing the
OptionView.

Option View

$10 $50 $100

Hit Stand New Game Quit

Betting Controls

Player Controls Game Controls

27 0672321092 CH18 08/22/2001 2:56 PM Page 455

The OptionView is simply a collection of buttons. A combination of
javax.swing.JPanel (for nesting the buttons) and javax.swing.JButton should provide
everything that you need to implement this view.

Figure 18.7 puts all of the pieces together visually.

456 Day 18

FIGURE 18.7
The main window
broken down by view.

Card Card • • •

Dealer

Card Card • • •

Player Name $ Bank

$10 $50 $100

Hit Stand New Game Quit

Blackjack GUI Card View

Player
Views

Option
View

The preceding pictures should help visualize how all of the views fit together.
Understanding how the pieces fit together can help while implementing a GUI.

Refactoring
Now that there are two types of human players—GUI and CLUI—it probably makes
sense to rename HumanPlayer to CommandLinePlayer. You should make that change
today.

GUI Class Diagram
Now that all of the new classes are identified you can model the resulting class structure.
Like the class diagram in Chapter 17, “Blackjack Iteration 3: Adding Betting,” the model
presented in Figure 18.8 focuses in on structure.

27 0672321092 CH18 08/22/2001 2:56 PM Page 456

Blackjack Iteration 4: Adding a GUI 457

18

Blackjack GUI Implementation
When implementing a GUI, in general, it is often easiest to work from the bottom up. In
that vein you should implement in the following order: VCard, VDeck, CardView,
PlayerView, OptionView, OptionViewController, GUIPlayer, and BlackjackGUI. Let’s
review the highlights of each class.

Implementing the VCard, VDeck, and CardView
VCard has a relatively simple implementation because it only adds one additional
attribute to the Card class. Listing 18.2 presents the new VCard class definition.

FIGURE 18.8
The GUI class
structure.

Blackjack GUI

BlackjackDealer BettingPlayer

OptionView PlayerView

Deckpile

GUIPlayer

CardView

JPanel JPanel

PlayerOptionViewController VCard

VCard

VDeck

JLabel

1

1

1

1

1

1

1

52

1

1

1 *

2…8

1

deals from

controls

adds cards to

manipulates
and listens to

manipulates
and listens to

displays
and listens to

displays

27 0672321092 CH18 08/22/2001 2:56 PM Page 457

LISTING 18.2 VCard.java

public class VCard extends Card {

String image;

public VCard(Suit suit, Rank rank, String image) {
super(suit, rank);
this.image = image;

}

public String getImage() {
if(isFaceUp()) {

return image;
} else {

return “/bitmaps/empty_pile.xbm”;
}

}

}

VDeck’s implementation is almost as simple. To be able to create VCards instead of Card,
you will need to override Deck’s buildCards() method. To override the method you will
first need to change the method to protected in Deck. Originally the method was private.
Listing 18.3 shows a partial listing of the VDeck implementation.

LISTING 18.3 VDeck.java

public class VDeck extends Deck {

protected void buildCards() {

// This is ugly, but it is better than the alternative loops/if/elseif
Card [] deck = new Card[52];
setDeck(deck);

deck[0] = new VCard(Suit.HEARTS, Rank.TWO, “/bitmaps/h2”);
deck[1] = new VCard(Suit.HEARTS, Rank.THREE, “/bitmaps/h3”);
deck[2] = new VCard(Suit.HEARTS, Rank.FOUR, “/bitmaps/h4”);
deck[3] = new VCard(Suit.HEARTS, Rank.FIVE, “/bitmaps/h5”);
deck[4] = new VCard(Suit.HEARTS, Rank.SIX, “/bitmaps/h6”);
deck[5] = new VCard(Suit.HEARTS, Rank.SEVEN, “/bitmaps/h7”);
deck[6] = new VCard(Suit.HEARTS, Rank.EIGHT, “/bitmaps/h8”);
// rest cut for brevity

For the GUI we’ll use a set of bitmaps that are contained in the bitmaps directory along
with the source download. The names of the bitmaps follow a specific naming convention,

458 Day 18

27 0672321092 CH18 08/22/2001 2:56 PM Page 458

Blackjack Iteration 4: Adding a GUI 459

18

so you can also implement buildCards() as a loop. While ugly, simply hardcoding the
values is a bit easier to understand (and maintain).

Hard coding the card creation may not be the most maintainable solution
either. The problem is that each approach that you might take has a short-
coming. VDeck is an example of one of those times where you must make a
choice between two evils, and just live with it.

The solution outlined above is flawed because of the errors inherent in key-
ing in all of the calls. Plus, if the constructor ever changes, you’ll need to
update each call.

Alternatively you could loop over the List representation of the Ranks. Such
a solution forces you to assume a specific order of elements in the list (so
that you can properly generate the image filename). If the ordering ever
changes, the loop will mysteriously break. Anyone maintaining the code will
have a difficult time tracking down the source of the error. I avoided the
loop approach because changes to an unrelated class could break the VDeck.

Caution

The CardView will display the VCard bitmap. javax.swing.JLabel provides the neces-
sary functionality to display a bitmap. Listing 18.4 presents the implementation of
CardView.

LISTING 18.4 CardView.java

import javax.swing.*;
import java.awt.*;

public class CardView extends JLabel {

private ImageIcon icon;

public CardView(VCard card) {
getImage(card.getImage());
setIcon(icon);
setBackground(Color.white);
setOpaque(true);

}

private void getImage(String name) {
java.net.URL url = this.getClass().getResource(name);
icon = new ImageIcon(url);

}

}

27 0672321092 CH18 08/22/2001 2:56 PM Page 459

The CardView takes a VCard, extracts the bitmap path, converts the path to a url, creates
an ImageIcon, and adds the icon to itself. That’s all you need to do to be able to load and
display a bitmap!

Implementing the PlayerView
The PlayerView will display any subclass of Player. Unlike OptionView, which you
will see in the next section, PlayerView only needs to present the Player; it does not
accept user interaction. As a result the implementation is rather straightforward. Listing
18.5 presents the method that gets called when the Player changes.

LISTING 18.5 The PlayerView Update Code

public void playerChanged(Player player) {
border.setTitle(player.getName());
cards.removeAll();
Hand hand = player.getHand();
Iterator i = hand.getCards();
while(i.hasNext()) {

VCard vcard = (VCard) i.next();
JLabel card = new CardView(vcard);
cards.add(card);

}
revalidate();
repaint();

}

As you can see the playerChanged() method extracts the Player’s VCards and creates a
CardView for each. Finally, it adds the view to itself so that the VCard get displayed.

The implementation presented here is not the most efficient because it creates a new
CardView for each VCard each time the Player changes. A more efficient implementation
could perform some caching of the view. Because you’re using objects, you can change
the implementation to a more efficient one at any time. Performance seems okay so the
overhead of adding caching just isn’t worth the effort at this point.

PlayerView must also display the outcome of the Player’s game. Listing 18.6 presents
two methods that get called at the end of the Player’s game.

LISTING 18.6 A Sample of PlayerView’s PlayerListener Methods

public void playerBusted(Player player) {
border.setTitle(player.getName() + “ BUSTED!”);
cards.repaint();

460 Day 18

27 0672321092 CH18 08/22/2001 2:56 PM Page 460

Blackjack Iteration 4: Adding a GUI 461

18

LISTING 18.6 continued

}

public void playerBlackjack(Player player) {
border.setTitle(player.getName() + “ BLACKJACK!”);
cards.repaint();

}

These methods set the border of the view with the outcome of the game.
PlayerListener defines more than two methods, but like the two listed here,
PlayerView’s implementation of the methods all follow a similar pattern. Please review
the source if you are interested in seeing the entire list of update methods.

Implementing the OptionView and the
OptionViewController
The OptionView inherits from JPanel and adds a number of buttons to itself.
OptionView does not listen to the model. Instead, the OptionViewController listens to
the model and enables or disables the buttons in the OptionView as appropriate.

Neither class is very interesting from an implementation standpoint. If you’re interested
in the specifics, be sure to download and read over the code.

Implementing the GUIPlayer
GUIPlayer is probably the most interesting class in this iteration. When implementing a
GUI, you should keep in mind that all user interaction is asynchronous—it can come in
at any time.

Writing a command line player was rather easy. You only had to override hit() or bet()
so that it would read from the command line. Because the command line blocks until it
receives user input, the player was very easy to implement. A GUI player is a bit harder
to write.

Instead of being able to call a method and block until we get input, the GUIPlayer just
has to wait until the user decides to click a button. As a result, all stimuli comes from
outside of the player.

In response to this reality you need to add a number of methods that the GUI can call to
the GUIPlayer. Listing 18.7 lists the betting methods that you must add.

27 0672321092 CH18 08/22/2001 2:56 PM Page 461

LISTING 18.7 GUIPlayer’s Betting Methods

// these bet methods will get called by the GUI controller
// for each: place the proper bet, change the state, let the
// dealer know that the player is done betting
public void place10Bet() {

getBank().place10Bet();
setCurrentState(getWaitingState());
dealer.doneBetting(this);

}

public void place50Bet() {
getBank().place50Bet();
setCurrentState(getWaitingState());
dealer.doneBetting(this);

}

public void place100Bet() {
getBank().place100Bet();
setCurrentState(getWaitingState());
dealer.doneBetting(this);

}

You’ll notice that these methods have to place bets and set the user to the proper state.
Listing 18.8 lists the hit and stand methods.

LISTING 18.8 GUIPlayer’s Hit and Stand Methods

// takeCard will get called by the GUI controller when the player
// decides to hit
public void takeCard() {

dealer.hit(this);
}
// stand will get called by the GUI controller when the player chooses
// to stand, when standing change state, let the world know, and then
// tell the dealer
public void stand() {

setCurrentState(getStandingState());
notifyStanding();
getCurrentState().execute(dealer);

}

Like the betting methods, the methods in Listing 18.8 must perform their action and
update the state. Because the state can not simply call hit() or bet() to be able to play
or bet, you’ll need to provide some customized Playing and Betting states. Listing 18.9
presents the overridden getPlayingState() and getBettingState() methods.

462 Day 18

27 0672321092 CH18 08/22/2001 2:56 PM Page 462

Blackjack Iteration 4: Adding a GUI 463

18

LISTING 18.9 GUIPlayer’s Overridden State Getter Methods

protected PlayerState getPlayingState() {
return new Playing();

}

protected PlayerState getBettingState() {
return new Betting();

}

By overriding these methods, the GUIPlayer can provide its own customized states.
Listing 18.10 presents the GUIPlayer’s customized Playing state.

Methods such as getPlayingState() and getBettingState() are factory
methods.

Note

LISTING 18.10 GUIPlayer’s Custom Playing State

private class Playing implements PlayerState {

public void handPlayable() {
// do nothing

}

public void handBlackjack() {
setCurrentState(getBlackjackState());
notifyBlackjack();
getCurrentState().execute(dealer);

}

public void handBusted() {
setCurrentState(getBustedState());
notifyBusted();
getCurrentState().execute(dealer);

}

public void handChanged() {
notifyChanged();

}

public void execute(Dealer d) {
// do nothing here, actions will come from the GUI which is
// external to the state, but when events do come in be sure to
// force state transition right away

}
}

27 0672321092 CH18 08/22/2001 2:56 PM Page 463

When executed the customized Playing state does not do anything. Instead, the
GUIPlayer needs to wait for asynchronous interaction from the GUI. You’ll notice that
the Playing state still transitions in response to events from the Hand.

Listing 18.11 presents the customized Betting state. You’ll notice that this state doesn’t
do anything at all. Instead, the GUIPlayer must wait for the player to hit some button on
the GUI. Once that happens the button will call the proper betting method on the
GUIPlayer.

LISTING 18.11 GUIPlayer’s Custom Betting State

private class Betting implements PlayerState {
public void handChanged() {

// not possible in busted state
}
public void handPlayable() {

// not possible in busted state
}
public void handBlackjack() {

// not possible in busted state
}
public void handBusted() {

// not possible in busted state
}
public void execute(Dealer d) {

// do nothing here, actions will come from the GUI which is
// external to the state, since no events come in as part of
// betting the state will need to be changed externally to this state

}
}

Putting It All Together with the BlackjackGUI
The BlackjackGUI creates and displays the Blackjack system. Listing 18.12 highlights
the BlackjackGUI’s setUp() method.

LISTING 18.12 BlackjackGUI’s setUp() Method

private void setUp() {
BlackjackDealer dealer = getDealer();
PlayerView v1 = getPlayerView(dealer);

GUIPlayer human = getHuman();
PlayerView v2 = getPlayerView(human);

PlayerView [] views = { v1, v2 };

464 Day 18

27 0672321092 CH18 08/22/2001 2:56 PM Page 464

Blackjack Iteration 4: Adding a GUI 465

18

LISTING 18.12 continued

addPlayers(views);

dealer.addPlayer(human);

addOptionView(human, dealer);
}

The setUp() method creates each player, the views, and puts everything together. The
other methods mainly construct the various objects. If you’re interested in the full source,
be sure to review the code. Figure 18.9 illustrates the final game screen.

FIGURE 18.9
The Blackjack GUI.

Summary
Today you saw the MVC pattern as applied to a real program. Sometimes it helps to see
an extended example to be able to fully understand a pattern. Today’s lesson also drives
home the point that a GUI is not an afterthought. The GUI deserves the same level of
analysis and design as any other part of a system.

Today’s lesson actually completes the Blackjack game. Tomorrow you will see an alter-
native design and implementation of the Blackjack GUI.

27 0672321092 CH18 08/22/2001 2:56 PM Page 465

Q&A
Q You mentioned earlier that you shouldn’t just tack the GUI on at the end.

Well, this is the last iteration and we are adding a GUI. Doesn’t it go against
what you said earlier?

A No, absolutely not!

When I say “tack on,” I mean to add a GUI without doing any design at all. We’ve
planned a GUI from the start. In the beginning we stated that we would use MVC.
That was all the design that we needed to do until we were finally ready to add the
GUI. Once we were ready to add the GUI, we did additional design in an iteration
totally dedicated to the GUI.

Early on saying that we would use MVC and adding an observer mechanism was
all that we needed to do to know that we could support a GUI.

Q Where/what are the different pieces of MVC (I found mention of various
Views and a controller)? Elaborate on what the model and the controller are.

A The model is the system. In this case the BlackjackDealer, BettingPlayers, and
so on make up the model layer.

The design only called for one controller—the OptionViewController—thus there
wasn’t much to say about controllers.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. How did you use inheritance and polymorphism to introduce a “visual” card?

2. In the lesson on inheritance it was pointed out that if a method is not needed by an
outside classes and there is no requirements for a subclass to use the method then
you should define the method as private. If a subclass ever does need it, you can
make it protected at that time, but no earlier. Find an example of this advice in the
Blackjack project.

Exercises
1. Download the source code for today’s iteration. The code is broken into two sepa-

rate directories: mvc_gui and exercise_2.

mvc_gui contains the GUI code that was created during today’s iteration.

466 Day 18

27 0672321092 CH18 08/22/2001 2:56 PM Page 466

Blackjack Iteration 4: Adding a GUI 467

18

exercise_2 contains the files that you will need for Exercise 2 as well
as the solutions.

Study the code in mvc_gui. Try to understand how it all works and then complete
Exercise 2.

2. Exercise 2 from Chapter 17 asked you to add doubling down to the Blackjack
game. You need to add doubling down to the game again. This time, add it to the
graphical version of the game that you downloaded for exercise 1. The download
includes all of the files that you will need to start this exercise.

27 0672321092 CH18 08/22/2001 2:56 PM Page 467

27 0672321092 CH18 08/22/2001 2:56 PM Page 468

DAY 19

WEEK 3

Applying an Alternative
to MVC

Yesterday you analyzed, designed, and implemented a GUI for the Blackjack
game. Today you will use an alternative approach to the design and implemen-
tation of the Blackjack GUI.

Today you will learn

• About an alternative to the MVC design pattern

• How to apply the alternative to the Blackjack GUI

• When to base your GUIs on MVC and when not to do so

An Alternative Blackjack GUI
Yesterday you created an MVC based GUI for the Blackjack game. MVC is
just one approach to GUI design. Today you will redesign and reimplement the
GUI using a different approach.

28 0672321092 CH19 08/22/2001 2:51 PM Page 469

The approach that you employ today is a specialization of the Presentation Abstraction
Control (PAC) design pattern. Like the MVC design pattern, the PAC design pattern
breaks the GUI’s design into three separate layers:

• The presentation layer, which displays the system

• The abstraction layer, which represents the system

• The control layer, which assembles all of the presentation layer components

PAC’s similarities with the MVC design pattern are deceiving. In fact, PAC follows an
entirely different philosophy than the one followed by the MVC pattern.

The PAC Layers
PAC’s abstraction layer is akin to the model layer in the MVC pattern. The abstraction
layer houses the core functionality of the system. It is this core that the presentation layer
displays and manipulates. The abstraction layer is also responsible for providing access
to presentation level objects.

In the PAC the functionality in view and controller layers from MVC are not split;
instead, these two entities are combined within the presentation. The presentation layer is
responsible for displaying and manipulating the abstraction layer as well as for respond-
ing to user interaction.

Because the MVC controller and view are combined into the presentation layer, the con-
trol serves an entirely different purpose in PAC. In PAC, the control assembles all of the
different presentations. It does not listen for and respond to user interaction like the
MVC controller.

The PAC Philosophy
MVC goes to great lengths to completely decouple each part of its design. When you use
the MVC pattern, it is easy to swap in new views to your system at any time, thus using
the MVC pattern gives you great freedoms in how you display your system. Chapter 13,
“OO and User Interface Programming,” points out, however, that greater freedoms come
with the price of encapsulation.

PAC’s approach is different. The PAC does not decouple the presentation and abstraction
layers. Instead, the two layers are tightly coupled. This isn’t to say that, for example,
Player will extend JComponent directly. What it does say is that the abstraction layer
will create and return its presentation. So the Player and its presentation are still two
separate objects.

To get a different presentation of a part of the abstraction, you’ll have to alter the abstrac-
tion’s definition so that it returns a different presentation object. It is a bit more difficult
to change the presentation, or to provide two or more different views of the same system.

470 Day 19

28 0672321092 CH19 08/22/2001 2:51 PM Page 470

Applying an Alternative to MVC 471

19

Construction of the GUI is easier, however. When the control goes out to assemble the
screen, it will ask each member of the abstraction layer for its presentation. All the con-
trol needs to do is add that presentation to the main screen. There’s no view and con-
troller to wire together.

When to Use the PAC Design Pattern
The underlying assumption of PAC is that you will not need to provide multiple views
into the system. Instead, when you use PAC, you need to be sure that the system has only
one well-defined interface. If your system will have only one interface, PAC can provide
a very elegant alternative to MVC.

PAC does have a number of benefits. Because the abstraction layer can create its presen-
tation, you do not need to destroy the encapsulation of your system. Instead, you can
define the presentation classes as inner classes. As an inner class the presentation can
have complete access to its parent abstraction class. When it needs to visualize the
abstraction, it can directly access and display the abstraction’s state.

Using PAC simplifies the communication between the presentation and its abstraction.
When the abstraction changes, the abstraction can simply call an update method on the
presentation that it has created.

When you use the PAC pattern, you can think of the presentation as a direct extension of
the abstraction. By acting on the presentation, you act directly upon the underlying sys-
tem. In a way, the presentation acts much as a proxy to the system. Such direct manipu-
lation greatly simplifies the overall design.

Analyzing the PAC Blackjack GUI
To apply the PAC design pattern to the Blackjack GUI, you can simply reuse the analysis
that you did yesterday. Nothing about the analysis changes because you decide to use the
PAC pattern instead of MVC.

Designing the PAC Blackjack GUI
For the Blackjack game there is only one main interface: a GUI. You won’t be deploying
this game as a HTML web application (though you could easily turn it into an applet) or
to a PDA, thus it is safe to use the PAC design pattern.

It’s important to note that nothing forces you to remove the listener mechanisms that
you’ve already built into the system. It is still possible to have a command-line-based and
PAC-based GUI at the same time. In fact, through careful subclassing, you can leave all
of the original class definitions intact. When you want a GUI, you can simply instantiate

28 0672321092 CH19 08/22/2001 2:51 PM Page 471

the classes that support a GUI. When you want a command-line game, you can instanti-
ate the older classes. Choosing MVC or PAC does not necessarily exclude you from
using the other.

Just as in Chapter 18, “Blackjack Iteration 4: Adding a GUI,” you can take the completed
design and implementation from Chapter 17, “Blackjack Iteration 3: Adding Betting,” as
the basis for the new GUI. What you do need to do is figure out which of those classes
need their own presentation object. When you have those classes identified, you need to
design the abstraction layer. When that is done you can design the control.

Identifying the Presentation Layer Components
To identify the presentation layer components it helps to draw some sketches of the GUI
screen. This time you should associate parts of the screen with the underlying class
instead of associating them with a separate view.

Figure 19.1 isolates one part of the GUI. By carefully dissecting this screen segment, you
can identify some of the presentation components.

472 Day 19

FIGURE 19.1
A screen segment.

Card • • •

Name

Player
Card Hand

By slicing up the screen segment, you can see that the Card, Hand, and Player will need
to provide presentation objects. Figure 19.2 dissects the remaining part of the screen.

FIGURE 19.2
The GUI buttons.

Player

$10 $50 $100

Hit Stand New Game Quit

28 0672321092 CH19 08/22/2001 2:51 PM Page 472

Applying an Alternative to MVC 473

19

All of the buttons belong to the human Player, so the class that represents the human
player will need to extend the Player’s presentation and add buttons. The GUIPlayer
should have the same design as the one created for Chapter 18. Instead of repeating that
design here, go back and read the section “Implementing the GUIPlayer” in Chapter 18
if you need a refresher. The only difference between Chapter 18’s GUIPlayer and this
one is that this one will also provide a presentation of itself.

Designing the Abstraction Layer Components
From the last section you’ve identified that Card, Hand, and the various Player subclass-
es need to provide a presentation of themselves.

For each of these classes you need to create an abstraction subclass. In particular you
need to subclass BlackjackDealer, BettingPlayer, Hand, and Card. In addition you
need to create a GUIPlayer as in Chapter 18. However, this GUIPlayer also needs to pro-
vide a presentation as well.

Figure 19.3 illustrates the resulting Player inheritance hierarchy.

FIGURE 19.3
The Player abstraction
hierarchy.

Player

BlackjackDealer BettingPlayer

VBlackjackPlayer VBettingPlayer

DealerView

JPanel

JPanel

GUIPlayer

BettingView

GUIView

1

1

1

1

1
1 1

1

contains

creates

creates

creates

You need to create a VBlackjackDealer BlackjackDealer subclass. You also need to
create a VBettingPlayer BettingPlayer subclass. These subclasses will add support for
creating and returning presentation objects.

Figure 19.4 illustrates the resulting Hand and Card hierarchies.

28 0672321092 CH19 08/22/2001 2:51 PM Page 473

You’ll need to create a VCard Card subclass as well as a VHand Hand subclass. These sub-
classes will visualize the Card and Hand respectively. As in yesterday’s design, you also
need a VDeck. The VDeck will create a deck of VCards.

Designing the Control
The control is a relatively simple class. An instance of control will retrieve a
VBlackjackDealer as well as the various players. From each of these objects the control
will request a presentation object. The control will take that presentation object, and add
it to the display.

You’ll need to design a mechanism that the console can use to ask the abstraction layer
for its presentation objects. The easiest approach is to define an interface—let’s call it
Displayable. Displayable has one method: public JComponent view() which
retrieves a presentation object. Each abstraction class that provides a presentation will
need to implement this method.

Figures 19.5 and 19.6 show the updated hierarchies. The abstraction classes now realize
the Displayable interface.

Using the Factory Pattern to Avoid Common Errors
There is one small problem with the resulting hierarchy: nothing stops you from creating
a Deckpile of plain old un-displayable Cards and passing those to the dealer.
Substitutability relationships allow such a substitution. Unfortunately, you will experi-
ence run time errors if you mix and match the GUI and non-GUI classes incorrectly.

Chapter 12, “Advanced Design Patterns,” introduced the Abstract Factory design pattern.
One reason to use that pattern was to ensure that a set of objects get used together. This
prevents you from using incompatible objects together.

474 Day 19

FIGURE 19.4
The Hand and Card

abstraction hierarchy.

Card

VCard

JLabel JLabel

CardView

1

1

1*

creates

contains

Hand

VHand

HandView

1

1

creates

28 0672321092 CH19 08/22/2001 2:51 PM Page 474

Applying an Alternative to MVC 475

19

You can use a factory to ensure that the correct objects are used together. You’ll need to
create a factory that returns a VBlackjackDealer and a GUIPlayer that have been instan-
tiated with the correct types of arguments. When the control goes out to retrieve the play-
ers and the dealer, it should only do so through the factory. This extra layer will ensure
that all of the objects get instantiated properly.

FIGURE 19.5
The updated Player
abstraction hierarchy.

Player

BlackjackDealer BettingPlayer

VBlackjackPlayer VBettingPlayer

Displayable

+ view() : JComponent

DealerView

JPanel

JPanel

GUIPlayer

BettingView

GUIView

1

1

1

1

1
1 1

1

contains

creates

creates

creates

FIGURE 19.6
The updated Hand and
Card abstraction
hierarchy.

Displayable

+ view() : JComponent

Displayable

+ view() : JComponent

Card

VCard

JLabel JLabel

CardView

1

1

1*

creates

contains

Hand

VHand

HandView

1

1

creates

28 0672321092 CH19 08/22/2001 2:51 PM Page 475

Implementing the PAC Blackjack GUI
Yesterday’s lesson pointed out that while implementing a GUI, it is often easiest to work
from the bottom up. Following that advice you should implement in the following order:
VCard, VHand, VBettingPlayer, VBlackjackGUI, and the GUIPlayer. Let’s review each
implementation.

Implementing the VCard and VHand
The VCard inherits from Card and represents itself through the internal class: CardView.
Listing 19.1 presents the implementation of VCard.

LISTING 19.1 VCard.java

public class VCard extends Card implements Displayable {

private String image;
private CardView view;

public VCard(Suit suit, Rank rank, String image) {
super(suit, rank);
this.image = image;
view = new CardView(getImage());

}

public void setFaceUp(boolean up) {
super.setFaceUp(up);
view.changed();

}

public JComponent view() {
return view;

}

private String getImage() {
if(isFaceUp()) {

return image;
} else {

return “/bitmaps/empty_pile.xbm”;
}

}

private class CardView extends JLabel {

public CardView(String image) {
setImage(image);
setBackground(Color.white);
setOpaque(true);

476 Day 19

28 0672321092 CH19 08/22/2001 2:51 PM Page 476

Applying an Alternative to MVC 477

19

LISTING 19.1 continued

}

public void changed() {
setImage(getImage());

}

private void setImage(String image) {
java.net.URL url = this.getClass().getResource(image);
ImageIcon icon = new ImageIcon(url);
setIcon(icon);

}

}

}

This implementation of VCard is much like the one presented earlier with the exception
of the inner presentation class. Upon creation, the VCard creates and holds onto a presen-
tation view of itself.

You’ll also notice that the new image attribute is now completely encapsulated within the
VCard. For an outside entity to display the image, it must ask the VCard for a view.
Furthermore, whenever the card is turned over, the VCard automatically tells its presenta-
tion view to update itself by calling changed() on the view. Unlike the MVC pattern, all
of the control is held within the abstraction itself.

VHand is similar to VCard. Upon creation the VHand creates a presentation of itself.
Listing 19.2 presents VHand’s implementation.

LISTING 19.2 VHand.java

public class VHand extends Hand implements Displayable {

private HandView view = new HandView();

public JComponent view() {
return view;

}

// you need to override addCard and reset so that when the hand changes, the
// change propagates to the view
public void addCard(Card card) {

super.addCard(card);
view.changed();

}

28 0672321092 CH19 08/22/2001 2:51 PM Page 477

LISTING 19.2 continued

public void reset() {
super.reset();
view.changed();

}

private class HandView extends JPanel {
public HandView() {

super(new FlowLayout(FlowLayout.LEFT));
setBackground(new Color(35, 142, 35));

}
public void changed() {

removeAll();
Iterator i = getCards();
while(i.hasNext()) {

VCard card = (VCard) i.next();
add(card.view());

}
revalidate();

}
}

}

Like VCard, VHand tells its view to update itself whenever the VHand changes.

Implementing the VBettingPlayer
The idea behind the VBettingPlayer is much the same as that behind VHand and VCard.
Listing 19.3 presents the VBettingPlayer implementation.

LISTING 19.3 VBettingPlayer.java

public abstract class VBettingPlayer extends BettingPlayer implements
Displayable {

private BettingView view;

public VBettingPlayer(String name, VHand hand, Bank bank) {
super(name, hand, bank);

}

public JComponent view() {
if(view == null) {

view = new BettingView((VHand) getHand());
addListener(view);

}

478 Day 19

28 0672321092 CH19 08/22/2001 2:51 PM Page 478

Applying an Alternative to MVC 479

19

LISTING 19.3 continued

return view;
}

private class BettingView extends JPanel implements PlayerListener {

private TitledBorder border;

public BettingView(VHand hand) {
super(new FlowLayout(FlowLayout.LEFT));
buildGUI(hand.view());

}

public void playerChanged(Player p) {
String name = VBettingPlayer.this.getName();
border.setTitle(name);
repaint();

}

public void playerBusted(Player p) {
String name = VBettingPlayer.this.getName();
border.setTitle(name + “ BUSTED!”);
repaint();

}

// the rest of the PlayerListener methods have been snipped for brevity
// they all follow the same pattern, please see source for full listing

private void buildGUI(JComponent hand) {
border = new TitledBorder(VBettingPlayer.this.getName());
setBorder(border);
setBackground(new Color(35, 142, 35));
border.setTitleColor(Color.black);
add(hand);

}
}

}

VBettingPlayer creates its view and sets it as a listener. Whenever the player changes,
the view automatically knows to update itself. Of interest is the buildGUI() method. The
buildGUI() method sets up the view.

You’ll notice that instead of grabbing each card in the hand and constructing a view,
BettingView simply takes the VHand’s view and inserts it into itself. The VHand will
manage the display of the cards. All that BettingView has to do is insert the view into
itself and keep the title status up to date.

28 0672321092 CH19 08/22/2001 2:51 PM Page 479

Implementing the VBlackjackDealer
VBlackjackDealer works exactly the same as VBettingPlayer. Listing 19.4 presents the
implementation of VBlackjackDealer.

LISTING 19.4 VBlackjackDealer.java

public class VBlackjackDealer extends BlackjackDealer implements Displayable {

private DealerView view;

public VBlackjackDealer(String name, VHand hand, Deckpile cards) {
super(name, hand, cards);

}

public JComponent view() {
if(view == null) {

view = new DealerView((VHand) getHand());
addListener(view);

}
return view;

}

private TitledBorder border;

public DealerView(VHand hand) {
super(new FlowLayout(FlowLayout.LEFT));
String name = VBlackjackDealer.this.getName();
border = new TitledBorder(name);
setBorder(border);
setBackground(new Color(35, 142, 35));
border.setTitleColor(Color.black);

add(hand.view());
repaint();

}

public void playerChanged(Player p) {
String name = VBlackjackDealer.this.getName();
border.setTitle(name);
repaint();

}

public void playerBusted(Player p) {
String name = VBlackjackDealer.this.getName();
border.setTitle(name + “ BUSTED!”);
repaint();

}

480 Day 19

28 0672321092 CH19 08/22/2001 2:51 PM Page 480

Applying an Alternative to MVC 481

19

LISTING 19.4 continued

// the rest of the PlayerListener methods have been snipped for brevity
// they all follow the same pattern, please see source for full listing

}

}

DealerView listens for changes to the VBlackjackDealer. As these changes occur the
view updates its title. The VHand takes care of keeping the card view up to date.

Implementing the GUIPlayer
Every non-GUI aspect of the GUIPlayer class is the same as the one presented yesterday.
Like the other abstraction layer classes, GUIPlayer defines an inner presentation class.

This class combines Chapter 18’s OptionView and OptionViewController classes. The
presentation code isn’t all that different than the original view and controller classes. For
a full listing please be sure to download today’s source code from
www.samspublishing.com.

Putting It All Together with the Control
Before creating the control, you need to create the player factory. Listing 19.5 presents
the implementation of VPlayerFactory.

LISTING 19.5 VPlayerFactory.java

public class VPlayerFactory {

private VBlackjackDealer dealer;
private GUIPlayer human;
private Deckpile pile;

public VBlackjackDealer getDealer() {
// only create and return one
if(dealer == null) {

VHand dealer_hand = getHand();
Deckpile cards = getCards();
dealer = new VBlackjackDealer(“Dealer”, dealer_hand, cards);

}
return dealer;

}

public GUIPlayer getHuman() {

28 0672321092 CH19 08/22/2001 2:51 PM Page 481

LISTING 19.5 continued

// only create and return one
if(human == null) {

VHand human_hand = getHand();
Bank bank = new Bank(1000);
human = new GUIPlayer(“Human”, human_hand, bank, getDealer());

}
return human;

}

public Deckpile getCards() {
// only create and return one
if(pile == null) {

pile = new Deckpile();
for(int i = 0; i < 4; i ++) {

pile.shuffle();
Deck deck = new VDeck();
deck.addToStack(pile);
pile.shuffle();

}
}
return pile;

}

private VHand getHand() {
return new VHand();

}

}

VPlayerFactory ensures that VBlackjackDealer and GUIPlayer are instantiated proper-
ly. Listing 19.6 presents the setup() method from BlackjackGUI: the control.

LISTING 19.6 The setUp() Method from the BlackjackGUI Control

public class BlackjackGUI extends JFrame {

// SNIP!! some code omitted for brevity

private JPanel players = new JPanel(new GridLayout(0, 1));

private void setUp() {
VBlackjackDealer dealer = factory.getDealer();

GUIPlayer human = factory.getHuman();

482 Day 19

28 0672321092 CH19 08/22/2001 2:51 PM Page 482

Applying an Alternative to MVC 483

19

LISTING 19.6 continued

dealer.addPlayer(human);

players.add(dealer.view());
players.add(human.view());
getContentPane().add(players, BorderLayout.CENTER);

}
}

setUp() simply retrieves each player, adds their views to itself, and connects the dealer
to the players. Contrast that with Listing 19.7, yesterday’s setUp() method.

LISTING 19.7 The setUp() Method from the MVC BlackjackGUI

private void setUp() {
BlackjackDealer dealer = getDealer();
PlayerView v1 = getPlayerView(dealer);

GUIPlayer human = getHuman();
PlayerView v2 = getPlayerView(human);

PlayerView [] views = { v1, v2 };
addPlayers(views);

dealer.addPlayer(human);

addOptionView(human, dealer);
}

It seems that simply asking the abstraction for a view is much simpler than creating and
hooking together the various views from the MVC version.

Summary
Today you saw an alternative to the MVC. If your system is relatively stable and has one
well defined UI, the PAC approach may offer a more elegant solution than MVC.

Even if you do need to support multiple interfaces, today’s lesson shows how you can
use inheritance to separate the abstraction layer from the core of the system. Thus, to
support multiple interfaces, you need only to create a subclass for each presentation type.

28 0672321092 CH19 08/22/2001 2:51 PM Page 483

Q&A
Q If PAC provides a better choice, why did we bother doing the MVC

implementation?

A PAC simply provides an alternative. One is not necessarily better than the other.
It’s just a design decision.

The fact is you’ll run into MVC a lot in the industry. You may run into PAC but it’s
much less likely. So covering MVC first is more pragmatic. Personally, I tend to
favor PAC.

Keep both options in mind. What you never want to do is code your business logic
(classes such as BettingPlayer) directly as a GUI component. For example, the
BettingPlayer should never extend JComponent (or some other GUI component)
directly. Both the MVC and PAC provide you with a mechanism that avoids mud-
dling your model and the GUI together. The patterns just take different approaches.
Which you choose depends on your design and your design team.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. What are the three layers of the PAC design pattern?

2. Give a brief description of each of the PAC layers.

3. How can you use inheritance to decouple the GUI from the underlying system
classes?

4. Before using the PAC, what characteristics should your project exhibit?

5. Even though you used PAC throughout this lesson, how were you still able to pro-
vide a command line UI for the system?

6. How was the factory pattern used in this chapter?

Exercises
1. Download the source code for today’s iteration. When you have the code, compile

it, run it by executing BlackjackGUI, and then try to understand how it works.
Gaining a full understanding of the code will take some time and patience.

2. Exercise 2 from Chapter 17 asked you to add doubling down to the Blackjack
game. You need to add doubling down to the game again. This time, add it to the
graphical version of the game that you downloaded for Exercise 1.

484 Day 19

28 0672321092 CH19 08/22/2001 2:51 PM Page 484

DAY 20

WEEK 3

Having Some Fun with
Blackjack

Over the past few days, you’ve worked on a fairly intense OOP project. Today
you get to kick back and have a little fun with the Blackjack game by using
polymorphism to add a number of non-human players to the game. You’ll also
get to see how OO lends itself to simulators.

Today you will learn how you can

• Use polymorphism to add players to the Blackjack game

• Use OO to create simulators

Having Fun with Polymorphism
The game of Blackjack allows for up to seven players to play at any given time.
Up until now the game that you’ve created has only included a human player
and the dealer. Luckily, polymorphism allows you to add non-human players to
the game.

29 0672321092 CH20 08/22/2001 2:53 PM Page 485

Creating a Player
To create a new non-human player, simply create a new class that inherits from
BettingPlayer. All that your new class needs to do is implement the following two
abstract methods:

• public boolean hit()

• public void bet()

The behavior that you provide for these two methods will determine how the player
plays its turn. You won’t need to alter any states or override any other methods. The
default states know how to use the methods that you implement.

When you’ve finished defining the new player class, you can alter BlackjackGUI to cre-
ate the player and add it to the game.

The Safe Player
Let’s create a new player: SafePlayer. SafePlayer never hits and always bets the small-
est allowed bet. Listing 20.1 presents the SafePlayer definition.

LISTING 20.1 SafePlayer.java

public class SafePlayer extends BettingPlayer {

public SafePlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit() {
return false;

}

public void bet() {
getBank().place10Bet();

}
}

You’ll note that hit() always returns false; the SafePlayer will never hit. Likewise, the
SafePlayer always calls place10Bet().

Adding the SafePlayer to the GUI
Adding the SafePlayer to the game is relatively straightforward. First, add the following
method to BlackjackGUI:

486 Day 20

29 0672321092 CH20 08/22/2001 2:53 PM Page 486

Having Some Fun with Blackjack 487

20

LISTING 20.2 The getSafePlayer() Method

private Player getSafePlayer() {
// return as many as called for
Hand safe_hand = new Hand();
Bank safe_bank = new Bank(1000);
return new SafePlayer(“Safe”, safe_hand, safe_bank);

}

getSafePlayer() is a factory method that instantiates SafePlayers. When you have the
method, you can update setUp() so that it adds the new player to the game. Listing 20.3
presents the updated setUp() method.

LISTING 20.3 The Updated setUp() Method

private void setUp() {
BlackjackDealer dealer = getDealer();
PlayerView v1 = getPlayerView(dealer);

GUIPlayer human = getHuman();
PlayerView v2 = getPlayerView(human);

Player safe = getSafePlayer();
PlayerView v3 = getPlayerView(safe);

PlayerView [] views = { v1, v2, v3 };
addPlayers(views);

dealer.addPlayer(human);
dealer.addPlayer(safe);

addOptionView(human, dealer);
}

You’ll also want to alter the GUI’s main method so that it makes the window a bit bigger so
that the new player can fit. Figure 20.1 illustrates the new player as it appears in the GUI.

Here the player is added as a second player who plays after the human. Nothing stops
you from letting the non-human play first.

Polish
You can add any number and type of BettingPlayer to the game that you like. As the
number of player options gets larger, you may want to provide the user with a dialog box
that allows him to set the player mix. At very least, you’ll want to make the setUp()
method protected so that subclasses can overwrite the method. When protected, you can
write subclasses that create games with different player mixes.

29 0672321092 CH20 08/22/2001 2:53 PM Page 487

OOP and Simulations
As pointed out in an earlier lesson, when you write an OOP system you are actually writ-
ing a living simulator a some real life problem. This week you’ve written a system that
simulates the game of Blackjack.

So far, the game has been human-player centric. You want a person with which to play
the game, yet the system does not care if there is a human playing or not. To the system,
all players are Player objects. The system just cares that there are Players.

By creating different types of players and adding them to the system, you can have a
game of Blackjack that plays by itself without human interaction: a Blackjack simulator.

A Blackjack simulator can be useful for a number of reasons. Maybe you would like to
create players that utilize different strategies so you can see which strategies work best.

Perhaps you are doing AI research and would like to write a neural network that learns
how to play an optimal game of Blackjack. You can use a Blackjack simulator to accom-
plish all of these goals.

In today’s chapter and exercises you will create a number of players to be able to find
out if you can beat the blackjack dealer over time.

The Blackjack Players
You’ve already seen a SafePlayer. It’ll be interesting to see how the SafePlayer per-
forms over time. In addition to the SafePlayer let’s define

488 Day 20

FIGURE 20.1
The GUI containing
three players.

29 0672321092 CH20 08/22/2001 2:53 PM Page 488

Having Some Fun with Blackjack 489

20

• FlipPlayer: a player who alternates between hitting and staying

• OneHitPlayer: a player who always hits once per turn

• SmartPlayer: a player who stands on any hand greater than 11

You may notice the lack of use cases for these players. As an exercise, you
might want to work through use cases for the players. However, a tenet of
this book has been to perform only the amount of analysis that makes sense
and adds value to your understanding of the problem. In my opinion, use
cases wouldn’t help your understanding in this case, and seem more like cre-
ating documentation simply for the sake of documentation.

