	\#	1	question	Answer	0	<--score
\#	1	100	m / s is the velocity of a 250 gram bullet fired from a gun. Find the momentum for one bullet.		0	
\#	2	1	m / s is the velocity of 100 kg Boris, running towards you. How many bullets (exactly) would it take to stop Boris?		0	
\#	3	40	is your mass, including the wheeled bed you are on. Calculate your velocity after stopping Boris.		0	
\#	4	20	m / s is the velocity of a car going north that crashes into an eastbound car of mass 3000 kg going $20 \mathrm{~m} / \mathrm{s}$. If the wrech moves off at 45°, find the mass of the first car		0	
\#	5	20	m / s is the velocity of a 500 gram baseball. Find the momentum		0	
\#	6	20	If this ball hits your mit at 0.2 seconds, find the force.		0	
\#	7	20	If the ball were initially hit by a bat in 0.001 second, find the force on the bat		0	
\#	8	30	m / s is the velocity of your car as it hits a tree. Your 50 kg body is slowed to zero in 0.8 seconds by the seatbelts. Find the force.		0	
\#	9	30	Find the force if you instead hit the windshield taking 0.02 seconds		0	
\#	10	5	m / s is the velocity of a cart that hits an identical cart standing still. Find the final velocity of the carts if they stick together.		0	

Extra Credit: Explain how two pool balls colliding, one moving off to the right, one to the left demonstrates conservation of momentum.

