	\#	1	question	Answer	0	<--score
\#	1	5	square meters is the area of a capacitor of spacing 2 ee -4 m and 250 volts and $K=150$. Find the capacitance for this capacitor in Farads		0	
\#	2	5	find the capacitance in microfarads ($\mu \mathrm{F}$)		0	
\#	3	5	Find the energy stored in this capacitor		0	
\#	4	5	find the charge on this capacitor		0	
\#	5	4	farads is the separate value of two capacitors then connected in parallel. Find C for the combination.		0	
\#	6	4	repeat the last question, only this time the capacitors are in series		0	
\#	7	4	μ coulombs is the charge on two charges spaced 25 cm apart. Find the force on the charges		0	
\#	8	8	farads is the value of a capacitor charged with 200 volts. What is the charge on this capacitor?		0	
\#	9	8	what is the energy in this capacitor?		0	
\#	10	8	If the voltage were doubled, what would the new energy be?		0	

Extra Credit:

Explain how a cloud over the ground is similar in electrical nature to a capacitor. Include terms such as dielectric in your answer

