B Physics Interactive Quiz : Circular Motion

Name:

	-				
#	1	question	Answer	0	<score< td=""></score<>
		kg is the mass of a bucket swinging parallel to the ground with velocity 8 m/s and radius 1.2 meters. Find the centrifugal force on the bucket			
# 1	4			0	
		What is the period of the bucket above?			
# 2	4			0	
# 3	4	The same bucket is now swung perpendicular to the ground. What is the period needed to keep the bucket from splashing the spinner?		0	
		When just weightless at the top, what will be the tension in the rope at the bottom?			
# 4	4			0	
		kg is the mass of a car rounding a non- banked 200 m turn at 40 m/s. Find the μ required to stay on the road.		_	
# 5	5			0	
# 6	2	degrees is the angle of a banked turn at a racetrack of radius 200 meters. Find the Fc if a 900 kg car is driving at 54 m/s on this track		0	
		Find the maximum velocity this car can make it around this track without flying off if μ is 0.8			
# 7	2			0	
		Find the normal component of the Fc at this velocity			
# 8	2			0	
# 9	6	kg is the mass of your waterbottle on planet Zot, where Mz is 12 ee 24 kg and Rz is 8 ee 6 m. Find the force on your waterbottle		0	
# 9	6	times the radius of the earth around the sun		0	
		a new planet is discovered. What will its period be in days?			
# 10	3			0	

Extra Credit: Explain how cars can become weightless driving over small hills in the road