
$15
by JOE KISSELL

2ND
EDITION

THE MAC
COMMAND
LINE WITH
TERMINAL

TAKE CONTROL OF

EBOOK EXTRAS: v2.0
Downloads, Updates, Feedback

Table of Contents
Read Me First ...5

Updates and More ... 5
Basics .. 6
What’s New in the Second Edition .. 7

Introduction ..9

Mac OS X Command Line Quick Start12

Understand Basic Command-Line Concepts14
What’s Unix? ... 14
What’s a Command Line? ... 15
What’s a Shell? ... 16
What’s Terminal? ... 17
What Are Commands, Arguments, and Flags? 18

Get to Know (and Customize) Terminal23
Learn the Basics of Terminal ... 23
Modify the Window .. 25
Open Multiple Sessions .. 26
Change the Window’s Attributes .. 27
Set a Default Shell ... 30

Look Around ..33
Discover Where You Are ... 33
See What’s Here ... 34
Repeat a Command ... 36
Cancel a Command .. 38
Move into Another Directory ... 38
Jump Home .. 40
Understand How Paths Work ... 41
Understand Mac OS X’s File System 44
Use Tab Completion ... 46
Find a File .. 47
View a Text File ... 49
Get Help .. 51

2

Clear the Screen ... 53
End a Shell Session ... 53

Work with Files and Directories54
Create a File ... 54
Create a Directory ... 55
Copy a File or Directory .. 55
Move or Rename a File or Directory 58
Delete a File ... 60
Delete a Directory ... 60
Use Symbolic Links .. 61

Work with Programs ..63
Learn Command-Line Program Basics 63
Run a Program or Script ... 65
Run a Program in the Background 69
See What Programs Are Running 70
Stop a Program ... 74
Edit a Text File .. 75
Create Your Own Shell Script .. 78

Customize Your Profile ..81
How Profiles Work ... 81
Edit .bash_profile .. 82
Create Aliases ... 82
Modify Your PATH .. 84
Change Your Prompt .. 84

Bring the Command Line into the Real World86
Get the Path of a File or Folder .. 86
Open the Current Directory in the Finder 88
Open a Hidden Directory without Using Terminal 88
Open the Current Folder in Terminal 89
Open a Mac OS X Application .. 91
Open a File in Mac OS X ... 91

Log In to Another Computer92
Start an SSH Session ... 92
Run Commands on Another Computer 94
End an SSH Session ... 95

3

Transfer Files with sftp or scp .. 95

Work with Permissions ..99
Understand Permission Basics ... 99
Change an Item’s Permissions ... 103
Change an Item’s Owner or Group 105
Perform Actions as the Root User 106

Learn Advanced Techniques109
Pipe and Redirect Data ... 109
Get a Grip on grep ... 112
Add Logic to Shell Scripts ... 116

Install New Software ...126
Use Command Line Tools for Xcode 127
Install Unix Software from Scratch 129
Use a Package Manager .. 132

Command-Line Recipes ...138
Change Defaults .. 138
Perform Administrative Actions .. 144
Modify Files .. 146
Work with Information on the Web 149
Manage Network Activities .. 150
Work with Remote Macs ... 154
Troubleshoot and Repair Problems 156
Get Help in Style ... 159
Do Other Random Tricks ... 160

About This Book ..164
Ebook Extras ... 164
About the Author ... 165
About the Publisher .. 166

Copyright and Fine Print ..167

4

Read Me First
Welcome to Take Control of the Mac Command Line with Terminal,
Second Edition, version 2.0, published in April 2015 by TidBITS
Publishing Inc. This book was written by Joe Kissell and edited by
Geoff Duncan.

This book introduces you to Mac OS X’s command line environment,
teaching you how to use the Terminal utility to accomplish useful,
interesting tasks that are either difficult or impossible to perform in
the graphical interface.

If you want to share this ebook with a friend, we ask that you do so
as you would with a physical book: “lend” it for a quick look, but ask
your friend to buy a copy for careful reading or reference. Discounted
classroom and Mac user group copies are available.

Copyright © 2015, alt concepts inc. All rights reserved.

Updates and More

You can access extras related to this book on the Web (use the link in
Ebook Extras, near the end; it’s available only to purchasers). On the
ebook’s Take Control Extras page, you can:

• Download any available new version of the ebook for free, or buy
any subsequent edition at a discount.

• Download various formats, including PDF, EPUB, and Mobipocket.
(Learn about reading on mobile devices on our Device Advice page.)

• Read the ebook’s blog. You may find new tips or information, links
to author interviews, and update plans for the ebook.

If you bought this ebook from the Take Control Web site, it has been
added to your account, where you can download it in other formats
and access any future updates. However, if you bought this ebook
elsewhere, you can add it to your account manually; see Ebook Extras.

5

Basics

To review background information that might help you understand
this book better, such as finding System Preferences and working with
files in the Finder, read Tonya Engst’s free Read Me First: A Take
Control Crash Course.

In addition, please be aware of the following special considerations:

• Spurious hyphens! When viewing this ebook in EPUB or Mo-
bipocket format, your ebook reader (such as iBooks or Kindle) may
insert extra hyphens in the longer lines of text that are provided as
examples of what to type on the command line. You can mitigate
this problem by viewing the text in a single column, with a smaller
font, and in a landscape position. In some cases, you can turn off
autohyphenation to remove these spurious hyphens. For example,
if you are reading in iBooks in iOS, you can go to the Settings app,
select iBooks, and then turn off the Auto-hyphenate switch. Howev-
er, with autohyphenation off, iBooks may now cut off some wider
lines of command-line text.

If you are reading this ebook in order to absorb the material concep-
tually, this won’t be a problem, but if you want to type the com-
mands on your Mac, consider downloading the PDF of this ebook
onto your Mac, in order to read it there. As a bonus, you can copy
the command-line text out of the PDF and paste it on the command
line. Read Ebook Extras for help with downloading the PDF.

• Entering commands: I frequently tell you to “enter” a command
in a Terminal window. This means you should type the command
and then press Return or Enter. Typing a command without press-
ing Return or Enter afterward has no effect.

• Getting commands into Terminal: When you see commands
that are to be entered into a Terminal window, you can type them
manually. If you’re reading this on a Mac, you can copy the com-
mand from the ebook and paste it into Terminal (which is handy,
especially for longer and more complex commands).

6

Whichever method you use, keep these tips in mind:

‣ When typing: Every character counts, so watch carefully. The
font that represents text you should type is monospaced, mean-
ing every character has the same width. So, if it looks like there’s
a space between two characters, there is—and you should be sure
to type it. Similarly, be sure to type all punctuation—such as
hyphens and quotation marks—exactly as it appears in the book,
even if it seems odd. If you type the wrong thing, the command
probably won’t work. (In the EPUB or Mobipocket version of this
ebook, the exact font shown might not be monospaced. Also, be
sure to read the first item in this list, in order to avoid entering
unnecessary hyphens.)

‣ When copying and pasting: If you select a line of text to copy
and paste into Terminal, be sure that your selection begins with
the first character and ends with the last. If you accidentally
leave out characters, the command probably won’t work, and if
you select too much (for example, extending your selection to the
next line), you may see unexpected results, such as the command
executing before you’re ready.

What’s New in the Second Edition

This revised and expanded second edition brings the book up to date
with OS X 10.10 Yosemite (while maintaining compatibility all the way
back to 10.6 Snow Leopard) and adds material that’s more advanced
than what was in the first edition, enabling you to go further, do more
in Terminal, and enhance your command-line skills.

The most significant changes include:

• Refreshed the text with many small changes and updated screen-
shots to accommodate changes in the latest versions of OS X

• Added new sidebars about Using a Mouse in Terminal (in the
chapter Get to Know (and Customize) Terminal) and Finding Text
in the Terminal Window (in the chapter Look Around)

7

• In the chapter Work with Files and Directories, added a new topic,
Use Symbolic Links, and sidebars about Running Multiple Pro-
grams on One Line and Running Shell Scripts outside the Shell

• Included a fun tip about using emoji in your prompt, in Change
Your Prompt

• Expanded the discussion of how to Open the Current Folder in
Terminal to include the use of services in Mavericks and later

• In the Log In to Another Computer chapter, added a topic about
how to Transfer Files with sftp or scp

• Renamed the chapter formerly called “Venture a Little Deeper” to
Work with Permissions, which is more accurate and descriptive,
and added a topic called Use the chmod Absolute Mode

• Added two entirely new chapters for more-advanced readers: Learn
Advanced Techniques, which covers piping and redirecting, grep,
and adding logic to shell scripts; and Install New Software, which
discusses Command Line Tools for Xcode, downloading and in-
stalling Unix software from scratch, and using package managers
such as Homebrew and MacPorts

• In the Command-Line Recipes chapter, removed 6 obsolete recipes
that no longer function in Yosemite or Mavericks and added 18 new
ones (for a net gain of 12)

• Expanded several of the existing recipes with more details

8

Introduction
Back when I began using computers, in the early 1980s, user interfaces
were pretty primitive. A computer usually came with only a keyboard
for input—mice were a novelty that hadn’t caught on yet. To get your
computer to do something, you typed a command, waited for some
result, and then typed another command. There simply was no concept
of pointing and clicking to make things happen.

When I finally switched from DOS to the Mac (without ever going
through a Windows phase, I should mention!), I was thrilled that I
could do my work without having to memorize lists of commands,
consult manuals constantly, or guess at how to accomplish something.
Everything was right there on the screen, just a click away. It was
simpler—not in the sense of being less powerful, but in the sense of
requiring less effort to access the same amount of power. Like most
everyone else, I fell instantly in love with graphical interfaces.

Fast forward a couple of decades, and I find myself faced with some
mundane task, such as deleting a file that refuses to disappear from the
Trash or changing an obscure system preference. After wasting time
puzzling over how to accomplish my task—and perhaps doing some
Web searches—I discover that Mac OS X’s graphical interface does not,
in fact, offer any built-in way to do what I want. So I have to hunt on
the Internet for an application that seems to do what I want, download
it, install it, and run it (and perhaps pay for it, too), all so that I can
accomplish a task with my mouse that would have taken me 5 seconds
in DOS 30 years ago.

That’s not simple.

I’m a Mac user because I don’t have time to waste. I don’t want my
computer to put barriers between me and my work. I want easier ways
to do things instead of harder ways. Ironically, Mac OS X’s beautiful
graphical interface, with all its menus, icons, and buttons, doesn’t
always provide the easiest way to do something, and in some cases

9

it doesn’t even provide a hard way. The cost of elegance and simplicity
is sometimes a lack of flexibility.

Luckily, Mac OS X isn’t restricted to the graphical realm of windows
and icons. It has another whole interface that lets you accomplish
many tasks that would otherwise be difficult, or even impossible. This
other way of using Mac OS X looks strikingly like those DOS screens
from the 1980s: it’s a command-line interface, in which input is done
with the keyboard, and the output is sent to the screen in plain text.

The usual way of getting to this alternative interface (though there are
others) is to use a program called Terminal, located in the Utilities
folder inside your Applications folder. It’s a simple program that
doesn’t appear to do much at first glance—it displays a window with a
little bit of text in it. But Terminal is in fact the gateway to vast power.

If you read TidBITS, Take Control books, Macworld, or any of the
numerous other Mac publications, you’ve undoubtedly seen tips from
time to time that begin, “Open Terminal and type in the following…”.
Many Mac users find that sort of thing intimidating. What do I click
on? How do I find my way around? How do I stop something I’ve
started? Without the visual cues of a graphical interface, lots of people
get stuck staring at that blank window.

If you’re one of those people, this book is for you. It’s also for people
who know a little bit about the command line but don’t fully under-
stand what they can do, how to get around, and how to stay out of
trouble. By the time you’re finished reading this book and trying out
the examples I give, you should be comfortable interacting with your
Mac by way of the command line, ready to confidently use Terminal
whenever the need arises.

It’s not scary. It’s not hard. It’s just different. And don’t worry—I’ll be
with you every step of the way!

Much of this book is concerned with teaching you the skills and basic
commands you must know in order to accomplish genuinely useful
things later on. If you feel that it’s a bit boring or irrelevant to learn
how to list files or change directories, remember: it’s all about the end

10

result. You learn the fundamentals of baking not because measuring
flour or preheating an oven is intrinsically interesting, but because you
need to know how to do those things in order to end up with cookies.
And let me tell you, the cookies make it all worthwhile!

Speaking of food—my all-purpose metaphor—this book doesn’t only
provide information on individual ingredients and techniques. The last
chapter is full of terrific, simple command-line recipes that put all this
power to good use while giving you a taste of some advanced capabili-
ties I don’t explore in detail. Among other things, you’ll learn:

• How to figure out what’s preventing a disk from disconnecting
(unmounting or ejecting)

• How to tell which applications are currently accessing the Internet

• How to rename lots of files at once, even if you’re not running
Yosemite

• How to change a number of hidden preferences

• How to understand and change file permissions

• How to automate command-line activities with scripts

Astute readers may note that some of these tasks can be accomplished
with third-party utilities. That’s true, but the command line is infinite-
ly more flexible—and Terminal is free!

I should be clear, however, that this book won’t turn you into a com-
mand-line expert. I would need thousands of pages to describe every-
thing you can accomplish with the command line. Instead, my goal
is to cover the basics and get you up to a moderate level of familiarity
and competence. And, based on feedback from the first edition of this
book, I’ve expanded the scope of this revised second edition to include
a number of topics that are a bit more advanced.

Most of my examples work with any version of Mac OS X from 10.6
Snow Leopard on, although many also apply to earlier versions of Mac
OS X. A few techniques require 10.9 Mavericks or 10.10 Yosemite; I
point out those out as we go along.

11

Mac OS X Command Line
Quick Start

This book is mostly linear—later sections tend to build on earlier
sections. For that reason, I strongly recommend starting from the
beginning and working through the book in order (perhaps skimming
lightly over any sections that explain already familiar concepts). You
can use the items in the final chapter, Command-Line Recipes, at any
time, but they’ll make more sense if you understand all the basics
presented earlier in the book.

Find your bearings:
• Learn about the command line and its terminology; see Understand

Basic Command-Line Concepts.

• Become familiar with the most common tool for accessing the com-
mand line; see Get to Know (and Customize) Terminal.

• Navigate using the command line; see Look Around.

Learn basic skills:
• Create, delete, and modify files and directories; see Work with Files

and Directories.

• Run or stop programs and scripts; see Work with Programs.

• Make your command-line environment work more efficiently; see
Customize Your Profile.

Go beyond the Terminal window:
• Integrate the command line and Mac OS X’s graphical interface; see

Bring the Command Line into the Real World.

• Use the command line to control another Mac; see Log In to Anoth-
er Computer.

12

Earn your propeller beanie:
• Learn about users, groups, permissions, and the infamous sudo

command; see Work with Permissions.

• Learn Advanced Techniques such as piping and redirecting data,
using the grep search tool, and adding logic to your shell scripts.

• Go beyond what’s built into Mac OS X by downloading third-party
command-line programs; see Install New Software.

Put your skills into practice:
• Do cool (and practical) stuff on the command line; see Command-

Line Recipes.

13

Understand Basic
Command-Line Concepts

In order to make sense of what you read about the command line, you
should know a bit of background material. This chapter explains the
ideas and terminology I use throughout the book, providing context for
everything I discuss later in the book.

What’s Unix?

Unix is a computer operating system with roots going back to 1969.
Back then, Unix referred to one specific operating system running on
certain expensive minicomputers (which weren’t “mini” at all; they
were enormous!). Over time, quite a few companies, educational
institutions, and other groups have developed their own variants of
Unix—some were offshoots from the original version and others were
built from scratch.

After many branches, splits, mergers, and parallel projects, there are
now more than a dozen distinct families of Unix and Unix-like operat-
ing systems. Within each family, such as Linux (a Unix-like system),
there may be many individual variants, or distributions.

Note: A Unix-like system is one that looks and acts like Unix, but
doesn’t adhere completely to a list of standards known as the Single
UNIX Specification, or SUS. Mac OS X 10.5 Leopard or later running
on an Intel-based Mac is a true Unix operating system. Earlier ver-
sions of Mac OS X, and any version running on PowerPC-based Macs,
were technically Unix-like.

Mac OS X is a version of Unix that nicely illustrates this process of
branching and merging. On the one hand, you had the classic Macin-
tosh OS, which developed on its own path between 1984 and 2002.
On the other hand, you had NeXTSTEP, an operating system based

14

on a variety of Unix called BSD (Berkeley Software Distribution).
NeXT, the developer of NeXTSTEP, was the company that Steve Jobs
founded after leaving Apple in 1985.

When Apple bought NeXT in 1996, it began building a new operating
system that extended and enhanced NeXTSTEP while layering on
capabilities (and some of the user interface) of the classic Mac OS.
The result was Mac OS X: it’s Unix underneath, but with a consider-
able amount of extra stuff that’s not in other versions of Unix. If you
took Mac OS X and stripped off the graphical interface, the Cocoa
application programming interfaces (APIs), and all the built-in appli-
cations such as Mail and Safari, you’d get the Unix core of Mac OS X.
This core has its own name: Darwin. When you work in the command-
line environment, you’ll encounter this term from time to time.

Darwin is itself a complete operating system, and though Apple doesn’t
sell computers that run only Darwin, it is available as open source so
anyone with sufficient technical skill can download, compile, and run
Darwin as an operating system on their own computer—for free.

What’s a Command Line?

A command-line interface is a way of giving instructions to a computer
and getting results back. You type a command (a word or other se-
quence of characters) and press Return or Enter. The computer then
processes that command and displays the result (often in a list or other
chunk of text). In most cases, all your input and output remains on the
screen, scrolling up as more appears. But only one line—usually the
last line of text in the window, and usually designated by a blinking
cursor—is the actual command line, the one where commands appear
when you type them.

Note: Although Darwin (which has only a command-line interface) is
part of Mac OS X, it isn’t quite correct to say that you’re working in
Darwin when you’re using the Mac OS X command line. In fact, the
command line gives you a way of interacting with all of Mac OS X,
only part of which is Darwin.

15

What’s a Shell?

A shell is a program that creates a user interface of one kind or
another, enabling you to interact with a computer. In Mac OS X, the
Finder is a type of shell—a graphical shell—and there are still other
varieties with other interfaces. But for the purposes of this book, I use
the term “shell” to refer only to programs that create a command-line
interface.

Mac OS X includes six different shells, which means that your Mac has
not just one command-line interface, but six! These shells share many
attributes—in fact, they’re more alike than different. Most commands
work the same way in all the shells, and produce similar results. The
shells in Mac OS X are all standard Unix shells, and at least one of
them is on pretty much any computer running any Unix or Unix-like
operating system.

The original Unix shell was called the Bourne shell (after its creator,
Stephen Bourne). The actual program that runs the Bourne shell has a
much shorter name: sh. The other Unix shells included with Mac OS X
are:

• csh: the C shell, named for similarities to the C programming
language (Unix folks love names with puns, too, as you’ll see)

• tcsh: the Tenex C shell, which adds features to csh

• ksh: the Korn shell, a variant of sh (with some csh features)
developed by David Korn

• bash: the Bourne-again shell (yet another superset of sh)

• zsh: the Z shell, an advanced shell named after Yale professor
Zhong Shao that incorporates features from tcsh, ksh, and bash,
plus other capabilities

In Mac OS X 10.2 Jaguar and earlier versions, tcsh was the default
shell. Starting with 10.3 Panther, bash became the new default. Even if
you’re running a later version of Mac OS X, though, your account may
still be configured to use tcsh if you migrated from Jaguar or older.

16

In this book, I discuss only the bash shell. Some may argue that zsh
has a superior feature set or tcsh is more universal—and I can’t
particularly disagree—but because bash is the current default and can
easily handle everything I want to show you about the command line,
that’s what we’ll be sticking with here.

A bit later in the book, in Set a Default Shell, I show you how to con-
firm that you’re using the bash shell and how to change your default,
if you like.

What’s Terminal?

So, how do you run a shell in order to use a command-line interface on
your Mac? You use an application called a terminal emulator.

As the name suggests, a terminal emulator simulates a terminal—the
devices people used to interact with computers back in the days of
monolithic mainframes. A terminal consisted of little more than a
display (or, even earlier, a printer), a keyboard, and a network connec-
tion. Terminals may have looked like computers, but all they did was
receive input from users, send it along to the actual computer (which
was likely in a different room or even a different building), and display
any results that came back.

A modern terminal emulator program provides a terminal-like connec-
tion to a shell running either on the same computer or on a different
computer over a network.

Quite a few terminal emulators run on Mac OS X, but the one you’re
most likely to use is called—you guessed it—Terminal, and it’s included
as part of Mac OS X. Although you’re welcome to find and use a differ-
ent terminal emulator (such as iTerm 2) if that’s your preference, in
this book I discuss only Terminal.

17

Terminal Commands? Not Really!
At the risk of redundancy, I want to emphasize where Terminal fits
into the scheme of things. A common misconception is that Terminal
is the Mac OS X command-line interface. You’ll hear people talk about
entering “Terminal commands” and things of that sort. (Even I have
said things like that from time to time.) But that’s incorrect. Terminal
is just a program—one of numerous similar programs—that gives you
access to Mac OS X’s command-line interface. When you run a
command-line program, you’re running it in a shell, which in turn
runs in Terminal.

So, to summarize: you use Terminal to run a shell, which provides a
command-line interface to Mac OS X—a variety of Unix (of which the
non-graphical portion is known as Darwin). You can use the Mac OS X
command line successfully without having all those facts entirely clear
in your mind, but a rough grasp of the hierarchy makes the process a
bit more comprehensible.

What Are Commands, Arguments, and
Flags?

The last piece of background information I want to provide has to do
with the kinds of things you type into a Terminal window. I provide
extensive examples of all these items ahead, but I want to give you an
introduction to three important terms: commands, arguments, and
flags. If you don’t fully understand this stuff right now, don’t worry:
it will become clearer after some examples.

Commands
Commands are straightforward; they’re the verbs of the command
line (even though they may look nothing like English verbs). When
you enter a command, you tell the computer to do something, such
as run a program. Very often, entering a command—a single word or
abbreviation—is sufficient to get something done.

18

Note: As a reminder, when I say “enter this,” I mean “type this, and
then press Return or Enter.”

For example—not to get ahead of myself but just to illustrate—if you
enter the command date, your Terminal window shows the current
date and time.

Note: Many commands are abbreviations or shortened forms of
longer terms—for example, the command pwd stands for Print Work-
ing Directory.

Arguments
Along with commands (verbs), we have arguments, which you can
think of as nouns—or, in grammatical terms, direct objects. For exam-
ple, I could say to you, “Eat!,” and you could follow that command by
consuming any food at hand. However, if I want you to eat something
in particular, I might say, “Eat cereal!” Here, cereal is the direct object,
or what we’d call an argument in a command-line interface.

On the command line, you must frequently specify the file, directory,
or other item to which you want a command applied. In general,
you simply type the command, a space, and then the argument. For
example, the command nano, by itself, opens a text editor called nano.
(In other words, entering nano means “run nano”—you tell the shell
to execute a command simply by entering its name.) But enter nano
file1 and the command instead opens the file file1 using the nano text
editor. Here, file1 is the argument to the command nano.

Note: Always be sure to type a space after the command and before
any arguments.

Some commands accept no arguments. Some take optional arguments.
And some commands require one or even several arguments. For
example, to change the modification date of three files—file1, file2,
and file3—I can enter touch file1 file2 file3. But other commands
require multiple arguments that have different meanings (as in “Pro-
cess file1 with the information found in file2 and store the output

19

in file3”). In these cases, the order in which the arguments appear
is critical. I detail which commands in this book take arguments, the
order of those arguments, and the circumstances when you need to
use those arguments.

Flags
Besides verbs and nouns, we have adverbs! In English, I could say,
“Eat cereal quickly!” or “Watch TV quietly.” The adverbs quickly and
quietly don’t tell you what to do, but rather how to do it. By analogy,
an expression in a command-line statement that specifies how a
command should be accomplished is called a flag, though you may also
hear it referred to as an option or switch. (Some people consider a flag
to be a type of argument, but I’m going to ignore that technicality.)

Suppose I want to list the files in a directory. I could enter the ls (list)
command, which would do just that. But if I want to list the files in a
particular way—say, in a way that included their sizes and modification
dates—I could add a flag to the ls command.

The flag that ls uses to indicate a “long” listing (including sizes and
dates) is -l. So if I enter ls -l (note the space before the flag), I get the
kind of listing I want.

20

Flagging Enthusiasm
I should mention a couple of irritations with flags:

✦ First, you’ll notice in this example that the flag was preceded by
a hyphen: -l. That’s common, and it enables the command to
distinguish a flag (which has a hyphen) from an argument (which
doesn’t). Unfortunately, Unix commands aren’t entirely consistent.
You’ll sometimes see commands that require flags with no hyphen,
commands that require flags with two hyphens, and commands
with flags that can appear in either a “short” form (one hyphen,
usually followed by a single letter) or a “long” form (two hyphens,
usually followed by a complete word).

✦ Second, a command may take more than one flag. (“Eat quickly
and quietly!”) For example, you might want to tell the ls com-
mand not only to use the long format (-l) but also to show all
files, including any hidden ones (-a). Here you get two choices.
You can either combine the flags (ls -la or ls -al) or keep them
separate (ls -l -a or ls -a -l). In this example, both ways work
just fine, and the flags work in any order. But that isn’t always the
case; some commands are picky and require you to list flags one
way or the other.

Don’t worry about these differences; just be aware that they may
come up from time to time. For now, assume that most flags will
start with a single hyphen, and that the safest way to express most
flags is to keep them separate.

Some commands require both arguments and flags. In general, the
order is command flag(s) argument(s), which is unlike usual English
word order—it would be comparable to saying, “Eat quickly cereal!”
For example, if you want to use the ls (list) command to show you only
the names of files beginning with the letter r (r*), in long (-l) format,
you’d put it like this: ls -l r*.

21

Sin Tax?
As you read about the command line, you’ll sometimes see the word
syntax, which is a compact way of saying, “which arguments and
flags are required for a given command, which are optional, and what
order they should go in.” When I say that the usual order is command
flag(s) argument(s), I’m making a general statement about syntax,
though there are plenty of exceptions.