Note

Implementing the FlipPlayer
The implementation of FlipPlayer is a little more complicated than that of SafePlayer.
Listing 20.4 presents the FlipPlayer implementation.

LISTING 20.4 FlipPlayer.java

public class FlipPlayer extends BettingPlayer {

private boolean hit = false;
private boolean should_hit_once = false;

public FlipPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit() {
if(should_hit_once && !hit) {

hit = true;
return true;

}
return false;

}

public void reset() {
super.reset();
hit = false;
should_hit_once = !should_hit_once;

}

public void bet() {
getBank().place10Bet();

}
}

29 0672321092 CH20 08/22/2001 2:53 PM Page 489

The FlipPlayer needs to keep two boolean flags. One flag tells the player whether it
should hit at all that turn, and the other flag tracks whether the player has taken a hit dur-
ing that round. The flags ensure that the player only hits once every other game.

To enable all of the boolean logic to work out, you’ll need to override the reset()
method to flip the boolean state of should_hit_once. Overriding reset() in this way
ensures that the player will hit every other game, and only once per game
when it does hit.

Implementing the OneHitPlayer
OneHitPlayer is similar in implementation to FlipPlayer. Unlike FlipPlayer,
OneHitPlayer will hit every game, but only once. Listing 20.5 presents the implementa-
tion of OneHitPlayer.

LISTING 20.5 OneHitPlayer.java

public class OneHitPlayer extends BettingPlayer {

private boolean has_hit = false;

public OneHitPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit() {
if(!has_hit) {

has_hit = true;
return true;

}
return false;

}

public void reset() {
super.reset();
has_hit = false;

}

public void bet() {
getBank().place10Bet();

}
}

Again, you need to override reset() so that it clears the has_hit flag. This flag ensures
that the player only hits once per turn.

490 Day 20

29 0672321092 CH20 08/22/2001 2:53 PM Page 490

Having Some Fun with Blackjack 491

20

Implementing the SmartPlayer
SmartPlayer has a very simple implementation. Listing 20.6 presents the
implementation.

LISTING 20.6 SmartPlayer.java

public class SmartPlayer extends BettingPlayer {

public SmartPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit() {
if(getHand().total() > 11) {

return false;
}
return true;

}

public void bet() {
getBank().place10Bet();

}
}

The SmartPlayer checks its Hand’s total. If the total is greater than eleven, the player
stands. If it is lower, the player hits.

Setting Up the Simulator
To turn the game into a simulator, you can simply alter the main found in the Blackjack
class. Here we’ll copy and rename the class to BlackjackSim. Listing 20.7 presents the
new simulator.

LISTING 20.7 BlackjackSim.java

public class BlackjackSim {

public static void main(String [] args) {

Console.INSTANCE.printMessage(“How many times should the simulator
play?”);

String response = Console.INSTANCE.readInput(“invalid”);
int loops = Integer.parseInt(response);

Deckpile cards = new Deckpile();
for(int i = 0; i < 4; i ++) {

cards.shuffle();

29 0672321092 CH20 08/22/2001 2:53 PM Page 491

LISTING 20.7 continued

Deck deck = new Deck();
deck.addToStack(cards);
cards.shuffle();

}

// create a dealer
Hand dealer_hand = new Hand();
BlackjackDealer dealer = new BlackjackDealer(“Dealer”, dealer_hand,

cards);

// create a OneHitPlayer
Bank one_bank = new Bank(1000);
Hand one_hand = new Hand();
Player oplayer = new OneHitPlayer(“OneHit”, one_hand, one_bank);

// create a SmartPlayer
Bank smart_bank = new Bank(1000);
Hand smart_hand = new Hand();
Player smplayer = new SmartPlayer(“Smart”, smart_hand, smart_bank);

// create a SafePlayer
Bank safe_bank = new Bank(1000);
Hand safe_hand = new Hand();
Player splayer = new SafePlayer(“Safe”, safe_hand, safe_bank);

// create a FlipPlayer
Bank flip_bank = new Bank(1000);
Hand flip_hand = new Hand();
Player fplayer = new FlipPlayer(“Flip”, flip_hand, flip_bank);

// hook all of the players together
dealer.addListener(Console.INSTANCE);
oplayer.addListener(Console.INSTANCE);
dealer.addPlayer(oplayer);
splayer.addListener(Console.INSTANCE);
dealer.addPlayer(splayer);

smplayer.addListener(Console.INSTANCE);
dealer.addPlayer(smplayer);
fplayer.addListener(Console.INSTANCE);
dealer.addPlayer(fplayer);

int counter = 0;
while(counter < loops) {

dealer.newGame();
counter ++;

}
}

}

492 Day 20

29 0672321092 CH20 08/22/2001 2:53 PM Page 492

Having Some Fun with Blackjack 493

20

The simulator will first query you for a number of times to play. When it has that infor-
mation it will create a BlackjackDealer, a OneHitPlayer, a SmartPlayer, and a
FlipPlayer. It will then connect these players to the Console and add them to the dealer.

When it is done with the setup, it will play the game for the number of times that you
specified.

The Results
After running the simulator a few times at 1000 games per run, it becomes easy to see
how the players stack up. Here are the results from greatest to smallest holdings:

• SmartPlayer

• SafePlayer

• FlipPlayer

• OneHitPlayer

It appears that of these four players staying on a hand that is greater that 11 is the best
approach. In fact, the SmartPlayer was the only player left with any money at all after
1000 games.

SafePlayer comes a close second, but it actually ended up losing money. And whatever
you do don’t flip or take one hit. These players lost more money than their initial pot.

None of these players ended up with more money than they started. The
players only differed in the rate at which they lost their money.

Note

Summary
You learned an important lesson today: Don’t follow any of today’s strategies while play-
ing blackjack. You’ll lose all of your money!

You also got to see first hand how polymorphism allows you to write future proof software.
You were able to introduce player types to the system without having to alter the core sys-
tem. These player types were not even considered when you built the initial system.

Q&A
Q Is there a reason that you didn’t use the GUI as a basis for your simulator?

A I could have used the GUI instead of the console. It could have been entertaining to
see the games flash by. Usually a simulator has no UI. Instead, the simulator will
spit out some statistics at the end.

29 0672321092 CH20 08/22/2001 2:53 PM Page 493

There are also practical limits to a GUI. GUIs do take some time to refresh.
Playing 1000 visual games could take a bit longer than playing them on the com-
mand line.

Various versions of Swing also suffer from slow memory leaks. These leaks might
come and bite you if you run through 10,000 visual games.

For testing purposes however, you might consider using the GUI as a basis for the
simulator.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. How did polymorphism allow the game to play without a human player?

2. Which betting strategy will you never emulate?

Exercises
1. Download the source code for today’s iteration from www.samspublishing.com.

The code is broken into four separate directories: gui, simulation, exercise_2,
and exercise_3.

gui contains a GUI that has a human player and a SafePlayerU.

simulation contains the simulation code. simulation has the following players:
OneHitPlayer, FlipPlayer, SafePlayer, and SmartPlayer.

exercise_2 and exercise_3 contain the files that you will need for Exercises 2
and 3 as well as the solutions.

Study the code in gui and simulator. Try to understand how it all works. When
you have done that, complete Exercises 2 and 3.

2. The download contains all of the starting files that you will need to complete this
exercise. The starting files make changes to the hit method first declared in
Player.

The changes add Dealer as a parameter. The method getUpCard has been added to
Dealer so that you can obtain the Dealer’s up card. In a real game of Blackjack,
the players can see the dealer’s up card. You can use that information to make
some smarter moves.

494 Day 20

29 0672321092 CH20 08/22/2001 2:53 PM Page 494

Having Some Fun with Blackjack 495

20

For this exercise, write one or two new players that base their hit decision on their
own total as well as the dealer’s up card. Here are two suggestions, but feel free to
implement your own players and add them to the simulator and see how they do:

KnowledgeablePlayer

KnowledgeablePlayer should base the decision whether or not to hit on the fol-
lowing rules:

No matter what, if the hand total is greater than 15, stand.

If the hand total is 11 or less, hit.

If the hand is 15 or less and greater than 11, base the decision to hit on the dealer’s
card. If the dealer’s card is greater than 7, hit; otherwise, you should stand.

OptimalPlayer

OptimalPlayer is as close to optimal that you can get without differentiating
between soft and hard hands. (Differentiating is left as an exercise to the reader.)

OptimalPlayer should base the decision whether or not to hit on the following
rules:

If the hand total is greater than or equal to 17, stand.

If the hand total is 11 or less, hit.

If the hand total is 16, base the decision to hit or stand on the dealer’s up card. If
the up card is seven, eight, or nine, hit; otherwise, stand.

If the hand total is 13, 14, or 15, base the decision to hit or stand on the dealer’s up
card. If the up card is 2, 3, 4, 5, or 6, stand; otherwise, hit.

If the hand total is 12, base the decision to hit or stand on the dealer’s up card. If
the up card is 4, 5, or 6, stand; otherwise, hit.

3. The download contains all of the starting files that you need to complete this exer-
cise. The starting files add doubling down support to the classes. Additionally the
new doubleDown method now accepts a Dealer as argument.

The changes add Dealer as a parameter to doubleDown. The method getUpCard
has been added to Dealer so that you can obtain the Dealer’s up card. In a real
game of Blackjack the player’s can see the dealer’s up card. You can use that infor-
mation to make some smarter moves.

For this exercise, write one or two new players that base their hit and double-down
decision on their own total as well as the dealer’s up card. Here are two sugges-
tions, but feel free to implement your own players and add them to the simulator
and see how they do:

29 0672321092 CH20 08/22/2001 2:53 PM Page 495

KnowledgeablePlayer

For hitting, follow the rules laid out in Exercise 2.

For the doubling down, follow these rules:

If the hand total is 10 or 11, double down. In all other cases, do not double down.

OptimalPlayer

For hitting, follow the rules laid out in Exercise 2.

For the doubling down, follow these rules:

If the hand total is 11, always double down.

If the hand total is 10, base the decision to double down on the dealer’s up card. If
the up card is worth 10 or is an ace, double down; otherwise, do not double down.

If the hand total is 9, base the decision to double down on the dealer’s up card. If
the up card is 2, 3, 4, 5, or 6, double down; otherwise, do not double down.

In all other cases, do not double down.

496 Day 20

29 0672321092 CH20 08/22/2001 2:53 PM Page 496

DAY 21

WEEK 3

The Final Mile
Congratulations! You’ve made it to the final lesson in this book. You’ve come a
long way. You should now have the foundation that you need to be successful
as you continue your studies of OOP.

Today we will clean up some loose ends and then send you on your way!

Today you will learn about

• Refactoring the Blackjack design for reuse in other systems

• The benefits that OOP brought to the Blackjack game

• Realities in the industry that may prevent total OO solutions

Tying Up the Loose Ends
You’ve covered a lot of ground during the past three weeks. You started by con-
sidering basic OO theory and worked your way through an entirely OOP based
project. You should now have a good idea what OOP truly means.

30 0672321092 CH21 08/22/2001 2:43 PM Page 497

Before completing the book, however, there are three issues left to cover:

• Refactoring the Blackjack design for reuse in other systems

• A survey of the benefits that OOP brought to the Blackjack system

• A word about industry realities and OOP

Refactoring the Blackjack Design for Reuse in Other
Systems
There is a small issue related to the Blackjack game design that we need to examine.
This issue does not impact the Blackjack game, but it could negatively impact another
OO system if it reuses the design incorrectly.

On Day 15 you saw two alternative solutions. In one solution the dealer loops over its
players telling each to play after the previous player completes. You then saw a more
object based approach to the game loop.

Instead of the dealer going through the players one by one and telling them what to do,
the OO dealer started each player and waited for the player to tell him when it was done
playing.

This offered a cleaner solution because you left it up to the player to tell the dealer when
it was done—only then did the dealer continue. It also turns out that this design was
absolutely required for the GUI to work; otherwise, a human player would instantly
return, and if the dealer were looping, the dealer would tell the next player to go. The
human player would never get a turn in the procedural approach!

The Design Problem
There is a small problem with the approach as outlined in the lessons. Let’s trace through
the method calls in a game where there is one player and a dealer. Both players stand
during their turn.

Listing 21.1 represents a trace of all method calls in the game. The stack terminates
when a method returns.

LISTING 21.1 A Method Stack Track

BlackjackSim.main
BlackjackDealer.newGame
Player.play
BlackjackDealer$DealerCollectingBets.execute
Player.play
BettingPlayer$Betting.execute

498 Day 21

30 0672321092 CH21 08/22/2001 2:43 PM Page 498

The Final Mile 499

21

LISTING 21.1 continued

BlackjackDealer.doneBetting
Player.play
BlackjackDealer$DealerCollectingBets.execute
BlackjackDealer$DealerDealing.execute
BlackjackDealer$DealerWaiting.execute
Player.play
Player$Playing.execute
Player$Standing.execute
BlackjackDealer.standing
Player.play
BlackjackDealer$DealerWaiting.execute
Player$Playing.execute
BlackjackDealer$DealerStanding

The problem is subtle. None of the methods return until the dealer finishes his turn! The
methods recursively call one another. So for example, the notifyChanged method in
Listing 21.2 will not execute until the current game ends.

LISTING 21.2 A Method That Will Not Get Called Until After the Current Game Ends

public void execute(Dealer dealer) {
if(hit(dealer)) {

dealer.hit(Player.this);
} else {

setCurrentState(getStandingState());
notifyStanding();

}
current_state.execute(dealer);
// transition

// will not get called until stack unwinds!!!!
notifyChanged();

}

In the Blackjack game, this is not really a problem because there is a limit of seven play-
ers and the method call stack unwinds after every game. You can also code carefully
around problems like the one demonstrated in Listing 21.2.

However, imagine a simulator with hundreds or thousands of objects that follow the
Blackjack game design. If these objects call one another recursively, even if the stack
does eventually unwind, you could end up running out of memory. Either way, each
method call will allocate more memory. If you follow this design unaltered, your system
either will not run or will require a whole lot more memory than absolutely necessary.

30 0672321092 CH21 08/22/2001 2:43 PM Page 499

Sewing a Solution with Threads
Luckily there is a solution: threads. While a full discussion of threading is well beyond
the scope of this book, you’ll see how you can use threading to solve the method call
problem quickly.

500 Day 21

Almost every non-trivial system will share two characteristics:

• They will be threaded

• They will have state logic

The Blackjack system shares both of these characteristics.

Note

A thread is simply a path of execution through your program. So far, the Blackjack sys-
tem has one thread of execution. Figure 21.1 helps visualize that single thread.

FIGURE 21.1
The single threaded
Blackjack system.

Single Threaded
Blackjack System

One
Thread

Because the Blackjack game is single threaded (it only has one thread), that single thread
does everything.

Threading allows you to create multiple threads of execution through your program. By
creating multiple threads, your program can do many different things at the same time.
Figure 21.2 helps visualize two threads running through the Blackjack system.

Threading the Blackjack system can allow a method to return right away. Let’s look at a
simple thread example from Java. Listing 21.3 presents a simple thread that prints out
“Hello World!”.

30 0672321092 CH21 08/22/2001 2:43 PM Page 500

The Final Mile 501

21

LISTING 21.3 A Threaded “Hello World!”

public class HelloWorld {

public void sayHello() {
System.out.println(“Hello World!”);

}

public static void main(String [] args) {
final HelloWorld hw = new HelloWorld();

Runnable runnable = new Runnable() {
public void run() {

hw.sayHello();
}

};

Thread thread = new Thread(runnable);
thread.start();

System.out.println(“All Done!”);

}

}

HelloWorld itself is a simple class that has one method: sayHello. sayHello prints out a
message to the command line.

The main is where it gets interesting. First, the main instantiates HelloWorld. It then cre-
ates an anonymous Runnable class. Runnables have one method: run. run tells the thread
what to do when it is started. In this case it will tell the HelloWorld instance to print its
message.

FIGURE 21.2
The multithreaded

Blackjack system.

Multi Threaded
Blackjack System

Two
Threads

30 0672321092 CH21 08/22/2001 2:43 PM Page 501

After creating the Runnable, the main instantiates a Java Thread. When you create a
Thread you need to pass it a Runnable. The Runnable’s run method tells the Thread
what to do when you tell the Thread to start. After starting the Thread the main prints
out a message of its own.

You may be surprised when you see the main run. Figure 21.3 presents the output of
HelloWorld.

502 Day 21

FIGURE 21.3
The output of
HelloWorld.

When running HelloWorld, you’ll find that “All Done” gets printed before “Hello
World!” The call to Thread.start does not block like other method calls. Because start
starts a new thread of execution it automatically returns. After you call start you have
two threads of execution in the HelloWorld program. It just so happens that the main
prints its message before the new thread gets a chance to call sayHello.

You can use the fact that start does not block to fix the design shortcoming in the
Blackjack game. Listing 21.4 presents a new Waiting state for the BlackjackDealer that
starts each player on its own thread.

LISTING 21.4 A Threaded DealerWaiting

private class DealerWaiting implements PlayerState {
public void handChanged() {

// not possible in waiting state
}
public void handPlayable() {

// not possible in waiting state
}
public void handBlackjack() {

// not possible in waiting state
}
public void handBusted() {

// not possible in waiting state
}

30 0672321092 CH21 08/22/2001 2:43 PM Page 502

The Final Mile 503

21

LISTING 21.4 continued

public void execute(final Dealer dealer) {
if(!waiting_players.isEmpty()) {

final Player player = (Player) waiting_players.get(0);
waiting_players.remove(player);
Runnable runnable = new Runnable() {

public void run() {
player.play(dealer);

}
};
Thread thread = new Thread(runnable);
thread.start();

} else {
setCurrentState(getPlayingState());
exposeHand();
getCurrentState().execute(dealer);
// transition and execute

}
}

}

By starting each player on its own thread, the BlackjackDealer’s state execute method
can return right away, thus unrolling the stack. This does interject some difficulties if you
loop calls to newGame because newGame will now return before the game is actually fin-
ished. If you loop, you’ll start another game before the last has finished and then you’ll
run into all kinds of nasty problems. You can solve this problem by telling the
BlackjackDealer how many times to loop. At the end of each game, it can check to see
if it needs to play again.

Threading is just one way to solve the problem with recursion. I presented a
threaded solution here to give you some exposure to threads.

The loop/thread problem raises some concerns. You could also create a
GameTable object that would start and stop the threads. The Dealer could
then listen to the table’s state and deal, hit, fulfill, and so on based on the
state. However, such an approach is a bit more involved than simply thread-
ing the players as they start.

You could also get rid of the recursion through iteration over the players.

Note

The good news is that if you don’t loop, such as in the GUI, you can easily thread by
simply changing the BlackjackDealer’s DealerWaiting state! The downloadable source
contains threaded versions of the GUI.

30 0672321092 CH21 08/22/2001 2:43 PM Page 503

Identifying the Benefits the OOP Brought to the
Blackjack System
The first week pointed out some of the goals and benefits of OOP. To recap, OOP
attempts to produce software that is

1. Natural

2. Reliable

3. Reusable

4. Maintainable

5. Extendable

6. Timely

OOP brought each of these benefits to the Blackjack system. The Blackjack system ful-
fills each of the goals of OOP:

• Natural: The Blackjack system naturally models a game of Blackjack.

The Blackjack system exists in the terms of an actual Blackjack game. The
Blackjack system is made up of Players, a BlackjackDealer, Cards, Decks, and a
DeckPile. As you see, the Blackjack game is a living simulation of the Blackjack
domain.

• Reliable: The Blackjack system is reliable.

Through a combination of careful testing and encapsulation you’ve created a reli-
able Blackjack system. Because you have isolated knowledge and responsibility
and placed them where they belong, you can make enhancements to the system
without worrying about negatively impacting unrelated parts of the system.

• Reusable: The Blackjack system is reusable.

Because this was the first card game that you have written, there wasn’t a lot of
emphasis placed on writing an abstract card game framework. Instead, you wrote a
Blackjack game. As a result the game is not completely reusable; however, classes
such as Card, Deck, and Deckpile can be reused across almost any card game.

504 Day 21

It is easy to thread the Blackjack game because only one player thread runs
at any given time. You don’t have many different player threads running
concurrently.

Threading becomes tricky when many threads run concurrently and share
the same data!

Caution

30 0672321092 CH21 08/22/2001 2:44 PM Page 504

The Final Mile 505

21

Furthermore, many of the design ideas are reusable across many problems. As you
write more card games, you will be able to abstract further and create a fully
reusable framework.

• Maintainable: The Blackjack system is maintainable.

By encapsulating knowledge and responsibility where they belong, it is simple to
make changes to one part of the system without negatively impacting other unrelat-
ed parts of the system.

Such divisions make it possible to make improvements to the system at any time.
You’ve also seen first hand how inheritance and polymorphism make it possible to
add new players to the system at any time.

• Extendable: The Blackjack system is extendable.

You saw firsthand how you can add new players to the system. Furthermore,
through careful inheritance you can introduce new types of cards (such as visual
cards) and hands. The iterative process proved just how extendable an OOP system
can be.

• Timely: The Blackjack system is timely.

You were able to produce a full Blackjack game in four iterations—a week’s worth
of time. Now that’s timely!

Industry Realities and OOP
The lessons of this book have assumed that you’re starting your OOP projects from
scratch. When you start from scratch you don’t have to integrate into legacy, non-OO,
backend systems. You don’t have to reuse procedural libraries. You can start fresh and
everything that you use can be OO.

You’ll find that a standalone OOP project is rare. Most times you will need to interact
with non-OO components. Take the case of relational databases. Relational databases are
not particularly object-oriented, and object-oriented databases are still rarely used outside
of some niche industries.

Java itself is not even fully object oriented. The reliance on non-OO primitives make you
perform some non-OO coding from time to time.

When faced with these realities, it is best to bite the bullet and wrap these non-OO
aspects in an object-oriented wrapper. For example, when dealing with relational data-
bases, it helps to write an object persistence layer. Instead of going directly to a database
and reconstituting your objects through a number of SQL queries, the persistence layer
can do that work for you.

30 0672321092 CH21 08/22/2001 2:44 PM Page 505

It’s really not possible to cover every type of non-OO system that you will encounter
here. But it would have been negligent not to point out these realities before sending you
out to apply OOP.

It will be a long time before every legacy system is converted to an object-based archi-
tecture (if it ever happens). You must be prepared for this eventuality and ready to deal
with it as elegantly as possible.

Summary
You’re done! In three short weeks, this book has given you a solid foundation in OOP.
The rest is up to you. You now have enough knowledge to begin applying OOP to your
daily projects. Good luck!

Q&A
Q Why did you wait until now to tell us about threading?

A The design issue does not really affect the Blackjack game. Bringing up the possi-
ble issues sooner would have confused the issue.

It is important that you do realize the shortcomings of the design as well as a pos-
sible solution.

Threading is also an advanced topic. Threading the Blackjack game was rather
easy. But threading other applications may not prove so simple.

Q What can make threading difficult?

A If you have multiple threads sharing data, one thread could change the data and
break another thread. Such concurrency issues are extremely difficult to design,
implement, and debug.

Workshop
The quiz questions and answers are provided for your further understanding. See
Appendix A, “Answers,” for the answers.

Quiz
1. How does threading take care of the recursive method call problem?

506 Day 21

30 0672321092 CH21 08/22/2001 2:44 PM Page 506

The Final Mile 507

21

Exercises
1. Download the source code for today’s iteration. The code is broken into four sepa-

rate directories: threaded_hello_world, threaded_mvc_gui, threaded_pac_gui,
and threaded_simulator. Study the code and be sure to understand how it works.

2. Your study of OOP should not end with this book. Generate a list of topics that you
would like to learn more about. Rank those topics by importance search the web
for materials, and start studying!

30 0672321092 CH21 08/22/2001 2:44 PM Page 507

30 0672321092 CH21 08/22/2001 2:44 PM Page 508

In Review
You have now finished the third and final week of this book,
and in the past seven days you learned how to develop your
own OO Blackjack game.

Day 15 presented the basic rules for Blackjack. You devel-
oped a list of potential use cases and selected a few of those
to develop in the first iteration of the game. You followed the
design process from analysis to implementation and testing
and at the end of the day, you had a working version of
Blackjack that dealt cards and let you play.

In Day 16, you completed a second iteration of the game. You
added more functionality, such as the capability to determine
the results of the game. In doing so, you learned about states
and how to use them to improve your design.

Day 17 showed you how to complete yet another iteration of
the Blackjack game—betting. By doing this, you saw how
you could extend the state architecture to support simple gam-
bling in the game. You also saw that it is sometime necessary
to revisit and refactor a hierarchy as new requirements present
themselves. Though refactoring presents a little extra work
upfront, refactoring when appropriate tends to pay for itself as
you move forward.

In Day 18, you completed the Blackjack game by adding a
GUI. To do so, you revisited the MVC pattern discussed in an
earlier chapter.

Day 19 provided an alternate GUI, using the PAC pattern, to
the one developed in Day 18. This helped to refine your
understanding of which patterns are appropriate for specific
scenarios.

WEEK 3 15

16

17

18

19

20

21

31 0672321092 Week Review 3 08/22/2001 2:48 PM Page 509

510 Week 3

During Day 20, you revisited the concepts of polymorphism that allow you to write
future proof software. You had some fun as you added multiple non-human players to the
system and turned the Blackjack game into a simulator. By playing around with various
player strategies, you learned what not to do when playing a game. You also learned that
you were able to introduce player types to the system without having to alter the core
system. These player types were not even considered when you built the initial system.

Finally, in Day 21, you learned about threading. The chapter also covered any loose ends
with the project and presented a discussion about pure OO as opposed to what you are
likely to see in the real world.

The lessons this week nailed down your understanding of OO, plus you ended up with a
fun, time-wasting OO Blackjack game to prove it.

After completing this book, you have the necessary foundation in OO to begin develop-
ing OO software. All you need now is practice and experience. Good luck.

For further resources, Appendix D, “Selected Bibliography,” provides a starting point for
more OO information.

31 0672321092 Week Review 3 08/22/2001 2:48 PM Page 510

Appendices
A Answers

B Java Primer

C UML Reference

D Selected Bibliography

E Blackjack Code Listings

A

B

C

D

E

32 0672321092 Part4 08/22/2001 2:53 PM Page 511

32 0672321092 Part4 08/22/2001 2:53 PM Page 512

APPENDIX A
Answers
Day 1 Quiz Answers

Answers to Quiz
1. As a software discipline, procedural programming decomposes a program

into data and procedures for manipulating that data. Procedural program-
ming has a sequential nature. Lists of procedural calls that execute
sequentially drive a procedural program’s flow. A procedural program ter-
minates after it calls its last procedure.

2. Procedural programming gives a program an overall structure: data and
procedures. Procedures also help you to see how to program a task.
Instead of writing one large processing block, you keep breaking up the
procedures into subprocedures. Procedures do give you a level of reuse.
You can create libraries of reusable procedures.

3. Modular programming tightly couples data and procedures for manipulat-
ing that data into units known as modules. Modules hide a program’s
inner workings and data representation. However, most modular lan-
guages still allow you to use those modules in a procedural environment.

33 0672321092 AppA 08/22/2001 2:52 PM Page 513

4. Modular programming hides implementation and thereby protects data from incon-
sistent or improper manipulation. Modules also give a higher-level structure to a
program. Instead of thinking in terms of data and procedures, modules allow you
to think at a conceptual, behavioral level.

5. Both procedural and modular programming have limited support for reuse.
Although you can reuse procedures they are highly dependent upon their data. The
global nature of data in the procedural world makes reuse difficult. Procedures may
have dependencies that are hard to quantify.

Modules themselves are readily reusable. It is possible to take a module and use it
in any of your programs. However, modules limit reuse. Your program can only use
the modules directly. You cannot use an existing module as the basis for a new
module.

6. OOP is a software discipline that models the program in terms of real-world
objects. OOP breaks the program into a number of interrelating objects. It builds
upon modular programming by supporting encapsulation as well as cleaning up
reuse deficiencies through inheritance and typing shortcomings through
polymorphism.

7. The six benefits of OOP are programs that are

Natural

Reliable

Reusable

Maintainable

Extendable

Timely

8. OOP is natural. Instead of modeling problems in terms of data or procedures, OOP
allows you to model your programs in the terms of the problem. Such an approach
frees you to think in the terms of the problem and focus on what you are trying to
accomplish. It takes the focus away from implementation details.

9. Class defines all of the attributes and behaviors common to a group of objects. You
use this class definition to create instances of those objects.

An object is an instance of a class. Your programs manipulate these objects.

An object performs behaviors. You can also call an object’s behaviors its public
interface. Other objects may exercise any behavior in an object’s interface.

10. Objects communicate by sending each other messages. Calling a message is syn-
onymous with making a method or procedure call.

514 Appendix A

33 0672321092 AppA 08/22/2001 2:52 PM Page 514

Answers 515

A

11. A constructor is a method that defines how to create an object instance. Using the
constructor will instantiate an object and make it available to your program.

12. An accessor is a behavior that gives you access to an object’s internal data.

13. A mutator is a behavior that can alter an object’s internal state.

14. this is a reference that each instance has to itself. The this reference gives the
instance access to its internal variables and behaviors.

Day 2 Quiz and Exercise Answers
Answers to Quiz

1. Encapsulation is natural. Encapsulation allows you to model the software in terms
of the problem, not in the terms of the implementation.

Encapsulation leads to reliable software. Encapsulation hides the inner workings of
a software component and guarantees that it is accessed properly. Encapsulation
allows you to isolate and validate responsibility. Once a component is shown to act
correctly, you can reuse it with confidence.

Encapsulation gives you reusable software. Since each software component is inde-
pendent, you can reuse the component in many different situations.

Encapsulation leads to maintainable code because each component is independent.
A change to one component will not break another component. Thus, maintenance
and enhancement are simplified.

Encapsulation makes your software modular. Changes to one part of a program
will not break code in another part. Modularity allows you to make bug fixes of
functionality enhancements without breaking the rest of your code.

Encapsulation leads to timely code development because it removes unnecessary
code coupling. Too often, hidden dependencies lead to bugs that are difficult to
find and fix.

2. Abstraction is the process of simplifying a difficult problem. When you set out to
solve a problem, you don’t overwhelm yourself with every detail surrounding the
domain. Instead, you simplify it by only addressing those details germane to actu-
ally formulating a solution.

Your computer’s graphical desktop is an example of abstraction. The desktop com-
pletely hides the details of the file system from you.

3. An implementation defines how a component actually provides a service. The
implementation defines the internal details of the component.

33 0672321092 AppA 08/22/2001 2:52 PM Page 515

4. An interface defines what you can do to a component. The interface completely
hides the underlying implementation.

5. An interface describes what a software component does; the implementation tells
you how the component does it.

6. Without clear division, responsibilities become muddled. Muddled responsibilities
lead to two related problems.

First, code that could be centralized becomes decentralized. Decentralized respon-
sibility must be repeated, or reimplemented, in each place where it is needed.
Think back to the BadItem example presented earlier.

It is easy to see that each user would need to re-implement the code for calculating
the adjusted total for an item. Each time you rewrite the logic you open yourself up
to bugs. You also open up your code to improper use because the responsibility of
keeping internal state no longer lies within the component. Instead, you place that
responsibility in the hands of others.

7. A type is a language element that represents some unit of computation or behavior.
If lines of code are sentences, types are the words. Types are normally treated as
independent, self-contained, atomic units.

8. An ADT is a set of data and a set of operations on that data. ADTs enable us to
define new language types by hiding internal data and state behind a well-defined
interface. This interface presents the ADT as a single atomic unit.

9. There are a number of ways to achieve implementation hiding and loosely coupled
code. The easy answer is to use encapsulation. However, effective encapsulation is
no accident. Here are a few tips to effective encapsulation:

• Access your ADT only through an interface of methods; never allow internal
structures to become part of the public interface.

• Do not provide access to inner data structures; abstract all access.

• Do not give inadvertent access to inner data structures by accidentally return-
ing pointers or references.

• Never make assumptions about the other types that you use. Unless a behav-
ior appears in the interface or in the documentation, do not rely on it.

• Be careful while writing two closely related types. Do not let yourself acci-
dentally program in assumptions and dependencies.

10. You need to beware of a few abstraction pitfalls.

Do not fall into abstraction paralysis. Solve the problems that you face first.
Solving problems is your primary job. Look at abstraction as a bonus, not the end
goal. Otherwise, you face the possibility of missed deadlines and incorrect abstrac-
tion. There are times to abstract and times when abstraction is not appropriate.

516 Appendix A

33 0672321092 AppA 08/22/2001 2:52 PM Page 516

Answers 517

A

Abstraction can be dangerous. Even if you have abstracted some element, it may
not work in every case. It is very difficult to write a class that will satisfy every
user’s need.

Don’t put more into a class than is necessary to solve the problem.

Don’t set out to solve all problems. Solve the problem at hand, and then look for
ways to abstract what you have done.

Answers to Exercises
1. One possible stack ADT:

public interface Stack {
public void push(Object obj);
public Object pop();
public boolean isEmpty();
public Object peek();

}

2. The stack is best implemented as a singly linked list with a front pointer. When
you push or pop an element, you use the front pointer to find the first element.

3. Looking back at the answer to Exercise 1 and the implementation in Exercise 2,
you see that the interface was adequate. The interface gives us the benefits that any
well-defined interface provides. Here is a short list of benefits:

• The interface defines the stack as a type. By studying the interface, you know
exactly what the stack will do.

• The interface completely hides the internal representation of the stack.

• The interface clearly defines the stack’s responsibilities.

Day 3 Quiz and Exercise Answers
Answers to Quiz

1. Account has two mutators: depositFunds() and withdrawFunds().

Account has one accessor: getBalance().

2. There are two types of constructors: those that have arguments and those that do
not (noargs).

Account from Lab 2 has both types of constructors.

3. (Optional) Public is acceptable in the case of Boolean since the variables are con-
stants. Having public access to constants does not break encapsulation since it is
not exposing the implementation to outside use.

33 0672321092 AppA 08/22/2001 2:52 PM Page 517

Furthermore, the use of constant Booleans for true and false saves memory. There
is no need to ever instantiate your own copies of Boolean. You can simply share
these global instance constants.

4. The Card instances are immutable. It would be more efficient to define 52 Card
constants—one for each card. There is no need to instantiate multiple representa-
tions of the same card, even when there are multiple Deck instances. It is perfectly
safe to share the same Card instances among the decks.

5. When designing your classes you must ask yourself what makes this “thing” a
class? Specifically, think back to the discussion of how classes classify related
objects. How are cards related? Cards all hold onto a value, a suit, and know how
to display themselves.

The value or a suit doesn’t make one card a different kind of card. It is still a poker
card. The poker cards just might have different values. Just as a brown mammal is
still a mammal, a 10 of hearts is still just a card.

Sometimes it can be extremely difficult to decide what should and should not be a
class of its own. There is a rule of thumb that you can follow though.

If you see that an object’s behavior changes fundamentally when the value of an
attribute changes, chances are you should create separate classes: one for each pos-
sible value of that attribute. Clearly, the value of the card does not change the
card’s behavior in any fundamental way.

6. The proper division of responsibility made the Deck, Dealer, and Card design more
modular. Instead of one large class, poker cards nicely break up into three classes.
Each class is responsible for doing its job and hiding that implementation from the
other classes. As a result, these classes can easily change their implementation at
any time without harming any of their users.

With separate classes you also get the benefit that you can reuse the Card class sep-
arate from the Deck and Dealer class.

Answers to Exercises
1. Here is one possible solution to Exercise 1:

public class DoubleKey {

private Object key1, key2;

// a no args constructor
public DoubleKey() {

key1 = “key1”;
key2 = “key2”;

}

518 Appendix A

33 0672321092 AppA 08/22/2001 2:52 PM Page 518

Answers 519

A

// a constructor with arguments
// should check for and handle null case
public DoubleKey(Object key1, Object key2) {

this.key1 = key1;
this.key2 = key2;

}

// accessor
public Object getKey1() {

return key1;
}

// mutator
// should check for and handle null case
public void setKey1(Object key1) {

this.key1 = key1;
}

// accessor
public Object getKey2() {

return key2;
}

// mutator
// should check for and handle null case
public void setKey2(Object key2) {

this.key2 = key2;
}

// the following two methods are required in order to
....// properly work as a keyif passed to a HashMap or Hashtable

public boolean equals(Object obj) {

if(this == obj) {
return true;

}

if(this.getClass() == obj.getClass()) {
DoubleKey dk = (DoubleKey) obj;
if(dk.getKey1().equals(getKey1()) &&

dk.getKey2().equals(getKey2())) {
return true;

}
}
return false;

}

public int hashCode() {
return key1.hashCode() + key2.hashCode();

}

}

33 0672321092 AppA 08/22/2001 2:52 PM Page 519

2. Here is one possible solution to Exercise 2:

public class Deck {

private java.util.LinkedList deck;

public Deck() {
buildCards();

}

public String display() {
int num_cards = deck.size();
String display = “”;
int counter = 0;
for(int i = 0; i < num_cards; i ++) {

Card card = (Card) deck.get(i);
display = display + card.display() + “ “;
counter++;
if(counter == 13) {

counter = 0;
display = display + “\n”;

}
}
return display;

}

public Card get(int index) {
if(index < deck.size()) {

return (Card) deck.get(index);
}
return null;

}

public void replace(int index, Card card) {
deck.set(index, card);

}

public int size() {
return deck.size();

}

public Card removeFromFront() {
if(deck.size() > 0) {

Card card = (Card) deck.removeFirst();
return card;

}
return null;

}

public void returnToBack(Card card) {
deck.add(card);

520 Appendix A

33 0672321092 AppA 08/22/2001 2:52 PM Page 520

Answers 521

A

}

private void buildCards() {

deck = new java.util.LinkedList();

deck.add(new Card(Card.CLUBS, Card.TWO));
deck.add(new Card(Card.CLUBS, Card.THREE));
deck.add(new Card(Card.CLUBS, Card.FOUR));
deck.add(new Card(Card.CLUBS, Card.FIVE));
// full definition clipped for brevity
// see source for full listing

}

}

Day 4 Quiz and Exercise Answers
Answers to Quiz

1. Simple reuse provides no mechanism for reuse beyond instantiation. To directly
reuse code, you need to cut and paste the code you wish to reuse. Such a practice
results in multiple code bases that differ in only a small number of ways. Code that
lacks inheritance is static. It cannot be extended. Furthermore, static code is type
limited. Static code cannot share type. Thus you lose the benefits of type
pluggability.

2. Inheritance is a built-in mechanism for the safe reuse and extension of pre-existing
class definitions. Inheritance allows you to establish “Is-a” relationships between
classes.

3. The three forms of inheritance are

Inheritance for implementation reuse

Inheritance for difference

Inheritance for type substitution

4. Implementation inheritance can blind a developer. Implementation reuse should
never be the only goal of inheritance. Type substitution should always be your first
priority. Blind reuse inheritance leads to class hierarchies that simply do not make
sense.

5. Programming by difference is one of the forms of inheritance. It means that when
you inherit, you only program those features that differentiate the new class from
the old. Such a practice leads to smaller, incremental classes. Smaller classes are
easier to manage.

33 0672321092 AppA 08/22/2001 2:52 PM Page 521

6. The three types of methods and attributes are

Overridden

New

Recursive

An overridden attribute or method is an attribute or method declared in the parent
(or ancestor) and re-implemented in the child. The child alters the behavior of the
method or the definition of the attribute.

A new method or attribute is a method or attribute that appears in the child but not
in the parent or ancestors.

A recursive attribute or method is defined in the parent or the ancestor but is not
redefined by the child. The child simply inherits the method or attribute. When a
call to this method or attribute is made on the child, the call passes up the hierar-
chy until someone is found who knows how to handle it.

7. Programming by difference gives you smaller classes that define a smaller number
of behaviors. Smaller classes should contain fewer bugs, be easier to debug, easier
to maintain, and easier to understand.

Programming by difference allows you to program incrementally. As a result, a
design can evolve over time.

8. AllPermission, BasicPermission, and UnresolvedPermission are all children of
Permission. SecurityPermission is a descendant of Permission.

Permission is the root class. AllPermission, UnresolvedPermission, and
SecurityPermission are all leaf classes since they lack children.

Yes, Permission is an ancestor of SecurityPermission.

9. Inheritance for type substitution is the process of defining substitutability relation-
ships. Substitutability allows you to substitute a descendant for an ancestor so long
as you don’t need to use any new methods defined by the descendant.

10. Inheritance can destroy encapsulation by giving a subclass inadvertent access to the
internal representation of a superclass.

Inadvertent destruction of encapsulation is a pitfall that can sneak up on you.
Inheritance quietly gives a child class more liberal access to the parent. As a result,
if the proper steps are not taken, a child could gain direct access to the parent’s
implementation. Direct implementation access is just as dangerous between parent
and child as it is between two objects. Many of the same pitfalls still apply.

Avoid encapsulation destruction by making internal implementation private. Only
make those methods absolutely needed by a subclass protected.

Most of the time children should only exercise the parent’s public interface.

522 Appendix A

33 0672321092 AppA 08/22/2001 2:52 PM Page 522

Answers 523

A

Answers to Exercises
1. Any subclass will have direct access to the Point’s internal representation. Such

unrestricted access destroys encapsulation and opens the class up to the problems
addressed in Question 10.

Remedying the situation is as easy as making x and y private. Please note that this
Point class is modeled after java.awt.Point.

