

UML in Practice

The Art of Modeling Software Systems Demonstrated

through Worked Examples and Solutions

Pascal Roques

UML - Roques.book Page iii Friday, November 28, 2003 3:32 PM

UML - Roques.book Page ii Friday, November 28, 2003 3:32 PM

UML in Practice

UML - Roques.book Page i Friday, November 28, 2003 3:32 PM

UML - Roques.book Page ii Friday, November 28, 2003 3:32 PM

UML in Practice

The Art of Modeling Software Systems Demonstrated

through Worked Examples and Solutions

Pascal Roques

UML - Roques.book Page iii Friday, November 28, 2003 3:32 PM

Translation from the French language edition of: UML par la pratique by Pascal Roques

© 2001 Editions Eyrolles, Paris, France

Translation Copyright © 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate,

 Chichester, West Sussex PO19 8SQ, England

 Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright,

Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court

Road, London W1T 4LP, UK, without the permission in writing of the Publisher, with the exception of any material supplied

specifically for the purpose of being entered and executed on a computer system for exclusive use by the purchase of the

publication. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium,

Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243

770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on

the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert

assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in

electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-84831-6

Translated and Typeset by Cybertechnics Ltd, Sheffield

Printed and bound in Great Britain by Biddles Ltd, Kings Lynn

This book is printed on acid-free paper responsibly manufactured from sustainable forestry

in which at least two trees are planted for each one used for paper production.

UML - Roques.book Page iv Friday, November 28, 2003 3:32 PM

http://www.wileyeurope.com
http://www.wiley.com

v

“A is a good model of B if satisfactory answers can be given by A to questions predefined on
B.”

Douglas T. Ross

“The difference between theory and practice is that in theory, there is no difference between
theory and practice, but in practice, there is.”

Jan van de Sneptscheut

“Since ancient times, man has searched for a language, which is both universal and
synthetic. Their search led them to discover images, symbols that – by reducing them to the
essential – express the richest and most complex realities. The images, the symbols speak –
they have a language.”

O.M. Aïvanhov

UML - Roques.book Page v Friday, November 28, 2003 3:32 PM

vi

UML - Roques.book Page vi Friday, November 28, 2003 3:32 PM

Foreword ix
Introduction xi
Acknowledgements xv

PART 1 FUNCTIONAL VIEW 1

1 Case study: automatic teller machine 3
1.1 Step 1 – Identifying the actors of the ATM 5
1.2 Step 2 – Identifying use cases 8
1.3 Step 3 – Creating use case diagrams 10
1.4 Step 4 – Textual description of use cases 14
1.5 Step 5 – Graphical description of use cases 20
1.6 Step 6 – Organising the use cases 26

2 Complementary exercises 37
2.1 Step 1 – Business modelling 53
2.2 Step 2 – Defining system requirements 57

Appendix A: Glossary & tips 65

PART 2 STATIC VIEW 71

3 Case study: flight booking system 73
3.1 75
3.2 Step 2 – Modelling sentences 6, 7 and 10 77
3.3 Step 3 – Modelling sentences 8 and 9 82
3.4 Step 4 – Modelling sentences 3, 4 and 5 86
3.5 Step 5 – Adding attributes, constraints and qualifiers 89
3.6 Step 6 – Using analysis patterns 94
3.7 Step 7 – Structuring into packages 98
3.8 Step 8 – Generalisation and re-use 105

4 Complementary exercises 113

Appendix B: Glossary & tips 149

Contents 1

UML - Roques.book Page vii Friday, November 28, 2003 3:32 PM

Step 1– Modelling sentences 1 and 2

 Contentsviii

PART 3 DYNAMIC VIEW 157

5 Case study: coin-operated pay phone 159
5.1 Step 1 – Identifying the actors and use cases 161
5.2 Step 2 – Realising the system sequence diagram 164
5.3 Step 3 – Representing the dynamic context 166
5.4 Step 4 – In-depth description using a state diagram 168

6 Complementary exercises 185

Apendix C: Glossary & tips 207

PART 4 DESIGN 213

7 Case study: training request 215
7.1 Step 1 – Defining iterations 217
7.2 Step 2 – Defining the system architecture 219
7.3 Step 3 – Defining system operations (iteration 1) 224
7.4 Step 4 – Operation contracts (iteration 1) 225
7.5 Step 5 – Interaction diagrams (iteration 1) 228
7.6 Step 6 – Design class diagrams (iteration 1) 237
7.7 Step 7 – Defining the system operations (iteration 2) 245
7.8 Step 8 – Operation contracts (iteration 2) 247
7.9 Step 9 – Interaction diagrams (iteration 2) 250
7.10 Step 10 – Design class diagrams (iteration 2) 252
7.11 Step 11 – Back to architecture 253
7.12 Step 12 – Transition to Java code 254
7.13 Step 13 – Putting the application into action 262

8 Complementary exercises 267

Appendix D: Glossary & tips 283

Index 293

UML - Roques.book Page viii Friday, November 28, 2003 3:32 PM

The heart of the challenge in building software-intensive systems is complexity.
Computers are universal machines, and as David Eck examined in The Most
Complex Machine, software “machines” are the most complex things humans build.
Compounding this is the many degrees of freedom we as software developers
“enjoy” in building systems; there are so many algorithms, components, and ways
of connecting things. No wonder we both suffer and delight in the creative
opportunities of software development!

The essential weapons against this complexity are abstraction and
decomposition. And abstraction is a function of our languages. Our language
deeply influences our view. Choosing a spreadsheet language, dance, Java, or the
UML to describe a problem and solution shapes how we think about it.

Research indicates that approximately 50% of the cerebral cortex in primates
(including us) is involved in vision processing. Communicating and exploring with
visual languages plays to a major strength of our brains. Size, spatial relationships,
color contrasts, and so on are subconsciously processed with breathtaking speed,
conveying much–and fast.

These facts should not be lost sight of in the on-going debates of the value of
visual vs. textual programming languages. Textual code (e.g., Java source) is a very
low level of abstraction, and does not leverage the natural strength of the human
brain as an optimized system for visual analysis. My interest is not just to focus on
useful code manipulation-optimizing techniques, such as Extreme Programming
or IDEs with refactoring tools, but to find ways to understand and build software
using more human-oriented languages, iconic and visual. Make computers
understand languages our brains favor, not vice versa.

This is part of the vision of the UML. It isn't just about drawing sketches; it is a
vision of tackling complexity and increasing abstraction with better human-
oriented languages. Not an easy goal, but worthy. We can't achieve order-of-
magnitude improvements in productivity with the current levels of abstraction
offered by today's textual computer languages that are not substantively different
than FORTRAN-54.

I know that my friend Pascal Roques shares this vision. And Pascal is involved
in day-to-day software development. As such, he cares about the practical use of the
UML to add value–not simply as an academic toy. Pascal is an expert developer,

Foreword 1

UML - Roques.book Page ix Friday, November 28, 2003 3:32 PM

Forewordx

modeler, and a thoughtful and sensitive teacher. You can see this in his detailed
discussion of the trade-offs in different solutions to the problems–it is a great
educational contribution to see how a skilled modeler and designer sees
alternatives, and makes choices.

By using this excellent book of UML examples and practice, you will gain much
in understanding and becoming fluid in the UML. Enjoy!

Craig Larman

Bracebridge, Ontario

Dec 2003

www.craiglarman.com

UML - Roques.book Page x Friday, November 28, 2003 3:32 PM

Aims of the bookAims of the bookAims of the bookAims of the book

For several years now, there has been a constant increase in the number of works
on UML and object modelling. However, my practical experience of training (more
than a thousand or so people trained in OMT, then UML since 1993…) convinced
me that there is still another need that is not tended to by the multitude of books
available at the moment: a book of marked exercises. In fact, during the seminars
that I lead, I am devoting more and more time to discussion sessions with trainees
on the compared merits of such or such modelling solution. Furthermore, I am
firmly convinced that these interactive discussions on concrete topics have a far
more lasting impact for them than the theoretical presentation of the subtleties of
UML formalism!

This led me to form an extensive database of exercises, the majority of which
have been taken from current or past training courses offered by the company of
Valtech. I also drew my inspiration from core books, which have helped me to
further my own knowledge of this subject, in particular that of J. Rumbaugh on
OMT1 (one of the first to suggest giving exercises after each introductory chapter on
a topic) and the best seller of C. Larman2 on object-oriented analysis and design.

It is this educational material, based on hours of enriching discussions with
trainees from all backgrounds and abilities, that I would like to share with you
today. From their questions and suggestions, they compelled me to take into
account the most diverse points of view on the shared problem of modelling, as
well as improve my argumentation and sometimes to envisage new solutions, to
which I had not given any thought at all!

PrerequisitesPrerequisitesPrerequisitesPrerequisites

The reader is assumed to have mastered the core concepts of the object-oriented
approach (class, instance, encapsulation, inheritance, polymorphism), having had,
for example, practical experience of an object-oriented programming language,
such as C++ or Java.

1. Object-Oriented Modeling and Design, J. Rumbaugh et al., Prentice Hall, 1991.

2. Applying UML and Patterns, C. Larman, Prentice Hall, 1997.

Introduction 1

UML - Roques.book Page xi Friday, November 28, 2003 3:32 PM

Introductionxii

For a complete overview of UML formalism, the reader will be able to refer to
comprehensive manuals, such as:

• The Unified Modeling Language User Guide, G. Booch, Addison-Wesley, 1999;

• The Unified Modeling Language Reference Manual, J. Rumbaugh, Addison-Wesley,

1999;

• UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition),

M. Fowler, K. Scott, Addison-Wesley, 2003.

Note that the latest version of the UML Specifications can be found on the OMG
web site (www.omg.org, or www.uml.org).

Layout of the bookLayout of the bookLayout of the bookLayout of the book

To avoid confusing matters, the book is divided into parts in accordance with the
three views of modelling: functional, static and dynamic, whilst emphasising for
each the dominating UML diagram or diagrams (those which are not in
parentheses on the next figure).

In order to make a second differentiation – this time between the levels of
abstraction – a distinction has been made between:

• an “analysis” level comprising the functional view, as well as a subset of static
and dynamic views, excluding the component, deployment and collaboration
diagrams;

• a “design” view, which places emphasis on collaboration diagrams and the
design detail of class diagrams, and which also introduces component and
deployment diagrams.

��������������

�	��
������	��
�����

���������������
���
���
����������
����	�������������

���������	

���

�
�
���
�
��

�������������
������
���������

��������
��������
����������
���������

�
�
���������
���
���
����������
����	�������������

���������
�����������

UML - Roques.book Page xii Friday, November 28, 2003 3:32 PM

Introduction xiii

The first three parts of the book, therefore, each correspond to an analytical view of
modelling, and the fourth part to design.

For each part, one main, specific case study acts as the first chapter.
Complementary exercises can be found in the subsequent chapter.

A condensed table of contents is given below.

Typographical conventionsTypographical conventionsTypographical conventionsTypographical conventions

In order to clarify matters somewhat whilst reading this book, the exercises and
solutions are given prominence through the use of different character fonts and
graphical symbols. Examples of these are given below:

Part 1 Functional view

Chapter 1: Case study: ATM

Chapter 2: Complementary exercises

Appendix A: Glossary & tips

Part 2 Static view

Chapter 3: Case study: flight booking system

Chapter 4: Complementary exercises

Appendix B: Glossary & tips

Part 3 Dynamic view

Chapter 5: Case study: pay phone

Chapter 6: Complementary exercises

Appendix C: Glossary & tips

Part 4 Design

Chapter 7: Case study: training request

Chapter 8: Complementary exercises

Appendix D: Glossary & tips

UML - Roques.book Page xiii Friday, November 28, 2003 3:32 PM

Introductionxiv

Case study 1 – Problem statementCase study 1 – Problem statementCase study 1 – Problem statementCase study 1 – Problem statement

This case study concerns a simplified system of the automatic teller machine
(ATM). The ATM offers the following services:
…

** 1.1 Identify the main actors of the ATM.

Answer 1.1Answer 1.1Answer 1.1Answer 1.1

What are the external entities that interact directly with the ATM?
…

In order to guide the reader a little more, the level of difficulty of the questions is
evaluated by assigning it between one and four stars:

* : easy question,

** : question of medium difficulty,

*** : fairly difficult question that involves some advanced concepts of UML,

**** : difficult question that requires complex argumentation.

Occasionally, in order to break up the monotony of the text, I have also used the
following symbol to set apart a comment concerning a question of advanced level:

Graphical representations of an actorGraphical representations of an actorGraphical representations of an actorGraphical representations of an actor

The standard graphical representation of the actor in UML is the icon called stick

man, with the name of the actor below the drawing. It is also possible to show an
actor as a class rectangle, with the <<actor>> keyword. A third representation
(halfway between the first two) is also possible, as indicated below:
…

UML - Roques.book Page xiv Friday, November 28, 2003 3:32 PM

This book would not have been able to see the light of day without agreement from
the management of Valtech, who allowed me to utilise the material accumulated in
the various training courses on UML which I have presented.

I am therefore eager to give special thanks to all those who have participated
over the years in developing UML Valtech course support, such as Pierre
Chouvalidzé, Thibault Cuvillier, Michel Ezran, Patrick Le Go, Franck Vallée,
Philippe Riaux, Philippe Dubosq, Yann Le Tanou, Françoise Caron, Christophe
Addinquy, etc., without forgetting our American colleagues, in particular, Craig
Larman, Ken Howard and Chris Jones.

I would also like to thank all those whose discussions, comments and
suggestions led me to improve my argumentation. First and foremost, I think of my
numerous trainees, as well as my correspondents during consultancy work on the
introduction of UML in various projects.

Thanks also to Éric Sulpice of Éditions Eyrolles for expressing renewed
confidence, and especially for knowing how to motivate me by suggesting that I
write this book of marked exercises.

Finally, a big thank you to Sylvie, who supported me for this English edition by
her loving encouragements.

Acknowledgements 1

UML - Roques.book Page xv Friday, November 28, 2003 3:32 PM

UML - Roques.book Page xvi Friday, November 28, 2003 3:32 PM

Part 1
Functional view 1

06_Part_01_Roques_NEW.fm Page 1 Friday, November 28, 2003 1:22 PM

Part 1: Functional view2

06_Part_01_Roques_NEW.fm Page 2 Friday, November 28, 2003 1:22 PM

1

Aims of the chapter

By means of the first case study, this chapter will allow us to illustrate the main
difficulties step by step, which are connected to implementing the technique of use
cases.

Once we have identified the actors that interact with the system, we will develop
our first UML model at a system level, in order to be able to establish precisely the
boundaries of the system.

We will then learn how to identify use cases, and how to construct use case
diagrams linking actors and use cases. Then we will see how to specify the
functional view by explaining in detail the different ways in which actors can use
the system. For this goal, we will learn to write textual descriptions as well as to
draw complementary UML diagrams (such as sequence or activity diagrams).

Elements involved

• Actor

• Static context diagram

• Use case

• Use case diagram

• Primary actor, secondary actor

• Textual description of a use case

• Scenario, sequence

• System sequence diagram

• Activity diagram

Case study: automatic
teller machine 1

07_Chapter_01_Roques_NEW.fm Page 3 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine4

Case study 1 – Problem statementCase study 1 – Problem statementCase study 1 – Problem statementCase study 1 – Problem statement

This case study concerns a simplified system of the automatic teller machine
(ATM). The ATM offers the following services:

1. Distribution of money to every holder of a smartcard via a card reader and a
cash dispenser.

2. Consultation of account balance, cash and cheque deposit facilities for bank
customers who hold a smartcard from their bank.

Do not forget either that:

3. All transactions are made secure.

4. It is sometimes necessary to refill the dispenser, etc.

From these four sentences, we will work through the following activities:

• Identify the actors,

• Identify the use cases,

• Construct a use case diagram,

• Write a textual description of the use cases,

• Complete the descriptions with dynamic diagrams,

• Organise and structure the use cases.

Watch out: the preceding problem statement is deliberately incomplete and
imprecise, just as it is in real projects!

Note also that the problem and its solution are based on French banking systems
and the use of smartcards: the system you actually use in your country may be
significantly different! It is not very important. What is important is the way of
thinking to solve this functional problem as well as the UML concepts and
diagrams that we use.

• Inclusion, extension and generalisation of use cases

• Packaging use cases.

07_Chapter_01_Roques_NEW.fm Page 4 Friday, November 28, 2003 1:21 PM

1.1 Step 1 – Identifying the actors of the ATM 5

1.1 Step 1 – Identifying the actors of the ATM

First, we will identify the actors of the ATM system.
An actor is a construct employed in use cases that define a role that a user or any

other system plays when interacting with the system under consideration. It is a
type of entity that interacts, but which is itself external to the subject. Actors may
represent human users, external hardware, or other subjects. An actor does not
necessarily represent a specific physical entity. For instance, a single physical entity
may play the role of several different actors and, conversely, a given actor may be
played by multiple physical entities.

3

** 1.1 Identify the main actors of the ATM.

Answer 1.1Answer 1.1Answer 1.1Answer 1.1

What are the external entities that interact directly with the ATM?
Let’s look at each of the sentences of the exposition in turn.
Sentence 1 allows us to identify an obvious initial actor straight away: every

“holder of a smartcard”. He or she will be able to use the ATM to withdraw money
using his or her smartcard.

However, be careful: the card reader and cash dispenser constitute part of the
ATM. They can therefore not be considered as actors! You can note down that the
identification of actors requires the boundary between the system being studied
and its environment to be set out exactly. If we restrict the study to the control/
command system of physical elements of the ATM, the card reader and cash
dispenser then become actors.

Another trap: is the smartcard itself an actor? The card is certainly external to the
ATM, and it interacts with it... Yet, we do not recommend that you list it as an actor,
as we are putting into practice the following principle: eliminate “physical” actors
as much as possible to the advantage of “logical” actors. The actor is the who or
what that benefits from using the system. It is the card holder who withdraws
money to spend it, not the card itself!

Sentence 2 identifies additional services that are only offered to bank customers
who hold a smartcard from this bank. This is therefore a different profile from the
previous one, which we will realise by a second actor called Bank customer.

Sentence 3 encourages us to take into account the fact that all transactions are
made secure. But who makes them secure? There are therefore other external
entities, which play the role of authorisation system and with which the ATM

3. From the OMG document: “Unified Modeling Language: Superstructure (version 2.0)”.

07_Chapter_01_Roques_NEW.fm Page 5 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine6

communicates directly. An interview with the domain expert4 is necessary to allow
us to identify two different actors:

• the Visa authorisation system (VISA AS) for withdrawal transactions carried out
using a Visa smartcard (we restrict the ATM to Visa smartcards for reasons of
simplification);

• the information system of the bank (Bank IS) to authorise all transactions
carried out by a customer using his or her bank smartcard, but also to access the
account balance.

Finally, sentence 4 reminds us that an ATM also requires maintenance work, such
as refilling the dispenser with bank notes, retrieving cards that have been
swallowed, etc. These maintenance tasks are carried out by a new actor, which – to
simplify matters – we will call Maintenance operator.

Graphical representations of an actorGraphical representations of an actorGraphical representations of an actorGraphical representations of an actor

The standard graphical representation of the actor in UML is the icon called stick

man with the name of the actor below the drawing. It is also possible to show an
actor as a class rectangle with the <<actor>> keyword. A third representation
(halfway between the first two) is also possible, as indicated below.

A good piece of advice consists in using the graphical form of the stick man for
human actors and that of the first rectangular representation for connected
systems.

4. Remember that the domain refers to French banking systems, which may explain differences with
your own knowledge and experience.

Figure 1.1 Possible graphical representations of an actor

���������
��	
��

�������

�	
�����
��������

�����

��	������
�������

��	
��

07_Chapter_01_Roques_NEW.fm Page 6 Friday, November 28, 2003 1:21 PM

1.1 Step 1 – Identifying the actors of the ATM 7

Rather than simply depicting the list of actors as in the previous figure, which does
not provide any additional information with regard to a textual list, we can draw a
diagram that we will call static context diagram. To do this, simply use a class
diagram in which each actor is linked to a central class representing the system by
an association, which enables the number of instances of actors connected to the
system at a given time to be specified.

Even though this is not a traditional UML diagram, we have found this kind of
“context diagram” very useful in our practical experience.

** 1.2 Map out the static context diagram of the ATM.

Answer 1.2Answer 1.2Answer 1.2Answer 1.2

The ATM is fundamentally a single user system: at any moment, there is only one
instance of each actor (at the most) connected to the system.

We should really add a graphical note to indicate that the human actors, Bank
customer and CardHolder are, furthermore, mutually exclusive, which is not implicit
according to the multiplicities of the associations.

Another solution, which is a little more developed, consists in considering Bank
customer as a specialisation of CardHolder, as illustrated in the following figure. The
aforementioned problem of exclusivity is therefore solved by adding an extra detail
to the diagram.

Figure 1.2 Static context diagram of the ATM

����������

���	��	�	��
��������

�����
�	
�� ���������
������

���������
��	
��

���	�

��	

��������

��	
��
�
	�

���

07_Chapter_01_Roques_NEW.fm Page 7 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine8

1.2 Step 2 – Identifying use cases

We are now going to identify the use cases.
A use case represents the specification of a sequence of actions, including

variants, that a system can perform, interacting with actors of the system.5

A use case models a service offered by the system. It expresses the actor/system
interactions and yields an observable result of value to an actor.

For each actor identified previously, it is advisable to search for the different
business goals, according to which is using the system.

** 1.3 Prepare a preliminary list of use cases of the ATM, in order of actor.

Answer 1.3Answer 1.3Answer 1.3Answer 1.3

Let’s take the five actors one by one and list the different ways in which they can
use the ATM:
CardHolder:

• Withdraw money.

Figure 1.3 A more developed version of the static context diagram of the ATM

5. From the OMG document: “Unified Modeling Language: Superstructure (version 2.0)”.

���������
�	
���

����������

�������
�����

��	��������
��������

���������
������

���

07_Chapter_01_Roques_NEW.fm Page 8 Friday, November 28, 2003 1:21 PM

1.2 Step 2 – Identifying use cases 9

Bank customer:

• Withdraw money (something not to forget!).

• Consult the balance of one or more accounts.

• Deposit cash.

• Deposit cheques.

Maintenance operator:

• Refill dispenser.

• Retrieve cards that have been swallowed.

• Retrieve cheques that have been deposited.

Visa authorisation system (AS):

• None.

Bank information system (IS):

• None.

Primary or secondary actorPrimary or secondary actorPrimary or secondary actorPrimary or secondary actor

Contrary to what we might believe, all actors do not necessarily use the system! We
call the one for whom the use case produces an observable result the primary actor.
In contrast, secondary actors constitute the other participants of the use case.6

Secondary actors are requested for additional information; they can only consult or
inform the system when the use case is being executed.

This is exactly the case of the two “non-human” actors in our example: the Visa
AS and the Bank IS are only requested by the ATM within the context of realising
certain use cases. However, they themselves do not have their own way of using the
ATM.

6. In his excellent book, Writing Effective Use Cases (Addison-Wesley, 2001), A. Cockburn defines
similarly supporting actors: “A supporting actor in a use case is an external actor that provides a
service to the system under design.”

07_Chapter_01_Roques_NEW.fm Page 9 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine10

1.3 Step 3 – Creating use case diagrams

We are now going to give concrete expression to our identification of use cases by
realising UML diagrams, aptly called use case diagrams. A use case diagram shows
the relationships among actors and the subject (system), and use cases.

We can easily obtain a preliminary diagram by copying out the previous answer
on a diagram that shows the use cases (ellipses) inside the ATM system (box) and
linked by associations (lines) to their primary actors (the “stick man” icon).

*** 1.4 Propose another, more sophisticated version of this preliminary use case
diagram.

Answer 1.4Answer 1.4Answer 1.4Answer 1.4

The Withdraw money use case has two possible primary actors (but they cannot be
simultaneous). Another way to express this notion is to consider the Bank customer
actor as a specialisation (in the sense of the inheritance relationship) of the more
general CardHolder actor. A bank customer is actually a particular card holder who
has all the privileges of the latter, as well as others that are specific to him or her as
a customer.

Figure 1.4 Preliminary use case diagram of the ATM

����������

��	��

����
��
�����

���	�
��������

��	��������
��������

�����
�	
��

��������

���

�	������������

���
�����������

 ���
	����
�

 ���
	�����!��

"�#	����	
���
��

"���	�$������
��������$�
�����
��������

"���	�$�����!��
��������$�
���������
	���

07_Chapter_01_Roques_NEW.fm Page 10 Friday, November 28, 2003 1:21 PM

1.3 Step 3 – Creating use case diagrams 11

UML enables the depiction of a generalisation/specialisation relationship
between actors, as indicated on the diagram below.

However, the significance of this generalisation relationship is not evident in our
example. Certainly, it enables the association between the Bank customer actor and
the Withdraw money use case to be removed, which is now inherited from the
CardHolder actor, but on the other hand, it adds the symbol for generalisation
between the two actors... Moreover, we will see in the following paragraph that the
requested secondary actors are not the same in the case of the CardHolder and in
that of the bank customer.

We will therefore not use this solution and, to reinforce this choice, we will
rename the primary actor Visa CardHolder, to clarify matters a little more.

We now have to add the secondary actors in order to complete the use case
diagram. To do this, we will simply make these actors appear with additional
associations towards the existing use case.

Figure 1.5 A more sophisticated version of the preliminary use case diagram

����������

����
��
�����

�������
��	
��

�	������������

���
�����������

 ���
	����
�

 ���
	�����!��

"�#	����	
���
��

"���	�$������
��������$�
�����
��������

"���	�$�����!��
��������$�
���������
	���

��	��������
��������

���

07_Chapter_01_Roques_NEW.fm Page 11 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine12

Graphical precisions on the use case diagramGraphical precisions on the use case diagramGraphical precisions on the use case diagramGraphical precisions on the use case diagram

As far as we are concerned, we recommend that you adopt the following
conventions in order to improve the informative content of these diagrams:

• by default, the role of an actor is “primary”; if this is not the case, indicate
explicitly that the role is “secondary” on the association to the side of the actor;

• as far as possible, place the primary actors to the left of the use cases and the
secondary actors to the right.

** 1.5 Complete the preliminary use case diagram by adding the secondary actors.
To simplify matters, leave out the maintenance operator for the time being.

Answer 1.5Answer 1.5Answer 1.5Answer 1.5

For all use cases appropriate for the bank customer, you must explicitly bring in
Bank IS as a secondary actor.

But a problem arises for the shared use case, Withdraw money. Indeed, if the
primary actor is a Visa card holder, the Visa AS must be called on (which will then
be responsible for contacting the IS of the holder’s bank); whereas the ATM will
contact the Bank IS directly if it concerns a bank customer.7

One solution consists in adding an association with each of the two non-human
actors. This simplistic modelling does not make it clear to the reader of the diagram
that the actors are selectively participating two by two and not all together.

7. Remember that the domain refers to French banking systems, which may explain differences with
your knowledge and experience.

07_Chapter_01_Roques_NEW.fm Page 12 Friday, November 28, 2003 1:21 PM

1.3 Step 3 – Creating use case diagrams 13

Another solution would be to distinguish two use cases for the withdrawal of
money: Withdraw money using a Visa card and Withdraw money using a bank card. This
more precise, yet more cumbersome, modelling is easier for the reader of the
diagram to grasp. Furthermore, it clearly tells against the use of generalisation
between actors, which was mentioned beforehand. Indeed, the distinction between
the two use cases is contradictory with the attempt at inheritance of the unique
Withdraw money case, which had been viewed more highly, while the secondary
actors had not yet been added. We will keep this second solution for the follow-up
to the exercise.

Figure 1.6 Simple version of the completed use case diagram

Figure 1.7 Fragment of the more precise version of the completed use case diagram

�	
�
����������

����
��
�����

 ���
	�����!��

���������
������

���������
�	
���

�	������������

���
�����������

 ���
	����
�

����

��������

��������

��������

��������

��������

�	
������������

�������
�����

�	��������������
	�%��
�	
������

�	��������������
	�%��
���������

��������

��������

���������
�	
���

���������
������

07_Chapter_01_Roques_NEW.fm Page 13 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine14

We will note that the Bank IS is not a direct actor of the Withdraw money using a Visa
card use case, as we are considering that the Visa AS is taking upon itself to contact
it, outside of reach of the ATM system. Obviously, if the bank issue money to a Visa
customer, they need to claim this money back from Visa. We assume this is out of
scope.

1.4 Step 4 – Textual description of use cases

Once the use cases have been identified, you then have to describe them!
In order to explain the dynamics of a use case in detail, the most obvious way of

going about it involves textually compiling a list of all the interactions between the
actors and the system. The use case must have a clearly identifiable beginning and
end. The possible variants must also be specified, such as the main success scenario,
alternative sequences, error sequences, whilst simultaneously trying to arrange the
descriptions in a sequential order in order to improve their readability.

Scenarios and use casesScenarios and use casesScenarios and use casesScenarios and use cases

We call each unit of description of action sequences a sequence. A scenario

represents a particular succession of sequences, which is run from beginning to end
of the use case. A scenario may be used to illustrate an interaction or the execution
of a use case instance.8

Figure 1.8 Representation of the scenarios of a use case

8. From the OMG document: “Unified Modeling Language: Superstructure (version 2.0)”.

���
��
��

��������� �����

�����
���

07_Chapter_01_Roques_NEW.fm Page 14 Friday, November 28, 2003 1:21 PM

1.4 Step 4 – Textual description of use cases 15

The textual description record of a use case is not standardised by UML.9 For our
part, we recommend the following structuring:

Identification summary (mandatory)

• includes title, summary, creation and modification dates, version, person in
charge, actors...

Flow of events (mandatory)

• describes the main success scenario,10 the alternative and error sequences,11 as
well as the preconditions and the postconditions.

UI requirements (optional)

• possibly adds graphical user interface constraints (required look and feel).
Screen copies, indeed a disposable model, are greatly appreciated.

Non-functional constraints (optional)

• may possibly add the following information: frequency, availability, accuracy,
integrity, confidentiality, performance, concurrency, etc.

** 1.6 Describe the mandatory part of the withdraw money using a visa card use case.

Answer 1.6Answer 1.6Answer 1.6Answer 1.6

Identification summary

Title: Withdraw money using a Visa card

Summary: this use case allows a Visa card holder, who is not a customer of the
bank, to withdraw money if his or her daily limit allows it.

9. You can find use case templates on the Web, for instance on www.usecases.org.

10. The main success scenario is also known as “basic flow of events” or “normal path”.

11. The distinction we make is that with an alternative scenario, the primary actor achieves his or her
goal, even though with an error one, the actor’s goal is not achieved and the use case fails.

07_Chapter_01_Roques_NEW.fm Page 15 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine16

Actors: Visa CardHolder (primary), Visa AS (secondary).

Creation date: 02/03/02 Date of update: 08/19/03

Version: 2.2 Person in charge: Pascal Roques

Flow of events

Preconditions:

• The ATM cash box is well stocked.

• There is no card in the reader.

Main success scenario:

 1. The Visa CardHolder inserts his or her smartcard in the ATM’s card reader.

 2. The ATM verifies that the card that has been inserted is indeed a smartcard.

 3. The ATM asks the Visa CardHolder to enter his or her pin number.

 4. The Visa CardHolder enters his or her pin number.

 5. The ATM compares the pin number with the one that is encoded on the chip of
the smartcard.12

 6. The ATM requests an authorisation from the VISA authorisation system.

 7. The VISA authorisation system confirms its agreement and indicates the daily
withdrawal limit.

 8. The ATM asks the Visa CardHolder to enter the desired withdrawal amount.

 9. The Visa CardHolder enters the desired withdrawal amount.

10. The ATM checks the desired amount against the daily withdrawal limit.

11. The ATM asks the Visa CardHolder if he or she would like a receipt.

12. The Visa CardHolder requests a receipt.

13. The ATM returns the card to the Visa CardHolder.

14. The Visa CardHolder takes his or her card.

15. The ATM issues the banknotes and a receipt.

16. The Visa CardHolder takes the banknotes and the receipt.

12. Remember that the use case assumes smartcards, which contain the PIN, contrarily to “ordinary”
cards with a magnetic stripe on the back as in North America.

07_Chapter_01_Roques_NEW.fm Page 16 Friday, November 28, 2003 1:21 PM

1.4 Step 4 – Textual description of use cases 17

Another possible presentation13 consists in separating the actions of the actors and
those of the system into two columns as follows:

“Alternative” sequences:

A1: temporarily incorrect pin number
The A1 sequence starts at point 5 of the main success scenario.

6. The ATM informs the CardHolder that the pin is incorrect for the first or second
time.

7. The ATM records the failure on the smartcard.

13. This presentation option was recommended by C. Larman in the first version of his book: Applying
UML and Patterns, Prentice Hall, 1997.

1. The Visa CardHolder inserts his or her
card in the ATM’s card reader.

2. The ATM verifies that the card that has
been inserted is indeed a Visa card.

3. The ATM asks the Visa CardHolder to
enter his or her pin number.

4. The Visa CardHolder enters his or her
pin number.

5. The ATM compares the pin number
with the one that is encoded on the
chip of the card.

6. The ATM requests an authorisation
from the VISA authorisation system.

7. The VISA authorisation system
confirms its agreement and indicates
the daily balance.

8. The ATM asks the Visa CardHolder to
enter the desired withdrawal amount.

9. The Visa CardHolder enters the
desired withdrawal amount.

10. The ATM checks the desired amount
against the daily balance.

11. The ATM asks the Visa CardHolder if he
or she would like a receipt.

12. The Visa CardHolder requests a
receipt.

13. The ATM returns the card to the Visa
CardHolder.

14. The Visa CardHolder takes his or her
card.

15. The ATM issues the notes and a receipt.

16. The Visa CardHolder takes the notes
and the receipt.

07_Chapter_01_Roques_NEW.fm Page 17 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine18

The scenario goes back to point 3.

A2: the amount requested is greater than the daily withdrawal limit
The A2 sequence starts at point 10 of the main success scenario.

11. The ATM informs the CardHolder that the amount requested is greater than the
daily withdrawal limit.

The scenario goes back to point 8.

A3: the Visa CardHolder does not want a receipt
The A3 sequence starts at point 11 of the main success scenario.

12. The Visa CardHolder declines the offer of a receipt.

13. The ATM returns the smartcard to the Visa CardHolder.

14. The Visa CardHolder takes his or her smartcard.

15. The ATM issues the banknotes.

16. The Visa CardHolder takes the banknotes.

Error sequences:

E1: invalid card
The E1 sequence starts at point 2 of the main success scenario.

3. The ATM informs the Visa CardHolder that the smartcard is not valid
(unreadable, expired, etc.) and confiscates it; the use case fails.

E2: conclusively incorrect pin number
The E2 sequence starts at point 5 of the main success scenario.

6. The ATM informs the Visa CardHolder that the pin is incorrect for the third
time.

7. The ATM confiscates the smartcard.

8. The VISA authorisation system is notified; the use case fails.

E3: unauthorised withdrawal
The E3 sequence starts at point 6 of the main success scenario.

7. The VISA authorisation system forbids any withdrawal.

8. The ATM ejects the smartcard; the use case fails.

E4: the card is not taken back by the holder
The E4 sequence starts at point 13 of the main success scenario.

14. After 15 seconds, the ATM confiscates the smartcard.

07_Chapter_01_Roques_NEW.fm Page 18 Friday, November 28, 2003 1:21 PM

1.4 Step 4 – Textual description of use cases 19

15. The VISA authorisation system is notified; the use case fails.

E5: the banknotes are not taken by the holder
The E5 sequence starts at point 15 of the main success scenario.

16. After 30 seconds, the ATM takes back the banknotes.

17. The VISA authorisation system is informed; the use case fails

Postconditions:

• The cashbox of the ATM contains fewer notes than it did at the start of the use
case (the number of notes missing depends on the withdrawal amount).

* 1.7 Complete the description of the withdraw money using a visa card use case with
the two optional paragraphs. Assume for instance that the new system must
run on existing ATM hardware.

Answer 1.7Answer 1.7Answer 1.7Answer 1.7

UI requirements

The input/output mechanisms available to the Visa CardHolder must be:

• A smartcard reader.

• A numerical keyboard (to enter his or her pin number), with “enter”, “correct”
and “cancel” keys.

• A screen to display any messages from the ATM.

• Keys around the screen so that the card holder can select a withdrawal amount
from the amounts that are offered.

• A note dispenser.

• A receipt dispenser.

07_Chapter_01_Roques_NEW.fm Page 19 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine20

Non-functional constraints14

1.5 Step 5 – Graphical description of use cases

The textual description is essential for the documentation of use cases, as it alone
enables ease of communication with users, as well as agreeing on domain
terminology that is used.

However, the text also has its disadvantages as it difficult to show how the
sequences follow one another, or at what moment the secondary actors are
requested. Besides, keeping a record of changes often turns out to be rather
tiresome. It is therefore recommended to complete the textual description with one
or more dynamic UML diagrams.

Constraints Specifications

Response time The interface of the ATM must respond within a maximum time
limit of 2 seconds.

A nominal withdrawal transaction must take less than 2 minutes.

Concurrency Non applicable (single user).

Availability The ATM can be accessed 24/7.14

A lack of paper for the printing of receipts must not prevent the
card holder from being able to withdraw money.

Integrity The interfaces of the ATM must be extremely sturdy to avoid
vandalism.

Confidentiality The procedure of comparing the pin number that has been entered
on the keyboard of the ATM with that of the smartcard must have
a maximum failure rate of 10-6.

14. This non-functional requirement is here as an example, but should be removed in the end and put
at the system level as it applies to all use cases.

07_Chapter_01_Roques_NEW.fm Page 20 Friday, November 28, 2003 1:21 PM

1.5 Step 5 – Graphical description of use cases 21

Dynamic descriptions of a use caseDynamic descriptions of a use caseDynamic descriptions of a use caseDynamic descriptions of a use case

• For use cases, we recommend the activity diagram, as users find it far easier to
understand since it resembles a traditional diagram. However, the state diagram
may be useful for use cases that are very interactive.

• For certain scenarios, the sequence diagram works well. We recommend that you
present it by showing the primary actor on the left, then an object representing
the system in a black box, and finally, any secondary actors that may be
requested during the scenario on the right of the system. We will use the title
system sequence diagram as proposed by Larman.15

Figure 1.9 UML diagrams that we recommmend for completing the description of a use
case

15. Refer to Applying UML and Patterns (2nd Edition), Prentice-Hall, 2001.

����

&
�
��
�

�����	�

�������	

�����

���	$	�� ���	$	��

���	$	��

�	�������������

�����

07_Chapter_01_Roques_NEW.fm Page 21 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine22

* 1.8 Create a system sequence diagram that describes the main success scenario of
the Withdraw money using a Visa card use case.

Answer 1.8Answer 1.8Answer 1.8Answer 1.8

All you need to do is copy the interactions quoted in the textual scenario of answer
1.6 into a sequence diagram by following the graphical conventions listed above:

• the primary actor, Visa CardHolder, on the left,

Figure 1.10 System sequence diagram of the “Withdraw money using a Visa card” main
success scenario

�	
������������

	�
�����	
��
��������

��!��
���	��������

�	���������'$����(

��!��
����
	�����	���������������

�	����������������'$����(

��!��
������	��

�)����
��������

�����
��������

�)��������
�*�����	��

���������
�*�����	��

�+�

�������

��!��
��������	
��	��

������	
��	���'�	�	�(

���������
	�
�����

�	
���

�

�

07_Chapter_01_Roques_NEW.fm Page 22 Friday, November 28, 2003 1:21 PM

1.5 Step 5 – Graphical description of use cases 23

• an object representing the ATM system as a whole in the middle,

• the secondary actor, Visa AS, to the right of the ATM.

Unlike the previous sequence diagram that only describes the main success
scenario, the activity diagram can represent all the activities that are carried out by
the system, with all the conditional branches and all the possible loops.

The activity diagram is essentially a flowchart, showing flow of control from
activity to activity. The transitions are triggered at the end of activities or actions;
steps can be carried out in parallel or in sequence.

Activity state or action stateActivity state or action stateActivity state or action stateActivity state or action state

An activity state models the realisation of an activity that:

• is complex and can be broken down into activities or actions,

• can be interrupted by an event.

An action state models the realisation of an action that:

• is simple and cannot be broken down,

• is atomic, which cannot be interrupted.

*** 1.9 Construct an activity diagram that describes the dynamics of the withdraw
money using a visa card use case.

07_Chapter_01_Roques_NEW.fm Page 23 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine24

Answer 1.9Answer 1.9Answer 1.9Answer 1.9

Note that the activity diagram differs slightly from the text: it omits the step to ask
if a receipt is wanted, as we did not want to clutter the diagram. But the result of the
step is nonetheless taken into account by the guard condition labelled “receipt was
requested”.

Additions to the system sequence diagramAdditions to the system sequence diagramAdditions to the system sequence diagramAdditions to the system sequence diagram

A possibility that meets halfway consists in expanding the system sequence
diagram of the nominal scenario in order to introduce the following:

• the main internal activities of the system (by means of messages that it sends to
itself),

• references to “alternative” and error sequences (by means of notes).

Figure 1.11 Activity diagram of Withdraw money using a Visa card

,����-.�#�������/�����0����	��1
� ��

���	#������

,$��	������1

���	#������

 �
	
��
�	�	�

,����
����
����	�$��
�#����23
1

!
�����	�	� 4��	�������

����

��	
����	�	�

�����
����
	
��

"���
	
����
������

,����������	�	�1

5����
������

,�	�������������	
��1

,�	���������#�
��1

"�!��
���	
�
������	
��	��

��	
�
	���	�	�

,-.1

,	�$��	������1

,����-.�#�������2����	��1��

+���
���	������������

,��������
�����

�#����/6
1

5)��������
,��������7��	�	�1

,�����	
�����������1

����

5)���
����

,����
����������1

8�	��
����	��

,����	�����
���!��
���1

07_Chapter_01_Roques_NEW.fm Page 24 Friday, November 28, 2003 1:21 PM

TE
AM
 F
LY

1.5 Step 5 – Graphical description of use cases 25

This often results in a diagram that is less complex to read than an activity diagram,
as there are fewer symbols, but it nevertheless retains an informative content for the
specialist.

** 1.10 Expand the system sequence diagram that describes the nominal scenario of
the Withdraw money using a visa card use case.

Answer 1.10Answer 1.10Answer 1.10Answer 1.10

Figure 1.12 Expanded system sequence diagram of the Withdraw money using a Visa card
main success scenario

����
����������

�	��������������

����������	�	�����

��	�	�������������

��� !"
#��$���#��	��
���$������

����������������#��$���#������	�

#��$���#������	���������

���������������

%&

�'��������

��
������

�'����	�����(��������

��
��	�����(��������

���

����)*�����

��� +"
�	����������

����)*���	

����+��	�� ,"
�	����������	�	�����

�����������$��������	

���$��������	��������

�$��
�����	�����������

����,"
����	��������������
-��������$�	�����*������

����!"
����������)����

��� ."
��������	�����
�	

��� /"
	��������
	�����
�	

������

07_Chapter_01_Roques_NEW.fm Page 25 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine26

1.6 Step 6 – Organising the use cases

In this final stage, we will refine our diagrams and descriptions.
With UML, it is actually possible to detail and organise use cases in two different

and complementary ways:

• by adding include, extend and generalisation relationships between use cases;

• by grouping them into packages to define functional blocks of highest level.

First, let’s tackle the include relationship: a relationship from a base use case to an
inclusion use case, specifying how the behaviour for the base use case contains the
behaviour of the inclusion use case. The behaviour is included at the location
which is defined in the base use case. The base use case depends on performing the
behaviour of the inclusion use case, but not on its structure.16 We use this
relationship to avoid describing the same sequence several times by factorising the
shared behaviour in its own use case.

*** 1.11 identify a part that the different use cases have in common and factorise it in
a new case included in the former.

Answer 1.11Answer 1.11Answer 1.11Answer 1.11

If we examine the textual description of the Withdraw money using a Visa card use
case in detail, we notice that steps one to five of the main success scenario will also
perfectly apply to all use cases of the bank customer.

Furthermore, this main success sequence is completed by the A1 (temporarily
incorrect pin number), E1 (invalid card) and E2 (conclusively incorrect pin
number) alternative or error sequences.

We can therefore rightfully identify a new use case included in the previous ones
that we will call Authenticate, and which contains the sequences quoted above. This
will allow us to remove all these redundant textual descriptions from the other use
cases by concentrating better on their functional specificities.

In UML, this mandatory include relationship between use cases is shown by a
dashed arrow with an open arrowhead from the base use case to the included use
case. The arrow is labelled with the keyword <<include>>, as indicated on the
following diagram.

