
www.it-ebooks.info

http://www.it-ebooks.info/

Building Minecraft Server
Modifications

Discover how to program your own server plugins and
augment your Minecraft server with Bukkit

Cody M. Sommer

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Building Minecraft Server Modifications

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither Cody M. Sommer, nor
Packt Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-600-5

www.packtpub.com

Cover Image by Cody M. Sommer (codisimus@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Cody M. Sommer

Reviewers
Joe Clark

Thomas E. Enebo

Acquisition Editors
Joanne Fitzapartick

Erol Staveley

Commissioning Editor
Yogesh Dalvi

Technical Editors
Veena Balkrishna Pagare

Aman Preet Singh

Project Coordinator
Esha Thakker

Proofreader
Maria Gould

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

www.it-ebooks.info

http://www.it-ebooks.info/

 About the Author

Cody M. Sommer has always been interested in computers. In his free time he
would take them apart just to learn more about how they worked. He eventually
began building computers for himself and others. Cody would spend many hours
a day on his computer whether he was playing games, browsing the internet,
or learning more about how they work. It wasn't until his college career that he
was introduced to software development. During his senior year of high school,
Cody began taking courses in Computer Science at The College at Brockport: State
University of New York. The college primarily taught the Java language due to its
vast presence in modern software.

After a year or so, Cody had a solid understanding of Java and various programming
techniques. He was anxious to put these to use. His first out-of-school project
consisted of programming a solitaire type card game to play itself and print out
statistics on the results. This is when he discovered that the game he had been trying
to win for the past few months only dealt a "winning" deck about once in every
1000 games. Being able to control a computer to complete a task fascinated Cody.
Programming the card game took less than one week so he had to find another
project; preferably one that would be challenging, keep him busy, and not be
completed for a long time. This is when he discovered the Bukkit project.

Both Minecraft and the Bukkit API are programmed in Java which Cody knew very
well. On the Bukkit forums were countless server administrators just waiting for a
developer to come along to create their idea. All that was required of him to begin
creating Bukkit plugins was to learn the Bukkit API. Cody first dissected a few
public projects to study their structure and get an idea of how these server plugins
were programmed. Through self-teaching and with the aid of more experienced
developers, he eventually managed to create his first project, called Turnstile. This
plugin required that players on a Minecraft server pay in-game money to enter
specific areas, such as subway stations. He developed several plugins his first few
months. Most of these were requested by other people. However, two of his favorite
projects, PhatLoots and TextPlayer, were his original ideas.

www.it-ebooks.info

http://www.it-ebooks.info/

Cody enjoyed pushing the game to its limits. The creation of TextPlayer is one
example of this. The plugin allowed Minecraft players or server admins to always
be connected to the servers that they play on. This was all done through e-mail and
text messages. People could be alerted on their phone of events that occurred on the
server. These events included a friend logging on, a player vandalizing the game
world, or a player entering their house or property. The plugin grew to allow people
to communicate back to the server which also allowed admins and moderators to
run server commands from their cell phone.

These various projects aided Cody in learning Java. Most of his programming
knowledge came from school but some things are not fully understood until they are
put to use in a real-life scenario. Depending on their complexity, Bukkit plugins can
even help developers practice advance programming techniques, such as recursion,
algorithms, and data structures. Through timing reports, a developer can improve
their code by finding slowly executing blocks of code. Some of the most important
steps of the software development life cycle are emphasized in Cody's Bukkit
plugins. These steps include bug fixes, addition of new features, and writing code
that is prepared for future changes in the project.

Two years later, Cody graduated with a Bachelor's degree and is still active within
the Bukkit community. He has over 10 public plugins, works as a private developer
for some of the top Minecraft Servers in the world, and creates private plugins upon
request. His projects are still pushing Minecraft servers to their limits of what they
are able to accomplish.

Cody occasionally tutors developers to write efficient code and help them tackle
challenging tasks. One of his goals is to help grow the Bukkit community with new
developers as he feels that writing code for something that interests you is a great
way to practice programming and encourage you to learn more.

I would like to thank the Bukkit staff for creating and maintaining
this wonderful API to allow developers like me to use it to create
great things. They spend their free time on the Bukkit project despite
receiving little to no compensation for their hard work. I would also
like to thank the entire Bukkit community for being so friendly and
helping me and other developers to accomplish complicated projects
which may be unfamiliar to us.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Joe Clark is a software engineer with eight years of experience in the enterprise
software industry. Joe is fluent in Java, .NET, Python, and JavaScript. He also spends
a lot of time playing Minecraft.

As a developer support engineer for Australian software company Atlassian, Joe
spends much of his time teaching other developers how to build plugins for JIRA
and Confluence. He also speaks regularly at Atlassian Summit and AtlasCamp, and
was thrilled to be selected as a speaker for MineCon 2011 in Paris, France.

Joe is the author of the Minecraft JIRA Plugin and contributes regularly to the world
of open source software. You can find him on Twitter at @jaysee00.

Joe lives and works in San Francisco with his beautiful wife, Kate.

Thomas E. Enebo is co-lead of the JRuby project, author of the Ruby Bukkit
wrapper Purugin, and a contributor to many other open source projects. He has
been practicing Java since the heady days of the HotJava browser, and he has been
happily using Ruby since 2001. Thomas has spoken at numerous Java and Ruby
conferences, co-authored Using JRuby published by The Pragmatic Bookshelf, and was
awarded the Rock Star award at JavaOne. When Thomas is not working he enjoys
running, brewing beer, and drinking a decent IPA.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Deploying a CraftBukkit Server 7

Installation 7
Setup 10
Minecraft/Bukkit server commands 13
Port forwarding 16
Summary 18

Chapter 2: Learning the Bukkit API 19
Introduction to APIs 19
The Bukkit API documentation 20
Navigating the Bukkit API documentation 22
Understanding the Java documentation 24
Exploring Bukkit API 25
Summary 26

Chapter 3: Creating Your First Bukkit Plugin 27
Installing an IDE 28
Creating a new project 29
Adding Bukkit as a library 30
The essentials of a Bukkit plugin 31

The plugin.yml file 31
The plugin's main class 33

Making and calling new methods 35
Expanding your code 37
Summary 39

Chapter 4: Testing on the CraftBukkit Server 41
Building the JAR file 41
Installing your plugin 43

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Testing your plugin 44
Testing new versions of your plugin 45
Summary 46

Chapter 5: Plugin Commands 47
Adding a command to plugin.yml 47
Programming the command actions 50
Assigning the executor for the command 56
Summary 57

Chapter 6: Player Permissions 59
The benefits of permissions 60
Understanding permission nodes 60
Adding a permission node to plugin.yml 61
Assigning a permission node to a plugin command 61
Testing player permissions 62
Using a third-party permissions plugin 63
Using permission nodes throughout your plugins 66
Summary 68

Chapter 7: The Bukkit Event System 69
Choosing an event 69
Registering an event listener 70
Listening for an event 71
Canceling an event 73
Communicating among events 74
Modifying an event as it occurs 77
Creating more plugins on your own 78
Summary 79

Chapter 8: Making Your Plugin Configurable 81
Configurable data types 82
Writing a config.yml file 83
Saving, loading, and reloading the config file 83
Reading and storing the configured values 85
Using configured settings within your plugin 86
ItemStack within a configuration 88
YAML configuration hierarchy 89
Storing configuration values as variables 91
Accessing variables from another class 96
Summary 99

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 9: Saving Your Data 101
Types of data that can be saved 102
Which data to save and when 102
A sample teleportation plugin 103
Writing a ConfigurationSerializable class 104
Saving data to a YAML configuration 107
Loading data from a YAML configuration 109
Summary 111

Chapter 10: The Bukkit Scheduler 113
Creating a BukkitRunnable class 113
Synchronous versus asynchronous tasks 115
Running a task from a BukkitRunnable class 115
Running a task later from a BukkitRunnable 115
Running a task timer from a BukkitRunnable class 115
Writing a repeating task for a plugin 116
Adding a delayed task to a plugin 116
Executing a code asynchronously 120
Summary 121

Index 123

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
This book is an introduction to programming Minecraft server plugins with the
Bukkit API. Minecraft is a very versatile sandbox game, and players are always
looking to do more with it. Bukkit allows programmers to do just that. This book
is geared towards individuals who may not have a programming background. It
explains how to set up a Bukkit server and create your own custom plugins to run on
that server. It starts with the basic features of a Bukkit plugin such as commands and
permissions but continues to more advanced concepts such and saving and loading
data. This book will help readers create a complete Bukkit plugin whether they are
new to Java or just new to Bukkit. The more advanced topics even cover portions of
the Bukkit API that could aid current plugin developers in expanding their plugins.

What this book covers
Chapter 1, Deploying a CraftBukkit Server, instructs readers on how to set up a
Minecraft server running CraftBukkit, including forwarding ports to allow other
players to connect. In this chapter common server settings and commands are
explained as well.

Chapter 2, Learning the Bukkit API, introduces Bukkit through teaching how to read
its API documentation. In this chapter, common Java data types and Bukkit classes
are discussed.

Chapter 3, Creating Your First Bukkit Plugin, guides the reader through installing an
IDE and creating a simple "Hello World" Bukkit plugin.

Chapter 4, Testing on the CraftBukkit Server, informs of how to install a plugin onto a
CraftBukkit server as well as simple testing techniques.

Chapter 5, Plugin Commands, instructs how to program user commands into a server
plugin by creating a plugin called Enchanter.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 6, Player Permissions, teaches how to program permission checks within a
mod by modifying Enchanter. This chapter also guides the reader through installing
a third party plugin called PermissionsBukkit.

Chapter 7, The Bukkit Event System, teaches how to create more complex mods that
use event listeners. This chapter also helps the reader to learn by creating two new
plugins, NoRain, and MobEnhancer.

Chapter 8, Making Your Plugin Configurable, teaches the reader program configuration
by expanding MobEnhancer. This chapter also explains static variables and
communication between classes.

Chapter 9, Saving Your Data, informs the reader on how to save and load their
program data through YAML file configuration. This chapter also helps to create a
new plugin called Warper.

Chapter 10, The Bukkit Scheduler, teaches the Bukkit Scheduler while creating a new
plugin called AlwaysDay. In this chapter Warper is also modified to incorporate
scheduled programming.

What you need for this book
In order to receive the full experience from this book you will need a Minecraft
account. The Minecraft game client can be downloaded for free but an account must
be bought at minecraft.net. Other software that is used includes the CraftBukkit
server jar (this is different from the normal Minecraft server jar) and an IDE, such as
Netbeans or Eclipse. This book will walk you through the process of downloading
and installing both the server and the IDE.

Who this book is for
This book is for the average Minecraft player who wishes to get more out of
their game. Anyone who has set up a Minecraft server has most likely heard of
CraftBukkit. CraftBukkit, along with its plugins, powers the majority of Minecraft
servers that operate around the world. Whether you are already a plugin developer
or are new to programming, this book can help you to create cool and unique
plugins for your server.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form, on
the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying a CraftBukkit
Server

The first step to modifying Minecraft with the Bukkit API is to install a CraftBukkit
server on your Windows PC. A multiplayer server is essentially the same as
single-player Minecraft but allows for more customization and is not limited to
only people in your home network. The CraftBukkit server will load all of the
plugins that you create and use them to change how Minecraft operates. It contains
all of the code that is included in the vanilla Minecraft server. Most of these classes,
methods, and variables are renamed to help us understand their purpose and how
to use them correctly. craftbukkit.jar also includes additional code to aid plugin
developers with completing certain tasks such as saving/loading data, listening
for server events, and scheduling code to be executed. We will use this CraftBukkit
server to test any plugins that you write. By the end of this chapter all your friends
can log onto and play on your modified Minecraft server together.

• Installing a CraftBukkit server
• Understanding and modifying server settings
• Using console and in-game Minecraft and Bukkit server commands
• Port forwarding

Installation
CraftBukkit completely replaces the vanilla Minecraft server (mincraft-server.
jar or minecraft-server.exe) which you may have downloaded from minecraft.
net. The vanilla server is incapable of running Minecraft plugins. We will start from
scratch to set up this new server. If you wish to use a preexisting world, you will
be able to do this after creating a new CraftBukkit server. To start, let's create a new
empty folder named Bukkit Server. We will run the CraftBukkit server from this
newly created folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying a CraftBukkit Server

[8]

The main file that you will need to start your new server is craftbukkit.jar. A
jar file is a Java-executable file. Minecraft, CraftBukkit, and any plugin that we will
create are all written in Java and thus are run from a JAR file. The craftbukkit.
jar file takes the place of minecraft_server.exe or minecraft_server.jar.
The Bukkit team maintains the Bukkit project and releases the updates for the
CraftBukkit server, as Minecraft itself is updated to newer versions. The newest
version of CraftBukkit is always available for download at dl.bukkit.org/
downloads/craftbukkit/. Go to the CraftBukkit download page and you will
see the options Recommended Build, Beta Build, and Development Build. You
should use Development Build only if another build is not yet available for your
version of Minecraft. If you are unsure of your Minecraft version, it is displayed in
the left corners of the Minecraft client. The client is the program that you use to play
Minecraft, as shown in the following screenshot:

You can choose which version of Minecraft you play by creating a new profile in
the Minecraft launcher, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Download the craftbukkit JAR file and place it in the Bukkit Server folder. Its
name may include a version number such as craftbukkit-1.6.2-R1.0.jar. For
simplicity, we will rename the file to craftbukkit.jar.

Now we will create a batch file that we can double-click on every time we wish to
start the server. In a new text document, type the following two lines:

java -Xms1024M -Xmx1024M -jar craftbukkit.jar
PAUSE

1024 tells how much of the computer's RAM the server will be allowed to use. You can
change this number if you want the server to use more or less RAM. craftbukkit.
jar is the name of your craftbukkit JAR file. If you did not rename the file earlier,
then you will have to edit this batch file every time that you update your CraftBukkit
version to ensure that the two names match. The rest of the previous lines will not
concern you and should remain unchanged.

Save the text document as Start Server.bat, and be sure that it is in the same
folder as craftbukkit.jar. Now you are able to run the server. Double-click on
the batch file that you just created. It will then open up the command prompt and
start creating the server files. It will look similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying a CraftBukkit Server

[10]

There is no need to worry about the warnings that are printed at this time, as they
are expected when you first start a new server.

If a window like the previous screen does not appear, then make sure that your batch
file is called Start Server.bat and not Start Server.bat.txt.

Setup
You will see the server folder populated with several files and folders. I will go over
a few of them now, as shown in the following list, but most of these files will not
concern you at this time:

• The plugins folder: This folder is where you will place all of the Bukkit
plugins that you wish to use on your server.

• The folders that begin with world (world, world_nether, and so on): These
folders have been created that include all of the information for the new
world of your server. If you already have a Minecraft world that you wish
to use, then replace these new folders with your old world folders. Do not
attempt to do this while the server is running, as it will cause problems.

• server.properties: This file holds several options which allow changing
how a Minecraft server operates. You can open it with any text editor. There
are many settings and most of them are pretty self explanatory. I will go over
a few settings in the following list that you may want to modify. For a full
list of property explanations, you can visit www.minecraftwiki.net/wiki/
Server.properties.

 ° pvp=true: The pvp property can be set to a boolean value. PvP
stands for player vs. player and sets whether players can attack
and harm each other. You will want to set this to true or false
depending on whether you want PvP to be on or off, respectively.

 ° difficulty=1: The difficulty property can be set to a number 0 to
3. 0 means Peaceful, 1 means Easy, 2 means Normal, and 3 means
Hard. Everyone on the server will be playing at this difficulty.

 ° gamemode=0: This property determines which game mode players will
start in. 0 means Survival, 1 means Creative, and 2 means Adventure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

 ° motd=A Minecraft Server: motd stands for Message of the day. This
message will be displayed when viewing your server in the Minecraft
multiplayer server list as shown in the following screenshot:

 ° It is a good idea to set this to a short description of your server,
for example, Bukkit plugin testing.

 ° online-mode=true: This can be set to false to allow players to
connect to the server while in offline mode. This can be useful if
http://minecraft.net/ is unavailable or your computer is not
connected to the Internet. Running your server in offline mode
can cause security issues, such as other players logging in to
your account.

• bukkit.yml: This file contains many more server options. These are the
options that a vanilla server does not offer and are only available through
running a CraftBukkit server. You will notice that this file is a YMAL (.yml)
file rather than a PROPERTIES (.properties) file. When you open it, you
will see how the two file types are formatted differently. The first difference
that you will notice is that certain lines are indented. You do not need to
fully understand the YMAL formatting, as it will be explained further as we
progress through making the Bukkit plugins. There are a few settings in this
file that I will bring to your attention, as shown in the following list. For a full
list of these Bukkit settings you can visit wiki.bukkit.org/Bukkit.yml:

 ° allow-end: true: A vanilla Minecraft server allows you to disable
the nether world from functioning. A Bukkit server allows you to
disable the end world as well. Set this to false to prevent players
from traveling to the end.

 ° use-exact-login-location: false: Vanilla Minecraft contains a
feature that will prevent players from spawning inside a block. The
player will instead be spawned above the block, so they will not
suffocate and die. This can easily be exploited to be able to climb onto
blocks that a player could normally not reach. Bukkit can prevent this
from occurring by spawning the player exactly where they logged
out. Set this property to true if you wish to prevent this exploit.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying a CraftBukkit Server

[12]

 ° spawn-limits: Bukkit allows a server admin to modify how many
monsters and animals are allowed to spawn within any given chunk.
If you are unfamiliar with the term chunk, it is a group of 16 x 16
blocks from bedrock to the highest point of the sky. The following is
a picture of a single chunk in Minecraft:

If you feel that there are too many (or too few) mobs, then you will
want to adjust these values accordingly.

 ° ticks-per: autosave: 0: Unlike vanilla Minecraft, a Bukkit server
will not periodically save your player/world data. Automatically
saving may prevent the server from losing any changes that were
made within the game if it were to crash or shut down for any reason
(such as the computer losing power). Vanilla defaults this setting to
6000. There are 20 ticks every second. We can determine how long
6000 ticks is with the following math: 6000 ticks / 20 ticks/second =
300 seconds and 300 seconds / 60 seconds/minute = 5 minutes. From the
previous calculation you should be able to calculate an appropriate
time period that you wish your server to autosave. If your server
lags whenever it saves, then you may want to increase this number.
A setting of 72000 would only cause lag once every hour; however,
if the server crashes right before it saves, then you may lose any
progress you have made in the past hour.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Minecraft/Bukkit server commands
We now have all of our custom options set. Next, we are ready to log into the server
and take a look at the in-game server commands.

To log into your server, you will need to know the IP address of your computer.
Later in this chapter we will work through finding this essential information.
However, I will assume that for now you will be playing Minecraft on the same
machine that you are running your server on. In this case, for the IP of the server,
simply type localhost. Once you are connected to your server, you will notice that
the CraftBukkit server is essentially the same as a vanilla server. This is because you
do not have any plugins installed yet. The first indication that the server is running
Bukkit is that you will have a few extra commands.

Bukkit inherits all of the Minecraft server commands. If you have ever played on a
Minecraft server, then you have probably already used some of these commands.
In case you have not, I will explain some of the more useful ones. These commands
can be typed into the console or in-game. By console I am referring to the command
prompt that is running your server. CraftBukkit has a built-in permissions system
that limits players from using specific commands. They cannot use a command if
they do not have the necessary permission. We will discuss this in further detail in
a later chapter, but for now we will make your player an operator, or op for short.
An operator automatically has all of the permissions, and will be able to execute all
of the commands that will be presented. To make yourself an operator, we will issue
the op command to the console:

op <player>

Replace <player> with your player name. See the highlighted command in the
following screenshot for an example:

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying a CraftBukkit Server

[14]

Once you have been opped, you are ready to test some of the server commands
in-game. In order to understand how to use commands properly, you must
understand the command syntax. We will look at the gamemode command as
an example:

gamemode <0 | 1 | 2> [player]

• < > indicates that it is a required argument.
• [] indicates that it is an optional parameter. For this command, if the

player parameter is not included, then the game mode of your own player
will be set.

• | is a known symbol for the word or. So <0 | 1 | 2> indicates that
either 0, 1, or 2 can be entered. They represent survival, creative, and
adventure, respectively.

• Parameters must always be typed in the same order in which they are
displayed. Usually, if you enter an incorrect command, a help message
will appear reminding you of how to use the command properly.

Take note that when you issue a command in-game, you must start with /, but
when issuing a command from the console, / must be left out. A proper use of
the gamemode command would be /gamemode 1, which will set your game mode
to Creative, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Another example of this command is /gamemode 2 Steve, which will find the
player whose username is Steve and will change his game mode to adventure.

Now that you understand the basic syntax for commands, I will list some other
useful server commands, as shown in the following list. Most of these commands
are present in Vanilla Minecraft. Only a few of them are specific to Bukkit servers.