One place you see a command’s syntax spelled out is in the man
(manual) pages for Unix programs (see Get Help), at the top under
the heading “Synopsis.” For example, the man page for the mkdir
(make directory) command (see Create a Directory) gives the
following:

mkdir [-pv] [-m mode] directory_name ...

Here’s how to read this command’s syntax, one item at a time (don’t
worry about exactly what each item does; this is just for illustration):

✦ mkdir: First is the command itself.

✦ [-pv]: Anything in brackets is optional, and if possible, flags are
run together in the syntax when using the command. So we know
that the -p flag and the -v flag are both optional, and if you want
to use them both, they can optionally be written as -pv.

✦ [-m mode]: Another optional flag is -m, and it’s listed separately
because if you do use it, it requires its own argument (another
string of characters, described in the man page). The underline
beneath mode means it’s a variable; you have to fill in the mode
you want.

✦ directory_name: This argument is not optional (because it’s not
in brackets), and it’s also a variable, meaning you supply your
own value.

✦ ...: Finally, we have an underlined ellipsis, which simply means
you can add on more arguments like the last one. In this case,
it would mean you could list additional directories to be created.

So the final command could look like, for example:

mkdir teas (all optional items omitted), or

mkdir -pv -m 777 a/b/teas a/b/nuts (all optional items included).

22

Get to Know (and
Customize) Terminal

As I mentioned in What’s Terminal?, the application you’re most likely
to use for accessing the command line in Mac OS X is Terminal. Since
you’ll be spending so much time in this application, a brief tour is in
order. In addition, you may want to adjust a few settings, such as
window size, color, and font, to whatever you find most comfortable
and easy to read.

Learn the Basics of Terminal

The moment has arrived. Find the Terminal application (inside the
folder /Applications/Utilities), double-click it, and take a Zen mo-
ment to contemplate the emptiness (Figure 1).

Figure 1: The Terminal window harks back to pre-graphical days.

To state the obvious, it’s a (mostly) empty window. A Terminal window
simply shows a command-line interface generated by a shell (in this

23

case, the bash shell). As long as you’re in this window, you can largely
forget about your mouse or trackpad: with a couple of notable excep-
tions (see the sidebar Using a Mouse in Terminal), everything you do
here uses the keyboard only.

Of course, the window isn’t completely empty. The first line lists, by
default, the date and time of your last login. In this example, it’s:

Last login: Sun Mar 15 14:09:46 on ttys000

That last part, on ttys000, is a bit of esoteric information that signifies
the terminal interface with which you logged in the last time. It might
say something different (such as on console) or nothing at all—for all
practical purposes, you can safely ignore this line.

The second line is the actual command line (the line on which you type
commands):

MacBook-Pro-15:~ jk$ █

The rectangular box at the end (which may instead appear as a vertical
line or an underscore, any of which may or may not blink) is the cursor
(not to be confused with the pointer, which reflects mouse movement).
Everything before the cursor is known as the prompt, which is to say
it’s prompting you to type something.

The first part of the prompt, MacBook-Pro-15, is the name of my Mac
(by default, spaces are replaced with hyphens, and punctuation, if any,
usually disappears). The colon (:) is simply a visual separator. Next is
the tilde (~), which signifies that I’m currently in my home directory
(which, for me, is /Users/jk). The jk is the short username of the
account under which I’m logged in. And finally, the $ signifies that I’m
logged in as an ordinary (non-root) user. (I say more about the $ in the
sidebar The $, #, and Other Strange Things on My Command Line,
ahead.) If your short username is cindy and your computer’s name, as
shown in System Preferences > Sharing, is Cindy’s Groovy iMac, your
command line may look something like this:

Cindys-Groovy-iMac:~ cindy$ █

All these things are customizable; see Customize Your Profile.

24

Using a Mouse in Terminal
Although you’re never required to use a mouse or trackpad in
Terminal—and all command-line programs were designed to be used
with only a keyboard—there are a few situations in which a pointing
device can come in handy:

✦ You can use your mouse to select text (for copying, say), just as
you would in any other Mac app.

✦ You can drag a file or folder in from the Finder to copy its path to
the command line, formatted in such a way that you don’t have to
worry about any space characters (read Get the Path of a File or
Folder).

✦ In the nano text editor, you can Option-click to move your cursor
to that spot (or the nearest valid location).

✦ You can Command-double-click a URL on the command line to
open it in your default browser.

✦ Starting in 10.10 Yosemite, you can scroll (for example, with a
two-finger vertical swipe on a trackpad, or with a scroll wheel on
a mouse) through man (manual) pages, and move the cursor up
or down by line (just as if you pressed Up arrow or Down arrow
repeatedly) in programs such as the nano text editor.

Modify the Window

The window you’re looking at is just like any other Mac OS X window.
You can move it, minimize it, resize it, zoom it, scroll through its
contents, and hide it using the usual controls. So please do adjust it
to your liking. However, I want to make two important points about
window modification:

• First, resizing isn’t only a good idea, it’s practically mandatory.
Some commands you run in this window will generate a lot of text,
including some large tables, and you’ll find it much easier to work in
the command line if your Terminal window is a bit bigger. Go ahead
and make the window as large as you want—but do leave at least a
bit of space so that you can see some parts of other windows on your
screen.

25

26

• Second, any changes you make to the window ordinarily last only
until you close it. If you open a new window—or quit Terminal and
launch it again later—you’re returned to the defaults. So, once you
get your Terminal window to a size, shape, and position you like,
choose Shell > Use Settings as Default. Thereafter, all new Terminal
windows that you open use your preferred characteristics. (I say
more about customizing windows ahead, in Change the Window’s
Attributes.)

Open Multiple Sessions

Most applications can have multiple windows open at once—think of
your word processor, your Web browser, or your email program, for
example. The same is true of Terminal—you can have as many win-
dows open as you need, each with its own command line. To open a
new window, press Command-N.

When you open a new window in Terminal, you begin a new session.
That means another copy of the shell runs, separate from the first
copy. You can run a program or navigate to a location in the first
session, and run a completely different program or navigate to another
location in the second. The two sessions don’t normally interact at all;
it’s as though you’re using two different computers at once that happen
to share the same set of files.

Why would you want to do this? Perhaps you want to refer to a pro-
gram’s man (manual) page in one window, while trying out the com-
mand in a second. Perhaps one shell is busy performing some lengthy
task and you want to do something else at the same time. Or perhaps
you want to compare the contents of two directories side by side.
Whatever the case, remember: you’re not limited to using one win-
dow—or one session—at a time.

But wait, there’s more! Every window in Terminal also supports
multiple tabs—just like most Web browsers (Figure 2). So if you
want to have multiple sessions open without the screen clutter of
multiple windows, you can do so easily. Create a new tab by pressing

Command-T. Exactly as in a browser, you can drag tabs to rearrange
them, close them individually, and even drag a tab from one window
to another.

Figure 2: Terminal windows can have multiple tabs, which can be
moved and closed individually just like those in most Web browsers.

Change the Window’s Attributes

Moving and resizing windows is one thing, but Terminal lets you go
further. You can change the background color (and transparency),
font (typeface and size), text color, cursor type, and numerous other
settings. In fact, you can change far more attributes than I care to
describe here, so I want to explain just a few of the basics.

For starters—just to get a feel for what’s possible—choose Shell > New
Window (or New Tab) and try some of the prebuilt themes. For exam-
ple, choose Shell > New Window > Homebrew for a display with bright
green text in 12-point Andale Mono against a slightly transparent black
background. Or choose Shell > New Window > Grass for pale yellow
text, in bold 12-point Courier, on an opaque green background, with a
red cursor.

Figure 3 shows several examples.

27

Figure 3: Terminal windows can take on many themes; this image
shows several of the stock themes. (The exact appearance depends
on which version of Mac OS X you’re running.)

If you prefer to use one of these other themes as your default, open
a new window with that theme and choose Shell > Use Settings as
Default. But you can also modify these themes or create your own.

To modify your window’s appearance, follow these steps:

1. Choose Terminal > Preferences and click Settings on the toolbar.

2. Select a theme in the list to modify it. Or, to create your own new
theme based on an existing one, select a theme and choose Dupli-
cate Settings from the pop-up action menu at the bottom of
the list—or click the plus button to add your own theme from
scratch.

3. To modify the text that appears in the window of the currently
selected theme, click Text. A few of the more useful options in this
view are the following:

‣ Font: To change the typeface or size, click the Change button,
select a new font, size, and style from the Fonts palette, and close

28

the palette. For best results, I strongly recommend choosing
a fixed-width (monospaced) font, such as Courier, Monaco, or
Lucida Console.

‣ Text color: To change the color of the font, click the color
button to the left of the word Text and chose a color using the
Colors palette. You can pick a separate color for boldface text
and for text you’ve selected with the mouse by clicking the color
buttons next to Bold Text and Selection, respectively.

‣ Cursor attributes: To change the shape of the cursor, select
the Block, Underline, or Vertical Bar radio button. Check Blink
Cursor if you want it to blink, and if you want to change the
cursor’s color, click the color button next to the word Cursor.

4. To modify the window itself, click Window. Some options you can
change here include:

‣ Title bar elements: To change the name of the window
(“Terminal” by default), type new text into the Title field. You
can also select any or all of the checkboxes beneath to display
other information in the title bar, such as the name of the active
process or the window’s dimensions. Terminal windows express
their size in terms of rows and columns of text rather than in
pixels. By default, Terminal windows are 24 rows by 80 columns,
a size that harks back to old-style text-only terminals.

‣ Background color: Click the color button under Background
to open the Colors palette, in which you can choose a background
color for the window. You can also adjust the opacity of the
background color. Why would you want a partially transparent
window? I like transparency because I can put a Terminal win-
dow directly above, say, a Web page and read instructions
through the window as I type in Terminal! To adjust the opacity,
move the Opacity slider at the bottom of the Colors palette.

‣ Window size: You can change the default window size for the
current theme by typing numbers into the Columns and Rows
fields, or you can simply resize the window to your liking later by
dragging the resize control at the window’s lower-right corner.

29

Note: My preference for window appearance is based on the Ocean
theme (white text on a blue background) but with a larger window
(160 columns by 50 rows) and background transparency set to 80%.

5. To make a particular theme the default (which means it’s used
automatically when you launch Terminal, and when you press
Command-N), select it and click the Default button beneath the list
of themes. When you’re finished adjusting window settings, close
the Settings window.

All the settings you change here take effect immediately for existing
windows using the selected theme, and for the next new window or tab
opened using that theme.

Set a Default Shell

As I explained in the introduction, this book covers only the bash shell,
which has been the default since Mac OS X 10.3 Panther, though your
account may have a different default if you migrated your account
forward from an older system (even if you’ve gone through several
upgrades since then). So you may want to confirm that you’re running
bash, or switch to bash if not.

Find Out Which Shell You’re Using
To find out which shell is currently running, enter this:

echo $0

The shell replies with its own name, sometimes preceded by a hyphen:

-bash

Change Your Default Shell
If you want to change the default shell only for yourself, leaving other
users’ defaults intact, follow these steps:

1. Open System Preferences > Users & Groups. (If you’re using Lion or
earlier, open System Preferences > Accounts.)

30

2. If the lock icon in the lower left of the window is closed, click it
and enter your administrator’s credentials to authenticate.

3. Right-click (or Control-click) on your name in the list on the left,
and choose Advanced Options from the contextual menu.

4. In the dialog that appears, choose a different shell from the Login
Shell pop-up menu.

5. Click OK, and then close System Preferences.

Although the Advanced Options pane warns that you need to restart
your computer to apply changes, changing the default shell takes effect
with the next Terminal session you open.

Change the Default Terminal Shell
To change the default shell Terminal opens regardless of which user is
logged in or what that user’s individual preference is, do the following:

1. Choose Terminal > Preferences and click Startup on the toolbar.

2. Next to Shells Open With, select Command (Complete Path) and
make sure the path to bash (/bin/bash) is filled in. (To use a differ-
ent shell, such as zsh, substitute that shell’s name for bash.)

The setting applies starting with the next session you open.

31

The $, #, and Other Strange Things on My Command Line
By default, when you open a Terminal window, you see a prompt that
ends in a $ (followed by the cursor), like this:

MacBook-Pro:~ jk$ █

If you log in as the root user (see Perform Actions as the Root User),
the prompt ends instead in a # character:

bash-3.2# █

Other shells have different default characters. For example, in the zsh
shell, the prompt normally ends with a %. As a result, when you’re
reading articles and Web sites listing commands you might enter in
Terminal, you might run across examples like these:

$ open -e file1

chown www file1

% top

The $, #, or % at the beginning merely signifies that what follows is
a command to be typed and, in the case of #, that it’s supposed to be
typed by the root user. You wouldn’t actually type $, #, or %.

I don’t use that convention in this book; whatever you need to type
on the command line simply appears in a special font, usually on a
line by itself. I find those extra characters distracting.

In any case, you can easily change the prompt so that it shows
something else entirely. If you want your prompt to look like this…

Joe rocks +> █

…you can make that happen. See Change Your Prompt for details.

32

Look Around
In this chapter, I help you find your way around your Mac from the
command line and, at the same time, teach you some of the most
common navigational commands and conventions.

For right now, you’re going to look, but not touch—that is, nothing you
do here can change any files or cause any damage, as long as you follow
my instructions.

Discover Where You Are

Ready to start learning some commands? Here we go. Open a Terminal
window and enter this:

pwd

Note: As a reminder, to enter something on the command line, type
it and press Return or Enter afterward.

The pwd command stands for “print working directory,” and it gives
you the complete path to the directory you’re currently using. If you
haven’t done anything else since opening a Terminal window, that’s
your home directory, so you’ll see something like this:

/Users/jk

That’s not exciting, but it’s extremely important. As you navigate
through the file system, it’s easy to get lost, and ordinarily your prompt
only tells you the name of your current directory, not where it’s located
on your disk. When you’re deep in the file system, being able to tell
exactly where you are can be a huge help.

33

See What’s Here

If you were in the Finder, you’d know exactly what’s in the current
folder just by looking. Not so on the command line; you must ask
explicitly. To get a list, you use the “list” command:

ls

What you get by default is a list along the lines of the following:

Desktop Downloads Movies Pictures
Documents Library Music Public

Items are listed alphabetically, top to bottom and then left to right.
But as you can see, this doesn’t tell you whether these items are files
or directories, how large they are, or anything else about them. So
most people prefer the more-helpful long format by adding the -l flag:

ls -l

This produces a result something like:

drwxr-xr-x 18 jk admin 612 Feb 12 09:42 Desktop
drwxr--r--@ 108 jk admin 3672 Feb 9 14:35 Documents
drwx------ 15 jk admin 510 Feb 12 11:17 Downloads
drwx------ 94 jk admin 3196 Feb 11 22:40 Library
drwx------ 13 jk admin 442 Dec 30 15:34 Movies
drwxr--r-- 15 jk admin 510 Aug 27 15:02 Music
drwxr--r-- 14 jk admin 476 Jan 26 19:40 Pictures
drwxr-xr-x 7 jk admin 238 Jan 22 23:13 Public

Reading from right to left, notice that each line ends with the item’s
name. To the left of the name is a date and time showing when that
item was most recently modified. To the left of the date is another
number showing the item’s size in bytes. See the sidebar on the next
page, Making Output (More) Human-Readable, to find out how to
turn that number into a nicer format. (In the case of a directory, the
number shown by ls -l doesn’t tell you the total size of the directory’s

34

contents, only the size of the information stored about the directory.
To get a directory’s size, enter du -sh directory-name.)

Later in this book, in Understand Permission Basics, I go into more
detail about all those characters that occupy the first half of each line,
such as drwxr-xr-x 7 jk admin; those characters describe the
item’s permissions, owner, and group. For the moment, just notice
the very first letter—it’s d in every item of this list. The d stands for
“directory,” meaning these are all directories. If the item were a file,
the d would be replaced with a hyphen (-), for example: -rwxr-xr-x.

Finally, look at one other number, between the permissions and owner
(in drwxr--r-- 14 jk the number is 14). That’s the number of links
to the item, and although links are too advanced to explain in detail
here, the number serves one practical purpose: it gives you an approxi-
mation of the number of items in a directory. In fact, it will always be
at least two higher than the number of visible files or directories in the
directory (for complicated reasons). For now, just know that the num-
ber can tell you, at a glance, if a directory has only a few items or many.

Making Output (More) Human-Readable
I’ve shown the -l (long format) flag, which provides much more
detail than the ls command alone. But it shows the file size in bytes,
which isn’t a convenient way to tell the size of large files. For exam-
ple, an ls -l listing might include the following:

-rw-r--r--@ 1 jk admin 15132784 Jan 13 17:07 image.dmg

Really—15132784 bytes? Wait a minute, let me do some math…how
large is that exactly?

Luckily, you can improve on this by adding the -h flag, which stands
for “human-readable.” (In fact, -h works with many commands, not
just ls.) You can enter either ls -lh or ls -l -h. Either way, you get
something like this:

-rw-r--r--@ 1 jk admin 14M Jan 13 17:07 image.dmg

Aha! The file is 14 megabytes (M) in size. That I understand!

35

I don’t want to belabor the ls command, but it will without question
be one of the top two or three things you type on the command line—
you’ll use it constantly. So it pays to start getting ls (along with a flag
or two) into your muscle memory. For a way to display even more
information with ls, see the recipe List More Directory Information.

Note: You can also list the contents of a directory other than your
current one like this: ls /some/other/path.

Repeat a Command

If you’ve just entered a two-character command, it’s no big deal to
enter it again. But sometimes commands are quite complex, wrapping
over several lines, and retyping all that is a pain. So I want to tell you
about two ways of repeating commands you’ve previously entered.

Arrow Keys
First, you can use the Up and Down arrow keys to move backward
and forward through the list of commands you’ve recently typed. For
example, if the last command you typed was ls -lh, simply pressing
the Up arrow once puts that on the command line. (Then, to execute
it, you would press Return or Enter.) Keep pressing the Up arrow, and
you’ll step backward through even more commands. You can even
scroll through commands you entered in previous sessions. The Down
arrow works the same way—it progresses forward in time from your
current location in the list of previous commands.

Tip: To learn another useful way to access your command history,
see the recipe Search Your Command History.

The !! Command
Another handy way of repeating a command is to enter !! (that’s right:
just two exclamation points). This repeats your previous command.
Try it now. Enter, say, pwd, and get the path of your current directory.
Then enter !! and you’ll get the same output.

36

Again, this isn’t terribly interesting when you’re talking about short
commands, but it can save time and effort with long commands.

!! Plus
The !! need not stand alone on the command line—you can add stuff
before or after in order to expand the previous command.

For example, if you previously entered ls -l and you now want to
enter ls -l -h, you could repeat the previous command and add an
extra flag like so:

!! -h

Or, if you enter a command like rm file1 (remove the file file1) and
get an error message telling you that you don’t have permission, you
can repeat it preceded by the sudo command (described in Perform
Actions as the Root User):

sudo !!

In this example, the result would be exactly the same as entering:

sudo rm file1

Finding Text in the Terminal Window
As you work in Terminal, the output of earlier commands (such as
file lists) will scroll upward, and you can easily accumulate many
thousands of lines of output in a single session.

To find some text within your current Terminal session (without
manually scrolling and looking for it), you can press Command-F
(for “Find”), type a search term, and if necessary press Command-G
(for “Find Next”) to go to the next instance or Command-Shift-G to
go to the previous instance.

Yosemite has enhanced the Find command by making it inline (with
Previous and Next buttons at the top of the window), as opposed to
the separate Find dialog used in earlier versions of Mac OS X.

37

Cancel a Command

What if you type some stuff on the command line and realize you don’t
want to enter the command? Well, you could backspace over it, but
that could take a while if there’s a lot of text on the line. An easier way
to back out of a command without executing it is to press either Con-
trol-C or Command-. (period). The shell creates a new, blank com-
mand line, leaving your partially typed line visible but unused. (Your
command history won’t include canceled commands.)

Move into Another Directory

This has been a lovely visit in your home directory, but now it’s time to
explore. To change directories, you use the cd command. As you saw a
moment ago, one of the directories inside your home directory is called
Library. Let’s move there now, like so:

cd Library

Note: Notice in this example that Library is capitalized. Sometimes
case isn’t important on the command line (as I explain ahead in Case
Sensitivity), but you can’t go wrong if you always use the correct
case.

When you put a directory name after the cd command, it assumes you
want to move into that directory in your current location. If there
doesn’t happen to be a directory called Library in your current directo-
ry, you see an error message like this:

-bash: cd: Library: No such file or directory

As a reminder, the command line environment doesn’t list the contents
of a directory unless you ask it to (using ls), so using cd doesn’t auto-
matically show what’s in your new location. You know the command
succeeded if you don’t see an error message, and by default your
prompt will include the name of your current directory.

38

Move Up or Down
Now that you’re in the Library directory that’s in your home directory
(~/Library), you can use ls to look around; you’ll see that one of the
directories inside the current one is Preferences. To move down a level
into preferences, you’d enter cd Preferences. And so on.

To go up a level, you use the .. convention, which means “the directory
that encloses this one.” For example, if you’re in /Users/jk/Library/
Preferences then the directory that encloses Preferences is /Users/jk/
Library, so in this particular location two periods (..) means /Users/
jk/Library.

To get there, you enter:

cd ..

That translates as “change directories to the one that encloses this
one.” You can keep going up and down with cd .. and cd directory
(fill in the name of any directory) as much as you like.

Note: Moving into directories with spaces in their names requires
extra effort; read Understand How Paths Work, ahead.

Move More Than One Level
Nothing says you have to move up or down just one level at a time.
If you’re currently in /Users/jk and you know that there’s a Library

directory inside it, and inside that there’s a Preferences directory, you
can jump directly to Preferences like so:

cd Library/Preferences

The slash (/) simply denotes that the term to its right is a directory
inside the term on its left: Preferences is a directory inside Library.
You can add on as many of these as you need:

cd Library/Logs/Adobe/Installers

This works in the other direction. If you’re in /Users/jk/Library/
Preferences, you can enter cd .. to move into Library. Or, enter
cd ../.. to move directly into jk, or cd ../../.. to move into Users.

39

Move to an Exact Location
So far, we’ve been moving using relative locations—a directory inside
the current one, or a directory that encloses the current one. But if you
know exactly where you’re going, you can jump directly to any location
on your disk. Just specify the full path, beginning with a slash (/),
which represents the root level of your disk. For example, enter this:

cd /private/var/tmp

That takes you directly to /private/var/tmp (a rather boring directory
full of caches and temporary files, and one that’s normally invisible in
the Finder) without having to navigate all the way up to the root level
of your drive and then back down.

Speaking of the root level: If you want to go to the very top of your disk
hierarchy, just enter this:

cd /

Move Between Two Directories
Another handy shortcut, which lets you go back to the last directory
you were in, is this:

cd -

For example, suppose I start in my home directory and then I enter
cd /Users/Shared. I do some things in that directory, and I next enter
cd ~/Library/Preferences to look at some files there. If I then enter cd
- I jump back to /Users/Shared (the last directory I was in), without
having to type or even remember its path.

Jump Home

Once you’ve changed directories a few times, you may want to get back
to your home directory. Of course, you could keep navigating up or
down, one directory at a time, until you got there, or you could enter
the complete path to your home directory (cd /Users/jk, for example).

40

But Mac OS X has another shortcut (along the lines of ..) that means
“the current user’s home directory”: the tilde (~).

So one way to jump home, from any location on your disk, is to enter:

cd ~

But in fact, it can be even easier. If you enter cd alone, with nothing
after it, the command assumes you want to go home, so cd by itself
does the same thing as cd ~.

Just as you can enter the full path after cd to jump to any spot on your
disk, you can substitute ~ whenever you’d otherwise use the full path
to your home directory. So, even if you’re in /private/var/tmp, you can
go directly to the Library directory inside your home directory with:

cd ~/Library

Note: This might be a good time to remind you that the command
line can be unforgiving. If you type an extra period, leave out a
space, or make some other similarly tiny error, your command might
not work at all—or it might do something entirely unexpected. That
need not frighten you, but be aware that you should be deliberate
and careful when typing on the command line.

Understand How Paths Work

You’ve already seen both relative paths (such as Library/Preferences,
which means the Preferences directory inside the Library directory
inside my current directory) and absolute paths, which begin with
a slash (such as /Library/Preferences, which means the Preferences
directory inside the Library directory at the top level of your disk). But
there are a few other things you should understand about paths.

Spaces in Paths
Mac OS X lets you put almost any character in a file or folder name,
including spaces. But space characters can get you in trouble in the

41

command-line environment, because normally a space separates
commands, flags, and arguments.

Suppose you were to enter this:

cd My Folder

Even if there were a folder named My Folder in the current directory,
the command would produce an error message, because the cd com-
mand would assume that both My and Folder were intended to be
separate arguments.

You can deal with spaces in either of two ways:

• Quotation marks: One way is to put the entire path in quotation
marks. For example, entering cd "My Folder" would work fine.

• Escape the space: The other way is to put a backslash (\) before
the space—this escapes the space character, making the shell treat
it literally rather than as a separator between arguments. So this
would also work: cd My\ Folder.

Note: To be crystal clear, the backslash (\) is normally located on a
key just to the right of the] key. It has a completely different mean-
ing from the ordinary (forward) slash (/), located on the same key as
the question mark. Don’t mix them up!

Terminal will automatically escape the name of a file or folder when
you drag it in from the Finder. See Get the Path of a File or Folder,
later.

Wildcards
You can use wildcards when working on the command line; these can
save you a lot of typing and make certain operations considerably
easier. The two wildcards you’re most likely to use are these:

• * (asterisk): This means “zero or more characters.” For example,
if you want to switch to a directory called Applications, you could
enter cd App* and, as long as there was no other directory there that
started with those three letters, you’d go directly to the Applications

42

folder. (I talk about another way of doing something similar ahead
a few pages in Use Tab Completion.)

You can use this wildcard with almost any command. For instance,
if you’re in your home directory, you could type ls D* to list all and
only the items that begin with “D” (Desktop, Documents, Downloads).

• ? (question mark): This means “any single character.” That
means ?at could match bat, cat, fat, rat, sat, and so on. If you
have many files with similar names—say, sequentially numbered
photos—you could limit the ones listed with something like ls
01??.jpeg.

