Title: Projectile Motion

Purpose: To analyze projectile motion using video analysis.
Background: Projectile motion is defined as motion without wings, propulsion, friction(air resistance), under the influence of gravity. The formula for this motion is Range $=\mathrm{VO}^{\wedge} 2 / \mathrm{g} \mathrm{Sin}(2$ theta $)$.

Materials: laptop with video camera, ball, thrower, meter stick, marking cones

Procedure:

1. Setup cones 1 meter apart.
2. Setup laptop facing thrower.
3. Throw the ball while starting video capture.
4. Observe captured video and chart the dots as the video plays.
5. Analyze the graphy: X velocity, Y velocity, and gravity from $S=1 / 2 a t^{\wedge} 2$

Data:

Observations: It was a sunny day. My partner threw the ball up high off of a hill. It ascended until it hit its highest point and then descended. The path of the ball made a large arc or parabola. The computer graphed the ball's path and curved our line.

Analysis: We successfully captured the motion of a parabolic projectile and determined that g was -9.8 In the future we may repeat this experiment with a better camera with faster video. The frame rate was too fast for the computer to capture in real time. One might also repeat the lab with a brighter colored ball. Our gravity outcome was a little off due to air resistance. There could also have been an error in measuring the meter sticks on the screen.

Conclusions: We found gravity to be -9.8 and determined the parabolic projectile motion. We used the logger pro to graph the path of the ball and determine gravity. This lab could be perfected using better cameras, a more constant projectile, and in ideal conditions. Overall our outcome was close to the target number. It was a successful lab.

