
ptg6760185

From the Library of Bill Wiecking

ptg6760185

John Welch

iOS in the
Enterprise

A hands-on guide to managing iPhones and iPads

From the Library of Bill Wiecking

ptg6760185

iOS in the Enterprise: A hands-on guide to managing iPhones and iPads

John Welch

Peachpit Press

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education

Copyright © 2012 by John Welch

Editor: Nancy Peterson
Production editor: Myrna Vladic
Development editor: Bob Lindstrom
Copyeditor: Darren Meiss
Cover design: Aren Straiger
Interior design: Mimi Heft
Compositor: David Van Ness
Indexer: Joy Dean Lee

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

iOS, iPhone, iPad, and iTunes are trademarks of Apple, Inc., registered in the United States and other coun-
tries. Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Peachpit Press was aware of a trademark
claim, the designations appear as requested by the owner of the trademark. All other product names and ser-
vices identified throughout this book are used in editorial fashion only and for the benefit of such companies
with no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 978-0-132-73603-9
ISBN 10: 0-132-73603-9

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

From the Library of Bill Wiecking

www.peachpit.com

ptg6760185

This book, like everything I do, is dedicated to the family I live with:

my amazing, beautiful, talented wife Melissa, and my son Alex,

who is about to go into the world as a grownup.

It’s also dedicated to the family I don’t live with who keep me sane:

Mom, Dad, Gypsye, Nicci, Mo, Brad, Kelly, Mark, Virginia, Jenny,

Michelle, Rachel, Ernie, Sami, Sly . . . you guys are all amazing,

and I’m lucky to know one of you, much less all of you.

From the Library of Bill Wiecking

ptg6760185

IV iOS IN THE ENTERPRISE

ACKNOWLEDGEMENTS

The very concept that I did this even slightly alone is ridiculous. There are quite
a few people without whom this book would not have happened, and I would be
far, far crazier than I am:

To the best editing team ever, Nancy Peterson and Bob Lindstrom, who kept
me focused, working and regularly laughing. (Seriously, Bob has some of the
funniest editorial comments ever and they make a rather tedious task a lot more
fun.) Nancy had the unenviable job of chief whip-cracker to someone who is really
good at procrastination and she did it perfectly. Whatever shreds of a schedule we
managed to keep were all due to her fantastical fanatical work. I am also deeply
appreciative that they, (and Peachpit) not only allowed, but encouraged me to keep
my “voice” throughout the book.

The Apple iOS team, without whom I’d have nothing to write about.
Sal and the AppleScript team, because any chance I have to thank one of the

best groups at Apple, or anywhere, I will.
The folks at the/zimmerman/agency, in particular my boss, Mike, along with

Curtis & Carrie: you’ve created the environment that let me experiment and learn
how to do things with iOS that gave me the ability to write this book based on the
real world experiences I’ve gained with Z. Thank you all for that and for not letting
the agency become just another place to work. Everyone at Z, you guys are the best.

Zach, Chip, Lance, and all the folks at JAMF software who answered questions
and provided extensions to demo keys and were absolutely invaluable as a resource,
you guys have earned every dime you’ve made or ever shall make.

Jessica, the most awesome, wonderful, amazing former editor ever, who gave
me my start in getting paid to write … see what you started? Oh, and I have a lovely
yard full of love bugs should you ever visit :-P

From the Library of Bill Wiecking

ptg6760185

ACKNOWLEDGEMENTS V

Kathy Moran, Paul Kent, Ron Moreau, Arek, Kevin, Ben, and all the other folks
who work their keisters off to put Macworld Expo and MacIT together—thanks
for letting me play too; you’re all wonderful.

My brothers in arms, Peter and Darby . . . guys, WHAT is going on, and how
much fun is this? Every Tuesday for over two years, I get some of my sanity back.

Jason, Phil, Chris, the Dans, and all the folks at Macworld: I know how much
of a pain my name on the site can be for you. But thank you for putting it there
anyway. It’s still awesome every time I see it.

Dave Hamilton, ChuckL, JeffG, Dori, Tom, and all the other Expo peeps …
every year I get a big funky reunion with my favorite people. Y’all are why I still
get excited about expo.

The Group which must not be named shall nonetheless be thanked. Thank you
to all the people on the Internet and elsewhere who have gone through the pain
of learning how to manage iOS stuff and took the time to share their experiences.
It’s folks like you that make the Internet worthwhile, far more than any NMD col-
lective ever will.

Finally, to the baddest, funniest, coolest group of ladies I know: The Tallahassee
RollerGirls. Derby. Rocks.

This book took, one way or another, my entire life to write and this is a TINY
fraction of those who helped.

From the Library of Bill Wiecking

ptg6760185

VI iOS IN THE ENTERPRISE

Introduction . xi

Welcome to iOS in the Enterprise . xiv

 PART I iTUNES AND iPHONE CONFIGURATION UTILITY

CHAPTER 1 WHEN iTUNES IS ENOUGH . 2

Limitations of iTunes . 4

Managing with iTunes . 5

Using Device Settings . 9

Wrapping Up . 10

CHAPTER 2 THE iPHONE CONFIGURATION UTILITY . 12

Getting the iPCU . 14

Understanding iPhone Configuration Utility Basics 15
Viewing Devices . 15

Using Applications and Provisioning Profiles . 16

Setting Up Configuration Profiles . 17

Applying Profiles with a Connected Device . 17

Wrapping Up . 17

CHAPTER 3 APPS AND PROVISIONING . 18

Using Provisioning Profiles . 20
Understanding the Provisioning Portal . 20

Learning More About Profiles and Devices . 21

Performing Larger Scale Distribution . 22
Uploading Multiple Devices . 22

Applying Distribution Profiles . 24

Using Applications . 25
Installing and Uninstalling Apps and Profiles . 25

Wrapping Up . 27

CHAPTER 4 CREATING CONFIGURATION PROFILES . 28

Using General Settings . 30

Setting a Passcode . 33

Choosing Restrictions . 34

Configuring Wi-Fi . 35

CONTENTS

From the Library of Bill Wiecking

ptg6760185

CONTENTS VII

Setting Up VPN . 36

Setting Up Email . 37

Using Exchange ActiveSync . 39

Enabling LDAP . 41

Setting the Date with CalDAV . 44

Getting in Touch with CardDAV . 45

Keeping up with Subscribed Calendars . 46

Using Web Clips . 47

Setting Credentials . 48

About SCEP . 48

Using Mobile Device Management . 49

Managing Advanced Settings . 49

Wrapping Up . 49

CHAPTER 5 UNDERSTANDING CONFIGURATION PROFILE STRUCTURE . . . 50

Starting with the Basics . 52

Editing Individual Payload Sections . 55

Why Do I Care? . 59

Signing and Encrypting Profiles . 60

Wrapping Up . 61

CHAPTER 6 SCRIPTING THE iPHONE CONFIGURATION UTILITY 62

Learning AppleScript Basics . 64
The AppleScript Language . 64

The Dictionary . 65

Scripting the iPhone Configuration Utility . 65

Wrapping Up . 76

 PART II OVER-THE-AIR SETUP

CHAPTER 7 ADDING PROFILES TO DEVICES . 80

Using a Tethered Profile Installation . 82

Installing with Email . 84

Wrapping Up . 87

From the Library of Bill Wiecking

ptg6760185

VIII iOS IN THE ENTERPRISE

CHAPTER 8 USING SIMPLE OVER-THE-AIR PROFILE DISTRIBUTION 88

Start with a Web Server . 90
Using Amazon’s S3 Service . 91

Setting Up the OTA Web Server . 92

Using the OTA System . 94

Distributing Applications OTA . 96

Wrapping Up . 97

CHAPTER 9 SCEP: A BACKGROUND . 98

Enter SCEP . 100

Configuring iOS Devices via SCEP . 102
Authentication . 102

Certificate Enrollment . 103

Device Configuration and Encrypted Profiles . 107

Wrapping Up . 108

CHAPTER 10 IMPLEMENTING SCEP ON MAC OS X SERVER 110

Setting up SCEP on Mac OS X Server . 112
Implementing SCEP on Mac OS X 10.6 Server . 112

Setting up SCEP with Casper . 114

Implementing SCEP on Mac OS X Server 10.7 . 119
Setting up Profile Manager . 122

Wrapping Up . 123

CHAPTER 11 IMPLEMENTING SCEP ON WINDOWS SERVER 2008 124

Configuring the Server . 126
Setting Up the Roles . 126

Installing Absolute Manage . 129

Wrapping Up . 132

CHAPTER 12 IMPLEMENTING SCEP ON A CISCO DEVICE 134

Taking the Initial Steps . 137

The AnyConnect SCEP Settings . 138

Configuring the ASA . 140

Testing It All . 141

Wrapping Up . 141

From the Library of Bill Wiecking

ptg6760185

CONTENTS IX

 PART III MOBILE DEVICE MANAGEMENT

CHAPTER 13 PERFORMING MOBILE DEVICE MANAGEMENT 144

The Problem with Configuration Profiles . 146

Grokking the Mobile Device Management Concept 147

Wrapping Up . 151

CHAPTER 14 MOBILE DEVICE MANAGEMENT FEATURES 152

Flexibility and Power . 154

Managing Passcodes . 155
Setting Passcodes . 155

Managing CardDAV Settings . 161
Installing the CardDAV Profile . 161

Removing the CardDAV Profile . 161

Gathering Device Inventory/Information . 162

Wrapping Up . 162

CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER 164

Do You Really Need to Run Your Own Server? . 166

How Big Should Your Server Be? . 167

Firewall Planning . 168

Getting a Push Notification Certificate . 169

Using Mac OS X Server 10.7 . 171

Installing Casper on Mac OS X 10.6 Server . 172

Configuring Casper for Mobile Device Management 176
Configuring LDAP . 176

Configuring Email Settings . 178

Uploading the Push Notification Certificate . 179

Setting Up the SCEP Server . 180

Setting Up the Initial Enrollment Profile . 182

Wrapping Up . 183

CHAPTER 16 LIMITATIONS OF MOBILE DEVICE MANAGEMENT 184

Understanding Infrastructure Complexity . 186

Locking Mobile Device Management Profiles . 188

Wrapping Up . 189

From the Library of Bill Wiecking

ptg6760185

X iOS IN THE ENTERPRISE

 PART IV BASIC WIRELESS APPLICATION DISTRIBUTION

CHAPTER 17 BASIC WIRELESS APPLICATION DISTRIBUTION

BACKGROUND AND SETUP . 192

Background and Requirements for Wireless App Distribution 194

App Distribution Server Requirements . 196

Preparing the App . 197

Accessing the App Distribution Web Page . 201

Installing the App . 202

Wrapping Up . 202

CHAPTER 18 WIRELESS DISTRIBUTION USING MOBILE

DEVICE MANAGEMENT . 204

Performing the Initial Setup . 206

Installing the App . 208

Updating an App . 210

Managing App Store Apps . 212

Wrapping Up . 214

CHAPTER 19 ISSUES WITH WIRELESS APP DISTRIBUTION 216

Considering Infrastructure . 218

Adding Issues for Developers . 219

Addressing App Management . 220

Wrapping Up . 221

Index . 222

From the Library of Bill Wiecking

ptg6760185

INTRODUCTION XI

INTRODUCTION

Those of you who have to deal with more than a handful of iPhones, iPads, or iPod
Touches already know why you manage iOS devices. For everyone else, “manage”
is not a short way to say “impose draconian control.” Managing devices on your
network, including iOS devices, not only makes your life easier, but should also
make life easier for your users.

That’s my core philosophy with regard to device management. In the end, device
management has to make life easier for the user.

A happy side benefit to this is that when done right, it makes your life easier,
too. When a user can personally take an iPhone from activation to full network
integration in two to three steps and about five minutes, it frees you and that user
to actually do stuff with the gear.

WHY MANAGE iOS DEVICES?

I think we should all be clear on what is meant by that phrase because this book
is pretty much built around it. While “managing iOS devices” can suggest all sorts
of draconian imagery, the reality is a bit more mundane.

When you run a business or an IT department, you have to care about your
company’s “stuff.” If you have a small number of people, it’s pretty easy to adopt
a “live and let live” policy, so your management tasks may start and end with
“Here’s the address for the email server we use. Have a nice day.”

But as your company grows, or if you have data that you need to control
securely, then you need ensure that your data is set up and managed in a consis-
tent, sane manner. Consider a small doctor’s office. Even with just two or three
employees, that office has to take data security very seriously or many, many
regulatory and legal entities may come down on it like a ton of bricks.

So that’s what management is about. You’re ensuring that your iOS devices
are set up in a way that is consistent and sane for your needs, whatever those
needs may be. Some of you may never need to care about disabling cameras, for
example, while others may need to lock down those snapshot lenses as tightly
as possible. That’s what this book is about: Helping you meet your iOS device
needs whatever they may be.

From the Library of Bill Wiecking

ptg6760185

XII iOS IN THE ENTERPRISE

WHO NEEDS THIS BOOK?

The short answer is “anyone who wants to better manage their iOS devices.”
(By the way, throughout the book, I’ll use “iOS devices” to refer to the entire

family of Apple products that run on iOS. If I’m talking about a specific product,
such as an iPad, then I’ll do so. Trust me, referring to “iOS devices” beats the
pants off of “iPhone, iPad, and/or iPod Touch.” It’s also gobs easier to type.)

The longer answer is about the same as the short answer with more details.
No one profile perfectly covers everyone using iOS devices. Everyone is learning
how to deal with Apple’s portable devices, from five- or ten-person SOHO shops
to Big Enterprise. This book is simply a collection of information to help you out,
regardless of your level of iOS usage.

WHAT THIS BOOK IS

This book is, as true as I can make it, a reference source. It is designed to be of use
to people across their ranges of need—from someone who just wants a guide to
use iTunes and a USB cable to someone who needs to set up SCEP and MDM and
talk to their back-end directory servers.

As much as is practically possible, this book tries to help all of you. I hope
it does so in a way that will be of use past the current version of the iOS (which
is v.4.3.x at the time of this writing). That means I’m going to cover a lot of
principles; the general application of said principles; and use specific, focused
examples to illustrate an application when it makes sense, or when I’ve found
an app that’s particularly neat or cool. (Yes, neat/cool counts in IT. You’d be
amazed.)

WHAT THIS BOOK IS NOT

If you’re looking for a cookbook of how-tos, I will tell you now, this is not the book
for you. While such books have their place, I think that place is the Internet, where
information updates can be done more quickly. I’m not just being smarmy here. The
words you’re reading were written six or more months ago. As a result, any how-to
or step-by-step example included here will be similarly old. (What, you think edit-
ing my verbosity happens in a fortnight?) Do you really want to use a step-by-step
setup that may be older than the iOS version you’re trying to use it on? No.

From the Library of Bill Wiecking

ptg6760185

INTRODUCTION XIII

In a sense, overly detailed step-by-step how-to books are handing you a
fish. Instead, I want to teach you how to fish. This book is here to help you learn
about what’s going on with iOS devices and how they work with regard to iOS
management, so that you can develop the exact way you wish to implement that
management in your environment in a way that works for you.

THANKS

Outside of the specific thank-yous that are in the various prefaces to this book, I
want to give some thanks specifically to: Apple, for the iOS, the devices, and the
management APIs; Cisco, for SCEP; Microsoft, for giving Windows Server 2008 the
ability to act as a SCEP server even though I doubt that iOS was the reason; JAMF,
for giving people yet another reason to buy Casper (it really is an amazing product);
and a host of people on the Internet who have contributed knowledge and help
on this subject, in general and directly to me, because they felt that adding to the
knowledge base is The Right Thing To Do. When I can nail the information down
to one source, I’ll make sure you get credit. This book is as much yours as mine.

From the Library of Bill Wiecking

ptg6760185

XIV

WELCOME TO iOS IN THE ENTERPRISE

iOS is, of course, the operating system for Apple’s iPad, iPhone, and iPod Touch.

If you haven’t heard of those devices, well, I’m not sure how you would not have

heard of those and still be interested in this book. Anyway, iOS and the devices that

run it are really awesome and cool; but when you have to manage all of them, some

THE TOOLS

You’ll need to be familiar with a small set of tools and concepts to get the most out
of this book and managing your iOS devices.

iTUNES

iTunes is one of Apple’s
two primary tools for
managing iOS devices.
In the consumer space, it
is the primary tool, and
every iOS device running
iOS 4.x has to connect to
iTunes via USB at least
once. iTunes is a free
download from Apple
and runs on Windows
or Mac OS X.

iPHONE

CONFIGURATION

UTILITY

The iPhone Configuration
Utility (iPCU) is the other
primary Apple-provided
tool for managing iOS
devices. It is designed for
administrators who need
to manage their devices
beyond the capabilities
of iTunes and the on-
device options. The iPCU
is a free download from
Apple and runs on Mac
OS X or Windows.

APPLESCRIPT

The book talks about
using AppleScript to
automate tasks involv-
ing the iPCU and various
XML-based configura-
tion files. AppleScript is
Apple’s own scripting lan-
guage that uses vaguely
quasi-English syntax. It is
included with Mac OS X.

From the Library of Bill Wiecking

ptg6760185

XV

XCODE

Even if you aren’t an iOS
developer, if you plan to
distribute in-house or

“enterprise” apps, Xcode
will be a necessary part
of the process. Xcode is
Apple’s primary develop-
ment environment and is
included free on every
new Mac and is also avail-
able from the Mac App
Store for around $5 U.S.

A WEB SERVER

When we start talking
about managing iOS
devices on a large scale,
or wirelessly, you’ll need a
web server. The platform
and brand really don’t
matter. In fact, you don’t
even have to own the web
server yourself. But, you
will need one.

THE CONCEPTS

Along with the tools, some concepts and protocols
have a lot to do with managing iOS Devices. A good
foundation in these will make your life much easier.

SECURE SOCKETS

LAYER (SSL)

SSL is heavily used when
managing iOS devices,
along with related con-
cepts such as Public Key
Infrastructure (PKI). It is a
really good idea to have at
least a conceptual grasp
of basic SSL concepts,
especially when dealing
with SCEP and Mobile
Device Management.

LIGHTWEIGHT

DIRECTORY ACCESS

PROTOCOL (LDAP)

LDAP, while not a direct
part of managing iOS
devices, is the basis of
pretty much any direc-
tory service you’ll see or
use, including OpenLDAP,
Open Directory, and
Active Directory. Many
products for managing
iOS devices have LDAP
integration options, and
a good understanding
of LDAP and Directory
Services in general will
be a great help to you.

of that awesomeness may decrease. Fear not! This book is here to re-awesome-ize

those devices, and help make you seem awesome as well. To help you in your awe-

some journey to Ultimate iOS Awesomeness, here are a few tidbits you’ll want to

know about upfront.

From the Library of Bill Wiecking

ptg6760185

This page intentionally left blank

From the Library of Bill Wiecking

ptg6760185

1

PART I

iTUNES
AND iPHONE
CONFIGURATION
UTILITY

From the Library of Bill Wiecking

ptg6760185

1

WHEN iTUNES
IS ENOUGH

From the Library of Bill Wiecking

ptg6760185

3

Contrary to what a lot of people may

want you to think, you don’t always

need a specialized tool to manage iOS devices. When

you have simple needs, all you require is iTunes. Sometimes,

simple is good.

From the Library of Bill Wiecking

ptg6760185

4 CHAPTER 1 WHEN iTUNES IS ENOUGH

LIMITATIONS OF iTUNES

Of course, the downside of simple is that it’s simple. Managing iOS devices with
iTunes means that you’re accepting a set of limitations over what you can manage
and how you do so.

First, you have to use iTunes via USB. There’s no option for over-the-air (OTA)
configuration. Second, most of your control will come from the device itself, so
the management process is fairly manual.

Realistically, an iTunes-only configuration is for the small office/home office
(SOHO), or for the “small” end of small-to-medium business (SMB) markets. Still,
it’s great for small numbers of devices, or when people are using their personal
devices for company purposes. If you have to configure a lot of devices, or you
need more control, iTunes won’t work so well.

NOTE: A security risk is always involved when using personal devices for company

data. People leave companies and may not remember to wipe company data from

their devices. Because every company is different with different needs, this is not

a question I can answer for you in some generic way or with a clever bon mot.

You’ll want to seriously consider the kinds of data that users will store before

you permit the use of personal devices.

From the Library of Bill Wiecking

ptg6760185

MANAGING WITH iTUNES 5

So let’s look at what you can get out of iTunes. In a nutshell, there’s not a whole
lot. The iTunes settings for iOS devices don’t really revolve around limiting access,
but rather managing how you use the devices. For example, in the device summary
settings in Figure 1.1, you can see that the management options are pretty basic.

I recommend that you encrypt the backups for devices used with business
data. iTunes offers handy, but not exactly high-end, management, and you have
to set this up on the computer, not the device. (Oddly, this is where the general
tediousness of using iOS devices with multiple computers works in your favor by
discouraging users from modifying your setup. Trying to match settings between a
home Mac and a work Mac—or even more bizarre, iTunes on Windows and iTunes
on a Mac—is enough work that most people just won’t bother.)

iTunes’ application “management” settings are even more basic, to the point
of not really being what many would think of as “management.” They’re not really
intended to restrict your access to applications, or even control whether you can
or cannot add applications to the device. Instead, they’re really just there to help
you set up how apps are laid out on the device, whether a specific app should be
synced, and whether new apps should automatically be synced. That’s it.

FIGURE 1.1 Device summary

settings

MANAGING WITH iTUNES

From the Library of Bill Wiecking

ptg6760185

6 CHAPTER 1 WHEN iTUNES IS ENOUGH

That’s not to say that iTunes’ settings are useless for device management. For
example, if you’ve ever tried to manually set up email accounts on an iOS device,
you know that it’s not the most pleasant experience. The iOS is rather insistent
about not letting you skip any verification steps, no matter that you just want to
enter the info and move on. iTunes provides an easy way to avoid a lot of this pain.

On the computer that will sync with the iOS device, set up all your email
accounts, calendars accounts, and contacts in the iTunes Info sections (Figure 1.2
and Figure 1.3).

Then, sync the device. Voila! All your account setup is done. Once that’s done,
you’ll want to kill email sync within iTunes because the device will now handle that
sync for you. However, you’ll still need to manually sync calendars and contacts.

FIGURE 1.2 Contact and calen-

dar settings

From the Library of Bill Wiecking

ptg6760185

MANAGING WITH iTUNES 7

One more point about email. If you or your employees are going to check email
from computers and iOS devices, you really, really want to use IMAP standards for
email, and not POP. IMAP is designed for this kind of use, POP is not. Yes, POP has
that “leave it all on the server” setting; however, just like putting a big spoiler on
your Civic does not turn it into a Porsche 917, leaving POP email on the server does
not turn it into IMAP.

FIGURE 1.3 Mail and other

settings

NOTE: If you’re using CalDAV for calendaring or CardDAV/LDAP for

contacts, you won’t need to sync manually. However, you won’t be able to

use iTunes to sync those apps, not even to set them up. For whatever

reason, Apple does not to allow you to sync CardDAV accounts. You can

sync a CalDAV account via iTunes, but it won’t create a CalDAV account on

your Mac the way Mail creates accounts.

From the Library of Bill Wiecking

ptg6760185

8 CHAPTER 1 WHEN iTUNES IS ENOUGH

The IMAP standard includes a lot of features that work well on devices such
as the iPhone and the iPad, and POP does not. Accessing the same email account
from multiple places is what IMAP was designed for, and using it will make your
life much easier.

I’m not saying that iTunes is completely useless for restricting/controlling what
can be done with iOS devices. It’s not, but we need to keep in mind that iTunes’
definition of “management” is simply different from ours. In the iTunes Parental
controls (Figure 1.4), for example, you can do a few things to keep people out of
mischief.

You can disable access to podcasts, the iTunes Store, Ping, and you can set content
restrictions. However, these limits are for iTunes, not iOS devices. It just happens
that when you use iTunes to sync/manage the devices, this has some happy side
effects. For example, if you can’t install apps or podcasts in iTunes, it’s a bit hard
to install them on say, an iPad. But that’s not really an awesome way to do things.
Luckily for us, we have an alternative method to use here: the device settings.

FIGURE 1.4 iTunes parental

controls

From the Library of Bill Wiecking

ptg6760185

USING DEVICE SETTINGS 9

iTunes does not offer many ways to limit the iOS device features that a user can
access. However, the iOS devices themselves do offer some limits, as we’ll see.
Remember that this is a manual process that you’ll have to repeat on every device . . .
manually. In other words, this method is not going to scale well at all. But, again,
for a SOHO/small company, it’s an easy-to-use, easy-to-understand solution that
comes free with every iOS device.

To get to the restriction settings, go into Settings > General > Restrictions. As
you can see in the Figures 1.5, 1.6, and 1.7, you have a lot more control over what
someone can and cannot do on the device. (The figures are for an iPhone, but the
differences between the various devices are so small as to not be worth showing
each device’s settings separately.)

For most companies, you won’t care about most of these settings. (Really, is
there a reason to disable Safari?) However, if you want to maintain control of what
apps are installed or deleted, you can do that here. You can also prevent changes
in email accounts, disable camera usage, manage in-app purchases, and disable
some of the Game Center features.

Enabling these restrictions requires you to enter a four-number passcode.
Assuming you avoid the obvious ones (1234, 3333, and so on), you can set up the
restrictions with a fair bit of confidence that they won’t be bypassed. Yes, there
are ways to bypass these restrictions, and most are not all that difficult. It’s almost
impossible to lock down a device like this so that it cannot be unlocked. But, for
most people, between iTunes and the on-device settings, you should be just fine.

FIGURE 1.5 (left) Device appli-

cation controls on an iPhone

FIGURE 1.6 (middle) Location,

accounts, and content controls

on an iPhone

FIGURE 1.7 (right) Content

and game center controls on

an iPhone

USING DEVICE SETTINGS

From the Library of Bill Wiecking

ptg6760185

10 CHAPTER 1 WHEN iTUNES IS ENOUGH

Using iTunes and the on-device settings is not a solution you’ll want to use for
large numbers of iOS devices. But for a small number of devices with simple needs,
these controls work quite well. You can simplify the setup process and have some
relatively detailed control over what you allow your users to do with their iOS
devices. It’s not fancy, but it is functional, and that counts.

WRAPPING UP

From the Library of Bill Wiecking

ptg6760185

This page intentionally left blank

From the Library of Bill Wiecking

ptg6760185

2

THE iPHONE
CONFIGURATION
UTILITY

From the Library of Bill Wiecking

ptg6760185

13

The iPhone Configuration Utility

(iPCU) can be the central point for

creating and managing iOS devices for a small com-

pany up to a business with hundreds or thousands of devices.

This free utility from Apple not only lets you set up applications

and provisioning; but with a nice amount of granularity, you can

specify exactly what a user can and cannot do with his device.

It also offers you more security options than are offered in iTunes

or available natively on the device. In this chapter, we’ll go over

where you can get the iPCU, how you can use it, and the features

it offers. In the following chapters, we’ll explore a lot of detail on

what the iPhone Configuration Utility can do for you and your

iOS devices.

From the Library of Bill Wiecking

ptg6760185

14 CHAPTER 2 THE iPHONE CONFIGURATION UTILITY

GETTING THE iPCU

The iPCU is available for Mac OS X and Windows from Apple’s iPhone Support—
Enterprise page at www.apple.com/support/iphone/enterprise/. (Because the
specific version of the iPCU can change, that’s the best place to find the download
links.) With iPCU version 3.2 (the current version at the time of this writing), you
need to be running Mac OS X 10.6 or later; or Windows XP SP3, Windows Vista
SP1, or Windows 7, and Microsoft .NET Framework 3.5 SP1. Download and install
the iPCU version you need, and you’re almost ready to start.

APPLE’S iPHONE BUSINESS PAGES

I’m going to highly recommend that before you start using the iPCU, you

spend some time on the iPhone Support—Enterprise page and the iPhone

Business Resources page (www.apple.com/iphone/business/resources/).

The business resources page, in particular, is a treasure trove of links to

useful information for anyone who wants to manage iOS devices and also

wants detailed information on exactly how iOS does things. Need details on

Exchange, Wi-Fi authentication features, or VPN? It’s all there. You will save

yourself a great deal of time and troubleshooting by taking a few hours, or

days, to read the documentation linked to on the business resources page.

From the Library of Bill Wiecking

www.apple.com/support/iphone/enterprise/
www.apple.com/iphone/business/resources/

ptg6760185

UNDERSTANDING iPHONE CONFIGURATION UTILITY BASICS 15

The iPCU has four main configuration sections: Devices, Applications, Provisioning
Profiles, and Configuration Profiles.

VIEWING DEVICES

The Devices section is pretty simple: It lists the iOS devices that you’ve attached
via USB to the computer running the iPCU. A summary section shows the basic
information for each device—such as OS version, IMEI number, and MAC addresses.
(In Figure 2.1, some of those numbers are redacted in the images for security/
safety reasons.)

FIGURE 2.1 iPCU summary

section

UNDERSTANDING iPHONE

CONFIGURATION UTILITY BASICS

From the Library of Bill Wiecking

ptg6760185

16 CHAPTER 2 THE iPHONE CONFIGURATION UTILITY

The Configuration Profiles tab shows all configuration profiles used on the
device. The Provisioning Profiles tab does the same for provisioning profiles, and
the Applications tab (Figure 2.2) shows a list of apps installed on the device. As
you can see, the apps listing here is functional and not pretty as with iTunes.

There’s no real trick to using a device with the iPCU. Open iPCU, connect the
device to that computer, and you’re ready to go.

USING APPLICATIONS AND PROVISIONING PROFILES

These two are listed together because they go together. “Applications,” as used with
the iPCU, are not for apps you buy from Apple’s App Store. Rather, they’re custom
apps that your company has written in-house, or commissioned or purchased
from a third party. These apps will not normally show up in the App Store, so you
can’t use that as your distribution mechanism. Instead, you use the iPCU to install
these applications on a device.

To distribute applications using the iPCU you need the distribution provisioning
profile and the app(s) you want to install. In the Provisioning Profiles tab is where
you manage the provisioning profiles, and in the Applications tab you manage the
apps you’ll install. iPCU has no surprises as far as tab names go.

FIGURE 2.2 Apps listed in the

Applications tab

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 17

SETTING UP CONFIGURATION PROFILES

This tab gets the most use when you’re managing iOS devices (Figure 2.3). Here
you configure device settings, ranging from installing a standard set of web clips to
configuring email accounts, security, and even cellular settings. You’ll be spending
a lot of time with this tab.

APPLYING PROFILES WITH A CONNECTED DEVICE

If you have a device attached to your computer while the iPCU is running, a Devices
section will appear. In the toolbar, you have buttons to create a new configuration
profile, to share your configuration profiles via email and Mail.app, and to export
a configuration profile as a .mobileconfig XML file.

WRAPPING UP

That’s really all there is to the iPCU in terms of major features. Just Devices, Appli-
cations, Provisioning Profiles and Configuration Profiles. As we’ll see in the next
few chapters, that’s enough to manage a large number of devices without doing
a lot of work.

FIGURE 2.3 Configuration

profiles settings

From the Library of Bill Wiecking

ptg6760185

3

APPS AND
PROVISIONING

From the Library of Bill Wiecking

ptg6760185

19

One of the iPhone Configuration

Utility’s jobs is to help you install and

manage applications on iOS devices. We aren’t talking

about apps from the App Store, but, rather, in-house applica-

tions written for your company that will be used only by company-

authorized devices. These are also known as enterprise apps.

Enterprise apps differ from App Store products in a number of

ways. First, they aren’t vetted or looked at by Apple. There are no

rules as to what an enterprise app can or cannot do. They aren’t

distributed via the App Store, either. In this chapter, you’ll see how

you can use the iPCU to install enterprise apps on an iOS device.

(However, we won’t be looking at how you create an app because

that’s beyond the scope of this book.)