Case Sensitivity
Here’s a trick question: is the Mac OS X command line case-sensitive?
The answer is yes—and no! Suppose you’re in ~. There’s a directory in
there called Pictures, and you could move into it in any of these ways
(among others):

cd Pictures

cd pictures

cd Pic*

cd pic*

That certainly seems to suggest that the command line is not case-
sensitive, because using either p or P has the same effect. But it’s
possible to format a Mac volume to use a case-sensitive version of the
Mac OS Extended (HFS+) file system. If you do that—or if you connect
to an external disk or network volume that uses a case-sensitive file
system—then you could see both a pictures directory and a Pictures
directory in the same place, in which case using the wrong case with
the cd command will take you to the wrong directory.

You won’t see any visual cue to let you know whether a particular
volume uses a case-sensitive format. So the safest assumption is to
always use the correct case: that always works.

43

Understand Mac OS X’s File System

You surely know from day-to-day use that your Mac has a bunch of
standard folders at the top level of your startup disk—Applications,
Library, System, and Users, at minimum. You may have also noticed
that each user’s home folder has its own Library folder (not to mention
a Desktop folder, a Documents folder, and several others). In addition
to these and the numerous other folders you can see in the Finder, Mac
OS X has a long list of directories that are normally invisible (because
most users never need to interact with them directly), but you can see
them from the command line.

I could explain what every single (visible) folder and (hidden) directory
is for, and how to make sense of the elaborate hierarchy in which Mac
OS X stores all its files. But that would take many pages and, honestly,
it would be mighty boring. So I’m going to let you in on a little secret:
you don’t need to know.

I mean it: you don’t need to know why one program is stored in /bin
while others are in /usr/bin, /usr/local/bin, or any of numerous other
places. You don’t need to know why you have a /dev directory or what
goes in /private/var. Seriously. Knowing all those things might be
useful if you’re a programmer or a system administrator, but it’s
absolutely irrelevant for ordinary folks who want to do the kinds of
things discussed in this book. True, I may direct you to use a program
in /usr/sbin or modify a file in /private/etc (or whatever), but as long
as you can follow the instructions to do these things, you truly don’t
need to know all the details about these directories.

So, instead, I want to provide a very short list of the key things you
should understand about Mac OS X’s file system:

• The invisible world of Unix: If you enter ls -l / (go ahead and
do that), you get a list of all the files and directories at the root level
of your disk. You’ll see familiar names such as Applications and
Users, and some less-familiar ones, such as bin and usr. Here at the
root level, directories that begin with a lowercase letter and aren’t
shown in the Finder (such as bin, private, usr, and var), plus a few

44

items that are also normally invisible (such as mach_kernel), make
up Darwin, the Unix core of Mac OS X. Similar directories appear
in other Unix and Unix-like operating systems.

• Recursion, repetition, and recursion: If you were to work
your way from the root of your disk down through all its directories
and subdirectories, you’d notice a lot of names that appear over
and over again. For example, there’s a top-level /Library directory,
another inside /System, and yet another inside each user’s home
directory (~/Library). Similarly, there are top-level /bin and /sbin
directories, but also /usr/bin and /usr/sbin. The reasons for all
these copies of similar-looking directories are sometimes practical,
sometimes purely historical. But everything has its place.

You don’t need to grasp all the logic behind what goes where, but
you do need to be sure you’re in the right place when you work on
the command line. For instance, if an example in this book tells you
to do something in ~/Library, be absolutely sure that’s where you
are, as opposed to, say, /Library. The smallest characters—in partic-
ular, the period (.), tilde (~), slash (/), backslash (\), and space (),
have the utmost significance on the command line, so always pay
strict attention to them!

• The bandbox rule: My grandfather had a curious and oft-repeat-
ed expression: “Don’t monkey with the bandbox.” He (and, subse-
quently, my mother) used this to mean, approximately, “Don’t mess
with something if you could break it and not be able to put it back
together.” (As a child, I had quite a propensity for disassembling
things and then getting stuck!)

On the command line, this means don’t go deleting, moving, or
changing files if you don’t know what they are or what the conse-
quences could be. Something that seems insignificant or useless
to you could be crucial to the functioning of your Macintosh. (As
a corollary, it should go without saying that you back up your Mac
thoroughly and regularly.)

45

Use Tab Completion

Because everything you do on the command line involves typing, it can
get kind of tedious spelling out file and directory names over and over
again—especially since even the slightest typo will make a command
fail! So the bash shell includes a number of handy features to reduce
the amount of typing you have to do. Earlier I explained how to use the
arrow keys and the !! command to repeat previous commands (Repeat
a Command). Now I want to tell you about a different keystroke-saving
technique: tab completion.

Here’s the basic idea. You start typing a file or directory name, and
then you press the Tab key. If only one item in the current directory
starts with the letter(s) you typed, the bash shell fills in the rest of that
item’s name. If there’s more than one match, you’ll hear a beep; press
Tab again to see a list of all the matches.

For example, try this:

cd

Now that you’re in your home directory, type cd De (without pressing
Return) and press Tab. Your command line should look like this:

cd Desktop/

If you do want to change to your Desktop directory, you can simply
press Return. Or, you can type more on the line if need be. For now,
let’s stay where we are—press Control-C to cancel the command.

Next, try typing cd D (again, without pressing Return) and press Tab.
You should hear a beep—signifying that there was more than one
match—but nothing else should happen. Press Tab again. Now you’ll
see something like this:

Desktop/ Documents/ Downloads/

And, on the next line, your command-in-progress appears again
exactly as you left it off:

cd D

46

In this way, tab completion lets you know what your options are; you
can type more letters (say, oc) and press Tab again to have it fill in
Documents for you.

Tab completion isn’t limited to just the current directory. For example,
enter cd ~/Lib and press Tab. The bash shell fills in the following:

cd ~/Library/

Now type Favorites and press Tab. You should see Favorites filled in,
like this:

cd ~/Library/Favorites/

You can keep going as many levels deep as you need to.

Note: Tab completion in bash is always case-sensitive, even on a
volume that doesn’t use case-sensitive formatting. If a directory is
named Widgets, typing wi and pressing Tab produces no matches.

Find a File

In the command-line environment, as in the Finder, you may not know
where to find a particular file or directory. Two commands can supply
that information readily: find and locate. Each has its pros and cons.

Find
To use the find command, you give it a name (or partial name) to look
for and tell it where to start looking; the command then traverses every
directory in the area you specify, looking at every single file until it
finds a match. That makes it slow but thorough.

For example, suppose I want to find all the files anywhere in my home
directory with names that contain the string keychain. I can do this:

find ~ -name "*keychain*"

After the command find, the ~ tells the command to begin looking in
my home directory (and work its way through all its subdirectories).

47

The -name flag says to look for patterns in the pathname (which may
include the names of directories, not necessarily filenames). I put the
search string inside quotation marks, with an asterisk (*) wildcard at
the beginning and end to signify that there may be other letters before
or after keychain.

Even a simple search such as this one can take several minutes, be-
cause it must look at every single file, starting at the path I specified.
To make it go quicker, I could specify a narrower search range. For
example, to have it look only in my ~/Library directory, I’d enter:

find ~/Library -name "*keychain*"

Let me offer a few other tips for using find:

• To search in the current directory (and all subdirectories), use a
period (.) as the location: find . -name "*keychain*".

• To search your entire disk, use a slash (/) as the location:

find / -name "*keychain*".

• Normally, find is case-sensitive, so a search for "*keychain*" would
not match a file named Keychain. To make a search case-
insensitive, replace -name with -iname, as in find ~ -iname "*user
data*".

• During a search, if find encounters any directories you don’t have
permission to search, it displays the path of the directory with the
message “Permission denied.” To search these paths, use sudo
before find, as described in Perform Actions as the Root User.

Tip: If you want to search the contents of files, you should instead
use the grep command, though that process usually takes much
longer. See how in Get a Grip on grep.

Locate
The other way to find files by name is to use the locate command.
Unlike find, locate doesn’t traverse every file to find what you’re
looking for. Instead, it relies on a database (index) of file and path

48

names. The benefit of using the index is that locate is lightning fast.
The downside is, the database is normally updated only once a week,
so locate usually can’t find files you’ve added or renamed recently.

To use locate, just type that command followed by any portion of the
filename you want to look for (no wildcards required). For example:

locate keychain

Like find, locate performs case-sensitive searches by default. To make
a search case-insensitive, add the -i flag:

locate -i keychain

If you enter locate and get an error stating that no database exists—or
if it exists but is outdated—you can create or update it by entering this:

/usr/libexec/locate.updatedb

The command may take some time to complete, because it does have
to look at every file on your disk—or nearly so.

I’ve skipped over one important detail: by default, locate only indexes
(and finds) files you own (mostly the contents of your home directory).
However, if you run the database updating script using sudo (see
Perform Actions as the Root User), it indexes every file on your disk,
and locate can therefore find every file.

The benefit of this is being able to find more files with locate, but if
you attempt to do this, a security warning appears informing you that
once you’ve indexed all your files, any user of your Mac can discover
the name and location (though not the contents) of any file on your
disk. Moreover, the next time the locate database updates on its
weekly schedule, your system-wide index of files will be replaced with
a version that contains only those you have permission to read.

View a Text File

You may not read a lot of plain text files in the Finder, but the need to
do so comes up more frequently in the command-line environment—
reading documentation, examining programs’ configurations, viewing

49

shell scripts, inspecting logs, and numerous other situations. You can
use many tools to read a file, of which I cover just a few here. (If you
want to modify a text file, see Edit a Text File, later.)

You can use these commands with any text file on your Mac, but in
these examples I use a file every Mac user should have: the license for
the postfix email server, located at /private/etc/postfix/LICENSE.

More or Less
An early Unix program for reading text files was called more. It was
pretty primitive and wouldn’t let you move backward to see earlier
text. So a new program came along that was supposed to be the oppo-
site of more: less. In Mac OS X, both names still exist, but they point
to the same program; whether you enter more or less, you’re actually
running less. (There are some subtle differences depending on which
command you use, but they’re not worth mentioning.)

You can use less to read a text file like this:

less /private/etc/postfix/LICENSE

You see the top portion of the file initially. You can scroll down a line
at a time using the Down arrow key (and back up using the Up arrow
key), scroll ahead a screen at a time by pressing the Space bar, or
backward a screen at a time by pressing the B key (all by itself). To quit
less, simply press the Q key (all by itself).

Cat
The Unix cat command (short for “concatenate”) combines files, but
you can also use it to display a text file on your screen. Unlike less,
it doesn’t give you a paged view, it simply pours the entire contents of
the file, regardless of length, onto your screen. You can then scroll the
Terminal window up and down, as necessary, to view the contents. To
use cat, follow this pattern:

cat /private/etc/postfix/LICENSE

50

Tail
If you open a long text file with less, it can take quite a bit of tapping
on the Space bar to reach the end, which is awkward if the information
you want happens to be at the end—as is the case with most logs. And
if you use cat, it can clutter your Terminal window with lots of infor-
mation you don’t need. To jump to the end of a text file, use a different
program: tail, which displays the tail end of a file.

If you enter tail followed by the filename, it displays the last ten lines
of the file:

tail /private/etc/postfix/LICENSE

The tail command has flags that enable you to control how much of
the file is shown and in what way, but for the sake of brevity I want to
mention just one: -n (number of lines). Type tail followed by the -n
flag, a space, and a number to set the output to that number of lines
from the end of the file:

tail -n 50 /private/etc/postfix/LICENSE

Get Help

Almost every program and command you use on the command line
has documentation that explains its syntax and options, and in many
cases includes examples of how to use the command. This documenta-
tion isn’t always clear or helpful, but it’s worth consulting when you
have a question. You can get at these manual pages in several ways.

In a Terminal Window
When you’re on the command line, the quickest way to get information
about a command is to use the man (manual) command. Simply enter
man followed by the command you want to learn about. For example:

man ls

man cp

man locate

51

The results appear in a viewer that works like less.

Note: You can, of course, get instructions for using the man applica-
tion itself by entering—you guessed it—man man.

To put a slightly prettier (and scrollable) display of man pages on the
screen side by side with your working Terminal window, you can also
click Terminal’s Help menu, type the name of a command in the
Search field, select the item you want, and press Return.

In a Mac OS X Application
If you want to learn about a command-line program when Terminal
isn’t running—or you prefer to read about it in a more user-friendly
environment—you can download any of numerous free (donations
accepted) applications that give you access to the same information.
Some examples include:

• ManOpen

• Man Viewer

Tip: If you want to read man pages as nicely formatted PDF files, try
the recipe Read man Pages in Preview. Or, if you prefer to view them
in BBEdit, try Read man Pages in BBEdit or TextWrangler.

On the Web
Another way to view man pages for command-line programs is to
consult a Web site where they’re available in convenient HTML form.
Apple’s official repository of manual pages for Darwin is located at Mac
OS X Manual Pages.

Tip: You can also read your Mac’s man pages in your Web browser
using the free Bwana application. It hasn’t been updated for many
years, but it still appears to be mostly functional.

52

Clear the Screen

As you work in Terminal, your window may fill up with commands and
their output. The command line itself will always be the last line, but
the rest of the window can become cluttered with the residue of earlier
commands. Here are some ideas for decluttering the window:

• If you find all that text distracting and want to clear the window (so
it looks much like it did when you started the session), enter clear.

• Another option is to press Control-L, which moves your command
line up to the top of the window with empty space below it (you can
still scroll up to see what was on the screen earlier).

• To hide text that scrolled by in the Terminal window (perhaps to
keep someone else from seeing what you did), press Command-K.

• To clear the screen and prevent someone from scrolling back in
Terminal to see your earlier activity (handy when you log out!),
press Command-Option-K.

End a Shell Session

When you’re finished working on the command line for a while, you
could simply close the Terminal window, or even quit Terminal, but
you shouldn’t. That would be a bit like turning off your Mac by flipping
the switch on the power strip instead of choosing Apple > Shut
Down. The proper way to end a shell session in Terminal is to enter
exit, which gracefully stops any programs you are running in the shell,
and then quits the shell program itself.

By default, your Terminal window remains open after you’ve done this.
If you want it to close when you exit, choose Terminal > Preferences,
click the Settings button on the toolbar, and then click Shell. From the
When the Shell Exits pop-up menu, choose Close the Window.

53

Work with Files and
Directories

Much of what you’ll need to do on the command line involves working
with files in some way—creating, deleting, copying, renaming, and
moving them. This chapter covers the essentials of interacting with
files and directories.

Create a File

I want to mention a curious command called touch that serves two
interesting functions:

• When applied to a nonexistent file, touch creates an empty file.

• When applied to an existing file or folder, touch updates its modifi-
cation date to the current date and time, marking it as modified.

Try entering the following command:

touch file1

Now use ls -l to list the contents of your current directory. You’ll see
file1 in the list. This file that you’ve just created is completely empty.
It doesn’t have an extension, or a type, or any contents. It’s just a
marker, though you could use a text editor, for example, to add to it.

Why would you do this? There are occasionally situations in which a
program behaves differently based solely on the existence of a file with
a certain name in a certain place. What’s in the file doesn’t matter—
just that it’s there. Using touch is the quickest way to create such a file.

But for the purposes of this book, the reason to know about touch is so
you can create files for your own experiments. Since you’re creating the
files, you can rename, move, copy, and delete them without worrying
about causing damage. So try creating a few files right now with touch.

54

Note: Remember, if you want to create a file with a space in the
name, put it in quotation marks (touch "my file") or escape the
space character (touch my\ file).

As for the other use of touch—marking a file as modified—you might
do this if, for example, the program that saved it failed to update its
modification date for some reason and you want to make sure your
backup software notices the new version. You use exactly the same
syntax, supplying the name of the existing file:

touch file1

When applied to an existing file, touch doesn’t affect its contents at all,
only its modification date.

Create a Directory

To create a directory (which, of course, appears in the Finder as a
folder), use the mkdir (make directory) command. To make a directory
called apples, you’d enter the following:

mkdir apples

That’s it! Other than the fact that you can create a new directory in
some other location than your current one (for example, you could
enter mkdir ~/Documents/apples), and the fact that spaces, apostrophes,
or quotation marks in directory names must be escaped (see Spaces in
Paths), there’s nothing else you need to know about mkdir at this point.

Copy a File or Directory

To duplicate a file (in the same location or another location), use the cp
(copy) command. It takes two arguments: the first is the file you want
to copy, and the second is the destination for the copy. For example, if
you’re in your home directory (~) and want to make a copy of the file
file1 and put it in the Documents directory, you can do it like this:

cp file1 Documents

55

The location of the file you’re copying, and the location you’re copying
it to, can be expressed as relative or absolute paths. For instance:

cp file1 /Users/Shared

cp /Users/jk/Documents/file1 /Users/Shared

cp file1 ..

cp ../../file1 /Users/Shared

If you want to duplicate a file and keep the duplicate in the same
directory, enter the name you want the duplicate to have:

cp file1 file2

Likewise, if you want to copy the file to another location and give the
copy a new name, specify the new name in addition to the destination:

cp file1 Documents/file2

Avoid Overwriting Files When Copying
Look back at the first example:

cp file1 Documents

Anything strike you as suspicious about that? We know there’s a file
called file1 and a directory called Documents in the current directory,
so will this command copy file1 into Documents or make a copy in the
current directory and name the copy Documents (potentially overwriting
the existing directory)? The answer is: cp is smart. The command
assumes that if the second argument is the name of an existing directo-
ry, you want to copy the file to that directory; otherwise, it copies the
file in the current directory, giving it the name of the second argument.
It won’t overwrite a directory with a file.

But, in fact, cp is not quite as smart as you might like. Let’s say there’s
already a file in Documents that’s called file1. When you enter cp file1
Documents, the command happily overwrites the file that’s already in
Documents without any warning! The same goes for duplicating files
in the same directory. If the current directory contains files file1 and
file2, entering cp file1 file2 overwrites the old file2 file with a copy
of file1!

56

Fortunately, you can turn on an optional warning that appears if you’re
about to overwrite an existing file, using the -i flag. So if you enter cp -
i file1 Documents and there’s already a file1 in Documents, you’ll see:

overwrite Documents/file1? (y/n [n])

Then enter y or n to allow or disallow the move. “No” is the default.

Because the -i flag can keep you out of trouble, I suggest you always
use it with the cp command. Or, for an easier approach, set up an alias
that does this for you automatically; see Create Aliases.

Copy Multiple Files
You can copy more than one file at a time, simply by listing all the files
you want to copy, followed by the (single) destination where all the
copies will go. For example, to copy files named file1, file2, and file3
into /Users/Shared, enter this:

cp file1 file2 file3 /Users/Shared

Copy a Directory
You can use the cp command to copy a directory, but you must add the
-r (recursive) flag. For instance, given a directory named apples, this
command would produce an error message:

cp apples ~/Documents

The correct way to enter the command is as follows:

cp -r apples ~/Documents

Slashes Away
Avoid putting a slash at the end of the source directory when using
cp -r. That slash causes the command to copy every item within
the directory (but not the directory itself) to the destination. For
example, cp -r apples/ ~/Documents wouldn’t copy the apples
directory to your ~/Documents directory, but rather copies the con-
tents of the apples directory to your ~/Documents directory—probably
not what you want.

If you use tab completion with the cp command, be extra careful,
because tab completion adds trailing slashes automatically.

57

Move or Rename a File or Directory

If you want to move a file from one location to another, you use the mv
(move) command. This command takes two arguments: the first is
what you want to move, and the second is where you want to move it.

For example, if you’re in ~ and you want to move file1 from the
current directory to the Documents directory, you can do it like this:

mv file1 Documents

As with cp, the location of the file you’re moving, and the location
you’re moving it to, can be relative or absolute paths. Some examples:

mv file1 /Users/Shared

mv /Users/jk/Documents/file1 /Users/Shared

mv file1 ..

mv ../../file1 /Users/Shared

If you want to rename a file, you also use the mv (move) command.
Weird as it may sound, mv does double duty. When you’re renaming
a file, the second argument is the new name. For example, to rename
the file file1 to file2, leaving it in the same location, enter this:

mv file1 file2

Tip: Want to move a file from somewhere else to your current direc-
tory, without having to figure out and type a long path? You can
represent your current location with a period (.), preceded by a
space. So, to move file1 from ~/Documents to your current directory,
enter mv ~/Documents/file1 . on the command line.

Avoid Overwriting Files When Moving
The mv command works the same way as cp when it comes to overwrit-
ing files: it won’t overwrite a directory with a file of the same name, but
it will happily overwrite files unless you tell it not to do so.

58

Fortunately, mv supports the same optional -i flag as cp to warn you
when you’re about to overwrite a file. So if you enter mv -i file1
Documents and there’s already a file1 in Documents, you’ll see this:

overwrite Documents/file1? (y/n [n])

You can then enter y or n to allow or disallow the move. Again, “no” is
the default.

As with cp, the -i flag is such a good idea that I suggest you get in the
habit of using it every single time you enter mv. Alternatively, you can
set up an alias that does this for you automatically; see Create Aliases.

Move and Rename in One Go
Since mv can move and rename files, you may be wondering if you can
do both operations at the same time. Indeed you can. All it takes is
entering the new name after the new location. For instance, if you have
a file named file1 and you want to move it into the Documents directory
where it will then be called file2, you can do it like this:

mv file1 Documents/file2

Move Multiple Files
You can move several files at once, simply by listing all the files you
want to move, followed by the (single) destination to which they’ll all
go. For example, to move files named file1, file2, and file3 into /
Users/Shared, enter this:

mv file1 file2 file3 /Users/Shared

Wildcards with mv
You can use wildcards like * with mv—for example, entering mv
*.jpg Pictures moves all the files from the current directory ending
in .jpg into the Pictures directory. But when using mv to rename
files, wildcards may not work the way you expect. For example, you
cannot enter mv *.JPG *.jpeg to rename all files with a .JPG exten-
sion to instead end in .jpeg; for that, you must use a shell script
(read Command-Line Recipes for an example).

59

Delete a File

To delete a file, use rm (remove), followed by the filename:

rm file1

Tip: To try this out safely, use touch to create a few files, enter ls to
confirm that they’re there, then use rm to remove them. Then enter
ls again to see that they’ve disappeared.

You can delete multiple files at once by listing them each separately:

rm file1 file2 file3 file4

And, of course, you can use wildcards:

rm file*

Needless to say, you should be extra careful when using the * wildcard
with the rm command!

Warning! The rm Command Has No Safety Net
If you put something in the Mac OS X Trash, you can later drag it
back out, up until the moment you choose Finder > Empty Trash. But
the rm command (and the rmdir command, described next) has no
such safety net. When you delete files with these commands, they’re
gone—instantly and completely!

If you want to be especially cautious, you can follow rm with the -i
flag, which requires you to confirm (or disallow) each item you’re
deleting before it disappears forever—for example, rm -i cup*
prompts you to confirm the deletion of each file that has a name
beginning with cup.

Delete a Directory

Just as you can delete a folder in the Finder by dragging it to the Trash,
you can delete a directory on the command line with the rmdir (remove
directory) command.

60

To delete a directory named apples, you can enter this:

rmdir apples

As with rm, you can delete multiple directories at the same time:

rmdir pomegranates pomelos

rmdir pome*

This command works only on empty directories. (A directory can
have invisible files created by Mac OS X; don’t assume it’s empty just
because you didn’t put anything there.) If you run rmdir on a non-
empty directory, you get this error message:

rmdir: apples: Directory not empty

This is a safety feature designed to prevent accidental deletions. If
you’re sure you want to delete a directory and its contents (including
subdirectories), use the rm command with the -r (recursive) flag:

rm -r apples

Use Symbolic Links

If you’ve been using a Mac for a while, you’ve probably encountered
the concept of an alias in the Finder, which is a shortcut to a file or
folder stored somewhere else. Aliases are handy if you want quick
access to an item in more than one location, but don’t want to dupli-
cate it. (Don’t confuse a Finder alias with the alias command you use
to make shortcuts to other commands in Terminal; see Create Aliases.)

Unix, too, has something that acts almost like a Finder alias: a symbol-
ic link (or symlink). You can create a symbolic link to a file or directory
on the command line, and it will (for the most part) behave the way a
Finder alias does.

There are a couple of key differences, however:

• With an alias, if you move or rename the original file or folder,
the alias will still work as you’d expect. With a symlink, if you move
or rename the original item, the link will no longer function. (But,

61

if you later put an item with the original name in the original
location, the link will start working again.)

• Aliases to files normally work the same way on the command line
as they do in the Finder. So, if you entered open alias-name—in
other words, if you used the open command on an alias you created
in the Finder—the alias’s target file would open in its default appli-
cation. However, the same is not true of aliases to folders. Folder
aliases don’t work on the command line, so if you want to be able to
use, for example, the cd command to go into a folder using a short-
cut, that shortcut must be a symlink.

Making a symlink is useful when you want to create something that
functions on the command line pretty much like an alias in the Finder.
You may also find cases where you want to put an app’s default folder
in another location, but if you replace the original with an alias, it may
not work—in most cases, using a symlink instead will do the trick.

To create a symlink, you use this formula:

ln -s from to

where from and to are replaced with the paths to the original item and
the symbolic link’s new location, respectively.

For example, let’s say I want to create a symbolic link to my ~/Pictures
directory and put it on my Desktop. I’d do it like this:

ln -s ~/Pictures ~/Desktop

The key thing to remember is that the from argument is the path to the
item you want to link to, including its filename, and the to argument
is the path to where you want the symlink to be stored (with or without
a filename). If you leave off the filename (as in the example above), the
symlink will have the same name as the original file or directory.
However, if you want the symlink to have a different name, you can
specify that in the to argument, like this:

ln -s ~/Pictures ~/Desktop/photographs

If you create a symlink in Terminal and look at the resulting icon in the
Finder, you’ll see a little arrow in the lower left, just like an alias.

62

Work with Programs
Every command that you use on the command line, including merely
listing files, involves running a program. (So, in fact, you’ve been using
programs throughout this book!) However, some aspects of using
programs on the command line aren’t entirely obvious or straightfor-
ward. In this chapter, I explain some of the different types of programs
you may encounter and how to run them (and stop them).

I also show you how to edit files on the command line, and I talk about
shell scripts, a special kind of program you can create to automate a
sequence of tasks.

Learn Command-Line Program Basics

If you’ve been reading this book in order, you already know many
basics of running programs on the command line. Each time you enter
a command such as ls or cp or pwd, you’re running a program—and we
saw how to change program options and supply additional parameters
with arguments and flags earlier (in What Are Commands, Arguments,
and Flags?). However, I think you should know a few other important
facts about running programs.

Command-line programs come in a few varieties, which for the sake of
convenience I’ll lump together in three broad categories. (These are my
own terms, by the way; other people may categorize them differently.)
You’ll have an easier time using the command line if you’re aware of
the differences.

Basic Programs
Most command-line programs you use simply do their thing and then
quit automatically. Enter ls, for instance, and you instantly get a list
of files, after which point ls is no longer running. Some of these single-
shot programs produce visible output (date, ls, pwd, etc.); some
normally provide no feedback at all unless they encounter an error

63

(cp, mv, rm, etc.). But the point is: they run only as long as is needed to
complete their task, without requiring any interaction with you other
than the original command (with any flags and arguments).

Interactive Programs
A second type of program asks you for an ongoing series of new com-
mands, and in some cases doesn’t quit until you tell it to. For example,
the command-line program used to change your password is passwd.
If you enter passwd, you see something like the following:

Changing password for jk.

Old password:█

You type your old password and press Return, and then the program
gives you another prompt:

New password:█

Type in a new password and you get yet another prompt:

Retype new password:█

Reenter your new password, as long as it matches the first one, the
program changes your password and exits without any further output.

Note: This procedure really does change the password for your user
account, which applies everywhere on your Mac (not just on the
command line).

Programs of this sort include ssh, which lets you Log In to Another
Computer, and ftp, which lets you transfer files between computers,
among many others. If you’re running an interactive program, want to
quit it, and can’t find an obvious way to do so, try pressing Control-C
(see Stop a Program for more possibilities).

Full-Window Programs
The third broad category of programs is full-window programs—those
that are interactive but, instead of handling input and output on a line-
by-line basis, take over the entire Terminal window (or tab). You’ve

64

already tried a few of these—less and man are examples. Some full-
window programs helpfully display hints at the top or bottom of the
window showing what commands you can use; others require that
you’ve memorized them (or can look them up in a man page, perhaps
in another window). As with other interactive programs, pressing
Control-C usually lets you exit a full-window program if you can’t
find another way to do so.

Change Your Terminal Type
A curious feature of full-window programs such as less, top, and man
is that once you quit them, everything they previously displayed on
screen disappears; for example, you can’t scroll back to see some-
thing from a man page once you quit man.

This behavior (among others) is determined not by your shell but by
the specific kind of terminal that Terminal happens to be emulating
at any given time. By default, that terminal type is something called
xterm-color. Without getting into any tedious details, let’s just say
that xterm-color has many virtues, but some people dislike the way
it handles full-window programs. If you’re one of those people, you
can easily switch to a different terminal type.

Follow these steps:

1. Choose Terminal > Preferences > Settings > Advanced.

2. Choose vt102 from the Declare Terminal As pop-up menu.

3. Close the Preferences window.

The change takes effect beginning with the next shell session you
open in Terminal.

Run a Program or Script

Often, running a program requires nothing more than typing its name
and pressing Return. However, the process can be a bit trickier in
certain cases. Read on to discover how to run programs located in
unusual places, as well as scripts (programs packaged in a somewhat
different form).

65

How Your PATH Works
As you know already (see Understand How Paths Work), each file on
your Mac has a path—a location within the hierarchy of directories. So
a path of /Users/jk/Documents/file1 means file1 is in the Documents
directory, which is in turn in the jk directory, which is in Users, which
is at the top, or root, level of the disk (signified by the initial /).

But there’s another, specialized use of the term PATH: when capital-
ized like this, it refers to a special variable your shell uses that contains
a list of all the default locations in which a shell can look for programs.

To run a program, your shell must be able to find it. But so far, all
the commands you’ve entered have been “bare” program names
without specific paths given. For example, to run less, you simply
enter less, but in reality the program you’re running is stored in /usr/
bin. Looking everywhere on your disk for a program would be time-
consuming, so how can your shell find it in order to run it? The answer
is that when you enter a command without an explicit path, the shell
automatically looks in several predetermined locations. That list of
locations, which happens to include /usr/bin, is your PATH.

By default, your PATH includes all of the following directories:

/bin
/sbin
/usr/bin
/usr/local/bin
/usr/sbin

A program in any of these locations is said to be “in your PATH.” You
can run a program in your PATH, regardless of your location in the file
system, simply by entering its name. I encourage you to look through
these directories (try ls -l /bin, ls -l /sbin, and so on) to get an idea
of the hundreds of built-in programs and where they’re located.

Tip: To see the current contents of your PATH, enter echo $PATH.
Each valid directory is separated from the next by a colon—for
example: /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin.

66

Most programs you’ll need to run are already in your PATH, and if you
download or create new programs, you can put them in one of these
locations to make sure you can run them just by entering their names.
But what about programs that aren’t in your PATH? You can either
enter the program’s full or relative path (for example, /usr/local/bin/
stuff or ../software/myprogram), or you can expand your PATH to
include other directories (I explain how in Modify Your PATH).

Run a Program
To summarize, you can run a program in any of three ways, depending
on where the program is located, your current position in the file
system, and what’s in your PATH:

• By relative or absolute path: You can always run a program
by entering its complete path, such as /usr/bin/less, or its relative
path from the current location, for example apples/oranges/program.

• In the current directory: If you’re in the same directory as the
program you want to run, you might think you could just enter the
program’s name, but that doesn’t work. Instead, you must precede
the name with ./ (and no space). For example, to run a program
named counter in the current directory, enter ./counter.

• In your PATH: To run a program anywhere in your PATH, simply
enter the program’s name—for example, less, mkdir, or man.

Running Multiple Programs on One Line
Ordinarily, if you want to run two commands in a sequence, you
enter the first command, let it run, and then enter the second one
on a new line. However, sometimes it’s more convenient to tell the
command line: “Hey, just run these commands one after the other
instead of making me wait to enter the next one.” To do this, type
the first command, then a semicolon (;), a space, and the second
command. (You can chain more than two commands together in this
way.) Not every command can work as part of a chain, but most do.

To learn about another way of running multiple programs on one
line, in which one command’s output supplies the input for the next
command, see Pipe and Redirect Data.

67

Run a Script
In Mac OS X, as in other varieties of Unix, the programs you run are
usually compiled binary files. If you were to open them in a text editor,
they’d look like nothing but garbage characters, because they’ve been
put into an optimized, self-contained, machine-friendly format for
maximum performance. However, another broad category of programs
consists of human-readable text that’s interpreted by the computer as
it runs instead of being compiled in advance. Programs in this category
are often referred to as scripts, and they’re often used to automate or
simplify repetitive activities. Just as AppleScript provides a way of
writing human-readable programs that run in Mac OS X’s graphical
environment, scripts of various kinds can run from the command line.

A shell script is a series of instructions interpreted, or run, by the shell
itself. So, a shell script could consist of little more than a list of com-
mands, just as you would type them manually in a Terminal window.
Run the script, and the shell executes all those commands one after the
other. (In fact, shell scripts can use variables, conditional tests, loops,
math, and much more—I introduce you to these items later, in Add
Logic to Shell Scripts.) I explain the basics of creating a simple script
ahead in Create Your Own Shell Script. By convention, shell scripts
usually have an extension of .sh.

Other kinds of scripts are written in scripting languages such as Perl,
Python, and Ruby, and run by the corresponding interpreter. Perl
scripts, by convention, end in the .pl extension, Python scripts in .py,
and Ruby scripts in .rb.

Regardless of a script’s extension, it’s considered good programming
practice to include the name and location of the interpreter that should
process it on the first line of the script. For example, if a shell script is
intended to be interpreted by the sh shell, the first line should be:

#!/bin/sh

The #! at the beginning of this line, called a “shebang,” is a marker
indicating that what follows it is the path to the interpreter. (You can
examine a script using, say, less or cat to see if it has such a line.)

68

Because the interpreter is spelled out right in the script, you can run
the script just as you would any other program, by entering its name
(if it’s in your PATH) or its path.

However, if a script doesn’t include that line, you must tell it explicitly
which shell or other interpreter to run it with. You do that by entering
the interpreter’s name with the path to the script as an argument. For
example:

sh ~/Documents/my-shell-script.sh

perl ~/Documents/my-perl-script.pl

python ~/Documents/my-python-script.py

ruby ~/Documents/my-ruby-script.rb

Running Shell Scripts outside the Shell
You don’t have to be in the Terminal application to run a shell script!
You can also run shell scripts from within numerous other apps and
environments, including:

✦ AppleScripts

✦ Automator workflows

✦ Keyboard Maestro macros

✦ TextExpander snippets

I cover these and numerous other examples in my book Take Control
of Automating Your Mac.

Run a Program in the Background
Most of the time when you run a program, it does its thing, and then
you quit it (or it quits by itself). While it is running—whether that takes
a second or an hour—it takes over your shell and thus the Terminal
window or tab in which the shell is running. If you expect a program to
take some time to complete its task, or if you want it to keep running
even after you exit the shell, you can run it in the background. Back-
ground programs let you do other tasks in the same Terminal window
or tab, and, if necessary, they keep going even after you quit Terminal.

69

To run a program in the background, you simply put a space and an
ampersand (&) after the program name (and any flags or arguments).
For example, suppose you want to compress a folder containing
hundreds of large files. Ordinarily, you might use a command like zip
-r archive.zip apples. To run that command in the background
instead, enter this:

zip -r archive.zip apples &

While a program is running in the background, you’ll see no feedback
or output. If it’s a program that simply accomplishes a task (such as
copying or compressing files) and then quits automatically, then you’ll
see a message stating that it’s finished—not immediately afterward,
but the next time you execute a command or even just press Return to
create a new command line. The message saying a process is finished
looks something like this:

[1]+ Done zip -r archive.zip apples

Note: Programs designed to run in the background every time are
called daemons (pronounced “demons”). Examples include database
and Web servers, firewalls, and some backup programs. You wouldn’t
use the term “daemon,” however, for an ordinary program you opt to
run in the background temporarily.

See What Programs Are Running

Here’s a thought question: How many programs are running on your
Mac right now? If you glance at the active icons in your Dock and
conclude that the number is, say, a dozen, you haven’t even scratched
the surface. For example, as I type these words, my Dock tells me I
have 16 programs running, but in reality the total is 135! Besides the
visible programs like Mail and Safari, that figure includes background
programs that are part of Mac OS X—the Spotlight indexer, Time
Machine, iTunes Helper, and many others that perform important but
little-noticed functions behind the scenes. It also includes my bash
shell running in Terminal, and every program running in that shell.

70

Note: Roughly speaking, the term “process” is used to describe
programs (of any sort) that are actively running, as opposed to those
that are merely occupying space on your disk. The commands and
procedures I describe in this section are concerned only with active
programs, and therefore I use the term “process” to describe them.

You may be aware of Activity Monitor (in /Applications/Utilities),
which lists all this information and more. In the command-line envi-
ronment, too, you can list all your Mac’s processes (visible and invisi-
ble) and get a variety of useful facts about them. The two most com-
monly used command-line programs for discovering what’s running
on your Mac are top and ps.

Top
The top command is the nearest command-line equivalent to Activity
Monitor. Enter top and you get a full-window list of all your running
processes, updated dynamically. Figure 4 shows an example.

Figure 4: In the top window, you get a list of all the processes
currently running on your Mac.

71

By default, the top command lists several pieces of information for
each process, including the following particularly interesting ones:
PID (process ID), COMMAND (the process name), %CPU (how much
CPU power the process is using), TIME (how long the process has been
running), and MEM (how much RAM the process is using).

I won’t go into great detail about everything you see here (try man top
to learn more), but I do want to call your attention to a few salient
points and offer some top tips:

• Pruning the list: You almost certainly have many more processes
than can fit in your window at one time, even if you make your
window very large. So you can restrict the number of items top
shows at a time using the -n (number) flag, followed by the number
of items to show (top -n).

• Sorting the list: By default, top lists processes in reverse order of
PID, which basically means the processes at the top of the list are
the ones launched most recently. You can adjust the sort order with
the -o (order) flag—for example, enter top -o cpu to list processes in
order of how much CPU power they’re using, or enter top -o rsize
to list processes in order of how much RAM they’re using.

• Top at the top: Depending on what else is running on your Mac
at the moment, top itself may be at or near the top of the list, even
when sorted by CPU usage. Don’t be alarmed: the effect is caused
by the way top gathers its data.

• Customizing the list: You can combine flags to customize your
display. For example, enter top -n 20 -o cpu to list only the top 20
processes by CPU usage.

• Quitting: To quit top, just type the Q key (by itself).

Ps
Whereas top is dynamic, you may want simply to get a static snapshot
of the processes running at any moment. For that, the best command
is ps (process status). If you enter ps by itself, you get a list of your
processes running in terminals—which usually means the Terminal
application. In all likelihood, this is just bash itself.

72

The list includes the PID, the TTY (or terminal name), time since
launch, and command name for each process:

 PID TTY TIME CMD

22635 ttys001 0:00.06 -bash

You can expand the amount of information that ps provides using
flags. For example, to include not only processes in the current shell
session but also those from other sessions (yours or those belonging
to other users), enter ps -a. To show processes that aren’t running in
a shell at all (including regular Mac OS X applications and background
processes), enter ps -x. Combine the two (ps -ax) to show all the
processes running on your Mac.

Of course, although ps -ax provides lots of information, it might be
too much to be useful. You can filter the output from the ps command
by using a couple of spiffy Unix tricks. First, you add the pipe (|)
character (which you get by typing Shift-\) to channel the output from
ps into another program. (For more on the pipe, see Pipe and Redirect
Data, later.) The other program, in this example, is grep, a powerful
pattern-matching tool we’ll see again in Get a Grip on grep. So, enter
ps -ax | grep followed by a space and some text, and what you get is
a list of all and only the running processes whose listing includes that
text. For example, to list all the processes that are running from inside
your /Applications directory, enter this:

ps -ax | grep /Applications

Note: A curiosity of this command is that the grep process itself will
appear in the list, because grep includes /Applications as an argu-
ment! If that bothers you and you want to exclude grep itself, add
the following after /Applications and a space: | grep -v grep. The
same applies for the next example.

Or, to show only the processes whose names include the characters sys
(in any combination of upper- and lowercase), try this:

ps -ax | grep -i sys

73

Stop a Program

As we’ve seen, most command-line programs quit automatically when
they finish performing their functions, and full-window programs
usually have a fairly obvious way of quitting them (for example, press-
ing Q in the case of less or man. However, if a program doesn’t quit on
its own, or if you need to unstick one that’s stuck (even if it’s a graphi-
cal Mac OS X application!), you can use one of several techniques.

Ask Politely
If a command-line program won’t quit on its own, the first thing to try
is pressing Control-C. In this context, it’s approximately like pressing
Command-Q in a regular Mac OS X application—it tells the process to
quit, but to do so in a controlled way (saving open files and performing
any other necessary cleanup operations).

Kill (Humanely)
What if you want to stop a program that’s not running in the current
shell? If it’s a graphical Mac OS X application, or an invisible back-
ground process, or a program running in another shell, you can send it
a “Quit” signal remotely. The command you use to do this is kill. That
sounds extreme, but, in fact, when kill is used on its own, it sends a
program the same sort of polite request to terminate that Control-C
does.

Note: You can only kill processes you own (that is, ones started
under your user account). To kill another user’s processes, you must
use sudo (see Perform Actions as the Root User).

The catch is that you have to know how to refer to the program you
want to kill. Here there are two options:

• By PID: If you can find the process’s PID (process ID)—using top,
ps, or even Activity Monitor—you can simply enter kill followed by
that number. For example: kill 1342

74

• By name: If you don’t know the process’s PID, or can’t be bothered
to find out—but do know its name—you can quit it by name using a
variant of kill called killall. Simply follow killall with the pro-
gram’s name. For example: killall iTunes

You must enter the name exactly as it appears in top, ps, or Activity
Monitor. For example, if you want to quit Excel, you must enter
killall "Microsoft Excel" (quotation marks added because there’s
a space in the name).

Kill (with Extreme Prejudice)
If a program fails to respond to Control-C or to the standard kill or
killall command, it’s time to pull out the big guns. By adding the -9
flag to the kill command, you turn a polite request into a brutal
clobbering that can terminate almost any process.

When you use the kill -9 command, you must give it the process’s
PID; the -9 flag doesn’t work with killall to force-quit a process by
name. For example:

kill -9 1342

If even kill -9 doesn’t stop a process, and I’ve seen that happen more
than once, it is likely stuck beyond the power of any software com-
mand, and your only choice is to restart the computer.

Edit a Text File

Earlier I showed you how to view the contents of text files, but you may
also need to modify them. For that, you can work with any of several
command-line text editors. Using a command-line text editor is often
quicker and easier than opening a text file in a program like TextEdit—
especially for files that don’t appear in the Finder—and is less likely to
cause problems with file formats or permissions.

If you ask a hardcore Unix geek what text editor he uses, he (there are
far too few female Unix geeks) will probably answer vi. (That’s “vee-
eye,” not “vie,” by the way.) It’s a very powerful text editor that’s been

75

around forever, and because a lot of programmers cut their teeth on vi
and then proselytized future generations, it’s become a sort of badge of
honor to be skilled in using vi.

Mac OS X includes vi, but I’m not going to tell you how to use it. As
command-line programs go, vi has the most opaque user interface I’ve
seen. Until you get used to vi’s oddities and memorize its commands,
you can’t even change a letter in a text document without referring to
a manual. Powerful or not, from a usability standpoint, vi is hideous.
I just want you to know about vi so that when someone asks you why
you don’t use it, you can give the correct response: “Life is too short.”

Happily, you can use several other fine text editors. There’s the venera-
ble emacs, which is less obnoxious than vi while still being fabulously
flexible. But I’m going to recommend what you might think of as the
TextEdit of command-line text editors: a simple, straightforward, and
adequately powerful program called nano.

Note: The nano editor is an “enhanced clone” of an earlier editor
called pico; they have almost identical interfaces and feature sets. In
much the same way as more and less, Mac OS X includes a program
called pico and a program called nano, but they’re the same, and if
you try to run pico, nano is what actually runs.

To edit a text file in nano, use a command like the following:

nano file1

If file1 is already present, nano opens it; otherwise, it opens a blank
file that will be called file1. Figure 5 shows a text file open in nano.

76

Figure 5: A text file open in the nano text editor. The menu of
keyboard controls is at the bottom of the window.

Note: You can select text in a nano screen using your mouse, and
you can even copy it using Edit > Copy or Command-C. See the
sidebar Using a Mouse in Terminal for more tips. But in general, you
can ignore your mouse in nano.

One of the reasons nano is easy to use is that editing is straightforward.
To insert text at the cursor location, simply type—or paste the contents
of your Clipboard by choosing Edit > Paste or pressing Command-V.
To delete the character to the left of the cursor, press the Delete key; to
delete the character at the cursor, press the Forward Delete key (if your
keyboard has one). To delete the entire current line, press Control-K.

Tip: The nano editor doesn’t have an Undo command as such, but if
you cut a line of text with Control-K and want to restore it, you can
press Control-U to “uncut” it.

77

Other than those basics, here are the most important things you should
know how to do in nano:

• Save: To save the current file, press Control-O (WriteOut).

• Quit: To quit nano, press Control-X (Exit). If you’ve made any
changes to the document that you haven’t yet saved, nano prompts
you to save the file before exiting. Press N to discard changes and
quit immediately, C to cancel and stay in nano, or Y to save changes
and exit. If you do save changes, nano verifies that you want to keep
the existing filename (if you don’t, you can type a new one). Press
Return after verifying the filename.

• Find: To find text within the file, press Control-W (Where Is). Type
the text you’re searching for (case doesn’t matter) and press Return.
The cursor jumps to the next spot in the document where that string
appears. Repeat this procedure to do additional searches.

Those commands alone should enable you to do almost everything you
need to do in nano. To learn about additional nano features and short-
cuts, press Control-G to view its online help.

Create Your Own Shell Script

Before I wrap up this discussion of running programs, I want to give
you a tiny taste of creating your own shell scripts. Scripting is a bit like
learning chess: you can pick up the basics in a few minutes, but it may
take years to master all the subtleties. So I’m not going to teach you
anything about programming as such, just the mechanics of creating
and using a simple script. I want you to have enough familiarity with
the process that you can successfully reproduce and run shell scripts
you may run across in magazines, on Web sites, or even in this book
(see Command-Line Recipes, which includes a couple of shell scripts).
Later on, for those who are interested in learning a bit more, I’ve
included instructions on how to Add Logic to Shell Scripts.

78

You can create and run a shell script in six easy steps; in fact, you can
arguably combine the first four into a single process. But one way or
another, you must make sure you’ve done everything in the list ahead.

Step 1: Start with an Empty Text File
Scripts are plain text files, so you should begin by creating one in a text
editor. You can make a shell script in TextEdit, BBEdit, or even Word,
but that requires extra steps. So I suggest using nano, as described in
Edit a Text File. For the purpose of demonstration, name your script
test.sh. (Remember from Run a Script that the .sh extension isn’t
mandatory, but it can help you keep track of which files are scripts.)

Before you create this file, I suggest using cd (all by itself!) to ensure
that you’re in your home directory. (You can put scripts anywhere you
want, but for now, this is a convenient location.) That done, enter nano
test.sh. The nano text editor opens with a blank file.

Step 2: Insert the Shebang
The first line of your script should include the “shebang” (#!) special
pointer (see Run a Script) to the shell it will use. Since this book is all
about the bash shell, we’ll use that one. Type the following line:

#!/bin/bash

Step 3: Add One or More Commands
Below the shebang line, you enter the commands your script will run,
in the order you want them executed. Your script can be anything from
a single one-word command to thousands of lines of complex logic.

For now, let’s keep things simple. Starting on the next line, type this:

echo "Hello! The current date and time is:"
date
echo "And the current directory is:"
pwd

79

The echo command simply puts text on the screen—and you’ve seen the
date and pwd commands. So, this script displays four lines of text, two
of which are static (the echo lines) and two of which are variable.

Step 4: Close and Save the File
To save the file, press Control-O and press Return to confirm the
filename. Then press Control-X to exit nano.

Step 5: Enable Execute Permission
The only slightly tricky thing about running scripts—and the step
people forget most often—is adding execute (run) permission to the
file. (I say more about this later, in Understand Permission Basics.)

To do this, enter chmod u+x test.sh.

Step 6: Run the Script
That’s it! To run the script, enter ./test.sh. It should display some-
thing like this:

Hello! The current date and time is:
Wed Aug 1 19:58:21 CET 2012
And the current directory is:
/Users/jk

For fun, try switching to a different directory (say, /Library/Prefer‐
ences) and then run the script again by entering ~/test.sh. You’ll see
that it shows your new location.

Any time you need to put a new script on your system, follow these
same steps. You may want to store the scripts you create somewhere
in your PATH (see How Your PATH Works), or add to your PATH (see
Modify Your PATH), to make them easier to run.

Shell scripts can be much more than simple lists of commands. If you
want to explore more advanced capabilities, skip ahead to Add Logic to
Shell Scripts.

80

Customize Your Profile
Now that you know the basics of the command line and Terminal, you
may find some activities are a bit more complicated than they should
be, or feel that you’d like to personalize the way your shell works to suit
your needs. One way to exercise more control over the command-line
environment is to customize your profile, a special file the bash shell
reads every time it runs. In this chapter, I explain how the profile
works and how you can use it to save typing, customize your prompt,
and more.

How Profiles Work

A profile is a file your shell reads every time you start a new session
that can contain a variety of preferences for how you want the shell to
look and behave. Among other things, your profile can customize your
PATH variable (see How Your PATH Works), add shortcuts to com-
mands you want to run in a special way, and include instructions for
personalizing your prompt. I cover just a few basics here.

What you should understand, though, is that for complicated historical
reasons, you may have more than one profile (perhaps as many as four
or five!), and certain rules govern which one is used when.

When you start a new shell session, bash first reads in the system-wide
default profile settings, located at /etc/profile. Next, it checks if you
have a personal profile. It first looks for a file called ~/.bash_profile,
and if it finds one, it uses that. Otherwise, it moves on to look for
~/.bash_login and, finally, ~/.profile. Of these last three files, it loads
only the first one it finds, so if you have a .bash_profile file, the others,
if present, are ignored.

Note: You may also read about a file called .bashrc, which bash
reads in only under certain unusual conditions that you’re unlikely to
encounter when using Terminal on Mac OS X.

81

Because .bash_profile is the first user-specific profile to be checked,
that’s the one I suggest you use.

Note: Customizations you make in .bash_profile (or any other
profile file mentioned here) apply only in a shell session; they aren’t
used by shell scripts (see Create Your Own Shell Script). As a result,
when writing a script, you should always spell out complete paths and
assume default values for all variables.

Edit .bash_profile

To edit .bash_profile in nano, simply enter the following:

nano ~/.bash_profile

If the file already exists, nano opens it for editing; if not, it prompts
you to create the file when you save or quit the program.

This file is a simple text file, and unlike shell scripts, it doesn’t use a
shebang. Just add one or more lines to specify the changes that you
want (as described on the following pages). When you’re finished
editing .bash_profile, save it (Control-O) and close it (Control-X).
Ordinarily, the changes take effect with the next shell session (window
or tab) you open. To load the modified profile immediately, enter
source .bash_profile.

Create Aliases

In the Finder, an alias is a small file that serves as a pointer to another
file (for something comparable to Finder aliases on the command line,
refer to Use Symbolic Links). In the command-line environment,
however, the word alias means a shortcut in which one command
substitutes for another.

For example, suppose you’re used to command-line conventions from
DOS and Windows, in which you enter dir (directory) to list your files.
If you want to use that same command in Mac OS X, you can make an

82

alias, so that entering dir runs the ls command. Or, maybe there’s
a lengthy command you use frequently, and you want to run it with
fewer keystrokes. No problem: you can use (for instance) pp to mean
cp *.jpg ~/Pictures/MyPhotos.

