	\#	3	question	Answer	0	<--score
\#	1	3	seconds is how long it takes a car to cover 2000 meters. The average velocity is:		0	
\#	2	6	seconds is the time a car accelerates at 0.2 $\mathrm{m} / \mathrm{s} 2$. Find the final velocity		0	
\#	3	6	Find the distance the same accelerating car covers:		0	
\#	4	9	cm is the spacing between each of 5 drips. Find the velocity in cm/drip: (hint: draw this out before answering)		0	
\#	5	9	find the acceleration if the drips get twice as far apart in the next interval		0	
\#	6	9	what is the total displacement before the acceleration?		0	
\#	7	30	meters is the height of a cliff. A ball dropped from this cliff would take how long to fall?		0	
\#	8	30	How fast would the ball be going by then?		0	
\#	9	30	m / s is the velocity of a car that hits a tree. If it takes 0.8 meters to stop, find acceleration in $\mathrm{m} / \mathrm{s} 2$		0	
	10	30	how many "g"s is this?		0	

Extra Credit: Draw the s, v and a graphs for the drip question