From the Library of Bill Wiecking

ptg6760185

20 CHAPTER 3 APPS AND PROVISIONING

USING PROVISIONING PROFILES

A provisioning profile is a binary file used to distribute apps to iOS devices outside
of the App Store. It contains certificate, device, and app information required to
install an enterprise app on an iOS device.

One important caveat here is that you can’t add random provisioning profiles
and apps to the iPCU and install an app on any device you choose. App installa-
tion requires more than a little coordination between the app’s developers and
users. Each device that will receive the app must be registered in the company’s
iOS provisioning portal. Once that is done, a provisioning profile for that device
can be generated.

A POINT ABOUT REGISTRATION

If you are a member of the iOS Developer Enterprise Program, you do not

have to register your devices with Apple just to distribute apps to them. This

situation frequently confuses people. I regularly find myself assuming I have

to register devices when I don’t. If you aren’t a member of the iOS Developer

Enterprise Program, then you do have to register your devices to distribute

your own apps to those devices outside of the Apple App Store. If you are a

member of the Enterprise program, you only have to register your devices

with Apple if you want them to be development devices.

UNDERSTANDING THE PROVISIONING PORTAL

It’s important to talk a bit about the provisioning portal because it’s central to
distributing apps. Unless you jailbreak your iOS devices (a technique that we are
not going to discuss in this book), you need a provisioning profile to install iOS
apps that aren’t on the App Store.

The provisioning portal is key to using apps for two primary reasons: One reason
is to set up devices so that you can test apps before submitting them to the App
Store—but we don’t really care about that for this book. The other reason, which
we do care about—is managing provisioning profiles and iOS devices to ensure
that you can install your apps on those devices with ease and efficiency.

However, to use the provisioning portal, you must be a registered member of
Apple’s iOS Developer Program or iOS Enterprise Developer Program.

From the Library of Bill Wiecking

ptg6760185

USING PROVISIONING PROFILES 21

When you’re a member, you can log into the iOS Dev Center and use the portal
at http://developer.apple.com/ios/manage/overview/index.action. I’m not going
to go over the portal in great detail. A lot of it involves things that only developers
care about. But because I am going to talk about the provisioning portal through-
out this chapter and the rest of the book, I thought it a good idea to spend some
time on the portal.

LEARNING MORE ABOUT PROFILES AND DEVICES

While somewhat annoying, using provisioning profiles ensures that you get the
application you think you’re getting, and only that app. It would be a bigger annoyance
to discover that the app you installed was modified to include root kits and other
malware. By requiring the use of digitally signed apps with a device- or company-
specific provisioning profile, the potential for this kind of problem is mitigated.

By the same token, this authentication process also ensures that random file
sharing sites can’t distribute your company’s work to the entire Internet—an
important consideration if the app in question contains proprietary or sensitive data.

Once the provisioning profile is created by the developer, using it is dead simple.
Open the iPCU, and in the Library, select Provisioning Profiles (Figure 3.1). Then,
you can either drag the profile (a .mobileprovision file) into the top pane of the
Provisioning Profile section; or, click the Add button, navigate to the profile, and
click Open to add it to the iPCU. After the profile is installed, you can see it in the
top pane of the iPCU’s Provisioning Profile section.

FIGURE 3.1 Provisioning

Profiles selected in the iPCU

From the Library of Bill Wiecking

http://developer.apple.com/ios/manage/overview/index.action

ptg6760185

22 CHAPTER 3 APPS AND PROVISIONING

When you have only a few devices to manage, it’s okay to create a unique provision-
ing profile for each device and manually add it to your company’s iOS portal, but
what about when you need to distribute applications to large numbers of devices?

In that case, you need to create a file that can add all your company’s devices
to the portal at once. So let’s take a look at doing just that.

UPLOADING MULTIPLE DEVICES

First, you’ll need to inform the iPCU about all your devices. That’s pretty simple.
Just plug the device into the iPCU long enough for it to show up in the Devices
section. Once the device is recognized, you can unplug it and move on to the next.
The iPCU will remember each device. Then select the devices you want to add to
your company’s provisioning portal, and choose File > Export. Give the file a name,
and the iPCU will create a .deviceids file for all those devices.

The .deviceids file is an XML plist-style file that contains one entry per device.
Each entry contains the device’s name and identifier, a unique alphanumeric
string that identifies the device to the provisioning portal. For example, here are
the contents of a .deviceids file with just my iPhone in it (with the device identi-
fiers changed):

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” “http://www.
papple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>Device UDIDs</key>

 <array>

 <dict>

 <key>deviceIdentifier</key>

 <string>67d9631117a7a63042100deba49e3990289e6865</string>

 <key>deviceName</key>

 <string>BynkPhone</string>

 </dict>

PERFORMING
LARGER SCALE DISTRIBUTION

From the Library of Bill Wiecking

ptg6760185

PERFORMING LARGER SCALE DISTRIBUTION 23

 </array>

</dict>

</plist>

It’s pretty simple to figure out. Every additional device has a new <dict> sec-
tion that contains its name and identifier. The handy thing about this is that if
you already have those two pieces of information somewhere else—like an asset
database of some kind—you could use that database to generate this file without
using the iPCU. As you’ll see in Chapter 6, you could create a script that would read
the data in the iPCU, and then automatically generate the .deviceids file for you.

Or, iPCU could generate a .deviceids file of company devices for use not only
with the provisioning portal, but also to create a database of device names and
identifiers that you can use in other ways.

Apple is smart enough to use plain text for this file, so your options for using
the .deviceids file are rather large.

However you create the file, you then upload it into your company’s provision-
ing portal. To do that, go to your iOS provisioning portal, and select Devices. In the
Manage tab, you’ll see two buttons: Upload Devices and Add Devices. Click Add
Devices when you want to add just one device at a time. Click Upload Devices to
add multiple devices at once via a .deviceids file.

To add one device, click Upload Devices, and then click Choose File. Navigate
to your .deviceids file, and click Choose. Then click the Submit button, and the
portal will process your devices.

BIG SCARY PORTAL WARNING

If you read the fine print, you saw that you can register a specific number of devices each year. It’s not real

small, but it’s not real large either, and it depends on your level of developer program membership. How-

ever, because you can delete devices, you may think, “I’ll just blow out the old ones as needed.” But it’s not

that simple. Removing a device removes it from the portal, but it still counts against your devices-per-year

count. So, if you have 99 devices and a maximum count of 100 devices per year, you can remove 40 devices

and still only have one device free for that year. Again, neither registration, nor these limits, apply to simply

distributing apps when you are a member of the Enterprise program. If you aren’t a member of the Enter-

prise program, then registration and limits do apply.

From the Library of Bill Wiecking

ptg6760185

24 CHAPTER 3 APPS AND PROVISIONING

Now you’re set to create a single enterprise distribution profile that will work
for all your devices.

APPLYING DISTRIBUTION PROFILES

As a warning, this section assumes that you have done all the necessary work to
set up your provisioning portal. At that point, creating a distribution profile is
pretty simple.

Go to the Distribution section, and in the Prepare App tab, click “Create and Down-
load a Distribution Provisioning Profile for Enterprise In-House Distribution.”You’ll
see step-by-step instructions for creating your enterprise distribution profile. Once
the profile is created, you can download it by going to the Provisioning section of
the provisioning portal, selecting the Distribution tab, and clicking Download.

When the file is downloaded, drag it to the top pane of the Provisioning Profile
section in the iPCU (Figure 3.2) and you’re set.

Really, this looks a lot more complicated in text than it does in real life. If you
read the documentation from Apple for the portal and pretty much do as it tells
you, you can have an enterprise distribution profile ready to go in a few minutes.

However you choose to proceed, you now have your provisioning profile set
up in the iPCU. Now let’s set up your app.

FIGURE 3.2 Distribution

profile added to the iPCU

From the Library of Bill Wiecking

ptg6760185

USING APPLICATIONS 25

This is actually the easiest part. First, you need the app you’re going to install. Note
that you don’t actually need a provisioning profile to set up an app in the iPCU.
Of course, you can’t install the application without that profile, so setting up the
app without the profile is of little use. But it’s worth noting that the iPCU doesn’t
care about the order of setup. Once you have the app file in the iPCU, you can click
Applications and drag the app file into the top pane of the Applications section; or
you can click Add, navigate to the app file, and click Open. Either way, once you’re
done, your app is ready to go. Really, it’s that simple. Get the app and the provision-
ing profile set up in the iPCU and you’re ready to install the app.

INSTALLING AND UNINSTALLING APPS AND PROFILES

You have your provisioning profile and your app. Now, it’s time to install. When
using the iPCU, installing an app onto a device is not much harder than installing
an app to the iPCU as long as you remember the proper order: profile first, then
app. Actually, you can’t really get that wrong because the iPCU won’t let you install
an app on a device that doesn’t have the correct profile.

First, fire up the iPCU and attach a device to it via USB. Obviously, this should
be a device with a profile that you created. The iPCU will sprout a Devices section
with the connected device displayed in it. This section is different than the other
Devices section that is always there. This Devices section is where you manage a
currently-connected device.

USING APPLICATIONS

From the Library of Bill Wiecking

ptg6760185

26 CHAPTER 3 APPS AND PROVISIONING

When you select the currently-connected device in the iPCU, you’ll see a row
of tabs across the top of the pane. The first tab you’re concerned with is Provi-
sioning Profiles. Click it and you’ll see all the profiles that may be installed on the
device (Figure 3.3). Each of those profiles has an Install button. Click Install for
the desired profile.

Once that’s done (it takes about two seconds for an iPhone 3GS), the button
changes to a Remove button. (You can click Remove to manually remove the profile
from the device. Amusingly, if you remove the profile, you get a Big Scary Warn-
ing that this action cannot be undone. Well, in the Command-Z sense of undo, I
suppose that’s true. However, if you click the Install button again, you’ll reinstall
the profile and undo the removal.)

FIGURE 3.3 Profiles ready for

installation to a device

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 27

The next tab you care about is the Applications tab (Figure 3.4). Again, you’ll
find no surprises here. When you click the Applications tab, you’ll see all the
enterprise or App Store apps installed on this device.

What you’re looking for are apps with an Install button next to them. Assuming
you’ve installed the right profile, click Install for the desired app and a few seconds
later, it’s installed. No fuss, no muss.

Currently installed apps will have an Uninstall button next to them. If you click
Uninstall for an App Store app, you’ll get another Big Scary Warning about not
being able to undo your action. This time, however, it’s not kidding. If you want
to reinstall an App Store app, it’s back to iTunes you go.

On the other hand, if you want to remove App Store apps that shouldn’t be there,
the iPCU is a very fast way to do so. Click Uninstall, click OK to the warning, and
in a few seconds the app is gone—no requests for final reviews, no nothing. Bang.
Gone. It’s not deleted out of iTunes, but it is definitely off the device.

WRAPPING UP

This was a busy chapter, especially in terms of profiles and portals. But, understand-
ing them will be important when you later learn about other ways to distribute
apps, including wireless distribution. For now, you should be able to install apps
via the iPCU and understand the process behind that installation. The installation
mechanics may change in terms of step-by-step activity, but the principles will
probably stay constant.

FIGURE 3.4 The Applications

tab lists all apps installed on

the device.

From the Library of Bill Wiecking

ptg6760185

4

CREATING
CONFIGURATION
PROFILES

From the Library of Bill Wiecking

ptg6760185

29

This is the “big” chapter for the iPhone

Configuration Utility (iPCU), and for

anyone who needs to perform extensive/advanced

management of iOS devices. Configuration profiles are XML

files that control the behavior of your iOS devices, restrict or allow

specific features, and set up functions such as email and calendars.

Once created, configuration profiles can be distributed via USB,

email, or a web page.

You can also encrypt and sign a profile to restrict the devices it

can be applied to, and password-protect it so that it cannot be

removed short of wiping all the data on the device. Configuration

profiles can be long and complicated, or kept simple and used only

to point a device at a Mobile Device Management server that can

push the desired settings to the devices.

From the Library of Bill Wiecking

ptg6760185

30 CHAPTER 4 CREATING CONFIGURATION PROFILES

USING GENERAL SETTINGS

When you’re creating a configuration profile, the iPCU might have you thinking
that the General settings are the only mandatory settings. That’s not exactly cor-
rect. You need General plus at least one additional setting. This is logical because
it doesn’t make sense to have a configuration that has only the General section
because the General section doesn’t really do anything in terms of configuring
your iOS device. It’s just there to identify the profile.

But, if you aren’t expecting that behavior, and you’re testing a profile, it could
be annoying when the device refuses to install a profile with only the General
settings configured.

The General settings are concerned only with the profile identity security
(Figure 4.1). As such, the number of settings here is pretty small. You can set the
name of the profile, which is what users see when they go into the General settings
on the device and select Profiles (Figure 4.2). That’s not a misprint by the way; you
can have multiple profiles on a single device. If you choose to have multiple profiles,
however, please watch your settings. Choosing conflicting settings would be . . . bad.

FIGURE 4.1 General settings

for identity security

From the Library of Bill Wiecking

ptg6760185

USING GENERAL SETTINGS 31

Most of the settings here are descriptive, starting with a Name for the profile
that the user will see on the device and a unique Identifier named similarly to
plist files—for example, “com.bynkii.bookprofile”—that serves two important
purposes: First, if no other profile on a device has that same identifier, the profile’s
settings are added to the device. Second, if a profile on the device does have the
same identifier, the settings in the new profile replace the previous profile’s settings.

This functionality can make it easy to update an existing profile. Rather than
performing a full remove and replace, you can just edit an existing profile while
retaining the same identifier, and re-install the profile on the device. The excep-
tion is when changing Exchange accounts. When changing an Exchange account,
you must remove the profile with the Exchange info so that the Exchange data
can be purged.

The Organization and Description fields are available for you to insert custom-
ized information that—like the Name field contents—are displayed on the device.

FIGURE 4.2 General settings

on an iOS device

From the Library of Bill Wiecking

ptg6760185

32 CHAPTER 4 CREATING CONFIGURATION PROFILES

The Security setting controls the ability to remove the profile and has three
settings: Always, With Authorization, and Never. Always is pretty self-explanatory:
The profile can always be removed by clicking Remove in the profile’s information
section (Figure 4.3).

If you choose With Authorization, the profile can be removed only by entering
a passcode that you set when you create the profile in the iPCU. You’ll see a warn-
ing to that effect when you install a profile with this security setting (Figure 4.4).

If you choose the final option, Never, you’re required to erase all the data from
the device to remove the profile.

Realistically, don’t choose Never unless you are in a high-security environment
(and I mean “Lawrence Livermore National Laboratory where we perform nuclear
weapons research,” not just “I don’t want people to know about our new website
data” security); or unless you are not going to update that profile anytime soon.
Choosing Never usually causes far more problems than it solves. Choosing With
Authorization will cover you 99 percent of the time. If the device is a personal device
that someone is using for work purposes, consider choosing Always. because it’s
kind of rude to lock someone out of her own phone.

FIGURE 4.3 (left) Click Remove

to delete a profile from a

device.

FIGURE 4.4 (right) Warning

displayed when installing an

app that requires authorization

From the Library of Bill Wiecking

ptg6760185

SETTING A PASSCODE 33

Next are the Passcode settings (Figure 4.5). These settings are simple enough, but
you have a lot more granularity than you can access using only the device or iTunes.

For example, if you don’t want people to choose a passcode like “7777”, simply
deselect “Allow simple value.” If you want to force the use of letters and numbers
in a passcode, select “Require alphanumeric value.” You can set the ”Minimum
passcode length” from 1 to 16 characters, set the “Minimum number of complex
characters” (such as &, $, or !) from 1 to 16, and choose “Maximum passcode age”
up to 730 days. You can also restrict the number of unique passcodes that must be
used before a passcode can be repeated, along with a few other passcode settings.

Really, none of the settings available differ much from password settings of any
standard IT setup, save one: “Maximum number of failed attempts.” This setting can
be dangerous, because it lets you limit the number of times an incorrect passcode
can be entered before the device erases itself (up to a maximum of 16 tries.) Yes, this
restriction can be useful if your iOS devices carry critical confidential data; but, if
this value is set too low, you can create a large user support headache for yourself.

This setting falls into a category I like to call “If you have to ask, the answer is
No!” so, if you are currently asking yourself, “Should I use this?”, then don’t use
it. If you actually need to use this setting, you’ll know and you won’t have to ask.
Any setting that can cause a device to erase itself should be implemented with the
greatest care and caution.

FIGURE 4.5 Passcode settings

in iPCU

SETTING A PASSCODE

From the Library of Bill Wiecking

ptg6760185

34 CHAPTER 4 CREATING CONFIGURATION PROFILES

Restrictions is the most complex group of settings and the worst named. Restrictions.
Really? This is the best Apple could come up with? Anyway, these settings enable
and disable most of the basic hardware functionality on the device (Figure 4.6).

I’m not going to detail every one of these settings, as there’s a ton of them and
they’re all pretty self-explanatory. However, a few are worth noting. For example,
if you want to avoid the hideous roaming charges that both AT&T and Verizon
love so well (in the U.S. at least), deselect “Allow automatic sync while roaming.”
A user can still check her communications automatically, and a device that’s not
being actively used won’t rack up a few thousand dollars of data charges because
that user gets a lot of email.

Selecting “Force encrypted backups” just makes sense, and causes almost no
noticeable problems on the user’s end. You may also want to deselect “Allow explicit
music & podcasts” if the device is mostly used in a corporate setting. “Allow use of
iTunes Music Store” applies only to the device. It’s not going to stop people from
using iTunes on their Mac or Windows computers.

FIGURE 4.6 Restrictions

settings

CHOOSING RESTRICTIONS

From the Library of Bill Wiecking

ptg6760185

CONFIGURING WI-FI 35

The Wi-Fi settings are short and to the point. You specify the SSID of the network,
whether or not it’s hidden, its security type, and the password (for personal net-
works). If you specify Enterprise in the “Security Type” pop-up menu, you reveal
many more options, such as several Extensible Authentication Protocol (EAP)
types; Authentication information; and Trust, which contains the certificates used
to validate the authentication server for the network.

Notice that you can set up multiple networks here. So, if a user must travel
between facilities— each with its own Wi-Fi network setup—you can populate his
iOS device with the information for each network ahead of time, so his device just
works. This also saves you from handing everyone the password to the wireless
network, which is not only a good idea, but sometimes a regulatory requirement.

CONFIGURING WI-FI

From the Library of Bill Wiecking

ptg6760185

36 CHAPTER 4 CREATING CONFIGURATION PROFILES

The VPN settings are the opposite of the Wi-Fi settings: They are not to the point,
not terribly clear, and painfully easy to incorrectly configure so that your VPN will
never work (Figure 4.7).

In addition, some of the VPN types listed in the iPCU—such as F5 SSL, Cisco
AnyConnect, and Juniper SSL—require you to first install the appropriate apps
from the Apple App Store. Not fun.

I’m not trying to downplay the importance of VPN or to avoid it; but there
are six specified VPN connection types along with a “Custom SSL” setting, and at
least 108 separate VPN settings; and, as with the Wi-Fi settings, you can configure
multiple VPNs setups here. Furthermore, if you are dealing with “VPN on Demand”
and some of the custom options, you’ll be looking at even more settings.

Fully explaining all of that is literally a book unto itself and, in fact, many VPN
books have been written. VPNs are still overly complex as the VPN settings show.
If you are responsible for maintaining your VPN, I don’t need to tell you what set-
tings to use. If you are not the person maintaining your VPN, schedule some time
to sit down with your VPN guru, the iPCU, and an iOS device to work out the best
settings for your devices. Then use them. Take copious notes—you’ll be glad you did.

FIGURE 4.7 VPN settings are

easy to configure incorrectly.

SETTING UP VPN

From the Library of Bill Wiecking

ptg6760185

SETTING UP EMAIL 37

These settings configure POP/IMAP email accounts for your devices (Figure 4.8).
One thing right away: Don’t use POP. If someone is checking her email with an

iOS device, it is fairly certain that it isn’t the only way she checks email. You really,
really want to use IMAP here. Yes, I know, POP has that “leave it on the server”
option. That’s nice but it’s not IMAP, which is designed from the ground up to be
used by multiple devices checking the same account. If you were entering the 24
hours of Le Mans, would you drive an Audi R15 TDI, or a ’78 Pinto with a big spoiler
and glasspacks? Right. Use IMAP.

By the same token, also use SSL. If you haven’t enabled this on your server, now
is a great time to do so. Open wireless networks are a gold mine for people doing
illicit data mining, and SSL is an easily-implemented method to prevent them from
mining you. So, use SSL. The only other thing I’d specifically recommend is using
authenticated SMTP. It’s a cheap way to stop unauthorized people from using your
SMTP server, and iOS supports it.

As far as the other settings go, email settings are email settings are email settings.
However, you will want to leave some settings blank for the user to fill in: the User
Display Name, the User Name, and the Password. If you fill those out, you’ll have to
create a custom profile for everyone, or change the settings every time you install
them on a device. You don’t want to do that, do you? Of course not.

FIGURE 4.8 POP/IMAP email

account settings

SETTING UP EMAIL

From the Library of Bill Wiecking

ptg6760185

38 CHAPTER 4 CREATING CONFIGURATION PROFILES

However, the downside of letting users enter that information is if you install
a profile via USB, the user has to enter that information during that installation.
So, when you’re installing profiles to set up email or any other option that requires
user input, you won’t want to do so over USB. Luckily, as you’ll see, you have other
ways to distribute these profiles.

The only setting I want to talk about specifically is Path Prefix, because it is a
setting you’ll use with a rather popular email provider, namely Gmail.

When you set up a Gmail account on an iOS device, you’re really setting up
an IMAP account—and Google has an “interesting” take on IMAP. If you use the

“standard” IMAP settings for Gmail, you’ll realize that you have duplicates of every
folder in your Gmail account. That’s because if you look at your account from the
folder root, you’ll see you have a [Gmail] tree with all your Gmail “folders” and
possibly an [IMAP] tree as well. By setting the Path Prefix to [Gmail], you avoid
some of that duplication.

Boy, that’s kind of a pain, isn’t it? Wouldn’t it be nice if you had an easier way to
deal with Gmail that set up Google Calendars and Contacts at the same time? Well,
you do. You can use Exchange ActiveSync instead of Email for this. Your setup is
not only simpler, but you get all your calendaring and contacts, too. (Unfortunately,
you still have the same ugly folders issue because Google’s Exchange ActiveSync
implementation is as “interesting” as their IMAP implementation, but at least you
do less work for it.)

From the Library of Bill Wiecking

ptg6760185

USING EXCHANGE ACTIVESYNC 39

Microsoft Exchange is, for better or worse, the 800-pound gorilla of corporate
email; and its mobile protocol, Exchange ActiveSync (EAS), is the way you connect
mobile devices to Exchange. However, a while ago, Microsoft did something quite
brilliant with EAS: they decoupled it from Exchange. So, it still has the name, but
you can use it with servers that have nothing to do with Exchange, such as servers
from Google, Kerio, Zimbra, Atmail, and others.

Exchange ActiveSync, name aside, is a boon to iOS devices and the like
because—rather than configuring your email server and your calendar server and
your contact server separately—you just set up EAS and you’re done. Exchange
ActiveSync also allows handy things for IT folk such as the remote wipe of a device
without signing up each and every device for “Find my iPad/iPhone.” In Exchange
ActiveSync settings (Figure 4.9), you configure Exchange ActiveSync accounts on
your iOS devices.

As with email, you’ll find the ”normal” fields here, such as Account Name, the
server name, Use SSL (YES), and so on. A few fields, however, may appear a bit
odd to the uninitiated. First of these is the Domain field. If you are on a Windows

FIGURE 4.9 Exchange Active-

Sync settings

USING EXCHANGE ACTIVESYNC

From the Library of Bill Wiecking

ptg6760185

40 CHAPTER 4 CREATING CONFIGURATION PROFILES

network using an Exchange Server, the domain is usually your Windows domain.
If you’re using a server such as Gmail, or Kerio Connect (that is, something other
than an actual Microsoft Exchange server), you can leave this field blank.

The other strange fields are the authentication credential fields. These are used
with certificates that validate the server to the client. This may seem odd, but it is
a good way to avoid accidental connection to a rogue Exchange server that hap-
pens to have the same DNS address as the desired server. As with email settings,
leave the User, Email, and Password fields blank unless you specifically want to
fill them in for each user.

From the Library of Bill Wiecking

ptg6760185

ENABLING LDAP 41

Lightweight Directory Access Protocol (LDAP) started as a way to track email con-
tact information and eventually morphed into the way companies manage all their
computers and users. While Active Directory, Open Directory, and OpenLDAP are
all based on LDAP, for the purposes of this book, LDAP is used only as a contact
database.

Most of the settings here are pretty basic (Figure 4.10), with a couple of excep-
tions. The first exception is the “Account Username” field. Depending on your
server type, your account name can look like:

� john

� john@company.com

� cn=john,cn=users,dc=example,dc=com

The last example is a full distinguished name and completely specifies the user,
who in this case is john, in the users container in the domain example.com. It’s
simple, but only if you know how to read LDAP-ese. In that sense, LDAP is kind of
like VPN. If you’re running your LDAP server, you already know this; if you aren’t,
schedule some time with your directory administrator and have that person help
you set up this information.

FIGURE 4.10 LDAP settings

ENABLING LDAP

From the Library of Bill Wiecking

ptg6760185

42 CHAPTER 4 CREATING CONFIGURATION PROFILES

The second LDAP setting that might catch you off guard is the Search Settings
field, which requires some basic knowledge of LDAP structure. LDAP is, in general,
structured like a tree. At the root, you have the domain, so company.com would
map to “dc=company,dc=com”. Everything expands out from there in a variety
of containers (generally, although somewhat incorrectly, abbreviated as CN) and
organizational units (OU).

When searching an LDAP directory, you obviously want to limit how much data
has to be searched for the benefit of the search speed, and also to control the overall
load on the system. A hundred devices searching thousands of entries are going
to create a greater server load than if they’re searching a few hundred entries. So,
you limit searches by the scope, or range, of the search and by the starting point.
To set your search scope, you have three options:

� Base, which searches only the defined search base. If the data you want is
one level below that base, the search won’t find it.

� One Level, which searches the base and the level immediately below it

� Subtree, which searches the base and everything below the base regardless
of the number of levels.

The next step is to set up your Search Base or starting point. Since you’re really
just using LDAP for email contact information, you’ll want to set up the container
or OU for your users. If your LDAP directory is Apple’s Open Directory, typically
the OU will be the users container, the Open Directory Master computer name,
and the domain name. So:

cn=users,dc=odmasterserver,dc=domain,dc=com

would be a typical search base for a generic Open Directory setup. Other LDAP
implementations would be different, but similar to this.

From the Library of Bill Wiecking

ptg6760185

ENABLING LDAP 43

By restricting your starting point to just the users container, you can set the
search scope to be “Subtree”, and not worry about every device iterating through
every part of the LDAP directory just to find Bob’s email address. When LDAP is set
up, both the Email and Contacts apps on the device will automatically use LDAP
data for activities such as autofilling email addresses in messages.

BIG SCARY LDAP WARNING

As I just said, LDAP isn’t only for email addresses. A modern LDAP implemen-

tation can, and often does, contain almost every bit of data about the people

and computers in a company. It can also contain office lists, conference room

lists, personal phone numbers and addresses, and all sorts of other informa-

tion that you don’t want the world to be able to find. If you are going to set

up LDAP on your iOS devices, it is critical that you do not allow anonymous

access over unencrypted connections. You really, really, really want to require

SSL, and use both usernames and passwords for everyone allowed to access

your LDAP information from outside your company’s network. Plus, it’s a

very good idea to also require it inside the company network. If everything

is encrypted, someone who manages to get past your firewall still ends up

with a whole lot of nothing for the effort.

From the Library of Bill Wiecking

ptg6760185

44 CHAPTER 4 CREATING CONFIGURATION PROFILES

CalDAV is an open calendaring standard used by many companies, Apple and
Google among them, to set up calendar servers. Unsurprisingly, iOS supports
CalDAV. (A little background: CalDAV combines .ics calendaring files as the data
format and WebDAV as the transport mechanism, hence: CalDAV.) The setup is
simple with the only oddball bit being the Principal URL (Figure 4.11). That’s the
URL that contains the path to the CalDAV store on the server. This path can vary
depending on the server and its implementation. For example, the Principal URL
might look like /caldav/users/domain.com/john/.

As with Email and other “user input required” settings, leave the Account
Username and Account Password fields blank to permit the user to enter that
information. And always use SSL.

FIGURE 4.11 CalDAV settings

SETTING THE DATE
WITH CALDAV

From the Library of Bill Wiecking

ptg6760185

GETTING IN TOUCH WITH CARDDAV 45

As you saw earlier, LDAP, while usable for email addresses and other contact info,
is not always the best choice for many reasons, including that it’s kind of a pain
to set up. So, a few years back, Apple and several other entities took the CalDAV
concept and applied it to contacts. What they came up with was using the vCard
format as the data store and, again, WebDAV as the transport mechanism. The
result? CardDAV. The setup is identical to CalDAV, including my standard warning
to use SSL (Figure 4.12).

FIGURE 4.12 CardDAV settings

GETTING IN TOUCH
WITH CARDDAV

From the Library of Bill Wiecking

ptg6760185

46 CHAPTER 4 CREATING CONFIGURATION PROFILES

These are publicly-accessible, read-only calendars based on the .ics file format that
may be used for event lists, team schedules, and so on. Apple has a list of publicly
accessible calendars at www.apple.com/downloads/macosx/calendars/. If the
calendar in question requires a username and password, those would be entered
here (Figure 4.13), unless they need to be customized for each user, in which case
you’d leave them blank. As always, use SSL if it’s an option. (Though, sometimes,
you just don’t care. I doubt it’s a problem if Little Bobby Haxx0r sniffs the updates
to my calendar of sunrise/sunset times in Helsinki.)

FIGURE 4.13 Enter username

and password in the Sub-

scribed Calendar settings.

KEEPING UP WITH
SUBSCRIBED CALENDARS

From the Library of Bill Wiecking

www.apple.com/downloads/macosx/calendars/

ptg6760185

USING WEB CLIPS 47

At first glance, these settings can seem kind of useless. “What? Now we don’t want
them typing in a browser?” But if you think about it, placing web links on an iOS
device can be pretty useful for many companies. For example, do you have an
internal Wiki or other informational web page? You can set those up here, and
make them available on an iOS device without requiring the user to trawl through
bookmarks. Do you have custom internal web applications for your users? Enter
the info here (Figure 4.14), add a pretty icon, and select the “Full Screen” check-
box. When someone taps that link, it looks and behaves like an app, not a web
page. Smaller companies may not have many uses for this feature, but for larger
companies, these links can be quite handy.

FIGURE 4.14 Create web links

for the iOS device.

USING WEB CLIPS

From the Library of Bill Wiecking

ptg6760185

48 CHAPTER 4 CREATING CONFIGURATION PROFILES

Here and there I’ve talked about certificates and SSL. Well, if you have your own web
or email servers and you’re using SSL, you’re going to have your own certificates
for them. Or maybe you’re using certs for Exchange or your VPN. If you want to
install them on the iOS devices that need them, here’s where you do it (Figure 4.15).

And it’s pretty simple. When you click the Add (+) button in the main Cre-
dentials pane, you’ll see a dialog that asks you to locate the cert file you want to
use. Navigate to the file, click Open, and if it’s a valid cert file, you’re ready to go.
As with Email, CalDAV, Exchange ActiveSync, and other settings, you can create
multiple entries here. When you install this profile, the certificates are installed
on the device, and ready for use.

ABOUT SCEP

Simple Certificate Enrollment Protocol (SCEP) can securely add certificates to
a device over the air (OTA). In this group of settings, you enter the information
needed to use your device with a SCEP server. I’m not going to go into this in any
detail here because several later chapters are devoted to SCEP and will provide all
the detail you need.