To create an alias, put a new line in your .bash_profile consisting of
the word alias, a space, the shortcut you want to use, and ="" with the
command you want to run inside the quotation marks. For example,
to use the command dt as a shortcut for the date command, enter this:

alias dt="date"

Aliases can include flags and arguments, and if you enter a shortcut
that’s identical to an existing command, your alias takes precedence.
For example, if you always want to show file listings in the long format,
instead of typing ls -l every time, you can create an alias so typing ls
gives you the same result:

alias ls="ls -l"

Or, suppose you’ve taken my advice to heart to always use the -i flag
with cp (copy) and mv (move), to display a warning if the command is
about to overwrite an existing file. You could add aliases to new, easy-
to-remember commands like copy and move, respectively, with those
options pre-configured:

alias copy="cp -i"

alias move="mv -i"

Warning! You could set up aliases such that entering cp or mv would
include the -i flag, but I recommend against it because you might
get into a habit of using cp and mv carelessly, assuming you’ll be
warned of any impending overwrite. That could lead to data loss if
you find yourself using the command line on a computer that doesn’t
have the same aliases configured.

83

Modify Your PATH

As I explained in How Your PATH Works, when you run a program by
entering just its name, your shell looks for it in several predetermined
directories. You may want to specify additional places where programs
or scripts are located, to make it easier to run them. For example, if
you’re experimenting with your own scripts and you store them all in
~/Documents/scripting, you should add that directory to your PATH.

To add a directory to your PATH, put this in your .bash_profile:

export PATH=$PATH:/your/path/here

For example, to add the directory ~/Documents/scripting, enter this:

export PATH=$PATH:~/Documents/scripting

You can add as many of these export statements as you need. You can
also add multiple directories to your PATH in a single export statement
by separating them with a colon, like so:

export PATH=$PATH:~/Documents/scripting:/Library/Scripts

Change Your Prompt

Your command prompt—the string of characters at the beginning of
every command line—normally looks something like this:

Joes-MacBook-Pro:~ jk$ █

You can modify this by adding a line to your .bash_profile that begins
with PS1= and ends with whatever you want your prompt to be. For
example, if you enter this:

PS1="I love cheese! "

then the next time you open a shell, your prompt looks like:

I love cheese! █

84

Tip: Always enclose your prompt in quotation marks, and include a
space before the closing quotation mark, to make sure you can easily
see where the prompt ends and commands begin.

Prompts can include variables. Some common ones are these:

• \u: Your short username

• \h: Your computer’s name

• \s: The name of the current shell

• \w: The current directory

• \d: The current date, in the format “Mon Feb 16”

• \@: The current time, in 12-hour format with AM/PM

So, to make the following prompt:

jk 09:08 PM ~ * █

Enter this:

PS1="\u \@ \w * "

You can even use emoji in your prompt. If you’d like it to be (or
include) a pizza ! , baseball ⚾ ️, sun ☀ ️, or some other symbol, you
can paste it right into the PS1 line of your .bash_profile in nano. You
can find emoji listed on many Web pages or in Mac OS X’s Character
Viewer utility (available in most apps by choosing Edit > Emoji &
Symbols or Edit > Special Characters).

Tip: For another example of a profile customization, see the recipe
Read man Pages in BBEdit or TextWrangler.

85

Bring the Command Line
into the Real World

So far in this book I’ve largely ignored Mac OS X’s graphical interface,
treating the command-line environment as a separate world. In fact,
because the command-line interface and the graphical interface share
the same set of files and many of the same programs, they can interact
in numerous ways.

In this chapter, I discuss how your shell and the Finder can share
information and complement each others’ strengths—giving you the
best of both worlds.

Get the Path of a File or Folder

Suppose you want to perform some command from the command line
on a file or folder you can see in the Finder, but you don’t know the
exact path of that folder—or even if you do, you don’t want to type the
whole thing. You’re in luck: there’s a quick and easy way to get the path
of an item from the Finder into a Terminal window.

To get the path of an item in the Finder, do the following:

1. In a Terminal window, type the command you want to use, followed
by a space. The space is essential!

2. Drag the file or folder from the Finder into the Terminal window.

As soon as you release the mouse button, Terminal copies the path of
the file or folder you dragged onto the command line. It even escapes
spaces and single quotation marks with backslashes for you automati-
cally! You can then press Return to run the command.

For example, suppose you want to use the ls -l@ command to list the
contents of a folder with their extended attributes (a type of metadata,

86

or extra information about files and folders in addition to their actual
contents), which you can’t see in the Finder. You could type this:

ls -l@

(Don’t forget the space after the @!) Then drag a folder into the Termi-
nal window, as shown in Figure 6.

Figure 6: Drag a file or folder into the Terminal window (top); when
you release the mouse button, you get that item’s full path (bottom).

87

Open the Current Directory in the Finder

On occasion you may be using the command line deep in Mac OS X’s
directory hierarchy (whether or not it’s a location that’s normally
visible in the Finder) and want to open the current directory as a folder
in the Finder.

You can do so with one of the simplest commands ever:

open .

That’s open followed by a space and a period. And that’s all it takes! The
single period is Unix for “the current directory”; we’ll see it again later
in this book.

Open a Hidden Directory without
Using Terminal

If all you want to do is open a directory that’s normally hidden, you
need not open Terminal to do so, as long as you know its location. Just
choose Go > Go to Folder in the Finder. In the dialog that appears,
type the whole path of the directory (Figure 7) and click Go. That
directory opens as a folder in the current Finder window.

Figure 7: Open almost any directory, even hidden ones, in the
Finder using the Go to Folder dialog.

Tip: When you’re typing a path in the Go to the Folder dialog, you
can use tab completion just as in the bash shell (see Use Tab Comple-
tion); that can save you considerable typing and guessing.

88

Open the Current Folder in Terminal

Suppose you’re looking at some folder in the Finder and you realize
you want to run a command-line program on the items in it, such as
one that renames a bunch of files. You could open Terminal and type
in the path to the folder, but that can be cumbersome. Wouldn’t it be
great if, instead, you could just click a button, choose a menu com-
mand, or press a keyboard shortcut and have a new shell session open
in Terminal, with the current directory already set to the folder you
were just looking at in the Finder?

In fact, you can do exactly that, and I’ll show you two different ways to
do so.

Use Services (Mavericks and Later)
Starting with 10.9 Mavericks, OS X includes two commands you can
optionally add to the system-wide Services menu. One of these opens
a new Terminal window set to the current folder, and the other opens
a new Terminal tab set to the current folder.

To enable these, choose System Preferences > Keyboard > Shortcuts >
Services. In the Files and Folders category, select New Terminal at
Folder, New Terminal Tab at Folder, or both. (With one of these
commands highlighted, you can optionally click the Add Shortcut
button to add a keyboard shortcut to it as well.) Then close System
Preferences.

To use these new commands, right-click (or Control-click) the folder’s
name. Depending on how many Services you have enabled, the New
Terminal commands will appear either directly on the contextual
menu, or on a Services submenu. Choose the command you want to
open a new Terminal window or tab at that folder’s location.

Use cdto (Any Version of Mac OS X)
In any version of Mac OS X, you can instead use the free cdto utility
written by Jay Tuley. Unlike the services built into Mavericks and later,
this utility works even if you don’t have a folder selected.

89

To install this utility, follow these steps:

1. Download cdto and unzip it if necessary.

2. From the Terminal subfolder of the cdto folder, drag the cd to app
to /Applications/Utilities (or wherever you want to keep it).

3. While holding down Command and Option, drag the application
from its new home onto the toolbar of any Finder window. (You
should see a plus (+) icon appear at your pointer, signifying that the
Finder is ready to add a button to your toolbar.) Move your pointer
to where you want your new button to appear, and release the
button.

From now on, the button (shown in Figure 8 in Yosemite) appears in
the toolbar of every Finder window. You can click that button at any
time to open Terminal and start a new shell session with the directory
preset to your current location.

Figure 8: Click the new cdto button in the toolbar of any Finder
window to open it in a new shell session.

90

Open a Mac OS X Application

If you ever need to open a regular Mac OS X app from the command
line, you can do it by entering the open command with the -a (applica-
tion) flag. For example, to open Safari, just enter this:

open -a Safari

The open -a command is amazingly smart. You don’t have to tell it
where the application is located; it can be located in /Applications, or
in /Applications/Utilities, or anywhere else on your disk—it doesn’t
matter. And you need not spell out “Safari.app” or go through any
other complicated steps to get to the application.

Open a File in Mac OS X

Similarly, you can open a particular file that you see on the command
line in the default Mac OS X application for that file type—or another
application. For example, if the current directory contains a graphic
named flowers.jpg, you can open it in its default application (probably
Preview) like so:

open flowers.jpg

But if you prefer to open it in Adobe Photoshop Elements, just enter
this:

open -a Adobe\ Photoshop\ Elements flowers.jpeg

(Note the backslash before each space in the application name; you
could also put the application name inside quotation marks.) Don’t
forget you can use tab completion to help spell out the names of files
and directories, too (but, alas, not the names of applications).

91

Log In to Another Computer
Every time you connect to another Mac to share files or other system
resources, you are, in a way, logging in to that other Mac. However,
in this chapter, I describe a particular way of logging in to a remote
computer—doing so using SSH (secure shell), which gives you access
to the other computer’s command-line interface from within your own
Mac’s command-line interface. Logging in via SSH lets you interact
with another computer in the same way you interact with your current
Mac from inside a Terminal window.

You can connect to almost any Mac, Unix, or Unix-like computer (and
some Windows computers) using SSH, provided the other computer
has SSH enabled. (To enable incoming SSH access on a Mac, check the
Remote Login box in System Preferences > Sharing.)

If you log in to another Mac, everything should look quite familiar,
whereas other operating systems may follow different conventions. For
the purposes of this chapter, I assume that the remote computer is at
least running a Unix-like system so that most of the things you’ve
learned in this book still apply.

Start an SSH Session

The easiest way to start an SSH session from Terminal is to begin in
an existing shell session. Then follow these steps:

1. Enter the following, substituting your username on the remote
computer for username, and the remote computer’s IP address or
domain name for remote-address:

ssh username@remote-address

92

2. If this is the first time you’re connecting to this particular remote
computer, you will see a message something like the following:

The authenticity of host 'macbook-pro.local (fe80::20c:
74ee:edb2:61ae%en0)' can't be established.

RSA key fingerprint is d0:15:73:75:04:9a:c3:2d:5b:b1:f8:c0:7d:
83:52:ef.

Are you sure you want to continue connecting (yes/no)?

After reading the sidebar “SSH Security Considerations,” just ahead,
assuming you’re still comfortable connecting, type yes and press
Return.

3. Text similar to the following appears on screen:

Warning: Permanently added ‘macbook-pro.local.,
fe80::20c:74ee:edb2:61ae%en0’ (RSA) to the list of known hosts.

And following that is a password prompt. Type your password for
the remote computer and press Return.

Note: As you type your password, no text appears—not even bullet
or asterisk characters. That’s normal.

Assuming the remote computer accepts your password, it presents you
with a new command prompt, often (but not always) accompanied by a
brief welcome message.

93

SSH Security Considerations
SSH is a highly secure protocol, so what’s with these fingerprints and
warnings?

The simplified explanation here for using SSH relies on your trusting
that the computer you’re connecting to is the one you think it is—
that no one has hijacked your connection. The fingerprint is a unique
identifier tied to each computer, and by agreeing (in Step 2) that the
fingerprint is correct, you’re saying you trust this fingerprint for that
computer.

How would you know you can? If you’re connecting to another Mac
on your home network, you can safely take it for granted. If you’re
connecting to a computer at the office, a Web server, or some other
commercial computer, ask the system administrator who’s in charge
of it to confirm its fingerprint, and make sure it matches what you
see. (If the computer you’re connecting to is a Mac running Yosemite,
you or an administrator can use the procedure in the Verify an RSA
Fingerprint for SSH recipe.)

Once you accept a fingerprint, your Mac remembers it and checks to
see that the fingerprint matches that remote computer every time
you connect to it. If it doesn’t, it may be a sign that a hacker is trying
to trick you into connecting to the wrong computer.

Run Commands on Another Computer

Once you’re logged in to another computer, you run commands on
it exactly the same way you do on your own Mac: just enter a command
and any necessary flags and arguments.

However, you should be aware of a few potential “gotchas” when
connecting to other computers:

• Your default shell on the other computer might not be bash, so some
commands may not work the way you expect. Usually—though not
always—you can switch to the bash shell, if it’s not already running,
simply by entering bash.

94

• Your .bash_profile (see Customize Your Profile) applies only to the
bash shell running on your Mac—not the shell on the remote Mac!
So your existing aliases, PATH variable, and other settings may not
work. If you have sufficient permission, you can of course create
a .bash_profile on the remote computer as well.

• If the other computer is a Mac, and especially if it’s running the
same version of Mac OS X that you are, you can assume that most
programs will be in the same locations. But be aware that a program
you want to use could be missing, located somewhere else, or
configured in a way that denies you access.

• If you use a command that opens an application outside Terminal—
for example, if you enter open flowers.jpeg to open a graphic in
the default application (which on a Mac is Preview), that application
opens on the remote computer, not the one where you physically
typed the command!

End an SSH Session

To close your remote connection, simply enter exit.

You return to your existing shell session on your own Mac. As is the
case when exiting your own shell session, it’s always best to use exit
to end a remote session gracefully, shutting down any processes that
may be running and doing associated clean-up tasks.

Transfer Files with sftp or scp

Although you can run any command-line program on a remote com-
puter while logged in with SSH, one thing you can’t do in an SSH
session is transfer files between your Mac and the remote computer.
So, if you discover you need to move a file that’s on the remote com-
puter to your local Mac (or vice-versa), you’ll have to ditch SSH and
use a different program. There are many that could do the trick, but
I’ll tell you about two of my favorites: sftp and scp.

95

96

Sftp
You’ve undoubtedly heard of FTP (File Transfer Protocol); you may
also be aware that it’s famously insecure. So even if the remote com-
puter is running an FTP server, I suggest avoiding FTP as a way of
transferring files unless there’s no other option. But you might be lucky
enough to find that the remote computer is running an SFTP (SSH File
Transfer Protocol) server, which operates very much like FTP except
that it’s way more secure. And, as you might predict, the command you
use to access an SFTP server is sftp.

Note: Macs with Remote Login enabled in System Preferences >
Sharing (that is, those you can connect to using SSH) also support
file transfer via sftp, regardless of whether File Sharing is enabled.

To open an SFTP connection, use this command:

sftp username@host

As usual, replace username with your username on the remote com-
puter and host with that computer’s domain name or IP address. Enter
your password for the remote computer when prompted, and then
you’ll see a “Connected to” message followed by this prompt:

sftp>

From here, you can use many command-line navigation techniques
you’re already familiar with, such as cd and pwd to browse the file
system.

When you get to a directory containing a file you want to download to
your local Mac, you can do it like this:

get filename

If you want to transfer an entire directory and its contents, add the -r
(recursive) flag:

get -r directory_name

Either way, the item will be downloaded to whichever directory you
were in on the command line when you ran the sftp command.

Note: If the file you want isn’t in the current directory but you know
its exact path, you can use get /path/to/file. Similarly, if you want
to store it somewhere else on your local Mac, you can add the desti-
nation path: get /path/to/remote_file /path/to/local_directory.

To upload a file, use the put command, which follows exactly the same
pattern as get:

put /path/to/local_file /path/to/remote_directory

So, you can use just the filename if it’s in your current directory, or
you can specify a file from somewhere else on your Mac by giving its
complete path. If you leave out the destination directory, the file will
be uploaded to your current directory on the remote computer.

When you’re done transferring files, you can leave sftp by entering
exit.

Scp
The nice thing about sftp is that you can use it not only to transfer files
but also to browse the remote file system. But if sftp isn’t available on
the remote computer, you may have to resort to a different method:
scp (secure copy). Because scp uses SSH, it should work pretty much
anywhere SSH does, even when sftp does not. The downside, however,
is that scp requires you to know the exact name and location of the file
on the remote computer—you can’t browse with scp.

If you don’t already know the name and path of the file you want, you’ll
have to find that out by first logging in with SSH and browsing to find
the file’s location on the remote computer. Then make a note of it (or
copy it to your Clipboard) and switch over to scp—either in a separate
Terminal window or tab, or after closing your SSH connection.

The syntax for simple scp transfers is:

scp username@host:/path/to/remote_file /path/to/destination

97

For example, if my username on the computer mac.alt.cc is joe, the
file I want to download is /Users/joe/Desktop/test.txt, and I want to
store it on the Desktop of my local Mac, I would use:

scp joe@mac.alt.cc:/Users/joe/Desktop/test.txt ~/Desktop

After you enter the command, you’ll be prompted for your password
on the remote computer.

To download an entire directory, add the -r (recursive) flag, like so:

scp -r joe@mac.alt.cc:/Users/joe/Documents/Folder ~/Desktop

If you want to upload a file to the remote computer, you can do it
almost exactly the same way as downloading, but swap source and
destination, like so:

scp ~/Desktop/test.txt joe@mac.alt.cc:/Users/joe/Desktop/

And, once again, use -r to upload a directory and all its contents:

scp -r ~/Documents/Folder joe@mac.alt.cc:/Users/joe/Desktop/

98

Work with Permissions
Everything you do on your Mac, and especially on the command line,
is governed by permissions—which user(s) can do which things with
which items, under which circumstances. In this chapter, I introduce
you to file permissions, along with the closely related notions of own-
ers and groups. I also explain how to temporarily assume the power
of the root user using the sudo command.

Understand Permission Basics

As you may recall from See What’s Here, when you list files in the long
format (ls -l), you can see the permissions, owner, and group of each
file and directory. Every file in Mac OS X has all these attributes, and
you should understand how they work because they influence what you
can and can’t do with each item.

Note: This section covers only the basics of permissions. To learn the
full details, I heartily recommend reading Brian Tanaka’s Take Control
of Permissions in Snow Leopard (which also applies to newer versions
of Mac OS X).

Before I get into how to read or change permissions, I want to describe
the basic options. Put simply, permissions consist of three possible
activities (reading, writing, and executing), performed by any of three
types of user (the file’s owner, the file’s group, and everyone else).
Three types of permission multiplied by three types of user equals nine
items, each of which can be specified individually for any file or folder.

Read, Write, and Execute
Someone with permission to read a file can open it and see what’s
inside it. Someone with write permission can modify an item or delete
it. Execute permission, for a file, means it can be run (that is, it can
behave as a program or script); for a directory, execute permission
means someone can list its contents.

99

On the command line, read permission is abbreviated with an r, write
permission is abbreviated with a w, and execute permission is abbrevi-
ated with an x.

User, Group, and Everyone Else
Every file and folder specifies read, write, and execute permissions for
the following types of user:

• User: In terms of file permissions, the term user means the owner
of a file or directory. (The user may be a person, like you, or it may
be a system process, such as _screensaver, which is exactly what it
looks like.)

• Group: Each file and directory also has an associated group—one
or more users for whom a set of permissions can be specified. That
group could have just one member (you, for example), or many.
Mac OS X includes several built-in groups, such as admin (all users
with administrator access), staff (all standard users without ad-
ministrative access), and wheel (which normally contains only the
root user—see Perform Actions as the Root User). You can also
create your own groups.

• Others: Every user who is neither the owner nor in the file’s group
is lumped into the “others” category.

Reading Permissions, Owner, and Group
To illustrate how this all works, suppose you find the following two
items in a certain directory by entering ls -l (list in long format):

drwxr--r-- 15 jk admin 510 Aug 27 15:02 fruits

-rw-r--r-- 2 root wheel 1024 Sep 02 11:34 lemon

For the purposes of this section, we care about just three of the items
on each line (apart from the item’s name, at the end). The initial group
of characters (like drwxr--r--) constitutes the permissions, and the two
names in the middle (like jk admin) are the user and group, respective-
ly. For now, you can ignore all the other information.

100

Directory or Not?
The first character of the permissions string tells you whether the
item in question is a directory or a regular file. So in the first example
(drwxr--r--), the item fruits is a directory because its permissions
string starts with a d. The second item, lemon, has a hyphen (-) in the
first slot, which means it’s not a directory (in other words, it’s a file).

Three Permissions, Three Sets
The remaining nine positions in the mode specify the three possible
permissions for user (the first three characters), the group (the middle
three), and others (the final three).

In each set of three characters, the order is always the same: r (read), w
(write), and x (execute). So picture a template with ten slots, of which
the first is the d character for directories:

directory user group others ← Access for whom

d rwx rwx rwx ← A directory with all attributes on

- --- --- --- ← A file with all attributes off

For each kind of user, each permission can be either on or off. If it’s on,
the corresponding letter (r, w, or x) appears; if it’s off, you see a hyphen
(-). So, for example, if the owner’s permissions are rwx, it means she
can read, write, and execute the item; if they’re r--, she can read only.

If everybody—user, group, and others—had read, write, and execute
permissions for a file, its permissions would look like this:

-rwxrwxrwx

Here are a few other combinations to make the system clear:

• Owner can read, write, and execute; group and others have no
permission:

-rwx------

• Owner can read and write; group and others can read:

-rw-r--r--

101

• Everyone can read and execute, but only the owner can write:

-rwxr-xr-x

• Owner can read and write; group can read only; others have no
permission:

-rw-r-----

Owner and Group
After the file’s permissions and a number (the number of links to the
item—a concept that’s beyond the scope of this book) are two names.
The first of these is the file’s owner (user) and the second is its group.

For example in this item:

drwxr--r-- 15 jk admin 510 Aug 27 15:02 fruits

the owner is jk and the group is admin. (In some cases, owner, group,
or both may be shown as numbers, such as 501, rather than names.)

What’s with the + and @ Characters?
Sometimes a file has an extra character at the end of the permissions
string—either a + or an @. For example:

drwx------@ 90 jk staff 3060 Aug 1 09:29 Library

drwx------+ 8 jk staff 272 Jul 11 11:24 Movies

The + means the item includes an ACL (access control list), which
is a more elaborate and finer-grained way of specifying permissions
than simply read, write, and execute for user, group, and others. To
see the ACL settings for a file or directory, use ls -le.

The @ means the item includes extended attributes—extra metadata
beyond the file’s contents often used for specific Mac OS X features
(such as Gatekeeper). To see which types of extended attributes a
file or directory contains, use ls -l@; to view the contents of those
extended attributes, use xattr -l file.

Understanding, using, and modifying ACLs and extended attributes is,
alas, beyond the scope of this book.

102

Permissions and You
When you create a file (whether by saving, copying, moving, down-
loading, or whatever), you become that file’s owner (user).

In addition, by default, all users on a Mac have read and write permis-
sion (and, for directories, execute permission) for everything in their
home folders, and can read and execute shared items (such as things
in the /Applications folder). However, users can’t read or write files,
or view the contents of directories, owned by other users.

Your default group (and thus, the default group of files in your home
folder and new items you create anywhere) depends on a few factors,
the most significant of which is what sort of user account you’re using.
Account types are specified in the Users & Groups pane of System
Preferences (called Accounts in earlier versions of Mac OS X). If you’re
an administrator, your default group is normally admin; otherwise, it’s
normally staff.

Change an Item’s Permissions

If you want to change an item’s permissions, you use the chmod com-
mand (for “change mode,” mode being a Unix way of describing an
item’s permissions). You can use chmod in a number of ways. The
easiest one to understand is what you may sometimes hear described
as chmod’s symbolic mode. There’s also a more-powerful absolute
mode, which we’ll get to in a moment.

Use the chmod Symbolic Mode
To change permissions with chmod, you simply indicate one or more
of user, group, and others (using the abbreviations u, g, and o respec-
tively), then + or - (to add or remove permissions), and one or more
of r, w, and x (for read, write, and execute), followed by the file or
directory. For example, to grant group write access to the file file1,
you might enter this:

chmod g+w file1

103

To remove others’ execute permission, enter this:

chmod o-x file1

You can affect multiple users at once—for example, add read access for
user, group, and other in one stroke with this:

chmod ugo+r file1

You can also affect multiple permissions at once; for example, subtract
read, write, and execute permission for the group and others with the
following:

chmod go-rwx file1

Note: Ordinarily, you can change an item’s permissions only if you
are the owner or are in the item’s group, and if you already have (in
either capacity) write permission. In all other cases, you must use
sudo (described ahead) before the chmod command.

Use the chmod Absolute Mode
In order to make more complex changes in one go (say, adding write
permission for the user while removing execute permission for others),
you must use chmod’s absolute mode. This is somewhat advanced, but
as you work on the command line you’re bound to come across it, so I
want you at least to be familiar with how it works.

In absolute mode, permissions are indicated by a series of three digits,
such as 133 or 777. The first of these digits stands for the user, the
second for group, and the third for others (just as in symbolic mode).
But discerning the meanings of the numbers requires a little
arithmetic.

The basic values are these:

• 1: read

• 2: write

• 4: execute

104

To combine permissions, you add these numbers. So, 3 means read
and write; 5 means read and execute (but not write); 6 means write
and execute; and 7 means read, write, and execute.

Thus, if you read an article telling you to change a file’s permission
with this command:

chmod 755 file

it means you want the user to be able to read, write, and execute, while
the group and others can read and execute only. In other words, the
file’s permissions would become:

-rwxr-xr-x

Change an Item’s Owner or Group

To change an item’s owner, group, or both, use the chown (change
owner) command. It takes one or two arguments—the new owner and/
or the new group, separated by a colon (:)—followed by the item you
want to change. For example, to change the owner of the file file1 to
bob (without changing the group), enter:

chown bob file1

To change the owner of file1 to bob and the group to accounting, enter:

chown bob:accounting file1

To change only the group, but not the owner, simply leave out the
owner but include the colon before the group:

chown :accounting file1

However… What I just said is hypothetical, because as an ordinary
user you can’t change an item’s owner—that would mean changing it
either to or from an account to which you don’t have access! Similarly,
you can change an item’s group only if you’re a member of both the
old group and the new group. So for all practical purposes, the chown
command must always be performed using sudo, described next.

105

Perform Actions as the Root User

As a security measure, Mac OS X (like all Unix and Unix-like operating
systems) prevents users from viewing or altering files that don’t belong
to them, including those that make up the operating system itself.
However, in certain situations you may have a legitimate need to alter
a file or folder of which you’re not the owner—or run a command for
which your user and group don’t have execute permission.