16. From the OMG document: “Unified Modeling Language: Superstructure (version 2.0)”.

07_Chapter_01_Roques_NEW.fm Page 26 Friday, November 28, 2003 1:21 PM

1.6 Step 6 – Organising the use cases 27

Note that this solution assumes that the ATM users have to re-authenticate
themselves for each kind of transaction. If that is not what we require, we should
instead envisage the “Authenticate” use case as a precondition for all the others, but
not as an included use case.

Let’s continue our analysis with the extend: a relationship from an extension use
case to a base use case, specifying how the behaviour defined for the extension use
case augments (subject to conditions specified in the extension) the behaviour
defined for the base use case. The behaviour is inserted at the location defined by
the extension point in the base use case. The base use case does not depend on
performing the behaviour of the extension use case.17 Note that the extension use
case is optional unlike the included use case which is mandatory. We use this
relationship to separate an optional or rare behaviour from the mandatory
behaviour.

Figure 1.13 Include relationship between use cases

17. From the OMG document: “Unified Modeling Language: Superstructure (version 2.0)”.

��	���������	��

0��$���#���	�*����	-��
��	
�����

 �����
������
����

0��$���#���	�*����	-��
���������

 ������
����	
����
�

1����������$

#�������
����1��������$�����

���$�	������

���	�������

���	�������

���	�������

���	�������

���	�������

07_Chapter_01_Roques_NEW.fm Page 27 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine28

*** 1.12 By extrapolating on the initial requirements, identify an extend relationship
between two use cases of the bank customer.

Answer 1.12Answer 1.12Answer 1.12Answer 1.12

When re-examining the withdraw money issue, it did not take us long to notice that
the bank customer applies almost the same main success sequence as the Visa
CardHolder. However, as a customer, he or she also has access to the other use
cases: why not allow him or her to consult his or her balance just before he or she
selects the desired withdrawal amount? The customer could then change the
desired amount according to what is left in his or her account.

If we keep this new functional requirement, all we have to do to model it in UML
is add an optional extend relationship, as demonstrated on the following figure.

The two use cases can, of course, be executed independently, but Consult balance
can also be inserted within Withdraw money using a bank card, at the Verify amount
extension point. This extension point must be declared in the textual description,
for example, by modifying the nominal sequence, as we have done here:

…
7. The VISA authorisation system confirms its agreement and indicates the daily

withdrawal limit.

8. The ATM asks the Bank customer to enter the desired withdrawal amount.

 Extension point: Verify amount

9. The Bank customer enters the desired withdrawal amount.

Figure 1.14 Extend relationship between use cases

 2��	���	����	��"
���������������)*�����	�3����4

0��$���#���	�*����	-��
��	
�����

$%	���
����	
����
�

��	���������	��

���2��	���
�����)*�����	��

$%	���
��
��
�	

07_Chapter_01_Roques_NEW.fm Page 28 Friday, November 28, 2003 1:21 PM

1.6 Step 6 – Organising the use cases 29

10. The ATM checks the desired amount against the daily withdrawal limit.

…

Finally, let’s continue with the generalisation relationship: the child use cases inherit
the behaviour and meaning of their shared parent use case. Nevertheless, each can
include additional specific interactions, or modify the interactions that they have
inherited. We use this relationship to formalise any important variations on the
same use case.

*** 1.13 Identify a generalisation relationship that involves two use cases of the bank
customer.

Answer 1.13Answer 1.13Answer 1.13Answer 1.13

Let’s consider the following two use cases: Deposit cash and Deposit cheques.
They both involve the same actors: the Bank customer as the primary actor and

the Bank IS as the secondary actor. But in particular, they say the same thing: the
possibility offered to a bank customer to deposit money using the ATM. Whether
this transaction entails inserting the notes in a note reader, or simply depositing an
envelope containing one or more cheques is not important. The result will be
similar, that is to say, a credit line will be entered on the customer’s account.

Figure 1.15 Generalisation relationship between use cases

��	
���������

"�
�����������
&������	�'

1��������$�����

���$�	������

���	�������

1����������$

�������
��	
��

(����	���������
&���	���	'

���������
��	
��

1���������	�*

07_Chapter_01_Roques_NEW.fm Page 29 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine30

Yet, the details of the sequences will vary considerably: for example, cash deposits
require a device that will recognise the various notes, with interactions linked to
each time notes are inserted, possible errors (unrecognisable note, etc.) and the end
of the transaction. It is also likely that the system for the upkeep of accounts (which
belongs to the Bank IS) is informed of the deposit in real time in order to credit the
account. As for cheque deposits, though, these will involve a bank clerk carrying
out a manual verification well after the transaction has finished.

In order to formalise this functional unit, whilst simultaneously retaining the
possibility of describing the differences at sequence level, we use the generalisation
relationship. All you have to do is add a generalised use case called Deposit money.
This new case has the special feature of being abstract (which is shown by the
italics), as it cannot be directly instantiated, but instead, only through one of its two
specialised cases.

Notice also that the include relationship with the Authenticate use case is now
automatically shared by the children use cases.

So, what happens to our use case diagram with all these additions? It is now so
complex (compared to Figure 1.4) that it would be deceptive to think that it might
be readable in a single page, as the following diagram shows.

To improve our model, we will therefore organise the use cases and reassemble
them into coherent groups. To do this, we use the general-purpose mechanism for
grouping elements in UML, which is called package.

07_Chapter_01_Roques_NEW.fm Page 30 Friday, November 28, 2003 1:21 PM

1.6 Step 6 – Organising the use cases 31

** 1.14 Propose structuring the use cases of the ATM into packages. Once you have
done that, then develop one use case diagram for each package.

Figure 1.16 Complete use case diagram of the ATM

����
����������

0��$���#���	�*����	-������������

����	���*

����	���*

����	���*

����	���*

���������
������

0��$���#���	�*����	-
����	
�����

���������
��	
��

��	

��������

�����)*�����	��
���2��	���

��	���������	��
���	�������

���	�������

���	�������

���	�������

1��������$�����

��������	�
��

���$�	������

1����������$

���	��	�	��
��������

5�)���������	���

5���������������$���$�������	��#����#��

5���������$�������$���$�������	����������

07_Chapter_01_Roques_NEW.fm Page 31 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine32

Answer 1.14Answer 1.14Answer 1.14Answer 1.14

There are several possible strategies: proceed with grouping by actor, by functional
domain, etc. In our example, grouping use cases by primary actor is natural, as this
also allows the secondary actors to be distributed.

The inclusion use case, Authenticate, is placed in a separate package as a shared
support service, in order to distinguish it from the real functional cases which
include it. The dependency arrows between packages synthesise the relationship
between the contained use cases. The following diagram presents the proposed
structuring of the use cases by making the primary actor appear in front of each
package to remind us which actor is connected to which package.18 Note that the
use of double-headed filled arrows to connect packages to their primary actors is
not UML syntax, but here only to explain the packaging.

18. UML 2.0 has just added the concept of “package diagram”: A diagram that depicts how model
elements are organised into packages and the dependencies among them, including package
imports and package extensions. Figure 1.17 belongs to this kind of organisational diagram.

Figure 1.17 Structuring of the ATM use cases

����
����������

��	

��������

���	��	�	��
��������

�����#��$���#�

������������	������	�

���	��	�	��

)������������	����
��������

���������������

(�������

07_Chapter_01_Roques_NEW.fm Page 32 Friday, November 28, 2003 1:21 PM

1.6 Step 6 – Organising the use cases 33

We can now create a use case diagram for each of the three main packages.

Figure 1.18 Use case diagram of the Visa withdrawal package

Figure 1.19 Use case diagram of the Customer transactions package

����
����������

0��$���#���	�*����	-
�����������

����	���* ���������
������

���	�������

���$�	������
�����������������

��	

��������

0��$���#���	�*����	-
����	
�����

�����)*���������������	��

���2��	���

��	���������	��

����	���* ����	���*

����	���*

���������
��	
��

1����������$1��������$�����

��������	�
��

���	�������

���	������� ���	�������

���$�	������
�����������������

07_Chapter_01_Roques_NEW.fm Page 33 Friday, November 28, 2003 1:21 PM

1 Case study: automatic teller machine34

Note that Figure 1.19 is still complex, mainly because we chose to show graphically
the relationship between use cases. You must be aware that these UML constructs
are potentially dangerous in that the more complex syntax makes the diagram less
intuitively obvious to read. They can also lead to modelling errors, that is why
many practitioners tend to discourage using them. For instance, Rosenberg19

points out in his “Top 10 Use Case Modelling Errors”: Spend a month deciding
whether to use include or extend! And Cockburn20 explicitly warns: “if you spend
much time studying and worrying about the graphics and the relations, you are
expending energy in the wrong place. Put it instead into writing easy-to-read
prose.”

BibliographyBibliographyBibliographyBibliography

19. Applying Use Case Driven Object Modeling with UML: An Annotated e-Commerce Example,
D. Rosenberg, K. Scott, Addison-Wesley, 2001.

20. Writing Effective Use Cases, A. Cockburn, Addison-Wesley, 2001.

Figure 1.20 Use case diagram of the Maintenance package

[Adolph 02] Patterns for Effective Use Cases, S. Adolph, P. Bramble, Addison-
Wesley, 2002.

[Bittner 02] Use Case Modeling, K. Bittner, I. Spence, Addison-Wesley, 2002

[Booch 99] The Unified Modeling Language User Guide, G. Booch, Addison-
Wesley, 1999.

���	��	�	��
��������

5�)���������	���

5���������������$���$�������	��#����#��

5���������������$���$�������	����������

07_Chapter_01_Roques_NEW.fm Page 34 Friday, November 28, 2003 1:21 PM

1.6 Step 6 – Organising the use cases 35

[Cockburn 01] Writing Effective Use Cases, A. Cockburn, Addison-Wesley, 2001.

[Fowler 03] UML Distilled (3rd Edition), M. Fowler, K. Scott, Addison Wesley,
2003.

[Jacobson 99] The Unified Software Development Process, I. Jacobson et al., Addison
Wesley, 1999.

[Kulak 03] Use Cases: Requirements in Context (2nd Edition), D. Kulak, E.
Guiney, Addison-Wesley, 2003.

[Larman 01] Applying UML and Patterns, (2nd Edition): An Introduction to Object-
Oriented Analysis and Design, C. Larman, Prentice Hall, 2001.

[Rosenberg 99] Use Case Driven Object Modeling with UML, D. Rosenberg, Addison-
Wesley, 1999.

[Rosenberg 01] Applying Use Case Driven Object Modeling with UML: An Annotated
e-Commerce Example, D. Rosenberg, K. Scott, Addison-Wesley, 2001.

[Rumbaugh 99] The Unified Modeling Language Reference Manual, J. Rumbaugh,
Addison-Wesley, 1999.

[Schneider 01] Applying Use Cases: A Practical Guide (2nd Edition), G. Schneider,
J. Winters, Addison-Wesley, 2001.

07_Chapter_01_Roques_NEW.fm Page 35 Friday, November 28, 2003 1:21 PM

07_Chapter_01_Roques_NEW.fm Page 36 Friday, November 28, 2003 1:21 PM

2

21

Case study 2A – Problem statement

This exercise concerns a simplified system of a supermarket cash register. It is
inspired to a great extent by the case study of C. Larman’s first book (the Point-of-
Sale System), which formed the basis of the Valtech training about OOAD.22

Aims of the chapter

In this chapter, two new case studies will allow us to complete our study of the main
difficulties, which concern the implementation of the use case technique.

For the first case study, we will elaborate a complex use case diagram (with
relationship between use cases), and add an advanced notation: navigability on
associations between actors and use cases. Then we will introduce the difference
between essential use case and real use case, a concept that was initially put forward
by C. Larman,21 and see how it influences the textual description of use cases. An
example of a state diagram showing the forced sequence of system operations
(another interesting concept from Larman) will follow.

The second case study gives an example of how to use the UML concepts of
actors and use cases to model the business of a company, and not only an
information system. We will introduce business modelling stereotypes such as
business worker and business actor and see how to utilise them in use case
diagrams. Then we will illustrate the important activity diagram, proposed by UML
to describe business processes. To end this case study we will see how business
modelling can help to find actors and use cases for a future software system.

21. Refer to Applying UML and Patterns (2nd Edition), Prentice-Hall, 2001.

22. Object Oriented Analysis and Design.

Complementary
exercises 2

08_Chapter_02_Roques_NEW.fm Page 37 Friday, November 28, 2003 1:21 PM

2 Complementary exercises38

The standard procedure of using a cash register is as follows:

• A customer arrives at the checkout to pay for various items

• The cashier records the bar code number of each item, as well as the quantity if
it is greater than one.

• The cash register displays the price of each item and its description.

• When all the purchases are recorded, the cashier indicates the end of the sale.

• The cash register displays the total cost of the purchases.

• The customer selects his or her payment method:

• Cash: the cashier takes the money from the customer and puts it in the cash
register, the cash register indicates how much change the customer is to be
given;

• Cheque: the cashier verifies that the customer is financially solvent by
sending a request to an authorisation centre via the cash register;

• Credit card: a banking terminal forms part of the cash register. It sends a
request for authorisation to an authorisation centre, according to the card
type.

• The cash register records the sale and prints a receipt.

• The cashier gives the receipt to the customer.

08_Chapter_02_Roques_NEW.fm Page 38 Friday, November 28, 2003 1:21 PM

 Case study 2A – Problem statement 39

Once the items have been entered, the customer can present money-off vouchers
for certain items to the cashier. When the payment transaction is finished, the cash
register sends the information on the number of items sold to the stock
management system.

Every morning, the shop manager initialises the cash registers for the day.

*** 2.1 Construct a detailed use case diagram of the cash register.

Do not hesitate to use relationships between use cases in order to make your
diagram more precise.

Answer 2.1Answer 2.1Answer 2.1Answer 2.1

First, a simplistic solution entails identifying a “big” use case, which contains the
entire standard procedure involved in using the cash register, and another use case
that deals with initialisation of the cash register by the shop manager.

If we add the secondary actors to the previous diagram, we notice that the Process
sale use case communicates with a large number of different actors.

Figure 2.1 First draft of the use case diagram

�������

��	
�������

��	���������

�����������������������

Case study 2A

08_Chapter_02_Roques_NEW.fm Page 39 Friday, November 28, 2003 1:21 PM

2 Complementary exercises40

Receive-only actorReceive-only actorReceive-only actorReceive-only actor

Note the use of the navigation arrow on the association with the non-human Stock
management actor, which makes it clear that the actor can only receive messages
from the system without actually sending it any in return.

This increase in the number of secondary actors leads us to deduce that this use case
has too many responsibilities, and that it would therefore be sensible to divide it
up into more atomic sections.

We might think that all we have to do is divide it up sequentially, as illustrated
on the following figure.

Figure 2.2 Second draft of the use case diagram

������� ��	���������

���	����

���	����

���	����

���	����

����	���

�����	���
����	������	������

�	���������

�����	���
��	�����������

�����	���
����	������	������

�	�������

��	

������

�����������������������

�����������	

08_Chapter_02_Roques_NEW.fm Page 40 Friday, November 28, 2003 1:21 PM

 Case study 2A – Problem statement 41

Though tempting, this solution is rarely recommended. This is because the use
cases that result from it no longer truly conform to the UML definition. For
example, can we consider that End sale may represent a service that is offered by the
system from start to finish?

Rather, the level of detail that is thus obtained is similar to what Larman calls
system operations, or a unit of processing that is realised by the system within the
framework of a use case, and which can possibly be reused within another.

Recording the items and closing the sale both involve the same actors and
inevitably follow one another at some point in time: there is therefore no reason to
separate them. On the other hand, the important variable part, which is linked to
the payment method that the customer chooses, leads to separation of the generic
payment procedure – thanks to an include relationship, – from the process of
dealing with cash register transactions. In this way, this enables specialised use
cases to be described, with each one making specific actors appear. The first part of
the problem statement can therefore be modelled as represented on the following
figure.

Figure 2.3 Sequential division of the main use case

�������

���	�����������

���	����

���	����

���	����

���	����

���	����

���	����

����	����������

��	�����
�����

�����	���
����	������	��������	���������

�����	���
��	�����������

�����	���
����	������	��������	�������

Case study 2A

08_Chapter_02_Roques_NEW.fm Page 41 Friday, November 28, 2003 1:21 PM

2 Complementary exercises42

The inclusion use case, Process payment, is entered in italics on the diagram to
indicate that it is an abstract use case (non-instantiable). To avoid overloading the
diagram, we have left out the associations with Cashier assistant and Customer on
Process payment. However, we will note that two specialised use cases possess a
specific association with an additional actor: the authorisation centre concerning
them.

We can now complete the model by integrating the end of the exposition.
The optional consideration of discount coupons is conveyed quite naturally by

an extend relationship with the main use case. The link with the external stock
management system gives rise to a unidirectional association with a new actor.
Initialisation of the cash register does not pose any difficulty. The completed use
case diagram is shown below.

Figure 2.4 Partial use case diagram

������� ��	���������

���	����

����	���

����������

������
�������

���������	
���

��	����������
�����
��	�����������������
�����

��	������������
�����

�����	���
����	������	��������	���������

�����	���
����	������	��������	�������

08_Chapter_02_Roques_NEW.fm Page 42 Friday, November 28, 2003 1:21 PM

 Case study 2A – Problem statement 43

Figure 2.5 Completed use case diagram

��	

������

�����������������������

�������

������	�
	��
!	������

��	���������

���������
�����

����������
���������

���	����	���	��"	��
!	������

����������

���	����

����	��� ���������	
���

�����	���
��	�����������

��	����������
�����

��	������������
�����

��	����������������

�����

�����	���
����	������	��������	���������

�����	���
����	������	��������	�������

Case study 2A

08_Chapter_02_Roques_NEW.fm Page 43 Friday, November 28, 2003 1:21 PM

2 Complementary exercises44

Essential/real use caseEssential/real use caseEssential/real use caseEssential/real use case

In his previously mentioned book, C. Larman introduced the distinction between
essential use case and real use case:

We will illustrate this difference with the following two questions.

** 2.2 Write an essential detailed description of the main use case: Process sale.

Answer 2.2Answer 2.2Answer 2.2Answer 2.2

Identification summary

Title: Process sale Type: detailed essential

Summary: a customer arrives at the checkout with the items he or she would like to
purchase. The cashier records the items and collects payment. At the end of the
transaction, the customer leaves with the items.

Actors: Cashier (primary), Customer (secondary).

Creation date: 05/17/02 Date of update: 11/10/02

Version: 1.1 Person in charge: Pascal Roques

����������	�
���������������������
����

��
�	����	�������������������������
������	���������������	�	���
��������

��������� ����

����������	�
�����������	�
	�	����������

��
�	����	�
�����������	�������
����
������������������	���	���
�����	�������������

08_Chapter_02_Roques_NEW.fm Page 44 Friday, November 28, 2003 1:21 PM

 Case study 2A – Problem statement 45

Flow of events

Preconditions:

• The cash register is open; a checkout assistant is signed on to it.

Main success scenario:

1. This use case starts when a customer
arrives at the checkout with items that
he or she would like to purchase.

2. The cashier records each item. If there
is more than one of the same item, the
cashier also indicates the quantity.

3. The cash register establishes the price
of the item and adds the information
on the item to the sale in progress.
The cash register displays the
description and the price of the item
in question.

4. Once the cashier has recorded all the
items, he or she indicates that the sale
is finished.

5. The cash register calculates and
displays the total amount of the sale.

6. The cashier informs the customer of
the total amount.

7. The customer chooses a payment
method:

a. In the case of cash payment,
execute the “Process cash payment”
use case;

b. In the case of credit card payment,
execute the “Process credit card
payment” use case;

c. In the case of cheque payment,
execute the “Process cheque
payment” use case.

8. The cash register records the sale that
has been carried out and prints a
receipt.

9. The cashier gives the cash register
receipt to the customer.

10. The customer leaves with the items he
or she has purchased.

Case study 2A

08_Chapter_02_Roques_NEW.fm Page 45 Friday, November 28, 2003 1:21 PM

2 Complementary exercises46

“Alternative” sequences:

A1: unknown bar code number

The A1 sequence starts at point 2 of the main success scenario.

3. The cash register informs the cashier that the bar code number is unknown. The
item can therefore not be included in the sale in progress.

The scenario goes back to point 2.

Error sequences:

E1: customer is unable to pay

The E1 sequence starts at point 6 of the main success scenario.

7. The customer is unable to pay the total cost with any authorised method of
payment.

8. The cashier cancels the whole sale and the use case fails.

It is also necessary to describe each of the specialised use cases.
We will only give a solution for the first specialised use case:

Identification summary

Title: Process cash payment

Summary: a customer pays the total displayed by the cash register in cash.

Actors: Cashier (primary), Customer (secondary).

Creation date: 05/17/02 Date of update: 12/06/02

Version: 1.1 Person in charge: Pascal Roques

Flow of events

Preconditions:

• The sale is finished.

• The total of all items to be purchased has been displayed.

08_Chapter_02_Roques_NEW.fm Page 46 Friday, November 28, 2003 1:21 PM

 Case study 2A – Problem statement 47

Main success scenario:

“Alternative” or error sequences:

E1: customer is unable to pay

The E1 sequence starts at point 1 of the main success scenario.

2. The customer does not have enough cash to pay for the items.

3. The cashier cancels the whole sale and the use case fails, or the customer pays
using another payment method (Cf. “Process cheque payment”, or “Process
credit card payment”).

E2: cashier is unable to give change

The E1 sequence starts at point 4 of the main success scenario.

5. The cash register drawer does not contain enough change in order to give the
customer the money he or she is owed.

6. The cashier asks his or her supervisor for more change, or suggests to the
customer that he or she pay using a different payment method (Cf. “Process
cheque payment”, or “Process credit card payment”).

1. This use case begins when a customer
chooses to pay in cash after having
been informed of the total amount of
the sale.

2. The customer hands over a cash
amount by way of payment; it is
possibly higher than the total amount
of the sale.

3. The cashier registers the amount given
by the customer.

4. The cash register displays the amount
that has to be given back to the
customer.

5. The cashier puts the money from the
customer in the cash register and takes
out the change owed to him or her.

6. The cashier gives the change to the
customer.

Case study 2A

08_Chapter_02_Roques_NEW.fm Page 47 Friday, November 28, 2003 1:21 PM

2 Complementary exercises48

** 2.3 Write a real detailed description of the main use case: Process sale.

Firstly, propose a simple dialogue window for the human-computer interface
of the cashier.

Answer 2.3Answer 2.3Answer 2.3Answer 2.3

The identification summary is similar to the previous one, but the type becomes:
detailed real.

The proposed graphical user interface is as follows:

The description of the main success scenario then becomes:

1. This use case begins when a customer
arrives at the checkout with items that
he or she wishes to purchase.

2. The cashier records the bar code
number of the product in the “Bar
code number” field of the cash
register’s dialogue window. If there is
more than one of the same item, the
cashier can enter the quantity in the
“Quantity” field, which has the
default setting of “1”. Next, the
cashier presses the validation button:
“Enter item”.

3. The cash register establishes the price of
the item and adds the information on
the item to the sale in progress.
The cash register displays the
description (in 6 letters) and the price
of the item in question in the “Total”
field.

X–Cash Register

Number

Total

Payment

Quantity

Change

Enter item End of sale Enter payment

1

08_Chapter_02_Roques_NEW.fm Page 48 Friday, November 28, 2003 1:21 PM

 Case study 2A – Problem statement 49

To finish off, you can find the real version of Process cash payment below.

Main success scenario:

4. Once the cashier has recorded all the
items, he or she presses the “End of
sale” button.

5. The cash register calculates and displays
the total amount of the sale in the
“Total” field.

6. The cashier informs the customer of
the total amount.

7. The customer chooses a payment
method:

a. In the case of cash payment,
execute the “Process cash
payment” use case;

b. In the case of credit card payment,
execute the “Process credit card
payment” use case;

c. In the case of cheque payment,
execute the “Process cheque
payment” use case.

8. The cash register records the sale that
has just been carried out and prints a
receipt.

9. The cashier gives the till receipt to the
customer.

10. The customer leaves with the items
that he or she has just purchased.

1. This use case begins when a customer
chooses to pay in cash after having
been informed of the total amount of
the sale.

2. The customer hands over a cash
amount by way of payment; it is
possibly higher than the total amount
of the sale.

Case study 2A

08_Chapter_02_Roques_NEW.fm Page 49 Friday, November 28, 2003 1:21 PM

2 Complementary exercises50

* 2.4 Realise a system sequence diagram that describes the main success scenario of
the essential use case, Process sale, taking only cash payment into account.

Answer 2.4Answer 2.4Answer 2.4Answer 2.4

In the form of a sequence diagram, all you have to do is copy out the interactions
quoted in the textual scenario of answer 2.2 by using the graphical conventions that
were adopted previously:

• the primary actor, Cashier, on the left,

• an object representing the Cash register in the middle,

• the secondary actor, Customer, on the right of Cash register.

3. The cashier registers the amount given
by the customer in the “Payment”
field. He or she then validates this by
pressing the “Enter payment” button.

4. The cash register displays the amount
that has to be given back to the
customer in the “Change” field.

5. The cashier puts the money from the
customer in the cash register and takes
out the change owed to him or her.

6. The cashier gives the change to the
customer.

08_Chapter_02_Roques_NEW.fm Page 50 Friday, November 28, 2003 1:21 PM

 Case study 2A – Problem statement 51

We want to add two comments to Figure 2.6:

• we have chosen to show messages being passed between actors. This is not
strictly necessary, as it is outside the scope of the system, but can be envisaged if
it helps the reader to validate the diagram. It represents more the business
process than the system use case, but is also more significant for the domain
expert.

• as the price and description are simultaneously sent to two actors, we drew the
two arrows at the same horizontal level. We preferred not to use the new, but
complex, InteractionOperators proposed by UML 2.0, such as the “weak
sequencing (seq)“.

Figure 2.6 System sequence diagram of the main success scenario of Process sale

������� #��� ����	���

$	������
����%%%

���������&'����	�����'��(��������)

�����*�������
��	

��+������&)

�	��� �	���

�����&��	��)

�����������&��	��)

�����

�����
�

�����*�������
��	

�	�����	�
��

�����

�����
�

Case study 2A

08_Chapter_02_Roques_NEW.fm Page 51 Friday, November 28, 2003 1:21 PM

2 Complementary exercises52

** 2.5 By means of a state diagram, show the compulsory sequence of system
operations for the Process sale use case, and continue to take only cash
payment into account.

Answer 2.5Answer 2.5Answer 2.5Answer 2.5

The system operations, that have been identified thanks to the previous exercise
correspond to the three messages received by the system. We represent them as
operations of a class stereotyped <<system>>.

In order to represent the compulsory sequence of these three system operations,
with the possible repetition of the enter item procedure, a state diagram is essential.
It actually represents the subset of cash register states inferred by the Process sale use
case. Additional states are, for example, linked to the initialisation of the cash
register, the connection of the cashier, etc.

Figure 2.7 System operations of “Process sale”

Figure 2.8 State diagram of the system operations of “Process sale”

����������
������������

��������&'����	�����'��(��������)
��+�����&)
����������&��	��)

,�������	�
����	���

�����
�����

,�������	�

�����

���	������

���	��������
���������

���������

08_Chapter_02_Roques_NEW.fm Page 52 Friday, November 28, 2003 1:21 PM

2.1 Step 1 – Business modelling 53

Case study 2B – Problem statementCase study 2B – Problem statementCase study 2B – Problem statementCase study 2B – Problem statement

This second case study will give us the occasion to perform some business
modelling with UML. It should be clear that the concepts that we will introduce are
not part of the core UML, but are defined by an official extension to UML which is
described on the OMG's Web site www.omg.org. Many modelling tools propose
them, so a lot of people are currently using these graphical representations.23

Let's suppose that an organisation wants to improve its information system and,
first of all, wishes to model the training process of its employees so that some of
their tasks may be computerised.

1. The training process is initialised when the training manager receives a training
request on behalf of an employee. This request is acknowledged by the person
in charge who qualifies it and then forwards his or her agreement or
disagreement to the person who is interested.

2. In the case of agreement, the person in charge looks in the catalogue of
registered courses for a training course, which corresponds to the request. He
or she informs the employee of the course content and suggests a list of
subsequent sessions to him or her. When the employee has reached a decision,
the training manager enrols the entrant in the session with the relevant training
body.

3. If something crops up, the employee must inform the training manager as soon
as possible in order to cancel the enrolment or application.

4. At the end of the employee’s training, he or she must submit an assessment to
the training manager on the training course that he or she completed, as well
as a document proving his or her attendance.

5. The training manager then checks the invoice that the training body has sent
him or her before forwarding it to the bookkeeper of purchases.

2.1 Step 1 – Business modelling

We will begin by modelling the business and processes of the organisation. This
analysis will allow us to establish more easily the specifications of the information
system that will support these processes.

23. You can find interesting articles on the subject on www.therationaledge.com.

08_Chapter_02_Roques_NEW.fm Page 53 Friday, November 28, 2003 1:21 PM

2 Complementary exercises54

Stereotypes for business modellingStereotypes for business modellingStereotypes for business modellingStereotypes for business modelling

As regards business modelling, Jacobson24 was the first to suggest using the UML
concepts of actor, use case, class, package, etc. with particular stereotypes. In the rest
of the exercise, we will use the following stereotypes (which correspond to those of
the RUP25 and which are standardised by OMG in the "Business Modeling" profile):

24. Software Reuse: I. Jacobson et al., 1997, Prentice Hall, then The Unified Software Development
Process, I. Jacobson, G. Booch, J. Rumbaugh, Addison-Wesley, 1999.

Figure 2.9 Stereotypes used for business modelling

25. The Rational Unified Process: An Introduction, P. Kruchten, Addison-Wesley, 1999.

�������	������������
��������������

�������

�������	���������
��������������������	

���������������
������������

�������	���������
��������������������
����������������

������������

�������	���������
����������������������
�����	��������������	��

������������ ��

�������	������ ����
��������������
��������������

-���������������

-����������	�

-�������.	����

-������������

+��������	����

08_Chapter_02_Roques_NEW.fm Page 54 Friday, November 28, 2003 1:21 PM

2.1 Step 1 – Business modelling 55

* 2.6 Draw a use case diagram that shows the training process and its actors.

Use the preceding stereotypes.

Answer 2.6Answer 2.6Answer 2.6Answer 2.6

The training process is represented by a stereotyped use case.
The actors required are (in order of the exposition):

• the employee,

• the training manager,

• the training body,

• bookkeeper of purchases.

The training body is the only entity external to the organisation, which results in
the following diagram:

Figure 2.10 Modelling of the training process with its actors

��
�	���

#������������

#������
�	����

#������'	��

-		����
���	��
��������

08_Chapter_02_Roques_NEW.fm Page 55 Friday, November 28, 2003 1:21 PM

2 Complementary exercises56

*** 2.7 Describe the dynamics of the training process by means of an activity
diagram.
Use the columns (or swimlanes) to assign responsibilities to the actors.

Answer 2.7Answer 2.7Answer 2.7Answer 2.7

The training process comprises a set of activities, which have already been
organised and assigned to one of the actors identified previously. This sequence is
represented perfectly using an activity diagram.

“Swimlanes” enable the activities to be arranged graphically in such a way that
those that are assigned to the same actor can be found in the same vertical strip.

Figure 2.11 Activity diagram of the training process

08_Chapter_02_Roques_NEW.fm Page 56 Friday, November 28, 2003 1:21 PM

2.2 Step 2 – Defining system requirements 57

In order to complete the first diagram, we have added the creation and change in
state of the business entities following the realisation of the activities.

Note that we did not use the specific icon of the business entity for the
TrainingRequest entity in order to be able to indicate its state inside the box.

The resulting diagram is very interesting as it acts as a bridge between the three
modelling axes: functional (activities), dynamic (transitions) and static (object
flows and swimlanes)!

2.2 Step 2 – Defining system requirements

Let’s continue with our functional study. The definition of tasks that will be
computerised is achieved by selecting certain activities of the business model. We
will thus deduce the functional specifications of the information system from the
preceding study, and in particular, from the activity diagram.

The system must allow a training request to be initialised and this request to be
followed right up to the effective enrolment of an employee.

Figure 2.12 Completed activity diagram of the training process

08_Chapter_02_Roques_NEW.fm Page 57 Friday, November 28, 2003 1:21 PM

2 Complementary exercises58

One benefit of this technique is that it clearly shows what is outside the scope of
the software system: we do not need to interview the bookkeeper or handle
invoices.

The system for managing training requests must therefore allow the following
business activities to be automated:

• Write a request (employee),

• Investigate a request (training manager),

• Look for a training course (training manager),

• Select a session (employee),

• Order a training course (training manager).

Furthermore, we must not forget that an employee is able to cancel an application
or enrolment in a session.

For all these processes, it is essential that the information system manages a
registered training catalogue, to which employees can have partial access by
reading what is available, and the training manager total access by having the
authority to amend courses. This catalogue will not only contain the technical

Figure 2.13 Activities of the training process, which are to be computerised

08_Chapter_02_Roques_NEW.fm Page 58 Friday, November 28, 2003 1:21 PM

2.2 Step 2 – Defining system requirements 59

content, length of course, etc., of training courses offered by the registered bodies,
etc., but also the dates and locations of the subsequent sessions. The training
manager will also be able to organise training courses according to subject.

** 2.8 Develop the use case diagram of the information system for managing
training requests.

Write a few lines by way of a summary for each use case.

Answer 2.8Answer 2.8Answer 2.8Answer 2.8

According to the list of business activities, we can define the following use cases:

• Apply for training:

The employee can consult the catalogue and select a theme or course, or even a
particular session. The application is automatically registered by the system and
forwarded by e-mail to the training manager. If the employee has not chosen a
session, but simply a course or a theme, the training manager will consult the
catalogue and select the sessions that appear to correspond most to the application.
This selection will be forwarded by e-mail to the employee, who will then be able
to submit a new, more specific application.

• Order a training course:

Once an employee has applied for training, and this is accepted, the training
manager will use the system to send – automatically by fax – an enrolment
application in the form of an order form to the body involved.

• Cancel an application:

The employee may consult the current status of his or her training requests and
cancel them personally. The training manager is automatically notified by e-mail.

• Maintain catalogue:

The training manager can enter a new course in the catalogue, modify an existing
course or take out one that a training body has withdrawn. He or she can also
modify groups of courses, which have been arranged according to theme. In
addition, he or she can update the dates and locations of the sessions.

08_Chapter_02_Roques_NEW.fm Page 59 Friday, November 28, 2003 1:21 PM

2 Complementary exercises60

In order to be able to apply for training and maintain the catalogue, the system
must offer a basic functionality for consulting the catalogue. This functionality can
therefore be factorised in a new inclusion use case.

Finally, so that we do not overload the model, we will not represent the less
important process of authenticating the employee or the training manager in the
software system.

Figure 2.14 synthesises all these considerations.

** 2.9 Write an essential detailed description of the maintain catalogue use case.

Figure 2.14 Use case diagram of the system for managing training requests

��
�	���

�

����	�������� ���������������

����������

����������

�	����������	���

/�����������	���

#������������
+���������������	����

�����	���
#������'	��

08_Chapter_02_Roques_NEW.fm Page 60 Friday, November 28, 2003 1:21 PM

2.2 Step 2 – Defining system requirements 61

Answer 2.9Answer 2.9Answer 2.9Answer 2.9

Identification summary

Title: Maintain catalogue Type: detailed essential

Summary: the training manager is responsible for continually updating a catalogue
that lists the registered training courses available for employees. The majority of
changes are from the training bodies.

Actors: person in charge of training.

Creation date: 09/28/02 Date of update: 08/20/03

Version: 3.0 Person in charge: Pascal Roques

Flow of events

Preconditions:

• The training manager has logged into the system.

Main success scenario:

1. In general, this use case starts when a
training body informs the training
manager of changes regarding its offer.

2. The training manager can enter a new
course in the catalogue, modify an
existing course or take out one that has
been withdrawn by the body.

When creating or modifying a training
course, the training manager can alter
the diary of sessions planned for it.

3. The system warns users that are
connected to the Internet that they
could well be working on an obsolete
version.

When removing a training course
from the catalogue, the system shows
the training manager the list of
entrants who were enrolled in the
cancelled sessions, and the
enrolments are then cancelled.

4. If necessary, a new subject for
organising courses into groups can be
created.

08_Chapter_02_Roques_NEW.fm Page 61 Friday, November 28, 2003 1:21 PM

2 Complementary exercises62

Alternative sequences:

A1: incomplete information

The A1 sequence starts at point 2 of the main success scenario.

2. When the information relating to a new training course is incomplete (for
example, absence of session dates), the training course is entered in the
catalogue but enrolment on it cannot take place. The description must be
modified and completed at a later stage.

The scenario continues at point 2.

Constraints:

Concurrency: this use case can only be executed by one manager at a time.

Availability: the catalogue can be accessed via the intranet from 9 to 5, Monday to
Friday. Maintenance operations must be limited to a strict minimum during these
hours.

The constraint of concurrency on this use case leads to one last question.

* 2.10 Develop the static context diagram of the system for managing training
requests.

Answer 2.10Answer 2.10Answer 2.10Answer 2.10

The system for managing training requests is fundamentally a multi-user one
(typically an intranet), except for the training manager who must be the sole
manager at a given time.

The training bodies do not have access to the system: they can only receive
orders (one at a time), which explains the navigation arrow on the association
between the system and the non-human actor.

5. The training manager validates his or
her modifications.

6. The system informs the employees
that are connected to the intranet that
a new version of the catalogue is
available.

08_Chapter_02_Roques_NEW.fm Page 62 Friday, November 28, 2003 1:21 PM

2.2 Step 2 – Defining system requirements 63

Figure 2.15 Static context diagram of the system for managing training applications

#������������

����������
��	�������� ����
	�	�����

�����	���
#������'	��

0%%1

��
�	���

0%%20%%1

08_Chapter_02_Roques_NEW.fm Page 63 Friday, November 28, 2003 1:21 PM

08_Chapter_02_Roques_NEW.fm Page 64 Friday, November 28, 2003 1:21 PM

A

This appendix comprises a thematic glossary of the functional view (mainly
inspired by the one found in the UML 2.0 Specifications from OMG), as well as a
summary of tips, which have been taken from the two previous chapters.

GlossaryGlossaryGlossaryGlossary

Action state An action state models the realisation of a simple step, which
can be neither broken down nor interrupted.

Activity state An activity state models the realisation of a complex step that is
able to be broken down into activities or actions, and which can
be interrupted by an event.

Actor Construct that is employed in use cases that define a role that a
user or any other system plays when interacting with the system
under consideration. Actors may represent human users,
external hardware, or other subjects.

Association Relationship between classifiers (classes, use cases, etc.), which
describes a set of links. Used to link actors and use cases in the
use case diagram.

Business actor Stereotyped actor that represents an entity external to the
organisation (within the context of business modelling).

Business entity Stereotyped class that represents a passive entity, which is
manipulated by a business worker (within the context of
business modelling).

Business modelling Modelling of the processes, resources and organisation of a
business.

Business use case Stereotyped use case which enables the representation of a
business process (within the context of business modelling).

Glossary & tips A

09_Appendix_A_Roques_NEW.fm Page 65 Friday, November 28, 2003 1:20 PM

Appendix A: Glossary & tips66

Business worker Stereotyped class that represents a human acting within the
business (within the context of business modelling).

Essential Of an analytical use case, independent of all interfacing
technology with the actors.

Extension Relationship with the keyword <<extend>> from an extension
use case to a base use case, specifying how the behaviour
defined for the extension use case augments (subject to
conditions specified in the extension) the behaviour defined for
the base use case. The behaviour is inserted at the location
defined by the extension point in the base use case.

Generalisation Relationship between use cases where the children inherit the
description of their shared parent; nevertheless, each of them
can include additional specific interactions or modify the
inherited interactions.

Inclusion Relationship with the keyword <<include>> from a base use
case to an inclusion use case, specifying how the behaviour for
the base use case contains the behaviour of the inclusion use
case. The behaviour is included at the location which is defined
in the base use case.

Message Specification of the conveyance of information from one
instance to another, with the expectation that activity will
ensue. Used in system sequence diagrams to represent the
interaction between the actors and the system, which is shown
as a black box.

Organisation unit Stereotyped package that structures the business model (within
the context of business modelling).

Package General-purpose mechanism for organising elements in UML,
which can be used, for example, to organise use cases into
groups.

Postcondition Boolean condition that resolves to true for the system at the end
of executing a use case, apart from error scenarios.

Precondition Boolean condition that must be true for the execution of a use
case to begin.

Primary actor Actor for whom the use case produces an observable result of
value (in contrast with secondary actor).

Real Of a use case described from the design view, in terms of user
interface events, data input, etc.

09_Appendix_A_Roques_NEW.fm Page 66 Friday, November 28, 2003 1:20 PM

Appendix A: Glossary & tips 67

TipsTipsTipsTips

• The actors are a priori:

• the direct human users: identify all possible profiles without forgetting the
administrator, the maintenance operator, etc.;

• the other related systems that interact directly with the system under
consideration, often by means of bidirectional protocols.

• Eliminate as much as possible “physical” actors for the benefit of “logical”
actors: the actor is the one that benefits from the use of the system. In particular,
this rule advises against the identification of technical interfaces that risk
evolving in the course of the project, so that actors remain more stable over time.

• Use the graphical form of the stick man for human actors, but prefer the rectangle
with the <<actor>> keyword for connected systems (if your favourite
modelling tool enables it!).

Scenario Specific sequence of actions that illustrates behaviours. A
scenario may be used to illustrate an interaction or the
execution of a use case instance. Concerning use cases, we make
a distinction between main success, alternative and error
scenarios.

Secondary actor Actor that is only requested by the system at the time of the use
case, or which obtains a secondary result from it (in contrast
with primary actor).

Stereotype Class the defines how an existing metaclass (or stereotype) may
be extended, and enables the use of platform or domain-
specific terminology or notation in addition to the ones used
for the extended metaclass. Certain stereotypes are predefined
in the UML, others may be user defined. Stereotypes are one of
the extensibility mechanisms in UML.

System operation Operation of the system that executes in response to a system
event. A system event is an external input event generated by an
actor to a system, within the context of a use case (from
C. Larman).

Use case Specification of a sequence of actions, including variants, that a
system (or other entity) can perform, interacting with actors of
the system.

09_Appendix_A_Roques_NEW.fm Page 67 Friday, November 28, 2003 1:20 PM

Appendix A: Glossary & tips68

• Only list the external entities that interact directly with the system (and not by
means of other actors) as actors. Do not consider components internal to the
system under study.

• Do not confuse role and physical entity. For instance, a single physical entity
may play the role of several different actors and, conversely, a given actor may
be played by multiple physical entities.

• Construct a static context diagram. For this, simply use a class diagram in which
each actor is linked to a central class representing the system by an association,
which allows the number of instances of actors connected to the system at a
certain point to be specified.

• To improve the informative content of the use case diagram, we recommend that
you adopt the following conventions:

• by default, the role of an actor is “primary”; if this is not the case, indicate
explicitly that the role is “secondary” on the association to the side of the
actor;

• as far as possible, place the primary actors to the left of use cases, and the
secondary actors to the right;

• if the actor can only receive messages from the system (or can only send
them), use the symbol for indicating navigability restriction on the
association between the use case and the actor.

• The most simple way to go about giving details of the dynamics of the use case
entails compiling a written list of all the interactions between the actors and the
system. The use case must have a clearly identifiable beginning and an end. It is
also important to specify the possible variants, such as the the main success
scenario and the different alternative or error sequences, whilst simultaneously
trying to place the descriptions in a sequential order to improve their readability.

• Do not confuse essential use case (independent of all technological choice of
interface with the actors) and real use case: the first is far more stable and can be
reused more easily.

• Complete the textual description of use cases with one or more UML dynamic
diagrams:

• for the dynamics of the use case, use an activity diagram (or a state diagram for
very interactive use cases);

09_Appendix_A_Roques_NEW.fm Page 68 Friday, November 28, 2003 1:20 PM

Appendix A: Glossary & tips 69

• to describe the main success scenario, use a sequence diagram. Present it by
placing the primary actor on the left, then an object that represents the system
as a black box, and finally, by placing possible secondary actors requested in
the course of the scenario to the right of the system.

• You can expand the system sequence diagram of the main success scenario so as
to make the following appear:

• the main internal activities of the system (by means of messages that it sends
to itself),

• references to “alternative” and error sequences (by means of notes).

• Use the include relationship between use cases in order to avoid having to
describe the same flow of events several times. Do this by factorising this shared
behaviour in an additional inclusion use case. Do not misuse this relationship
for functional decomposition! Inclusion use cases are very often small reusable
use-case fragments.

• Use the extend relationship between use cases in order to separate an optional
or rare complex behaviour from mandatory behaviour. The extension use case
should be completely separate from the extended base use case. The base use
case should be complete by itself and not require the extension. Otherwise, you
must use alternative scenarios to describe additional behaviour.