FIGURE 4.15 Credentials

settings

SETTING CREDENTIALS

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 49

Mobile Device Management (MDM) allows you to do everything you’ve done
here in the iPCU, but wirelessly, securely, and with a lot less work on the part of
the user. MDM works with Apple’s Push Notification Server (APNS) to wirelessly
push configurations and configuration changes to iOS devices. As you’ll see later
in the book, you can do some really cool stuff with MDM. Because Mobile Device
Management will be explored in detail later, you can leave these settings alone
for now; although if you examine them, you’ll begin to see what you can do with
MDM, and how useful it can be.

MANAGING ADVANCED SETTINGS

Remember back in the “Setting a Passcode” section that I said some things that
fall into the “If I have to ask, the answer is probably No” category? The Advanced
settings in the iPCU are the perfect example. Here you change your devices’ cel-
lular connection settings. Apple says it in the iPCU settings themselves, and I’ll
repeat it here: These settings should only be managed by trained professionals. If
you mess these up, your users won’t have an iPhone or an iPad with 3G features
any more. They have an iPod Touch. The iPod Touch is a neat bit of kit, but not if
you need to make a call or use the cellular network to get work done. Unless you
have a clear need to change these settings and know exactly what you are doing
and why you are doing it, stay away from these settings like they were a swarm of
rabid wolverines.

WRAPPING UP

Woohoo! You made it through all the configuration profile settings! Congratu-
late yourself, you now have a solid bit of knowledge to help you manage and set
up your iOS devices. Next, we’ll dive a little deeper and look at the structure of
the configuration files you’ll be creating when you want to install these settings
on devices without using a USB cable.

USING MOBILE DEVICE

MANAGEMENT

From the Library of Bill Wiecking

ptg6760185

5

UNDERSTANDING
CONFIGURATION
PROFILE STRUCTURE

From the Library of Bill Wiecking

ptg6760185

51

So now that you’ve had a detailed

look at setting up configuration pro-

files using the iPhone Configuration Utility (iPCU),

let’s examine the structure of a profile. This isn’t just as an

abstract “I know more about profiles than everyone else” exercise.

There’s actual value in knowing what’s going on inside those files.

For example, if you want to customize a profile when you don’t

have the iPCU handy, knowing how the file is structured and how

its data is stored allows you to modify it using almost any text

editor. Or, you could automate updates to the configuration utility

via various scripting implementations.

If you know the file structure and how the data is used and included,

you have more options for configuring your iOS devices.

From the Library of Bill Wiecking

ptg6760185

52 CHAPTER 5 UNDERSTANDING CONFIGURATION PROFILE STRUCTURE

STARTING WITH THE BASICS

When you open a file with the configuration profile extension .mobileconfig in a
text editor, you’ll see that it’s yet another plist-style XML file. As such, the root
structure of the file is:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” “http://www.
papple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>PayloadContent</key>

 <array>

 </array>

 <key>PayloadDescription</key>

 <string>This is a profile used for my book figures.</string>

 <key>PayloadDisplayName</key>

 <string>Book Profile</string>

 <key>PayloadIdentifier</key>

 <string>com.bynkii.bookprofile</string>

 <key>PayloadOrganization</key>

 <string>Home</string>

 <key>PayloadRemovalDisallowed</key>

 <true/>

 <key>PayloadType</key>

NOTE: The examples in this chapter use an unsigned configuration

profile. If you’re going to create the configuration profile outside

of the iPCU, you’ll have to sign it separately. We’ll discuss how to do

that in this chapter. It’s pretty simple.

From the Library of Bill Wiecking

ptg6760185

<string>Configuration</string>

<key>PayloadUUID</key>

<string>B9AF31F9-FBB8-4615-8554-317BBD2BE854</string>

<key>PayloadVersion</key>

<integer>1</integer>

</dict>

</plist>

This structure is in every .mobileconfig file, and contains the main configuration
information that you enter in the iPCU “Configuration Profiles” General section.
The other sections of the configuration profiles are in <dict></dict> blocks in the
<array></array> block. Because most of the parameters in this part of the profile
are identical to the General section of the iPCU, I won’t repeat that information here.
But I will describe two elements: PayloadUUID and PayloadRemovalDisallowed.

The PayloadUUID number is a universally unique identification (UUID) number,
and is a string that is an (obviously) unique identifier for that payload. However,
when I say “universally,” I am not speaking literally, or even close. The iPCU has
no way to know about every single UUID ever made and find one that’s not been
used. So really, it’s “universally unique” on your Mac or on your network. Since
the PayloadUUID has no real meaning outside of configuration files, as long as the

.mobileconfig files you use don’t reuse an UUID, it’s all good.
So now let’s look at PayloadRemovalDisallowed. The concept seems simple

enough, in that the profile includes this <key>, and it’s followed by either <true />
or <false />, which means...wait, in the iPCU, the Security setting includes three
options for this: Yes, With Authorization, and Never. So, how do we handle three
options with a boolean value?

After a bit of trolling through the file (in BBEdit, the most awesome text
editor/toolbox ever) and browsing Apple’s Enterprise Deployment Guide, (which
has a very detailed item-by-item description of the .mobileconfig file format at

NOTE: You can create your own UUIDs using the uuidgen utility in /usr/bin on

your Mac. It’s dead simple to use. In a terminal window, enter /usr/bin/ uuidgen,

and you’ll get a UUID number that you can use. This utility makes it trivial to

generate your own UUID numbers as needed; and if you’re going to custom-build

your .mobileconfig files, you’ll be generating a lot of UUID numbers.

From the Library of Bill Wiecking

ptg6760185

54 CHAPTER 5 UNDERSTANDING CONFIGURATION PROFILE STRUCTURE

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf), you’ll
find the answer. Although both “Never” and “With Authorization” have Payload-
RemovalDisallowed set to true, “With Authorization” adds a <dict> block that
contains the information you need to set up the authorization:

<dict>

 <key>PayloadDescription</key>

 <string>Configures Configuration Profile security</string>

 <key>PayloadDisplayName</key>

 <string>Profile Security</string>

 <key>PayloadIdentifier</key>

 <string>com.bynkii.bookprofile.ProfileSecurity</string>

 <key>PayloadOrganization</key>

 <string>Home</string>

 <key>PayloadType</key>

 <string>com.apple.profileRemovalPassword</string>

 <key>PayloadUUID</key>

 <string>6A03F3E7-241C-4F6D-AC47-17B05425CF90</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

 <key>RemovalPassword</key>

 <string>testtest</string>

</dict>

If you’re thinking “Gee, this looks a lot like that payload block I saw earlier,”
you’re right. It does, except that this block configures the profile security, as shown
in the PayloadDescription key. (As you’ll see, all payloads look much the same.)
Looking through this payload block, you’ll find the data is well-named (like most
plist-style files), so you can easily dope out what each key does. However, do look
at the RemovalPassword key. Notice that the password is not encrypted or even
obfuscated. Remember that when you’re handing out these profile files.

From the Library of Bill Wiecking

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

ptg6760185

EDITING INDIVIDUAL PAYLOAD SECTIONS 55

Each of the payload sections is contained in a <dict></dict> block, and regardless
of what a payload configures, all payload sections share some keys:

<key>PayloadDescription</key>

<string>Configures email account.</string>

<key>PayloadDisplayName</key>

<string>IMAP Account (Company Account)</string>

<key>PayloadIdentifier</key>

<string>com.bynkii.bookprofile.email</string>

<key>PayloadOrganization</key>

<string>Home</string>

<key>PayloadType</key>

<string>com.apple.mail.managed</string>

<key>PayloadUUID</key>

<string>76D2D26A-E5AB-4CC9-AC44-42E737314A1E</string>

<key>PayloadVersion</key>

<integer>1</integer>

The noteworthy keys here are the PayloadType, which identifies the kind of
payload (email in this case); the ever-present PayloadUUID; and the version of
this particular payload.

When you get past the common keys, each payload has unique information.
Here’s an entire email section set up for IMAP (of course), with both the incoming
and outgoing servers using SSL, HTTP MD5 Digest Authentication, and authenti-
cated SMTP (a.k.a. SMTP AUTH):

<dict>

 <key>EmailAccountDescription</key>

 <string>bynkii.com</string>

 <key>EmailAccountName</key>

 <string>John Welch</string>

EDITING INDIVIDUAL

PAYLOAD SECTIONS

From the Library of Bill Wiecking

ptg6760185

56 CHAPTER 5 UNDERSTANDING CONFIGURATION PROFILE STRUCTURE

 <key>EmailAccountType</key>

 <string>EmailTypeIMAP</string>

 <key>EmailAddress</key>

 <string>jwelch@bynkii.com</string>

 <key>IncomingMailServerAuthentication</key>

 <string>EmailAuthHTTPMD5</string>

 <key>IncomingMailServerHostName</key>

 <string>mail.bynkii.com</string>

 <key>IncomingMailServerPortNumber</key>

 <integer>993</integer>

 <key>IncomingMailServerUseSSL</key>

 <true/>

 <key>IncomingMailServerUsername</key>

 <string>jwelch</string>

 <key>IncomingPassword</key>

 <string>testtest</string>

 <key>OutgoingMailServerAuthentication</key>

 <string>EmailAuthHTTPMD5</string>

 <key>OutgoingMailServerHostName</key>

 <string>mail.bynkii.com</string>

 <key>OutgoingMailServerPortNumber</key>

 <integer>465</integer>

 <key>OutgoingMailServerUseSSL</key>

 <true/>

 <key>OutgoingMailServerUsername</key>

 <string>jwelch</string>

 <key>OutgoingPasswordSameAsIncomingPassword</key>

 <true/>

From the Library of Bill Wiecking

ptg6760185

EDITING INDIVIDUAL PAYLOAD SECTIONS 57

<key>PayloadDescription</key>

<string>Configures email account.</string>

<key>PayloadDisplayName</key>

<string>IMAP Account (Company Account)</string>

<key>PayloadIdentifier</key>

<string>com.bynkii.bookprofile.email</string>

<key>PayloadOrganization</key>

<string>Home</string>

<key>PayloadType</key>

<string>com.apple.mail.managed</string>

<key>PayloadUUID</key>

<string>76D2D26A-E5AB-4CC9-AC44-42E737314A1E</string>

<key>PayloadVersion</key>

<integer>1</integer>

</dict>

It’s long and dry, but pretty self-explanatory. However, do pay attention to the
password in the IncomingPassword key. Plain text is easy to program, but it’s easy
to read too, even by people you don’t want reading it. Keep this in mind when you’re
focusing on configuration file security once you’ve created the file.

For the most part, the Enterprise Deployment Guide, and specifically Appendix B,
provides every bit of information you’ll need to build your own .mobileconfig profile
with one annoying exception: configuring credentials. That information isn’t in the
guide. The workaround is obvious: Create the initial .mobileconfig file in the iPCU,
and then copy the credential data from that profile and insert it in your custom
profile(s). Still, leaving that information out of the guide is kind of exasperating.

NOTE: Apple does allow you to encrypt these files for security. How-

ever, encryption also attaches each profile to a specific device,

which does complicate things, because encryption requires that

each device have its own profile. But this is not ridiculously onerous.

From the Library of Bill Wiecking

ptg6760185

58 CHAPTER 5 UNDERSTANDING CONFIGURATION PROFILE STRUCTURE

Luckily, thanks to a few very smart people on Twitter, I found the actual format
of that payload. It’s an NSData blob, or just a big binary bit of data created by NSData
functions in Cocoa. Why would Apple use a custom solution like an NSData blob
instead of just embedding the cert data into the payload? I’ve no idea. You already
can add certs to, for example, web servers by copying the text version of cert data
into a new file on the web server; it’s not like you gain anything in terms of func-
tionality or even a reduction in file size from this. However, that does mean you
have to do a bit more work to create the .mobileconfig file if you want to bypass
the iPCU.

You could also use the iPCU to create the credentials payload, and then build
the rest as necessary. However you do generate the credentials payload, you’ll want
to pay attention to the UUID of the cert payload because other payloads reference
that cert, such as the Wi-Fi and VPN payloads.

NOTE: Even if you aren’t a Cocoa programmer and know nothing about

Objective-C, you can still use NSData. You have a number of ways to use

the Cocoa APIs with other languages such as Python, Ruby, or my per-

sonal favorite, AppleScriptObjC. You don’t have to learn Objective-C and

Cocoa programming just to create a .mobileconfig file.

From the Library of Bill Wiecking

ptg6760185

WHY DO I CARE? 59

When you can build and modify your own .mobileconfig files, you gain flexibility
and features that you don’t get when using the iPCU. For example, I previously talked
about leaving the user ID fields for email blank to avoid manually changing that
for every person using that profile. When you get away from iPCU and apply your
knowledge of profile structure, we can programmatically automate the creation of
profiles and eliminate the issue entirely (and the need to handcraft every profile).

For example, let’s assume that you’re tracking users in your company and their
email addresses. When you are setting up an account for a new iOS device user,
as part of that process, you could use a script that automatically adds her email
account info to a shell .mobileconfig file that contains only the credentials and
basic root configuration. Grab her user name, server name, and email address,
from your tracking database and use it to build the information for the email
<dict></dict> block.

You could then put that file on a secure web site and direct the user to it. She
logs in with her iOS device and installs the profile. All she has to enter is her pass-
word, which you’d want her to enter manually anyway. If you’re really good with
web scripting, you could even set it up so that the server creates the profile when
the user logs into the site.

The idea here is that by knowing how and why the .mobileconfig file is struc-
tured, you can create custom processes to make iOS device configuration easier.
You’ll learn more about this in Chapter 6.

WHY DO I CARE?

From the Library of Bill Wiecking

ptg6760185

60 CHAPTER 5 UNDERSTANDING CONFIGURATION PROFILE STRUCTURE

Okay, so you know how you can create profiles, but how do you sign and encrypt
them outside of the iPCU? Signing is pretty simple, encrypting not so much. To
sign a profile, you need:

� The .mobileconfig file

� The server certificate you’re going to sign with, for example, server.crt

� The private key for that cert, such as server.key

� The cert for the Certificate Authority (CA) that issued your server cert, such
as cert-chain.crt

� A name for the signed mobileconfig profile, for example, signed.mobileconfig

If your certs and keys are valid, the process is pretty simple. Just run:

openssl smime -sign -in company.mobileconfig -out signed.
pmobileconfig -signer server.crt -inkey server.key -certfile
pcert-chain.crt -outform der -nodetach

and you’ll have a signed mobileconfig file.
The problem with encryption is that you need the device information because

profile encryption needs the device’s key to do its job. To do this “easily,” you’ll
want to use a protocol such as SCEP.

However, when you aren’t including passwords in your profiles, the need for
encryption is reduced somewhat. Furthermore, if the channel you use to distribute
the files is secure, the need for encryption drops even further. (If you do need to
encrypt your profiles, see Chapters 10–12, where we’ll look at SCEP and over-the-
air enrollment.)

SIGNING AND ENCRYPTING

PROFILES

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 61

Between understanding .mobileconfig profile structure and reading the Apple
Enterprise Deployment Guide (and this chapter, of course), you now have a much
better grasp of how to build your own configuration profiles and apply them in
your own environment.

The next chapter looks at creating configuration profiles using AppleScript.
Even if you don’t normally use AppleScript, the methods we’ll look at for creating
profiles should be of use regardless of which language you prefer to use.

WRAPPING UP

From the Library of Bill Wiecking

ptg6760185

6

SCRIPTING
THE iPHONE
CONFIGURATION
UTILITY

From the Library of Bill Wiecking

ptg6760185

63

This chapter looks at automating the

creation of config profiles via scripting.

You’ll learn about scripting the iPhone Configuration

Utility (iPCU) application itself, and how to bypass the iPCU

entirely.

True, the iPCU isn’t hard to use. But if you want to create highly

customized profiles, change profiles without manually doing so

in the iPCU, or integrate profile creation and maintenance as a

part of other workflows, you’ll want to use scripting.

This chapter is going to revolve around AppleScript because I

know it really well, it does the job, and the syntax is somewhat

self-documenting. However, you could accomplish the same goal

in Python, Ruby, Perl, shell, C#, or almost any other language.

From the Library of Bill Wiecking

ptg6760185

64 CHAPTER 6 SCRIPTING THE iPHONE CONFIGURATION UTILITY

LEARNING APPLESCRIPT BASICS

THE APPLESCRIPT LANGUAGE

AppleScript is a vaguely English-like programming/scripting language that allows
you to manipulate applications to do things much faster than you could do them
manually, and in exactly the same every time. I say “vaguely English-like,” because
while AppleScript is almost English, it tends to not be English in amusing ways. For
example, to display the URL of the current tab in Safari, AppleScript says:

tell application “Safari”

set theURL to URL of current tab of window 1

end tell

That’s somewhat in English, but it’s probably not how you’d ask another
human being for that information. So it’s “vaguely” English-like. AppleScript is
also a dynamic language. Because it manipulates applications, it relies on each
application to implement AppleScript within itself. As each application does dif-
ferent things—and there are no hard rules to much of AppleScript—you get some
interesting differences. For example, to do the exact same thing in Google Chrome
that we did in Safari, the AppleScript is:

tell application “Google Chrome”

set theURL to URL of active tab of window 1

end tell

Why is it “active” instead of “current” or vice-versa? You’ll have to ask the
developers of each application. Let’s just say that these application-specific “dialects”
make AppleScript “interesting.”

NOTE: For more information about AppleScript, see Apple Train-

ing Series: AppleScript 1-2-3 by Sal Soghoian and Bill Cheeseman,

published by Peachpit Press. The Internet also has many good

resources such as Apple’s AppleScript Users’ email list

(http://lists.apple.com/mailman/listinfo/applescript-users),

and MacScripter (www.macscripter.net/).

From the Library of Bill Wiecking

http://lists.apple.com/mailman/listinfo/applescript-users
www.macscripter.net/

ptg6760185

LEARNING APPLESCRIPT BASICS 65

THE DICTIONARY

In AppleScript, you use the dictionary to see what scripting functionality an
application supports. Everything that can be scripted has a dictionary. Even the
base Mac OS X has one, called, amusingly, “Standard Additions.” (I’ll ignore the
grammatical silliness of that. But it is some mighty silliness.) The Finder, Microsoft
Word, and all AppleScript-able applications have a dictionary, including the iPCU.
Some dictionaries are fantastic. (For all the ragging they get, the core Adobe CS suite
applications have phenomenal dictionaries.) Others are less so. (We’ll not name
names here. No sense in further embarrassing the wicked.) The iPCU’s dictionary
isn’t the best I’ve ever seen, but it provides the necessary capabilities.

SCRIPTING THE IPHONE CONFIGURATION UTILITY

I’m not going to go through every possible way to script the iPCU because this book
would become infinitely long (and I’m not getting paid by the word. Alas!) However,
let’s look at a few settings to give you a feel for what’s possible, and also to show
you how to make a script flexible and fast, so you can customize .mobileconfig
files with very little effort.

One thing to be clear about: you can only script configuration file setup with
AppleScript. You can’t script application installs, and so on. Now, let’s look at a
basic setup with email, CalDAV, and some restrictions.

USING SCRIPT EDITORS

To create, edit, and test AppleScripts, you obviously need a script editing application. Apple includes one

as part of Mac OS X: Script Editor in earlier versions of Mac OS X, AppleScript Editor in the current version,

Mac OS X 10.6. For basic scripting, AppleScript Editor is decent. However, if you start writing longer scripts,

you’re going to tire of its limitations, particularly when debugging scripts. If you are going to be scripting

regularly (and why wouldn’t you?), run—do not walk—to Late Night Software, and buy Script Debugger

(www.latenightsw.com/sd4/index.html). It is a phenomenal tool that gives you everything you need to

be a better scripter. It’s not free ($199 US at the time of this writing), but it is worth every penny. I cannot

imagine writing scripts without it.

From the Library of Bill Wiecking

www.latenightsw.com/sd4/index.html

ptg6760185

66 CHAPTER 6 SCRIPTING THE iPHONE CONFIGURATION UTILITY

The first thing you need to do in the script is make sure that it is targeting the
iPCU; otherwise, you’ll have some serious issues. To do that, you use a tell block:

tell application “iPhone Configuration Utility”

end tell

You put all your code between those two lines, and your script will work much
better. Remember that some basic items—such as the name—have to be in every
profile, even though they are of no functional use. So, when you create the initial
profile, you set those properties at the same time:

tell application “iPhone Configuration Utility”

 set theProfile to make new configuration profile with properties
p{displayed name:”scripted profile”, profile identifier:
p”com.bynkii.scriptedprofile”, organization:”Mr. Wonderful”,
paccount description:”I made it in a SCRIPT”}

end tell

Part of this script is pretty obvious. It’s telling the iPCU to create a new profile
called “theProfile.” It has a list of properties such as the displayed name, the iden-
tifier, the organization, and the account description. AppleScript properties are
created as an AppleScript record—that is, a comma-delimited list of elements that
have an identifier and a value. So, in this case, an identifier is displayed name, and
its value is “scripted profile”. Since “scripted profile” is text, you enclose it in
quotes to identify it as such. A colon separates the identifier and its value, and the
whole thing is enclosed in curly braces. So, a generic record of text values would be:

{identifer1:”one”,identifier2:”two”,identifier3:”three”}

and so on. All AppleScript properties are records.

From the Library of Bill Wiecking

ptg6760185

LEARNING APPLESCRIPT BASICS 67

However, in the properties of this newly-created profile (Figure 6.1), you’ll see
some things you didn’t create, like the id, removable, and the removal password.

Those values are needed, but in the case of the ID, you can’t create it, at least
not via the iPCU. That’s okay because the iPCU does it for you. In the case of the
removal and the removal password values, you didn’t specify them, so the iPCU set
them to default values, “always” and “missing value” (a.k.a. “nothing”), respectively.
That’s one of the advantages of scripting an application: the script can do a lot of
the scutwork so you don’t have to.

Now that you have a base config, you can add some payloads; but first, a word
about elements. An AppleScript element is a part of a class that can have its own
properties. In this case, the main class is “configuration profile.” The configuration
profile has its own properties, such as the id, organization, and so on. The payloads
are classes that are also elements.

Why not make them properties, since they’re a part of the configuration profile?
Because then you’d have a properties record that was insanely long and really hard
to change or adjust. As you’ll soon see, by implementing the payloads as elements of
a configuration profile, you can make things more modular, and easier to deal with.

One neat thing about AppleScript and the “tell” concept is that it’s not just for
applications. You can use it for classes, too. So now that we created a configuration
profile, we’re going to “tell” it about the payloads it’s getting. The first payload will
be a restrictions payload. To add that, add the following code below the initial line
that creates the configuration profile:

tell theProfile

 make new restrictions payload with properties {allow adding
pgame center friends:false, allow multiplayer gaming:false,
pexplicit content allowed:false, YouTube allowed:false}

end tell

FIGURE 6.1 iPCU creates some

values automatically.

From the Library of Bill Wiecking

ptg6760185

68 CHAPTER 6 SCRIPTING THE iPHONE CONFIGURATION UTILITY

This bit’s pretty clear, right? The only real difference with these properties is
that the values are all boolean values, and are either true or false. Since they’re not
text values, they don’t need the quotes. Luckily, we don’t care about the id because
the iPCU takes care of this for you when you save the profile to a .mobileconfig file.

Next, create an email profile by adding in the appropriate “make new email
payload” section:

make new email payload with properties {account description:
p”scripted email account”, account name:”John C. Welch”,
paccount protocol:IMAP, email address:”john@bynkii.com”, incoming
pserver hostname:”imap.bynkii.com”, incoming server port:143,
pincoming server username:”john”, incoming server uses password
pauthentication:true, incoming server uses SSL:false, outgoing
pserver hostname:”smtp.bynkii.com”, outgoing server port:587,
poutgoing server username:”john”, outgoing server uses password
pauthentication:true, outgoing server uses SSL:false, use incoming
ppassword when sending mail:true}

No need to memorize this stuff, other than specific values such as the incoming
server username’s value. It’s all in the iPCU dictionary. Now, for your CalDAV payload:

make new CalDAV payload with properties {account description:
p”scripted CalDAV account”, hostname:”calendar.bynkii.com”,
pport:80, principal URL:”http://calendar.bynkii.com/caldav”,
puse SSL:false, user name:”john”}

Finally, you’ll need to tell the iPCU where to save the profile and with what
filename:

export theProfile to “/Users/jwelch/Desktop/test.mobileconfig”

From the Library of Bill Wiecking

ptg6760185

LEARNING APPLESCRIPT BASICS 69

So, when we put the whole script together, we get:

tell application “iPhone Configuration Utility”

 set theProfile to make new configuration profile with properties
p{displayed name:”scripted profile”, profile identifier:
p”com.bynkii.scriptedprofile”, organization:”Mr. Wonderful”,
paccount description:”I made it in a SCRIPT”}

 --set theEmailUsername to “john”

 tell theProfile

 make new restrictions payload with properties {allow adding
pgame center friends:false, allow multiplayer gaming:false,
pexplicit content allowed:false, YouTube allowed:false}

 make new email payload with properties {account
pdescription:”scripted email account”, account name:”John
pC. Welch”, account protocol:IMAP, email address:”john@
pbynkii.com”, incoming server hostname:”imap.bynkii.com”,
pincoming server port:143, incoming server username:”john”,
pincoming server uses password authentication:true,
pincoming server uses SSL:false, outgoing server
phostname:”smtp.bynkii.com”, outgoing server port:587,
poutgoing server username:”john”, outgoing server
puses password authentication:true, outgoing server uses
pSSL:false, use incoming password when sending mail:true}

 make new CalDAV payload with properties {account
pdescription:”scripted CalDAV account”, hostname:”calendar.
pbynkii.com”, port:80, principal URL:”http://calendar.
pbynkii.com/caldav”, use SSL:false, user name:”john”}

 end tell

 export theProfile to “/Users/jwelch/Desktop/test.mobileconfig”

end tell

Pretty nice, and the results are a properly configured .mobileconfig file. That’s
all well and good; but now, when you need to generate a new profile, you have to
open the script and change the name. So what have you saved in terms of time
and effort? Not much.

From the Library of Bill Wiecking

ptg6760185

70 CHAPTER 6 SCRIPTING THE iPHONE CONFIGURATION UTILITY

However, don’t despair, for you can fix this with ease. What you need to do is
add a way to change just the user names without manually editing the script. To
do that, you’ll add some code so that the script asks for the new name and then
sets it. For simplicity’s sake, I’m going to assume all user names are the same for
every account that the profile is configuring. To get this information, you’re going
to use a command from the aforementioned “Standard Additions”: display dialog.
Display dialog is a way to ask someone to enter a bit of text, and then use that text
elsewhere. Display dialog returns a record, called the dialog reply, that includes
three items:

� button returned: the name of the button clicked in the dialog

� gave up: the dialog time out (You can set a time out value if you wish.
We won’t.)

� text returned: the text the human types. This is what we care about.

So, here’s the code:

set theUserName to text returned of (display dialog “please enter
pthe user name” default answer “Bob”)

Normally, you would set the display dialog line to something that would become
the dialog reply, and then you’d pull the text returned from that. To save space and
typing, we’ll just do it all on one line. We tell Standard Additions to set theUserName
to the text returned from the display dialog command (the only “applications” you
don’t need a tell block for are scripting additions, such as Standard Additions).
The display dialog command is in parentheses because we want it to execute first,
followed by the rest of the line.

We’ll put this line outside the iPCU tell block for two reasons: First, the line has
nothing to do with the iPCU. This is just good AppleScript practice. Second, it’s
safer, although technically speaking, we don’t have to because Scripting Additions
is omnipresent in AppleScript. Still, remember the little Chrome/Safari example
earlier in this chapter? Well, sometimes application vendors are not as careful with
names as they should be. Sticking a command from one dictionary into another
is a way to get some really odd errors that will make you crazy. In the interest of
avoiding the crazy-making, we shan’t be so silly.

From the Library of Bill Wiecking

ptg6760185

LEARNING APPLESCRIPT BASICS 71

You can then change the individual payloads. Wherever an option for a user
name was present, change that value from the string it had, (“john” in this example)
to theUsername. So you go from this:

username:”john”

to this:

username:theUserName

Anytime this script is run, it asks for a user name, and that name becomes the
user name for every payload that needs one. If you need multiple user names, you’d
use multiple display dialog lines and save the results to different variable names.

So, the script now looks like this:

set theUserName to text returned of (display dialog “please enter
pthe user name” default answer “Bob”)

tell application “iPhone Configuration Utility”

 set theProfile to make new configuration profile with properties
p{displayed name:”scripted profile”, profile identifier:”com.
pbynkii.scriptedprofile”, organization:”Mr. Wonderful”, account
pdescription:”I made it in a SCRIPT”}

 tell theProfile

 make new restrictions payload with properties {allow adding
pgame center friends:false, allow multiplayer gaming:false,
pexplicit content allowed:false, YouTube allowed:false}

 make new email payload with properties {account
pdescription:”scripted email account”, account name:”John
pC. Welch”, account protocol:IMAP, email address:”john@
pbynkii.com”, incoming server hostname:”imap.bynkii.com”,
pincoming server port:143, incoming server username:
ptheUserName, incoming server uses password authentication:
ptrue, incoming server uses SSL:false, outgoing server
phostname:”smtp.bynkii.com”, outgoing server port:587,
poutgoing server username:theUserName, outgoing server
puses password authentication:true, outgoing server uses
pSSL:false, use incoming password when sending mail:true}

From the Library of Bill Wiecking

ptg6760185

72 CHAPTER 6 SCRIPTING THE iPHONE CONFIGURATION UTILITY

 make new CalDAV payload with properties {account
pdescription:”scripted CalDAV account”, hostname:”calendar.
pbynkii.com”, port:80, principal URL:”http://calendar.
pbynkii.com/caldav”, use SSL:false, user name:theUserName}

 end tell

 export theProfile to “/Users/jwelch/Desktop/test.mobileconfig”

end tell

For one at a time needs, this script is great. But if you wanted to be really slick,
you could create a modified version that could, say, read a bunch of names from
a file and then create multiple config profile files in one fell swoop. That’s just the
ticket when you have a lot of people who need devices set up. For this task, we’ll
make two assumptions to save space: all user names are the same, and the name
in your email address is your user name.

First, add some new lines to the beginning of the script:

set theSourceFile to choose file

set theFileReference to open for access theSourceFile without write
ppermission

set theNames to read theFileReference

close access theFileReference

set theNameList to every paragraph of theNames

These lines do several things. First, they ask you to pick a file that you want to
use as a source for user names and email addresses. In this case, I created a text
file with one name per line. When you choose this file, the file and path to that file
are put into a variable called “theSourceFile”.

Next, you want to open theSourceFile to read the data. That’s what the “open
for access” line does. Because you don’t need or want to change any data in the
file, you disallow write access. This line creates a file reference number that is put
into “theFileReference”.

From the Library of Bill Wiecking

ptg6760185

LEARNING APPLESCRIPT BASICS 73

Then, the script reads the data out of the file that theFileReference points to,
and shoves it into theNames. This is a bunch of text with the names and the line-
ending characters as its content.

To be neat, close access to theFileReference. You don’t need it anymore, so
closing it is the correct thing to do.

Since we want to make that text in theNames into something easier to use,
turn it into a list by getting every paragraph in theNames, and putting that into
theNameList. A list is like a record, only it has no identifiers, just values separated
by commas. When you ask for every anything in AppleScript, the answer is always
a list. In this case, you want every paragraph, which is text separated by returns.
Doing so creates a list with each name as its own entry.

So, you now have a list of names.
Now, modify the tell block for the iPCU. Just after the tellapplication“iPhone

Configuration Utility” line, add some new lines:

repeat with x in theNameList

 set theName to contents of x

 set theUserName to theName

 set theEmailAddress to theName & “@bynkii.com”

 set theFileName to theName & “.mobileconfig”

 set theExportPath to “/Users/jwelch/Desktop/mobileconfigs/”
p& theFileName

A repeat loop is just that. It goes round and round doing things over and over
until you tell it to stop. The repeatwithxintheNameList line tells AppleScript that
you want to go through every item in theNameList and every time you go through,
shove the next item in the list into x. You then set theName to the contents of x
because what is in x can be inconsistent. Sometimes it’s the contents of the list
item, or sometimes it’s something not so useful such as item 1 of theNameList. By
using the contents of x, you always know that you’re getting the name, and not a
description of the place in the list where that name is.