Day 5 Quiz Answers
Answers to Quiz

1. In CheckingAccount, public double withdrawFunds(double amount) is an
example of a redefined method. CheckingAccount overrides withdrawFunds() so
that it can keep track of the number of transactions.

In BankAccount, public double getBalance() is an example of a recursive
method. The method appears in the parent, but none of the subclasses redefine it.
However, the subclasses do call it.

Finally, SavingsAccount’s public double getInterestRate() method is an
example of a new method. The method only appears in the SavingsAccount class,
not in the parent.

2. You would use an abstract class for planned inheritance. An abstract class gives its
subclasses a clue as to what it will need to redefine. Abstract classes guarantee that
your subclasses use the base class properly.

3. Lab 3 shows “Has-a.” The Deck has Cards. DoubleKey from Lab 2 also has two
Strings.

4. The labs preserved encapsulation by hiding all data members. If you look back
through the solutions, you will see that all data is private. For example, the
BankAccount class declares the balance as private. Instead, each class provides
access to the data representation through a well-defined interface.

5. The SavingsAccount is an example of specialization. It specializes upon its parent,
BankAccount, by adding methods to set, query, and apply interest to the account.

6. Lab 3 uses inheritance to reuse the basic behavior defined by the BankAccount
class. The BankAccount defines a common implementation for withdrawing funds,
depositing funds, and querying the balance. Through inheritance, account subclass-
es get this implementation.

Lab 4 starts off by presenting a case of inheritance for implementation, but ends by
using composition to achieve a cleaner form of reuse.

33 0672321092 AppA 08/22/2001 2:52 PM Page 523

Day 6 Quiz and Exercise Answers
Answers to Quiz

1. Inclusion

Parametric

Overridding

Overloading

2. Inclusion polymorphism enables you to treat one object as if it were a different
type of object. As a result, an object may demonstrate many different kinds of
behavior.

3. Overloading and parametric polymorphism allow you to model something at the
conceptual level. Instead of worrying about the types of parameters something
processes, you can write your code more generically. Instead, you model your
methods and types at the conceptual level of what they do, not what they do
things to.

4. An interface may have any number of implementations. By programming to an
interface, you do not get tied to any specific implementation. As a result, your pro-
gram can automatically use any implementation that comes along. This freedom
from implementation allows you to swap-in different implementations to change
your program’s behavior.

5. When you override a method polymorphism ensures that the proper version of the
method is called.

6. Ad-hoc polymorphism is another name for overloading.

7. Overloading allows you to define a method name multiple times. Each definition
simply differs in the number and types of arguments. Overloading expresses differ-
ent behavior because you simply call the method. You don’t have to do anything to
be sure that the correct version of the method gets called.

Overloading allows you to model a method at the conceptual level of what it does.
Overloading’s polymorphic nature takes care of the specific arguments.

8. Parametric polymorphism enables you to write truly generic types and methods by
deferring type definitions until runtime. This type of polymorphism enables you to
write truly natural code because you can program very generic, conceptual types
and methods. You write these types and methods from the conceptual view of what
they do not what they specifically do it to. For example, if you program a com-
pare([T] a, [T] b) method you think in terms of the higher concept of com-
paring two objects of type [T] together. Arguments of type [T] would simply need
to share a common structure such as < or a compare() method. The important point

524 Appendix A

33 0672321092 AppA 08/22/2001 2:52 PM Page 524

Answers 525

A

is that you simply write one method and it can compare many different kinds of
objects.

9. Polymorphism will normally incur a cost in efficiency. Some forms and implemen-
tations of polymorphism requires checks and lookups at runtime. These checks are
costly when compared to statically typed languages.

Polymorphism tempts the developer to break the inheritance hierarchy. You must
never move functionality up a hierarchy to simply increase the opportunities for
polymorphic behavior.

When you treat a subtype as if it were the base type you lose access to any behav-
iors added by the subtype. So when you create a new subtype, you’ll need to make
sure that the base type interface is adequate for interacting with your new subtype
in methods that work with the base type.

10. Effective inheritance directly impacts inclusion polymorphism. In order to enjoy
the pluggability offered by subtype polymorphism, you must have a proper object
hierarchy.

Encapsulation protects an object from getting tied to a specific implementation.
Without encapsulation, one object could easily become dependent on the internal
implementation of another object. Such a tight coupling makes substitution diffi-
cult if not impossible.

Answers to Exercises
1. Imagine a program that writes its status out to the command line while executing.

In Java, you could simply use System.write.println() to write these messages to
the screen. However, what if you wanted these messages to write to a file? What if
you wanted these messages sent to an alarm GUI on another computer? Obviously,
you would need to alter your code as the requirements change.

However, what if your requirements call you to support both at the same time?
Instead of one or the other, you want to let the user choose which to write to
through a command line argument. Without polymorphism, you would need to pro-
gram cases for each write out type. With polymorphism, however, you can simply
declare a class named log that has a write method. Subclasses can specify where
the messages are logged. You can add new subtypes to your program at any time.
The program will automatically know how to use the new subtypes as long as you
program to the log interface. So you can swap in new log behavior at any time.

2. int i = 2 + 3.0

Depending on the definition of +, this statement may be coercive. Here, the state-
ment attempts to add an integer and a real number. It takes the result and places it
into an int variable. Depending upon the language the compiler may coerce the

33 0672321092 AppA 08/22/2001 2:52 PM Page 525

integer 2 into a real number, perform the arithmetic, and then coerce the result
back to an integer.

This statement is interesting because it may also demonstrate an instance of over-
loading. + may overload to the following operations:

+(real,real)

+(integer,integer)

+(integer,real)

In either case you have ad-hoc polymorphism because instead of one polymorphic
method, you either have a number of monomorphic methods or coercion.

3. Overloading:

Consider java.util.SimpleTimeZone. SimpleTimeZone defines the following two
overloaded methods: setEndRule and setStartRule. As a result, these methods
respond differently depending on the number and types of input.

Inclusion Polymorphism:

Consider java.io.Writer. The abstract writer class defines a number of methods
for writing data. Currently, Java defines a number of Writer subclasses:
BufferedWriter, CharArrayWriter, FilterWriter, OutputStreamWriter,
PipedWriter, PrintWriter, and StringWriter. Each subclass defines the behavior
for the close, flush, and write (an overloaded method by the way) methods.

When programming, you should write your objects and methods to act on
instances of Write. That way, you can swap in the different subclasses depending
upon how you want the data to be written out. If you program that way, Writer
will express a number of different behaviors depending on the underlying imple-
mentation that you are really using.

Day 7 Quiz Answers
Answers to Quiz

1. The PsychiatristObject’s observe() method is an example of method
overloading.

2. The observe() method nicely illustrates the problem with overloading. Each time
that you add a new subtype, you will need to add another overloaded method. As
the number of methods increases, you will want to find a way to add a common
function to your objects so that you can treat them generically and remove the
overridden methods.

526 Appendix A

33 0672321092 AppA 08/22/2001 2:52 PM Page 526

Answers 527

A

3. There are two steps to adding new behavior to a polymorphic hierarchy. First, cre-
ate the new type. Second, alter your program so that it can create instances of the
new type. You shouldn’t have to change anything else unless you need to take
advantage of some special feature of the new class.

4. The PsychiatristObject’s examine() method is an example of inclusion polyor-
phism. It can work on any MoodyObject subtype.

5. You can eliminate conditionals by attacking the data that you switch over. If the
data is not an object, turn it into an object. If the data is an object, add a method
that provides the necessary behavior. Once you do that, ask the object to do some-
thing, don’t do something to data.

6. Inclusion polymorphism will allow a method to work for the argument type and
any subtype. You do not need a different method for each subtype. Only having one
method cuts down on the number of methods that you would need otherwise. It
also simplifies the addition of new features.

7. In OO you should not ask an object for its data. Instead, you should ask an object
to do something to its data.

8. Conditionals force you to break the relationship outlined in #7. Breaking the rela-
tionship forces you to muddle responsibility because every user will need to know
what the data represents and how to manipulate it.

9. If you find yourself updating a number of conditionals each time you add a new
type, the conditional is a problem. If you find yourself writing the same conditional
in multiple places (or calling a method that has the conditional), the conditional is
a problem.

10. Polymorphism allows you to treat a subtype as if it were the supertype.
However, polymorphism allows you to use the behavior of the actual underlying
type. Polymorphism makes it seem that the supertype manifests many
different behaviors.

Day 8 Quiz and Exercise Answers
Answers to Quiz

1. The UML is the Unified Modeling Language. The UML is an industry standard
modeling language.

2. A methodology describes how to design software. A modeling language helps cap-
ture that design graphically. A methodology will often contain its own modeling
language.

33 0672321092 AppA 08/22/2001 2:52 PM Page 527

3. The lab demonstrates a dependency relationship.

4. You can make two statements about MoodyObject. MoodyObject has a method
named queryMood(). MoodyObject is also an abstract class. The italicized name
indicates that the class is abstract.

5. The Employee/Payroll relationship from lab 1 is an example of a dependency.
Payroll’s payEmployees() method depends upon the Employee’s public interface.

6. Each of these symbols conveys visibility information. + is public, # is protected,
and – is private.

7. A Queue and its elements is an example of aggregation.

8. The Deck has many cards. However, if you destroy the deck you should destroy the
cards. The Deck is an example of a composition relationship.

9. Simply italicize a class or method name to show that it is abstract.

10. The end goal of modeling is to convey your design. Consequently, you shouldn’t
concern yourself with using every modeling notation available. Instead, you should
use the bare minimum notation that still successfully conveys your message.

11. An association models structural relationships among objects. Aggregation and
composition are subtypes of association that model “whole/part” relationships. An
aggregation is a structural relationship among peers. Composition is a structural
relationship where the part is not independent of the whole. The part cannot exist
separately from the whole.

12. Model association when the point of your model is to model the roles between the
objects. Use aggregation or composition when you are trying to convey structural
design.

Answers to Exercises
1.

528 Appendix A

FIGURE A.1
A Queue.

Queue

+ enqueue (obj : Object) : void
+ dequeue () : Object
+ isEmpty () : boolean
+ peek () : Object

33 0672321092 AppA 08/22/2001 2:52 PM Page 528

Answers 529

A

2.

FIGURE A.2
A Honeybee/Hive
Composition
Relationship.

Beehive

Honeybee

1

*

3.

FIGURE A.3
A Bank/BankAccount
Aggregation
Relationship.

Bank

BankAccount

1

*

4.

FIGURE A.4
The Shopper/Merchant
Association.

Shopper Merchant
Buys Frombuyer seller

* *

Merchant Shopper
Sells Toseller buyer

* *

33 0672321092 AppA 08/22/2001 2:52 PM Page 529

6.

530 Appendix A

HourlyEmployee
hours : int

+ addHours (hours : int) : void
+ resetHours () : void
+ calculatePay () : double
+ calculateBonus () : double

CommissionedEmployee
- commission : double
- units : int

+ addSales (units int) : void
+ resetSales () : void
+ calculatePay () : double
+ calculateBonus () : double

Employee
- first_name : String
- last_name : String
- wage : double

+ getWage () : double
+ getFirstName () : String
+ getLastName () : String
+ calculatePay () : double
+ printPaycheck () : String
+ calculateBonus () : double

FIGURE A.5
The Employee
Hierarchy.

5.

FIGURE A.6
The
PersonalityObject

Hierarchy.

OptimisticObject

+ speak () : String

IntrovertedObject

+ speak () : String

PessimisticObject

+ speak () : String

PersonalityObject

+ speak () : String

Day 9 Quiz and Exercise Answers
Answers to Quiz

1. A software process lays out the various stages of software development.

2. An iterative process is a process that allows you to continually go back and redo or
enhance the product of previous iterations. An iterative process takes an iterative
and incremental approach to software development.

Incremental means that each iteration adds a small increase in functionality. Not so
small as to be unnoticeable, but not so large as to be too costly to throw away.

33 0672321092 AppA 08/22/2001 2:53 PM Page 530

Answers 531

A

3. At the end of OOA you should have a good understanding of the system’s require-
ments as well as the system’s domain vocabulary.

4. The requirements tell you what the users want to do to the system and what kind of
responses they expect back.

The requirements are those features that the system must have to solve a given
problem.

5. A use case describes the interaction between the user of the system and the system.
The use case describes how the user will use the system from the user’s point of
view.

6. You must take the following steps to define your use cases:

1. Identify the actors

2. Create a preliminary list of use cases

3. Refine and name the use cases

4. Define each use case’s sequence of events

5. Model your use cases

7. An actor is anything that interacts with the system.

8. You can ask the following questions to help find actors:

• Who will primarily use the system?

• Are there any other systems that will use the system? For example, are there
any nonhuman users?

• Will the system communicate with any other system? For example, is there
an existing database that you need to integrate?

• Does the system respond to nonuser-generated stimulus? For example, does
the system need to do something on a certain calendar day each month? A
stimulus can come from sources not normally considered when thinking from
a purely user point of view.

9. A use case can contain and use another use case or extend another use case. One
use case may also be a variant of another use case.

10. A use case variant is a special case of a more general use case.

11. A scenario is a sequence or flow of events between the user and system.

12. You can model your use cases through interaction diagrams and activity diagrams.
There are two kinds of interaction diagrams: sequence and collaboration diagrams.

13. Sequence diagrams model the sequence of events over time. A collaboration dia-
gram models the interactions between the actors of a use case. Both types of dia-
grams are interaction diagrams. However, each takes a different point of view

33 0672321092 AppA 08/22/2001 2:53 PM Page 531

towards the system. Use sequence diagrams when you want to trace events and col-
laboration diagrams when you want to highlight relationships.

Activity diagrams help you model parallel processes. Use activity diagrams when
you want to convey that a process may run in parallel with other processes during a
use case scenario.

14. A domain model presents a number of benefits. The domain model can serve as the
foundation or skeleton of your object model. You can use this base as a start and
build off it.

Domain models also give you a common vocabulary and understanding of the
problem.

15. Use cases help you to understand the system, its requirements, and its uses.

Use cases can help you plan the iterations of your project.

Finally, use cases help you to define your domain model.

Answers to Exercises
1. Some other use cases:

• Remove Item: A user can remove an item from the cart

• Delete User: An administrator can remove inactive accounts

• Reward User: The system can reward frequent customers by offering on-the-
fly discounts

2. The user selects an item from the shopping cart. The user removes the selected
item from the shopping cart.

• Remove Item

1. Guest user selects an item from the shopping cart

2. Guest user asks the cart to remove the item

• Preconditions

• The cart contains an item to remove
• Post Conditions

• The item no longer appears in the cart
• Alternative: Operation Canceled

The user may opt to cancel the transaction after Step 1

3. The following two use cases are variants of the Search Product Catalog use case:

• Guest users can search the product catalog.

• Guest users can search for a specific item.

532 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 532

Answers 533

A

The following two use cases are variants of the Sign Up For Correspondence use
case:

• Registered users can sign up for notifications.

• Registered users can sign up for various mailing lists.

4. There are many other domain objects. Here are a few: Administrator, Highlighted
Product List, and Wish List.

Day 10 Quiz and Exercise Answers
Answers to Quiz

1. There are three benefits to a formal design. A formal design helps you figure out
what objects will appear in your program, and how they will interact or fit together.

A design helps you foresee many of the design issues that would have come up
during implementation. It is much easier to fix a design before there is code.

Finally, a design helps ensure that all of the developers are on the same page; oth-
erwise, you run the risk of each developer developing incompatible pieces.

2. OOD is the process of constructing a solution’s object model. Said another way,
OOD is the process of decomposing a solution into a number of constituent
objects.

3. The object model is the design of the objects that appear in a problem’s solution.
The final object model may contain many objects not found in the domain. The
object model will describe the various object’s responsibilities, relationships, and
structure.

4. It’s simply not possible to foresee every design decision before you make it, and
it’s not always worth the time. Some design can be left until construction. Also,
you don’t want to get caught up trying to create the perfect design. You need to
start coding some day.

5. The significant pieces are those aspects of the system that completely alter the
structure or behavior of the system. These are the pieces that really matter when
you code the solution. A change to an architectural important piece will change the
structure of the solution.

6. The five basic steps to OOD are

1. Generate an initial list of objects.

2. Refine your objects’ responsibilities through CRC cards.

3. Develop the points of interaction.

33 0672321092 AppA 08/22/2001 2:53 PM Page 533

4. Detail the relationships between objects.

5. Build your model.

7. Start with the domain to generate your initial list of objects. Each domain object
and actor should become a class in your object model.

Third-party systems, hardware interfaces, reports, displays, and devices should also
become classes.

8. A complete design will capture each object’s responsibilities as well as the object’s
structure and relationships. A design will show how everything fits together.

9. CRC cards help you to identify class responsibilities and collaborations.

10. Collaboration is the relationship of delegation between two objects. You can think
of a collaboration as a client/server relationship between two objects.

11. Practically, responsibilities will translate into methods. Relationships will translate
into structure; however, an overall understanding of responsibility will help you
effectively divide responsibility among the objects. You need to avoid having a
small set of very large objects. Through design you’ll be sure to spread responsibil-
ities out.

12. A CRC cards is a 4x6 index card that helps you to discover an object’s responsibil-
ities and collaborations by exploring use cases.

13. You are intentionally limited by the size of a CRC card. If you find that you are
running out of room, chances are good that your class is doing too much.

14. You should use CRC cards during the initial stages of development, especially
when you are still new to OO development. CRC cards lend themselves to small
projects, or a small section of a larger project.

You should only use CRC cards to flesh out responsibilities and collaborations.
Don’t try to describe complex relationships through CRC cards.

15. CRC cards do not work well for large projects or development groups. A large
number of classes can overwhelm a CRC session. To many developers can also
fracture a CRC session.

16. A point of interaction is any place where one object uses another.

17. At a point of interaction, you should consider data transformation, future change,
interfaces, and the use of agents.

18. An agent is an object that mediates between two or more objects to accomplish
some goal.

19. You will define the dependencies, associations, and generalizations. Detailing these
relationships is an important step because it defines how the objects fit together. It
also defines the internal structure of the various objects.

534 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 534

Answers 535

A

20. You might create class diagrams, activity diagrams, and interaction diagrams to
model you design. The UML also defines object diagrams and state diagrams.

Answers to Exercises
1. The ShoppingCart instances will have the overall responsibility of holding onto

items. Specifically, a ShoppingCart can add an item to itself, remove an item from
itself, and allow an outside object to select an item without removing it.

Day 11 Quiz and Exercise Answers
Answers to Quiz

1. An adapter class transforms an object’s interface to one expected by your program.
An adapter contains an object and delegates messages from the new interface to the
contained object’s interface.

2. The Iterator pattern describes a mechanism for looping over elements in a
collection.

3. You would use the Iterator pattern to contain traversal logic in one place, provide a
standard way for traversing collections, and to hide the implementation of the col-
lection from the user.

4. The Adapter pattern describes a mechanism that allows you to transform an objects
interface.

5. You would use the Adapter pattern whenever you need to use an object that has an
incompatible interface. You can also proactively use wrappers to isolate your code
from API changes.

6. The Proxy pattern transparently brokers access to an object. Proxies add indirection
to object use.

7. You would use the Proxy pattern any time that you would like to broker access to
an object in a way that a simple reference does not allow. Common examples
include remote resources, optimizations, and for general object housekeeping such
as reference counting or usage statistics collecting.

8. In this situation you can use the Adapter pattern to create an interface that is inde-
pendent of the one provided by Sun, IBM, or Apache. By creating your own inter-
face, you can remain independent of each vendor’s slightly different API. By wrap-
ping the library you are free to switch the library at any time whether to upgrade to
a new version or to switch vendors since you control the adapter’s interface.

9. In this situation you can use the Proxy pattern to hide the identity of the datastore
object that your objects talk to. Depending upon the client’s location, you can

33 0672321092 AppA 08/22/2001 2:53 PM Page 535

instantiate a networked proxy or a local proxy. Either way, the rest of the program
will not know the difference, so all your objects can use one proxy interface with-
out having to worry about the underlying implementation.

10. The Proxy pattern does not change an interface in that it doesn’t take anything
away from it. A proxy is free to add additional methods and attributes to the inter-
face, however.

Answers to Exercises
1.

LISTING 11.13 ShoppingCart.java

public class ShoppingCart {

java.util.LinkedList items = new java.util.LinkedList();

/**
* adds an item to the cart
* @param item the item to add
*/
public void addItem(Item item) {

items.add(item);
}

/**
* removes the given item from the cart
* @param item the item to remove
*/
public void removeItem(Item item) {

items.remove(item);
}

/**
* @return int the number of items in the cart
*/
public int getNumberItems() {

return items.size();
}

/**
* retrieves the indexed item
* @param index the item’s index
* @return Item the item at index
*/
public Item getItem(int index) {

return (Item) items.get(index);
}

536 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 536

Answers 537

A

LISTING 11.13 continued

public Iterator iterator() {
// ArrayList has an iterator() method that returns an iterator
// however, for demonstration purposes it helps to see a simple iterator
return new CartIterator(items);

}
}

LISTING 11.14 CartIterator.java.

public class CartIterator implements Iterator {

private Object [] items;
private int index;

public CartIterator(java.util.LinkedList items) {
this.items = items.toArray();

}

public boolean isDone() {
if(index >= items.length) {

return true;
}
return false;

}

public Object currentItem() {
if(!isDone()) {

return items[index];
}
return null;

}

public void next() {
index++;

}

public void first() {
index = 0;

}

}

2. By making the adapter mutable, you can use the same wrapper to wrap many dif-
ferent objects, and you don’t need to instantiate a wrapper for each object that
needs to be wrapped. Wrapper reuse makes better use of memory, and frees your
program from having to pay the price of instantiating many wrappers.

33 0672321092 AppA 08/22/2001 2:53 PM Page 537

LISTING 11.15 MutableAdapter.java

public class MutableAdapter extends MoodyObject {

private Pet pet;

public MutableAdapter(Pet pet) {
setPet(pet);

}

protected String getMood() {
// only implementing because required to by
// MoodyObject, since also override queryMood
// we don’t really need it
return pet.speak();

}

public void queryMood() {
System.out.println(getMood());

}

public void setPet(Pet pet) {
this.pet = pet;

}
}

Day 12 Quiz and Exercise Answers
Answers to Quiz

1. A wrapper class transforms an object’s interface to one expected by your program.
A wrapper contains an object and delegates messages from the new interface to the
contained object’s interface.

2. The Abstract Factory pattern provides a mechanism that instantiates specific
descendant class instances without revealing which descendant is actually created.
This allows you to transparently plug in different descendants into your system.

3. You use the Abstract Factory pattern to hide the details of instantiation, to hide
which class of object gets instantiated, and when you want a set of objects used
together.

4. The Singleton pattern ensures that an object is instantiated only once.

5. You use the Singleton pattern when you want an object to be instantiated only once.

6. Using primitive constants is not an OO approach to programming, because you
have to apply an external meaning to the constant. You saw how much trouble the
breakdown of responsibility could cause!

538 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 538

Answers 539

A

The Typesafe Enum pattern solves this problem by turning the constant into a higher-
level object. By using a higher-level object, you can better encapsulate responsibility
within the constant object.

7. You should use the Typesafe Enum pattern whenever you find yourself declaring
public constants that should be objects in their own right.

8. No, patterns do not ensure a perfect design because you could end up using a pat-
tern incorrectly. Also, correctly using a pattern does not mean that the rest of your
design is valid. Many valid designs might not even contain a pattern.

Answers to Exercises
1.

LISTING 12.19 Bank.java

public class Bank {

private java.util.Hashtable accounts = new java.util.Hashtable();

private static Bank instance;

protected Bank() {}

public static Bank getInstance() {
if(instance == null) {

instance = new Bank();
}
return instance;

}

public void addAccount(String name, BankAccount account) {
accounts.put(name, account);

}

public double totalHoldings() {
double total = 0.0;

java.util.Enumeration enum = accounts.elements();
while(enum.hasMoreElements()) {

BankAccount account = (BankAccount) enum.nextElement();
total += account.getBalance();

}
return total;

}

public int totalAccounts() {
return accounts.size();

}

33 0672321092 AppA 08/22/2001 2:53 PM Page 539

LISTING 12.19 continued

public void deposit(String name, double ammount) {
BankAccount account = retrieveAccount(name);
if(account != null) {

account.depositFunds(ammount);
}

}

public double balance(String name) {
BankAccount account = retrieveAccount(name);
if(account != null) {

return account.getBalance();
}
return 0.0;

}

private BankAccount retrieveAccount(String name) {
return (BankAccount) accounts.get(name);

}
}

2.

LISTING 12.20 Level.java

public final class Level {

public final static Level NOISE = new Level(0, “NOISE”);
public final static Level INFO = new Level(1, “INFO”);
public final static Level WARNING = new Level(2, “WARNING”);
public final static Level ERROR = new Level(3, “ERROR”);

private int level;
private String name;

private Level(int level, String name) {
this.level = level;
this.name = name;

}

public int getLevel() {
return level;

}

public String getName() {
return name;

}
}

540 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 540

Answers 541

A

LISTING 12.21 Error.java

public class Error {

private Level level;

public Error(Level level) {
this.level = level;

}

public Level getLevel() {
return level;

}

public String toString() {
return level.getName();

}
}

3. The solution consists of an abstract bank account factory (written as an interface;
however, it can be an abstract class as well) and a concrete bank account factory.
The factory has a method for creating each type of bank account.

This factory hides the details of instantiation, not necessarily the object’s subtype.

LISTING 12.22 AbstractAccountFactory.java

public interface AbstractAccountFactory {

public CheckingAccount createCheckingAccount(double initDeposit, int trans,
double fee);

public OverdraftAccount createOverdraftAccount(double initDeposit, double
rate);

public RewardsAccount createRewardsAccount(double initDeposit, double
interest, double min);

public SavingsAccount createSavingsAccount(double initBalance, double
interestRate);

public TimedMaturityAccount createTimedMaturityAccount(double initBalance,
double interestRate, double feeRate);

}

33 0672321092 AppA 08/22/2001 2:53 PM Page 541

LISTING 12.23 ConcreteAccountFactory.java

public class ConcreteAccountFactory implements AbstractAccountFactory {

public CheckingAccount createCheckingAccount(double initDeposit, int trans,
double fee) {

return new CheckingAccount(initDeposit, trans, fee);
}

public OverdraftAccount createOverdraftAccount(double initDeposit, double
rate) {

return new OverdraftAccount(initDeposit, rate);
}

public RewardsAccount createRewardsAccount(double initDeposit, double
interest, double min) {

return new RewardsAccount(initDeposit, interest, min);
}

public SavingsAccount createSavingsAccount(double initBalance, double
interestRate) {

return new SavingsAccount(initBalance, interestRate);
}

public TimedMaturityAccount createTimedMaturityAccount(double initBalance,
double interestRate, double feeRate) {

return new TimedMaturityAccount(initBalance, interestRate, feeRate);
}

}

Day 13 Quiz and Exercise Answers
Answers to Quiz

1. The analysis, design, and implementation of a UI are not any different from the
rest of the system. The UI must have equal consideration during all phases of
development. If anything else, you must be sure to not neglect UI considerations.

2. You should decouple UIs so that the system and the UI do not become intertwined.
It is difficult to make changes to the UI when intertwined with the core functionali-
ty of the system.

It is also impossible to share the system with other UIs or UI types when the UI
and system are intertwined.

3. The three components are the model, the view, and the controller.

542 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 542

Answers 543

A

4. The PAC pattern and the Document/View Model are two alternatives to the MVC
pattern.

5. The model is the layer of the MVC triad that manages the core behavior and state
of the system.. The controller uses the model to instigate system behavior. The
view uses the model to retrieve state information for display.

The model also provides a change notification mechanism. The view and controller
can use this mechanism to stay abreast of state changes in the model.

6. The view is the MVC triad member responsible for displaying the model to the
user.

7. The controller is responsible for interpreting events generated by the user. The con-
troller instigates behavior in the model or in the view in response to these events.

8. A system may have many models. A model may have many different views. A
view may have one controller, and a controller may control only one view.

9. Inefficiencies may be found in the model of in the view and controller. A model
must avoid unnecessary state change notifications. Views and controllers should
cache data whenever possible.

10. The MVC pattern assumes a stable model and a changing presentation.

11. A very detailed summary of the history and motivation behind the MVC pattern is
“Applications Programming in Smalltalk-80(TM): How to use Model-View-
Controller (MVC)” by Steve Burbeck, Ph.D. You can find a copy at

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

So, what’s the point of this question? Well, the answer gives you an important per-
spective into the motivation behind the MVC pattern. By reading the history, you
will also note that the MVC pattern was developed initially as part of Smalltalk. Its
use is now found in almost any language. This drives an important point home:
Patterns are not language usages—they are patterns that work in any language with
the requisite features.

MVC is not about Java or Smalltalk. It’s about a design that transcends the imple-
mentation language.

Answers to Exercises
1. Listing 13.11 presents the new Employee class.

LISTING 13.11 Employee.java

import java.util.ArrayList;
import java.util.Iterator;

33 0672321092 AppA 08/22/2001 2:53 PM Page 543

LISTING 13.11 continued

public abstract class Employee {

private String first_name;
private String last_name;
private double wage;
private ArrayList listeners = new ArrayList();

public Employee(String first_name,String last_name,double wage) {
this.first_name = first_name;
this.last_name = last_name;
this.wage = wage;

}

public double getWage() {
return wage;

}

public void setWage(double wage) {
this.wage = wage;
updateObservers();

}

public String getFirstName() {
return first_name;

}

public String getLastName() {
return last_name;

}

public abstract double calculatePay();

public abstract double calculateBonus();

public void printPaycheck() {
String full_name = last_name + “, “ + first_name;
System.out.println(“Pay: “ + full_name + “ $” + calculatePay());

}

public void register(Observer o) {
listeners.add(o);
o.update();

}

public void deregister(Observer o) {
listeners.remove(o);

}

private void updateObservers() {
Iterator i = listeners.iterator();

544 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 544

Answers 545

A

LISTING 13.11 continued

while(i.hasNext()) {
Observer o = (Observer) i.next();
o.update();

}
}

}

2. Listing 13.12 presents the new implementation of BankAccountController.

LISTING 13.12 BankAccountController.java

public class BankAccountController implements BankActivityListener {

private BankAccountView view;
private BankAccountModel model;

public BankAccountController(BankAccountView view, BankAccountModel model)
{

this.view = view;
this.model = model;

}

public void withdrawPerformed(BankActivityEvent e) {
double amount = e.getAmount();
model.withdrawFunds(amount);

}

public void depositPerformed(BankActivityEvent e) {
double amount = e.getAmount();
model.depositFunds(amount);

}

}

This version of BankAccountController is much easier to read than the original;
however, the view is now much more complex.

Day 14 Quiz and Exercise Answers
Answers to Quiz

1. Bugs can arise from typos, errors in logic, or silly mistakes made while coding.
Bugs can also result from incorrect interaction among objects or from flaws in the
design or analysis.

33 0672321092 AppA 08/22/2001 2:53 PM Page 545

2. A test case is the building block of testing. Each form of testing is made up of test
cases, and each test case tests an aspect of the system.

3. You can base your test cases on black box or white box testing.

4. White box tests are based on the structure of the underlying source code. White
box tests are designed to achieve 100% coverage of the tested code.

Black box tests are based on the specification. Black box tests check to make sure
that the system behaves as expected.

5. The four forms of testing are unit test, integration test, system test, and regression
test.

6. A unit test is the lowest level testing device. A unit test sends an object a message
and verifies that it receives the expected result. A unit test should only check one
feature at a time.

7. Integration testing confirms that the objects interact properly. System testing veri-
fies that the system behaves as defined in the use cases, and that it can handle
unforeseen use gracefully.

8. You should not put off testing until the end. Testing as you develop helps you find
bugs right away. If you put off testing until the end, there will be more bugs and
they will be harder to trace and fix.

Testing as you develop also makes it easier to change your code and may actually
improve its design.

9. Manual or visual validation is error prone. You should avoid it as much as possible.
Instead, you should rely on an automatic mechanism for validating the unit tests.

10. A framework defines a reusable domain model. You can use the classes in this
model as the basis for your specific application.

11. A mock object is a simplistic substitute for a real object that helps you unit test
your objects.

12. Mock objects allow you to unit test your classes in isolation. They also open up
testing possibilities that would otherwise be difficult or impossible to do.

13. A bug arises from a flaw or defect in the system. An error condition, on the other
hand, is not a bug but rather a condition for which your system should be prepared
and should handle gracefully.

14. When writing your code, you can ensure quality through unit tests, the proper han-
dling of exceptions, and through proper documentation.

546 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 546

Answers 547

A

Answers to Exercises
1. Cookstour will give you insight into the design and the ideas behind JUnit.

2. Listing 14.12 presents one possible unit test.

LISTING 14.12 HourlyEmployeeTest.java

import junit.framework.TestCase;
import junit.framework.Assert;

public class HourlyEmployeeTest extends TestCase {

private HourlyEmployee emp;

private static final String FIRST_NAME = “FNAME”;
private static final String LAST_NAME = “LNAME”;
private static final double WAGE = 500.00;

protected void setUp() {
emp = new HourlyEmployee(FIRST_NAME, LAST_NAME, WAGE);

}

public void test_calculatePay() {
emp.addHours(10);

double expected = WAGE * 10;
assertTrue(“incorrect pay calculation”, emp.calculatePay() == expected

);
}

public HourlyEmployeeTest(String name) {
super(name);

}
}

Day 15 Quiz and Exercise Answers
Answers to Quiz

1. The PlayerListener is an example of the observable pattern.

The Console is a singleton. It implements the singleton pattern.

Rank and Suit implement the type safe enumeration pattern.

33 0672321092 AppA 08/22/2001 2:53 PM Page 547

2. The BlackjackDealer treats the HumanPlayer polymorphically as a Player. You
could create non-human players and the BlackjackDealer would know how to
play Blackjack with them.

3. The Player/BlackjackDealer/HumanPlayer is an example of an
inheritance hierarchy.

4. The Deck completely encapsulates the Cards that it holds. It does not provide any
getters or setters. Instead, the Deck adds its Cards to Deckpiles.

5. The BlackjackDealer and HumanPlayer act polymorphically by providing their
own customized versions of the hit() method. When the play() method calls
hit() the play() method’s behavior will vary based on the underlying implemen-
tation of hit().

Answers to Exercises
1. N/A

2. N/A

Day 16 Quiz and Exercise Answers
Answers to Quiz

1. Conditionals are dangerous when they remove responsibility from an object and
put it somewhere else. Behavior belongs in the object, not distributed throughout
the program. Distributed logic forces you to repeat logic throughout your program
instead of having it in just one place.

Conditionals are also dangerous because they make it harder to test an object and
cover all combinations of paths through the object.

2. Earlier you saw that you could use polymorphism to remove conditionals.

Today, you saw that you could use a combination of polymorphism and state to be
able to remove conditionals. State is an excellent way to implement rules.

3. The previous version of Hand required you to compare the Hand’s Cards yourself to
be able to check if two Hands are equal or whether one Hand is greater than another.
Hand now does this check for you without compromising its internal state.

The Hand does one other thing to encapsulate itself. The Hand now informs listen-
ers of state changes. Because the Hand readily pushes its state information with lis-
teners, there is no reason for an interested object to query the Hand’s state to learn
the state of the Hand.

548 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 548

Answers 549

A

4. The Hand and HandListener implement the observer pattern.

5. N/A

Answers to Exercises
1. N/A

2. Key to this problem is realizing that the methods all take the same actions up until
the point where a call is made on the PlayerListener. The solution is to wrap that
call in an object.

Consider the following notifyListener() method:
protected void notifyListeners(NotifyHelper helper) {

Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
helper.notifyListener(pl);

}
}

Note that this method is exactly the same as the old notifyChanged() or
notifyBusted() except for one difference. Instead of calling a method on the
PlayerListener directly, the notifyListeners() method delegates the call to a
NotifyHelper object.

Listing 16.17 presents the NotifyHelper.

LISTING 16.17 The Customized Dealer Waiting State

protected interface NotifyHelper {
public void notifyListener(PlayerListener pl);

}

The NotifyHelper interface defines one method: notifyListener().
Implementers will decide which method to call on PlayerListener.

In all, you will need to define seven NotifyHelper implementers, one implementa-
tion for each method in the PlayerListener interface. Listing 16.18 presents those
seven implementations.

LISTING 16.18 The NotifyHelper Implementations.

protected class NotifyBusted implements NotifyHelper {
public void notifyListener(PlayerListener pl) { pl.playerBusted(

Player.this); }

33 0672321092 AppA 08/22/2001 2:53 PM Page 549

LISTING 16.18 continued

}
protected class NotifyBlackjack implements NotifyHelper {

public void notifyListener(PlayerListener pl) { pl.playerBlackjack(
Player.this); }
}
protected class NotifyWon implements NotifyHelper {

public void notifyListener(PlayerListener pl) { pl.playerWon(Player.this
); }
}
protected class NotifyLost implements NotifyHelper {

public void notifyListener(PlayerListener pl) { pl.playerLost(Player.this
); }
}
protected class NotifyChanged implements NotifyHelper {

public void notifyListener(PlayerListener pl) { pl.playerChanged(
Player.this); }
}
protected class NotifyStanding implements NotifyHelper {

public void notifyListener(PlayerListener pl) { pl.playerStanding(
Player.this); }
}
protected class NotifyStandoff implements NotifyHelper {

public void notifyListener(PlayerListener pl) { pl.playerStandoff(
Player.this); }
}

Now, instead of calling notifyChanged() or notifyBlackjack() you would call
notifyListeners(new NotifyChanged()) or notifyListeners(new
NotifyBlackjack()).

Whether or not you think that this is a good solution is a matter of personal taste. It
does remove the redundant notifyXXX methods, however.

Day 17 Quiz and Exercise Answers
Answers to Quiz

1. Making a protected method abstract is a good way to establish an inheritance
protocol.

2. After today’s analysis and design, a new Player hierarchy was discovered. As
requirements presented themselves through the use cases, the need for a new inher-
itance hierarchy presented itself.

3. Programming by speculation rarely works. The hierarchies that you’ll need to
properly model an abstract domain will present themselves after you’ve worked

550 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 550

Answers 551

A

with a domain for a while. If you try to abstract a domain without ever working
with that domain, you’re mainly guessing at a solution.

4. By refactoring the hierarchy you were left with a model that more closely models
the Blackjack game. The code is also easier to understand. Cramming extra respon-
sibility into the base Player class would have resulted in code that is difficult to
understand.

Answers to Exercises
1. N/A

2. Doubling Down is simply another BettingPlayer state. You know that it needs to
be a separate state because the Player must react differently to the handPlayable
event. Instead of staying in the Playing state, the Player must transition to the
Standing state.

Figure A.7 illustrates the new state diagram for a BettingPlayer that can double
down.

FIGURE A.7
The updated
BettingPlayer state
diagram.

[!hit()]

Blackjack

inform dealer

Standing

inform dealer

Busted

inform dealer

hand is blackjack
[hand == 21]

Playing

hit, stand, or double down

Double Down

double bet and hit

hand is playable
[hand < 21]

hand is
playable
[hand < 21]

hand is playable
[hand <= 21]

[initial hand and
double down]

[done betting]

hand is busted
[hand > 21]

hand is
busted
[hand > 21]

Betting

bet

Waiting

33 0672321092 AppA 08/22/2001 2:53 PM Page 551

You also need to alter the Playing state so that it can transition into the
DoublingDown state. Listing 17.6 presents the new BettingPlayer states.

LISTING 17.6 DoublingDown and Playing

private class DoublingDown implements PlayerState {
public void handChanged() {

notifyChanged();
}
public void handPlayable() {

setCurrentState(getStandingState());
notifyStanding();

}
public void handBlackjack() {

// not possible in doubling down state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

bank.doubleDown();
dealer.hit(BettingPlayer.this);
getCurrentState().execute(dealer);

}
}
private class BetterPlaying implements PlayerState {

public void handChanged() {
notifyChanged();

}
public void handPlayable() {

// can ignore in playing state
}
public void handBlackjack() {

// not possible in playing state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

if(getHand().canDoubleDown() && doubleDown()) {
setCurrentState(getDoublingDownState());
getCurrentState().execute(dealer);
return;

}
if(hit()) {

dealer.hit(BettingPlayer.this);
} else {

setCurrentState(getStandingState());

552 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 552

Answers 553

A

LISTING 17.6 continued

notifyStanding();
}
getCurrentState().execute(dealer);
// transition

}
}

You’ll also need to update HumanPlayer so that it offers a doubling down option.
Listing 17.7 presents the updated HumanPlayer.

LISTING 17.7 HumanPlayer.java

public class HumanPlayer extends BettingPlayer {

private final static String HIT = “H”;
private final static String STAND = “S”;
private final static String PLAY_MSG = “[H]it or [S]tay”;
private final static String BET_MSG = “Place Bet: [10] [50] or [100]”;
private final static String DD_MSG = “Double Down? [Y]es [N]o”;
private final static String BET_10 = “10”;
private final static String BET_50 = “50”;
private final static String BET_100 = “100”;
private final static String NO = “N”;
private final static String YES = “Y”;
private final static String DEFAULT = “invalid”;

public HumanPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

protected boolean hit() {
while(true) {

Console.INSTANCE.printMessage(PLAY_MSG);
String response = Console.INSTANCE.readInput(DEFAULT);
if(response.equalsIgnoreCase(HIT)) {

return true;
} else if(response.equalsIgnoreCase(STAND)) {

return false;
}
// if we get here loop until we get meaningful input

}
}

protected boolean doubleDown() {
while(true) {

Console.INSTANCE.printMessage(DD_MSG);
String response = Console.INSTANCE.readInput(DEFAULT);
if(response.equalsIgnoreCase(NO)) {

33 0672321092 AppA 08/22/2001 2:53 PM Page 553

LISTING 17.7 continued

return false;
} else if(response.equalsIgnoreCase(YES)) {

return true;
}
// if we get here loop until we get meaningful input

}
}

protected void bet() {
while(true) {

Console.INSTANCE.printMessage(BET_MSG);
String response = Console.INSTANCE.readInput(DEFAULT);
if(response.equals(BET_10)) {

getBank().place10Bet();
return;

}
if(response.equals(BET_50)) {

getBank().place50Bet();
return;

}
if(response.equals(BET_100)) {

getBank().place100Bet();
return;

}
// if we get here loop until we get meaningful input

}
}

}

Day 18 Quiz and Exercise Answers
Answers to Quiz

1. To introduce a Vcard, you can simply subclass Card. To get it into the game, you
can subclass Deck and then override buildCards so that the subclass will create
VCards instead of Cards.