• Use the generalisation/specialisation relationship between use cases to
formalise important variations on the same use case.

• Be moderate with relationships between use cases (include, extend,
generalisation): they make use case diagrams difficult to decipher for the
business experts who are supposed to check them.

• Limit the number of your concrete use cases to 20 (apart from inclusion/
extension fragments and generalisation considerations). With this arbitrary
limit, first suggested by Ivar Jacobson himself, we avoid the common error in
identifying use cases to represent individual steps, operations or transactions.

09_Appendix_A_Roques_NEW.fm Page 69 Friday, November 28, 2003 1:20 PM

09_Appendix_A_Roques_NEW.fm Page 70 Friday, November 28, 2003 1:20 PM

Part 2
Static view 1

10_Part_02_Roques_NEW.fm Page 71 Friday, November 28, 2003 1:20 PM

Part 1: Static view72

10_Part_02_Roques_NEW.fm Page 72 Friday, November 28, 2003 1:20 PM

TE
AM
 F
LY

3

Aims of the chapter

On the basis of a new case study, this chapter will allow us to outline the main
difficulties, step by step, that the construction of UML class diagrams poses.

The class diagram has always been the most important diagram in all object-
oriented methods. This is the diagram that automatic code generation tools use first
and foremost. This is also the diagram that contains the widest range of notations
and variants; hence the difficulty in using all these concepts correctly.

In this important chapter we will learn to:

• identify domain concepts and model them as classes;

• identify associations between concepts;

• think about the multiplicity on each side of an association;

• add attributes to domain classes;

• understand the difference between analysis and design levels;

• use object diagrams to illustrate class diagrams;

• use association classes, constraints and qualifiers;

• structure our model into packages;

• understand what is an analysis pattern.

Case study: flight
booking system 3

11_Chapter_03_Roques_NEW.fm Page 73 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system74

Case study 3 – Problem statementCase study 3 – Problem statementCase study 3 – Problem statementCase study 3 – Problem statement

This case study concerns a simplified flight booking system for a travel agency.
The interviews that we had with domain experts enabled us to summarise their

knowledge of the field in the form of the following sentences:

 1. Airline companies offer various flights.

 2. A flight is open to booking and closed again by order of the company.

 3. A customer can book one or more flights and for different passengers.

 4. A booking concerns a single flight and a single passenger.

 5. A booking can be cancelled or confirmed.

 6. A flight has a departure airport and an arrival airport.

 7. A flight has a departure day and time, and an arrival day and time.

 8. A flight may involve stopovers in airports.

 9. A stopover has an arrival time and a departure time.

10. Each airport serves one or more cities.

From the basis of these “bits of knowledge”, we will construct a static domain
model by following a series of steps.

Elements involved

• Class, object

• Operation

• Association, multiplicity

• Attribute, derived attribute

• Aggregation, composition

• Association class, qualifier

• Constraint, metaclass

• Package

• Generalisation, abstract class.

11_Chapter_03_Roques_NEW.fm Page 74 Friday, November 28, 2003 1:19 PM

3.1 Step 1– Modelling sentences 1 and 2 75

3.1 Step 1– Modelling sentences 1 and 2

Firstly, we will model sentence 1:

1. Airline companies offer various flights.

AirlineCompany and Flight are important concepts of the real world; they have
properties and behaviours. They are therefore candidate classes for our static
modelling.

We can initiate the class diagram as follows:

The “1..*” multiplicity to the side of the Flight class was preferred to a multiplicity
of “0..*”, as we are only managing airline companies that offer at least one flight.26

However, the sentence does not give us any indication of the multiplicity to the
side of the AirlineCompany class. This is the first question we will have to ask the
domain expert.

Subsequently, we will start from the notion that a flight is offered most often by
a single airline company, but that it can also be shared among several charterers. As
we work through this exercise, we will note that the term, “charterer” is a good
candidate to name the role played by the AirlineCompany class in the association
with Flight.

We will now deal with the second sentence. The notions of opening and closing the
booking represent dynamic concepts. They concern changes in state of an object,
Flight, by order of an object, AirlineCompany. An obvious solution therefore consists
in inserting an enumerated attribute, state, as shown on the following figure.

Figure 3.1 Modelling of sentence 1

26. Of course this is true in domain modelling. During design we will probably shift towards “0..*”,
as when you add a new Airline in the system, it does not propose flights at once...

Figure 3.2 Completed modelling of sentence 1

���������	
��� ������ �����
����

���������	
���
���������

������ �����
���� ����

11_Chapter_03_Roques_NEW.fm Page 75 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system76

This is actually not the right approach: every object possesses a current state on top
of the values of its attributes. This belongs to the intrinsic properties of the object
concepts. The notion of state must therefore not appear directly as attribute on class
diagrams: it will be modelled in the dynamic view using the state diagram (see
Chapters 5 and 6). In the UML class diagram, the only available dynamic concepts
are the operations.

As it happens, beginners in object-oriented modelling often have difficulty in
placing operations in the right classes! More generally, the correct allocation of
responsibilities to the right classes is a distinctive feature of experienced object-
oriented designers...

* 3.1 In which class do you place the operations that we have just identified?

Answer 3.1Answer 3.1Answer 3.1Answer 3.1

Who is open to the booking? It is the flight, not the company.
In object-oriented design, we consider that the object on which we will be able

to realise a process must declare it as an operation. The other objects that will have
a reference on it will then be able to send it a message, which invokes this
operation.

We must therefore place the operations in the Flight class, and make sure that the
AirlineCompany class actually has an association with it.

The offers association will be instantiated in a set of links between objects of the
AirlineCompany and Flight classes.

Figure 3.3 First modelling of sentence 2

Figure 3.4 Correct modelling of sentence 2

���������	
���
���������

������ �����

���������
����������

���� ����

���������	
��� ������
�����

�
�����������
��������������

���� ����

11_Chapter_03_Roques_NEW.fm Page 76 Friday, November 28, 2003 1:19 PM

3.2 Step 2 – Modelling sentences 6, 7 and 10 77

It will therefore allow messages of booking opening and closing to circulate
between these objects, as demonstrated on the collaboration diagram below.27

3.2 Step 2 – Modelling sentences 6, 7 and 10

Let’s continue with the modelling of the Flight class. Sentences 6 and 7 refer to it
directly. Let’s first of all consider sentence 7:

7. A flight has a departure day and time and an arrival day and time.

All these notions of dates and times simply represent pure values. We will therefore
model them as attributes and not as fully-fledged objects.

An object is a more “important” element than an attribute. A good criterion to
apply here can be stated in the following way: if we can ask an element for its value

Figure 3.5 Collaboration diagram illustrating sentence 2

27. The collaboration diagram (renamed communication diagram in UML 2.0) shows how instances
send messages to other instances. For a message to be received, an operation with the same name
must exist in the corresponding class.

Figure 3.6 Modelling of sentences 1, 2 and 7

�����������	
���

����
�����������
�����������������

����
�����������

��������

��������

���������	
��� ������

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�

�
�����������
��������������

���� ����

11_Chapter_03_Roques_NEW.fm Page 77 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system78

only, it concerns a simple attribute; if several questions apply to it, though, an
object that possesses several attributes itself is involved, as well as links with other
objects.

Try to apply this principle to sentence 6:

6. A flight has a departure airport and an arrival airport.

*** 3.2 What are the different solutions for modelling sentence 6, together with their
advantages and disadvantages?

Answer 3.2Answer 3.2Answer 3.2Answer 3.2

Unlike the notions of time and date which are “simple” types, the notion of airport
is complex; it belongs to the domain. An airport does not only possess a name, it
also has a capacity, it serves cities, etc. For this reason, we prefer to create an Airport
class rather than simple attributes of departureAirport and arrivalAirport in the Flight
class.

An initial solution consists in creating an association with a multiplicity of 2
placed to the side of the Airport class. But in doing so, we lose the notions of
departure and arrival. A trick would be to add a constraint {ordered} to the side
of Airport, to indicate that the two airports linked to the flight are ordered (arrival
always takes place after departure!).

This entails a “warped” modelling that we do not recommend, as it is not very
informative for the business expert, and in any case, a far better solution exists…

Another tempting solution would be to create two subclasses from the Airport
class.

Figure 3.7 Solution that approximates to sentence 6

�����
��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�
��
��� �����
���
����#�����
���

�
�����������
��������������

$�������%

���
���

��	�
�

11_Chapter_03_Roques_NEW.fm Page 78 Friday, November 28, 2003 1:19 PM

3.2 Step 2 – Modelling sentences 6, 7 and 10 79

However, this solution is incorrect! Indeed, every airport is the departure airport for
certain flights and arrival airport for others successively. The DepartureAirport and
ArrivalAirport classes therefore have exactly the same redundant instances, which
should discourage us from forming two distinct classes from them.

The UML concept of role works perfectly in this situation. So, the most precise
way of going about this entails creating two associations between the Flight and
Airport classes, with each one being assigned a different role with a multiplicity
equal to 1 exactly.

Date as a non-primitive data typeDate as a non-primitive data typeDate as a non-primitive data typeDate as a non-primitive data type

We have already explained why we prefer to model dates and times as attributes
and not as objects, unlike with airports.

Figure 3.8 Incorrect solution of sentence 6

Figure 3.9 Correct modelling of sentence 6

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�
��
��� �����
���
����#�����
���

�
�����������
��������������

!�
��� �����
���

����#�����
���

������	

��	�

�

�

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�
��
��� �����
���
����#�����
���

�
�����������
��������������

��
��� ��

����#��

���
���

��	�
�

�

11_Chapter_03_Roques_NEW.fm Page 79 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system80

A more sophisticated solution was suggested by M. Fowler28: it entails the
creation of a specific class, Date, and then using it to specify the type of the attribute
instead of adding an association.

Difference between analysis model and design modelDifference between analysis model and design modelDifference between analysis model and design modelDifference between analysis model and design model

In the Java code of the final application, there is no doubt that we will explicitly use
the implementation class, Date (from the java.util package).

It does not imply a contradiction here, but rather a difference in level of abstraction,
which gives rise to two different models – an analysis model and a detailed design
model – for different readers and distinct objectives.

28. Analysis Patterns: Reusable Object Models, M. Fowler, Addison-Wesley, 1997.

Modelling of the Date user class as a non-primitive data type

Possible fragment of detailed design class diagram aiming towards Java

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�

��
��� ��

��
��� ��

����#��

����#��

!���

"�	�

�

�

�

�

�����

��
��� ��!������!���
��
��� ��"�	����"�	�
����#��!������!���
����#��"�	����"�	�

������

��
��� ��!���
��
��� ��"�	�

����#��!���
����#��"�	�

��
��� ��!���

����#��!���

�

��
�����������
��������������

��	�
���������

���
&����!����������
&����'� ����������
&����(�� �����������
&�)�*�������+���!�������)������
&��*�������+���!�������)������
&���"�	�,���-**�����������

11_Chapter_03_Roques_NEW.fm Page 80 Friday, November 28, 2003 1:19 PM

3.2 Step 2 – Modelling sentences 6, 7 and 10 81

We can now deal with the modelling of sentence 10.

10. Each airport serves one or more cities.

However, we notice once again that sentence 10 only concerns one direction of the
association. It does not enable the multiplicity to the side of the Airport class to be
determined. The question must therefore be formulated in the following way: By
how many airports is a city served?

* 3.3 What is the multiplicity to the side of airport for the modelling of sentence
10?

Answer 3.3Answer 3.3Answer 3.3Answer 3.3

The question is less trivial than it appears at first sight… Indeed, everything depends
on the exact definition that is lent to the verb, “to serve” in our system! If “to serve”
simply consists in naming the nearest method of air transport, then every city is
served by one and only one airport.

But if “to serve” means, for example, every method of air transport, which can be
found in less than thirty kilometres, then a city can be served by 0 or more airports.

We will keep the second definition.

Figure 3.10 Modelling of sentence 10

Figure 3.11 Possible modelling of sentence 10

���
��� ���
�� ����
����

���
��� ���
�� ����
�����

11_Chapter_03_Roques_NEW.fm Page 81 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system82

3.3 Step 3 – Modelling sentences 8 and 9

Let’s now consider the stopovers, i.e. sentences 8 and 9.

8. A flight may involve stopovers in airports.

9. A stopover has an arrival time and a departure time.

Every stopover has two properties according to sentence 9: arrival time and
departure time. According to sentence 8, it is also in connection with flights and
airports, which are themselves objects. It is therefore natural to make a class of it
for itself.

However, sentence 8 is also imprecise: can a stopover belong to several flights,
and what are the multiplicities between Stopover and Airport? Moreover, the
diagram still does not indicate the multiplicities on the Flight side with Airport.

Figure 3.12 Completed modelling of sentence 10

Figure 3.13 Preliminary modelling of sentences 8 and 9

���
��� ���
��� ����
+��� ����

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�

�
�����������
��������������

��
��
�� .��
�#��

����#��"�	�
��
��� ��"�	�

+��� �

��
��� ��

����#��

���
���

��	�
�

�

�

�

�

�

11_Chapter_03_Roques_NEW.fm Page 82 Friday, November 28, 2003 1:19 PM

3.3 Step 3 – Modelling sentences 8 and 9 83

** 3.4 Complete the multiplicities of the associations.

Answer 3.4Answer 3.4Answer 3.4Answer 3.4

According to sentence 8, a flight can involve stopovers in airports. This wording is
ambiguous, and is worth thinking about a little, maybe by resorting to the advice
of a domain expert.

We can start by adding the multiplicities between Stopover and Airport, which
appears to be easy. It is obvious that a stopover takes place in one and only one
airport, and that an airport can be used for several stopovers. In the same way, an
airport can be used as a departure or arrival airport for several flights.

We might also think that a stopover belongs to one flight and only one, but is
this really certain? After consulting with the domain expert, we obtained a counter-
example in the form of the following object diagram.29

Figure 3.14 Object diagram illustrating sentence 8

29. Toulouse and Bordeaux are the main cities of the South-West of France, with Blagnac and Merignac
being their airports, respectively, Palma and Minorca are touristy Spanish resorts...

"� �� ��(��������������

/��	����.��
�#��

������ 0(��������������

����#��

����#�� (������������
���

��
��� ��

��
��� ��

(�������������
���

/��	�������
���

������ 0���.��
�#��

�������������
���

11_Chapter_03_Roques_NEW.fm Page 83 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system84

A stopover can therefore belong to two different flights, particularly when these
flights overlap. Note how effective it is to resort to the object diagram to give an
example, or even a counter-example, which enables a tricky aspect of a class
diagram to be refined.

To complete the diagram of sentences 8 and 9, all we have to do is add two pieces
of information:

• the association between Flight and Stopover is an aggregation (open diamond),
as it corresponds to a containment relationship. But it cannot be a composition
(filled diamond), as it can be shared out;

• the stopovers are ordered with regard to flight, so we can add the standard UML
coinstraint {ordered} on the side of the Stopover class.

In the previous solution, the Stopover class acts as a go-between for the Flight and
Airport classes. It has little meaning by itself, and consequently, this makes us think
of another solution concerning it...

*** 3.5 Propose a more sophisticated solution for the modelling of stopovers.

Figure 3.15 Complete modelling of sentences 8 and 9

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�

�
�����������
��������������

$�������%

.��
�#��

����#��"�	�
��
��� ��"�	�

	�����������

����#��

��
��� �� ���
���

��	��

�

+���

+���

����

+���

+���

�

11_Chapter_03_Roques_NEW.fm Page 84 Friday, November 28, 2003 1:19 PM

3.3 Step 3 – Modelling sentences 8 and 9 85

Answer 3.5Answer 3.5Answer 3.5Answer 3.5

In view of the preceding diagram, it appears that the Stopover class comprises little
of its own information; it is strongly linked with Airport (multiplicity 1) and does
not exist by itself, but only as part of a Flight.

An initial idea consists in regarding Stopover as a specialisation of Airport.
This is a very attractive solution, as the stopover automatically retrieves the name

of the airport by inheritance and adds the departure and arrival times by
specialisation.

Figure 3.16 Modelling with inheritance of sentences 8 and 9

Figure 3.17 More sophisticated modelling of sentences 8 and 9

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�

�
�����������
��������������

��
��� ��

����#��

���
���

��	�

$�������% .��
�#��

��
��� ��"�	�
����#��"�	�

+���

+���

�

�

+���

+���

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�

�
�����������
��������������

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�

��
��� ��

����#��

���
�#��

$�������%

���
���

��	�
+���

+���

+���

�

+���

�

11_Chapter_03_Roques_NEW.fm Page 85 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system86

Yet, we cannot recommend that you use this solution (Figure 3.16): can we really
say that a stopover is a type of airport; can we guarantee that the Stopover class is
100% in accordance with the specifications of its superclass? Does a stopover serve
cities, can a stopover act as a point of departure or arrival for a flight? If we add the
open and close operations to the Airport class, will they apply to Stopover? In actual
fact, it does not concern an interface inheritance, but much rather a facility, of
which an unscrupulous designer could make use in order to retrieve automatically
the name attribute of the Airport class, together with its future access methods. This
use of inheritance is called an implementation inheritance and furthermore, it is
becoming increasingly advised against. Besides, if, one day, we want to specialise –
in the business sense – airports into international and regional airports, for
example, we will have to manage a multiple inheritance immediately.

Instead, why not consider this notion of stopover as a third role played by an
airport with regard to a flight? The arrivalTime and departureTime attributes then
become association attributes, as shown on Figure 3.17. The Stopover class then
disappears as such, and finds itself replaced by an association class, StopoverInfo. We
will notice the homogeneousness of the multiplicities to the side of the Flight class.

3.4 Step 4 – Modelling sentences 3, 4 and 5

We can now tackle the modelling process of booking.
Let’s reread sentences 3 to 5, which relate to it directly.

3. A customer can book one or more flights and for different passengers.

4. A booking concerns a single flight and a single passenger.

5. A booking can be cancelled or confirmed.

A preliminary question springs to mind immediately.

* 3.6 Do we really have to make a distinction between the concepts of customer
and passenger?

Answer 3.6Answer 3.6Answer 3.6Answer 3.6

At first sight, this distinction can seem superfluous, but in fact, it is absolutely
necessary! Let’s take the case of business trips: the customer is often the employer
of the person who travels for his or her job. This person then plays the role of
passenger and appreciates that he or she does not need to pay the amount of his or
her ticket in advance. The concept of customer is fundamental for invoicing and

11_Chapter_03_Roques_NEW.fm Page 86 Friday, November 28, 2003 1:19 PM

3.4 Step 4 – Modelling sentences 3, 4 and 5 87

accounting matters, whereas the concept of passenger is more useful for aspects
linked to the flight itself (boarding, etc.).

]

According to sentence 4, a booking concerns a single flight and a single passenger.
We can model this straight away by applying two associations.

As for sentence 5, it is conveyed simply by adding two operations in the Booking

class, following the model of sentence 2.

Nevertheless, be aware that a more concise solution is possible, namely considering
the passenger as a simple attribute of Booking. The main drawback concerns the
management of information on passengers. Indeed, it is very likely that we need to
manage the passenger’s details (address, telephone number, e-mail address, etc.),
even a frequent flyer card, which does not easily allow for the simplistic solution
shown on the figure below.

Figure 3.18 Direct modelling of sentences 4 and 5

Figure 3.19 Simplistic modelling of sentences 4 and 5

�������

��������
���*��	��

��������

��������

/��������

�����
��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�

�
�����������
��������������

�

�

�������

��������2�	�
��������
���*��	��

��������
�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�

�
�����������
��������������

�

11_Chapter_03_Roques_NEW.fm Page 87 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system88

We will therefore keep the first approach, which makes Passenger a separate class.
Let’s continue with our modelling process of booking. Sentence 3 is a little more

tricky because of its over-complicated wording.

** 3.7 Model sentence 3 and complete the multiplicities of the preceding
associations.

Answer 3.7Answer 3.7Answer 3.7Answer 3.7

The beginning of sentence 3 can be confusing due to the direct relationship that it
seems to imply between customer and flight. In fact, the verb “to book” masks the
concept of booking that is already identified. When modelling sentence 4, we saw
that a booking concerns a single flight. The beginning of sentence 3 can therefore
be re-worded more simply: a customer can make several bookings (with each one
concerning a flight). This is conveyed directly by the following diagram.

We are going to complete the diagram by first of all adding the two missing
multiplicities. It is clear that a booking has been made by one and only one
customer, and that the same flight can be affected by zero or more bookings. Next,
let’s add the Passenger class and complete the multiplicities. How many bookings
can the same passenger have? At first sight, at least one, otherwise he or she is not
a passenger. We are, in fact, managing bookings, not the flight itself. We therefore
need to consider persistent instances of passengers, even if they do not all have a
booking at present. Once again, this is a question from a modelling standpoint! For
the application that manages boarding of passengers, a passenger has one and only
one booking, but here it is necessary to anticipate “0..*”.

Figure 3.20 Beginning of modelling of sentence 3

� ���	�� ������ �������

��������
���*��	��

��������

�����

�

+���

11_Chapter_03_Roques_NEW.fm Page 88 Friday, November 28, 2003 1:19 PM

3.5 Step 5 – Adding attributes, constraints and qualifiers 89

Note the use of the direction triangle to indicate which way to read the association
name.

3.5 Step 5 – Adding attributes, constraints and

qualifiers

The model that we obtain through modelling the 10 sentences of the problem
statement currently resembles the diagram in the figure shown below.

Figure 3.21 Complete modelling of sentences 4 and 5

Figure 3.22 Preliminary modelling of case study 3

� ���	��
������ �������

��������
���*��	��

��������

��������

�����
/��������

� +���

+���

+���

��

���
���

��	�

����

���
���

�	���
��
+����$�������%

����#��

��
��� ��

���������	
���

������

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�

�
�����������
��������������

.��
�#��1�*�

��
��� ��"�	�

����#��"�	�
/��������

��������

��������

��������
���*��	��

�������

������

� ���	��

�

�

+���

+���

+���

+���

����

����

����
+���

+���

+���

�

�

�

11_Chapter_03_Roques_NEW.fm Page 89 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system90

Some classes do not have any attribute, which is rather a bad sign for an analysis
model representing domain concepts. The reason for this is simply because we
have only identified the attributes that arose directly from the sentences of the
problem statement. For sure, there are some missing…

* 3.8 Add the domain attributes that you consider to be essential.

Answer 3.8Answer 3.8Answer 3.8Answer 3.8

For each of the classes, we will list the essential attributes below.
Be careful! We do not need to list references to other classes in the attributes: this

is the very goal of identifying associations.

Airport:

• name

Customer:

• surname

• forename

• address

• telNum

• faxNum

AirlineCompany:

• name

StopoverInfo

• departureTime

• arrivalTime

Passenger:

• surname

• forename

11_Chapter_03_Roques_NEW.fm Page 90 Friday, November 28, 2003 1:19 PM

3.5 Step 5 – Adding attributes, constraints and qualifiers 91

Booking:

• date

• number

City:

• name

Flight:

• number

• departureDate

• departureTime

• arrivalDate

• arrivalTime

Note that we are using here the naming conventions that are recommended by the
original developers of UML. These conventions are not mandatory but prove useful
when your domain model is used afterwards at the design level.

Naming Conventions in UMLNaming Conventions in UMLNaming Conventions in UMLNaming Conventions in UML

Typically, you capitalise the first letter of every word in an attribute name except the
first letter (unlike the names of classes, which systematically start with an upper
case letter).

The same conventions apply to the notation of association roles, as well to
operations.

** 3.9 Complete the model with some relevant derived attributes.

Answer 3.9Answer 3.9Answer 3.9Answer 3.9

A derived attribute is a property, which is considered interesting for the analyst, but
which is redundant as its value can be computed from other elements available in
the model. It is shown for clarity even though it adds no semantic information.

A good example of this is provided by the notion of length of a flight. It is obvious
that this information is important: the customer will certainly want to know the

11_Chapter_03_Roques_NEW.fm Page 91 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system92

length of his or her flight without having to calculate it him or herself! The
information system must be capable of managing this notion. As it happens, the
information which is necessary for this is already available in the model thanks to
the existing attributes relating to the departure and arrival dates and times. This is
indeed derived information. The same reasoning applies for the length of each
stopover.

The diagram shown below summarises the new state of our model with all the
attributes.

Derived attribute in designDerived attribute in designDerived attribute in designDerived attribute in design

Derived attributes allow the analyst not to make an overly premature decision with
regard to design. However, as this concept does not exist in object-oriented
programming languages, the designer will be led to choose between several
solutions:

• Keep a plain attribute in design, which will have its access methods (get and set)
as do the other attributes: you must not forget to activate the update process of
the attribute as soon as an item of information is modified, on which it depends;

• Do not store the redundant value, but calculate it on request using a public
method.

Figure 3.23 Addition of business and derived attributes

���
���

��	�

���
���

���
�#��
+����$�������%

����#��

��
��� ��

������

��������

��������

������

�

�

+���

+���

+���

+���

����

����

����
+���

+���

+���

�

�

�

����

��	�

���������	
���

��	�

�����
�)��
��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�
3�������
�
�����������
��������������

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

� ���	��
� ���	�
*�����	�
�������
���2 	
*�02 	

�������

��������
���*��	��

����
�)��

/��������

� ���	�
*�����	�

11_Chapter_03_Roques_NEW.fm Page 92 Friday, November 28, 2003 1:19 PM

3.5 Step 5 – Adding attributes, constraints and qualifiers 93

The second solution is desirable if the request frequency is low and the algorithm
to calculate is simple. On the other hand, the first approach is necessary if the value
of the derived attribute is required to be available on a permanent basis, or if the
calculation is very complex and expensive. As always, the choice of the designer is
a matter of compromise…

*** 3.10 Refine the diagram even more by adding constraints and a qualified
association.

Answer 3.10Answer 3.10Answer 3.10Answer 3.10

We may well find a large number of constraints on a class diagram. It is better to
make an exhaustive list of them in the text that accompanies the model, and then
choose the most important ones with care, which we will then be able to insert in
the diagram. Otherwise, we run the risk of overloading the diagram and making it
difficult to follow.

On our example, we decided to show the strongest constraints between the
attributes. They correspond to business rules that will have to be implemented in
the final information system.

We have also emphasised the fact that a booking concerns a single flight and a
single customer, and is irreversible into the bargain. To change flight or customer,
the booking in question must be cancelled and a new one created. This can be
conveyed in UML by constraints {frozen}30 on the association roles concerned.

Finally, we have converted the number attribute of the Flight class into a qualifier
of the offers association between the AirlineCompany and Flight classes. Indeed, each
flight is identified uniquely by a number appropriate for the company. Note how

Example of conversion of a derived attribute into a design method

30. Even though {frozen} seems to have disappeared from the standard constraints with UML 2.0, you
can still use this interesting convention.

�������� �����

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

.��
�#��1�*�

4���
��� ��"�	�
4�����#��"�	�

&����5�����

11_Chapter_03_Roques_NEW.fm Page 93 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system94

the addition of the qualifier reduces the multiplicity to the side of the Flight class.
The figure presented below shows the completed class diagram.

3.6 Step 6 – Using analysis patterns

There’s room for even more improvement in our model!
To this end, let’s go back to the elements that concern the Flight class, as

represented on the following figure. Do you not think that the Flight class has many
different responsibilities, considering all its attributes and associations? It violates
a strong principle of object-oriented design, which some authors call high

cohesion.31

Figure 3.24 Addition of the constraints and qualifier

31. One of the most important responsibility assignment patterns (GRASP) according to C. Larman.
Refer once again to Applying UML and Patterns (2nd Edition), Prentice Hall, 2001.

���
���

��	�

���
��

���
�#��
+����$�������%

����#��

��
��� ��

������

��������

��������

�

�

+���

+���

+���

+���

����

����

+���
+���

+���

+���

�

�

����

��	�

���������	
���

��	�

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�
3�������

�
�����������
��������������

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

� ���	��
� ���	�
*�����	�
�������
���2 	
*�02 	

�������

��������
���*��	��

����
�)��

/��������

� ���	�
*�����	�

���������

�)��

$�������6
����#��"�	��4���
��� ��"�	�%

	
�������

���
����

���
����
$)�����������
76�*��������
��� ��!���%

������

�

11_Chapter_03_Roques_NEW.fm Page 94 Friday, November 28, 2003 1:19 PM

3.6 Step 6 – Using analysis patterns 95

**** 3.11 Propose a more sophisticated solution for modelling the flights.

Answer 3.11Answer 3.11Answer 3.11Answer 3.11

The Flight class from the preceding diagram has two different types of respons-
ibilities:

• The first concerns all information that can be found in the schedules of airline
companies: yes, there is indeed a nonstop flight from Toulouse-Paris Orly every
Monday morning at 7h10, offered by Air France… This is a generic flight, which
is available every week, or near enough every week.

• The second gathers information relating to bookings. You are not booking a
Toulouse-Paris Orly flight on Monday morning, but rather the Toulouse-Paris
Orly flight on 25 January 2004!

Figure 3.25 Detail of the model concerning the Flight class

���
���

��	�

���
�#��
+����$�������%

����#��

��
��� ��

������

��������

�

�

+���

+���

+���

����

+���

+���

���������	
���

��	�

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�
3�������

�
�����������
��������������

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

�������

��������
���*��	��

����
�)��

�)��

���
����

�

11_Chapter_03_Roques_NEW.fm Page 95 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system96

Looking at the preceding figure, we can see a type of instantiation relationship
between a GenericFlight class limited to the first type of responsibilities, and a Flight
class that gathers the responsibilities of the second type.

Indeed, a generic flight describes once and for all properties that will be identical
for numerous real flights.

Likewise, let’s suppose that a company cancels all its subsequent weekend flights
departing from airport X, as these are unavailable until further notice due to
considerable maintenance work being carried out every Saturday and Sunday. In
our first solution, this signifies that we are going to get rid of all corresponding
instances of the Flight class. At the end of the maintenance period of airport X, we
will have to recreate the instances of Flight with their valued attributes and their
links from scratch. If we take a GenericFlight into account, however, the values of the
attributes and the links of the flights leaving from X are not lost; there will simply
not be a corresponding, real instance of Flight for three months.

To update the model, all you have to do is:

• distribute the attributes, operations and associations of the former Flight class
among the two classes of GenericFlight and Flight;

• add an association, “1-*” describes, between GenericFlight and Flight.

Moreover, we have added two attributes in the GenericFlight class to indicate the
weekday of the flight, and the time of year when it is available. An additional
constraint links the values of the departureDate attributes of the Flight class and of
the GenericFlight class.

Figure 3.26 Separation of the responsibilities of the Flight class

���
���

��	�

���
�#��
+����$�������%

����#��

��
��� ��

������

��������

�

�

+���

+���

+���

����

+���

+���

���������	
���

��	�

�����

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�
3�������

�
�����������
��������������

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

�������

��������
���*��	��

����
�)��

�)��

���
����

�

������������� �

����

11_Chapter_03_Roques_NEW.fm Page 96 Friday, November 28, 2003 1:19 PM

3.6 Step 6 – Using analysis patterns 97

validityPeriod with a non-primitive data typevalidityPeriod with a non-primitive data typevalidityPeriod with a non-primitive data typevalidityPeriod with a non-primitive data type

The validityPeriod is not a simple attribute: we can ask it for its beginning, end,
length, etc. A solution has been put forward by M. Fowler32: create a class called
TimePeriod (as for Date previously), and then use it to specify the type of the
attribute.

32. Analysis Patterns: Reusable Object Models, M. Fowler, Addison-Wesley, 1997.

Modelling of the “non-primitive” type, TimePeriod

Figure 3.27 Distribution of responsibilities among GenericFlight and Flight

���������� ������������

���

����

�����

���

�

�

�

�

�

�

�

�

���
���

��	�

���
�#��
+����$�������%

����#��

��
��� ��

�������

���������

�

�

+���

+���

+���

����

+���

+���

+���

�

���������	
���

��	�

77	��������88
9�����������

���
��
��� ��"�	�
����#��"�	�
3�������
#�������/�����

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

�����

�
�����������
��������������

��
��� ���!���
����#��!���

�)��

���
����

��������

�

*��������
��� ��!����	 ���)������ ���
����������������#�������/�����

���������

���	����

������

���
����

�������

��������
���*��	��

����
�)��

+���

11_Chapter_03_Roques_NEW.fm Page 97 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system98

Finally, we must see to it that sentence 2 is respected. A flight is open or closed to
booking by order of the company. Here, we are dealing with the dated flight and
not the generic flight. It is the same for a possible cancellation… We must therefore
add a direct association between Flight and AirlineCompany, which would allow the
interaction described in Figure 3.5, whilst retaining the qualified association
between GenericFlight and AirlineCompany.

Figure 3.26 is therefore altered, as shown on Figure 3.27. Each of the two classes
– Flight and GenericFlight – has found back high cohesion.

Metaclass patternMetaclass patternMetaclass patternMetaclass pattern

The separation of responsibilities which was carried out previously can be
generalised in the form of an “analysis pattern”, which can be reused in other
contexts.

We identify an XX class,which has too many responsibilities, some of which are
not specific to each instance. We add a TypeXX class, we distribute the properties
among the two classes and we link them by a “* - 1” association. The TypeXX class
is described as a “metaclass”, as is GenericFlight on the figure below, as it contains
information that describes the XX class.

Note that the limited navigation from XX to TypeXX is not mandatory but is very
frequent (at least in design).

3.7 Step 7 – Structuring into packages

Our domain model is now almost finished. To make using it even easier and in
order to prepare the object-oriented design activity, we will structure it into
packages.

Reusable generic diagram

��������

::

����
����

"�
�::

����
���;

��

11_Chapter_03_Roques_NEW.fm Page 98 Friday, November 28, 2003 1:19 PM

3.7 Step 7 – Structuring into packages 99

Structuring into packagesStructuring into packagesStructuring into packagesStructuring into packages

Structuring a domain model is a tricky procedure. It must rely on two basic
principles: coherence and independence.

The first principle entails grouping the classes that are similar from a semantic
point of view. To do this, the following coherence criteria must be met:

• objective: the classes must return services of the same nature to users;

• stability: we isolate the classes that are truly stable from those that will most
probably develop in the course of the project, or even subsequently. Notably, we
distinguish business classes from application classes;

• lifetime of objects: this criterion enables classes to be distinguished, whose
objects have very different life spans.

The second principle consists in reinforcing this initial division by endeavouring to
minimise the dependencies between packages.

Figure 3.28 Domain model before structuring

���
���

��	�

���
��

����

��	�

���
�#��
+����$�������%

����#��

��
��� ��

���������	
���

��	�

�)��

�������

77	��������88
9�����������

���
��
��� ��"�	�
����#��"�	�
3�������
#�������/�����

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

� ���	��

� ���	�
*�����	�
�������
���2 	
*�02 	

$*��,��%

������

$*��,��%

������)��

���������
������

�����

��
��� ��!���
����#��!���

�
�����������
��������������

$*��,��%

��������

�������

����
�)��

��������
���*��	��

��������

/��������

� ���	�
*�����	�

$���-���%

�

�

+���

+���

+���

+���

����

�

+���

����

+���

+����

+���

�

+���

�
+���

�

11_Chapter_03_Roques_NEW.fm Page 99 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system100

** 3.12 Propose a division of the domain model into two packages.

Answer 3.12Answer 3.12Answer 3.12Answer 3.12

According to the aforementioned criteria, we can offer an initial division into two
packages:

• the first will concern the definition of flights, very stable in time, especially the
section specific to GenericFlight;

• the second will deal with bookings, together with all their associations.

Each package contains a set of classes that are tightly linked, but the classes of the
two packages are almost independent. This first division is indicated by the line that
acts as a partition in the diagram shown below.

Figure 3.29 Division of the model into two independent sections

���
���

��	�

���
��

����

��	�

���
�#��

+����$�������%

����#��

��
��� ��

���������	
���

��	�

�)��

�������

77	��������88
9�����������

���
��
��� ��"�	�
����#��"�	�
3�������
#�������/�����

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

� ���	��

� ���	�
*�����	�
�������
���2 	
*�02 	

$*��,��%

������

$*��,��%

������)��

���������
������

�����

��
��� ��!���
����#��!���

�
�����������
��������������

$*��,��%

��������

�������

����
�)��

��������
���*��	��

��������

/��������

� ���	�
*�����	�

$���-���%

�

�

+���

+���

+���

+���

����

�

+���

����

+���

+����

+���

�

+���

�
+���

�

11_Chapter_03_Roques_NEW.fm Page 100 Friday, November 28, 2003 1:19 PM

3.7 Step 7 – Structuring into packages 101

There is, however, another solution that consists in positioning the Flight class in
the same package as the Booking class, as illustrated on the following diagram. The
favoured criterion in this second division is the lifetime of the objects, with the
instantiated flights being closer to bookings than to generic flights.

**** 3.13 Find a solution that minimises coupling between the two packages.

Figure 3.30 Possible second division of the model

���
���

��	�

���
��

����

��	�

���
�#��

+����$�������%

����#��

��
��� ��

���������	
���

��	�

�)��

�������

77	��������88
9�����������

���
��
��� ��"�	�
����#��"�	�
3�������
#�������/�����

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

� ���	��

� ���	�
*�����	�
�������
���2 	
*�02 	

$*��,��%

������

$*��,��%

������)��

���������
������

�����

��
��� ��!���
����#��!���

�
�����������
��������������

$*��,��%

��������

�������

����
�)��

��������
���*��	��

��������

/��������

� ���	�
*�����	�

$���-���%

�

�

+���

+���

+���

+���

����

�

+���

����

+���

+����

+���

�

+���

�
+���

�

11_Chapter_03_Roques_NEW.fm Page 101 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system102

Answer 3.13Answer 3.13Answer 3.13Answer 3.13

In the two previous cases, we can state that at least one association traverses the
boundary between the packages. The problem of associations traversing two
packages resides in the fact that just one of them is enough to lead to a mutual
dependency – if it is bidirectional. In fact, the object designer has to hunt down
mutual or cyclical dependencies to increase the modularity and evolutionary
capability of his or her application.

In the first solution, a single association is involved, as recalled in the diagram
below. But this association produces a mutual dependency between the two
packages all by itself.

Navigability and dependencyNavigability and dependencyNavigability and dependencyNavigability and dependency

By default, an association between two classes, A and B, enables navigation in both
directions between objects of class A and objects of class B.

However, it is possible to limit this navigation to only one of the two directions
in order to eliminate one of the two dependencies induced by the association. UML
allows us to represent this navigability explicitly by adding onto the association an
arrow that indicates the only possible direction.

In our example, we will make a choice and favour a navigation direction in order
to rule out one of the two dependencies. It is clear that knowledge of the flight
concerned is a prerequisite of a booking, whereas a flight can exist by itself,
independently of any booking.

The previous diagram can therefore be modified so that it only shows the
dependency of the Bookings package towards the Flights package.

Figure 3.31 Mutual dependency between packages

��������

�������

����
�)��

��������
���*��	��

�������� $*��,��%

������

�����

��
��� ��!���
����#��!���

�
�����������
��������������

+��� �

11_Chapter_03_Roques_NEW.fm Page 102 Friday, November 28, 2003 1:19 PM

3.7 Step 7 – Structuring into packages 103

Let’s now take a closer look at the second solution. This time, two associations are
traversing the packages. What can we do to reduce the navigabilities of these
associations?

It makes sense to fix one direction of navigability from Flight towards
GenericFlight: a real flight is described by one and only one generic flight to which
it must have access, whereas a generic flight can exist by itself.

Figure 3.32 Minimised coupling between the packages

Figure 3.33 Inevitable mutual dependency for the second solution

��������

�������

����
�)��

��������
���*��	��

��������
$*��,��%

������

�����

��
��� ��!���
����#��!���

�
�����������
��������������

+���
�

��������

�����

��
��� ��!���
����#��!���

�
�����������
�������������� $���-���%

���������

������

���	����

$*��,��%

�����.���� ��

���������	
���

��	�

77	��������88
9�����������

���
��
��� ��"�	�
����#��"�	�
3�������
#�������/�����

+���

+���
����

�

11_Chapter_03_Roques_NEW.fm Page 103 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system104

Alas, for the second association, we already know that navigability is mandatory for
AirlineCompany towards Flight due to sentence 2, and which was illustrated by the
collaboration diagram in Figure 3.5.

Even if we remove the navigability of Flight towards AirlineCompany, we will end
up with two navigable associations in different directions. This is enough to impose
a mutual dependency between the packages, as demonstrated in Figure 3.33.

This study on the coupling of packages for the two proposed solutions therefore
makes the scales tip towards the first solution, which was not at all evident from the
outset.

Classes are distributed between both packages as indicated in Figure 3.34. The
Flights package can now lend itself to re-use, unlike the Bookings package.

The complete state of our model can now be synthesised by the following diagram.

Figure 3.34 Structural diagram of packages from the solution that has been retained

��������

&�� ���	��
&�/��������
&��������

������

&����
���
&����
�����	
���
&�.��
�#��1�*�

&�����
&������

&�9�����������

11_Chapter_03_Roques_NEW.fm Page 104 Friday, November 28, 2003 1:19 PM

3.8 Step 8 – Generalisation and re-use 105

3.8 Step 8 – Generalisation and re-use

After all this work on flight bookings, we would like to expand the field of the
model by offering bus trips as well – a service that carrier companies will provide.

A bus trip has a departure city and a destination city, with associated dates and
times. The journey may entail stops in cities along the way.

A customer can book one or more trips and for one or more passengers.

*** 3.14 By analogy with the previous figure, propose a domain model for booking
bus trips.

Figure 3.35 Complete model of the flight booking system

������

����

��	�

���
��

���
���

��	�

+����$�������%

���
�#��

��
��� ��

����#��

.��
�#��1�*�

��
��� ��"�	�
����#��"�	�
3�������

���������	
���

��	�

�)��

�������

77	��������88
9�����������

���
��
��� ��"�	�
����#��"�	�
3�������
#�������/�����

$*��,��%

���������

���	���� ������

$���-���%

�����

��
��� ��!���
����#��!���

�
�����������
��������������

$*��,��%

��������

��������

� ���	��

� ���	�
*�����	�
�������
���2 	
*�02 	

$*��,��%

������

�������

����
�)��

��������
���*��	��

��������

/��������

� ���	�
*�����	�

����

+���

�

�

+���

+���

+���

�

+���

����

� +���

+���

�

+���

+���

+���
�

�

11_Chapter_03_Roques_NEW.fm Page 105 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system106

Answer 3.14Answer 3.14Answer 3.14Answer 3.14

The model is practically identical to the preceding one, including the division into
packages.

It is a little simpler for two reasons:

• the notion of airport does not have an equivalent, and the City class is directly
associated with the JourneyByBus class;

• the distinction between Flight and GenericFlight does not seem to be a
transferable notion, as trips by bus are not as regular and, moreover, are not
scheduled in advance.33

Figure 3.36 Domain model for booking bus trips

33. This is just an assumption! If it is relevant, we can imagine having a Terminus class identical to
Airport. Then, the BusTrips package could well be identical to Flights!

� �"��
�

����

��	�

����#��

��
��� ��

���

+����$�������%

.��
1�*�

����#��"�	�
��
��� ��"�	�
3�������

������

"� �-
������

��	�

��*������

<� ������� �

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�
3�������

�
�����������
��������������

$*��,��%

��������

� ���������

� ��������

����
�)��

��������
���*��	��

������

$*��,��%
� ���	��

� ���	�
*�����	�
�������
���2 	
����0

��������

/��������

� ���	�
*�����	�

�

�

+��� +���

+���

+���

+���

�

�

�

+���

�

11_Chapter_03_Roques_NEW.fm Page 106 Friday, November 28, 2003 1:19 PM

3.8 Step 8 – Generalisation and re-use 107

It is plain to see that Figures 3.35 and 3.36 share numerous similarities:

• some classes feature in both models: City, Customer, Passenger;

• some classes are related to each other: BusBooking and Booking, StopoverInfo and
StopInfo, etc.

We will therefore attempt to make these models merge by factorising the concepts
as far as possible, in order to be able to extend their scope even further if need be
(booking cruises, etc.).

*** 3.15 Propose a merged logical architecture, which is as flexible as possible.

Answer 3.15Answer 3.15Answer 3.15Answer 3.15

Two main tasks must be carried out:

• Isolation of the shared classes into new packages, so that we can re-use them;

• Factorisation of the shared properties into abstract classes.

First, let’s begin by identifying and grouping together the shared classes.

Figure 3.37 Isolation of the City class in a new re-usable package

� �"��
�

<� ������� �

��
��� ��!���
��
��� ��"�	�
����#��!���
����#��"�	�
3�������

������

���
���

��	�

���
��

9�����
��

����

��	�
��
��� ��

����#��

���

+���

+���

+���

�

�

+���

����

+���

11_Chapter_03_Roques_NEW.fm Page 107 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system108

The City class is very important for the description of flights and bus trips. In the
model of Figure 3.36, we have actually re-used the existing City class, which has
immediately created an unjustified dependency between the BusTrips and Flights
packages. Instead of going about it this way, it would be more apt to isolate it into
a separate package, which will be able to be re-used at any time; indeed, which will
even be able to be bought off-the-shelf, with its instantiation per country...

