Title: Projectile Motion

Purpose: Analyze projectile motion using video analysis
Background: projectile motion is defined as motion without wings, propulsion, friction (air resistance), under the influence of gravity. The formula for this motion is range $+\mathrm{V} 0^{\wedge} 2 / \mathrm{g} \sin 2$ theta

Materials: laptop computer with camera, logger pro, meter stick, Basketball
Procedure:

1. Setup cones with meter stick
2. Setup laptop facing the throw
3. Throw the ball while starting video capture
4. Observe captured video as charting dots on ball as it moves
5. Analyze the graph: x velocity and y velocity gravity from $s=1 / 2 a t \wedge 2$

Data:

Observations: it was hard to catch the ball, it was important to make sure that the arc of the ball stayed in the picture frame, make sure you log into admin on the laptop or they will be useless on student accounts.

Analysis:

It wasn't windy, Our data was very clean. U can see from the dots that the video capture was consistent. The x velocity appeared to be about -6 meters a second. We did a curve fit on the y velocity and found gravity to be -4.9 , meaning gravity was $-9.8 \mathrm{~m} / \mathrm{s}$. it was hard to see the meter stick on the screen and to see the ball in the video.

Conclusion: we successfully captured the motion of a parabolic projectile, and determined that g was -9.8. In the future we may repeat this experiment with a better camera, with faster video. The frame rate was too fast for the computer to capture in real time. One might also repeat the lab with a brighter colored ball.