2. Originally the Deck’s buildCards method was private. When we found that a
subclass needed to override the behavior of buildCards we made it protected.

Answers to Exercises
1. N/A

554 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 554

Answers 555

A

2. The initial design and implementation that you did for exercise 2 from Chapter 17
is still valid. Doubling down is just another state in BettingPlayer. You should
begin writing the code for this exercise by adding the new DoublingDown state to
BettingPlayer. You will also need to make the same changes that you made in
Chapter 17 to the Bank and Hand classes. When you make those changes you’ll
need to update the GUIPlayer as well as the OptionView and
OptionViewController.

Before going into the changes required to the view and controller classes, we’ll
review the changes required to BettingPlayer, Hand, and Bank.

Listing 18.13 highlights the changes that were made to the Hand class.

LISTING 18.13 Highlights of the Changes Made to Hand

public boolean canDoubleDown() {
return (cards.size() == 2);

}

The new canDoubleDown method allows the BettingPlayer to check the Hand to
see if the player is allowed to double down.

You also need to add a new doubleDown method to the Bank class. Listing 18.14
presents that new method.

LISTING 18.14 The New doubleDown Method

public void doubleDown() {
placeBet(bet);
bet = bet * 2;

}

The doubleDown method doubles the current bet.

To be able to add doubling down, you need to add a new state to the
BettingPlayer. You know that you need a new state because the BettingPlayer
has to treat the handPlayable event specially when doubling down. Normally a
handPlayable event means that the player can hit again if he so chooses. When
doubling down, the player must stand immediately after the double down (if the
player does not bust). Listing 18.15 presents the new DoubleDown state.

33 0672321092 AppA 08/22/2001 2:53 PM Page 555

LISTING 18.15 The New DoubleDown State

private class DoublingDown implements PlayerState {
public void handChanged() {

notifyChanged();
}
public void handPlayable() {

setCurrentState(getStandingState());
notifyStanding();

}
public void handBlackjack() {

// not possible in doubling down state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

bank.doubleDown();
dealer.hit(BettingPlayer.this);
getCurrentState().execute(dealer);

}
}

When executed this new state tells the Bank to double the bet, asks the dealer to hit
the player, and then transitions to the next state. The next state will either be stand-
ing or busted, depending on which event gets sent to the state by the Hand.

To get to the DoublingDown state, you’ll need to make some changes to the
Playing state. Listing 18.16 presents the new BetterPlaying state.

LISTING 18.16 The New BetterPlaying State

private class BetterPlaying implements PlayerState {
public void handChanged() {

notifyChanged();
}
public void handPlayable() {

// can ignore in playing state
}
public void handBlackjack() {

// not possible in playing state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

if(getHand().canDoubleDown() && doubleDown()) {

556 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 556

Answers 557

A

LISTING 18.16 continued

setCurrentState(getDoublingDownState());
getCurrentState().execute(dealer);
return;

}
if(hit()) {

dealer.hit(BettingPlayer.this);
} else {

setCurrentState(getStandingState());
notifyStanding();

}
getCurrentState().execute(dealer);
// transition

}
}

When executed the BetterPlaying state first checks to see if the player can double
down. If so, the state calls the BettingPlayer’s doubleDown method (you’ll need
to add an abstract doubleDown method to the BettingPlayer). If the method indi-
cates that the player would like to double down, the BetterPlaying state sets the
current state to DoublingDown and transitions to it.

If the player does not want to double down, the state continues and plays normally.
Please see the source for all changes. There were a few other minor changes, such
as the addition of a getDoubleDownState method to the BettingPlayer. That
effectively adds doubling down to the system.

You now need to update the GUIPlayer and the OptionView and
OptionViewController.

The good news is that you do not need to make any changes to the GUIPlayer’s
states. These states shouldn’t do anything because they have to wait until the
human player clicks a button. You do need to implement the doubleDown method.
Listing 18.17 presents the method.

LISTING 18.17 The doubleDown Method

protected boolean doubleDown() {
setCurrentState(getDoublingDownState());
getCurrentState().execute(dealer);
return true;

}

The GUI button can call this method if the user decides to double down. The
method sets the current state to double down and then transitions to it. The state
handles the rest.

33 0672321092 AppA 08/22/2001 2:53 PM Page 557

The remaining changes all need to go into the OptionView and
OptionViewController. Mainly you need to add a doubling down button to the
view and make sure that it is enabled, by the controller, right after the bet and dis-
abled as soon as the player hits it, the stand, or the hit button.

Don’t worry too much if you do not fully understand the GUI code. What is impor-
tant is that you understand how doubling down is added to the system and the basic
ideas behind the view and controller.

Day 19 Quiz and Exercise Answers
Answers to Quiz

1. The three layers are the presentation, abstraction, and control.

2. The presentation is responsible for displaying the abstraction as well as for
responding to user interaction.

The abstraction is akin to the model in the MVC. The abstraction represents the
core system.

The control is responsible for taking the various presentations and combining them
into a view.

3. You can use inheritance to subclass each of the system classes that will require a
presentation. That way, you do not graft a presentation class directly onto the sys-
tem class. Instead, you can add the presentation class to the subclass.

By using inheritance in this way, you can provide multiple views of the same sys-
tem. Each time you need a different view you simply subclass the classes that you
need to display and have them create a new presentation. When you need to put all
of the classes together as an app, just be sure to instantiate the correct subclasses.

4. It is best to use the PAC on a stable system with well-defined interface require-
ments. Sometimes the inheritance approach can fail for more complicated designs.
When inheritance fails you’ll have to graft the presentation directly into the system
class. Such an eventuality makes servicing many different views difficult.

5. You were able to maintain two UIs because you left the observer framework intact.
Nothing forces you to remove the framework just because you use PAC. In fact,
both the BettingView and DealerView use the PlayerListener mechanism to stay
abreast of changes to the player and dealer.

6. The factory pattern was used to make sure that the proper class instances were used
together. In particular, you must be careful to use a VDeck whenever you use the
classes that create a presentation.

558 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 558

Answers 559

A

Answers to Exercises
1. N/A

2. The initial design and implementation that you did for exercise 2 from Chapter 17
is still valid. Doubling down is just another state in BettingPlayer. You should
begin writing the code for this exercise by adding the new DoublingDown state to
BettingPlayer. You will also need to make the same changes that you made in
Chapter 17 to the Bank and Hand classes. When you make those changes you’ll
need to update the GUIPlayer and its presentation class.

Before going into the changes required to the GUI classes, we’ll review the
changes required to BettingPlayer, Hand, and Bank.

Listing 19.8 highlights the changes that were made to the Hand class.

LISTING 19.8 Highlights of the Changes Made to the Hand

public boolean canDoubleDown() {
return (cards.size() == 2);

}

The new canDoubleDown method allows the BettingPlayer to check the Hand to
see if the player is allowed to double down.

You also need to add a new doubleDown method to the Bank class. Listing 19.9 pre-
sents that new method.

LISTING 19.9 The new doubleDown method

public void doubleDown() {
placeBet(bet);
bet = bet * 2;

}

The doubleDown method doubles the current bet.

To add doubling down, you need to add a new state to the BettingPlayer. You
know that you need a new state because the BettingPlayer has to treat the
handPlayable event in a special manner when doubling down. Normally a
handPlayable event means that the player can hit again if he so chooses. When
doubling down, the player must stand immediately after the double down (if the
player does not bust). Listing 19.10 presents the new DoubleDown state.

33 0672321092 AppA 08/22/2001 2:53 PM Page 559

LISTING 19.10 The New DoubleDown State

private class DoublingDown implements PlayerState {
public void handChanged() {

notifyChanged();
}
public void handPlayable() {

setCurrentState(getStandingState());
notifyStanding();

}
public void handBlackjack() {

// not possible in doubling down state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

bank.doubleDown();
dealer.hit(BettingPlayer.this);
getCurrentState().execute(dealer);

}
}

When executed, this new state tells the Bank to double the bet, asks the dealer to
hit the player, and then transitions to the next state. The next state will either be
standing or busted, depending on which event gets sent to the state by the Hand.

To get to the DoublingDown state, you’ll need to make some changes to the
Playing state. Listing 19.11 presents the new BetterPlaying state.

LISTING 19.11 The new Playing state

private class BetterPlaying implements PlayerState {
public void handChanged() {

notifyChanged();
}
public void handPlayable() {

// can ignore in playing state
}
public void handBlackjack() {

// not possible in playing state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

560 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 560

Answers 561

A

LISTING 19.11 continued

if(getHand().canDoubleDown() && doubleDown()) {
setCurrentState(getDoublingDownState());
getCurrentState().execute(dealer);
return;

}
if(hit()) {

dealer.hit(BettingPlayer.this);
} else {

setCurrentState(getStandingState());
notifyStanding();

}
getCurrentState().execute(dealer);
// transition

}
}

When executed, the BetterPlaying state first checks to see if the player can dou-
ble down. If so, the state calls the BettingPlayer’s doubleDown method (you’ll
need to add an abstract doubleDown method to the BettingPlayer). If the method
indicates that the player would like to double down, the BetterPlaying state sets
the current state to DoublingDown and then transitions to it.

If the player does not want to double down, the state continues and plays normally.
See the source for all changes; there were a few other minor changes, such as the
addition of a getDoubleDownState method to the BettingPlayer.

You have effectively added doubling down to the system. Now you need to update
the GUIPlayer and its presentation class so that it can support doubling down.

The good news is that you do not need to make any changes to the GUIPlayer’s
states. These states shouldn’t do anything because they have to wait until the
human player clicks a button. You do need to implement the doubleDown method.
Listing 19.12 presents the method.

LISTING 19.12 The doubleDown Method

protected boolean doubleDown() {
setCurrentState(getDoublingDownState());
getCurrentState().execute(dealer);
return true;

}

The GUI button can call this method if the user decides to double down. The
method sets the current state to double down and then transitions to it. The state
handles the rest.

33 0672321092 AppA 08/22/2001 2:53 PM Page 561

The remaining changes all need to go into the presentation class: GUIView. You
need to add a doubling down button, make sure that it is enabled right after the bet,
and disabled as soon as the player presses it, the stand, or the hit button.

Don’t worry too much if you do not fully understand the GUI code. What is impor-
tant is that you understand how doubling down is added to the system.

Day 20 Quiz and Exercise Answers
Answers to Quiz

1. Through substitutability relationships and polymorphism you can create any sub-
class of BettingPlayer that you want and add it to the game.

The game doesn’t know the difference between a human-based player and an auto-
matic non-human player. As a result you can set up the game with no human play-
ers. By implementing the hit method in the player subclasses, they will be able to
play without human intervention.

2. You should never follow OneHitPlayer’s strategy.

Answers to Exercises
1. N/A

2. Your solutions may vary. Listings 20.8 and 20.9 present the implementation of
KnowledgeablePlayer and OptimalPlayer respectively.

LISTING 20.8 KnowledgeablePlayer.java

public class KnowledgeablePlayer extends BettingPlayer {

public KnowledgeablePlayer(String name,Hand hand,Bank bank) {
super(name, hand, bank);

}

public boolean hit(Dealer dealer) {

int total = getHand().total();
Card card = dealer.getUpCard();

// never hit, no matter what, if total > 15
if(total > 15) {

return false;
}

// always hit for 11 and less
if(total <= 11) {

562 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 562

Answers 563

A

LISTING 20.8 continued

return true;
}

// this leaves 11, 12, 13, 14
// base decision on dealer

if(card.getRank().getRank() > 7) {
return true;

}

return false;

}

public void bet() {
getBank().place10Bet();

}

}

LISTING 20.9 OptimalPlayer.java

public class OptimalPlayer extends BettingPlayer {

public OptimalPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit(Dealer dealer) {

int total = getHand().total();
Card card = dealer.getUpCard();

if(total >= 17) {
return false;

}

if(total == 16) {
if(card.getRank() == Rank.SEVEN ||

card.getRank() == Rank.EIGHT ||
card.getRank() == Rank.NINE) {
return true;

} else {
return false;

}
}

33 0672321092 AppA 08/22/2001 2:53 PM Page 563

LISTING 20.9 continued

if(total == 13 || total == 14 || total == 15) {
if(card.getRank() == Rank.TWO ||

card.getRank() == Rank.THREE ||
card.getRank() == Rank.FOUR ||
card.getRank() == Rank.FIVE ||
card.getRank() == Rank.SIX) {
return false;

} else {
return true;

}
}
if(total == 12) {

if(card.getRank() == Rank.FOUR ||
card.getRank() == Rank.FIVE ||
card.getRank() == Rank.SIX) {
return false;

} else {
return true;

}
}
return true;

}

public void bet() {
getBank().place10Bet();

}

}

So, how do these players stack up?

In my testing, both the KnowledgeablePlayer and OptimalPlayer perform better
than the SmartPlayer presented in the chapter. In comparison to one another,
OptimalPlayer performs the best.

Over time though, both still lose money, just very slowly.

3. Your solutions may vary. Listings 20.10 and 20.11 present the implementation of
KnowledgeablePlayer and OptimalPlayer respectively.

LISTING 20.10 KnowledgeablePlayer.java

public class KnowledgeablePlayer extends BettingPlayer {

public KnowledgeablePlayer(String name,Hand hand,Bank bank) {
super(name, hand, bank);

}

564 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 564

Answers 565

A

LISTING 20.10 continued

public boolean doubleDown(Dealer d) {
int total = getHand().total();
if(total == 10 || total == 11) {

return true;
}
return false;

}

public boolean hit(Dealer d) {

int total = getHand().total();
Card c = d.getUpCard();

// never hit, no matter what, if total > 15
if(total > 15) {

return false;
}

// always hit for 11 and less
if(total <= 11) {

return true;
}

// this leaves 11, 12, 13, 14
// base decision on dealer

if(c.getRank().getRank() > 7) {
return true;

}

return false;

}

public void bet() {
getBank().place10Bet();

}

}

LISTING 20.11 OptimalPlayer.java

public class OptimalPlayer extends BettingPlayer {

public OptimalPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

33 0672321092 AppA 08/22/2001 2:53 PM Page 565

LISTING 20.11 continued

}

public boolean doubleDown(Dealer d) {
int total = getHand().total();
Card c = d.getUpCard();
if(total == 11) {

return true;
}
if(total == 10) {

if(c.getRank().getRank() != Rank.TEN.getRank() &&
c.getRank() != Rank.ACE) {
return true;

}
return false;

}
if(total == 9) {

if(c.getRank() == Rank.TWO ||
c.getRank() == Rank.THREE ||
c.getRank() == Rank.FOUR ||
c.getRank() == Rank.FIVE ||
c.getRank() == Rank.SIX) {
return true;

}
return false;

}
return false;

}

public boolean hit(Dealer d) {

int total = getHand().total();
Card c = d.getUpCard();

if(total >= 17) {
return false;

}

if(total == 16) {
if(c.getRank() == Rank.SEVEN ||

c.getRank() == Rank.EIGHT ||
c.getRank() == Rank.NINE) {
return true;

} else {
return false;

}
}
if(total == 13 || total == 14 || total == 15) {

if(c.getRank() == Rank.TWO ||
c.getRank() == Rank.THREE ||
c.getRank() == Rank.FOUR ||

566 Appendix A

33 0672321092 AppA 08/22/2001 2:53 PM Page 566

Answers 567

A

LISTING 20.11 continued

c.getRank() == Rank.FIVE ||
c.getRank() == Rank.SIX) {
return false;

} else {
return true;

}
}
if(total == 12) {

if(c.getRank() == Rank.FOUR ||
c.getRank() == Rank.FIVE ||
c.getRank() == Rank.SIX) {
return false;

} else {
return true;

}
}
return true;

}

public void bet() {
getBank().place10Bet();

}

}

In my testing, both the KnowledgeablePlayer and OptimalPlayer perform better
than the versions in Exercise 2.

Over time though, both still lose money—just very slowly.

Day 21 Quiz and Exercise Answers
Answers to Quiz

1. You can take care of the recursive method call problem by threading each player.
When you call Thread.start the call returns right away, unlike a normal method.
Because the method returns right away, the method call stack can unwind and return.

Answers to Exercises
1. N/A.

2. Answers will depend upon personal interests. Appendix D, “Selected
Bibliography,” presents an excellent list of resources upon which you can base
your continued study.

33 0672321092 AppA 08/22/2001 2:53 PM Page 567

33 0672321092 AppA 08/22/2001 2:53 PM Page 568

APPENDIX B
Java Primer
Java Developer’s Kit: J2SE 1.3 SDK

The Java Developer’s Kit (JDK) from Sun Microsystems provides the environ-
ment for all Java development. Over the years, Sun has renamed the develop-
ment kit from the JDK to the Java 2 Standard Edition (J2SE) Software
Development Kit (SDK; however, the purpose of the tools and libraries remain
the same—to assist developers in their efforts to write quality, platform inde-
pendent, object oriented software.

Many popular integrated development environments (IDEs) incorporate the
SDK in addition to a powerful editor and debugger. Sun’s Forte and Borland’s
JBuilder provide stripped down versions of the IDE for free; however, for the
purpose of this discussion, the scope will be limited to using the SDK with a
text editor like TextPad, Notepad, or vi.

Sun provides the J2SE SDK for several platforms:

• Windows NT, 2000, 95, 98, ME

• Sun Solaris

• Linux

34 0672321092 AppB 08/22/2001 2:48 PM Page 569

You can obtain the SDK for other platforms, such as HP or AIX, from the appropriate
platform vendor. The J2SE SDK for Windows will be utilized as the default example.
Installation and configuration on other platforms will vary little from the procedures dis-
cussed below.

Developers can download J2SE SDK from JavaSoft’s J2SE website,
java.sun.com/j2se/1.3. Follow the appropriate links to download the J2SE 1.3 SDK.
In addition to the J2SE SDK, you should download the J2SE API documentation.
Although not required, the API documentation is tremendously helpful. The J2SE API
documentation provides detailed attribute, method, and class level documentation that
even highly experienced Java developers will find useful.

Development Environment Configuration
JavaSoft packages the Windows J2SE 1.3 SDK in an InstallShield package. When you
download the file, run it and proceed through the dialog boxes to install the SDK in the
appropriate target directory. (The default target directory is C:\jdk1.3.) Install all compo-
nents when prompted. This will require around 54MB of hard disk space. When complete,
you should see the following directory structure in your installation target directory:

C:\jdk1.3
\bin
\demo
\include
\include-old
\jre
\lib

The installation package only deploys the SDK to the appropriate directories. To begin
development, you should configure the following environment variables.

• JAVA_HOME

• PATH

• CLASSPATH

First, set JAVA_HOME to the appropriate installed directory. For example, you would exe-
cute the following at the command line:

set JAVA_HOME=c:\jdk1.3

Next, configure the PATH environment variable:

set PATH=%PATH%;%JAVA_HOME%\bin

Finally, configure the CLASSPATH environment variable. The CLASSPATH variable will
inform the compiler and the virtual machine where to search for the compiled class files.

570 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 570

Java Primer 571

B

In general, this path is the same as the root of the source tree. Choose
c:\projects\src\java\classes. Thus, you set the CLASSPATH variable:

set CLASSPATH=c:\projects\src\java\classes

Figure B.1 demonstrates the environment settings just described.

FIGURE B.1
Setting environment
variables.

Most third parties will package their libraries in the form of jar or zip files. To use these
libraries, you must append the location of the jar file to the CLASSPATH. For example, to
use c:\projects\lib\myclasses.jar, you must perform the following:

set CLASSPATH=%CLASSPATH%;c:\projects\lib\myclasses.jar

You must append each jar file to the CLASSPATH prior to use.

SDK Tools Overview
In addition to providing the Java libraries, the Java SDK provides several tools necessary
for development. The most commonly used tools are

• javac

• java

• jar

• javadoc

You will need the other tools for additional features, such as remote method invocations
and Java native interface.

Java Compiler: javac
javac, the Java compiler, compiles Java source code to byte code. When you type javac
FirstProgram.java, the compiler will generate a FirstProgram.class file in the cur-
rent directory—assuming the compiler detects no errors within your Java code.

34 0672321092 AppB 08/22/2001 2:48 PM Page 571

If a Java program utilizes third party libraries, the compiler will attempt to locate these
libraries from the specified CLASSPATH; however, you can choose to modify the CLASS-
PATH while compiling. The –classpath <path> option allows developers to replace the
CLASSPATH environment variable.

You can also specify different source and target directories via –sourcepath <path> and
-d <path>, respectively. The –sourcepath option specifies a new location for input
source files. Thus, you can choose to compile source files located somewhere other than
the current directory. The –d option informs the compiler to deposit the .class files into
the specified path rather than in the current directory.

You will not need the –classpath, –sourcepath, or –d options for the exercises in this
book.

Java Interpreter: java
java, the Java interpreter, provides the runtime environment. It will interpret and execute
the compiled class files. To execute a Java program, enter

java FirstProgram

Note that the command omits the .class extension. The interpreter automatically
appends.class to the class name.

As with the compiler, you can specify command line options to the interpreter. Some of
the more frequently used options are

• -classpath to specify a classpath other than that defined by the environment vari-
able CLASSPATH

• –DpropName=propValue to specify system properties

These and other interpreter options, however, fall beyond the scope of this discussion.

Java Archive Utility: jar
The jar utility generates java archive (jar) files. jar files are equivalent to zip files, com-
pressing files to a smaller size and providing a convenient way to distribute compiled
java classes.

To create an archive, simply invoke

jar cvf <jarfilename> <files_to_package>

You can also specify to jar all files and subdirectories of a given directory via

jar cvf <jarfilename> <directory>

Note all jar files must have a .jar suffix.

572 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 572

Java Primer 573

B

If you want to view the contents of a jar file, invoke

jar tvf <jarfile>

The jar tvf command will display the size, date inserted, and file name of the archive
contents.

Additional options are described in the Java SDK documentation.

Java Documentation and the Documentation
Generator: javadoc
All developers have heard the mantra of code documentation. JavaSoft facilitates the
documentation process by providing a tool to generate user-friendly HTML documenta-
tion. The developer needs to utilize only standard tags when writing attribute, method,
and class level comments and then invoke the javadoc tool with the appropriate options
to generate API documentation. The Java SDK documentation provides elaborate infor-
mation about the javadoc tool and process; however, let’s cover some basic features to
get started.

Developers must first document their code with the appropriate comments and tags. It
would be great if the documentation tool could introspect our code and decipher exactly
what we were thinking when we wrote that particular method; however, the javadoc tool
is not advanced enough to read minds.

In Java, there are three primary documentation levels: class, method, and attribute.
javadoc will recognize comments commencing with /** as a javadoc comment. The
comments are terminated with */.

For class-level comments, you will commonly see

• @author <author_name> specifies the author of this class. You may have more
than one author; however, each author entry should commence with the @author
tag.

• @version <version_number> specifies the version of this class. Some version con-
trol software provides tags that will automatically generate the number.

• @see <classname> provides links to other classes for further information. You may
have more than one reference; however, each reference must commence with a
@see tag.

A class level documentation would look something similar to

/**
* <Class comments and description>
*
* @author Michael C. Han

34 0672321092 AppB 08/22/2001 2:48 PM Page 573

* @author Tony Sintes
* @version 1.0
* @see SecondJavaClass
*/

Method level comments use the previous tags in addition to

• @param <param_name> <comments> describes method parameters

• @return <comments> describes the method return value

• @exception <ExceptionName> <comments> describes any exceptions thrown by
the current method

A method level documentation would look something similar to

/**
* <method description and comments>
*
* @param value1 parameter taken by test method
* @param value2 second parameter taken by test method
* @return true if value1 == value2
* @exception NumberFormatException thrown if value1 or value2 are not integers
*/

Attribute level javadoc comments tend not to have special tags. Instead, you must denote
the comment block as a javadoc comment. The following is a sample attribute javadoc
comment:

/**
* Class level attribute to hold state of previous comparison operation
*/

Java Playpen: Your First Java Program
To help confirm your SDK installation and practice the tools described so far, you will
write the infamous HelloWorld example. First, create a file called HelloWorld.java
under the source root. If using the suggested source root (c:\projects\src\java\
classes), create the file under c:\projects\src\java\classes.

After creating the file, you can commence writing your first Java program. Listing B.1
contains the HelloWorld example in Java.

LISTING B.1 HelloWorld.java

/**
* A hello world program to confirm the SDK has been configured properly.
* Also utilized to help demonstrate core SDK tools.
*

574 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 574

Java Primer 575

B

LISTING B.1 continued

* @author Michael C. Han
* @version 1.0
*/
public class HelloWorld {

/**
* Main method for program. All executable Java classes must

* contain this method.
*
* @param args passed in from commandline
*/
public static void main(String[] args) {

HelloWorld helloTest = new HelloWorld();
System.out.println(helloTest.sayHello());
System.out.println(“”);
System.out.println(helloTest.sayHi());

}

/**
* Default Class constructor
*
*/
public HelloWorld() {
}

/**
* Method to say hello to the invoker
* @return String saying “Hello”
*/
public String sayHello() {

return “Hello”;
}

/**
* Method to say hi to the invoker
* @return String saying “Hi!”
*/
public String sayHi() {

return “Hi!”;
}

}

Compiling and Running
To compile the class, run

javac HelloWorld

in the source root directory. If successful, you will see a HelloWorld.class file generat-
ed in the same directory.

34 0672321092 AppB 08/22/2001 2:48 PM Page 575

Next, execute the program by entering

java HelloWorld

If the HelloWorld program runs successfully and prints out “Hello” and “Hi!” as shown
in Figure B.2, you have configured your SDK properly; however, if you see the follow-
ing when running java HelloWorld,

Exception in thread “main” java.lang.NoClassDefFoundError: HelloWorld

you either did not configure your CLASSPATH properly, or you placed the
HelloWorld.java file somewhere other than the source root. In either case, first confirm
CLASSPATH contains the source root (c:\projects\src\java\classes) and then confirm
the HelloWorld.java file is in the source root.

576 Appendix B

FIGURE B.2
Compiling and
executing HelloWorld.

Creating a .jar File
Next try to run the jar utility on the files in the directory. At the source root, execute

jar cvf hello.jar *.java *.class

You will see a hello.jar file generated.

To confirm the contents of hello.jar, execute

jar tvf hello.jar

You will see two files—HelloWorld.java and HelloWorld.class—in the listing, as
seen in Figure B.3.

34 0672321092 AppB 08/22/2001 2:48 PM Page 576

Java Primer 577

B

Next, delete HelloWorld.java and HelloWorld.class from the source root

(c:\projects\src\java\classes). Finally, you need to execute

jar xvf hello.jar

This will extract the HelloWorld.java and HelloWorld.class files into the source root
(see Figure B.3).

Generating javadoc
If you examine the source code for HelloWorld, you will notice javadoc style comments
for both the class and the methods of the class.

To generate the documentation, create the documentation directory. Under c:\projects,
create a docs directory and then execute:

javadoc -public -d c:\projects\docs HelloWorld

The command will deposit HTML documentation into the c:\projects\docs directory
for all public methods of the HelloWorld class, as shown in Figure B.4. To view the doc-
umentation, open c:\projects\docs\index.html in a web browser. Notice the similari-
ty in styles between the generated documentation and the J2SE API documentation
from Sun.

FIGURE B.3
Creating, listing, and
extracting hello.jar.

34 0672321092 AppB 08/22/2001 2:48 PM Page 577

Java Language Mechanics
After following the steps above, you should have a fully configured Java development
environment as well as an understanding of the basic SDK tools. Armed with the devel-
opment environment, it is now time to write some Java classes.

Simple Java Class
Following is the simplified version of a HelloWorld program introduced in the previous
section. Now that you understand how to compile and execute Java programs, you can
examine the source in more detail:

public class SimpleHelloWorld {
public static void main(String args[]) {

String hi = new String(“Hello All”);
System.out.println(hi);

}
}

The first keyword utilized is the keyword public. The word public is termed an access
modifier. Similar to C++ or SmallTalk, Java provides access modifiers to specify who
can access a particular method, attribute, or class. Public access grants access to all who
want to use a particular class, method, or attribute. The other access modifiers are pro-
tected, private, and package level. Package level is something special in Java.
Essentially, a package level modifier grants access to all classes within the same package
or directory.

578 Appendix B

FIGURE B.4
Screen shot of javadoc
generation for
HelloWorld.

34 0672321092 AppB 08/22/2001 2:48 PM Page 578

Java Primer 579

B

The next keyword in the sample class is class. In Java, a class is the basic foundation
and building blocks for programs. It is the encapsulation of data variables or attributes
and operations, functions, or methods. Everything in Java must reside within a class.

The name of the sample class is SimpleHelloWorld. In Java, the source code for this
class must reside in a file called SimpleHelloWorld.java. If the class resides in any
other file, the compiler will complain that “class SimpleHelloWorld is public, should be
declared in a file named SimpleHelloWorld.java.” The compiled class file resides in
SimpleHelloWorld.class.

The SimpleHelloWorld class also contains public static void main(String
args[]). Ignore the static and void modifiers. Java requires a main method if you want
to execute a Java class via the java command. You can choose to add additional methods
and operations to the class; however, without a method of this signature, you cannot
execute the class.

Notice the braces ({}) and semicolons (;) in the source code. In Java, braces designate
program blocks. A method and class must start with a brace and terminate with a brace.
Thus, you must take special care to terminate open braces with close braces. Semicolons
designated the end of a statement. If you are a C/C++ programmer, you are already
familiar with these and know that you must close all statements with semicolons.

The static and void keywords describe a method. The void keyword is the return
value. Similar to other languages, Java methods have a return value. In this case, the
main method does not return any value. The static keyword designates the method as
accessible via the class. In other words, you can invoke a static method of a class without
creating an instance of the class.

The following two lines of code encapsulated by the main method’s braces represent the
body of the program.

String hi = new String(“Hello All”);
System.out.println(hi);

Here, a reference named hi points to a constructed instance of the String class. As in
SmallTalk or C++, the new operator performs instance creation. The String instance con-
tains the value “Hello All”. It receives the value as parameters of the constructor. In the
next line, the System object prints the value of hi to the system console.

Notice also the semicolons at the end of each line of code. Failure to terminate program-
matic statements or variable declarations with a semicolon will result in compilation
errors.

34 0672321092 AppB 08/22/2001 2:48 PM Page 579

Data Types
Java, like C++ and Smalltalk, is strongly typed. Thus, when declaring variables and
return values, you must specify the variable or return type. Java contains eight primitive
types. Table B.1 lists the valid primitive types in a Java program and the number of bits
associated with a type:

TABLE B.1 Primitive Java Types and Storage Sizes

Type Number of Bits

byte 8 bits

short 16 bits

char 16 bits

int 32 bits

float 32 bits

double 64 bits

long 64 bits

boolean 1 bit

In most scenarios, you can use int to represent integers and float to represent floating
point values; however, certain data types may require larger storage space. For instance,
you might want to express the number of milliseconds since 1970. This number is suffi-
ciently large to require a long rather than an integer.

You may represent a long as 1000000000L. The L postfix denotes the number as a long.
Similarly, you can represent floats as 4.3405F.

If you are a C++ programmer, you know that characters in C++ are ASCII characters.
Java, however, uses Unicode to represent characters. Unicode uses 2 bytes to represent
characters as opposed to the 1 byte used by ASCII. This permits representation of a larg-
er character set for purposes of internationalization. For example, most Asian languages
require larger storage than standard ASCII. Java does not completely disallow use of
ASCII. Instead, you are given a choice to use either. For instance, you can use common
ASCII escape sequences, such as \n for new line or \t for tab.

At certain times, you might want to convert one numeric type to another, such as from an
int to a long. Java provides automatic convert between numeric types if the conversion
leads to no loss of precision. It will convert a 32-bit int automatically to a 64-bit long;
however, you must explicitly specify type conversion to convert from a long to an int or
from a double to an int. Java terms this operation casting. If you do not cast when per-
forming a precision reducing conversion, the compiler will balk.

580 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 580

Java Primer 581

B

The following lines demonstrate an explicit cast:

long value1 = 40000L;
int value = (int)value1;
float value2 = 4.003F;
double value3 = value2;

Notice the float to double conversion requires no explicit casting because a float is 32
bits and a double is 64 bits. Thus, the operation increases precision.

Variables
In addition to being strongly typed, Java is also case sensitive. Consequently, Java con-
siders two variables with different capitalization two separate variables. For example,
variableOne and variableone are two different variable declarations. A Java variable
name must commence with a letter and contain any alphanumeric characters. The
alphanumeric characters can be any Unicode character that denotes a letter in any lan-
guage; however, the name cannot contain any symbols such as $, %, &, and so on.

The following reserved words cannot be utilized:

abstract boolean break byte

case catch char class

const continue default do

double Else extends final

finally Float for future

generic Goto if implements

import inner instanceof int

interface Long native new

null operator outer package

private protected public rest

return Short static super

switch synchronized this throw

throws transient try var

void volatile while

Following are some sample variable declarations:

int value1;
double Value2;
float _value3;
char VALUE4,Value5;

Notice the final variable declaration. Java permits multiple variable type declarations per
line. In this scenario, both VALUE4 and Value5 are char values. To declare multiple vari-
ables, use a comma to separate each variable name and terminate with a semicolon.

34 0672321092 AppB 08/22/2001 2:48 PM Page 581

There are also attribute modifiers you can add to a variable declaration. For example,
variables can be declared public, private, or protected for access control. A variable
can also be declared static or final or both. A static variable is one accessible via the
class while a final variable is unmodifiable.

Although you have little restrictions on variable names, it is highly advisable to follow
some form of naming convention or coding standards. Coding standards lead to uniform
code, and thus improving code readability. A common variable naming convention is to
capitalize the first letter of every word except the first word. Names would look like

int anIntegerValue;
char aCharValue;

Another convention is to prefix all private and protected variables with an underscore.
Thus, variables would look like

private int _value;
private char _aCharValue;

You should follow your organization’s coding standards or follow a common coding
standard.

Constants
Constants can be considered a special type of variable. Like in other languages, Java con-
stants are variables with unchanging values. You can declare a constant by prepending
the static final keywords to the variable declaration.

Sample constant declarations include

private static final String _NAME_VALUE = “MyName”;
private static final int _AN_INTEGER_CONSTANT = 1;
public static final String PARAMETER_NAME = “MyParam”;
protected static final char _TYPE_CHAR_VALUE = ‘c’;

Notice the constant names are in capital letters. Although not a requirement, a commonly
followed practice among Java developers is to name constants with all capital letters.

You may access these constants via <classname>.<constant_name>. For example, if the
previous constants are declared in MyClass, you can access the PARAMETER_NAME constant
via MyClass.PARAMETER_NAME. This is the only public constant declared and, thus, this is
the only constant available outside of MyClass; however, you can use any of the other
constants within MyClass. You can also use the _TYPE_CHAR_VALUE constant in any sub-
classes of MyClass. When using constants within the same class, you can omit the
<classname>. prefix. For example, to access _NAME_VALUE within MyClass, you can refer
to the constant as either MyClass,_NAME_VALUE or simply _NAME_VALUE.

582 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 582

Java Primer 583

B

Operators
Java provides a multitude of operators for arithmetic and boolean operations. For those
familiar with C/C++ syntax, you should be familiar with the syntax for these operators.
As we mentioned previously, all Java statements must terminate with a semicolon.

Java has the usual +, /, -, * for arithmetic operations. The = operator is used for assign-
ment. In addition, Java supports the mod or remainder operator, %. For instance, 15 / 3
equals 5 while 15 % 3 equals 0. You can also use arithmetic operators when initializing
variables. For example, initializing x to n + 2 looks something similar to

int x = n + 2;

You can also choose to use a shortened syntax when performing operations on the same
variable. For example, to increment x by n, you can choose to write

x = n + x;

You can also take a shortened approach and write

x += n;

Java also provides support for exponentiation. Java doesn’t provide an operator. Instead,
you use the pow method provided in the java.lang.Math class. So to raise x to power of
n, the expression would look similar to

int y = Math.pow(x, n);

Java also provides increment and decrement operators as in C/C++. To increment x by 1,
you can write either of the following:

x = x + 1;
x += 1;

The best way, however, is to write

x++;

The same applies for the decrement operator:

x--;

With both operators, there are two forms. You can place the operator before or after the
variable. For example, to decrement x, you can express either of the following:

x--;
--x;

The location of the operator dictates when the operator is performed. In an arithmetic
expression, placing the operator prior to the variable will increment (or decrement) the

34 0672321092 AppB 08/22/2001 2:48 PM Page 583

variable first, before evaluating the expression. If you place the operator after the vari-
able, the expression is evaluated first. Take the following snippet, for example:

int x = 5;
int y = 6;
int k =++x; //after this expression, k = 6 and x = 6
int j = y++; //after this expression, j = 6 and y = 7

As you can see, the placement of increment or decrement operator is key. Take special
care to use the operators appropriately.

Java’s boolean operators looks very much like boolean operators in other programming
languages. When comparing greater than or less than, Java provides > and < respectively.
Also, <= and >= denote less than or equal to and greater than or equal to, respectively.
These apply for comparing primitives like integers, longs, doubles, characters, and so on:

int x = 5;
int y = 6;
boolean z = x < y; // z = true

When comparing equality, Java provides two different operators. You can use the ==
operator to compare primitives; however, when comparing two objects (such as String,
MyObject), you must use the equals() method defined for the object. If you mistakenly
use == to compare two objects, this actually compares the reference of the two objects,
not the actual objects. Unless you are comparing the same object references, this opera-
tion will return false:

String x = new String(“My String”);
String y = new String(“My String”);
boolean z = (x == y); // z = false
boolean w = (x.equals(y)); // w = true

To compare inequality, Java uses the ! operator. Inequality between primitives will use
!= and between two objects will be !obj1.equals(obj2).

You can also choose to use && and || to check conditionals (ands and ors, respectively).

Conditional Statements
Conditional statements are a key part to any programming language. Like C/C++, Java
provides the if-else operator. The syntax, like in C/C++ looks similar to

if (condition) {
... //behavior for when condition is true

}
else {

... //behavior statements
}

584 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 584

Java Primer 585

B

You can choose to have a single if, if-else, or if with multiple else statements.

The following is a sample if-else statement with multiple elses:

if (x == y) {
x --;

}
else if (x > y) {

x * 2;
}
else {

x / 2;
}

Notice the braces that denote the beginning and end of an if block. Although braces are
not required if you only have one statement in the if block, using braces in this situation
is recommended. By doing so, you can avoid potential headaches later when you decide
to add additional statements to the if block. Should you forget to add braces at that time,
you will have to debug for missing braces.

Java, like C/C++, provides a ternary operator to shorten if-then expression. A ternary
expression looks something like

z = (x > y) ? 3 : 1;

The (x > y) is the conditional test. The first value following the ?, represents the value
of z if the conditional proves true. The second value represents the value of z if the con-
ditional proves false.

Following the above example, if x = 5 and y = 7, then z = 1. The conditional proves false
(5 > 7) and thus z is assigned the second value in the expression, 1.

Loops
Loops are an important component to any programming language. Java, like many other
languages, provides a variety of looping mechanisms.

A commonly used loop, the for loop, has the following syntax:

for (int x = 0; x < 8; x++) {
//…some operation in loop

}

The loop constraint, x, is defined within the parenthesis and initialized to zero. The next
statement tests the constraint to ensure it is within the necessary bounds. In this case, x
must be less than 8. The final statement increments the loop constraint.

34 0672321092 AppB 08/22/2001 2:48 PM Page 585

Another commonly used loop, the while loop has the following syntax:

while (condition is true) {
//…do some operation

}

The loop will continue to execute as long as the conditional statement within the paren-
thesis tests true.

Classes and Interfaces—Building Blocks
of Java

In Java, you cannot do anything without classes and to a lesser extent, interfaces. Classes
comprise the basic building blocks of the language. Thus, when writing your own pro-
gram, you will have to create classes and also use classes from existing libraries. You can
also need to construct interfaces to better programmatically express your design.

Using Existing Classes
To use existing classes in the Java SDK, you will need to create an instance of the class,
initialize it, and then work with the instances. To utilize the existing
java.util.StringBuffer class, you would create an instance or object of this class:

StringBuffer sbTest = new StringBuffer();

Now that you have created a new StringBuffer to use, you can operate upon the object.
For instance, you might want to append another String to the buffer.

sbTest.append(“This is a test String”);

You might need to create multiple instances of the same class to perform the necessary
operations. Thus you can create as many StringBuffers as necessary:

StringBuffer sbTest2 = new StringBuffer();

Now you have created a new instance of a StringBuffer identified by the sbTest2 refer-
ence. You may also assign one variable to another via the = sign. This will set both vari-
ables to point to the same object. Thus, operations performed on both variables will
affect the same object. Take the following statements for instance:

StringBuffer sbTest1 = new StringBuffer();
StringBuffer sbTest2 = new StringBuffer();
sbTest = sbTest2;
sbTest.append(“Test String 1.”);
sbTest2.append(“Test String 2.”);
System.out.println(“Output for sbTest = “ + sbTest.toString());
System.out.println(“Output for sbTest2 = “ + sbTest2.toString());

586 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 586

Java Primer 587

B

Because you set sbTest = sbTest2, the append operations on sbTest and sbTest2 will
modify the same underlying object. The output from the previous snippet will read

Output for sbTest = Test String 1.Test String 2.
Output for sbTest2 = Test String 1.Test String 2.