So that this new package is really a re-usable component, it must not depend on
application packages which contain the Airport and BusTrips classes. To this end, we
have already seen that it was sufficient to act on the navigability of the associations
concerned, as indicated on the diagram below.

The Customer and Passenger classes also feature in both types of bookings. It is
therefore in our interest to isolate them in a new package, as was done for the City
class. But it would not be wise to group these three shared classes together in the
same package, simply because they are a feature of both model types. Indeed, the
concepts that they represent bear no relation to each other…

After this first task of isolating the re-usable shared classes, the logical architecture
is presented in the form of the above structural diagram.

We must now factorise the shared parts.
Let’s begin with what is most obvious: the similarity between the FlightBookings

and BusBookings packages sticks out a mile. The only difference concerns the
FlightBooking (previously called Booking, and renamed for clarity) and BusBooking
classes: they have the same attributes and operations and almost the same

Figure 3.38 Identification of the re-usable package, Geography

����
����

�������������

������

9�����
��

��������
�������

� �"��
�

� ���������

� �

11_Chapter_03_Roques_NEW.fm Page 108 Friday, November 28, 2003 1:19 PM

3.8 Step 8 – Generalisation and re-use 109

associations. An abstract superclass, Booking, is therefore essential from a logical
point of view, as illustrated on the following diagram.

The abstract class, Booking, as well as the two classes of Customer and Passenger,
which are shared by the two methods of transport, are isolated in a new package
called Bookings. This package is called a generalised package, in comparison with
the two packages of FlightBookings and BusBookings. Indeed, the two specialised
packages inherit the classes of Bookings, and have the right to redefine some of
them.

The overall diagram of the packages that are thus obtained is represented in the
following figure.

Figure 3.39 Insertion of the abstract class, Booking by generalisation

� ���	��

� ���	�
*�����	�
�������
���2 	
�02 	 $��,��%

������

�������

����
�)��

��������
���*��	��

�������� ������
�����

/��������

� ���	�
*�����	�

��������

������������
�*��	���������������

� ��������
�*��	�� ����������

�������� ��������

$*��,��% $*��,��%

�����
�*��	��������

<� ������� �
�*��	�� �"��
��

� �

� +��� +��� �

11_Chapter_03_Roques_NEW.fm Page 109 Friday, November 28, 2003 1:19 PM

3 Case study: flight booking system110

BibliographyBibliographyBibliographyBibliography

Figure 3.40 Insertion of the generalised package, Bookings

[Booch 99] The Unified Modeling Language User Guide, G. Booch, Addison-

Wesley, 1999.

[Coad 97] Object Models: Strategies, Patterns and Applications (2nd Edition),

P. Coad, D. North, M. Mayfield, Prentice Hall, 1997.

[Fowler 97] Analysis Patterns: Reusable Object Models, M. Fowler, Addison-

Wesley, 1997

[Fowler 03] UML Distilled (3rd Edition), M. Fowler, K. Scott, Addison-Wesley,

2003.

[Gamma 95] Design Patterns: Elements of Reusable Object-Oriented Software,

E. Gamma et al., Addison-Wesley, 1995.

��������

�����������
�������

� ���������

 ����������
�������

�������������

� �"��
� ������

9�����
��
��������
�������

11_Chapter_03_Roques_NEW.fm Page 110 Friday, November 28, 2003 1:19 PM

3.8 Step 8 – Generalisation and re-use 111

[Hay 96] Data Model Patterns: Conventions of Thought, D. Hay, Dorset

House Publishing, 1996.

[Larman 97] Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design, C. Larman, Prentice Hall, 1997.

[Larman 01] Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design (2nd Edition), C. Larman, Prentice Hall, 2001.

[Rumbaugh 91] Object-Oriented Modeling and Design, J. Rumbaugh et al., Prentice

Hall, 1991.

11_Chapter_03_Roques_NEW.fm Page 111 Friday, November 28, 2003 1:19 PM

11_Chapter_03_Roques_NEW.fm Page 112 Friday, November 28, 2003 1:19 PM

4

Aims of the chapter

By working through several short exercises, this chapter will allow us to complete
our overview of the main difficulties involved in the construction of UML class
diagrams with advanced topics such as:

• distinction between aggregation and composition;

• correct use of generalisation and abstract classes;

• correct use of association classes;

• constraints between associations (xor, subset, etc.);

• new analysis patterns such as “Party” or “Composite”.

We will also push on further the business modelling of an organisation, which was
introduced in Chapter 2 with the case study of the training process, from the
functional view. We will now tackle it from the static view and try to discover the
main business entities. This will lead us to provide a detailed illustration of the
benefits gained by a lexical analysis of a text, within the context of initiating domain
class diagrams. Note that we will enhance activity diagrams with object flows
corresponding to the business entities further on in Chapter 6.

Complementary
exercises 4

12_Chapter_04_Roques_NEW.fm Page 113 Friday, November 28, 2003 1:19 PM

4 Complementary exercises114

Structural relationships between classesStructural relationships between classesStructural relationships between classesStructural relationships between classes

Let’s study the following sentences:

1. A directory contains files

2. A room contains walls

3. Modems and keyboards are input/output peripherals

4. A stock-exchange deal is a purchase or a sale

5. A bank account can belong to an individual or a legal entity

6. Two people can be married.

** 4.1 Determine the appropriate static relationship (generalisation, composition,
aggregation or association) for each sentence of the previous problem
statement.

Draw the corresponding class diagram.

Feel free to propose various solutions for each sentence.

Answer 4.1Answer 4.1Answer 4.1Answer 4.1

Sentences 1 and 2 illustrate what differentiates aggregation from composition:

1. A directory contains files;

2. A room contains walls.

“A directory contains files”: at least one aggregation is involved here. Let’s see if we
can go further and form a composition from it. First criterion to verify: the
multiplicity must not be higher than one on the side of the composite. This is
indeed the case in the first sentence, as a file belongs to one and only one directory.
Second criterion: the lifetime of the parts is to depend on that of the composite.
Here again, this is the case as the destruction of a directory brings about the
destruction of all the files that it contains. We can therefore consider the first
sentence as an example of composition.

Let’s now carry out the same analysis on the second sentence, “A room contains
walls”. This time, after verifying the first criterion, we have to abandon
composition, as a wall can belong to two adjoining rooms (or even more). The
relationship is therefore only an aggregation one. In order to complete the
multiplicities, we can consider that a room contains at least one wall (circular!).

12_Chapter_04_Roques_NEW.fm Page 114 Friday, November 28, 2003 1:19 PM

Aims of the chapter 115

Sentences 3 and 4 are modelled in UML by generalisation relationships:

3. Modems and keyboards are input/output peripherals;

4. A stock-exchange deal is a purchase or a sale.

The only difference is the wording of sentence 4, which corresponds to a
specialisation; whereas that of sentence 3 is a generalisation. However, we can add
some precision to both models:

• Superclasses are abstract: they cannot be directly instantiated, but always by the
means of one of their subclasses;

• The generalisation tree of sentence 3 is incomplete: there are many other input/
output peripherals, such as monitors, mice, etc.

Figure 4.1 Class diagram of sentences 1 and 2

Figure 4.2 Class diagram of sentences 3 and 4

���������

	�
�

�����������

����

�

	

��
����

�

����

����

����

��������	
����

�������
����

����� ��������

��������
���������

�������� ��
�

�
�
�
�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�

�
�
�
�

12_Chapter_04_Roques_NEW.fm Page 115 Friday, November 28, 2003 1:19 PM

4 Complementary exercises116

Sentence 5 is not a simple generalisation:

5. A bank account can belong to an individual or a legal entity.

Indeed, the verb phrase used is not “is a” or “is a type of”, but “belongs to”. It
therefore concerns a simple association. An initial simplistic approach consists in
describing two optional associations, as illustrated by the following figure.

Yet, this solution does not account for the exclusive “or” at the end of the sentence.
Indeed, the preceding diagram can be instantiated just as well with a BankAccount
object, which is simultaneously linked to an Individual and a LegalEntity, as with a
BankAccount linked to no object. This is not what we want: a BankAccount object
must be linked either to an Individual, or to a LegalEntity, not to both at the same
time, but strictly to one of the two to the exclusion of the other.

In fact, two correct but very different solutions are possible, which consist in:

• Explicitly inserting the predefined constraint {xor} between the two associations
that bear a multiplicity strictly equal to 1;

• Inserting an abstract class by generalisation, with specialisation implicitly
playing the role of “exclusive or”.

Figure 4.3 Class diagram of sentence 5 – Incorrect solution

Figure 4.4 Class diagram of sentence 5 – First solution

 ��!"������

����������

����������

#���$����

%�&�
'�����

����

����

����

����

 ��!"������

����������

����������

#���$����

%�&�
'�����

����

����

�

�

�(���

12_Chapter_04_Roques_NEW.fm Page 116 Friday, November 28, 2003 1:19 PM

Aims of the chapter 117

The two solutions are equally valid in UML and correct. This is another good
example that shows that modelling is not an exact science with only one solution
for a given problem. The modeller therefore has the choice between these two
diagrams.

An argument in favour of the second solution is that we are probably interested
in factorising attributes (name, address, etc.) and operations in the abstract class.

The “Party” patternThe “Party” patternThe “Party” patternThe “Party” pattern

This method of modelling entities that have a unique name and address (as do
individuals or legal entities) by an abstract class and two specialised subclasses was
proposed by D. Hay.34

Figure 4.5 Class diagram of sentence 5 – Second solution

Modelling of the “Party” pattern

34. Data Model Patterns: Conventions of Thought, D. Hay, Dorset House Publishing, 1996.

 ��!"������ ���������� �����

%�&�
'����� #���$����

���� �

")�������*
+��)�(���
�

�����

����
�������

������ ,�&���������
�����
��������-�����
���������

12_Chapter_04_Roques_NEW.fm Page 117 Friday, November 28, 2003 1:19 PM

4 Complementary exercises118

Sentence 6 introduces the feature of defining a relationship between objects of the
same class

6. Two people can be married.

This is conveyed very simply by an association between this given class and itself.
The multiplicities of the diagram are deduced from the current law in most Western
countries: a person is not obliged to marry, but cannot be married to several people
at the same time!

If we want to add the constraint that marriage can only unite people of the opposite
sex,35 we then have two solutions again:

• Explicitly introduce an enumerated attribute for sex: (m, f) and a constraint on
the association;

• Introduce two subclasses of Male and Female as demonstrated on the following
figure.

Figure 4.6 Class diagram of sentence 6

35. Here, it depends more on the country (refer to Netherlands for example ...).

Figure 4.7 Completed class diagram of sentence 6

#���$����

�������������

���������
���������

����

����

#���$����

��().)/�*)+0

���������

��1�)����
�)�+)���)����
��()������)������

����

����

�������������

12_Chapter_04_Roques_NEW.fm Page 118 Friday, November 28, 2003 1:19 PM

Aims of the chapter 119

To complete the model, let’s take into account the new possibility offered by PACS
(“pacte civile de solidarité”, a French law on civil partnership not restricted to
people of the same gender). Once again, this leads to a reflexive association – this
time, it is unconstrained…

Nevertheless, we will notice that it is imperative to add a constraint that forbids
people from being married to someone, and simultaneously being in a civil
partnership with someone else, or in a civil partnership with oneself…

Moreover, the addition of the marriage date, type of contract, etc. illustrates the use
of the association class. As UML does not allow an association class to have a name
on the association and another one on the class, the diagram then becomes:

Figure 4.8 Version of the class diagram of sentence 6 with specialisation

Figure 4.9 Addition of the possible relationship provided for by PACS

#���$����

��
� 	���
��������������

���� ����

����������

��
� 	���
��������������

��������������	�������
�	����

����

����

���� ����

12_Chapter_04_Roques_NEW.fm Page 119 Friday, November 28, 2003 1:19 PM

4 Complementary exercises120

** 4.2 Model the use of ballpoint pens and rollerball pens.

The problem statement is deliberately vague!

Answer 4.2Answer 4.2Answer 4.2Answer 4.2

Such an imprecise problem statement is not rare at the beginning of real projects…
However, we will easily be able to construct a relevant class diagram by using our

everyday knowledge of ballpoint and rollerball pens.
So, we will start by identifying two classes: Ballpoint and Rollerball, which have

quite a number of shared properties (colour, brand, etc.), but which also differ
from each other (for example, let’s consider that ballpoint pens have a top, whereas
rollerball pens only have a retractable tip). A well-informed modeller sees the
possibility here of a generalisation/specialisation relationship straight away. He or
she therefore inserts an abstract class to factorise the shared characteristics.

The model might already look like the following diagram:

Figure 4.10 Completed version of the class diagram of sentence 6, together with associa-
tion classes

#���$����

�������
+�������

����������

��
� 	���
�

������&�

����
��������

�������

	���������
������

2�$�

�����������
����

�������

�������)��)
��!��)��)����
+�

����

����

�(���

��������

12_Chapter_04_Roques_NEW.fm Page 120 Friday, November 28, 2003 1:19 PM

TE
AM
 F
LY

Aims of the chapter 121

Take note of the multiplicities between Ballpoint and Top: a ballpoint pen can lose
its top, and a top the barrel of its original ballpoint pen. This notion of Barrel is
interesting, and shared by ballpoints and rollerballs alike. To create uniformity
with Top, we will therefore add it to our diagram.

The relationship between Pen and Barrel is obviously one of composition. On the
other hand, coherence of lifetimes does not necessarily exist between Ballpoint and
Top, as my three-year-old daughter proves to me on a daily basis! Also note that the
inkLevel attribute has been moved to the Barrel class. This move of an attribute from
one class to the other is customary, especially in the case of composition or
aggregation relationships, in order to make classes more uniform and cohesive.

Figure 4.11 First version of the class diagram

Figure 4.12 Second version of the class diagram

���

��
���
�����
��!%�$�

1����/0

��

����

�������3��/0
���13��/0

 �

�����

���,�3��/0
��!�,++3��/0

3��

��
���

	������
����

����������
������

���� ����

���

��
���
�����

1����/0

��

����

�������3��/0
���13��/0

 �

�����

���,�3��/0
��!�,++3��/0

3��

��
���

	

��
����

�����������

 ����

1��&��
��4�
��!%�$�

� �

���� ����

12_Chapter_04_Roques_NEW.fm Page 121 Friday, November 28, 2003 1:19 PM

4 Complementary exercises122

To make our model even more complete, let’s introduce the concept of ballpoint
pen with an included eraser, and especially a class to model the user and/or the
owner of the Pen.

Notice the wise use of the two associations between the Person and Pen classes: we
thereby make a precise distinction between the multiplicities that are totally
different in the two cases, thanks to the names of the roles to the side of Person:

• A person can play the role of owner with regard to any number of pens, but a pen
has one and only one owner;

• A person can use a maximum of one pen at any one time, and a pen can have a
maximum of one user.

The specialisation of Ballpoint in BallpointWithEraser stands out for the following
reasons:

• Ballpoint has not become an abstract class and possesses only one specialisation;

• The specialisation only concerns the behaviour.

We must therefore remember that a superclass is not necessarily abstract
(otherwise, we would not need visual help in the form of italics as for Pen), and that
the generalisation/specialisation relationship does not always lead to an
inheritance “tree”.

Figure 4.13 Third version of the class diagram

������

����

�������5���

�1���

��������������
����������������������

���

��
���
�����

1����/0

 ����

1��&��
��4�
��!%�$�

��������
���������

��

����

�������3��/0
���13��/0

 �

�����

���,�3��/0
��!�,++3��/0

3��

��
���

���������������
������������

 �

��������'�����

�����/0

���� ����

� ���� � �

���� ����

12_Chapter_04_Roques_NEW.fm Page 122 Friday, November 28, 2003 1:19 PM

Aims of the chapter 123

The constraint {frozen}The constraint {frozen}The constraint {frozen}The constraint {frozen}

This standard constraint in UML36 allows the addition of a detailed item of
information, which may be interesting on a class diagram:

• With regard to an attribute, the fact that its value never changes during the life of
an object (for example, the brand of a Pen);

• With regard to an association, the fact that a link between two objects can never
be modified after its creation (for example, the composition link between Pen
and Barrel, but not the one between Ballpoint and Top).

By default, the attributes and associations are not {frozen}.
N.B. Likewise, we could have specified that the inheritance tree of Pen is not
complete (there are certainly types of Pen other than rollerballs and ballpoints) by
attaching the predefined constraint, {incomplete} to it.

36. The constraint {frozen} which existed in recent versions of UML (see for instance the description
of UML 1.3 in the UML User Guide from G. Booch) seems to have disappeared from the standard
constraints as far as concerns UML 2.0. But as we can define our own constraints, we can still use
this interesting convention...

Second version of the model with the {frozen} constraints

���

��
���)�+��4���
�����)�+��4���

1����/0

�+��4���

 ����

��4�)�+��4���
1��&��
��!%�$�

��

����

�������3��/0
���13��/0

 �

�����

���,�3��/0
��!�,++3��/0

3��

��
���)�+��4���

� �

���� ����

12_Chapter_04_Roques_NEW.fm Page 123 Friday, November 28, 2003 1:19 PM

4 Complementary exercises124

*** 4.3 Propose several solutions for modelling the following sentence: ”A country
has a capital”.

Draw corresponding class diagrams and indicate the advantages and
disadvantages of the different solutions.

Answer 4.3Answer 4.3Answer 4.3Answer 4.3

A sentence as simple as “A country has a capital” will enable us to illustrate the
highly subjective character of the activity known as modelling, and the often
difficult choice that must be made between simplicity and flexibility.

Indeed, we will propose no less than four different solutions to this question,
from the most simple to the most refined…

First solution, the most compact one possible: a Country class with a simple capital
attribute. This is sufficient if we only want to retrieve the name of the capital of each
country and, for example, create a small table with two columns, with the countries
ordered alphabetically…

It is difficult to make it any more simple! Subsequently, we will be able to
complete the model easily by adding some attributes to the Country class: name,
language, currency, etc.

On the other hand, what do we do if we want to add properties to the concept
of capital, such as population, surface area, etc.? The previous solution is limited
here, and we are then compelled to promote capital to the rank of class. Here, we
encounter an example of the difference between class and attribute, which has
already been discussed when we dealt with Question 3.2 in the preceding chapter.

Figure 4.14 Compact solution

2������

������

12_Chapter_04_Roques_NEW.fm Page 124 Friday, November 28, 2003 1:19 PM

Aims of the chapter 125

In order to continue with this simple solution, we can wonder – and rightly so – if
the association is not an aggregation, indeed a composition? Yes, a country has a
capital, and aggregation evokes capacity in the cartographical sense. Can we now
go further and speak of composition?

A capital belongs to a country, and only one at that: this verifies the first criterion
of the composition. But what happens if a country is destroyed? If the capital is also
destroyed, then this is composition; but if not, it is only an aggregation. Here, we
are dealing with a difficulty arising from the fact that the question does not make
any reference to context, which would enable us to know how these concepts of
country and capital are going to be used. Furthermore, “destroying” a country can
just as easily mean its conquest during a war as its deletion from the database of our
computer application… In the second case, composition is not disputable, whereas
in the first, it is significantly less clear. Some thought is needed to understand that,
here too, the capital disappears as an administrative concept, even if it is not
physically destroyed. The diagram therefore takes account of this, as shown on
Figure 4.16.

As a matter of fact, as we work through the sentences, we feel that we are missing
a more general concept than capital: the notion of city. Let’s assume that a country
is annexed: its capital no longer exists as an administrative entity, but the city itself
will not necessarily be destroyed! So, if we wish to define a more general model, it
is interesting to model the fact that a capital is a city that plays a particular role
within a country. An incomplete first solution is given below.

Figure 4.15 “Natural” solution

Figure 4.16 Refined “natural” solution

2������

����

��&��&�
��������

2�����

����
����
�����
���+���"���

��

� �

2������

����

��&��&�
��������

2�����

����
����
�����
���+���"���� �

12_Chapter_04_Roques_NEW.fm Page 125 Friday, November 28, 2003 1:19 PM

4 Complementary exercises126

It would be a pity not to take advantage of the insertion of the more general concept
of city to express the fact that a country contains cities, of which only one plays the
role of capital. We will therefore add a multiple aggregation between Country and
City, and a constraint to demonstrate the fact that the capital of a country is
inevitably one of its cities. The model now becomes markedly more sophisticated…

Important: in our concern for generality, we have considered that a city can belong
to several countries, and this also arms us against possible comments on the
particular past or future status of towns, such as Berlin or Jerusalem… As a result,
the relationship can only be one of aggregation.

Finally, if we want to make it clear that a capital is a city, but that it possesses
specific properties, we must then make it a subclass and not a role, as shown on the
diagram presented below. The <<refine>> dependency is there to indicate that the
multiplicity of 1 to the side of Country on the composition with Capital replaces the
less constraining multiplicity of “1..*” on the side of Country for cities. Note that
UML 2.0 allows that generalisation may be applied to associations as well as to
classes (even if most modelling tools do not...). So instead of the <<refine>>
dependency, an alternate solution would have been to draw a generalisation from
the composition “Country – Capital” to the aggregation “Country – City”.

Figure 4.17 Insertion of the concept of city

Figure 4.18 More complete solution with a constraint

2������

����

��&��&�
��������

2���

����
����
�����
���+���"���

� �

������

2������

����

��&��&�
��������

2���

����
����
�����
���+���"���� �

������

��������

���� ����

12_Chapter_04_Roques_NEW.fm Page 126 Friday, November 28, 2003 1:19 PM

Aims of the chapter 127

The Capital class can now receive additional attributes or associations, if the need
arises.

Compare the model we have just constructed with that of Figure 4.14. Both are
correct, “legal” in UML and express the initial sentence in their own way. The first
is very compact and simple to implement, but not very future-proof with regard to
new demands of a user having to be met. The second is distinctly more complex to
implement, but very flexible; it will last a long time in terms of having to develop
to accommodate the needs of users. The choice between the two solutions must
therefore be made on the basis of context: should we favour simplicity and
deadlines for its construction, or, on the other hand, durability and possibilities for
further development?

Finally, we should note that the superclass City in Figure 4.19 is not an abstract
class. This is coherent as it only possesses one subclass. Indeed, the aim of an
abstract class is to factorise properties that are shared by several subclasses, and not

Figure 4.19 Solution with a concrete superclass

Figure 4.20 Solution with a concrete superclass

2������

����

��&��&�
��������

2���

����
����
�����
���+���"���

�

�

66��+���77

���� ����

2�����
���������������
����������

2������

����

��&��&�
��������

2�����

����

����
����
�����
���+���"���66��+���77

	������
����

,�������2���

�

�

���� ����

12_Chapter_04_Roques_NEW.fm Page 127 Friday, November 28, 2003 1:19 PM

4 Complementary exercises128

just by one! Nevertheless, a more complex solution would entail making City
abstract, and introducing a second subclass called OrdinaryCity (as in Figure 4.20)…

**** 4.4 Propose a sophisticated solution that enables the following file management
system to be modelled:

1. The files, shortcuts and directories are contained in directories and have a
name;

2. A shortcut can involve a file or a directory;

3. Within a given directory, a name can only identify one element (file, sub-
directory or shortcut).

Answer 4.4Answer 4.4Answer 4.4Answer 4.4

Let’s begin by modelling each of the three sentences in turn.

1. The files, shortcuts and directories are contained in directories and have a
name.

Each of the three concepts must be represented by a class. The containment is
modelled by a composition, as the multiplicity on the containing side is equal to 1,
and the destruction of a directory brings about the destruction of everything that it
contains.

Two associations in mutual exclusion convey the second sentence perfectly:

2. A shortcut can involve a file or a directory.

Figure 4.21 Modelling of sentence 1

���������

����

��������

����

	�
�

����

����
�
�

�

���� ����

12_Chapter_04_Roques_NEW.fm Page 128 Friday, November 28, 2003 1:19 PM

Aims of the chapter 129

Modelling becomes more complicated with the third sentence:

3. Within a given directory, a name can only identify one element (file, sub-
directory or shortcut)..

The most obvious solution entails qualifying each of the three compositions with
the name attribute. In fact, this qualifier represents the relative name of each
element in its incorporated folder. We will note the reduction of the multiplicity on
the other side of the qualifier. To model the absolute name, a derived attribute is
entirely suitable, as it can be deduced from the succession of relative names.

What do you think of the following diagram, which brings together the models
of the three sentences?

Figure 4.22 Modelling of sentence 2

Figure 4.23 Modelling of sentence 3

��������

����

���� ����

�������� ��������

��������� 	�
�

�(���

���� ����

� �

����

����

����

���������

8)����
�������

8)����
������� 8)����
�������
��������� �������� 	�
�

�

����

�

�

���� ����

12_Chapter_04_Roques_NEW.fm Page 129 Friday, November 28, 2003 1:19 PM

4 Complementary exercises130

The model that we have obtained does seem to respond to the three sentences of
the problem statement. However, it is not entirely correct! According to Figure 4.24,
two files or two shortcuts cannot have the same name within an identical directory,
but on the other hand, there is nothing stopping a file and a shortcut from having
the same name…

This slight flaw actually brings a major problem to the fore: we need a single
qualifier for every type of element contained within a directory and not a qualifier
for each one. As it happens, we are taking three compositions into account: we
therefore need to alter the model radically in order to have only one composition
to qualify. How do we do this?

The solution is actually contained in the wording of the third sentence:

3. Within a given directory, a name can only identify one element (file, sub-
directory or shortcut).

The word “element” must allow us to find the saving solution… What do directories
contain? Files, shortcuts and other directories. Yes, but still, what do we call them
all? Elements! If we add an abstract superclass, Element, which generalises the files,
shortcuts and directories, the three compositions are reconciled into one with a
single qualifier, and Bob’s your uncle! Below is the resulting model:

Figure 4.24 First version of the model

����

����

����

���������

8)����
�������

8)����
�������

8)����
�������

��������

	�
�

�

����

�

�

����

����

��������

���������(���

����

�

����

�

12_Chapter_04_Roques_NEW.fm Page 130 Friday, November 28, 2003 1:19 PM

Aims of the chapter 131

What is surprising about this solution, and what explains why it is not so easy to
find, is the double asymmetrical relationship between the Directory and Element
classes:

• Directory is a composite in relation to Element

• Directory is a subclass of Element.

The “composite” patternThe “composite” patternThe “composite” patternThe “composite” pattern

The solution demonstrated in the following figure has been described more
generally in the reference work on Design Patterns,37 under the name of
“composite” pattern.

This pattern provides an elegant solution for the modelling of tree-like patterns
that represent element/compound hierarchies. The client can thereby deal with
individual objects (leaves) and their combinations (composites) in the same way.

Figure 4.25 Final refined version

37. Design Patterns: Elements of Reusable Object-Oriented Software, E. Gamma et al., Addison-Wesley,
1995.

�������

������������
����+�����������

���������
����������
����������
���������

��������

8)����
���-���

�������� ��������

����
��������� 	�
�

8)����
���-��� 8)����
���-���

�(���
� �

���� ����

�

����

12_Chapter_04_Roques_NEW.fm Page 131 Friday, November 28, 2003 1:19 PM

4 Complementary exercises132

Case study 4 – Problem statementCase study 4 – Problem statementCase study 4 – Problem statementCase study 4 – Problem statement

We are going to resume the problem statement of the case study on training
requests, which has already been dealt with from the functional view in Chapter 2.
This time, we will reformulate it and simplify it slightly.

1. The training process is initialised when the training manager receives a training
request on behalf of an employee.

2. This application is acknowledged by the person in charge who qualifies it and
then forwards his or her agreement or disagreement to the person who is
interested.

3. In the case of agreement, the person in charge looks in the catalogue of
registered courses for a training course corresponding to the application.

4. He or she informs the employee of the course content and suggests a list of
subsequent sessions to him or her.

5. When the employee sends back his or her choice, the training manager enrols
the entrant in the session with the relevant training body.

6. The training manager subsequently checks the invoice that the training body
has sent him or her before forwarding it to the bookkeeper of purchases.

We have already identified the business workers involved in the training process
(Answer 2.6). We must now tackle the latter seen from the static view and try to
discover the main business entities. For this, a lexical analysis of the text of the
problem statement is highly recommended. In general, this technique is under
used, as it can seem tedious. Nevertheless, it is very effective for discovering
candidate objects in difficult cases, for example if the modeller knows very little
about the business domain.

Generic model of “composite”

�������

2�������� %��+

����

�

12_Chapter_04_Roques_NEW.fm Page 132 Friday, November 28, 2003 1:19 PM

Aims of the chapter 133

* 4.5 Model sentence 1 by using the stereotypes of the business modelling profile
(as stated in Chapter 2).

Answer 4.5Answer 4.5Answer 4.5Answer 4.5

We are going to carry out a detailed linguistic analysis of each sentence of the case
study.

1. The training process is initialised when the training manager receives a training
request on behalf of an employee.

A simplistic analysis of nouns and noun phrases provides the following entities:
training process, training manager, training request, employee. Let’s consider each
of the candidates in turn:

(a) Training process has already been identified in Chapter 2 as a business
process: it will not appear on the class diagram.

(b) On the other hand, training manager and employee will feature on it, as they
have been identified as business workers.

(c) Articles “a” or “the”. The indefinite article (“a”) is an indication that the
name is being used generically, whereas the definite article (“the”) is an
indication that the name is unique in the context of the sentence. Be careful,
though: the “a” article often means “a, in general” (as in: when the training
manager receives an application for training), but sometimes also “one and
only one” to indicate that the plural would not be possible (as in: on behalf
of an employee). In this case, we obtain a multiplicity of 1 on an association.

We easily deduce the following class diagram from it.

Figure 4.26 Static modelling of sentence 1

3������&)����&��

�����$��

3������&)��9����

�����

'��
����

�

�

�

12_Chapter_04_Roques_NEW.fm Page 133 Friday, November 28, 2003 1:19 PM

4 Complementary exercises134

** 4.6 Model sentence 2.

Answer 4.6Answer 4.6Answer 4.6Answer 4.6

Let’s continue our linguistic analysis with the second sentence of the case study.

2. This request is acknowledged by the person in charge, who qualifies it and then
forwards his or her agreement or disagreement to the person who is interested.

By carrying out – as for the first sentence – a simplistic analysis of nouns and noun
phrases, we obtain the following entities: request, person in charge, agreement,
disagreement, person who is interested.

(d) Indirect reference by “this”, “these”: a sentence using the word “this” almost
always refers to the subject of the preceding sentence. The concepts of
application and training request are therefore the same.

(e) Be careful of synonyms! It is obvious that person in charge is not a new
concept, but simply another form of training manager. It is not so obvious
with the person who is interested, which refers to the employee who put
forward the request.

(f) Possessives: “his/her”. We can convey possession in two ways: by an
association or an attribute. We choose association if both the possessor and
the possession are concepts. We choose attribute if the possession is a
simple property of the possessor.

(g) Coordinating conjunction, “or”. An “or exclusive” must evoke a
generalisation/specialisation relationship, but only if the specialised
concepts have different attributes and behaviours. In the reverse case, it
would be better to introduce a simple enumeration type. In our example, we
can consider that agreement or disagreement are specialisations of a response
entity relating to the request. Indeed, disagreement – unlike agreement – will
probably have a reason attribute.

(h) Verbs: the application is received by the person in charge, then
acknowledged and finally qualified. There’s no question of drawing three
associations to model all the actions that the training manager can carry out
with regard to the request. On the contrary, the class diagram must represent
a static view, which is valid at any time. We will therefore rename the
association between Training manager and Training request with a more
neutral verb (deals with) and, consequently, modify the multiplicities.

12_Chapter_04_Roques_NEW.fm Page 134 Friday, November 28, 2003 1:19 PM

Aims of the chapter 135

To complete the diagram, we have assumed that an employee cannot put forward
more than one request at any one time. We will note the multiplicities between
Training request and Response: a response is inevitabley linked to one and only one
request; a request can exist without a response (as long as it is not acknowledged).

** 4.7 Model sentence 3.

Answer 4.7Answer 4.7Answer 4.7Answer 4.7

3. In the case of agreement, the person in charge looks in the catalogue of
registered courses for a training course corresponding to the application.

Figure 4.27 Static modelling of sentence 2

'��
����

3������&)����&��

��������������
������
����������

"&������� ����&�������

 ��	����

3������&)��9����

�����������������
���������������
�������������
������������������

���������

�����

�

����

����

�

�

�

����

����

12_Chapter_04_Roques_NEW.fm Page 135 Friday, November 28, 2003 1:19 PM

4 Complementary exercises136

A new, quick analysis of nouns and noun phrases provides the following entities:
agreement, person in charge, catalogue, training course, request.

(i) Agreement, person in charge and request were identified previously.

(j) Container and content: catalogue is a container formed from training courses;
the two can give rise to entities if they bear attributes and behaviours. Such
is the case in our example. We must therefore examine the possibility of an
aggregation or a composition. Otherwise, the content may be a simple
attribute of the container.

(k) Plural: the plural on a noun (catalogue of training courses) often gives rise
to an entity in the singular, but with a multiplicity of “0..*” on an
association.

(l) Verbs: be careful, as verbs often correspond to actions carried out on the
entities (the person in charge searches for…). These actions are not generally
conveyed in the analysis class diagram. However, they give information on
the dynamics, and can give rise to sequence or collaboration diagram
fragments.

(m) Adjectives: these represent either attributes of an entity that has already
been identified, or a possibility of a generalisation relationship. Watch out:
they can also simply add “noise” to the text, as in our case where only
registered training courses have a noteworthy existence in the training process.

(n) Present participles: these often indicate an association between two entities.
For example, “a training course corresponding to the request” conveys the
creation of an association between the training course and request entities.

(o) Watch out for synonyms! Synonyms are often used to avoid repetition,
which makes the style heavy: course and training course are a good example
of this. The modeller has to drive out these synonyms and “reduce” them by
choosing a main entity name. We prefer the term course to training course.

All of these points result in the following class diagram.

Figure 4.28 Dynamic model fragment of sentence 3

.)3������&)����&��

������

�������&)������).:)������	��2�����)/��9����0

�������

�����
 ��������!

.)2���
�&��

12_Chapter_04_Roques_NEW.fm Page 136 Friday, November 28, 2003 1:19 PM

Aims of the chapter 137

** 4.8 Model sentence 4.

Answer 4.8Answer 4.8Answer 4.8Answer 4.8

4. He or she informs the employee of the course content and suggests a list of
subsequent sessions to him or her.

A basic analysis of nouns and noun phrases enables the following entities to be
noted down: employee, course, content, list, session.

(p) Indirect reference by a pronoun: “he/she”, etc. Pronouns are references to
another noun, which is often the subject of the preceding sentence. Here,
“he or she informs …” quite obviously concerns the person in charge.

(q) Employee and course were identified previously.

(r) Containment or possession: separate entity or attribute following the cases.
If we consider that a course has a content whose structure is complex
(prerequisites, objectives, detailed plan, etc.) and a behaviour, it is
completely justified to make an entity of it. As we emphasised previously, we
must examine the possibility of an aggregation or of a composition.

(s) Container: the word list simply indicates a multiplicity of “*” and often
provides a notion of sequence (UML constraint of {ordered}). We should
especially not identify a list entity at the time of the analysis stage: the choice
of container types is really the responsibility of the detailed design, indeed
that of the implementation.

Figure 4.29 Static modelling of sentence 3

��������������
������������

���������
��"�����

3������&)��9����

��������!������

2�����

�����������

2���
�&��

�

����

���� ����

12_Chapter_04_Roques_NEW.fm Page 137 Friday, November 28, 2003 1:19 PM

4 Complementary exercises138

(t) Watch out for false synonyms! This time, we must not think that session is a
synonym of course or training course. The concept of session adds notions of
date and location, which do not belong to the more generic concept of
course. We can mention the merits of the “UML course in 4 days offered by
Valtech”, and enrol in the “session which takes places in Toulouse from 5 to
8 January 2004”. Moreover, these entities have very distinct behaviours: we
can defer or cancel a session, without modifying course in any way.

(u) Verbs: here again, the verbs represent exchanges of messages between
instances, and definitely not associations.

The result of these considerations is summarised in Figure 4.31.

Figure 4.30 Dynamic model fragment of sentence 4

Figure 4.31 Dynamic model fragment of sentence 4

.)3������&)����&��

###���������###

###���

�����###

������)�������

���)�+)�����9����)��������

.)'��
����

2�����

2������
$�������
���
����%����&

����

���������

&�$��)����)��

�������

�

�

�

����

12_Chapter_04_Roques_NEW.fm Page 138 Friday, November 28, 2003 1:19 PM

Aims of the chapter 139

N.B. The relationship between course and session is a new illustration of the
important “metaclass pattern”, which was studied in Chapter 3, Answer 3.11.

*** 4.9 Model sentence 5.

Answer 4.9Answer 4.9Answer 4.9Answer 4.9

5. When the employee sends back his or her choice, the training manager enrols
the entrant in the session with the relevant training body.

Once again, the linguistic analysis provides us with the candidate entities:
employee, choice, training manager, entrant, training body.

(v) Employee, training manager and training body were identified previously.

(w) Once again, we must see to it that we do not model a dynamic behaviour in
the class diagram! Sentence 5 would be conveyed directly by the following
sequence diagram fragment:

(x) Verbs: the verb is often hiding a noun! In the previous example, where “the
training manager enrols the entrant”, the sequence diagram makes an
enrolment message bearing parameters appear. In fact, we need an enrolment
entity that represents a kind of contract between the training manager and
the external body. This entity bears attributes (date, cost, etc.) and

Figure 4.32 Dynamic modelling of sentence 5

.)'��
���� .)3������&)����&��

�������������
�����������

����
�

.)3������&)����

����
����)/�������*)���
����0

������

12_Chapter_04_Roques_NEW.fm Page 139 Friday, November 28, 2003 1:19 PM

4 Complementary exercises140

behaviours (deferral, cancellation, etc.). N.B. The entities of contract type are
modelled very frequently as association classes.

(y) Vague terms: choice is a tricky word to model. This is an imprecise word, a
vague term. We must therefore place it in the context to which it refers.
According to sentence 4, the employee chooses one of the sessions offered
by the training manager. In this context, the word choice is only used to
identify a particular session, for which the training manager will make a
request for enrolment with the training body. This is therefore not a new
entity, but rather a role played by a session in connection with an enrolment.

(z) Roles: we must see to it that we do not create new entities systematically.
Indeed, some nouns simply represent roles played by entities that have
already been identified. Such is the case for entrant, which only describes a
role played by an employee within the context of a session.

(aa) Actors. Should we link training body to session? This is what sentence 5
seems to indicate. However, we have seen with sentence 4 that sessions all
refer to a course. It is therefore more sensible to link training body directly
to course.

Static modelling of sentence 5 is illustrated on Figure 4.33.

Figure 4.33 Static modelling of sentence 5

3������&)����

�!!���

2�����

�������������

�������

���������

'���
����

'��
����

�������

����

	���������
����

� ����

�

����

��������

12_Chapter_04_Roques_NEW.fm Page 140 Friday, November 28, 2003 1:19 PM

Aims of the chapter 141

** 4.10 Model sentence 6.

Answer 4.10Answer 4.10Answer 4.10Answer 4.10

6. The training manager subsequently checks the invoice that the training body
has sent him or her before forwarding it to the bookkeeper of purchases.

For this last sentence, too, the linguistic analysis provides us with the candidate
entities: training manager, subsequently, invoice, training body, bookkeeper of
purchases.

(bb) Training manager and training body were identified previously. Bookkeeper of
purchases is a business worker, as we stated in Chapter 2.

(cc) Temporal clauses: these are only used for dynamic modelling. In our case,
“subsequently checks…” only marks the indication of a temporal succession
of messages. It implicitly allows invoice to be linked to enrolment (cf.
sentence 5).

Figure 4.34 Static modelling of sentence 6

3������&)����&��

 ��!!�����

#�$����

'���
����

��������

3������&)����

�����
�
����

���������

�

�

� �

��������

���� ����

12_Chapter_04_Roques_NEW.fm Page 141 Friday, November 28, 2003 1:19 PM

4 Complementary exercises142

** 4.11 Unite all the preceding fragments in one class diagram.

Propose a division of the model into packages, which represent business
organisation units.

Answer 4.11Answer 4.11Answer 4.11Answer 4.11

The preliminary static model of our case study is the result of bringing together all
the previous diagrams.

How do we go about dividing this model into business organisation units?

Figure 4.35 Preliminary static modelling of case study 4

#�$����

 ��!!�����

3������&)����&��

 ��	����

"&������� ����&�������

2������

2�����

2���
�&��3������&)����

�����

�����

�����

��������
'���
����

�������

'��
����

���������

���������

3������&)��9����

��������!������

�������

���������

�������������

�!!���

�
����

����

����

����

����

�

����

����

�

�

�

�

����

����

����

����

����
����

�

�

�

����

�

���� ����

�
�

�

�

12_Chapter_04_Roques_NEW.fm Page 142 Friday, November 28, 2003 1:19 PM

Aims of the chapter 143

• It is clear that the entire right section of the model (including the session entity)
concerns the course catalogue and forms a coherent unit, which is relatively
stable.

• The invoice-bookkeeper pair is also relatively independent from the others, and
moreover, corresponds to a well-identified service of the company.

• The remaining parts of the model are the responsibility of the training manager
and form a coherent set, which is focused on the training request.

We can represent this structuring by dividing the preceding diagram, then
displaying it as stereotyped packages, as shown in Chapter 2.

Figure 4.36 Division of the static model of case study 4

#�$����

 ��!!�����

3������&)����&��

 ��	����

"&������� ����&�������

2������

2�����

2���
�&��3������&)����

�����

�����

�����

��������

'���
����

�������

'��
����

���������

���������

3������&)��9����

��������!������

�������

���������

�������������

�!!���

�
����

����

����

����

����

�

����

����

�

�

�
�

����

����

����

����

����
����

�

�

�

����

�

���� ����

�
�

�

�

������
�����

	
����
���
�

����

�������
��

12_Chapter_04_Roques_NEW.fm Page 143 Friday, November 28, 2003 1:19 PM

4 Complementary exercises144

*** 4.12 Draw a class diagram for each organisation unit by attempting to minimise
the dependencies between packages.

Add a few relevant business attributes to complete the static business model.

Answer 4.12Answer 4.12Answer 4.12Answer 4.12

We will begin by studying the dependencies between the three packages that we
identified in the previous exercise.

It is clear that the Course catalogue package can be autonomous, and that it can
therefore form a reusable business element. It is also logical to make the invoice
depend on the training request, rather than the other way round. The diagram of
dependencies between business organisation units that we obtain is shown below;
it respects the sacrosanct principles of dependencies between packages:

• No mutual dependencies

• No circular dependencies.

Figure 4.37 Stereotyped packages representing the division of the model

�����������

;) ��!!�����
;)#�$����

'����������������
���������������(���

���������(
�

�������������
�)
�����������
����������

��
������������

	
�������
������

;)3������&)��9����
;)3������&)����&��

;)'��
����
;)��������
;)"&�������

;)����&�������

���
������������

;)2���
�&��
;)3������&)����

;)2�����
;)2������
;)�������

12_Chapter_04_Roques_NEW.fm Page 144 Friday, November 28, 2003 1:19 PM

Aims of the chapter 145

This aim of dependencies between packages imposes a constraint on the
navigability of the associations that traverse two organisation units, as indicated in
the following way:

Figure 4.38 Desirable dependencies between business packages

Figure 4.39 Addition of navigabilities on the associations that traverse two packages

 ��!!�����&

2�����)����
�&��

3������&)��9�����

#�$����

 ��!!�����

3������&)����&��

 ��	����

"&������� ����&�������

2������

2�����

2���
�&��3������&)����

�����

�����

�����

��������

'���
����

�������

'��
����

���������

���������

3������&)��9����

��������!������

�������

���������

�������������

�!!���

�
����

����

����

����

����

�

����

����

�

�

�
�

����

����

����

����

����
����

�

�

�

����

�

���� ����

�
�

�

�

12_Chapter_04_Roques_NEW.fm Page 145 Friday, November 28, 2003 1:19 PM

4 Complementary exercises146

By adding a few relevant business attributes, we can now draw a class diagram by
package. Note that we represent also linked classes belonging to other packages
(with the mention “from packageName”38).