From the Library of Bill Wiecking

ptg6760185

74 CHAPTER 6 SCRIPTING THE iPHONE CONFIGURATION UTILITY

Then use theName to create a few variables:

� theUserName (which you’ve seen before)

� theEmailAddress, created by concatenating theName and “@bynkii.com”
into one text string (& is the concatenation operator in AppleScript)

� theFileName, by concatenating theName and “.mobileconfig”

� The path for the exported file, by concatenating the path to the destination
folder, /Users/jwelch/Desktop/mobileconfigs/ and theFileName

Next, we go through our payload sections and make some substitutions.
Wherever a user name is needed, that value is set to theUserName. Wherever an
email address is needed, that value is set to theEmailAddress.

We also change our export line to read:

export theProfile to theExportPath

so that we create a separate .mobileconfig file for each name in the list, with the
name as part of the filename. Finally, between the “export” line, and the “end tell”
line, add an “end repeat” line to close the repeat statement correctly. The script
now looks like this:

set theSourceFile to choose file

set theFileReference to open for access theSourceFile without write
ppermission

set theNames to read theFileReference

close access theFileReference

set theNameList to every paragraph of theNames

tell application “iPhone Configuration Utility”

 repeat with x in theNameList

 set theName to contents of x

 set theUserName to theName

 set theEmailAddress to theName & “@bynkii.com”

From the Library of Bill Wiecking

ptg6760185

LEARNING APPLESCRIPT BASICS 75

 set theFileName to theName & “.mobileconfig”

 set theExportPath to “/Users/jwelch/Desktop/mobileconfigs/”
p& theFileName

 set theProfile to make new configuration profile with
pproperties {displayed name:”scripted profile”, profile
pidentifier:”com.bynkii.scriptedprofile”, organization:”Mr.
pWonderful”, account description:”I made it in a SCRIPT”}

 tell theProfile

 make new restrictions payload with properties {allow
padding game center friends:false, allow multiplayer
pgaming:false, explicit content allowed:false, YouTube
pallowed:false}

 make new email payload with properties {account
pdescription:”scripted email account”, account
pname:”John C. Welch”, account protocol:IMAP, email
paddress:theEmailAddress, incoming server hostname:
p”imap.bynkii.com”, incoming server port:143, incoming
pserver username:theUserName, incoming server uses
ppassword authentication:true, incoming server uses
pSSL:false, outgoing server hostname:”smtp.bynkii.
pcom”, outgoing server port:587, outgoing server
pusername:theUserName, outgoing server uses password
pauthentication:true, outgoing server uses SSL:false,
puse incoming password when sending mail:true}

 make new CalDAV payload with properties {account
pdescription:”scripted CalDAV account”, hostname:
p”calendar.bynkii.com”, port:80, principal URL:”http://
pcalendar.bynkii.com/caldav”, use SSL:false, user name:
ptheUserName}

 end tell

 export theProfile to theExportPath

 end repeat

end tell

From the Library of Bill Wiecking

ptg6760185

76 CHAPTER 6 SCRIPTING THE iPHONE CONFIGURATION UTILITY

You added a total of 12 lines of code, and changed 2 or 3 others, but created a
script that can create 1 to 1000 individual config profiles, and the only change in
effort is creating a list of names. The only other manual task is pointing the script
at that name file.

That is why you write scripts; rather than creating all these config files by hand,
you can create a bunch of profiles at the same time with a script, and you create
them at machine speed, not human speed. Totally sweet.

WRAPPING UP

To be honest, you don’t need the iPCU to script .mobileconfig files. They’re just
text files with predictable sections and a predictable layout. You don’t even need
the iPCU to create the UUID numbers, you can do that using uuidgen.

However, you’re going to do a lot more work creating the script without iPCU
because now you will have to replicate the entire XML file structure by hand; and
if that structure changes, who gets to change the script to account for that? You
do! You’re also not going to gain much of a speed improvement. Even with the
iPCU’s processing overhead, it’s going to create profiles automatically far faster
than you ever will manually.

But, if you don’t want to use AppleScript, or C# on Windows, you’re kind of
stuck doing it the hard way. If you can do that kind of scripting, however, you
probably don’t need me to tell you how to do it. Spending some time with the
iPCU and analyzing several .mobileconfig files will tell you all you need to know.

Whew, that was a lot. And if you’ve never seen AppleScript, this chapter felt
even deeper. I’ll warn you, though. Once you get a taste for automating your work,
you’ll quickly start automating more of your work. Wait! I’m not warning you, I’m
encouraging you to do this. Life is too short to spend it doing repetitive scutwork
on a computer. Automate, automate, automate!

From the Library of Bill Wiecking

ptg6760185

This page intentionally left blank

From the Library of Bill Wiecking

ptg6760185

From the Library of Bill Wiecking

ptg6760185

79

PART II

OVER-THE-AIR
SETUP

From the Library of Bill Wiecking

ptg6760185

7

ADDING PROFILES
TO DEVICES

From the Library of Bill Wiecking

ptg6760185

81

So you’ve created profiles in every way

possible. You have scripts and XML

files, along with configuration profiles that fit every

possible iOS device and user need. What could possibly be

left? Oh, that’s right: actually getting the profile from the iPhone

Configuration Utility (iPCU) onto the device. In this chapter, you’ll

learn about two methods: tethered installation and email.

From the Library of Bill Wiecking

ptg6760185

82 CHAPTER 7 ADDING PROFILES TO DEVICES

USING A TETHERED PROFILE

INSTALLATION

The tethered profile installation method is the simplest. Plug an iOS device into a
computer running the iPCU. Wait until the device shows up in the Sidebar. Select
the device, click the Configuration Profiles tab, find and select the profile you want
to install, and click Install (Figure 7.1). When you’re done, you’ll see the standard
Install Profile screen on your device (Figure 7.2).

On the device, tap Install to install the profile. You can uninstall the profile on
the device itself, or by using the iPCU. To remove the profile from the device, go
into Settings, General, and Profiles. Tap the profile you want to remove and then
tap Remove (Figure 7.3).

To remove the profile using the iPCU, plug the device in to a computer and select
it. In the iPCU, click the Configuration Profiles tab, select the installed profile, and
then click Remove.

Tethering is simple, fast, and intuitive. It’s also secure because the only way
to install a profile via tethering is to establish a physical connection between the
device and the computer running iPCU.

Tethering is also more flexible than you might think. Usually, the “tethering”
suggests some poor IT sap sitting in a room with a stack of iOS devices swapping
them in and out while wondering if he should have accepted that management
job at the local fast food joint. But with a bit of imagination, you can avoid this
scenario (and the burger-flipping thing, too).

First, keep in mind that you don’t need a particularly fast computer to install
profiles. Can it run Mac OS X v10.6 or even a vaguely new version of Windows?
(I’m not kidding about “vaguely”—iPCU supports XP SP3.) If so, it’s good enough
to run the iPCU.

So, let’s say you’ve issued a big bunch of new iOS devices, and you want to get
their users in and out as fast as possible. Here’s one option: Set up some cheapie
Windows boxes or older Mac Minis as kiosks running only the iPCU. Attach a Dock
Connector cable to the kiosk. Put up some nice signage explaining the few steps
required to install the company profile. Place these kiosks around the company in
appropriate places. Congratulations, you have self-service configuration kiosks!

I wouldn’t do this on a permanent basis. But if I had very little time to process
a shipload of iOS devices, and I had the extra CPUs sitting around, it’s not a bad
solution. More importantly, it means you don’t have to install everything yourself.

From the Library of Bill Wiecking

ptg6760185

USING A TETHERED PROFILE INSTALLATION 83

FIGURE 7.2 Install Profile

screen on an iPad

FIGURE 7.3 Installed profile

with Remove button on

an iPad

FIGURE 7.1 iPCU with iPad

attached, ready to install

a profile

From the Library of Bill Wiecking

ptg6760185

84 CHAPTER 7 ADDING PROFILES TO DEVICES

Email is the other installation method that the iPCU directly supports. It’s also
pretty simple.

In the iPCU, select the profile you want to send, and click the Share button on
the toolbar; or from the File menu, choose Share via Email.

You’ll be asked if and how you want to sign the profile. You can choose not to
sign the profile, to sign the profile, or to sign and encrypt the profile to a specific
device you’ve attached at least once to the iPCU. Note that if you encrypt to a
device, the iPCU will create one profile per device in Mail on Mac or Outlook in
Windows (Figure 7.4).

If you select multiple devices, however, the iPCU will create just one email
containing all of those profiles. I’m not really sure about the logic here. If I’m set-
ting up multiple devices, it seems logical that each device is owned by a different
person. With that in mind, I think that iPCU should create multiple email messages,
one per profile. Evidently, Apple disagrees.

Oh, and yes, you’ll be using Mail or Outlook—at least on Mac OS X because Mail
is hardcoded here. Even if you’re not using Mail as your default email application,
you will be using it to send iPCU profiles.

On the iOS device, you’ll receive an email message with the configuration pro-
file as an attachment (Figure 7.5). Tap the attachment, and you’ll see the standard
Install Profile screen on the device, and everything installs as normal.

If you’re running Mac OS X Server 10.7, then you don’t need the iPhone Con-
figuration Utility. You’ll use Profile Manager, but perhaps not in the most obvious
of ways. First, open up Server.app, select Profile Manager, and click the link to open
the Profile Manager web page (Figure 7.6). Log into the Profile Manager page and
go to the Devices Section.

INSTALLING WITH EMAIL

From the Library of Bill Wiecking

ptg6760185

INSTALLING WITH EMAIL 85

FIGURE 7.5 Email message

with configuration profile as

attachment

FIGURE 7.6 Profile Manager in

Server.app

FIGURE 7.4 The Share Configuration

Profile sheet in the iPCU

From the Library of Bill Wiecking

ptg6760185

86 CHAPTER 7 ADDING PROFILES TO DEVICES

Now, because you want to email the profile to the device, you can’t use some
of the other options Mac OS X Server 10.7 gives you. You also have to create the
profile before you email it. To do that, at the bottom of the column where devices
show up, click the + button and select Add Placeholder (Figure 7.7). This will let
you create a dummy profile for that specific device that you can then set up and
download. Because this profile is device-specific, you’ll need to provide some
identifying information, such as the serial number, UDID, etc. Once that’s done,
you’ll get a dummy profile that you can then configure as needed. When you’re
finished, click the Download button (Figure 7.8) and you’ll get a .mobileconfig file
you can email to the user. Note that this creates a signed profile in many cases, so
editing it directly via some other method may cause problems.

The email distribution method is handy, it uses a ubiquitous distribution
mechanism, and it can be somewhat secure. However, when distributing profiles
to new devices, it has one rather large air gap: How do you send a profile with
email account configuration info via email to a device that doesn’t yet have an
email account set up on it?

FIGURE 7.7 Adding a place-

holder for a device in the

Profile Manager web UI

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 87

Webmail is your friend here. On an iPad, this works fairly well because you
have a nice big screen. On an iPhone, you may have some unhappy, squinting
users—particularly if your webmail provider is overly clever with its “mobile”
version. Still, even on small screens, webmail is definitely usable.

I use this distribution method almost exclusively for people who have problems
with bad cell phone coverage, or when dealing with a Wi-Fi provider who’s just a
little too clever with the ports they’re blocking. Even if they’re blocking IMAP/POP,
almost no one blocks HTTP/HTTPS, so the nigh-ubiquitous Gmail can be a lifesaver.
(On a lark, I tried, unsuccessfully, to use both Dropbox and iDisk as ways to distribute
profiles. Evidently, neither of them is set up for this sort of thing. That’s a bit of a
shame, because a company Dropbox account could be a neat distribution center.)

WRAPPING UP

What about using over-the-air (OTA)? I know, I know. You’re not asking about
email, you’re asking about “real” OTA. That’s coming in the next few chapters.
In fact, Chapter 8 discusses some quick and dirty (and not terribly complicated)
methods for setting up OTA profile distribution.

FIGURE 7.8 Download button

for a device profile

From the Library of Bill Wiecking

ptg6760185

8

USING SIMPLE
OVER-THE-AIR
PROFILE
DISTRIBUTION

From the Library of Bill Wiecking

ptg6760185

89

You’ve seen how to use iPhone Con-

figuration Utility (iPCU) to distribute

profiles via USB connection and email. But over-the-

air, or OTA, is the cool (and best) way to distribute profiles

for a couple reasons.

First, you don’t have to do all the work yourself. Set up your OTA

implementation, and unless you need to change configurations,

you’re finished. Everything else is done by the user. Second, you

can service hundreds or even thousands of users from a single

server, and you can allow users to change profiles without com-

ing to you.

If someone loses his device or has it stolen while traveling, he can

get a new device and activate it from wherever he is. Then he can

reinstall the profile and be back in business in minutes.

From the Library of Bill Wiecking

ptg6760185

90 CHAPTER 8 USING SIMPLE OVER-THE-AIR PROFILE DISTRIBUTION

START WITH A WEB SERVER

While OTA can become quite complex, you can keep things simple if you choose.
In its most basic form, OTA configuration profile distribution requires only a web
server. You upload the profile to the web server and provide your users a URL that
links to the file. They navigate to that URL on their devices, and the profile instal-
lation starts automatically.

NOTE: The OTA benefits for stolen devices are not theory. My iPhone was stolen during

Macworld Conference & Expo 2009 while I was on a break from teaching an all-day session.

All I did was go to the Apple Store in San Francisco, get a new iPhone 3GS, and by the time

I’d walked back to my hotel, all my work settings were reinstalled thanks to my OTA setup.

Yes, I knew how to enter in all that stuff manually, but thanks to OTA, I didn’t have to.

I visited one website, and less than three minutes later, I was set. It took about as much

time to brick my old phone as set up the new one. OTA is powerful.

From the Library of Bill Wiecking

ptg6760185

START WITH A WEB SERVER 91

USING AMAZON’S S3 SERVICE

You don’t even need to own your web server (although for increased security, you’ll
want to). Thanks to a reply from @abrahamvegh on Twitter, I realized that you could
use Amazon’s S3 service to distribute configuration profiles. You wouldn’t want
to make the profile world-readable, but it definitely works, and it’s pretty simple:

1. Upload the .mobileconfig file to your S3 account.

2. Make sure to set the permissions for the file so that authenticated users
can read it (Figure 8.1).

3. Give those users the S3 URL for the .mobileconfig file.

That’s really it. There is one caveat to this process: Amazon only lets you set
up other S3 users as “authenticated” users. So while it’s neat that you can use S3
for this task—and it really is simple to set up and use—it’s probably not the most
practical idea for company-wide use. (Although, if I needed a reliable service to
distribute profiles with noncritical data, such as the password to a hotel Wi-Fi
network, putting the profiles on S3 and setting them to be world-readable would
not be the worst solution.)

But now let’s look at doing “simple” OTA profile distribution the right way.

FIGURE 8.1 Settings

permissions

TIP: The site Bucket Explorer has great information on what constitutes

“authenticated users” in S3 parlance at www.bucketexplorer.com/documentation/

amazon-s3--access-control-list-details.html.

From the Library of Bill Wiecking

www.bucketexplorer.com/documentation/amazon-s3--access-control-list-details.html
www.bucketexplorer.com/documentation/amazon-s3--access-control-list-details.html

ptg6760185

92 CHAPTER 8 USING SIMPLE OVER-THE-AIR PROFILE DISTRIBUTION

Obviously, we have a few goals here:

� Set up the server to be as secure as possible.

� Restrict the server so not just anyone has access to it.

� Make it simple for nontechnical people to use.

Luckily, all those goals are achievable. I’m basing this chapter on my own setup,
which is on a Mac OS X Server that is part of an Open Directory network. However,
you don’t need to use Mac OS X Server or Open Directory. That just happens to be
what my network mostly is.

First, I picked a server that I didn’t mind making accessible to the outside
world through my firewall. That’s important, because even though I configured the
server in a reasonably secure manner, I don’t want to expose important data any
more than necessary. In this case, the server was already an FTP server, so it was
a good choice to use here. It also had all the requisite firewall rules set up, which
was handier still. The fewer holes you have to poke through a firewall, the better.

Next, I created an SSL-enabled website on the server and pointed it at the
directory that would contain the .mobileconfig files. SSL is obviously important,
as I don’t want any part of OTA profile distribution occurring in an unencrypted
format, or “in the clear.”

SETTING UP THE
OTA WEB SERVER

From the Library of Bill Wiecking

ptg6760185

SETTING UP THE OTA WEB SERVER 93

For the site itself, I disabled everything I didn’t absolutely need in order to
distribute configuration profiles. So the server offers no folder listings, no CGIs, no
WebDAV, no nothing that isn’t needed to download a file to an iOS device. Other
than the .mobileconfig files in the folder, the only file found here is an index.html
file that says, “These aren’t the droids you’re looking for.” That’s mostly there for
people who enter the wrong URL for the .mobileconfig file. It’s pretty difficult to
just “stumble across” this site. So even if an outsider gets into the server, she’s not
going to find much. And by turning off almost every bit of advanced web server
functionality, the chances of that server being hacked go way down.

I also took advantage of the ability of Mac OS X Server to tie website access
to Open Directory user accounts. Even if you have the specific URL for the server,
you must still have a valid Open Directory account to access it. This does several
things, all of them good. I don’t have to set up user accounts or passwords. When
people need to get to a profile, they already know the user name and password
for it because it’s the same login they use for all other company business. Because
that user name and password are tied to Open Directory, if someone leaves the
company, disabling his Open Directory account disables his access to the profile.
Because the site is SSL-enabled, everything happens over an encrypted channel.
I give them a URL, and they can do the rest themselves.

You can use any web server for this purpose. I used the built-in Apache server
in Mac OS X Server, but you could just as easily use the Microsoft IIS web server
with or without Active Directory, or whichever server/authentication mechanism
you prefer.

From the Library of Bill Wiecking

ptg6760185

94 CHAPTER 8 USING SIMPLE OVER-THE-AIR PROFILE DISTRIBUTION

So how does this setup work in the real world? Pretty well as it turns out. Since
the website is accessible everywhere, you can install the profile using Wi-Fi, 3G, or
whatever. The tech doesn’t matter as long as the device has Internet access. When
my own phone was stolen, I installed the profile I needed while walking from the
Apple Store to my hotel.

The user enters the URL in Safari on the iOS device and waits a few seconds
for the site to connect. Once the connection is established, he fills in a login dialog
with a user name and password, the same login he uses with his computer or into
email (Figure 8.2).

A few seconds after tapping Log In, he’s viewing an Install Profile screen on
the iOS device. He taps Install, enters some basic information such as an email
address and password (again), and about a minute later, his iOS device has the Wi-Fi
network password, the Exchange Activesync account, and our internal certificates
installed and ready to go.

FIGURE 8.2 Authentication

dialog for the profile distribu-

tion website

USING THE OTA SYSTEM

From the Library of Bill Wiecking

ptg6760185

USING THE OTA SYSTEM 95

It really is that simple. Using this system has also given me a nice bit of flex-
ibility. For example, we have one group that travels a lot, but not all members of
that group have their own iPhone, either personal or company-issued. However,
we have a “pool” of two or three iPhones that they can sign out. Because we don’t
want to completely tear down the profiles and reinstall them every time a device
is checked out, I created two profiles for these phones.

The first profile, which I installed with iPCU via USB tethering, contains basics
such as the Wi-Fi network info, internal certificates, and so on. This profile requires
a password to uninstall.

I then uploaded a separate config profile that sets up an Exchange Activesync
account on the device. When someone checks out the phone, she installs that
profile and has access to all her email and calendaring on that device while she
travels. Before the user turns in the device, she deletes that profile and all the
personal info is gone.

This method simplifies the configuration process immensely. Most importantly,
as long as the server is up and contains the file, the process requires no IT support.
That’s better for the people using the devices, and it’s better for me. Win-win, indeed.

If you need to update the profile, that’s no great pain either. Edit the same
profile using the iPCU. If you’re using Profile Manager in Mac OS X Server 10.7,
make the changes to the profile you want and then re-download it. (Although, if
you’ve already installed the profile on the device, you’d be better off just letting
Profile Manager push the changes out to the device. But, you can update profiles
this way with Profile Manager.) Don’t change the profile identifier, and if you sign
the profile, make sure to modify it running the same copy of the iPCU on the same
computer on which you created the profile. Export the profile to a .mobileconfig
file and upload it to the web server, replacing the old version. Then have your users
install the modified profile. The new profile will overwrite the old profile’s settings
with no need to uninstall and reinstall the profile.

From the Library of Bill Wiecking

ptg6760185

96 CHAPTER 8 USING SIMPLE OVER-THE-AIR PROFILE DISTRIBUTION

So you can configure devices wirelessly, but what about distributing apps? Surely
for that, you’d need a tethered connection, right? Nope, not at all. In fact, Apple
tells you exactly how to do this in the document http://developer.apple.com/library/
ios/#featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/
Introduction.html, titled “Distributing Enterprise Apps for iOS 4 Devices.”

However, the initial setup for the app and the provisioning profile is a little
more complicated than for a configuration profile.

First, you have to share the app and distribute for enterprise in Xcode to create
an .ipa archive of the app, and a .plist file that is the Wireless Manifest File. You
then create a URL that links to the .plist file, similar to this:

<a href=”itms-services://?action=download-manifest&url=
phttp://example.com/manifest.plist”>Install App</ a>

Note that even though the URL references “itms-services,” the iTunes Music
Store is not actually involved. Because .ipa and .plist files are not typical web server
files, you may have to add the correct mime types to your server. For the .ipa file, the
MIME type is application/octet-stream; for the .plist file, the MIME type is text/xml.

You’ll also need to make sure that the devices you want to receive applications
can contact two specific Apple websites. The first site is ax.init.itunes.apple.com,
which is used to handle file-size limitations when downloading files over cellular
networks. If you’ve ever tried to install really big apps from the App Store over 3G
and were told the app was too big to install via 3G and requires Wi-Fi, that’s what
this website is for.

The second site is ocsp.apple.com, which validates the distribution certificate
for the app.

If the iOS device cannot contact both of these sites, the user may not be able to
install or run the app. (Many thanks to @mdhughes for his help with this section.
I really do have to make a big shoutout to my Twitter compatriots in general. This
book would have been much harder to write without them.)

DISTRIBUTING APPLICATIONS OTA

From the Library of Bill Wiecking

http://developer.apple.com/library/ios/#featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html
http://developer.apple.com/library/ios/#featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html
http://developer.apple.com/library/ios/#featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html

ptg6760185

WRAPPING UP 97

WRAPPING UP

So not only can you set up a really simple OTA system to configure phones, you
can use that same system to distribute apps to your iOS devices. In the next few
chapters, we’ll enhance OTA services in ways that are more complicated than our

“just use a webserver” model, which will provide far more capability and flexibility
across the entire spectrum of iOS device management.

NOTE: You’ll find a LOT more information

on wireless distribution in Chapter 17.

From the Library of Bill Wiecking

ptg6760185

9

SCEP: A
BACKGROUND

From the Library of Bill Wiecking

ptg6760185

99

So far, we haven’t really talked much

about certificates and profiles beyond

installing them on a device, and how you need them

for enterprise application distribution. We’re going to change

that, because although certs and profiles can be some of the biggest

pain points an IT administrator faces, they’re also really useful,

and Apple has done quite a bit of work to make adding them into

your iOS device much easier.

From the Library of Bill Wiecking

ptg6760185

100 CHAPTER 9 SCEP: A BACKGROUND

ENTER SCEP

All the installation methods we’ve looked at thus far have limitations that we’ve
not been able to reconcile. When you want to encrypt your profiles to include
passwords or internal certificates that you don’t want installed on just any device,
you’ve had to physically connect your iOS device to a computer running the iPhone
Configuration Utility (iPCU), or create a separate configuration profile for every
device after physically connecting that device to a computer running iPCU.

That’s okay for small deployments, or when you have devices trickling into
your company in small numbers. But what about large deployments, or when you
must ready a huge numbers of devices in a hurry? We currently have solutions that
scale, but don’t allow us to safely include passwords or proprietary information.
Or, we have solutions that are encrypted to include passwords and proprietary
information, but they don’t scale for beans.

There’s got to be a better way, and there is: SCEP, or the Simple Certificate
Enrollment Protocol.

SCEP predates the iOS by quite a few years, and was designed to help sysadmins
handle SSL Certificate Management in a way that was scalable, reliable, secure, and
usable by any valid network user without the need for IT support. It was created by
Cisco as, among other things, a way to make it much easier to enroll in certificate-
based VPNs (something Cisco has a bit of an interest in).

The (very!) basic idea with SCEP is that once you have some valid form of net-
work credentials, usually LDAP-based in a modern network, you can log onto a web
site with your device, and sign in using those credentials. From there, your device
and the web site identify themselves to each other, and you can get a certificate to
access VPNs or anything else that requires a certificate.

From the Library of Bill Wiecking

ptg6760185

ENTER SCEP 101

Note that the device identifies itself to the web site. As part of encrypting a profile,
the device must be identified to the iPCU so that the device’s key can be used to
encrypt the profile. This ensures that only that specific device can unencrypt and
use the profile. That’s secure; but when you’re trying to hand out these profiles
on a large scale, that’s painful. SCEP is a way to deal with that pain. (Although as
we’ll see in later chapters, SCEP itself can be quite painful.)

For iOS, Apple figured out a way to integrate SCEP with configuration profile
distribution so that you could create and install profiles for devices that were secure,
encrypted, distributed entirely OTA, and didn’t require any IT intervention. As
long as you have valid network credentials, you can get the right profile for your
iOS device, and it can even have your username, password, email address, and
all the rest. Even better, you don’t have to go to a URL that references a specific

.mobileconfig file. You can just go to http://scepserver.mycompany.com/ and SCEP,
plus a few other tricks, takes care of the rest.

“A FEW OTHER TRICKS”

So about that “SCEP, plus a few other tricks…” thing. I think the biggest

problem with SCEP (one that Apple has done a really terrible job explaining)

is that SCEP is only there to deal with secure certificate distribution, a.k.a.

enrollment. As we’ll see, all the rest of the process happens completely out-

side of SCEP. But, because of the (minimal, but slowly getting better) docu-

mentation on OTA iOS enrollment , it is very easy to think that SCEP actually

handles the entire process. It doesn’t, but thinking it does will lead you deep

down the rabbit hole. I know that it caused me some major headaches, as

I was conceptually way out in left field about what was happening.

From the Library of Bill Wiecking

http://scepserver.mycompany.com/

ptg6760185

102 CHAPTER 9 SCEP: A BACKGROUND

So let’s look at what’s really going on at a high level. (This is sourced directly from
Apple’s documentation at http://developer.apple.com/library/ios/featuredarticles/
FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html#//
apple_ref/doc/uid/TP40009979. Gotta love Apple URLs.) There are three major
phases to OTA profile delivery using SCEP:

1. Authentication

2. Certificate enrollment

3. Device configuration and encrypted profiles

AUTHENTICATION

The authentication phase is basically what you set up in Chapter 8. You hand out
a URL to the user, via email, SMS, or what have you. She goes to that URL and
authenticates to it. (For our purposes, we’re going to assume you have an LDAP-based
Directory Service handling your user authentication data, but it’s not required.) You
can even check against a list of approved devices, so if someone manages to suss out
the authentication credentials but doesn’t have the right device, they’re shut out.

Once this is done, the site loads a minimal configuration profile onto the device,
which contains a request for certain device-specific information to be used in later
steps. This can include the iOS version, the MAC address of the Wi-Fi interface,
the product type (such as iPhone 2.1), the IMEI number (if applicable), and/or the
SIM card identifier number, or ICCID (if present).

The device returns this information to the server via HTTP POST. (In case it
needs mentioning, clearly this web site should only be accessible as an SSL link.) This
response is signed by the device with its built-in key via an internal certificate from
Apple. So we now have the information we need to start using an encrypted profile.

CONFIGURING iOS

DEVICES VIA SCEP

From the Library of Bill Wiecking

http://developer.apple.com/library/ios/featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009979
http://developer.apple.com/library/ios/featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009979
http://developer.apple.com/library/ios/featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009979

ptg6760185

CONFIGURING iOS DEVICES VIA SCEP 103

So far, all the user has had to do is log in to a web site. You can, if you’d like,
create a challenge of some kind that the user has to respond to and use that as an
additional layer of security. The challenge can also be specific to the device if you
like, such as UUID, IMEI, or MAC address. (If you’re going to use a device-specific
bit of info, you’ll need to have it ahead of time, so that’s probably not the best
strategy if you’re allowing people to enroll their personal devices.)

CERTIFICATE ENROLLMENT

The server then sends back a second configuration profile with the information
needed to make use of SCEP. This profile installation is done in the background;
the user doesn’t need to know about it at all. Obviously, this profile should be
signed by the server. It contains the infomation needed to create a certificate
signing request, or CSR.

A QUICK AND (VERY) DIRTY CSR EXPLANATION

When you create an SSL certificate, you first need to create a request. This

request, or CSR, contains information such as the DNS name of the server (if

you’re getting the cert for, say, a web site), the company name, the location

of the company, the encryption key size, and so on. The information in the

CSR can vary depending on need. Basically, the idea is to use enough unique

information so that a proper certificate can be generated that identifies a

web site, or a device, or even a person. The CSR is then used by the certificate

authority to create the certificate you actually use.

From the Library of Bill Wiecking

ptg6760185

104 CHAPTER 9 SCEP: A BACKGROUND

For iOS devices, the profile provides information such as company name, the
key type, and the UUID number. An example of such a profile is available from
Apple, and it looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple Inc//DTD PLIST 1.0//EN”
p“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

 <dict>

 <key>PayloadVersion</key>

 <integer>1</integer>

 <key>PayloadUUID</key>

 <string>Ignored</string>

 <key>PayloadType</key>

 <string>Configuration</string>

 <key>PayloadIdentifier</key>

 <string>Ignored</string>

 <key>PayloadContent</key>

 <array>

 <dict>

 <key>PayloadContent</key>

 <dict>

 <key>URL</key>

 <string>https://scep.example.com/scep</string>

 <key>Name</key>

 <string>EnrollmentCAInstance</string>

 <key>Subject</key>

 <array>

 <array>

From the Library of Bill Wiecking

ptg6760185

CONFIGURING iOS DEVICES VIA SCEP 105

 <array>

 <string>O</string>

 <string>Example, Inc.</string>

 </array>

 </array>

 <array>

 <array>

 <string>CN</string>

 <string>User Device Cert</string>

 </array>

 </array>

 </array>

 <key>Challenge</key>

 <string>...</string>

 <key>Keysize</key>

 <integer>1024</integer>

 <key>Key Type</key>

 <string>RSA</string>

 <key>Key Usage</key>

 <integer>5</integer>

 </dict>

 <key>PayloadDescription</key>

 <string>Provides device encryption identity</string>

 <key>PayloadUUID</key>

 <string>fd8a6b9e-0fed-406f-9571-8ec98722b713</string>

 <key>PayloadType</key>

 <string>com.apple.security.scep</string>

From the Library of Bill Wiecking

ptg6760185

106 CHAPTER 9 SCEP: A BACKGROUND

 <key>PayloadDisplayName</key>

 <string>Encryption Identity</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

 <key>PayloadOrganization</key>

 <string>Example, Inc.</string>

 <key>PayloadIdentifier</key>

 <string>com.example.profileservice.scep</string>

 </dict>

 </array>

 </dict>

</plist>

BIG SCARY CERT WARNING

If you are just completely confused by all this talk of certs and CSRs, I highly, highly recommend that you stop

reading right now. Run, do not walk, to learn about how all this is supposed to work. Certs and SSL and the

like are common ways to make things secure, but they are terribly, almost frighteningly easy to get wrong.

