
Welcome to Cyber Aces Online Module 1. In this session we will examine the Linux file system, file

ownership, and file permissions.

1

Directory Structure

Linux, like Windows, has specific directories for users to store their files and other directories for the

Operating System to store its files. There are directories for the Operating System to store executable

programs and separate directories for it to store libraries (Linux libraries are similar to Windows DLLs).

Unlike Windows, every aspect of the Linux OS is represented as a file. The operating system's memory,

input/output devices, and network adapters are all represented as files in the file system.

Files or directories starting with a dot (".") are hidden by default, similar to the "hidden" file attribute on

Windows. You can view them using the "-a" option to ls.

2

Important Directories (1)

Here are some of the most important directory locations on a Linux system:

/bin & /usr/bin: These contain executable programs. /bin contains important system programs (such as cp, ls,

and mv), while /usr/bin contains other software installed on the system.

/sbin & /usr/sbin: These contain executable programs that non-root users generally shouldn't need, such as

"ifconfig" for network interface configuration. Depending on the distribution, these directories are sometimes

not in a regular user's $PATH.

/lib & /usr/lib: These contain library and module files for programs, which are similar to DLL files on

Windows. /lib/modules contains kernel modules.

3

Important Directories (2)

/etc: Contains configuration files for the system and for other software installed on the system. For example,

/etc/resolv.conf contains the DNS servers the system will use to resolve names, and /etc/hosts contains local

name to IP address mappings.

/usr: Contains files for programs installed on the system. This has a set of subdirectories that matches the rest

of the system, such as bin, sbin, and lib.

/usr/local: The default location for software installed from source. Like /usr, this also contains a set of

subdirectories including bin, sbin, and lib.

/var: Contains variable data used by programs, such as logs. The default web root is often /var/www/.

/tmp & /var/tmp: These contain temporary files used by programs or the system. /tmp is usually cleaned out

automatically either during reboot or on a regular basis, while /var/tmp usually isn't.

4

Important Directories (3)

/boot: Contains the Linux kernel (the core of the operating system) and other information needed for booting.

/home: Contains users' home directories (containing their personal files, settings, etc.).

/root: The root account's home directory.

/mnt & /media: These contain directories where external & network drives are mounted. /mnt generally

contains generic mount points like /mnt/floppy and /mnt/cdrom, while /media is usually handled by a daemon

that creates new directories on the fly with the name of the device (such as /media/SANS_Network_Tools).

/dev: Contains files that represent hardware devices (on Linux, ALL devices are represented by a file).

/proc: Contains virtual files allowing direct access to system & kernel information. For example, there are

numbered subdirectories that correspond to each running process on the system. The numbers correspond to

the process ID.

5

File Ownership & Permissions

File permissions are used to control who can read, write and/or execute files on the hard drive. Ownership is

used to specify who is considered the owner of a file. Permissions and ownership work together to control file

system privileges.

On Linux, every file and directory is owned by a specific user and a specific group. The owner is always able

to change the permissions, even if the current permissions don't allow the owner to access the file. This allows

file permissions to be defined separately by the user who owns the file, the group that owns the file, and all

other users on the system (commonly referred to as "world").

Users can change the group that owns any file they own (using "chgrp"), but only root can change the user that

owns a file (using "chown").

6

File Permissions

Linux has three types of permissions on a file: read, write, and execute.

Read permission allows the contents of files to be read, and the contents of directories to be listed.

Write permission allows the contents of a file to be modified, and allows users to add, remove, and rename

files in a directory (note that even with write permission on a file, you cannot delete it without write

permission on the directory!).

Execute permissions allows a file to be executed as a program or shell script, and allows users to enter and

access files in a directory (but not list its contents).

7

Viewing Permissions

You can view permissions on files and directories using the long listing "-l" (lowercase L) option to "ls". This

will display a listing of the current or specified directory, one item per line.

The first character indicates if the file is a regular file (-), directory (d), symbolic link (lower-case L), or other

type of special file. The next nine characters indicate the permissions for the file, in a particular order (rwx).

The first 3 indicate read (r), write (w), and execute (x) for the user/owner, the next three for the group, and the

last three for all other users. A hyphen indicates that the given permission is not set on that file or directory for

the particular permissions group. The "1" (numeral one) after the permission bits indicates that there is only

one hard link to the file on the filesystem. "chuck" is the user that owns the file, and "buymore" is the group

that owns the file. This is followed by the file size (usually 4096 for directories), the last modified date, and

the file name.

In the example above, "data" is a directory owned by the user "chuck", and the group "buymore". The user

"chuck" has read, write, and execute permissions, the group "buymore" has read and execute permissions, and

all other users have no access at all. "logo.png" is a file: "chuck" has read and write permissions (but not

execute), the "buymore" group has read and write permissions, and all other users have read permission only.

8

Setting Permissions (Symbolic)

On Linux, the "chmod" command (short for "change mode") is used to change permissions on files and

directories. There are two ways to specify the desired permissions: symbolic mode and octal/numeric mode.

Symbolic mode is easiest when making changes to existing permissions (rather than setting all permission bits

at once). Symbolic mode allows you to change permissions for one permission group (user, group, or other) at

a time.

To set permissions in symbolic mode, first specify "u" for user/owner, "g" for group, "o" for other, or "a" for

all three. Then, use a "+" to add permissions, a "-" to remove permissions, or "=" to assign new permissions.

Then, use "r" for read, "w" for write, and "x" for execute. You can combine any of the ownership types and

any of the permissions types in a single command, such as "ug+wx" for adding write & execute permission for

the user/owner and group.

For example, to remove read, write, and execute permission from "other" users, run:

$ chmod o-rwx somefile.txt

To set a file to be read only (write and execute will be remove) for all users:

chmod ugo=r somefile.txt

9

Setting Permissions Octal

Linux permissions can also be represented by three octal digits (0-7), one for each permission group. This is a

more efficient way to set all permissions bits at once. To use octal, add the permission bits together for each

group, and then put them in order as a three digit number. Read permission is "4", write permission is "2", and

execute permission is "1". All combinations can be expressed as a combination of these digits:

For example, to set a file to have read, write, and execute permissions for the user/owner, read and execute

permissions for the group, and no access for all other users (equivalent to symbolic -rwxr-x---), use the

following command:

$ chmod 750 somefile.sh

10

Octal Permissions

0 ---

1 --x

2 -w-

3 -wx

4 r--

5 r-x

6 rw-

7 rwx

11

12

SUID Bit

Some programs need to execute with the privileges of certain users. For example, the "passwd" program used

to change your password has to be able to write your hashed password to the /etc/shadow file (which can only

be written to by root). Therefore, the "passwd" program has the SUID bit set so that it will run as root,

regardless of what account is actually executing it and the privileges they have.

Put your attacker hat on and think about how this could be abused. If a program is SUID root and it contains a

flaw that can be exploited, then we could get full root access to the box! Because of this, programs that are

SUID root have to very carefully written and audited to make sure they are free of any vulnerabilities.

13

SUID Bit Exercise

An attacker who has gained root access on your box may create a backdoor on your system that will enable

him or her to easily recapture root access on your box. The simplest form of this backdoor is a shell with the

SUID bit set. Search your computer to find all of the programs that are set to run with root privileges.

1. In your CentOS VM, open a terminal window and become root.

$ su –

2. Search for all files that are SUID root using the following command from the SANS Linux Intrusion

Discovery Cheat Sheet:

find / -uid 0 -perm -4000 2>/dev/null

This command will search starting at the root of the file system (/), look for files owned by root (UID 0),

and with the special SUID bit set (4000). We will throw away any error messages by sending STDERR

(file descriptor 2) to /dev/null.

3. After a few seconds, the find command will return the list of files that are SUID root. Look through the

list of files and think about why they must be SUID root. You should see familiar commands like

"passwd", "su", "sudo", "ping", and other commands which might not be familiar. Use man to learn more

about these unfamiliar commands and why they would need to be SUID root. For example, "man chfn".

4. Close the terminal window.

14

How Attackers Hide on the Linux Filesystem

Once an attacker has compromised a machine, one of his goals is to not be discovered. In order to do this, he

needs to find ways to hide in the file system. One method of hiding is to create directory names that are not

easily spotted. Common techniques used by attackers include:

• Adding spaces to the end of the filename

• Making the name just a single space or a series of spaces

• Making the name consist of three dots, so it blends in with the normal single-dot and double-dot directory

entries

As a defender we need to aware of these techniques so we can find these hidden files and directories.

15

Exercise: Finding Hiden Directories (1)

1. In your CentOS VM, open a terminal window. We'll do the first part of this exercise as the "centos" user,

so do not become root yet. Type the following command to show all the files in the current directory

(/home/centos/):

$ ls -hal

Note: That is a lower case "L" at the end of the command

2. Notice that the first two entries are "." and "..". The single dot represents the current directory

(/home/centoslive/). The double dot represents the parent directory (/home/). These entries are shown in

every single directory in the file system, so a sysadmin would normally see them all the time.

16

Exercise: Finding Hidden Directories (2)

3. Create a new directory called "..." with the following command:

$ mkdir ...

4. Create a new directory called " " (a single space) with the following command:

$ mkdir " "

5. Press the Up arrow three times to retrieve the "ls -hal" command and press Enter.

6. Notice in the output how the new " " and "..." directories blend in with the normal "." and ".." entries.

Think about how easy it would be for a sysadmin to overlook these stealthy directories. How would a

sysadmin find them?

17

Exercise: Finding Hidden Directories (3)

8. Become root

$ su –

9. Use this command from the SANS Linux Cheat Sheet to look for filenames of a single space:

find / -name " "

10. After a few seconds, the find command should display the location of the stealthy directory

(/home/centoslive/). Note that there is a space after the final slash, you just can't tell that it's there.

11. Edit the previous command to look for the "..." directory. Press the Up arrow to retrieve the previous

command, then press the backspace key twice and then type the following:

...

Now press Enter.

12. Again, the find command should display the location of the stealthy directory (/home/centoslive/...).

13. Remove the stealthy directories with the following commands:

rm -rf /home/centos/...

rm -rf /home/centos/" "

The "rm -rf" command recursively removes an entire directory structure even if the directories are not

empty. Always be very careful when typing an "rm -rf" command, especially if you have root privileges!

On a production system, one little typo could result in irreversible damage to the system. Since this is a

LiveCD, if you accidentally wipe the entire file system, you can just reboot and everything will be back to

normal.

14. Re-run the find commands above to verify that the stealthy directories have been removed.

18

19