Figure 4.40 Class diagram of the Bookkeeping package

Figure 4.41 Class diagram of the Training requests package

38. This efficient graphical convention, though not a standard UML one, is implemented by Rational/
Rose.

 ��!!�����

����

3������&)����&��
/+���)3������&)��9�����0

�
����
#�$����

���������
�����������
������

��������

'���
����
/+���)3������&)��9�����0

3������&)����
/+���)2�����)����
�&��0

��������������
�

�

�

�

����

����

����

����

'��
����

����
����������

<��
�=���

3������&)����&��

����
�=���

"&�������

��������

���� ����&�������

������

2�����
/+���)2�����)2���
�&��0

��������!������

�������
/+���)2�����)2���
�&��0

'���
����

����
������

3������&)��9����

���������
$�
���������

�����

�������

���������

����

����

�

����

����

���� ����

�

�
�

����

����

����

12_Chapter_04_Roques_NEW.fm Page 146 Friday, November 28, 2003 1:19 PM

Aims of the chapter 147

Note the derived attribute, /endDate of Session. The constraint could be written
simply in OCL (the Object Constraint Language which is part of the UML
specification39) as {self.endDate = self.startDate + course.length}.

Figure 4.42 Class diagram of the Course catalogue package

39. For more information, refer to the OMG’s Web site, where you can find the following recent
document about UML 2.0 OCL: ad/2003-01-07.

3������&)����

����
�������
��
-��
+�(-��
�=���

�������������

���������

�������

���������
8)�������

�������

2������

���&��"�������
�����9�������
��<����$��
���������
�
��

2���
�&��

�$��
���
���������

�!!���

2�����

���
�

��&��
����

�
�

�

�

����

�

����

����

12_Chapter_04_Roques_NEW.fm Page 147 Friday, November 28, 2003 1:19 PM

12_Chapter_04_Roques_NEW.fm Page 148 Friday, November 28, 2003 1:19 PM

B

This appendix comprises a thematic glossary of the static view (mainly inspired by
the one found in the UML 2.0 Specifications from OMG), as well as a summary of
tips, which have been taken from the two previous chapters.

GlossaryGlossaryGlossaryGlossary

Abstract class Class that cannot be directly instantiated and which is only used
for specification.

Aggregation Special form of association that specifies a whole-part relationship
between the aggregate (whole) and a component part.

Association Relationship between classifiers (classes, use cases, etc.), which
describes a set of links.

Association class Model element that has both association and class properties. An
association class can be seen as an association that also has class
properties, or as a class that also has association properties.

Attribute A structural feature of a classifier that characterises instances of the
classifier. An attribute relates an instance of a classifier to a value or
values through a named relationship.

Business entity Stereotyped class that represents a passive entity, which is used by
a business worker (within the context of business modelling).

Business
modelling

Modelling of the processes, resources and organisation of a
company.

Business worker Stereotyped class that represents a human acting within the
organisation (within the context of business modelling).

Class Classifier that describes a set of objects that share the same
specifications of features, constraints and semantics.

Glossary & tips B

13_Appendix_B_Roques_NEW.fm Page 149 Friday, November 28, 2003 1:18 PM

Appendix B: Glossary & tips150

Composition Strong form of aggregation which requires that a part instance be
included in at most one composite at a time, and that the
composite object is responsible for the creation and destruction of
the parts. Composition may be recursive.

Concrete class In contrast with an abstract class, this is a class that can be
instantiated in order to give objects.

Constraint Semantic condition or restriction. It can be expressed in natural
language text, mathematically formal notation, or a machine-
readable language for the purpose of declaring some of the
semantics of a model element.

Coupling Dependency between model elements.

“Coupling” represents a measure of the number of other classes, to
which a given class is linked, which it knows about and on which
it depends.

Dependency Relationship between two modelling elements, in which a change
to one modelling element (the independent element) will affect
the other modelling element (the dependent element).

Derived attribute An interesting attribute for the analyst, but redundant, as its value
can be deduced from other information that is available in the
model.

Generalisation Relationship between classes where the children inherit the
properties of their shared parent. However, each can incorporate
additional specific properties, as well as modify the inherited
operations.

Inheritance Mechanism by which more specific elements incorporate structure
and behaviour of more general elements.

Instance An entity that has unique identity, a set of operations that can be
applied to it, and state that stores the effects of the operations (an
object is an instance of a class).

Interface Named set of operations that characterise the behaviour of an
element. Sometimes synonymous with specification or external
view, or even public view.

Link Semantic connection between objects by which an object can
communicate with another object by means of sending messages.

Metaclass A class whose instances are classes. Metaclasses are typically used
to construct metamodels.

13_Appendix_B_Roques_NEW.fm Page 150 Friday, November 28, 2003 1:18 PM

Appendix B: Glossary & tips 151

Metamodel Model that defines the language for expressing a model.

Multiplicity Specification of the range of allowable cardinalities that a set may
assume. Multiplicity specifications may be given for association
ends, parts within composites, repetitions and other purposes.
Essentially a multiplicity is a (possible infinite) subset of the non-
negative integers.

Navigability Quality of an association that allows messages to flow from one
class to another in a given direction.

Object Entity with a well-defined boundary and identity that encapsulates
state and behaviour; an object is an instance of a class.

Operation Feature which declares a service that can be performed by
instances of the classifier of which they are instances. Specification
of a method.

Organisation unit Stereotyped package that structures the business model (within
the context of business modelling).

Package General-purpose mechanism for grouping elements in UML,
which can be used, for example, to organise classes and
associations.

Pattern Recurrent and well-researched modelling solution, which is
applicable in a given context.

Private Invisible from the exterior of a class (or of a package).

Public Visible from the exterior of a class (or of a package).

Qualifier An association attribute or tuple of attributes whose values
partition the set of objects related to an object across an
association.

Role Synonym for association end often referring to a subset of
classifier instances that are participating in the association.

Stereotype A class that defines how an existing metaclass (or stereotype) may
be extended, and enables the use of platform or domain-specific
terminology or notation in addition to the ones used for the
extended metaclass. Certain stereotypes are predefined in the
UML, others may be user defined. Stereotypes are one of the
extensibility mechanisms in UML.

Subclass In a generalisation relationship, the specialisation of another class,
the superclass.

13_Appendix_B_Roques_NEW.fm Page 151 Friday, November 28, 2003 1:18 PM

Appendix B: Glossary & tips152

TipsTipsTipsTips

• The notion of state must not appear directly as an attribute on class diagrams: it
will be modelled in the dynamic view by means of the state diagram. In the UML
class diagram, the only available dynamic concepts are the operations.

• In object-oriented modelling, we consider that the object on which we will be
able to realise a process has to have declared it as an operation. The other objects
that will possess a reference on this object will then be able to send it a message
invoking the operation.

• An object is a more “important” element than an attribute. A good criterion to
apply can be set out as follows: if we can only ask an element for its value, then
this is a straightforward attribute; if we can ask it several questions, though, it is
an object that, in turn, possesses several attributes, as well as links with other
objects.

• Do not hesitate to use the object diagram to give an example, or even a
counterexample, that enables a tricky aspect of a class diagram to be refined.

• Only use the generalisation relationship when the subclass is 100% in
accordance with the specifications of its superclass.

• UML naming convention:

• Typically, you capitalise the first letter of every word in an attribute name
except the first letter (unlike the names of classes, which systematically start
with an upper case letter). The same conventions apply to the notation of
association roles, as well as to operations.

• Use the concept of derived attribute to include attributes that can be computed
from other elements, but that are shown for clarity even though they add no
semantic information. Derived attributes allow the analyst not to make an overly
premature decision with regard to design.

• It is recommended to use qualifiers without forgetting to modify the multiplicity
on the other side of the association.

Superclass In a generalisation relationship, the generalisation of another
class, the subclass.

Visibility An enumeration whose value (public, protected or private)
denotes how the model element to which it refers may be seen
outside its enclosing namespace.

13_Appendix_B_Roques_NEW.fm Page 152 Friday, November 28, 2003 1:18 PM

Appendix B: Glossary & tips 153

• Make sure that your classes do not have too many different responsibilities, for
fear of violating a strong principle of object-oriented design known as high
cohesion.

• If you identify an XX class that has too many responsibilities, and some of which
are not specific to each instance, then consider the metaclass pattern. Add a
TypeXX class, distribute the properties among the two classes and link these with
a “* - 1” association. The TypeXX class is qualified as “metaclass”, as it contains
information that describes the XX class.

• For an aggregation to be a composition, we must confirm the following two
criteria:

• The multiplicity must not be greater than one on the side of the composite.

• The lifetime of the parts must be dependent on that of the composite
(particularly in the case of destruction).

• Make sure you know why a superclass is not always abstract (otherwise, we
would not need visual help in the form of italics), and why the generalisation/
specialisation relationship does not always lead to an inheritance “tree”.

• Structuring a domain model is tricky to do. It has to rely on two basic principles:
coherence and independence. The first principle consists in grouping classes that
are related from a semantic point of view. In this respect, we must look for
homogeneity at the level of the following criteria: objective, stability and
lifetime. The second principle is to minimise dependencies between packages.

• The problem of associations that traverse two packages stems from the fact that
just one of them is enough to lead to a mutual dependency if it is bidirectional.
However, it is possible to limit this navigation to only one of the two directions
in order to eliminate one of the two dependencies induced by the association.
UML allows us to represent this navigability explicitly by adding an arrow on the
association, which indicates the only direction possible.

• For a package to really be a reusable component, it must not depend on other
packages.

• Respect the sacrosanct principles of dependencies between packages:

• No mutual dependencies

• No circular dependencies.

13_Appendix_B_Roques_NEW.fm Page 153 Friday, November 28, 2003 1:18 PM

Appendix B: Glossary & tips154

• An analysis package generally contains fewer than 10 classes.

• Be aware of the highly subjective character of modelling, and of the often
difficult choice that you must make between simplicity and flexibility. A very
compact model that is simple to implement will not be very future-proof when
new demands are made by users. A model that is distinctly more complex to
implement, but which is very flexible, will be better at developing in order to
accommodate the needs of users. The choice between the two solutions must
therefore be made on the basis of context: should we favour simplicity and
deadlines for its construction, or, on the other hand, durability and possibilities
for further development?

• Learn to identify appropriate times when it is advisable to use a modelling
pattern. Make yourself study them intently so that you do not reinvent the
pattern with each new model!

• Do not overlook the lexical analysis technique, even if it is generally under used
as it can seem tedious. It is nevertheless very effective for discovering candidate
objects in difficult cases; for example, if the modeller does not know much about
the business domain in question.

• Some fundamental rules for lexical analysis:

• Look for nouns and nominal groups to identify classes.

• The indefinite article (“a”) is an indication that the noun is used generically,
whereas the definite article (“the”) is an indication that the name is unique in
the context of the sentence. In this case, we obtain a multiplicity of 1 on an
association.

• A sentence using the word “this” almost always refers to the subject of the
preceding sentence.

• Watch out for synonyms!

• Possession can be conveyed in two ways: by an association or an attribute.
Choose association if both the possessor and the possession are concepts.
Choose attribute if the possession is a simple property of the possessor.

• An “or exclusive” must evoke a generalisation/specialisation relationship, but
only if the specialised concepts have different attributes and behaviours. In
the reverse case, it is better to introduce a simple enumeration type.

• The plural on a noun often gives rise to an entity in the singular, but with a
multiplicity of “0..*” on an association.

13_Appendix_B_Roques_NEW.fm Page 154 Friday, November 28, 2003 1:18 PM

Appendix B: Glossary & tips 155

• It is necessary to take into account that verbs often correspond to actions that
are carried out on the entities. These actions are not generally conveyed in the
analysis class diagram. However, they give information on the dynamics, and
can give rise to sequence or collaboration diagram fragments.

• Make sure that you do not try to model dynamic behaviour in the class
diagram!

• Adjectives: these represent either attributes of an entity that has already been
identified, or a possibility of a generalisation relationship. Watch out: they
can also simply add “noise” to the text.

• You must be careful not to create new entities systematically. Indeed, some
nouns represent only roles played by entities that have already been
identified.

• Present participles: these often indicate an association between two entities.

• Pronouns are references to another noun that is often the subject of the
preceding sentence.

• The choice of container types is really the responsibility of the detailed design,
indeed that of the implementation.

• You must always bear in mind that the class diagram has to represent a static
view which is valid at any time. This particularly affects the multiplicities of
associations.

13_Appendix_B_Roques_NEW.fm Page 155 Friday, November 28, 2003 1:18 PM

13_Appendix_B_Roques_NEW.fm Page 156 Friday, November 28, 2003 1:18 PM

Part 3
Dynamic view 1

14_Part_03_Roques_NEW.fm Page 157 Friday, November 28, 2003 1:18 PM

Part 1: Dynamic view158

14_Part_03_Roques_NEW.fm Page 158 Friday, November 28, 2003 1:18 PM

5

Aims of the chapter

By working through a new case study, this chapter will allow us to illustrate, step by
step, the main UML concepts and diagrams for the dynamic view.

Starting with actors and use cases, we will draw first a system sequence diagram.
Then we will realise a specific kind of collaboration diagram, that we call dynamic
context diagram, to list all the messages that the actors can send to the system and
vice versa.

After this preliminary work, we will embark upon an in-depth description of the
dynamics of the system. We will thus pay particular attention to the state diagram,
which is, in our opinion, under used far too often, despite being an extremely
useful diagram for describing complex behaviours accurately. We will explain in
depth the following advanced concepts:

• Internal event “when”

• Superstate and substates

• Self-transition vs. internal transition

• Pseudostate “history”

• Send message

Case study: coin-
operated pay phone 5

15_Chapter_05_Roques_NEW.fm Page 159 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone160

Case study 5 – Problem statementCase study 5 – Problem statementCase study 5 – Problem statementCase study 5 – Problem statement

This case study involves a simplified system of a coin-operated pay phone.

1. The minimum cost of a call is 20 pence.

2. After inserting the coins, the user has 2 minutes to dial a number (this time
limit is enforced by the switchboard40).

3. The line may be free or engaged.

4. The caller may hang up first.

5. The pay phone uses up money as soon as the callee picks up the receiver and
with each unit of time (UT) generated by the switchboard.

6. The caller can add more coins at any time.

Elements involved

• Actor

• Use case, scenario

• System sequence diagram

• Dynamic context diagram

• Message

• State diagram

• State, transition, event

• Condition, action, activity.

40. We use the word switchboard but it represents in fact the entire telephone network, also known as
PSTN (Public Switched Telephone Network).

15_Chapter_05_Roques_NEW.fm Page 160 Friday, November 28, 2003 1:17 PM

5.1 Step 1 – Identifying the actors and use cases 161

7. After hanging up, any unused change is returned.

From these seven sentences, we will progressively work through the following
tasks:

• Identify the actors and use cases

• Construct a system sequence diagram

• Construct the dynamic context diagram

• Develop the state diagram of the pay phone.

5.1 Step 1 – Identifying the actors and use cases

First of all, we will identify the actors and use cases of the coin-operated pay phone.

** 5.1 Draw the use case diagram of the coin-operated pay phone.

15_Chapter_05_Roques_NEW.fm Page 161 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone162

Answer 5.1Answer 5.1Answer 5.1Answer 5.1

What are the external entities that interact directly with the pay phone?
If we carry out a linguistic analysis (cf. Chapter 4) of the exposition, we will

obtain the following five candidates: user, switchboard, caller, pay phone, callee.
Let’s eliminate pay phone straight away as this concerns the system itself. On the

other hand, the switchboard is actually an actor (non-human) that is connected
directly to the system.

The only difficulty involves the human actors: user, caller and callee. As the first
two terms appear to be synonyms, we can keep the word callee and, to make things
symmetrical, rename user caller.

How do the actors use the pay phone? The only usage that is really interesting in
our context is that of the caller who telephones the callee. The switchboard acts as
an intermediary between the two. If we refine our analysis even more, we quickly
realise that the callee does not interact directly with the pay phone: he or she is
completely concealed by the switchboard.

A graphical illustration of this problem of establishing boundaries is shown on
the following static context diagram.

Figure 5.1 Preliminary list of the actors

������

�����	�

������	���

������

15_Chapter_05_Roques_NEW.fm Page 162 Friday, November 28, 2003 1:17 PM

5.1 Step 1 – Identifying the actors and use cases 163

It is plain to see on the preceding diagram that the caller communicates with the
callee by means of three connected systems: the pay phone, the switchboard and
the telephone of the callee. Note the symmetry of the diagram compared with the
switchboard, which plays the role of actor with regard to the other two systems of
the same kind.

The callee is therefore an indirect actor with regard to the pay phone. We will not
keep it for our use case diagram that is ultimately very simple.

Figure 5.2 Extended static context diagram of the pay phone

Figure 5.3 Use case diagram of the pay phone

������

��������

��������	

�����	�

������	���

��������

������	��

������

����

����

����

����

����

����

������

��������	

������	��

���	����� �����	�

������	���

15_Chapter_05_Roques_NEW.fm Page 163 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone164

5.2 Step 2 – Realising the system sequence diagram

Before immersing ourselves in the mysteries of the state diagram of the pay phone,
we will prepare for it by creating a system sequence diagram first of all. In Chapters
1 and 2, we saw the relevance of this type of diagram and the different details that
concern it.

** 5.2 Create a system sequence diagram that describes the main success scenario of
the Telephone use case.

Answer 5.2Answer 5.2Answer 5.2Answer 5.2

By using our knowledge of the field as our basis, we will describe an example of
successful communication between a caller and a callee.

Figure 5.4 System sequence diagram of the Telephone main success scenario

��������

��������� ��

������	�!"��#

���$%����!�&'"(�)&"���#

������������	
��
������������������

������*�� 	��

������*�� 	��

�	� �����	�����

������	�!"��#

����������� ��

��+�����	�� ��������	���

�	%��$%����!�&'"(�)&"���#

�����,�	��!-���#

������	��

������*�� 	��

������*�� 	��

��

��

��

����	��

15_Chapter_05_Roques_NEW.fm Page 164 Friday, November 28, 2003 1:17 PM

5.2 Step 2 – Realising the system sequence diagram 165

As explained in Chapters 1 and 2, we use the following graphical conventions:

• The primary actor Caller to the left

• An object representing the pay phone in the middle

• The secondary actor Switchboard to the right.

We have not yet represented the replies from the pay phone to the caller (for
example, in terms of dialling tone), as we do not want to make this first diagram
cumbersome.

*** 5.3 Extend the preceding system sequence diagram with interesting internal
activities and a few replies from the pay phone to the caller.

However, omit the conversation now so that you can concentrate on the
“system operations”.

Answer 5.3Answer 5.3Answer 5.3Answer 5.3

Figure 5.5 Completed system sequence diagram of the Telephone main success scenario

��������

��������� ��

������	�!"��#

���$%����!�&'"(�)&"���#

�����,�	���!-���#

������	�!"��#

����
����������
������������������

��������
��
������
�����	���

����������� ��

��+�����	��
��������	���

������	�

�������������!"��#

�	%��$%����!�&'"(�)&"���#

�����,�	���!-���#

������	��

������!"��#

������	�

�������������!"��#

��

������!"��#

����	��

15_Chapter_05_Roques_NEW.fm Page 165 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone166

We have added important internal activities of the pay phone to the preceding
diagram, such as checking the coins and managing the balance of the caller:

• Incrementation when inserting coins

• Decrementation when communication has begun and with each UT.

5.3 Step 3 – Representing the dynamic context

In order to round off the preparation for the state diagram, we will now list all the
messages that are sent and especially those that are received by the pay phone. The
messages received will become events that trigger transitions between states, and
the messages sent will result in actions on the transitions.

The system sequence diagram created in step 2 lists quite a number of messages.
We are now aiming for thoroughness and “genericness”. For this objective, we
advocate the graphical representation of the set of messages exchanged by the
system with its actors by using a diagram that we call a dynamic context diagram.41

Graphical representation of the dynamic contextGraphical representation of the dynamic contextGraphical representation of the dynamic contextGraphical representation of the dynamic context

Use a collaboration diagram as follows:

• the system studied is represented by an object in the centre of the diagram;

• this central object is framed by an instance of each actor;

• a link connects the system to each of the actors;

• on each link, all input and output messages of the system are listed without
numbering.

41. As for the static context diagram, advocated in Chapter 1, this is not a conventional UML diagram,
but it proved useful many times on real projects.

15_Chapter_05_Roques_NEW.fm Page 166 Friday, November 28, 2003 1:17 PM

5.3 Step 3 – Representing the dynamic context 167

*** 5.4 Create the dynamic context diagram of the pay phone by following the
aforementioned steps.

Answer 5.4Answer 5.4Answer 5.4Answer 5.4

On the basis of the two system sequence diagrams, we have listed the messages
exchanged between the system and its actors. We then generalised them by adding
parameters when required:

• InsertCoin (20p) becomes a parameterised message: “insertCoin(c)”;

• dialNumber (05624 752000) becomes “dialNumber(num)”;

• diallingTone (free) becomes “diallingTone(type)” to account for when the line
is busy, etc.

This first task gives the following preliminary diagram:

Nevertheless, let’s be careful not to forget that we started from the system sequence
diagram that represents a main success scenario of the Telephone use case. Other
messages can be considered between the pay phone and its actors:

Figure 5.6 Preliminary version of the dynamic context diagram

��������

��������� ��
������	�!�#

���$%����!�%�#
����������� ��
������*�.	��

����
���

�����,�	��!����#
������*�.	��

������

���������	

������	��
��

�����,�	��!����#
������*�.	��

�	%��$%����!�%�#
����	��
������*�.	��

��������	���

15_Chapter_05_Roques_NEW.fm Page 167 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone168

• if there are coins that have not been used when the caller hangs up, the pay
phone gives them back to him or her;

• after inserting the minimum amount of 20p, the pay phone sends a message to
the switchboard for the deduction of the 2 minute time limit;

• if the number that has been dialled is not valid, the switchboard detects it;

• if the callee hangs up first, the end of communication is indicated by the
switchboard;

• more generally, the switchboard sends the state of the line to the pay phone
(free, engaged, out of order, etc.), and not just the type of dialling tone.

The dynamic context diagram is therefore completed, as shown on the following
figure.

5.4 Step 4 – In-depth description using a state diagram

After all this preliminary work, we can now embark upon an in-depth description
of the dynamics of the pay phone. To this end, UML has gone back to the well-
known concept of finite state machine, that consists in taking an interest in the
lifetime of a generic instance in the course of its interactions with the rest of the
domain, in all possible cases. This local view of an object, which describes how it
responds to events according to its current state and how it enters into a new state,
is represented graphically in the form of a state diagram.

Figure 5.7 Full version of the dynamic context diagram

��������

��������� ��
������	�!�#

���$%����!�%�#
����������� ��
������*�.	��

�
�
���������
����
���

�����,�	��!����#
������*�.	��

���%����%����	��

������

���������	

������	��
��

�����,�	��!����#
������*�.	��
��������!�����#

�%����.�����! #
����	��

�����,���	%�

�	%��$%����!�%�#
����	��
������*�.	��
�����,����

��������	���

15_Chapter_05_Roques_NEW.fm Page 168 Friday, November 28, 2003 1:17 PM

TE
AM
 F
LY

5.4 Step 4 – In-depth description using a state diagram 169

The behaviour of the pay phone is not commonplace, as is attested by the high
number of messages identified on the dynamic context diagram, for example. In
this case, we recommend an iterative and incremental approach.

Procedure for constructing state diagramsProcedure for constructing state diagramsProcedure for constructing state diagramsProcedure for constructing state diagrams

• first of all, represent the sequence of states that describes the nominal behaviour
of an instance, together with the transitions that are associated with it;

• progressively add the transitions that correspond to the “alternative” or error
behaviours;

• complete the actions on the transitions and activities in the states;

• structure the diagram into substates and use advanced notation (entry, exit,
etc.) if it becomes too complex.

This is the procedure that we will implement by means of the following questions.

** 5.5 Construct an initial state diagram that describes the main success behaviour
of the coin-operated pay phone, adapted from the system sequence diagram.

Answer 5.5Answer 5.5Answer 5.5Answer 5.5

Figure 5.8 First version of the state diagram

/%�,�%�
��������� �� 0���,�-	�

�	��

�����!�����
1"��#

0���,�-	�
�%����

���$%����

0���,�-	�
 �����

 ���$%����

0���,�-	��������
�	�����%������ ��

������	��

�	��%����	�
����������� ��

��	�����
����
��

������
�
�����

15_Chapter_05_Roques_NEW.fm Page 169 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone170

For the Telephone use case, the nominal initial state of the pay phone is at “hung
up”. When the caller picks up the receiver, he or she must then insert a minimum
of 20p to be able to dial his or her number. Once a valid number is dialled, the pay
phone waits for the reply from the switchboard, then the callee picks up the
receiver. The conversation is then continued until one of the two hangs up. The pay
phone then returns to its initial state.

Let’s convey this text as an initial state diagram skeleton (see Figure 5.8).

Internal event: « when »Internal event: « when »Internal event: « when »Internal event: « when »

We will notice that the majority of events that trigger transitions between states
correspond to the receipt of a message sent by an actor. Moreover, we have used the
same names for the events as for the corresponding messages (except for
validNumber which is simpler to read than the strict numberValidity(true)).

Only the change of the “Waiting for coins” state into the “Waiting for number”
state is produced by an internal event in the pay phone: the detection of when the
amount of 20p is satisfied. UML offers a keyword to distinguish these changes in
internal states: «when», followed by a Boolean expression, whose change from false
to true triggers the transition.

*** 5.6 How do we represent the fact that the caller can hang up at any time, and not
only in the communication state?

Answer 5.6Answer 5.6Answer 5.6Answer 5.6

As is often the case, there are two ways to go about this: the basic and the
sophisticated! The basic solution involves adding transitions triggered by the
replaceReceiver event and exiting all the states in order to arrive at the “Hung up”
state. But the diagram suddenly appears rather “busy” then…

The sophisticated solution involves inserting a composite state, “Picked up
receiver”, which enables factorisation of the output transition towards the “Hung
up” state.

15_Chapter_05_Roques_NEW.fm Page 170 Friday, November 28, 2003 1:17 PM

5.4 Step 4 – In-depth description using a state diagram 171

Figure 5.9 Basic solution

Figure 5.10 Sophisticated solution

/%�,�%�

��������� ��

����������� ��

����������� ��

����������� ��

����������� ��

����������� ��

0���,�-	�
�	��

�����!������
1"��#

�	��%����	�

������	��

0���,�-	��������
�	�����%������ ��

 ���$%����

0���,�-	�
 �����

���$%����

0���,�-	�
�%����

/%�,�%�

�������
��

��������� ��

����������� ��

�
	�������
��
�������

���	������	�	��	�

0���,�-	�
�	��

�����!������
1"��#

�	��%����	�

������	��

0���,�-	��������
�	�����%������ ��

 ���$%����

0���,�-	�
 �����

���$%����

0���,�-	�
�%����

15_Chapter_05_Roques_NEW.fm Page 171 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone172

We will also note that we could have used slightly more sophisticated notation for
the transition of “Hung up” towards “Waiting for coins”, as shown on the
following diagram.

Instead of having a transition directly between “Hung up” and “Waiting for coins”,
we obtain a first transition between “Hung up” and “Picked up receiver”, then the
graphical symbol of the initial state within “Picked up receiver” in order to give an
explicit indication of the initial substate. This method of proceeding enables the
division of the state diagram into two levels:

• a first level, which only makes the “Hung up” and “Picked up receiver” states
appear;

• a second level, which corresponds to the breakdown of “Picked up receiver”.

In order to retain a level of simplicity, we will keep the direct transition in the
follow-up of the case study.

**** 5.7 How can the credit of the caller reach 20p?

Consider several solutions.

Figure 5.11 Sophisticated solution with initial substate

��������� ��

����������� ��

�����
�
����
��

���	������	�	��	�

0���,�-	�
�	��

�����!������
1"��#

�	��%����	�

������	��

0���,�-	��������
�	�����%������ ��

 ���$%����

0���,�-	�
 �����

���$%����

0���,�-	�
�%����

/%�,�%�

15_Chapter_05_Roques_NEW.fm Page 172 Friday, November 28, 2003 1:17 PM

5.4 Step 4 – In-depth description using a state diagram 173

Answer 5.7Answer 5.7Answer 5.7Answer 5.7

For the time being, the credit of the caller only occurs in the Boolean expression
associated with the internal event of « when ». However, for the credit to reach 20p,
the caller must insert one or more coins.

We can therefore place a self-transition (which returns towards the source state)
on the “Waiting for coins” state. As soon as the credit exceeds 20p, the pay phone
has to enter the “Waiting for number” state.

If we only want to use events caused by the receipt of messages, we will probably
insert conditions on the transitions, as illustrated on the following diagram.

This solution, which seems obvious, is nevertheless incorrect as it does not allow
the user to dial a number after having inserted two 10p coins... The pay phone must
therefore store a credit attribute that is incremented each time a coin is inserted.

It is tempting to alter our diagram by adding an action and by modifying the
conditions:

Alas, this solution is also incorrect, but in a more subtle way! The semantics of a
transition in UML is as follows: when the trigger event is produced, the condition
is tested; if the condition is valued at true, the transition is fired and the associated
action is then realised.

Figure 5.12 First incorrect solution

Figure 5.13 Second incorrect solution

�����
��
�������

0���,�-	�
�	�

������	�!�#2����"��3

������	�!�#2��
1�"��3

	��������

0���,�-	�
�%����

������	�!�#2��������"��3
4��������������!�#

0���,�-	�
�	�

	�����

������	�!�#2������
1�"��3
4��������������!�#

0���,�-	�
�%����

15_Chapter_05_Roques_NEW.fm Page 173 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone174

Let’s see how this actually happens by applying it to our example, starting from
“Waiting for coins” with an initial credit of 0p:

• The caller inserts a 10p coin. The credit is less than 20p (it is still worth 0p): the
self-transition is triggered and the credit is now worth 10p.

• The caller inserts a 10p coin. The credit is less than 20p (it is worth 10p): the self-
transition is triggered and the credit is now worth 20p.

The result is surprising: the caller has paid 20p and is still unable to dial his or her
number... The moral of this statement is as follows: do not attempt to test an item
of information in a condition before having modified it by an action. Such is the
case when you want to communicate everything in a single transition.

We easily deduce the correct solution from this:

You should make a note of this method of modelling, as it can be reused in many
contexts.

**** 5.8 Complete the credit management of the caller.

Do not miss out the last sentence: the caller can add more coins at any time …

Figure 5.14 Correct solution

������	�!�#�4��������������!�#

0���,�-	�
�	�

�	����������
����

�����!������
1�"��#

0���,�-	�
�%����

15_Chapter_05_Roques_NEW.fm Page 174 Friday, November 28, 2003 1:17 PM

5.4 Step 4 – In-depth description using a state diagram 175

Answer 5.8Answer 5.8Answer 5.8Answer 5.8

Let’s take things from the beginning again. Let’s acknowledge that picking up the
receiver might make coins fall that would have been inserted previously. The credit
must therefore be initialised to “0” on this transition.

Next, the caller needs to insert one or more coins for the credit to reach 20p. We
have therefore placed a self- transition on the “Waiting for coins” state. As soon as
the credit exceeds 20p, the change transition « when » leads the pay phone to the
“Waiting for number” state.

The credit amount does not change until the callee picks up the receiver, which
is conveyed by the startComm message sent by the switchboard. From this moment
on, the credit is decremented regularly, as is indicated by sentence 5 (“The pay
phone uses up money as soon as the callee picks up the receiver and with each unit
of time (TU) generated by the switchboard”). The assess action represents the fall of
a coin each time one is inserted.

Finally, it must not forget to return unused coins when the caller hangs up.
If we account for all of these points, we obtain the following diagram.

We will take note of the new state, “End communication”, which has been inserted
to deal with the situation where communication is broken off by the pay phone due
to lack of credit.

Figure 5.15 Accounting for credit management

/%�,�%�

����������� ��
4����%����%����	��

��������� ��
4�������1��

��2�%--����������3�4�������

�	��%����	�

������	��
4������� 0���,�-	��������

�	�����%������ ��

 ���$%����

0���,�-	�
 �����

���$%����

0���,�-	�
�%����

�����!������
1�"��#

+�����%������ ��

������	�!�#�4��������������!�#

0���,�-	�
�	�

5��
�	��%����	�

��2��%--����������3
4�������

15_Chapter_05_Roques_NEW.fm Page 175 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone176

We still need to model the last sentence: the caller can add more coins at any
time. Here again, several solutions are possible but only one will turn out to be
both correct and sophisticated.

The first idea consists in inserting a self-transition – identical to that of “Waiting
for coin” – on each substate of “Picked up receiver”. This way of proceeding is
correct, but its implementation is very cumbersome, and we would rather try to
factorise by means of the composite state. Is it not possible to transfer the self-
transition to the actual level of “Picked up receiver”, as illustrated on the diagram
below?

Alas, this solution is not satisfactory, as we will now discover.

Self-transition or internal transition?Self-transition or internal transition?Self-transition or internal transition?Self-transition or internal transition?

In the case of a self-transition, the object leaves its source state in order to encounter
it again. This can have not inconsiderable secondary effects, such as the interruption
then re-starting of an activity, the realisation of entry actions (« entry ») or exit
actions (« exit ») of the state, etc. Moreover, when a composite state is broken

Figure 5.16 Incorrect solution

/%�,�%�

����������� ��
4����%����%����	��

��������� ��
4�������1��

��2�%--����������3�4�������

�	��%����	�

������	��
4������� 0���,�-	��������

�	�����%������ ��
 ���$%����

0���,�-	�
 �����

���$%����

0���,�-	�
�%����

�����!������
1�"��#

+�����%������ ��

������	�!�#�4��������������!�#

0���,�-	�
�	�

5��
�	��%����	�

��2��%--����������3
4�������

�
	�����
�����������
�������
�������

15_Chapter_05_Roques_NEW.fm Page 176 Friday, November 28, 2003 1:17 PM

5.4 Step 4 – In-depth description using a state diagram 177

down into substates, a self-transition inevitably returns the object to the initial
substate. Here, each insertion of a coin would return the pay phone to the “Waiting
for coin” state, which is implicitly the initial substate of “Picked up receiver”!

To solve this present problem, the notion of internal transition exists in UML; it
represents a pair (event/action) that has no influence on the present state. The
internal transition is thus acknowledged within the symbol of the state.

This is the approach that we will use for our case study.

We would also like to note that, strictly speaking, the self-transition on the
“Communication” state should also be an internal transition. In fact, when there is
no secondary effect, we prefer to use the self-transition, which is more visual.
However, we must be careful if we have to break down “Communication” into
substates one day…

A second correct solution, but which is more complex, involves using the
« history » pseudostate.

Figure 5.17 Correct solution with factorised internal transition

/%�,�%�

����������� ��
4����%����%����	��

��������� ��
4�������1��

��2�%--����������3�4�������

�	��%����	�

������	��
4������� 0���,�-	��������

�	�����%������ ��
 ���$%����

0���,�-	�
 �����

���$%����

0���,�-	�
�%����

�����!������
1�"��#

+�����%������ ��

������	�!�#�4��������������!�#

0���,�-	�
�	�

5��
�	��%����	�

��2��%--����������3
4�������

�
	�����
����
������
����
�������

�������
�������

15_Chapter_05_Roques_NEW.fm Page 177 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone178

Pseudostate « history »Pseudostate « history »Pseudostate « history »Pseudostate « history »

The activation of the pseudostate « history » allows a composite state to
remember the last sequential substate that was active before an exiting transition.
A transition towards the « history » state makes the last active substate active
again, instead of returning to the initial substate.

Figure 5.16 can therefore be corrected as follows.

*** 5.9 Complete the state diagram to account for the whole problem statement.

Propose complements if you consider them to be necessary.

Figure 5.18 Correct solution with «history» pseudostate

/%�,�%�

����������� ��
4����%����%����	��

��������� ��
4�������1��

��2�%--����������3�4�������

�	��%����	�

������	��
4������� 0���,�-	��������

�	�����%������ ��

 ���$%����

0���,�-	�
 �����

���$%����

0���,�-	�
�%����

�����!������
1�"��#

+�����%������ ��

������	�!�#�4��������������!�#

0���,�-	�
�	�

5��
�	��%����	�

��2��%--����������3
4�������

���������
��������
���

15_Chapter_05_Roques_NEW.fm Page 178 Friday, November 28, 2003 1:17 PM

5.4 Step 4 – In-depth description using a state diagram 179

Answer 5.9Answer 5.9Answer 5.9Answer 5.9

Let’s go over the sentences of the problem statement again, one by one. We have
dealt with sentences 1, 5 and 6 in detail. On the other hand, we have only partly
accounted for sentences 2, 3 and 4.

Let’s first take a look at sentence 2:

2. After inserting the coins, the user has 2 minutes to dial a number (this time
limit is enforced by the switchboard).

As the time limit is enforced by the switchboard, we have inserted two messages in
the context diagram (cf. Figure 5.7):

• diallingTimer sent by the pay phone to the switchboard;

• diallingTimeout sent by the switchboard to the pay phone.

Send message: « send »Send message: « send »Send message: « send »Send message: « send »

UML introduced a keyword, send, to represent the important action that entails
sending a message to another object when a transition is fired.

The syntax of this particular action is as follows: “/ send target.message”. Be
careful, as in earlier versions of UML the notation was more obscure:
“^target.message”.

In the state diagram of the pay phone, we will therefore have a transition that will
be fired when the diallingTimeout message is received, and when the diallingTimer
message is sent on entering the “Waiting for number” state, as shown on the
following diagram.

15_Chapter_05_Roques_NEW.fm Page 179 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone180

It is important to note that we have renamed the “End communication” state, as
this “sink state” (that is to say, not having any exit transition) will also be useful for
all cases of error.

Let’s now have a look at sentence 3:

3. The line can be free or engaged.

Up to now, we have assumed that the line was free and that the callee picked up the
receiver. We are going to introduce in the model not only the possibility that the
switchboard sends back a line state (engaged), but also that the callee does not pick
up the receiver (which was not anticipated explicitly in the exposition). For this last
case, we assume that the switchboard sends a callTimeout message that leads the pay
phone to the error state.

Figure 5.19 Modelling of sentence 2

+�����%������ ��

������	�!�#�4��������������!�#

0���,�-	�
�	�

5����	��%����	�
	�����	�

�����!������
1�"��#
4������������	���������,����

������	��

�����,���	%�
0���,�-	�
�%����

���$%����

15_Chapter_05_Roques_NEW.fm Page 180 Friday, November 28, 2003 1:17 PM

5.4 Step 4 – In-depth description using a state diagram 181

Sentence 4 simply adds a transition between the “Communication” and “End
communication” states:

4. The caller can hang up first.

The completed state diagram is represented on Figure 5.20.

*** 5.10 By making use of this entire dynamic study, propose an extended version of
the static context diagram that will display the attributes and operations of the
pay phone class.

Figure 5.20 Full modelling of all sentences of the exposition

/%�,�%�

����������� ��
4����%����%����	��

��������� ��
4�������1��

+�����%������ ��

0���,�-	�
�	�

�����!������
1�"��#
4������������	���������,����

0���,�-	�
�%����

����%����
4������������	�����	%��$%����

0���,�-	�
 �����

 ���$%����0���,�-	��������
�	�����%������ ��

������	��!

���������!��,�,��#
������	��
4�������

�	��%����	�

�	�4��������.	��

���2�%--����������3
4�������

���2��%--����
�����3�4�������

5����	��%����	�
	�����	�

����������,��%�

������	��"

	���������������
�
���������
����	���

������	�!�#�2��673�4��������������!�#

�����,���	%�

� ���$%����

�������	%�

����������
��
	����������

15_Chapter_05_Roques_NEW.fm Page 181 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone182

Answer 5.10Answer 5.10Answer 5.10Answer 5.10

We will apply a few simple rules:

• Public operations correspond to the names of messages sent by the actors.

• Private operations correspond to the names of messages sent to oneself.

• Attributes correspond to the names of persistent data, manipulated in the
actions or conditions.

Firstly, let’s take a look at the public operations. According to the dynamic context
diagram (cf. Figure 5.7), we can identify:

• pickUpReceiver

• insertCoin(c)

• dialNumber(num)

• replaceReceiver

• startComm

• UT

• lineState(state)

• numberValidity(v)

• endComm

• diallingTimeout

The state diagram (cf. Figure 5.20) leads us to add the following operation:

• callTimeout

Let’s now go through the private operations. The completed system sequence
diagram (cf. Figure 5.5) showed the following messages:

• checkCoin

• incrementCredit

• assess

On the state diagram, we inserted the “do / transmitVoice” activity, which can be
added to the list of private operations (as it is triggered indirectly by arrival in the

15_Chapter_05_Roques_NEW.fm Page 182 Friday, November 28, 2003 1:17 PM

5.4 Step 4 – In-depth description using a state diagram 183

“Communication” state). We will note that the checkCoin operation is conveyed by
a “[c OK]” condition on the factorised internal transition.

Finally, what are the interesting attributes? It is clear that an important item of
information is that which is managed continuously by the pay phone: credit of the
caller. As a result, we can eliminate the implicit operations of reading/writing this
attribute (incrementCredit, assess).

We now know enough to draw the extended static context diagram.

Extended static context diagramExtended static context diagramExtended static context diagramExtended static context diagram

An “extended static context diagram” is what we call a static context diagram in
which we add attributes and operations of system level to the class that represents
the system (conceived as a black box), as well as to non-human actors.

We will note that we have made the public operations appear on the non-human
actor, Switchboard, but not on the Caller actor. The concept of operation does not
make sense on a human actor: we do not generally try to model him or her in a
deterministic way. On a non-human actor, though, the list of operations represents
its interface (in the sense of an API, for example) as it is used by the system in
question. This is particularly useful to check the interoperability of the two systems,
and to make sure that these operations are already available, or planned in the
specifications.

Figure 5.21 Extended context diagram

������

�����
�
�
���

����	
����
�����

����
��
����
�����

�����	�

������	���

8��	%��$%����!�%�#
8�����	��!#
8������,����!#

��������

+�����	��

9�������1��

8���������� ��!#
8�������	�!�#
8����$%����!�%�#
8������,���	%�!#
8��%����.�����!#
8���������!�����#
8��������	%�!#
8�������	��!#
8���!#
8�����	��!#
8������������ ��!#
9�������	�!�#
9��������.	��!#

���� ����

���� ����

15_Chapter_05_Roques_NEW.fm Page 183 Friday, November 28, 2003 1:17 PM

5 Case study: coin-operated pay phone184

As regards UML notation, let’s remember that:

• “-” means private

• “+” means public

• “=” allows the initial value of an attribute to be specified.

BibliographyBibliographyBibliographyBibliography

[Booch 99] The Unified Modeling Language User Guide, G. Booch, J. Rumbaugh,
I. Jacobson, Addison-Wesley, 1999.

[Douglass 00] Real-Time UML: Developing Efficient Objects for Embedded Systems (2nd
Edition), B. P. Douglass, Addison-Wesley, 2000.

[Freeman 01] Designing Concurrent Distributed and Real-Time Applications with UML,
P. Freeman, B. Selic, Addison-Wesley, 2001.

[Mellor 91] Object Lifecycles: Modeling the World in States, S. Mellor, S. Shlaer,
Prentice Hall, 1991.

[Mellor 02] Executable UML: A Foundation For Model-Driven Architecture, S. Mellor,
M. Balcer, Addison-Wesley, 2002.

[Roques 99] Hierarchical Context Diagrams with UML: An Experience Report on
Satellite Ground System Analysis, P. Roques, E. Bourdeau, P. Lugagne,
in <<UML>>’98: Beyond the Notation, J. Bezivin & P. A. Muller (Eds),
Springer Verlag LNCS 1618, 1999.

[Rumbaugh 91] Object-Oriented Modeling and Design, J. Rumbaugh et al., Prentice Hall,
1991.

[Rumbaugh 99] The Unified Modeling Language Reference Manual, J. Rumbaugh,
I. Jacobson, G. Booch, Addison-Wesley, 1999.

15_Chapter_05_Roques_NEW.fm Page 184 Friday, November 28, 2003 1:17 PM

6

Aims of the chapter

By working through several short exercises, this chapter will allow us to complete
the overview of the main difficulties which are involved in constructing UML state
diagrams, namely:

• Continuous or finite activity – completion transition

• Pseudo-event “after”

• Concurrent regions

• Entry/exit actions

• Inheritance of transitions from the superstate

• ...

We have already dealt with sequence diagrams in Chapters 1 and 2, and we will
go over collaboration diagrams in the section dedicated to design.

Complementary
exercises 6

16_Chapter_06_Roques_NEW.fm Page 185 Friday, November 28, 2003 1:16 PM

6 Complementary exercises186

Alarm clock

Let’s consider a simplified alarm clock:

1. We can set the alarm to “on” or “off”;

2. When the current time becomes that which is set on the alarm, the alarm clock
rings continuously;

3. We can make the ringing stop.

** 6.1 Draw the corresponding state diagram.

Answer 6.1Answer 6.1Answer 6.1Answer 6.1

Firstly, let’s take a look at the first sentence:

1. We can set the alarm to “on” or “off”.

The alarm clock clearly has two distinct states: Unprepared (alarm “off”) or Prepared
(alarm “on”). One action from the user enables it to change state. We assume that
the alarm clock is unprepared at the start. Note the alarmTime parameter of the
prepare event.

Let’s now look at the other two sentences:

2. When the current time becomes that which is set on the alarm, the alarm clock
rings continuously;

3. We can make the ringing stop.

Figure 6.1 State diagram of sentence 1

����������

���������	�
�������

��������

���������

16_Chapter_06_Roques_NEW.fm Page 186 Friday, November 28, 2003 1:16 PM

Alarm clock 187

The occurrence of ringing forms a new state for the alarm clock. It involves a period
of time, during which the alarm clock carries out a certain activity (ringing) that
lasts until an event comes to stop it.

The shift from the Prepared state to the Ringing state is triggered by a transition due
to an internal change, represented by means of the « when » keyword. According to
the problem statement, however, the return of the Ringing state to the Prepared state
is only carried out on a user event.

*** 6.2 Complete the preceding state diagram to account for the fact that the alarm
clock stops ringing by itself after a certain amount of time.

Answer 6.2Answer 6.2Answer 6.2Answer 6.2

There is therefore a second possibility of exiting the Ringing state: when the alarm
clock stops ringing of its own accord after a certain amount of time.

Continuous or finite activity – completion transitionContinuous or finite activity – completion transitionContinuous or finite activity – completion transitionContinuous or finite activity – completion transition

An activity within a state can be either:

• “continuous”: it only stops when an event takes place that makes the object exit
from the state;

• “finite”: it can also be stopped by an event, but in any case, it stops by itself after
a certain amount of time, or when a certain condition is met.

Figure 6.2 Preliminary state diagram of the alarm clock

����������

���������	�
�������

��������

����	��������������
�������

�����

������������������

16_Chapter_06_Roques_NEW.fm Page 187 Friday, November 28, 2003 1:16 PM

6 Complementary exercises188

The completion transition of a finite activity, also known as completion transition, is
represented in UML without an event name or a keyword (as in activity diagrams).

In our example, all we therefore need to do is add a ring activity to the Ringing state
and a completion transition exiting this state. The completed state diagram is
represented on the following figure.

It is a good idea to wonder if the user has the right to ‘unprepare’ the alarm clock
whilst it is ringing. In this case, we would have to add a transition triggered by
unprepare and going directly from Ringing to Unprepared.

** 6.3 Deduce from the aforementioned points the extended static context diagram
of the alarm clock (cf. 5.10).

Figure 6.3 Completed state diagram of the alarm clock

����������

���������	�
�������

��������

����	��������������
�������

�����

�������

��������

���������

����	����
�
��������

����������

16_Chapter_06_Roques_NEW.fm Page 188 Friday, November 28, 2003 1:16 PM

Alarm clock 189

Answer 6.3Answer 6.3Answer 6.3Answer 6.3

If we apply the rules again, which were stated in Answer 5.10, we easily obtain the
diagram below.

Digital watchDigital watchDigital watchDigital watch

Let’s consider a simplified digital watch:

1. The current mode is the “Display” mode;

2. When you press once on the mode button, the watch changes to “change
hour”. Every time you press the advance button, the hour is incremented by a
unit;

3. When you press the mode button again, the watch changes to “change
minute”. Every time you press on the advance button, the minutes are
incremented by a unit.

Figure 6.4 Extended static context diagram

Figure 6.5 Simplified digital watch

����

����������
�
����
���

 ��������������!!"!!
 ��
���������!!"!!

#��������	�
�������
#�����������	�
#����������	�
 ����	�

!""$

����������	

���	�������	

16_Chapter_06_Roques_NEW.fm Page 189 Friday, November 28, 2003 1:16 PM

6 Complementary exercises190

4. When you press the mode button a third time, the watch goes back to “Display”
mode.

* 6.4 Draw the corresponding state diagram.

Answer 6.4Answer 6.4Answer 6.4Answer 6.4

We easily obtain this typical state diagram, which is set out on the following figure.

We can observe the notation in C++ or Java style that is used for the actions (to
indicate that it is incremented by one): “hour++” and “minutes++”. UML does not
yet offer an action language; we can therefore express the detail of the actions as we
wish: free text, pseudocode, etc.

We obtain self-transitions on the states for changes and not on the state for
display. Does this mean that the “press advance button” event is impossible in the
“Display” state? Of course not. Rather, this means that, as this event does not have
any effect in this state, it does not trigger any transition. The event is purely and
simply wasted.

Figure 6.6 Preliminary state diagram of the digital watch

%��
��

�����������&����� �����������&�����

�����������&�����

'�����
������

'�����
����

��������(������&������������##

��������(������&��������������##

16_Chapter_06_Roques_NEW.fm Page 190 Friday, November 28, 2003 1:16 PM

Alarm clock 191

**** 6.5 Add the following behaviour: when you press the advance button for longer
than two seconds, the hours (or the minutes) are incremented quickly until
the button is released.

Envisage several possible solutions.

Answer 6.5Answer 6.5Answer 6.5Answer 6.5

In the preceding example, the events of pressing the buttons actually corresponded
to the indivisible pair of “press” and “release”. We had considered that the length
of time spent pressing each button was trivial with regard to lengths of the states or,
in any case, insignificant. With the new exposition, this is no longer the case, as the
length of time spent pressing the advance button has an influence on the behaviour
of the watch. The correct approach entails inserting a new event: “release advance
button”, in order to be able to manage the time spent pressing the button.

An initial and tempting solution consists in inserting a condition on the length of
time spent pressing the button, as well as a new state called “Fast incrementation”,
as illustrated on Figure 6.8.

Figure 6.7 Conversion of an event into two

)�����
�������

)�����
��
�����

������
������
���������������

������������
������

����������������
������

���*���

16_Chapter_06_Roques_NEW.fm Page 191 Friday, November 28, 2003 1:16 PM

6 Complementary exercises192

Yet, this seemingly obvious solution is not acceptable in UML.
Indeed, an event (such as a transition and an action) is instantaneous by

convention, or in any case, indivisible (atomic). It is therefore completely
inappropriate to test its length! The only dynamic concepts in UML, for which the
notion of length is significant, are state and activity. We must therefore use these to
solve this exercise. There are two possible solutions: both require the addition of an
intermediary state so that we can test the length of time spent pressing the advance
button, but they differ in the way that they carry out this test:

• The first approach involves inserting a finite activity, “wait 2 sec”, in the
intermediary state and a completion transition that represents the fact that the
button is being pressed for longer than two seconds.

• The second approach consists in using another UML keyword: the pseudo-event,
« after », followed by an amount of time in parentheses representing the term
of a time expression.

In order to illustrate the two solutions, we have represented them together on the
following diagram, but in reality, we would naturally have to choose just one of
them and apply it to the two states of modification. As far as we are concerned, we
recommend the second solution as it seems simpler and easier to read.

Figure 6.8 Incorrect modification of the state diagram of the digital watch

%��
��
�����������&����� �����������&�����

�����������&�����

��������(������&�����+
�������*����,�������##

'�����
����

��
�������(�����
&�����

-��������
�����.���
�

��������(������&�����+
���������*����,

��
�������(�����
&�����

-��������
�������.���
�

��������(������&�����
+���������*����,

'�����
������

��������(������&�����+
�������*����,���������##

16_Chapter_06_Roques_NEW.fm Page 192 Friday, November 28, 2003 1:16 PM

Alarm clock 193

We will make a note of the fact that the initial behaviour is retained: if the advance
button is released in less than two seconds, the hours (or minutes) are incremented
by one unit. In fact, the self-transition that existed on each state for change was able
to be divided into two following the separation of the two events, “press” and
“release”, and the addition of the intermediary state.

Let’s go back to our digital watch example as it was set out at the beginning of the
exercise, and now add a further two buttons to it:

• A light button; by pressing it, the watch face is lit until the button is released;

• An alarm button, which adds a standard feature to the digital watch, as described
in the first exercise of this chapter (alarm clock).

Figure 6.9 The two possibilities for implementing a correct modification of the state dia-
gram of the digital watch

%��
��
�����������&�����

�����������&�����

�����������&�����
'�����
������

��������(�����
&�������

������##

)�����
�������

�/���	*�����

-��������
�������.���
�

�������
�����
��	�������
��

��
����
��(������&�����

��
����
��(������&�����

��
����
��(������&�����

��
����
��(������&�����

������
������������
���������������	�������

�
��������

��

-��������
�����.���
�

0��������(����
&�����

��������*����

��������(�����
&�������
����##

'�����
����

16_Chapter_06_Roques_NEW.fm Page 193 Friday, November 28, 2003 1:16 PM

6 Complementary exercises194

**** 6.6 Draw the full state diagram, including all behaviours of the watch.

Answer 6.6Answer 6.6Answer 6.6Answer 6.6

It is plain to see that we have three concurrent behaviours:

• management of the display,

• management of the alarm,

• management of the light.

Let’s start with the simplest one, which concerns managing the light. This can be
modelled very simply by an automatic mechanism with two states, as is shown on
the following diagram.

If management of the light can be modelled completely separately, then this does
not work for the display and the alarm. We must now also be able to modify the
hour and minute of the alarm, which adds two new states to the diagram in Figure
6.6, as shown below.

Figure 6.10 Completed digital watch

Figure 6.11 State diagram for managing the light

�����������	

����������	

����������	

���	�������	

��������//

�����1���

��
����1���

���������

����
���2����3���

16_Chapter_06_Roques_NEW.fm Page 194 Friday, November 28, 2003 1:16 PM

Alarm clock 195

All we need to do now is model managing the alarm. We can look at the state
diagram of the alarm clock (cf. Figure 6.3) to help us obtain the following diagram.
Note the dependency with management of the display via the test carried out by
management of the alarm on the attributes (« when »…).

We have therefore obtained three state diagrams. How do we arrange things so that
these three separate diagrams describe the behaviour of the digital watch?

Here again, two solutions are possible:

• Consider that every instance of Watch in fact contains three instances and that
each one manages one of the three behaviours described previously. In this way,
every watch delegates a part of its dynamics to a display, light or alarm instance,
according to the case. We can represent this by means of a composition
relationship in a class diagram.

Figure 6.12 State diagram for managing the display

Figure 6.13 State diagram for managing the alarm

%��
��
�����0��� �����0���

�����0���

�����0���

�����0���

�������(��������������4���##

'�����
����

�������(��������������0����##

'�����
������

�������(��������
���4���##

'�����
�
��������

����������

'�����
�
���������

�������(��������
���0����##

����������

������
���

������
���

������
���

��������

����	�������4�����
���4�����5%
�������0������
���0�����

�����

�������

16_Chapter_06_Roques_NEW.fm Page 195 Friday, November 28, 2003 1:16 PM

6 Complementary exercises196

• Describe “concurrent regions” within the state diagram of the Watch class. This
solution is not used as often as the previous one (mainly because certain UML
tools do not offer it), but it is just as feasible. The present state of the watch then
becomes a three-lined vector: state of the display, state of the alarm, state of the
lighting. A watch can simultaneously have its display in minute modification, be
in the middle of ringing and have its face lit.

The state diagram of the watch would then look as follows in Figure 6.15.
We will note that each “region” has to be initialised as, if the states are exclusive

within a concurrent region, they exist simultaneously in the three regions.

Figure 6.14 Class diagram that shows the composition relationship

2����

�����0���	�
�������(�����	�
������
���	�
�����1���	�

%��
��

�������4���
�������0����

�����0���	�
�������(����	�

�
���

�
���4���
�
���0����

������
���	�

1���

�����1���	�

6

6

6

6

6

6

16_Chapter_06_Roques_NEW.fm Page 196 Friday, November 28, 2003 1:16 PM

Alarm clock 197

Figure 6.15 State diagram of the watch with concurrent regions

%��
��
�����0��� �����0���

�����0���

�����0���

�����0���

�������(��������������4���##

'�����
4���

�������(������
�������0����##

'�����
������

�������(��������
���4���##

'�������
���
���� ������������

����������
���
�������

'�������
���
�����

�������(��������
���0����##

 ����

���

������

����������

������
���

������
���

������
���

��������

����	�������4�����
���4�����5%
�������0������
���0�����

�����

�������

��������//

�����1���

��
����1���
���������

����
���2����3���

16_Chapter_06_Roques_NEW.fm Page 197 Friday, November 28, 2003 1:16 PM

6 Complementary exercises198

Complex hierarchical state diagramComplex hierarchical state diagramComplex hierarchical state diagramComplex hierarchical state diagram

Let’s study the following state diagram fragment, which contains a number of
actions.

Entry (or exit) actionEntry (or exit) actionEntry (or exit) actionEntry (or exit) action

An entry action (introduced by the entry keyword within the symbol of a state)
represents an action that is executed each time this state is entered.

This enables us to share an identical action that will be triggered by all
transitions that enter the same state.

The exit action (introduced by the exit keyword) is the corresponding action
exiting the state.

The diagram of the problem statement therefore comprises:

• a self-transition on the composite state (E3/x3),

• an internal transition in the composite state (E4/A_Internal),

• entry and exit transitions in the composite state and each of the substates.

Figure 6.16 An example of a complex state diagram

���������	��
��	�
���������	
�
������	
������
��������	���

��
��	 ��
��	���

����������	
�
��������	���

���������	
�
��������	���

����� �����

�����

16_Chapter_06_Roques_NEW.fm Page 198 Friday, November 28, 2003 1:16 PM

Alarm clock 199

We are going to study the temporal order of execution of actions by completing the
following table. We will start with the state on the left of the diagram symbolised
by “…”, and for each line of the table, we will consider the target state of the
preceding line as the source state.

*** 6.7 Fill in the preceding table.

Answer 6.7Answer 6.7Answer 6.7Answer 6.7

In the source state, symbolised by “…” on the left of the diagram, the E1 event
triggers the x1 action, then leads to the A composite state. This entry in the A
composite state triggers the entry action, A_In, then entry in the B substate (because
of the symbol of the initial substate), and therefore the entry action, B_In.

In the B state, the E5 event causes the object to exit the state and therefore triggers
the B_Out action, then leads to the C state and, consequently, triggers the C_In
action.

Source state Event Actions Target state

… E1 ? ?

? E5 ? ?

? E4 ? ?

? E6 ? ?

? E3 ? ?

? E5 ? ?

? E3 ? ?

? E2 ? ?

Source state Event Actions Target state

… E1 x1, A_In, B_In B (in A)

16_Chapter_06_Roques_NEW.fm Page 199 Friday, November 28, 2003 1:16 PM

6 Complementary exercises200

Is the E4 event possible in the C state? Yes, as the internal transitions are inherited
from the composite state. The E4 event does not cause the object to exit the C state
and simply triggers the A_Internal action.

In the C state, the E6 event causes the object to exit the state and therefore triggers
the C_Out action, then leads to the B state and, consequently, triggers the B_In
action.

Is the E3 event possible in the B state? Yes, as the self-transitions are inherited from
the superstate. The E3 event firstly causes the object to exit the B state, and triggers
the B_Out action, then causes the object to exit the A superstate and triggers A_Out,
next triggers the x3 action, then causes the object to enter the A superstate and
triggers A_In; it finally causes the object to re-enter the B state and triggers the B_In
action.

We have already examined the arrival of E5 in the B state:

Watch out, there is a trap! In the C state, the E3 event firstly causes the object to exit
the C state and triggers the C_Out action, then causes the object to exit the A
composite state and triggers A_Out, next triggers the x3 action, then causes the
object to enter the A composite state and triggers A_In, finally causes the object to
re-enter the B state (as this is the initial substate!) and triggers the B_In action.

Source state Event Actions Target state

B E5 B_Out, C_In C (in A)

Source state Event Actions Target state

C E4 A_Internal C (in A)

Source state Event Actions Target state

C E6 C_Out, B_In B (in A)

Source state Event Actions Target state

B E3 B_Out, A_Out, x3, A_In, B_In B (in A)

Source state Event Actions Target state

B E5 B_Out, C_In C (in A)

16_Chapter_06_Roques_NEW.fm Page 200 Friday, November 28, 2003 1:16 PM

Alarm clock 201

In the B state, the E2 event firstly causes the object to exit the B state and triggers the
B_Out action, then exits the A composite state and triggers A_Out, and finally
triggers the x2 action.

Training requestTraining requestTraining requestTraining request

We are going to complete the case study on training requests, which we have
already dealt with from the functional (Chapter 2) and static (Chapter 4) views, by
constructing the state diagram of the TrainingRequest class.

*** 6.8 Construct the state diagram of training request.

Answer 6.8Answer 6.8Answer 6.8Answer 6.8

What information have we already gathered on the dynamics of a training request?
Let’s go back to the first three sentences of the problem statement in Chapter 2:

1. The training process is initialised when the training manager receives a training
request on behalf of an employee. This request is acknowledged by the training
manager who qualifies it and then forwards his agreement or disagreement to
the person who is interested.

2. In the case of agreement, the training manager looks in the catalogue of
registered courses for a training course corresponding to the request. He or she
informs the employee of the course content and suggests to him or her a list of
subsequent sessions. When the employee sends back his or her choice, the
training manager enrols the entrant in the session with the relevant training
body.

Source state Event Actions Target state

C E3 C_Out, A_Out, x3, A_In, B_In B (in A)

Source state Event Actions Target state

B E2 B_Out, A_In, x2 ...

16_Chapter_06_Roques_NEW.fm Page 201 Friday, November 28, 2003 1:16 PM

6 Complementary exercises202

3. If something crops up, the employee must inform the training manager as soon
as possible to cancel the enrolment or request.

We had also constructed an activity diagram of the training process showing the
main business objects and their changes in state (refer to Figure 2.12):

From the basis of this activity diagram, we can first of all identify four main states
of the training request, as illustrated on the following figure.

Figure 6.17 Activity diagram of the training process

Figure 6.18 Initial state diagram of the training request

2����3��������
��������

���������

2����3��7���
����

����
����

8���/��
���8�����

��9�����

'���
����

16_Chapter_06_Roques_NEW.fm Page 202 Friday, November 28, 2003 1:16 PM

Alarm clock 203

In fact, by rereading the first sentence carefully, we realise that the request is
initiated by the employee and sent to the training manager, then acknowledged by
the latter who forwards his agreement or disagreement to the person who is
interested. In order to be able to complete the state diagram, we will first of all give
details of the scenarios by using sequence diagrams.

We will note the distinctive symbol of the asynchronous message (the half-open
arrow head42) that is used on the preceding diagram to distinguish the actions of
notification that are carried out within the context of the training request.

Control flows of messagesControl flows of messagesControl flows of messagesControl flows of messages

A synchronous control flow means that the transmitter object is frozen whilst
waiting for the response from the receiver of the message.

Figure 6.19 Sequence diagram illustrating the beginning of the state diagram

42. Notice that UML 2.0 seems to remove the difference between the flat and asynchronous messages.
So this graphical distinction will probably disappear... The last proposal from UML 2.0
specifications is the following: “Asynchronous Message have an open arrow head; Synchronous
Messages typically represent method calls and are shown with a filled arrow head. The reply
message from a method has a dashed line; Object creation Message has a dashed line with an open
arrow.”

:�7��
����
:���������.����

����������

'������/��������;
���������"

(�
����	�

���������	��
/�

!�����
�����
	������

����	��
/�

������	�

������
��������
�/���.����

:���������������

16_Chapter_06_Roques_NEW.fm Page 203 Friday, November 28, 2003 1:16 PM

6 Complementary exercises204

On the other hand, in an asynchronous control flow, the transmitter object does
not wait for the receiver’s response and continues its job without concerning itself
with the receipt of its message.

This first sequence diagram leads us to add a state in front of “Waiting-
ForAcknowledgement”, as it is the request’s validation that triggers its forwarding
to the training manager. The actual creation of this request is not atomic, as the
employee has to make several choices (theme, period, etc.) before proceeding with
validation. We have also identified send actions that are identified as such by the
send keyword on the transitions of the state diagram.

Let’s continue with another sequence diagram that brings into play the “training
body” actor for the normal succession of events on the training request.

We can now consolidate the information from the two sequence diagrams so as to
construct a new, more complete version of the state diagram (see Figure 6.21).

What else does our state diagram need for it to be complete? All the cancellation
and error transitions actually. The employee can thus cancel his or her request at
any time, the training body can notify that a session is cancelled, etc.

Figure 6.20 Sequence diagram illustrating the follow-up of the state diagram

:�7��
����

������'����

���/������

���8�����

:���������.����

�����	��
/�

����
����

:��������&���

16_Chapter_06_Roques_NEW.fm Page 204 Friday, November 28, 2003 1:16 PM

Alarm clock 205

The complete state diagram is represented on the following figure.

Figure 6.21 Second version of the state diagram of the training request

'������

(�
������
������������������"��
/

2����3��������

��������

��9�����
��������
����"��9�����

��9�����

��������
��������
����"���������

"���
�#�
�������

8�����3��8�����

������'������
�����&���"�����	��
/�

2����3��7���
����

����
������
��������
����"���/������

8���/��
���8�����

����
����

16_Chapter_06_Roques_NEW.fm Page 205 Friday, November 28, 2003 1:16 PM

6 Complementary exercises206

Figure 6.22 Complete state diagram of the training request

(�
������
������������������"��
/ ��9�����

��������
����"��9�����

��9�����

��������
��������
����"���������

������'������
�����&���"�����

����
������
��������
����"���/������

���8�����

����
����

'������

2����3��������

��������

8�����3��8�����

2����3��7���
����

8���/��

�����

�����

�����

�����
��
�����&���"�����

����

�����
��
�����&���"�����

����

�����

��

�����
8�������
��������
����"�����

����

16_Chapter_06_Roques_NEW.fm Page 206 Friday, November 28, 2003 1:16 PM

C

This appendix comprises a thematic glossary of the dynamic view (mainly inspired
by the one found in the UML 2.0 Specifications from OMG), as well as a summary
of tips which have been taken from the two previous chapters.

GlossaryGlossaryGlossaryGlossary

Action Fundamental unit of behaviour specification that represents
some transformation of processing in the modelled system, be
it a computer system or a real-world system. Actions are
contained in activites, which provide thier context.

Action state State that represents the execution of an atomic action, typically
the invocation of an operation.

Activity Specification of parameterised behaviour that is expressed as a
flow of execution via a sequencing of subordinate units (whose
primitive elements are individual actions).

Actor Construct that is employed in use cases that define a role that a
user or any other system plays when interacting with the system
under consideration. Actors may represent human users,
external hardware, or other subjects.

Completion
transition

Transition without an explicit trigger event. Represents the
ending of the finite activity of the source state.

Composite state State that consists of either concurrent (orthogonal) substates
or sequential (disjoint) substates.

Concurrent substate A substate that can be held simultaneously with other substates
contained in the same composite state. Contrast: disjoint substate

Condition (guard) Boolean expression that must resolve to true so that the
transition carrying it is validated when the trigger event occurs.

Glossary & tips C

17_Appendix_C_Roques_NEW.fm Page 207 Tuesday, December 2, 2003 1:10 PM

Appendix C: Glossary & tips208

Continuous activity An activity that only stops when an interrupting event takes
place, and that makes the object exit the enclosing state.

Disjoint substate Substate that cannot be held simultaneously with other
substates contained in the same composite state. Contrast:
concurrent substate.

Entry action Action that is executed each time the object enters the state
involved, regardless of the transition taken to reach that state,
and formalised by the entry keyword.

Event Specification of a significant occurence that has a location in
time and space and can cause the execution of an associated
behaviour. In the context of state diagrams, an event is an
occurence that can trigger a transition.

Exit action Action that is executed each time the object leaves the state
involved, regardless of the transition taken to exit that state, and
formalised by the exit keyword.

Final state Special kind of state signifying that the enclosing composite
state or the entire state machine is completed.

Finite activity An activity that can be interrupted by an event, but in any case,
which stops by itself after a certain amount of time, or when a
certain condition is met.

Initial state Special kind of state signifying the source for a single transition
to the default state of the composite state.

Internal transition Transition signifying a response to an event without changing
the state of an object.

Lifeline Modelling element that represents an individual participant in
an interaction. A lifeline represents only one interacting entity.

Message Specification of the conveyance of information from one
instance to another, with the expectation that activity will
ensue. A message may specify the raising of a signal or the call
of an operation.

Pseudo-state Vertex in a state machine that has the form of a state, but
doesn’t behave as a state. Pseudo-states include initial, final and
history vertices.

Scenario Specific sequence of actions that illustrates behaviours. A
scenario may be used to illustrate an interaction or the
execution of a use case instance.

17_Appendix_C_Roques_NEW.fm Page 208 Tuesday, December 2, 2003 1:10 PM

Appendix C: Glossary & tips 209

TipsTipsTipsTips

• To represent the dynamic context, use a collaboration diagram as follows:

• the system in question is represented by an object in the centre of the
diagram;

Self-transition Transition for which the target state is the same as the source
state. Nevertheless it brings about an exit of state then a re-entry
into this same state, which triggers the possible exit and entry
actions.

Signal Specification of an asynchronous stimulus that triggers a
reaction in the receiver in an asynchronous way and without a
reply. The receiving object handles the signal as specified by its
receptions. The data carried by a send request and passed to it
by the occurence of the send invocation event that caused the
request is represented as attributes of the signal instance. A
signal is defined independently of the classifiers handling the
signal.

State Condition or situation during the life of an object during which
it satisfies some condition, performs some activity, or waits for
some event.

State machine
diagram

Diagram that depicts discrete behaviour modelled through
finite state-transition systems. In particular, it specifies the
sequences of states that an object or an interaction goes through
during its life in response to events, together with its responses
and actions.

Substate State that is part of a composite state. See concurrent state, disjoint
state.

Time event Event that denotes the time elapsed since the current state was
entered.

Transition Relationship between two states indicating that an object in the
first state will perform certain specified actions and enter the
second state when a specified event occurs and specified
conditions are satisfied. On such change of state, the transition
is said to fire.

Vertex Source or a target for a transition in a state machine. A vertex
can be either a state or a pseudostate.

17_Appendix_C_Roques_NEW.fm Page 209 Tuesday, December 2, 2003 1:10 PM

Appendix C: Glossary & tips210

• this central object is surrounded by an instance of each actor;

• a link links the system to each of the actors;

• on each link, all the input and output messages of the system are listed,
without numbering.

• For the effective construction of state diagrams:

• firstly, represent the sequence of states that describes the nominal behaviour
of an instance, with the associated transitions;

• progressively add the transitions that correspond to “alternative” or
exceptional behaviours;

• complete the actions on the transitions and the activities in the states;

• structure it all into substates and use advanced notation (entry, exit, etc.)
if the diagram becomes too complex.

• Distinguish internal – when(condition) – and time – after(length) – events
from those that result from the receipt of messages.

• Consider using the concept of composite state to factorise the many transitions
triggered by the same event and leading to the same state.

• Be careful: on a transition, the action is always triggered after evaluation of the
guard condition.

• Use automatic transitions correctly. An activity within a state can be either:

• “Continuous”: it only stops when an event occurs that exits the state;

• “Finite”: it can also be interrupted by an event, but in any case, it stops by itself
after a certain amount of time, or when a certain condition is met.

The completion transition of an activity, also known as automatic transition, is
represented in UML without an event name or a keyword.

• Do not confuse action and activity: actions are associated with transitions and are
atomic, which means that they cannot be interrupted with regard to the
considered time scale; activities, on the other hand, have a specific length, can be
interrupted, and are therefore associated with states.

17_Appendix_C_Roques_NEW.fm Page 210 Tuesday, December 2, 2003 1:10 PM

Appendix C: Glossary & tips 211

• Watch out: an event (such as a transition and an action) is instantaneous by
convention, or in any case, indivisible (atomic). It is therefore completely
incorrect to test its duration! The only dynamic concepts in UML that possess the
notion of duration are state and activity.

• Remember the difference between self-transition and internal transition:

• In the case of a self-transition, the object leaves its source state to return to it
later. This can have not inconsiderable secondary effects, such as the
interruption then re-starting of an activity, the realisation of entry (entry) or
exit (exit) actions of the state, etc. Moreover, if the state is broken down into
substates, a self-transition inevitably returns the object to the initial substate.

• On the other hand, the internal transition represents a pair (event/ action)
which has no influence on the present state. The internal transition is declared
within the symbol of the state.

• You must know how and when to use the history pseudostate: it enables a
composite state to remember the last sequential substate that was active before
an exiting transition. A transition towards the history state makes the last
substate active again, instead of returning to the initial substate.

• Do not exploit entry and exit actions. Indeed, in the case of modifying the action
on one of the transitions concerned, you must think of “defactorising” and of
replacing the action on every other transition. An entry (or exit) action must
truly be a characteristic of the state in which it is described and not just a device
specific to factorisation.

• In your state diagrams, do not forget to describe the important action of sending
a message to another object on firing of a transition. The syntax of this particular
action is as follows: “/ send target.message”.

• If an object realises several relatively independent behaviours, there are two
ways to model this:

• consider that it actually contains several objects, and that each of them
realises one of its behaviours, and represent this using a composition
relationship in a class diagram;

• describe “concurrent regions” within the state diagram; the present state then
becomes a vector of several lines, which can develop in parallel.

• Simple rules allow the definition of classes to be expanded from the basis of state
diagrams:

17_Appendix_C_Roques_NEW.fm Page 211 Tuesday, December 2, 2003 1:10 PM

Appendix C: Glossary & tips212

• public operations correspond to the names of messages sent by the actors;

• private operations correspond to the names of messages sent to oneself;

• attributes correspond to the names of persistent data, manipulated in the
actions or conditions.

• The concept of operation does not make sense on a human actor: we do not
generally try to model him or her in a deterministic way. However, on a non-
human actor, the list of operations represents its interface (in the sense of an
API, for example) as it is used by the system in question. This turns out to be
particularly useful for checking the interoperability of the two systems and for
making sure that these operations are already available, or anticipated in the
specifications.

• No state diagram if there are less than three states! Do not waste time in drawing
state diagrams that only contain two states (the “on/ off” type), or indeed only
one. In this case, the dynamics of the class are surely simple and likely to be
understood directly. By following this rule, it appears that 10% of classes
commonly require a detailed description in the form of a state diagram.

• Do not use all the subtleties of state diagrams without thinking about it first. The
UML state diagram (with its derivative – the activity diagram) provides a lot of
advanced features and can be very efficient, but also very complex. The reader
who does not master all the details of it strongly runs the risk of not being able
to keep up with you.

17_Appendix_C_Roques_NEW.fm Page 212 Tuesday, December 2, 2003 1:10 PM

Part 4
Design 1

18_Part_04_Roques_NEW.fm Page 213 Friday, November 28, 2003 1:15 PM

Part 1: Design214

18_Part_04_Roques_NEW.fm Page 214 Friday, November 28, 2003 1:15 PM

7

Aims of the chapter

This chapter will allow us to illustrate the task of extending and refining models
when we deal with design. To this end, we will go back to the case study of the
training request system, which has already been analysed in accordance with
different views in Chapters 2 (functional), 4 (static) and 6 (dynamic).

We will find out how to:

• define iterations from use case analysis;

• define the system architecture (with layers and partitions);

• define system operations and describe their contracts;

• use interaction diagrams to describe interactions between software objects and
how to distribute the operations;

• use Jacobson’s stereotypes to distinguish <<boundary>>, <<control>> and
<<entity>> classes;

• pass decisions with regard to assigning responsibilities to the objects into the
design class diagrams;

• transition from UML diagrams to Java code;

• describe the physical implementation of the application with the component
and deployment diagrams.

Case study: training
request 7

19_Chapter_07_Roques_NEW.fm Page 215 Friday, November 28, 2003 1:15 PM

7 Case study: training request216

Case study 7 – Problem statementCase study 7 – Problem statementCase study 7 – Problem statementCase study 7 – Problem statement

Let’s go back to the case study on training requests, which we have already analysed
in accordance with its different views.

First of all, we will define iterations from the basis of work that has already been
carried out and set ourselves as our goal the design of one of these iterations, with
Java language as our target.

Elements involved

• Iteration

• Layered architecture, package

• System sequence diagram

• System operation, operation contract

• Interaction diagram

• Boundary, control, and entity objects

• Object, link, visibility

• Class diagrams

• Operation, navigability, dependency

• Java code

• Component diagram

• Deployment diagram.

19_Chapter_07_Roques_NEW.fm Page 216 Friday, November 28, 2003 1:15 PM

TE
AM
 F
LY

7.1 Step 1 – Defining iterations 217

7.1 Step 1 – Defining iterations

In Chapter 2, we identified the use cases of the system for managing applications.

We also constructed a business model in Chapter 4. The three packages of business
classes are recalled below.

Figure 7.1 Use case diagram of the system for managing training requests

��������

�����	
��	������� �����		�������

�����������

�����������

�������	�������

������	�������

�������	�����
�����		�������	������

��������
�������	����

19_Chapter_07_Roques_NEW.fm Page 217 Friday, November 28, 2003 1:15 PM

7 Case study: training request218

** 7.1 Propose a division of the project into three initial iterations on the basis of
previous analysis work.

In particular, bear in mind one of the major principles of the Unified Process:
use case driven…

Answer 7.1Answer 7.1Answer 7.1Answer 7.1

In view of dependencies between the business packages, as well as between the use
cases, it seems natural to start with management of the catalogue. The other two
business packages depend on “Course catalogue”, and the core use case of “Apply
for training” is linked by inclusion to the “Consult catalogue” case. In the first
iteration, we will therefore choose to realise the two use cases that concern the
catalogue.

For the second iteration, it is essential to deal with the main use case of the
system, namely “Apply for training”, together with its companion, “Cancel a
request”.

Figure 7.2 Dependencies between business packages

�����������

�	����������
�	 �!����

������	�������

�	�������
�	�������	����

�	������
�	�������
�	"������

������������	
�	

�����������
�

�������	��������

�	�������	�������
�	�������	�����

�	��������
�	���������
�	#�������
�	���������

�	$����������

19_Chapter_07_Roques_NEW.fm Page 218 Friday, November 28, 2003 1:15 PM

7.2 Step 2 – Defining the system architecture 219

In a third iteration, we will deal with the more administrative aspects
(enrolment, etc.) with “Order a training course”, as well as the strictly bookkeeping
part of managing invoices.

It is worth noting that the more technical service of authenticating the employee or
training manager on the intranet can be realised in parallel to the functional use
cases.

7.2 Step 2 – Defining the system architecture

Modern information systems are designed in terms of horizontal layers, which are
themselves divided into vertical partitions.

Figure 7.3 Distribution of the use cases into iterations

��������

�����	
��	������� �����		�������

�����������

�����������

�������	�������

������	�������

�������	�����
�����		�������	������

��������
�������	����

19_Chapter_07_Roques_NEW.fm Page 219 Friday, November 28, 2003 1:15 PM

7 Case study: training request220

The general issue of the architecture of information systems is not the topic of
this book. Nevertheless, we will take advantage of this fourth section to go over a
few basic ideas on the subject of layered architectures – also known as “multi-tier”
– as well as the UML diagrams that are useful for this activity.

Three-tier ArchitectureThree-tier ArchitectureThree-tier ArchitectureThree-tier Architecture

The three-tier architecture, now standard practice, was though as a logical division
at the start, but was often wrongly interpreted as implying execution nodes that are
physically distinct.

The main aim of this separation into three layers (presentation, logic, storage) is
to isolate the business logic from presentation classes (GUI), as well as to forbid
direct access to back-end storage layer by presentation objects. The primary concern
is to respond to the criterion of flexibility: to be able to modify the interface of the
application without having to modify the business rules, and to be able to change
storage mechanism without having to adapt the interface or the business rules.

Below is an example of classic three-tier architecture, based on the case study of
Chapter 2: the supermarket cash register.43

Nowadays, we no longer consider this division into three layers to be sufficient if
we have very high goals of modularity and reuse to be met. Indeed, it can lead

Figure 7.4 Three-tier architecture of the cash register

43. The GUI is directly inspired from the one proposed by C. Larman in Applying UML and Patterns.

19_Chapter_07_Roques_NEW.fm Page 220 Friday, November 28, 2003 1:15 PM

7.2 Step 2 – Defining the system architecture 221

graphical presentation objects to know the detailed organisation of the logical
layer, which harms their ability to be maintained and reused.

In order to improve this separation of concerns, an interesting idea consists in
inserting an artificial object, often known as “controller”,44 between the graphical
objects and the business objects. It is the controller design object that now knows
the interface of objects of the business layer, and which plays the role of “façade”
with regard to the presentation layer, as shown on the following figure.

We can now gather these controller objects, introduced in the design stage, in a new
layer called “application logic”, which works towards realising the use cases of the
system, and isolating the presentation layer from business objects, which are often
persistent and likely to be reused. The business objects will remain together in a
layer called “business logic”, so that the middle tier in the classical three-tier
architecture is now broken down into two layers with “application logic” on top of
“business logic”.

We are going to apply these principles of multi-tiered architectures in the
remainder of the chapter within the context of the system for managing training
requests.

44. This is the name given by Larman in Applying UML and Patterns to one of his GRASP Patterns. But
it refers also to the well-known “Model-View-Controller” and to Jacobson’s <<control>> classes
that we will explain a little further on in this chapter.

Figure 7.5 Diagram illustrating the addition of the controller object

�����

%�&'��!��	�!���

����������	��!��	�!���

�����	
��

�� ���()

��

��
�������

��*#������� "��

����
�����������

�������

19_Chapter_07_Roques_NEW.fm Page 221 Friday, November 28, 2003 1:15 PM

7 Case study: training request222

Packages, layers and partitionsPackages, layers and partitionsPackages, layers and partitionsPackages, layers and partitions

In UML, the only available mechanism for organising classes into groups is the
package. Consequently, horizontal layers and vertical partitions are also conveyed
by packages.

So, a layered architecture is best described by a static diagram that only shows
packages and their dependencies. UML 2.0 recently acknowledged the importance
of this kind of high-level diagram by adding the “Package diagram” as a full-fledged
kind of diagram.

You can use the predefined stereotype, « layer », to distinguish packages that
represent layers.

*** 7.2 Propose a preliminary architecture diagram of the project on the basis of
previous advice given.

Answer 7.2Answer 7.2Answer 7.2Answer 7.2

We are therefore describing a package stereotyped « layer » by software layer.
Within each layer, we give a preliminary structure in partitions.

Figure 7.6 UML representation of a software layer

��������

+����������

19_Chapter_07_Roques_NEW.fm Page 222 Friday, November 28, 2003 1:15 PM

7.2 Step 2 – Defining the system architecture 223

The business layer comprises a priori the three packages that were identified in
Chapter 4: Bookkeeping, Training requests and Catalogue. We will be able to refine this
division at a later stage in our study: this is only a preliminary structuring.

Details of the application layer are not given on the diagram. It can be structured
either the same way as the business layer, or alternatively, from a functional view
by copying the use case packages.

For the most part, the presentation layer groups the graphical classes of the
respective interfaces of the training manager and of the employee.

Figure 7.7 Layered architecture of the system for managing training requests

��������
+����������

�������	�����
,-

��������
,-

������

��������
����������	�����

��������
��������	�����

�����������

�������
��������

�������

��������

���*����	���!����

���*���������

�������������
�����������

������

.!

19_Chapter_07_Roques_NEW.fm Page 223 Friday, November 28, 2003 1:15 PM

7 Case study: training request224

The technical services layer consists of at least one package to manage the
technical service of authentication, identified from Chapter 2 onwards. It will
contain also the technical classes that provide persistency mechanisms, often
known as “data access objects”.

Finally, we must not forget the basic Java classes provided by the JDK and which
are used by all layers. For example, the presentation layer will use graphical classes.
As for the technical services layer, it will make particular use of the JDBC classes for
access to relational databases. All the layers will use basic classes, such as
containers, dates, etc.

However, we must consider that this preliminary architecture will be able to be
refined or modified (mainly at the level of partitions within each layer) by the
design task that will follow. Do not forget that the analysis/design process is
inherently iterative.

7.3 Step 3 – Defining system operations (iteration 1)

Iteration 1 corresponds to the “Consult catalogue” and “Maintain catalogue” use
cases. With regard to these, we carried out a high-level description in Chapter 2
(Answer 2.8). To refresh our memory, here they are again:

“The training manager can enter a new course in the catalogue, modify an
existing course or take out one that a body has withdrawn. He or she can also
modify groups of courses called themes. In addition, he or she can update the dates
and times of the sessions.

In order to be able to apply for training and to maintain the catalogue, the
system must offer a basic functionality for consulting the catalogue. This
functionality can therefore be factorised in a new inclusion use case.”

** 7.3 List the system operations for the “Maintain catalogue” use case.

See Chapter 2, Answer 2.5…

Answer 7.3Answer 7.3Answer 7.3Answer 7.3

The system operations for the “Maintain catalogue” use case are easily deduced
from its high-level description. Nevertheless, we must think about the creation and
maintenance of the training bodies, which does not appear clearly in the text.

The system operations are brought together on the following diagram, where a
class symbolises the system – seen as a black box – with its operations.

19_Chapter_07_Roques_NEW.fm Page 224 Friday, November 28, 2003 1:15 PM

7.4 Step 4 – Operation contracts (iteration 1) 225

To simplify matters, we have considered that the modification action also includes
deletion, and skipped the trivial “viewSomething()” operations.

7.4 Step 4 – Operation contracts (iteration 1)

We identified the system operations in the previous step. But how can we specify
the result of the execution of a system operation?

Operation contractOperation contractOperation contractOperation contract

In the book we have already mentioned, Larman proposed establishing a
“contract” for each system operation.

An operation contract describes changes in the state of the system when a system
operation is carried out. These modifications are expressed in terms of
“postconditions”, which detail the new state of the system after execution of the
operation.

The main postconditions concern the creation (or destruction) of objects and
links descended from the analysis static model, as well as the modification of
attribute values. Operation contracts thus allow the link to be made between the
functional/dynamic view of use cases and the static analysis view.

A standard textual description plan for an operation contract is given below:

• name

• responsibilities

• references

Figure 7.8 System operations for the “Maintain catalogue” use case

������

�����������()
����
�������()
����������������()
����
������������()
������*���()
����
��*���()
�����"������()
����
�"������()

19_Chapter_07_Roques_NEW.fm Page 225 Friday, November 28, 2003 1:15 PM

7 Case study: training request226

• preconditions

• postconditions

• exceptions (optional)

• notes (optional)

** 7.4 Write the contract of the createCourse system operation.

Use the aforementioned standard plan.

Answer 7.4Answer 7.4Answer 7.4Answer 7.4

First of all, we will take the part concerned with our question from the class diagram
of the Catalogue package that we elaborated in Chapter 4 (cf. Figure 4.42). The
createCourse and createTheme system operations are going to have an effect on the
objects and links of the following diagram:

Figure 7.9 Class diagram of the Course catalogue package

�������
����

���
������
���/��

0/��
�'���

������������	

1�������2

"������

����$��
3	���$��
�������

������

�����
�����*
����

�������

�������������
�������������

��.����!��
��������

���

�������

������
	

���

4
4

5667
5667

4
4

4

5667

19_Chapter_07_Roques_NEW.fm Page 226 Friday, November 28, 2003 1:15 PM

7.4 Step 4 – Operation contracts (iteration 1) 227

However, the notion of theme was missing in our business model. This concept of
theme is purely applicative: it makes the work of the employee easier when
applying for a course by allowing him or her to remain deliberately imprecise and
choose a set of courses on a given subject, rather than a specific course.

We will assume that the themes structure the catalogue, but that they do not
divide it: a course belongs to at least one theme. The following figure shows the
modifications brought about by introducing the concept of theme.

We can now describe the createCourse operation contract:

• Name
 createCourse.

• Responsibilities
 To create a new course according to the description provided by the training
 body concerned and to classify it in at least one of the existing themes.

• References
 Maintain catalogue use case.

• Preconditions

• the course catalogue exists;

• there is at least one theme in the catalogue;

• the body providing the course already exists in the catalogue;

Figure 7.10 Introduction of the concept of theme

�������

�*���

������

4

4667

4667

5667

19_Chapter_07_Roques_NEW.fm Page 227 Friday, November 28, 2003 1:15 PM

7 Case study: training request228

• the training manager is connected to the intranet.

• Postconditions

• a course, c1, has been created with its attributes;

• a content object, c2, has been created with its attributes;

• c2 has been linked to c1;

• c1 has been linked to the providing body;

• possible session objects have been created with their attributes;

• these session objects have been linked with c1;

• c1 has been linked to at least one theme.

7.5 Step 5 – Interaction diagrams (iteration 1)

Operation contracts constitute the most detailed information that can be issued
with regard to analysis. Indeed, if they describe what an operation does in terms of
changes in state, they should not describe how it goes about it.