• (For vanilla) gamerule <rule> [true | false]
The rule parameter can be set to any of the following:

 ° doMobSpawning – Whether mobs will naturally spawn
 ° keepInventory – Whether players will keep their items if they die
 ° mobGriefing – Whether mobs such as creepers can destroy blocks
 ° doFireTick – Whether fire should be spread
 ° doMobLoot – Whether mobs should drop items
 ° doDaylightCycle – Whether the day/night cycle is in effect
 ° For example, /gamerule mobGriefing false

• (For vanilla) give <player> <item> [amount [data]]
 ° For example, /give Codisimus wool 3 14, gives Codisimus 3

red wool

• (For Bukkit) plugins
 ° For example, /plugins or /pl, displays a list of all the plugins that

are installed on your server

• (For Bukkit) reload
 ° For example, /reload or /rl, disables all plugins and reenables them
 ° This command is used to load new settings for a plugin without

shutting down the entire server

• (For vanilla) spawnpoint [player] [x y z]
 ° For example, /spawnpoint, sets you to spawn where you are

standing, if you die

• (For vanilla) stop
 ° For example, /stop, saves and shuts down the server

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying a CraftBukkit Server

[16]

 ° This is how you should stop the server to be certain that all data
is saved

 ° You will lose data if you simply close out of the command prompt,
by clicking on X

• (For vanilla) tell <player> <message>
 ° For example, /tell Steve my secret base is behind the

waterfall, sends a message that only Steve will be able to see.
 ° Take note that these messages will also be printed to the console

• (For vanilla) time set <day | night>
 ° For example, /time set day, sets the time of the server

to 0 (daytime)

• (For vanilla) toggledownfall
 ° For example, /toggledownfall, stops or starts rain/snowfall

• (For vanilla) tp [player] <targetplayer>

 ° For example, /tp Steve Codisimus, teleports Steve to
Codisimus' location

For more information regarding these and other commands please visit wiki.
bukkit.org/CraftBukkit_commands. Both these commands and the property
files mentioned earlier give you a lot of control over how your server functions.

Port forwarding
Where's the fun in running your own Minecraft server when no one else can log into
it? I will now explain how to allow your friends to connect to your server so that they
can play with you. In order to do this, we must first find your IP address. Much like
your place of residence has a street address, your computer has an address on the
Internet. This is what your friends will type into their Minecraft client to find your
server. To find this, simply search IP on Google. At the top of the results will be a
line that states: Your public IP address is XX.XX.XXX.XX (the Xs will be replaced
with numbers and its overall length may be different). You can also visit www.
whatismyip.com to find your IP address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Once you have your IP address, try using it to connect to your server rather than
using localhost. If you are able to connect, then your friends will be able to, too. If
not, you will have to take additional steps to allow other players to connect to your
server. This will be the case if your computer is attached to a router. We must let the
router know to point other Minecraft players towards your computer that is running
the server. This process is called port forwarding and to do so, we will first need
some additional information.

We need to know the IP address of your computer on your local network. This IP
will be different from the address we obtained earlier. We will also need to know
the IP of your router. To find these, we will open up a new command prompt
window. The command prompt can be found at:

Start Menu/All Programs/Accessories/Command Prompt

You can also search cmd.exe to find it. Once the command prompt is open, type:

ipconfig

Then, press Enter. A screen will be displayed similar to the one in the
following screenshot:

In the previous image I have highlighted the two IP addresses that you are looking
for. The numbers will most likely be very similar to these sample numbers. IPv4
Address is the address of your computer, and Default Gateway is the address of
your router. Take note of both of these IPs.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying a CraftBukkit Server

[18]

Next, we will log into your router. In any web browser, type the IP address of the
router (192.168.1.100 in our example). If you did this correctly, then you will be
prompted with a login form asking for a username and password. If you do not
know this information, you can try admin for both. If that is unsuccessful, you
will have to find the default username and password, which can be found in the
paperwork that was provided with your router. This information can usually be
found online as well, by searching the name of your router along with the terms
default login.

Once we are logged into the router, we must find the area that includes the settings
for port forwarding. There exist many brands and models of routers in the world and
all of them present this option differently, so I cannot provide a specific walkthrough
of how this page is found. However, you will want to look for a tab that says
something along the lines: Forwarding, Port Forward, or Applications & Gaming.
If you do not see any of these, then expand your search by exploring the advanced
settings. Once you find the correct page, you will most likely see a table that looks
like the following one:

Application
Name

External Port Internal Port Protocol IP Address

Bukkit Server 25565 25565 TCP and UDP 192.168.1.100

Fill in the fields as it is shown in the previous table. Of course, the layout and
formatting will differ depending on your router, but the important details are that
you forward port 25565 to the IP address that you found earlier (192.168.1.100 in our
example). Be sure to save these new settings. If you have done this correctly, then
you should now be able to connect to your server using your public IP address.

Summary
You now have a CraftBukkit server running on your PC. You can inform your
friends of your IP address so that they can play on your new server with you. You
are now familiar with in-game commands and how to use them, and your server
is ready to have Bukkit plugins installed onto it as soon as we program them. To
prepare ourselves for programming these plugins, we will first become familiar
with the Bukkit API, and how it can be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the Bukkit API
You may be wondering what the difference is between Bukkit and CraftBukkit. Many
people use the two words interchangeably. However, they are in fact different files.
In chapter one you were introduced to the CraftBukkit jar. In this chapter you will
be introduced to the Bukkit API and learn what it allows you to accomplish through
programming plugins for a CraftBukkit server. By the end of this chapter you will
most likely have numerous ideas for plugins that you will eventually be able to
create yourself. This chapter will cover the following in more detail:

• Understanding the purpose of an API
• Finding documentation of the Bukkit API
• Navigating through JavaDocs to find specific information
• Reading and understanding the documentation
• Exploring and learning more aspects of the Bukkit API

Introduction to APIs
API is an acronym for Application Programming Interface. An API helps to control
how various software components are used. As mentioned in the previous chapter,
CraftBukkit includes the Minecraft code in a form that is easier for developers to
utilize in creating plugins. CraftBukkit has a lot of code that we do not need to access
for creating plugins. It also includes code that we should not use as it could cause
the server to become unstable. Bukkit provides us with the classes that we can use
to properly modify the game. Basically, Bukkit acts as a bridge between our plugin
and the CraftBukkit server. The Bukkit team adds new classes, methods, and so
on, to the API as new features develop in Minecraft, but the preexisting code rarely
changes. This ensures that our Bukkit plugins will still function correctly months or
even years from now. Even though new versions of Minecraft/CraftBukkit are being
released. For example, if Minecraft were to change how an entity's health is handled,
we would notice no difference.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the Bukkit API

[20]

The CraftBukkit jar would account for this change and when our plugin calls the
getHealth() method it would function exactly as it had before the update. Another
example of how great the Bukkit API is would be the addition of new Minecraft
features, such as new items. Let's say that we've created a plugin that gives food an
expiration date. To see if an item is food we'd use the isEdible() method. Minecraft
continues to create new items. If one of these new items was Pumpkin Bread,
CraftBukkit would flag that type of item as edible and would therefore be given an
expiration date by our plugin. A year from now, any new food items would still be
given expiration dates without us needing to change any of our code.

The Bukkit API documentation
Documentation of the Bukkit API can be found at jd.bukkit.org. You will see
several links regarding the status of the build (Recommended, Beta, or Development)
and the form of the documentation (JavaDocs or Doxygen). If you are new to reading
documentation of Java code, you may prefer Doxygen. It includes useful features,
such as a search bar and collapsible lists and diagrams. If you are already familiar
with reading documentation then you may be more comfortable using the JavaDocs.
In the following screenshot, both API docs are side by side for comparison. The
traditional JavaDocs are on the left and the Doxygen documentation is on the right.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

The following figure is the inheritance diagram for LivingEntity from the Doxygen
site. Take note that on the site you are able to zoom in and click a box to go to
that class.

org.bukkit.entity.Wolf

org.bukkit.entity.Sheep

org.bukkit.entity.Pig

org.bukkit.entity.Ocelot

org.bukkit.entity.Horse

org.bukkit.entity.Cow

org.bukkit.entity.Chicken

org.bukkit.entity.Squid

org.bukkit.entity.Zombie org.bukkit.entity.PigZombie

org.bukkit.entity.Wither

org.bukkit.entity.Witch

org.bukkit.entity.Spider org.bukkit.entity.CaveSpider

org.bukkit.entity.Skeleton

org.bukkit.entity.Silverfish

org.bukkit.entity.Gaint

org.bukkit.entity.Enderman

org.bukkit.entity.Creeper

org.bukkit.entity.Entity org.bukkit.entity.Living
Entity

org.bukkit.Damagable

org.bukkit.entity.Ambient

org.bukkit.entity.Creature

org.bukkit.entity.Flying

org.bukkit.entity.HumanEntity

org.bukkit.entity.Slime

org.bukkit.entity.MagmaCube

org.bukkit.entity.Player

org.bukkit.entity.Ghast

org.bukkit.entity.WaterMob

org.bukkit.entity.Monster

org.bukkit.entity.Golem

org.bukkit.entity.NPC

org.bukkit.entity.EnderDragon

org.bukkit.entity.Ageable

org.bukkit.entity.MushroomCow

org.bukkit.entity.Bat

org.bukkit.entity.Complex
LivingEntity

org.bukkit.entity.Animals

org.bukkit.entity.Villager

org.bukkit.entity.IronGolem

org.bukkit.entity.Snowman

org.bukkit.entity.Blaze

org.bukkit.metadata.Metadatable

I encourage you to browse through each documentation to decide which one you
prefer. In this book we will be using Doxygen but keep in mind that both contain
relatively the same information. They are simply displayed differently.

When using the Doxygen API docs, you will have to navigate to the bukkit package
to see a list of classes and packages. It can be found navigating to the following links
within the left column: Bukkit | Classes | Class List | org | bukkit, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the Bukkit API

[22]

Navigating the Bukkit API documentation
We can look through this documentation to get a general idea of what we are
able to modify on a CraftBukkit server. Server-side plugins are different from
client-side mods. We are limited with what we are able to modify in the game using
server-side plugins. For example, we cannot create a new type of block but we can
make lava blocks rain from the sky. We cannot make zombies look and sound like
dinosaurs but we can put a zombie on a leash, change its name to Fido and have it
not burn in the daylight. For the most part you cannot change the visual aspect of the
game, but you can change how it functions. This ensures that everyone who connects
to the server with a standard Minecraft client will have the same experience.

For some more examples on what we can do, we will view various pages of the API
docs. You will notice that the classes are organized into several packages. These
packages help group similar classes together. For example, a Cow, a Player, and a
Zombie are all types of entities and thus can be found in the org.bukkit.entity
package. So if I were to say that the World interface can be found at org.bukkit.
World then you will know that the World class can be found within the bukkit
package, which is inside the org package. Knowing this will help you find the classes
that you are looking for. The search bar near the top right corner of the Doxygen site
is another way to quickly find a class.

Let's look at the World class and see what it has to offer. The classes are listed in
alphabetical order so we will find World near the end of the list within the bukkit
package. Once you click on the World class link, all of its methods will be displayed
in the main column of the site under the header Public Member Functions as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

A World object is an entire world on your server. By default, a Minecraft server has
multiple worlds including the main world, nether, and end. CraftBukkit even allows
you to add additional worlds. The methods that are listed in the World class apply to
the specific world object. For example, the Bukkit.getWorlds() method will give
you a list of all the worlds that are on the server; each one is unique. Therefore if
you were to call the getName() method on the first world it may return world while
calling the same method on the second world may return world_nether.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the Bukkit API

[24]

Understanding the Java documentation
In case you are new to reading API documentation, let's look at a method that is
included in the World class to see what information it provides us. Click on the link
to view the createExplosion(Location loc, float power, booleansetFire)
method. You will be brought to the method description similar to the one shown in
the following screenshot:

The screenshot explains each parameter and the return value for the method. This
method requires that we pass three parameters to it, explained as follows:

• Where the explosion should take place
• How powerful the explosion should be
• Whether the explosion should cause surrounding blocks to ignite in flames

If the returned value is void then the method will not send any information
back to us. In this example, the method returns a boolean value. On reading the
documentation we learn that the returned value is whether or not the explosion
actually occurred. If another plugin prevented the explosion from happening then
the createExplosion method would return false.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

Exploring Bukkit API
Now that you are familiar with the Bukkit API documentation, I advise you to look
through more of it on your own. You will find interesting methods, many of which
will spark ideas for cool plugins that you may want to make. Take note that there
may be additional links to view more methods for an object. For example, a player
is a type of entity, therefore you can call any entity method on a player object. This
inheritance is shown after the following method list:

If you are ever going to try and think up an idea for a plugin, browsing through
the following websites is sure to give you some ideas. I suggest reading the class
pages listed as follows as they will be classes that you will frequently use in your
future plugins:

Class Package Description
World org.bukkit.World A world on the server.
Player org.bukkit.entity.

Player
A person who is playing on the server.

Entity org.bukkit.entity.
Entity

A player, mob, item, projectile, vehicle,
and so on.

Block org.bukkit.block.
Block

A specific block in the world, such as a
dirt block or a chest.

Inventory org.bukkit.
inventory.Inventory

The inventory of a player, chest, furnace,
and so on.

ItemStack org.bukkit.
inventory.ItemStack

An item that is in an inventory. This
includes how many there are of the item.

Location org.bukkit.Location The location of an entity or block.
Material org.bukkit.Material The type of a block or item such as DIRT,

STONE, or DIAMOND_SWORD.
Bukkit org.bukkit.Bukkit Contains many useful methods that could

be called from anywhere in your code.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the Bukkit API

[26]

The following are a few challenges to guide you while exploring the Bukkit API on
your own and becoming familiar with it:

• Which method would you call to check what time it is in a world?
• Which methods would you call to get the block that is at x:20 y:64 z:14 in the

world that is named "world"?
• Which methods would you call to send a message to the player whose

name is Steve?
• Which methods would you call to check if the material of a block

is flammable?
• Which method would you call to check if a player has any diamonds in

their inventory?
• Which methods would you call to check if a player is holding an item that

is edible?

Summary
If you have any trouble figuring out any of the problems mentioned in the challenges
or with any other portion of the Bukkit API, there are many places to ask for help,
which are listed as follows:

• Bukkit forums: bukkit.org
• Official IRC channel for Bukkit: wiki.bukkit.org/IRC
• Minecraft Forums: www.minecraftforum.net

You can also contact me directly or visit my website at www.codisimus.com. I am
always interested in helping out a fellow developer.

You now have the required knowledge to begin programming your own Bukkit
plugins. As we do, we will have to refer back to the documentation to find the
required information. Being able to navigate and understand the API documentation
will speed up the process of coding. If you are ever unsure of a section of the API,
you now know how to find the information you need. In the next chapter, we'll use
the Bukkit API to begin writing code and create your first Bukkit plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First
Bukkit Plugin

The Bukkit plugins that we will program will be written in the Java programming
language. I am assuming that you already have basic knowledge of Java. If this is not
the case or you find yourself not understanding parts of this book, then I suggest you
visit codisimus.com/learnjava, which has an introduction to the Java language
and information on various concepts that you will need to know in order to create
good plugins throughout the course of this book.

We will use an IDE to write the plugins. An IDE is an Integrated Development
Environment and it is the software that will aid us in writing the Java code. It has
many tools and features that make programming much easier. For example, it
automatically detects errors in our code, it often tells us how to fix these errors or
even does it for us, and it provides us with many shortcuts, such as one keystroke to
compile our code and build a jar, so that the code can be executed. In this chapter we
will download and install an IDE, and prepare it for creating a new Bukkit plugin.
We will cover the following topics and by the end of this chapter we will have
written our first plugin which will be ready to test on our server.

• Installing an IDE
• Creating a new project
• Adding Bukkit as a library
• The plugin.yml file
• The plugin's main class
• Making and calling new methods
• Expanding your code

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First Bukkit Plugin

[28]

Installing an IDE
In this book we will be using NetBeans as our IDE. There are other popular IDEs
too, such as Eclipse and IntelliJ IDEA. You can use a different IDE if you wish,
however in this chapter we will assume that you are using NetBeans. No matter
which IDE you choose, the Java code will be the same. Therefore as long as you set
it up properly, you can use any IDE for the remaining chapters. If you are fairly
new to programming then I suggest using NetBeans for now. After you are more
comfortable with programming, I suggest you try other IDEs and choose the one
you prefer.

The NetBeans IDE can be downloaded from http://www.oracle.com/
technetwork/java/javase/downloads/. Downloading the program from Oracle
will also allow us to download the required Java Development Kit (JDK) at the
same time. You will see several download links. Click on the NetBeans link to visit
the JDK 7 + NetBeans download page. Once you select Accept License Agreement
you will be allowed to download the software. The download link is located in a
table similar to the one shown in the following image:

If your PC has a 64-bit Windows operating system then you will want to use the link
corresponding to Windows x64. If your PC has a 32-bit Windows operating system
or you are unsure if it's 64-bit or 32-bit then download the Windows x86 version.

If you wish to check if you are running a 64-bit version of Windows then
you can check it by viewing the System window in Control Panel.

Once it has finished downloading, install the software. During the installation
process you may be asked about installing JUnit. We will not be using JUnit so you
should select Do not install JUnit. In the next few screens of the installer, it will ask
where you want to install the two software. The default settings will be fine, you can
simply click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[29]

Creating a new project
Once NetBeans is installed, open it for the first time and you will see the start page.
You can exit the start page as it's of no importance to you. Open the File menu
and click New Project.... We want to create a New Java Application which is
selected by default, so simply click on Next. We must now name our first project.
It is a good idea to avoid using spaces within a name. Let's name this project
MyFirstBukkitPlugin. Unless you want to store your project in another location
you can leave the default value of Project Location. Be sure that Create Main Class
is checked. The main class is where we will put the code that is needed to enable our
plugin. For this field you must determine the package of your project. This usually
involves your website's domain name in reverse order. For example, Bukkit uses
org.bukkit and I use com.codisimus. Assuming you don't have your own domain
name, you can use your email address, for example com.gmail.username. You
want to use something that will be unique. If two plugins were to have the same
package then it might cause collisions in class names, and CraftBukkit will have no
way to know which class you are referring to. Using an email address or a domain
name that you own is a good way to ensure that other developers don't use the same
package. For this reason, you should exclude bukkit or minecraft from your package
name. The package should also be in lowercase as given in the previous examples.
Once you have a package, you need to name your main class. To avoid confusion,
most Bukkit plugin developers use the project name as the main class name. The
name of the main class should start with a capital letter. The following screenshot is
an example of how your forms should look before clicking on Finish:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First Bukkit Plugin

[30]

Adding Bukkit as a library
Now that we have created our main class, we need to add the Bukkit API as the
library for our project. As we can recall from the previous chapter, the API includes
the code that we can access to modify the CraftBukkit server. It is available for
download at http://dl.bukkit.org/downloads/bukkit/. Again, choose the
version that matches your client version and the version of CraftBukkit that you
downloaded. Once you have downloaded the file, you will have to move it to a
permanent location. I suggest you create a folder named Libraries in which to
place it. The filename will most likely have a version appended to it. Similar to
what we did for craftbukkit.jar, we will rename this file; this helps us to easily
update it in the future. So the new location of your bukkit jar will be C:\Users\
Owner\Documents\NetBeansProjects\Libraries\bukkit.jar. Remember your
file location, because now that we have downloaded the Bukkit API we can create a
library for it in NetBeans.

In NetBeans, inside the Projects tab, you will see a Libraries folder. If you right click
on it you are presented with the option Add Library.... Click on it to bring up a list of
your current libraries.

For the first time, we need to create the Bukkit library. For any future project it
would already be present and we can simply select it. Click on Create... and type
Bukkit as the Library Name. In the next window there is an Add JAR/Folder...
button. Click on it to add the bukkit jar file that you have just downloaded. We
will leave the Sources tab empty and click on the Javadoc tab next. Now, add the
URL http://jd.bukkit.org/beta/apidocs/and click on OK. This allows us to
read some of the API documentation directly in our IDE. Now we are able to select
Bukkit as a library to add it to our project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[31]

Note that in order to update to a newer version of Bukkit you can
simply replace the current bukkit.jar file with the new one, just as
you would do to update the craftbukkit.jar on your server. No
additional modifications need to be done to your existing projects.
However, you will have to check the code to see if there are any new
errors presented.

The essentials of a Bukkit plugin
Each Bukkit plugin requires two specific files. These files are plugin.yml and the
main class of the plugin. We will begin by creating the most basic versions of each
of these files. All your future projects will start with the creation of these two files.

