Title: Projectile Motion

Purpose: To analyze projectile motion using video analysis.

Background: Projectile motion is defined as motion without wings, propulsion, friction(air resistance), under the influence of gravity. The formula for this motion is Range = $V0^2/g Sin(2theta)$.

Materials: laptop with video camera, ball, thrower, meter stick, marking cones

Procedure:

- 1. Setup cones 1 meter apart.
- 2. Setup laptop facing thrower.
- 3. Throw the ball while starting video capture.
- 4. Observe captured video and chart the dots as the video plays.
- 5. Analyze the graphy: X velocity, Y velocity, and gravity from S=1/2at^2

Data:

-	VideoAnalysis					
	Time	X	Y	Vx	Vy	
	(S)	(m)	(m)	(m/s)	(m/s)	
1	0.2083	23.32	8.985	-1.000	0.650	ń
2	0.2417	23.29	9.015	-0.951	0.363	н
3	0.2750	23.23	9.015	-0.437	0.106	Ш
4	0.3083	23.26	9.015	0.104	0.025	Ш
5	0.3400	23.26	9.015	0.051	0.000	н
6	0.3733	23.26	9.015	0.025	0.000	н
7	0.4067	23.26	9.015	0.000	0.000	Ш
8	0.4383	23.26	9.015	0.000	0.000	U
9	0.4717	23.26	9.015	0.000	0.000	
10	0.5050	23.26	9.015	0.000	0.000	L
11	0.5383	23.26	9.015	0.000	0.000	L
12	0.5717	23.26	9.015	0.000	0.000	L
13	0.6050	23.26	9.015	0.000	0.000	L
14	0.6367	23.26	9.015	0.000	0.000	L
15	0.6700	23.26	9.015	-0.057	0.076	
16	0.7367	23.26	9.015	-0.227	0.316	L
17	0.7683	23.26	9.015	-0.726	1.013	L
18	0.8350	23.17	9.135	-0.817	1.308	L
19	0.8683	23.14	9.195	-0.056	0.602	L
20	0.9350	23.14	9.195	0.984	-0.090	L
21	1.000	23.23	9.225	2.223	-1.208	L
22	1.065	23.53	9.015	2.185	-2.225	L
23	1.098	23.50	8.955	0.555	-2.442	L
24	1.132	23.53	8.835	-0.191	-2.000	L
25	1.198	23.44	8.715	-0.062	-1.068	L
26	1.232	23.50	8.775	0.592	-0.961	
27	1.297	23.53	8.655	0.678	-1.557	
28	1.330	23.59	8.595	0.322	-1.710	
29	1.395	23.56	8.505	-0.102	-2.045	
30	1.428	23.56	8.325	-0.168	-1.104	
31	1.495	23.56	8.385	-0.502	0.014	Ļ
32	1 5 2 9	23.50	0 205	0.651	0.759	- T

Observations: It was a sunny day. My partner threw the ball up high off of a hill. It ascended until it hit its highest point and then descended. The path of the ball made a large arc or parabola. The computer graphed the ball's path and curved our line.

Analysis: We successfully captured the motion of a parabolic projectile and determined that g was -9.8 In the future we may repeat this experiment with a better camera with faster video. The frame rate was too fast for the computer to capture in real time. One might also repeat the lab with a brighter colored ball. Our gravity outcome was a little off due to air resistance. There could also have been an error in measuring the meter sticks on the screen.

Conclusions: We found gravity to be -9.8 and determined the parabolic projectile motion. We used the logger pro to graph the path of the ball and determine gravity. This lab could be perfected using better cameras, a more constant projectile, and in ideal conditions. Overall our outcome was close to the target number. It was a successful lab.