In fact, it is the job of the designer to choose how software objects will interact
among themselves in order to realise such system operation. Jacobson45 was the
first to propose class stereotypes to describe the realisation of a use case. We will

Figure 7.11 Moving from analysis to design

45. Refer in particular to The Unified Software Development Process, I. Jacobson et al., Addison-Wesley,
p. 44, 1999.

8	�������	����� 8	�������	�����

����������	
��������������

8	"�����

�����������() �����������()

��������
�������
�	����

���������

�
������ �����

8	999 8	999

19_Chapter_07_Roques_NEW.fm Page 228 Friday, November 28, 2003 1:15 PM

7.5 Step 5 – Interaction diagrams (iteration 1) 229

draw our inspiration from his work to replace the system seen as a black box (from
the analysis view) with software objects (from the design view), as illustrated by the
sequence diagram shown above.

Jacobson’s stereotypesJacobson’s stereotypesJacobson’s stereotypesJacobson’s stereotypes

Within the system, Jacobson distinguishes the following three stereotypes:

• <<boundary>>: classes that are used to model the interactions between the
system and its actors;

• <<control>>: classes used to represent the coordination, sequence and
control of other objects – in general, they are linked to a specific use case;

• <<entity>>: classes that are used to model long-lasted and often persistent
information.

We will use these three stereotypes (with their associated graphical symbols in the
interaction diagrams) to give a graphical depiction of how a message sent by an
actor traverses the presentation, application logic and business logic layers.46

Figure 7.12 Illustration of the three Jacobson’s stereotypes on a sequence diagram

46. Even though Jacobson (and then RUP from Rational) intended these stereotypes for what he calls
“analysis”, we prefer to use them at a “logical design” level. We will detail this logical design further
according to the chosen implementation platform (J2EE, .NET, etc.) and replace for instance
boundary classes with JSP (J2EE) or ASP (.NET), entity classes with EJB (J2EE), and so on.

8	������	/��� 8	��������	/��� 8	��������	/��� 8	�������	/��� 8	�������	/���

�������

�����
��

������	�

�����	������� ��������
��	����

19_Chapter_07_Roques_NEW.fm Page 229 Friday, November 28, 2003 1:15 PM

7 Case study: training request230

Note the representation of the “focus of control” – white rectangles that represent
periods of activity on the lifelines of objects – as well as the dashed arrows
indicating return values.

Note the decimal numbering that enables nesting of messages to be shown, in a
way comparable to the representation of the “focus of control” on the preceding
diagram.

**** 7.5 Realise a sequence diagram or a collaboration47 diagram that demonstrates
the realisation of the createCourse system operation.

Answer 7.5Answer 7.5Answer 7.5Answer 7.5

What do we have to do? To find out, we must go back to all the postconditions
listed in the preceding step:

• a course, c1, has been created with its attributes;

• a content object, c2, has been created with its attributes;

• c2 has been linked to c1;

• c1 has been linked to the providing body;

• possible session objects have been created with their attributes;

Figure 7.13 Illustration of Jacobson’s three stereotypes on a collaboration diagram

47. We have chosen to keep the well-known (obsolete!) name “collaboration diagram” throughout
the book, even through UML 2.0 just renamed it “communication diagram”...

8	������	/��� 8	��������	/��� 8	��������	/���

8	�������	/���

8	�������	/���

��	��

�����
�����
��������	������	

46 4646

464646

4646:6

19_Chapter_07_Roques_NEW.fm Page 230 Friday, November 28, 2003 1:15 PM

7.5 Step 5 – Interaction diagrams (iteration 1) 231

• these session objects have been linked with c1;

• c1 has been linked to at least one theme.

Do not forget that postconditions only represent the new state of the system once
the system operation has been executed. They are certainly not ordered: it is the role
of the designer to choose now which object must realise each action, and in which
order.

The core postcondition concerns the creation of the course object, with its
content and its sessions, then the definition of its links with the other objects of the
catalogue, such as the themes and bodies. It seems reasonable to think that the
creation of the course object – c1 – will be done in four steps.

1. initialisation of c1 object and of its attributes,

2. creation of its content,

3. creation of sessions,

4. validation of c1.

By examining it in detail, let’s find a possible solution for the first step, involving
two « boundary » objects, a « control » one and an « entity » one.

The same scenario can be represented by a collaboration diagram, such as the one
shown on Figure 7.15:

Figure 7.14 Sequence diagram of the initialisation of c1

8	�������	�����

�����������()

���������(�����;	�����*;	����)

8	,�����"����� 8	������"�����

���!��()

���������������(�����;	�����*;	����)

8	�����������������

�������	�����	
�����	����

��������������

�48	������

���������(�����;	�����*;	����)

�����������
�������	
�����
�

19_Chapter_07_Roques_NEW.fm Page 231 Friday, November 28, 2003 1:15 PM

7 Case study: training request232

Let’s continue with the creation of the content. The completed sequence diagram
then becomes:

We will observe that the sequence diagram is becoming increasingly difficult to
read as we add objects… It is for this simple reason that the collaboration diagram
is essential for design: it allows us to place our objects in both dimensions, thereby
improving the readability of the diagram.

Figure 7.15 Collaboration diagram of the initialisation of c1

Figure 7.16 Sequence diagram of the initialisation of c1 and of the creation of its content

8	�������
�����

46	�����������()

8	,�����"�����

4646	���!��()

:6	���������(�����;	�����*;	����)

8	������"�����

:646	���������������(�����;	�����*;	����)

:64646	���������(�����;	�����*;	����)

8	�����������������

�48	������

8	�������	�����

�����������()

���������������(�����;	�����*;	����)

���������������(�����;	�����*;	����)

�������������()

�������������(�������������;	�������������;
��.����!��;	�����;	���)

�������������(�������������;
�������������;	��.����!��;

�����;	���)

8	,�����"�����

���!��()

���!��()

8	������"����� 8	�������"����� 8	�����������������

���������(�����;	�����*;	����)

�48	������

���������(�������������;
�������������;	��.����!��;

�����;	���)
�:8	�������

19_Chapter_07_Roques_NEW.fm Page 232 Friday, November 28, 2003 1:15 PM

7.5 Step 5 – Interaction diagrams (iteration 1) 233

The collaboration diagram that corresponds to the preceding sequence diagram
is given on the following figure by way of comparison. From now on, we will
exclusively use the collaboration diagram.

Note that the collaboration diagram above is set out in such a way that it is easy for
the reader to differentiate the object layers.

Let’s now carry on with the creation of the sessions.

MultiobjectsMultiobjectsMultiobjectsMultiobjects

In order to indicate that the course, c1, will be linked to a collection of sessions, we
use a multiobject. The multiobject is a UML construction that represents several
objects of the same class in a single symbol. This prevents detailed design classes
linked to the programming language (such as Vector of the C++ STL or ArrayList in
Java, etc.) from being added too soon. A multiobject can also represent the
complete abstraction of a connection with a database.

Figure 7.17 Collaboration diagram of the initialisation of c1 and of the creation of its con-
tent

46	�����������()

8	,�����"�����

4646	���!��()

:6	���������	(�����;	�����*;	����)
<6	������������()

8	�������	�����

=6	������������(�������������;	�������������;
��.����!��;	���������;	���)

<646	���!��()

8	������"�����

8	�������"�����

=646	������������(�������������;
�������������;	��.����!��;

���������;	���)

8	�����������������

=64646	���������(�������������;
�������������;	��.����!��;

���������;	���)

�:8	�������

:64646	���������(�����;	�����*;	����)

�48	������
:646	���������������(�����;	�����*;	����)

����������	�����������	�

�������	�
�������	�

����������������

19_Chapter_07_Roques_NEW.fm Page 233 Friday, November 28, 2003 1:15 PM

7 Case study: training request234

Moreover, we had forgotten to create this empty collection in Figure 7.16 when
creating c1. After the creation of each session, all you have to do is add it to the
collection. For this, we use a generic operation, add(): see Figure 7.18.

The collaboration diagram possesses another advantage over the sequence
diagram: it allows the representation of structural relationships among objects. For
example, we have made the composition links appear around the course object, c1,
in order to make it easier when we construct our future design class diagram.

All we have to do now is link the course, c1, to an existing theme and validate the
creation. By comparing the task realised in the postconditions, which were required
at the start of the answer, we can state that the following has not been taken into
account: “c1 has been linked to the providing body”. We simply add it to the
responsibilities of the controller when creating the course.

The complete collaboration diagram of the createCourse system operation can be
found on the following figure (7.19). Observe the quantity of information – quite
considerable – that manages to be represented in, yet again, a barely legible way on
a single page. Nevertheless, we are already reaching the limits of the collaboration
diagram (and we have long since exceeded those of the sequence diagram!).

Figure 7.18 Collaboration diagram of the initialisation of c1, of the creation of its content
and of a session

46	�����������()

>646	�����"������(����$��;	�������)

8	,�����"�����
4646	���!��()

>64646	���������(����$��;	�������)
�����������

:6	���������	(�����;	�����*;	����)
<6	������������()
?6	�����"������()

:646	���������������(�����;
�����*;	����)

�8	"������

8	"������

>646:6	��(�)

:6464646	���������

:64646	���������(�����;
�����*;	����)

�48	������

����������	

=64646	���������(�������������;
�������������;	��.����!��;

���������;	���)

�:8	�������

8	�����������������

8	������"�����

8	�������	����� ?646	���!��() <646	���!��()

=6	������������(�������������;
�������������;	��.����!��;

���������;	���)

=646	������������(�������������;
�������������;	��.����!��;

���������;	���)

8	�������"�����

>6	�����"������(����$��;	�������)

8	"�������"�����

19_Chapter_07_Roques_NEW.fm Page 234 Friday, November 28, 2003 1:15 PM

7.5 Step 5 – Interaction diagrams (iteration 1) 235

An interesting idea for improving the readability of the diagram entails dividing it
into two by treating the controller object as a transition marker:

• one part to specify the dynamics of the human-computer interface with the
actors, the <<boundary>> objects and the <<control>> object;

• a second part to specify the dynamics of the application and business layers with
the <<control>> object and the <<entity>> objects.

The resulting partial collaboration diagrams are shown on the following two
figures.

Figure 7.19 Complete collaboration diagram of the createCourse system operation

:<'8	������"�����

46	�����������()

8	,�����"�����

>64646	���������(����$��;	�������)

4646	���!��()

:646	���������������(�����;
�����*;	����)

@646	!�����(�*���)

:6	���������	(�����;	�����*;	����)
<6	������������()
?6	�����"������

@6	!�����(�*���)

�8	"������

>646:6	��(�)

8	"������

8	����

:6464646	���������

:646:6	��(�4)
8	������

�48	������

:64646	���������(�����;
�����*;	����)

@64646	!�����()

@646:6	��(�4)

8	������

8	�*���

�:8	�������

=64646	���������(�������������;
�������������;	��.����!��;

���������;	���)

>646	�����"������(����$��;	�������)

8	"�������"�����

8	�������"�����>6	�����"������(����$��;
�������)

=6	������������(�������������;
�������������;	��.����!��;

���������;	���)

8	�������	�����

8	�����������������

=646	������������(�������������;
�������������;	��.����!��;

���������;	���)

<646	���!��()?646	���!��()

19_Chapter_07_Roques_NEW.fm Page 235 Friday, November 28, 2003 1:15 PM

7 Case study: training request236

Figure 7.20 Partial collaboration diagram of the createCourse system operation: presenta-
tion layer and link with the application layer

Figure 7.21 Partial collaboration diagram of the createCourse system operation: application
layer and link with the business layer

4'8	�������	�����

46	�����������()

8	,�����"�����

:6	���������	(�����;	�����*;	����)
<6	������������()
?6	�����"������()
@6	!�����(�*���)

4646	���!��()

:646	���������������(�����;	�����*;	����)

@646	!�����(�*���)

8	������"�����

8	�����������������
<646	���!��()

=646	������������(�������������;
�������������;	��.����!��;

���������;	���)

>646	�����"������(����$��;	�������)

8	�������"�����

8	"�������"�����

>6	�����"������(����$��;	�������)

=6	������������(�������������;
�������������;	��.����!��;

���������;	���)

?646	���!��()

46	���������������(�����;	�����*;	����)
:6	������������(�������������;
																												�������������;	��.����!��;
																												���������;	���)

<6	�����"������(����$��;	�������)
=6	!�����(�*���)

<646	���������(����$��;	�������)

�8	"������ 8	"������

464646	���������

<6:6	��(�)

8	������

46:6	��(�4)

8	����

�48	������
4646	���������(�����;

�����*;	����)
=646	!�����()

8	������

8	�*���

�:8	�������

:646	���������(�������������;
�������������;	��.����!��;

���������;	���)

=6:6	��(�4)

8	�����������������

19_Chapter_07_Roques_NEW.fm Page 236 Friday, November 28, 2003 1:15 PM

7.6 Step 6 – Design class diagrams (iteration 1) 237

7.6 Step 6 – Design class diagrams (iteration 1)

Each system operation will in turn give rise to a dynamic study in the form of a
collaboration diagram, as was the case for the createCourse operation in Answer
7.5.

The collaboration diagrams that are thus realised will enable development of
design class diagrams, and this is done by adding mainly the following information
to classes from the analysis model:

• operations: a message can only be received by an object if its class has declared
the corresponding public operation;

• the navigability of associations or the dependencies between classes, according
to whether the links between objects are long-lasted or temporary, and
according to the direction in which messages are circulating.

Figure 7.22 Design process initialised by the system operations

Figure 7.23 Relationship between message and operation

4646:6

8	������	/���

"�����

�����������()
����
�������()
����������������()
����
������������()
������*���()
����
��*���()
�����"������()
����
�"������() 8	������	/��� 8	��������	/��� 8	��������	/���

8	�������	/���

8	�������	/���

8	�������	/���
46 4646

46 4646

464646

464646

4646:6

�����
�

������
��������	

8	� 8	�

�

�	��4()

48	��4()

19_Chapter_07_Roques_NEW.fm Page 237 Friday, November 28, 2003 1:15 PM

7 Case study: training request238

Long-lasted or temporary linksLong-lasted or temporary linksLong-lasted or temporary linksLong-lasted or temporary links

A long-lasted link between objects will give rise to a navigable association between
the corresponding classes; a temporary link (by parameter: « parameter », or local
variable: « local ») will give rise to a dependency relationship.

On the example presented below, the link between object :A and object :B
becomes a navigable association between the corresponding classes. The fact that
object :A receives a reference passed as parameter from a message on an object of
class C results in a dependency between the classes concerned.

Finally, note that we recommend that you do not add the classes, which correspond
to multiobjects in the design class diagram. This enables our “logical” design to
remain independent from the target programming language for as long as possible.

*** 7.6 By applying the rules set out above, construct a design class diagram fragment
from the partial collaboration diagram, Figure 7.21 (createCourse).

Figure 7.24 Traceability from links between objects to relationships between classes

������	�������
���������

	���
����
����������	

����	��	��

19_Chapter_07_Roques_NEW.fm Page 238 Friday, November 28, 2003 1:15 PM

7.6 Step 6 – Design class diagrams (iteration 1) 239

Answer 7.6Answer 7.6Answer 7.6Answer 7.6

The collaboration diagram of Figure 7.21 first of all allows us to add operations in
the classes, as shown on the following diagram.

Note that there are very few operations, as we are withholding the following:

• Creation operations (<<create>> message),

• Generic operations on the container classes (add(), etc.).

Figure 7.25 Operations in the design classes

Figure 7.26 Collaboration diagram restricted to the first message of the createCourse system
operation

�	���������������(�����;	�����*;	����)
�	������������(�������������;	�������������;	��.����!��;

���������;	���)
�	�����"������(����$��;	�������)
�	!�����(�*���)

����������
"������

����������
����

����������
������

�	!�����()

����������
�*���

����������
�������

�����������
�����������������
(
���	����������	�����)

�48	������

8	"������

464646	���������

8	����

8	������

46:6	��(�4)
46	���������������(�����;	�����*;	����)

8	�����������������
4646	���������(�����;

�����*;	����)

19_Chapter_07_Roques_NEW.fm Page 239 Friday, November 28, 2003 1:15 PM

7 Case study: training request240

Nevertheless, we can spot a first problem: how can the coursesController object add
the new course, c1, to the multiobject of the corresponding Body without
possessing a reference on this Body?

This means that we have to add a parameter to the initialiseCourse operation: a
reference towards an existing Body.

If we also use stereotypes to indicate temporary links between objects, the
preceding collaboration diagram is altered as follows:

We will now complete the class diagram by adding the relationships between
classes: association (with its variants of aggregation or composition) and
dependency. The task is made easier in that we had already indicated the
composition and aggregation links on the collaboration diagram.

Figure 7.27 Completed collaboration diagram

Figure 7.28 Class diagram realised in accordance with the preceding collaboration dia-
gram

�48	������

8	"������

464646	���������

8	����

8	������

46:6	��(�4)46	���������������(�����;	�����*;
����;	����)

8	�����������������
4646	���������(�����;

�����*;	����)

�����������

�	���������������(�����;	�����*;	����;	����)

����	��	��
����������

����

�����������

����������
"������

1�������2

����������
������

�����������
�����������������

(
���	����������	�����)

4 5667

4667
4

4 5664

19_Chapter_07_Roques_NEW.fm Page 240 Friday, November 28, 2003 1:15 PM

7.6 Step 6 – Design class diagrams (iteration 1) 241

Note the use of the predefined stereotype, « parameter »48 on the dependency
between the CoursesController and Body classes, which is there to mirror the type of
temporary link that exists between the corresponding objects in the collaboration
diagram.

If we now apply the same process to the whole of Figure 7.21, we obtain the
design class diagram below. It is important to be aware of the fact that we have
made the attributes appear in the classes, but not the parameters of the operations
(in order to simplify the diagram).

Of course, this diagram is still at a provisional stage:

• the choices for navigability of the associations are far from conclusive – we will
be able to verify them through studying other system operations;

• the dependencies will perhaps be converted into associations if the objects call
for a durable link, and not a simple temporary link, within the context of other
system operations.

48. This is no longer a predefined stereotype in UML 2.0 (neither « local »)... But you can use this
interesting adornment.

Figure 7.29 Completed design class diagram

�	!�����()

�����������

��������

����������
����

'	���
'	������
'	���/��
'	
0/��
'	�'���

����������
"������

1�������2

'	����$��
'	�������

�����������
�����������������

(
���	����������	�����)

�	���������������()
�	������������()
�	�����"������()
�	!�����()

��������

����������
�������

'	�������������
'	�������������
'	��.����!��
'	���������
'	���

�����������

����������
�*���

'	���

����������
������

'	�����
'	�����*
'	����

4

4667

4

5667

4

4

5667

4667

4667

19_Chapter_07_Roques_NEW.fm Page 241 Friday, November 28, 2003 1:15 PM

7 Case study: training request242

**** 7.7 From the basis of the diagrams realised during the preceding question,
propose improvements for the object-oriented design that they illustrate.

Answer 7.7Answer 7.7Answer 7.7Answer 7.7

The class diagram in Figure 7.29 presents a CoursesController class that is coupled to
all the other classes! This property is completely contrary to a basic principle of
object-oriented design, commonly called “low coupling ”.49

Low couplingLow couplingLow couplingLow coupling

“Coupling” represents a measure of the quantity of other classes, to which a given
class is connected, which it knows about and on which it depends.

Low coupling is a principle that you must keep in mind for all design decisions; it
is an underlying objective, which is to be assessed continuously. If we apply this
pattern while evaluating all design choices, we generally obtain a more flexible
design that is easier to maintain.

The notion of “controller” object, which we explained in detail previously (cf. Figure
7.5) is a good example of means used to minimise coupling between software
layers.

Let’s try to see if there is a simple means for reducing coupling of the
CoursesController class without increasing that of the other classes as a consequence.

49. [Larman 97] pp.200–202.

Figure 7.30 Coupling between classes

19_Chapter_07_Roques_NEW.fm Page 242 Friday, November 28, 2003 1:15 PM

7.6 Step 6 – Design class diagrams (iteration 1) 243

Let’s go back to the collaboration diagram in Figure 7.21. Is the CoursesController
object really in the best position to create the Content and Session objects? Instead,
could it not delegate this responsibility of creation to the Course object which, in
any case, is then going to be linked durably to its content and its sessions? In this
way, we are removing the two dependencies between CoursesController and Content
and Session, without adding any, as Course is already interfaced to Content and
Session by strong composition relationships.

The collaboration diagram can therefore be altered as demonstrated on the
following figure.

The design class diagram is thus relieved of two dependencies, simply because the
CoursesController object knew how to delegate part of its responsibilities to the
Course object. In fact, this simple example is completely representative of the
iterative work of evaluation and improvement that every designer must do as
regards object-oriented design.

To finish, we will complete the improved class diagram by the types of attributes,
and carry out the complete signature of the operations (parameters with their type).
It is important to note that we are using simple types from Java language (such as
int and short), basic Java classes (such as String and Date), user “primitive” classes

Figure 7.31 Improved collaboration diagram of the createCourse system operation

�48	������

46	���������������(�����;	�����*;	����;	����)
=6	!�����(�*���)

8	������"�����

46:6	��(�4)

8	����

�8	"������

8	"������

464646	���������

<646:6	��(�)

<64646	���������(����$��;	�������)

8	������

:6	������������(�������������;
�������������;	��.����!��;

���������;	���)

8	�������"�����

<6	�����"������(����$��;	�������)

8	"�������"�����

8	�����������������

=6:6	��(�4)

8	�*���

8	������

4646	���������(�����;	�����*;	����)
:646	������������(�������������;

�������������;	��.����!��;
���������;	���)

<646	�����"������(����$��;	�������)
=646	!�����()

:64646	���������(�������������;
�������������;	��.����!��;

���������;	���)

�:8	�������

19_Chapter_07_Roques_NEW.fm Page 243 Friday, November 28, 2003 1:15 PM

7 Case study: training request244

(such as Number and Email), which we will have to define precisely – and finally,
classes from the model (such as Theme and Body).

Figure 7.32 Improved design class diagram

'	����$��8	$��

'	�������8	�������

�����������
�����������������

(
���	����������	�����)

�	���������������(�����8	"�����;	�����*8	�*���;	����8	���;	����8	����
�	������������(�������������8	"�����;	�������������8	"�����;	��.����!��8	"�����;	���������8	"�����;	���8	"�����)
�	�����"������(����$��8	$��;	�������8	"�����)
�	!�����(�*���8	�*���)

�����������

�����������
����������

����

'	���8	"�����
'	������8	"�����
'	���/��8	/�����
'	
0/��8	/�����
'	�'���8	�'���

����������
�*���

'	���8	"�����

����������
������

'	�����8	"�����

'	�����*8	�*���

'	����8	���

�	������������(�������������8	"�����;	�������������8	"�����;	��.����!��8	"�����;	���������8	"�����;	���8	"�����)
�	�����"������(����$��8	$��;	�������8	"�����)
�	!�����(�*���8	�*���)

����������
�������

'	�������������8	"�����
'	�������������8	"�����
'	��.����!��8	"�����
'	���������8	"�����
'	���8	"�����

1�������2

����������

"������

4

4

4

5667

4

4667
5664

4667

4667

19_Chapter_07_Roques_NEW.fm Page 244 Friday, November 28, 2003 1:15 PM

7.7 Step 7 – Defining the system operations (iteration 2) 245

7.7 Step 7 – Defining the system operations

(iteration 2)

At this stage, we are taking it as agreed that iteration 1 has been realised successfully.
The “Consult catalogue” and “Maintain catalogue” use cases have been designed,
implemented and tested. The “Course catalogue” business package has been
refined, and as a result, expanded. A possible state of its design class diagram (only
showing the <<entity>> classes) is presented on the following figure.

Figure 7.33 Design class diagram of the Catalogue package

'	�������������8	"�����
'	�������������8	"�����
'	��.����!��8	"�����
'	���������8	"�����
'	���8	"�����

����������
�������

'	������8	����+�����

�	�������������*���(�*���8	�*���)
�	�����������������(�����8	"�����)
�	����*�����/��(���8	"�����)
�	���"��������$��(����$��8	$��)
�	��������������()
�	A

����������
����	���������

�����������

����������
�*���

'	���8	"�����

����������
"������

'	����$��8	$��
'	�������8	�������

1�������2

����������
������

'	�����8	"�����
'	�����*8	�*���
'	����8	���

�	������������(�������������8	"�����;	�������������8	"�����;	��.����!��8	"�����;	���������8	"�����;	���8	"�����)
�	�����"������(����$��8	$��;	�������8	"�����)
�	!�����(�*���8	�*���)
�	����
��������	(�������������8	"�����;	�������������8	"�����;	��.����!��8	"�����;	���������8	"�����;	���8	"�����)
�	����
�"������(����$��8	$��;	�������8	"�����)
�	����
��*���(�*���8	�*���)
�	�����"������()

����������
����

'	���8	"�����
'	������8	"�����
'	���/��8	/�����
'	
0/��8	/�����
'	�'���8	�'���

����������
�������

4667

4

4

4

4667

4667

5667

4

5667

4

19_Chapter_07_Roques_NEW.fm Page 245 Friday, November 28, 2003 1:15 PM

7 Case study: training request246

Note that many operations have been added, as well as an abstract class,
CatalogueElement, which includes the themes, courses and sessions in the light of
an employee creating a training request from the basis of any element of the course
catalogue.

We assume that storing the catalogue in a relational database is in operation, as
well as the graphical user interface of the two use cases.

We are now going to design and implement the second iteration. Let’s begin
with the Apply for training use case. Its high-level description was realised in Chapter
2 (Answer 2.8). To refresh our memory, here it is again:

“The employee can consult the catalogue and select a theme, or course, or even
a specific session. The training request is automatically registered by the system and
forwarded by e-mail to the training manager. If the employee has not chosen a
session, but simply a course or a theme, the training manager will consult the
catalogue and select the sessions that appear to correspond most to the training
request. This selection will be forwarded by e-mail to the employee, who will then
be able to submit a new, more specific training request.”

* 7.8 List the system operations for the “Apply for training” use case.

Answer 7.8Answer 7.8Answer 7.8Answer 7.8

First of all, we will construct a system sequence diagram of the main success
scenario.

Figure 7.34 System sequence diagram of the main success scenario

�

��"�������()

8	��������

�����#������()

�*����"������()

8	"����� 8	�������	�����

�����#������()

19_Chapter_07_Roques_NEW.fm Page 246 Friday, November 28, 2003 1:15 PM

7.8 Step 8 – Operation contracts (iteration 2) 247

It is easy to find the other system operations:

• rejectRequest() by the training manager,

• cancelRequest() by the employee.

However, be careful as the consultCatalogue or orderCourse system operations belong
to other use cases.

The system operations for the Apply for training use case are therefore brought
together on the following diagram.

7.8 Step 8 – Operation contracts (iteration 2)

Let’s recall the standard textual description plan for an operation contract that was
suggested previously:

• name

• responsibilities

• references

• preconditions

• postconditions

• exceptions (optional)

• notes (optional)

Figure 7.35 System operations for the “Apply for training” use case

�����#������()
�����#������()
��.���#������()
�����#������
�

��"�������()
�*����"������()

������

19_Chapter_07_Roques_NEW.fm Page 247 Friday, November 28, 2003 1:15 PM

7 Case study: training request248

** 7.9 Write the contracts of the createRequest and rejectRequest system operations.

Use the preceding standard plan.

Answer 7.9Answer 7.9Answer 7.9Answer 7.9

Firstly, we will take out the part concerned with our question from the class
diagram of the “Training requests” package (cf. Figure 4.41). The createRequest and
rejectRequest system operations will influence objects and links from the following
diagram.

First of all, let’s establish the contract of the createRequest operation:

• Name
 createRequest.

• Responsibilities
 Create an initial training request in accordance with the elements of the
 catalogue and forward it to the training manager for acknowledgement.

Figure 7.36 Extract of the business modelling class diagram

�����

��������

���
������
����

�'���

�������	�������

�����$��
!������$��

�������	�����

���
�'���

��������������

�����

���������

����	���

���

$����������

5667
5664

4

4

4566756644

19_Chapter_07_Roques_NEW.fm Page 248 Friday, November 28, 2003 1:15 PM

7.8 Step 8 – Operation contracts (iteration 2) 249

• References
 Apply for training use case.

• Preconditions

• the course catalogue exists;

• the employee is connected to the intranet;

• an object, e, representing the employee exists in the application.

• Postconditions

• a training request, tr, has been created;

• the validityDate and issueDate attributes of tr have been initialised;

• tr has been linked to the employee, e;

• tr has been linked to an element of the course catalogue (this is an aspect that
was missing in the business modelling diagram);

• an e-mail containing tr has been forwarded to the training manager.

• Exceptions

• The employee can cancel his or her training request creation at any moment
before validating.

Let’s continue with the contract of the rejectRequest operation:

• Name
 rejectRequest.

• Responsibilities
 Decline a training request forwarded by an employee and send back the reason
 for its rejection.

• References
 Apply for training use case.

• Preconditions

• a training request, tr, exists;

19_Chapter_07_Roques_NEW.fm Page 249 Friday, November 28, 2003 1:15 PM

7 Case study: training request250

• the training manager is connected to the intranet;

• an object, e, representing the employee exists in the application and is linked
to tr.

• Postconditions

• the training request, tr, has been destroyed;

• a Disagreement object, d, has been created;

• the date and reason attributes of d have been initialised;

• an e-mail containing d has been forwarded to the employee, e.

• Exceptions
 None.

7.9 Step 9 – Interaction diagrams (iteration 2)

As in step 5 for iteration 1, we will continue our design work by constructing a
collaboration diagram.

** 7.10 Construct a collaboration diagram that shows the realisation of the
createRequest system operation.

Answer 7.10Answer 7.10Answer 7.10Answer 7.10

The process is similar to that which we adopted for Answer 7.5.
The collaboration diagram representing initialisation of the training request by

the employee bears a striking resemblance to that of Figure 7.15.

19_Chapter_07_Roques_NEW.fm Page 250 Friday, November 28, 2003 1:15 PM

7.9 Step 9 – Interaction diagrams (iteration 2) 251

Let’s continue by establishing the link with an element of the training catalogue,
then by positioning the validityDate and issueDate attributes, and finally by sending
the message to the training manager.

Figure 7.37 Collaboration diagram of initialisation of “tr”

Figure 7.38 Complete collaboration diagram of the createRequest system operation

8	�������#�����������������

46	������������#������()

8	�������� 8	,�����"�����B����������

:6	���������()

4646	���!��()

:646	���������#������(���)

8	�������#�������"�����

:64646	���������(���)

��8	�������#������

:6	���������
<6	������(�������)

=6	!�����(!������$��)

8	�������	�����
=6464646	��&	�������	(���;	�������;	�����$��)

46	������������#������()

8	,�����"�����B����������

�������8
��������������

���8	��������

��8
�������#������

:64646	���������(���)
<64646	����(�������)

=64646	!�����(!������$��)

8	�������#�����������������8	�������#������"�����

:646	���������#������(���)
<646	����#������(�������)
=646	!�����(!������$��)

4646	���!��()
8	��������

19_Chapter_07_Roques_NEW.fm Page 251 Friday, November 28, 2003 1:15 PM

7 Case study: training request252

7.10 Step 10 – Design class diagrams (iteration 2)

*** 7.11 Construct a design class diagram of the “Training requests” package on the
model of Figure 7.33 and by extrapolating from the preceding response, as
well as by relying on your knowledge of the subject.

You can also refer to the state diagram from Question 6.8.

Answer 7.11Answer 7.11Answer 7.11Answer 7.11

Figure 7.39 Design class diagram of the “Training requests” package

����������
"������

(
���	�������)

����������
��������

'	������8	"�����
'	
������8	"�����
'	������8	"�����
'	����8	"�����
'	�'���8	�'���

������	�����

���������

����������
�������#������

'	�����$��8	$��
'	!������$��8	$��

�	����(�������8	��������������)
�	!�����(!������$��8	$��)
�	��.���()
�	�����()
�	�*����"������(�8	"������)
�	���"������()
�	�����()
�	�����"������(�8	"������)
'	����(�����$��8	$��)
'	����#�.������(�����8	"�����)
'	�������������()
'	���������()

�������
��������	�

������������	 ����������
����	���

'	���8	$��

����������
���������

����������
$����������

'	�����8	"�����

����������
����	���������
(
���	�������)

�	������

��������
������

����������
���������

���8	$��

�����()

�����������

5667 5667

5664

4

4

5667

5667
4

4 5664

19_Chapter_07_Roques_NEW.fm Page 252 Friday, November 28, 2003 1:15 PM

7.11 Step 11 – Back to architecture 253

We have already covered the finer points of the class diagram in Chapters 3 and 4.
The Enrolment association class will therefore not surprise you. Be aware of the way
in which we have completed the operations compartment of the TrainingRequest
class, particularly with the private operations, which are necessary for sending
messages to actors.

We will also make a point of noting that we have shown the Session and
CatalogueElement classes in the diagram, even though they do not belong to the
current package. It is important to show their relationships with classes of the
Training requests package to justify the direction of dependencies between the
enclosing packages. In fact, we should only represent the navigable associations,
the dependencies or generalisations, which point at classes that are external to
those of the package concerned.

7.11 Step 11 – Back to architecture

** 7.12 Go back to Figure 7.7, which represented the layered architecture of the
system, and display all the classes that we have identified within
corresponding packages.

Do not take the technical services layer into account, nor the basic Java
classes.

Answer 7.12Answer 7.12Answer 7.12Answer 7.12

Just make a list of all the classes, which we have used in our various diagrams, and
represent them within the appropriate package.

The detailed logical architecture of the first three layers is shown on the
following figure.

19_Chapter_07_Roques_NEW.fm Page 253 Friday, November 28, 2003 1:15 PM

7 Case study: training request254

7.12 Step 12 – Transition to Java code

The design models that we have realised enable the simple production of code in
an object-oriented programming language, such as Java:

• Class diagrams enable the description of the skeleton code, i.e. all the
declarations.

Figure 7.40 Detailed layered architecture of the first two iterations

�	�*���
�	������
�	"������

�	����
�	�������
�	�������

�	��������������

��������

 ����
�����

�������	�����	,-

�	�������"�����
�	,�����"�����B��������������

�	������"�����
�	"�������"�����

��������	,-

�	,�����"�����B����������
�	�������#������"�����

��������

�!!�������
������

�	�����������������
�	����������������
�	�*��������������

�	�������#�����������������

�����������

�	 �!����
�	+�����

��������

����
���������

#�������

�	��������
�	�������#������

�	���������
�	#�������
�	���������

�	$����������
�������

19_Chapter_07_Roques_NEW.fm Page 254 Friday, November 28, 2003 1:15 PM

7.12 Step 12 – Transition to Java code 255

Production of the skeleton code from class diagramsProduction of the skeleton code from class diagramsProduction of the skeleton code from class diagramsProduction of the skeleton code from class diagrams

Our first approach:

• the UML class becomes a Java class

• UML attributes become Java instance variables

• UML operations become Java methods.

Note that the navigable roles also produce instance variables – just like the
attributes – but with a user type instead of a simple type. A good tip is to use the role
on the association as the instance name. The default constructor is implicit.

• With the help of interaction diagrams, it is easier to write the body of methods,
particularly the sequence of method calls on the objects that collaborate.

Figure 7.41 Java skeleton code of the Book class

����������		�
���

������������������������
��������������������
��
����������������������������������
���������������������������

����������
���� �!
���
���"

������������������#��������� �!
���
���"
"

����

'	�����8	"�����
'	 "�/8	"�����
'	����
+���������8	$��

�	���#�����$��()8	$��

'�����&��

������

'	������8	"�����
'	
������8	"�����
'	������8	���

5664

19_Chapter_07_Roques_NEW.fm Page 255 Friday, November 28, 2003 1:15 PM

7 Case study: training request256

Production of the body of methods from the basis of interaction diagramsProduction of the body of methods from the basis of interaction diagramsProduction of the body of methods from the basis of interaction diagramsProduction of the body of methods from the basis of interaction diagrams

** 7.13 By referring back to Figure 7.39, propose a Java skeleton code for the
TrainingRequest class.

Answer 7.13Answer 7.13Answer 7.13Answer 7.13

Let’s go back to Figure 7.39, taking out what does not concern the TrainingRequest
class. The preceding rules are sufficient for producing the skeleton of the class in
Java. The only difficulty stems from the fact that we must not forget import
statements for relationships with classes that belong to other packages, as well as
for basic Java classes.

Figure 7.42 Body of the method, registerBorrower

����������������	���
�������� ����������!

��������������$�������	%���� ������!��
������%������&������������� ���!��
"

�������������&��(������)

8	%�����

�������8
������

:6	��
����������������(���)

46	���8	C	���(������)8	������

���8	%������

19_Chapter_07_Roques_NEW.fm Page 256 Friday, November 28, 2003 1:15 PM

7.12 Step 12 – Transition to Java code 257

The corresponding Java code is shown on the following diagram.
Notice the import statements, as well as the last four methods that allow read

(get) and write (set) access to attributes in order to respect the principle of
encapsulation (in the common style of JavaBeans).

Figure 7.43 The TrainingRequest class and its relationships

����������
"������

(
���	�������)

����������
��������

'	������8	"�����
'	
������8	"�����
'	������8	"�����
'	����8	"�����
'	�'���8	�'���

'�������

����������
�������#������

'	�����$��8	$��
'	!������$��8	$��

�	����(�������8	��������������)
�	!�����(!������$��8	$��)
�	��.���()
�	�����()
�	�*����"������(�8	"������)
�	���"������()
�	�����()
�	�����"������(�8	"������)
'	����(�����$��8	$��)
'	����#�.������(�����8	"�����)
'	�������������()
'	���������()

��������
������

�	������

������������	
����������
#�������

'	���8	$��

����������

��������������

(
���	�������)

����������
���������

���8	$��

�����()

�����������

5664

4

4

5667

5667

4 5664

4

19_Chapter_07_Roques_NEW.fm Page 257 Friday, November 28, 2003 1:15 PM

7 Case study: training request258

*** 7.14 Refer to Figure 7.33 and propose a Java skeleton code for the Course class.

Answer 7.14Answer 7.14Answer 7.14Answer 7.14

Let’s go back to Figure 7.33, taking out what does not concern the Course class.
A few additional difficulties crop up with regard to the preceding question:

• the generalisation relationship with CatalogueElement,

• the multiplicities, “1..*” with Theme and “0..* {ordered}” with Session.

Figure 7.44 Java skeleton code of the TrainingRequest class

���������������������� �!
���
���"

�����������������������		���� ��		����	!
���
���"

����������������	���� ������		������!
���
���"

����������������	���#�'������� ����������	��!
���
���"

����������������	���(��������� �!
���
���"

����������������	��������� �!
���
���"

�������������������		������� �!
���
��������������		�������
���"

���������������	���		������� �������!
���
�������		�������$����
���"

������������������)������*����� �!
���
��������������������*�����
���"

���������������	��)������*����� �������!
���
�������������*�����$����
���"
"

����������+��	�	�

�������'���%�	��%,�
����������������%��		����
����������������%&��������-�������

����������		�.�������#�+��	�

�����������������		�������
�����������������������*�����
�����������-����*�������������
�����������-�������������������
�����������&��������-����������������-�������
�����������#�	���	����	���	��

����������.�������#�+��	� �!
���
���"

�������������������� &��������-��������������!
���
���"

������������������������ ������������*����!
���
���"

�����������������'���� �!
���
���"

���������������������� �!
���
���"

����������������/��	���		���� ��		����	!
���
���"

��������������������		���� �!
���
���"

19_Chapter_07_Roques_NEW.fm Page 258 Friday, November 28, 2003 1:15 PM

7.12 Step 12 – Transition to Java code 259

The previous rules are no longer sufficient. We have seen a conversion example of
a navigable association of multiplicity “1” (or “0..1”), but how do we convey the
navigable associations of multiplicity “*”?

Translating associations with multiplicity “*” in JavaTranslating associations with multiplicity “*” in JavaTranslating associations with multiplicity “*” in JavaTranslating associations with multiplicity “*” in Java

The principle of it is relatively simple: a multiplicity “*” will be implemented by a
reference attribute pointing to a collection instance, which contains in turn
instances of the many-side class.

Figure 7.45 The Course class with its relationships

'	�������������8	"�����
'	�������������8	"�����
'	��.����!��8	"�����
'	���������8	"�����
'	���8	"�����

����������
�*���

'	���8	"�����

����������
��������������

����������
"������

'	����$��8	$��
'	�������8	�������

1�������2

����������
������

'	�����8	"�����
'	�����*8	�*���
'	����8	���

�	������������(�������������8	"�����;	�������������8	"�����;	��.����!��8	"�����;	���������8	"�����;
			���8	"�����)
�	�����"������(����$��8	$��;	�������8	"�����)
�	!�����(�*���8	�*���)
�	����
��������(�������������8	"�����;	�������������8	"�����;	��.����!��8	"�����;	���������8	"�����;
			���8	"�����)
�	����
�"������(����$��8	$��;	�������8	"�����)
�	����
��*���(�*���8	�*���)
�	�����"������()

����������
����

����������
�������

'	���8	"�����
'	������8	"�����
'	���/��8	/�����
'	
0/��8	/�����
'	�'���8	�'���

4667

4667
5667

4

4667

4

4

4

19_Chapter_07_Roques_NEW.fm Page 259 Friday, November 28, 2003 1:15 PM

7 Case study: training request260

The difficulty consists in choosing the right collection among the many basic
classes that Java offers. Although it is possible to create object arrays in Java, this is
not necessarily the right solution. On this subject, we prefer instead to resort to
collections, among which the ones that are used most often are ArrayList (formerly
Vector) and HashMap (formerly HashTable). Use ArrayList if you have to respect a
specific order and retrieve objects from an integer index; use HashMap if you wish
to retrieve objects from an arbitrary key.

Here are some examples of solutions to remember so that you make a sensible
choice:

For the Course class, we will use:

• an ArrayList for the ordered association with the Session class,

• a HashMap for the association with the Theme class, rather than a simple array:
we will use the theme name as a qualifier.

All these explanations lead us to produce the following code for the Course class.

Figure 7.46 Possible ways of translating associations in Java

����������		�(0

����������������/�
0	
���$�����1�	/��� �!�
"

����
���

1�������2

����������		�(2

�����������
2��/�
2�
"

����������		�(3

�����������
3��/�
3	�4�5�
"

����������		�(6

�����������7�	���/�
6	
���$�����(���*7�	� �!�
"

19_Chapter_07_Roques_NEW.fm Page 260 Friday, November 28, 2003 1:15 PM

7.12 Step 12 – Transition to Java code 261

Figure 7.47 Java skeleton code of the Course class

������������������

�������'���%����%,�

����������		�&���	���8����	�&��������-������

������������������������
�����������	/���������/�
�����������������	��
�����������7�	��	�		���	�$�����(���*7�	� !�
����������������/���	�$�����1�	/��� !�
�����������&���������������
�����������
��*����*�

����������&���	�� �!
���
���"

���������%�����������&������� �������������(�������9�������������+��	���	9
����������������'������	9����������	�����	9������������!
���
���"

�����������������������		���� �����	��������9����������������!
���
���"

������������������������ ./�����/���!
���
���"

��������������������*&������� �������������(�������9�������������+��	���	9
����������������'������	9����������	�����	9������������!
���
���"

��������������������*��		���� �����	��������9����������������!
���
���"

��������������������*./���� ./�����/���!
���
���"

�����������������������		���� �!
���
���"

��������������������.����� �!��������������"

���������������	��.����� ���������!�������$���"

����������	/�������7����/� �!�������������/�"

���������������	��7����/� 	/�����!������/�$��"

�����������������&�	�� �!����������	��"

���������������	��&�	�� �����!���	��$���"
�

19_Chapter_07_Roques_NEW.fm Page 261 Friday, November 28, 2003 1:15 PM

7 Case study: training request262

7.13 Step 13 – Putting the application into action

We will now describe the physical implementation of our application for managing
training requests with the help of two final types of diagram offered by UML:

• the component diagram,

• the deployment diagram.

Component diagramComponent diagramComponent diagramComponent diagram

The component diagram shows dependencies among the software components
that constitute the training request. A component can be an executable, source
code, binary code, etc. In fact, a component represents every physical and
replaceable part of a system that conforms to, and provides, the realisation of a set
of interfaces.

*** 7.15 Propose a realistic component diagram for the first two iterations of the
system for managing training requests.

Only show components that are sufficiently important, which represent a
collaboration between many classes.

Do not forget that the target language is Java.

Figure 7.48 Example of components, interfaces and dependencies

�	���������	�
����������	����	��	��

����
��

19_Chapter_07_Roques_NEW.fm Page 262 Friday, November 28, 2003 1:15 PM

7.13 Step 13 – Putting the application into action 263

Answer 7.15Answer 7.15Answer 7.15Answer 7.15

The main components are deduced from all of the preceding study. Each actor has
its own human-computer interface, embodied by a Java applet. These two applets
use an identical, general authentication service. On the other hand, the two applets
do not have the same means of access on the Catalogue module. We have
represented the latter using the concept of interface. Indeed, the Catalogue module
offers two different interfaces (ITrainingManager and IEmployee), enabling in
particular the restriction of access to employees, who are only allowed to consult
the catalogue; whereas the training manager can modify the catalogue. The
catalogue is stored in a specific database, as are the employees. Finally, a reusable
component, Calendar, is used both for the catalogue and for the training requests.

