Physics Interactive Quiz:	Rotational dynamics	Name:
----------------------------------	---------------------	-------

		1	\	1				1
	#	2	question	Answer			0	<score< td=""></score<>
#	1	40	cm is the radius of two masses held in the hands of a spinning ice skater, each with velocity 4 m/s. If the radius were 1/4 of this, find the final v for the masses (ignore the mass of the skater).		16	100	0	
#	2	10	kg is the mass of a bucket around a pulley. If the bucket falls 6 meters, and I for the pulley is 30, find the final w for the pulley (assume PE goes only into rotational KE)		6.2609	100	0	
#	3	16	cm is the length of a wrench turning a bolt. If a force of 60 N were applied 90° to the handle, find the torque on the bolt.		9.6	100	0	
#	4	16	Repeat with a force 45° from the axis of the wrench.		6.7872	100	0	
#		120	kg is the mass of a child on one side of a 6 meter long seesaw, with her brother of mass 40 kg on the other end. Find the net torque.		2352	100	0	
#			kg is the mass of a child on a different seesaw, 2 meters from the center. Find the mass of a second child 4 meters from the center to balance the seesaw.		4	100	0	
#	7	8	If either of them were to get off the seesaw, find out the torque on the seesaw (ignore the mass of the seesaw).		156.8	100	0	
#		10	cm is the radius of a bicycle wheel. What is the distance it covers in one revolution?		0.628	100	0	
			How many radians is this?			100	<u> </u>	
#	9	80	How many revolutions will it take to cover 1 kilometer (1000 meters)?		6.28	100	0	
#	10	80			1592.4	100	0	

Extra Credit: Explain how helicopters preserve angular momentum in powered flight, including diagrams.