Creating Your Own Classes
The Java syntax for a class is

public class ClassName {
//methods and attributes of the class

}

All methods and attributes for the class will reside within the braces. All classes must
also reside in a file named ClassName.java.

Examine the code snippet from the Product.java file shown in Listing B.2.

LISTING B.2 Snippet from Product.java

/**
*
* @author Michael C. Han
* @version 1.0
*/
public class Product {

/**
*
* @param args passed in from commandline
*/
public static void main(String[] args) {

Product prod =
new Product(“widget1”, “Acme Inc”, “Master Widget”,

“This is the master widget product to solve all
problems!”,

90.10f);
System.out.println(prod.getProductId());
System.out.println(prod. getManufacturer());
System.out.println(prod. getProductDesc());

}

private String prodName, productId, manufacturer, desc;
float price;

/**
*
* @param args passed in from commandline

34 0672321092 AppB 08/22/2001 2:48 PM Page 587

LISTING B.2 continued

*/
public Product(String productId, String manufacturer,

String prodName, String desc, float price) {
this.prodName = prodName;
this.productId = productId;
this.manufacturer = manufacturer;
this.desc = desc;

this.price = price;
}

/**
*
* @return product id
*/
public String getProductId() {

return productId;
}

/**
*
* @return product name
*/
public String getProductName() {

return prodName;
}
/**
*
* @return manufacturer name
*/
public String getManufacturer() {

return manufacturer;
}

/**
*
* @return product description
*/
public String getProductDesc() {

return desc;
}

/**
*
* @return product price
*/
public float getPrice() {

return price;
}

588 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 588

Java Primer 589

B

LISTING B.2 continued

/**
*
* @param price – new price for this product
*/
public void setPrice(float price) {

this.price = price;
}

}

The Product class has a constructor method with five parameters: product name, manu-
facturer, product id, description, and price. The constructor performs necessary opera-
tions to initialize the object. In this case, you initialize the designated product informa-
tion. A constructor must follow the following rules:

• The constructor must have the same name as the class.

• A constructor may take any number of parameters. A constructor with no parame-
ter is called a default constructor.

• A constructor returns no values.

• A constructor may only be called via the new key word (e.g. Product prod = new
Product(...)).

• A class may have more than one constructor (or more commonly known as over-
loaded constructors).

Note the use of the this keyword within the constructor. The this keyword operates on
the current instance of the class. In the constructor, you use the this keyword to prevent
confusing the private attributes with the constructor parameters.

In addition to constructors, the Product class also has four accessors or getters. The
accessors provide read access to the attributes for the Product class. To modify attributes
of the class, you should use methods called modifiers or setters. The Product class has
one modifier, setPrice, for modifying the price of a product.

Notice all attributes of the Product class are private and only one, price, is modifiable
after a Product is created. It is important to remember that classes should not exposes
their internal attributes unless the user of the class has legitimate reasons in reading
and/or modifying the attribute. Consequently, you provide access to the attributes via
modifiers and accessors.

The Product class has only public access methods. You can choose to implement meth-
ods with other access levels; you can choose to implement private or protected methods

34 0672321092 AppB 08/22/2001 2:48 PM Page 589

in addition to public methods. It is important to keep in mind that private methods are
only accessible within the implementing class and protected methods are accessible
within the implementing class and all its subclasses. When deciding on the access levels
for a method, keep the following guidelines in mind for private methods:

• A private method has no concern for users of class.

• The method will change should implementation of class change.

Also keep the following in mind about protected methods:

• A protected method has no concern for users of this class; however, classes that
extend functionality of the implementing class will require access to the method.

• The method fulfills functional requirements for all subclasses.

Interfaces
Interfaces, like classes, are core features of Java. Unlike classes, however, interfaces do
not define attributes and methods for a class. Instead, interfaces provide method defini-
tions that may be implemented by classes. For those familiar with C++, interfaces will
look similar to class definitions inside header files.

Take a look at an interface for sortable or comparable objects:

/**
* Interface to compare the equality of two objects
*
*/
public interface Comparable {

/**
* Compare this object to a desired object. If current
* is larger, then return 1, the toCompare object is larger,
* then return –1. If the two objects are equal, return 0
* @param toCompare – object for comparison
* @return –1 if toCompare > this, 0 if toCompare == this,
* 1 if this > toCompare
*/

public int compare(Object toCompare);
}

This interface resides within the Java SDK. It defines the methods that all objects of type
Comparable must implement. In this case, all Comparable objects must implement the
compare method. Simply put, an interface is a contract an implementing class must ful-
fill. If a class implements a particular interface, it promises to implement all methods
designated by the interface.

590 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 590

Java Primer 591

B

Currently, Java only provides support for single inheritance. In other words, a Java class
may only extend one Java class. Consequently, if you choose to classify an object of
ClassA and ClassB (multiple inheritance), you can only do so via interfaces. By using
interfaces to simulate multiple inheritance, Java recovers most of the functionality pro-
vided by multiple inheritance. Some of the other functionality lost might be partially
recovered via design methods like object composition.

Interfaces also have several other properties. You may not instantiate an interface via
new. Your class may implement multiple interfaces. For example, the Product class can
implement both Sortable and Clonable interfaces:

public class Product implements Sortable, Clonable

Interfaces can also extend other interfaces. The Sortable interface can also extend a
Collectible interface. A class implementing the Sortable interface must also fulfill the
contract of the Collectible interface:

public interface Sortable extends Clonable

Inner Classes and Anonymous Inner Classes
The architects of Java added the concept of inner classes with Java 1.1. An inner class is
a class declared within the scope of a public class. Why should you use one? Inner
classes have the following distinct advantages:

• An object of an inner class can access any attributes, private or otherwise, of the
encapsulating class.

• Anonymous inner classes simplify tasks, such as call-backs and event-handling.

• Inner classes extremely handy for creating data bag objects that really have no
meaning outside the context of the wrapping class, such as a specialized hash key
for a cache. Outside the cache, the hash key has no meaning. Thus you create a
HashKey innerclass within the scope of the ObjectCache class.

Here’s what the ObjectCache class with the HashKey inner class would look like

import java.util.Map;
import java.util.HashMap;

public class ObjectCache {
private Map cache;

public ObjectCache() {
cache = new HashMap();

}

public void add(String oid, String objName, Object obj) {

34 0672321092 AppB 08/22/2001 2:48 PM Page 591

HashKey key = new HashKey(oid, objName);
cache.put(key, obj);

}

public Object get(String oid, String objName) {
HashKey key = new HashKey(oid, objName);
Object obj = cache.get(key);
return obj;

}

//.. . . More methods . . .

private class HashKey {
private String oid, objName;

public HashKey(String oid, String objName) {
this.oid = oid;
this.objName = objName;

}

public String getOid() {
return oid;

}

public String getObjName() {
return objName;

}

public boolean equals(Object obj) {
if (obj instanceof HashKey) {

HashKey key = (HashKey)obj;
return (key.getOid().equals(getOid()) &&

key.getObjName().equals(getObjName()));
}
return false;

}

public int hashCode() {
return 17;

}
}

}

In the inner classes, just as with normal classes, you can access the attributes of the inner
class with the this keyword; however, you can also access the attributes of the encapsu-
lating class. You will need to use the outer keyword to access those attributes.

Anonymous classes are a special form of inner classes. Anonymous classes are most
prevalent in writing event-handling code. Take the following code snippet, for example,
for handling action events on an OK button:

592 Appendix B

34 0672321092 AppB 08/22/2001 2:48 PM Page 592

Java Primer 593

B

public class FooFrame {
//…

JButton ok = new Jbutton(“ok”);
ok.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {
// perform some event-handling for the ok button

}
});

//…

}

Although the syntax is a little cryptic, anonymous inner classes enables you to reduce the
number of classes in your project. Instead of a class or inner class for every event han-
dler, you would inline the class declarations. This is a great time saver; however, due to
the cryptic nature of the code, too many anonymous inner classes will reduce code read-
ability. Consequently, if you have to perform a lot of event handling, you might want to
use some design patterns (such as the Command pattern) to enhance your design and,
thus, clarify your implementation.

Summary
This primer is by no means a complete introduction to Java. It will, however, provide
enough information within the context of this text. If you want to obtain additional infor-
mation, there are several web sites that will provide in depth tutorials on the basics of the
Java language. A great resource for beginners and advanced developers is the Java
Developer’s Connection (JDC) located at developer.java.sun.com. This site provides
many tutorials and early access software for Java developers.

34 0672321092 AppB 08/22/2001 2:48 PM Page 593

34 0672321092 AppB 08/22/2001 2:48 PM Page 594

APPENDIX C
UML Reference
UML Reference

This appendix provides a quick reference to the UML notation used throughout
the book.

Classes
The UML represents a class through a box divided into three sections. The top
section contains the name, the middle section contains the attributes, and the
bottom section contains the methods.

Figure C.1 illustrates how the UML represents a class.

35 0672321092 AppC 08/22/2001 2:43 PM Page 595

Object
The UML represents objects the same as a class. The only difference is that the object’s
name is underlined and the methods are omitted. The attributes may also show value.

Visibility
Figure C.2 illustrates how the UML represents attribute and method visibility:

• + represents public visibility

• # represents protected visibility

• - represents private visibility

596 Appendix C

FIGURE C.1
A UML class.

<<Class Name>>

-<<Attributes>>

-<<Operations>>()

Class Name

Operations

Attributes

FIGURE C.2
Method and attribute
visibility.

Visibility

+public_attr
#protected_attr
-private_attr

+public_opr()
#protected_opr()
-private_opr()

Abstract Classes and Methods
Abstract classes and methods are symbolized by italicizing the abstract name. Figure C.3
provides an example of an abstract class.

35 0672321092 AppC 08/22/2001 2:43 PM Page 596

UML Reference 597

C

You can also add the {abstract} constraint after the name. Using the constraint label
helps when drawing a diagram by hand.

Notes
Sometimes a note will make a model more understandable. In the UML, a note resem-
bles a sticky note and is attached to the element being noted with a dashed line.

Figure C.4 illustrates the UML note. You can attach a note to any part of your UML
model.

FIGURE C.3
An abstract class.

AbstractClass

FIGURE C.4
The UML note.

Bank

+addAccount ()
+totalHoldings ()
+totalAccounts ()
+deposit ()
+balance ()

The Bank holds onto a number of
accounts and provides operations
for manipulating those accounts.

Stereotypes
A stereotype is a UML element that allows you to extend the vocabulary of the UML
language itself or to classify a marking. A stereotype consists of a word or phrase
enclosed in guillemets (<< >>). You place a stereotype above or to the side of an existing
element.

Figure C.5 illustrates a stereotype that defines a type of method.

FIGURE C.5
The UML stereotype.

BankAccount

<<accessor>> +getBalance()
+depositFunds()
+withdrawFunds()

35 0672321092 AppC 08/22/2001 2:43 PM Page 597

Relationships
A relationship describes how classes interact with one another. In the UML, a relation-
ship is a connection between two or more notational elements. In the UML, a
relationship is normally illustrated through a line or an arrow between classes.

Dependency
In a dependency relationship, one object is dependent on another object’s specification. If
the specification changes you will need to update the dependent object.

In the UML you represent a dependency as a dashed arrow between the dependent class-
es. Figure C.6 illustrates the UML dependency notation. The relationship tells you that
ClassA depends upon ClassB.

598 Appendix C

FIGURE C.6
A simple dependency
relationship.

ClassA ClassB

Association
An association indicates that one object contains another object. In the UML terms,
when in an association relationship one object is connected to another.

In the UML you represent an association as a line that connects the two classes. An asso-
ciation that has no arrow is said to be bidirectional. An arrow signifies that the relation-
ship works only in one way.

Figure C.7 illustrates the UML association notation. The relationship tells you that
ClassA is associated with ClassB.

FIGURE C.7
An association
relationship.

ClassA ClassB

Roles
The UML allows you to denote each class’s role in the association. The association role
is the part that an object plays in a relationship.

Figure C.8 illustrates the UML notation for the role.

35 0672321092 AppC 08/22/2001 2:43 PM Page 598

UML Reference 599

C

Multiplicity
The UML allows you to denote the multiplicity of the association. The multiplicity indi-
cates how many objects may take part in the instance of an association.

The range of multiplicity values is listed in Table C.1.

TABLE C.1 Multiplicity Values

Notation Value

1 One

* Any number

1..* At least one

x..y Any number of values in the range x to y

Figure C.9 illustrates the UML notation for multiplicity.

FIGURE C.8
The UML role.

ClassA ClassBrole A role B

FIGURE C.9
Multiplicity.

ClassA ClassB

* 1

Aggregation
The UML provides notation for aggregation. An aggregation is a special type of associa-
tion that models has-a of whole/part relationships among peers.

You model an aggregation as a line with a hollow diamond on the “whole/part” end.
Figure C.10 illustrates the UML notation for aggregation.

FIGURE C.10
Aggregation.

ClassA ClassB

35 0672321092 AppC 08/22/2001 2:43 PM Page 599

600 Appendix C

Composition
The UML provides notation for composition. A composition is a special type of associa-
tion that models has-a of whole/part relationships among classes that are not peers. The
part is not independent of the whole in a composition relationship.

You model composition as a line with a blackened diamond on the “whole/part” end.
Figure C.11 illustrates the UML notation for composition.

FIGURE C.11
Composition.

ClassA ClassB

Generalization
A generalization relationship exists between the general and the specific. It is
inheritance.

Generalization is symbolized through a solid line with a closed hollow arrow head.
Figure C.12 illustrates the UML notation for generalization.

FIGURE C.12
Generalization.

ClassA

ClassB ClassC

Interaction Diagrams
Interaction diagrams model the interactions between objects.

Collaboration Diagrams
Collaboration diagrams represent the messages that the objects send one another.

Each object in the diagram is symbolized as a box. A line connects each object that inter-
acts. On top of that line, you write the messages that the objects send and the direction of
those messages.

35 0672321092 AppC 08/22/2001 2:43 PM Page 600

UML Reference 601

C
Collaboration diagrams highlight the relationships between the actors. Figure C.13 illus-
trates the UML collaboration diagram.

FIGURE C.13
A collaboration
diagram.

Object1

Object3

Object2

Message2()
M

es
sa

ge
1(

)

Message4()

Message3()

Sequence Diagrams
Sequence diagrams model the sequence of events in a scenario over time.

Each object in the diagram is symbolized at the top of the diagram as a box. The lines
descending from the boxes represent the object’s lifeline. Messages are passed back and
forth between the objects and within the objects. Figure C.14 illustrates the UML
sequence diagram.

FIGURE C.14
A sequence diagram.

Object1

35 0672321092 AppC 08/22/2001 2:43 PM Page 601

35 0672321092 AppC 08/22/2001 2:43 PM Page 602

APPENDIX D
Selected Bibliography

Object mastery can only come with time, practice, and study. No single book
can teach you everything there is to learn about object-oriented programming.

This appendix presents a list of categorized OO resources. Use this list as a
guide for your next steps in studying and applying OOP. While it is not impor-
tant that you investigate each resource, this list can guide you to more informa-
tion on the subjects that you find interesting.

Analysis, Design, and Methodologies
Beck, Kent. Extreme Programming Explained: Embrace Change. Boston:
Addison-Wesley, 2000.

Booch, Grady. Object Oriented Analysis And Design: With Applications.
Reading: Addison-Wesley, 1994.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Reading: Addison-Wesley, 1999.

Fowler, Martin, and Kendall Scott. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. 2nd ed. Reading: Addison-Wesley, 2000.

36 0672321092 AppD 08/22/2001 2:52 PM Page 603

Johnson, Ralph E., and Brian Foote. “Designing Reusable Classes.” Journal of Object
Oriented Programming 1.2 (June/July 1988): 22-35.

Liberty, Jesse. Beginning Object Oriented Analysis and Design. Olton, UK: Wrox, 1998.

C++ Programming
Stroustrup, Bjarne. The C++ Programming Language. Special ed. Reading: Addison-
Wesley, 2000.

Design Patterns
Buschman, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture: A System of Patterns. Chichester: Wiley, 1996.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading: Addison-Wesley, 1995.

General OO Principals and Theory
Booch, Grady. Object Oriented Analysis And Design: With Applications. Reading:
Addison-Wesley, 1994.

Bud, Timothy. An Introduction to Object Oriented Programming. 2nd ed. Reading:
Addison-Wesley, 1997.

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Boston: Addison-
Wesley, 2000.

Rumbaugh, James. “Disinherited! Examples of Misuse of Inheritance.” Journal of Object
Oriented Programming 5.9 (February 1993): 22-24.

Seidewitz, Ed. “Controlling Inheritance.” Journal of Object Oriented Programming 8.8
(January 1996): 36-42.

Taenzer, David, Murthy Ganti, and Sunil Podar. “Object-Oriented Software Reuse: The
Yoyo Problem.” Journal of Object Oriented Programming 2.3 (September/October
1989): 30-35.

604 Appendix D

36 0672321092 AppD 08/22/2001 2:52 PM Page 604

Selected Bibliography 605

D

”Hard Core” Theory (But Don’t
Let That Scare You!)

Cardelli, Luca, and Peter Wegner. “On Understanding Types, Data Abstractions, and
Polymorphism.” Computing Surveys 17.4 (1985): 471-523.

Danforth, Scott, and Chris Tomlinson. “Type Theories and Object Oriented
Programming.” ACM Computing Surveys 20.1 (1988): 29-72.

Snyder, Alan. “Encapsulation and Inheritance in Object Oriented Programming
Languages.” Proceedings of the 1986 OOPSLA Conference on Object Oriented
Programming Systems, Languages and Applications. Sigplan Notices 21.11 (1986):
38-45.

Wegner, Peter, and Stanley B. Zdonik. “Inheritance as an Incremental Modification
Mechanism or What Like is and isn’t Like.” ECOOP 1988: 55-77.

Java Programming
Bloch, Joshua. Effective Java Programming Language Guide. Boston: Addison-Wesley,
2001.

Eckel, Bruce. Thinking in Java. 2nd ed. Upper Saddle River: Prentice Hall, 2000.

Warren, Nigel, and Philip Bishop. Java in Practice: Design Styles and Idioms for
Effective Java. Harlow, UK: Addison-Wesley, 1999.

Miscellaneous
Brooks, Frederick P., Jr. The Mythical Man-Month. Anniversary ed. Reading: Addison-
Wesley, 1995.

Scarne, John. Scarne’s Encyclopedia of Card Games: All the Rules for All the Games
You’ll Want to Play. New York: Harper, 1983.

Smalltalk
Budd, Timothy. A Little Smalltalk. Reading: Addison-Wesley, 1987.

Goldberg, Adele, and David Robson. Smalltalk-80: The Language. Reading: Addison-
Wesley, 1989.

36 0672321092 AppD 08/22/2001 2:52 PM Page 605

Testing
Beck, Kent. Extreme Programming Explained: Embrace Change. Boston: Addison-
Wesley, 2000.

Mackinnon, Tim, Steve Freeman, and Philip Craig. “Endo-Testing: Unit Testing with
Mock Objects.” Paper presented at the eXtreme Programming and Flexible Processes in
Software Engineering—XP2000 conference, Cagliari, Sardinia, Italy, June 2000.

606 Appendix D

36 0672321092 AppD 08/22/2001 2:52 PM Page 606

APPENDIX E
Blackjack Code Listings

Days 15 through 21 had you build a complete Blackjack game. Many of the
exercises also asked you to add additional functionality to the system. This
source listing presents the final Blackjack version. The final version combines
each feature that was added throughout days 15 through 21.

This appendix contains the complete listing of all code. The code has been
packaged to avoid duplicate source files. What can be shared is shared. What
cannot be shared is not shared.

The source contains an MVC GUI, a PAC GUI, a CLI UI, and a simulator. The
source has been divided into the following packages:

• blackjack.core

• blackjack.core.threaded

• blackjack.exe

• blackjack.players

• blackjack.ui

• blackjack.ui.mvc

• blackjack.ui.pac

37 0672321092 AppE 08/22/2001 2:48 PM Page 607

blackjack.core
blackjack.core contains all of the common classes found in Listings E.1 through E.14.
These classes build the core of the blackjack system.

LISTING E.1 Bank.java

package blackjack.core;

public class Bank {

private int total;
private int bet;

public Bank(int amount) {
total = amount;

}

public void doubleDown() {
placeBet(bet);
bet = bet * 2;

}

public void place100Bet() {
placeBet(100);

}

public void place50Bet() {
placeBet(50);

}

public void place10Bet() {
placeBet(10);

}

public void win() {
total += (2 * bet);
bet = 0;

}

public void lose() {
// already taken out of total
bet = 0;

}

public void blackjack() {
total += (((3 * bet) / 2) + bet);
bet = 0;

}

608 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 608

Blackjack Code Listings 609

E

LISTING E.1 continued

public void standoff() {
total += bet;
bet = 0;

}

public String toString() {
return (“$” + total + “.00”);

}

private void placeBet(int amount) {
bet = amount;
total -= amount;

}

}

LISTING E.2 BettingPlayer.java

package blackjack.core;

public abstract class BettingPlayer extends Player {

private Bank bank;

public BettingPlayer(String name, Hand hand, Bank bank) {
super(name, hand);
this.bank = bank;

}

//**
// overridden behavior
public String toString() {

return (super.getName() + “: “ + getHand().toString() + “\n” +
bank.toString());

}

public String getName() {
return (super.getName() + “ “ + bank.toString());

}

public void win() {
bank.win();
super.win();

}

public void lose() {
bank.lose();

37 0672321092 AppE 08/22/2001 2:48 PM Page 609

LISTING E.2 continued

super.lose();
}

public void standoff() {
bank.standoff();
super.standoff();

}

public void blackjack() {
bank.blackjack();
super.blackjack();

}

protected PlayerState getInitialState() {
return getBettingState();

}

protected PlayerState getPlayingState() {
return new BetterPlaying();

}

//**
// newly added for BettingPlayer
protected final Bank getBank() {

return bank;
}

protected PlayerState getBettingState() {
return new Betting();

}

protected PlayerState getDoublingDownState() {
return new DoublingDown();

}

protected abstract void bet();
protected abstract boolean doubleDown(Dealer dealer);

private class Betting implements PlayerState {
public void handChanged() {

// not possible in busted state
}
public void handPlayable() {

// not possible in busted state
}
public void handBlackjack() {

// not possible in busted state
}

610 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 610

Blackjack Code Listings 611

E

LISTING E.2 continued

public void handBusted() {
// not possible in busted state

}
public void execute(Dealer dealer) {

bet();
setCurrentState(getWaitingState());
dealer.doneBetting(BettingPlayer.this);
// terminate

}
}
private class DoublingDown implements PlayerState {

public void handChanged() {
notifyChanged();

}
public void handPlayable() {

setCurrentState(getStandingState());
notifyStanding();

}
public void handBlackjack() {

// not possible in doubling down state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

bank.doubleDown();
dealer.hit(BettingPlayer.this);
getCurrentState().execute(dealer);

}
}
private class BetterPlaying implements PlayerState {

public void handChanged() {
notifyChanged();

}
public void handPlayable() {

// can ignore in playing state
}
public void handBlackjack() {

// not possible in playing state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

if(getHand().canDoubleDown() && doubleDown(dealer)) {
setCurrentState(getDoublingDownState());

37 0672321092 AppE 08/22/2001 2:48 PM Page 611

LISTING E.2 continued

getCurrentState().execute(dealer);
return;

}
if(hit(dealer)) {

dealer.hit(BettingPlayer.this);
} else {

setCurrentState(getStandingState());
notifyStanding();

}
getCurrentState().execute(dealer);
// transition

}
}

}

LISTING E.3 BlackjackDealer.java

package blackjack.core;

import java.util.ArrayList;
import java.util.Iterator;

public class BlackjackDealer extends Player implements Dealer {

private Deckpile cards;

private ArrayList players = new ArrayList();

protected ArrayList waiting_players;
protected ArrayList betting_players;
private ArrayList standing_players;
private ArrayList busted_players;
private ArrayList blackjack_players;

public BlackjackDealer(String name, Hand hand, Deckpile cards) {
super(name, hand);
this.cards = cards;

}

//**
// Methods that players can call
public void blackjack(Player player) {

blackjack_players.add(player);
play(this);

}

612 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 612

Blackjack Code Listings 613

E

LISTING E.3 continued

public void busted(Player player) {
busted_players.add(player);
play(this);

}

public void standing(Player player) {
standing_players.add(player);
play(this);

}

public void doneBetting(Player player) {
waiting_players.add(player);
play(this);

}

public void hit(Player player) {
player.addCard(cards.dealUp());

}

public Card getUpCard() {
Iterator i = getHand().getCards();
while(i.hasNext()) {

Card card = (Card) i.next();
if(card.isFaceUp()) {

return card;
}

}
// should not get here
return null;

}

//**
// Game setup methods
public void addPlayer(Player player) {

players.add(player);
}
public void reset() {

super.reset();

// set up the player buckets
waiting_players = new ArrayList();
standing_players = new ArrayList();
busted_players = new ArrayList();
blackjack_players = new ArrayList();
betting_players = new ArrayList();
betting_players.addAll(players);

cards.reset();

37 0672321092 AppE 08/22/2001 2:48 PM Page 613

LISTING E.3 continued

Iterator i = players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.reset();

}
}
public void newGame() {

reset();
// go!
play(this);

}
//**

public void deal() {

cards.shuffle();

// reset each player and deal 1 card up to each and self
Player [] player = new Player[waiting_players.size()];
waiting_players.toArray(player);
for(int i = 0; i < player.length; i ++) {

player[i].addCard(cards.dealUp());
}
this.addCard(cards.dealUp());

// deal 1 more up card to each player and one down to self
for(int i = 0; i < player.length; i ++) {

player[i].addCard(cards.dealUp());
}
this.addCard(cards.dealDown());

}

protected boolean hit(Dealer dealer) {
if(standing_players.size() > 0 && getHand().total() < 17) {

return true;
}
return false;

}

protected void exposeHand() {
getHand().turnOver();
notifyChanged();

}

protected PlayerState getBlackjackState() {
return new DealerBlackjack();

}
protected PlayerState getDealingState() {

614 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 614

Blackjack Code Listings 615

E

LISTING E.3 continued

return new DealerDealing();
}
protected PlayerState getCollectingBetsState() {

return new DealerCollectingBets();
}
protected PlayerState getBustedState() {

return new DealerBusted();
}
protected PlayerState getStandingState() {

return new DealerStanding();
}
protected PlayerState getWaitingState() {

return new DealerWaiting();
}
protected PlayerState getInitialState() {

return new DealerCollectingBets();
}

private class DealerCollectingBets implements PlayerState {
public void handChanged() {

// not possible in betting state
}
public void handPlayable() {

// not possible in betting state
}
public void handBlackjack() {

// not possible in betting state
}
public void handBusted() {

// not possible in betting state
}
public void execute(Dealer dealer) {

if(!betting_players.isEmpty()) {
Player player = (Player) betting_players.get(0);
betting_players.remove(player);
player.play(dealer);

} else {
setCurrentState(getDealingState());
getCurrentState().execute(dealer);
// transition and execute

}
}

}

private class DealerBusted implements PlayerState {
public void handChanged() {

// not possible in busted state
}

37 0672321092 AppE 08/22/2001 2:48 PM Page 615

LISTING E.3 continued

public void handPlayable() {
// not possible in busted state

}
public void handBlackjack() {

// not possible in busted state
}
public void handBusted() {

// not possible in busted state
}
public void execute(Dealer dealer) {

Iterator i = standing_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.win();

}
i = blackjack_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.blackjack();

}
i = busted_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.lose();

}
}

}
private class DealerBlackjack implements PlayerState {

public void handChanged() {
notifyChanged();

}
public void handPlayable() {

// not possible in blackjack state
}
public void handBlackjack() {

// not possible in blackjack state
}
public void handBusted() {

// not possible in blackjack state
}
public void execute(Dealer dealer) {

exposeHand();
Iterator i = players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
if(player.getHand().blackjack()) {

player.standoff();
} else {

616 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 616

Blackjack Code Listings 617

E

LISTING E.3 continued

player.lose();
}

}
}

}
private class DealerStanding implements PlayerState {

public void handChanged() {
// not possible in standing state

}
public void handPlayable() {

// not possible in standing state
}
public void handBlackjack() {

// not possible in standing state
}
public void handBusted() {

// not possible in standing state
}
public void execute(Dealer dealer) {

Iterator i = standing_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
if(player.getHand().isEqual(getHand())) {

player.standoff();
} else if(player.getHand().isGreaterThan(getHand())) {

player.win();
} else {

player.lose();
}

}
i = blackjack_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.blackjack();

}
i = busted_players.iterator();
while(i.hasNext()) {

Player player = (Player) i.next();
player.lose();

}
}

}
private class DealerWaiting implements PlayerState {

public void handChanged() {
// not possible in waiting state

}
public void handPlayable() {

// not possible in waiting state

37 0672321092 AppE 08/22/2001 2:48 PM Page 617

LISTING E.3 continued

}
public void handBlackjack() {

// not possible in waiting state
}
public void handBusted() {

// not possible in waiting state
}
public void execute(Dealer dealer) {

if(!waiting_players.isEmpty()) {
Player player = (Player) waiting_players.get(0);
waiting_players.remove(player);
player.play(dealer);

} else {
setCurrentState(getPlayingState());
exposeHand();
getCurrentState().execute(dealer);
// transition and execute

}
}

}
private class DealerDealing implements PlayerState {

public void handChanged() {
notifyChanged();

}
public void handPlayable() {

setCurrentState(getWaitingState());
// transition

}
public void handBlackjack() {

setCurrentState(getBlackjackState());
notifyBlackjack();
// transition

}
public void handBusted() {

// not possible in dealing state
}
public void execute(Dealer dealer) {

deal();
getCurrentState().execute(dealer);
// transition and execute

}
}

}

618 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 618

Blackjack Code Listings 619

E

LISTING E.4 Card.java

package blackjack.core;

public class Card {

private Rank rank;
private Suit suit;
private boolean face_up;

public Card(Suit suit, Rank rank) {
this.suit = suit;
this.rank = rank;

}

public Suit getSuit() {
return suit;

}

public Rank getRank() {
return rank;

}

public void setFaceUp(boolean up) {
face_up = up;

}

public boolean isFaceUp() {
return face_up;

}

public String toString() {
if(!isFaceUp()) {

return “Hidden”;
}
return rank.toString() + suit.toString();

}
}

LISTING E.5 Dealer.java

package blackjack.core;

public interface Dealer {
// used by the player to interact with the dealer
public void hit(Player player);

// used by the player to communicate state to dealer

37 0672321092 AppE 08/22/2001 2:48 PM Page 619

LISTING E.5 continued

public void blackjack(Player player);
public void busted(Player player);
public void standing(Player player);
public void doneBetting(Player player);

public Card getUpCard();
}

LISTING E.6 Deck.java

package blackjack.core;

import java.util.Iterator;
import java.util.Random;

public class Deck {

private Card [] deck;
private int index;

public Deck() {
buildCards();

}

public void addToStack(Deckpile stack) {
stack.addCards(deck);

}

protected void setDeck(Card [] deck) {
this.deck = deck;

}

protected void buildCards() {

deck = new Card[52];

Iterator suits = Suit.SUITS.iterator();

int counter = 0;
while(suits.hasNext()) {

Suit suit = (Suit) suits.next();
Iterator ranks = Rank.RANKS.iterator();
while(ranks.hasNext()) {

Rank rank = (Rank) ranks.next();
deck[counter] = new Card(suit, rank);
counter++;

620 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 620

Blackjack Code Listings 621

E

LISTING E.6 continued

}
}

}

}

LISTING E.7 Deckpile.java

package blackjack.core;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.Random;

public class Deckpile {

private ArrayList stack = new ArrayList();
private int index;
private Random rand = new Random();

public void addCards(Card [] cards) {
for(int i = 0; i < cards.length; i ++) {

stack.add(cards[i]);
}

}

public void shuffle() {
reset();
randomize();
randomize();
randomize();
randomize();

}

public Card dealUp() {
Card card = deal();
if(card != null) {

card.setFaceUp(true);
}
return card;

}

public Card dealDown() {
Card card = deal();
if(card != null) {

card.setFaceUp(false);
}

37 0672321092 AppE 08/22/2001 2:48 PM Page 621

LISTING E.7 continued

return card;
}

public void reset() {
index = 0;
Iterator i = stack.iterator();
while(i.hasNext()) {

Card card = (Card) i.next();
card.setFaceUp(false);

}
}

private Card deal() {
if(index != stack.size()) {

Card card = (Card) stack.get(index);
index++;
return card;

}
return null;

}

private void randomize() {
int num_cards = stack.size();
for(int i = 0; i < num_cards; i ++) {

int index = rand.nextInt(num_cards);
Card card_i = (Card) stack.get(i);
Card card_index = (Card) stack.get(index);
stack.set(i, card_index);
stack.set(index, card_i);

}
}

}

LISTING E.8 Hand.java

package blackjack.core;

import java.util.ArrayList;
import java.util.Iterator;

public class Hand {

private ArrayList cards = new ArrayList();
private static final int BLACKJACK = 21;
private HandListener holder;

622 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 622

Blackjack Code Listings 623

E

LISTING E.8 continued

private int number_aces;

public Hand() {
// set the holder to a blank listener so it will not be null if not
// externally set
setHolder(

new HandListener() {
public void handPlayable() {}
public void handBlackjack() {}
public void handBusted() {}
public void handChanged() {}

}
);

}

public void setHolder(HandListener holder) {
this.holder = holder;

}

public Iterator getCards() {
return cards.iterator();

}

public void addCard(Card card) {
cards.add(card);

holder.handChanged();

if(card.getRank() == Rank.ACE) {
number_aces++;

}

if(bust()) {
holder.handBusted();
return;

}
if(blackjack()) {

holder.handBlackjack();
return;

}
if (cards.size() >= 2){

holder.handPlayable();
return;

}
}

public boolean canDoubleDown() {
return (cards.size() == 2);

37 0672321092 AppE 08/22/2001 2:48 PM Page 623

LISTING E.8 continued

}

public boolean isEqual(Hand hand) {
if(hand.total() == this.total()) {

return true;
}
return false;

}

public boolean isGreaterThan(Hand hand) {
return this.total() > hand.total();

}

public boolean blackjack() {
if(cards.size() == 2 && total() == BLACKJACK) {

return true;
}
return false;

}

public void reset() {
cards.clear();
number_aces = 0;

}

public void turnOver() {
Iterator i = cards.iterator();
while(i.hasNext()) {

Card card = (Card) i.next();
card.setFaceUp(true);

}
}

public String toString() {
Iterator i = cards.iterator();
String string = “”;
while(i.hasNext()) {

Card card = (Card)i.next();
string = string + “ “ + card.toString();

}
return string;

}

public int total() {
int total = 0;
Iterator i = cards.iterator();
while(i.hasNext()) {

Card card = (Card) i.next();

624 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 624

Blackjack Code Listings 625

E

LISTING E.8 continued

total += card.getRank().getRank();
}
int temp_aces = number_aces;
while(total > BLACKJACK && temp_aces > 0) {

total = total - 10;
temp_aces--;

}
return total;

}

private boolean bust() {
if(total() > BLACKJACK) {

return true;
}
return false;

}

}

LISTING E.9 HandListener.java

package blackjack.core;

public interface HandListener {

public void handPlayable();

public void handBlackjack();

public void handBusted();

public void handChanged();

}

LISTING E.10 Player.java

package blackjack.core;

import java.util.ArrayList;
import java.util.Iterator;

public abstract class Player {

private Hand hand;

37 0672321092 AppE 08/22/2001 2:48 PM Page 625

LISTING E.10 continued

private String name;
private ArrayList listeners = new ArrayList();
private PlayerState current_state;

public Player(String name, Hand hand) {
this.name = name;
this.hand = hand;
setCurrentState(getInitialState());

}

public void addCard(Card card) {
hand.addCard(card);

}

public void play(Dealer dealer) {
current_state.execute(dealer);

}

public void reset() {
hand.reset();
setCurrentState(getInitialState());
notifyChanged();

}

public void addListener(PlayerListener l) {
listeners.add(l);

}

public String getName() {
return name;

}

public String toString() {
return (name + “: “ + hand.toString());

}

public void win() {
notifyWin();

}

public void lose() {
notifyLose();

}

public void standoff() {
notifyStandoff();

}

public void blackjack() {

626 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 626

Blackjack Code Listings 627

E

LISTING E.10 continued

notifyBlackjack();
}

public Hand getHand() {
return hand;

}

protected void notifyChanged() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerChanged(this);

}
}

protected void notifyBusted() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerBusted(this);

}
}

protected void notifyBlackjack() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerBlackjack(this);

}
}

protected void notifyStanding() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerStanding(this);

}
}

protected void notifyStandoff() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerStandoff(this);

}
}

protected void notifyWin() {

37 0672321092 AppE 08/22/2001 2:48 PM Page 627

LISTING E.10 continued

Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerWon(this);

}
}

protected void notifyLose() {
Iterator i = listeners.iterator();
while(i.hasNext()) {

PlayerListener pl = (PlayerListener) i.next();
pl.playerLost(this);

}
}

protected final void setCurrentState(PlayerState state) {
current_state = state;
hand.setHolder(state);

}

protected final PlayerState getCurrentState() {
return current_state;

}

protected PlayerState getBustedState() {
return new Busted();

}
protected PlayerState getStandingState() {

return new Standing();
}
protected PlayerState getPlayingState() {

return new Playing();
}
protected PlayerState getWaitingState() {

return new Waiting();
}
protected PlayerState getBlackjackState() {

return new Blackjack();
}

protected abstract PlayerState getInitialState();

protected abstract boolean hit(Dealer dealer);

private class Waiting implements PlayerState {
public void handChanged() {

notifyChanged();
}

628 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 628

Blackjack Code Listings 629

E

LISTING E.10 continued

public void handPlayable() {
setCurrentState(getPlayingState());
// transition

}
public void handBlackjack() {

setCurrentState(getBlackjackState());
notifyBlackjack();
// transition

}
public void handBusted() {

// not possible in waiting state
}
public void execute(Dealer dealer) {

// do nothing while waiting
}

}

private class Busted implements PlayerState {
public void handChanged() {

// not possible in busted state
}
public void handPlayable() {

// not possible in busted state
}
public void handBlackjack() {

// not possible in busted state
}
public void handBusted() {

// not possible in busted state
}
public void execute(Dealer dealer) {

dealer.busted(Player.this);
// terminate

}
}
private class Blackjack implements PlayerState {

public void handChanged() {
// not possible in blackjack state

}
public void handPlayable() {

// not possible in blackjack state
}
public void handBlackjack() {

// not possible in blackjack state
}
public void handBusted() {

// not possible in blackjack state
}

37 0672321092 AppE 08/22/2001 2:48 PM Page 629

LISTING E.10 continued

public void execute(Dealer dealer) {
dealer.blackjack(Player.this);
// terminate

}
}
private class Standing implements PlayerState {

public void handChanged() {
// not possible in standing state

}
public void handPlayable() {

// not possible in standing state
}
public void handBlackjack() {

// not possible in standing state
}
public void handBusted() {

// not possible in standing state
}
public void execute(Dealer dealer) {

dealer.standing(Player.this);
// terminate

}
}
private class Playing implements PlayerState {

public void handChanged() {
notifyChanged();

}
public void handPlayable() {

// can ignore in playing state
}
public void handBlackjack() {

// not possible in playing state
}
public void handBusted() {

setCurrentState(getBustedState());
notifyBusted();

}
public void execute(Dealer dealer) {

if(hit(dealer)) {
dealer.hit(Player.this);

} else {
setCurrentState(getStandingState());
notifyStanding();

}
current_state.execute(dealer);
// transition

}
}

}

630 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 630

Blackjack Code Listings 631

E

LISTING E.11 PlayerListener.java

package blackjack.core;

public interface PlayerListener {

public void playerChanged(Player player);

public void playerBusted(Player player);

public void playerBlackjack(Player player);

public void playerStanding(Player player);

public void playerWon(Player player);

public void playerLost(Player player);

public void playerStandoff(Player player);

}

LISTING E.12 PlayerState.java

package blackjack.core;

public interface PlayerState extends HandListener {

public void execute(Dealer dealer);

}

LISTING E.13 Rank.java

package blackjack.core;

import java.util.Collections;
import java.util.List;
import java.util.Arrays;

public final class Rank {

public static final Rank TWO = new Rank(2, “2”);
public static final Rank THREE = new Rank(3, “3”);
public static final Rank FOUR = new Rank(4, “4”);
public static final Rank FIVE = new Rank(5, “5”);

37 0672321092 AppE 08/22/2001 2:48 PM Page 631

LISTING E.13 continued

public static final Rank SIX = new Rank(6, “6”);
public static final Rank SEVEN = new Rank(7, “7”);
public static final Rank EIGHT = new Rank(8, “8”);
public static final Rank NINE = new Rank(9, “9”);
public static final Rank TEN = new Rank(10, “10”);
public static final Rank JACK = new Rank(10, “J”);
public static final Rank QUEEN = new Rank(10, “Q”);
public static final Rank KING = new Rank(10, “K”);
public static final Rank ACE = new Rank(11, “A”);

private static final Rank [] VALUES =
{ TWO, THREE, FOUR, FIVE, SIX, SEVEN,
EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE };

// provide an unmodifiable list to loop over
public static final List RANKS =

Collections.unmodifiableList(Arrays.asList(VALUES));

private final int rank;
private final String display;

private Rank(int rank, String display) {
this.rank = rank;
this.display = display;

}

public int getRank() {
return rank;

}

public String toString() {
return display;

}
}

LISTING E.14 Suit.java

package blackjack.core;

import java.util.Collections;
import java.util.List;
import java.util.Arrays;

public final class Suit {

// statically define all valid values of Suit

632 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 632

Blackjack Code Listings 633

E

LISTING E.14 continued

public static final Suit DIAMONDS = new Suit((char)4);
public static final Suit HEARTS = new Suit((char)3);
public static final Suit SPADES = new Suit((char)6);
public static final Suit CLUBS = new Suit((char)5);

private static final Suit [] VALUES = { DIAMONDS, HEARTS, SPADES, CLUBS };

// provide an unmodifiable list to loop over
public static final List SUITS =

Collections.unmodifiableList(Arrays.asList(VALUES));

// instance variable for holding onto display value
private final char display;

// do not allow instantiation by outside objects
private Suit(char display) {

this.display = display;
}

// return the Suit’s value
public String toString() {

return String.valueOf(display);
}

}

blackjack.core.threaded
blackjack.core.threaded contains a BlackjackDealer that places the players into their
own threads (Listing E.15).