Even something that seems minor can create a huge gaping hole in what you think is a secure setup. Certifi-

cates and the concepts behind them are necessary, but they’re not the easiest things to learn. Again, entire

books are written about this topic, and if you’re dealing with it for the first time, please, please, please stop,

and either learn what you need to learn, or employ the services of someone who already understands it.

Remember the SCEP server settings in configuration profiles that we talked
about in Chapter 5? Here’s where they come into play, and if you compare the
contents of the plist file above to the settings in the SCEP section of the iPhone
Configuration Utility’s Configuration Profile setup, you’ll see that they match rather
nicely. Once this second configuration profile has been installed, the device then
contacts the actual SCEP server with the CSR it now has, and receives a device-
specific certificate from the SCEP server.

From the Library of Bill Wiecking

ptg6760185

CONFIGURING iOS DEVICES VIA SCEP 107

DEVICE CONFIGURATION AND ENCRYPTED PROFILES

Okay, head hurt yet? No? Lucky you, mine does. So, now, we have a cert from the
SCEP server, and the profile server that we initially talked to pages ago has the
response from our device that was signed with the device’s internal Apple-provided
cert. This response also provided the configuration server with something rather
important to this step: the device’s public key. This is the key that will be used to
encrypt the third profile we’re about to install. By using the device’s public key, we
ensure that the profile can be decrypted only with the device’s private key.

PRIVATE AND PUBLIC KEYS

Okay, if you thought the basics of SSL were brain-bending, this entire “keys” thing is just as bad, maybe

worse. It’s all part of a concept called PKI, or Public Key Infrastructure. Basically, it is this. You have a public

key and a private key. You give out the public key willy-nilly—the willy-nilly-er the better. You never, never,

ever give out or allow access to the private key.

So let’s say you have a message that you want to send, and you really want people to know you and only

you sent it. Once you have composed the message, you sign it with your private key and send it. People can

then use your public key to verify that you signed that message. (When you hear people talking about digi-

tal signatures, this is what they should be talking about, not silliness involving scans of their pen and ink

signatures.) Conversely, if someone wants to send you something, and ensure that only you can read it, he

can encrypt it with your public key, and only you can decrypt it with your private key.

Confused yet? It gets better. Someone can also give you his public key, and after signing that message

with your public key, he can then sign it with his private key. So, now you get an encrypted, signed message.

You use his public key to verify the sender, and use your private key to decrypt it so you can actually see the

message. Not only are you (in theory) the only person in the world who could read this message, but you are

sure (in theory) of who sent the message. If you really want to get a better understanding of this, I highly rec-

ommend reading the document at www.carillon.ca/library/enrolment_1.1.pdf?page=tutorials. Yes, it is in fact

called “PKI Enrollment A Fingerpuppet-Theatre Guide”. It is also a well-done, accurate explanation of PKI, and

why it’s useful. You really need to understand PKI for this chapter to be as useful to you as it can be.

The device sends a signed request for the final profile to the profile server. The
request is signed with the certificate the device received from the SCEP server.
The profile server creates the final profile, encrypts it with the device’s public key,
and sends this encrypted profile to the device. The device receives, decrypts, and
installs the profile. The device is now configured.

From the Library of Bill Wiecking

www.carillon.ca/library/enrolment_1.1.pdf?page=tutorials

ptg6760185

108 CHAPTER 9 SCEP: A BACKGROUND

So with only two servers, three configuration profiles, certificates, CSRs, public
and private keys galore, we have a configured device. You all may be wondering:

“Why, oh why, would I ever do this? Is it that much to ask people to enter in a user
ID and password?” Well, probably not. But let’s take a look at this.

Without SCEP, you can’t easily encrypt the profiles. So you can only automate
the configuration process so far. You could automate the profile creation to include
passwords; but without encrypting the profile, it’s a really bad idea.

SCEP helps you encrypt your profiles without manually tethering the device to
a Mac or Windows box running the iPhone Configuration Utility. With SCEP, you
can further automate the processes we’ve talked about in earlier chapters and do
it in a more secure manner. So, iOS device setup becomes even more convenient
for users, because if you take advantage of profile creation automation and SCEP’s
security, you can integrate profile creation into your infrastructure. Your users can
get their devices configured as needed without spending a lot of time entering
what is essentially duplicate information. And you don’t have to spend a lot of
time creating custom profiles, or attaching devices to a computer (or three). Plus,
it’s all done fairly securely. What could possibly be the problem?

As we’ll see, the problem is that setting up all this, especially SCEP, is a lot harder
than it should be unless you use one of the many commercial implementations
available.

WRAPPING UP

From the Library of Bill Wiecking

ptg6760185

This page intentionally left blank

From the Library of Bill Wiecking

ptg6760185

10

IMPLEMENTING
SCEP ON MAC
OS X SERVER

From the Library of Bill Wiecking

ptg6760185

111

In Chapter 9, we talked about the

basics of SCEP and the workflow

to use with SCEP, as well as the whats and whys of

SCEP. In this chapter, we’ll look at implementing SCEP and

the associated workflow in Mac OS X Server. Like the rest of the

book, this isn’t going to be a “step one, do this, step two, do that”

kind of chapter. Rather, we’ll examine some of the issues involved,

explore ways to handle the problems that tend to crop up, and

check out some of the implementations of SCEP available for

Mac OS X Server.

From the Library of Bill Wiecking

ptg6760185

112 CHAPTER 10 IMPLEMENTING SCEP ON MAC OS X SERVER

SETTING UP SCEP ON
MAC OS X SERVER

Let’s start with the Apple-provided implementation of SCEP. The way you set up
SCEP on Mac OS X Server differs wildly depending on which server version you’re
using. If you’re on 10.6 or earlier, the story is a little complicated. If you’re on 10.7,
well, things get a lot simpler.

IMPLEMENTING SCEP ON MAC OS X 10.6 SERVER

So, what’s the best way to set up Apple’s SCEP implementation on Mac OS X10.6
or earlier? That’s easy. There isn’t one. So now, on to…hmm? No, I wasn’t kidding.
Through Mac OS X 10.6 Server, Apple provided no SCEP implementation that installs
and integrates with other services in Mac OS X Server. Go check their downloads,
and check out Mac OS X Server. It’s not there. Read this from the “Configuring the
Infrastructure” section in the “Over-the-Air Profile Delivery and Configuration” at
www.apple.com/ipad/business/resources/:

Certificate Services

The process of enrollment requires deployment of standard x.509
identity certificates to iOS users. To do this, you will need a CA (cer-
tificate authority) to issue the device credentials using the Simple
Certificate Enrollment Protocol (SCEP).

Cisco IOS and Microsoft Server 2003 (with the add-on for certificate
services) both support SCEP. There are also a number of hosted PKI
services that support SCEP, such as Verisign, Entrust, and RSA. For
links to PKI, SCEP, and related topics read the “See Also” section in

“Introduction.”

If Apple had a SCEP solution that you just installed, they might, you know, men-
tion it here. Or anywhere else. (I didn’t conclude this only from the documentation
referenced above. I asked quite a few people at Apple, who shall remain nameless,
and the responses were variations on “No, darnit” and, “I wish!”

From the Library of Bill Wiecking

www.apple.com/ipad/business/resources/

ptg6760185

SETTING UP SCEP ON MAC OS X SERVER 113

So you aren’t getting this solution from Apple. An open source SCEP server,
OpenSCEP, is available from http://openscep.othello.ch/. As near as I can tell, it
won’t build on Mac OS X Server. To be fair, I stopped trying when it told me I
didn’t have a compiler such as gcc or cc in my PATH variable, when my path very
clearly shows /usr/bin, which contains both gcc and cc. If you just need to make
a few adjustments here and there, I’m down with that. But dealing with this level
of not acknowledging reality? Not so much. I’m not the only one, the silly thing
just doesn’t want to build. Then again, it hasn’t been updated in a dog’s age. As
near as I can tell, no one’s done anything with it since 2001. $DEITY knows what
OpenSCEP will build on now.

I asked around quite a bit, and was told that if I wanted to implement a full
SCEP-centric solution on Mac OS X, I need to use a commercial product, and I’ve
found no hint that this is incorrect. Fortunately, a lot of SCEP/iOS management
packages are out there. For this chapter, we’ll look at Casper from JAMF Software,
www.jamfsoftware.com. Casper’s a solid package, and the folks at JAMF are mon-
strously cool. They were of no small help when answering my questions about Casper
and SCEP/Mobile Device Management, in general, and I’m not even a customer.

I don’t want people to think Apple doesn’t do anything to help with setting up a
SCEP-centric solution. The documents linked from the iPad in Business: Resources
page does have some excellent documentation on setting up everything but SCEP,
including the all-important Open Directory integration with the web server via
some clever Ruby sample scripts. However, since we have to talk about something
like Casper to talk about SCEP on Mac OS X Server anyway, in for a penny, in for a
pound I always say. (Well, I would if I were British. And Charles Dickens.)

From the Library of Bill Wiecking

www.jamfsoftware.com
http://openscep.othello.ch/

ptg6760185

114 CHAPTER 10 IMPLEMENTING SCEP ON MAC OS X SERVER

SETTING UP SCEP WITH CASPER

I don’t want to give the impression that Casper is the only game in town, or that
you’re mad if you don’t use Casper. A lot of other packages will also manage your
iOS devices quite well. Some run on Mac OS, such as Casper and Absolute Manage
(Formerly LANRev), while some run on Windows, such as Good and Sybase’s Afaria.
Others are cloud-based, such as airwatch. But, you can’t demo everything (not if
you want to finish writing a book), and since I’m getting the gimlet eye from my
far-too-patient editors already, we’ll use Casper from JAMF Software.

Setting up SCEP in Casper is, as it turns out, pretty easy. You can use your own
certificate authority (CA) or the built-in CA included with Casper. Once that’s
done, you begin creating the multiple profiles you’ll need to set up SCEP. Casper
requires that you first get an Apple Push Notification Certificate. That process
is just a tad... byzantine. For example, it would not occur to me that I’d need
to create a new app ID for this because I’m not using it for apps; but evidently,
Apple sees it differently. Fortunately, JAMF has a solid tech note on this process
at http://jamfsoftware.com/libraries/pdf/white_papers/JAMFSoftware-Creating_
an_Apple_Push_Notification_Certificate.pdf. I can say it works because I used it
while writing this chapter. (That is, I did exactly what the nice document said and
everything worked out okay. That, folks, is good documentation.)

Following this, you’ll create the enrollment profile. That’s pretty simple as it’s
a “just enough to care” profile. Then, you have a few options for enrolling users.
You can do this completely over the air (OTA), you can send users a URL that they
can go to for enrollment, or you can place the enrollment profile into a copy of
the iPhone Configuration Utility and install it that way. We, of course, will look
at OTA because the idea is to make this as simple as possible for everyone, and
OTA does that.

Casper has a rather nice wizard to set this up (Figure 10.1), and allows you to
send the invitations via SMS message or email. When those are sent, a few minutes
or seconds later, users get a text message or email with a URL. Then they tap the
URL to start the enrollment (Figures 10.2 and 10.3).

From the Library of Bill Wiecking

http://jamfsoftware.com/libraries/pdf/white_papers/JAMFSoftware-Creating_an_Apple_Push_Notification_Certificate.pdf
http://jamfsoftware.com/libraries/pdf/white_papers/JAMFSoftware-Creating_an_Apple_Push_Notification_Certificate.pdf

ptg6760185

SETTING UP SCEP ON MAC OS X SERVER 115

FIGURE 10.1 OTA Invitation wizard FIGURE 10.2 SMS invitation

FIGURE 10.3 Email invitation

From the Library of Bill Wiecking

ptg6760185

116 CHAPTER 10 IMPLEMENTING SCEP ON MAC OS X SERVER

One handy thing about Casper (and other management packages) is that you
can integrate your enrollment process with your LDAP directory. So, just as we did
manually in Chapter 8, you can ensure that someone who gets the SMS or email
by mistake can’t enroll a random device (Figure 10.4).

Once you log in, Casper does something I find quite nice: It displays a page
that tells the user what’s about to happen. Casper does this at every stage of the
enrollment process in a way that can be understood by non-IT people. If you are
going to roll your own enrollment web site, you might want to think about doing
the same thing. It’s a little more effort when setting up your infrastructure, but
your users will really appreciate it.

First, you’re prompted to install the root certificate authority that will act as the
basis for the other certs you’ll use in this process (Figure 10.5). (Notice that it’s the
same steps you would take to install any other kind of cert or profile.)

You’re then asked to install the Mobile Device Management profile and certificate
because Casper makes use of the fine-grained control you get with Mobile Device
Management over generic configuration profiles (Figure 10.6). (We cover Mobile
Device Management in depth starting with Chapter 13.)

Once that’s installed, the user is done and you, as the IT person, can start pushing
out configurations to the devices. One thing to keep in mind is that even though
our example suite, Casper, uses Mobile Device Management more than traditional
configuration profiles, if you do distribute traditional configuration profiles, even
encrypted ones, you’re still bound by their limitations. That is, when you want to
change anything, you have to push out an entirely new configuration profile with
your changes. This works, and face it, configuration profiles aren’t exactly huge; but,
as we’ll see in the Mobile Device Management chapters, you have a much better
way to deal with configuration management than the “all or nothing” approach
of configuration profiles.

FIGURE 10.4 LDAP-based

authentication to the enroll-

ment website

From the Library of Bill Wiecking

ptg6760185

SETTING UP SCEP ON MAC OS X SERVER 117

FIGURE 10.5 Root Enrollment

prompts

FIGURE 10.6 MDM Enrollment

prompts

From the Library of Bill Wiecking

ptg6760185

118 CHAPTER 10 IMPLEMENTING SCEP ON MAC OS X SERVER

I want to touch on one other service that Casper provides: progress indicators.
One of the problems you’re going to have when enrolling and configuring devices
is determining if the people you sent the invitations to ever accepted them. There’s
all kinds of reasons why they might not have gone through the process, but if you
can’t tell that from your end, you’re reduced to visually inspect the device to see
if it happened (and if you do that, why bother with OTA at all), or sending out
repeated emails asking “Have you enrolled yet?” Neither of these is a great option.
Casper helps you with a status display that shows the stages of enrollment for each
device. So you can tell when an invitation has been sent (Figure 10.7), when the
device has requested the root certificate or the enrollment profile (Figure 10.8),
and when a device has completed enrollment, (Figure 10.9).

If you have a large number of devices in geographically disparate locations, this
kind of easy to read and monitor status display is invaluable. (As are the handy

“revoke” options for each invitation, in case someone’s device is lost or stolen before
it can be enrolled.)

FIGURE 10.7 Invitation sent

status

FIGURE 10.8 Enrollment in

progress status

FIGURE 10.9 Enrollment com-

plete status

From the Library of Bill Wiecking

ptg6760185

IMPLEMENTING SCEP ON MAC OS X SERVER 10.7 119

Aside from the low cost premium ($49.00 US on top of the cost of Mac OS X 10.7),
there’s not much to implementing SCEP on Mac OS X Server 10.7. You will need
to set up a few things ahead of time. First, the server you’re going to use for this
really, really needs a static IP address. Servers in general don’t like IP addresses
that change, and Mac OS X Server gets particularly flustered and stern about this.

Secondly, you have to have a good DNS for this server. That means a proper
server name, such as “iosserver.bynkii.com,” tied to a static IP address. You have
to have functioning A records (that translate the DNS name to an IP address) and
PTR records (that translate the IP address to a DNS name). If those are not set up
correctly, you will have a heck of a time getting Mac OS X Server 10.7 to work cor-
rectly at all, much less managing iOS devices.

Having proper DNS and a static IP address for servers is a good idea in any
case, but if you don’t set that up correctly for Mac OS X Server, you will be in a
world of pain.

Third, you want to have a “real” SSL cert from a “proper” issuing authority—Veri-
sign, GoDaddy, Comodo, whatever. You can, in theory, use self-signed certificates
for SCEP, and Casper does it rather nicely. However, if you are not extremely care-
ful with your SSL setup, self-signed certs are going to cause you a plenty of hurt.
Given that you can get a cert from a “proper” authority for as little as $50 a year,
it’s a pretty easy decision to make. In my case, I went with GoDaddy, and that’s the
cert I used for all my testing and the writing of this book.

Before you start setting up the Mac OS X Server 10.7 Profile Manager service
(which handles, among other things, SCEP and iOS device management), you’ll
need to install and set up a certificate for the server. Doing this in 10.7 is fairly
simple. First, you generate a CSR, or certificate signing request. You do this by
going into the server application and logging into the Mac OS X Server 10.7 server
you’re using for iOS device management.

IMPLEMENTING SCEP ON
MAC OS X SERVER 10.7

From the Library of Bill Wiecking

ptg6760185

120 CHAPTER 10 IMPLEMENTING SCEP ON MAC OS X SERVER

In the hardware section, select that server, and click the Settings tab (Figure 10.10)
Click the Edit button on the SSL Certificate line, and then click the Settings (gear)
button and choose Generate Certificate Signing Request (CSR) (Figure 10.11). This
will generate the CSR you’ll need to submit to your cert provider.

Once you get the certificate (most likely as a .crt file), you’ll need to install
it, and any optional intermediate certs, into the system. Double-click the files to
open the Keychain Access application which manages certificates for OS X. (If you
get an intermediate cert, install that first.) Make sure you install the certs into the
System keychain.

Then, go back into the Server application to the same place you went to get the
CSR. When you click the Certificate pop-up menu, the certificate you just installed
should be available. If not, restart the server application (not the entire server mind
you, just the application), and return to the SSL management section. It should be
available in the pop-up menu (Figure 10.12).

FIGURE 10.10 Hardware

settings

From the Library of Bill Wiecking

ptg6760185

IMPLEMENTING SCEP ON MAC OS X SERVER 10.7 121

FIGURE 10.11 Server applica-

tion certificate options

FIGURE 10.12 Server certificate

selection

From the Library of Bill Wiecking

ptg6760185

122 CHAPTER 10 IMPLEMENTING SCEP ON MAC OS X SERVER

If you just select that certificate, you’ll be selecting it for use by all services that
can use SSL. If you don’t want to do that (you may be using other certificates for
other services on this server), then choose Custom and make sure that this cert is
selected for use by the web server. (If you’re not sure whether you need to set up
separate certs for each service, you probably don’t.)

We’re almost done with the preliminaries. The last thing to do is get some push
notification certificates from Apple. iOS device management makes heavy use of
Apple’s Push Notification Service, or APNS, as do the CalDAV, CardDAV, and email
services. In Mac OS X Server 10.7, Apple is using the Profile Manger not only for iOS
management, but also for user, group, and Mac management. So, you’re going to
need push certs no matter what. Fortunately, Apple makes it easy to get these. All
you need is an Apple ID with an associated email address. (The ID, itself, doesn’t
have to be an email address, but it needs to have an email address tied to the ID.)

Click the Edit button next to “Enable Apple push notifications,” and do what
the nice dialogs tell you to do. (It’s ridiculously simple.) Once the push certs have
been acquired, select the checkbox to enable push notifications, and you’re ready
to set up Profile Manager.

SETTING UP PROFILE MANAGER

If you have not already set up a Mac OS X Server 10.7-based Open Directory
implementation, when you go to enable SCEP on Mac OS X Server 10.7 via Profile
Manager, it’s going to walk you through setting up that server as an Open Directory
Master. This is fairly painless (assuming you have DNS set up correctly), and you
don’t have to do much more than enter a password for the Directory Administra-
tor, diradmin, login.

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 123

Once that is done, you’ll want to enable signing configuration profiles. Go to the
Profile Manager tab in Server, and click the Edit button next to “Sign Configuration
Profiles.” You’ll see another Certificates pop-up menu there. Click it to select the
signing cert (Figure 10.13). By default, one cert will be generated by Open Directory.
Unless you have another signing cert you’re using, pick that one, click OK, and then
select the checkbox to enable configuration profile signing.

Once that’s done, assuming Profile Manger is reading “Device Management:
Enabled,” all you have to do is turn on Profile Manager, and SCEP will be enabled,
along with all the rest of Mac OS X Server 10.7’s iOS device management features.

WRAPPING UP

And that’s the SCEP on Mac story. Obviously, the process becomes easier when
using the latest versions of Mac OS X Server, although third-party packages like
Casper do bring some benefits to the party. The next chapter talks about setting
up SCEP on Windows. As it turns out, the Windows solution is somewhat nicer
than the Mac, although it is still not what it should be.

FIGURE 10.13 Code Signing

Certificate selection

From the Library of Bill Wiecking

ptg6760185

11

IMPLEMENTING
SCEP ON WINDOWS
SERVER 2008

From the Library of Bill Wiecking

ptg6760185

125

In the previous chapter, we imple-

mented SCEP and related services on

Mac OS X using Casper from JAMF software. In this

chapter, we’ll try to do things a little differently by focusing

on SCEP without using third-party software.

We are also going to talk about SCEP only in terms of Windows

Server 2008. I know a lot of folks are still using Server 2003,

but Server 2008 is almost four years old at this point (2011), so I

think it’s reasonable to focus on the current version.

From the Library of Bill Wiecking

ptg6760185

126 CHAPTER 11 IMPLEMENTING SCEP ON WINDOWS SERVER 2008

CONFIGURING THE SERVER

Using Microsoft servers for all phases of managing iOS devices may not be the
easiest thing right now, but using Server 2008 for SCEP is fairly straightfor-
ward. Thanks to years of Microsoft support for certificates in the enterprise, the
process is fairly well documented (www.microsoft.com/downloads/en/details.
aspx?familyid=44315BFF-B744-4637-A66B-E69B4955EE45&displaylang=en and
at www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=e
11780de-819f-40d7-8b8e-10845bc8d446).

Other individuals have also written awesome articles that you can find at sites
like: http://mobilitydojo.net/2010/01/20/sinking-our-teeth-into-scep. This chapter
would not exist but for those sites and Microsoft’s documentation.

SETTING UP THE ROLES

First, you’ll need to make sure your server is set up as both a web and certificate
server. This is done using the Server Manager application in Windows Server
2008. You should be running Server 2008 Enterprise or Datacenter for this app
to work correctly.

From the Library of Bill Wiecking

www.microsoft.com/downloads/en/details.aspx?familyid=44315BFF-B744-4637-A66B-E69B4955EE45&displaylang=en
www.microsoft.com/downloads/en/details.aspx?familyid=44315BFF-B744-4637-A66B-E69B4955EE45&displaylang=en
www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=e11780de-819f-40d7-8b8e-10845bc8d446
www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=e11780de-819f-40d7-8b8e-10845bc8d446
http://mobilitydojo.net/2010/01/20/sinking-our-teeth-into-scep

ptg6760185

CONFIGURING THE SERVER 127

On that server you’ll need to be running the Active Directory Certificate Ser-
vices (ADCS) role installed with the Network Device Enrollment Service (NDES)
role service (Figure 11.1).

Installing NDES also installs IIS (Internet Information Services) and related
support services. If ADCS is not already installed, NDES installation is a little weird
because you can’t install the Certification Authority and the NDES role services
at the same time. First install the Certification Authority and configure the CA, and
then install NDES.

FIGURE 11.1 Server Role

Services

NOTE: For this chapter, I’m working with Server 2008 Enterprise in stand-alone

mode. If your server is part of an existing Active Directory domain, please,

please work with your Active Directory administrators on implementing

SCEP. Adding random certificate and device enrollment servers in an exist-

ing domain without informing your Active Directory administrators is bad.

From the Library of Bill Wiecking

ptg6760185

128 CHAPTER 11 IMPLEMENTING SCEP ON WINDOWS SERVER 2008

(If none of this makes any sense to you, you should stop right now, and get
in touch with whoever is responsible for Active Directory in your company. This
process is not something for the uninitiated to try on a company network, and if
you do try this without your Active Directory administrator’s cooperation, you’ll
become his favorite person in the whole world. Or not.)

When you get NDES set up, you’re basically done. There’s only one problem:
Getting the server to talk to an iPhone. As it turns out, that’s a bit of a mess caused
partially by iOS 4.x issuing calls (such as GetCACaps) that aren’t well supported
by Windows native SCEP.

There are ways around this, but they’re all rather painful. So we end up with
a well-documented system that just isn’t designed to work with iPhones, and it
requires a lot of customization to do so. We also end up with a situation where the
customizations aren’t that well documented.

I don’t actually blame Microsoft here. iPhones are not part of their main target
market. But, it would be nice to see better documentation since I hear that iOS
devices are pretty popular in the Windows world. Since we actually want to get
this working, we’ll abandon our original intentions and go third-party again, this
time with Absolute Manage for Windows.

NOTE: If you’re starting to think “Gee, SCEP sounds like a great idea, but there

seems to be a lot of pain involved with it, especially if you aren’t already an

expert,” then you would be in complete agreement with me. SCEP is, I think, a

great idea. But even the best documentation I’ve seen for it is incomplete, and

the folks doing the documentation for Microsoft/Cisco/Apple and independent

sites seem to be writing for themselves, not for people trying to get a handle

on using SCEP. One thing writing this book taught me (the hard way) was

that there’s not yet a good way to just set up SCEP. Going with a product

that already has it implemented really is the best option for now.

From the Library of Bill Wiecking

ptg6760185

INSTALLING ABSOLUTE MANAGE 129

The initial install of Absolute Manage is straightforward. You install the server,
restart, and then install the management console. The next step is to install the
Mobile Device Management server.

As with the Server and the Management console, follow Absolute Manage’s
instructions because they work well, with only a few places that might bite you.
For example, when you get a website certificate, you have to include the keys with
the cert, and export them as a .pfx bundle. No options. That applies to the first
certificate you’re asked for. The second one is exported by the Absolute Manage
Admin console by clicking the “Save certificate” button in Server Settings in the
Server Center (Figure 11.2).

FIGURE 11.2 Absolute Manage

Server Settings page with

certificate export button

NOTE: If you have IIS installed on the same Windows Server 2008

system on which you’re installing Absolute Manage, make sure

that you install the complete IIS 6 compatibility service roles sets

or the Mobile Device Management server won’t install.

INSTALLING ABSOLUTE MANAGE

From the Library of Bill Wiecking

ptg6760185

130 CHAPTER 11 IMPLEMENTING SCEP ON WINDOWS SERVER 2008

As with Casper, you’ll need to install a push certificate from Apple. You can refer
to the documentation referenced in Chapter 10 for doing so. However, when you
export the .p12 bundle to import it into Absolute Manage, do not add a password.
If you do, Absolute Manage won’t be able to import it (Figure 11.3).

At that point, you should be good to go. Point your device to https://<server>/
Profile/enrollment.mdm, and you’ll be taken to the enrollment page. By default,
Absolute Manage ties itself into Active Directory, so anyone going to this site will
need a valid login (Figure 11.4). After login, the system behaves just like every other
enrollment. The user sees the Install Profile screen on her device (Figure 11.5), taps
the screen a few times, and she’s enrolled!

FIGURE 11.3 Absolute

Manage iOS Mobile Device

Management settings

From the Library of Bill Wiecking

ptg6760185

INSTALLING ABSOLUTE MANAGE 131

FIGURE 11.5 Absolute

Manage enrollment

profile installation

screen

FIGURE 11.4 Absolute Manage

enrollment login page

From the Library of Bill Wiecking

ptg6760185

132 CHAPTER 11 IMPLEMENTING SCEP ON WINDOWS SERVER 2008

Yes, I know, we still had to use a third party. I’m not really that surprised. If you
look at everything that’s going on, particularly with SCEP, it’s not a simple process.
You could roll your own, but in the end, why do what you don’t have to? If you
have enough iOS devices to justify using SCEP and OTA enrollment, you should
recognize that some upfront costs for third-party servers are worth having an easy
install and a working system.

There’s a reason why so many companies are practically beating down your
door to provide nice, packaged solutions. Setting up SCEP can be hard and tedious.
With a plethora of options available, why reinvent the wheel?

WRAPPING UP

From the Library of Bill Wiecking

ptg6760185

This page intentionally left blank

From the Library of Bill Wiecking

ptg6760185

12

IMPLEMENTING
SCEP ON A
CISCO DEVICE

From the Library of Bill Wiecking

ptg6760185

135

Cisco literally invented SCEP, so it’s

no surprise that devices such as their

ASA security appliances support it. However, as with

other devices, SCEP is not simple to set up on Cisco hardware.

Before we get into this, I’ll throw out a caveat: Stop right now if

you are not familiar with the Cisco Internetwork Operating Sys-

tem (IOS, as opposed to iOS), configuring Cisco devices, and SSL.

As tricky as it can be to set up SCEP on other platforms, making a

mistake with a network appliance can ruin your entire day or year.

Make sure you have good backups of your running configuration,

and don’t commit any changes until you’ve tested them.

From the Library of Bill Wiecking

ptg6760185

136 CHAPTER 12 IMPLEMENTING SCEP ON A CISCO DEVICE

WHY IS SECURITY SO HARD?

This is something that blows my mind, and I say this as an IT person with

two decades of experience. SCEP is, in theory, a great concept. It solves a lot

of problems, yet setting it up is either impossible or extremely tedious and

confusing. Really, your only sane option is to just throw money at the prob-

lem. Mind you, it isn’t just SCEP. SSL (Secure Sockets Layer), which involves

a huge part of what SCEP does, is not any better. It’s a mess of what I call

“prove your IT worth.” It implies that if you cannot handle byzantine inter-

faces, implementation details surrounded by minefields, and poor or missing

documentation, then you shouldn’t be allowed to use the technology.

Ironically, the people behind this tech will complain that not enough people

are implementing secure networks. Well, no fooling. If drivers had to weave

seatbelts by hand and build the frame attach points and the instructions

sucked, no one would use them, either. On behalf of IT people and users

everywhere, I plead to the people creating this technology: Stop torturing

your customers and users. Stop it! It’s the 21st century. It is inexcusable that

setting up secure networks requires us to play these ego-driven games. If you

want secure networks, stop making it so difficult to implement them.

From the Library of Bill Wiecking

ptg6760185

TAKING THE INITIAL STEPS 137

The only real documentation I could find on implementing SCEP on Cisco devices
was on the Cisco website. So, yeah, it was not written for “normals” at all. I know
that some people are using Cisco devices for SCEP, but getting any real-world
information from them proved effectively impossible (not because they didn’t
want to provide it, but because they weren’t sure if they could tell me how to do
so without giving away details they didn’t want given away). Even according to my
Cisco rep, the online documentation I used for this chapter was all they had, and it
was based on a device in a clean, lab setup, not the real world. So, here’s another
plea to anyone reading this: If you can come up with a reliable, repeatable way to
set up SCEP that can be explained to people who aren’t Cisco-certified, publish it
on a website somewhere. You’ll be a hero.

For this chapter, we’re assuming that you’re using a Cisco ASA 5500 series
security appliance running Cisco IOS 8.x. You’ll also need the Cisco AnyConnect
VPN version 2.4 or later. (The AnyConnect VPN client for iOS is available from
the App Store.)

Here’s a very high-level overview of how SCEP works with Cisco devices:

1. A device with the AnyConnect client connects to an ASA that has a group
policy and an XML connection profile set up for SCEP. The device connec-
tion has to fail the initial attempt at certificate authentication (because if it
doesn’t, it doesn’t need the cert, and the whole SCEP process never happens).
So, the device should not have a valid connection certificate installed on it.
Also, if someone successfully logs in to the correct group associated with
the policy et al, enrollment will be automatic.

2. The device sends a request for a certificate with parameters that are defined
in the XML profile attached to the policy.

3. The CA on the device automatically denies or approves the request.

4. The device downloads the certificate via SCEP.

In this scenario, you’re using the ASA only for the certificate setup. You’ll want
to configure a different web server to perform the actual profile install.