Every Mac has a special, hidden account called root, which is a user
with virtually unlimited power to change anything on the computer.
The root account is disabled by default, and that’s for the best. Howev-
er, any administrator can temporarily assume the capabilities and
authority of the root user, even without the root account as such
having been activated.

The way you do this is to use the sudo (“superuser do”) command.

Note: Because the “do” in sudo is the actual verb do, the preferred
pronunciation of the term rhymes with “voodoo.” But lots of people
pronounce it to rhyme with “judo,” which is also logical—and it’s
acceptable to everyone except the nitpickiest geeks.

For Administrators Only
Before I go any further, I must make this crystal clear: only users with
administrator privileges can use sudo. If your Mac has just one user
account, it’s automatically an administrator account. However, as you
create additional accounts, they only gain administrator privileges if
you check the Allow User to Administer This Computer box in the
Users & Groups (or Accounts) pane of System Preferences.

Most Mac experts recommend using a non-administrator account for
ordinary, day-to-day computing, logging in as an administrator only
when necessary.

106

That’s good advice, but if you follow it, you’ll have to do one of two
things before you can make use of the sudo command:

• Log in as an administrator first, and then run Terminal, or

• In your shell session in Terminal, switch to an administrator’s
account using the su (switch user) command, like so:

su username

(Replace username with the short username of an administrator, and
enter that account’s password when prompted.)

Note: As you type the administrator account’s password, no text
appears—not even bullet or asterisk characters. That’s normal.

It’s a good idea to keep excursions to other accounts brief. When
you’ve finished executing commands as another user, you can close
the shell session as normal with the exit command.

Using sudo
Once you’re logged in as an administrator, to perform any command
as the root user, preface it with sudo:

sudo command

The sudo command prompts you to enter the administrator account
password; do so now.

Note: As you type your password, no text appears—not even bullet
or asterisk characters. That’s normal.

The shell then performs whatever command you just entered as
though you’d entered it as the root user, which ordinarily means it’s
guaranteed to work as long as you entered it correctly.

If you perform a command and get a “permission denied” error, try
it again with sudo in front of it, and in all probability it will work the
second time.

107

For example, if you try to change a file’s owner like so:

chown bob file1

and you get this message:

chown: file1: Operation not permitted

try this instead: sudo chown bob file1

Tip: Now that you understand how sudo works, you may enjoy this
highly geeky comic from xkcd: Sandwich.

Notes and Precautions
Before you start using sudo, you should be aware of a few things:

• 5-minute rule: Once you use sudo and enter your password, you
can enter additional sudo commands, without being prompted for a
password, for 5 minutes. The timer resets every time you use sudo.

• Great power = great responsibility: You can do almost any-
thing with sudo, and that includes damaging Mac OS X beyond
repair. So use sudo only when necessary, and only when you know
what you’re doing.

• Stay for a while: If you must enter a large number of commands
with root privileges, you can avoid having to enter sudo every time
by switching to the root user’s shell account. (Again, surprisingly,
this does not require that the root account be enabled on your Mac!)

To switch to the root user’s shell, enter sudo -s and supply your
password if requested. Your prompt changes from a $ to a # to
signify that all commands you enter are now performed as the root
user.

Be extra careful! If sudo alone is dangerous, sudo -s is asking for
trouble. It’s a convenience feature I personally use on rare occasions,
and it can be handy in a few situations in which sudo alone won’t do
the trick. But use this with the utmost caution, and be sure to enter
exit to log out of the root user’s shell as soon as possible.

108

Learn Advanced Techniques
Now that you know the basics of working with the command line, I
want to show you a few techniques that build on your knowledge and
enable you to perform more advanced tasks.

First I tell you how to Pipe and Redirect Data—two powerful (and
related) techniques you can apply to many different commands in
order to combine them in useful ways and do more with your data.
Next, you’ll Get a Grip on grep, a tool that helps you locate files con-
taining specified patterns of characters. Finally, I explain the basics
of how you can Add Logic to Shell Scripts, making them much more
useful than simple sequences of commands.

As you can imagine, these are but a few of many advanced techniques
for using the command line, but I’ve found them to be consistently
helpful, and I hope you will too.

Pipe and Redirect Data

Most of the time when you enter commands on the command line, the
output—a list of files, the date, the contents of a log, or whatever—is
shown directly on the screen. But that isn’t always what you want.

For example, maybe the output of some command is a list of hundreds
or thousands of files, but that’s more information than you need; you
want to filter the list to show only files that meet certain criteria. Or,
maybe having that list in a Terminal window isn’t useful to you, but if
it were in a BBEdit document, it would be. In cases like these, you can
use either of two commands to take a command’s output and do
something other than display it on the screen.

109

Pipe (|)
The pipe operator, which is the | symbol that you get when you type
Shift-\, sends the output of a command to another program. To use
it, you type the first command, then a space, the | character, another
space, and the name of the second program. Like so:

program | other-program

We saw the pipe earlier, in Ps, and there are also a few instances of this
in Command-Line Recipes, but let me give you some further examples
to illustrate how this works and what you might do with it.

If I used the ls /Library/Preferences command to show me everything
in my /Library/Preferences folder, that would be a pretty long list.
But suppose I remembered that most of the items in that folder started
with com.apple and I wanted to see just the last, say, ten items because
that would filter out most of the Apple stuff. And then I remember that
the Tail command does exactly that. Ordinarily, tail expects you to
give it a file as an argument. But instead, I could give it a file listing as
an argument, using the pipe operator, like so:

ls /Library/Preferences | tail

And that does what I expect—it shows just the last ten items from that
directory. If I wanted to show the last 15, I could instead enter:

ls /Library/Preferences | tail -n 15

Most flags and arguments work as usual with piped commands. The
exception, of course, is that commands expecting a file as an argument
normally put the file after the command, but when you use a pipe, the
order is reversed.

How about another example? If I used the locate command to find
all the files containing Apple in the name—again, an awkwardly large
number—they’d all scroll by at a dizzying speed. If instead I wanted to
be able to page through them one screenful at a time—hey, just like you
can do with less (see View a Text File)—I can just pipe the output of
locate into less, like so:

locate Apple | less

110

Or perhaps I’d like to get the path of the current directory and put it on
my Mac OS X clipboard. With a pipe and the pbcopy (pasteboard copy)
command, it’s easy:

pwd | pbcopy

The same idea works for other commands. Need to copy a list of every
GIF image in a directory? Entering ls *.gif | pbcopy will do the trick.

These examples are all fairly simple, but the concept can be extended
in all kinds of ways. If a command can accept a file as an argument, it
can probably be used on the right side of a pipe.

And, in case you were wondering, yes, you can chain pipes! That is,
send the output of one program to a second, and the output of the
second to a third (and so on). So, if I want my clipboard to contain a
list of the last ten files in my /Library/Preferences directory (without
displaying them on the screen), I could combine a couple of earlier
example like so:

ls /Library/Preferences | tail | pbcopy

This is a technique that rewards experimentation, so see what other
interesting combinations you can come up with.

Redirect (>)
Whereas the pipe sends the output of a program to another program,
the redirect (>) operator sends the output of a program to a file (with-
out displaying it on screen). For example, maybe I want to put the list
of all the files in /Library/Preferences into a text file to study later. I
could do it like this:

ls /Library/Preferences > ~/Desktop/prefs.txt

That creates a file on my Desktop called prefs.txt which contains the
output of the previous command, which then lists everything in that
directory.

You can use redirect with nearly any (non-interactive) program that
displays its output on screen. But be careful with commands that

111

produce continuous output; the file will keep growing indefinitely. For
example, you wouldn’t want to use top > file.txt because the top
command produces a dynamic output. Instead, you might try ps -ax >
file.txt for a static snapshot of all running processes.

At this point, perhaps your gears are turning and you want to know
whether you can combine piping and redirecting in a single line. Why,
yes, you can! If I wanted to put the last ten items from a directory into
a text file in my home folder, I could do it like this:

ls /Library/Preferences | tail > ~/files.txt

Get a Grip on grep

Depending on who you ask, the command grep stands for either
“globally search a regular expression and print” or “global regular
expression parser.” In any case, grep is a pattern-matching tool that
can make use of a sequence of characters known as a regular expres-
sion (sometimes abbreviated to regex or regexp) in order to locate
files by their content. If you know what you’re looking for inside a file
but not the file’s name or location, this is the command you want.

We’ll get back to regular expressions in a moment. First, let’s look at
a very basic use of grep that uses a plain text search string.

Earlier, in Find a File, I showed how to use the find command to find
a file by name. It’s also possible to find a file with find based on the
file’s content, but an easier way is to use the grep command. Enter the
following, replacing your text with what you want to find:

grep -R "your text" .

For example, to find all files within the current directory and its
subdirectories whose contents (not necessarily filenames) include the
word Apple, I’d use:

grep -R "Apple" .

The -R flag means “recursive”—that is, look in all the subdirectories.
Also notice the period (.) at the end. That signifies “this directory.”

112

So the combination of -R and the period mean “search recursively
from this directory down.” To search just the directory you’re in, you
can leave out -R, but then you’ll also need to replace the period with
an asterisk (*), to mean “any file”—without that, grep will give an error
because you’ve told it to search a directory, but it searches only files.

If I wanted to search recursively from the parent directory of the one
I’m in, I’d do this:

grep -R "Apple" ..

Those are the same two dots (..) we used with cd (see Move Up or
Down). And if I wanted to search a specific directory, I’d fill in its path:

grep -R "Apple" /Library/Preferences

I suggest resisting the temptation to put / (a whole disk) as the search
target, because the search would be enormously time-consuming.

Note: By default, grep finds partial-word matches; the string "bar"
matches both baroque and lumbar.

That’s the simple way to use grep, and it’s pretty useful. But what
if you’re not looking for a specific string, like Apple, but rather a
pattern, such as a phone number, a URL, or any line that starts with
the word butter? That’s where regular expressions come in.

A regular expression is basically a pattern of regular characters and
metacharacters (such as wildcards, parentheses, and other special
symbols that tell grep to look for particular characters or patterns
of characters). With practice, you should be able to create a regular
expression that represents almost any text you can describe in words.
Here are some simple metacharacters to get you started:

• Any character: . (period)

• One or more times: +

• Anything in a particular set of characters: [] (for example, [abcde]
for any of the letters a, b, c, d, or e; or [1-5] for any digit 1 through 5)

• Start of a line: ^

113

So, putting various combinations of these together, we can look for:

• Any seven-digit phone number:
[0-9][0-9][0-9]\-[0-9][0-9][0-9][0-9]

Bracketed sets of characters can include ranges, like [0-9], [A-Z],
or [a-z]. Because some characters, like -, have special meanings
in regex, you put a backslash (\) before them to indicate that you’re
looking for the literal character here.

• Any number of digits followed by a hyphen and any num-
ber of additional digits:
[0-9]+\-[0-9]+

• Any instance of the word butter at the beginning of a line:
^butter

• Any number with three or more digits at the beginning of
a line:
^[0-9][0-9][0-9]+

• Any line that starts with a digit or an uppercase letter:
^[0-9A-Z].+

You can combine ranges of characters in a set. And .+ means “any
character, one or more times.”

That’s just the beginning. There are metacharacters to represent all
kinds of things. A few more examples:

• Anything not in this set of characters: [^]

• A space: \s

• A tab: \t

• End of a line: $

• A return character: \n

You can also group elements in parentheses (), use the pipe |
character to indicate “or,” and much more. (There are many different
versions of regular expressions, with variation in which metacharacters
they support.)

114

Now let’s go back to searching for files by content, because that’s what
kicked off this topic. Let’s say I’m looking for any file that contains the
word Apple as the next-to-last word of a line. I start with the regular
expression:

Apple\s[A-Za-z]+$

That reads “the word Apple, followed by a space, followed by any string
of one or more uppercase or lowercase letters, at the end of a line.”
Now I feed that to grep, like this:

grep -RIE "Apple\s[A-Za-z]+$" .

Notice the two new flags: -E means “treat this as a regular expression,
not plain text,” and -I means “ignore binary files” (since I know I’m
searching only for matching text files, this makes the command run
much faster by skipping things like image, audio, and video files, but
also ignores things like Microsoft Word documents and PDFs).

Needless to say, you can also combine grep with other commands
using piping and redirecting (as discussed in the previous topic). For
example, to list all the files in a directory but show only those contain-
ing the word Apple, you might try:

ls /Library/Preferences | grep -ERI "Apple"

All this is still the tip of the iceberg. Regular expressions are useful
not just in grep but in Perl scripts and in Mac OS X apps such as Nisus
Writer Pro and BBEdit. And grep can do far more than what I’ve
described here.

Note: To learn more about grep specifically, read Kirk McElhearn’s
Macworld article Find anything with grep, and to learn more about
regular expressions more generally, read Jason Snell’s article Trans-
form HTML with Regular Expressions.

115

Add Logic to Shell Scripts

When I showed you how to Create Your Own Shell Script, the examples
I gave were simple sequences of commands: do this, then this, then
this; and you’re done. But sometimes you’ll need scripts to be more
flexible. They might need to accept input, make decisions, perform
calculations, and employ other sorts of logic.

If you’ve done any type of programming or scripting, you’ve certainly
encountered concepts like variables, conditionals, and loops. You can
use all these things in bash, too, although you’ll need to learn bash’s
idiosyncratic way of dealing with them. Alternatively, if these concepts
are brand new to you, shell scripting is one of the easiest ways to learn
by experimentation.

My intention here is not to teach you programming or provide exten-
sive tutorials, but only to provide a few simple examples to get you
started, along with some pointers to places where you can learn more.

Variables and Input
In bash, variables are about as simple as they get in any programming
language. You can pick almost any word you like to serve as a variable,
and you give it a value by typing = and a number or string (any se-
quence of characters). For example, if I want a variable called city, I
can create it and give it the value 12345 like so:

city=12345

Or, if I want it to have the value New York, I do it this way:

city="New York"

I put New York in quotation marks because it has a space in it. If the
string didn’t have a space, I could have left out the quotation marks,
but using them with strings is a good habit to get into, because multi-
word strings are pretty common. Other than that detail, you don’t need
to do anything special to tell bash whether a variable is an integer or a
string.

116

Note: You’ll notice that there are no spaces around the = sign. This is
crucial: if you used spaces (as in city = 12345), bash would mistak-
enly think that the variable name is the name of a command, and the
script wouldn’t work.

Later on, if I want to do something with my variable, such as display it
on the screen, use it in a computation, or compare it to another value,
I put a dollar sign ($) in front of it. For example, this (rather pointless)
script assigns a value to a variable and then displays it:

#!/bin/bash
city="New York"
echo $city

I’d like to show you three additional tricks with variables, two of which
involve getting input from the user.

Turn a Command Line Argument into a Variable
We’ve seen a lot of commands that take arguments. For example, the
command nano file.txt opens the file file.txt in the nano editor, and
ls /Library lists the contents of the /Library directory. You can do the
same thing with your own scripts: add one or more arguments after the
script’s name to provide more information to the script about what you
want it to do. Best of all, it requires almost no effort.

When you enter a script name followed by a space and one or more
terms, each term is automatically assigned to variables called $1, $2, $3,
and so on in the order the terms were typed. For example, suppose we
created this script and named it test.sh:

#!/bin/bash
echo "The first three arguments you entered were $1, $2, and $3."

Now run the script like so:

./test.sh Alice Bob Carol

The output will be:

The first three arguments you entered were Alice, Bob, and Carol.

117

If you entered more than three arguments, the rest will be ignored
(although you could add $4 to the script easily enough), and if you
entered fewer, the response would have some blanks, as in:

The first three arguments you entered were Alice, , and .

(And yes, you could add logic to the script to eliminate those blanks,
but I’m trying to keep things simple for now.)

Note that anything you can type on the command line can be a
variable, including pathnames and filenames.

Tip: If your script needs to know its own name for any reason, that’s
also stored in a variable automatically: $0.

Get Interactive User Input
You can also have the script ask you a question while it’s running and
turn your response into a variable. You do that with the command read
followed by the name of the variable you want the response to be
stored in:

#!/bin/bash
echo "What do you have to say for yourself?"
read reply
echo "Oh yeah? Well, $reply to you too!"

A script can carry on an extensive conversation with the user, if need
be, and each response can influence what happens later in the script.

Put the Output of a Command into a Variable
The last variable trick I want to mention is useful when your script
needs to run a command and then do something with that command’s
output. For example, if you use the date command to find the date,
you may want to put the date in a variable so that you can later use
it as part of a filename. Or if your script uses the pwd command to find
the path of the current directory, you might want to use that informa-
tion later on when saving a file.

118

To do this, surround the command in question (including any flags or
arguments) in parentheses, with a dollar sign $ before them, as in:

today=$(date)

or

directory=$(pwd)

Then, later on you could refer to $today or $directory, respectively, to
retrieve the contents of those variables.

Flow Control
Scripts frequently make decisions based on user input or information
they encounter as they run. For example, let’s say you have a script
that renames the files in a directory, but you want to rename them one
way if they’re text files, a different way if they’re PDFs, and a third way
if they’re PNG graphics. Or suppose you want to ask the user for a
number and perform one action if the number is less than or equal to
5, but a different action if the number is higher.

In cases like these, you need to use conditional statements like if, then,
and else. These are sometimes called flow control statements, because
they determine the path the script takes.

The bash shell has a weird way of structuring if/then statements.
Here’s the basic structure:

if [condition to test]
then
 action to take

fi

I want to point out a few key items here:

• The condition in the first line (a mathematical or logical test that
yields a true/false result) must be surrounded by spaces inside the
brackets. (Remember that bash forbids spaces around = in variable
assignments; here, they’re mandatory.)

119

• After the if line containing the condition, you need the word then—
either on a line by itself (as above), or on the same line after a
semicolon (as I’ll show in the next example).

• By convention, most people indent the command(s) that follow then
by a few spaces or a tab, but that’s just to make your script easier to
read. You can leave them out if you prefer.

• Every if statement must end with fi (that’s if backward), which is
equivalent to end or endif in other languages.

Here’s a complete script that shows how if works:

#!/bin/bash
echo "Pick a number."
read reply
if [$reply -le 5]; then
 echo "$reply is less than or equal to 5"

fi

(We’ll get to that funny -le thing in a minute.)

But wait… what if the number is greater than 5? Then you need to
expand the if statement to include else (what to do if the condition
presented is false).

You do it like so:

#!/bin/bash
echo "Pick a number."
read reply
if [$reply -le 5]; then
 echo "$reply is less than or equal to 5"

else
 echo "$reply is greater than 5"

fi

You can check for two or more conditions, too. For example, do one
thing if the number is less than 5, a second thing if the number is
exactly 5, and a third thing if the number is greater than 5.

120

To do this, you’ll add elif (else if), along with another then, like this:

#!/bin/bash
echo "Pick a number."
read reply
if [$reply -lt 5]; then
 echo "$reply is less than 5"

elif [$reply -eq 5]; then
 echo "$reply is exactly 5"

else
 echo "$reply is 5 or greater"

fi

Well, what about that funny -le in the first example, or the -lt in the
last one? Those mean less than or equal and less than, respectively.
Wacky, I know, but bash doesn’t use symbols like ≤ or <=, relying
instead on abbreviations for the most part. Here’s a longer list of
operators you might need to know:

• Is greater than: -gt

• Is less than: -lt

• Is equal to (for integers): -eq

• Is equal to (for strings): ==

• Is not equal to: !=

• Is greater than or equal to: -ge

• Is less than or equal to: -le

• Contains a string (not integer or empty): -n

• Is empty: -z

• Logical AND: &&

• Logical OR: ||

• Logical NOT: !

121

Be especially careful with those “is equal to” operators, because if you
use the wrong one for the type of thing you’re comparing, you’ll get the
wrong results (or an error message). For example, if $this is a number,
you might have if [$this -eq 5], but if $this is a string, you would
need to use if [$this == "Joe"].

Loops
If you need to perform an operation on every file in a directory, every
line in a file, or every whatever of a something, you need a loop. As in
most programming languages, bash offers several loop varieties. Here’s
how they look.

While Loops
If you need to repeat an action as long as some condition is true (or
while it’s true) but then stop when it becomes false, you want a while
loop. The structure is as follows:

while [condition to test]

do

 stuff to do

done

For example, this while loop displays the numbers from 1 to 10:

#!/bin/bash

count=1

while [$count -le 10]

do

 echo "$count"

 ((count++))

done

Note: Like if/then statements, the do can go on its own line, or on
the same line as while, separated with a semicolon.

122

We start by saying that the $count variable is 1, and each time through
the loop we display its current value and then add 1. That’s what the
((count++)) line does—the double parentheses mean “this is a mathe-
matical operation” and the ++ means “add 1.”

For Loops
A for loop starts with a list, series, or range of items (numbers, files,
etc.) and performs one or more actions once for each of those items. Its
basic structure is:

for variable in list
do
 stuff to do

done

As an example, here’s a simple script that displays five consecutive
messages, each with the number of the current iteration:

#!/bin/bash
for i in 1 2 3 4 5
do
 echo "This is iteration number $i"

done

You can also represent a range using brackets, as in {1..5} (notice that
there are just two periods in between the numbers, not three). And the
items don’t have to be numbers—they can be anything. For example:

#!/bin/bash
for i in Red Orange Yellow Green Blue
do
 echo "$i is a lovely color."

done

If an item in a range includes a space, you must escape the space by
putting a backslash before it:

for i in New\ York Seattle San\ Francisco

123

Math
When it comes to math, bash is at about first-grade level. It can add,
subtract, multiply, divide, and compare integers (whole numbers)…
and that’s about it. You can use external calculators (such as bc) in
your scripts to perform more advanced calculations, but bash itself
keeps it basic.

As we saw in While Loops, you can tell bash that you want it to calcu-
late something by surrounding it with double parentheses:

((7*5+3))

But if you want to do anything with that result, such as assign it to a
variable, you’ll need to add a $ to the beginning, which in bash is known
as arithmetic expansion:

number=$((7*5+3))

A different way to achieve the same result is to use the let command,
which also requires quotation marks around the entire expression,
including the variable, like this:

let "number=7*5+3"

Note: Although bash sometimes requires spaces and sometimes
forbids them, they’re optional in mathematical expressions. So,
number=$((7*5+3)) and number=$((7 * 5 + 3)) both work.

Learn More about Shell Scripting
You can find oodles of sites on the Web dedicated to teaching bash—
from beginner to advanced levels. Here are some examples:

• Apple’s Shell Scripting Primer

• A quick guide to writing scripts using the bash shell by Donovan
Rebbechi

• Bash Guide for Beginners by Machtelt Garrels

• Bash Scripting Tutorial at LinuxConfig

• Bash Tutorial (PDF) by Erik Hjelmås

124

Using Terminal in Recovery Mode
If your Mac has disk problems, a damaged copy of OS X, or other
issues that keep it from booting properly, you might use Recovery
mode to run Disk Utility or perform other maintenance. While in
Recovery mode, you can also use Terminal, which can come in handy
for running certain commands—for instance, finding files on your Mac
and copying them onto a flash drive.

In particular, you’ll need Terminal to reset a forgotten administrator
password. Here’s how you do it:

1. Restart your Mac and immediately hold down Command-R. When

the gray Apple logo appears, you can release the keys. In a mo-

ment or two, Recovery mode’s OS X Utilities window appears.

2. Choose Tools > Terminal. A Terminal window opens.

3. Type resetpassword and press Return. You may need to wait a

moment or two, but a new window called Reset Password opens.

If it’s behind the Terminal window, click it to bring it to the front.

4. Select your startup volume. From the Select the User Account

pop-up menu, choose your username.

5. Enter and confirm a new password. Click Save, and then click OK

to confirm the password reset.

6. Choose Reset Password > Quit Reset Password; then choose

Terminal > Quit Terminal. Finally choose OS X Utilities > Quit OS X

Utilities and click Restart.

One point to be aware of is that in Recovery mode, the bash shell
offers only a subset of its regular commands. To see what commands
are available, enter ls /bin /sbin /usr/bin /usr/sbin.

125

Install New Software
With just the software Mac OS X includes (and perhaps a few shell
scripts you write on your own or find on the Web), you can do a
tremendous number of useful activities on the command line. But
sooner or later you’re likely to encounter a task that requires a com-
mand-line program you don’t already have, which means you’ll need
to find and install it yourself. (Admittedly, this is not for everyone,
and if the next few paragraphs give you a headache, skip ahead to
Command-Line Recipes and forget I ever mentioned installing your
own software!)

Fortunately, the vast majority of command-line software created for
Unix and Unix-like operating systems (such as the various Linux
distributions) can run on your Mac too! (Refer back to What’s Unix?
for the differences between “Unix” and “Unix-like.”) Tens of thousands
of command-line programs are at your disposal! Just a handful of
examples:

• alpine: An email client

• FLAC: An audio format converter

• lynx: A command-line Web browser (yes, really)

• pdftohtml: A program that converts—you’ll never guess!—PDFs to
HTML format

• postgresql: A relational database manager

• wget: A tool for downloading files from the Web

Except… on the command line, it’s almost never as simple as down-
loading an application and running it. Because each Unix and Unix-
like operating system is a bit different, in most cases, a given program
must be compiled for the specific platform in question—that is, the raw
source code (in a language such as C) has to be run through a program
called a compiler to produce a binary file that will run on the target

126

system. (In fact, compiling can be vastly more complex than this
description suggests, but that’s the basic idea.)

So, if you have an interest in adding third-party command-line
software to your Mac, you’ll first need the tools that are required to
compile and install them. You can get them easily (see Use Command
Line Tools for Xcode, next), and in the process gain a bunch of extra
programs that may be useful to you on their own.

Next, you have a choice:

• If you’re a glutton for punishment (or want to see how things work),
you can Install Unix Software from Scratch. (do it at least once, just
for the experience.)

• If you’d like to make life easier for yourself, however, you can often
use a special program called a package manager to do the heavy
lifting of finding, downloading, and (if necessary) compiling the
software you want (see Use a Package Manager). Package managers
are way faster and more convenient than compiling software from
scratch, although not every program you may want to install is
available in that form.