LISTING E.15 ThreadedBlackjackDealer.java

package blackjack.core.threaded;

import blackjack.core.*;
import java.util.ArrayList;
import java.util.Iterator;

public class ThreadedBlackjackDealer extends BlackjackDealer {

public ThreadedBlackjackDealer(String name, Hand hand, Deckpile cards) {
super(name, hand, cards);

}

protected PlayerState getWaitingState() {

37 0672321092 AppE 08/22/2001 2:48 PM Page 633

LISTING E.15 continued

return new DealerWaiting();
}

protected PlayerState getCollectingBetsState() {
return new DealerCollectingBets();

}

private class DealerCollectingBets implements PlayerState {
public void handChanged() {

// not possible in betting state
}
public void handPlayable() {

// not possible in betting state
}
public void handBlackjack() {

// not possible in betting state
}
public void handBusted() {

// not possible in betting state
}
public void execute(final Dealer dealer) {

if(!betting_players.isEmpty()) {
final Player player = (Player) betting_players.get(0);
betting_players.remove(player);

Runnable runnable = new Runnable() {
public void run() {

player.play(dealer);
}

};
Thread threaded = new Thread(runnable);
threaded.start();

} else {
setCurrentState(getDealingState());
getCurrentState().execute(dealer);
// transition and execute

}
}

}

private class DealerWaiting implements PlayerState {
public void handChanged() {

// not possible in waiting state
}
public void handPlayable() {

// not possible in waiting state
}
public void handBlackjack() {

// not possible in waiting state

634 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 634

Blackjack Code Listings 635

E

LISTING E.15 continued

}
public void handBusted() {

// not possible in waiting state
}
public void execute(final Dealer d) {

if(!waiting_players.isEmpty()) {
final Player p = (Player) waiting_players.get(0);
waiting_players.remove(p);

Runnable r = new Runnable() {
public void run() {

p.play(d);
}

};
Thread t = new Thread(r);
t.start();

} else {
setCurrentState(getPlayingState());
exposeHand();
getCurrentState().execute(d);
// transition and execute

}
}

}
}

blackjack.exe
blackjack.exe contains the executables for the MVC GUI, PAC GUI, CLI UI, and sim-
ulator (Listings E.16 through E.19).

LISTING E.16 BlackjackCLI.java

package blackjack.exe;

import blackjack.core.*;
import blackjack.players.*;
import blackjack.ui.*;

public class BlackjackCLI {

public static void main(String [] args) {
Deckpile cards = new Deckpile();
for(int i = 0; i < 4; i ++) {

cards.shuffle();
Deck deck = new Deck();

37 0672321092 AppE 08/22/2001 2:48 PM Page 635

LISTING E.16 continued

deck.addToStack(cards);
cards.shuffle();

}

Hand dealer_hand = new Hand();
BlackjackDealer dealer = new BlackjackDealer(“Dealer”, dealer_hand,

➥cards);
Bank human_bank = new Bank(1000);
Hand human_hand = new Hand();
Player player = new CommandLinePlayer(“Human”, human_hand, human_bank

➥);
dealer.addListener(Console.INSTANCE);
player.addListener(Console.INSTANCE);
dealer.addPlayer(player);

do {
dealer.newGame();

} while(playAgain());

Console.INSTANCE.printMessage(“Thank you for playing!”);

}

private static boolean playAgain() {
Console.INSTANCE.printMessage(“Would you like to play again? [Y]es

➥[N]o”);
String response = Console.INSTANCE.readInput(“invalid”);
if(response.equalsIgnoreCase(“y”)) {

return true;
}
return false;

}

}

LISTING E.17 BlackjackMVC.java

package blackjack.exe;

import blackjack.core.*;
import blackjack.core.threaded.*;
import blackjack.ui.mvc.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class BlackjackMVC extends JFrame {

636 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 636

Blackjack Code Listings 637

E

LISTING E.17 continued

public static void main(String [] args) {
JFrame frame = new BlackjackMVC();
frame.getContentPane().setBackground(FOREST_GREEN);
frame.setSize(580, 480);
frame.show();

}

private BlackjackDealer dealer;
private GUIPlayer human;
private JPanel players = new JPanel(new GridLayout(0, 1));

private static final Color FOREST_GREEN = new Color(35, 142, 35);

public BlackjackMVC() {
setUp();
WindowAdapter wa = new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
};
addWindowListener(wa);

}

// needs to be protected if subclassed
private PlayerView getPlayerView(Player player) {

PlayerView view = new PlayerView(player);
view.setBackground(FOREST_GREEN);
return view;

}

// needs to be protected if subclassed
private void setUp() {

BlackjackDealer dealer = getDealer();
PlayerView v1 = getPlayerView(dealer);

GUIPlayer human = getHuman();
PlayerView v2 = getPlayerView(human);

PlayerView [] views = { v1, v2 };
addPlayers(views);

dealer.addPlayer(human);

addOptionView(human, dealer);
}

// needs to be protected if subclassed
private void addPlayers(PlayerView [] pview) {

37 0672321092 AppE 08/22/2001 2:48 PM Page 637

LISTING E.17 continued

players.setBackground(FOREST_GREEN);
for(int i = 0; i < pview.length; i ++) {

players.add(pview[i]);
}
getContentPane().add(players, BorderLayout.CENTER);

}

private void addOptionView(GUIPlayer human, BlackjackDealer dealer) {
OptionView ov = new OptionView(human, dealer);
ov.setBackground(FOREST_GREEN);
getContentPane().add(ov, BorderLayout.SOUTH);

}

private BlackjackDealer getDealer() {
if(dealer == null) {

Hand dealer_hand = new Hand();
Deckpile cards = getCards();
dealer = new ThreadedBlackjackDealer(“Dealer”, dealer_hand, cards

➥);
}
return dealer;

}

private GUIPlayer getHuman() {
if(human == null) {

Hand human_hand = new Hand();
Bank bank = new Bank(1000);
human = new GUIPlayer(“Human”, human_hand, bank);

}
return human;

}

private Deckpile getCards() {
Deckpile cards = new Deckpile();
for(int i = 0; i < 4; i ++) {

cards.shuffle();
Deck deck = new VDeck();
deck.addToStack(cards);
cards.shuffle();

}
return cards;

}

}

638 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 638

Blackjack Code Listings 639

E

LISTING E.18 BlackjackPAC.java

package blackjack.exe;

import blackjack.core.*;
import blackjack.ui.pac.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class BlackjackPAC extends JFrame {

public static void main(String [] args) {
JFrame frame = new BlackjackPAC();
frame.getContentPane().setBackground(FOREST_GREEN);
frame.setSize(580, 480);
frame.show();

}

private VPlayerFactory factory = new VPlayerFactory();
private JPanel players = new JPanel(new GridLayout(0, 1));

private static final Color FOREST_GREEN = new Color(35, 142, 35);

public BlackjackPAC() {
setUp();
WindowAdapter wa = new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
};
addWindowListener(wa);

}

// needs to be protected if subclassed
private void setUp() {

VBlackjackDealer dealer = factory.getDealer();

GUIPlayer human = factory.getHuman();

dealer.addPlayer(human);

players.add(dealer.view());
players.add(human.view());
getContentPane().add(players, BorderLayout.CENTER);

}

}

37 0672321092 AppE 08/22/2001 2:48 PM Page 639

LISTING E.19 BlackjackSim.java

package blackjack.exe;

import blackjack.core.*;
import blackjack.ui.*;
import blackjack.players.*;

public class BlackjackSim {

public static void main(String [] args) {

Console.INSTANCE.printMessage(“How many times should the simulator
play?”);

String response = Console.INSTANCE.readInput(“invalid”);
int loops = Integer.parseInt(response);

Deckpile cards = new Deckpile();
for(int i = 0; i < 4; i ++) {

cards.shuffle();
Deck deck = new Deck();
deck.addToStack(cards);
cards.shuffle();

}

// create a dealer
Hand dealer_hand = new Hand();
BlackjackDealer dealer = new BlackjackDealer(“Dealer”, dealer_hand,

cards);

// create a OneHitPlayer
Bank one_bank = new Bank(1000);
Hand one_hand = new Hand();
Player oplayer = new OneHitPlayer(“OneHit”, one_hand, one_bank);

// create a SmartPlayer
Bank smart_bank = new Bank(1000);
Hand smart_hand = new Hand();
Player smplayer = new SmartPlayer(“Smart”, smart_hand, smart_bank);

// create a SafePlayer
Bank safe_bank = new Bank(1000);
Hand safe_hand = new Hand();
Player splayer = new SafePlayer(“Safe”, safe_hand, safe_bank);

// create a FlipPlayer
Bank flip_bank = new Bank(1000);
Hand flip_hand = new Hand();
Player fplayer = new FlipPlayer(“Flip”, flip_hand, flip_bank);

640 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 640

Blackjack Code Listings 641

E

LISTING E.19 continued

// create a knowledgeable player
Bank kn_bank = new Bank(1000);
Hand kn_hand = new Hand();
Player knplayer = new KnowledgeablePlayer(“Knowledgeable”, kn_hand,

kn_bank);

// create an “optimal” player
Bank opt_bank = new Bank(1000);
Hand opt_hand = new Hand();
Player optplayer = new OptimalPlayer(“Optimal”, opt_hand, opt_bank);

// hook all of the players together
dealer.addListener(Console.INSTANCE);
oplayer.addListener(Console.INSTANCE);
dealer.addPlayer(oplayer);
splayer.addListener(Console.INSTANCE);
dealer.addPlayer(splayer);
smplayer.addListener(Console.INSTANCE);
dealer.addPlayer(smplayer);
fplayer.addListener(Console.INSTANCE);
dealer.addPlayer(fplayer);
knplayer.addListener(Console.INSTANCE);
dealer.addPlayer(knplayer);
optplayer.addListener(Console.INSTANCE);
dealer.addPlayer(optplayer);

int counter = 0;
while(counter < loops) {

dealer.newGame();
counter ++;

}
}

}

blackjack.players
blackjack.players contains the various players that were created in the text and for
some of the exercises (Listings E.20 through E.26).

37 0672321092 AppE 08/22/2001 2:48 PM Page 641

LISTING E.20 CommandLinePlayer.java

package blackjack.players;

import blackjack.core.*;
import blackjack.ui.*;

public class CommandLinePlayer extends BettingPlayer {

private final static String HIT = “H”;
private final static String STAND = “S”;
private final static String PLAY_MSG = “[H]it or [S]tay”;
private final static String BET_MSG = “Place Bet: [10] [50] or [100]”;
private final static String DD_MSG = “Double Down? [Y]es [N]o”;
private final static String BET_10 = “10”;
private final static String BET_50 = “50”;
private final static String BET_100 = “100”;
private final static String NO = “N”;
private final static String YES = “Y”;
private final static String DEFAULT = “invalid”;

public CommandLinePlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

protected boolean hit(Dealer dealer) {
while(true) {

Console.INSTANCE.printMessage(PLAY_MSG);
String response = Console.INSTANCE.readInput(DEFAULT);
if(response.equalsIgnoreCase(HIT)) {

return true;
} else if(response.equalsIgnoreCase(STAND)) {

return false;
}
// if we get here loop until we get meaningful input

}
}

protected boolean doubleDown(Dealer dealer) {
while(true) {

Console.INSTANCE.printMessage(DD_MSG);
String response = Console.INSTANCE.readInput(DEFAULT);
if(response.equalsIgnoreCase(NO)) {

return false;
} else if(response.equalsIgnoreCase(YES)) {

return true;
}
// if we get here loop until we get meaningful input

}
}

642 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 642

Blackjack Code Listings 643

E

LISTING E.20 continued

protected void bet() {
while(true) {

Console.INSTANCE.printMessage(BET_MSG);
String response = Console.INSTANCE.readInput(DEFAULT);
if(response.equals(BET_10)) {

getBank().place10Bet();
return;

}
if(response.equals(BET_50)) {

getBank().place50Bet();
return;

}
if(response.equals(BET_100)) {

getBank().place100Bet();
return;

}
// if we get here loop until we get meaningful input

}
}

}

LISTING E.21 FlipPlayer.java

package blackjack.players;

import blackjack.core.*;

public class FlipPlayer extends BettingPlayer {

private boolean hit = false;
private boolean should_hit_once = false;

public FlipPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit(Dealer dealer) {
if(should_hit_once && !hit) {

hit = true;
return true;

}
return false;

}

37 0672321092 AppE 08/22/2001 2:48 PM Page 643

LISTING E.21 continued

public void reset() {
super.reset();
hit = false;
should_hit_once = !should_hit_once;

}

public void bet() {
getBank().place10Bet();

}

public boolean doubleDown(Dealer dealer) {
return false;

}
}

LISTING E.22 KnowledgeablePlayer.java

package blackjack.players;

import blackjack.core.*;

public class KnowledgeablePlayer extends BettingPlayer {

public KnowledgeablePlayer(String name,Hand hand,Bank bank) {
super(name, hand, bank);

}

public boolean doubleDown(Dealer dealer) {
int total = getHand().total();
if(total == 10 || total == 11) {

return true;
}
return false;

}

public boolean hit(Dealer dealer) {

int total = getHand().total();
Card card = dealer.getUpCard();

// never hit, no matter what, if total > 15
if(total > 15) {

return false;
}

// always hit for 11 and less

644 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 644

Blackjack Code Listings 645

E

LISTING E.22 continued

if(total <= 11) {
return true;

}

// this leaves 11, 12, 13, 14
// base decision on dealer

if(card.getRank().getRank() > 7) {
return true;

}

return false;

}

public void bet() {
getBank().place10Bet();

}

}

LISTING E.23 OneHitPlayer.java

package blackjack.players;

import blackjack.core.*;

public class OneHitPlayer extends BettingPlayer {

private boolean has_hit = false;

public OneHitPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit(Dealer dealer) {
if(!has_hit) {

has_hit = true;
return true;

}
return false;

}

public void reset() {
super.reset();
has_hit = false;

37 0672321092 AppE 08/22/2001 2:48 PM Page 645

LISTING E.23 continued

}

public void bet() {
getBank().place10Bet();

}

public boolean doubleDown(Dealer dealer) {
return false;

}

}

LISTING E.24 OptimalPlayer.java

package blackjack.players;

import blackjack.core.*;

public class OptimalPlayer extends BettingPlayer {

public OptimalPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean doubleDown(Dealer dealer) {
int total = getHand().total();
Card card = dealer.getUpCard();
if(total == 11) {

return true;
}
if(total == 10) {

if(card.getRank().getRank() != Rank.TEN.getRank() &&
card.getRank() != Rank.ACE) {
return true;

}
return false;

}
if(total == 9) {

if(card.getRank() == Rank.TWO ||
card.getRank() == Rank.THREE ||
card.getRank() == Rank.FOUR ||
card.getRank() == Rank.FIVE ||
card.getRank() == Rank.SIX) {
return true;

}
return false;

}

646 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 646

Blackjack Code Listings 647

E

LISTING E.24 continued

return false;
}

public boolean hit(Dealer dealer) {

int total = getHand().total();
Card card = dealer.getUpCard();

if(total >= 17) {
return false;

}

if(total == 16) {
if(card.getRank() == Rank.SEVEN ||

card.getRank() == Rank.EIGHT ||
card.getRank() == Rank.NINE) {
return true;

} else {
return false;

}
}
if(total == 13 || total == 14 || total == 15) {

if(card.getRank() == Rank.TWO ||
card.getRank() == Rank.THREE ||
card.getRank() == Rank.FOUR ||
card.getRank() == Rank.FIVE ||
card.getRank() == Rank.SIX) {
return false;

} else {
return true;

}
}
if(total == 12) {

if(card.getRank() == Rank.FOUR ||
card.getRank() == Rank.FIVE ||
card.getRank() == Rank.SIX) {
return false;

} else {
return true;

}
}
return true;

}

public void bet() {
getBank().place10Bet();

}

}

37 0672321092 AppE 08/22/2001 2:48 PM Page 647

LISTING E.25 SafePlayer.java

package blackjack.players;

import blackjack.core.*;

public class SafePlayer extends BettingPlayer {

public SafePlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit(Dealer dealer) {
return false;

}

public boolean doubleDown(Dealer dealer) {
return false;

}

public void bet() {
getBank().place10Bet();

}
}

LISTING E.26 SmartPlayer.java

package blackjack.players;

import blackjack.core.*;

public class SmartPlayer extends BettingPlayer {

public SmartPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit(Dealer dealer) {
if(getHand().total() > 11) {

return false;
}
return true;

}

public void bet() {
getBank().place10Bet();

}

648 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 648

Blackjack Code Listings 649

E

LISTING E.26 continued

public boolean doubleDown(Dealer dealer) {
return false;

}

}

blackjack.ui
blackjack.ui contains common UI code (Listing E.27).

LISTING E.27 Console.java

package blackjack.ui;

import blackjack.core.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class Console implements PlayerListener {

// console singleton
public final static Console INSTANCE = new Console();

private BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));

public void printMessage(String message) {
System.out.println(message);

}

public String readInput(String default_input) {
String response;
try {

return in.readLine();
} catch (IOException ioe) {

return default_input;
}

}

public void playerChanged(Player player) {
printMessage(player.toString());

}

public void playerBusted(Player player) {
printMessage(player.toString() + “ BUSTED!”);

37 0672321092 AppE 08/22/2001 2:48 PM Page 649

LISTING E.27 continued

}

public void playerBlackjack(Player player) {
printMessage(player.toString() + “ BLACKJACK!”);

}

public void playerStanding(Player player) {
printMessage(player.toString() + “ STANDING”);

}

public void playerWon(Player player) {
printMessage(player.toString() + “ WINNER!”);

}

public void playerLost(Player player) {
printMessage(player.toString() + “ LOSER!”);

}

public void playerStandoff(Player player) {
printMessage(player.toString() + “ STANDOFF”);

}

// private to prevent instantiation
private Console() {}

}

blackjack.ui.mvc
blackjack.ui.mvc contains the mvc code (Listings E.28 through E.34).

LISTING E.28 CardView.java

package blackjack.ui.mvc;

import blackjack.core.*;
import javax.swing.*;
import java.awt.*;

public class CardView extends JLabel {

private ImageIcon icon;

public CardView(VCard card) {
getImage(card.getImage());

650 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 650

Blackjack Code Listings 651

E

LISTING E.28 continued

setIcon(icon);
setBackground(Color.white);
setOpaque(true);

}

private void getImage(String name) {
java.net.URL url = this.getClass().getResource(name);
icon = new ImageIcon(url);

}

}

LISTING E.29 GUIPlayer.java

package blackjack.ui.mvc;

import blackjack.core.*;

public class GUIPlayer extends BettingPlayer {

private Dealer dealer;

public GUIPlayer(String name, Hand hand, Bank bank) {
super(name, hand, bank);

}

public boolean hit(Dealer dealer) {
return true;

}

public void bet() {
// do nothing, this won’t get called
// instead, the human player presses a GUI button

}

// these bet methods will get called by the GUI controller
// for each: place the proper bet, change the state, let the
// dealer know that the player is done betting
public void place10Bet() {

getBank().place10Bet();
setCurrentState(getWaitingState());
dealer.doneBetting(this);

}

public void place50Bet() {
getBank().place50Bet();

37 0672321092 AppE 08/22/2001 2:48 PM Page 651

LISTING E.29 continued

setCurrentState(getWaitingState());
dealer.doneBetting(this);

}

public void place100Bet() {
getBank().place100Bet();
setCurrentState(getWaitingState());
dealer.doneBetting(this);

}

// doubling down is a bit different since the player needs to
// respond to Hand events as a card gets added to the hand
// so set the state to DoublingDown and then execute it
protected boolean doubleDown(Dealer d) {

setCurrentState(getDoublingDownState());
getCurrentState().execute(dealer);
return true;

}

// takeCard will get called by the GUI controller when the player
// decides to hit
public void takeCard() {

dealer.hit(this);
}

// stand will get called by the GUI controller when the player chooses
// to stand, when standing change state, let the world know, and then
// tell the dealer
public void stand() {

setCurrentState(getStandingState());
notifyStanding();
getCurrentState().execute(dealer);

}

// you need to override play so that it stores the dealer away for
// later use
public void play(Dealer dealer) {

this.dealer = dealer;
super.play(dealer);

}

// the following deal w/ states
protected PlayerState getPlayingState() {

return new Playing();
}

protected PlayerState getBettingState() {
return new Betting();

}

652 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 652

Blackjack Code Listings 653

E

LISTING E.29 continued

private class Playing implements PlayerState {

public void handPlayable() {
// do nothing

}

public void handBlackjack() {
setCurrentState(getBlackjackState());
notifyBlackjack();
getCurrentState().execute(dealer);

}

public void handBusted() {
setCurrentState(getBustedState());
notifyBusted();
getCurrentState().execute(dealer);

}

public void handChanged() {
notifyChanged();

}

public void execute(Dealer dealer) {
// do nothing here, actions will come from the GUI which is
// external to the state, but when events do come in be sure to
// force state transition right away

}
}
private class Betting implements PlayerState {

public void handChanged() {
// not possible in busted state

}
public void handPlayable() {

// not possible in busted state
}
public void handBlackjack() {

// not possible in busted state
}
public void handBusted() {

// not possible in busted state
}
public void execute(Dealer dealer) {

// do nothing here, actions will come from the GUI which is
// external to the state, since no events come in as part of
// betting the state will need to be changed externally to this

state
}

}
}

37 0672321092 AppE 08/22/2001 2:48 PM Page 653

LISTING E.30 OptionView.java

package blackjack.ui.mvc;

import blackjack.core.*;
import javax.swing.*;
import java.awt.*;

public class OptionView extends JPanel {

public static final String NEW_GAME = “new”;
public static final String QUIT = “quit”;
public static final String HIT = “hit”;
public static final String STAND = “stand”;
public static final String BET_10 = “BET10”;
public static final String BET_50 = “BET50”;
public static final String BET_100 = “BET100”;
public static final String DOUBLE_DOWN = “dd”;

private JButton bet_10 = new JButton(“$10”);
private JButton bet_50 = new JButton(“$50”);
private JButton bet_100 = new JButton(“$100”);
private JButton deal = new JButton(“New Game”);
private JButton quit = new JButton(“Quit”);
private JButton hit = new JButton(“Hit”);
private JButton stand = new JButton(“Stand”);
private JButton ddown = new JButton(“Double Down”);
private BlackjackDealer dealer;
private GUIPlayer player;

private static final Color FOREST_GREEN = new Color(35, 142, 35);

public OptionView(GUIPlayer player, BlackjackDealer dealer) {
super(new BorderLayout());
this.player = player;
this.dealer = dealer;
attachController(makeController());
buildGUI();

}

public void attachController(OptionViewController controller) {
deal.addActionListener(controller);
quit.addActionListener(controller);
hit.addActionListener(controller);
stand.addActionListener(controller);
bet_10.addActionListener(controller);
bet_50.addActionListener(controller);
bet_100.addActionListener(controller);
ddown.addActionListener(controller);

}

654 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 654

Blackjack Code Listings 655

E

LISTING E.30 continued

public void enableDoubleDown(boolean enable) {
ddown.setEnabled(enable);

}

public void enableBettingControls(boolean enable) {
bet_10.setEnabled(enable);
bet_50.setEnabled(enable);
bet_100.setEnabled(enable);

}

public void enablePlayerControls(boolean enable) {
hit.setEnabled(enable);
stand.setEnabled(enable);

}

public void enableGameControls(boolean enable) {
deal.setEnabled(enable);
quit.setEnabled(enable);

}

protected OptionViewController makeController() {
return new OptionViewController(player, dealer, this);

}

private void buildGUI() {
JPanel betting_controls = new JPanel();
JPanel game_controls = new JPanel();
add(betting_controls, BorderLayout.NORTH);
add(game_controls, BorderLayout.SOUTH);
betting_controls.setBackground(FOREST_GREEN);
game_controls.setBackground(FOREST_GREEN);
ddown.setActionCommand(DOUBLE_DOWN);
deal.setActionCommand(NEW_GAME);
quit.setActionCommand(QUIT);
hit.setActionCommand(HIT);
stand.setActionCommand(STAND);
bet_10.setActionCommand(BET_10);
bet_50.setActionCommand(BET_50);
bet_100.setActionCommand(BET_100);
betting_controls.add(bet_10);
betting_controls.add(bet_50);
betting_controls.add(bet_100);
game_controls.add(ddown);
game_controls.add(hit);
game_controls.add(stand);
game_controls.add(deal);
game_controls.add(quit);
enableBettingControls(false);

37 0672321092 AppE 08/22/2001 2:48 PM Page 655

LISTING E.30 continued

enablePlayerControls(false);
enableDoubleDown(false);

}
}

LISTING E.31 OptionViewController.java

package blackjack.ui.mvc;

import blackjack.core.*;
import java.awt.event.*;

public class OptionViewController implements ActionListener, PlayerListener {

private GUIPlayer model;
private OptionView view;
private BlackjackDealer dealer;

public OptionViewController(GUIPlayer model, BlackjackDealer dealer,
OptionView view) {

this.model = model;
model.addListener(this);
this.dealer = dealer;
this.view = view;
view.enablePlayerControls(false);

}

public void actionPerformed(ActionEvent event) {
if(event.getActionCommand().equals(OptionView.QUIT)) {

System.exit(0);
} else if(event.getActionCommand().equals(OptionView.HIT)) {

view.enableDoubleDown(false);
model.takeCard();

} else if(event.getActionCommand().equals(OptionView.STAND)) {
view.enableDoubleDown(false);
model.stand();

} else if (event.getActionCommand().equals(OptionView.NEW_GAME)) {
view.enableDoubleDown(false);
view.enableGameControls(false);
view.enablePlayerControls(false);
view.enableBettingControls(true);
dealer.newGame();

} else if(event.getActionCommand().equals(OptionView.BET_10)) {
view.enableBettingControls(false);
view.enablePlayerControls(true);
view.enableDoubleDown(true);

656 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 656

Blackjack Code Listings 657

E

LISTING E.31 continued

model.place10Bet();
} else if(event.getActionCommand().equals(OptionView.BET_50)) {

view.enableBettingControls(false);
view.enablePlayerControls(true);
view.enableDoubleDown(true);
model.place50Bet();

} else if(event.getActionCommand().equals(OptionView.BET_100)) {
view.enableBettingControls(false);
view.enablePlayerControls(true);
view.enableDoubleDown(true);
model.place100Bet();

} else if(event.getActionCommand().equals(OptionView.DOUBLE_DOWN)) {
view.enableBettingControls(false);
view.enablePlayerControls(false);
view.enableDoubleDown(false);
view.enableGameControls(true);
model.doubleDown(dealer);

}
}

public void playerChanged(Player player) {}

public void playerBusted(Player player) {
view.enablePlayerControls(false);
view.enableDoubleDown(false);
view.enableGameControls(true);

}

public void playerBlackjack(Player player) {
view.enablePlayerControls(false);
view.enableDoubleDown(false);
view.enableGameControls(true);

}

public void playerStanding(Player player) {
view.enablePlayerControls(false);
view.enableGameControls(true);

}

public void playerWon(Player player) {
view.enablePlayerControls(false);
view.enableGameControls(true);

}

public void playerLost(Player player) {
view.enablePlayerControls(false);
view.enableDoubleDown(false);
view.enableGameControls(true);

37 0672321092 AppE 08/22/2001 2:48 PM Page 657

LISTING E.31 continued

}

public void playerStandoff(Player player) {
view.enablePlayerControls(false);
view.enableGameControls(true);

}

}

LISTING E.32 PlayerView.java

package blackjack.ui.mvc;

import blackjack.core.*;
import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.util.Iterator;

public class PlayerView extends JPanel implements PlayerListener {

private JPanel cards = new JPanel(new FlowLayout(FlowLayout.LEFT));
private TitledBorder border;

public PlayerView(Player player) {
super(new BorderLayout());
buildUI(player);
player.addListener(this);

}

public void playerChanged(Player player) {
border.setTitle(player.getName());
cards.removeAll();
Hand hand = player.getHand();
Iterator i = hand.getCards();
while(i.hasNext()) {

VCard vcard = (VCard) i.next();
JLabel card = new CardView(vcard);
cards.add(card);

}
revalidate();
repaint();

}

public void playerBusted(Player player) {
border.setTitle(player.getName() + “ BUSTED!”);

658 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 658

Blackjack Code Listings 659

E

LISTING E.32 continued

cards.repaint();
}

public void playerBlackjack(Player player) {
border.setTitle(player.getName() + “ BLACKJACK!”);
cards.repaint();

}

public void playerStanding(Player player) {
border.setTitle(player.getName() + “ STANDING”);
cards.repaint();

}

public void playerWon(Player player) {
border.setTitle(player.getName() + “ WINNER!”);
cards.repaint();

}

public void playerLost(Player player) {
border.setTitle(player.getName() + “ LOSER!”);
cards.repaint();

}

public void playerStandoff(Player player) {
border.setTitle(player.getName() + “ STANDOFF!”);
cards.repaint();

}

private void buildUI(Player player) {
add(cards, BorderLayout.NORTH);
border = new TitledBorder(player.getName());
cards.setBorder(border);
cards.setBackground(new Color(35, 142, 35));
border.setTitleColor(Color.black);

}

}

LISTING E.33 VCard.java

package blackjack.ui.mvc;

import blackjack.core.*;

public class VCard extends Card {

37 0672321092 AppE 08/22/2001 2:48 PM Page 659

LISTING E.33 continued

private String image;

public VCard(Suit suit, Rank rank, String image) {
super(suit, rank);
this.image = image;

}

public String getImage() {
if(isFaceUp()) {

return image;
} else {

return “/blackjack/ui/bitmaps/empty_pile.xbm”;
}

}

}

LISTING E.34 VDeck.java

package blackjack.ui.mvc;

import blackjack.core.*;
import java.util.Iterator;

public class VDeck extends Deck {

protected void buildCards() {

// This is ugly, but it is better than the alternative loops/if/elseif
Card [] deck = new Card[52];
setDeck(deck);

deck[0] = new VCard(Suit.HEARTS, Rank.TWO,
“/blackjack/ui/bitmaps/h2”);

deck[1] = new VCard(Suit.HEARTS, Rank.THREE,
“/blackjack/ui/bitmaps/h3”);

deck[2] = new VCard(Suit.HEARTS, Rank.FOUR,
“/blackjack/ui/bitmaps/h4”);

deck[3] = new VCard(Suit.HEARTS, Rank.FIVE,
“/blackjack/ui/bitmaps/h5”);

deck[4] = new VCard(Suit.HEARTS, Rank.SIX,
“/blackjack/ui/bitmaps/h6”);

deck[5] = new VCard(Suit.HEARTS, Rank.SEVEN,
“/blackjack/ui/bitmaps/h7”);

deck[6] = new VCard(Suit.HEARTS, Rank.EIGHT,
“/blackjack/ui/bitmaps/h8”);

660 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 660

Blackjack Code Listings 661

E

LISTING E.34 continued

deck[7] = new VCard(Suit.HEARTS, Rank.NINE,
“/blackjack/ui/bitmaps/h9”);

deck[8] = new VCard(Suit.HEARTS, Rank.TEN,
“/blackjack/ui/bitmaps/h10”);

deck[9] = new VCard(Suit.HEARTS, Rank.JACK,
“/blackjack/ui/bitmaps/h11”);

deck[10] = new VCard(Suit.HEARTS, Rank.QUEEN,
“/blackjack/ui/bitmaps/h12”);

deck[11] = new VCard(Suit.HEARTS, Rank.KING,
“/blackjack/ui/bitmaps/h13”);

deck[12] = new VCard(Suit.HEARTS, Rank.ACE,
“/blackjack/ui/bitmaps/h1”);

deck[13] = new VCard(Suit.DIAMONDS, Rank.TWO,
“/blackjack/ui/bitmaps/d2”);

deck[14] = new VCard(Suit.DIAMONDS, Rank.THREE,
“/blackjack/ui/bitmaps/d3”);

deck[15] = new VCard(Suit.DIAMONDS, Rank.FOUR,
“/blackjack/ui/bitmaps/d4”);

deck[16] = new VCard(Suit.DIAMONDS, Rank.FIVE,
“/blackjack/ui/bitmaps/d5”);

deck[17] = new VCard(Suit.DIAMONDS, Rank.SIX,
“/blackjack/ui/bitmaps/d6”);

deck[18] = new VCard(Suit.DIAMONDS, Rank.SEVEN,
“/blackjack/ui/bitmaps/d7”);

deck[19] = new VCard(Suit.DIAMONDS, Rank.EIGHT,
“/blackjack/ui/bitmaps/d8”);

deck[20] = new VCard(Suit.DIAMONDS, Rank.NINE,
“/blackjack/ui/bitmaps/d9”);

deck[21] = new VCard(Suit.DIAMONDS, Rank.TEN,
“/blackjack/ui/bitmaps/d10”);

deck[22] = new VCard(Suit.DIAMONDS, Rank.JACK,
“/blackjack/ui/bitmaps/d11”);

deck[23] = new VCard(Suit.DIAMONDS, Rank.QUEEN,
“/blackjack/ui/bitmaps/d12”);

deck[24] = new VCard(Suit.DIAMONDS, Rank.KING,
“/blackjack/ui/bitmaps/d13”);

deck[25] = new VCard(Suit.DIAMONDS, Rank.ACE,
“/blackjack/ui/bitmaps/d1”);

deck[26] = new VCard(Suit.SPADES, Rank.TWO,
“/blackjack/ui/bitmaps/s2”);

deck[27] = new VCard(Suit.SPADES, Rank.THREE,
“/blackjack/ui/bitmaps/s3”);

deck[28] = new VCard(Suit.SPADES, Rank.FOUR,
“/blackjack/ui/bitmaps/s4”);

deck[29] = new VCard(Suit.SPADES, Rank.FIVE,
“/blackjack/ui/bitmaps/s5”);

deck[30] = new VCard(Suit.SPADES, Rank.SIX,
“/blackjack/ui/bitmaps/s6”);

37 0672321092 AppE 08/22/2001 2:48 PM Page 661

LISTING E.34 continued

deck[31] = new VCard(Suit.SPADES, Rank.SEVEN,
“/blackjack/ui/bitmaps/s7”);

deck[32] = new VCard(Suit.SPADES, Rank.EIGHT,
“/blackjack/ui/bitmaps/s8”);

deck[33] = new VCard(Suit.SPADES, Rank.NINE,
“/blackjack/ui/bitmaps/s9”);

deck[34] = new VCard(Suit.SPADES, Rank.TEN,
“/blackjack/ui/bitmaps/s10”);

deck[35] = new VCard(Suit.SPADES, Rank.JACK,
“/blackjack/ui/bitmaps/s11”);

deck[36] = new VCard(Suit.SPADES, Rank.QUEEN,
“/blackjack/ui/bitmaps/s12”);

deck[37] = new VCard(Suit.SPADES, Rank.KING,
“/blackjack/ui/bitmaps/s13”);

deck[38] = new VCard(Suit.SPADES, Rank.ACE,
“/blackjack/ui/bitmaps/s1”);

deck[39] = new VCard(Suit.CLUBS, Rank.TWO,
“/blackjack/ui/bitmaps/c2”);

deck[40] = new VCard(Suit.CLUBS, Rank.THREE,
“/blackjack/ui/bitmaps/c3”);

deck[41] = new VCard(Suit.CLUBS, Rank.FOUR,
“/blackjack/ui/bitmaps/c4”);

deck[42] = new VCard(Suit.CLUBS, Rank.FIVE,
“/blackjack/ui/bitmaps/c5”);

deck[43] = new VCard(Suit.CLUBS, Rank.SIX,
“/blackjack/ui/bitmaps/c6”);

deck[44] = new VCard(Suit.CLUBS, Rank.SEVEN,
“/blackjack/ui/bitmaps/c7”);

deck[45] = new VCard(Suit.CLUBS, Rank.EIGHT,
“/blackjack/ui/bitmaps/c8”);

deck[46] = new VCard(Suit.CLUBS, Rank.NINE,
“/blackjack/ui/bitmaps/c9”);

deck[47] = new VCard(Suit.CLUBS, Rank.TEN,
“/blackjack/ui/bitmaps/c10”);

deck[48] = new VCard(Suit.CLUBS, Rank.JACK,
“/blackjack/ui/bitmaps/c11”);

deck[49] = new VCard(Suit.CLUBS, Rank.QUEEN,
“/blackjack/ui/bitmaps/c12”);

deck[50] = new VCard(Suit.CLUBS, Rank.KING,
“/blackjack/ui/bitmaps/c13”);

deck[51] = new VCard(Suit.CLUBS, Rank.ACE,
“/blackjack/ui/bitmaps/c1”);

}

}

662 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 662

Blackjack Code Listings 663

E

blackjack.ui.pac
blackjack.ui.pac contains the pac code (Listings E.35 through E.42).