The plugin.yml file
Now we are ready to start programming a Bukkit plugin. The first file that we need
is plugin.yml. This is the file that the CraftBukkit server will read to determine how
to load your plugin. Right click on Source Packages and click on New | Other... as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First Bukkit Plugin

[32]

In the window that appears, select Other under Categories, and YAML File under
File Types as shown in the following screenshot:

Set the File Name as plugin, leave the folder as src and click on Finish. Your project
tree structure should now look as shown in the following screenshot:

plugin.yml was created in the default package. This is where it needs to be so that
CraftBukkit can find it. For now we will fill in the plugin.yml file with the most
basic settings. Your plugin.yml must include the name of your plugin, its version,
and its main class. We have already determined the name and main class and we will
make it Version 0.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

If you wish to learn more about version numbers, Wikipedia has a
great article at http://en.wikipedia.org/wiki/Software_
versioning.

The simplest form of plugin.yml is shown as follows:

name: MyFirstBukkitPlugin
version: 0.1
main: com.codisimus.myfirstbukkitplugin.MyFirstBukkitPlugin

That is all you need in this file, but some other fields that you may wish to add are
author, description, and website. We are done with that file, so you can save and
close plugin.yml.

The plugin's main class
Now we need to modify our main class. Open MyFirstBukkitPlugin.java, if it is
not already open. We do not use the main method in our plugins, so we will delete
that section of the code. Now you will have an empty Java class as shown in the
following code:

package com.codisimus.myfirstbukkitplugin;

/**
 *
 * @author Owner
 */
public class MyFirstBukkitPlugin {

}

You may see additional comments but they will not affect how the
program executes. They are there for anyone who may be reading the
code to help them understand it. It is always a good idea to comment on
any code that you write. If someone ends up reading your code, whether
it is a fellow developer or yourself a week from now, they will thank you
for adding these comments.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First Bukkit Plugin

[34]

The first thing that we need to do is tell our IDE that this class is a Bukkit plugin.
To do so, we will extend the JavaPlugin class by adding extends JavaPlugin
between MyFirstBukkitPlugin and {. The modified line will look as shown in the
following piece of code:

public class MyFirstBukkitPluginextends JavaPlugin {

You will notice that a squiggly line and a light bulb appear. This will happen a
lot and it usually means that you need to import something from the Bukkit API.
The IDE will do this for you if you tell it to. Click on the light bulb and import
JavaPlugin from the Bukkit library, as shown in the following screenshot:

This will automatically add a line of code near the top of your class. As of right now,
we could install this plugin on your server, but of course it will not do anything.
Let's program the plugin to broadcast a message to the server once it is enabled.
This message will show up when the plugin is enabled as we test it. To do this we
will override the onEnable() method. This method is executed when the plugin is
enabled. Mimic the following code to add the method:

public class MyFirstBukkitPlugin extends JavaPlugin {
 public void onEnable() {

 }
}

You will notice another light bulb that will inform you to add the @Override
annotation. Click on it to automatically add the line of code. If you were not
prompted to add the override annotation then you may have spelled something
wrong in the method header.

We now have the base of all of your future plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

Making and calling new methods
Let's create a new method which will broadcast a message to the server. The
following diagram labels various parts of a method in case you are not familiar
with them:

method header

method
body

method
name

parameters

public static int convertToInt (String string, int defaultValue) {
int value;
try {

value = Integer.parseInt (string);
} catch (NumberFormatException notInt) {

value = defaultValue;
}

return value;
}

access
modifier

return
type

Create a new method named broadcastToServer. We will place it within our
MyFirstBukkitPlugin class under the onEnable() method. We only want to call
this method from inside the MyFirstBukkitPlugin class so the access modifier
will be private. If we want to call this method from other classes in our plugin
we can remove the modifier or change it to public. The method will not return
anything and thus will have a return type of void. Finally the method will have one
parameter, a string named msg. After creating this second method, your class will
look similar to the following code:

public class MyFirstBukkitPlugin extends JavaPlugin {
 @Override
 public void onEnable() {

 }

 private void broadcastToServer(String msg) {

 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First Bukkit Plugin

[36]

We will write the code within the body of our new method to accomplish its task. We
want to broadcast a message to the server. We could call the getServer() method
on our plugin. However, for convenience, the Bukkit class contains a number of the
server methods in a static context. You may have seen the methods we need when
you were looking through the Bukkit class of the API during the previous chapter;
if not, browse through the methods in the Bukkit class at http://jd.bukkit.
org/rb/doxygen/db/dc0/classorg_1_1bukkit_1_1Bukkit.html to find the
broadcastMessage(String message) method. We will call the broadcastMessage
method from our own broadcastToServer method. In your IDE, type Bukkit to
indicate that you will be accessing the Bukkit class from a static context. Continue
by typing a period (.) in order to call a method from that class. You will notice that
a list of available methods will appear and we can simply scroll through them and
choose the one we want. This is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

Click to select the broadcastMessage method, the API documentation for the
method will be displayed. You may notice that to the right of the method it says int.
This informs us that this method returns an integer type value. If we click on the
See Also: link as shown in the screenshot, the documentation will tell us that the
number that is returned is the number of players that the message was sent to. We
don't really care about this number so we will not assign it to a variable.

After selecting the method from the list, the IDE fills the parameters with variables
that it believes we will use. In this case it should place msg as the parameter. If not,
simply type msg in yourself. This completes our broadcast method so now we can
call it from our onEnable() method. We will pass the string Hello World! as
an argument.

Adding the following line of code will result in our class containing the
following code:

public class MyFirstBukkitPlugin extends JavaPlugin {
 @Override
 public void onEnable() {
 broadcastToServer("Hello World!");
 }

/**
* Sends a message to everyone on the server
*
* @param msg the message to send
*/
 private void broadcastToServer(String msg) {
 Bukkit.broadcastMessage(msg);
 }
}

If we test this plugin then it will print Hello World! once it is enabled.

Expanding your code
Before testing, let's improve on the onEnable() method by implementing an if
statement. If there is only one player online then why not say hello to that specific
player? We can get an array of all the players that are online by calling Bukkit.
getOnlinePlayers(), if we wish to check if the length of the array is equal to 1, we
can accomplish this with an if/else statement. This is shown in the following code:

if (Bukkit.getOnlinePlayers().length == 1) {
 //Only 1 player online
 //Say 'Hello' to the specific player

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First Bukkit Plugin

[38]

} else {
 //Say 'Hello' to the Minecraft World
 broadcastToServer("Hello World!");
}

Within our if statement, we will now get the first and only object in the player array.
Once we have that, we can continue by broadcasting Hello along with the player's
name. After completing the if statement your entire class will look as shown in the
following code:

package com.codisimus.myfirstbukkitplugin;

 importorg.bukkit.Bukkit;
 importorg.bukkit.entity.Player;
 importorg.bukkit.plugin.java.JavaPlugin;

/**
* Broadcasts a hello message to the server
*/
public class MyFirstBukkitPlugin extends JavaPlugin {
 @Override
 public void onEnable() {
 if (Bukkit.getOnlinePlayers().length == 1) {
 //Only 1 player online
 //Get the first (only) player
 Player player = Bukkit.getOnlinePlayers()[0];
 //Say 'Hello' to the specific player
 broadcastToServer("Hello " + player.getName());
 } else {
 //Say 'Hello' to the Minecraft World
 broadcastToServer("Hello World!");
 }
 }

 /**
 * Sends a message to everyone on the server
 *
 * @param msg the message to send
 */
 private void broadcastToServer(String msg) {
 Bukkit.broadcastMessage(msg);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

If you do not fully understand the if statement or the code provided
previously then I suggest that you go to my website to learn the basics of
Java, as was mentioned in the introduction to this chapter.

Summary
Your first plugin is complete and ready for testing on your server. In the next
chapter we will install your new plugin, learn how to test it, and discover when
the onEnable() method is executed by the server. Now that you are familiar with
writing and calling methods you are capable of creating more complex plugins.
Each plugin that you create from now on will always start similarly to the way
this one was started.

1. Create a new project.
2. Add Bukkit as a library.
3. Fill out plugin.yml.
4. Setup your main class as a JavaPlugin with the onEnable() method.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing on the CraftBukkit
Server

Bukkit plugins are designed to run on a CraftBukkit server. At this point, you have
a CraftBukkit server and a simple plugin. After completing this chapter you will
have your new plugin installed on your server. You will be making changes to your
plugin's code and will quickly see it reflected on your server. This will make your
development much faster and allow you to accomplish more as you create new
plugins. This chapter will cover the following topics:

• Building a jar file for your plugin
• Installing a plugin on your server
• Testing your plugin
• Testing new versions of your plugin

Building the JAR file
In order to install a plugin on our server we need the.jar file. The jar file is a Java
executable that contains all of your written code which has been translated so that
the computer can understand and run it.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing on the CraftBukkit Server

[42]

In NetBeans there is a single button which we can click on to build our project. This
will generate the .jar file that we need. Let's add a block of code to our project to
automatically copy the created .jar file to a more convenient location. In NetBeans,
click on the Files tab to access the build.xml for your project.

Open build.xml and add the following block of code after the import file line:

<target name="-post-jar">
 <copy file="${dist.jar}" todir="../Plugin Jars"
 failonerror="true"/>
</target>

This additional code will be executed after your jar is successfully built. It will
copy the jar from the dist directory to the specified location. You can change "../
Plugin Jars" to whichever directory you wish. Here, .. means to go up one
folder. Therefore if your NetBeans project is located at the path C:\Users\Owner\
Documents\NetBeansProjects\MyFirstBukkitPlugin, then the .jar file will be
copied to the path: C\Users\Owner\Documents\NetBeansProjects\Plugin Jars\
MyFirstBukkitPlugin.jar Adding this code to each of your plugins will keep them
organized in a central folder. After adding this new code, your file will look similar
to the following piece of code:

<?xml version="1.0" encoding="UTF-8"?>
<project name="MyFirstBukkitPlugin" default="default" basedir=".">
 <description>Builds, tests, and runs the project
 MyFirstBukkitPlugin.</description>
 <import file="nbproject/build-impl.xml"/>
 <target name="-post-jar">
 <copy file="${dist.jar}" todir="../Plugin Jars"
 failonerror="true"/>
 </target>
</project>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[43]

Note that you will have many additional lines that are between <!-- and -->. These
are comments and I encourage you to read them if you wish to learn more about what
you can add to the build.xml file. Once you save that file, you are ready to build
your project. You may do so by clicking on the hammer icon or by using the shortcut
key F11. The hammer icon looks like the following image present on your toolbar:

If NetBeans fails to successfully build a jar then you have errors in your code.
These errors are most likely shown by the red lines and the light bulbs. You can
usually find these errors by hovering over or clicking the bulbs for help. If you
are not able to do so, refer to the previous chapter to check if your code is correct
or not. If you still have doubts, refer to Chapter 2, Learning the Bukkit API, for help
or contact me directly.

Installing your plugin
Installing your new plugin is quite simple. You copy the .jar file from the directory
that you chose earlier and paste it into your server's plugins folder. Then start your
server as you normally would and you will notice the console output informing you
that your plugin is loaded as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Testing on the CraftBukkit Server

[44]

If you do not see the Hello World! message when your server initially starts, don't
worry. This is a normal behavior, because at this point, there will never be players
online for you to broadcast your message to. For now we are only concerned with
the messages that were highlighted in the previous screenshot.

Each time that you make changes to your code, you will have to build a new jar file
and install the new version. To install the newer version you can simply copy and
paste it into the server's plugin folder and overwrite the old file. This can usually
be done without even shutting down the server. However, if the server is running,
you will need to use the reload command to load the new version. If you do not
wish to manually copy the plugin.jar file to your server every time, then you can
automate it in build.xml. To do so, add a second copy file tag and set todir to
your server's plugin directory. The code shown as follows is an example of what
this would look like:

<?xml version="1.0" encoding="UTF-8"?>
<project name="MyFirstBukkitPlugin" default="default" basedir=".">
 <description>Builds, tests, and runs the project
 MyFirstBukkitPlugin.</description>
 <import file="nbproject/build-impl.xml"/>
 <target name="-post-jar">
 <copy file="${dist.jar}" todir="../ Plugin Jars"
 failonerror="true"/>
 <copy file="${dist.jar}" todir="C:/Users/Owner/Desktop/Bukkit
 Server/plugins" failonerror="true"/>
 </target>
</project>

Again, you should do this for every plugin that you want to automatically install on
your server.

Testing your plugin
As you may recall, the purpose of our first plugin was to discover when a plugin is
loaded. Issue a reload command by typing the following command:

>reload

You will notice that CraftBukkit will automatically disable and re-enable your plugin
as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[45]

This time, you will see the Hello World! message once your plugin is enabled. If
exactly one player is online, then it will say hello to that player. Let's observe this
by logging onto the server and issuing the reload command from in-game. Open
your Minecraft client and connect to your server. From in-game, first issue the
following command:

/plugins

You will be given a list of all the plugins that are installed. For now, there is only one
plugin given in the following screenshot:

Now that there is one player on the server we can test the plugin by reloading the
server. From in-game issue the following command:

/reload

We notice that both in-game and in the console we see the Hello Codisimus
message, as shown in the following screenshot, to indicate that our plugin is
working as intended:

Testing new versions of your plugin
A player may not notice this message when the message is white in color. We can
change the color of our message using ChatColor Enum. This Enum has each color
code that is supported in-game so that we can easily add them to messages. Let's
modify the plugin and install the newly modified version on the server. Choose your
favorite color and place it before the message in your broadcastToServer method,
as shown in the following code:

Bukkit.broadcastMessage(ChatColor.BLUE + msg);

www.it-ebooks.info

http://www.it-ebooks.info/

Testing on the CraftBukkit Server

[46]

Before you build your new jar file, change the version in plugin.yml to 0.2 to
indicate that this is an updated version. Build your new jar file using either the
build icon or F11. Copy the new version to your plugins folder if you did not set
up build.xml to do so automatically. Issue the reload command again to view the
results, as shown in the following screenshot:

The plugin has been reloaded and the message is now in color, as shown in the
screenshot. Also note how the version number changes when the plugin was
disabled, and again when it was loaded and enabled.

Try to expand this plugin more on your own, to test different code. The following list
contains a few challenges for you to try yourself:

• Program the plugin to say the actual name of the world rather than World in
general. Hint: get a list of all worlds and then use the first world in the list.
Note that this would broadcast Hello world! unless you renamed the world
in server.properties.

• Send a message to the player rather than broadcasting the message to the
entire server.

• If more than one player is online, send a unique hello message to each player.
Hint: use a for loop.

• If no players are online, send a unique hello message to each world.

Summary
You now know how to create a jar file from a NetBeans project. For any future
plugins, you can follow this simple process in order to run your new plugin, whether
it is for testing or for a finished product. You now also know how to update a plugin
that is already installed on your server. In the next chapters, we will begin creating
more complex plugins. The first step to this is creating commands for our plugins
that players will be able to execute in-game.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Commands
The nice thing about the Bukkit API is that it has basic features already built into its
framework. As programmers, we need not go out of our way to implement these basic
features into our plugins. In this chapter we will discuss one of these features, namely
in-game commands that can be executed by a player. This is similar to commands that
you are already familiar with, such as /reload, /gamemode, or /give. We will create a
plugin that will enchant an item. By the end of this chapter, once the plugin is complete,
you will be able to type /enchant to add your favorite enchantments to the item in
your hand.

Commands are one of the easiest ways for players to communicate with a plugin.
They also allow players to trigger the execution of a plugin's code. For these reasons,
most plugins will have some sort of command. The Bukkit development team
realized this and provided us with a simple way to register commands. Registering
commands through Bukkit ensures that the mod will properly know when a player
types a command. It also helps prevent our plugin from conflicting with an other
plugins' commands. There are three steps that we will cover to add a command to
your plugin, given as follows:

• Informing Bukkit that your plugin will be using a command
• Programming what your plugin will do when someone types

the command
• Assigning the newly written code to a specific command

Adding a command to plugin.yml
Create a new Bukkit plugin as you did in Chapter 3, Creating your First Bukkit
Plugin, but name it Enchanter. Next we will inform Bukkit that you will be
using a command by modifying the plugin.yml file of your plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Commands

[48]

As mentioned in Chapter 2, Learning the Bukkit API, Bukkit reads the YAML file in
order to find out the necessary information about your plugin. This information
includes all of the commands that your plugin will handle. Each command can have
a description, proper usage message, and aliases (similar to how rl is an alias for
reload). The command we will use for our plugin will be enchant. It is typical to
use all lowercase letters for commands so that players do not have to worry about
capitalization. The following code is a sample of how our plugin.yml will look with
the enchant command added:

name: Enchanter
version: 0.1
main: com.codisimus.enchanter.Enchanter
description: Used to quickly put enchantments on an item
commands:
 enchant:
 aliases: [e]
 description: Adds enchantments to the item in your hand
 usage: Hold the item you wish to enchant and type /enchant

Notice how the lines are indented. This indentation must be spaces and not tabs.
NetBeans helps us to automatically indent the necessary lines as you type them.
In addition, NetBeans will automatically use spaces even if you use the Tab key.
Indentation is very important in YAML files to determine the hierarchy of keys.
enchant is indented under commands to indicate that it is a command for the plugin.
aliases, description, and usage, are indented under enchant to indicate that they
belong to the enchant command.

The order of these three settings does not matter and they need
not be included at all.

The usage message will be displayed if an error occurs or a player uses a command
incorrectly. The description message can be viewed by issuing the help command for
the plugin, that is, /help Enchanter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[49]

For aliases, we have e as a value. This means that we can type /e if we feel that
/enchant is too long to type. You may have more aliases but they must be put in a
YAML list format. Lists in a YAML file can be made in two different ways. The first
format is to separate each item by a comma and a space, and enclose the entire list in
square brackets as shown in the following piece of code:

aliases: [e, addenchants, powerup]

The second format is to place each item on a new line starting with a hyphen and a
space as shown in the following piece of code:

aliases:
 - e
 - addenchant
 - powerup

The preferred method is usually determined by the length of your list. The second
format is much easier to read when lists are long. However, be careful not to have
extra or missing spaces before the hyphen as it will cause problems when a program
tries to read the list. In general, be sure that your lists line up. For more information
on the YAML language visit http://www.yaml.org/spec/1.2/spec.html.

Multiple commands can be added to one plugin quite easily. The following code is
an example of plugin.yml with several commands:

name: Enchanter
version: 0.1
main: com.codisimus.enchanter.Enchanter
description: Used to quickly put enchantments on an item
commands:
 command1:
 aliases: [cmd1]
 description: The first command
 secondcommand:
 aliases:
 - Cmd2
 andthethird:
 Usage: type /andthethird to execute
 Description: executes the third command

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Commands

[50]

Programming the command actions
Once we have added the command to our plugin.yml file, we can begin working
on the code that it will execute. Create a new class in the NetBeans project. This new
class will be called EnchantCommand. You can name the class something else if you
wish, but keep in mind that the name of a class should give an idea of how the class
is used without the need to open it. We will also place this class in the same package
as your main plugin class, Enchanter, as shown in the following screenshot:

Keep in mind that though the packages are structured similarly, you will
be using your own unique namespace, not com.codisimus.

