B Physics Interactive Quiz: Momentum

Nam	ıe
-----	----

	#	9	question	Answer	0	<score< th=""></score<>
			m/s is the velocity of a 250 gram bullet fired from a gun. Find the momentum for one bullet.			
#	1	900			0	
#	2	9	m/s is the velocity of100 kg Boris, running towards you. How many bullets (exactly) would it take to stop Boris?		0	
			is your mass, including the wheeled bed you are on. Calculate your velocity after stopping Boris.			
#	3	360			0	
#	4	180	m/s is the velocity of a 1200 kg car going north that crashes into an eastbound car of mass 3000 kg going 20 m/s. Find the angle (North of East)the wreck moves off if the cars stick		0	
			m/s is the velocity of a 500 gram baseball. Find the momentum			
#	5	180			0	
#	6	180	If this ball hits your mit at 0.2 seconds, find the force.		0	
			kg is the mass of a block hit by a 300 gram bullet going 200 m/s. Find the Δh for the block			
#	7	72			0	
-11	0	270	m/s is the velocity of your car as it hits a tree. Your 50 kg body is slowed to zero in 0.8 seconds by the seatbelts. Find the force.			
#	8	270	Find the force if you instead hit the windshield taking 0.02 seconds		0	
#	9	270			0	
			m/s is the velocity of a cart that hits an identical cart standing still. Find the final velocity of the carts if they stick together.			
#	10	45			0	

Extra Credit: Explain how two pool balls colliding, one moving off to the right, one to the left demonstrates conservation of momentum.