Lab 2: Newton's Second Law

Purpose: Study Newton's second law.

Background: To manipulate force and mass using a radar machine and computer, and measure acceleration using the equation.

Materials: cart, 506g weight, ramps, sail, radar, computer, logger pro.

Procedure:

- 1. Setup cart and radar machine
- 2. Measure the position, velocity, and acceleration with the fan on low and high settings.
- 3. Measure with the weight on the cart on low and high.
- 4. Measure the cart with the ramp on high and low angles.

Observations: We had to redo the measurements a few times because the cart would go off at a angle it was also hard to stop the cart. We also accidentally erased the data a few times. The radar also only records for ten seconds and will not record if it is too close. All in All though our graphs and tables were pretty accurate.

Analysis: We used Newton's second law: F=MA to setup the lab. To find the acceleration we derived the coefficient from the quadratic curve fit of the graphs using the formula S=1/2at^2 and then double-checked our answer using with the linear equation y=mx+b with 'm' being the acceleration.

Conclusion: Our data was pretty accurate. Some of the curve fits did not match as well as I would have liked them to match. The thing that affected our graphs the most was stopping the cart because the sail usually fell off. I believed that we proved Newton's law though.

Data: G1 no weight low, G2 no weight high, G3 weight low, G4 weight high, G5 low angle, G5 high angle.