Use Command Line Tools for Xcode

Let’s start with something simple: a free software package from Apple
called Command Line Tools for Xcode. This collection includes nearly
100 new command-line programs, mostly intended to perform func-
tions useful to developers but not needed by the typical Mac user.
However, since you now know your way around the command line,
you’re not a typical Mac user! And in order to install new command-
line software, you’ll almost certainly need tools such as make (to build
a set of binary files from their source files), which in turn relies on a
compiler such as gcc.

127

Both of these programs and dozens of other development tools are in
this set, as well as such goodies as:

• CpMac and MvMac: Versions of cp (copy) and mv (move) that
preserve Mac OS X-specific metadata and resource forks

• GetFileInfo: A command-line program that does something
similar to the Finder’s Get Info window

• git: The git version control system

• svn: The Subversion version control system

You can obtain and use these command-line tools with or without
Xcode, Apple’s software development system. Xcode is a free download
from the Mac App Store, but it’s about 2.5 GB in size and takes up
much more space than that after it’s installed. If you already have
Xcode on your Mac, you can add the Command Line Tools with this
command:

xcode-select --install

Follow the prompts to complete the installation.

If you don’t have Xcode and don’t want to bother with it, you can
download the Command Line Tools separately (less than 200 MB).
The catch is that you have to be registered as an Apple Developer—but
even if you don’t want to pay $99 per year to join the Mac Developer
Program, you can register for free to get access to Xcode and other
tools.

Once you’ve done that, go to Downloads for Apple Developers, sign in
with your Apple ID, and then download the version of Command Line
Tools that corresponds to your version of Mac OS X. Double-click the
installer and follow the instructions.

After you’ve installed the Command Line Tools for Xcode, you can
immediately run any of the commands it includes (for a full list, enter
ls /Library/Developer/CommandLineTools/usr/bin). You can also install
software from other sources, as covered in the remainder of this
chapter.

128

Install Unix Software from Scratch

Let’s suppose you’re looking for a command-line program that does X,
and sure enough, you run across a Web page with what appears to be
exactly the thing you want, a program I’ll call abc. But what the site
offers is not a compiled binary for Mac OS X—it’s just a bunch of
source files, so you have to build and install it yourself. How do you
proceed? Although the procedure can vary greatly, I want to show you
the basic steps involved in a typical installation.

But first, let me give you two key pieces of advice:

• Before you do anything else, check to see if the software is available
via a package manager (such as Fink, Homebrew, or MacPorts,
discussed ahead in Use a Package Manager)—this is often noted on
Web pages where you can download Unix software. If so, installing
the package manager, and then using that to install the abc
program, is almost certainly the path of least resistance. I’d espe-
cially recommend using a package manager if you plan to install a
different version of something that’s included with Mac OS X, such
as PHP or Apache, because compiling your own and installing it
manually could lead to unexpected conflicts.

• Look for installation instructions. In the vast majority of cases, the
developer lists the exact steps to follow (sometimes, even including
the download step), and if there are any variations for particular
operating systems, they’re often included in these instructions.
When in doubt, do exactly what the developer says.

Having read and followed many such instructions myself, I can tell you
that they usually involve this sequence: download, configure, make,
and make install. I explain those (and a couple of additional important
steps) next.

Download
If you’re using a Mac OS X Web browser to locate the software you
want to install, you can click a link to download it just as you would
any other file. Once you’ve done that, you might want to move the

129

downloaded file out of your Downloads folder to somewhere more
convenient, but that’s up to you.

On the other hand, if you already have a Terminal window open, you
can download software directly to your current directory, using the
curl command and the URL. (If you don’t see the URL but just a link,
you can right-click (Control-click) the link and choose Copy Link to put
the URL on your clipboard.) To download the file, type curl -O (that’s
an uppercase o, not a zero) followed by a space and the URL, as in:

curl -O http://some-web-site.com/something/abc-1.2.3.tgz

In this example (as very often occurs), the file that downloads includes
the name of the program (abc) and a version number (1.2.3).

Tip: For more on using curl, see the recipe Download a File.

Decompress
Because command-line software often includes many source files that
must be compiled to make the final product, they’re typically archived
into a single file (often using a program called tar, for “tape archive”)
and then compressed (often using a program called gzip). The result-
ing file usually ends in .tgz or .tar.gz. (I hasten to point out that there
are many other ways to archive and compress files, and thus many
other extensions in use; this is just an example.)

If you’ve downloaded the file using a Mac OS X Web browser such as
Safari, it may be decompressed automatically, at which point you’ll end
up with a folder (such as abc-1.2.3) in your Downloads folder.

If not, open a Terminal window, navigate to the folder containing the
downloaded file, and enter (substitute the actual filename, of course):

tar -zxvf abc-1.2.3.tgz

If the file ends in .bz2, use this instead:

tar -jxvf abc-1.2.3.tar.bz2

At this point you’ll have a folder (such as abc-1.2.3) containing the
files you need to work with.

130

Read “Read Me”
Now stop for a moment. Look through the files in that folder (either
in the Finder or on the command line, using the tools you’ve already
learned about in this book, such as cd). You will very likely find one or
more files with names like README or INSTALL. These contain informa-
tion about the program (README) and how to install it (INSTALL). They’re
invariably plain text files that you can open in a text editor (TextEdit,
BBEdit, nano, or whatever) or view using a program such as less or cat.
In any case, read them. They’ll contain important instructions, and
whatever they say takes precedence over what I tell you here!

One of the important things you might discover in a README file (or on
the Web) is that the software you’re trying to install has certain depen-
dencies—that it, it could rely on another program (or a library, which
supplies features that any program can tap into) which must already be
installed before the program will work. And that dependency might, in
turn, have other dependencies. Working through those can sometimes
be a long and frustrating process, which a reason to consider using a
package manager when possible (see Use a Package Manager).

Configure
One of the instructions in the README or INSTALL file should tell you
whether or not you need to perform a configuration step. This isn’t
always necessary, and when it is, sometimes the preferred method is
to edit a text file with information about your system. But more often
than not, the step you take at this point is to run a script called config‐
ure. Assuming you’re in the same directory as the configure script, you
do it like this:

./configure

The job of the configure script is to create a file called a makefile,
which in turn contains all the instructions needed to compile the
program for your particular computer. In most cases, configure doesn’t
require any interaction; you just run it and move on to the next step.

131

Make
So, that makefile you just made in the last step with the configure
command? Here’s where you use it. Assuming once again that you’re
in the directory where the software resides, simply enter:

make

That’s it. The make command follows the instructions in the makefile
to compile binary files for your Mac from the source files provided.
This process may take anywhere from less than a second to many
minutes or more, depending on the complexity of the software. You’ll
probably see messages in Terminal as the build progresses. You’ll
know the process is done when you see your command prompt again.

Make Install
Like Mac OS X apps, command line programs sometimes require lots
of components to exist in specific places, beyond the executable file
itself. Now that you have created all those components with the make
command, it’s time to put them in the right locations and assign the
proper permissions. To do so, enter:

sudo make install

Even for large, complex installations, the make install command is
usually quite speedy. Once it has finished, you can run your newly
installed software just as you would any other command line program.

Use a Package Manager

Now that you know the manual way to install command-line software,
let’s look at a simpler approach: using a type of software known as a
package manager. This whole rigamarole of figuring out what depen-
dencies a given program has; downloading, configuring, making, and
installing all of them; and then downloading, configuring, making, and
installing the program you want, can all be automated into a single-
step process. That’s what package managers do—they handle all the
tedious details for you.

132

In most cases, package managers will download and install prebuilt
binaries of the software you’re interested in (as well as any dependen-
cies), which saves time, disk space, and hassle. If a binary isn’t avail-
able, if the latest available binary is out of date, or if there’s some
complicated reason why it’s better to compile a particular program on
your own Mac, the package manager can still do all that for you.

And, although not every command-line program you could want is
available via a package manager, many thousands of them are, includ-
ing all the most popular tools and programs.

Tip: As a reminder, you’ll need to have installed the Command Line
Tools for Xcode before installing or using a package manager.

I’m aware of five reasonably full-featured package managers for Mac
OS X, of which three (Fink, Homebrew, and MacPorts) are distinctly
more popular than the other two (Pkgsrc and Rudix). And, of the three
“cool kids,” almost anyone will tell you that the real contest these days
is between the venerable MacPorts and newcomer Homebrew. I’ll say
a bit about each package manager, but to some extent, you can’t make
a bad choice; as long as the one you use offers the package that you’re
interested in, it’ll be way easier than starting from scratch.

As you choose a package manager, keep these tips in mind:

• Pay attention to where on your disk the package manager stores
binaries, and whether you have a choice in the matter. There are
good reasons to choose any of several locations, but some of them
are controversial (I’ll give an example when I talk about
Homebrew).

• Whichever location your package manager uses for binaries, it must
be included in your PATH for the software to operate correctly.
That’s one advantage of Homebrew’s use of /usr/local/bin—that’s
already in your PATH by default. To make sure the binary location
is in your PATH, follow the steps in Modify Your PATH.

• Package managers differ in how they treat dependencies. Some try
to supply all their own dependencies, while others rely as much as

133

possible on programs and libraries included with Mac OS X. The
former approach can take longer, use more space, and leave you
with duplicates of certain programs. But the latter approach could
break your programs when Apple updates OS X and in so doing
removes a dependency (or supplies an incompatible version).
There’s no right answer here, just different approaches to weigh.

• Under some circumstances, it might be possible to use more than
one package manager at the same time, but I recommend against it.
If you should happen to install the same software with each of two
package managers, it’ll be hard to predict which one runs when you
enter the program’s name (it’s the one whose path happens to be
listed first in your PATH), and dependencies could get complicated.

With that background, here’s an overview of Mac package managers.
(To download and install any of them, follow the instructions provided
on their respective Web sites.)

Fink
Fink is the oldest package manager for the Mac, having first appeared
in 2000. It’s based on a package manager for Debian Linux called apt-
get, and as of March 2015 it had over 11,000 supported packages plus
another 11,000 or so that are outdated and no longer maintained. Fink
tends to install its own dependencies rather than relying on software
included with Mac OS X. It creates and uses the directory /sw by
default.

Here are examples of how you might use Fink:

• Show all packages Fink can install:
fink list

• See if a particular program (lynx in this example) is available:
fink list lynx

• Update Fink’s listing of available packages:
sudo apt-get update

• Install the lynx package:
sudo apt-get install lynx

134

Homebrew
The new kid on the block, Homebrew, has made a big splash in just a
few years because it’s modern, straightforward, and easy to use—it has
a lot less baggage and clutter than Fink and MacPorts. On the other
hand, because it’s relatively new, it also has fewer packages—just over
3,000 as of early 2015. Speaking of which, Homebrew doesn’t use the
term “packages”; instead, it’s riddled with beer-brewing metaphors. A
given program is offered either as a formula (instructions to download
and compile the software) or as a bottle (a compiled binary).

Homebrew is written in Ruby, and specializes in tools of use to Ruby
on Rails developers. It relies on existing Mac OS X software when
possible, making it less complex than Fink or MacPorts, but with a
greater danger of problems after upgrading Mac OS X. It does not use
sudo for any of its work, making it less risky to use than other package
managers.

However, unless you expressly specify a location, Homebrew takes
over your /usr/local directory (and uses /usr/local/bin for the bina-
ries it installs), which could be considered a misuse of that location’s
intended purpose, and which might conflict with other software you’ve
installed there by hand. Among other issues, that location makes it
harder to remove Homebrew and all its installed binaries without also
removing software that got in that directory in some other way.

In addition, it changes the ownership of that entire directory to you,
the current user. That’s fine if you’re the only user of your Mac, but
on a Mac with multiple users, other users may be unable to access that
directory or run software in it—even if that software wasn’t installed by
Homebrew. Conversely, if you had already created that directory and
installed other software there that requires root ownership, Homebrew
may display error messages because it really wants everything in that
directory to have your username as the owner.

Some usage examples:

• Show all packages Homebrew can install:
brew search

135

• See if a particular program (lynx in this example) is available:
brew search lynx

• Install the lynx package:
brew install lynx

All things considered, Homebrew is probably the best package manag-
er to try if you just want to dip your toes in, or install a few random
programs, because the learning curve is so gentle. (And, as I said, it’s
great for Ruby on Rails developers.) Otherwise, my top choice would
be our next contender: MacPorts.

MacPorts
MacPorts started life in 2002 as DarwinPorts, and is based on the
Ports system for BSD (which is appropriate since Mac OS X’s Unix
layer is itself based on BSD). It now has the largest selection of pack-
ages (called ports) available—over 22,000. MacPorts uses the /opt/
local directory by default. Unlike Fink, it relies as much as possible
on programs and libraries already installed as part of Mac OS X.

The MacPorts syntax should look familiar by now:

• Show all packages MacPorts can install:
port list

• See if a particular program (lynx in this example) is available:
port search lynx

• Update MacPorts’ listing of available packages:
sudo port -d selfupdate

• Install the lynx package:
sudo port install lynx

If I had to pick just one package manager to recommend, it would
be MacPorts. It’s not the easiest to use (the documentation goes on
forever), but it’s solid and has a thorough library.

136

Pkgsrc
Unlike all the other package managers listed here, pkgsrc works on
virtually every Unix and Unix-like operating system. As such, it might
be a good choice if you also use it on another platform, but it’s less
tailored to the specific needs and preferences of Mac users. Pkgsrc
defaults to using either the /usr/pkg or the ~/pkg directory, depending
on which installation mode you use. It currently offers over 12,000
binary packages.

Some syntax examples:

• Show all packages pkgsrc can install:
pkgin avail | wc -l

• See if a particular program (lynx in this example) is available:
pkgin search lynx

• Install the lynx package:
sudo pkgin -y install lynx

Rudix
Whereas Homebrew is written in Ruby, Rudix is written in Python,
so it may be particularly attractive to Python developers. It has the
smallest selection of packages by far—less than 300—but of course if
that selection includes all the ones you care about, that’s not an issue.
Rudix offers self-contained packages with all dependencies included,
except those provided by Mac OS X libraries. It uses the /usr/local
directory by default, just like Homebrew, but at least it doesn’t change
the ownership of that directory. On the downside, that means you’ll
have to use sudo to run the software Rudix installs.

Here are some example commands:

• Show all packages Rudix can install:
rudix search

• See if a particular program (lynx in this example) is available:
rudix search lynx

• Install the lynx package:
sudo rudix install lynx

137

Command-Line Recipes
You’ve learned about the raw ingredients and the tools you need to
put them together. Now it’s time for some tasty recipes that put your
knowledge to good use! In this chapter, I present a selection of short,
easy-to-use commands and customizations you can perform in the
bash shell. Many use features, functions, and programs I haven’t yet
mentioned, and although I describe essentially how they work, I don’t
go into detail about every new item included in the recipes. Just add
these herbs and spices as directed, and enjoy the results!

Misplaced hyphens! Your ebook reader may insert extra hyphens
into longer lines of command-line text shown in this ebook. Please
see the first item under Basics, earlier, for more information about
how to avoid extra hyphens.

Change Defaults

Most Mac OS X applications, from the Finder to Mail to iTunes, store
their settings in specially formatted property list, or .plist, files. Sur-
prisingly, applications often have hidden preferences that don’t show
up in their user interfaces—but if you put just the right thing in the
preference file, you can change an application’s behavior in interesting
ways, or even turn on entirely new features.

One way to edit preference files is to open them in a text editor, or in
Apple’s Xcode development environment (which is available as a free
download from the Mac App Store). But another, often easier way, is
to use a command called defaults which can directly add, modify, or
remove a preference from a .plist file. The recipes in this first set all
use the defaults command.

Before using these commands to alter an application’s defaults, quit
the application if possible (obviously that’s not an option with the
Finder or the Dock, but the recipes that involve those apps include
directions to force-quit and relaunch them).

138

Tip: Many Web sites list find hundreds of additional settings you can
change—for example, at defaults-write.com, dotfiles, and Secrets.

Expand Save Dialogs by Default
Ordinarily when you use an application’s Save or Export command,
the Save dialog that appears gives you only a simple pop-up menu
from which to select a location for a file; you have to click the triangle

button to expand it so it shows your entire computer. To make all
Save dialogs appear in their expanded state by default, enter this:

defaults write -g NSNavPanelExpandedStateForSaveMode -bool TRUE

(To reverse this setting, repeat the command, changing TRUE to FALSE.)

Show Hidden Files in the Finder
By default, the Finder keeps some files and folders hidden—those
whose names begin with a period and many of the Unix files and
directories at the root level of your disk.

That’s usually good, because it prevents you from changing things that
could cause your computer to break, but if you want to see all your files
and folders, enter this:

defaults write com.apple.finder AppleShowAllFiles TRUE; killall
Finder

(To reverse this setting, repeat the command, changing TRUE to FALSE.)

Prevent Dock Icons from Bouncing
When an application wants to get your attention, its Dock icon usually
bounces. If you find this distracting and want to turn off the bouncing,
enter the following:

defaults write com.apple.dock no-bouncing -bool TRUE; killall Dock

(To reverse this setting, repeat the command, changing TRUE to FALSE.)

139

Change the Screenshot Format
When you take a screenshot in Mac OS X (using either the Grab utility
or the Command-Shift-3 or Command-Shift-4 keyboard shortcuts),
the resulting pictures are normally saved, on your Desktop, in PNG
(Portable Network Graphics) format. If you prefer another format,
such as JPEG, enter this:

defaults write com.apple.screencapture type JPEG; killall
SystemUIServer

Use the same command, but substitute TIFF, PNG, or PICT for JPEG to use
one of those formats.

Create Screenshots without Window
Shadows
You can take a screenshot of a window by pressing Command-Shift-4,
then pressing the Space bar and clicking the window. When you do so,
the screenshot includes a large, translucent drop shadow, which might
not be what you want. (You’ll notice that we leave out the shadows in
most of the screenshots in Take Control books to save space while
making the graphics larger and more legible.)

It’s easy enough to zap the shadows after the fact using Photoshop or
various other graphics utilities, but if you want to avoid capturing them
in the first place, use this command:

defaults write com.apple.screencapture disable-shadow -bool TRUE;
killall SystemUIServer

To resume capturing shadows, repeat the command but with FALSE
instead of TRUE.

Use Single-App Mode
If you have lots of apps open and find all that screen clutter visually
distracting, you could manually hide each app (other than the one
you’re currently using), or you can switch to an app while simultane-
ously hiding all the rest by Option-clicking the app’s Dock icon.

140

But if you’d prefer to have OS X hide all background apps automatical-
ly, you can do so with this command:

defaults write com.apple.dock single-app -bool TRUE; killall Dock

After you do this, switching to any app not only brings it to the front
but also hides any other running apps (without quitting them). To
return to the standard behavior, repeat the command but with FALSE
instead of TRUE.

Copy Text from Quick Look
Mac OS X’s Quick Look feature lets you select a file in the Finder and
press the Space bar for an instant preview. It’s much quicker than
opening an app just to view the file, and it works with most common
file formats, including plain text, Microsoft Office files, documents
from Apple apps like Pages, Numbers, and Keynote, as well as
graphics, sounds, videos, and more.

There’s just one problem: if you want to select a portion of the text in
one of these files and copy it, you’ll have to launch the app, because
Quick Look doesn’t let you highlight and select text…unless you use
this handy command:

defaults write com.apple.finder QLEnableTextSelection -bool TRUE;
killall Finder

After using this command, try Quick Look on a text or word processing
document, and while the preview is visible, you should be able to select
and copy text. To reverse the command, replace TRUE with FALSE.

Disable App Nap
In 10.9 Mavericks, Apple introduced a performance-enhancing,
energy-saving feature called App Nap. App Nap intelligently reduces
the system resources used by background apps, in order to make the
foreground app more responsive while using less power overall.
However, sometimes you may not want your background apps to nap—
you may want them to have access to your full system resources, for
example to perform a complex calculation or graphics operation while
you work on something else.

141

You can disable App Nap for any particular app by selecting it, choos-
ing File > Get Info, and selecting Prevent App Nap. (If that checkbox
is missing, that app doesn’t support App Nap anyway.) It’s usually
preferable to disable App Nap one app at a time, because disabling it
globally can dramatically shorten your battery life.

But if background performance is more important to you than power
savings and you’d like to disable App Nap globally, you can do it like
this:

defaults write NSGlobalDomain NSAppSleepDisabled -bool TRUE

As usual, reenable it by replacing TRUE with FALSE.

Press the Power Button to Show the
Shutdown Dialog
Prior to 10.9 Mavericks, pressing the power button (or key) on your
Mac for a second or so displayed a dialog with Restart, Sleep, Cancel,
and Shut Down buttons. But starting in Mavericks, Apple changed the
behavior so that pressing that button (or key) for a second or so puts
your Mac to sleep, while pressing Control-Eject brings up the shut-
down dialog.

To restore the old behavior of displaying the shutdown dialog by
pressing the power button (or key), enter this:

defaults write com.apple.loginwindow PowerButtonSleepsSystem -bool
FALSE

If you change your mind later, you can undo this command by repeat-
ing it with TRUE in place of FALSE.

Stop the Help Viewer from Floating
This may be my favorite “defaults” recipe of all time. In recent versions
of OS X, the Help window (which appears when you choose most
commands from any application’s Help menu) floats above all other
windows, no matter what you do. You can minimize it to the Dock to
get it out of the way, but that makes it awkward for switching back and
forth between the Help window and your app.

142

With this simple command, you can make the Help window act like
any other window—it’ll appear in front initially, but you can click
another window to bring that window in front of the Help window.
Here’s the command:

defaults write com.apple.helpviewer DevMode -bool TRUE

To return the Help window to its irritating always-float behavior,
repeat this command with FALSE instead of TRUE.

Use a Separate Password for FileVault
Do you use FileVault to protect your Mac’s data? Good for you! (If not,
you might want to check out my book Take Control of FileVault.)
Ordinarily, you unlock FileVault in the process of logging in with your
regular account password. But if you’re extremely security-conscious
and want to use a different password for FileVault than your login
password, you can—using a defaults write command, of course. Be
aware that you’ll face two consecutive login prompts whenever you
start or restart your Mac—the first to unlock FileVault, and the second
to log in to your user account.

The way to accomplish this is to turn off FileVault’s Auto-login feature,
which normally logs you in to your account using the same password
you just entered to unlock FileVault. To do this, enter:

sudo defaults write /Library/Preferences/com.apple.loginwindow
DisableFDEAutoLogin -bool TRUE

After you do this, you’ll get two password prompts when you restart,
but the two passwords will still be the same. You can’t (readily) change
your FileVault password, but you can change your account’s login
password in System Preferences > Users & Groups > Password by
clicking Change Password and following the prompts.

To return to automatic login, first change your login password back to
match your FileVault password, and then use this command:

sudo defaults delete /Library/Preferences/com.apple.loginwindow
DisableFDEAutoLogin

143

Perform Administrative Actions

This group of recipes involves administrative tools—things you might
need to do on a multi-user Mac, a server, or a remote Mac.

Use Software Update from the Command
Line
If you want to update Apple software on your Mac from the command
line instead of using the Updates view of the Mac App Store app, or if
you want to update Apple software on a remote Mac via SSH, enter the
following command:

sudo softwareupdate -i -a

The -i and -a flags together mean “go ahead and install every available
update.” Note that even though Apple rolled the features of Software
Update into the Mac App Store starting with Mountain Lion, this
command applies only to Apple software, not to third-party software
downloaded from the App Store.

List Your Mac’s Reboot History
When did you last boot your Mac? A quick way to check is to enter:

last reboot

The answer will appear in this format (possibly with earlier reboots
listed first, depending on your Mac model and the version of Mac OS X
you’re using):

wtmp begins Sat Mar 21 10:33

Show How Long Your Mac Has Been Running
A slightly different take on the previous recipe is a command that tells
you the elapsed time since your last (re)boot (as opposed to the raw
date and time):

uptime

144

The answer will look something like this:

19:09 up 4 days, 22:32, 3 users, load averages: 1.47 1.82 1.87

In this display, the first group of numbers is the current time. That’s
followed by how long the Mac has been running since its last (re)boot.
In this example, it’s been up for 4 days, 22 hours, and 32 minutes. The
remainder of the line shows the number of users and load averages
over the last 1, 5, and 15 minutes—all of which you can usually ignore.

List Users Who Logged In Recently
Is your Mac used by a number of different people? Do users sometimes
log in remotely? If you’d like to know who’s been logging in recently,
you can get a lengthy list with this command:

last

This command lists the users who have logged into this machine, the
IP address or terminal from which they logged in, and important
system events such as shutdowns and restarts.

Restart Automatically after a Freeze
If your Mac locks up completely while you’re present, you can hold
down the power button for several seconds until it turns off
completely, and then press the button again to turn it back on. But
if an unattended Mac freezes, it will sit there, frozen, until someone
comes along to restart it. That could cause problems, especially when
that Mac is functioning as a server, or if you need to access its files
remotely.

To tell your Mac you want it to attempt an automatic restart in the case
of a system freeze, enter this:

sudo systemsetup -setrestartfreeze on

This feature doesn’t work all the time, but it’s worth a try. Repeat the
command with off instead of on to return to the default behavior of
staying frozen until you do something about it manually.

145

Find Interesting Stuff in Log Files
Many Unix and Mac OS X applications and background processes
constantly spit out log files detailing what they’ve been up to and,
perhaps most important, any errors they’ve encountered. Most system
processes store their log files in /var/log, and although you can open
them in any text editor, they tend to be so long and inscrutable as to
make the exercise more bother than it’s worth. Luckily, you can use
the grep command to sift through log files looking for specific strings.

For example, to look through the main system log for every instance
of the word error (a sure sign of an interesting entry), enter this:

grep error /var/log/system.log

Or, to look for all entries involving Time Machine (whose background
process is called backupd), enter this:

grep backupd /var/log/system.log

If you’d rather have a paged display instead of dumping the output
directly onto the command line, you can pipe it through less, like so:

grep backupd /var/log/system.log | less

Modify Files

A number of common recipes involve modifying files in some way.
Here’s a selection.

Change the Extension on All Files in a Folder
Yosemite’s Finder, at long last, has a built-in batch renaming function.
Yay! But if you’re using an older version of Mac OS X, or if you simply
want a handy way to rename a large number of files in one go from the
command line, this recipe is for you.

The mv command, discussed in Move or Rename a File or Directory,
has an unfortunate shortcoming in that it can’t rename a batch of files
all at once with wildcards. But never fear, you can still get the job done.