This new class will execute our enchant command and thus must implement the
CommandExecutor interface. We will append code to the class header to do this.
This is similar to when we added extends JavaPlugin to the Enchanter class.
JavaPlugin is a class, so we extended it with our class. CommandExecutor is an
interface which means that we must implement it. Once we add implements
CommandExecutor to the class header of EnchantCommand, a light bulb will appear
to notify us that we need to import the CommandExecutor class. Import the class and
the light bulb will still be there. It is now informing us that because we implemented
an interface, we must implement all of its abstract methods. Click on the light
bulb to do so and the method we need appears. This new method will be called
when a player executes the enchant command. The method provides us with four
parameters, which are given as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[51]

• CommandSender sender

 ° This command can be named cs by default but we will name it
sender because it is easy to forget what cs stands for

 ° This is who sent the command
 ° It may be a player, the console, a command block, or even a

custom CommandSender that was created by another plugin

• Command cmnd

 ° This is the Command object that the sender is executing
 ° We will have no need for this

• String alias

 ° This is which alias the sender typed
 ° For example, it might be enchant, e, addenchant, or powerup

• String[] args

 ° This is an array of strings
 ° Each string is an argument that the sender typed
 ° For example, if they typed /enchant knockback 5 then knockback

would be the first argument (args[0]) and 5 would be the second
and final (args[1])

 ° The command itself is not considered as an argument
 ° We do not need to worry about the arguments at this point because

the enchant command will not need any

As mentioned, there are different kinds of CommandSenders. The following image is
the inheritance diagram for CommandSender available at http://jd.bukkit.org/rb/
doxygen/dd/dd4/interfaceorg_1_1bukkit_1_1command_1_1CommandSender.html.

org.bukkit.permissions.Server
Operator

org.bukkit.command.Command
Sender

org.bukkit.command.Console
CommandSender

org.bukkit.command.Remote
ConsoleCommandSender

org.bukkit.command.Block
CommandSender

org.bukkit.entity.Player

org.bukkit.permissions.Permissible

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Commands

[52]

In this diagram you can see that Player, ConsoleCommandSender, and a couple
of other classes are all subtypes of CommandSender. The purpose of our enchant
command is for a player to enchant the item that they are holding. Therefore any
CommandSender that isn't a player will have no use for this command. Within the
onCommand method, the first code that we write will be to check if a player has
executed the command. If we do not perform this check, then our plugin will crash
if a non-player attempts to issue the enchant command. We will check this by using
an if statement and the keyword instanceof. The keyword instanceof can be
thought of as is a. The code is given as follows:

if (sender instanceof Player)

This code can be translated as the following:

if the command sender is a Player

This if statement will let us know if it was a player who sent the command. If
the command sender is not a player then we want to stop executing the code. We
will do this with the return keyword. However, the return type for this method
is boolean. We must return a boolean value which will tell Bukkit if the usage
message needs to be shown to the command sender. Typically, for the onCommand
method, you want to return false if the command was not completed successfully.
In this case, it was not so, therefore we will use the code return false;. So far,
inside our method, we have constructed the following code:

if (sender instanceof Player) {
 return false;
}

However, this is not quite right. This tells Bukkit to return false if the command
sender is a player. We want to return false in the opposite case. We can accomplish
this by adding an exclamation point. If you don't already know, in Java, an
exclamation point is a NOT operator and can be used to invert a boolean value.
We will correct our previous code by inverting the resulting value as shown in the
following code:

if (!(sender instanceof Player)) {
 return false;
}

Note the extra set of parentheses. This is very important. We want to invert the
boolean value that results from the code sender instanceof Player. Without the
parentheses, we would be attempting to invert the sender object, which does not
make sense. As a result of this, the code will not compile.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[53]

Up to this point our EnchantComand class code is as follows:

package com.codisimus.enchanter;

import org.bukkit.command.Command;
import org.bukkit.command.CommandExecutor;
import org.bukkit.command.CommandSender;
import org.bukkit.entity.Player;

/**
 * Enchants the item that the command sender is holding
 */
public class EnchantCommand implements CommandExecutor {

 @Override
 public boolean onCommand(CommandSender sender, Command cmnd,
 String alias, String[] args) {
 //This command can only be executed by Players
 if (!(sender instanceof Player)) {
 return false;
 }
 }

}

Now that we have taken care of the non-players, we are certain that the
CommandSender object is a player. We will want to work with the Player object
rather than the CommandSender object because the Player object will have a specific
item in its hand. We can get the Player object by casting the CommandSender object
to Player. By casting, we are telling Java that we know that the command sender is
actually a Player rather than a ConsoleCommandSender or one of the other subtypes.
Casting is done using the following syntax:

Player player = (Player) sender;

If you are not already familiar with casting, I again suggest that you learn
some of these programming concepts at codisimus.com/learnjava.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Commands

[54]

Now that we have the player, we need the item that they are holding. Looking at the
Bukkit API docs for the Player class, given at the link http://jd.bukkit.org/rb/
doxygen/d5/d74/interfaceorg_1_1bukkit_1_1entity_1_1Player.html, you can
see that there is a method getItemInHand(), which is inherited from HumanEntity.
It will return an ItemStack which is exactly what we want shown in the following
piece of code:

ItemStack hand = player.getItemInHand();

Before doing anything with this item, we have to be sure that there actually is an
item to enchant. If the player runs the command when they have no item in their
hand, we do not want the plugin to crash. We will check if the ItemStack is null
and then check if the type of the item is air. In either of these cases we will return
false because the command failed to complete shown as follows:

if (hand == null || hand.getType() == Material.AIR) {
 return false;
}

Now we have a reference to the player and a reference to the item that they
are holding. Our end goal is to enchant this item. Again, looking at the API
documentation, we can find several methods for adding enchantments to an
ItemStack, given at http://jd.bukkit.org/rb/doxygen/d9/da1/classorg_1_1b
ukkit_1_1inventory_1_1ItemStack.html. Let's read through the descriptions to
find out which one is right for us.

Two of the methods are for adding multiple enchantments at once. We may want
to add more than one enchantment but to simplify the code we will only add one
at a time. The two remaining methods are addEnchantment(Enchantment ench,
int level) and addUnsafeEnchantment(Enchantment ench, int level). The
description for the unsafe method reads: This method is unsafe and will ignore
level restrictions or item type. Use at your own discretion.. So if we choose to go
with unsafe we can create more powerful enchantments, such as sharpness level 10.
Without a plugin, a sword is limited to sharpness level 5. With unsafe enchantments
we can also enchant items, such as a fish with Knockback or Fire Aspect. Now, you
will start to discover all of the fun and cool things that you can do with plugins, that
could not be done with a vanilla game.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[55]

In my personal experience I found that the Knockback enchantment is quite
entertaining. In my example, I will be applying Knockback to the item, but of course
you should choose whichever enchantment you prefer. For a full list of enchantments
and what they do, visit http://jd.bukkit.org/rb/doxygen/dd/d17/classorg
_1_1bukkit_1_1enchantments_1_1Enchantment.html#pub-static-attribs.
Bukkit does warn us that using an unsafe method can cause problems. To avoid any
conflicts, try to keep the enchantment levels at 10 or below. With most enchantments,
you will not even notice a difference after level 10. We have decided that we will
be using addUnsafeEnchantment(Enchantment ench, int level). This method
takes an Enchantment and an int value as parameters. This int value is of course
the enchantment's level as stated in the API documentation. We have decided what
we want each of these to be, so we can complete the line of code as shown in the
following piece of code:

hand.addUnsafeEnchantment(Enchantment.KNOCKBACK, 10);

For added fun, we will add the Fire Aspect enchantment as well, as shown in the
following piece of code:

hand.addUnsafeEnchantment(Enchantment.FIRE_ASPECT, 1);

At this point everything will be completed successfully. Before we return true, we
should send a message to the player to let them know that everything worked as
planned. We will use the sendMessage method to send the message to only this
player. No one else on the server, including the console, will see the message, shown
as follows:

player.sendMessage("Your item will now push people backwards and
 light them on fire!");

The completed class is shown in the following lines of code. Remember to comment
your code if you have not already done so.

package com.codisimus.enchanter;

import org.bukkit.command.Command;
import org.bukkit.command.CommandExecutor;
import org.bukkit.command.CommandSender;
import org.bukkit.enchantments.Enchantment;
import org.bukkit.entity.Player;
import org.bukkit.inventory.ItemStack;

/**
 * Enchants the item that the command sender is holding
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Commands

[56]

public class EnchantCommand implements CommandExecutor {

 @Override
 public boolean onCommand(CommandSender sender, Command cmnd,
 String alias, String[] args) {
 //This command can only be executed by Players
 if (!(sender instanceof Player)) {
 return false;
 }

 //Cast the command sender to a Player
 Player player = (Player) sender;

 //Retrieve the ItemStack that the Player is holding
 ItemStack hand = player.getItemInHand();

 //Return if the Player is not holding an Item
 if (hand == null || hand.getType() == Material.AIR) {
 return false;
 }

 //Add a level 10 Knockback enchantment
 hand.addUnsafeEnchantment(Enchantment.KNOCKBACK, 10);

 //Add a level 1 Fire Aspect enchantment
 hand.addUnsafeEnchantment(Enchantment.FIRE_ASPECT, 1);

 player.sendMessage("Your item will now push people backwards
 and light them on fire!");
 return true;
 }

}

Assigning the executor for the command
We are almost ready to start using the command on the server. The only remaining
step is to assign the class that we just wrote to the enchant command. In the
onEnable() method of our Enchanter class we will get the enchant command using
the code getCommand("enchant").

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[57]

The name of the command must be exactly as it is in plugin.yml. This also
means that this code will only retrieve commands specific to this plugin.

Once we have the command, we can set a new instance of EnchantCommand as
the executor for the command. All of this can be done in one line as shown in the
following piece of code:

getCommand("enchant").setExecutor(new EnchantCommand());

All that you will have in your main class is shown in the following code:

package com.codisimus.enchanter;

import org.bukkit.plugin.java.JavaPlugin;

/**
* Enchants the item that the command sender is holding
*/
public class Enchanter extends JavaPlugin {
 @Override
 public void onEnable() {
 //Assign the executor of the enchant command
 getCommand("enchant").setExecutor(new EnchantCommand());
 }
}

Summary
You now have a useful plugin to play with on your own server. You can build this
plugin as discussed in the previous chapter and put it on your server to test. Try it
with different items and observe how it works. There are many plugins that can be
created which function solely by using commands. With this knowledge you have
the potential to create numerous plugins. The following list contains a few plugins
that you might want to try yourself:

• A plugin that teleports you to the spawn location of the world using /spawn.
• A plugin that plays the Creeper Hiss sound to a specific player using /scare

<player>.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Commands

[58]

For this plugin you will have to use arguments. First you will
want to check if you were given the correct number of arguments.
Then you will have to get the first argument similar to how you
got the first player in Chapter 3, Creating Your First Bukkit Plugin.
This argument will be the name of a player. There is a method in
the Bukkit class to find a player with a given name.

• A plugin that strikes a player with lightning using /strike <player>.

There is a strikeLightning method within the World class.

If you are ever searching for a plugin idea, remember that the API documentation is
a great source of inspiration. Also, people are always looking for plugins to be made
on the Bukkit forums. In the next chapter we will expand on the Enchanter plugin
by adding permissions to it. This will ensure that only privileged players will be able
to enchant their items using the enchant command.

www.it-ebooks.info

http://www.it-ebooks.info/

Player Permissions
Player permissions is one feature that nearly every Bukkit server admin wants to
have on their server. In vanilla Minecraft you are either an OP (operator) or simply a
regular player. With permissions, you can create an infinite number of ranks between
the two. There are several permission plugins available on the Bukkit website. In the
past, developers had to write their own code in order to support one or more of these
permission systems. Luckily, Bukkit now has a basis for player permissions which
makes our job easier. We no longer need to learn a new API for every permissions
plugin that exists. We only need to support Bukkit's universal permissions system
that we can be sure will not drastically change at any moment. In this chapter we will
do just that and also install a permissions plugin to help you organize each player's
permissions. By the end of this chapter you will be able to control your server in a
way that untrusted players will not be able to spoil the fun for everyone else. We will
cover the following topics in this chapter:

• The benefits of using permissions on your server and in your plugins
• What a permission node is and how it is used by developers and

server admins
• Adding a permission node to the plugin.yml file
• Assigning a permission node to one of your plugin's commands
• Testing player permissions in-game
• Installing and configuring a third party permissions plugin
• Using permission nodes throughout your plugin

www.it-ebooks.info

http://www.it-ebooks.info/

Player Permissions

[60]

The benefits of permissions
Permissions give you more control over the players on your server. They allow you
to prevent abuse from untrusted players. With permissions, you can give each player
a specific rank based on their role in the server and how trustworthy they are. Let's
say that you want to give a specific player the ability to teleport to other players. With
permissions, you can do so without giving that same player the ability to spawn items,
kick/ban other players, and even stop your server completely! The simplest example
of a useful permission would be to not give new players permission to build. This
prevents someone from logging on to your server with the sole intention of defacing
the "world". They would be unable to destroy yours or other players' buildings.

When programming plugins, you are able to assign certain permissions to specific
commands or actions. This allows you to give the benefits of your plugins to
privileged people only. For example, you only want your good friend and yourself to
have the option of enchanting your items using the enchant command. The first step
to accomplishing this is to know what permission nodes are and how they work.

Understanding permission nodes
A permission node is a string that usually contains multiple words separated by
periods. These permission nodes are given to players to allow them special privileges
on the server. An example of this is bukkit.command.give, which is the permission
node that is needed to execute the give command. As you can see, it can be broken
down into three parts, namely, the creator (Bukkit), the category (command), and
the specific privilege, (the give command). You will find most permission nodes to
be structured this way. For any plugin, its permission nodes begin with the name
of the plugin. This helps prevent any collision of nodes. If two plugins use the same
permission node then an admin cannot limit access to one node and not the other
node. You will also find that many plugins' permission nodes are only two words
long. This is done when the plugin does not have many permissions. Therefore there
is no need for categories.

To help you understand permission nodes properly, we will make a permission
node for our Enchanter plugin. The first word of the permission node will be the
name of the plugin while the second word will be the name of the command. If
the permission node relates directly to a specific command then it is wise to use
the command name within the permission node. This will make your permissions
simple to understand and easy to remember. The permission node for the enchant
command will be enchanter.enchant. Note that most developers tend to keep their
permission nodes in lowercase letters. This is optional but usually prevents errors
when typing in the node at a later date. Once we have decided on a permission node,
we must add it to plugin.yml in order to use it with our plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[61]

Adding a permission node to plugin.yml
Within your Enchanter project, open the plugin.yml file. Adding permission nodes
is similar to how commands are added. On a new line we add permissions:. Be sure
that this line is not indented at all. On the following lines we add each permission
node that our plugin will use, followed by a colon. The next few lines will provide
attributes of the permission, such as its description. The following code is an example
of how the plugin.yml will look with the enchant permission node added. Ensure
that the indentations are similar. Note that the version attribute should also be
updated to indicate that this is a new and improved version of the Enchanter plugin.

name: Enchanter
version: 0.2
main: com.codisimus.enchanter.Enchanter
description: Used to quickly put enchantments on an item
commands:
 enchant:
 aliases: e
 description: Adds enchantments to the item in your hand
 usage: Hold the item you wish to enchant and type /enchant
permissions:
 enchanter.enchant:
 description: Needed to use the enchant command
 default: op

The default attribute can be set to true, false, op, or not op. This determines who
will have this permission. true means everyone, false means no one, op means
operators, and not op means everyone except operators. Who has this permission
can be further modified by using a permission plugin, which we will discuss later in
this chapter. Just like with commands, you can assign multiple permissions to your
plugin. For more information on the plugin.yml file, visit http://wiki.bukkit.
org/Plugin_YAML.

Assigning a permission node to a plugin
command
Now that we have the permission node created, we want to prevent players from
using the enchant command if they do not have the enchanter.enchant node. This
process is as simple as adding a few more lines to plugin.yml.

www.it-ebooks.info

http://www.it-ebooks.info/

Player Permissions

[62]

Under the enchant command we will add two attributes, namely permission and
permission-message. The permission attribute is simply the permission node that
is needed to execute the command. The permission-message attribute is a message
that the player will see if they do not have the necessary permissions. The plugin.
yml file after these additions will look as follows:

name: Enchanter
version: 0.2
main: com.codisimus.enchanter.Enchanter
description: Used to quickly put enchantments on an item
commands:
 enchant:
 aliases: [e]
 description: Adds enchantments to the item in your hand
 usage: Hold the item you wish to enchant and type /enchant
 permission: enchanter.enchant
 permission-message: You do not have permission to enchant items
permissions:
 enchanter.enchant:
 description: Needed to use the enchant command
 default: op

You may want to add colors to the permission message. This can be done using the §
symbol. This is the character that Minecraft uses to indicate a color code. This symbol
can be easily typed by holding Alt while pressing 2 then 1. A list of all colors and
their corresponding code can be found by visiting http://www.minecraftwiki.
net/wiki/Formatting_codes. An example of the permissions-message line with
color support will look as shown:

permission-message: §4You do not have permission to §6enchant items

Testing player permissions
You can test the new addition to the plugin by building the jar file and installing
it on your server as was discussed in Chapter 4, Testing on the CraftBukkit Server. Be
sure to reload or restart the server so that the newest version of the plugin is being
used. Remember that the version number is printed to the console when the plugin
is enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[63]

By testing on your server you will discover that you are still able to enchant items
through the plugin. Since you are an OP you have the enchanter.enchant node
by default. De-OP yourself using the console command shown as follows:

Now you will find that you are no longer be able to use the /enchant command.

Using a third-party permissions plugin
You will most likely have trusted players on your server with whom you wish to
share the use of the /enchant command. However, these players are not trusted
enough to be an OP. In order to accomplish this scenario you will need to use a
permissions plugin. The permissions plugin will allow you to create multiple groups
of players. Each group will have different permissions assigned to it. Each player
that plays on your server can then be assigned to a specific group. As an example,
you can have three permission groups: default, trusted, and admin. The default group
will have the basic permissions. Any new player that joins the server will be put into
the default group. The trusted group will have a few more privileges. They will have
access to specific commands such as setting the time of day in the server world and
teleporting players. The admin group will have access to many other commands such
as kicking or banning a player, the /give command, and the /enchant command.

There are several permission plugins available on dev.bukkit.org. Each permission
plugin is created by a different developer. They have various features depending
on how the developer decided to program it. The plugin that we will use is
PermissionsBukkit, which is the simplest and most basic permissions plugin. Most
other permission plugins are configured in a similar way to what we will discuss.
To install PermissionsBukkit you must visit the link http://dev.bukkit.org/
server-mods/permbukkit/ and click on the download link near the upper right
corner of the webpage.

Clicking on the download link will provide you with the jar file of the plugin.
Install the jar file on your server as you would install one of your own plugins. The
next time you run the server, the plugin will generate new files, such as config.
yml. These files will be in the PermissionsBukkit folder which is inside the plugins
folder of your server. The path is shown as follows:

Bukkit Server/plugins/PermissionsBukkit/config.yml

www.it-ebooks.info

http://www.it-ebooks.info/

Player Permissions

[64]

The config.yml file is where you will create your permission groups and assign
specific permission nodes to each group. It is also where you will assign players
to those groups. The file will already have some sample data and other useful
information on how it should be configured. This is a YAML file just like plugin.yml
so you should be familiar with the formatting. You may edit this file with any text
editor. If you wish to use NetBeans, you can open the file by navigating to File |
Open File… or by dragging and dropping the file in the NetBeans window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[65]

Editing a YAML file incorrectly will cause it to not load completely. The issue that you
will most likely face with YAML files is having a tab in your document rather than
spaces. This will cause your file to not load properly. The following code is a sample
of how config.yml might look after creating the groups specified before.

users:
 Codisimus:
 groups:
 - admin
 Friend1234:
 groups:
 - trusted
groups:
 default:
 permissions:
 permissions.build: true
 bukkit.command.plugins: true
 bukkit.command.tell: true
 bukkit.command.kill: true
 bukkit.command.me: true
 bukkit.command.list: true
 trusted:
 permissions:
 permissions.*: true
 bukkit.command.teleport: true
 bukkit.command.save: true
 bukkit.command.say: true
 bukkit.command.time: true
 inheritance:
 - default
 admin:
 permissions:
 permissions.*: true
 bukkit.command.kick: true
 bukkit.command.ban: true
 bukkit.command.unban: true
 bukkit.command.give: true
 enchanter.enchant: true
 inheritance:
 - trusted
messages:
 build: '&cYou do not have permission to build.'

www.it-ebooks.info

http://www.it-ebooks.info/

Player Permissions

[66]

Every group can inherit the permission nodes of any other group. In this example,
the admin group inherits all the permissions from the trusted group. The trusted
group inherits all of the permissions from the default group. Therefore the admin
group also inherits the default group's permissions. In this sample file we have
two users; Codisimus and Friend1234. Each one is assigned to a group, admin and
trusted respectively. If a player is not assigned to a specific group within this file
then they will be in the default group. Therefore you need not add every player to
this file.

As you can see, the permission nodes earlier included Bukkit permissions for some
Minecraft commands as well as the permission for the Enchanter plugin. There are
many more Bukkit permissions than what have already been listed. These are a few
that are most commonly used. The rest of the permissions for Minecraft commands
can be found at the link wiki.bukkit.org/CraftBukkit_commands.

Try putting yourself in various groups and using the /enchant command. Be sure
that you are not an OP as it will give you all permissions regardless of which group
you are in. If you modify the config.yml file, you must reload the server in order
for the changes to take effect. For your convenience, PermissionsBukkit has a list
of their commands at http://dev.bukkit.org/bukkit-plugins/permbukkit/
pages/commands/. Running these commands from the console or in-game will allow
you to change a user's permissions without the need to reload the server.

Using permission nodes throughout your
plugins
In some cases you may want to check if a player has a specific permission from
within your code. With the addition of a universal permission system within Bukkit,
this couldn't have been easier. Looking at the Bukkit API docs, we can see that the
Player object contains a hasPermission method which returns a boolean response.
The method requires a string value which is the permission node that is being
checked. We can place this method in an if statement similar to the one shown in
the following code:

if (player.hasPermission("enchanter.enchant")) {
 //Add a level 10 Knockback enchantment
 Enchantment enchant = Enchantment.KNOCKBACK;
 hand.addUnsafeEnchantment(enchant, 10);
 player.sendMessage("Your item has been enchanted!");
} else {
 player.sendMessage("You do not have permission to enchant items
");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[67]

This block of code is unnecessary within our plugin because Bukkit can
automatically handle player permissions for commands. To see a proper use of this,
let's go back to MyFirstBukkitPlugin and add a permission check. The following
code is the modified onEnable() method which will only say Hello to players that
have the necessary permission.