LISTING E.35 Displayable.java

package blackjack.ui.pac;

import javax.swing.JComponent;

public interface Displayable {
public JComponent view();

}

LISTING E.36 GUIPlayer.java

package blackjack.ui.pac;

import blackjack.core.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class GUIPlayer extends VBettingPlayer implements Displayable {

private BlackjackDealer dealer;
private JPanel view;

public GUIPlayer(String name, VHand hand, Bank bank, VBlackjackDealer
➥dealer) {

super(name, hand, bank);
this.dealer = dealer;

}

public boolean hit(Dealer dealer) {
return true;

}

public void bet() {
// do nothing, this won’t get called
// instead, the human player presses a GUI button

}

// these bet methods will get called by the GUI controller
// for each: place the proper bet, change the state, let the
// dealer know that the player is done betting
public void place10Bet() {

37 0672321092 AppE 08/22/2001 2:48 PM Page 663

LISTING E.36 continued

getBank().place10Bet();
setCurrentState(getWaitingState());
dealer.doneBetting(this);

}

public void place50Bet() {
getBank().place50Bet();
setCurrentState(getWaitingState());
dealer.doneBetting(this);

}

public void place100Bet() {
getBank().place100Bet();
setCurrentState(getWaitingState());
dealer.doneBetting(this);

}

// doubling down is a bit different since the player needs to
// respond to Hand events as a card gets added to the hand
// so set the state to DoublingDown and then execute it
protected boolean doubleDown(Dealer d) {

setCurrentState(getDoublingDownState());
getCurrentState().execute(dealer);
return true;

}

// takeCard will get called by the GUI controller when the player
// decides to hit
public void takeCard() {

dealer.hit(this);
}

// stand will get called by the GUI controller when the player chooses
// to stand, when standing change state, let the world know, and then
// tell the dealer
public void stand() {

setCurrentState(getStandingState());
notifyStanding();
getCurrentState().execute(dealer);

}

public JComponent view() {
if(view == null) {

view = new JPanel(new BorderLayout());
JComponent pv = super.view();
GUIView cv = new GUIView();
addListener(cv);
view.add(pv, BorderLayout.CENTER);

664 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 664

Blackjack Code Listings 665

E

LISTING E.36 continued

view.add(cv, BorderLayout.SOUTH);
}
return view;

}

// the following deal w/ states
protected PlayerState getPlayingState() {

return new Playing();
}

protected PlayerState getBettingState() {
return new Betting();

}

private class Playing implements PlayerState {

public void handPlayable() {
// do nothing

}

public void handBlackjack() {
setCurrentState(getBlackjackState());
notifyBlackjack();
getCurrentState().execute(dealer);

}

public void handBusted() {
setCurrentState(getBustedState());
notifyBusted();
getCurrentState().execute(dealer);

}

public void handChanged() {
notifyChanged();

}

public void execute(Dealer dealer) {
// do nothing here, actions will come from the GUI which is
// external to the state, but when events do come in be sure to
// force state transition right away

}
}
private class Betting implements PlayerState {

public void handChanged() {
// not possible in busted state

}
public void handPlayable() {

// not possible in busted state

37 0672321092 AppE 08/22/2001 2:48 PM Page 665

LISTING E.36 continued

}
public void handBlackjack() {

// not possible in busted state
}
public void handBusted() {

// not possible in busted state
}
public void execute(Dealer dealer) {

// do nothing here, actions will come from the GUI which is
// external to the state, since no events come in as part of
// betting the state will need to be changed externally to this

state
}

}

private class GUIView extends JPanel implements PlayerListener,
ActionListener {

private JButton bet_10 = new JButton(“$10”);
private JButton bet_50 = new JButton(“$50”);
private JButton bet_100 = new JButton(“$100”);
private JButton deal = new JButton(“New Game”);
private JButton quit = new JButton(“Quit”);
private JButton hit = new JButton(“Hit”);
private JButton stand = new JButton(“Stand”);
private JButton ddown = new JButton(“Double Down”);

private final String NEW_GAME = “new”;
private final String QUIT = “quit”;
private final String HIT = “hit”;
private final String STAND = “stand”;
private final String BET_10 = “BET10”;
private final String BET_50 = “BET50”;
private final String BET_100 = “BET100”;
private final String D_DOWN = “DDown”;

private final Color FOREST_GREEN = new Color(35, 142, 35);

public GUIView() {
super(new BorderLayout());
GUIPlayer.this.addListener(this);
buildGUI();

}
private void buildGUI() {

JPanel betting_controls = new JPanel();
JPanel game_controls = new JPanel();

add(betting_controls, BorderLayout.NORTH);

666 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 666

Blackjack Code Listings 667

E

LISTING E.36 continued

add(game_controls, BorderLayout.SOUTH);

betting_controls.setBackground(FOREST_GREEN);
game_controls.setBackground(FOREST_GREEN);
deal.setActionCommand(NEW_GAME);
deal.addActionListener(this);
quit.setActionCommand(QUIT);
quit.addActionListener(this);
hit.setActionCommand(HIT);
hit.addActionListener(this);
stand.setActionCommand(STAND);
stand.addActionListener(this);
bet_10.setActionCommand(BET_10);
bet_10.addActionListener(this);
bet_50.setActionCommand(BET_50);
bet_50.addActionListener(this);
bet_100.setActionCommand(BET_100);
bet_100.addActionListener(this);
ddown.setActionCommand(D_DOWN);
ddown.addActionListener(this);
betting_controls.add(bet_10);
betting_controls.add(bet_50);
betting_controls.add(bet_100);
game_controls.add(ddown);
game_controls.add(hit);
game_controls.add(stand);
game_controls.add(deal);
game_controls.add(quit);
enableBettingControls(false);
enablePlayerControls(false);
enableDoubleDown(false);

}

private void enableBettingControls(boolean enable) {
bet_10.setEnabled(enable);
bet_50.setEnabled(enable);
bet_100.setEnabled(enable);

}

private void enablePlayerControls(boolean enable) {
hit.setEnabled(enable);
stand.setEnabled(enable);

}

private void enableGameControls(boolean enable) {
deal.setEnabled(enable);
quit.setEnabled(enable);

}

37 0672321092 AppE 08/22/2001 2:48 PM Page 667

LISTING E.36 continued

private void enableDoubleDown(boolean enable) {
ddown.setEnabled(enable);

}

public void actionPerformed(ActionEvent event) {
if(event.getActionCommand().equals(QUIT)) {

System.exit(0);
} else if(event.getActionCommand().equals(HIT)) {

enableDoubleDown(false);
takeCard();

} else if(event.getActionCommand().equals(STAND)) {
enableDoubleDown(false);
stand();

} else if (event.getActionCommand().equals(NEW_GAME)) {
enableDoubleDown(false);
enableGameControls(false);
enablePlayerControls(false);
enableBettingControls(true);
dealer.newGame();

} else if(event.getActionCommand().equals(BET_10)) {
enableDoubleDown(true);
enableBettingControls(false);
enablePlayerControls(true);
place10Bet();

} else if(event.getActionCommand().equals(BET_50)) {
enableDoubleDown(true);
enableBettingControls(false);
enablePlayerControls(true);
place50Bet();

} else if(event.getActionCommand().equals(BET_100)) {
enableDoubleDown(true);
enableBettingControls(false);
enablePlayerControls(true);
place100Bet();

} else if(event.getActionCommand().equals(D_DOWN)) {
enablePlayerControls(false);
enableDoubleDown(false);
doubleDown(dealer);

}
}

public void playerChanged(Player player) {}

public void playerBusted(Player player) {
enablePlayerControls(false);
enableGameControls(true);

}

668 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 668

Blackjack Code Listings 669

E

LISTING E.36 continued

public void playerBlackjack(Player player) {
enableDoubleDown(false);
enablePlayerControls(false);
enableGameControls(true);

}

public void playerStanding(Player player) {
enablePlayerControls(false);
enableGameControls(true);

}

public void playerWon(Player player) {
enablePlayerControls(false);
enableGameControls(true);

}

public void playerLost(Player player) {
enableDoubleDown(false);
enablePlayerControls(false);
enableGameControls(true);

}

public void playerStandoff(Player player) {
enablePlayerControls(false);
enableGameControls(true);

}

}
}

LISTING E.37 VBettingPlayer.java

package blackjack.ui.pac;

import blackjack.core.*;
import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

public abstract class VBettingPlayer extends BettingPlayer implements
➥Displayable {

private BettingView view;

public VBettingPlayer(String name, VHand hand, Bank bank) {
super(name, hand, bank);

37 0672321092 AppE 08/22/2001 2:48 PM Page 669

LISTING E.37 continued

}

public JComponent view() {
if(view == null) {

view = new BettingView((VHand) getHand());
addListener(view);

}
return view;

}

// Note that all this class does is retrieve the Hand’s view, add that view
// to itself, and update the border as needed. Note what this class does not

do:
// update the cards as they change. From the point of view of this view the

card
// update happens automatically because the VHand update’s its displayable

behind
// the scenes
private class BettingView extends JPanel implements PlayerListener {

private TitledBorder border;

public BettingView(VHand hand) {
super(new FlowLayout(FlowLayout.LEFT));
buildGUI(hand.view());

}

public void playerChanged(Player player) {
String name = VBettingPlayer.this.getName();
border.setTitle(name);
repaint();

}

public void playerBusted(Player player) {
String name = VBettingPlayer.this.getName();
border.setTitle(name + “ BUSTED!”);
repaint();

}

public void playerBlackjack(Player player) {
String name = VBettingPlayer.this.getName();
border.setTitle(name + “ BLACKJACK!”);
repaint();

}

public void playerStanding(Player player) {
String name = VBettingPlayer.this.getName();
border.setTitle(name + “ STANDING”);

670 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 670

Blackjack Code Listings 671

E

LISTING E.37 continued

repaint();
}

public void playerWon(Player player) {
String name = VBettingPlayer.this.getName();
border.setTitle(name + “ WINNER!”);
repaint();

}

public void playerLost(Player player) {
String name = VBettingPlayer.this.getName();
border.setTitle(name + “ LOSER!”);
repaint();

}

public void playerStandoff(Player player) {
String name = VBettingPlayer.this.getName();
border.setTitle(name + “ STANDOFF!”);
repaint();

}

private void buildGUI(JComponent hand) {
border = new TitledBorder(VBettingPlayer.this.getName());
setBorder(border);
setBackground(new Color(35, 142, 35));
border.setTitleColor(Color.black);
add(hand);

}

}

}

LISTING E.38 VBlackjackDealer.java

package blackjack.ui.pac;

import blackjack.core.*;
import blackjack.core.threaded.*;
import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;

public class VBlackjackDealer extends ThreadedBlackjackDealer implements
Displayable {

37 0672321092 AppE 08/22/2001 2:48 PM Page 671

LISTING E.38 continued

private DealerView view;

public VBlackjackDealer(String name, VHand hand, Deckpile cards) {
super(name, hand, cards);

}

public JComponent view() {
if(view == null) {

view = new DealerView((VHand) getHand());
addListener(view);

}
return view;

}

// Note that all this class does is retrieve the Hand’s view, add that view
// to itself, and update the border as needed. Note what this class does not

do:
// update the cards as they change. From the point of view of this view the

card
// update happens automatically because the VHand update’s its displayable

behind
// the scenes
private class DealerView extends JPanel implements PlayerListener {

private TitledBorder border;

public DealerView(VHand hand) {
super(new FlowLayout(FlowLayout.LEFT));
String name = VBlackjackDealer.this.getName();
border = new TitledBorder(name);
setBorder(border);
setBackground(new Color(35, 142, 35));
border.setTitleColor(Color.black);
add(hand.view());
repaint();

}

public void playerChanged(Player player) {
String name = VBlackjackDealer.this.getName();
border.setTitle(name);
repaint();

}

public void playerBusted(Player player) {
String name = VBlackjackDealer.this.getName();
border.setTitle(name + “ BUSTED!”);
repaint();

}

672 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 672

Blackjack Code Listings 673

E

LISTING E.38 continued

public void playerBlackjack(Player player) {
String name = VBlackjackDealer.this.getName();
border.setTitle(name + “ BLACKJACK!”);
repaint();

}

public void playerStanding(Player player) {
String name = VBlackjackDealer.this.getName();
border.setTitle(name + “ STANDING”);
repaint();

}

public void playerWon(Player player) {
String name = VBlackjackDealer.this.getName();
border.setTitle(name + “ WINNER!”);
repaint();

}

public void playerLost(Player player) {
String name = VBlackjackDealer.this.getName();
border.setTitle(name + “ LOSER!”);
repaint();

}

public void playerStandoff(Player player) {
String name = VBlackjackDealer.this.getName();
border.setTitle(name + “ STANDOFF!”);
repaint();

}

}

}

LISTING E.39 VCard.java

package blackjack.ui.pac;

import blackjack.core.*;
import javax.swing.*;
import java.awt.*;

public class VCard extends Card implements Displayable {

private String image;
private CardView view;

37 0672321092 AppE 08/22/2001 2:48 PM Page 673

LISTING E.39 continued

public VCard(Suit suit, Rank rank, String image) {
super(suit, rank);
this.image = image;
view = new CardView(getImage());

}

public void setFaceUp(boolean up) {
super.setFaceUp(up);
view.changed();

}

public JComponent view() {
return view;

}

private String getImage() {
if(isFaceUp()) {

return image;
} else {

return “/blackjack/ui/bitmaps/empty_pile.xbm”;
}

}

private class CardView extends JLabel {

public CardView(String image) {
setImage(image);
setBackground(Color.white);
setOpaque(true);

}

public void changed() {
setImage(getImage());

}

private void setImage(String image) {
java.net.URL url = this.getClass().getResource(image);
ImageIcon icon = new ImageIcon(url);
setIcon(icon);

}

}

}

674 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 674

Blackjack Code Listings 675

E

LISTING E.40 VDeck.java

package blackjack.ui.pac;

import blackjack.core.*;
import java.util.Iterator;

public class VDeck extends Deck {

protected void buildCards() {

// This is ugly, but it is better than the alternative loops/if/elseif
Card [] deck = new Card[52];
setDeck(deck);

deck[0] = new VCard(Suit.HEARTS, Rank.TWO,
“/blackjack/ui/bitmaps/h2”);

deck[1] = new VCard(Suit.HEARTS, Rank.THREE,
“/blackjack/ui/bitmaps/h3”);

deck[2] = new VCard(Suit.HEARTS, Rank.FOUR,
“/blackjack/ui/bitmaps/h4”);

deck[3] = new VCard(Suit.HEARTS, Rank.FIVE,
“/blackjack/ui/bitmaps/h5”);

deck[4] = new VCard(Suit.HEARTS, Rank.SIX,
“/blackjack/ui/bitmaps/h6”);

deck[5] = new VCard(Suit.HEARTS, Rank.SEVEN,
“/blackjack/ui/bitmaps/h7”);

deck[6] = new VCard(Suit.HEARTS, Rank.EIGHT,
“/blackjack/ui/bitmaps/h8”);

deck[7] = new VCard(Suit.HEARTS, Rank.NINE,
“/blackjack/ui/bitmaps/h9”);

deck[8] = new VCard(Suit.HEARTS, Rank.TEN,
“/blackjack/ui/bitmaps/h10”);

deck[9] = new VCard(Suit.HEARTS, Rank.JACK,
“/blackjack/ui/bitmaps/h11”);

deck[10] = new VCard(Suit.HEARTS, Rank.QUEEN,
“/blackjack/ui/bitmaps/h12”);

deck[11] = new VCard(Suit.HEARTS, Rank.KING,
“/blackjack/ui/bitmaps/h13”);

deck[12] = new VCard(Suit.HEARTS, Rank.ACE,
“/blackjack/ui/bitmaps/h1”);

deck[13] = new VCard(Suit.DIAMONDS, Rank.TWO,
“/blackjack/ui/bitmaps/d2”);

deck[14] = new VCard(Suit.DIAMONDS, Rank.THREE,
“/blackjack/ui/bitmaps/d3”);

deck[15] = new VCard(Suit.DIAMONDS, Rank.FOUR,
“/blackjack/ui/bitmaps/d4”);

deck[16] = new VCard(Suit.DIAMONDS, Rank.FIVE,
“/blackjack/ui/bitmaps/d5”);

deck[17] = new VCard(Suit.DIAMONDS, Rank.SIX,
“/blackjack/ui/bitmaps/d6”);

37 0672321092 AppE 08/22/2001 2:48 PM Page 675

LISTING E.40 continued

deck[18] = new VCard(Suit.DIAMONDS, Rank.SEVEN,
“/blackjack/ui/bitmaps/d7”);

deck[19] = new VCard(Suit.DIAMONDS, Rank.EIGHT,
“/blackjack/ui/bitmaps/d8”);

deck[20] = new VCard(Suit.DIAMONDS, Rank.NINE,
“/blackjack/ui/bitmaps/d9”);

deck[21] = new VCard(Suit.DIAMONDS, Rank.TEN,
“/blackjack/ui/bitmaps/d10”);

deck[22] = new VCard(Suit.DIAMONDS, Rank.JACK,
“/blackjack/ui/bitmaps/d11”);

deck[23] = new VCard(Suit.DIAMONDS, Rank.QUEEN,
“/blackjack/ui/bitmaps/d12”);

deck[24] = new VCard(Suit.DIAMONDS, Rank.KING,
“/blackjack/ui/bitmaps/d13”);

deck[25] = new VCard(Suit.DIAMONDS, Rank.ACE,
“/blackjack/ui/bitmaps/d1”);

deck[26] = new VCard(Suit.SPADES, Rank.TWO,
“/blackjack/ui/bitmaps/s2”);

deck[27] = new VCard(Suit.SPADES, Rank.THREE,
“/blackjack/ui/bitmaps/s3”);

deck[28] = new VCard(Suit.SPADES, Rank.FOUR,
“/blackjack/ui/bitmaps/s4”);

deck[29] = new VCard(Suit.SPADES, Rank.FIVE,
“/blackjack/ui/bitmaps/s5”);

deck[30] = new VCard(Suit.SPADES, Rank.SIX,
“/blackjack/ui/bitmaps/s6”);

deck[31] = new VCard(Suit.SPADES, Rank.SEVEN,
“/blackjack/ui/bitmaps/s7”);

deck[32] = new VCard(Suit.SPADES, Rank.EIGHT,
“/blackjack/ui/bitmaps/s8”);

deck[33] = new VCard(Suit.SPADES, Rank.NINE,
“/blackjack/ui/bitmaps/s9”);

deck[34] = new VCard(Suit.SPADES, Rank.TEN,
“/blackjack/ui/bitmaps/s10”);

deck[35] = new VCard(Suit.SPADES, Rank.JACK,
“/blackjack/ui/bitmaps/s11”);

deck[36] = new VCard(Suit.SPADES, Rank.QUEEN,
“/blackjack/ui/bitmaps/s12”);

deck[37] = new VCard(Suit.SPADES, Rank.KING,
“/blackjack/ui/bitmaps/s13”);

deck[38] = new VCard(Suit.SPADES, Rank.ACE,
“/blackjack/ui/bitmaps/s1”);

deck[39] = new VCard(Suit.CLUBS, Rank.TWO,
“/blackjack/ui/bitmaps/c2”);

deck[40] = new VCard(Suit.CLUBS, Rank.THREE,
“/blackjack/ui/bitmaps/c3”);

deck[41] = new VCard(Suit.CLUBS, Rank.FOUR,
“/blackjack/ui/bitmaps/c4”);

676 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 676

Blackjack Code Listings 677

E

LISTING E.40 continued

deck[42] = new VCard(Suit.CLUBS, Rank.FIVE,
“/blackjack/ui/bitmaps/c5”);

deck[43] = new VCard(Suit.CLUBS, Rank.SIX,
“/blackjack/ui/bitmaps/c6”);

deck[44] = new VCard(Suit.CLUBS, Rank.SEVEN,
“/blackjack/ui/bitmaps/c7”);

deck[45] = new VCard(Suit.CLUBS, Rank.EIGHT,
“/blackjack/ui/bitmaps/c8”);

deck[46] = new VCard(Suit.CLUBS, Rank.NINE,
“/blackjack/ui/bitmaps/c9”);

deck[47] = new VCard(Suit.CLUBS, Rank.TEN,
“/blackjack/ui/bitmaps/c10”);

deck[48] = new VCard(Suit.CLUBS, Rank.JACK,
“/blackjack/ui/bitmaps/c11”);

deck[49] = new VCard(Suit.CLUBS, Rank.QUEEN,
“/blackjack/ui/bitmaps/c12”);

deck[50] = new VCard(Suit.CLUBS, Rank.KING,
“/blackjack/ui/bitmaps/c13”);

deck[51] = new VCard(Suit.CLUBS, Rank.ACE,
“/blackjack/ui/bitmaps/c1”);

}

}

LISTING E.41 VHand.java

package blackjack.ui.pac;

import blackjack.core.*;
import java.awt.*;
import javax.swing.*;
import java.util.Iterator;

public class VHand extends Hand implements Displayable {

private HandView view = new HandView();

public JComponent view() {
return view;

}

// you need to override addCard and reset so that when the hand changes, the
// change propigates to the view
public void addCard(Card card) {

super.addCard(card);

37 0672321092 AppE 08/22/2001 2:48 PM Page 677

LISTING E.41 continued

view.changed();
}

public void reset() {
super.reset();
view.changed();

}

private class HandView extends JPanel {
public HandView() {

super(new FlowLayout(FlowLayout.LEFT));
setBackground(new Color(35, 142, 35));

}
public void changed() {

removeAll();
Iterator i = getCards();
while(i.hasNext()) {

VCard card = (VCard) i.next();
add(card.view());

}
revalidate();

}
}

}

LISTING E.42 VPlayerFactory.java

package blackjack.ui.pac;

import blackjack.core.*;

public class VPlayerFactory {

private VBlackjackDealer dealer;
private GUIPlayer human;
private Deckpile pile;

public VBlackjackDealer getDealer() {
// only create and return one
if(dealer == null) {

VHand dealer_hand = getHand();
Deckpile cards = getCards();
dealer = new VBlackjackDealer(“Dealer”, dealer_hand, cards);

}
return dealer;

678 Appendix E

37 0672321092 AppE 08/22/2001 2:48 PM Page 678

Blackjack Code Listings 679

E

LISTING E.41 continued

}

public GUIPlayer getHuman() {
// only create and return one
if(human == null) {

VHand human_hand = getHand();
Bank bank = new Bank(1000);
human = new GUIPlayer(“Human”, human_hand, bank, getDealer());

}
return human;

}

public Deckpile getCards() {
// only create and return one
if(pile == null) {

pile = new Deckpile();
for(int i = 0; i < 4; i ++) {

pile.shuffle();
Deck deck = new VDeck();
deck.addToStack(pile);
pile.shuffle();

}
}
return pile;

}

private VHand getHand() {
return new VHand();

}

}

37 0672321092 AppE 08/22/2001 2:48 PM Page 679

37 0672321092 AppE 08/22/2001 2:48 PM Page 680

abstraction, 30-31
appropriate situations for, 33
card game example, 60
effective implementation of,

46-47
example of, 31-33
rules for, 33-34

acceptance testing, 330
access, levels of, 29
access control, overriding meth-

ods, 87
accessor methods, setters and

getters, 56-57
accessors, 15

classes, 589
Account class example

code for, 59
requirements, 57-58

ACM Special Interest Group on
Computer-Human Interaction
(SIGCHI), 306

activities, state diagrams, 407
activity diagrams (use case

analysis), 222-223
actors, 210-211

use case analysis, 368
blackjack card game, 369
modeling, 218

ad-hoc polymorphism, 139
Adapter design pattern,

253-254
implementing, 254-256
when to use, 256-257

adapter objects, 254
adapters, 254, 281
addActionListener() method,

309
ADT (Abstract Data Type)

defining, 38
effective implementation of,

47
encapsulation and, 34, 37
example, 37-39

agents, objects, 242
aggregation relationships, mod-

eling, 194-195
aggregations, UML, 599
analysis

See also OOA
resources, 603

ancestors, 92-93
anonymous classes, creating,

339-340
anonymous inner classes,

591-593

Symbols

* (asterisk), object associations,
194

A

abstract classes
code example, 106-107,

131-132
example requirements, 109
methods, defining, 108
UML, 596-597

notation, 190
Abstract Data Type. See ADT
Abstract Factory design pat-

tern, 278
implementing, 278-282
when to use, 283

abstract methods, 108
code example, 139, 151-152
declaring, 108-109

code example, 109-110
abstracting, alternatives, 97

INDEX

38 0672321092 index 08/22/2001 2:48 PM Page 681

APIs (application programming
interfaces), 28

third-party tools, adapters,
256-257

archives, jar utility, 572-573
arguments

See also parameters, 137
coercion, 141

association names, 193
association relationships, mod-

eling, 193-194
association role, 193
associations (objects), UML,

598-599
asterisks (*), object associa-

tions, 194
attributes, 12

inheritance, 82-85
overriding, 83-88

access control, 87
recursive, 88-89
specialization, 91
visibility, UML, 596

B

Bank class (blackjack card
game)

creating, 433-434
example code, 163-164
implementation, 437-439

BankAccount class code exam-
ple, 115-116

BankAccountCLV code exam-
ple, 316

BankAccountController code
example, 317-318

BankAccountModel code exam-
ple, 312-313

BankAccountView code exam-
ple, 314-315, 325-327

BankActivityEvent code exam-
ple, 324-325

BankActivityListener code
example, 324-325

BankDriver class code example,
167-168

banking example
Bank class code, 163-164
future-proof code

example code, 167
requirements, 166

inheritance, 110
checking accounts, 111
class methods, 114-115
generic accounts, 111
overdraft accounts, 112
requirements, 112
savings accounts, 111
timed maturity accounts,

111
polymorphism

overview, 160
requirements, 160-162

base classes. See parent classes
BaseLog class example code,

131-132
behavior, 12

inheritance and, 82
BettingPlayer class, implemen-

tation, 439-441
black box testing, 332
blackjack card game

as simulation, 488
implementing, 491-493

Bank class, 433-434
betting functionality

Bank class, 437-439
BettingPlayer class,

439-441
BlackjackDealer class,

443-444
Dealer class, 441
HumanPlayer class,

441-443
implementing, 436

collecting bets, 434
Dealer interface, 420-425
development

actors (use case), 369
analysis, purpose for, 368
class model, 381
classes, 376, 380
command line UI, 380
implementation, 381-395
initial questions, 366-368
iterations, adding betting

capability, 371

iterations, adding rules,
370-371

iterations, basic game
play, 370, 372-376

iterations, planning,
369-370

iterations, user interface,
371

modeling domain, 376
modeling use cases, 375
use cases, 372-375

domain model, updating for
betting, 433

game states, creating classes
from, 409-410, 412

GUI (graphical user interface)
analysis, 449
BlackjackGUI, 454
CardView, 454-455
class diagram, 456
CRC card session,

454-455
design issues, 453-456
diagrams, 455
implementing, 457-465
mock ups, 452-453
OptionView, 454
OptionView diagram,

455-456
overview

PlayerView, 454
PlayerView diagram, 455
use cases, 450-452

overview (PAC design pat-
tern), 470

abstraction layer, 473-474
approach, 470-471
control design, 474
design overview, 471-472
factory patterns, 474-475
implementing, 476-483
layers, 470
presentation layer,

472-473
when to use, 471

Hand class, listener for,
412-415

iterative process and, 365-366
non-human players

creating, 486
FlipPlayer class, 489-490
OneHitPlayer class, 490

682 APIs (application programming interfaces)

38 0672321092 index 08/22/2001 2:48 PM Page 682

options for, 487
SafePlayer, 486-487
SmartPlayer class, 491

OOP benefits, 504-505
Player class

modifying inheritance
hierarchy, 435

PlayerListener interface,
419-420

PlayerState interface,
415-419

purpose for programming,
364

refactoring for reuse, 498-504
requirements, 365
rules

analysis, 400
dealer state diagram,

408-409
implementing, 412-425
implementing through

conditionals, 404-406
overview, 399
player state diagram,

407-408
state diagrams, 406-407
use cases, 400-404

source code packages, 607
testing, 395, 425

mock objects and,
444-445

use cases, betting, 430-433
user interface

command line improve-
ments, 448-449

overview, 447-448
vision statement, 365

Blackjack class diagram,
updating, 436

blackjack.core package (com-
mon classes), 608-633

blackjack.core.threaded pack-
age, 633-635

blackjack.exe, user interfaces,
635-641

Blackjack.java, 392
blackjack.players package,

641-649
blackjack.ui package, 649-650
blackjack.ui.mvc package,

650-662

blackjack.ui.pac package,
663-679

BlackjackDealer class, imple-
mentation, 443-444

BlackjackDealer interface,
420-425

BlackjackDealer.java, 390
BlackjackGUI class, setUp()

method, 464-465
Boolean primitive wrapper

code example, 67-68, 70-71
creating, 70

braces ({ }) in source code, 579
bugs, 330

compared to exceptions, 350
sources of, 331

C

C++, resources, 604
Card class code example,

Typesafe Enum design pat-
tern, 289-294

Card class example, code for,
61-63

card game example
abstraction, 60
division of responsibility, 61
implementation hiding, 60
requirements, 61

CardView class, implementing,
459

CarefreeObject example code,
164

casting, Hashtable class and,
161-162

CheckingAccount class code
example, 118-119

child classes, 81-82
example requirements,

104-105
inheritance code example,

105-106
new methods, 88
polymorphism, example code,

152-154
specialization, 91
super keyword, 88

class adapters, 256
class code example, 352
class keyword, 579
class level documentation, 573
class methods, 68-69
class variables, 68-69
classes, 12

See also user interfaces
abstract

code example, 106-107
example requirements,

109
UML notation, 190

abstract UML, 596-597
accessors, 589
account example

code for, 59
requirements, 57-58

ADT (Abstract Data Type),
effective implementation of,
47

aggregations, UML, 599
anonymous, creating, 339-340
attributes, 12
Bank, 433-434

implementation, 437-439
Bank example code, 163-164
BankAccount code example,

115-116
BaseLog, example code,

131-132
BettingPlayer, implementa-

tion, 439-441
black box testing, 332
Blackjack

setUp() method, 464-465
updating diagram, 436

blackjack card game, 376,
380

creating non-human play-
ers, 486

implementation, 381-395
model, 381

BlackjackDealer, implementa-
tion, 443-444

card game example, code for,
61-65

CardView, implementing, 459
CheckingAccount code exam-

ple, 118-119

classes 683

38 0672321092 index 08/22/2001 2:48 PM Page 683

child, 81-82
example requirements,

104-105
inheritance code example,

105-106
new methods, 88
polymorphism (example

code), 152, 154
specialization, 91
super keyword, 88

code examples,
DoubleKey.java, 55

collaboration diagrams, UML,
600

common
blackjack.core package,

623-633
blackjack.core package

package, 608-623
compiling, 575-576
composition, 80-81

UML, 600
constructor methods, 589
CountedObject, code exam-

ple, 69
CRC (Class Responsibility

Collaboration) cards,
234-235

applying, 235-236
example, 236-238
limitations, 241

creating, game state and,
409-410, 412

Dealer, implementation, 441
dependency relationships,

UML, 598
design considerations, unit

tests and, 337
DoubleKey, constructors, 56
example code, 13-14
FlipPlayer, implementing,

489-490
generalization relationships,

UML, 600
getters, 589
GUIPlayer, implementing,

461-464, 481
Hand, listener for, 412-415
Hashtable, casting and,

161-162
headers, documentation and,

354

HumanPlayer, implementa-
tion, 441-443

inheritance, basic principles,
81-83

inheritance hierarchy, 81
inner, 591-593

anonymous, 591-593
instantiation, preventing mul-

tiple, 283-284
interaction diagrams, UML,

600
Java, 578-579, 586-587

creating, 587-590
leaf, 93
modeling, 198-199

aggregation relationships,
194-195

association relationships,
193-194

composition relationships,
196

dependency relationships,
191-193

documenting code, 187
generalization relation-

ships, 197-198
relationships, 191
UML advanced notation,

189-190
UML notation, 188-189
UML selecting notation,

190-191
modifiers, 589
multiplicity, UML, 599
naming conventions, 353
number of responsibilities

(design issues), 239, 241
object associations, UML,

598
objects, 11-12
OneHitPlayer, implementing,

490
OptionView, implementing,

461
OptionViewController, imple-

menting, 461
OverdraftAccount code exam-

ple, 119-120
parent, 81-82

inheritance code example,
103-104

super keyword, 88

Player
PlayerListener interface,

419-420
PlayerState interface,

415-419
PlayerView, implementing,

460-461
polymorphism and, 130
relationships, UML, 598
roles, UML, 598
root, 93
SafePlayer

adding to GUI, 486-487
creating, 486

SavingsAccount code exam-
ple, 116-117

sequence diagrams, UML,
601

setters, 589
SmartPlayer, implementing,

491
Stack

inheritance problem
example, 120-121

inheritance problem
example requirements,
121

inheritance solution code
example, 121-122

substitutability relationships,
Adapter design pattern,
253-254

testing, JUnit, 338-342
TimeMaturityAccount code

example, 117-118
UML, 595
unit testing, 333
VBettingPlayer, implement-

ing, 478-479
VBlackjackDealer, imple-

menting, 480-481
VCard, implementing, 457,

476-477
VDeck, implementing, 458
Vhand, implementing, 477

CLASSPATH environment
variable, 570

CLI interface, blackjack.exe
package, 635-641

684 classes

38 0672321092 index 08/22/2001 2:48 PM Page 684

code
See also design issues; pro-

gramming
BaseLog class, 131-132
blackjack card game, pack-

ages, 607
Card class example, Typesafe

Enum design pattern,
289-290, 293-294

documentation, 352
coding conventions,

352-353
comments, 353
constants, 353
headers (methods and

classes), 354
names, 354
updating, 354

documenting, 187
modeling class aggrega-

tion relationships,
194-195

modeling class association
relationships, 193-194

modeling class composi-
tion relationships, 196

modeling class dependen-
cy relationships,
191-193

modeling class generaliza-
tion relationships,
197-198

modeling class relation-
ships, 191

modeling classes,
188-191, 198-199

UML (Unified Modeling
Language), 187

Employee class (polymor-
phism), 151-152

examples
A procedural implementa-

tion of BlackjackDealer,
394

abstract classes, 106-107,
131-132

abstract methods, 139,
151-152

Account class, 59
Bank class (polymor-

phism), 163-164

Bank.java, 438-439,
608-609

BankAccount class,
115-116

BankAccountCLV, 316
BankAccountController,

317-318
BankAccountModel,

312-313
BankAccountView,

314-315, 325-327
BankActivityEvent,

324-325
BankActivityListener,

324-325
BankDriver class, 167-168
BettingPlayer.java,

440-441, 609-612
Blackjack.java, 392,

448-449
BlackjackCLI.java,

635-636
BlackjackDealer.java, 390,

612, 618
BlackjackGUI, setUp()

method, 464
BlackjackMVC.java,

636-638
BlackjackPAC.java, 639
BlackjackSim.java,

491-492, 640-641
Boolean primitive wrap-

per, 67-71
Card class, 61-63
Card.java, 619
CardView.java, 459,

650-651
CheckingAccount class,

118-119
child class (inheritance),

105-106
child classes (polymor-

phism), 152-154
classes, 352
CommandLinePlayer.java,

642-643
Conditional rules inside

the BlackjackDealer,
405

Console.java, 393,
649-650

CountedObject class, 69
customized Dealer

Blackjack state, 422
customized Dealer Busted

state, 421-422
customized Dealer

Dealing state, 424
customized Dealer

Standing state, 423
customized Dealer

Waiting state, 423-424
Dealer class, 65
Dealer.java, 389, 421,

619-620
DealerBlackjackPile.java,

444-445
DealerCollectingBets

state, 443
Deck class, 63-65
Deck.java, 383, 620-621
Deckpile.java, 384,

621-622
declaring abstract meth-

ods, 109-110
default Blackjack state,

417
default Busted state, 416
default Player state,

417-418
default Standing state, 417
default Waiting state, 416
Displayable.java, 663
division of responsibility,

43-45
DoubleKey class, 55
EmployeeModel, 323-324
exception handling, 351
fixing conditionals,

171-176
FlipPlayer.java, 489,

643-644
future-proof code, 167
getSafePlayer() method,

487
GUIPlayer’s betting meth-

ods, 462
GUIPlayer’s custom

Betting state, 464
GUIPlayer’s custom

Playing state, 463
GUIPlayer’s hit and stand

methods, 462

code 685

38 0672321092 index 08/22/2001 2:48 PM Page 685

GUIPlayer’s overridden
state getter methods,
463

GUIPlayer.java, 651-653,
663-669

Hand.java, 386, 412-415,
622-625

HandListener.java, 412,
625

Hello World, first pro-
gram, 574-577

Hello World, threaded,
501

HumanPlayer.java, 388,
441-442

implementation, 28-29
implementation hiding,

40-41
inclusion polymorphism,

131-135
inheritance, 77-78
inheritance (new Stack

class), 121-122
inheritance adapters,

255-256
instantiating objects, 16
interfaces, 28-29
Item class, 343-344
ItemDisplayFormatter,

344
ItemTableRow, 344-345
ItemTest, 348-349
Iterator design pattern,

262-266
KnowledgeablePlayer.java

, 644-645
method inheritance, 83,

85
method stack track,

498-499
methods called after game

over, 499
MockDisplayFormatter,

346-348
Observer interface, 311
OneHitPlayer.java, 490,

645-646
OptimalPlayer.java,

646-647
OptionView.java, 654-656

OptionViewController.jav
a, 656-658

OverdraftAccount class,
119-120

overloading methods, 156
overriding (polymor-

phism), 138-139
parent class (inheritance),

103-104
Player.java, 387, 625, 630
PlayerListener.java, 419
PlayerListerner.java, 631
PlayerState.java, 415, 631
PlayerView update code,

460
PlayerView.java, 658-659
polymorphism, 159-160

future-proof code, 164-165
Product.java file, 587-588
Putting Model, Views, and

Controller Together
(MVC), 318

Rank.java, 382, 631-632
SafePlayer.java, 486, 648
sample of PlayerView’s

PlayerListener methods,
460-461

SavingsAccount class,
116-117

SavingsAccountTest class,
336

SavingsAccountTest class
(anonymous), 339

SavingsAccountTest class
(JUnit), 339

setUp() method from
BlackjackGUI control,
482-483

setUp() method from
MVC BlackjackGUI,
483

Singleton design pattern,
284-286

singleton inheritance, 287
SmartPlayer.java, 491,

648-649
substitutability relation-

ships, 154-155
Suit.java, 632-633
threaded DealerWaiting

state, 502-503

ThreadedBlackjackDealer.
java, 633, 635

TimeMaturityAccount
class, 117-118

updated setUp() method,
487

VBettingPlayer.java,
478-479, 669-671

VBlackjackDealer.java,
480-481, 671-673

VCard.java, 458, 476-483,
659-660, 673-674

VDeck.java, 458, 660-677
VHand.java, 477-478,

677-678
VisualBankAccount,

307-309
VPlayerFactory.java,

481-482, 678
withdrawFunds() method

test, 340-341
XML parser, 281-282

PayrollDriver, 156-157
Rank class example, Typesafe

Enum design pattern,
292-293

revising, division of responsi-
bility and, 43

samples, classes, 13-14
Suit class example, Typesafe

Enum design pattern, 291
coercion methods, polymor-

phism, 141
collaboration, 234
collaboration diagrams

UML, 600
use case analysis, 221

CollectingBets state, 434
collections, looping over items,

Iterator design pattern and,
260-262

command line UI
blackjack card game, 380
improvements to, 448-449

comments, documentation, 353
compatibility, third-party tools,

adapters, 256-257
compiling classes, 575-576
composition, 80-81

adapters, 256
UML, 600
when to use, 97

686 code

38 0672321092 index 08/22/2001 2:48 PM Page 686

composition relationships, mod-
eling, 196

conditional statements, Java,
584-585

conditionals, 170
blackjack card game, imple-

menting rules, 404-406
eliminating, 406
fixing, 171-173

code example, 174-176
example requirements,

173-174
limitations of, 406

configuration, environment,
SDK, 570-571

Console.java, 393
constants

as documentation, 353
Java, 582
naming conventions, 353

constructor methods, 14, 589
overloaded constructors, 589

constructors
Account class example, 57
default, 56
DoubleKey.java, 56
noarg, 56
Singleton design pattern, 286
super keyword, 113

controller layer (MVC), 317
combining with model layer,

318-319
implementing, 317-318

CountedObject class, code
example, 69

CRC (Class Responsibility
Collaboration) cards, 234-235

applying, 235-236
example, 236-238
GUIs, blackjack card game,

454-455
limitations, 241

D

data types, 10, 35-37
See also ADT
composed of multiple types,

39

encapsulation, 36
first-class objects, 37
generic interfaces, dangers of,

39
implementation inheritance,

90
inheritance, 82

Has-a test, 80
Is-a test, 79-80
type substitution, 94-96

inheritance specialization and,
92

Java, 580-581
parametric, 137-138
second-class objects, 37
subtypes, 96

Deal Cards use case, 400-403
Dealer class

implementation, 441
example code, 65

Dealer Fulfills Game use case,
403-404

Dealer interface, 420-425
dealer state diagram (blackjack

card game), 408-409
Dealer.java, 389
DealerWaiting state, threads,

502-503
debugging, 330
Deck class example, code for,

63-65
Deck.java, 383
Deckpile.java, 384
declaring

abstract methods, 108-109
code example, 109-110

methods, 353
parameter types, parametric

polymorphism, 135
default constructors, 56
deferred methods, 139
defining

data types, 35
methods, abstract classes, 108

definition, ADT (Abstract Data
Type), 38

delegation, 77
compared to inheritance, 81

dependency relationships
modeling, 191-193
UML, 598

dependent code, implementa-
tion hiding, 40

descendants, 92-93
design issues, 187

classes, unit tests and, 337
design patterns, 250

Abstract Factory, 278
Adapter, 253-254
capabilities of, 252-253
common types, 253
elements of, 250
enumerating conse-

quences, 252
Factory Method, 283
guidelines, 295
implementing Abstract

Factory, 278-280, 282
implementing Adapter,

254-256
implementing Iterator,

263-266
implementing Singleton,

284-286
implementing Typesafe

Enum, 291, 293-294
implementing when to use

Typesafe Enum,
294-295

Iterator, 251, 260,
262-263

Java Iterator interface, 262
mastering, 267-268
pattern names, 251
problem description, 251
problems with, 295-296
Proxy, 257-259
publish/subscribe event

services, 257-258
Singleton, 283-284
Singleton and inheritance,

287-288
solution description, 251
types, 278
Typesafe Enum, 289-291
when to use Abstract

Factory, 283
when to use Adapter,

256-257
when to use Iterator,

266-267

design issues 687

38 0672321092 index 08/22/2001 2:48 PM Page 687

when to use Proxy,
259-260

when to use Singleton,
289

documentation and, 252
exception handling, 351-352
get and set methods, 155
goals, 329
GUIs, blackjack card game,

453-456
inheritance, 97-98
OOD (Object Oriented

Design)
agents (objects), 242
applying CRC cards,

235-236
class responsibilities, 239,

241
CRC cards, 234-235
creating class models,

243-244
data transformation, 243
detailing relationships

(objects), 243
example CRC cards,

236-238
future-proofing, 242
generating list of objects,

232-233
interfaces (objects), 242
limitations of CRC cards,

241
overview, 230-231
points of interaction

(objects), 241-242
refining responsibilities of

objects, 234
steps, 231-232

polymorphism, 141-143
switch logic and, 169-171
testing considerations, 349
user interfaces, 306

decoupling from system,
306-310

Model View Controller
(MVC) design pattern,
310-321

design patterns, resources, 604
Design Patterns: Elements of

Reusable Object Oriented
Software, 250

diagrams (use case analysis),
217-219

difference, programming by,
90-91

displaying
object display formatters, 344
user interface elements,

Swing library, 309
division of responsibility

card game example, 61
implementation hiding, 42-46

Document interface, 281
documentation

comments, 353
constants, 353
design patterns, 252
getInitialState() method and,

444
headers (methods and class-

es), 354
importance of, 187
Java APIs, 61
javadoc, 573-574, 577
names, 354
source code, 352

coding conventions,
352-353

UML (Unified Modeling
Language), 187

modeling class aggrega-
tion relationships,
194-195

modeling class association
relationships, 193-194

modeling class composi-
tion relationships, 196

modeling class dependen-
cy relationships,
191-193

modeling class generaliza-
tion relationships,
197-198

modeling class relation-
ships, 191

modeling classes,
188-191, 198-199

updating, 354
documents, XML parsers, 280
domain, 11

domain model (use case analy-
sis), 223-225

blackjack card game, 404
updating for betting, 433

prototyping, 225-226
doneBetting() method, 443
DoubleKey class

constructors, 56
example code, 55

downloading SDK, 570
dynamically typed languages,

polymorphism and, 143

E

EmployeeModel code example,
323-324

empty database tests, 334
encapsulation, 18, 26-27

abstraction, 30-31
appropriate situations for,

33
card game example, 60
effective implementation

of, 46-47
example of, 31-33
rules for, 33-34

Account class example, 59
ADT (Abstract Data Type),

34, 37
effective implementation

of, 47
basic principles, 30
components of effective, 46
data types and, 36
division of responsibility,