146

Begin by creating the following shell script, using the instructions in
Create Your Own Shell Script:

#!/bin/bash
for f in $3/*.$1; do
 base=`basename $f .$1`
 mv $f $3/$base.$2

done

Note: This script makes use of the backtick (`) character, which is
called a grave accent when placed over a vowel. It’s on the same key
as the tilde (~), and should not be confused with the apostrophe (')
or the backslash (\).

Make sure it’s located somewhere in your PATH, and that it’s exe-
cutable (see Understand Permission Basics, earlier). I call this script
br.sh, for “batch rename.”

To run this script, enter the script name followed by the old extension,
the new extension, and the directory in which to make the change—in
that order.

For example, to change all the files in ~/Documents with the
extension .JPG to end in .jpeg, enter this:

br.sh JPG jpeg ~/Documents

Decompress Files
If you decide to download Unix software (or source code to compile
yourself), it may be packaged in any of several unfamiliar archive
formats. As I mentioned in Decompress, a file ending in .tar is a “tape
archive” (a way of bundling files together without necessarily com-
pressing them); the extensions .gz and .bz2 refer to different compres-
sion mechanisms, and you may see a combination of these (such as
archive.tar.gz).

147

148

To decompress and/or unpack these, use one of the following com-
mands, based on the extension(s) the file has:

tar -xf archive.tar

tar -xzf archive.tar.gz

tar -xjf archive.tar.bz2

As you can see, each compression format requires a different flag—use
-z for .gz (or .tgz) and -j for .bz2 (or .bz).

Although they’re more common in the Windows world than in the
Unix world, you may also encounter files compressed with Zip (.zip).
You can decompress these in the Finder by double-clicking them, but
if you want to do so on the command line, you can do it like this:

unzip archive.zip

Convert Documents to Other Formats
Mac OS X includes a marvelous command-line tool called textutil,
which can convert text documents between any of numerous common
formats. This can be particularly useful in cases where you don’t have
Microsoft Word, or aren’t satisfied with the way it saves files in other
formats. Here are a couple of examples.

Convert a File from RTF to Word (.doc)
To convert the file file1.rtf (RTF format) to Word format (.doc) and
save it as file2.doc, enter this:

textutil -convert doc file1.rtf -output file2.doc

Convert a File from Word (.doc) to HTML
To convert the file file1.doc (Word format) into HTML format and
save it as file1.html, enter the following:

textutil -convert html file1.doc

(When no filename is specified, textutil uses the same filename with
an extension corresponding to the format you requested.)

149

Note: The textutil program supports other formats too; just substi-
tute the format of your choice for doc or html in the examples above.
Among the most useful options are txt (plain text), html (HTML),
rtfd (RTF with attachments), docx (Open Office XML), and webarchive
(Web archives, like Safari uses).

Work with Information on the Web

The command-line environment includes a handy program called curl
that can connect to Web, FTP, and other servers and upload or down-
load information. Here are a few examples of how to use it.

Download a File
If you know the exact URL of a remote file on a Web, FTP, SFTP, or
FTPS server, you can fetch it with this simple command (fill in the
URL as appropriate):

curl -O URL

(Again, that’s an uppercase letter o, not a zero.) The file is downloaded
to your current directory.

Save a Local Copy of a Web Page
When you browse the Web in Safari, you can save the source of any
Web page. You can do the same right on the command line, without
ever opening a browser, using this command:

curl URL > filename.html

For example, to save the source of the TidBITS home page to a file
named tidbits.html, you can enter this:

curl http://tidbits.com/ > tidbits.html

Note that this command doesn’t download graphics, style sheets, or
other files linked from the Web page, so the page may not look entirely
correct if you open it in a browser.

Put the Source of a Web Page on the
Clipboard
What if you don’t want to save a Web page to a file, but instead want to
put it on your Clipboard so you can paste it into another application?
Enter the following:

curl URL | pbcopy

For example:

curl http://tidbits.com/ | pbcopy

Manage Network Activities

The following several recipes involve ways of getting information about
local and remote networks, and the computers running on them.

Get Your Mac’s Public IP Address
If your Mac is connected to the Internet using a gateway, modem, or
router, its private IP address (the one you can see in System Prefer-
ences > Network) probably isn’t the same as the public address that
other computers see.

To find out your Mac’s current public IP address, enter this:

curl -s http://icanhazip.com/simple/; echo

The echo command is there only to make sure there’s a blank line after
your IP address when it’s reported, to improve readability.

Get a List of Nearby Wi-Fi Networks
The Wi-Fi menu in your menu bar lists nearby Wi-Fi networks. But
if you’ve turned off that menu, or simply want to get at that informa-
tion from the command line, enter this:

/System/Library/PrivateFrameworks/Apple80211.framework/Versions/A/
Resources/airport -s

150

It displays nearby networks’ names (SSIDs), MAC addresses, encryp-
tion types, and other useful information. To learn what else this tool
can do, substitute the -h (help) flag for -s. Yes, the full path is needed
for executing this command: if you think you’ll use it often, you can set
up an alias for it (see Customize Your Profile, earlier).

View Your Mac’s Network Connections
Which servers and other network devices is your Mac currently
connected to? For all the details (in fact, far more details than you
probably want), try:

netstat

The netstat command spits out a tremendous amount of detail about
which protocols are sending data to or receiving data from which
addresses on which ports and a great deal more. It can be overwhelm-
ing but also fascinating to get a glimpse into what processes are doing
various things online. (And don’t forget, there’s always man netstat—
see Get Help.)

Find Out Which Applications Have Open
TCP/IP Network Connections
You take it for granted that your Web browser and email program are
connected to the Internet. But what other apps or background process-
es have network connections? Is anything covertly “phoning home?”

To see a list of processes you own that are accessing the Internet right
now, enter this:

lsof -i

To see a list of all processes accessing the Internet, enter:

sudo lsof -i

Either way, you get a list of the processes on your Mac that currently
have Internet connections, along with the domain names or IP ad-
dresses to which they’re connected, the ports they’re using, and other
useful tidbits.

151

Determine If Another Computer Is Running
Did your server crash? Is another Mac on your network turned on and
awake? The easy way to find out if another computer is on, awake, and
connected to the network is to use the ping command.

Enter this (substituting the remote computer’s domain name or IP
address):

ping address

If you see a sequence of lines that look something like this, the com-
puter is responding:

64 bytes from 216.168.61.41: icmp_seq=0 ttl=49 time=79.27 ms

Press Control-C to stop pinging. If more than 30 seconds go by without
any such line appearing, either the computer is offline, it is configured
not to respond to pings, or there’s a network problem.

Get Information about an Internet Server
What’s the IP address of that Web server you’re connecting to? An easy
way to find out is to use the host command:

host domain-name

This command returns the IP address(es) for that domain name. It
also indicates if the domain name is an alias to another computer, and
it lists any mail exchange servers associated with that domain. For
example, enter host www.takecontrolbooks.com to learn the IP address
of the Take Control Web server, the fact that www.takecontrolbooks.com
is actually an alias (pointer) to a computer called
takecontrolbooks.com, and the domain name and IP address of the
takecontrolbooks.com mail exchange server.

Alternatively, you can use a command called nslookup (name server
lookup) command, which takes either a domain name or an IP address
as an argument:

nslookup tidbits.com

nslookup 173.255.250.214

152

In addition to showing you a host’s domain name or IP address,
nslookup gives you the IP address of the DNS server it consults, which
can be handy to know if you’re trying to diagnose a DNS problem.

Note: A newer command, called dig (domain information groper—
yes, really), works much the same way and can also supply the IP
address of a domain name, but requires special flags to do reverse
lookups of domain names from IP addresses and presents it output
in a much less readable form than nslookup or host.

Get Information about a Domain Name
If you need to find out what person or organization owns a domain
name, enter the following:

whois domain-name

For example, if you enter whois tidbits.com, you’ll likely learn which
registrar handles the domain, the addresses of its name servers, and
(perhaps) contact information for the domain’s owner. (Many domain
registrations omit owner contact information to preserve privacy.)

Flush Your DNS Cache
When you connect to any Internet service (a Web server, an email
server, the iTunes store, or whatnot), your Mac asks a DNS server
to convert the server name (like tidbits.com) into an IP address (like
173.255.250.214). Your Mac then stores that IP address for a while
in a DNS cache, so that the next time you connect to the same server,
it can skip the DNS lookup step and get you there a bit faster.

However, sometimes server addresses change, and sometimes your
DNS cache can get corrupted. In either case, you might find yourself
connecting to the wrong site (or not connecting at all). The simplest
solution is to flush the DNS cache, forcing Mac OS X to look up IP
addresses from scratch the next time you try to connect to each server
by name.

153

The way you do this varies depending on your version of Mac OS X:

• 10.10 Yosemite: sudo discoveryutil mdnsflushcache

• 10.7 Lion–10.9 Mavericks: sudo killall -HUP mDNSResponder

• 10.6 Snow Leopard: sudo dscacheutil -flushcache

Note that since these commands use sudo, you’ll have to supply an
administrator password.

Verify an RSA Fingerprint for SSH
In Step 2 of Start an SSH Session, I said you must confirm that the
fingerprint you’re seeing for a remote computer matches the one it’s
supposed to have. But how can you know what the computer’s finger-
print is supposed to be?

You can ask the administrator of the remote computer, if there is one.
But if the computer is one of your own (or you at least have physical
access to it), you can determine its fingerprint with the following
command, which you enter in Terminal on that Mac:

ssh-keygen -l -f /private/etc/ssh_host_rsa_key.pub

The command above works for Macs running Yosemite. If the comput-
er is running a different operating system or a different version of Mac
OS X, the key might be located in another place (besides /private/etc),
so you’ll have to find it—either using a command such as find or
locate, or by searching the Web to find the key location for that partic-
ular operating system.

Work with Remote Macs

These two recipes help you work with Macs you’re accessing remotely.

Restart a Remote Mac
If you need to reboot the Mac you’re sitting in front of, you can simply
choose Apple > Restart.

154

But what if you’re logged in to another Mac via SSH? To restart it, just
enter this:

reboot

Needless to say, you should use this with caution—anyone else who
happens to be using the computer at the time might be unhappy!

Note: You can use this command to reboot your own Mac, too, but
it’s usually safer to choose Apple > Restart.

Restart a FileVault-protected Mac without
a Password Prompt
If you need to remotely reboot a Mac that’s protected with FileVault,
it’s possible to do so without the Mac getting stuck on the password
screen when it turns back on.

First, make sure the remote Mac supports the authrestart command.
You can check either by consulting Apple’s support article OS X: Macs
that support authenticated restart with FileVault or by connecting to
the remote Mac via SSH (or, if you have physical access to the Mac,
launching Terminal on it) and entering:

fdesetup supportsauthrestart

If that command returns true, you’re good to go.

The command to restart the system immediately without a password
prompt afterward is:

sudo fdesetup authrestart

Enter that, supply your administrator password, and the remote Mac
should reboot without any further fuss.

155

Troubleshoot and Repair Problems

These next few recipes can help you solve problems that keep your Mac
from working correctly.

Delete Stubborn Items from the Trash
Occasionally, you may find that no matter what you do, you can’t
empty your Trash. Maybe you get an inscrutable error message, or
maybe it just doesn’t work. If this happens, the first thing to try is
choosing Finder > Secure Empty Trash. If that doesn’t work, however,
try the following (taking all the necessary precautions associated with
sudo, of course):

sudo rm -ri ~/.Trash/*

The rm command prompts you for confirmation to remove each item.

Warning! Do be certain to type these commands exactly right; using
sudo rm can do some serious damage if you’re not careful!

If that doesn’t work, try each of these until the Trash is empty:

sudo rm -ri /.Trashes/*

sudo rm -ri /Volumes/*/.Trashes/*

Figure Out Why You Can’t Unmount
a Volume
Have you ever tried to eject a CD, disk image, or network volume, only
to see an error message saying the volume is in use? If so, the madden-
ing part can be figuring out which process is using it so you can quit
that process. So enter the following, substituting for VolumeName the
name of the volume you can’t unmount:

lsof | grep /Volumes/VolumeName

This command shows you any processes you own that are currently
using this volume; armed with this information, you can quit the

156

program (using the kill command if necessary, as described in Stop a
Program). One frequent offender: the bash shell itself! If that’s the
case, you’ll see something like this:

bash 14384 jk cwd DIR 45,8 330 2 /Volumes/Data

If you’ve navigated to a directory on this volume in your shell, Mac
OS X considers it “in use.” The solution in this case is to exit the shell,
or simply cd to another directory.

If this command doesn’t tell you what you need to know, repeat it,
preceded by sudo.

Find Out What’s Keeping Your Mac Awake
If your Mac refuses to sleep, it’s likely because some process is com-
pleting a task that prevents sleep from occurring immediately. But
which process would that be? To find out, try this command:

pmset -g assertions | grep -E "(PreventUserIdleSystemSleep|
PreventUserIdleDisplaySleep)"

The output will look something like this:

PreventUserIdleDisplaySleep 0
PreventUserIdleSystemSleep 1
pid 674(BitTorrent Sync): [0x0000003e000101db] 57:00:45
PreventUserIdleSystemSleep named: "syncing"

The first line (PreventUserIdleDisplaySleep) tells you if anything is
preventing display sleep (0 for no, 1 for yes), and the second line
(PreventUserIdleSystemSleep) tells you if anything is preventing system
sleep.

If the answer to either of these is 1 (yes), the line below lists the PID
and name of that process—in this example, BitTorrent Sync, although
you may also see Time Machine or any of numerous other processes.

157

Reset the Launch Services Database
Mac OS X’s Launch Services database keeps track of which programs
are used to open which files, among other things. If you find that the
wrong application opens when you double-click files, or that icons
don’t match up with the correct items, you may need to reset your
Launch Services database. Do it like this (enter the command as a
single, long line—no space between LaunchServices. and framework
and omit hyphens that you may see in the path):

/System/Library/Frameworks/CoreServices.framework/Frameworks/
LaunchServices.framework/Support/lsregister -kill -r -domain local
-domain system -domain user

Because this resets a lot of default mappings, your Mac may think
you’re launching applications for the first time and ask if it’s OK. Agree
to the alerts and you should be in good shape.

Fix Disk Problems in Single-User Mode
If your startup disk has problems, the usual remedy is to use Recovery
mode (which starts from a hidden Recovery HD volume), and then run
Disk Utility. If your Mac doesn’t have a Recovery HD volume (installed
automatically as part of Lion or later) and you don’t have another
startup volume handy, try this recipe.

First, power on (or restart) your Mac while holding down Command-S
to enter single-user mode. You’ll see a text display much like the inside
of a Terminal window. Enter the following two commands, pressing
Return in between:

/sbin/fsck -yf

The fsck utility (“file system check,” which is like a command-line
version of Disk Utility) checks most of your disk for errors, and repairs
those it can. To restart your Mac normally afterward, enter exit.

158

Get Help in Style

These two recipes let you read man pages in a friendlier environment
than Terminal, without installing any extra software.

Read man Pages in Preview
The man command can save manual pages as beautifully formatted
PostScript files, which Preview can then read. Because it’s a multi-step
process, you need a shell function (like a shell script, but contained
directly in your .bash_profile file) to help you do this. So, following
the instructions in Customize Your Profile, put the following lines in
your .bash_profile:

psman()
{
man -t "${1}" | open -f -a /Applications/Preview.app/
}

Having done that, to view a man page in Preview, enter the following,
substituting the name of whatever command you want to read about:

psman command

Et voilà! After a few seconds, a spiffy manual page opens in Preview.

Read man Pages in BBEdit or TextWrangler
Perhaps you’re a plain text, monospaced font kind of person. If you
keep BBEdit (or its free “little brother” TextWrangler) open anyway,
you can use it to open man pages instead of the built-in man program.

To make this happen, install the command-line tools available for
either editor, add the following line to your .bash_profile (see
Customize Your Profile), and then start a new shell session:

export MANPAGER="col -b | bbedit --clean --view-top"

If you’re using TextWrangler, just substitute edit for bbedit in the
command. Thereafter, entering man (followed by the command of your
choice, such as man ls) displays the manual page in your text editor.

159

Do Other Random Tricks

Finally, we have a bunch of interesting recipes that didn’t fit neatly in
any of the other categories. Enjoy!

Search Your Command History
Let’s say you entered some long, obscure command a while ago (or
even in a previous Terminal session) and you don’t want to keep
pressing Up arrow hundreds of times to find it. No problem—you can
search your command history!

For starters, you could simply enter history to see a list of recent
commands (the default is 512). But if you remember a portion of the
command, you can filter that list with the following:

history | grep string

Replace string with whatever you remember from the command, such
as history | grep chmod or history | grep nano.

Take a Screenshot
You can take a screenshot by pressing Command-Shift-3; the image is
named Picture X by default and stored on your Desktop. But what if
you want to take a screenshot and give it a different name, or store it
somewhere else? Or—this is pretty cool—take a screenshot of a remote
Mac you’re logged in to via SSH?

You can do it with this command (substituting the name and location
of the saved screenshot to taste):

screencapture ~/myscreen.png

Compact a Disk Image
Of the numerous disk image formats Disk Utility can create, two of
them—sparse disk images and sparse bundle disk images—have the
interesting characteristic that they can expand as needed (up to a
preset limit) to accommodate more files. (See my TidBITS article
Discovering Sparse Bundle Disk Images.) The only problem is, they
don’t automatically shrink again when you delete files!

160

To compact a sparse or sparse bundle image so that it takes up only the
space it needs, enter the following, substituting the image’s name and
location as appropriate:

hdiutil compact image.dmg

Use Text-to-Speech from the Command Line
This is mostly just for fun. To have your Mac speak text using the text-
to-speech voice currently selected in System Preferences > Dictation &
Speech (Speech in older versions of Mac OS X) > Text to Speech, enter
the following:

say "Hello there"

Note that this even works remotely, assuming you’re logged in to a
Mac on the other end. Use your power responsibly!

As a more practical example, you can make a quick-and-dirty count-
down timer using a command like this, substituting for 60 the number
of seconds to wait before the Mac speaks the text you enter:

sleep 60; say "One minute has elapsed"

Disable Your Mac’s Startup Chime
If you’re going to be turning on (or restarting) your Mac in a quiet
environment where the startup chime would be distracting, you can
turn it off with the following command:

sudo nvram SystemAudioVolume=%80

To reenable it, you use a somewhat different command:

sudo nvram -d SystemAudioVolume

Send an SMS from the Command Line
You can send an SMS text message from a phone, and with the combi-
nation of Yosemite and an iPhone running iOS 8, you can send an SMS
using Messages on your Mac. But even without an iPhone—and with
any version of Mac OS X—you can send an SMS from the command

161

line! This might be useful in a shell script—for example, if you wanted
a notification that a script completed successfully (or failed).

This command uses a free service from Ian Webster called TextBelt
(consult the TextBelt site for more information):

curl -X POST http://textbelt.com/text -d number=mobile_number -d
message="message_text"

Fill in mobile_number with the 10-digit phone number (consult the
TextBelt site for details on using the service outside the United States)
and replace message_text with your message text.

Prevent a Laptop from Waking up When
Jostled during Travel
Mac laptops are designed to go to sleep automatically when you close
the lid and wake up automatically when you open the lid. But if your
computer happens to be bumped just the right way while it’s in its
case, the lid can open just enough to wake up the computer, potentially
causing it to overheat, or causing your battery to run down, while it
should be asleep.

To prevent the computer from waking up automatically when the lid
opens, enter this:

sudo pmset -a lidwake 0

Thereafter, wake your Mac by pressing a key after you open the lid.

(To reverse this setting, repeat the command, replacing the 0 with a 1.)

List More Directory Information
You should be thoroughly familiar with the ls (“list”) command,
introduced in See What’s Here. Among the flags that modify its behav-
ior, I’ve described elsewhere in this book -l (long format) and -h
(human-readable).

But if you want ls to truly show you everything, you need to add a few
more flags.

162

To make the command easier to use, add an alias to your .bash_profile
(see Create Aliases) like this:

alias lsl="ls -lah@e"

The flag -a lists all files, including hidden ones (those that begin with
a period). The -@ flag lists extended attributes (indicated by an @ at the
end of a permissions string), and the -e flag lists all access control lists,
or ACLs (indicated by a + at the end of a permissions string). (And yes,
I agree that the meanings of -@ and -e seem backward at first glance!)

Tip: For frequent very brief command-line recipes, follow Mark
Krenz’s Command Line Magic Twitter account.

163

About This Book
Thank you for purchasing this Take Control book. We hope you find
it both useful and enjoyable to read. We welcome your comments.

Ebook Extras

You can access extras related to this ebook on the Web. Once you’re
on the ebook’s Take Control Extras page, you can:

• Download any available new version of the ebook for free, or buy
a subsequent edition at a discount.

• Download various formats, including PDF, EPUB, and Mobipocket.
(Learn about reading on mobile devices on our Device Advice page.)

• Read postings to the ebook’s blog. These may include new informa-
tion and tips, as well as links to author interviews. At the top of the
blog, you can also see any update plans for the ebook.

If you bought this ebook from the Take Control Web site, it has been
automatically added to your account, where you can download it in
other formats and access any future updates. However, if you bought
this ebook elsewhere, you can add it to your account manually:

• If you already have a Take Control account, log in to your account,
and then click the “access extras…” link above.

• If you don’t have a Take Control account, first make one by follow-
ing the directions that appear when you click the “access extras…”
link above. Then, once you are logged in to your new account, add
your ebook by clicking the “access extras…” link a second time.

Note: If you try these directions and find that your device is incom-
patible with the Take Control Web site, contact us.

164

About the Author

Joe Kissell is the author of more than 50 books about technology,
including Take Control of iCloud and Take Control of Your Online
Privacy. He is also a Contributing Editor to TidBITS and a Senior
Contributor to Macworld, and he has appeared on the MacTech 25
list (the 25 people voted most influential in the Macintosh community)
since 2007.

When not writing, Joe likes to travel, walk, cook, eat, and practice t’ai
chi. He lives in San Diego with his wife, Morgen Jahnke; their sons,
Soren and Devin; and their cat, Zora. To contact Joe about this book,
send him email and please include Take Control of the Mac Command
Line with Terminal in the subject of your message.

Author’s Acknowledgments
Thanks to Geoff Duncan for an outstanding editing job, and to all the
members of the TidBITS Irregulars list who offered input and sugges-
tions. Special thanks to the following people for suggesting command-
line recipes: Marshall Clow, Keith Dawson, Geoff Duncan, Chuck
Goolsbee, John Gotow, Kevin van Haaren, Andrew Laurence, Peter N
Lewis, Chris Pepper, Larry Rosenstein, and Nigel Stanger.

Shameless Plug
On my site Joe On Tech, I write about how people can improve their
relationship with technology. I’d be delighted if you stopped by for a
visit! You can also sign up for joeMail, my free, low-volume, no-spam
mailing list, or follow me on Twitter (@joekissell). To learn more about
me personally, visit JoeKissell.com.

165

About the Publisher

TidBITS Publishing Inc., publisher of the Take Control ebook series,
was incorporated in 2007 by co-founders Adam and Tonya Engst.
Adam and Tonya have been creating Apple-related content since they
started the online newsletter TidBITS in 1990. In TidBITS, you can
find the latest Apple news, plus read reviews, opinions, and more.

Credits:

• Publisher: Adam Engst

• Editor in Chief: Tonya Engst

• Editor: Geoff Duncan

• Technical Editor: Dan Frakes

• Production Assistants: Michael E. Cohen, Oliver Habicht

• Cover design: Sam Schick of Neversink

• Logo design: Geoff Allen of FUN is OK

More Take Control Books
This is but one of many Take Control titles! Most of our books focus
on the Mac and OS X, but we also publish titles that cover iOS, along
with general technology topics.

You can buy Take Control books from the Take Control online catalog
as well as from venues such as Amazon and the iBooks Store. Our
ebooks are available in three popular formats: PDF, EPUB, and the
Kindle’s Mobipocket. All are DRM-free.

166

Copyright and Fine Print
Take Control of the Mac Command Line with Terminal, Second Edition

ISBN: 978-1-61542-452-8
Copyright © 2015, alt concepts inc. All rights reserved.

TidBITS Publishing Inc. 50 Hickory Road, Ithaca NY 14850, USA

Why Take Control? We designed Take Control electronic books to help readers regain
a measure of control in an oftentimes out-of-control universe. With Take Control, we also
work to streamline the publication process so that information about quickly changing
technical topics can be published while it’s still relevant and accurate.

Our books are DRM-free: This ebook doesn’t use digital rights management in any
way because DRM makes life harder for everyone. So we ask a favor of our readers. If you
want to share your copy of this ebook with a friend, please do so as you would a physical
book, meaning that if your friend uses it regularly, he or she should buy a copy. Your
support makes it possible for future Take Control ebooks to hit the Internet long before
you’d find the same information in a printed book. Plus, if you buy the ebook, you’re
entitled to any free updates that become available.

Remember the trees! You have our permission to make a single print copy of this
ebook for personal use, if you must. Please reference this page if a print service refuses
to print the ebook for copyright reasons.

Caveat lector: Although the author and TidBITS Publishing Inc. have made a reasonable
effort to ensure the accuracy of the information herein, they assume no responsibility for
errors or omissions. The information in this book is distributed “As Is,” without warranty
of any kind. Neither TidBITS Publishing Inc. nor the author shall be liable to any person
or entity for any special, indirect, incidental, or consequential damages, including without
limitation lost revenues or lost profits, that may result (or that are alleged to result) from
the use of these materials. In other words, use this information at your own risk.

It’s just a name: Many of the designations in this ebook used to distinguish products
and services are claimed as trademarks or service marks. Any trademarks, service marks,
product names, or named features that appear in this title are assumed to be the property
of their respective owners. All product names and services are used in an editorial fashion
only, with no intention of infringement. No such use, or the use of any trade name, is
meant to convey endorsement or other affiliation with this title.

We aren’t Apple: This title is an independent publication and has not been authorized,
sponsored, or otherwise approved by Apple Inc. Because of the nature of this title, it uses
terms that are registered trademarks or service marks of Apple Inc. If you’re into that sort
of thing, you can view a complete list of Apple Inc.’s registered trademarks and service
marks.

167

