Projectile Motion Lab report

Purpose: Analysis projectile motion using video analysis of a thrown object.

Background: Projectile motion is defined as motion without wings, propulsion, friction (air resistance), under the influence of gravity. The formula for the motion is Range= $V0^2/g \sin 2$ theta.

Materials:

- Labtop computer with camera
- Logger pro
- Meter stick
- Ball

Procedure:

- 1. Retrieve a ball
- 2. Set up camera on labtop so that it can film the ball's motion and it's thrower
- 3. Start the camera and film that toss of the ball end the filming when it hits the ground
- 4. Analyze it's motion
- 5. Then plot the motion in logger pro, tracking with dots
- 6. Then analyze the graph that's created

Data:

Projectile motion of tennis ball

	Time	X	Y	Vx	Vy	
	(s)	(ft)	(ft)	(ft/s)	(ft/s)	
1	0.7133	22.30	9.855	-5.788	7.622	
2	0.7467	22.12	10.08	-6.434	8.949	
3	0.7800	21.94	10.40	-8.098	10.658	
4	0.8133	21.57	10.81	-9.407	11.528	
5	0.8783	21.06	11.50	-11.276	12.677	
6	0.9117	20.55	12.05	-14.336	13.667	
7	0.9783	19.49	12.97	-15.167	12.884	
8	1.012	19.01	13.33	-15.403	11.551	
9	1.043	18.50	13.73	-15.662	9.705	
10	1.110	17.44	14.32	-15.319	7.934	
11	1.175	16.45	14.76	-14.680	6.584	
12	1.208	16.05	14.98	-14.879	4.748	
13	1.275	14.99	15.20	-15.545	3.471	
14	1.308	14.44	15.34	-15.350	1.929	
15	1.373	13.49	15.38	-15.305	0.395	
16	1.407	12.94	15.38	-15.303	-1.442	
17	1.440	12.47	15.27	-15.264	-2.922	
18	1.505	11.45	15.09	-15.296	-4.095	
19	1.538	10.97	14.90	-15.344	-5.799	
20	1.605	9.911	14.50	-15.383	-7.412	
21	1.638	9.399	14.17	-14.855	-9.222	
22	1.703	8.485	13.55	-14.930	-10.412	
23	1.737	7.937	13.18	-15.181	-12.561	
24	1.770	7.461	12.71	-15.124	-14.455	
25	1.835	6.438	11.76	-14.895	-15.752	
26	1.902	5.487	10.66	-14.520	-17.224	
27	1.935	5.012	10.00	-14.509	-18.915	
28	1.968	4.537	9.380	-15.120	-20.708	
29	2.000	4.025	8.685	-15.472	-22.733	
30	2.067	3.001	7.185	-15.323	-24.107	
31	2.132	1.978	5.429	-14.763	-24.349	
30	2.067	3.001	7.185	-15.323	-24.107	
31	2.132	1.978	5.429	-14.763	-24.349	
32	2.165	1.503	4.624	-12.658	-20.705	
33	2.198	1.210	4.185	-10.493	-16.602	
34	2.265					

Video Analysis of Displacement and Velocity

Observations:

When the ball was thrown it's acceleration upward slowed down to a stop and as it fell back down the velocity seemed to increase (decrease) as it neared closer to the ground. So I propose that it's initial velocity was less in magnitude then the final velocity because the ball traveled further in a downward motion. The ball only bounced once. To capture this motion it took several takes, patience is a virtue in this lab.

Analysis:

As you can see in the table motion didn't come into effect until 0.7133 sec. and about 3 meters above the ground. The Y's displacement and velocity showed noticeable changes. When the ball was thrown upward it decelerated at a positive rate (because up is positive) due to the force of gravity which is 9.8m/s2. It's initial upward movement was acceleration (from 2.32 m. to 4.26 m above ground) due to the initial force of the thrower but after 0.9117 sec. it started to decelerate and at 1.373 sec. the ball reached its peak, 0 acceleration and 0 velocity. And at 4.8 m. the ball then starts to accelerate at a negative rate (because down is negative) increasing it's speed as it falls and decreasing the Y's displacement until the ball hits the ground with a final velocity that's the highest of any interval. In the graph this is all explaining the blue line (Y) with the line starting at 3 m. going up to 4.8 m. then curving back down.

But for the X component of the graph, horizontal motion, there aren't drastic changes because rates of X are constant. For instance its displacement decreases at a constant negative rate (since its motion goes from left to right) due to the straight line the graph makes. Besides the final and initial velocities the X velocity remains constant at about 4.8 m/s.

Conclusion:

So Y components are affected by gravity while X components aren't, which is why X components remain constant. Throughout the lab I noticed that you had to be familiarized with logger pro and other technologies. If I had a chance to redo this lab I would better prepare myself with the equipment that's used such as how to capture the video and where to you retrieve it. It took a lot of extra time trying to figure out how everything worked but it made you pay attention to detail and observe things that most people won't bother (like a ball's velocity in flight).

it's