TAKING THE INITIAL STEPS

From the Library of Bill Wiecking

ptg6760185

138 CHAPTER 12 IMPLEMENTING SCEP ON A CISCO DEVICE

The AnyConnect VPN uses XML-based settings profiles to configure the client. To
configure SCEP, you’ll need to add a few specific elements to the connection profile:

� <AutomaticSCEPHost>: This is the fully-qualified DNS name of the ASA or
the IP address of the ASA. This also includes the name of the connection
profile/tunnel group that is configured for SCEP enrollment, for example:

<AutomaticSCEPHost> asa.bynkii.com/ios_scep
p</AutomaticSCEPHost>

� <CAURL>: This identifies the SCEP CA server and contains the challenge
password setting, along with the thumbprint (MD5 or SHA1 hash) of the
CA cert:

<CAURL PromptForChallengePW=”true” Thumbprint=”245F2342D14D223
p45245A1234523C2234567”>http://ca.bynkii.com</CAURL>

� <CertificateSCEP>: This defines how the contents of the certificate are
requested. This block contains several elements, as in this example:

<CertificateSCEP>

 <CADomain>bynkii.com</CADomain>

 <Name_CN>%USER%</Name_CN>

 <Department_OU>Curmudgeonry</Department_OU>

 <Company_O>Misanthropic Yoyodyne</Company_O>

 <State_ST>FL</State_ST>

 <Country_C>US</Country_C>

 <Email_EA>%USER%@bynkii.com</Email_EA>

 <Domain_DC>bynkii.com</Domain_DC>

 <DisplayGetCertButton>false</DisplayGetCertButton>

</CertificateSCEP>

THE ANYCONNECT SCEP SETTINGS

From the Library of Bill Wiecking

ptg6760185

THE ANYCONNECT SCEP SETTINGS 139

The elements within the block are pretty simple to dope out. CADomain is the
domain of the certificate authority (CA), in this example, bynkii.com. Name_CN, or
Common Name, is the user name. By using the %USER% variable, the username
used when logging into the ASA is automatically applied here.

Department_OU is the user’s department. Company_O is the company name,
State_ST is the state, Country_C is the country. Email_EA is the user’s email address,
and again we use %USER% substitution to simplify things for the user. Domain_DC
is the domain component, which is also bynkii.com in this case. Since we don’t
want the manual Get Certificate button displayed, we set that to false.

If we put this all together in a client profile, the SCEP section would look like:

<CertificateEnrollment>

 <AutomaticSCEPHost>asa.bynkii.com/ios_scep</AutomaticSCEPHost>

 <CAURL PromptForChallengePW=”false” Thumbprint=”245F2342D14D2234
p5245A1234523C2234567” >

 http://ca.bynkii.com

 </CAURL>

 <CertificateSCEP>

 <Department_OU>Curmudgeonry</Department_OU>

 <Company_O>Misanthropic Yoyodyne</Company_O>

 <State_ST>FL</State_ST>

 <Country_C>US</Country_C>

 <Email_EA>%USER%@bynkii.com</Email_EA>

 <Domain_DC>bynkii.com</Domain_DC>

 <DisplayGetCertButton>false</DisplayGetCertButton>

 </CertificateSCEP>

</CertificateEnrollment>

The full profile is fairly huge, and not particularly germane to this chapter. If
you need that level of help with your ASA, I highly recommend contacting your
Cisco rep or a Cisco consultant.

From the Library of Bill Wiecking

ptg6760185

140 CHAPTER 12 IMPLEMENTING SCEP ON A CISCO DEVICE

So far, we have our XML file set. Now the task is to get it onto the ASA.
First, you need to have the connection group and the policy that the XML profile

will be attached to. You’ll then want to create an alias on your ASA that points to
that group, and put that alias in the <AutomaticSCEPHost> section of the XML file.

Configure the connection group so that the XML profile you’re going to upload
to the ASA is attached to that group.

Finally, set up appropriate access controls for the group.
Then go to the SSL VPN Client settings and upload the XML profile to the device.

Next, add a certificate enrollment group policy that uses the SSL VPN Client (such
as AnyConnect) as the tunneling protocol. Enable and configure Split Tunneling.
In the SSL VPN Client settings, use the XML profile you uploaded as the file in the

“Client Profile to Download” settings.
With that done, you’ll need to create certificate authentication settings. Create

another group policy for this with the appropriate settings for your setup. (I’m sorry
to be so general here, but authentication settings are almost infinite in number,
and ASAs offer many ways to handle authentication.)

Next, create a certificate enrollment connection profile. In this profile, make
sure that the alias matches the value in the <AutomaticSCEPHost> section of the
profile. Also, be sure to match the group policy for this connection profile with the
certificate enrollment group policy that you created earlier.

Then, create a certificate authentication connection profile. Make sure the alias
and group policy names match the name you set up for the certificate authentica-
tion group policy.

Now enable the <AutomaticSCEPHost> alias by going into the AnyConnect Con-
nection Profiles settings on the ASA, and enabling the following login page setting:

Allow user to select connection profile, identified by its alias, on the
login page. Otherwise, DefaultWebVPNGroup is the connection profile.

(Yes. That’s the name of the setting. Can you tell Cisco is only good at talking
to Cisco people?)

CONFIGURING THE ASA

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 141

With any luck, all you have left to do is fire up the AnyConnect client on the iOS
device, and connect to your ASA. Point the client at the certificate enrollment
profile you created, enter the correct username and password, tap Connect, tap
Enroll, and bang, done.

If it doesn’t work (and there are numerous places you can go sideways or become
completely inverted in this process), call a good consultant or your Cisco rep.

The documentation I used for this chapter is available at www.cisco.com/en/
US/products/ps6120/products_configuration_example09186a0080b25dc1.shtml
and at www.cisco.com/en/US/docs/security/vpn_client/anyconnect/anyconnect24/
administration/guide/ac03features.html.

WRAPPING UP

Be aware that Cisco has gotten better about supporting multiple platforms in
recent years, but they still really assume that everyone uses Windows. However,
that’s what makes this so much fun. (Want even more fun? The OS on the ASA is
called IOS, which is not iOS, the OS on the iPhone/iPad/iPod Touch. With that in
mind, search Cisco’s support documentation for “iOS.” Wheee! You get a hit for
everything! Wheeee! Are we having fun yet?)

By now, I think we’ve had enough of SCEP to last us . . . well, a very long time.
Next up, we’ll move on to the very, very cool thing that is Mobile Device Manage-
ment, and managing iOS devices the way we really, really want to.

TESTING IT ALL

From the Library of Bill Wiecking

www.cisco.com/en/US/products/ps6120/products_configuration_example09186a0080b25dc1.shtml
www.cisco.com/en/US/products/ps6120/products_configuration_example09186a0080b25dc1.shtml
www.cisco.com/en/US/docs/security/vpn_client/anyconnect/anyconnect24/administration/guide/ac03features.html
www.cisco.com/en/US/docs/security/vpn_client/anyconnect/anyconnect24/administration/guide/ac03features.html

ptg6760185

This page intentionally left blank

From the Library of Bill Wiecking

ptg6760185

143

PART III

MOBILE DEVICE
MANAGEMENT

From the Library of Bill Wiecking

ptg6760185

13

PERFORMING
MOBILE DEVICE
MANAGEMENT

From the Library of Bill Wiecking

ptg6760185

145

Mobile Device Management? Isn’t

that what this book has been doing

up to now? Managing mobile devices? Well, yes and

no. Mobile Device Management in the context of this chap-

ter is a specific concept that addresses some of the liabilities of

“manual” configuration profile use in a way that gives you greater

device control and makes device management nicer for your users.

From the Library of Bill Wiecking

ptg6760185

146 CHAPTER 13 PERFORMING MOBILE DEVICE MANAGEMENT

THE PROBLEM WITH
CONFIGURATION PROFILES

Configuration profiles, as we’ve used them so far, are handy, but they have some
weaknesses. First, we can’t just push them out to devices. Even with the “conve-
nience” of SCEP, the device user still has to go to the URL, log in, enter a password,
and so on. It’s kind of a pain. Profile updates exacerbate that pain.

Configuration profiles, as we’ve used them, are also rather monolithic, which
make changes inconvenient. As an example, let’s say that you have to change the
SSID of your wireless network. This requires changing only a single line of text in
a configuration profile. Yet to change that one line, you have to upload a complete
profile and then send the users an email/text message with a URL where they must
reinstall that entire profile. Just to change one line of text. Lame.

Configuration profiles also don’t allow you to do some tasks remotely. For
example, you have decided to take passcodes seriously and implement passcodes
with letters, numbers, and special characters. You already know what’s going to
happen once you implement this change. You’re going to get a call from a user, on
someone else’s phone, because he forgot his passcode. This is a bummer, because
you can set passcode policy remotely using profiles, but you can’t actually reset or
temporarily disable the passcode and allow the user to get into his phone. If this
person is at the start of a week-long series of meetings in a remote location, he’s
not going to be happy with you.

Yes, OTA enrollment is handy, but it’s only part of the story, and in many ways,
the smallest part. It automates initial enrollment nicely, but then you’re still
stuck with the problems we just listed—lots of sending of emails and texts on the
administrator’s part, lots of logging in and tapping on the user’s part. The iPhone
Configuration Utility (iPCU) and OTA enrollment are an incomplete solution.

Wouldn’t it be great if you could push changes out to devices? And just push
the changes you actually need? Or push new settings? How about being able to
temporarily drop that passcode so the person can get into his phone, yet still
require a new passcode within n minutes? That would be awesome, wouldn’t it?

Yes, yes it would, and thanks to Mobile Device Management, you can do all
that and more.

From the Library of Bill Wiecking

ptg6760185

GROKKING THE MOBILE DEVICE MANAGEMENT CONCEPT 147

Mobile Device Management is a marriage of push services, configuration profiles,
and SCEP. The basic components of Mobile Device Management are the MDM
server, Apple Push Services, and the iOS device (Figure 13.1). The basic flow of
Mobile Device Management is pretty simple.

MDM Server

Mobile Device Managment Overview

Apple’s Push
Notification Service

FIGURE 13.1 Mobile Device

Management components

GROKKING THE MOBILE DEVICE
MANAGEMENT CONCEPT

From the Library of Bill Wiecking

ptg6760185

148 CHAPTER 13 PERFORMING MOBILE DEVICE MANAGEMENT

The device user first enrolls her device to the Mobile Device Management
server using SCEP (or some other system) to acquire the necessary certs. This is
critical to enable encryption of all further communication with the Mobile Device
Management server, configuration profiles, and configuration data (Figure 13.2).

Apple’s Push
Notification Service

Step 1: Enrollment

Device enrolls on network via SCEP

Mobile Device Management server pushes certificate(s) to device
so that all further communication and profiles can be secure

MDM Server

FIGURE 13.2 Initial enroll-

ment into Mobile Device

Management

From the Library of Bill Wiecking

ptg6760185

GROKKING THE MOBILE DEVICE MANAGEMENT CONCEPT 149

After the device is enrolled, a minimal configuration profile with Mobile Device
Management information is pushed out to the device (Figure 13.3). This profile
allows the MDM system to interact with the device without any user involvement.

Apple’s Push
Notification Service

Step 2: Initial Configuration

Mobile Device Management server pushes base configuration
to device with Mobile Device Management server info

MDM Server

FIGURE 13.3 Initial Mobile

Device Management

configuration

From the Library of Bill Wiecking

ptg6760185

150 CHAPTER 13 PERFORMING MOBILE DEVICE MANAGEMENT

From this point, the interactions between device and server follow the same
process: The server uses Apple Push Notification Service to inform the device that
it needs to check in with the server (Figure 13.4). The device checks in with the
server the next time it is able to do so. The server then sends out configuration
changes, runs queries against the device, and so on.

Step 3: Mobile Device Management

Device Checks In

Mobile Device Managment server sends
configuration commands, runs queries, etc.

MDM Server

Apple’s Push
Notification Service

Mobile Device Managment server uses Apple’s
Push service to prompt device to check in

FIGURE 13.4 Standard Mobile

Device Management steps

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 151

WRAPPING UP

The setup for Mobile Device Management isn’t significantly harder than setting up
conventional OTA delivery of configuration profiles, yet for both the administrator
and the user, the advantages are significant.

Mobile Device Management completes your OTA solution by automating all
of the process. The user no longer needs to log in for every change or to manu-
ally report details. The combination of Apple Push Services and automated OTA
services handles this for us.

In addition, it allows us to do some things that are really almost impossible
using the manual processes of conventional profile downloads. We said in the
example at the start of this chapter, without Mobile Device Management, if a
user forgets his passphrase, he’s out of luck. His device can’t log into the website
to download the profile. Using Mobile Device Management, we can silently push
out new configurations to the device and resolve this problem.

In the next few chapters, we’ll delve into Mobile Device Management details
and show why it’s something that anyone managing more than a handful of iOS
devices should seriously consider.

From the Library of Bill Wiecking

ptg6760185

14

MOBILE DEVICE
MANAGEMENT
FEATURES

From the Library of Bill Wiecking

ptg6760185

153

In Chapter 13, we talked about some

of the advantages that Mobile Device

Management has over ”traditional” OTA management

and configuration profiles, but we didn’t really get any details

of what that means.

From the Library of Bill Wiecking

ptg6760185

154 CHAPTER 14 MOBILE DEVICE MANAGEMENT FEATURES

FLEXIBILITY AND POWER

Flexibility and power—those are the two words that describe the advantages of Mobile
Device Management over the other management methods we’ve explored so far.

Mobile Device Management easily excels in flexibility. You can change or remove
settings without any user involvement.

Mobile Device Management also excels in power because you can apply its
flexibility to one or hundreds of devices at once. Note that with Mobile Device
Management, you apply. Using manual profile installation, even OTA, you notify
the users of a new profile, and then wait for them to download and install it. Maybe
they will, maybe they won’t. If not installing it causes them some pain, well, that’s
their motivation, but they’re still going to be unhappy with you. (After all, it’s
always IT’s fault.)

With Mobile Device Management, you don’t have to wait for them and they don’t
have to tap. Devices are configured, inventory is updated under your control, and it
all just works. Even better, because the Mobile Device Management implementa-
tions out there include all the benefits of SCEP and none of its (considerable) pain,
this all happens in a secure fashion. Bonus!

But, it’s boring to talk about this in the abstract, right? Let’s see some examples
that illustrate why you would want to use Mobile Device Management.

From the Library of Bill Wiecking

ptg6760185

MANAGING PASSCODES 155

Passphrases, passcodes, and passwords—no matter what word you use for them,
they are an alphanumeric pain for every IT person and user on the planet. Unfor-
tunately, they’re also a fact of life. We have to deal with them, so we welcome any
help we can get. Within Mobile Device Management, we can both remotely set and
remove passcodes from devices.

SETTING PASSCODES

You set passcodes as you would set anything. You create the profile with the correct
settings and push it to the device.

ON PROFILES

Just in case this hasn’t been stated clearly, as this book is long, and I see it

quite blearily . . . all iOS device configuration settings that you add from an

external source are implemented using configuration profiles, whether deliv-

ered via USB and the iPhone Configuration Utility, profiles on a web site, or

Mobile Device Management servers. As you’ll see in this chapter, the advan-

tage to using Mobile Device Management lies in the flexibility you have

when managing those profiles.

Let’s pretend that we have to set a consistent passcode policy for all of our
devices. They cannot be simple (that is no “1234” or similarly lazy passcodes). They
must have at least one letter, and a minimum length of five characters.

We also want the device to autolock after one minute, and to be unlockable
for five minutes after an autolock without reentering a passcode. Finally, we won’t
keep a history of passcodes, we won’t change the passcode on a regular basis, we
won’t require special characters such as “&”, and we won’t be erasing the device
if too many wrong passcode entry attempts are made.

MANAGING PASSCODES

From the Library of Bill Wiecking

ptg6760185

156 CHAPTER 14 MOBILE DEVICE MANAGEMENT FEATURES

First, we create a profile with the appropriate settings (Figure 14.1). Then, we select
the devices we want to push the profile to and push it to each device (Figure 14.2).

In the case of JAMF’s Casper (which appears in these screenshots), that’s all we
need to do. The settings are then pushed out to the devices. We can verify this in
the Management console (Figure 14.3).

So what does the user see on his device? Well, starting from a no-passcode
state, once the new profile is pushed, the next time the user accesses the device,
he’ll see an alert dialog telling him to set a passcode within the next 60 minutes.

If the user wishes, he can ignore this alert for the next hour and use his device.
He’ll get nagged a lot but he can keep ignoring it until he gets to the end of the
60-minute grace period. Then he will have to enter a passcode.

He must tap Continue, enter a passcode that meets the requirements you’ve
set, and confirm the passcode to set it.

FIGURE 14.1 (top left) Passcode

settings configuration

FIGURE 14.2 (right right)

Profile scope settings

FIGURE 14.3 (bottom) Profile

push results

From the Library of Bill Wiecking

ptg6760185

MANAGING PASSCODES 157

FIGURE 14.4 New passcode

settings

If you now look at the passcode settings on the device, you’ll see a mixture of
user-configurable settings and settings that are locked. Some of the user-configurable
settings are manually set, such as the “Require Passcode After n min,” setting. Don’t
worry. Apple’s not actually letting you bypass things. For example, in Figure 14.4,
you can see that the profile automatically set the interval to five minutes. The user
can change that to lock after five minutes, one minute, or immediately. In other
words, the user can opt for more restrictive settings than you entered, but not less.
I can live with that.

The same thing is true of the Erase Data setting. Because we didn’t set it, the
user can opt to turn it on because that choice would be more restrictive.

Finally, if we look at the profiles on the device (Figure 14.5), we can see the
profile we pushed out to the device to start this process.

From the Library of Bill Wiecking

ptg6760185

158 CHAPTER 14 MOBILE DEVICE MANAGEMENT FEATURES

This is great. We have pushed a profile to all our devices, they’re passcode-
protected, and life is good. At least it’s good until the phone rings, and that travel-
ing user can’t seem to remember a passcode more complicated than “1111.” He’s
forgotten his passcode. Groan. He’s also a thousand miles away. You don’t know
what passcode he set, and of course, his entire world will collapse if he can’t get
into his devices.

Without Mobile Device Management, this is a major pain. With Mobile Device
Management, it’s only a minor annoyance because you can easily disable a passcode.

First, you tell your Mobile Device Management server that you want to clear a
passcode from a remote device (Figure 14.6). You select the device and then confirm

FIGURE 14.5 (left) Profiles

showing passcode profile

FIGURE 14.6 (right) Initiate

the clear passcode command

From the Library of Bill Wiecking

ptg6760185

MANAGING PASSCODES 159

FIGURE 14.8 On-device

settings showing passcode

removed

FIGURE 14.7 Passcode removal command pending

that you want to clear the passcode from the selected device, and send the com-
mand to do so. You’ll see that the command is pending (Figure 14.7).

Within a few minutes (less than five if the device is reachable), the passcode is
cleared. The device will be usable without a passcode, and even the settings will
show that the passcode has been disabled (Figure 14.8).

Well, that’s great, but we still want the device to be passcode protected! Do we
now have to resend the profile? Nope. Within a few minutes, the device will once
again display the 60-minute nag countdown to set a passcode as it did when you
initially pushed out the profile.

Considering the amount of pain that IT people normally experience with such
situations, let me tell you, this ease of management is Awesome. Also, it’s a way

From the Library of Bill Wiecking

ptg6760185

160 CHAPTER 14 MOBILE DEVICE MANAGEMENT FEATURES

to deal with anyone who thinks he’s just found a clever way to make his passcode
headaches go away.

Keep in mind that part of this solution (the remote removal of the passcode)
is impossible without using Mobile Device Management. Further, unless you use
Mobile Device Management and its push abilities, you’re not going to have an easy
time handling mass passcode setup.

Let’s review the IT and user steps involved in pushing out a profile, any profile,
without MDM:

1. Build the profile in the iPhone Configuration Utility and put it on a web server.

2. Send an email or text to users requesting they go to the website in the link
and install the new profile. (Send an individual email or text for every device
you need to configure/modify.)

3. The user taps a link to go to web site.

4. The user logs into website.

5. The user downloads and installs the profile and performs whatever steps
are required by the profile.

Now, same thing, with MDM:

1. Build the profile in the iPhone Configuration Utility or the Mobile Device
Management server tool.

2. Push the profile to the devices you select.

3. The user performs minimal configuration (enter passcode, provide password
for server, and so on).

Cake! Mobile Device Management makes this process and others a lot easier.
Let’s look at setting up a CardDAV server.

From the Library of Bill Wiecking

ptg6760185

MANAGING CARDDAV SETTINGS 161

INSTALLING THE CARDDAV PROFILE

The procedure here is virtually identical to installing the passcode profile. First,
set up your profile with the CardDAV info (Figure 14.9). Notice the $USERNAME
variable entered in the Account Username field. This is one of those “why I pay
for things” features. When the profile is pushed to the device, the username asso-
ciated with that device is automatically filled in. It’s a minor thing, but it’s really
nice to have; and it means that the device user only has to enter her password for
the CalDAV server.

Save the profile, assign it to the correct devices, and within seconds, those
devices, if reachable, will have the new profile. When I say “seconds,” I’m speak-
ing literally. It took me longer to navigate from the Casper settings to the device
settings than it did to push the profile. A minute or so of work, a few seconds to a
few minutes of network traffic, a password tapped on a device, and (bang!) your
users have CardDAV. Or email, or CalDAV, or what have you.

REMOVING THE CARDDAV PROFILE

Removing the profile is even simpler. Open the profile you want to remove (Fig-
ure 14.10), click Delete, or click Edit if you’re removing a profile setting but keeping
the profile.

The profile is removed, along with the CardDAV settings, and the device’s user
has performed zero work. This is how these things are supposed to work: easily,
quickly, and securely with a minimum of manual fiddling about for everyone.

All this is nice, but what about when you want to gather statistics on devices?
Mobile Device Management comes to the rescue again!

MANAGING CARDDAV SETTINGS

FIGURE 14.9 CardDAV settings

in the profile

FIGURE 14.10 Profile with

delete/edit options

From the Library of Bill Wiecking

ptg6760185

162 CHAPTER 14 MOBILE DEVICE MANAGEMENT FEATURES

Even if you are locking devices down, some information is going to be tedious
to get without using Mobile Device Management. Device versions, device names,
IMEI numbers, Wi-Fi MAC addresses, software versions, available space, model,
currently-installed apps, installed certs, configuration profiles, and on and on. Some
of these, such as the Wi-Fi MAC address, won’t change much. But others will, and
if you can’t easily gather that information remotely, you have to manually collect
it, or have the user try to read it to you. Yeah, that’s big fun.

Wouldn’t it be great if you could just collect this information in one place, and
review it as necessary? That would be awful handy when you needed to know how
many of your devices could support the latest iOS update, wouldn’t it? What you
want is the kind of information a Mobile Device Management server can give you.

Need details on a device? How about determining which apps are installed on
a device? (Figure 14.11) What about locating certificates? (Figure 14.12) Need to
know the configuration profiles installed on a device? (Figure 14.13)

Done, done, done, and done. That is the flexibility and power you get with
Mobile Device Management, and that is why it is such an improvement over past
management methods.

WRAPPING UP

With Mobile Device Management, you can actually manage your devices in a
proactive way. (Yes, I know that according to pundits, you can’t do this with iOS
devices. Oh look! The pundits are wrong. Again!)

In Chapter 15, we’ll look at what’s involved in setting up a Mobile Device Man-
agement server using Casper from JAMF software.

GATHERING DEVICE
INVENTORY/INFORMATION

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 163

FIGURE 14.11 App inventory

FIGURE 14.12 Certificate

inventory

FIGURE 14.13 Configuration

profile inventory

From the Library of Bill Wiecking

ptg6760185

15

SETTING UP A
MOBILE DEVICE
MANAGEMENT
SERVER

From the Library of Bill Wiecking

ptg6760185

165

In this chapter, I talk about setting up

a Mobile Device Management server.

Because of the differences between doing this for

Mac OS X 10.6 Server and Mac OS X Server 10.7, I’ll split this

chapter along those lines. For Mac OS X 10.6 Server and earlier, I’ll

be using Casper. For Mac OS X Server 10.7, I’ll use Apple’s Profile

Manager.

But first let’s talk a bit about what you need to think about and

plan before you start downloading and installing things.

From the Library of Bill Wiecking

ptg6760185

166 CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER

DO YOU REALLY NEED TO
RUN YOUR OWN SERVER?

Although I’ve mostly talked about Casper in previous chapters, the truth is, you can
use quite a few cloud-based Mobile Device Management servers in the software as
a service (SAAS) model. Given the way Mobile Device Management works, there’s
a certain amount of logic behind using the cloud, especially if you don’t have the
facilities or expertise to devote to managing iOS devices and running the server
underneath the Mobile Device Management package.

If you just want to manage your iOS devices, but don’t want to run another
server, or add this onto an existing server, then a cloud service is an excellent
option. Just do pay attention to things like SLAs and response times. Especially
what constitutes a response. Remember “Hi, this is <person> from <provider>, we
see you have a problem, a technician will be contacting you in four to six business
days,” delivered within four hours at 3 am on a Sunday does in fact meet a 24x7x4
response time requirement. It also sucks, but contracts are about the letter of the
law, not the spirit, so do make sure the letter says what you think it should.

From the Library of Bill Wiecking

ptg6760185

HOW BIG SHOULD YOUR SERVER BE? 167

As it turns out, capacity planning for Mobile Device Management servers is still
a bit of an unrefined art. For everything other than applications, you’re dealing
with small bursts of data. Configuration profiles are on the low end of the kilobyte
scale, so almost any fairly modern network and Internet connection is up to the
bandwidth task. Yes, apps can get into megabyte sizes, but even so, we’re talking
low megabytes and it’s unlikely that you’re pushing apps on a daily basis.

Also, thanks to Mobile Device Management, you don’t have to supervise the push.
If it takes a day or so to fully update a few hundred devices, that’s something you
can plan for and manage. You probably don’t need a huge dedicated server farm for
this task or even a dedicated server at all. While testing for this book, my hardware
was a Mac Mini server with 8 GB of RAM with two 500 GB hard drives. Admittedly,
my device pool size is small, but my needs didn’t even make the Mini breathe hard.

So, if all you’re doing with the Mobile Device Management server is Mobile
Device Management stuff, you don’t need to plan for a $30K hardware buy, although
your situation may make a big bucks server desirable. (I say this because some of
the MDM products, such as Casper or Absolute Manage, do a lot more than Mobile
Device Management, and if you’re going to use them to manage your desktop com-
puters, for example, you will need a bigger server.) However, for most companies
in the SMB market, a server with the same rating as Mac Mini (or two) should be
able to manage a lot of devices.

HOW BIG SHOULD
YOUR SERVER BE?

From the Library of Bill Wiecking

ptg6760185

168 CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER

Because of the way Mobile Device Management works, you need two kinds of con-
nectivity. Obviously, you’ll need a connection between your server and your devices.

In addition, you’ll need to talk to certain Apple services such as the Apple Push
Notification Server (gateway.push.apple.com), the Apple site for determining if
an app is too big for your cellular provider’s network and must be downloaded
via Wi-Fi (ax.init.itunes.apple.com), and the Apple site for validating distribution
certificates (ocsp.apple.com).

To support access to those sites, some nonstandard, iOS-specific ports must
be opened:

� Port 2195, used by your Mobile Device Management server to talk to the
Apple Push Notification Server

� Port 5223, used by the Apple Push Notification Server to talk to iOS devices

Further, you may need to open port 443 and/or port 80 through your Mobile
Device Management server’s firewall. If you’re using Casper, you may also need to
allow port 8443, Casper’s default SSL port.

If opening any of those ports is an issue in your system, you may want to seri-
ously consider using a cloud-based service.

FIREWALL PLANNING

From the Library of Bill Wiecking

ptg6760185

GETTING A PUSH NOTIFICATION CERTIFICATE 169

To use Mobile Device Management, you must have a push notification certificate
from Apple. To get that certificate, you must be enrolled in the iOS Enterprise
Developer Program (http://developer.apple.com/programs/ios/enterprise/), which
as of this writing costs $299/year.

When you’re a part of the program, getting the certificate is cake in the “Portal”
sense of the word. (The cake, in this case, is not a lie, but you will do a lot of jump-
ing through hoops to get it.) JAMF has an excellent how-to document that applies
to Mac OS X, Windows, and Linux. You can read it at www.jamfsoftware.com/
libraries/pdf/white_papers/JAMFSoftware-Creating_an_Apple_Push_Notifica
tion_Certificate.pdf. The basic steps for getting the certificate are:

1. On your Mobile Device Management server, generate an SSL CSR.

2. Go to the Apple iOS Dev Center, and enter the iOS Provisioning Portal.

3. In the App IDs section, create a new App ID. Enter a description and a bundle
identifier. This must start with com.apple.mgmt and end with a unique string,
for example, com.apple.mgmt.com.bynkii.com.

4. In the list of certificates you’ll get, look for the one with the bundle ID you
just entered, and click Configure.

5. Select the “Enable for Apple Push Notification” checkbox, and click the
Configure button for “Production Push SSL Certificate.”

6. The wizard that appears allows you to upload the CSR you created and
generate the push cert. Do what the nice wizard tells you to do.

7. Save the cert to your computer.

NOTE: The preceding steps specifically apply to Mac OS X Server. If

you’re installing Casper on Windows or Red Hat Linux, your world will

be a bit different, and I recommend you follow the documentation

at www.jamfsoftware.com/libraries/pdf/white_papers/Installing_

the_JAMF_Software_Server_on_Alternate_Platforms.pdf.

GETTING A PUSH

NOTIFICATION CERTIFICATE

From the Library of Bill Wiecking

www.jamfsoftware.com/libraries/pdf/white_papers/JAMFSoftware-Creating_an_Apple_Push_Notification_Certificate.pdf
www.jamfsoftware.com/libraries/pdf/white_papers/JAMFSoftware-Creating_an_Apple_Push_Notification_Certificate.pdf
www.jamfsoftware.com/libraries/pdf/white_papers/JAMFSoftware-Creating_an_Apple_Push_Notification_Certificate.pdf
http://developer.apple.com/programs/ios/enterprise/
www.jamfsoftware.com/libraries/pdf/white_papers/Installing_the_JAMF_Software_Server_on_Alternate_Platforms.pdf
www.jamfsoftware.com/libraries/pdf/white_papers/Installing_the_JAMF_Software_Server_on_Alternate_Platforms.pdf

ptg6760185

170 CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER

Since you’re going to be using this cert with Casper in this chapter, you need
to do a few more things.

1. Install the cert you downloaded into the keychain by double-clicking the
cert and installing it into the system keychain or your login keychain. (Or
really, any keychain you can access because this step is just a starting point
to exporting the cert to a different format. I used my login keychain because
doing so sometimes makes it easier to get to the private key for the cert.)

Note that if you don’t have the Apple WWDR intermediate cert installed,
Keychain Access will gripe about your cert being signed by an unknown
authority. If you go to Certificates in the iOS Provisioning Portal, you can
download that cert from there and install it into the same keychain that
you installed the push cert. This doesn’t really affect anything, but it avoids
that annoying red text.

2. Select both the Push cert and the private key (Figure 15.1) and export both
of them as a .p12 bundle. You’ll be asked to create a password to secure the
bundle. That’s a good idea. Make sure you remember this password because
you’ll need it later.

3. Save the .p12 bundle somewhere, and then quit Keychain Access.

FIGURE 15.1 Push cert and

private key

From the Library of Bill Wiecking

ptg6760185

USING MAC OS X SERVER 10.7 171

Setting up push management with Mac OS X Server 10.7 is easier than in earlier
versions. Open the server application, and log into the server running Profile Man-
ager. Select the server in the “Hardware” section, then click the Settings tab. On
the line that reads “Enable Apple push notifications”, click the Edit button. Then,
enter an Apple ID that has an email address attached to it. (The ID itself doesn’t
have to be an email address, it just has to have one associated with it. If you don’t
have an Apple ID, there’s a button there for you to create one.)

At this point, you just enter the required info and click Acquire Certificates.
Assuming your Apple ID is valid, the whole process is completed in about a minute.

Once the certs are acquired, click OK, and select the checkbox to enable push
notifications, and you’re done. Simple as can be.