To make the diagram more complete and easier to read, we will also note that
we have used a particular graphical representation for the component of database
stereotype, and that we have shown the actors on the diagram.

Let’s complete this case study with the deployment diagram.

Figure 7.49 Component diagram of the first two iterations

��8���������	���
�/��	������*��	
������������

�������	�����

����������
�������	�����
,-

�	�������

 ������������

��#��������
���*���������

���D���
�������

������
�������

����/������������
�/�����������
	������*���
������	�

���������

����������
��������	,- ��������

�������� ���D���
#�������	��

����&'��

��$%%��
������

19_Chapter_07_Roques_NEW.fm Page 263 Friday, November 28, 2003 1:15 PM

7 Case study: training request264

Deployment diagramDeployment diagramDeployment diagramDeployment diagram

The deployment diagram shows the physical configuration of different run-time
processing elements that take part in executing the system, as well as the
component instances that they support.

This diagram is formed from “nodes” connected by physical links. The symbols
of nodes may contain component instances, as well as objects. Components that
no longer exist at “run-time” do not appear on this diagram; these must be shown
on component diagrams.

** 7.16 Propose a realistic deployment diagram for the first two iterations of the
system for managing training requests.

In order to ‘trim’ the diagram somewhat, omit the dependencies among
components.

Answer 7.16Answer 7.16Answer 7.16Answer 7.16

Figure 7.50 Deployment diagram of the first two iterations

���������

��+���
������	&���������

��+���
������	&���������

����������
�������	�����

,-

����������
��������

,-

��+�'/�	���!����
 ������	"��!��

��#��������
��*���������

������������
������	���

��-��0��
��������	"��!��

���D���
�������

���D���
#�������

��	
����&'��

�������

19_Chapter_07_Roques_NEW.fm Page 264 Friday, November 28, 2003 1:15 PM

TE
AM
 F
LY

7.13 Step 13 – Putting the application into action 265

Every actor has his or her own client workstation that is a PC connected to the
intranet server of the organisation, which is itself a PC NT server. In particular, this
intranet server contains the authentication application. As we work through this,
we will notice the representation of the multiplicity of the employee’s client
workstation.

As regards the business server, it hosts the other applications as well as the
databases. This entails a Unix machine, and this is for historical reasons…

We have therefore finished this first guided tour of the wonderful world of object-
oriented design! We could touch on many more subjects: design of human-
computer interfaces, management of persistence, distribution of components – to
mention just a few. If you wish to go into some of these themes more deeply, then
refer to the bibliography that is presented on the following page. In particular, we
advise you to spend time studying the famous “Design Patterns”.

BibliographyBibliographyBibliographyBibliography

[Ahmed 02] Developing Enterprise Java Application With J2EE and UML,
K. Ahmed, C. Umrysh, Addison-Wesley, 2002.

[Coad 99] Java Modelling in Color With UML: Enterprise Components and Process,
P. Coad, Prentice Hall, 1999.

[Gamma 95] Design Patterns: Elements of Reuseable Object-Oriented Software,
E. Gamma et al., Addison-Wesley, 1995.

[Grand 01] Patterns in Java, Vol. 1 (2nd Edition), M. Grand, Wiley, 2001.

[Havdal 02] Java the UML Way: Integrated Object-Oriented Design and
Programming, V. Havdal, E. Lervik, Wiley, 2002.

[Larman 01] Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design (2nd Edition), C. Larman, Prentice Hall, 2001.

[Lee 02] Practical Object-Oriented Development with UML and Java, R. Lee,
W. Tepfenhart, Prentice Hall, 2002.

19_Chapter_07_Roques_NEW.fm Page 265 Friday, November 28, 2003 1:15 PM

19_Chapter_07_Roques_NEW.fm Page 266 Friday, November 28, 2003 1:15 PM

8

Case study 8 – Problem statement Case study 8 – Problem statement Case study 8 – Problem statement Case study 8 – Problem statement

Aims of the chapter

By working through one last case study, this chapter will allow us to complete our
spectrum of UML modelling techniques, which have been implemented during the
activity of design, in particular:

• Interaction diagrams

• Design class diagrams.

Figure 8.1 Analysis class diagram of the IS of the library

���������

�����	���

���������

�����	

���
��	

���

������ ����

��������	�
��
����
������

����

���

���
�������

�����	����	������
���������

�����

�
	�
�

�����	

���
��	

��	�
�

����

����

������
����

��������

����

��� ���!

����

 ��� ���

���! ���

����

Complementary
exercises 8

20_Chapter_08_Roques_NEW.fm Page 267 Friday, November 28, 2003 1:14 PM

8 Complementary exercises268

We will work from the basis of an analysis model of an information system, whose
purpose is to manage a library. This library only lends books at first.

The analysis class diagram is shown on the Figure 8.1.
The provisional use case diagram is presented below.

Let’s continue with the system operations of the Borrow books use case, which are
shown in detail on the following system sequence diagram.

We are now going to concern ourselves with the contract of the borrowBook
operation. Note that we are passing over the first operation, identifyBorrower, but
only because it is not as interesting as the second and would not actually contribute
anything significant to our study. In reality, system operations must, of course, be
viewed in chronological order.

Figure 8.2 Preliminary use case diagram of the IS of the library

Figure 8.3 System operations of the Borrow books use case

�
	�
�

���������

�����"������

#
����������

���������$�������

��
���������"
�%��&

�����"����%����&

�������������%�&

'�
����
(������"������

�������$$
����$
�����(

!��)�
������������
����
�����

$����	
��

*��)�
������������
����
�����

��	�
�����
�$����$�	
���

+��)�
����������������������

$����	
�,���������$������
��������$����
��-���
��

(���������
(���
	

20_Chapter_08_Roques_NEW.fm Page 268 Friday, November 28, 2003 1:14 PM

Aims of the chapter 269

• Name
 borrowBook (ISBN).

• Responsibilities
 Register the loan of a book, which is identified by its ISBN number.

• References
 Borrow books use case.

• Preconditions

• the catalogue of books exists and is not empty;

• the system has recognised the member of the library.

• Postconditions

• a loan l has been created;

• the date attribute of l has been set to the current date;

• the returnDate attribute of l has been set to (the current date + two weeks);

• l has been linked to book b, whose ISBN attribute equals the ISBN passed as
parameter;

• l has been linked to the member concerned and to the library.

*** 8.1 Develop a collaboration diagram for the borrowBook system operation using
the preceding information.

Detail each of your design decisions.

Do not concern yourself with interface classes (<<boundary>>).

Answer 8.1Answer 8.1Answer 8.1Answer 8.1

Our collaboration diagram starts off with receipt of a system message, which has
come from an actor. As we do not have to concern ourselves with interface objects,
we will go straight for an object that will process this system event.

20_Chapter_08_Roques_NEW.fm Page 269 Friday, November 28, 2003 1:14 PM

8 Complementary exercises270

The solution that we implemented in the preceding chapter (step 5) led us to
introduce an artificial design object of “controller” type, which we could have
called LoansController here.

In fact, a more simple approach is possible in the case of systems comprising a
restricted number of system operations, which does not enforce the addition of a
new class. This solution entails using an object of an existing analysis class as a
controller:

• either an object representing the whole system or the organisation itself,

• or an object representing a role that would have realised the system operation.

The first possible choice is the most straightforward one, but its major disadvantage
is that we assign processing of all the system operations to a single object, which
rapidly runs the risk of being overloaded as far as responsibilities are concerned.
This is an acceptable solution in our example; the candidate class is the Library class.

In general, the second possibility enables distribution of system operations
among several objects. But here, the only candidate class is the Librarian class,
which does not contribute anything in comparison with the preceding solution. We
will therefore keep Library as the controller object for our system operation. So, the
collaboration diagram can start off in the following way.

Figure 8.4 Transition from analysis to design

Figure 8.5 Collaboration diagram of the borrowBook operation (beginning)

�����"����%����&

(����������

�����������
����

	
����	�

�����"����%����&

(����
	
(����������

��������	�����
����������

������

(�������

(����������

 �������"����%����&

20_Chapter_08_Roques_NEW.fm Page 270 Friday, November 28, 2003 1:14 PM

Aims of the chapter 271

How do we now have to proceed? We must simply study the operation contract.
However, remember that the postconditions listed in the contract are not
necessarily in any particular order. In our case, it nevertheless seems sensible to
start by creating the loan object, as the other postconditions apply to its attributes
or its links.

So, the question which must be considered is as follows: which object must be
responsible for the creation of loan l?

If we go back to the analysis class diagram, we notice that four classes already
possess an association with the Loan class; namely, Librarian, Library, Book and
Member. They are therefore all good initial candidates. However, the best choice is
generally provided by the class that possesses an association of composition,
aggregation or “register” type. In our example, the Library class is rightly linked to
Loan by a “register” association. Moreover, as the Library is already the controller, it
constitutes the ideal candidate.

The collaboration diagram then becomes:

At first sight, we will note the bewildering use of the <<create>> stereotyped
message. Indeed, strictly speaking, the object l cannot receive the <<create>>
message, as it does not exist yet! This concerns a convention offered by UML, which
avoids entering considerations that depend on the target programming language.
In Java (or in C++), this message for creation will probably be conveyed by the new
keyword and the call of the constructor from the Loan class, which will return a
reference on the new object.

The library thus has a reference now on the newly created object l. Note that, as
the message for creation always returns a reference on the new object, we do not
show the return explicitly, even though this is correct. We might obtain a more
dense representation, such as that which is illustrated by the following figure.

Figure 8.6 Collaboration diagram of the borrowBook operation (continuation)

Figure 8.7 Collaboration diagram of the borrowBook operation (alternative continuation)

�(�����

(����������

 �������"����%����&

(�������

 � ��..$�
��
//

�(�����

(����������

 �������"����%����&

(�������

 � ����(0�..$�
��
//

20_Chapter_08_Roques_NEW.fm Page 271 Friday, November 28, 2003 1:14 PM

8 Complementary exercises272

Let’s continue our train of thought. Could the date and returnDate attributes not be
set by the object l from its creation, following retrieval of the current date by a
method that we will only explain in detail in detailed design?

This is what we are illustrating on the following collaboration diagram.

Once again, notice (cf. Chapter 7) the use of decimal notation for the numbers of
messages, which enables nested messages to be represented. We will also take note
of the use of the loop above the object, which symbolises a link from the object to
itself, as a medium through which a message “to oneself” is expressed.

The corresponding sequence diagram (with the notion of “focus of control”) is
given below by way of comparison.

Let’s go back to establishing the operation contract. What do we have to do now?
We need a link with the book, whose ISBN attribute equals the ISBN that is passed
as parameter of the borrowBook operation.

Which object is in the best position for finding a book according to its ISBN?

Figure 8.8 Collaboration diagram of the borrowBook operation (continuation 2)

Figure 8.9 Sequence diagram of the borrowBook operation (continuation 2)

�(�����
(����������

 �������"����%����&

(�������

 � ��..$�
��
//

 � � ���
����
%$���
�����
&
 � �1���
�#
�������
%$���
�����
2 3&

�
����
%$���
�����
&

�
�#
�������
%$���
�����
2 3&

(����������

�����"����%����&

(�������

..$�
��
//

�(�����

20_Chapter_08_Roques_NEW.fm Page 272 Friday, November 28, 2003 1:14 PM

Aims of the chapter 273

Let’s go back to the analysis class diagram (Figure 8.2): the Catalogue class is the
ideal candidate, as the catalogue knows all the books. But which object will send it
the message? According to our collaboration diagram, it will be either the loan l, or
the library.

In order to respect the principle of low coupling, it is better for the library to take
care of it, as – contrary to the loan – it already possesses an association with the
catalogue. Moreover, it is highly likely that the library will have to collaborate with
the catalogue within the framework of other system operations, for example when
adding new books. The library must therefore have a permanent link with the
catalogue, which is definitely not the case of the loan. All these reasons clearly tip
the scales favourably towards the library.

We will note that this assumes the catalogue and library objects are created at the
time of initialising the system, and that a visibility link is established between them.
In object-oriented design, it is common practice to work first on the collaborations
between “business” objects, then secondly, deal with the more technical problem
of initialising the information system. This enables a guarantee of the right
decisions – with regard to assigning responsibilities to objects within the context of
business collaborations – forcing initialisation and not the opposite.

Let’s go back to our choice of communication between the library and the
catalogue. What do we call the message? Let’s call it searchForBook, with an ISBN
number as parameter, and a reference book on the correct book object for the
return.

The modified collaboration diagram is shown below.

What happens if the catalogue does not manage to find a book whose ISBN
corresponds to the one that is being searched for? Is it not better to wait until we
have this reference book before carrying out the creation of the loan l?

Figure 8.10 Collaboration diagram of the borrowBook operation (continuation 3)

(���������

(����������

 �������"����%����&

(�������

 � ��..$�
��
//

 � � ���
����
%$���
�����
&
 � �1���
�#
�������
%$���
�����
2 3&

�(�����

 �1�������(0��
��$�4������%����&

20_Chapter_08_Roques_NEW.fm Page 273 Friday, November 28, 2003 1:14 PM

8 Complementary exercises274

That’s exactly it, and to do this, we simply have to change round the order of the
two messages, as shown on the following figure. We will see that the decimal
numbering of messages for assigning attributes is updated as a result.

On the class diagram, there is a “1 - *” association between Catalogue and Book. This
implies that the catalogue is going to use a collection of book objects, probably
implemented in Java in the form of a HashMap. We have already listed the rules for
expressing multiplicities of associations in Java collections in the preceding chapter
(Figure 7.46). In Chapter 7, we also explained the use of the concept of
“multiobject” in collaboration diagrams in order to rightly avoid making detailed
design decisions too early (see Figure 7.18). This is the solution that we are also
going to adopt here, with a more generic message than searchForBook, as the
multiobject represents a technical object, “on the shelves”, and not a “business”
object.

The collaboration diagram is completed as follows.

Figure 8.11 Collaboration diagram of the borrowBook operation (corrected continuation 3)

Figure 8.12 Collaboration diagram of the borrowBook operation (continuation 4)

(���������

(����������

 �������"����%����&

(�������

 �1��..$�
��
//

 �1� ���
����
%$���
�����
&
 �1�1���
�#
�������
%$���
�����
2 3&

�(�����

 � �������(0��
��$�4������%����&

 � ������(0��
��$�4������%����&

(����������

 �������"����%����&

(�������

 �1� ���
����
%$���
�����
&
 �1�1���
�#
�������
%$���
�����
2 3&

 �1��..$�
��
//

�(�����

��
��	����

 � � �������(0��
�%����&

(�����(���������

20_Chapter_08_Roques_NEW.fm Page 274 Friday, November 28, 2003 1:14 PM

Aims of the chapter 275

Now that we have located the right book and that its reference has been returned
to the library, we can make use of it to establish the link between the book and the
loan. The most immediate solution entails passing the book reference as a
parameter to the message for creation, as shown below.

Let’s go back to the list of postconditions that need verifying, this time indicating
the corresponding number from the preceding collaboration diagram:

• a loan l has been created: 1.2

• the date attribute of l has been set to the current date: 1.2.1

• the returnDate of l has been set to (the current date + two weeks): 1.2.2

• l has been linked to the book whose ISBN attribute equals the ISBN attribute
passed as parameter: 1.1 and 1.2

• l has been linked to the member concerned and to the library: we still have to do
this.

We therefore have to realise the last postcondition. Which object may know the
member concerned? And furthermore, when has the system identified the
member?

Let’s remember that we are currently dealing with the borrowBook system
operation, but it has been preceded by identifyBorrower, as the following diagram
reminds us.

Figure 8.13 Collaboration diagram of the borrowBook operation (continuation 5)

 � �������(0��
��$�4������%����&

(����������

 �������"����%����&

(�������

 �1��..$�
��
//%����&

 �1� ���
����
%$���
�����
&
 �1�1���
�#
�������
%$���
�����
2 3&

�(�����

(�����

 � � �������(0��
�%����&

(���������

20_Chapter_08_Roques_NEW.fm Page 275 Friday, November 28, 2003 1:14 PM

8 Complementary exercises276

It is therefore completely reasonable to think that, at the time of the identifyBorrower
system operation, the library retained a reference on the member whilst processing.
It can thus pass a reference on the member to the message for creation of the loan l.

The collaboration diagram now becomes:

The last postcondition also stipulates that a link has to exist between the library and
the new loan l. As it is the library that creates l, the link already exists – at least
transitorily. However, we can notice that a “1 - *” association exists between the
Library and Loan classes, as is also the case between Catalogue and Book.

Figure 8.14 System operations of the Borrow books use case

Figure 8.15 Collaboration diagram of the borrowBook operation (continuation 6)

��
���������"
�%��&

�����"����%����&

�������������%�&

'�
����
(������"������

�������$$
����$
�����(

!��)�
������������
����
�����

$����	
��

*��)�
������������
����
�����

��	�
�����
�$����$�	
���

+��)�
����������������������

$����	
�,���������$������
��������$����
��-���
��

(���������
(���
	

 � � �������(0��
�%����&

(����������

 �������"����%����&

 � �������(0��
��$�4������%����&

(�������

 �1��..$�
��
//%����5
$���
���
	(��
	�
�&

 �1� ���
����
%$���
�����
&
 �1�1���
�#
�������
%$���
�����
2 3&

�(�����

(�����(���������

20_Chapter_08_Roques_NEW.fm Page 276 Friday, November 28, 2003 1:14 PM

Aims of the chapter 277

Now, which UML construction have we used in the case of the catalogue and of the
books? A multiobject. Thus, by analogy, if the library wants to retain a permanent
record of the loans that have been created, it needs a collection to which it must add
the new loan l. As in Chapter 7 (cf. Figure 7.18), we will use a generic message,
add(), to which we will pass into parameter the reference on the loan l.

The complete sequence and collaboration diagrams are shown in the following
figures.

Figure 8.16 Analysis class diagram of the IS of the library

Figure 8.17 Complete collaboration diagram of the borrowBook operation

	���
����	���

�����	���

���������

�����	

���
��	

���

������ ����
�
	�
�

�����	

���
��	

��	�
�

��������
 ���������

����

����

������
����

�����

�����	����	������
���������

����

���

���
�������

��������	� ��� ���

���!

����

��� ���!

����

����

����

 �������"����%����&

 � �������(0��
��$�4������%����&

(���������

 � � �������(0��
�%����&

(�����

 �1� ���
����
%$���
�����
&
 �1�1���
�#
�������
%$���
�����
2 3&

�(�����

 �1��..$�
��
//%����5
$���
���
	(��
	�
�&

(�������

 �!�����%�&

(�����

(����������

20_Chapter_08_Roques_NEW.fm Page 277 Friday, November 28, 2003 1:14 PM

8 Complementary exercises278

*** 8.2 Propose a design class diagram that takes into account the results of the
preceding question.

Figure 8.18 Complete sequence diagram of the borrowBook operation

..$�
��
//%����5�$���
���
	(��
	�
�&

(����������

�����"����%����&

(�������

�����(0��
��$�4������%����&

(���������
 (�����

�����(0��
�%����&

(�����

�(�����

�
����
%$���
�����
&

�
�#
�������
%$���
�����
2 3&

���%�&

20_Chapter_08_Roques_NEW.fm Page 278 Friday, November 28, 2003 1:14 PM

Aims of the chapter 279

Answer 8.2Answer 8.2Answer 8.2Answer 8.2

With regard to the analysis class diagram (Figure 8.1), we can:

• add methods: the system operations processed by the Library class, but also
searchForBook of the Catalogue class;

• define the type of attributes, as well as that of parameters and the return of
methods;

• restrict the navigability of associations according to the direction of messages on
links between objects of the collaboration diagram;

• specify the names of roles on the navigable side of associations, add qualifiers,
as well as Java implementation recommendations for collections (for example
{HashMap});

Figure 8.19 Design class diagram

�����	����	������

������

2���
���������"
�%��(����&
2������"����%����(�������&
2�
�������������%�&

��	�
�(����
����

67�����-8

9	
	�
��
�
	�
�

�����	
(�������
���
��	
(�������
��	�
�(����

9$���
���
	�
�
9�����"
�

9�������:����
��

	����
�

����

���
(����

���
�������
(����

9��
�����
6;�������8

�����	���

9��
��������

��������

2��
��$�4������%����(�������&(����� ����(�������
��������� 9��
�����

67�����-8

����

����
(�������
������(�������
����(�������

9��
����<�����

����

���

���

���!

���

���

20_Chapter_08_Roques_NEW.fm Page 279 Friday, November 28, 2003 1:14 PM

8 Complementary exercises280

• remove unnecessary classes and associations in accordance with collaboration
diagrams;

• add dependencies between classes further to temporary links between objects:
Library depends on Book as it retrieves a reference on a book object, according to
message 1.1 of the collaboration diagram.

** 8.3 Propose a Java skeleton code for the library class.

Fill in the body of the borrowBook method.

Answer 8.3Answer 8.3Answer 8.3Answer 8.3

As we already explained in step 12 of Chapter 7, the transition of the class diagram
to Java skeleton code, and that of the collaboration diagram to body of methods is
quite straightforward. In this way, we easily obtain the following fragment of the
“Library.java” file:

20_Chapter_08_Roques_NEW.fm Page 280 Friday, November 28, 2003 1:14 PM

Aims of the chapter 281

Figure 8.20 Java skeleton code of the Library class

��������	
	�������

���������	�����	��

�
������
	����	�	����������	�	�����
������
	����	����������������	��	���� �
������
	������������	��������!��	������� �
������
	������������������������

��������������	�����
����
���������
���"

����������
��#��#����$�%��������������#
����
���������
���"

����������
��#�������%��&��'������('%)
����
������%��&����&�������	�	�������	���*��%��&��('%) ���
��������	������������	������&+�������������� ���
�����������	��	##��� ���
���"

����������
��#��#������	���	�#���
����
���������
���"

"

20_Chapter_08_Roques_NEW.fm Page 281 Friday, November 28, 2003 1:14 PM

20_Chapter_08_Roques_NEW.fm Page 282 Friday, November 28, 2003 1:14 PM

D

This appendix comprises a thematic glossary of object-oriented design (mainly
inspired by the one found in UML 2.0 Specifications from OMG), as well as a
summary of tips, which have been taken from the two previous chapters.

GlossaryGlossaryGlossaryGlossary

Architecture Set of significant decisions relating to the organisation of a
software system, the selection of structural elements that the
system is made up of, and of their interfaces; as well as to their
behaviour as it is specified in collaborations between these
elements.

Collaboration Specification of how an operation or classifier, such as a use
case, is realized by a set of classifiers and associations playing
specific roles used in a specific way. The collaboration defines
an interaction.

Collection Generic term that designates all object groupings without
specifying the nature of the grouping.

Communication
diagram (formerly
collaboration
diagram)

Diagram that focuses on the interaction between lifelines
where the architecture of the internal structure and how this
corresponds with the message passing is central. The
sequencing of messages is given through a sequence
numbering scheme. Sequence diagrams and communication
diagrams express similar information, but show it in different
ways.

Component Modular part of a system that encapsulates its contents and
whose manifestation is replaceable within its environment. A
component defines its behaviour in terms of provided and
required interfaces. As such, a component serves as a type,
whose conformance is defined by these provided and reqiured
interfaces (encompassing both their static as well as dynamic
semantics).

Glossary & tips D

21_Appendix_D_Roques_NEW.fm Page 283 Tuesday, December 2, 2003 1:09 PM

Appendix D: Glossary & tips284

Constructor Class operation that constructs objects.

Controller Artificial object that is introduced to separate the
“Presentation” and “Business” software layers.

Coupling 1)Dependency between model elements.

2)“Coupling” represents a measure of the quantity of other
classes, to which a given class is connected, which it knows
about, or on which it depends.

Delegation Ability of an object to issue a message to another object in
response to a message. Delegation can be used as an alternative
to inheritance.

Dependency 1)Obsolescence relationship between two model elements.

2)Semantic relationship between two elements, in which
modification of one of the elements (the independent
element) may have an effect on the semantics of the other
element (the dependent element).

Deployment Deployment shows the physical configuration of different run-
time processing elements that take part in executing the system,
as well as the component instances that they support.

Design Phase of the system development process whose primary
purpose is to decide how the system will be implemented.
During design strategic and tactical decisions are made to meet
the required functional and quality requirements of a system.

Inheritance Mechanism by which more specific elements incorporate
structure and behaviour of more general elements.

Implementation Definition of how something is constructed or computed. For
example, a class is an implementation of a type, a method is an
implementation of an operation.

Importing Dependency relationship between packages that make the
public elements of a package visible within another package.

Interaction Specification of how stimuli are sent between instances to
perform a specific task. The interaction is defined in the
context of a collaboration.

Interface Named set of operations that characterise the behaviour of an
element.

21_Appendix_D_Roques_NEW.fm Page 284 Tuesday, December 2, 2003 1:09 PM

Appendix D: Glossary & tips 285

Layer Organisation of classifiers or packages at the same level of
abstraction. A layer may represent a horizontal slice through an
architecture, whereas a partition represents a vertical slice.

Link Semantic connection between objects, by which an object can
communicate with another object by sending a message.

Logical architecture 1)In analysis: view of the architecture of a system comprising
analysis classes, analysis packages and realisations of use cases;
view which ultimately refines and structures the needs of the
system.

2)In design: view of the architecture of a system comprising
design classes, design subsystems, interfaces and realisations of
use cases, which constitute the vocabulary of the field of the
system solution.

Message Specification of the conveyance of information from one
instance to another, with the expectation that activity will
ensue. A message may specify the raising of a signal or the call
of an operation.

Method Implementation of an operation. It specifies the algorithm or
procedure associated with an operation.

Multiplicity A specification of the range of allowable cardinalities that a set
may assume. Multiplicity specifications may be given for
association ends, parts within composites, repetitions, and
other purposes. Essentially a multiplicity is a (possibly infinite)
subset of the non-negative integers.

Multiobject UML construction that represents several objects of the same
class in a single symbol (particularly in a collaboration
diagram). This prevents premature addition of detailed design
classes, which are linked to the programming language.

Navigability Quality of an association that allows navigation from one class
to the other in a given direction.

Node Classifier that represents a run-time computational resource,
which generally has at least memory and often processing
capability. Run-time objects and components may reside on
nodes.

Object Entity with well-defined boundaries, which is formed from a
state, a behaviour and an identity; an object is an instance of a
class.

21_Appendix_D_Roques_NEW.fm Page 285 Tuesday, December 2, 2003 1:09 PM

Appendix D: Glossary & tips286

Operation Behavioural element of objects, which is defined globally in
the class. Specification of a method.

Operation contract Description of changes in state of the system when a system
operation is invoked. These modifications are expressed in
terms of “postconditions”, which explain in detail the new
state of the system after execution of the operation.

Package General-purpose mechanism for organising elements in UML
into groups, which can, for example, be used to group classes
and associations.

Parameter Argument of a behavioural feature. A parameter specifies
arguments that are passed into or out of an invocation of a
behavioural element like an operation. A parameter’s type
restricts what values can be passed.

Partition Set of related classifiers or packages at the same level of
abstraction or across layers in a layered architecture. A partition
represents a vertical slice through an architecture, whereas a
layer represents a horizontal slice.

Pattern Recurrent and documented modelling solution, which can be
applied in a given context.

Postcondition Constraint which expresses a condition that must be true at the
completion of an operation.

Precondition Constraint which expresses a condition that must be true when
an operation is invoked.

Private Invisible from the exterior of a class (or of a package).

Public Visible from the exterior of a class (or of a package).

Qualifier Association attribute or tuple of attributes whose values
partition the set of objects related to an object across an
association.

Relationship Abstact concept that specifies some kind of connection
between elements. Examples of relationships include
associations and generalisations.

Role Name given to an association end: by extension, way in which
the instances of a class see the instances of another class
through an association.

21_Appendix_D_Roques_NEW.fm Page 286 Tuesday, December 2, 2003 1:09 PM

Appendix D: Glossary & tips 287

TipsTipsTipsTips

• Separate your application into layers. The main reason for implementing 3-tier
architecture is to isolate the business logic from presentation classes (GUI), as
well as to ban direct access to data stored by these presentation classes. The
primary concern is to meet the criterion of flexibility: to be able to modify the
interface of the application without having to modify the business rules, and
being able to change storage mechanism without having to adapt the interface
or the business rules.

• To improve modularity, insert an artificial object called a “controller” between
the graphical objects and the business objects. This design object knows the
interface of objects of the business layer and plays the role of “façade” with
regard to the presentation layer.

• In simple cases, the controller can be an object of an existing analysis class:

• either an object representing the whole system or the organisation itself;

Sequence diagram Diagram that depicts an interaction by focusing on the
sequence of messages that are exchanged, along with their
corresponding event occurrences on the lifelines. Unlike a
communication diagram, a sequence diagram includes time
sequences but does not include object relationships. Sequence
diagrams and communication diagrams express similar
information, but show it in different ways.

Signature Name and parameters of a behavioural feature. A signature
may include optional returned parameter.

Stereotype Class that defines how an existing metaclass (or stereotype)
may be extended, and enables the use of platform or domain
specific terminology or notation in addition to the ones used
for the extended metaclass. Certain stereotypes are predefined
in the UML, others may be user defined. Stereotypes are one of
the extensibility mechanisms in UML.

System operation Behaviour of system level, triggered by a message coming from
an actor (by analogy with an operation at object level, triggered
by receipt of a message coming from another object).

Visibilty Enumeration whose value (public, protected, or private)
denotes how the model element to which it refers may be seen
outside its enclosing namespace.

21_Appendix_D_Roques_NEW.fm Page 287 Tuesday, December 2, 2003 1:09 PM

Appendix D: Glossary & tips288

• or an object representing a role that would have realised the system
operation.

• Describe your layered architecture by using a static diagram that only shows
packages and their dependencies. You can use the « layer » predefined
stereotype to distinguish the packages that represent layers.

• Do not forget that the analysis/design process is a fundamentally iterative one.
The preliminary architecture may be refined or modified (mainly at the level of
partitions within each layer) by the design work that will follow the first analysis
division.

• Use operation contracts: these enable the link to be made between the
functional/dynamic view of use cases and the analysis static view. An operation
contract describes changes in state of the system when a system operation is
invoked. These changes are expressed in terms of “postconditions”, which
explain in detail the new state of the system after execution of the operation. The
main postconditions concern the creation (or destruction) of objects and links
descended from the analysis static model, as well as the modification of attribute
values.

• Use the standard textual description plan for an operation contract given below:

• name

• responsibilities

• references

• preconditions

• postconditions

• exceptions (optional)

• notes (optional)

• Design system operations, respecting their chronology.

• To progress from the analysis to the design stage, use the three Jacobson
stereotypes that enable graphical representation of how a message sent by an
actor traverses the business, application and presentation layers:

21_Appendix_D_Roques_NEW.fm Page 288 Tuesday, December 2, 2003 1:09 PM

Appendix D: Glossary & tips 289

• <<boundary>>: classes that are used to model the interactions between the
system and its actors;

• <<control>>: classes used to represent the coordination, sequence and
control of other objects – in general, they are linked to a specific use case;

• <<entity>>: classes that are used to model long-lived and often persistent
information.

• On collaboration diagrams, use decimal numbering which allows overlapping
of messages to be shown, in a way comparable to the representation of “focus of
control” on the sequence diagram.

• Do not forget that postconditions only represent the new state of the system
once the system operation has completed its execution. They are certainly not
ordered: it is the role of the designer to choose which object must realise each
action, and in what order.

• Take system operations as your starting point for initialising your dynamic study
in the form of collaboration diagrams.

• The sequence diagram becomes increasingly difficult to read as objects are
added. It is for this simple reason that the collaboration diagram is essential for
design: it enables objects to be placed in both dimensions, thereby improving
the readability of the diagram. The collaboration diagram possesses another
advantage over the sequence diagram: it also allows the representation of
structural relationships among objects.

• In your collaboration diagrams, use the UML construction of “multiobject”. This
prevents a detailed design class that is linked to the programming language, such
as Vector of the STL C++ or ArrayList in Java, etc. from being added too soon.

• An interesting idea for improving the readability of the collaboration diagram
entails dividing it into two by treating the controller object as a transition
marker:

• one part to specify the kinematics of the human-computer interface with the
actors, the <<boundary>> objects and the <<control>> object;

• a second part to specify the dynamics of the application and business layers
with the <<control>> object and the <<entity>> objects.

• To start with, work on the collaborations between “business” objects, then deal
with the more technical problem of initialising the information system. This

21_Appendix_D_Roques_NEW.fm Page 289 Tuesday, December 2, 2003 1:09 PM

Appendix D: Glossary & tips290

enables a guarantee of the right decisions, with regard to assigning
responsibilities to objects within the context of business collaborations, forcing
initialisation, and not the opposite.

• Collaboration diagrams will allow development of design class diagrams, and
this is done by adding mainly the following information to classes from the
analysis model:

• operations: a message can only be received by an object if its class has
declared the corresponding public operation;

• the navigability of associations or dependencies between classes, according to
whether links between objects are long-lasting or temporary, and according
to the direction in which messages are circulating.

• Be careful: a long-lasting link between objects will give rise to a navigable
association between corresponding classes; a temporary link (by parameter:
« parameter », or local variable: « local ») will give rise to a simple
dependency relationship. Do not add the classes that correspond to multiobjects
in the design class diagram. This is so that they remain independent from the
target programming language for as long as possible.

• With regard to messages of collaboration diagrams, do not show the following
in design class diagrams:

• creation operations (<<create>> message),

• generic operations on the container classes (add(), etc.),

• operations for accessing attributes.

• You can use the « parameter » and « local » stereotypes on dependencies
between class, in order to mirror the type of temporary link that exists between
the corresponding objects in the collaboration diagram.

• Retaining low coupling is a principle that you must always aim to respect for all
design decisions; it is an underlying objective, which is to be assessed
continuously. Indeed, by catering for it, we generally obtain a more flexible
application that is easier to maintain.

• In addition, do not forget to show in the class diagram those that do not belong
to the current package. It is important to show their relationships with classes of
the current package to justify then the direction of dependencies between the
incorporated packages. In fact, we should only represent the navigable

21_Appendix_D_Roques_NEW.fm Page 290 Tuesday, December 2, 2003 1:09 PM

Appendix D: Glossary & tips 291

associations, the dependencies or generalisations, which point at classes that are
external to those of the package concerned.

• In order to represent a logical architecture visually and in detail, all you have to
do is make a list of all the classes used in the different diagrams, and represent
them graphically within the appropriate package.

• UML design models enable the simple production of code in an object-oriented
programming language, such as Java:

• class diagrams enable the description of the skeleton code, i.e. all the
declarations;

• collaboration diagrams allow the body of methods to be written, particularly
the sequence of method calls on objects that interact.

• Our first approach:

• the UML class becomes a Java class;

• UML attributes become Java instance variables;

• methods that enable read (get) and write (set) access to attributes, in order to
respect the principle of encapsulation, are implicit;

• UML operations become Java methods;

• navigable roles produce instance variables, just like attributes, but with a user
type instead of a simple type;

• the constructor is implicit by default.

• Do not forget import statements for relationships with classes that belong to
other packages, as well as for basic Java classes.

• How do we translate navigable associations of “*” multiplicity? Use a reference
attribute pointing to a collection instance, which contains in turn instances of
the many-side class. The difficulty consists in choosing the right collection
among the many basic classes that Java offers. Although it is possible to create
arrays in Java, this is not necessarily the right solution. On this subject, we prefer
instead to resort to collections, among which the ones that are used most often
are ArrayList (formerly Vector) and HashMap (formerly HashTable). Use ArrayList
if you have to respect a specific order and retrieve objects from an integer index;
use HashMap if you wish to retrieve objects from an arbitrary key.

21_Appendix_D_Roques_NEW.fm Page 291 Tuesday, December 2, 2003 1:09 PM

Appendix D: Glossary & tips292

• Describe the physical implementation of your application by using the last two
types of diagram offered by UML:

• the component diagram;

• the deployment diagram.

• Use the component diagram to show specific dependencies among the software
components that constitute the application. If possible, give details of the
interfaces of components and link the dependencies to the interfaces, rather
than to the components themselves.

• Use the deployment diagram to show the physical configuration of different
run-time processing elements that take part in executing the system, as well as
the component instances that they support. Be careful: the components that no
longer exist at run-time do not appear on this diagram; these must be shown on
component diagrams.

• Study the design patterns until you are just as familiar with them as you are with
the basic object-oriented concepts!

21_Appendix_D_Roques_NEW.fm Page 292 Tuesday, December 2, 2003 1:09 PM

action 173
entry 198
exit 198
order of execution 199
send message 179
triggering 210

action language 190
activity 182

continuous/finite 188
activity diagram 23
actor

business 55
generalisation/specialisation 10
graphical representation 7
identification 161
operation 183
primary/secondary 9, 11, 39, 66, 165
trade 65

aggregation 114
composition 150
definition 149

analysis pattern 98
analysis/design 80
architecture 220

definition 283
layered 223
logical 253, 285

association 65
aggregation 114, 121, 126
composition 114, 121, 125, 128, 195
definition 149
multiplicity 82, 88
mutual exclusion 128
navigability 102, 145, 238, 279, 291
qualifier 94, 129, 279
reflexive 118
role 79, 86, 125, 140

attribute
definition 149
derived 91, 147, 150, 152
identification 77, 90
qualifier 151, 152
type 243, 279
visibility 152

attributes
naming convention 152

boundary 289
business

entity 65
modelling 65
worker 66

business entities 132
business entity 65
business modelling 53

definition 65

class
abstract 109, 115, 116, 120, 127, 130, 149
association 86, 119, 140, 149, 253
business entity 132
concrete 150
concrete superclass 122
coupling 242
definition 149
dependency 238, 280
import 256
metaclass 98, 150
operation 76, 87
package 253
responsibilities 94
stereotype 228
subclass 151
user 80, 97

Index A

22_Index_Roques_NEW.fm Page 293 Friday, November 28, 2003 1:11 PM

Index294

cohesion 153
collection 283
component 262
composition 114, 195
concurrent behaviour 194
concurrent region 196
condition 173

guard 207, 210
constraint 93, 116, 118, 123

definition 150
constructor 284
control 289
control flow 203
controller 221, 270, 287

definition 284
coupling 150

dependency 150
between classes 238, 280

deployment 284
design pattern 131
diagram

activity 56, 202
class 75

design 245, 253, 279
skeleton code 280

classes
skeleton code 254

collaboration 77, 166, 231, 250, 269
body of methods 255, 280
dynamic context 209

commponents 262
deployment 263
design class 241
extended static context 183
object 83, 152
sequence 203, 229, 272
state 52, 168, 206

concurrent region 211
static context 63, 68, 162
system sequence 50, 164, 246
use case 39, 217

diagrams
state 210

entity 289
event 191

internal 187

extension 66
extension point 28, 42

final state machine 168
focus of control 230, 272
functional specifications 57

generalisation
definition 66, 150
tree 115

guard 207

implementation 262
importing 284
inclusion

definition 66
inheritance 85

definition 150
instance 150
interface 262

definition 150
internal event 170
iteration 218

Jacobson
stereotypes 289

Java 224, 254, 280

layer
presentation 221
software 219

lexical analysis 132
link 150

long-lived/temporary 238, 290
logical architecture 108

message 139, 166
and operation 237
asynchronous 203
create 239, 271
decimal numbering 230, 272
definition 66
send 179, 204

metaclass 98, 139
definition 150

metamodel 151
multiobject 233

definition 285

22_Index_Roques_NEW.fm Page 294 Friday, November 28, 2003 1:11 PM

Index 295

multiobjects 274
multiplicity

definition 151
Java expression 259

navigability 151
node 264
notation 152

object 151, 152
OCL 147
operation 239

contract 247, 268
definition 151
notation 152
private 182
public 182, 237
signature 243
system 224, 247

contract 225
operation contract 225
organisation unit 142

definition 66

package
classes 98
definition 66
dependencies 102, 144
division 100
generalisation 109
layer stereotype 222
re-use 104
stereotype 143
use case 30

partition 219
pattern 151
pattern analyse 118
physical implementation

description 292
post-condition 66
precondition 66
private 151, 184
public 151, 184

qualifier 93, 151
qualifiers 279

role 151
RUP 54

scenario 14
definition 67

separation into three levels 287
sequence 14
sous-classe 151
specialisation 7, 10
state

action state 65
activity state 65
composite state 207
dead end 180
enumerated attribute 75
history 177
initial substate 172
representation 152
superstate 170, 176

static context diagram 7
extended 189

stereotype
business modelling 54
definition 67

substate
composite state 207

superclass 152
superstate 170
swimlane 56
system operation 41, 52, 268, 287

definition 67
operation contract 286, 288

system sequence diagram 21, 25

transition
action 173
automatic 188, 207, 210
condition 173
internal 177, 198, 211
self 173, 176, 190, 198, 209, 211
semantics 173

use case
abstract 30, 42
activities diagram 56
activity diagram 21, 24
definition 8
dynamic 68
essential/real 44, 66, 68
extend 27, 42
generalisation 42
include 41

22_Index_Roques_NEW.fm Page 295 Friday, November 28, 2003 1:11 PM

Index296

postconditions 15
preconditions 15
realisation 228
scenario 14, 50
stereotyped 55

system operation 224
textual description 14, 44, 61

use case diagram 33

visibility 152

22_Index_Roques_NEW.fm Page 296 Friday, November 28, 2003 1:11 PM

	cover.pdf
	page_c1.pdf
	page_c2.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf
	page_z0173.pdf
	page_z0174.pdf
	page_z0175.pdf
	page_z0176.pdf
	page_z0177.pdf
	page_z0178.pdf
	page_z0179.pdf
	page_z0180.pdf
	page_z0181.pdf
	page_z0182.pdf
	page_z0183.pdf
	page_z0184.pdf
	page_z0185.pdf
	page_z0186.pdf
	page_z0187.pdf
	page_z0188.pdf
	page_z0189.pdf
	page_z0190.pdf
	page_z0191.pdf
	page_z0192.pdf
	page_z0193.pdf
	page_z0194.pdf
	page_z0195.pdf
	page_z0196.pdf
	page_z0197.pdf
	page_z0198.pdf
	page_z0199.pdf
	page_z0200.pdf
	page_z0201.pdf
	page_z0202.pdf
	page_z0203.pdf
	page_z0204.pdf
	page_z0205.pdf
	page_z0206.pdf
	page_z0207.pdf
	page_z0208.pdf
	page_z0209.pdf
	page_z0210.pdf
	page_z0211.pdf
	page_z0212.pdf
	page_z0213.pdf
	page_z0214.pdf
	page_z0215.pdf
	page_z0216.pdf
	page_z0217.pdf
	page_z0218.pdf
	page_z0219.pdf
	page_z0220.pdf
	page_z0221.pdf
	page_z0222.pdf
	page_z0223.pdf
	page_z0224.pdf
	page_z0225.pdf
	page_z0226.pdf
	page_z0227.pdf
	page_z0228.pdf
	page_z0229.pdf
	page_z0230.pdf
	page_z0231.pdf
	page_z0232.pdf
	page_z0233.pdf
	page_z0234.pdf
	page_z0235.pdf
	page_z0236.pdf
	page_z0237.pdf
	page_z0238.pdf
	page_z0239.pdf
	page_z0240.pdf
	page_z0241.pdf
	page_z0242.pdf
	page_z0243.pdf
	page_z0244.pdf
	page_z0245.pdf
	page_z0246.pdf
	page_z0247.pdf
	page_z0248.pdf
	page_z0249.pdf
	page_z0250.pdf
	page_z0251.pdf
	page_z0252.pdf
	page_z0253.pdf
	page_z0254.pdf
	page_z0255.pdf
	page_z0256.pdf
	page_z0257.pdf
	page_z0258.pdf
	page_z0259.pdf
	page_z0260.pdf
	page_z0261.pdf
	page_z0262.pdf
	page_z0263.pdf
	page_z0264.pdf
	page_z0265.pdf
	page_z0266.pdf
	page_z0267.pdf
	page_z0268.pdf
	page_z0269.pdf
	page_z0270.pdf
	page_z0271.pdf
	page_z0272.pdf
	page_z0273.pdf
	page_z0274.pdf
	page_z0275.pdf
	page_z0276.pdf
	page_z0277.pdf
	page_z0278.pdf
	page_z0279.pdf
	page_z0280.pdf
	page_z0281.pdf
	page_z0282.pdf
	page_z0283.pdf
	page_z0284.pdf
	page_z0285.pdf
	page_z0286.pdf
	page_z0287.pdf
	page_z0288.pdf
	page_z0289.pdf
	page_z0290.pdf
	page_z0291.pdf
	page_z0292.pdf
	page_z0293.pdf
	page_z0294.pdf
	page_z0295.pdf
	page_z0296.pdf