42-46
card game example, 61

enforcing, 34
implementation hiding, 34-42

card game example, 60
effective implementation

of, 48
inheritance and, 98
limitations, 77
non-OOP languages and,

49-50
OOP goals and, 48-49
polymorphism and, 141

688 design issues

38 0672321092 index 08/22/2001 2:49 PM Page 688

enumeration, 290
environment

configuration, SDK, 570-571
variables, PATH, 570

errors, 350
events, state diagrams, 407
exception handling, 351-352
exception handling code exam-

ple, 351
exceptions, compared to bugs,

350
Extensible Markup Language.

See XML

F

factories, 278
Factory Method design pattern,

283
files, creating .jar files, 576-577
final variables, 582
first-class objects, 37
FlipPlayer class, implementing,

489-490
for loops, 585
formatting, displaying objects,

344
frameworks (testing), 337-338
function polymorphism, 136
functional testing, 330

G

games (blackjack)
actors (use case), 369
analysis, purpose for, 368
class model, 381
classes, 376, 380
command line UI, 380
implementation, 381-395
initial questions, 366-368
iterations, adding betting

capability, 371
iterations, adding rules,

370-371

iterations, basic game play,
370, 372-376

iterations, planning, 369-370
iterations, user interface, 371
iterative process and, 365-366
modeling domain, 376
modeling use cases, 375
purpose for programming,

364
requirements, 365
testing, 395
use cases, 372-375
vision statement, 365

generalization relationships
modeling, 197-198
UML, 600

generating documentation,
javadoc, 573-574

generic interfaces, dangers of,
39

get method, design issues, 155
getInitialState() method, docu-

menting code with, 444
getter accessor methods, 56-57
getters, classes, 589
graphical user interfaces

(GUIs). See user interfaces
guard conditions, state dia-

grams, 407
GUIPlayer class, implementing,

461-464, 481
GUIs (graphical user inter-

faces). See user interfaces

H

Hand class, listener for, 412-415
Hand.java, 386
Has-a test (inheritance), 80
Hashtable class, casting and,

161-162
headers (methods and classes),

documentation, 354
Hello World

first program, 574-577
SimpleHelloWorld.java file,

579
hiding implementation, 11

hierarchies. See inheritance
hierarchies

HumanPlayer class, implemen-
tation, 441-443

HumanPlayer.java, 388

I

IBM, Java development kit
Web site, 54

if-else operator, 584-585
if/else statements, nesting, 353
immutable objects, 63
implementation, 11, 28

blackjack card game
as simulation, 491-493
Bank class, 437-439
betting functionality, 436
BettingPlayer class,

439-441
BlackjackDealer class,

443-444
Dealer class, 441
HumanPlayer class,

441-443
GUI, 457-465
PAC GUI, 476-483
rules, 404-406, 412-425

code example, 28-29
controller layer (MVC),

317-318
hiding, 11, 34-42
model layer (MVC), 312-313
view layer (MVC), 314-316

implementation hiding
card game example, 60
dependent code, 40
disadvantages, 41
effective implementation of,

48
example code, 40-41
limitations, 66
loosely coupled code, 39-40

creating, 42
division of responsibility,

42-46
tightly coupled code, 40

implementation hiding 689

38 0672321092 index 08/22/2001 2:49 PM Page 689

implementation inheritance, 79
inclusion polymorphism,

131-135
advantages, 155
code examples, 131-135
methods, 130-131
overview, 130

inheritance, 76
access levels, changing, 87-88
ancestors, 92-93
attributes, 83, 85

code example, 83-85
basic principles, 81-83
child classes, new methods,

88
code example

child class, 105-106
parent class, 103-104

compared to delegation, 81
data types and implementa-

tion, 90
descendants, 92-93
design issues, 97-98
encapsulation and, 98
example code, 77-78
functionality of, 78-79
Has-a test, 80
implementation, 79, 89

limitations, 89-90
Is-a test, 79-80
Java, singletons and, 288-289
java.util.Stack class

problem example,
120-121

problem example require-
ments, 121

solution code example,
121-122

leaf classes, 93
methods, 83, 85

code example, 83-85
multiple, 83, 94
new methods and classes, 88
overriding methods and class-

es, 85-87
passing messages, 78
pluggability, 96
polymorphism, 127
polymorphism and, 142
programming by difference,

90-91

protocols, 88
recursive methods and attrib-

utes, 88-89
root classes, 93
Singleton design pattern,

287-288
specialization, 91-93
super keyword, 113
type substitution, 94-96
usefulness of, 131

inheritance hierarchies
BankAccount class code

example, 115-116
banking example, 110

checking accounts, 111
class methods, 114-115
generic accounts, 111
overdraft accounts, 112
requirements, 112
savings accounts, 111
timed maturity accounts,

111
CheckingAccount class code

example, 118-119
design issues, 97
modifying, Adapter design

pattern, 253-254
OverdraftAccount class code

example, 119-120
Player class, modifying, 435
polymorphism, limitations,

144
SavingsAccount class code

example, 116-117
TimeMaturityAccount class

code example, 117-118
inheritance hierarchy, 81
inheritance implementation, 89

limitations, 89-90
inner classes, 591-593

anonymous, 591-593
InstallShield SDK, 570
instance methods, 68
instance variables, 68
instantiation

abstract classes, 108
Abstract Factory design pat-

tern, 278
preventing multiple, 283-284

integration testing, 334

interaction diagrams
UML, 600
use case analysis, 219-220

interfaces, 27-28, 590-591
See also classes; user inter-

faces
adapter object, 254
ADT (Abstract Data Type)

and, 34
blackjack card game

Dealer, 420-425
PlayerListener, 419-420
PlayerState, 415-419

code example, 28-29
generic, dangers of, 39
objects, 242
polymorphism, 142
public, 29

implementation hiding, 48
keywords, 29-30

updating, 40
internal variables, 10

composition, 80-81
implementation hiding, 48
object state, 15

Is-a test (inheritance), 79-80
Item class code example, testing

and, 343-344
ItemDisplayFormatter interface

code example, 344
ItemTableRow class code exam-

ple, 344-345
ItemTest class code example,

348-349
iterative process, 205

blackjack card game, 365-366
actors (use case), 369
adding betting capability,

371
adding rules, 370-371
analysis, purpose for, 368
basic game play, 370,

372-376
class model, 381
classes, 376, 380
command line UI, 380
implementation, 381-395
initial questions, 366-368
modeling domain, 376
modeling use cases, 375
planning, 369-370

690 implementation inheritance

38 0672321092 index 08/22/2001 2:49 PM Page 690

use cases, 372-375
user interface, 371

incremental approach,
205-207

iteration, 205
limitations of, 207

methodology, 208
OOA (Object Oriented

Analysis), 208-209
activity diagrams,

222-223
collaboration diagrams,

221
combining use cases, 214
defining sequence of

events, 215-217
domain model, 223, 225
identifying actors,

210-211
interaction diagrams,

219-220
listing use cases, 212-213
prototyping, 225-226
refined use cases, 214-215
sequence diagrams,

220-221
splitting use cases,

213-214
use case diagrams,

217-219
use case model, 209

software testing and, 330-333
Iterator design pattern, 251,

260-263
benefits, 263
implementing, 263-266
Java implementation, 262
when to use, 266-267

J

jar (Java archive) utility,
572-573

jar file creation, 576-577
Java, 572

advantages of, 23
classes, 578-579, 586-587

creating, 587-590

conditional statements,
584-585

constants, 582
data types, 580-581
documentation, APIs, 61
inheritance, singletons and,

288-289
Iterator interface, 262
loops, 585-586
messages, interfaces and, 142
objects in, 39
obtaining, 54
operators, 583-584
platforms supported, 54
primitive wrappers, 67-68, 70
primitives, 66
resources, 605
variables, 581-582

Java SDK. See SDK
JavaBeans, 56
javac, 571-572
javadoc, 573-574, 577
JAVA_HOME variable, 570
JDK (Java Developer’s Kit),

569
JUnit, 338-342

Web site, 338

K-L

keys, specifying, 55
keywords

class, 579
public, 578
public interfaces, 29-30
static, 579
super, 88, 113
void, 579

languages, support for poly-
morphism, 146

leaf classes, 93
libraries

Swing, 309
third-party tools

adapters, 256-257
upgrading, 278, 280-282

life lines (use case sequence dia-
grams), 221

listeners
blackjack card game, Hand

class, 412-415
PlayerListener, 419-420
Proxy design pattern and, 258

listings. See code, examples
logging code example, 29
looping, Iterator design pattern

and, 260-262
loops, Java, 585-586
loosely coupled code

creating, 42
division of responsibility,

42-46
implementation hiding, 39-40

M

machine language, 9
main() method, example code,

16
message passing, 13
messages, 17

inheritance and, 78
interfaces and, 142

method calls, 13
method level documentation,

574
methodologies, 186
methods

abstract, 108
code example, 109-110,

139
declaring, 108-109
example code, 151-152

accessor, 15
setters and getters, 56-57

Account class example, 57
addActionListener(), 309
banking example, polymor-

phism example require-
ments, 160-162

BlackjackGUI class, setUp(),
464-465

calling after current game
ends, 499

class, 68-69
coercion, polymorphism, 141

methods 691

38 0672321092 index 08/22/2001 2:49 PM Page 691

conditionals
example requirements,

173-174
fixing, 171, 173
fixing (code example),

174, 176
constructors, 14, 589
declaring, 353
deferred, 139
defining, abstract classes, 108
doneBetting(), 443
Factory Method design pat-

tern, 283
get, design issues, 155
getInitialState(), document-

ing code and, 444
headers, documentation and,

354
implementation hiding, 48
inclusion polymorphism,

130-131
inheritance, 83, 85

code example, 83-85
instance, 68
main(), example code, 16
mutators, 15, 57
naming conventions, 353
new, child classes, 88
overloading

code examples, 156
polymorphism, 139-140

overriding, 85-86, 88
Abstract Factory design

pattern, 278
access control, 87
code example, 105-106
code example (polymor-

phism), 138-139
super keyword, 113

parametric polymorphism,
135-137

Player class, 420
polymorphism, limitations,

145
private, 590
recursive, 88-89
redefining, 86
set, design issues, 155
specialization, 91

stack termination and,
498-499

visibility, UML, 596
mock objects, 345-346, 348-349

testing and, 444-445
MockDisplayFormatter inter-

face code example, 346-348
model layer (MVC), 310-311

combining with control layer,
318-319

implementing, 312-313
Model View Controller. See

MVC
modeling

See also UML
blackjack card game

domain, 376
use cases, 375

languages, 186
modifiers, classes, 589
modular programming, 9-10

modules compared to objects,
18

monomorphic languages, 126
multiple inheritance, 83, 94

adapters, 256
multiplicity, 194

characters for specifying, 194
UML, 599

mutant use case tests, 334
mutator methods, 15, 57
MVC (Model View Controller)

design pattern, 310
alternatives to, 310
blackjack.ui.mvc package,

650-662
combining model layer and

control layer, 318-319
controller layer, 317-318
coupling, 321
data handling, 320
efficiency considerations, 321
interface, blackjack.exe pack-

age, 635-641
model layer, 310-313
shortcomings, 319
view layer, 313-316

N

names, documentation, 354
naming

actors (use case analysis), 211
association relationships, 193
test cases, 338

naming conventions
classes, 353
constants, 353
JavaBeans, 56
methods, 353
variables, 353

nesting if/else statements, 353
noarg constructors, 56
notes, UML, 597

O

object adapters, 256
object models, 230
object-enabled languages, 67
object-oriented (OO), 8
objective statements, 365
objects, 8, 11

agents (design issues), 242
aggregation and, 17
associations, UML, 598-599
classes, 12
collaboration, 234
collaboration diagrams, 600
compared to modules, 18
compared to primitives, 67
conditionals, fixing, 171-176
delegation, 77
detailing relationships (design

issues), 243
display formatters, 344
division of responsibility,

42-46
factories, 278
first-class, 37
generating list of (design

issues), 232-233
immutable, 63
inheritance, 76

example code, 77-78
functionality of, 78-79

692 methods

38 0672321092 index 08/22/2001 2:49 PM Page 692

instantiating, example code,
16

interaction diagrams, 600
interface, 27-28
interfaces (design issues), 242
internal variables, 10
Java, 39, 66
keys, specifying, 55
messages, 17
mock, testing code and,

444-445
objects, 66
points of interaction (design

issues), 241-242
programming and, 11
proxies, 259
pure object-oriented lan-

guages, 66
references, 15
refining responsibilities

(design issues), 234
relationships, 17
second-class, 37
sequence diagrams, 601
state, 9
substitutability relationships,

Adapter design pattern,
253-254

testing, mock objects and,
345-346, 348-349

testing fixtures, 341
thread-safe, 70
UML, 596
UML definition, 18
variables and state, 15

Observer design pattern, 311
Observer interface code exam-

ple, 311
OneHitPlayer class, implement-

ing, 490
OO (object-oriented), 8

resources, 604-605
OOA (Object Oriented

Analysis)
domain model, activity dia-

grams, 223-225
overview, 208-209
prototyping, 225-226
purpose, 368
system, 208

use case model, 209
activity diagrams,

222-223
collaboration diagrams,

221
combining cases, 214
defining sequence of

events, 215-217
generating preliminary

list, 212-213
identifying actors,

210-211
interaction diagrams,

219-220
refined use cases, 214-215
sequence diagrams,

220-221
splitting case list, 214
splitting cases, 213
use case diagrams,

217-219
OOD (Object Oriented Design)

class models, creating,
243-244

class responsibilities, 239,
241

CRC cards, 234-235
applying, 235-236
example, 236-238
limitations, 241

data transformation, 243
generating list of objects,

232-233
objects

agents, 242
detailing relationships,

243
future-proofing, 242
interfaces, 242
points of interaction,

241-242
overview, 230-231
refining responsibilities of

objects, 234
steps, 231-232

OOP (Object Oriented
Programming)

basic principles, 26
benefits, blackjack card game

and, 504-505
development cycle and, 21

encapsulation, non-OOP lan-
guages and, 49-50

extensibility, 20
goals, 19

encapsulation and, 48-49
polymorphism and,

146-147
industry realities and,

505-506
learning curve, 21-22
maintenance and, 20
natural software, 19
objects, 66
overview, 10-17
relationship to past program-

ming paradigms, 18-19
reliability, 19
reusability, 20

Operation class example code
(switch logic), 171-172

operators
if-else, 584-585
Java, 583-584
overloading, 140
overriding, 140

OptionView class, implement-
ing, 461

OptionViewController class,
implementing, 461

org.w3c.dom.document, 281
OverdraftAccount class code

example, 119-120
overloaded constructors, 589
overloading

methods
code examples, 156
polymorphism, 139-140

operators, 140
overriding

attributes, 83, 85-86, 88
access control, 87

methods, 85-86, 88
Abstract Factory design

pattern, 278
access control, 87
code example, 105-106
super keyword, 113

operators, 140
polymorphism, 138-139

overriding 693

38 0672321092 index 08/22/2001 2:49 PM Page 693

P-Q

PAC
blackjack.ui.pac package,

663-675, 677-679
interface, blackjack.exe pack-

age, 635-641
PAC (Presentation Abstraction

Control) design pattern, GUI
abstraction layer, 473-474
control design, 474
design approach, 470-471
design overview, 471-472
factory patterns, 474-475
implementing, 476-483
layers, 470
overview, 470
presentation layer, 472-473
when to use, 471

package level modifiers, 578
packages

blackjack.core, 608-633
blackjack.core.threaded,

633-635
blackjack.exe (user inter-

faces), 635-641
blackjack.players, 641-649
blackjack.ui, 649-650
blackjack.ui.mvc, 650-660,

662
blackjack.ui.pac, 663-675,

677-679
common classes, blackjack

card game, 607
parameters

See also arguments
declaring, parametric poly-

morphism, 135
methods, overloading, 140

parametric polymorphism
methods, 135-137
overview, 135
support limitations, 138

parametric types, 137-138
parent classes, 81-82

inheritance code example,
103-104

super keyword, 88

parsers
example code, 281-282
XML documents, Abstract

Factory design pattern and,
280

passing messages, 17
inheritance and, 78

PATH environment variable,
570

Pattern-Oriented Software
Architecture A System of
Patterns, 310

PayrollDriver class code exam-
ple, 156-157

performance tests, 335
Player class

inheritance, modifying hierar-
chy, 435

PlayerListener interface,
419-420

PlayerState interface, 415-419
Player Places Bet use case,

430-433
player state diagram (blackjack

card game), 407-408
Player.java, 387
PlayerListener interface,

419-420
PlayerState interface, 415-419
PlayerView class, implement-

ing, 460-461
pluggability, 96
polymorphic languages, 126
polymorphic variables, 129
polymorphism, 18, 126

Bank class example code,
163-164

banking example
overview, 160
requirements, 160-162

child classes, example code,
152-154

conditionals
example requirements,

173-174
fixing, 171, 173
fixing (code example),

174-176
effective implementation,

141-143

Employee class code exam-
ple, 151-152

example code, 159-160
example requirements,

158-159
forms of, 130
function, 136
future-proof code example

example code, 167
overview, 164-166
requirements, 166

Hashtable class, casting and,
161-162

inclusion, 131-135
methods, 130-131
overview, 130

interfaces, 142
limitations

adding methods, 145
hierarchy issues, 144
performance issues,

144-145
methods

coercion, 141
overloading, 139-140

OOP goals and, 146-147
overriding, 138-139
overview, 126-130
parametric

methods, 135-137
overview, 135
support limitations, 138

programming language sup-
port for, 146

substitutability relationships,
example code, 154-155

switch logic and, 169-171
typed languages and, 143

post conditions (use case analy-
sis), 216

preconditions (use case analy-
sis), 216

primitive wrappers, 67-70
code example, 70-71
creating, 70

primitives, 66
limitations, 67

private access, 29
private methods, 590
procedural languages, 9
procedural programming, 18

694 PAC

38 0672321092 index 08/22/2001 2:49 PM Page 694

Product.java file, 587-588
programming

See also code; design issues;
software development
processes

abstraction, 31
behavior, 12
blackjack card game

actors (use case), 369
analysis, purpose for, 368
class model, 381
classes, 376, 380
command line UI, 380
implementation, 381-395
initial questions, 366-368
iterations, adding betting

capability, 371
iterations, adding rules,

370-371
iterations, basic game

play, 370-376
iterations, planning,

369-370
iterations, user interface,

371
iterative process and,

365-366
modeling domain, 376
modeling use cases, 375
purpose, 364
requirements, 365
testing, 395
use cases, 372-375
vision statement, 365

C++, resources, 604
classes, 12
constructor methods, 14
data types, 10
domain, 11
encapsulation, 18
history, 8-10
implementation, 11

hiding, 11
interface, 27-28
Java

advantages of, 23
resources, 605

machine language, 9
message passing, 13
method calls, 13
methodologies, 186

modeling languages, 186
modular, 9-10

modules compared to
objects, 18

monomorphic languages, 126
object references, 15
object-enabled languages, 67
object-oriented, 8
objects and, 11
OOP, overview, 10-17
polymorphic languages, 126
polymorphism, 18
procedural, 18
procedural languages, 9
typed languages, polymor-

phism and, 143
vision/objective statements,

365
programming by difference,

90-91
programs, running, 575-576
protected access, 29
protocols, inheritance, 88
prototyping, OOA (Object

Oriented Analysis), 225-226
proxies, 259
Proxy design pattern, 257-259

publish/subscribe event ser-
vices, 257-258

when to use, 259-260
PsychiatristDriver example

code, 165
public access, 29
public interfaces, 29

implementation hiding, 48
keywords, 29-30

public keyword, 578

R

random action tests, 334
random numbers, generating,

61
Rank class code example

Typesafe Enum design pat-
tern, 292-293

Rank.java, 382
recursion, threading and, 503

recursive attributes, 88-89
recursive methods, 88-89
refactoring, 97
refactoring blackjack card

game for reuse, 498-504
references, 15
regression testing, 335
relationships

objects, 17
UML, 598

relationships (classes), 191
resources, 603, 606
RewardsAccount class example

code, 167
roles, UML, 598
root classes, 93
running programs, 575-576

S

SafePlayer class
adding to GUI, 486-487
creating, 486

SavingsAccount class code
example, 116-117

SavingsAccountTest class code
example, 336

SavingsAccountTest class code
example (anonymous), 339

SavingsAccountTest class code
example (JUnit), 339

withdrawFunds () method
test, 340-341

scenarios (use case analysis),
215

SDK, 569
downloading, 570
environment configuration,

570-571
InstallShield and, 570
platforms supported, 569
tools, 571

javac, 571-572
SDK tools, Java, 572
second-class objects, 37
self transitions, state diagrams,

407
semicolons (;) in source code,

579

semicolons (;) in source code 695

38 0672321092 index 08/22/2001 2:49 PM Page 695

sequence diagrams
UML, 601
use case analysis, 220-221

set method, design issues, 155
setter accessor methods, 56-57
setters, classes, 589
setUp() method, adding non-

human players, 487
SimpleHelloWorld.java file, 579
simulations, uses for, 488
simulators, 346

blackjack.exe package,
635-641

Singleton design pattern,
283-284

constructors, 286
implementing, 284, 286
inheritance and, 287-288
when to use, 289

Smalltalk, resources, 605
SmartPlayer class, implement-

ing, 491
software

See also design issues
bugs, 330
designing, goals of, 329
exception handling, 351-352
testing

advanced, 342-350
creating unit tests,

337-338
during development,

335-350
importance of unit tests,

337
integration, 334
iterative design process

and, 330-333
JUnit, 338-342
limitations of, 330
regression, 335
system, 334-335
types of, 333
unit, 333-337

software development process-
es, 204

cost of fixing mistakes, 231
iterative process, 205

incremental approach,
205-207

iteration, 205
limitations of, 207

methodology, stages, 208
OOA (Object Oriented

Analysis), 208-209
activity diagrams,

222-223
collaboration diagrams,

221
combining use cases, 214
defining sequence of

events, 215-217
domain model, 223-225
identifying actors,

210-211
interaction diagrams,

219-220
listing use cases, 212-213
prototyping, 225-226
refined use cases, 214-215
sequence diagrams,

220-221
splitting use cases,

213-214
use case diagrams,

217-219
use case model, 209

system requirements, 208
waterfall process, 204-205

source code
See also code
braces ({ }), 579
semicolons (;), 579

specialization, 91-93
Stack class, inheritance

problem example, 120-121
problem example require-

ments, 121
solution code example,

121-122
state, 9

blackjack card game, creating
classes from, 409-410, 412

diagrams
blackjack card game,

406-407
dealer, 408-409
player, 407-408

variables and, 15
State class, blackjack card

game, 409-410, 412
statements, conditional, Java,

584-585

static keyword, 579
static variables, 582
stereotypes, 189

UML, 597
stress tests, 335
subclasses. See child classes
substitutability relationships,

94-95
Adapter design pattern,

253-254
design issues, 242
example code, 154-155
inclusion polymorphism, 131
polymorphic variables, 129
polymorphism, 127-128, 130,

142
subtypes, 96
Suit class code example,

Typesafe Enum design pat-
tern, 291

super keyword, 88, 113
support, Java, platforms and,

54
Swing library, 309
switch logic

conditionals, fixing, 171-176
polymorphism and, 169-171

system, OOA (Object Oriented
Analysis), 208

system requirements
activity diagrams, 222-223
analyzing, 209
collaboration diagrams, 221
combining use cases, 214
defining sequence of events,

215-217
domain model, 223-225
identifying actors, 210-211
interaction diagrams, 219-220
Java platform support, 54
listing use cases, 212-213
prototyping, 225-226
refined use cases, 214-215
sequence diagrams, 220-221
software development

processes, 209
splitting use cases, 213-214
use case diagrams, 217-219

system testing, 334-335

696 sequence diagrams

38 0672321092 index 08/22/2001 2:49 PM Page 696

T

test cases, 332
black box testing, 332
naming, 338
white box testing, 332-333

testing
blackjack card game, 395,

425
command line UI,

448-449
bugs, sources of, 331
classes, creating anonymous

classes, 339-340
design considerations, 349
during development, 335-350
fixtures, 341
frameworks, 337-338
importance of, 331
integration, 334
iterative software develop-

ment and, 330-333
limitations of, 330
manual validation and, 337
mock objects and, 345-346,

348-349, 444-445
reasons for, 330
regression, 335
resources, 606
system, 334-335
test cases, 332

black box, 332
white box, 332-333

types of, 333
unit, 333-337

advanced, 342-350
importance of, 337
JUnit, 338-342
writing, 337-338

third-party tools
compatibility, adapter objects,

256-257
libraries, upgrading, 278,

280-282
thread-safe objects, 70
threads, 500-504
tightly coupled code, implemen-

tation hiding, 40
TimeMaturityAccount class

code example, 117-118

transitions, state diagrams, 407
type. See data types
type substitution, 94-96
typed languages

polymorphic variables, 129
polymorphism and, 143

Typesafe Enum design pattern,
289-291

implementing, 291, 293-294
when to use, 294-295

U

UML (Unified Modeling
Language)

abstract classes, 596-597
aggregations, 599
attribute and method visibili-

ty, 596
class modeling, 198-199

advanced notation,
189-190

aggregation relationships,
194-195

association relationships,
193-194

composition relationships,
196

dependency relationships,
191-193

generalization relation-
ships, 197-198

notation, 188-189
relationships, 191
selecting notation,

190-191
classes, 595
collaboration diagrams, 600
composition, 600
dependency relationships, 598
documenting code, 187
generalization relationships,

600
interaction diagrams, 600
notes, 597
object associations, 598-599
object definition, 18
objects, 596
overview, 186-187

relationships, 598
sequence diagrams, 601
state diagrams, blackjack card

game, 406-407
stereotypes, 189, 597

underscores preceding vari-
ables, 582

Unified Modeling Language.
See UML

unit testing, 333-337
advanced, 342-350
importance, 337
JUnit, 338-342
writing, 337-338

updating
documentation, 354
interfaces, 40

decoupled UI design and,
307

upgrading third-party libraries,
Abstract Factory design pat-
tern, 278, 280-282

use case analysis, 209
activity diagrams, 222-223
blackjack card game

betting, 430-433
GUI, 450-452
rules, 400-404

collaboration diagrams, 221
combining use cases, 214
defining sequence of events,

215-217
diagrams, 217-219
identifying actors, 210-211
interaction diagrams, 219-220
listing use cases, 212-213
rationale for, 489
refined use cases, 214-215
sequence diagrams, 220-221
splitting use cases, 213-214
tips for writing, 217
user input and, 210

use cases
actors, 368

blackjack card game, 369
blackjack card game, 372-375

user interfaces, 305
blackjack card game

command line improve-
ments, 448-449

overview, 447-448

user interfaces 697

38 0672321092 index 08/22/2001 2:49 PM Page 697

blackjack.exe package,
635-641

blackjack.ui package,
649-650

design issues, 306
decoupling from system,

306-310
Model View Controller

(MVC) design pattern,
310-321

GUI
analysis, 449
BlackjackGUI, 454
CardView, 454-455
class diagram, 456
CRC card session,

454-455
design issues, 453-456
diagrams, 455
implementing, 457-465
mock ups, 452-453
OptionView, 454
OptionView diagram,

455-456
PlayerView, 454
PlayerView diagram, 455
use cases, 450-452

PAC design pattern
abstraction layer, 473-474
control design, 474
design approach, 470-471
design overview, 471-472
factory patterns, 474-475
implementing, 476-483
layers, 470
overview, 470
presentation layer,

472-473
when to use, 471

PAC design pattern overview,
470

SafePlayer class, adding,
486-487

Swing library, 309
users, roles of (use case analy-

sis), 211
utilities, creating .jar (Java

archive) files, 572-573,
576-577

V

variables
class, 68-69
CLASSPATH, 570
data types, 35-37
final, 582
instance, 68
internal, 10

composition, 80-81
implementation hiding, 48

Java, 581-582
JAVA_HOME, 570
naming conventions, 353
object state, 15
PATH, 570
polymorphic, 129
static, 582
underscores preceding, 582

VBettingPlayer class, imple-
menting, 478-479

VBlackjackDealer class, imple-
menting, 480-481

VCard class, implementing,
457, 476-477

VDeck class, implementing, 458
VHand class, implementing,

477
view layer (MVC), 313

implementing, 314-316
visability, 188
vision statements, 365
VisualBankAccount code exam-

ple, 307-309
void keyword, 579

W-Z

waterfall process, 204-205
Web sites

IBM Java development kit, 54
Java API documentation, 61
Java SDK, 54
JUnit, 338

white box testing, 332-333
whole/part relationships, 194

wrappers, 281
adapter object, 254

implementing, 254-256
when to use, 256-257

code example, 70-71
creating, 70
Java primitives, 67-68, 70

XML (Extensible Markup
Language), 279-280

document parsers, 280-282
Abstract Factory design

pattern and, 280

698 user interfaces

38 0672321092 index 08/22/2001 2:49 PM Page 698

	cover.pdf
	Dimitri
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_r19.pdf
	page_r20.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf
	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf
	page_145.pdf
	page_146.pdf
	page_147.pdf
	page_148.pdf
	page_149.pdf
	page_150.pdf
	page_151.pdf
	page_152.pdf
	page_153.pdf
	page_154.pdf
	page_155.pdf
	page_156.pdf
	page_157.pdf
	page_158.pdf
	page_159.pdf
	page_160.pdf
	page_161.pdf
	page_162.pdf
	page_163.pdf
	page_164.pdf
	page_165.pdf
	page_166.pdf
	page_167.pdf
	page_168.pdf
	page_169.pdf
	page_170.pdf
	page_171.pdf
	page_172.pdf
	page_173.pdf
	page_174.pdf
	page_175.pdf
	page_176.pdf
	page_177.pdf
	page_178.pdf
	page_179.pdf
	page_180.pdf
	page_181.pdf
	page_182.pdf
	page_183.pdf
	page_184.pdf
	page_185.pdf
	page_186.pdf
	page_187.pdf
	page_188.pdf
	page_189.pdf
	page_190.pdf
	page_191.pdf
	page_192.pdf
	page_193.pdf
	page_194.pdf
	page_195.pdf
	page_196.pdf
	page_197.pdf
	page_198.pdf
	page_199.pdf
	page_200.pdf
	page_201.pdf
	page_202.pdf
	page_203.pdf
	page_204.pdf
	page_205.pdf
	page_206.pdf
	page_207.pdf
	page_208.pdf
	page_209.pdf
	page_210.pdf
	page_211.pdf
	page_212.pdf
	page_213.pdf
	page_214.pdf
	page_215.pdf
	page_216.pdf
	page_217.pdf
	page_218.pdf
	page_219.pdf
	page_220.pdf
	page_221.pdf
	page_222.pdf
	page_223.pdf
	page_224.pdf
	page_225.pdf
	page_226.pdf
	page_227.pdf
	page_228.pdf
	page_229.pdf
	page_230.pdf
	page_231.pdf
	page_232.pdf
	page_233.pdf
	page_234.pdf
	page_235.pdf
	page_236.pdf
	page_237.pdf
	page_238.pdf
	page_239.pdf
	page_240.pdf
	page_241.pdf
	page_242.pdf
	page_243.pdf
	page_244.pdf
	page_245.pdf
	page_246.pdf
	page_247.pdf
	page_248.pdf
	page_249.pdf
	page_250.pdf
	page_251.pdf
	page_252.pdf
	page_253.pdf
	page_254.pdf
	page_255.pdf
	page_256.pdf
	page_257.pdf
	page_258.pdf
	page_259.pdf
	page_260.pdf
	page_261.pdf
	page_262.pdf
	page_263.pdf
	page_264.pdf
	page_265.pdf
	page_266.pdf
	page_267.pdf
	page_268.pdf
	page_269.pdf
	page_270.pdf
	page_271.pdf
	page_272.pdf
	page_273.pdf
	page_274.pdf
	page_275.pdf
	page_276.pdf
	page_277.pdf
	page_278.pdf
	page_279.pdf
	page_280.pdf
	page_281.pdf
	page_282.pdf
	page_283.pdf
	page_284.pdf
	page_285.pdf
	page_286.pdf
	page_287.pdf
	page_288.pdf
	page_289.pdf
	page_290.pdf
	page_291.pdf
	page_292.pdf
	page_293.pdf
	page_294.pdf
	page_295.pdf
	page_296.pdf
	page_297.pdf
	page_298.pdf
	page_299.pdf
	page_300.pdf
	page_301.pdf
	page_302.pdf
	page_303.pdf
	page_304.pdf
	page_305.pdf
	page_306.pdf
	page_307.pdf
	page_308.pdf
	page_309.pdf
	page_310.pdf
	page_311.pdf
	page_312.pdf
	page_313.pdf
	page_314.pdf
	page_315.pdf
	page_316.pdf
	page_317.pdf
	page_318.pdf
	page_319.pdf
	page_320.pdf
	page_321.pdf
	page_322.pdf
	page_323.pdf
	page_324.pdf
	page_325.pdf
	page_326.pdf
	page_327.pdf
	page_328.pdf
	page_329.pdf
	page_330.pdf
	page_331.pdf
	page_332.pdf
	page_333.pdf
	page_334.pdf
	page_335.pdf
	page_336.pdf
	page_337.pdf
	page_338.pdf
	page_339.pdf
	page_340.pdf
	page_341.pdf
	page_342.pdf
	page_343.pdf
	page_344.pdf
	page_345.pdf
	page_346.pdf
	page_347.pdf
	page_348.pdf
	page_349.pdf
	page_350.pdf
	page_351.pdf
	page_352.pdf
	page_353.pdf
	page_354.pdf
	page_355.pdf
	page_356.pdf
	page_357.pdf
	page_358.pdf
	page_359.pdf
	page_360.pdf
	page_361.pdf
	page_362.pdf
	page_363.pdf
	page_364.pdf
	page_365.pdf
	page_366.pdf
	page_367.pdf
	page_368.pdf
	page_369.pdf
	page_370.pdf
	page_371.pdf
	page_372.pdf
	page_373.pdf
	page_374.pdf
	page_375.pdf
	page_376.pdf
	page_377.pdf
	page_378.pdf
	page_379.pdf
	page_380.pdf
	page_381.pdf
	page_382.pdf
	page_383.pdf
	page_384.pdf
	page_385.pdf
	page_386.pdf
	page_387.pdf
	page_388.pdf
	page_389.pdf
	page_390.pdf
	page_391.pdf
	page_392.pdf
	page_393.pdf
	page_394.pdf
	page_395.pdf
	page_396.pdf
	page_397.pdf
	page_398.pdf
	page_399.pdf
	page_400.pdf
	page_401.pdf
	page_402.pdf
	page_403.pdf
	page_404.pdf
	page_405.pdf
	page_406.pdf
	page_407.pdf
	page_408.pdf
	page_409.pdf
	page_410.pdf
	page_411.pdf
	page_412.pdf
	page_413.pdf
	page_414.pdf
	page_415.pdf
	page_416.pdf
	page_417.pdf
	page_418.pdf
	page_419.pdf
	page_420.pdf
	page_421.pdf
	page_422.pdf
	page_423.pdf
	page_424.pdf
	page_425.pdf
	page_426.pdf
	page_427.pdf
	page_428.pdf
	page_429.pdf
	page_430.pdf
	page_431.pdf
	page_432.pdf
	page_433.pdf
	page_434.pdf
	page_435.pdf
	page_436.pdf
	page_437.pdf
	page_438.pdf
	page_439.pdf
	page_440.pdf
	page_441.pdf
	page_442.pdf
	page_443.pdf
	page_444.pdf
	page_445.pdf
	page_446.pdf
	page_447.pdf
	page_448.pdf
	page_449.pdf
	page_450.pdf
	page_451.pdf
	page_452.pdf
	page_453.pdf
	page_454.pdf
	page_455.pdf
	page_456.pdf
	page_457.pdf
	page_458.pdf
	page_459.pdf
	page_460.pdf
	page_461.pdf
	page_462.pdf
	page_463.pdf
	page_464.pdf
	page_465.pdf
	page_466.pdf
	page_467.pdf
	page_468.pdf
	page_469.pdf
	page_470.pdf
	page_471.pdf
	page_472.pdf
	page_473.pdf
	page_474.pdf
	page_475.pdf
	page_476.pdf
	page_477.pdf
	page_478.pdf
	page_479.pdf
	page_480.pdf
	page_481.pdf
	page_482.pdf
	page_483.pdf
	page_484.pdf
	page_485.pdf
	page_486.pdf
	page_487.pdf
	page_488.pdf
	page_489.pdf
	page_490.pdf
	page_491.pdf
	page_492.pdf
	page_493.pdf
	page_494.pdf
	page_495.pdf
	page_496.pdf
	page_497.pdf
	page_498.pdf
	page_499.pdf
	page_500.pdf
	page_501.pdf
	page_502.pdf
	page_503.pdf
	page_504.pdf
	page_505.pdf
	page_506.pdf
	page_507.pdf
	page_508.pdf
	page_509.pdf
	page_510.pdf
	page_511.pdf
	page_512.pdf
	page_513.pdf
	page_514.pdf
	page_515.pdf
	page_516.pdf
	page_517.pdf
	page_518.pdf
	page_519.pdf
	page_520.pdf
	page_521.pdf
	page_522.pdf
	page_523.pdf
	page_524.pdf
	page_525.pdf
	page_526.pdf
	page_527.pdf
	page_528.pdf
	page_529.pdf
	page_530.pdf
	page_531.pdf
	page_532.pdf
	page_533.pdf
	page_534.pdf
	page_535.pdf
	page_536.pdf
	page_537.pdf
	page_538.pdf
	page_539.pdf
	page_540.pdf
	page_541.pdf
	page_542.pdf
	page_543.pdf
	page_544.pdf
	page_545.pdf
	page_546.pdf
	page_547.pdf
	page_548.pdf
	page_549.pdf
	page_550.pdf
	page_551.pdf
	page_552.pdf
	page_553.pdf
	page_554.pdf
	page_555.pdf
	page_556.pdf
	page_557.pdf
	page_558.pdf
	page_559.pdf
	page_560.pdf
	page_561.pdf
	page_562.pdf
	page_563.pdf
	page_564.pdf
	page_565.pdf
	page_566.pdf
	page_567.pdf
	page_568.pdf
	page_569.pdf
	page_570.pdf
	page_571.pdf
	page_572.pdf
	page_573.pdf
	page_574.pdf
	page_575.pdf
	page_576.pdf
	page_577.pdf
	page_578.pdf
	page_579.pdf
	page_580.pdf
	page_581.pdf
	page_582.pdf
	page_583.pdf
	page_584.pdf
	page_585.pdf
	page_586.pdf
	page_587.pdf
	page_588.pdf
	page_589.pdf
	page_590.pdf
	page_591.pdf
	page_592.pdf
	page_593.pdf
	page_594.pdf
	page_595.pdf
	page_596.pdf
	page_597.pdf
	page_598.pdf
	page_599.pdf
	page_600.pdf
	page_601.pdf
	page_602.pdf
	page_603.pdf
	page_604.pdf
	page_605.pdf
	page_606.pdf
	page_607.pdf
	page_608.pdf
	page_609.pdf
	page_610.pdf
	page_611.pdf
	page_612.pdf
	page_613.pdf
	page_614.pdf
	page_615.pdf
	page_616.pdf
	page_617.pdf
	page_618.pdf
	page_619.pdf
	page_620.pdf
	page_621.pdf
	page_622.pdf
	page_623.pdf
	page_624.pdf
	page_625.pdf
	page_626.pdf
	page_627.pdf
	page_628.pdf
	page_629.pdf
	page_630.pdf
	page_631.pdf
	page_632.pdf
	page_633.pdf
	page_634.pdf
	page_635.pdf
	page_636.pdf
	page_637.pdf
	page_638.pdf
	page_639.pdf
	page_640.pdf
	page_641.pdf
	page_642.pdf
	page_643.pdf
	page_644.pdf
	page_645.pdf
	page_646.pdf
	page_647.pdf
	page_648.pdf
	page_649.pdf
	page_650.pdf
	page_651.pdf
	page_652.pdf
	page_653.pdf
	page_654.pdf
	page_655.pdf
	page_656.pdf
	page_657.pdf
	page_658.pdf
	page_659.pdf
	page_660.pdf
	page_661.pdf
	page_662.pdf
	page_663.pdf
	page_664.pdf
	page_665.pdf
	page_666.pdf
	page_667.pdf
	page_668.pdf
	page_669.pdf
	page_670.pdf
	page_671.pdf
	page_672.pdf
	page_673.pdf
	page_674.pdf
	page_675.pdf
	page_676.pdf
	page_677.pdf
	page_678.pdf
	page_679.pdf
	page_680.pdf
	page_681.pdf
	page_682.pdf
	page_683.pdf
	page_684.pdf
	page_685.pdf
	page_686.pdf
	page_687.pdf
	page_688.pdf
	page_689.pdf
	page_690.pdf
	page_691.pdf
	page_692.pdf
	page_693.pdf
	page_694.pdf
	page_695.pdf
	page_696.pdf
	page_697.pdf
	page_698.pdf