As it turns out, I already went over this in Chapter 10, “Implementing SCEP on
Mac OS X Server.” So rather than repeat everything here, I’ll refer you back to that
chapter, and the section “Implementing SCEP on Mac OS X Server 10.7.”

USING MAC OS X SERVER 10.7

From the Library of Bill Wiecking

ptg6760185

172 CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER

So, we’ve got our server set up, and we have our copy of Casper. We’ve configured
our firewall correctly and have a push cert, so we’re pretty much good to go.

One of the nicer aspects of Casper is that you don’t have to install and configure
it from the server itself. Casper uses SSH for the installation and configuration
steps. So, if you don’t have easy physical access to the server and don’t want to do
everything via Apple Remote Desktop or VNC, you don’t have to.

1. Mount the Casper disk image, and after reading the documentation (because
you always read the documentation before you start, right?), start the JAMF
Software Server (JSS).

2. Give it the DNS name/IP address of the server you’re installing Casper on,
along with a username and password that have both SSH and administrator
privileges. The JSS setup will think a minute, and then offer you two options:

“Install the JSS with a Distribution Point” and “Install the JSS without a
Distribution Point” (Figure 15.2).

FIGURE 15.2 Distribution point

options

NOTE: We are setting up Casper as a Mobile Device Management

server only. It can actually do quite a bit more, but we can’t cover

the entire breadth of Casper’s services in this book. However,

if you are looking for a framework for managing your Macs

and your iOS devices, Casper is an excellent option.

INSTALLING CASPER ON
MAC OS X 10.6 SERVER

From the Library of Bill Wiecking

ptg6760185

INSTALLING CASPER ON MAC OS X 10.6 SERVER 173

3. Because we’re only interested in Mobile Device Management, choose “Install
the JSS without a Distribution Point.” The JSS Setup Utility will finish the
initial install and open a web browser page that allows you to finish the
setup and manage Casper.

4. Enter your Organization/Company Name and the Activation Code for Casper
(Figure 15.3), followed by the initial administrator account and password
(Figure 15.4).

FIGURE 15.3 Activation code

FIGURE 15.4 Initial JSS admin-

istrator account

NOTE: Just in case you haven’t picked up on it,

Casper and JSS are interchangeable for our purposes.

Technically, JSS is a superset that includes Casper.

From the Library of Bill Wiecking

ptg6760185

174 CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER

5. Enter the URL that clients will use to communicate with Casper (Figure 15.5).
If you don’t have a reason to use a different URL, use the default URL provided.

6. Enter the inventory report frequency (Figure 15.6). I would really like it if
Casper was better able to be set up as just a Mobile Device Management
server or computer management server, and let us pick “never” as an option.
But, since it doesn’t, and we are performing Mobile Device Management
only, set the Computers option to “Configure manually later” and set the
Mobile Devices option to whatever will work best for you.

FIGURE 15.5 JSS URL

FIGURE 15.6 Inventory report

settings

NOTE: Given the Mac OS X Server reliance on DNS, this tip may be redun-

dant, but just in case: You really, really, really want to make sure that the

DNS setup for this server is correct. This DNS name will be used by

devices when they enroll and the URL that you’ll use to manage the

server. Incorrect DNS here will cause a never-ending stream of problems.

From the Library of Bill Wiecking

ptg6760185

INSTALLING CASPER ON MAC OS X 10.6 SERVER 175

7. You’ll have to decide how often you want computers to check for available
policies (Figure 15.7). Since we don’t care in this context, set this to “Con-
figure manually later.” The next option will ask if you want to create login/
logout hooks for computers (Figure 15.8). Again, we don’t care here, so set
this to “Do not create login/logout hooks.”

8. Verify your settings (Figure 15.9) and click Save.

FIGURE 15.7 Policy check

settings

FIGURE 15.8 Login/logout

hook settings

FIGURE 15.9 Final

confirmation and save

From the Library of Bill Wiecking

ptg6760185

176 CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER

With the Casper installation done, you’ll see a page with a list of links that you
can use to set up various features of Casper. You can run these from this page, or
within Casper itself using the Settings page (Figure 15.10).

CONFIGURING LDAP

If you aren’t using LDAP, (that is, Open Directory, Active Directory, or OpenLDAP)
to run your server, you can skip this section.

I highly recommend that you connect Casper to LDAP because it makes some
Mobile Device Management tasks much easier, such as automatically entering
email addresses and user names. Click LDAP Server Connections, and then click
the Add LDAP Server Connection button.

FIGURE 15.10 Casper settings

page

CONFIGURING CASPER FOR
MOBILE DEVICE MANAGEMENT

From the Library of Bill Wiecking

ptg6760185

CONFIGURING CASPER FOR MOBILE DEVICE MANAGEMENT 177

In the wizard that pops up, choose your directory type, and then just do what
the wizard asks. The wizard is straightforward for the most part. Only the attribute
mappings section can be a bit confusing (Figure 15.11).

The mappings don’t much apply to iOS devices, but if you want to correctly
integrate Casper into your LDAP infrastructure, you should set up the mappings by
telling Casper the attributes your LDAP server uses for phone, department, and so
on. You want to do this because not every implementation of LDAP uses the same
attributes for the same data. To set the mappings, click the ellipsis in the row you
want to configure, and select the applicable LDAP attribute (Figure 15.12).

You’ll also be asked to enter two LDAP user group names, which are used to
verify group membership for the users you used to configure the LDAP mappings.
Once that’s done, click Save, and Casper can now talk to your LDAP server.

LDAP MAPPINGS WARNING

If you have no idea what LDAP attribute mappings are, I highly recommend

you leave this setup to someone who understands it, or set it aside until

you understand it. Although Casper won’t actually cause harm if you get the

mappings wrong, you can create some serious confusion for yourself with

incorrect mappings.

FIGURE 15.11 Attribute map-

pings settings

FIGURE 15.12 Sample attribute

mapping

From the Library of Bill Wiecking

ptg6760185

178 CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER

CONFIGURING EMAIL SETTINGS

Since you probably want Casper to email you with various notifications, you’ll
want to set up an SMTP connection. If you don’t care about email notifications,
feel free to skip this section.

1. To set up an SMTP connection for Casper, click General Settings on the
main Casper settings page, and then click SMTP Server.

2. Fill in the settings (Figure 15.13).

3. Click Save. (Kudos to JAMF for handling authenticated SMTP well; it’s not
that common.)

FIGURE 15.13 SMTP settings

From the Library of Bill Wiecking

ptg6760185

CONFIGURING CASPER FOR MOBILE DEVICE MANAGEMENT 179

UPLOADING THE PUSH NOTIFICATION CERTIFICATE

To use the Mobile Device Management functionality of Casper (or any Mobile
Device Management server), you have to install the Push Notification Certificate
you previously downloaded and exported.

1. From the main settings page, click Mobile Device Management Framework
Settings and then click the APNs tab (Figure 15.14).

2. Click the Upload link, and upload the .p12 cert you exported.

3. You’ll also need to enter the password that you created for the .p12 cert
when you exported it.

4. Click Save, and you’re done.

FIGURE 15.14 Completed Push

Notification Certificate install

From the Library of Bill Wiecking

ptg6760185

180 CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER

SETTING UP THE SCEP SERVER

Casper comes with built-in SCEP functionality, or you can use an external SCEP
server. For this section, let’s use the built-in functionality.

Along with SCEP, Casper allows you to use your own certificate authentication
(CA) or use its built-in CA feature. Again, to keep things simple for this section,
we’ll use the built-in CA and other certificate functionality.

1. From the main settings page, click Mobile Device Management Framework
Settings.

2. Click the PKI tab, and then select Use Built-In Certificate Authority
(Figure 15.15).

3. For the subject, type something like CN=My Company’s JSS Mobile Device
Management Signing Certificate.

4. Select a key size (which should be at least 2048), and then enter a keystore
password.

5. Click Save.

FIGURE 15.15 Completed root

CA setup

TIP: Considering how painful SCEP can be to set up

on its own, I recommend setting up this option regard-

less of which Mobile Device Management product you use.

From the Library of Bill Wiecking

ptg6760185

CONFIGURING CASPER FOR MOBILE DEVICE MANAGEMENT 181

You’ll also need to create a Web server cert to secure communications between
the iOS device and the Casper server. One thing to keep an eye on is that if you
have any kind of cert already installed for the web server, even the default cert that
Mac OS X Server creates for you, you can’t have Casper also set up a cert.

In that situation, you’re better off deleting the default installed cert, setting
up Casper, and then creating a new cert if you need one. To set up a web server
cert with Casper:

1. Start up the JSS Setup Utility, connect to the Casper server, and select Web
Application (Figure 15.16).

2. Click the Create JSS CA Signed Certificate button to create the cert.

3. When the setup utility is done, click OK.

FIGURE 15.16 Web Server cert

setup in the JSS Setup Utility

From the Library of Bill Wiecking

ptg6760185

182 CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER

SETTING UP THE INITIAL ENROLLMENT PROFILE

This is the initial MDM profile that is installed on iOS devices when they enroll. To
set this up, from the main settings page, click Mobile Device Management Frame-
work Settings, and then click “Enrollment Process” (Figure 15.17).

There’s not really much you can set up here. You can allow users to enroll without
being invited (there are as many reasons to allow this as not), and have the users
install the Root CA certificate (a good idea.) You can give the login page the device
will see a title and description, and do the same for the profile.

At this point, Casper is basically set up for Mobile Device Management functional-
ity, and you need only set up your configuration profiles and invite devices to enroll.

FIGURE 15.17 Initial MDM

enrollment profile setup

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 183

Casper comes with solid documentation, the kind that I dearly wish more com-
panies would spend time on creating. You can download the main Casper product
documentation from the JAMF site at www.jamfsoftware.com/support/documenta-
tion. You can download additional PDFs, including the all important “Generating
an Apple Push Notification Certificate,” at www.jamfsoftware.com/resources/
pdf-library. I highly recommend perusing those sites, even if you aren’t going to
use Casper. There’s a lot of information that’s useful for any iOS administrator
regardless of the management package in use.

WRAPPING UP

From the Library of Bill Wiecking

www.jamfsoftware.com/support/documentation
www.jamfsoftware.com/support/documentation
www.jamfsoftware.com/resources/pdf-library
www.jamfsoftware.com/resources/pdf-library

ptg6760185

16

LIMITATIONS OF
MOBILE DEVICE
MANAGEMENT

From the Library of Bill Wiecking

ptg6760185

185

It would be pretty remarkable if Mobile

Device Management (MDM) didn’t

have any limitations or weaknesses. It does. But for

the most part, there are no surprises among them. In fact,

only two limitations are worth talking about.

From the Library of Bill Wiecking

ptg6760185

186 CHAPTER 16 LIMITATIONS OF MOBILE DEVICE MANAGEMENT

UNDERSTANDING
INFRASTRUCTURE COMPLEXITY

Of all the ways you can manage iOS devices, Mobile Device Management is the
most complex. It’s also the most powerful, but it’s definitely not simple. It requires
that you have an iOS Enterprise Developer program membership, a server, multiple
levels of certificates, and the freedom to punch some holes in your firewall. (If you
have to deal with network security guardians, this will make them very interested
in your MDM server.)

Mobile Device Management offers LDAP integration, which is really handy; but
again, if you have staffers who manage your directory as their primary jobs, they
will get very interested in your MDM server.

If you choose a cloud-based MDM solution, you have to manage that cloud
relationship, which probably eats up the time you save by not directly managing
a server and firewall. If you want LDAP integration using a cloud-based solution,
depending on the vendor, that integration may be of sufficient complexity to over-
ride any cloud-based convenience gains.

If you use MDM in an SAAS implementation, you’ll be paying for your MDM
service forever, and that fee can increase as you add devices. As a result, you may
have the accounting and legal departments very interested in your MDM server.

You also have to pay a lot more attention to profile management than you would
when using a simpler management setup. Do you have one profile per setting, or
do you just modify one uber-profile? If you have many iOS devices, MDM can get
rather complex as you group devices with differing policies for each group.

From the Library of Bill Wiecking

ptg6760185

UNDERSTANDING INFRASTRUCTURE COMPLEXITY 187

I’ve often observed that when someone gets a tool that suddenly gives him a
lot more capability, he can get a little crazy. Do yourself a favor, avoid getting crazy
with MDM or you may make your life harder than it was before MDM.

Finally, because of the nature of MDM, your ability to customize it is limited
by what your choice of MDM server allows. For some folks, that’s okay, they just
want it to work, and they don’t care if they can twiddle every possible bit. For
others, that’s a huge issue.

From the Library of Bill Wiecking

ptg6760185

188 CHAPTER 16 LIMITATIONS OF MOBILE DEVICE MANAGEMENT

Another potential issue with MDM is that, by design, you can’t lock the root profile
the way you can lock a “normal” configuration profile—that is, a configuration
profile you created in the iPhone Configuration Utility, and distributed via USB
tethering, email, or simple web server download. When using those kinds of con-
figuration profiles, you can effectively prevent the user from removing it without
wiping the device.

However, when using MDM, and this is also by design, you can’t lock down
MDM profiles in the same way. The user can always delete the root MDM profile,
and in doing so, delete any other configuration profiles built on top of the root
profile. This is an MDM design decision made by Apple. If you want it changed,
you’ll have to take it up with them.

You can of course, use “traditional” configuration profiles along with MDM, so
that some settings can’t be changed, but those profiles would have to be installed
using non-MDM methods.

WHADDYA MEAN I CAN’T LOCK THEM?

I’ve tried to find some way to look at Apple’s decision so that even though I don’t agree with it, I can under-

stand it. Unfortunately, I can’t. I really don’t see why you would lock down a configuration profile delivered

via one set of methods, including OTA, so that you have to wipe the device to get rid of it. Yet, that very

same file, when delivered by Mobile Device Management, cannot be locked down in the same way. You can

lock down any individual profile you send out, but if you remove the root Mobile Device Management pro-

file, the other profiles get yanked too, even if you require a passphrase to remove them. They’re both con-

figuration profiles, yet you can lock one and not the other. It’d be like throwing away packages delivered by

FedEx while keeping anything delivered by UPS to the end of time. It doesn’t make sense on any level I can

think about it, yet there it is.

LOCKING MOBILE DEVICE
MANAGEMENT PROFILES

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 189

WRAPPING UP

I’m not trying to scare you away from Mobile Device Management. I do think it’s a
fantastic solution to managing iOS devices. But no solution, none, comes without
its attendant issues. In the long run, or even in the short run, you are better off
knowing about potential issues even if they don’t currently apply to you. Even if
you never have a flood, it is nice to know that you’re in a flood zone.

From the Library of Bill Wiecking

ptg6760185

This page intentionally left blank

From the Library of Bill Wiecking

ptg6760185

191

PART IV

BASIC WIRELESS
APPLICATION
DISTRIBUTION

From the Library of Bill Wiecking

ptg6760185

17

BASIC WIRELESS
APPLICATION
DISTRIBUTION
BACKGROUND
AND SETUP

From the Library of Bill Wiecking

ptg6760185

193

In previous chapters, we’ve talked

about various methods of configur-

ing devices. However, there’s a large part of the iOS

universe beyond configuration: apps, including in-house

enterprise applications and those that are available on the App

Store. So in this and the next few chapters, we’ll explore wireless

application distribution: what’s involved, what’s needed, and some

strategies, both inside and outside of Mobile Device Management.

From the Library of Bill Wiecking

ptg6760185

194 CHAPTER 17 BASIC WIRELESS APPLICATION DISTRIBUTION BACKGROUND AND SETUP

BACKGROUND
AND REQUIREMENTS FOR
WIRELESS APP DISTRIBUTION

The idea seems simple enough: You have n iOS devices and m apps, and you want
to install those apps onto the device. It’s a simple process via USB, but that solution
doesn’t scale well. Using USB and the iPhone Configuration Utility (iPCU) gets old
quick if you have more than a handful of devices.

Clearly, you want to be able to distribute those apps wirelessly; it’s the only
way that makes sense.

WIRELESS BY ANY OTHER NAME

It is important to remember that iOS devices have two flavors of wireless: Wi-Fi and cellular. If you’re using

small apps (in terms of the file size, not functionality), you don’t have to worry. If you’re distributing larger

apps, you may not be able to distribute them over cellular networks. For example, the Apple App Store in

the United States has a 20 MB cap for app downloads. If you want to acquire an app larger than 20 MB, you

have to use Wi-Fi. This is probably not a huge issue in most situations, but it is something to remember if

you start to get complaints from users unable to download a large app via a cell network.

First, you’ll need to be a member of the iOS Developer Enterprise Program. To
do so, you’ll need to have a DUNS, or Dun & Bradstreet Number. (For information
about DUNS, see http://en.wikipedia.org/wiki/Data_Universal_Numbering_System.)
An Enterprise membership will cost you about $300 a year.

Keep in mind that we’re talking about creating and distributing in-house, aka
enterprise, apps, not App Store apps. Because you can’t easily buy those, you’ll need
to have iOS developers on staff or hire them to program your apps. (That seems
obvious, but I’m old enough to remember when people were astonished that you
needed a computer to use either the Internet or Windows 95. So, I try to assume
that the obvious isn’t always obvious.)

Once that’s done, your developers (if they aren’t you) will have to go to the
iOS Portal and create the various distribution certificates and provisioning pro-
files you’ll need. You may also have to register your iOS devices with Apple in the
provisioning portal; you can perform a bulk upload of devices via a tab-delimited
file. Remember that when you provision an in-house application, you provision it
to the device. For that to happen, the device may have to be registered. (Chapter 4
includes more details about this.)

From the Library of Bill Wiecking

http://en.wikipedia.org/wiki/Data_Universal_Numbering_System

ptg6760185

BACKGROUND AND REQUIREMENTS FOR WIRELESS APP DISTRIBUTION 195

I HEARD I HAVE TO REGISTER?!?

The whole “register your device with Apple” thing sounds bad to some; but in my experience, it’s not a big

deal, and it does help prevent J. Random. Malware App from invading your devices. This is a real-world prob-

lem that’s already happened multiple times in Google’s Android app store.

However, the registration requirement applies only to “development” devices, or for people who are not a

part of the Enterprise iOS program. If you are distributing “finished” apps (whatever they are) and you are a

member of the Enterprise iOS program, then you can distribute “finished” apps to an unlimited number of

devices without registering them with Apple. The devices just need the proper provisioning profile installed

and you’re set.

Keep in mind that within the auspices of internal apps, what you choose to call “development” and “fin-

ished” are up to you. Apple offers no hard and fast requirement on this, and doesn’t really seem to care. If

you want to fling betas at your users, that’s entirely up to you. I don’t recommend it, but you can. (Yes, I

agree, this entire thing is a bit confusing. Frankly, Apple doesn’t do a great job of explaining any of it.)

Obviously, you’ll need to have actual apps and their associated provisioning
profiles (or a company profile for all your devices and apps) so that you have some-
thing to distribute. And finally, you’ll need a means to distribute them.

WHAT ABOUT WIRED?

I’m not going into detail about wired app distribution because it’s covered

with regard to the iPhone Configuration Utility (iPCU). This chapter, along

with the next few chapters, are technically about wireless app distribution.

Also, there’s really not much to setting up wired distribution that’s different

from wireless, except you use either iTunes or the iPCU to push the app to

a device. The entire process for iTunes, for example, is described in literally

three sentences and a phrase in four numbered list items in the “Distributing

Enterprise Apps for iOS 4 Devices” doc on the Apple developer site at http://

developer.apple.com/library/ios/#featuredarticles/FA_Wireless_Enterprise_

App_Distribution/Introduction/Introduction.html.

Now that you know the requirements and methods of wireless app distribution,
why don’t we set up a simple distribution server? Fortunately, it’s not that hard to do.

From the Library of Bill Wiecking

http://developer.apple.com/library/ios/#featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html
http://developer.apple.com/library/ios/#featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html
http://developer.apple.com/library/ios/#featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html

ptg6760185

196 CHAPTER 17 BASIC WIRELESS APPLICATION DISTRIBUTION BACKGROUND AND SETUP

First, obviously, you’re going to need a web server, and preferably one that is secure.
I’m of the opinion that if your server will store data you even vaguely care about,
and you don’t want the server turned into a malware zombie, take the extra time
to make it secure. At the very least, use SSL and a userid/password combo. On the
app side, thanks to the way Apple manages in-house app distribution, it’s really
hard to hack an app to install on a device that you haven’t registered.

WHAT ABOUT JAILBROKEN iOS APP DISTRIBUTION?

I’m not trying to be overly snarky here, but for enterprise or in-house app dis-

tribution, I see no need or advantage to jailbreaking an iOS device. You aren’t

going through the Apple App Store, none of their rules apply to you. You

could write an app that uses only private APIs and breaks every rule in the

App Store, but it wouldn’t mean anything because Apple would never see

it. These are your apps distributed to your devices. Therefore, a fundamental

advantage to jailbreaking, being able to install whatever you want on your

devices, doesn’t apply to Enterprise Apps.

So, I don’t see the point of jailbreaking as it applies to iOS devices in the

enterprise. Given the threat of malware and other problems from random

applications, jailbreaking isn’t a good choice for any IT person worth her salt.

If that’s the route you want to go, I recommend searching Google or Bing for

more information.

Obviously, all your iOS Enterprise Developer setup must be done, including
acquiring distribution certificates, provisioning profiles, and so on. You’ll also
need (just as obviously) an app in an .ipa format and an XML manifest (which I’ll
get into in just a moment). Finally, you need to ensure that any device using this
server to download and install apps can also get to http://ax.init.itunes.apple.com
and http://ocsp.apple.com. The first site handles file size limitation if the device is
connecting to the server via cellular network, and the second verifies the validity
of the distribution certificate and the provisioning profile.

APP DISTRIBUTION SERVER

REQUIREMENTS

From the Library of Bill Wiecking

http://ax.init.itunes.apple.com
http://ocsp.apple.com

ptg6760185

PREPARING THE APP 197

There’s not much to explain here, but let’s go through the process anyway. So, I
created an iPad app that does nothing. Well, it has text. (Seriously, what I know
about Objective C, other than how to spell it, is that it’s based on C and has the
word “Objective” in it.) But, we don’t care about what the app does, just how to set
it up and distribute it. So we’ll use our do-nothing app.

1. Archive the app so that it appears in the Organizer. (This is all in Xcode 4,
by the way.)

2. Click the Share button (Figure17.1).

3. Make sure that Contents is set to iOS App Store Package (.ipa), and that your
iPhone Distribution identity is enabled (Figure 17.2).

FIGURE 17.1 Xcode Organizer

FIGURE 17.2 Sharing options

PREPARING THE APP

From the Library of Bill Wiecking

ptg6760185

198 CHAPTER 17 BASIC WIRELESS APPLICATION DISTRIBUTION BACKGROUND AND SETUP

4. Make sure you enable the “Save for Enterprise Distribution” checkbox, and
then click Next and save your app. This opens a new part of the save dialog
(Figure 17.3) with fields for the application URL (the path to the .ipa file),
the title and subtitle for the app URL, a link to a large (512 × 512 pixel) app
image, and a link to a small (57 × 57 pixel) app image. There’s also an option
to add a shine effect to the images.

5. Click Save. When you’re done saving, you’ll see that two files were created:
the app’s .ipa file, and a corresponding .plist file. The .plist file is just an
XML file that contains the parameters you entered when you saved the app
in the Xcode Organizer.

6. Copy the app and the .plist file to the desired location on your web server.
See the following sample for an idea of what one .plist file looks like:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN”
p“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

FIGURE 17.3 Enterprise distri-

bution save options

From the Library of Bill Wiecking

ptg6760185

PREPARING THE APP 199

<dict>

 <key>items</key>

 <array>

 <dict>

 <key>assets</key>

 <array>

 <dict>

 <key>kind</key>

 <string>software-package</string>

 <key>url</key>

 <string>https://aserver.com/apptest/testapp.ipa
p</string>

 </dict>

 <dict>

 <key>kind</key>

 <string>full-size-image</string>

 <key>needs-shine</key>

 <false/>

 <key>url</key>

 <string>https://aserver.com/apptest/
pambipadbackgroundlarge.png</string>

 </dict>

 <dict>

 <key>kind</key>

 <string>display-image</string>

 <key>needs-shine</key>

 <false/>

 <key>url</key>

From the Library of Bill Wiecking

ptg6760185

200 CHAPTER 17 BASIC WIRELESS APPLICATION DISTRIBUTION BACKGROUND AND SETUP

 <string>https://aserver.com/apptest/
pambipadbackgroundsmaller.png</string>

 </dict>

 </array>

 <key>metadata</key>

 <dict>

 <key>bundle-identifier</key>

 <string>com.bynkii.testapp</string>

 <key>bundle-version</key>

 <string>1.0</string>

 <key>kind</key>

 <string>software</string>

 <key>subtitle</key>

 <string>A Test App</string>

 <key>title</key>

 <string>Test App</string>

 </dict>

 </dict>

 </array>

</dict>

</plist>

There’s really not much to the .plist. You’ve got the dict that describes the .ipa
as a software package and passes the URL to the .ipa file. You’ve got the URLs to
the two image files with the shine option settings. And finally, you’ve got some
application metadata-like bundle-identifier, version, kind, and so on.

After you’ve saved the .ipa and the .plist files out of the Xcode Organizer and
copied them to the desired location on your web server, you’re ready to build the
page that will have the links needed to install the app on your iOS device.

From the Library of Bill Wiecking

ptg6760185

ACCESSING THE APP DISTRIBUTION WEB PAGE 201

You really need only one thing here: the app URL. All the rest of your effort depends
on how much work you want to do to make it look pretty.

The URL itself is a single line:

<a href=”itms-services://?action=download-manifest&url=
phttp://odserver3.zimmerman.com/apptest/testapp.plist”>
pInstall Test App

Notice that this URL doesn’t link to the .ipa file, but to the .plist file. That’s not a
mistake, that’s how this works. Remember that the .plist file not only has the URLs
for the .ipa file, but also for the image files you’ll need. Also, even though the href
points to “itms-services,” the iTunes store isn’t involved.

That’s really all you need to allow a device to download this app: the one link
and the files, of course. Once those are in place, people just navigate to the page
and tap the URL to install the app.

ACCESSING THE APP
DISTRIBUTION WEB PAGE

From the Library of Bill Wiecking

ptg6760185

202 CHAPTER 17 BASIC WIRELESS APPLICATION DISTRIBUTION BACKGROUND AND SETUP

As I said, the web page can be as pretty or as stark as your needs and environment
dictate. All that has to be there is the correct link (Figure 17.4).

1. When you tap the link, a dialog appears stating that <server> would like to
install <App name> (Figure 17.5).

2. Tap Install to start the download and installation. You’ll be taken to the device’s
home screen, where you’ll see the customary loading icon (Figure 17.6).

3. When the installation is completed, you’ll see a standard iOS app icon, ready
to be tapped and opened (Figure 17.7).

4. The first time you run the app, a dialog appears (Figure 17.8) asking if you
really want to do that (something I appreciate, even though given the process,
it’s probably unnecessary).

5. Tap Continue to start the app, and you’re off and running.

WRAPPING UP

See? There’s really not much to the infrastructure here. Honestly, most of the work
is in Xcode, and the server part of it is dead simple. In the next chapter, we’ll look
at doing this using Mobile Device Management.

FIGURE 17.4 Simple page with

app installation link

INSTALLING THE APP

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 203

FIGURE 17.5 Installation

request dialog

FIGURE 17.8 First-run dialog

FIGURE 17.6 Application loading FIGURE 17.7 Application installed

From the Library of Bill Wiecking

ptg6760185

18

WIRELESS
DISTRIBUTION
USING MOBILE
DEVICE
MANAGEMENT

From the Library of Bill Wiecking

ptg6760185

205

Chapter 17 looked at simple wireless

app distribution using just a web server,

but that method has some issues. First, the users have

to do most of the work: going to the website, downloading the

apps, and installing them. Second, it’s hard for you to determine

if the app was installed. Although Mobile Device Management

(MDM) doesn’t solve every app distribution problem, it does make

managing apps easier, as you’ll see in this chapter. (As always, all

examples use Casper by JAMF.)

From the Library of Bill Wiecking

ptg6760185

206 CHAPTER 18 WIRELESS DISTRIBUTION USING MOBILE DEVICE MANAGEMENT

PERFORMING THE INITIAL SETUP

MDM doesn’t make all your prerequisites disappear. You’ll still need an iOS Devel-
oper Enterprise account; you’ll still need provisioning profiles, and so on. But, MDM
does simplify parts of this process.

Initially, you’ll need to set up the provisioning profile for your company under
Provisioning in the iOS Provisioning Portal. Then, you’ll download the profile and
install it in your Mobile Device Management server (Figure 18.1).

Then you’ll save the app out of Xcode, just as you did in Chapter 17, and add it
to your MDM server (Figure 18.2).

WHAT ABOUT MAC OS X SERVER 10.7?

Please note that there is no specific mention of Mac OS X Server 10.7 in this

wireless distribution chapter because, to the best of my ability, Apple doesn’t

actually support wireless in Mac OS X Server 10.7. This makes some sense

because as of iOS 4.x, you can’t actually push apps to iOS devices. The best

you can do is set up a web site from which devices can pull apps (which

is how Casper does it). Future versions of iOS may change that, or Apple

may support pushing apps in the future. For now, there’s nothing in Profile

Manager or Mac OS X Server 10.7 for doing so. With Server 10.7, you’re on

your own.

FIGURE 18.1 Installed Team

Provisioning Profile

FIGURE 18.2 Choosing to

install an in-house app

From the Library of Bill Wiecking

ptg6760185

PERFORMING THE INITIAL SETUP 207

When you upload the app, you’ll need to set up some basic information such
as the app name, bundle ID, version, and description. The MDM server also allows
you to upload the icon you’ll use for the app when distributing it to users.

You’ll then upload the app’s .ipa file and select the correct provisioning profile
to use. Set the scope, or range, of iOS devices that can access this app, and then
click Save (Figure 18.3).

When you save, the provisioning profile, but not the app, will be uploaded to
all devices in the device scope you set (Figure 18.4).

FIGURE 18.3 Information for

the in-house app

FIGURE 18.4 Provisioning pro-

file installed on the device

From the Library of Bill Wiecking

ptg6760185

208 CHAPTER 18 WIRELESS DISTRIBUTION USING MOBILE DEVICE MANAGEMENT

When the setup is done, the installation can proceed in several ways. In Casper’s
case, it installs a self-service web application on each iOS device you enroll. Tap-
ping that web application takes you to a webpage that lists available in-house
apps, links to App Store apps, and displays updates to in-house apps (Figure 18.5).

Tapping the app icon displays the option to install the app and some informa-
tion about it (Figure 18.6).

FIGURE 18.5 In-house avail-

able app listing

FIGURE 18.6 In-house app

ready to install

NOTE: I have no ability to write Objective-C code. This app does

nothing but take up space and allow me to install and remove

something for the applicable chapters in this book. As you’ll see

later in this chapter, I have no color sense either.

INSTALLING THE APP

From the Library of Bill Wiecking

ptg6760185

INSTALLING THE APP 209

Tapping Install displays the same “<server name> would like to install <app
name>” dialog (Figure 18.7) that you see when you wirelessly install any in-house
app. Install the app, and you’re ready to go.

You may be wondering, “So what? All this has done is save me some work
installing provisioning profiles and creating my own webpage.” Well, that’s partially
correct. But the MDM server lets you do one thing that a home-built distribution
method can’t (at least not as easily): You can check to see if the app has actually
been installed (Figure 18.8). That’s kind of important, and an MDM server is well-
suited to letting you know not only if the app has been installed, but which version
(which is handy when you have to update the app).

So while this distribution method can’t give you the same installation confidence
that you get from pushing an app, a decent MDM server does a good job of helping
you figure out who’s installed what app and which version.

