	\#	4	question	Answer	0	<--score
\#	1	4	seconds is how long it takes a car to cover 2000 meters. The average velocity is:		0	
\#	2	8	seconds is the time a car accelerates at 0.2 $\mathrm{m} / \mathrm{s} 2$. Find the final velocity		0	
\#	3	8	Find the distance the same accelerating car covers:		0	
\#	4	12	m / s is the initial velocity of a car on the autobahn. If it accelerates at $2 \mathrm{~m} / \mathrm{ss}$ for 10 seconds, find the final velocity		0	
\#	5	12	find the distance covered during this acceleration		0	
\#	6	12	how many "g"s is this acceleration?		0	
\#	7	40	meters is the height of a cliff. A ball dropped from this cliff would take how long to fall?		0	
\#	8	40	How fast would the ball be going by then?		0	
\#	9	40	m / s is the velocity of a car that hits a tree. If it takes 0.8 meters to stop, find acceleration in $\mathrm{m} / \mathrm{s} 2$		0	
\#	10	40	how many "g"s is this?		0	

Extra Credit: Draw the s, v and a graphs for the drip question