@Override
public void onEnable() {
 if (Bukkit.getOnlinePlayers().length > 1) {
 for (Player player : Bukkit.getOnlinePlayers()) {
 //Only say 'Hello' to each player that has permission
 if (player.hasPermission("myfirstbukkitplugin.greeting")) {
 player.sendMessage("Hello " + player.getName());
 }
 }
 } else {
 //Say 'Hello' to the Minecraft World
 broadcastToServer("Hello World!");
 }
}

Remember that you will also have to modify plugin.yml to add the permission
node to your plugin.

You can also broadcast a message to only players who have a specific permission
node. The documentation on this can be found at http://jd.bukkit.org/rb/
doxygen/d4/da9/interfaceorg_1_1bukkit_1_1Server.html#a93e99c99a2a7dd8
c30f6e3e2c1a4f9eb.

Try adding some permission nodes to some of the other projects that were suggested
in previous chapters. For example, add the permission node creeperhiss.scare
to the plugin that has the /scare <player> command. As an added challenge,
add an option to allow a player to type /scare all if they want to scare all players
on the server. In this case you could check each player for the creeperhiss.hear
permission node. That way only those players would hear the sound. This is a good
example of a permission node that should be set to not op by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Player Permissions

[68]

Summary
With the modifications to your existing plugins, they are now more flexible with
the aid of a permission plugin. With PermissionsBukkit running on your server
you can have multiple groups for players. You can create plugins that give certain
players privileged commands. Yet these same players would be prevented from
using other possibly abusive commands. This new knowledge of Bukkit permissions
will give you increased control over both your plugins and your server. Now that
you know how to program both commands and permissions, you are ready to dive
into some of the more challenging and exciting sections of the Bukkit API. In the
next chapter you will learn how to automate your server and customize it even
more using the Bukkit event system.

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Event System
At this point, we know how to create a plugin that runs a code when a command
is executed. This is very useful in many situations. However, sometimes we would
rather not be required to type in a command. We prefer if the code could be
automatically triggered to execute. The trigger could be a specific event that occurs
on the server, such as a block being broken, a creeper exploding, or a player sending
a message in chat. The Bukkit event system allows a developer to listen for an event
and automatically run a block of code based on that event. Using the Bukkit event
system you can automate your server, which means less work for you to maintain
the server in the future. In this chapter we'll cover the following topics:

• Choosing an event
• Registering an event listener
• Listening for an event
• Canceling an event
• Communicating between events
• Modifying an event as it occurs
• Creating more plugins on your own

Choosing an event
All of the events that Bukkit provides can be found in the API documentation in
the package org.bukkit.event. The Javadoc has a full list of the Bukkit events at
http://jd.bukkit.org/dev/apidocs/org/bukkit/event/class-use/Event.
html. I suggest you look at the list to see what type of events you can listen for.
Each event has several methods which give you more information and allow you to
modify it. For example, BlockBreakEvent provides methods to get the block that
was broken and the player who broke it. Most events may also be canceled if you
wish to not allow the event to occur. This is useful in many situations, such as not
letting a new player place a TNT block or preventing a mob from spawning.

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Event System

[70]

As mentioned earlier, listening to events can aid in automating your server and
reducing the number of commands being sent. Besides that, they can simply be a
lot of fun to work with. Let's look at a few examples of plugins that could be made
using the Bukkit event system. Earlier we mentioned that you can listen to the player
chat event and modify it as you please. You could use this to monitor messages
and censor any offensive words that may be spoken. Placing TNT blocks was also
mentioned. You could create a plugin that only lets players place TNT if they have
the build.tnt permission node. There is also a WeatherChangeEvent which can
be canceled. That being said, there are many server admins who don't like it when
it rains on the server. Rain can be loud and annoying. Admins will issue the /
toggledownfall command to stop the rain every time that it starts. In this chapter
we will create a plugin that prevents rain from starting in the first place.

The first thing we must do is find the appropriate event that we can listen for. To
accomplish this we will visit the Bukkit API documentation. Let's say that we are
unfamiliar with the API, so we are unsure of which event we can use. We can use the
search bar in the upper right corner of the Doxygen website. If we attempt to search
rain it will yield no results. However, rain is categorized with snow, therefore when
searching weather we find that one of the results is WeatherChangeEvent. This is
exactly what we are looking for. If you are ever unable to find the event that you
are looking for then remember that you can ask for help on the Bukkit forums or in
the IRC channel; perhaps do a search on the forums first to see if anyone else was
looking for the same information.

Now that we found the event, we wish to prevent this event from occurring. Viewing
the WeatherChangeEvent class reference page, we will see several methods that are
offered through this event. We will be using the setCancelled method to cancel the
event and the toWeatherState method to ensure that we are only preventing the rain
from starting, not stopping.

Registering an event listener
After deciding which event we will listen for, it is time to start programming.
Create a new project as described in Chapter 3, Creating Your First Bukkit Plugin,
and call it NoRain. Don't forget to create a plugin.yml file as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[71]

In order to listen for an event, your plugin must have a class that is registered as a
Listener. We will only have one class named NoRain.java, for this project so we
will make this a Listener class, as well. Alternatively, if this is a large project, you
could make the Listener its own class, similar to how our Enchanter project had
the CommandExecutor as a separate class. Also, similarly to a CommandExecutor, a
Listener will implement an interface. The interface we wish to implement is
org.bukkit.event.Listener. Therefore, our class declaration will look as shown
in the following line of code:

public class NoRain extends JavaPlugin implements Listener

Our class is declared as a Listener but is still not registered with Bukkit. To
register all the events within the listener, put the following line of code in the
onEnable method:

getServer().getPluginManager().registerEvents(this, this);

This line retrieves the PluginManager and uses it to register the events. The
PluginManager is used for several things including handling events, enabling/
disabling plugins, and handling player permissions. Most of the time, you will
use it for registering event listeners. It has a registerEvents method that takes
a Listener class and a JavaPlugin class as parameters respectively. Our only
class is both the Listener and JavaPlugin, so we pass the this object to both the
parameters. If our Listener class was separated from the main class then the line
would look more like the following line of code:

getServer().getPluginManager().registerEvents(
 new WeatherListener(), this);

This is all that is needed within our onEnable method.

Listening for an event
The next method that we will create is an EventHandler. We use the @EventHandler
annotation to tell Bukkit which of our methods are event listeners. Create a new
method that has our event of choice as the only parameter. The method must be
public and it should not return anything. You may name this method anything you
wish to, but most programmers will keep the name similar to the name of the event.
The following code is an example of the method header:

public void onWeatherChange(WeatherChangeEvent event)

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Event System

[72]

Next, we indicate that this method handles events. Just above the method,
add the following annotation:

@EventHandler

On that same line we can modify some properties for the EventHandler. One
property that you are likely to add to all of your EventHandler methods is to
ignore canceled events. If the event is already canceled by another plugin then
we don't want to bother listening to it. Setting the ignoreCancelled property
to true will result in our method looking like this:

@EventHandler (ignoreCancelled = true)
public void onWeatherChange(WeatherChangeEvent event) {
}

The other property is the event priority. By changing the priority of your
EventHandler, you can choose to listen for the event before or after other
plugins. If your EventHandler has a higher priority than another, then it is
called after the other EventHandler and thus may override anything that the
first EventHandler has modified. There are six priority levels and they are called
in the following order:

1. LOWEST
2. LOW
3. NORMAL
4. HIGH
5. HIGHEST
6. MONITOR

That is, the plugins with the LOWEST priority are called first. Imagine you have a
protection plugin. You would not want any other plugin reversing its decision to
cancel an event. Therefore you would set the priority to HIGHEST so that no other
plugins would be able to modify the event after yours. Each EventHandler has
NORMAL priority by default. If you are not modifying the event then you will most
likely want to listen at the MONITOR level. The MONITOR priority should not be used
when modifying the event, such as canceling it.

We want to cancel this event before plugins that have a NORMAL priority even see it.
Therefore, let's change the priority of this event to LOW. Now the line that is above the
method looks like the following line of code:

@EventHandler (ignoreCancelled = true, priority =
 EventPriority.LOW)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[73]

Canceling an event
Finally, we want to cancel the weather from changing. To do so, we will call
the setCancelled method of the event. The method takes a boolean value as
a parameter. We want cancelled to equal true. Therefore, we will use the
code setCancelled(true). The code is as follows:

package com.codisimus.norain;

import org.bukkit.event.EventHandler;
import org.bukkit.event.EventPriority;
import org.bukkit.event.Listener;
import org.bukkit.event.weather.WeatherChangeEvent;
import org.bukkit.plugin.java.JavaPlugin;

public class NoRain extends JavaPlugin implements Listener {
 @Override
 public void onEnable() {
 getServer().getPluginManager().registerEvents(this, this);
 }

 @EventHandler (ignoreCancelled = true, priority =
 EventPriority.LOW)
 public void onWeatherChange(WeatherChangeEvent event) {
 event.setCancelled(true);
 }
}

This plugin will work as is. However, there is room for improvement. What if it is
already raining in the server world? This plugin would prevent the rain from ever
stopping. Let's add an if statement, so that the WeatherChangeEvent will only
be canceled if the weather is starting. The event provides us with a method called
toWeatherState which returns a boolean value. This method will return true or
false, informing us of whether the weather is starting or stopping respectively. This
is also made clear in the Bukkit API documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Event System

[74]

If toWeatherState returns true then it is starting to rain. This is the case in
which we want to cancel the event. Let's now write the same thing in Java, shown
as follows:

if (event.toWeatherState()) {
 event.setCancelled(true);
}

After adding this if statement, you may want to test your plugin. Before installing
the plugin, log on to your server and use the /toggledownfall command to make
it rain. Once it is raining, install your newly created plugin and reload the server. At
this point it will still be raining but you will be able to stop the rain by issuing the
/toggledownfall command again. If you cannot, then the if statement that you
added is incorrect; review it to find your mistake and re-test it. Once you stop the
rain you can try to use the same command to start the rain again. As long as the code
is correct, the rain should not start. If the rain does start then verify that your event
listener is being properly registered within the onEnable method.

Communicating among events
Our plugin works exactly as intended, but what if we have a change of heart and
begin to miss the sound of the rain? Or what if our town bursts into flames and
must be extinguished quickly, We do not want to limit our power as an admin by
denying ourselves the use of the /toggledownfall command. Next we will listen
for this command to be issued and when it is, we will allow the weather to change.
Ultimately, we will still be able to control the weather manually but the weather
will not start on its own.

Let's create another EventHandler. This time we will be listening for a console
command being sent. We will not actually be modifying this event at all so we
should set the event priority to MONITOR. We also want to ignore canceled events.
The event that we will listen for is PlayerCommandPreprocessEvent. This event
will occur every time that any player issues any command, whether they be
for Minecraft, Bukkit, or another plugin. We only care about one command, /
toggledownfall, so we will first check if the message starts with /toggledownfall.
If it is a different command we will ignore it. As the event name suggests, this event
occurs before the command is actually executed. Therefore we must verify that
the player will have permission to run the command. The permission node for the
command is bukkit.command.toggledownfall. If these two conditions are met,
then we want to make note to allow rain to start on the next WeatherChangeEvent.
Our second EventHandler is completed with two if statements and by setting a
boolean variable to false. This is shown in the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[75]

@EventHandler (ignoreCancelled = true, priority =
 EventPriority.MONITOR)
public void onPlayerCommand(PlayerCommandPreprocessEvent event) {
 //Check if the Player is attempting to change the weather
 if (event.getMessage().startsWith("/toggledownfall")) {
 //Verify that the Player has permission to change the weather
 if (event.getPlayer().hasPermission(
 "bukkit.command.toggledownfall")) {
 //Allow the Rain to start for this occasion
 denyRain = false;
 }
 }
}

At this point a light bulb will appear, informing you that the symbol denyRain
cannot be found. If you click the bulb you can select Create Field denyRain in
packagename.NoRain. This will automatically create a private variable called
denyRain inside of your class. Notice the placement of the new line of code. It is
outside our existing method blocks yet still inside the class. This is important because
it defines the variable's scope. The scope of a variable is where it can be accessed. The
denyRain variable is private so no other class, such as one from another plugin, can
modify it. However, within the NoRain class, all of the methods can access it. This is
useful because if the variable was declared within the onPlayerCommand method, we
would not be able to see it from the onWeatherChange method.

Now that our plugin knows when we wish to allow the rain to start, we must slightly
modify the onWeatherChange method to allow for such an exception. Currently, to
cancel the event we call the setCancelled method with true as the parameter. If
we were to pass false as a parameter then the event would not be canceled. The
variable denyRain is equal to true when we wish to cancel the event. Therefore,
rather than passing true or false we can pass the value of denyRain. So when
denyRain is set to false then we will call it using the following line of code:

event.setCancelled(false);

At the end of the onWeatherChange method we want to be sure to reset the value
of denyRain to true. This way we ensure that we allow the weather to change
only once each time the /toggledownfall command is issued. Our final code is
as follows:

package com.codisimus.norain;

import org.bukkit.event.EventHandler;
import org.bukkit.event.EventPriority;

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Event System

[76]

import org.bukkit.event.Listener;
import org.bukkit.event.player.PlayerCommandPreprocessEvent;
import org.bukkit.event.weather.WeatherChangeEvent;
import org.bukkit.plugin.java.JavaPlugin;

public class NoRain extends JavaPlugin implements Listener {
 //This is a variable that our two methods will use to "communicate"
with each other
 private boolean denyRain = true;

 @Override
 public void onEnable() {
 //Register all of the EventHandlers within this class
 getServer().getPluginManager().registerEvents(this, this);
 }

 @EventHandler (ignoreCancelled = true, priority =
 EventPriority.LOW)
 public void onWeatherChange(WeatherChangeEvent event) {
 if (event.toWeatherState()) { //Rain is trying to turn on
 //Cancel the event if denyRain is set to true
 event.setCancelled(denyRain);
 }
 //Reset the denyRain value until next time a Player issues the /
toggledownfall command
 denyRain = true;
 }

 @EventHandler (ignoreCancelled = true, priority =
 EventPriority.MONITOR)
 public void onPlayerCommand
 (PlayerCommandPreprocessEvent event) {
 //Check if the Player is attempting to change the weather
 if (event.getMessage().startsWith("/toggledownfall")) {
 //Verify that the Player has permission to change the weather
 if (event.getPlayer().hasPermission
 ("bukkit.command.toggledownfall")) {
 //Allow the Rain to start for this occasion
 denyRain = false;
 }
 }
 }
}

Note that when we declare the boolean denyRain, we set its initial value to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[77]

Modifying an event as it occurs
The Bukkit API allows a programmer to do more than simply cancel an event.
Depending on the event, you are able to modify many aspects of it. In this next
project we will modify zombies as they spawn. Every time a zombie spawns we
will give it 40 health rather than the default 20. This will make zombies more
difficult to kill.

Create a new project as you would for any plugin. We will call this plugin
MobEnhancer. Similar to the NoRain plugin, have the main class implement
Listener and add the following line of code to the onEnable method to register
your EventHandlers:

getServer().getPluginManager().registerEvents(this, this);

For this project, we will have one EventHandler which listens for mobs spawning.
This would be the CreatureSpawnEvent. This event has many methods that we can
call to either modify the event or gain more information about it. We only wish to
modify zombies that are spawned, so the first thing we will add is an if statement
checking to see if the EntityType is ZOMBIE. That is done with the following block of
code:

if (event.getEntityType() == EntityType.ZOMBIE) {
}

Inside those brackets we will change the health of the Entity to 40. We can retrieve
the Entity by calling event.getEntity(). Once we have the Entity, we have
access to many additional methods. You can view all of these methods in the API
documentation at http://jd.bukkit.org/beta/doxygen/de/dd5/interfaceorg_
1_1bukkit_1_1entity_1_1Entity.html. One of the methods is setHealth. Before
we can set the health to 40, we must set the max health that is allowed to 40. An
Entity cannot have 40 health when its max health is still 20. Those two lines of code
will complete this plugin. The code now looks as follows:

package com.codisimus.mobenhancer;

import org.bukkit.entity.EntityType;
import org.bukkit.event.EventHandler;
import org.bukkit.event.Listener;
import org.bukkit.event.entity.CreatureSpawnEvent;
import org.bukkit.plugin.java.JavaPlugin;

public class MobEnhancer extends JavaPlugin implements Listener {
 @Override
 public void onEnable() {
 //Register all of the EventHandlers within this class

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Event System

[78]

 getServer().getPluginManager().registerEvents(this, this);
 }

 @EventHandler
 public void onMobSpawn(CreatureSpawnEvent event) {
 if (event.getEntityType() == EntityType.ZOMBIE) {
 int health = 40;
 event.getEntity().setMaxHealth(health);
 event.getEntity().setHealth(health);
 }
 }
}

You could add more code to the plugin in order to modify the health of more types
of entities. A list of all EntityTypes can be found in the Bukkit API documentation
under the EntityType class reference page at the link http://jd.bukkit.org/
beta/doxygen/d7/dbf/enumorg_1_1bukkit_1_1entity_1_1EntityType.html.
However, in the next chapter, we will make this plugin configurable in order to
change the health of any type of Entity that spawns.

Creating more plugins on your own
Now that you have these two plugins made, you have a feel for how to properly
use event listeners. You now have the required knowledge to create hundreds of
unique plugins on your own. All you need to get started is a cool idea. Why don't
you try making one of the plugins suggested earlier in this chapter? For more
ideas, you know where to look. The Bukkit forums or the API documentation
are great for inspiration. For example, looking though the list of events, I saw the
ExplosionPrimeEvent which has the description Called when an entity has made
a decision to explode. This event is called when a creeper makes that hissing noise
that every Minecraft player dreads. When this happens, you can send a message to
all nearby players to make it look like the creeper is talking to them. First you would
create an EventHandler for this event. You will want to return if the entity is not
a creeper. Then you will want to get the entities that are near the creeper (there is
a method for this within the Entity class). For each entity that you get, if it is an
instance of a player, send them a message as shown:

<Creeper> That sssure isss a nicccee <ItemInHand> you have there. It
would be a ssssshame if anything happened to it.

In each message, you would replace <ItemInHand> with the type of item that the
player is holding. By this time, I am sure that you have some ideas of your own that
you are able to make as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[79]

Another good thing to know about listeners is how to unregister them. You may
never need to do this but if you do ever want to stop modifying or canceling an event
then you can use the following code within your Listener class:

HandlerList.unregisterAll(this);

This will unregister the entire class, so if you wish to only unregister specific
EventHandlers then you should split them up into multiple classes. Unregistering
the listeners would not be the way to go for the NoRain plugin but it may be useful
for adding a /mobenhancer off command. Then a /mobenhancer on command
could register the listeners again, similar to how we did it in the onEnable method.

Summary
Both of the plugins that we have made in this chapter have the entire code within
a single class. You may however choose to separate these into the main plugin
class and a listener class. In small plugins like these it is not necessary, yet in larger
projects it will keep your code much cleaner. There will be a few differences, such as
having static variables or passing a variable to another class. In the next chapter we
will complete the MobEnhancer plugin by adding configuration as well as a reload
command. We will have the Listener and CommandExecutor as part of the main
class. Once the plugin is complete we will go over the differences for the same plugin
as three individual classes.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin
Configurable

A configurable plugin can be very powerful. The single plugin will be able to
function in different ways depending on the user's preferences. Essentially, your
plugin's configuration file will be similar to the bukkit.yml file for your server. It
will allow you to change settings for the plugin without modifying the Java code.
This means you need not re-build the plugin JAR file every time that you wish to
change a small detail. If your plugin is public or used by anyone else, adding a
config file may reduce time spent on modifying code in the future. The users of
your plugin are able to change the settings that are in the config by themselves,
and do not require any additional assistance from you as the developer.

To fully understand why we would want a variable to be configurable, let's look
at one of our previous plugins. In MobEnhancer, we set the health of zombies to be
40 instead of 20. Someone else may wish to use your plugin, but they want to set
the zombies' health to 60. You could create two versions of the plugin, which may
become very confusing, or you could have one version that is configurable. In the
config file on your server, you will have the health of zombies set to 40. But on
another server, the health will be set to 60. Even if your plugin will be used on only
one server, configuration will allow for a quick and easy method of changing the
amount of health.

There are roughly five steps to making your plugin configurable:

1. Decide exactly which aspects of your plugin will be configurable.
2. Create a config.yml file that includes each setting and its default value.
3. Add code to save the default config file as well as load/reload the file.
4. Read the configured values and store them in your plugin as class variables.
5. Ensure your code references the class variables that the configuration settings

are loaded into.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin Configurable

[82]

The steps need not be completed in this order, but we will discuss them in the
following order in this chapter:

• Data types that are configurable
• Writing a config.yml file
• Saving, loading, and reloading your plugin's configuration
• Reading values from the configuration
• Using these configured settings within your plugin
• Writing an ItemStack value in a YAML format
• Understanding the YAML structure and hierarchy
• Storing configuration values locally
• Splitting one class into multiple classes and accessing variables and

methods from another class

Configurable data types
You could easily make most variables in your plugin configurable. The
following is a table of various data types and examples of why you may
want them to be configurable:

Data type How it may be used
int Setting the health of a mob when it spawns
boolean Turning a specific feature on or off
String Changing a message that is sent to a player
ItemStack Making a customized item appear

Adding an ItemStack value to a configuration file is complicated, but
will be explained towards the end of this chapter.

We are going to make MobEnhancer configurable. We want to be able to set the value
of the zombies' health. That would simply be one integer value. Let's expand the
plugin to support additional creature types. We will create our config file first and
then adapt our program to be able to modify different types of mobs. Therefore, we
have decided that our config file will include a single integer for each type of mob.
This integer will be the mob's health.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[83]

Writing a config.yml file
Now it is time to start writing your config.yml file. Create a new YAML file in the
default package of MobEnhancer. The name of this file must be config.yml in order
to be properly loaded by Bukkit. The following is an example of how your config
file for MobEnhancer may look. Notice the comments in the example indicated by the
character. Remember to always include comments so that the users know exactly
what each setting is for.

#MobEnhancer Config
#Set the health of each Mob below
#1 is equal to half a heart so a Player has 20 health
#A value of -1 will disable modifing the mob's health
#Hostile
ZOMBIE: 20
SKELETON: 20

#Passive
COW: 10
PIG: 10

Only a few mobs are included in this config file, but the names of all
the mob types can be found in the API docs for the EntityType class
at http://jd.bukkit.org/beta/doxygen/d7/dbf/enumorg_1_
1bukkit_1_1entity_1_1EntityType.html.

This is a simple YAML file because it does not contain any nested keys. Most of your
configurations will be this simple, but we will go over some more complicated ones
later in this chapter.

Saving, loading, and reloading the
config file
Now that we have our config.yml file and it is located in the default package of
our plugin, we need to be able to save it to the user's server. That way the user will
be able to edit it as they please. Saving the config file is as simple as adding the
following method call to your onEnable method:

saveDefaultConfig();

This will copy config.yml to plugins/MobEnhancer/config.yml. If the file already
exists, then this line of code will do nothing.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin Configurable

[84]

Loading the config file is done automatically by Bukkit and there is no need for
you to do anything additional in your plugin besides using getConfig() when
you actually want to access the configuration file.

Reloading config.yml is fairly simple to include, and we will add it in the form
of a command:

@Override
public boolean onCommand(CommandSender sender, Command command, String
alias, String[] args) {
 reloadConfig();
 sender.sendMessage("MobEnhancer config has been reloaded");
 return true; //The command was executed successfully
}

We will put this method inside our main class for now, so be sure that the class also
implements CommandExecutor, and do not forget to register the command with the
following line:

getCommand("mobenhancerreload").setExecutor(this);

The command should also be added to plugin.yml, as always. It is a good idea to
add a permission node at this point too. The following is your new plugin.yml:

name: MobEnhancer
main: com.codisimus.mobenhancer.MobEnhancer
version: 0.2.0
description: Modifies Mobs as they spawn
commands:
 mobenhancerreload:
 description: Reloads the config.yml file of the plugin
 aliases: [mereload, merl]
 usage: /merl
 permission: mobenhancer.rl
 permission-message: You do not have permission to do that
permissions:
 mobenhancer.rl:
 default: op

Now your plugin will have a reload command. This means that when you edit
config.yml, you can reload the plugin rather than restarting the entire server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[85]

Reading and storing the configured
values
Once your configuration file is loaded, you must be able to access the file and
read the values that are set. The JavaPlugin class, which is extended by your
main class, has a getConfig method which returns FileConfiguration. This
FileConfiguration class is what we will use to get the values that we are looking
for. You will notice that a FileConfiguration method has class such as getInt,
getString, and getBoolean, which all take a string as a parameter. The string
parameter is the path to the value. To fully understand the path, we need to look
at a YAML configuration that contains nested keys. An example of this would be
the plugin.yml file that we were just working with. If we wanted to get the string
MobEnhancer from the configuration, then the path would be name. If we wanted
to retrieve the description of our mobenhancerreload command, then the path
would be commands.mobenhancerreload.description. Therefore, the Java code
to retrieve that value would be getString("commands.mobenhancerreload.
description");. Our config.yml file for MobEnhancer is quite simple, so in order
to get one of the integer values, we can use the getInt() method with the name of
the mob as the path. For example, to get the value that is set for the ZOMBIE Entity,
we use:

int health = this.getConfig().getInt("ZOMBIE");

This will return an integer value from one of three sources:

• The FileConfiguration that has been loaded from plugins/MobEnhance/
config.yml

• The default FileConfiguration,which is the config.yml file that is located
within the default package of the MobEnhance JAR file

• The default value of the data type (0 for a double/integer, false for a
Boolean, and null for a string/ItemStack)

The first result that doesn't fail will be returned. A result will fail due to an invalid
path or an invalid value. In our previous statement, an invalid path would occur if
the path ZOMBIE is not within config.yml. An invalid value would mean that the
value of the given path is not an integer.

Now that we understand how to read the configured data, let's modify our plugin to
use these customized values.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin Configurable

[86]

Using configured settings within your
plugin
Our current EventHandler of the MobEnhancer plugin sets the health of zombies to
40. The number 40 is hardcoded. This means that the value of 40 is a part of the code
itself, and cannot be changed after the code is compiled. We wish to make this value
softcoded which, as you can guess, is retrieving the value from an external source, in
our case, config.yml.

Currently our onMobSpawn method is as follows:

@EventHandler
public void onMobSpawn(CreatureSpawnEvent event) {
 if (event.getEntityType() == EntityType.ZOMBIE) {
 int health = 40;
 event.getEntity().setMaxHealth(health);
 event.getEntity().setHealth(health);
 }
}

We will work from this existing code. The if statement is no longer needed, because
we don't want to limit the plugin to only zombies. As we discussed earlier, we also
want to remove the hardcoded 40 with an integer that will be read from the config
file. Therefore, 40 should be replaced with getConfig().getInt(type). The
Type in this statement will be a string of the type of Entity; for example, ZOMBIE,
SKELETON, or any of the other entity types that are listed within config.yml. We
already know that we can get the type of the entity that spawned by using event.
getEntityType(). However, this gives us EntityType in enum form and we require
it in the string form. The EntityType page of the Bukkit API docs informs us that
we can call the method getName to return the string that we are looking for. Our new
onMobSpawn method is as follows:

@EventHandler
public void onMobSpawn(CreatureSpawnEvent event) {
 //Find the type of the Entity that spawned
 String type = event.getEntityType().getName();

 //Retrieve the custom health amount for the EntityType
 //This will be 0 if the EntityType is not included in the config
 int health = getConfig().getInt(type);
 event.getEntity().setMaxHealth(health);
 event.getEntity().setHealth(health);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[87]

This EventHandler is nearly complete. We are allowing other people to set the
health value. We want to be sure that they are entering a valid number. We don't
want our plugin to crash because it is being misused. We know that we are receiving
an integer because even if the user set a non-integer value, then we would be given
the default value of 0 instead. However, not every valid integer value will be useable
in our situation. For example, we cannot set the health of an entity to a negative
value. We also do not want to set the health to 0 because this would instantly kill
the entity. Therefore, we should only modify the health if the new health is set to a
positive integer. This can be done with a simple if statement:

if (health > 0)

Our MobEnhancer plugin is now configurable and supports any type of creature. It is
no longer limited to just zombies. The finished code will be similar to the following:

package com.codisimus.mobenhancer;

import org.bukkit.command.Command;
import org.bukkit.command.CommandExecutor;
import org.bukkit.command.CommandSender;
import org.bukkit.event.EventHandler;
import org.bukkit.event.Listener;
import org.bukkit.event.entity.CreatureSpawnEvent;
import org.bukkit.plugin.java.JavaPlugin;

public class MobEnhancer extends JavaPlugin implements Listener,
CommandExecutor {
 @Override
 public void onEnable() {
 //Save the default config file if it does not already exist
 saveDefaultConfig();

 //Register all of the EventHandlers within this class
 getServer().getPluginManager().registerEvents(this, this);

 //Register this class as the Executor of the /merl command
 getCommand("mobenhancerreload").setExecutor(this);
 }

 @EventHandler
 public void onMobSpawn(CreatureSpawnEvent event) {
 //Find the type of the Entity that spawned
 String type = event.getEntityType().getName();

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin Configurable

[88]

 //Retrieve the custom health amount for the EntityType
 //This will be 0 if the EntityType is not included in the
 config
 int health = getConfig().getInt(type);

 //Mobs cannot have negative health
 if (health > 0) {
 event.getEntity().setMaxHealth(health);
 event.getEntity().setHealth(health);
 }
 }

 @Override
 public boolean onCommand(CommandSender sender, Command command,
 String alias, String[] args) {
 reloadConfig();
 sender.sendMessage("MobEnhancer config has been reloaded");
 return true; //The command was executed successfully
 }
}

ItemStack within a configuration
Next, we will expand our MobEnhancer plugin even further by allowing the option
of giving armor and weapons to zombies and skeletons. In order to do this, we must
first learn how to add an ItemStack as an option in a configuration file. ItemStack
is more complicated than a simple integer. They are objects that have many nested
values. They may also include meta which have more nested values. The following is
a sample of an ItemStack in a YAML file:

SampleItem:
 ==: org.bukkit.inventory.ItemStack
 type: DIAMOND_SWORD
 damage: 1500
 amount: 1
 meta:
 ==: ItemMeta
 meta-type: UNSPECIFIC
 display-name: §6Sample Item
 lore:
 - First line of lore
 - Second line of lore
 - §1Color §2support

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[89]

 enchants:
 DAMAGE_ALL: 2
 KNOCKBACK: 7
 FIRE_ASPECT: 1

Once loaded, the following is the item that results:

Only the type field is required. You can omit any other segment. type
refers to the type of material. These can be found in the API docs under
org.bukkit.Material (http://jd.bukkit.org/beta/doxygen/d6/d0e/
enumorg_1_1bukkit_1_1Material.html). damage is how much damage
the item has taken. For items such as wool, this will set the color of the wool.
amount will set the stack size. For example, I may have one sword, or twenty
logs. meta includes additional information such as lore, enchantments, and more.
Given the path, getConfig().getItemStack("SampleItem"); will retrieve
the item.

YAML configuration hierarchy
You will notice the hierarchy when working with ItemStack in YAML. This is
similar to how commands and permissions have nested values in our plugin.yml
files. We can utilize a hierarchy within our config file to make it easier to use
and understand.

We want to give items to two types of mobs; zombies and skeletons. Each type will
have unique armor and a unique weapon. This means that we will need ten different
ItemStack classes. We could name them ZombieHolding, SkeletonHolding,
ZombieHelmet, SkeletonHelmet, and so on. However, a hierarchy would be much
more efficient. We will have a Zombie key and a Skeleton key. Within each of them
we will have a key for each item. The following is a sample of the hierarchy of the mob
armor segment of the config file:

Zombie:
 holding:
 ==: org.bukkit.inventory.ItemStack

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin Configurable

[90]

 type: STONE_SWORD
 helmet:
 ==: org.bukkit.inventory.ItemStack
 type: CHAINMAIL_HELMET

Skeleton:
 holding:
 ==: org.bukkit.inventory.ItemStack
 type: BOW
 helmet:
 ==: org.bukkit.inventory.ItemStack
 type: LEATHER_HELMET

The rest of the armor pieces would be added in the same way.

If we want to retrieve the ItemStack for the boots of a skeleton, we would use
getConfig().getItemStack("Skeleton.boots");. Remember that the hierarchy
is conveyed using a period. Here is a section that will be appended to config.yml,
which includes a mob armor section as we have discussed. We also have a Boolean
value GiveArmorToMobs, which we will include to easily disable the mob
armor feature:

MOB ARMOR
GiveArmorToMobs: true

Zombie:
 holding:
 ==: org.bukkit.inventory.ItemStack
 type: STONE_SWORD
 helmet:
 ==: org.bukkit.inventory.ItemStack
 type: CHAINMAIL_HELMET

Skeleton:
 holding:
 ==: org.bukkit.inventory.ItemStack
 type: BOW
 meta:
 ==: ItemMeta
 meta-type: UNSPECIFIC
 enchants:
 ARROW_FIRE: 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[91]

 helmet:
 ==: org.bukkit.inventory.ItemStack
 type: LEATHER_HELMET
 color:
 ==: Color
 RED: 102
 BLUE: 51
 GREEN: 127

Storing configuration values as variables
Retrieving a value from your plugin's config file requires more time and resources
than accessing a local variable. Therefore, if you will be accessing a specific value
very often, it is best to store it as a variable. We will want to do just this with the
Boolean value GiveArmorToMobs. It is also a good idea to store our armor ItemStack
locally to prevent creating a new one every time it is used. Let's add the following
variables above the methods of our main class:

private boolean giveArmorToMobs;
private ItemStack zombieHolding;
private ItemStack skeletonHolding;

We will only write the code to set the item that a zombie or skeleton is holding. You
can add the rest of the armor yourself as it will be done the same way.

We want these values to be automatically stored whenever the config file is
reloaded. Note that when the config file is initially loaded, it is actually being
reloaded. To ensure that our data is saved every time that the config file is reloaded,
we will add additional code to the reloadConfig method of the plugin. This is the
method that we call to execute our /merl command. The reloadConfig method is
already included in every JavaPlugin, but we will modify it by overriding it. This is
much like how we override the onEnable method. Overriding a method will prevent
the existing code from executing. This is not an issue for onEnable because the
method has no prior existing code. However, reloadConfig has code that we still
wish to execute. Therefore, we use the following line of code to execute the code that
we are overriding:

super.reloadConfig();

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin Configurable

[92]

This line of code is very important. Once we have it, we can add our own code before
or after it. In our case, we want to store the values after the config file has been
reloaded. Therefore, our additional code should be placed after the previous line.
The following is our completed overridden reloadConfig method:

/**
 * Reloads the config from the config.yml file
 * Loads values from the newly loaded config
 * This method is automatically called when the plugin is enabled
 */
@Override
public void reloadConfig() {
 //Reload the config as this method would normally do if not
overriden
 super.reloadConfig();

 //Load values from the config now that it has been reloaded
 giveArmorToMobs = getConfig().getBoolean("GiveArmorToMobs");
 zombieHolding = getConfig().getItemStack("Zombie.holding");
 skeletonHolding = getConfig().getItemStack("Skeleton.holding");
}

The last code that we must write is to give armor to the specific mobs. We will add this
to the end of our onMobSpawn method. We only want to do this if giveArmorToMobs is
set to true, so the block of code will be placed inside an if statement:

if (giveArmorToMobs) {

}

We can retrieve the entity's armor with the following code:

EntityEquipment equipment = event.getEntity().getEquipment();

This gives us their equipment slots even though they may not include anything in
them at the moment. To learn more about this object and what you can do with it,
visit its API documentation at http://jd.bukkit.org/beta/doxygen/da/de1/in
terfaceorg_1_1bukkit_1_1inventory_1_1EntityEquipment.html. Now that we
have EntityEquipment, setting the pieces of armor is simple.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[93]

We have two distinct sets of armor, so we must first see if the entity is either a
zombie or a skeleton. We could do this with an if/else statement:

if (event.getEntityType() == EntityType.ZOMBIE) {
 //TODO - Give Zombie armor
} else if (event.getEntityType() == EntityType.SKELETON) {
 //TODO – Give Skeleton armor
}

However, using a switch/case block would be more efficient. Using switch/case
in this scenario would look as follows:

switch (event.getEntityType()) {
case ZOMBIE:
 //TODO - Give Zombie armor
 break;
case SKELETON:
 //TODO - Give Skeleton armor
 break;
default: //Any other EntityType
 //Do nothing
 break;
}

The If/else statements are used to check multiple conditions; is the entity a zombie?,
is the entity a skeleton? switch/case saves time by asking a single question; what is the
type of the entity? The code within the correct case condition would then be executed.
When a break condition is reached, the switch statement will be exited. If you do
not end the case with break, then you would fall through to the next case and begin
executing that code. In some circumstances that is a good thing, but we do not want
that to happen here. The default case does not need to be included since there is no
code in it, but it does make the code easier to understand in my opinion, and most
programmers would include it.

Within each of these cases, we will want to equip the correct set of armor.

We should check each piece of armor to be sure that it is not null before applying
it using the following code. This will prevent the plugin from crashing due to an
invalid configuration.

if (zombieHolding != null) {
 equipment.setItemInHand(zombieHolding.clone());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin Configurable

[94]

We use the clone method here on the ItemStack. We don't want to
hand out a single ItemStack to every mob. Instead, we will create
clones of it so that each mob can have its own copy.

Equipping the remaining armor and equipping armor to a skeleton is very similar.
Overall, the block of code will look like the following:

if (giveArmorToMobs) {
 //Retrieve the equipment object of the Entity
 EntityEquipment equipment = event.getEntity().getEquipment();

 switch (event.getEntityType()) {
 case ZOMBIE:
 //Set each piece of equipment that the Zombie has if they are
not null
 if (zombieHolding != null) {
 equipment.setItemInHand(zombieHolding.clone());
 }
 //TODO – Add rest of armor
 break;

 case SKELETON:
 //Set each piece of equipment that the Skeleton has if they
are not null
 if (skeletonHolding != null) {
 equipment.setItemInHand(skeletonHolding.clone());
 }
 //TODO – Add rest of armor
 break;

 default: //Any other EntityType
 //Do nothing
 break;
 }
}

With that, our MobEnhancer plugin now supports giving armor to mobs. We only
discussed giving armor to zombies and skeletons. This is because most mobs
including creepers, spiders, and cows cannot wear armor. If you wish, try adding
armor and items to other mobs to see what happens. Also try giving the mobs
unique items. For example, skeletons can be given a sword or zombies can be given
a bow. There is also a skull item that has different looks to it, which you can have the
mob wear as a mask.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[95]

You will even notice that you can create skulls that represent a specific player, such
as Notch, in the following screenshot:

The meta for the NotchSkull item is as follows:

NotchSkull:
 ==: org.bukkit.inventory.ItemStack
 type: SKULL_ITEM
 damage: 3
 meta:
 ==: ItemMeta
 meta-type: SKULL
 skull-owner: Notch

Play around with your new plugin to see what crazy items you can give to zombies
and other mobs. The following is an example image of what you could accomplish
by modifying the configuration:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin Configurable

[96]

Accessing variables from another class
Our MobEnhancer class is growing in size. There is no need to place all of our code
within a single class. Our one class is extending the JavaPlugin class as well as
implementing both the Listener and CommandExecutor interfaces. Our program
may be easier to understand if we split these into three unique classes.

Create two new classes named MobSpawnListener and
MobEnhancerReloadCommand. MobEnhancer will still be your main class, so it will
still extend JavaPlugin. However, the two new classes will implement Listener
and CommandExecutor, respectively. Move the appropriate methods to their new
classes. That is, onMobSpawn is an event handler, so it belongs within the Listener
class and onCommand belongs within the CommandExecutor class. When moving the
methods, you will notice several errors that are introduced. This is because your
methods no longer have access to the necessary methods and variables. Let us first
address the MobEnhancerReloadCommand class as it only has one error. This error
occurs at the following line:

reloadConfig();

reloadConfig is a method that is in the JavaPlugin class, which is no longer
merged with our CommandExector class. We need to access our JavaPlugin object
from this separate class. The easiest way to do this is to use a static variable. If a
variable or method is static, then it does not change across different instances of the
class. This allows us to refer to the variable from a static context. You have done
this before when using the Bukkit class. The methods you called were static, so you
could access them using the Bukkit class and not a unique Bukkit object.

To explain this better, imagine you have a plugin that gives Minecraft players bank
accounts. Therefore, you will have a class to represent a player's bank account. This
class can be called PlayerAccount. You will have numerous PlayerAccount objects,
one for each player on the server. Within this class, you may have a variable that
defines a limit of how much money the account can hold. Let's name this variable
accountLimit. If we want each account to have a maximum of 1000, then the
accountLimit should be static. If we wish to increase the limit to 2000, then we set
accountLimit to 2000 by using PlayerAccount.accountLimit = 2000;. Then
all players now have an account limit of 2000. If we want some players to have
a limit of 1000 and others to have a limit of 2000, then we should not use a static
method. Without accountLimit being static, if we set accountLimit to 2000 for
PlayerAccount with value A, it will still be 1000 for PlayerAccount with value B.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[97]

It will benefit us to store our plugin as a static variable within our main class.
Above your current variables, add a static JavaPlugin variable named plugin:

public class MobEnhancer extends JavaPlugin {
 //Static plugin reference to allow access from other classes.
 static JavaPlugin plugin;

We must also instantiate this variable within our onEnable method. This can simply
be done with plugin = this;. Now, we can access the plugin instance by using
MobEnhancer.plugin. Therefore, where we previously had relodConfig();, we
will now have MobEnhancer.plugin.relodConfig(). This will fix the errors in
MobEnhancerReloadCommand:

package com.codisimus.mobenhancer;

import org.bukkit.command.Command;
import org.bukkit.command.CommandExecutor;
import org.bukkit.command.CommandSender;

public class MobEnhancerReloadCommand implements CommandExecutor {
 @Override
 public boolean onCommand(CommandSender sender, Command command,
 String alias, String[] args) {
 MobEnhancer.plugin.reloadConfig();
 sender.sendMessage("MobEnhancer config has been reloaded");
 return true; //The command executed successfully
 }
}

We continue to see errors in MobSpawnListener. It is attempting to access
variables that are still in the main class. Let's move our mob armor variables
to the Listener class:

public class MobSpawnListener implements Listener {
 private boolean giveArmorToMobs;
 private ItemStack zombieHolding;
 private ItemStack skeletonHolding;

We must also modify the reload method to match the new location of our
variables. For example, rather than giveArmorToMobs, we should now have
MobSpawnListener.giveArmorToMobs:

public void reloadConfig() {
 //Reload the config as this method would normally do if not //
 overridden
 super.reloadConfig();

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Plugin Configurable

[98]

 //Load values from the config now that it has been reloaded
 MobSpawnListener.giveArmorToMobs = getConfig().
 getBoolean("GiveArmorToMobs");
 MobSpawnListener.zombieHolding = getConfig().getItemStack("Zombie.
 holding");
 MobSpawnListener.skeletonHolding = getConfig().
 getItemStack("Skeleton.holding");
}

Even with this change, we will still be given an error which reads
giveArmorToMobs has private access in MobSpawnListener. Each of our variables
are private, which means that they may not be accessed from another class. We
wish to be able to access them from our other classes so we should remove the
private modifier. After doing so, we will be given yet another error. This new error
reads non-static variable giveArmorToMobs cannot be referenced from a static
context. This is because our variables are not defined as static. Before you simply
change these variables to be static, be sure that it makes sense for them to be static.
Refer to what we discussed earlier when static variables should be used. In this
situation, we will only have one value of each of these variables, so we do want to
make them static, as shown in the following code:

public class MobSpawnListener implements Listener {
 static boolean giveArmorToMobs;
 static ItemStack zombieHolding;
 static ItemStack skeletonHolding;

There are only two lines remaining that require our attention. These two lines are
when we register the event listener and the command executor. When calling the
registerEvents() method, two parameters are required. The first parameter
is Listener and the second is Plugin. The keyword this references the plugin,
so it is fine as the second parameter. However, for the first parameter, you must
pass an instance of the Listener class. We have done this in Chapter 7, The Bukkit
Event System, when creating the NoRain plugin. The same applies to our command
executor. We must pass an instance of our MobEnhancerReloadCommand class:

//Register all of the EventHandlers
getServer().getPluginManager().registerEvents(new MobSpawnListener(),
this);

//Register the Executor of the /mobenhancerreload command
getCommand("mobenhancerreload").setExecutor(new
MobEnhancerReloadCommand());

This rids us of all of the errors that resulted from splitting our project into
multiple classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[99]

Summary
You are now familiar with using a YAML configuration file. You are able to load
custom values from a config.yml file and use them within your plugin. Doing so
will greatly expand your ability to create unique projects that will be beneficial to
multiple server administrators. Try adding configurable options to some of your
previous projects. For instance, if you created the plugin that sends a message
when a creeper is about to explode, add a configuration file to set the distance
that players must be in order to see the message. Now that you are introduced to
FileConfiguration using the Bukkit API, in the next chapter we will save our
plugin data using the same FileConfiguration method so that we may load it
the next time the plugin is enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Saving Your Data
There are many types of Bukkit plugins. Some of them require saving data. By saving
data I am referring to saving information to the system's hard drive. This is needed
if the information must stay intact even after the server restarts. At this point, none
of our plugins have had this requirement. Examples of plugins that would save data
are as follows:

• Economy plugins must save how much money each player has
• Land protection plugins must save information of which plots of land are

claimed and who their owner is
• Questing plugins must store all of the information for each quest, such as

who has completed it

There are countless more applications for saving your data when the server is shut
down. In this chapter, we will create a teleportation plugin that saves various warp
locations to a file. Again, we save these locations to a file so that we do not need to
re-make them after the server shuts down. You are already very familiar with the
YAML file format, so we will be utilizing the YAML configuration to save and load
our data. In this chapter we will cover the following topics:

• What types of data you are able to save
• What data in your plugin is worth saving and how often to save it
• Expanding a prewritten teleportation plugin
• Creating and using a ConfigurationSerializable object
• Saving data to a YAML configuration
• Loading your saved data from the YAML configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Saving Your Data

[102]

Types of data that can be saved
If you recall from the previous chapter, only certain data types can be stored in a
YAML file. These include primitive types (such as int or boolean), strings, lists,
and types that implement ConfigurationSerializable (such as ItemStack).
For this reason, we are only able to store these specific types of data.

You may find yourself wanting to save other types of data such as a Player object,
or in the case of our teleportation plugin, a Location object. These may not be stored
directly, but can usually be broken down in order to save the important values that
are needed to load it later. As an example, you cannot save a Player object, but
you can save the player's name which is a string. Their name is unique, so it is the
only information we need to be able to refer to that specific player later. Similarly, a
Location object can be broken down to its world, x, y, and z coordinates, yaw, and
pitch. All of these but the world are simply numbers which can be stored. As for the
world, we only need to know its name. Therefore, a location is broken down into one
string (world name), three doubles (x, y, z), and two floats (yaw and pitch).

As you create your own plugins, you may have classes that you wish to be
able to store in a file, such as a BankAccount object. As mentioned earlier, we
can do this with any class that implements ConfigurationSerializable.
ConfigurationSerializable means that the object will be able to be translated
to a form that can be stored within a configuration. That configuration can then be
written to a file. In our teleportation plugin, we will create a location object which
does exactly that.

Which data to save and when
We know what can be saved to file, but what should we save? Writing data to a file
uses disk space, so we only want to save what we need to. It is best to think: "What
information do I want to still have after the server is shut down?" For example,
a banking plugin would want to have the balance of each account. As another
example, a PvP arena plugin would not care to have the information of an arena
match. More likely, the match should simply be canceled as the server is shutting
down. When considering our teleportation plugin, we will want to still have the
locations of each warp after the server has shut down.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[103]

Our next concern is when to save this information. Writing data to files has the
potential to lag a server if it is a large amount of data. Therefore, you want to only
save your data when you have to. There are three main options for how often to save
your data:

• Every time the data is modified
• Periodically, such as every hour
• When the server/plugin is shut down

These are ordered by how safe they are. For instance, if your data only saves when
the server is shut down, then you run the risk of losing unsaved data if the server
crashes. If data is saved every hour, then in the worst case you will lose only one
hour's worth of data. For this reason, the first option should always be used when
plausible. The second and third options should only be considered if the plugin
handles a lot of data and/or the data is modified very often, such as several times
a minute. The data of our teleportation plugin will not be modified very often, only
when someone creates/deletes a warp or sets their home warp location. Therefore,
we will be invoking the save method every time our data is modified.

A sample teleportation plugin
For this project, you will be given an uncompleted teleportation plugin. You already
know how to program most of this project, so we will only discuss the following
three topics:

• Creating a class that implements ConfigurationSerializable
• The save method
• The load method

The rest of the plugin is provided and can be downloaded from www.packtpub.
com as mentioned in the preface. The code that you will be working on is Version
0.1 of the plugin Warper. Look through the plugin and read the comments to
try to understand everything that it does. Both the HashMaps and try/catch
blocks are used within this project. If you do not know what either of those are,
that is okay. They will be explained when it is time to use them yourself. Note
that the SerializableLocation class is our location class, which implements
ConfigurationSerializable that we will discuss next.

www.it-ebooks.info

http://www.it-ebooks.info/

Saving Your Data

[104]

Writing a ConfigurationSerializable class
In our plugin Warper, we will need to save the Bukkit locations. Locations are not
serializable themselves. Serialization is the process of translating data or objects into
a form that can be written to a file. We will make our own class that holds the Bukkit
Location data and is able to convert it to and from a map of strings to objects that
are serializable. If you are new to maps, they are a very useful type of collection that
we will use throughout this project. Maps have keys and values. Each key points to a
specific value. This Warper plugin is a good example of how maps can be used. When
teleporting, a player will choose a specific location to warp to by name. If all of the
warp locations were in a list, we would have to iterate through the list until the correct
one is found. With a map, we would pass the key, which in our case is the name of the
warp, to the map, and it would return the value, which is the warp location.

Create a new class called SerializableLocation, which contains a private variable
that holds the Bukkit Location. Our first constructor will require a Location
method. We will also include a getLocation method. The following is the start of
our new class:

package com.codisimus.warper;

import org.bukkit.Location;

/**
 * A SerializableLocation represents a Bukkit Location object
 * This class is configuration serializable so that it may be
 * stored using Bukkit's configuration API
 */
public class SerializableLocation {
 private Location loc;

 public SerializableLocation(Location loc) {
 this.loc = loc;
 }

 /**
 * Returns the Location object in its full form
 *
 * @return The location of this object
 */
 public Location getLocation() {
 return loc;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[105]

Once you add implements ConfigurationSerializable, your IDE should
warn you to implement all abstract methods. The method that you must override
is serialize. This will return a map representation of your object. We already
mentioned each piece of data that we need, so we just have to assign each of them a
name and put them in a map:

/**
 * Returns a map representation of this object for use of
serialization
 *
 * @return This location as a map of Strings to Objects
 */
@Override
public Map<String, Object> serialize() {
 Map map = new TreeMap();
 map.put("world", loc.getWorld().getName());
 map.put("x", loc.getX());
 map.put("y", loc.getY());
 map.put("z", loc.getZ());
 map.put("yaw", loc.getYaw());
 map.put("pitch", loc.getPitch());
 return map;
}

This handles the saving portion, but we still have to handle loading. The simplest
way to do so is by adding a constructor that takes the map as a parameter. Loading
is essentially the opposite of saving. We pull each value from the map, and then use
it to create the Bukkit Location object. As a safeguard, we will first verify that the
world is actually loaded. If the world is not loaded, the location will not exist. We do
not want our plugin to crash because of this. There is also no reason to try to load a
location in a non-existent world, because no one will be able to teleport to it anyway.
The following is the code to add the constructor:

/**
 * This constructor is used by Bukkit to create this object from a
YAML configuration
 *
 * @param map The map which matches the return value of the
serialize() method
 */
public SerializableLocation(Map<String, Object> map) {
 //Check if the world for this location is loaded
 World world = Bukkit.getWorld((String) map.get("world"));
 if (world != null) {

www.it-ebooks.info

http://www.it-ebooks.info/

Saving Your Data

[106]

 //Each coordinate we cast to double which was it's original
type
 double x = (double) map.get("x");
 double y = (double) map.get("y");
 double z = (double) map.get("z");

 //Both yaw and pitch are loaded as type Double and then
converted to float
 float yaw = ((Double) map.get("yaw")).floatValue();
 float pitch = ((Double) map.get("pitch")).floatValue();

 loc = new Location(world, x, y, z, yaw, pitch);
 } else {
 Warper.plugin.getLogger().severe("Invalid location, most
likely due to missing world");
 }
}

Each object that you get from the map will have to be cast to its original type, which
was done in the previous code. The float values are an exceptional case. Each of our
float values will be read as a double value. double is similar to float, but is more
precise. Therefore, loading the float values as double values and then converting
them will not cause any loss of data.

Both of these methods will be used by Bukkit. As a programmer, you will only have
to store this object in the YAML configuration:

config.set("location", serializableLoc);

Then retrieve it later by using the following code:

SerializableLocation loc = (SerializableLocation)config.
get("location");

Bukkit uses the serialize method and the constructor to handle the rest.

The class name and path are used to reference this class. To see an example of this,
look at the ItemStack object in the config.yml file from the MobEnhancer plugin.
An example for this class has also been provided.

==: com.codisimus.warper.SerializableLocation

Of course, the path would have your own namespace, not
com.codisimus.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[107]

This works fine but may cause confusion, especially with long path names. However,
there is a way to tell Bukkit to reference this class by an alias. There are two steps to
completing this:

1. The first step is to add the @SerializableAs annotation just above your
class:
@SerializableAs("WarperLocation")
public class SerializableLocation implements
ConfigurationSerializable {

2. The second step is to register your class within the
ConfigurationSerialization:

ConfigurationSerialization.registerClass(SerializableLocation.
class, "WarperLocation");

This can be done in your onEnable method. Just be sure that it is executed before
you attempt to load your data.

The serializable name must be unique, so it is better to include your
plugin name rather than simply Location. That way, you may have
a serializable location for another plugin without them conflicting.

Saving data to a YAML configuration
Now we are ready to complete the save method. We want to save our data to a
YAML file much like config.yml. However, we do not want to save it to config.
yml, because that serves a different purpose. The first thing we will need to do is to
create a new YAML configuration:

YamlConfiguration config = new YamlConfiguration();

Next, we will store all of the information that we wish to save. This is done by setting
objects to specific paths:

config.set(String path, Object value);

The acceptable types for value were mentioned earlier in this chapter.
In our teleportation plugin, we have hashmaps, which contain our
SerializableLocations method. Hashmaps can be added to a YAML
configuration as long as they are a map of strings to an object that is
ConfigurationSerializable. Hashmaps are added to a configuration in a different
manner. You must create a configuration section using the map.

www.it-ebooks.info

http://www.it-ebooks.info/

Saving Your Data

[108]

The following code shows how we will add our teleportation data to our configuration:

config.createSection("homes", homes);
config.createSection("warps", warps);

Once all of our data is stored, all that is left to do is to write the configuration to the
save file. This is done by invoking the save method on config and passing the file
we wish to use. Calling the getDataFolder method of our plugin will give us the
directory where we should store all of our plugin's data. This is also where config.
yml would be located:

config.save(new File(plugin.getDataFolder(), "warps.yml"));

We will put each of these lines of code inside a try block to catch any exception
which may occur. If you don't already know about exceptions, they are thrown when
there is some sort of error or when something unexpected occurs. A try/catch
block can be used to prevent the error from causing your plugin to crash. In this
case, an exception is thrown if the specified file cannot be written to for any reason.
Therefore, our save method with the try block is as follows:

/**
 * Saves our HashMaps of warp locations so that they may be loaded
later
 */
private static void save() {
 try {
 //Create a new YAML configuration
 YamlConfiguration config = new YamlConfiguration();

 //Add each of our hashmaps to the config by creating sections
 config.createSection("homes", homes);
 config.createSection("warps", warps);

 //Write the configuration to our save file
 config.save(new File(plugin.getDataFolder(), "warps.yml"));
 } catch (Exception saveFailed) {
 plugin.getLogger().log(Level.SEVERE, "Save Failed!",
saveFailed);
 }
}

The following is a sample warps.yml file that would be created using our plugin:

homes:
 Codisimus:
 ==: Location
 pitch: 6.1500483
 world: World

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[109]

 x: -446.45572804715306
 y: 64.0
 yaw: 273.74963
 z: 224.9827566893271
warps:
 spawn:
 ==: Location
 pitch: 9.450012
 world: World
 x: -162.47507312961542
 y: 69.0
 yaw: -1.8000238
 z: 259.70096111857805
 Jungle:
 ==: Location
 pitch: 7.500037
 world: World
 x: -223.87850735096316
 y: 74.0
 yaw: 87.60001
 z: 382.482006630207
 frozen_lake:
 ==: Location
 pitch: 16.200054
 world: World
 x: -339.3448071127722
 y: 63.0
 yaw: 332.84973
 z: 257.9509874720554

Loading data from a YAML configuration
Once the save method is completed, we are ready to write the load method. We
are already familiar with loading data using the Bukkit configuration API. We have
done so in the previous chapter when we retrieved values from config.yml. This
will be very similar. However, we must first manually load the configuration using
the following code, which will be different. We should only do this if the file actually
exists. The file will not exist the first time that the plugin is used, so we do not want
an error to occur in that situation.

File file = new File(plugin.getDataFolder(), "warps.yml");
if (file.exists()) {
 YamlConfiguration config = new YamlConfiguration();
 config.load(file);

www.it-ebooks.info

http://www.it-ebooks.info/

Saving Your Data

[110]

Now that we have the YAML configuration loaded, we are able to get values from
it. Our data has been placed into two unique configuration sections. We will loop
through each key of both sections in order to load all of our locations. To get a
specific object from a section, all we need to do is call the get method and cast it to a
valid object. You can see how this is done in the completed load method, using the
following code:

/**
 * Loads warp names/locations from warps.yml
 * 'warp' refers to both homes and public warps
 */
private static void load() {
 try {
 //Ensure that the file exists before attempting to load it
 File file = new File(plugin.getDataFolder(), "warps.yml");
 if (file.exists()) {
 //Load the file as a YAML Configuration
 YamlConfiguration config = new YamlConfiguration();
 config.load(file);

 //Get the homes section which is our saved hash map of
 homes
 //Each key is the name of the Player
 //Each value is the location of their home
 ConfigurationSection section = config.getConfigurationSec
 tion("homes");
 for (String key: section.getKeys(false)) {
 //Get the location for each key
 SerializableLocation loc = (SerializableLocation)
 section.get(key);
 //Only add the warp location if it is valid
 if (loc.getLocation() != null) {
 homes.put(key, loc);
 }
 }

 //Get the warps section which is our saved hash map of
 warps
 //Each key is the name of the warp
 //Each value is the warp location
 section = config.getConfigurationSection("warps");
 for (String key: section.getKeys(false)) {
 //Get the location for each key

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[111]

 SerializableLocation loc = (SerializableLocation)
 section.get(key);
 //Only add the warp location if it is valid
 if (loc.getLocation() != null) {
 warps.put(key, loc);
 }
 }
 }
 } catch (Exception loadFailed) {
 plugin.getLogger().log(Level.SEVERE, "Load Failed!",
 loadFailed);
 }
}

Summary
Our plugin invokes the save method whenever the data is modified. In the
next chapter, you will learn how to save data periodically. If you wish to save
the data when the server is shut down, simply call the save method from the
onDisable method of your plugin's main class. You can practice many of your
other programming skills by expanding this plugin. I suggest adding permission
nodes, which is done by simply adding them to plugin.yml. You can also add
a config.yml file to modify messages, or perhaps the amount of time for the
upcoming warp delay. If you wish to incorporate a listener, you could listen for
a PlayerRespawnEvent. Then, you can set a player's respawn location to their
home. There are countless more ways to customize this plugin to your liking. Many
teleportation plugins use a warp delay to prevent players from teleporting away
from a fight. In the next chapter we will expand on this project by adding a warp
delay using the Bukkit scheduler.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Scheduler
The Bukkit scheduler is a very powerful tool and using it is not too complicated to
learn. It allows you to create repetitive tasks such as saving data. It also allows you
to delay how long until a block of code executed. The Bukkit scheduler can also be
used to compute lengthy tasks asynchronously. A task such as writing data to a file
or downloading a file to the server can be scheduled to run on a separate thread to
prevent the main thread, and thus the game, from lagging. In this chapter you will
learn how to do these by continuing work on our teleportation plugin, Warper, as
well as creating a new plugin called AlwaysDay. This plugin will ensure that it is
always daytime on the server by repeatedly setting the time to noon. This chapter
will cover the following topics:

• Creating a BukkitRunnable class
• Synchronous and asynchronous tasks and when each should be used
• Running a task from a BukkitRunnable class
• Scheduling a delayed task from a BukkitRunnable class
• Scheduling a repeating task from a BukkitRunnable class
• Writing a plugin called AlwaysDay that uses a repeating task
• Adding a delayed task to the Warper plugin
• Executing code asynchronously

Creating a BukkitRunnable class
We will start by creating the AlwaysDay plugin. All the code that we write for this
plugin will be put inside the onEnable method. The first step to create a scheduled
task is to create a BukkitRunnable class This can be done with the following line
of code:

BukkitRunnable runnable = new BukkitRunnable();

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Scheduler

[114]

You will be given a warning telling you to implement abstract methods. NetBeans
can automatically add the needed methods for you. The new method that is added
for you is run. This method will be called when the scheduler runs your task. For our
new plugin, AlwaysDay, we want the task to set the time of each world to noon.

BukkitRunnable runnable = new BukkitRunnable() {
 @Override
 public void run() {
 for (World world : Bukkit.getWorlds()) {
 //Set the time to noon
 world.setTime(6000);
 }
 }
};

Remember that time on a Minecraft server is measured in ticks. 20
ticks are equivalent to 1 second. The measurement of ticks is given
as follows:

• 0 ticks: Dawn
• 6000 ticks: Noon
• 12000 ticks: Dusk
• 18000 ticks: Midnight

Looking at the API documentation for the BukkitRunnable class at the link http://
jd.bukkit.org/beta/doxygen/d4/d0c/classorg_1_1bukkit_1_1scheduler_1_
1BukkitRunnable.html, we notice that there are six ways by which we can run this
task, given as follows:

• runTask
• runTaskAsynchronously
• runTaskLater
• runTaskLaterAsynchronously
• runTaskTimer
• runTaskTimerAsynchronously

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[115]

Synchronous versus asynchronous
tasks
A task can be run either synchronously or asynchronously. Simply put, when a
synchronous task is executed, it must be completed before the server can continue
running normally. An asynchronous task can be running in the background while
the server continues to function. If a task accesses the Bukkit API in any way
then it should be run synchronously. For this reason you will rarely run a task
asynchronously. The advantage of an asynchronous task is that it can complete
without causing your server to lag. For example, writing data to a save file can be
done asynchronously. Later in this chapter, we will modify the Warper plugin to
save its data asynchronously. As for the plugin AlwaysDay, we must run the task
synchronously because it is accessing the Bukkit API.

Running a task from a BukkitRunnable
class
Calling runTask or runTaskAsynchronously on a BukkitRunnable class will cause
the task to run immediately. The only time that you are likely to use this is to run a
synchronous task from an asynchronous context or vice versa.

Running a task later from a
BukkitRunnable
Calling runTaskLater or runTaskLaterAsynchronously on a BukkitRunnable
will delay the task from executing for a specific amount of time. The amount of time
is measured in ticks. Remember that there are 20 ticks every second. In our plugin
Warper, we will add a warp delay so that the player is teleported 5 seconds after
running the warp command. We will accomplish this by running the task later.

Running a task timer from a
BukkitRunnable class
Calling runTaskTimer or runTaskTimerAsynchronously on a BukkitRunnable
class will repeat the task every given number of ticks. The task will repeat until it
is canceled or its plugin is disabled. Task timers can also be delayed to offset the
initial run of the task. We will use this type of repeating task to complete our
AlwaysDay plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Scheduler

[116]

Writing a repeating task for a plugin
We already have a BukkitRunnable class, so in order to run a task timer we just
need to determine the delay and the period. We want the delay to be 0. That way
if it is night when the plugin is enabled, the time will be set to noon right away. As
for the period, we could repeat the task every second if we wanted to keep the sun
always directly above. The task only contains one simple line of code so repeating it
that often will not cause much lag to the server. However, repeating the task every
minute will still prevent the world from ever growing dark. Therefore we will delay
the task by 0 ticks and repeat it every 1200 ticks. The entire AlwaysDay plugin is
given in the following code:

package com.codisimus.alwaysday;

import org.bukkit.Bukkit;
import org.bukkit.World;
import org.bukkit.plugin.java.JavaPlugin;
import org.bukkit.scheduler.BukkitRunnable;

public class AlwaysDay extends JavaPlugin {
 @Override
 public void onEnable() {
 BukkitRunnable runnable = new BukkitRunnable() {
 @Override
 public void run() {
 for (World world : Bukkit.getWorlds()) {
 //Set the time to noon
 world.setTime(6000);
 }
 }
 };

 //Repeat task every 1200 ticks (1 minute)
 runnable.runTaskTimer(this, 0, 1200);
 }
}

Adding a delayed task to a plugin
We will now add a warp delay to our Warper plugin. This will require players to stand
still after running the warp or home commands. If they move too much then the warp
task will be canceled and they will not be teleported. This will prevent players from
teleporting when someone is attacking them or they are falling to their death.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[117]

If you haven't already, add a variable of warpDelay within your main class. This is
given in the following line of code:

static int warpDelay = 5;

This time will be in seconds. We will multiply it by 20 to calculate the number of
ticks that we wish to delay the task.

We will also need to keep track of who is in the process of warping so that we can
check if they move. Add another variable of current warpers. This will be a HashMap
so that we can keep track of which players are warping and the tasks that will be
run to teleport them. That way, if a specific player moves, we can get their task and
cancel it. This is shown in the following line of code:

private static HashMap<String, BukkitTask>
 warpers = new HashMap<String, BukkitTask>();
 //Player Name -> Warp Task

The code contains three new methods which must be added to your main class in
order to schedule the warp task, check if a player has a warp task, and to cancel a
player's warp task. The code is given as follows:

/**
 * Schedules a Player to be teleported after the delay time
 *
 * @param player The Player being teleported
 * @param loc The location of the destination
 */
public static void scheduleWarp
 (final Player player, final Location loc) {
 //Inform the player that they will be teleported
 player.sendMessage("You will be teleported in "
 + warpDelay + " seconds");

 //Create a task to teleport the player
 BukkitRunnable runnable = new BukkitRunnable() {
 @Override
 public void run() {
 player.teleport(loc);

 //Remove the player as a warper because they have already been
 teleported
 warpers.remove(player.getName());
 }
 };

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Scheduler

[118]

 //Schedule the task to run later
 BukkitTask task = runnable.runTaskLater
 (plugin, 20L * warpDelay);

 //Keep track of the player and their warp task
 warpers.put(player.getName(), task);
}

/**
 * Returns true if the player is waiting to be teleported
 *
 * @param player The Player in question
 * @return true if the player is waiting to be warped
 */
public static boolean isWarping(String player) {
 return warpers.containsKey(player);
}

/**
 * Cancels the warp task for the given player
 *
 * @param player The Player whose warp task will be canceled
 */
public static void cancelWarp(String player) {
 //Check if the player is warping
 if (isWarping(player)) {
 //Remove the player as a warper
 //Cancel the task so that the player is not teleported
 warpers.remove(player).cancel();
 }
}

In the scheduleTeleportation method, you will notice that both player and loc
variables are final. This is required to use the variables within the BukkitRunnable
class. It must be done to ensure that the values will not change. You will also notice
that the runTaskLater method call returns a BukkitTask which is what we save
inside our HashMap. You can see why it is saved by looking at the cancelWarp
method. It removes the BukkitTask of the given player and then invokes the cancel
method on it before it is executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[119]

In both the WarpCommand and HomeCommand classes we teleport the player. We want
to remove that line and replace it with a method call to scheduleTeleportation.
Our feature addition is nearing completion. All that we have left to do is call the
cancelWarp method when a warper moves. For this we add an event listener to
listen for the player move event. This can be seen in the following code:

package com.codisimus.warper;

import org.bukkit.block.Block;
import org.bukkit.entity.Player;
import org.bukkit.event.EventHandler;
import org.bukkit.event.EventPriority;
import org.bukkit.event.Listener;
import org.bukkit.event.player.PlayerMoveEvent;

public class WarperPlayerListener implements Listener {
 @EventHandler (priority = EventPriority.MONITOR)
 public void onPlayerMove(PlayerMoveEvent event) {
 Player player = event.getPlayer();
 String playerName = player.getName();

 //We only care about this event if the player is flagged as
 warping
 if (Warper.isWarping(playerName)) {
 //Compare the block locations rather than the player locations
 //This allows a player to move their head without canceling the
 warp
 Block blockFrom = event.getFrom().getBlock();
 Block blockTo = event.getTo().getBlock();

 //Cancel the warp if the player moves to a different block
 if (!blockFrom.equals(blockTo)) {
 Warper.cancelWarp(playerName);
 player.sendMessage("Warping canceled because you moved!");
 }
 }
 }
}

Do not forget to register the event within your onEnable method.

www.it-ebooks.info

http://www.it-ebooks.info/

The Bukkit Scheduler

[120]

Executing a code asynchronously
We can improve the Warper plugin even more by writing its data to file
asynchronously. This will help keep the main thread of the server running
smoothly and lag free.

Look at the current save method. We add the data to a YamlConfiguration
and then write the configuration to the file. Not all of this method can be run
asynchronously. Adding the data to the configuration must be done synchronously
to ensure that it is not modified while it is being added. However, the save method
call on the configuration may be called asynchronously. We will place the entire
try/catch block within a new BukkitRunnable. We will then run it as a task
asynchronously. This task will be stored as a static variable in the Warper class.
This is shown in the following code:

BukkitRunnable saveRunnable = new BukkitRunnable() {
 @Override
 public void run() {
 try {
 //Write the configuration to our save file
 config.save(new File(plugin.getDataFolder(), "warps.yml"));
 } catch (Exception saveFailed) {
 plugin.getLogger().log
 (Level.SEVERE, "Save Failed!", saveFailed);
 }
 }
};

saveTask = saveRunnable.runTaskAsynchronously(plugin);

Now the rest of the server can continue running while the data is being saved. But
what if we try to save the file again when the previous write is not yet finished? In
this case, we do not care about the previous task because it is now saving outdated
data. We will first cancel the task before starting a new one. This will be done using
the following code before creating the BukkitRunnable. class

if (saveTask != null) {
 saveTask.cancel();
}

This completes this version of Warper. As mentioned in Chapter 9, Saving Your Data,
this plugin has a lot of potential for feature additions. You now have the required
knowledge to add these additions on your own.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[121]

Summary
You are now familiar with most of the more complicated aspects of the Bukkit API.
With this knowledge you are able to program almost any type of Bukkit plugin. Try
putting all of this knowledge to use by creating a new plugin. Perhaps try writing an
announcement plugin that will rotate through a list of messages to broadcast to the
server. Use each of the following Bukkit API concepts to add new features:

• Add commands to allow an admin to add messages to be announced
• Add permissions to control who can add messages and even who can see the

messages that are announced
• Add an EventHandler to listen for when players log in so that a message can

be sent to them
• Add a config.yml file to set how often messages should be announced
• Add a save file to save and load all of the messages that are to be announced
• Use the Bukkit scheduler to repeatedly broadcast the messages while the

server is running

For any plugin that you make, think of each of these segments of the Bukkit API to
figure out some way to improve the plugin by adding more features. This will surely
make your plugin and server stand out.

There are some topics that were not discussed in this book but they are simple
enough that you can learn how to use them by reading the API documentation.
Some interesting features that can spruce up any Bukkit plugin are the playSound
and playEffect methods which can be found inside the World and Player classes. I
encourage you to read about them and try to use them yourself.

You know how to program plugin commands, player permissions, event listeners,
configuration files, saving and loading data, and scheduled tasks. All that remains is
to imagine how to use these new-found skills to create a great and unique plugin for
your Bukkit server.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
[] 14
< > 14
| 14

A
allow-end: true 11
AlwaysDay plugin 113, 114, 116
API 19
Application Programming Interface. See

API
asynchronous tasks

versus synchronous tasks 115

B
boolean value 24, 52
boolean variable 74
broadcastMessage method 36, 37
broadcastToServer method 36, 45
Bukkit

adding, as library 30
plugins 41

Bukkit API
exploring 25, 26
forums, URL 26
IRC channel, URL 26

Bukkit API documentation
about 20, 21
navigating 22, 23

Bukkit events
URL 69

Bukkit.getWorlds() method 23
Bukkit plugin 27

Bukkit plugin, essentials
plugin main class 33, 34
plugin.yml file 31, 32, 33

BukkitRunnable
about 113
creating 114
task, running from 115
task, running later from 115
task timer, running 115

Bukkit scheduler 113
Bukkit server commands 13
Bukkit settings

URL 11
bukkit.yml file 11

C
cancelWarp method 119
clone method 94
command

actions, programming 50, 52, 55
executor, assigning 56

Command cmd command 51
CommandExecutor class 50, 84
CommandExecutor interface 50
CommandSenders

URL 51
CommandSender sender command 51
config file

loading 83
reloading 84
saving 83
values, reading 85
values, storing 85

configurable plugin
configured settings, using 86, 87

www.it-ebooks.info

http://www.it-ebooks.info/

[124]

ItemStack 88, 89
ConfigurationSerializable class

writing 104-106
configuration value

storing, as variables 91-95
configured settings

using, within plugin 86, 87
config.yml file

about 64
writing 83

CraftBukkit
latest version downloading, URL for 8

craftbukkit.jar 7
CraftBukkit server

about 7
bukkit.yml file 11
installing 7-10
plugins folder 10
server.properties file 10
setting up 10
world folder 10

createExplosion method 24

D
data

loading, from YAML configuration 109
saved, types 102
saving, to YAML configuration 107, 108
saving, types 102
to save, types 102, 103

difficultly property 10
doDaylightCycle 15
doFireTick 15
doMobLoot 15
doMobSpawning 15

E
EnchantComand class

code 53
enchant command 50, 56
event

cancelling 73
communicating between 74-76
listener, registering 70, 71
listening for 71, 72

on occurence, modifying 77
selecting 69, 70

event.getEntity() 77
EventHandler annotation 71
EventHandler method 72
executor

assigning, for executor command 56

G
gamemode=0 property 10
gamemode command 14
getHealth() method 20
getInt() method 85
get method 110
getName() method 23
getServer() method 36
give <player> <item> [amount [data]] 15

H
hardcoded 86
HashMap 117

I
IDE

about 27
installing 28
new project, creating 29
URL, for downloading 28

if statement 52, 86
ignoreCancelled property 72
Integrated Development Environment. See

IDE
IP 17
isEdible() method 20
ItemStack

within configuration 88, 89

J
jar file

building 41-43
Java Development Kit (JDK) 28
Java documentation 24

www.it-ebooks.info

http://www.it-ebooks.info/

[125]

K
keepInventory 15

L
Listener class 71
load method 110
Location object 102

M
Message of the day (motd) 11
method

new method, calling 35-37
Minecraft Forums

URL 26
Minecraft server 7
Minecraft server commands 13
MobEnhancer plugin 106
MobEnhancerReloadCommand class 96, 98
mobGriefing 15
motd=A Minecraft Server 11

N
NetBeans IDE. See IDE
NoRain class 75

O
onCommand method 52
onEnable method 107, 113
onEnable() method 34, 35, 56, 67
online-mode=true 11
onMobSpawn method 86, 92
onPlayerCommand method 75
OP (operator) 59

P
permission nodes

about 60
adding, to plugin.yml 61
assigning, to plugin command 61, 62
using, through plugins 66, 67

permissions. See Player Permissions
PermissionsBukkit

URL, for installing 63
Player Permissions. See also permission

nodes
Player Permissions

about 59
benefits 60
node, adding to plugin.yml 61
nodes 60
testing 62, 63
third party permissions plugin, using 63-66

plugin
about 15
creating, on own 78
delayed task, adding 116-119
installing 43, 44
new versions, testing 45, 46
repeating task, writing 116
testing 44, 45

plugin command
permission node, assigning to 62

plugins folder 10
plugin.yml

command, adding to 48, 49
permission node, adding 61

plugin.yml file 31, 32
port forwarding 17, 18
PROPERTIES (.properties) file 11
pvp property 10

R
registerEvents method 71
registerEvents() method 98
reloadConfig method 91, 96
reload method 15, 97
return keyword 52
runTaskLater method 118

S
scheduleTeleportation method 118
sendMessage method 55
SerializableLocation class 103
serialize method 106
server.properties file

about 10
difficultly property 10
gamemode=0 property 10

www.it-ebooks.info

http://www.it-ebooks.info/

[126]

motd=A Minecraft Server 11
pvp property 10

setCancelled method 70, 73
softcoded 86
spawn-limits 12
spawnpoint [player] [x y z] 15
stop 15
String alias command 51
String[] args command 51
synchronous tasks

versus asynchronous tasks 115

T
task

delayed task, adding to plugin 116-119
repeating, for plugin 116
running, from BukkitRunnable 115
running, later from BukkitRunnable 115
timer, running from BukkitRunnable 115

teleportation plugin 103
tell <player> <message> 16
ticks-per: autosave: 0 12
time set <day | night> 16
toggledownfall 16
tp [player] <targetplayer> 16

U
use-exact-login-location: false 11

V
variables

accessing, from other class 96, 98

W
Warper plugin 115
World class 23
world folder 10

Y
YAML

configuration, hierarchy 89, 90
YAML configuration

data, loading from 109
data, saving from 107, 108

YMAL (.yml) file 11

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Building Minecraft Server Modifications

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

CryENGINE 3 Game Development:
Beginner's Guide
ISBN: 978-1-84969-200-7 Paperback: 354 pages

Discover how to use the CryENGINE 3 free SDK, the
next-generation, real-time game development tool

1. Begin developing your own games of any scale
by learning to harness the power of the Award
Winning CryENGINE® 3 game engine

2. Build your game worlds in real-time with
CryENGINE® 3 Sandbox as we share insights
into some of the tools and features useable right
out of the box.

3. Harness your imagination by learning how to
create customized content for use within your
own custom games through the detailed asset
creation examples within the book.

GameSalad Beginner's Guide
ISBN: 978-1-84969-220-5 Paperback: 308 pages

A fun, quick, step-by-step guide to creating games
with levels, physics, sound, and numerous enemies
using GameSalad

1. Learn to build three games; Ball Drop, Space
Defender, and Metal Mech with GameSalad

2. Complete these games with sound effects, use
of physics, gravity, and collisions

3. Learn tips and tricks to make a game popular
straight from the author's own experience

3. Follow a step-by-step, tutorial-focused
process that matches the development
process of the game with plenty of
screenshots

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Minecraft Designs How-to
ISBN: 978-1-84969-598-5 Paperback: 76 pages

Build amazing structures using the very popular
and most advanced of free mods for Minecraft -
WorldEdit CUI and VoxelSniper GUI

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Build structures quickly and efficiently using
World Edit CUI

3. Learn the most useful functions of Voxel Sniper
to build complex and aesthetically pleasing
architecture

4. Packed with illustrations to guide you through
each project

Instant Minecraft: Pi Edition
Coding How-to
ISBN: 978-1-78328-063-6 Paperback: 436 pages

Expand your Minecraft world by learning to code
with Minecraft:Pi Edition

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Enhance your Minecraft building techniques
using computer code

3. Get started with the Linux operating system on
the Raspberry Pi

4. Make the Minecraft world interact with the real
world

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Deploying a CraftBukkit Server
	Installation
	Setup
	Minecraft/Bukkit server commands
	Port forwarding
	Summary

	Chapter 2: Learning the Bukkit API
	Introduction to APIs
	The Bukkit API documentation
	Navigating the Bukkit API documentation
	Understanding the Java documentation
	Exploring Bukkit API
	Summary

	Chapter 3: Creating Your First
Bukkit Plugin
	Installing an IDE
	Creating a new project
	Adding Bukkit as a library
	The essentials of a Bukkit plugin
	The plugin.yml file
	The plugin's main class

	Making and calling new methods
	Expanding your code
	Summary

	Chapter 4: Testing on the CraftBukkit Server
	Building the JAR file
	Installing your plugin
	Testing your plugin
	Testing new versions of your plugin
	Summary

	Chapter 5: Plugin Commands
	Adding a command to plugin.yml
	Programming the command actions
	Assigning the executor for the command
	Summary

	Chapter 6: Player Permissions
	The benefits of permissions
	Understanding permission nodes
	Adding a permission node to plugin.yml
	Assigning a permission node to a plugin command
	Testing player permissions
	Using a third-party permissions plugin
	Using permission nodes throughout your plugins
	Summary

	Chapter 7: The Bukkit Event System
	Choosing an event
	Registering an event listener
	Listening for an event
	Canceling an event
	Communicating among events
	Modifying an event as it occurs
	Creating more plugins on your own
	Summary

	Chapter 8: Making Your Plugin Configurable
	Configurable data types
	Writing a config.yml file
	Saving, loading, and reloading the
config file
	Reading and storing the configured values
	Using configured settings within your plugin
	ItemStack within a configuration
	YAML configuration hierarchy
	Storing configuration values as variables
	Accessing variables from another class
	Summary

	Chapter 9: Saving Your Data
	Types of data that can be saved
	Which data to save and when
	A sample teleportation plugin
	Writing a ConfigurationSerializable class
	Saving data to a YAML configuration
	Loading data from a YAML configuration
	Summary

	Chapter 10: The Bukkit Scheduler
	Creating a BukkitRunnable class
	Synchronous versus asynchronous tasks
	Running a task from a BukkitRunnable class
	Running a task later from a BukkitRunnable
	Running a task timer from a BukkitRunnable class
	Writing a repeating task for a plugin
	Adding a delayed task to a plugin
	Executing a code asynchronously
	Summary

	Index