FIGURE 18.7 In-house app

installed

FIGURE 18.8 Inventory for

device showing in-house app

installed with version number

From the Library of Bill Wiecking

ptg6760185

210 CHAPTER 18 WIRELESS DISTRIBUTION USING MOBILE DEVICE MANAGEMENT

The initial app install is only part of the story. At some point, you’re going to
update that app, and you’ll want to distribute it as easily as you distributed the
initial version. MDM also makes this easy. In our example, we’ve made a minor,
yet somewhat terrifying update to our app that we want to inflict upon the users.

To update the app, go into your MDM server and choose to edit the app you have
uploaded. Then upload a new .ipa file, maybe a new icon, and change the version
number. (You could also change the icon file and even the app name, if you’d like.)

The important thing not to change is the Bundle ID, which allows the MDM
server to identify this change as an update to an existing app and not a completely
new app (Figure 18.9).

By retaining the Bundle ID, the new app version installs over the old one, so
you won’t have two versions of the same app on every device in your company.
That could be a bit confusing.

When you go back into Casper’s self-service web application, you’ll find an
update available (Figure 18.10).

Install the update, and you go from an old boring app that (in this case) doesn’t
do anything (Figure 18.11) to an equally unproductive but new, exciting, colorful
version (Figure 18.12).

FIGURE 18.9 Setting up

updates to an in-house app

NOTE: I sincerely hope that the iOS developers you

work with have more sane color preferences than I do.

UPDATING AN APP

From the Library of Bill Wiecking

ptg6760185

UPDATING AN APP 211

FIGURE 18.10 Available

in-house app updates listing

FIGURE 18.11 Version 1.0 of

Test App

FIGURE 18.12 Version 1.1 of

Test App

From the Library of Bill Wiecking

ptg6760185

212 CHAPTER 18 WIRELESS DISTRIBUTION USING MOBILE DEVICE MANAGEMENT

Wouldn’t it be nice if you could manage App Store apps the same way you manage
in-house apps? Say you found an App Store app that’s really useful. Wouldn’t you
like to buy a license for every iOS device in your company, and enable your users
to install it quickly and easily? That would be awesome.

Well, if you’re in education, you’re set. Apple has an App Store Volume Purchase
Plan (VPP) just for you. Literally. Just for education. It allows you to buy multiple
copies of an app and generate app purchase codes. You distribution the codes to
your users, who then go to the App Store, redeem the codes, and install the app.
Life is good. If you’re not in education, well, you can’t do that. Life isn’t as good.

You can do some things to streamline App Store app management using your
MDM server. You can create links to App Store apps that users can then use to
simplify the installation process.

The procedure for setting this up is similar to setting up in-house apps (depend-
ing on your MDM server).

Set up your Mobile Device Management server to create a link to an App Store
app. Enter the name of the app, and the country of the App Store you want to use
(Figure 18.13).

EDUCATION ONLY? REALLY?

I understand that educators, especially in grades K–12, have special needs that don’t apply to the business

world. For example, I rarely have a lot of five-year-old users. Or 12-year-olds, for that matter. But, you and I

and anyone running multiple iOS devices regularly has to face the tedium of installing the same App Store

app on multiple iOS devices. Something like the VPP would be perfect for us. But it’s education-only. Sigh.

FIGURE 18.13 Setting up a link

to an App Store app

FIGURE 18.14 Final informa-

tion for link to App Store app

MANAGING APP STORE APPS

From the Library of Bill Wiecking

ptg6760185

MANAGING APP STORE APPS 213

The MDM server will search the App Store for the app name and give you a
list of results.

Pick the app you want to use, and the MDM server will pull down the actual
app name, version, icon, and App Store URL (Figure 18.14).

Set up the scope of iOS devices allowed to access this link, and click Save.
When the user opens up the self-service web application, he’ll see the app you

set up in the App Store section (Figure 18.15).
Tapping the app icon will take the user to the app’s entry in the App Store,

where he can install it (Figure 18.16).

FIGURE 18.15 Available App

Store app listing

FIGURE 18.16 The app’s page

in the App Store as displayed

on the iOS device

From the Library of Bill Wiecking

ptg6760185

214 CHAPTER 18 WIRELESS DISTRIBUTION USING MOBILE DEVICE MANAGEMENT

The method described in this chapter isn’t much of an improvement, but at least it
lets you present a list of App Store apps for your users, and you can use your MDM
server’s inventory features to see if they’ve installed the app.

WRAPPING UP

From the Library of Bill Wiecking

ptg6760185

This page intentionally left blank

From the Library of Bill Wiecking

ptg6760185

19

ISSUES WITH
WIRELESS APP
DISTRIBUTION

From the Library of Bill Wiecking

ptg6760185

217

As with all technical conveniences,

there are some issues to consider with

wireless app distribution that may not make it the

ideal solution for your environment.

From the Library of Bill Wiecking

ptg6760185

218 CHAPTER 19 ISSUES WITH WIRELESS APP DISTRIBUTION

CONSIDERING INFRASTRUCTURE

Obviously, to set up wireless app distribution, you have to deal with infrastructure
issues. You’ll need, at the very least, a web server. Whether you use a cloud service,
(in this case, I mean a cloud-based web server such as those provided by Media-
Temple or Rackspace), or you maintain the server internally, it’s still another web
server—even if it’s a virtual host on an existing web server. You’ll need to address
security issues for that server, including access control, versions, patching, and all
the other stuff that makes running a server so very much fun.

If you’re going to allow server access from outside your network, you’ll have
another layer of fun. Will you allow only SSL access to the server, or does your
situation require some form of VPN connection? Are you going to tie your server
into your existing directory service infrastructure, or maintain a separate authen-
tication database specifically for this server?

If you’re using Mobile Device Management (MDM), some of these issues are
already resolved, but as Chapter 16 pointed out, MDM adds its own layers of com-
plexity to your network.

Oh, and there’s also the requirement that certain Apple servers be accessible
to install the apps. If your distribution server is outside of your network, that
requirement isn’t a big deal, but if that server is inside your network, you may be
facing a bigger deal than you anticipated.

From the Library of Bill Wiecking

ptg6760185

ADDING ISSUES FOR DEVELOPERS 219

iOS developers will have even more steps added to the setup process because
readying the application for distribution now involves incorporating web server
data and creating extra copies of icon files. There’s also a development cost in terms
of the app distribution interface offered to users. Do you just show them a page of
assorted links, or like Casper, do you separate out new apps and app updates to
individual pages? The latter is obviously nicer for users, and highly recommended;
but, it increases the complexity of interacting with the server on the back end.

If you have separate iPhone/iPod Touch and iPad apps, do you leave navigation
between those versions up to the user? Do you try to sniff out which device is in
use so that the user sees only those apps that she can run? Again, the former is
easier on you but adds to the number of “Oops, I installed the wrong app” calls.
The latter is easier on the users but harder on IT.

ADDING ISSUES FOR DEVELOPERS

From the Library of Bill Wiecking

ptg6760185

220 CHAPTER 19 ISSUES WITH WIRELESS APP DISTRIBUTION

Then there’s the Apple App Store issue. Do you try to provide links to “approved”
apps on your distribution server, or do you just rely on the users to install those?
What if they need to pay for those apps? Do they do so using a company account
that’s the same on every device, or do they use their own accounts? This situation
becomes even more fun if you are trying to restrict the App Store apps that they
can install on their devices. Restricting app installs requires a binary setting at
present, so if you disallow free installation of apps, wireless app distribution gets
really . . . well, interesting from a management point-of-view.

What if you have to delete an app? MDM servers such as Casper make parts of
this process easy, like removing the provisioning profile, and removing the app from
the self-service web clip. But reaching out and removing apps from iOS devices is
not something that anyone (but maybe Apple) can do.

DELETING YOUR OWN STUFF

I hope Apple pays attention to this area in the next major version of iOS. Yes,

I can see why they might not want to allow you to just delete <random app>

from a device; but, for enterprise apps, it is silly to not allow users to quickly

and easily remove enterprise apps from devices belonging to the company.

Of course, if the company is paying for an App Store app, even on a personal

device, when that person leaves the company, it should be possible for the

company to remove (only) the apps that the company paid for. This is why

a solution like the VPP for enterprise would be a good thing. It could enable

better management of devices so that company-purchased apps or com-

pany-written apps could be proactively and positively removed from devices

as necessary.

ADDRESSING APP MANAGEMENT

From the Library of Bill Wiecking

ptg6760185

WRAPPING UP 221

WRAPPING UP

I really, really don’t want to scare anyone away from wireless app distribution. Hav-
ing had to distribute apps the other way, serving remote users in less than stellar
conditions, I don’t even think this is a scaling issue. For in-house apps, wireless
distribution is absolutely better, as far as I’m concerned.

But, wireless app distribution does bring issues that must be managed and dealt
with, whether you want to or not. It’s better to think about them and plan for them
before you try to roll out a distribution server (or worse, a few months after you’ve
rolled out that server). Wireless app distribution is awesome, and it’d be a shame
not to use it because of some picayune issue that could have been handled before
the process blew up in your face.

From the Library of Bill Wiecking

ptg6760185

222 INDEX

INDEX

A
Absolute Manage, 114, 129–131
ADCS (Active Directory Certificate Services)

role, 127–128
Advanced settings, Configuration Profiles

section, iPCU, 49
Afaria (Sybase), 114
Amazon’s S3 service, 91
AnyConnect settings, Cisco, SCEP

implementation, 138–139
Apple Push Notification Certificate

Casper, 114, 179
MDM (Mobile Device Management),

169–170
Apple Push Notification Server, 168
Apple Push Notification Service, 150
AppleScript

basics, 64
configuration profile class, 66–75
dictionary, 65
display dialog/dialog reply, 70–71
elements, 66–67
properties, 66–75
records, 66–73
repeat loops, 73
resources, 64
script editors, 65
scripting iPCU, 65–76

CalDAV payload, 68–69, 72, 75
email payload, 68–69, 71, 75
restrictions payload, 67, 69, 71, 75

tell blocks, 64, 66–76
theProfile, 66–76
user names, 68–75

AppleScript Editor (Mac OS X 10.6), 65
AppleScriptObjC and Cocoa APIs, 58
AppleScript Users’ email list, 64
Apple Training Series: AppleScript 1-2-3, 64
applications

iTunes, 5
MDM (Mobile Device Management),

162–163
OTA (over-the-air) distribution, 96
wireless distribution

App Store issues, 220
developer issues, 219
with MDM (Mobile Device

Management), 206–213, 218
with web servers, 194–200, 201, 218

Applications section, iPCU, 15–16, 25–27
App Store products

versus enterprise apps, 19
removing, 27
wireless app distribution

issues, 220
managing, 212–213

ASA devices, Cisco, SCEP implementation,
137, 140

authentication, SCEP, 102–103

B–C
Bucket Explorer (S3 service), 91

CA (Certificate Authority), 60
Casper, 114, 180

CalDAV
Configuration Profiles section, iPCU, 44
iTunes, 7

calendars
CalDAV, 7, 44
syncing with iTunes, 6–7

CardDAV
Configuration Profiles section, iPCU, 45
iTunes, 7
MDM (Mobile Device Management), 161

Casper (JAMF Software)
MDM (Mobile Device Management), 113,

116–117, 176–182
Apple Push Notification Certificate, 179
email settings, 178
initial enrollment profile, 182
LDAP (Lightweight Directory Access

Protocol), 176–177
Mac OS X Server 10.6, 113–118, 172–175

SCEP (Simple Certificate Enrollment
Protocol) server, 113–118, 180–181

wireless app distribution
initial setup, 206–207

From the Library of Bill Wiecking

ptg6760185

INDEX 223

installing apps, 208–209
managing App Store apps, 212–213
updating apps, 210–211

certificates
Apple Push Notification Certificate, 114,

169–170
CA (Certificate Authority), 60
CSR (certificate signing request), 103–106
MDM (Mobile Device Management),

162–163
SCEP (Simple Certificate Enrollment

Protocol), 103–106
Casper, 114, 116, 118
Mac OS X Server 10.6, 112
Mac OS X Server 10.7, 119–123
Windows Server 2008, 126–130

Cheeseman, Bill, 64
Cisco

IOS (Internetwork Operating System)
versus iOS, 135

SCEP implementation
AnyConnect settings, 138–139
ASA devices, 137, 140
overview, 137
testing, 141

Cocoa APIs, 58
configuration profiles

AppleScript programming language
basics, 64
configuration profile class, 66–75
dictionary, 65
display dialog/dialog reply, 70–71
elements, 66–67
iPCU scripting, 65–76
iPCU scripting, CalDAV payload, 68–69,

72, 75
iPCU scripting, email payload, 68–69,

71, 75
iPCU scripting, restrictions payload, 67,

69, 71, 75
properties, 66–75
records, 66–73
repeat loops, 73
resources, 64

script editors, 65
tell blocks, 64, 66–76
theProfile, 66–76
user names, 68–75

disadvantages, 146
installing

email method, 84–87
tethered method, 82–83

MDM (Mobile Device Management),
149–150

CardDAV, 161
inventory, 162–163
with MDM versus without MDM, 160

.mobileconfig file
basics, 52–54
NSData blob, 58
payload sections, 55–58

OTA (over-the-air) distribution
with SCEP, 100–107
from web servers, 90, 94–95
from web servers, Amazon’s S3

service, 91
from web servers, server setup, 92–93

signing/encrypting profiles, 60
Configuration Profiles section, iPCU, 15–17

Advanced settings, 49
CalDAV settings, 44
CardDAV settings, 45
Credentials settings, 48
EAS (Exchange ActiveSync) settings,

38–40
Email settings, 37–38
General settings, 30–32
LDAP (Lightweight Directory Access

Protocol) settings, 41–43
MDM (Mobile Device Management)

settings, 49
Passcode settings, 33
Restrictions settings, 34
SCEP (Simple Certificate Enrollment

Protocol) settings, 48
VPN settings, 36
Web Clips settings, 47
Wi-Fi settings, 35

From the Library of Bill Wiecking

ptg6760185

224 INDEX

contacts
CardDAV/LDAP, 7
CardDAV settings, 45
syncing with iTunes, 6–7

Credentials settings, Configuration Profiles
section, iPCU, 48

CSR (certificate signing request), 103–106

D
data storage on personal devices

encryption recommended, 5
security risks, 4

Devices section, iPCU, 15, 17
<dict></dict> blocks, 53–54, 59
distribution profiles, 24

E
EAS (Exchange ActiveSync) settings,

Configuration Profiles section, iPCU,
38–40

email
Casper, 178
email payload, scripting iPCU, 68–69,

71, 75
Email settings, Configuration Profiles

section, iPCU, 37–38
installing configuration profiles, 84–87
syncing with iTunes, 6–7

Enterprise Deployment Guide, 57
Exchange ActiveSync (EAS) settings,

Configuration Profiles section, iPCU,
38–40

F–H
firewall planning, MDM (Mobile Device

Management), 168

General settings Configuration Profiles
section, iPCU, 30–32

Gmail and Path Prefix settings, 38
Good, 114
Google’s Exchange ActiveSync, 38

I
IIS (Internet Information Services), 127, 129
IMAP

Configuration Profiles section, iPCU,
39–40

versus POP standards, 39–40
iTunes, 7–8

iOS Developer Enterprise Program,
registration of devices, 20

iOS versus IOS Cisco (Internetwork
Operating System), 135

iPad
IMAP versus POP standards, 8
profiles, installing, 83

iPCU (iPhone Configuration Utility)
Applications section, 15–16

applications, installing/uninstalling,
25–27

App Store products, removing, 27
App Store products, versus enterprise

apps, 19
Configuration Profiles section, 15–17

Advanced settings, 49
CalDAV settings, 44
CardDAV settings, 45
Credentials settings, 48
EAS (Exchange ActiveSync) settings,

38–40
Email settings, 37–38
General settings, 30–32
LDAP (Lightweight Directory Access

Protocol) settings, 41–43
MDM (Mobile Device Management)

settings, 49
Passcode settings, 33
profiles, installing, 82–87
profiles, locking, 188
profiles, scripting with AppleScript,

63–76
Restrictions settings, 34
SCEP (Simple Certificate Enrollment

Protocol) settings, 48
VPN settings, 36

From the Library of Bill Wiecking

ptg6760185

INDEX 225

Web Clips settings, 47
Wi-Fi settings, 35

Devices section, 15, 17
installing/uninstalling apps and

profiles, 25–27
uploading multiple devices, 22–24

disadvantages, 146
versus iTunes device management, 13
platforms supported, 14
Provisioning Profiles section, 15

applying distribution profiles, 24
installing provisioning profiles, 21,

25–27
resources, 14
summary section, 15

iPhone
IMAP versus POP standards, 8
manual device settings, 9
NDES/Windows Server 2008 problem, 128

iPhone Business Resources page (Apple.
com), 14

iPhone Configuration Utility (iPCU)
Applications section, 15–16

applications, installing/uninstalling,
25–27

App Store products, removing, 27
App Store products, versus enterprise

apps, 19
Configuration Profiles section, 15–17

Advanced settings, 49
CalDAV settings, 44
CardDAV settings, 45
Credentials settings, 48
EAS (Exchange ActiveSync) settings,

38–40
Email settings, 37–38
General settings, 30–32
LDAP (Lightweight Directory Access

Protocol) settings, 41–43
MDM (Mobile Device Management)

settings, 49
Passcode settings, 33
profiles, installing, 82–87
profiles, locking, 188

profiles, scripting with AppleScript,
63–76

Restrictions settings, 34
SCEP (Simple Certificate Enrollment

Protocol) settings, 48
VPN settings, 36
Web Clips settings, 47
Wi-Fi settings, 35

Devices section, 15, 17
installing/uninstalling apps and

profiles, 25–27
uploading multiple devices, 22–24

disadvantages, 146
versus iTunes device management, 13
platforms supported, 14
Provisioning Profiles section, 15

applying distribution profiles, 24
installing provisioning profiles, 21,

25–27
resources, 14
summary section, 15

iPhone Support—Enterprise page (Apple.
com), 14

iTunes
application management, 5
data storage on personal devices

encryption recommended, 5
security risks, 4

device management, 5–8
versus iPCU, 13
limitations, 4
manual device settings, 9

device summary settings, 5
OTA (over-the-air) connections

unavailable, 4
SMB (small-to-medium businesses)

configuration, 4
SOHO (small office/home office)

configuration, 4
syncing

calendar and contacts accounts, 6–7
email accounts, 6–7

USB connection, 4

From the Library of Bill Wiecking

ptg6760185

226 INDEX

J
JAMF Software’s Casper

MDM (Mobile Device Management), 113,
116–117, 176–182

Apple Push Notification Certificate, 179
email settings, 178
initial enrollment profile, 182
LDAP (Lightweight Directory Access

Protocol), 176–177
Mac OS X Server 10.6, 113–118, 172–175

SCEP (Simple Certificate Enrollment
Protocol) server, 113–118, 180–181

wireless app distribution
initial setup, 206–207
installing apps, 208–209
managing App Store apps, 212–213
updating apps, 210–211

JSS Setup Utility, 181

K–L
keys, PKI (Public Key Infrastructure), 107

LANRev. See Absolute Manage
Late Night Software’s Script Debugger, 65
LDAP (Lightweight Directory Access

Protocol)
Casper, 176–177
Configuration Profiles section, iPCU,

41–43
iTunes, 7

M
Mac OS X Server 10.6

MDM (Mobile Device Management),
172–175

SCEP (Simple Certificate Enrollment
Protocol), 112–113

Mac OS X Server 10.7
MDM (Mobile Device Management), 171
SCEP (Simple Certificate Enrollment

Protocol), 119–123
wireless app distribution, 206

MacScripter, 64
MDM. See Mobile Device Management
.mobileconfig file

basics, 52–54
NSData blob, 58
payload sections, 55–58
scripting with AppleScript, 64–76
signing and encrypting, 60

Mobile Device Management (MDM)
advantages, 154
Apple Push Notification Service, 150
Casper, 113, 116–117

Apple Push Notification Certificate, 179
email settings, 178
initial enrollment profile, 182
LDAP (Lightweight Directory Access

Protocol), 176–177
Mac OS X Server 10.6, 172–175
SCEP server, 180–181

complexity, 186–187
configuration profiles, 149–150

CardDAV, 161
device inventory/information-

gathering, 162–163
locking, 188
with MDM versus without MDM, 160

initial enrollment, 148
iPCU, Configuration Profiles section

settings, 49
overview, 147
passcodes, 155–160
servers

advantages/disadvantages of running
own server, 166

Apple Push Notification Certificate,
169–170

Apple Push Notification Server, 168
Casper, 176–182
firewall planning, 168
Mac OS X Server 10.6, 172–175
Mac OS X Server 10.7, 171
size, 167

Windows Server 2008, SCEP
implementation, 129–131

From the Library of Bill Wiecking

ptg6760185

INDEX 227

wireless app distribution
infrastructure considerations, 218
initial setup, 206–207
installing apps, 208–209
managing App Store apps, 212–213, 220
updating apps, 210–211

N–O
NDES (Network Device Enrollment Service),

127–128
NSData blob, 58

Objective-C and Cocoa APIs, 58
Open Directory implementation, 122–123
OTA (over-the-air) distribution

applications, 96
configuration profiles

with SCEP, 100–107
from web servers, 90, 94–95
from web servers, Amazon’s S3

service, 91
from web servers, server setup, 92–93

disadvantages, 146
unavailable, 4

P–Q
passcodes

MDM (Mobile Device Management),
155–160

Passcode settings, Configuration Profiles
section, iPCU, 33

Path Prefix and Gmail settings, 38
PayloadDescription key, 54
PayloadRemovalDisallowed, 53–54
PayloadType key, 52, 55, 57
Payload UUID (universally unique

Identification) number, 53–55, 57
PKI (Public Key Infrastructure), 107
POP versus IMAP standards

Configuration Profiles section, iPCU, 37
iTunes, 7–8

private keys, 107

Profile Manager service, Mac OS X Server
10.7

SCEP (Simple Certificate Enrollment
Protocol), 119, 122–123

wireless app distribution, 206
provisioning profiles

installing, 21, 25–27
wireless apps, 206–207

provisioning portal, 20–21, 206
registering devices, 195

iOS Developer Enterprise Program,
20, 195

iOS Developer Program, 20
Provisioning Profiles section, iPCU, 15

applying distribution profiles, 24
installing provisioning profiles, 21

Public Key Infrastructure (PKI), 107
public keys, 107
Python and Cocoa APIs, 58

R
registering devices, 195

iOS Developer Enterprise Program,
20, 195

iOS Developer Program, 20
RemovalPassword key, 54
Restrictions settings, Configuration Profiles

section, iPCU, 34
Ruby and Cocoa APIs, 58

S
S3 service (Amazon), 91
SCEP (Simple Certificate Enrollment

Protocol)
background and basics, 100–101
Casper, 113–118
Cisco

AnyConnect settings, 138–139
ASA devices, 137, 140
overview, 137
testing, 141

From the Library of Bill Wiecking

ptg6760185

228 INDEX

SCEP (continued)
configuration profiles

authentication, 102–103
certificate enrollment, 103–106
encryption, 60, 107

disadvantages, 146
iPCU, Configuration Profiles section

settings, 48
Mac OS X Server 10.6, 112–113
Mac OS X Server 10.7, 119–123
OpenSCEP, 113
security difficulty, 136
SSL (Secure Sockets Layer), 136
Windows Server 2008

Absolute Manage, 129–131
ADCS (Active Directory Certificate

Services) role, 127–128
Certification Authority, 127
IIS (Internet Information Services),

127, 129
MDM (Mobile Device Management)

server, 129–131
NDES (Network Device Enrollment

Service), 127–128
SCEP (Simple Certificate Enrollment

Protocol) server, Casper, 180–181
Script Debugger (Late Night Software), 65
Script Editor (Mac OS X early versions), 65
Simple Certificate Enrollment Protocol

(SCEP)
background and basics, 100–101
Casper, 113–118
Cisco

AnyConnect settings, 138–139
ASA devices, 137, 140
overview, 137
testing, 141

configuration profiles
authentication, 102–103
certificate enrollment, 103–106
encryption, 60, 107

disadvantages, 146

iPCU, Configuration Profiles section
settings, 48

Mac OS X Server 10.6, 112–113
Mac OS X Server 10.7, 119–123
OpenSCEP, 113
security difficulty, 136
SSL (Secure Sockets Layer), 136
Windows Server 2008

Absolute Manage, 129–131
ADCS (Active Directory Certificate

Services) role, 127–128
Certification Authority, 127
IIS (Internet Information Services),

127, 129
MDM (Mobile Device Management)

server, 129–131
NDES (Network Device Enrollment

Service), 127–128
SMB (small-to-medium businesses)

configuration, 4
Soghoian, Sal, 64
SOHO (small office/home office)

configuration, 4
Standard Additions, 65

display dialog/dialog reply, 70–71
Sybase’s Afaria, 114
syncing with iTunes

calendar and contacts accounts, 6–7
email accounts, 6–7

T–V
tell blocks, 64, 66–76
tethered installation of configuration

profiles, 82–83

USB connection, 4
uuidgen utility, 53–54
UUID (universally unique identification)

numbers, 53–54

VPN settings, Configuration Profiles section,
iPCU, 36

From the Library of Bill Wiecking

ptg6760185

INDEX 229

W–Z
Web Clips settings, Configuration Profiles

section, iPCU, 47
Wi-Fi settings, Configuration Profiles

section, iPCU, 35
Windows Server 2008, SCEP

implementation
Absolute Manage, 129–131
ADCS (Active Directory Certificate

Services) role, 127–128
Certification Authority, 127

IIS (Internet Information Services),
127, 129

MDM (Mobile Device Management)
server, 129–131

NDES (Network Device Enrollment
Service), 127–128

wireless app distribution
App Store issues, 220

developer issues, 219
with MDM (Mobile Device Management)

infrastructure considerations, 218
initial setup, 206–207
installing apps, 208–209
managing App Store apps, 212–213, 220
updating apps, 210–211

with web servers
accessing app distribution web

page, 201
background, 194–195
infrastructure considerations, 218
installing apps, 202–203
jailbroken distribution, 196
preparing apps, 197–200
registering devices, 195
requirements, 194–196
Wi-Fi versus cellular, 194
wired versus wireless distribution, 195

From the Library of Bill Wiecking

ptg6760185

Unlimited online access to all Peachpit,
Adobe Press, Apple Training and New
Riders videos and books, as well as content
from other leading publishers including:
O’Reilly Media, Focal Press, Sams, Que,
Total Training, John Wiley & Sons, Course
Technology PTR, Class on Demand, VTC
and more.

No time commitment or contract
required! Sign up for one month or
a year. All for $19.99 a month

SIGN UP TODAY
peachpit.com/creativeedge

From the Library of Bill Wiecking

ptg6760185

You love our books and you
love to share them with your colleagues and
friends...why not earn some $$ doing it!

If you have a website, blog or even a Facebook page,
you can start earning money by putting a Peachpit
link on your page.

If a visitor clicks on that link and purchases something
on peachpit.com, you earn commissions* on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post an ad and
we’ll take care of the rest.

Apply and get started!
It’s quick and easy to apply.
To learn more go to:
http://www.peachpit.com/affiliates/
*Valid for all books, eBooks and video sales at www.Peachpit.com

Join the
Peachpit
Affiliate Team!

From the Library of Bill Wiecking

	Contents
	Introduction
	Welcome to iOS in the Enterprise
	PART I: iTUNES AND iPHONE CONFIGURATION UTILITY
	CHAPTER 1 WHEN iTUNES IS ENOUGH
	Limitations of iTunes
	Managing with iTunes
	Using Device Settings
	Wrapping Up

	CHAPTER 2 THE iPHONE CONFIGURATION UTILITY
	Getting the iPCU
	Understanding iPhone Configuration Utility Basics
	Wrapping Up

	CHAPTER 3 APPS AND PROVISIONING
	Using Provisioning Profiles
	Performing Larger Scale Distribution
	Using Applications
	Wrapping Up

	CHAPTER 4 CREATING CONFIGURATION PROFILES
	Using General Settings
	Setting a Passcode
	Choosing Restrictions
	Configuring Wi-Fi
	Setting Up VPN
	Setting Up Email
	Using Exchange ActiveSync
	Enabling LDAP
	Setting the Date with CalDAV
	Getting in Touch with CardDAV
	Keeping up with Subscribed Calendars
	Using Web Clips
	Setting Credentials
	About SCEP
	Using Mobile Device Management
	Managing Advanced Settings
	Wrapping Up

	CHAPTER 5 UNDERSTANDING CONFIGURATION PROFILE STRUCTURE
	Starting with the Basics
	Editing Individual Payload Sections
	Why Do I Care?
	Signing and Encrypting Profiles
	Wrapping Up

	CHAPTER 6 SCRIPTING THE iPHONE CONFIGURATION UTILITY
	Learning AppleScript Basics
	Wrapping Up

	PART II: OVER-THE-AIR SETUP
	CHAPTER 7 ADDING PROFILES TO DEVICES
	Using a Tethered Profile Installation
	Installing with Email
	Wrapping Up

	CHAPTER 8 USING SIMPLE OVER-THE-AIR PROFILE DISTRIBUTION
	Start with a Web Server
	Setting Up the OTA Web Server
	Using the OTA System
	Distributing Applications OTA
	Wrapping Up

	CHAPTER 9 SCEP: A BACKGROUND
	Enter SCEP
	Configuring iOS Devices via SCEP
	Wrapping Up

	CHAPTER 10 IMPLEMENTING SCEP ON MAC OS X SERVER
	Setting up SCEP on Mac OS X Server
	Implementing SCEP on Mac OS X Server 10.7
	Wrapping Up

	CHAPTER 11 IMPLEMENTING SCEP ON WINDOWS SERVER 2008
	Configuring the Server
	Installing Absolute Manage
	Wrapping Up

	CHAPTER 12 IMPLEMENTING SCEP ON A CISCO DEVICE
	Taking the Initial Steps
	The AnyConnect SCEP Settings
	Configuring the ASA
	Testing It All
	Wrapping Up

	PART III: MOBILE DEVICE MANAGEMENT
	CHAPTER 13 PERFORMING MOBILE DEVICE MANAGEMENT
	The Problem with Configuration Profiles
	Grokking the Mobile Device Management Concept
	Wrapping Up

	CHAPTER 14 MOBILE DEVICE MANAGEMENT FEATURES
	Flexibility and Power
	Managing Passcodes
	Managing CardDAV Settings
	Gathering Device Inventory/Information
	Wrapping Up

	CHAPTER 15 SETTING UP A MOBILE DEVICE MANAGEMENT SERVER
	Do You Really Need to Run Your Own Server?
	How Big Should Your Server Be?
	Firewall Planning
	Getting a Push Notification Certificate
	Using Mac OS X Server 10.7
	Installing Casper on Mac OS X 10.6 Server
	Configuring Casper for Mobile Device Management
	Wrapping Up

	CHAPTER 16 LIMITATIONS OF MOBILE DEVICE MANAGEMENT
	Understanding Infrastructure Complexity
	Locking Mobile Device Management Profiles
	Wrapping Up

	PART IV: BASIC WIRELESS APPLICATION DISTRIBUTION
	CHAPTER 17 BASIC WIRELESS APPLICATION DISTRIBUTION BACKGROUND AND SETUP
	Background and Requirements for Wireless App Distribution
	App Distribution Server Requirements
	Preparing the App
	Accessing the App Distribution Web Page
	Installing the App
	Wrapping Up

	CHAPTER 18 WIRELESS DISTRIBUTION USING MOBILE DEVICE MANAGEMENT
	Performing the Initial Setup
	Installing the App
	Updating an App
	Managing App Store Apps
	Wrapping Up

	CHAPTER 19 ISSUES WITH WIRELESS APP DISTRIBUTION
	Considering Infrastructure
	Adding Issues for Developers
	Addressing App Management
	Wrapping Up

	Index
	A
	B–C
	D
	E
	F–H
	I
	J
	K–L
	M
	N–O
	P–Q
	R
	S
	T–V
	W–Z

