Physics Interactive Quiz : Interference/Diffraction

	\#	1	question	Answer	0	<--score
\#	1	100	Hz is the tone generated by a pair of speakers 4 meters apart. What is the wavelength of the sound if Vsound is $340 \mathrm{~m} / \mathrm{s}$?		0	
\#	2	5	meters is the distance to the central maximum. What is the distance from this point to each speaker?		0	
\#	3	5	you now move sideways until you hear no tone: what is the difference (meters) in path length to each speaker?		0	
\#	4	5	you continue until the sound is loud again, what is the path difference now?		0	
\#	5	15	cm is the separation between two bright dots on a screen 4 meters away using a laser and a grating with $d=1.89$ EE- 6 meters. What is the wavelength of the laser?		0	
\#	6	15	what angle is this forming?		0	
\#	7	15	what will be the distance in meters from the central maximum to the next bright spot?		0	
\#	8	15	what will be the angle of the first dark spot?		0	
\#	9	15	what distance (meters) will this be on the screen?		0	
\#	10	15	If the wavelength of the laser were doubled, how many meters would be the distance from the CM to the first bright spot?		0	

Extra Credit:

