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A common thread throughout precalculus algebra courses is one of develop-
ing algebraic skills, then using the skills to solve equations and inequalities,
and then using equations and inequalities to solve applied problems. In this
chapter we shall review and extend a variety of concepts related to that
thread.

LINEAR EQUATIONS AND PROBLEM SOLVING

An algebraic equation such as 5x 1 2 5 12 is neither true nor false as it stands; it is
sometimes referred to as an open sentence. Each time that a number is substituted
for x, the algebraic equation 5x 1 2 5 12 becomes a numerical statement that is
either true or false. For example, if x 5 5, then 5x 1 2 5 12 becomes 5(5) 1 2 5
12, which is a false statement. If x 5 2, then 5x 1 2 5 12 becomes 5(2) 1 2 5 12,
which is a true statement. Solving an equation refers to the process of finding the
number (or numbers) that make(s) an algebraic equation a true numerical statement.
Such numbers are called the solutions or roots of the equation and are said to sat-
isfy the equation. The set of all solutions of an equation is called its solution set.
Thus { 2} is the solution set of 5x 1 2 5 12.

An equation that is satisfied by all numbers that can meaningfully replace the
variable is called an identity. For example,

3(x 1 2) 5 3x 1 6 x 2 2 4 5 (x 1 2)(x 2 2) and

}
1
x

} 1 }
1
2

} 5 }
2

2
1

x
x

}

are all identities. In the last identity, x cannot equal zero; thus the statement

}
1
x

} 1 }
1
2

} 5 }
2

2
1

x
x

}

is true for all real numbers except zero. An equation that is true for some but not all
permissible values of the variable is called a conditional equation. Thus the equa-
tion 5x 1 2 5 12 is a conditional equation.

Equivalent equations are equations that have the same solution set. For
example,

7x 2 1 5 20 7x 5 21 and x 5 3

are all equivalent equations because { 3} is the solution set of each. The general pro-
cedure for solving an equation is to continue replacing the given equation with
equivalent but simpler equations until an equation of the form variable 5 constant
or constant 5 variable is obtained. Thus, in the example above, 7x 2 1 5 20 was
simplified to 7x 5 21, which was further simplified to x 5 3, which gives us the
solution set, { 3} .

1.1
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Techniques for solving equations revolve around properties of equality. The
following list summarizes some basic properties of equality.

p r o p e r t y  1 . 1 P r o p e r t i e s  o f  e q u a l i t y

The addition property of equality states that any number can be added to both
sides of an equation to produce an equivalent equation. The multiplication property
of equality states that an equivalent equation is produced whenever both sides of an
equation are multiplied by the same nonzero real number.

Now let’s consider how these properties of equality can be used to solve a
variety of linear equations. A linear equation in the variable x is one that can be
written in the form

ax 1 b 5 0

where a and b are real numbers and a Þ 0.

Solve the equation 2x 2 3 5 9.

Solution

2x 2 3 5 9

2x 2 3 1 3 5 9 1 3 Add 3 to both sides.
2x 5 12

}
1
2

}(2x ) 5 }
1
2

}(12) Multiply both sides by }
1
2

}.

x 5 6
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P R O P E R T Y 1 . 1 Properties of Equality

For all real numbers, a, b, and c,

1. a 5 a. Reflexive property

2. If a 5 b, then b 5 a. Symmetric property

3. If a 5 b and b 5 c, then a 5 c. Transitive property

4. If a 5 b, then a may be replaced by b, or b may be replaced
by a, in any statement without changing the meaning of the
statement. Substitution property

5. a 5 b if and only if a 1 c 5 b 1 c. Addition 
property

6. a 5 b if an only if ac 5 bc, where c Þ 0.
Multiplication property
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Check To check an apparent solution, we can substitute it into the original equa-
tion to see whether we obtain a true numerical statement.

2x 2 3 5 9

2(6) 2 3 5
?

9

12 2 3 5
?

9

9 5 9

Now we know that the solution set is { 6} . n

Solve the equation 24x 2 3 5 2x 1 9.

Solution

24x 2 3 5 2x 1 9

24x 2 3 1 (22x ) 5 2x 1 9 1 (22x ) Add 22x to both sides.
26x 2 3 5 9

26x 2 3 1 3 5 9 1 3 Add 3 to both sides.
26x 5 12

2}
1
6

}(26x ) 5 2}
1
6

}(12) Multiply both sides by 2}
1
6

}.

x 5 22.

Check 24x 2 3 5 2x 1 9

24(22) 2 3 5
?

2(22) 1 9

8 2 3 5
?

24 1 9

5 5 5.

Now we know that the solution set is { 22} . n

Solve 4(n 2 2) 2 3(n 2 1) 5 2(n 1 6).

Solution

First let’s use the distributive property to remove parentheses and combine similar
terms.

4(n 2 2) 2 3(n 2 1) 5 2(n 1 6)

4n 2 8 2 3n 1 3 5 2n 1 12

n 2 5 5 2n 1 12

E X A M P L E  2
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Now we can apply the addition property of equality.

n 2 5 1 (2n ) 5 2n 1 12 1 (2n )

25 5 n 1 12

25 1 (212) 5 n 1 12 1 (212)

217 5 n

Check 4(n 2 2) 2 3(n 2 1) 5 2(n 1 6)

4(217 2 2) 2 3(217 2 1) 5
?

2 (217 1 6)

4(219) 23(218) 5
?

2(211)

276 1 54 5
?

222

222 5 222

The solution set is {−17} . n

As you study these examples, pay special attention to the steps shown in the
solutions. Certainly, there are no rules about which steps should be performed men-
tally; this is an individual decision. We would suggest that you show enough steps
so that the flow of the process is understood and so that the chances of making care-
less computational errors are minimized. We shall discontinue showing the check
for each problem, but remember that checking an answer is the only way to be sure
of your result.

Solve }
1
4

}x 2 }
2
3

}x 5 }
5
6

}.

Solution

}
1
4

}x 2 }
2
3

}x 5 }
5
6

}

121}
1
4

}x 2 }
2
3

}x2 5 121}
5
6

}2 Multiply both sides by the LCD.

121}
1
4

}x2 2 121}
2
3

}x2 5 121}
5
6

}2
3x 2 8x 5 10

25x 5 10

x 5 22

The solution set is { 22} . n

Solve }
2y

3
2 3
} 1 }

y 1

2
1

} 5 3.
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Solution

}
2y

3
2 3
} 1 }

y 1

2
1

} 5 3

61}2y
3
2 3
} 1 }

y 1

2
1

}2 5 6(3)

61}2y
3
2 3
}2 1 61}y 1

2
1

}2 5 6(3)

2(2y 2 3) 1 3(y 1 1) 5 18

4y 2 6 1 3y 1 3 5 18

7y 2 3 5 18

7y 5 21

y 5 3

The solution set is { 3} . (Check it!) n

Solve }
4x

1
2

0
1

} 2 }
5x

4
1 2
} 5 23.

Solution

}
4x

1
2

0
1

} 2 }
5x

4
1 2
} 5 23

201}4x
1
2

0
1

} 2 }
5x

4
1 2
}2 5 20(23)

201}4x
1
2

0
1

}2 2 201}5x
4
1 2
}2 5 260

2(4x 2 1) 2 5(5x 1 2) 5 260

8x 2 2 2 25x 2 10 5 260

217x 2 12 5 260

217x 5 248

x 5 }
4
1
8
7
}

The solution set is 5}
4
1
8
7
}6. n

Problem Solving

The ability to use the tools of algebra to solve problems requires that we be able to
translate the English language into the language of algebra. More specifically, at this
time we need to translate English sentences into algebraic equations so that we can
use our equation-solving skills. Let’s work through an example and then comment
on some of the problem-solving aspects of it.

E X A M P L E  6

Multiply both sides by the LCD.

Apply the distributive property on the
left side.
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If 2 is subtracted from five times a certain number, the result is 28. Find the number.

Solution

Let n represent the number to be found. The sentence If 2 is subtracted from five
times a certain number, the result is 28 translates into the equation 5n 2 2 5 28.
Solving this equation, we obtain

5n 2 2 5 28

5n 5 30

n 5 6

The number to be found is 6. n

Now let’s make a few comments about our approach to Problem 1. Making a
statement such as Let n represent the number to be found is often referred to as
declaring the variable. It amounts to choosing a letter to use as a variable and indi-
cating what the variable represents for a specific problem. This may seem like an
insignificant idea, but as the problems become more complex, the process of declar-
ing the variable becomes more important. It is also a good idea to choose a meaning-
ful variable. For example, if the problem involves finding the width of a rectangle,
then a choice of w for the variable is reasonable. Furthermore, it is true that some
people can solve a problem such as Problem 1 without setting up an algebraic equa-
tion. However, as problems increase in difficulty, the translation from English to
algebra becomes a key issue. Therefore, even with these relatively easy problems,
we suggest that you concentrate on the translation process.

To check our answer for Problem 1, we must determine whether it satisfies the
conditions stated in the original problem. Because 2 subtracted from 5(6) equals 28,
we know that our answer of 6 is correct. Remember, when you are checking a poten-
tial answer for a word problem, it is not sufficient to check the result in the equation
used to solve the problem, because the equation itself may be in error.

Sometimes it is necessary not only to declare the variable but also to represent
other unknown quantities in terms of that variable. Let’s consider a problem that
illustrates this idea.

Find three consecutive integers whose sum is 245.

Solution

Let n represent the smallest integer; then n 1 1 is the next integer and n 1 2 is the
largest of the three integers. Because the sum of the three consecutive integers is to
be 245, we have the following equation.

n 1 (n 1 1) 1 (n 1 2) 5 245

3n 1 3 5 245

3n 5 248

n 5 216

88 Chapter 1 Equations, Inequalities, and Problem Solving
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If n 5 216, then n 1 1 is 215 and n 1 2 is 214. Thus the three consecutive inte-
gers are 216, 215, and 214. n

Frequently, the translation from English to algebra can be made easier by rec-
ognizing a guideline that can be used to set up an appropriate equation. Pay special
attention to the guidelines used in the solutions of the next two problems.

Tina is paid time-and-a-half for each hour worked over 40 hours in a week. Last
week she worked 45 hours and earned $380. What is her normal hourly rate?

Solution

Let r represent Tina’s normal hourly rate. Then }
3
2

}r represents 1}
1
2

} times her normal 

hourly rate (time-and-a-half). The following guideline can be used to help set up the
equation.

Regular wages Wages for 5 
for first 40 1 hours of 5 Total wages
hours overtime

40r 1 51}
3
2

}r2 5 $380

Solving this equation, we obtain

2340r 1 51}
3
2

}r24 5 2(380)

2(40r) 1 2351}
3
2

}r24 5 760

80r 1 15r 5 760

95r 5 760

r 5 8

Her normal hourly rate is thus $8 per hour. (Check the answer in the original state-
ment of the problem!) n

There are 51 students in a certain class. The number of females is 5 less than three
times the number of males. Find the number of females and the number of males in
the class.

Solution

Let m represent the number of males; then 3m 2 5 represents the number of
females. The total number of students is 51, so the guideline is (number of males)

P R O B L E M 3

P R O B L E M 4
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plus (number of females) equals 51. Thus we can set up and solve the following
equation.

m 1 (3m 2 5) 5 51

4m 2 5 5 51

4m 5 56

m 5 14

Therefore, there are 14 males and 3(14) 2 5 5 37 females. n

90 Chapter 1 Equations, Inequalities, and Problem Solving

For Problems 1–42, solve each equation.

1. 9x 2 3 5 221 2. 25x 1 4 5 211

3. 13 2 2x 5 14 4. 17 5 6a 1 5

5. 3n 2 2 5 2n 1 5 6. 4n 1 3 5 5n 2 9

7. 25a 1 3 5 23a 1 6

8. 4x 2 3 1 2x 5 8x 2 3 2 x

9. 23(x 1 1) 5 7 10. 5(2x 2 1) 5 13

11. 4(2x 2 1) 5 3(3x 1 2) 12. 5x 2 4(x 2 6) 5 211

13. 4(n 2 2) 2 3(n 2 1) 5 2(n 1 6)

14. 23(2t 2 5) 5 2(4t 1 7)

15. 3(2t 2 1) 2 2(5t 1 1) 5 4(3t 1 4)

16. 2(3x 2 1) 1 (2x 1 3) 5 24 1 3(x 2 1)

17. 22(y 2 4) 2 (3y 2 1) 5 22 1 5(y 1 1)

18. }
2

4
3x
} 5 }

9
2

} 19. 2}
6
7
x
} 5 12

20. }
n
2

} 2 }
1
3

} 5 }
1
6
3
} 21. }

3
4

}n 2 }
1
1
2
}n 5 6

22. }
2
3

}x 2 }
1
5

}x 5 7 23. }
h
2

} 1 }
h
5

} 5 1

24. }
4
5
y
} 2 7 5 }

1
y
0
} 25. }

5
y

} 2 2 5 }
2
y

} 1 1

26. }
x 1

3
2

} 1 }
x 2

4
1

} 5 }
9
2

} 27. }
c 1

7
5

} 1 }
c 2

4
3

} 5 }
1
5
4
}

28. }
2x

6
2 5
} 2 }

3x
8
2 4
} 5 0

29. }
n 2

2
3

} 2 }
4n

6
2 1
} 5 }

2
3

} 30. }
3x

2
2 1
} 1 }

x 2

4
3

} 5 }
1
2

}

31. }
2t 1

6
3

} 2 }
t 2

4
9

} 5 5 32. }
2x

9
1 7
} 2 4 5 }

x
1
2

2
7

}

33. }
3n

8
2 1
} 2 2 5 }

2n
7
1 5
}

34. }
x 1

3
2

} 1 }
3x

4
1 1
} 1 }

2x
6
2 1
} 5 2

35. }
2t 2

6
3

} 1 }
3t 2

4
2

} 1 }
5t

1
1

2
6

} 5 4

36. }
3y

8
2 1
} 1 y 2 2 5 }

y 1

4
4

}

37. }
2x

1
1

4
1

} 2 }
3x

7
1 4
} 5 }

x 2

2
1

}

38. n 1 }
2n

9
2 3
} 2 2 5 }

2n
3
1 1
}

39. (x 2 3)(x 2 1) 2 x(x 1 2) 5 7

40. (3n 1 4)(n 2 2) 2 3n(n 1 3) 5 3

41. (2y 1 1)(3y 2 2) 2 (6y 2 1)(y 1 4) 5 220y

42. (4t 2 3)( t 1 2) 2 (2t 1 3)2 5 21

Solve each of Problems 43–62 by setting up and solving an
algebraic equation.

43. One number is 5 less than another number. Find the num-
bers if five times the smaller number is 11 less than four
times the larger number.

P R O B L E M  S E T  1 . 1

    Equations, Inequalities, and Problem Solving 9



1.1 Linear Equations and Problem Solving 91

44. The sum of three consecutive integers is 21 larger than
twice the smallest integer. Find the integers.

45. Find three consecutive even integers such that if the
largest integer is subtracted from four times the smallest,
the result is 6 more than twice the middle integer.

46. Find three consecutive odd integers such that three times
the largest is 23 less than twice the sum of the two small-
est integers.

47. Find two consecutive integers such that the difference of
their squares is 37.

48. Find three consecutive integers such that the product of
the two largest is 20 more than the square of the smallest
integer.

49. Find four consecutive integers such that the product of
the two largest is 46 more than the product of the two
smallest integers.

50. Over the weekend, Mario bicycled 69 miles. On Sunday

he rode 9 miles more than }
2
3

} of his distance on Saturday.

Find the number of miles he rode each day.

51. For a given triangle, the measure of angle A is 10° less
than three times the measure of angle B. The measure of
angle C is one-fifth of the sum of the measures of angles
A and B. Knowing that the sum of the measures of the
angles of a triangle equals 180°, find the measure of each
angle.

52. Jennifer went on a shopping spree, spending a total of
$124 on a skirt, a sweater, and a pair of shoes. The cost

of the sweater was }
8
7

} of the cost of the skirt. The shoes

cost $8 less than the skirt. Find the cost of each item.

53. The average of the salaries of Kelly, Renee, and Nina is
$20,000 a year. If Kelly earns $4000 less than Renee, and
Nina’s salary is two-thirds of Renee’s salary, find the
salary of each person.

54. Barry is paid double-time for each hour worked over 40
hours in a week. Last week he worked 47 hours and
earned $378. What is his normal hourly rate?

55. Greg had 80 coins consisting of pennies, nickels, and
dimes. The number of nickels was 5 more than one-third
the number of pennies, and the number of dimes was 1
less than one-fourth of the number of pennies. How many
coins of each kind did he have?

56. Rita has a collection of 105 coins consisting of nickels,
dimes, and quarters. The number of dimes is 5 more than
one-third of the number of nickels, and the number of
quarters is twice the number of dimes. How many coins
of each kind does she have?

57. In a class of 43 students, the number of males is 8 less
than twice the number of females. How many females
and how many males are there in the class?

58. A precinct reported that 316 people had voted in an elec-
tion. The number of Republican voters was 6 more than
two-thirds of the number of Democrats. How many
Republicans and how many Democrats voted in that
precinct?

59. Two years ago Janie was half as old as she will be 9 years
from now. How old is she now?

60. The sum of the present ages of Eric and his father is 58
years. In 10 years, his father will be twice as old as Eric
will be at that time. Find their present ages.

61. Brad is 6 years older than Pedro. Five years ago Pedro’s
age was three-fourths of Brad’s age at that time. Find the
present ages of Brad and Pedro.

62. Tina is 4 years older than Sherry. In 5 years the sum of
their ages will be 48. Find their present ages.

THOUGHTS INTO WORDS

63. Explain the difference between a numerical statement
and an algebraic equation.

64. Are the equations 9 5 3x 2 2 and 3x 2 2 5 9 equivalent
equations? Defend your answer.

65. How do you defend the statement that the equation 
x 1 3 5 x 1 2 has no real number solutions?

66. How do you defend the statement that the solution set of
the equation 3(x 2 4) 5 3x 2 12 is the entire set of real
numbers?

   10  Equations, Inequalities, and Problem Solving 



MORE EQUATIONS AND APPLICATIONS

In the previous section we considered linear equations, such as

}
x 2

3
1

} 1 }
x 1

4
2

} 5 }
1
6

}

that have fractional coefficients with constants as denominators. Now let’s consider
equations that contain the variable in one or more of the denominators. Our
approach to solving such equations remains essentially the same except we must
avoid any values of the variable that make a denominator zero. Consider the fol-
lowing examples.

Solve }
3
5
x
} 2 }

1
9

} 5 }
1
x

}.

Solution

First we need to realize that x cannot equal zero. Let’s indicate this restriction so
that it is not forgotten; then we can proceed as follows.

}
3
5
x
} 2 }

1
9

} 5 }
1
x

}, x Þ 0

9x1}
3
5
x
} 2 }

1
9

}2 5 9x1}
1
x

}2 Multiply both sides by the LCD.

9x1}
3
5
x
}2 2 9x1}

1
9

}2 5 9x1}
1
x

}2
15 2 x 5 9

2x 5 26

x 5 6

The solution set is { 6} . (Check it!) n
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Further Investigations

67. Verify that for any three consecutive integers, the sum of
the smallest and the largest is equal to twice the middle
integer.

68. Verify that no four consecutive integers can be found
such that the product of the smallest and the largest is
equal to the product of the other two integers.

69. Some algebraic identities provide a basis for shortcuts
to do mental arithmetic. For example, the identity 
(x 1 y )(x 2 y) 5 x 2 2 y 2 indicates that a multiplica-
tion problem such as (31)(29) can be treated as 
(30 1 1)(30 2 1) 5 302 2 12 5 900 2 1 5 899.

For each of the following, use the given identity to provide a
way of mentally performing the indicated computations.
Check your answers with a calculator.

a. (x 1 y )(x 2 y) 5 x 2 2 y 2: (21)(19); (39)(41); (22)(18);
(42)(38); (47)(53)

b. (x 1 y)2 5 x2 1 2xy 1 y2: (21)2; (32)2; (51)2; (62)2; (43)2

c. (x 2 y)2 5 x2 2 2xy 1 y2: (29)2; (49)2; (18)2; (38)2; (67)2

d. (10t 1 5)2 5 100t 2 1 100t 1 25 5 100t ( t 1 1) 1 25:
(15)2; (35)2; (45)2; (65)2; (85)2

1.2

E X A M P L E  1
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Solve }
65

n
2 n
} 5 4 1 }

5
n

}.

Solution

}
65

n
2 n
} 5 4 1 }

5
n

}, n Þ 0

n1}65
n
2 n
}2 5 n14 1 }

5
n

}2
65 2 n 5 4n 1 5

60 5 5n

12 5 n

The solution set is { 12} . n

Solve }
a 2

a
2

} 1 }
2
3

} 5 }
a 2

2
2

}.

Solution

}
a 2

a
2

} 1 }
2
3

} 5 }
a 2

2
2

}, a Þ 2

3(a 2 2)1}a 2

a
2

} 1 }
2
3

}2 5 3(a 2 2)1}a 2

2
2

}2
3a 1 2(a 2 2) 5 6

3a 1 2a 2 4 5 6

5a 5 10

a 5 2

Because our initial restriction was a Þ 2, we conclude that this equation has no
solution. The solution set is [. n

Example 3 illustrates the importance of recognizing the restrictions that must
be made to exclude division by zero.

Ratio and Proportion

A ratio is the comparison of two numbers by division. The fractional form is fre-
quently used to express ratios. For example, the ratio of a to b can be written a@b. A
statement of equality between two ratios is called a proportion. Thus, if a@b and
c@d are equal ratios, the proportion a@b 5 c@d (b Þ 0 and d Þ 0) can be formed.
There is a useful property of proportions.

E X A M P L E  2
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If }
a
b

} 5 }
d
c

} then ad 5 bc.

This property can be deduced as follows.

}
a
b

} 5 }
d
c

} , b Þ 0 and d Þ 0

bd 1}
a
b

}2 5 bd 1}
d
c

}2 Multiply both sides by bd.

ad 5 bc

This is sometimes referred to as the cross-multiplication property of proportions.
Some equations can be treated as proportions and solved by using the cross-

multiplication idea, as the next example illustrates.

Solve }
3x

3
2 2
} 5 }

2x
4
1 1
}.

Solution

}
3x

3
2 2
} 5 }

2x
4
1 1
}, x Þ }

2
3

}, x Þ 2}
1
2

}

3(2x 1 1) 5 4(3x 2 2) Apply the cross-multiplication property.
6x 1 3 5 12x 2 8

11 5 6x

}
1
6
1
} 5 x

The solution set is 5}
1
6
1
}6. n

Linear Equations Involving Decimals

To solve an equation such as x 1 2.4 5 0.36, we can add 22.4 to both sides. How-
ever, as equations containing decimals become more complex, it is often easier to
begin by clearing the equation of all decimals, which we accomplish by multiplying
both sides by an appropriate power of 10. Let’s consider two examples.

Solve 0.12t 2 2.1 5 0.07t 2 0.2.

94 Chapter 1 Equations, Inequalities, and Problem Solving
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Solution

0.12t 2 2.1 5 0.07t 2 0.2

100(0.12t 2 2.1) 5 100(0.07t 2 0.2) Multiply both sides by 100.
12t 2 210 5 7t 2 20

5t 5 190

t 5 38

The solution set is { 38} . n

Solve 0.8x 1 0.9(850 2 x) 5 715.

Solution

0.8x 1 0.9(850 2 x ) 5 715

10[0.8x 1 0.9(850 2 x )] 5 10(715) Multiply both sides by 10.
10(0.8x) 1 10[0.9(850 2 x )] 5 10(715)

8x 1 9(850 2 x ) 5 7150

8x 1 7650 2 9x 5 7150

2x 5 2500

x 5 500

The solution set is { 500} . n

Changing Forms of Formulas

Many practical applications of mathematics involve the use of formulas. For example,
to find the distance traveled in 4 hours at a rate of 55 miles per hour, we multiply the
rate times the time; thus the distance is 55(4) 5 220 miles. The rule distance equals
rate times time is commonly stated as a formula: d 5 rt. When using a formula, it is
sometimes convenient first to change its form. For example, multiplying both sides of
d 5 rt by 1@t produces the equivalent form r 5 d@t. Multiplying both sides of d 5 rt
by 1@r produces another equivalent form, t 5 d@r. The following two examples fur-
ther illustrate the process of obtaining equivalent forms of certain formulas.

If P dollars are invested at a simple rate of r percent, then the amount, A, accumu-
lated after t years is given by the formula A 5 P 1 Prt. Solve this formula for P.

Solution

A 5 P 1 Prt

A 5 P(1 1 rt ) Apply the distributive property to the right side.

}
1 1

A
rt

} 5 P Multiply both sides by }
1 1

1
rt

}.

P 5 }
1 1

A
rt

} Apply the symmetric property of equality. n

E X A M P L E  6

E X A M P L E  7

   14  Equations, Inequalities, and Problem Solving 



The area (A) of a trapezoid (see Figure 1.1) is given by the formula A 5

}
1
2

}h(b1 1 b2). Solve this equation for b1.

Solution

A 5 }
1
2

}h(b1 1 b2)

2A 5 h(b1 1 b2) Multiply both sides by 2.
2A 5 hb1 1 hb2 Apply the distributive property to the right side.

2A 2 hb2 5 hb1 Add 2hb2 to both sides.

}
2A 2

h
hb2} 5 b1 Multiply both sides by }

1
h

}. n

Notice that in Example 7, the distributive property was used to change from
the form P 1 Prt to P(1 1 rt ). However, in Example 8 the distributive property was
used to change h(b1 1 b2) to hb1 1 hb2. In both examples the goal is to isolate the
term containing the variable being solved for so that an appropriate application of
the multiplication property will produce the desired result. Also note the use of sub-
scripts to identify the two bases of the trapezoid. Subscripts allow us to use the same
letter b to identify the bases, but b1 represents one base and b2 the other.

More on Problem Solving

Volumes have been written on the topic of problem solving, but certainly one of the
best-known sources is George Polya’s book How to Solve It.* In this book, Polya
suggests the following four-phase plan for solving problems.

1. Understand the problem.

2. Devise a plan to solve the problem.

3. Carry out the plan to solve the problem.

4. Look back at the completed solution to review and discuss it.

We will comment briefly on each of the phases and offer some suggestions for using
an algebraic approach to solve problems.

Understand the Problem Read the problem carefully, making certain that you
understand the meanings of all the words. Be especially alert for any technical terms
used in the statement of the problem. Often it is helpful to sketch a figure, diagram,
or chart to visualize and organize the conditions of the problem. Determine the
known and unknown facts, and if one of the previously mentioned pictorial devices
is used, record these facts in the appropriate places of the diagram or chart.

96 Chapter 1 Equations, Inequalities, and Problem Solving
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h

b1

b2

*George Polya, How to Solve It (Princeton: Princeton University Press), 1945.
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Devise a Plan This is the key part of the four-phase plan. It is sometimes
referred to as the analysis of the problem. There are numerous strategies and tech-
niques used to solve problems. We shall discuss some of these strategies at various
places throughout this text; however, at this time we offer the following general
suggestions.

1. Choose a meaningful variable to represent an unknown quantity in the
problem (perhaps t if time is an unknown quantity) and represent any other
unknowns in terms of that variable.

2. Look for a guideline that can be used to set up an equation. A guideline
might be a formula, such as A 5 P 1 Prt from Example 7, or a statement
of a relationship, such as the sum of the two numbers is 28. Sometimes a
relationship suggested by a pictorial device can be used as a guideline for
setting up the equation. Also, be alert to the possibility that this new
problem might really be an old problem in a new setting, perhaps even
stated in different vocabulary.

3. Form an equation containing the variable so that the conditions of the
guideline are translated from English into algebra.

Carry out the Plan This phase is sometimes referred to as the synthesis of the
plan. If phase two has been successfully completed, then carrying out the plan may
simply be a matter of solving the equation and doing any further computations to
answer all of the questions in the problem. Confidence in your plan creates a better
working atmosphere for carrying it out. It is also in this phase that the calculator
may become a valuable tool. The type of data and the amount of complexity
involved in the computations are two factors that can influence your decision
whether to use one.

Look Back This is an important but often overlooked part of problem solving.
The following list of questions suggests some things for you to consider in this
phase.

1. Is your answer to the problem a reasonable answer?

2. Have you checked your answer by substituting it back into the conditions
stated in the problem?

3. Looking back over your solution, do you now see another plan that could
be used to solve the problem?

4. Do you see a way of generalizing your procedure for this problem that
could be used to solve other problems of this type?

5. Do you now see that this problem is closely related to another problem that
you have previously solved?

6. Have you tucked away for future reference the technique used to solve this
problem?

Looking back over the solution of a newly solved problem can lay important
groundwork for solving problems in the future.
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Keep the previous suggestions in mind as we tackle some more word prob-
lems. Perhaps it would also be helpful for you to attempt to solve these problems on
your own before looking at our approach.

One number is 65 larger than another number. If the larger number is divided by the
smaller, the quotient is 6 and the remainder is 5. Find the numbers.

Solution

Let n represent the smaller number. Then n 1 65 represents the larger number. We
can use the following relationship as a guideline.

}
D
D
iv
iv
id
is
e
o
n
r
d

} 5 Quotient 1 }
Re

D
m
iv
a
i
i
s
n
o
d
r
er

}

}
n 1

n
65

} 5 6 1 }
5
n

}

We solve this equation by multiplying both sides by n.

n1}n 1

n
65

}2 5 n16 1 }
5
n

}2, n Þ 0

n 1 65 5 6n 1 5

60 5 5n

12 5 n

If n 5 12, then n 1 65 equals 77. The two numbers are 12 and 77. n

Sometimes we can use the concepts of ratio and proportion to set up an equa-
tion and solve a problem, as the next example illustrates.

The ratio of male students to female students at a certain university is 5 to 7. If there is
a total of 16,200 students, find the number of male and the number of female students.

Solution

Let m represent the number of male students; then 16200 2 m represents the num-
ber of female students. The following proportion can be set up and solved.

}
1620

m
0 2 m
} 5 }

5
7

}

7m 5 5(16200 2 m)

7m 5 81000 2 5m

12m 5 81000

m 5 6750

Therefore, there are 6750 male students and 16200 2 6750 5 9450 female students.
n
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1.2 More Equations and Applications 99

The next problem has a geometric setting. In such cases, the use of figures is
very helpful.

If two opposite sides of a square are each increased by 3 centimeters and the other
two sides are each decreased by 2 centimeters, the area is increased by 8 square cen-
timeters. Find the length of the side of the square.

Solution

Let s represent the side of the square. Then Figures 1.2(a) and 1.2(b) represent the
square and the rectangle formed by increasing two opposite sides of the square by 3
centimeters and decreasing the other two sides by 2 centimeters. Because the area of
the rectangle is 8 square centimeters more than the area of the square, the following
equation can be set up and solved.

(s 1 3)(s 2 2) 5 s 2 1 8

s 2 1 s 2 6 5 s 2 1 8

s 5 14

Thus the length of a side of the original square is 14 centimeters. n

Many consumer problems can be solved by using an algebraic approach. For
example, let’s consider a discount sale problem involving the relationship original
selling price minus discount equals discount sale price.

Jim bought a pair of slacks at a 30% discount sale for $28. What was the original
price of the slacks?

Solution

Let p represent the original price of the slacks.

Original price 2 Discount 5 Discount sale price

(100%)(p ) 2 (30%)(p ) 5 $28

We switch this equation to decimal form to solve it.

p 2 0.3p 5 28

0.7p 5 28

p 5 40

The original price of the slacks was $40. n

Another basic relationship pertaining to consumer problems is selling price
equals cost plus profit. Profit (also called markup, markon, and margin of profit),
may be stated in different ways. It can be expressed as a percent of the cost, as a per-
cent of the selling price, or simply in terms of dollars and cents. Let’s consider a
problem where the profit is stated as a percent of the selling price.

P R O B L E M 3

F I G U R E  1 . 2

(a)

s

s s + 3
s − 2

(b)

P R O B L E M 4
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A retailer of sporting goods bought a putter for $25. He wants to price the putter to
make a profit of 20% of the selling price. What price should he mark on the putter?

Solution

Let s represent the selling price.

Selling price 5 Cost 1 Profit

s 5 $25 1 (20%)(s )

Solving this equation involves using the methods we developed earlier for working
with decimals.

s 5 25 1 (20%)(s)

s 5 25 1 0.2s

10s 5 250 1 2s

8s 5 250

s 5 31.25

The selling price should be $31.25. n

Certain types of investment problems can be solved by using an algebraic
approach. As our final example of this section, let’s consider one such problem.

Cindy invested a certain amount of money at 10% interest and $1500 more than that
amount at 11%. Her total yearly interest was $795. How much did she invest at each
rate?

Solution

Let d represent the amount invested at 10%; then d 1 1500 represents the amount
invested at 11%. The following guideline can be used to set up an equation.

Interest earned at 10% 1 Interest earned at 11% 5 Total interest

(10%)(d ) 1 (11%)(d 1 1500) 5 $795

We can solve this equation by multiplying both sides by 100.

0.1d 1 0.11(d 1 1500) 5 795

10d 1 11(d 1 1500) 5 79500

10d 1 11d 1 16500 5 79500

21d 5 63000

d 5 3000

Cindy invested $3000 at 10% and $3000 1 $1500 5 $4500 at 11%. n
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1.2 More Equations and Applications 101

Don’t forget phase four of Polya’s problem-solving plan. We have not taken
the space to look back over and discuss each of our examples. However, it would be
beneficial for you to do so, keeping in mind the questions posed earlier regarding
this phase.

For Problems 1–32, solve each equation.

1. }
x 2

3
2

} 1 }
x 1

4
1

} 5 }
1
6

}

2. }
5n

4
2 1
} 2 }

2n
1
2

0
3

} 5 }
3
5

}

3. }
5
x

} 1 }
1
3

} 5 }
8
x

} 4. }
3
5
n
} 2 }

1
9

} 5 }
1
n

}

5. }
3
1
n
} 1 }

2
1
n
} 5 }

1
4

} 6. }
1
x

} 2 }
2
3
x
} 5 }

1
5

}

7. }
35

x
2 x
} 5 7 1 }

3
x

}

8. }
46

n
2 n
} 5 5 1 }

46
4
2 n
}

9. }
n 1

n
67

} 5 5 1 }
1
n
1
} 10. }

n 1

n
52

} 5 4 1 }
1
n

}

11. }
3x

5
2 2
} 5 }

x 2

1
4

} 12. }
5x

2

2

2
3

} 5 }
4x

4
2 1
}

13. }
2y

4
2 3
} 2 }

3y
7
2 5
} 5 0 14. }

2n
3
1 1
} 1 }

3n
5
2 4
} 5 0

15. }
n 1

n
1

} 1 3 5 }
n 1

4
1

} 16. }
a 1

a
5

} 2 2 5 }
a

3
1

a
5

}

17. }
2x

3
2

x
1

} 2 4 5 }
2x

x
2 1
}

18. }
x 2

x
8

} 2 4 5 }
x 2

8
8

}

19. }
x 1

3
3

} 2 }
x 2

1
2

} 5 }
2x

5
1 6
}

20. }
x 1

6
3

} 1 }
x 2 1

2
x
0

2 6
} 5 }

x 2

5
2

}

21. }
n 2

n
3

} 2 }
3
2

} 5 }
n 2

3
3

}

22. }
x 2

4
2

} 1 }
x 1

x
1

} 5 }
x 2

x
2

2 2

x 2

2
2

}

23. s 5 9 1 0.25s 24. s 5 1.95 1 0.35s

25. 0.09x 1 0.1(700 2 x) 5 67

26. 0.08x 1 0.09(950 2 x) 5 81

27. 0.09x 1 0.11(x 1 125) 5 68.75

28. 0.08(x 1 200) 5 0.07x 1 20

29. 0.8( t 2 2) 5 0.5(9t 1 10)

30. 0.3(2n 2 5) 5 11 2 0.65n

31. 0.92 1 0.9(x 2 0.3) 5 2x 2 5.95

32. 0.5(3x 1 0.7) 5 20.6

For Problems 33–44, solve each formula for the indicated
variable.

33. P 5 2l 1 2w for w (Perimeter of a rectangle)

34. V 5 }
1
3

}Bh for B (Volume of a pyramid)

35. A 5 2pr2 1 2prh for h (Surface area of a right
circular cylinder)

36. A 5 }
1
2

}h(b1 1 b2) for h (Area of a trapezoid)

37. C 5 }
5
9

}(F 2 32) for F (Fahrenheit to Celsius)

38. F 5 }
9
5

} C 1 32 for C (Celsius to Fahrenheit)

39. V 5 C11 2 }
N
T

}2 for T (Linear depreciation)

P R O B L E M  S E T  1 . 2
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40. V 5 C11 2 }
N
T

}2 for N (Linear depreciation)

41. I 5 kl(T 2 t) for T (Expansion allowance in highway
construction)

42. S 5 }
C
1
R
2d

D
} for d (Cutting speed of a circular saw)

43. }
R
1

n
} 5 }

R
1

1
} 1 }

R
1

2
} for Rn (Resistance in parallel circuit

design)

44. f 5 for b (Focal length of a camera lens)

For Problems 45–72, set up an equation and solve each
problem.

45. The sum of two numbers is 98. If the larger is divided by
the smaller, the quotient is 4 and the remainder is 13.
Find the numbers.

46. One number is 100 larger than another number. If the
larger number is divided by the smaller, the quotient is 15
and the remainder is 2. Find the numbers.

47. Working as a waiter, Tom made $157.50 in tips.
Assuming that every customer tipped 15% of the cost of
the meal, find the cost of all the meals Tom served.

48. A realtor who is paid 7% of the selling price in
commission recently received $10,794 in commission on
the sale of a property. What was the selling price of the
property?

49. A sum of $2250 is to be divided between two people in
the ratio of 2 to 3. How much does each person receive?

50. One type of motor requires a  mixture of oil and gasoline
in a ratio of 1 to 15 (that is, 1 part of oil to 15 parts of
gasoline). How many liters of each are contained in a 20-
liter mixture?

51. The ratio of students to teaching faculty in a certain high
school is 20 to 1. If the total number of students and
faculty is 777, find the number of each.

52. The ratio of the weight of sodium to that of chlorine in
common table salt is 5 to 3. Find the amount of each
element in a salt compound weighing 200 pounds.

53. Gary bought a coat at a 20% discount sale for $52. What
was the original price of the coat?

54. Roya bought a pair of slacks at a 30% discount sale for
$33.60. What was the original price of the slacks?

55. After a 7% increase in salary, Laurie makes $1016.50 
per month. How much did she earn per month before the
increase?

56. Russ bought a car for $11,025, including 5% sales tax.
What was the selling price of the car without the tax?

57. A retailer has some shoes that cost $28 per pair. At what
price should they be sold to obtain a profit of 15% of the
cost?

58. If a head of lettuce costs a retailer $.40, at what price
should it be sold to make a profit of 45% of the cost?

59. Karla sold a bicycle for $97.50. This selling price
represented a 30% profit for her, based on what she had
originally paid for the bike. Find Karla’s original cost for
the bicycle.

60. If a ring costs a jeweler $250, at what price should it be
sold to make a profit of 60% of the selling price?

61. A retailer has some skirts that cost $18 each. She wants to
sell them at a profit of 40% of the selling price. What
price should she charge for the skirts?

62. Suppose that an item costs a retailer $50. How much
more profit could be gained by fixing a 50% profit based
on selling price rather than a 50% profit based on cost?

63. Derek has some nickels and dimes worth $3.60. The
number of dimes is one more than twice the number of
nickels. How many nickels and dimes does he have?

64. Robin has a collection of nickels, dimes, and quarters
worth $38.50. She has 10 more dimes than nickels and
twice as many quarters as dimes. How many coins of
each kind does she have?

65. A collection of 70 coins consisting of dimes, quarters,
and half-dollars has a value of $17.75. There are three
times as many quarters as dimes. Find the number of each
kind of coin.

66. A certain amount of money is invested at 8% per year,
and $1500 more than that amount is invested at 9% per
year. The annual interest from the 9% investment
exceeds the annual interest from the 8% investment by
$160. How much is invested at each rate?

1
}
}
1
a

} 1 }
1
b

}
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67. A total of $5500 was invested, part of it at 9% per year
and the remainder at 10% per year. If the total yearly
interest amounted to $530, how much was invested at
each rate?

68. A sum of $3500 is split between two investments, one
paying 9% yearly interest and the other 11%. If the return
on the 11% investment exceeds that on the 9%
investment by $85 the first year, how much is invested at
each rate?

69. Celia has invested $2500 at 11% yearly interest. How
much must she invest at 12% so that the interest from
both investments totals $695 after a year?

70. The length of a rectangle is 2 inches less than three times
its width. If the perimeter of the rectangle is 108 inches,
find its length and width.

71. The length of a rectangle is 4 centimeters more than its
width. If the width is increased by 2 centimeters and the
length is increased by 3 centimeters, a new rectangle is
formed that has an area of 44 square centimeters more
than the area of the original rectangle. Find the
dimensions of the original rectangle.

72. The length of a picture without its border is 7 inches less
than twice its width. If the border is 1 inch wide and its
area is 62 square inches, what are the dimensions of the
picture alone?

THOUGHTS INTO WORDS

73. Give a step-by-step description of how you would solve 

the formula F 5 }
9
5

}C 1 32 for C.

74. What does the phrase “declare a variable” mean in the
steps involved in solving a word problem?

75. Why must potential answers to word problems be
checked back into the original statement of the problem?

76. From a consumer’s viewpoint, would you prefer that
retailers figure their profit on the basis of the cost or the
selling price? Explain your answer.

77. Some people multiply by 2 and add 30 to estimate the
change from a Celsius reading to a Fahrenheit reading.
Why does this give an estimate? How good is the
estimate?

Further Investigations

78. Is a 10% discount followed by a 20% discount equal to a
30% discount? Defend your answer.

79. Is a 10% discount followed by a 30% discount the same
as a 30% discount followed by a 10% discount? Justify
your answer.

80. A retailer buys an item for $90, resells it for $100, and
claims that he is making only a 10% profit. Is his claim
correct?

81. The following formula can be used to determine the
selling price of an item when the profit is based on a
percent of the selling price.

5

Show how this formula is developed.

82. Use the formula from Problem 81 to determine the
selling price of each of the following items. The given
percent of profit is based on the selling price. Be sure to
check each answer.

a. $.45 can of soup; 20% profit

b. $2.85 jar of coffee creamer; 25% profit

c. $.40 head of lettuce; 70% profit

d. $400 TV set; 45% profit

e. $18,000 car; 35% profit

Cost
}}}
100% 2 Percent of profit

Selling
price
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QUADRATIC EQUATIONS

A quadratic equation in the variable x is defined as any equation that can be writ-
ten in the form

ax 2 1 bx 1 c 5 0

where a, b, and c are real numbers and a Þ 0. The form ax 2 1 bx 1 c 5 0 is called
the standard form of a quadratic equation. The choice of x for the variable is arbi-
trary. An equation such as 3t 2 1 5t 2 4 5 0 is a quadratic equation in the variable t.

Quadratic equations such as x 2 1 2x 2 15 5 0, where the polynomial is
factorable, can be solved by applying the following property: ab 5 0 if and only if
a 5 0 or b 5 0. Our work might take on the following format.

x 2 1 2x 2 15 5 0

(x 1 5)(x 2 3) 5 0

x 1 5 5 0 or x 2 3 5 0

x 5 25 or x 5 3

The solution set for this equation is { 25, 3} .
Let’s consider another example of this type.

Solve the equation n 5 26n 2 1 12.

Solution

n 5 26n 2 1 12

6n 2 1 n 2 12 5 0

(3n 2 4)(2n 1 3) 5 0

3n 2 4 5 0 or 2n 1 3 5 0

3n 5 4 or 2n 5 23

n 5 }
4
3

} or n 5 2}
3
2

}

The solution set is 52}
3
2

}, }
4
3

}6. n

Now suppose that we want to solve x 2 5 k, where k is any real number. We
can proceed as follows.

x 2 5 k

x 2 2 k 5 0
1x 1 Ïkw21x 2 Ïkw2 5 0

x 1 Ïkw 5 0 or x 2 Ïkw 5 0

x 5 2Ïkw or x 5 Ïkw

1.3
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Thus we can state the following property for any real number k.
P r o p e r t y  1 . 2

Property 1.2, along with our knowledge of the square root, makes it very easy to
solve quadratic equations of the form x 2 5 k.

Solve each of the following.

a. x 2 5 72 b. (3n 2 1)2 5 26 c. (y 1 2)2 5 224

Solutions

a. x 2 5 72

x 5 6Ï7w2w
x 5 66Ï2w

The solution set is 566Ï2w6.
b. (3n 2 1)2 5 26

3n 2 1 5 6Ï2w6w
3n 2 1 5 Ï2w6w or 3n 2 1 5 2Ï2w6w

3n 5 1 1 Ï2w6w or 3n 5 1 2Ï2w6w

n 5 }
1 1

3
Ï2w6w
} or n 5 }

1 2

3
Ï2w6w
}

The solution set is 5}1 6

3
Ï2w6w
} 6.

c. (y 1 2)2 5 224

y 1 2 5 6Ï2w2w4w
y 1 2 5 62iÏ6w. Remember that Ï2w2w4w 5 iÏ2w4w 5 iÏ4wÏ6w 5 2iÏ6w.

y 1 2 5 2iÏ6w or y 1 2 5 22iÏ6w
y 5 22 1 2iÏ6w or y 5 22 2 2iÏ6w

The solution set is 522 6 2iÏ6w6. n

Completing the Square

A factoring technique we reviewed in Chapter 0 relied on recognizing perfect-
square trinomials. In each of the following examples, the perfect-square trinomial
on the right side of the identity is the result of squaring the binomial on the left side.

P R O P E R T Y 1 . 2

The solution set of x 2 5 k is 52Ïkw, Ïkw6, which can also be written
5 6Ïkw6.

E X A M P L E  2
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(x 1 5)2 5 x 2 1 10x 1 25 (x 2 7)2 5 x 2 2 14x 1 49

(x 1 9)2 5 x 2 1 18x 1 81 (x 2 12)2 5 x 2 2 24x 1 144

Note that in each of the square trinomials, the constant term is equal to the square of
one-half of the coefficient of the x-term. This relationship allows us to form a
perfect-square trinomial by adding a proper constant term. For example, suppose 

that we want to form a perfect-square trinomial from x 2 1 8x. Because }
1
2

}(8) 5 4 and 

42 5 16, the perfect-square trinomial is x 2 1 8x 1 16. Now let’s use this idea to
solve a quadratic equation.

Solve x 2 1 8x 2 2 5 0.

Solution

x 2 1 8x 2 2 5 0

x 2 1 8x 5 2

x 2 1 8x 1 16 5 2 1 16 We added 16 to the left side to form a perfect-
square trinomial. Thus 16 has to be added to
the right side.

(x 1 4)2 5 18

x 1 4 5 6Ï1w8w
x 1 4 5 63Ï2w
x 1 4 5 3Ï2w or x 1 4 5 23Ï2w

x 5 24 1 3Ï2w or x 5 24 2 3Ï2w

The solution set is 524 63Ï2w6. n

We have been using a relationship for a perfect-square trinomial that states,
The constant term is equal to the square of one-half of the coefficient of the x-term.
This relationship holds only if the coefficient of x 2 is 1. Thus we need to make a
slight adjustment when we are solving quadratic equations that have a coefficient of
x 2 other than 1. The next example shows how to make this adjustment.

Solve 2x 2 1 6x 2 3 5 0.

Solution

2x 2 1 6x 2 3 5 0

2x 2 1 6x 5 3

x 2 1 3x 5 }
3
2

} Multiply both sides by }
1
2

}.

x 2 1 3x 1 }
9
4

} 5 }
3
2

} 1 }
9
4

} Add }
9
4

} to both sides.
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1x 1 }
3
2

}22
5 }

1
4
5
}

x 1 }
3
2

} 5 6}
Ï

2
1w5w
}

x 1 }
3
2

} 5 }
Ï

2
1w5w
} or x 1 }

3
2

} 5 2}
Ï

2
1w5w
}

x 5 2}
3
2

} 1 }
Ï

2
1w5w
} or x 5 2}

3
2

} 2 }
Ï

2
1w5w
}

x 5 }
23 1

2
Ï1w5w
} or x 5 }

23 2

2
Ï1w5w
}

The solution set is 5}23 6

2
Ï1w5w
}6. n

Quadratic Formula

The process used in Examples 3 and 4 is called completing the square. It can be
used to solve any quadratic equation. If we use this process of completing the square
to solve the general quadratic equation ax 2 1 bx 1 c 5 0, we obtain a formula
known as the quadratic formula. The details are as follows.

ax 2 1 bx 1 c 5 0, a Þ 0

ax 2 1 bx 5 2c

x 2 1 }
b
a

}x 5 2}
a
c

} Multiply both sides by }
1
a

}.

x 2 1 }
b
a

}x 1 }
4
b
a

2

2} 5 2}
a
c

} 1 }
4
b
a

2

2}
Complete the square by 

adding to both sides.

1x 1 }
2
b
a
}22

5 }
b 2

4
2

a 2

4ac
}

x 1 }
2
b
a
} 5 6!}

b§
2

§4
2

a§ 2

4§a§c
}§

x 1 }
2
b
a
} 5 6

x 1 }
2
b
a
} 5 6}

Ïbw2

2
w2w

a
4wawcw

}
Ï4wa2w 5 * 2a * but 2a can be used
because of the use of 6.

x 1 }
2
b
a
} 5 }

Ïbw2

2
w2w

a
4wawcw

} or x 1 }
2
b
a
} 5 2}

Ïbw2

2
w2w

a
4wawcw

}

x 5 2}
2
b
a
} 1 }

Ïbw2

2
w2w

a
4wawcw

} or x 5 2}
2
b
a
} 2 }}

Ïbw2

2
w2w

a
4wawcw

}

x 5 or x 5
2b 2 Ïbw2w2w 4wawcw
}}

2a
2b 1 Ïbw2w2w 4wawcw
}}

2a

Ïbw2w2w 4wawcw
}}

Ï4waw2w

b2

}
4a2

Combine the right side into
a single fraction.
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The quadratic formula can be stated as follows.

This formula can be used to solve any quadratic equation by expressing the equation
in the standard form, ax 2 1 bx 1 c 5 0, and substituting the values for a, b, and c
into the formula. Let’s consider some examples.

Solve each of the following by using the quadratic formula.

a. 3x 2 2 x 2 5 5 0 b. 25n 2 2 30n 5 29 c. t 2 2 2t 1 4 5 0

Solutions

a. We need to think of 3x 2 2 x 2 5 5 0 as 3x 2 1 (2x) 1 (25) 5 0; thus a 5 3,
b 5 21, and c 5 25. We then substitute these values into the quadratic formula
and simplify.

x 5}
2b 6 Ï

2
bw
a

2w2w 4wawcw
}

x 5

5 }
1 6

6
Ï6w1w
}

The solution set is 5}1 6

6
Ï6w1w
} 6.

b. The quadratic formula is usually stated in terms of the variable x, but again the
choice of variable is arbitrary. The given equation, 25n 2 2 30n 5 29, needs to
be changed to standard form: 25n 2 2 30n 1 9 5 0. From this we obtain a 5 25,
b 5 230, and c 5 9. Now we use the formula.

n 5

5 }
30 6

50
Ï0w
}

5 }
3
5

}

The solution set is 5}
3
5

}6.

2(230) 6 Ï(2w3w0w)2w 2w 4w(2w5w)(w9w)w
}}}}

2(25)

2(21) 6 Ï(2w1w)2w 2w 4w(3w)(w2w5w)w
}}}}

2(3)

Quadratic Formula

If a Þ 0, then the solutions (roots) of the equation ax 2 1 bx 1 c 5 0
are given by

x 5}
2b 6 Ï

2
bw
a

2w2w 4wawcw
}

E X A M P L E  5

    Equations, Inequalities, and Problem Solving 27



1.3 Quadratic Equations 109

c. We substitute a 5 1, b 5 22, and c 5 4 into the quadratic formula.

t 5

5 }
2 6 Ï

2
2w1w2w
}

5 }
2 6 2

2
iÏ3w
}

5 }
2(1 6

2
iÏ3w)
}

The solution set is 51 6 iÏ3w6. n

From Example 5 we see that different kinds of solutions are obtained depend-
ing upon the radicand (b 2 2 4ac) inside the radical in the quadratic formula. For this
reason, the number b 2 2 4ac is called the discriminant of the quadratic equation. It
can be used to determine the nature of the solutions as follows.

1. If b 2 2 4ac . 0, the equation has two unequal real solutions.

2. If b 2 2 4ac 5 0, the equation has one real solution.

3. If b 2 2 4ac , 0, the equation has two complex but nonreal solutions.

The following examples illustrate each of these situations. (You may want to solve
the equations completely to verify our conclusions.)

There is another useful relationship involving the solutions of a quadratic
equation of the form ax 2 1 bx 1 c 5 0 and the numbers a, b, and c. Suppose that
we let x1 and x2 be the two roots of the equation. (If b 2 2 4ac 5 0, then x1 5 x2 and

2(22) 6 Ï(2w2w)2w 2w 4w(1w)(w4w)w
}}}

2(1)

EQUATION DISCRIMINANT NATURE OF SOLUTIONS

4x 2 2 7x 2 1 5 0 b 2 2 4ac 5 (27)2 2 4(4)(21) Two real solutions
5 49 1 16
5 65

4x 2 1 12x 1 9 5 0 b 2 2 4ac 5 (12)2 2 4(4)(9) One real solution
5 144 2 144
5 0

5x 2 1 2x 1 1 5 0 b 2 2 4ac 5 (2)2 2 4(5)(1) Two complex solutions
5 4 2 20
5 216
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the one-solution situation can be thought of as two equal solutions.) By the quadratic
formula we have

x1 5}
2b 1 Ï

2
bw
a

2w2w 4wawcw
} and x2 5}

2b 2 Ï
2
bw
a

2w2w 4wawcw
}

Now let’s consider both the sum and the product of the two roots.

Sum x1 1 x2 5}}
2b 1 Ï

2
bw
a

2w2w 4wawcw
}1}}

2b 2 Ï
2
bw
a

2w2w 4wawcw
}

5 }
2

2
2
a
b

} 5 2}
b
a

}

Product (x1)(x2) 5 1}}2b 1 Ï
2
bw
a

2w2w 4wawcw
}21}}2b 2 Ï

2
bw
a

2w2w 4wawcw
}2

5}
b 2 2 (b

4a

2

2

2 4ac )
}

5}
b 2 2 b

4a

2

2

1 4ac
}

5 }
4
4
a
a
c
2} 5 }

a
c

}

These relationships provide another way of checking potential solutions when solv-
ing quadratic equations. We will illustrate this point in a moment.

Solving Quadratic Equations: Which Method?

Which method should be used to solve a particular quadratic equation? There is no
definite answer to that question; it depends on the type of equation and perhaps on
your personal preference. However, it is to your advantage to be able to use all three
techniques and to know the strengths and weaknesses of each. In the next two exam-
ples, we will give our reasons for choosing a specific technique.

Solve x 2 2 4x 2 192 5 0.

Solution

The size of the constant term makes the factoring approach a little cumbersome for
this problem. However, because the coefficient of the x 2-term is 1 and the coeffi-
cient of the x-term is even, the method for completing the square should work
effectively.

x 2 2 4x 2 192 5 0

x 2 2 4x 5 192

x 2 2 4x 1 4 5 192 1 4

(x 2 2)2 5 196

x 2 2 5 6Ï1w9w6w
x 2 2 5 614

E X A M P L E  6

    Equations, Inequalities, and Problem Solving 29



1.3 Quadratic Equations 111

x 2 2 5 14 or x 2 2 5 214

x 5 16 or x 5 212

Check

Sum of roots 16 1 (212) 5 4 and 2}
b
a

} 5 21}
2

1
4
}2 5 4

Product of roots (16)(212) 5 2192 and }
a
c

} 5 }
21

1
92
} 5 2192.

The solution set is { 212, 16} . n

Solve 2x 2 2 x 1 3 5 0.

Solution

It would be reasonable first to try factoring the polynomial 2x 2 2 x 1 3. Unfortu-
nately, it is not factorable using integers; thus we must solve the equation by com-
pleting the square or by using the quadratic formula. The coefficient of the x 2 term is
not 1, so let’s avoid completing the square and use the formula instead.

x 5}
2b 6 Ï

2
bw
a

2w2w 4wawcw
}

5

5 }
1 6 Ï

4
2w2w3w
}

5 }
1 6 i

4
Ï2w3w
}

Check

Sum of roots }
1 1 i

4
Ï2w3w
} 1 }

1 2 i
4
Ï2w3w
} 5 }

2
4

} 5 }
1
2

} and

2}
b
a

} 5 2}
2

2
1

} 5 }
1
2

}

Product of roots 1}1 1 i
4
Ï2w3w
}21}1 2 i

4
Ï2w3w
}2 5 }

1 2

16
23i 2

}

5 }
1 1

16
23

} 5 }
2
1
4
6
} 5 }

3
2

} and }
a
c

} 5 }
3
2

}

The solution set is 5}1 6 i
4
Ï2w3w
}6. n

The ability to solve quadratic equations enables us to solve more word prob-
lems. Some of these problems involve geometric formulas and relationships. We

2(21) 6 Ï(2w1w)2w 2w 4w(2w)(w3w)w
}}}

2(2)

E X A M P L E  7
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For Problems 1–16, solve each equation by factoring or by
using the property, If x 2 5 k then x 5 6Ïkw.

1. x 2 2 3x 2 28 5 0 2. x 2 2 4x 2 12 5 0

3. 3x 2 1 5x 2 12 5 0 4. 2x 2 2 13x 1 6 5 0

5. 2x 2 2 3x 5 0 6. 3n 2 5 3n

7. 9y 2 5 12 8. (4n 2 1)2 5 16

9. (2n 1 1)2 5 20 10. 3(4x 2 1)2 1 1 5 16

11. 15n 2 1 19n 2 10 5 0 12. 6t 2 1 23t 2 4 5 0

13. (x 2 2)2 5 24 14. 24x 2 1 23x 2 12 5 0

15. 10y 2 1 33y 2 7 5 0 16. (x 2 3)2 5 29

For Problems 17–30, use the method of completing the square
to solve each equation. Check your solutions by using the
sum-and-product-of-roots relationships.

17. x 2 2 10x 1 24 5 0 18. x 2 1 x 2 20 5 0

19. n 2 1 10n 2 2 5 0 20. n 2 1 6n 2 1 5 0

21. y 2 2 3y 5 21 22. y 2 1 5y 5 22

23. x 2 1 4x 1 6 5 0 24. x 2 2 6x 1 21 5 0

25. 2t 2 1 12t 2 5 5 0 26. 3p 2 1 12p 2 2 5 0

27. x 2 2 2x 2 288 5 0 28. x 2 1 4x 2 221 5 0

29. 3n 2 1 5n 2 1 5 0 30. 2n 2 1 n 2 4 5 0

P R O B L E M  S E T  1 . 3

have included a brief summary of some basic geometric formulas in the back sheets
of this text.

One leg of a right triangle is 7 meters longer than the other leg. If the length of the
hypotenuse is 17 meters, find the length of each leg.

Solution

Look at Figure 1.3. Let l represent the length of one leg; then l 1 7 represents the
length of the other leg. Using the Pythagorean theorem as a guideline, we can set up
and solve a quadratic equation.

l 2 1 ( l 1 7)2 5 172

l 2 1 l 2 1 14l 1 49 5 289

2l 2 1 14l 2 240 5 0

l 2 1 7l 2 120 5 0

( l 1 15)( l 2 8) 5 0

l 1 15 5 0 or l 2 8 5 0

l 5 215 or l 5 8

The negative solution must be disregarded (because l is a length), so the length of
one leg is 8 meters. The other leg, represented by l 1 7, is 8 1 7 5 15 meters long.

n

P R O B L E M  1

F I G U R E  1 . 3

e

e + 7

17
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For Problems 31–44, use the quadratic formula to solve 
each equation. Check your solutions by using the sum-and-
product-of-roots relationships.

31. n 2 2 3n 2 54 5 0 32. y 2 1 13y 1 22 5 0

33. 3x 2 1 16x 5 25 34. 10x 2 2 29x 2 21 5 0

35. y 2 2 2y 2 4 5 0 36. n 2 2 6n 2 3 5 0

37. 2a 2 2 6a 1 1 5 0 38. 2x 2 1 3x 2 1 5 0

39. n 2 2 3n 5 27 40. n 2 2 5n 5 28

41. x 2 1 4 5 8x 42. x 2 1 31 5 214x

43. 4x 2 2 4x 1 1 5 0 44. x 2 1 24 5 0

For Problems 45–60, solve each quadratic equation by using
the method that seems most appropriate to you.

45. 8x 2 1 10x 2 3 5 0 46. 18x 2 2 39x 1 20 5 0

47. x 2 1 2x 5 168 48. x 2 1 28x 5 2187

49. 2t 2 2 3t 1 7 5 0 50. 3n 2 2 2n 1 5 5 0

51. (3n 2 1)2 1 2 518 52. 20y 2 1 17y 2 10 5 0

53. 4y 2 1 4y 2 1 5 0 54. (5n 1 2)2 1 1 5 227

55. x 2 2 16x 1 14 5 0 56. x 2 2 18x 1 15 50

57. t 2 1 20t 5 25 58. n 2 2 18n 5 9

59. 5x 2 2 2x 2 1 5 0 60. 2x 2 1 11x 2 18 5 0

61. Find the discriminant of each of the following quadratic
equations and determine whether the equation has 
(1) two complex but nonreal solutions, (2) one real
solution, or (3) two unequal real solutions.

a. 4x 2 1 20x 1 25 5 0

b. x 2 1 4x 1 7 5 0

c. x 2 2 18x 1 81 5 0

d. 36x 2 2 31x 1 3 5 0

e. 2x 2 1 5x 1 7 5 0

f. 16x 2 5 40x 2 25

g. 6x 2 2 4x 2 7 5 0

h. 5x 2 2 2x 2 4 5 0

For Problems 62–77, set up a quadratic equation and solve
each problem.

62. Find two consecutive even integers whose product is 
528.

63. Find two consecutive whole numbers such that the sum
of their squares is 265.

64. For a remodeling job, an architect suggested increasing
the sides of a square patio by 3 feet per side. This made
the area of the new patio 49 square feet. What was the
area of the original patio?

65. A sailboat has a triangular sail with an area of 30 square
feet. The height of the sail is 7 feet more than the length
of the base of the sail. Find the height of the sail.

66. One leg of a right triangle is 4 inches longer than the
other leg. If the length of the hypotenuse is 20 inches,
find the length of each leg.

67. The sum of the lengths of the two legs of a right triangle
is 34 meters. If the length of the hypotenuse is 26 meters,
find the length of each leg.

68. The lengths of the three sides of a right triangle are
consecutive even integers. Find the length of each side.

69. The perimeter of a rectangle is 44 inches and its area is
112 square inches. Find the length and width of the
rectangle.

70. A page of a magazine contains 70 square inches of type.
The height of the page is twice the width. If the margin
around the type is 2 inches uniformly, what are the
dimensions of the page?

71. The length of a rectangle is 4 meters more than twice its
width. If the area of the rectangle is 126 square meters,
find its length and width.

72. The length of one side of a triangle is 3 centimeters less
than twice the length of the altitude to that side. If the
area of the triangle is 52 square centimeters, find the
length of the side and the length of the altitude to that
side.

73. A rectangular plot of ground measuring 12 meters by 20
meters is surrounded by a sidewalk of uniform width.
The area of the sidewalk is 68 square meters. Find the
width of the walk.
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74. A piece of wire 60 inches long is cut into two pieces and
then each piece is bent into the shape of a square. If the
sum of the areas of the two squares is 117 square inches,
find the length of each piece of wire.

75. A rectangular piece of cardboard is 4 inches longer than
it is wide. From each of its corners, a square piece 2
inches on a side is cut out. The flaps are then turned up to
form an open box, which has a volume of 42 cubic
inches. Find the length and width of the original piece of
cardboard. See Figure 1.4.

F I G U R E  1 . 4

76. The area of a rectangular region is 52 square feet. If the
length of the rectangle is increased by 4 feet and the
width by 2 feet, the area is increased by 50 square feet.
Find the length and width of the original rectangular
region.

77. The area of a circular region is numerically equal to four
times the circumference of the circle. Find the length of a
radius of the circle.
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THOUGHTS INTO WORDS

78. Explain how you would solve (x 2 3)(x 1 4) 5 0 and
also how you would solve (x 2 3)(x 1 4) 5 8.

79. Explain the process of completing the square to solve a
quadratic equation.

80. Explain how to use the quadratic formula to solve 
3x 5 x 2 2 2.

81. Your friend states that the equation 22x 2 1 4x 2 1 5 0
must be changed to 2x 2 2 4x 1 1 5 0 (by multiplying
both sides by 21) before the quadratic formula can be
applied. Is she right about this, and if not, how would you
convince her?

Further Investigations

82. Solve each of the following equations for x.

a. x 2 2 7kx 5 0 b. x 2 5 25kx

c. x 2 2 3kx 2 10k2 5 0 d. 6x 2 1 kx 2 2k 2 5 0

e. 9x 2 2 6kx 1 k 2 5 0 f. k 2x 2 2 kx 2 6 5 0

g. x 2 1 Ï2wx 2 3 5 0 h. x 2 2 Ï3wx 1 5 5 0

83. Solve each of the following for the indicated variable.
(Assume that all letters represent positive numbers.)

a. A 5 pr2 for r b. E 5 c2m 2 c2m0 for c

c. s 5 }
1
2

}gt 2 for t d. }
a
x 2

2} 1 }
b
y 2

2} 5 1 for x

e. }
a
x 2

2} 2 }
b
y 2

2} 5 1 for y

f. s 5 }
1
2

}gt 2 1 V0t for t

For Problems 84–86, use the discriminant to help solve each
problem.

84. Determine k so that the solutions of x 2 2 2x 1 k 5 0 are
complex but nonreal.

85. Determine k so that 4x 2 2 kx 1 1 5 0 has two equal real
solutions.
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86. Determine k so that 3x 2 2 kx 2 2 5 0 has real solutions.

87. The solution set for x 2 2 4x 2 37 5 0 is { 2 6
Ï4w1w} .

With a calculator, we found a rational approximation, to
the nearest one-thousandth, for each of these solutions.

2 2 Ï4w1w 5 24.403

2 1 Ï4w1w 5 8.403

Thus the solution set is { 24.403, 8.403} , with answers
rounded to the nearest one-thousandth.

Solve each of the following equations and express
the solutions to the nearest one-thousandth.

a. x 2 2 6x 2 10 5 0 b. x 2 2 16x 2 24 5 0

c. x 2 1 6x 2 44 5 0 d. x 2 1 10x 2 46 5 0

e. x 2 1 8x 1 2 5 0 f. x 2 1 9x 1 3 5 0

g. 4x 2 2 6x 1 1 5 0 h. 5x 2 2 9x 1 1 5 0

i. 2x 2 2 11x 2 5 5 0 j. 3x 2 2 12x 2 10 5 0

APPLICATIONS OF LINEAR AND QUADRATIC

EQUATIONS

Let’s begin this section by considering two fractional equations, one that is equiva-
lent to a linear equation and one that is equivalent to a quadratic equation.

Solve }
2x

3
2 8
} 2 }

x 2 2

x 2

2x
5
2 8

} 5 }
x 1

7
2

}.

Solution

}
2x

3
2 8
} 2 }

x 2 2

x 2

2x
5
2 8

} 5 }
x 1

7
2

}

}
2(x

3
2 4)
} 2}

(x 2

x
4
2

)(x
5
1 2)

}5 }
x 1

7
2

}, x Þ 4, x Þ 22

2(x 2 4)(x 1 2)1}2(x
3
2 4)
} 2}

(x 2

x
4
2

)(x
5
1 2)

}2 5 2(x 2 4)(x 1 2)1}x 1

7
2

}2
3(x 1 2) 2 2(x 2 5) 5 14(x 2 4)

3x 1 6 2 2x 1 10 5 14x 2 56

x 1 16 5 14x 2 56

72 5 13x

}
7
1
2
3
} 5 x

The solution set is 5}
7
1
2
3
}6. n

In Example 1, notice that we did not indicate the restrictions until the denomi-
nators were expressed in factored form. It is usually easier to determine the neces-
sary restrictions at that step.

1.4

E X A M P L E  1
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Solve }
n 2 1

3
n
n

2 6
} 1 }

n 2 1 4
2
n 1 3
} 5 }

n 2 2

n
n 2 2
}.

Solution

}
n 2 1

3
n
n

2 6
} 1 }

n 2 1 4
2
n 1 3
} 5 }

n 2 2

n
n 2 2
}

}
(n 1 3

3
)
n
(n 2 2)
}1}

(n 1 3)
2
(n 1 1)
}5}

(n 2 2)
n
(n 1 1)
}, n Þ 23, n Þ 2, n Þ 21

(n 1 3)(n 2 2)(n 1 1)1}(n 1 3
3
)
n
(n 2 2)
}1}

(n 1 3)
2
(n 1 1)
}2 5 (n 1 3)(n 2 2)(n 1 1)1}(n 2 2)

n
(n 1 1)
}2

3n(n 1 1) 1 2(n 2 2) 5 n(n 1 3)

3n 2 1 3n 1 2n 2 4 5 n 2 1 3n

3n 2 1 5n 2 4 5 n 2 1 3n

2n 2 1 2n 2 4 5 0

n 2 1 n 2 2 5 0

(n 1 2)(n 2 1) 5 0

n 1 2 5 0 or n 2 1 5 0

n 5 22 or n 5 1

The solution set is { 22, 1} . n

More on Problem Solving

Before tackling a variety of applications of linear and quadratic equations, let’s
restate some suggestions made earlier in this chapter for solving word problems.

116 Chapter 1 Equations, Inequalities, and Problem Solving

Suggestions for Solving Word Problems

1. Read the problem carefully, making certain that you understand the
meanings of all the words. Be especially alert for any technical
terms used in the statement of the problem.

2. Read the problem a second time (perhaps even a third time) to get an
overview of the situation being described and to determine the
known facts, as well as what is to be found.

3. Sketch any figure, diagram, or chart that might be helpful in
analyzing the problem.

4. Choose a meaningful variable to represent an unknown quantity in
the problem (for example, l for the length of a rectangle), and
represent any other unknowns in terms of that variable.

5. Look for a guideline that can be used in setting up an equation. A
guideline might be a formula, such as A 5 lw, or a relationship, such
as the fractional part of the job done by Bill plus the fractional part
of the job done by Mary equals the total job.

E X A M P L E  2
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Suggestion 5 is a key part of the analysis of a problem. A formula to be used as a
guideline may or may not be explicitly stated in the problem. Likewise, a relation-
ship to be used as a guideline may not be actually stated in the problem but must be
determined from what is stated. Let’s consider some examples.

A room contains 120 chairs. The number of chairs per row is one less than twice the
number of rows. Find the number of rows and the number of chairs per row.

Solution

Let r represent the number of rows. Then 2r 2 1 represents the number of chairs per
row. The statement of the problem implies a formation of chairs such that the total
number of chairs is equal to the number of rows times the number of chairs per row.
This gives us an equation.

Number of rows 3 Number of chairs per row 5 Total number of chairs

r 3 (2r 2 1) 5 120

We solve this equation by the factorization method.

2r 2 2 r 5 120

2r 2 2 r 2 120 5 0

(2r 1 15)(r 2 8) 5 0

2r 1 15 5 0 or r 2 8 5 0

2r 5 215 or r 5 8

r 5 2}
1
2
5
} or r 5 8

The solution 2}
1
2
5
} must be disregarded, so there are 8 rows and 2(8) 2 1 5 15 chairs 

per row. n

The basic relationship distance equals rate times time is used to help solve a
variety of uniform-motion problems. This relationship may be expressed by any one
of the following equations.

d 5 rt r 5 }
d
t

} t 5 }
d
r

}

6. Form an equation containing the variable to translate the conditions
of the guideline from English to algebra.

7. Solve the equation and use the solution to determine all the facts
requested in the problem.

8. Check all answers back into the original statement of the problem.

P R O B L E M 1
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Domenica and Javier start from the same location at the same time and ride their
bicycles in opposite directions for 4 hours, at which time they are 140 miles apart. If
Domenica rides 3 miles per hour faster than Javier, find the rate of each rider.

Solution

Let r represent Javier’s rate; then r 1 3 represents Domenica’s rate. A sketch such
as that in Figure 1.5 may help in our analysis. The fact that the total distance is 140
miles can be used as a guideline. We use the d 5 rt equation.

F I G U R E  1 . 5

Distance Domenica rides 1 Distance Javier rides 5 140

4(r 1 3) 1 4r 5 140

Solving this equation yields Javier’s speed.

4r 1 12 1 4r 5 140

8r 5 128

r 5 16

Thus Javier rides at 16 miles per hour and Domenica at 16 1 3 5 19 miles per hour.
n

Some people find it helpful to use a chart or a table to organize the known and
unknown facts in uniform-motion problems. Let’s illustrate this approach.

Riding on a moped, Sue takes 2 hours less to travel 60 miles than Ann takes to travel
50 miles on a bicycle. Sue travels 10 miles per hour faster than Ann. Find the times
and rates of both girls.

P R O B L E M 3

Domenica riding
at r + 3 mph
for 4 hours

Javier riding
at r mph
for 4 hours

Total of 140 miles

P R O B L E M 2
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Solution A

Let t represent Ann’s time; then t 2 2 represents Sue’s time. We can record the
information in a table as shown below. The fact that Sue travels 10 miles per hour
faster than Ann can be used as a guideline.

Sue’s rate 5 Ann’s rate 1 10

}
t 2

60
2

} 5 }
5
t
0
} 1 10

Solving this equation yields Ann’s time.

t( t 2 2)1}t 2

60
2

}2 5 t( t 2 2)1}
5
t
0
} 1 102, t Þ 0, t Þ 2

60t 5 50( t 2 2) 1 10t( t 2 2)

60t 5 50t 2 100 1 10t 2 2 20t

0 5 10t 2 2 30t 2 100

0 5 t 2 2 3t 2 10

0 5 ( t 2 5)( t 1 2)

t 2 5 5 0 or t 1 2 5 0

t 5 5 or t 5 22

The solution 22 must be disregarded, because we’re solving for time. Therefore, 

Ann rides for 5 hours at }
5
5
0
} 5 10 miles per hour, and Sue rides for 5 2 2 5 3 hours 

at }
6
3
0
} 5 20 miles per hour.

DISTANCE TIME r 5 }
d
t

}

Ann 50 t }
5
t
0
}

Sue 60 t 2 2 }
t 2

60
2

}
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Solution B

Let r represent Ann’s rate; then r 1 10 represents Sue’s rate. Again, let’s record the
information in a table.

This time, let’s use the fact that Sue’s time is 2 hours less than Ann’s time as a
guideline.

Sue’s time 5 Ann’s time 2 2

}
r 1

60
10

} 5 }
5
r
0
} 2 2

Solving this equation yields Ann’s rate.

r(r 1 10)1}r 1

60
10

}2 5 r(r 1 10)1}
5
r
0
} 2 22

60r 5 (r 1 10)(50) 2 2r(r 1 10)

60r 5 50r 1 500 2 2r 2 2 20r

2r 2 1 30r 2 500 5 0

r 2 1 15r 2 250 5 0

(r 1 25)(r 2 10) 5 0

r 1 25 5 0 or r 2 10 5 0

r 5 225 or r 5 10

The solution 225 must be disregarded, because we are solving for a rate. Therefore, 

Ann rides at 10 miles per hour for }
5
1
0
0
} 5 5 hours, and Sue rides at 10 1 10 5 20 

miles per hour for }
6
2
0
0
} 5 3 hours. n

Take a good look at both Solution A and Solution B for Problem 3. Both are
reasonable approaches, but note that the approach in Solution A generates a qua-
dratic equation that is a little easier to solve than the one generated in Solution B.

DISTANCE RATE t 5 }
d
r

}

Ann 50 r }
5
r
0
}

Sue 60 r 1 10 }
r 1

60
10

}
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We might have expected this to happen, because the “times” in a motion problem
are frequently smaller numbers than the “rates.” Thus “thinking first” before “push-
ing the pencil” can make things a bit easier.

There are various applications commonly classified as mixture problems.
Even though these problems arise in many different areas, essentially the same
mathematical approach can be used to solve them. A general suggestion for solving
mixture-type problems is to work in terms of a pure substance. We will illustrate
what we mean by that statement.

How many milliliters of pure acid must be added to 50 milliliters of a 40% acid
solution to obtain a 50% acid solution?

Solution

Let a represent the number of milliliters of pure acid to be added. Thinking in terms
of pure acid, we know that the amount of pure acid to start with plus the amount of
pure acid added equals the amount of pure acid in the final solution. Let’s use that
as a guideline and set up an equation.

Pure acid to start with 1 Pure acid added 5 Pure acid in final solution

40%(50) 1 a 5 50%(50 1 a )

Solving this equation, we obtain the amount of acid we must add.

0.4(50) 1 a 5 0.5(50 1 a )

4(50) 1 10a 5 5(50 1 a )

200 1 10a 5 250 1 5a

5a 5 50

a 5 10

We need to add 10 milliliters of pure acid. n

There is another class of problems commonly referred to as work problems, or
sometimes as rate-time problems. For example, if a certain machine produces 120 

items in 10 minutes, then we say that it is working at a rate of }
1
1
2
0
0

} 5 12 items per 

minute. Likewise, a person who can do a certain job in 5 hours is working at a rate 

of }
1
5

} of the job per hour. In general, if Q is the quantity of something done in t units 

of time, then the rate, r, is given by r 5 Q@t. The rate is stated in terms of so much
quantity per unit of time. The uniform-motion problems discussed earlier are a spe-
cial kind of rate-time problem where the quantity is distance. Using tables to orga-
nize information (as we illustrated with the motion problems) is a convenient aid for
rate-time problems in general. Let’s consider some problems.

P R O B L E M 4
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Printing press A can produce 35 fliers per minute, and press B can produce 50 fliers
per minute. Suppose that 2225 fliers are produced by first using press A alone for 15
minutes and then using presses A and B together until the job is done. How long
does press B need to be used?

Solution

Let m represent the number of minutes that press B is used. Then m 1 15 represents
the number of minutes press A is used. The information in the problem can be orga-
nized in a table as shown below. Because the total quantity (the total number of
fliers) is 2225, we can set up and solve the following equation.

35(m 1 15) 1 50m 5 2225

35m 1 525 1 50m 5 2225

85m 5 1700

m 5 20

Therefore press B must be used for 20 minutes. n

It takes Amy twice as long to deliver newspapers as it does Nancy. How long does it
take each girl by herself if they can deliver the papers together in 40 minutes?

Solution

Let m represent the number of minutes that it takes Nancy by herself. Then 2m rep-
resents Amy’s time by herself. Thus the information can be organized as shown
below. (Note that the quantity is 1; there is one job to be done.)

122 Chapter 1 Equations, Inequalities, and Problem Solving

QUANTITY TIME RATE

A 35(m 1 15) m 1 15 35

B 50m m 50

QUANTITY TIME RATE

Nancy 1 m }
m
1

}

Amy 1 2m }
2
1
m
}

P R O B L E M 5

P R O B L E M 6
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Because their combined rate is }
4
1
0
}, we can solve the following equation.

}
m
1

} 1 }
2
1
m
} 5 }

4
1
0
}, m Þ 0

40m1}
m
1

} 1 }
2
1
m
}2 5 40m1}

4
1
0
}2

40 1 20 5 m

60 5 m

Therefore, Nancy can deliver the papers by herself in 60 minutes, and Amy can
deliver them by herself in 2(60) 5 120 minutes. n

Our final examples of this section illustrate another approach that some people find
works well for rate-time problems. The basic idea used in this approach involves
representing the fractional parts of a job. For example, if a man can do a 

certain job in 7 hours, then at the end of 3 hours he has finished }
3
7

} of the job. (Again, 

a constant rate of work is being assumed.) At the end of 5 hours he has finished }
5
7

} of 

the job, and, in general, at the end of h hours he has finished }
h
7

} of the job.

Carlos can mow a lawn in 45 minutes and Felipe can mow the same lawn in 30
minutes. How long would it take the two of them working together to mow the
lawn?

Solution

(Before you read any further, estimate an answer for this problem. Remember that
Felipe can mow the lawn by himself in 30 minutes.) Let m represent the number of
minutes that it takes them working together. Then we can set up the following
equation.

Fractional part Fractional part 
of the lawn that of the lawn that The whole
Carlos will mow Felipe will mow lawn

}
4
m
5
} 1 }

3
m
0
} 5 1

Solving this equation yields the time that it will take when they work together.

P R O B L E M 7
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901}
4
m
5
} 1 }

3
m
0
}2 5 90(1)

2m 1 3m 5 90

5m 5 90

m 5 18

It should take them 18 minutes to mow the lawn when they work together. n

Walt can mow a lawn in 50 minutes, and his son Mike can mow the same lawn in 40
minutes. One day Mike started to mow the lawn by himself and worked for 10 min-
utes. Then Walt joined him with another mower and they finished the lawn. How
long did it take them to finish mowing the lawn after Walt started to help?

Solution

Let m represent the number of minutes that it takes for them to finish the mowing
after Walt starts to help. Because Mike has been mowing for 10 minutes, he has 

done }
1
4
0
0
}, or }

1
4

}, of the lawn when Walt starts. Thus there is }
3
4

} of the lawn yet to mow. 

The following guideline can be used to set up an equation.

Fractional part of the Fractional part of the 
remaining 3@4 of the remaining 3@4 of the 
lawn that Mike will 1 lawn that Walt will 5 }

3
4

}

mow in m minutes mow in m minutes

}
4
m
0
} 1 }

5
m
0
} 5 }

3
4

}

Solving this equation yields the time they mow the lawn together.

2001}
4
m
0
} 1 }

5
m
0
}2 5 2001}

3
4

}2
5m 1 4m 5 150

9m 5 150

m 5 }
15
9
0

} 5 }
5
3
0
}

They should finish the lawn in 16}
2
3

} minutes. n

As you tackle word problems throughout this text, keep in mind that our pri-
mary objective is to expand your repertoire of problem-solving techniques. In the
examples, we are sharing some of our ideas for solving problems, but don’t hesitate
to use your own ingenuity. Furthermore, don’t become discouraged—all of us have
difficulty with some problems. Give it your best shot.
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For Problems 1–20, solve each equation.

1. }
2x

x
2 8
} 1 }

x 2

1
2

6
16

} 5 }
1
2

}

2. }
n 2

3
5

} 2 }
2n

2
1 1
} 5 }

2n 2

n
2

1

9n
3

2 5
}

3. }
2t

5
1

t
6

} 2 }
t 2 2

4
9

} 5 }
5
2

} 4. }
4x

x
2 4
} 1 }

x 2

5
2 1
} 5 }

1
4

}

5. 2 1 }
n 2

4
2

} 5 }
n 2 2

8
2n

} 6. 3 1 }
t 2

6
3

} 5 }
t 2 2

6
3t

}

7. }
a 1

a
2

} 1 }
a 1

3
4

} 5 }
a 2 1

1
6
4
a 1 8
}

8. }
x 1

3
1

} 1 }
x 1

2
3

} 5 2

9. }
3x

2

1

2
2

} 1 }
9
x
x 2

2

2

1
4

} 5 }
12x

3
2 8
}

10. }
2x

2

2

1
5

} 1 }
4
2
x
x
2 2

2

2
4
5

} 5 }
6x 1

5
15

}

11. }
2n

n
2 3
} 1 }

n 2

1
3

} 5 }
2
n
n

2

2

2

2

n
9n

2

1

3
9

}

12. }
y 2 1

3
y
y

2 6
} 1 }

y 2 1 4
2
y 1 3
} 5 }

y 2 2

y
y 2 2
}

13. }
3y 2

3
2

y 1

4y
1
2 4

} 1 }
9y 2

9
2 4
} 5 }

3y 2

2
2

y 2

8y
2
1 4

}

14. }
2n

4
2

n
2

1

n
1
2

0
6

} 2 }
2n 2

3
2

n 1

5n
1
1 2

} 5 }
4n 2 1

2
4n 2 3
}

15. }
2x 2

x
1

1

7x
1

2 4
} 2 }

2x 2 2

x
7x 1 3
} 5 }

x 2 1 x
1

2 12
}

16. }
x 2

3
2

} 1 }
x 1

5
3

} 5 }
x 2

8
1

x 2

x 2

1
6

}

17. }
12x 2

7
1

x
1
1

1x
2

2 15
}2 }

3x
1
1 5
} 5 }

4x
2
2 3
}

18. }
6n 2 1

2
7
n
n 2 3
} 2}

3n 2 1

n 2

11
3
n 2 4
}5}

2n 2 1 1
5
1n 1 12
}

19. }
5x 2 1 1

3
8x 2 8
} 1 }

x
x
2 2

1

1
1
6

} 5 }
5x 2 2

5
2
x
2x 1 8
}

20. }
4x 2 1 1

2
1x 2 3
} 2 }

3x 2

x
1

1

8x
1

2 3
} 5 }

12x 2

2

2

4
7
x
x 1 1
}

For Problems 21–45, solve each problem.

21. An apple orchard contains 126 trees. The number of trees
in each row is 4 less than twice the number of rows. Find
the number of rows and the number of trees per row.

22. The sum of a number and its reciprocal is }
1
3
0
}. Find the 

number.

23. Jill starts at city A and travels toward city B at 50 miles
per hour. At the same time, Russ starts at city B and
travels on the same highway toward city A at 52 miles
per hour. How long will it take before they meet if the
two cities are 459 miles apart?

24. Two cars, which are 510 miles apart and whose speeds
differ by 6 miles per hour, are moving toward each other.
If they meet in 5 hours, find the speed of each car.

25. Rita rode her bicycle out into the country at a speed of 20
miles per hour and returned along the same route at 15
miles per hour. If the round trip took 5 hours and 50
minutes, how far out did she ride?

26. A jogger who can run an 8-minute mile starts a half-mile
ahead of a jogger who can run a 6-minute mile. How 
long will it take the faster jogger to catch the slower
jogger?

27. It takes a freight train 2 hours more to travel 300 miles
than it takes an express train to travel 280 miles. The rate
of the express train is 20 miles per hour greater than the
rate of the freight train. Find the rates of both trains.

28. An airplane travels 2050 miles in the same time that a car
travels 260 miles. If the rate of the plane is 358 miles per
hour greater than the rate of the car, find the rate of the
plane.

29. A container has 6 liters of a 40% alcohol solution in it.
How much pure alcohol should be added to raise it to a
60% solution?

P R O B L E M  S E T  1 . 4
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30. How many liters of a 60% acid solution must be added to
14 liters of a 10% acid solution to produce a 25% acid
solution?

31. One solution contains 50% alcohol and another solution
contains 80% alcohol. How many liters of each solution
should be mixed to produce 10.5 liters of a 70% alcohol
solution?

32. A contractor has a 24-pound mixture that is one-fourth
cement and three-fourths sand. How much of a mixture
that is half cement and half sand needs to be added to
produce a mixture that is one-third cement?

33. A 10-quart radiator contains a 40% antifreeze solution.
How much of the solution needs to be drained out and
replaced with pure antifreeze in order to raise the solution
to 70% antifreeze?

34. How much water must be evaporated from 20 gallons 
of a 10% salt solution in order to obtain a 20% salt
solution?

35. One pipe can fill a tank in 4 hours and another pipe can
fill the tank in 6 hours. How long will it take to fill the
tank if both pipes are used?

36. Lolita and Doug working together can paint a shed in 3
hours and 20 minutes. If Doug can paint the shed by
himself in 10 hours, how long would it take Lolita to
paint the shed by herself?

37. An inlet pipe can fill a tank in 10 minutes. A drain can
empty the tank in 12 minutes. If the tank is empty and
both the pipe and drain are open, how long will it be
before the tank overflows?

38. Mark can overhaul an engine in 20 hours and Phil can do
the same job by himself in 30 hours. If they both work
together for a time and then Mark finishes the job by
himself in 5 hours, how long did they work together?

39. Pat and Mike working together can assemble a bookcase
in 6 minutes. It takes Mike, working by himself, 9
minutes longer than it takes Pat working by himself to
assemble the bookcase. How long does it take each,
working alone, to do the job?

40. A printing company purchased a new copier that is twice
as fast as the old copier. Using both copiers at the same
time, it takes 5 hours to do a job. How long would it take
the new copier working alone?

41. A professor can grade three tests in the time it takes a
student assistant to grade one test. Working together,
they can grade the tests for a class in 2 hours. How long
would it take the student assistant working alone?

42. A car that averages 16 miles per gallon of gasoline for
city driving and 22 miles per gallon for highway driving
uses 14 gallons in 296 miles of driving. How much of the
driving was city driving?

43. Angie bought some golf balls for $14. If each ball had
cost $.25 less, she could have purchased one more ball
for the same amount of money. How many golf balls did
Angie buy?

44. A new labor contract provides for a wage increase of $1
per hour and a reduction of 5 hours in the workweek. A
worker who received $320 per week under the old
contract will receive $315 per week under the new
contract. How long was the workweek under the old
contract?

45. Todd contracted to paint a house for $480. It took him 4
hours longer than he had anticipated, so he earned $.50
per hour less than he originally calculated. How long had
he anticipated it would take him to paint the house?

THOUGHTS INTO WORDS

46. One of our problem-solving suggestions is to “look for a
guideline that can be used to help determine an
equation.” What does this suggestion mean to you?

47. Write a paragraph or two summarizing the various
problem-solving ideas presented in this chapter.
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MISCELLANEOUS EQUATIONS

Our previous work with solving linear and quadratic equations provides us with a
basis for solving a variety of other types of equations. For example, the technique of
factoring and applying the property

ab 5 0 if and only if a 5 0 or b 5 0

can sometimes be used for equations other than quadratic equations.

Solve x 3 1 2x 2 2 9x 2 18 5 0.

Solution

x 3 1 2x 2 2 9x 2 18 5 0

x 2(x 1 2) 2 9(x 1 2) 5 0

(x 1 2)(x 2 2 9) 5 0

(x 1 2)(x 1 3)(x 2 3) 5 0

x 1 2 5 0 or x 1 3 5 0 or x 2 3 5 0

x 5 22 or x 5 23 or x 5 3

The solution set is { 23, 22, 3} . n

Solve 3x 5 1 5x 4 5 3x 3 1 5x 2.

Solution

3x 5 1 5x 4 5 3x 3 1 5x 2

3x 5 1 5x 4 2 3x 3 2 5x 2 5 0

x 4(3x 1 5) 2 x 2(3x 1 5) 5 0

(3x 1 5)(x 4 2 x 2 ) 5 0

(3x 1 5)(x 2)(x 2 2 1) 5 0

(3x 1 5)(x 2 )(x 1 1)(x 2 1) 5 0

3x 1 5 5 0 or x 2 5 0 or x 1 1 5 0 or x 2 1 5 0

3x 5 25

x 5 2}
5
3

} or x 5 0 or x 5 21 or x 5 1

The solution set is 52}
5
3

}, 0, 21, 16. n

Be careful with an equation like the one in Example 2. Don’t be tempted to
divide both sides of the equation by x 2. In so doing, you will lose the solution of

1.5

E X A M P L E  1

E X A M P L E  2
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zero. In general, don’t divide both sides of an equation by an expression containing
the variable.

Radical Equations

An equation such as

Ï2wxw2w 4w 5 x 2 2

which contains a radical with the variable in the radicand, is often referred to as a
radical equation. To solve radical equations, we need the following additional
property of equality.

P r o p e r t y  2 . 3

Property 1.3 states that we can raise both sides of an equation to a positive integral
power. However, we must be very careful when applying Property 1.3. Raising both
sides of an equation to a positive integral power sometimes produces results that do
not satisfy the original equation. Consider the following examples.

Solve Ï3wxw1w 1w 5 7.

Solution

Ï3wxw1w 1w 5 7
1Ï3wxw1w 1w22 5 72 Square both sides.

3x 1 1 5 49

3x 5 48

x 5 16

Check Ï3wxw1w 1w 5 7

Ï3w(1w6w)w1w 1w 5
?

7

Ï4w9w 5
?

7

7 5 7

The solution set is { 16} . n

Solve Ï2wxw2w 1w 5 25.

P R O P E R T Y 1 . 3

Let a and b be real numbers and n a positive integer.

If a 5 b, then an 5 bn.

E X A M P L E  3
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Solution

Ï2wxw2w 1w 5 25
1Ï2wxw2w 1w22 5 (25)2 Square both sides.

2x 2 1 5 25

2x 5 26

x 5 13

Check Ï2wxw2w 1w 5 25

Ï2w(1w3w)w2w 1w 5
?

25

Ï2w5w 5
?

25

5 Þ 25

Because 13 does not check, the equation has no solutions; the solution set is [. n

REMARK It is true that the equation in Example 4 could be solved by
inspection because the symbol Ï0w0w refers to nonnegative numbers. However,
we did want to demonstrate what happens if Property 1.3 is used.

Solve Ïxw 1 6 5 x.

Solution

Ïxw 1 6 5 x

Ïxw 5 x 2 6
1Ïxw22 5 (x 2 6)2 Square both sides.

x 5 x 2 2 12x 1 36

0 5 x 2 2 13x 1 36

0 5 (x 2 4)(x 2 9)

x 2 4 5 0 or x 2 9 5 0

x 5 4 or x 5 9

Check Ïxw 5 x 2 6 Ïxw 5 x 2 6

Ï4w 5
?

4 2 6 Ï9w 5
?

9 2 6

2 Þ 22 3 5 3

The only solution is 9, so the solution set is { 9} . n

REMARK Notice what happens if we square both sides of the original equa-
tion. We obtain x 1 12Ïxw 1 36 5 x2, an equation more complex than the
original one and still containing a radical. Therefore, it is important first to
isolate the term containing the radical on one side of the equation and then to
square both sides of the equation.

In general, raising both sides of an equation to a positive integral power pro-
duces an equation that has all of the solutions of the original equation, but it may

E X A M P L E  5
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also have some extra solutions that will not satisfy the original equation. Such extra
solutions are called extraneous solutions. Therefore, when using Property 1.3, you
must check each potential solution in the original equation.

Solve Ï3 2wxw1w 3w 5 23.

Solution

Ï3 2wxw1w 3w 5 23
1Ï3 2wxw1w 3w23 5 (23)3 Cube both sides.

2x 1 3 5 227

2x 5 230

x 5 215

Check Ï3 2wxw1w 3w 5 23

Ï3 2w(2w1w5w)w1w 3w 5
?

23

Ï3
2w2w7w 5

?
23

23 5 23

The solution set is { 215} . n

Solve Ïxw1w 4w 5 Ïxw2w 1w 1 1.

Solution

Ïxw1w 4w 5 Ïxw2w 1w 1 1
1Ïxw1w 4w22 5 1Ïxw2w 1w 1 122 Square both sides.

x 1 4 5 x 2 1 1 2Ïxw2w 1w 1 1 Remember the middle term when
squaring the binomial.

4 5 2Ïxw2w 1w
2 5 Ïxw2w 1w

22 5 1Ïxw2w 1w22 Square both sides.
4 5 x 2 1

5 5 x

Check Ïxw1w 4w 5 Ïxw2w 1w 1 1

Ï5w 1w 4w 5
?

Ï5w 2w 1w 1 1

Ï9w 5
?

Ï4w 1 1

3 5 3

The solution set is { 5} . n

E X A M P L E  6
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Equations of Quadratic Form

An equation such as x 4 1 5x 2 2 36 5 0 is not a quadratic equation. However, if we
let u 5 x 2, then we get u 2 5 x 4. Substituting u for x 2 and u 2 for x 4 in x 4 1 5x 2 2
36 5 0 produces

u 2 1 5u 2 36 5 0

which is a quadratic equation. In general, an equation in the variable x is said to be
of quadratic form if it can be written in the form

au 2 1 bu 1 c 5 0

where a Þ 0 and u is some algebraic expression in x. We have two basic approaches
to solving equations of quadratic form, as illustrated by the next two examples.

Solve x 2@3 1 x 1@3 2 6 5 0.

Solution

Let u 5 x 1@3; then u 2 5 x 2@3 and the given equation can be rewritten u 2 1 u 2 6 5
0. Solving this equation yields two solutions.

u 2 1 u 2 6 5 0

(u 1 3)(u 2 2) 5 0

u 1 3 5 0 or u 2 2 5 0

u 5 23 or u 5 2

Now, substituting x 1@3 for u, we have

x 1@3 5 23 or x 1@3 5 2

from which we obtain

(x1@3)3 5 (23)3 or (x1@3)3 5 23

x 5 227 or x 5 8

Check x 2@3 1 x 1@3 2 6 5 0 x 2@3 1 x 1@3 2 6 5 0

(227)2@3 1 (227)1@3 2 6 5
?

0 (8)2@3 1 (8)1@3 2 6 5
?

0

9 1 (23) 2 6 5
?

0 4 1 2 2 6 5
?

0

0 5 0 0 5 0

The solution set is { 227, 8} . n

E X A M P L E  8
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Solve x 4 1 5x 2 2 36 5 0.

Solution

x 4 1 5x 2 2 36 5 0

(x 2 1 9)(x 2 2 4) 5 0

x 2 1 9 5 0 or x 2 2 4 5 0

x 2 5 29 or x 2 5 4

x 5 63i or x 5 62

The solution set is { 63i, 62} . n

Notice in Example 8 that we made a substitution (u for x1/3) to change the orig-
inal equation to a quadratic equation in terms of the variable u. Then, after solving
for u, we substituted x 1@3 for u to obtain the solutions of the original equation. How-
ever, in Example 9 we factored the given polynomial and proceeded without chang-
ing to a quadratic equation. Which approach you use may depend on the complexity
of the given equation.

Solve 15x22 2 11x21 2 12 5 0.

Solution

Let u 5 x21; then u 2 5 x22 and the given equation can be written and solved as
follows.

15u 2 2 11u 2 12 5 0

(5u 1 3)(3u 2 4) 5 0

5u 1 3 5 0 or 3u 2 4 5 0

5u 5 23 or 3u 5 4

u 5 2}
3
5

} or u 5 }
4
3

}

Now, substituting x21 back for u, we have

x21 5 2}
3
5

} or x21 5 }
4
3

}

from which we obtain

}
1
x

} 5 }
2

5
3

} or }
1
x

} 5 }
4
3

}

23x 5 5 or 4x 5 3

x 5 2}
5
3

} or x 5 }
3
4

}

The solution set is 52}
5
3

}, }
3
4

}6. n
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For Problems 1–52, solve each equation. Don’t forget that
you must check potential solutions whenever Property 1.3 is
applied.

1. x 3 1 x 2 2 4x 2 4 5 0

2. x 3 2 5x 2 2 x 1 5 5 0

3. 2x 3 2 3x 2 1 2x 2 3 5 0

4. 3x 3 1 5x 2 1 12x 1 20 5 0

5. 8x 5 1 10x 4 5 4x 3 1 5x 2

6. 10x 5 1 15x 4 5 2x 3 1 3x 2

7. x 3@2 5 4x 8. 5x 4 5 6x 3

9. n22 5 n23 10. n 4@3 5 4n

11. Ï3wxw2w 2w 5 4 12. Ï5wxw2w 1w 5 24

13. Ï3wxw2w 8w 2 Ïxw2w 2w 5 0

14. Ï2wxw2w 3w 5 1 15. Ï4wxw2w 3w 5 22

16. Ï2wxw2w 1w 2 Ïxw1w 2w 5 0

17. Ï3 2wxw1w 3w 1 3 5 0 18. Ï3 nw2w2w 1w 1 1 5 0

19. 2Ïnw 1 3 5 n 20. Ï3wtw 2 t 5 26

21. Ï3wxw2w 2w 5 3x 2 2 22. 5x 2 4 5 Ï5wxw2w 4w

23. Ï2wtw2w 1w 1 2 5 t 24. p 5 Ï2w4wpw 1w 1w7w 1 3

25. Ïxw1w 2w 2 1 5 Ïxw2w 3w

26. Ïxw1w 5w 2 2 5 Ïxw2w 7w

27. Ï7wnw 1w 2w3w 2 Ï3wnw 1w 7w 5 2

28. Ï5wtw1w 3w1w 2 Ïtw1w 3w 5 4

29. Ï3wxw1w 1w 1 Ï2wxw1w 4w 5 3

30. Ï2wxw2w 1w 2 Ïxw1w 3w 5 1

31. Ïxw2w 2w 2 Ï2wxw2w 1w1w 5 Ïxw2w 5w

32. Ï2w2wxw2w 7w 1 Ïxw1w 9w 5 Ï8w 2w xw

33. Ï1w 1w 2wÏwxww 5 Ïxw1w 1w

34. Ï7w 1w 3wÏwxww 5 Ïxw 1 1

35. x 4 2 5x 2 1 4 5 0

36. x 4 2 25x 2 1 144 5 0

37. 2n 4 2 9n 2 1 4 5 0 38. 3n 4 2 4n 2 1 1 5 0

39. x 4 2 2x 2 2 35 5 0 40. 2x 4 1 5x 2 2 12 5 0

41. x 4 2 4x 2 1 1 5 0 42. x 4 2 8x 2 1 11 5 0

43. x 2@3 1 3x 1@3 2 10 5 0 44. x 2@3 1 x 1@3 2 2 5 0

45. 6x 2@3 2 5x 1@3 2 6 5 0

46. 3x 2@3 2 11x 1@3 2 4 5 0

47. x22 1 4x21 2 12 5 0

48. 12t22 2 17t21 2 5 5 0

49. x 2 11Ïxw 1 30 5 0 50. 2x 2 11Ïxw 1 12 5 0

51. x 1 3Ïxw 2 10 5 0 52. 6x 2 19Ïxw 2 7 5 0

For Problems 53–56, solve each problem.

53. The formula for the slant height of a right circular cone is
s 5 Ïr 2w 1w hw2w, where r is the length of a radius of the
base and h is the altitude of the cone. Find the altitude of
a cone whose slant height is 13 inches and whose radius
is 5 inches.

54. A clockmaker wants to build a grandfather clock with a
pendulum whose period will be 1.5 seconds. He knows 

the formula for the period is T 5 2p!}
3§2§.

L
1§4§4
}§, where T

represents the period in seconds and L represents the
length of the pendulum in feet. What length should the
clockmaker use for the pendulum? Express your answer
to the nearest hundredth of a foot.

55. Police sometimes use the formula S 5 Ï3w0wDwfw to
correlate the speed of a car and the length of skid marks
when the brakes have been applied. In this formula, S
represents the speed of the car in miles per hour, D
represents the length of skid marks measured in feet, and
f represents a coefficient of friction. For a particular
situation, the coefficient of friction is a constant that

P R O B L E M  S E T  1 . 5
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depends on the type and condition of the road surface.
Using .35 as a coefficient of friction, determine, to the
nearest foot, how far a car will skid if the brakes are
applied when the car is traveling at a speed of 58 miles
per hour.

56. Using the formula given in Problem 55 and a coefficient
of friction of .95, determine, to the nearest foot, how far a
car will skid if the brakes are applied when the car is
traveling at a speed of 65 miles per hour.

THOUGHTS INTO WORDS

57. Explain the concept of extraneous solutions.

58. What does it mean to say that an equation is of quadratic
form?

59. Your friend attempts to solve the equation 3 1 2Ïxw 5 x
as follows:

13 12Ïxw22 5 x 2

9 1 12Ïxw 1 4x 5 x 2

At this step, he stops and doesn’t know how to proceed.
What help would you give him?

Further Investigations

60. Verify that x 5 a and x 2 5 a 2 are not equivalent
equations.

61. Solve the following equations, and express the solutions
to the nearest hundredth.

a. x 4 2 3x 2 1 1 5 0 b. x 4 2 5x 2 1 2 5 0

c. 2x 4 2 7x 2 1 2 5 0 d. 3x 4 2 9x 2 1 1 5 0

e. x 4 2 100x 2 1 2304 5 0

f. 4x 4 2 373x 2 1 3969 5 0

INEQUALITIES

Just as we use the symbol 5 to represent is equal to, we also use the symbols , and
. to represent is less than and is greater than, respectively. Thus various state-
ments of inequality can be made:

a , b means a is less than b.

a # b means a is less than or equal to b.

a . b means a is greater than b.

a $ b means a is greater than or equal to b.

The following are examples of numerical statements of inequality.

7 1 8 . 10 24 1 (26) $ 210

24 . 26 7 2 9 # 22

7 2 1 , 20 3 1 4 . 12

8(23) , 5(23) 7 2 1 , 0

1.6
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Notice that only 3 1 4 . 12 and 7 21 , 0 are false; the other six are true numerical
statements.

Algebraic inequalities contain one or more variables. The following are
examples of algebraic inequalities.

x 1 4 . 8 3x 1 2y # 4

(x 2 2)(x 1 4) $ 0 x 2 1 y 2 1 z 2 # 16

An algebraic inequality such as x 1 4 . 8 is neither true nor false as it stands and is
called an open sentence. For each numerical value substituted for x, the algebraic
inequality x 1 4 . 8 becomes a numerical statement of inequality that is true or
false. For example, if x 5 23, then x 1 4 . 8 becomes 23 1 4 . 8, which is false.
If x 5 5, then x 1 4 . 8 becomes 5 1 4 . 8, which is true. Solving an algebraic
inequality refers to the process of finding the numbers that make it a true numerical
statement. Such numbers are called the solutions of the inequality and are said to
satisfy it.

The general process for solving inequalities closely parallels that for solving
equations. We repeatedly replace the given inequality with equivalent but simpler
inequalities until the solution set is obvious. The following property provides the
basis for producing equivalent inequalities.

P r o p e r t y  2 . 4

Similar properties exist if . is replaced by ,, #, or $. Part 1 of Property 1.4
is commonly called the addition property of inequality. Parts 2 and 3 together
make up the multiplication property of inequality. Pay special attention to part 3.
If both sides of an inequality are multiplied by a negative number, the inequal-
ity symbol must be reversed. For example, if both sides of 23 , 5 are multiplied
by 22, the equivalent inequality 6 . 210 is produced. Now let’s consider using the
addition and multiplication properties of inequality to help solve some inequalities.

1.6 Inequalities 135

P R O P E R T Y 1 . 4

1. For all real numbers a, b, and c,

a . b if and only if a 1 c . b 1 c

2. For all real numbers a, b, and c, with c . 0,

a . b if and only if ac . bc

3. For all real numbers a, b, and c, with c , 0,

a . b if and only if ac , bc
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Solve 3(2x 2 1) , 8x 2 7.

Solution

3(2x 2 1) , 8x 2 7

6x 2 3 , 8x 2 7 Apply distributive property to left side.
22x 2 3 , 27 Add 28x to both sides.

22x , 24 Add 3 to both sides.

2}
1
2

}(22x) . 2}
1
2

}(24) Multiply both sides by 2}
1
2

}, which reverses the
inequality.

x . 2

The solution set is { x * x . 2} . n

A graph of the solution set { x * x . 2} in Example 1 is shown in Figure 1.6.
The parenthesis indicates that 2 does not belong to the solution set.

F I G U R E  1 . 6

Checking the solutions of an inequality presents a problem. Obviously, we
cannot check all of the infinitely many solutions for a particular inequality. How-
ever, by checking at least one solution, especially when the multiplication property
has been used, we might catch a mistake of forgetting to change the type of inequal-
ity. In Example 1 we are claiming that all numbers greater than 2 will satisfy the
original inequality. Let’s check the number 3.

3(2x 2 1) , 8x 2 7

3[2(3) 2 1] ,
?

8(3) 2 7

3(5) ,
?

17

15 , 17 It checks!

Interval Notation

It is also convenient to express solution sets of inequalities by using interval nota-
tion. For example, the symbol (2, ∞) refers to the interval of all real numbers greater
than 2. As on the graph in Figure 1.6, the left-hand parenthesis indicates that 2 is not
to be included. The infinity symbol, ∞, along with the right-hand parenthesis, indi-

210−1−2 3 4−3

E X A M P L E  1
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cates that there is no right-hand endpoint. Following is a partial list of interval nota-
tions, along with the sets and graphs that they represent. Note the use of square
brackets to include endpoints.

Solve }
23x

2
1 1
} . 4.

Solution

}
23x

2
1 1
} . 4

21}23x
2
1 1
}2 . 2(4) Multiply both sides by 2.

23x 1 1 . 8

23x . 7

2}
1
3

}(23x) , 2}
1
3

}(7) Multiply both sides by 2}
1
3

}, which reverses the
inequality.

x , 2}
7
3

}

The solution set is 12∞, 2}
7
3

}2. n

Solve }
x 2

6
4

} 2 }
x 2

9
2

} # }
1
5
8
}.

SET GRAPH INTERVAL NOTATION

5x * x . a6 ( (a, ∞)
a

5x * x ≥ a6 [ [a, ∞)
a

5x * x , b6 ) (2∞, b)
b

5x * x # b6 ] (2∞, b]
b

E X A M P L E  2
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Solution

}
x 2

6
4

} 2 }
x 2

9
2

} # }
1
5
8
}

181}x 2

6
4

} 2 }
x 2

9
2

}2 # 181}
1
5
8
}2 Multiply both sides by the LCD.

181}x 2

6
4

}2 2 181}x 2

9
2

}2 # 181}
1
5
8
}2

3(x 2 4) 2 2(x 2 2) # 5

3x 2 12 2 2x 1 4 # 5

x 2 8 # 5

x # 13

The solution set is (2∞, 13]. n

Compound Statements

We use the words and and or in mathematics to form compound statements. The
following are examples of some compound numerical statements that use and. We
call such statements conjunctions. We agree to call a conjunction true only if all of
its component parts are true. Statements 1 and 2 below are true, but statements 3, 4,
and 5 are false.

1. 3 1 4 5 7 and 24 , 23 True

2. 23 , 22 and 26 . 210 True

3. 6 . 5 and 24 , 28 False

4. 4 , 2 and 0 , 10 False

5. 23 1 2 5 1 and 5 1 4 5 8 False

We call compound statements that use or disjunctions. The following are
some examples of disjunctions that involve numerical statements.

6. .14 . .13 or .235 , .237 True

7. }
3
4

} . }
1
2

} or 24 1 (23) 5 10 True

8. 2}
2
3

} . }
1
3

} or (.4)(.3) 5 .12 True

9. }
2
5

} , 2}
2
5

} or 7 1 (29) 5 16 False

A disjunction is true if at least one of its component parts is true. In other words, dis-
junctions are false only if all of the component parts are false. In the statements
above, 6, 7, and 8 are true, but 9 is false.
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Now let’s consider finding solutions for some compound statements that
involve algebraic inequalities. Keep in mind that our previous agreements for label-
ing conjunctions and disjunctions true or false form the basis for our reasoning.

Graph the solution set for the conjunction x . 21 and x , 3.

Solution

The key word is and, so we need to satisfy both inequalities. Thus all numbers
between 21 and 3 are solutions, and we can indicate this on a number line as in Fig-
ure 1.7.

F I G U R E  1 . 7

Using interval notation, we can represent the interval enclosed in parentheses
in Figure 1.7 by (21, 3). Using set-builder notation, we can express the same inter-
val as 5x * 21 , x , 36, where the statement 21 , x , 3 is read “negative one is
less than x and x is less than three.” In other words, x is between 21 and 3. n

Example 4 represents another concept that pertains to sets. The set of all ele-
ments common to two sets is called the intersection of the two sets. Thus in Exam-
ple 4 we found the intersection of the two sets 5x * x . 216 and 5x * x , 36 to be the set
5x * 2 1 , x , 36. In general, we define the intersection of two sets as follows.

D e f i n i t i o n  2 . 1

We can solve a conjunction such as }
3x

2
1 2
} . 22 and }

3x
2
1 2
} , 7, in which 

the same algebraic expression is contained in both inequalities, by using the com-

pact form 22 , }
3x

2
1 2
} , 7 as follows.

0−2 2−4 4

E X A M P L E  4

D E F I N I T I O N 1 . 1

The intersection of two sets A and B (written A > B) is the set of all
elements that are in both A and B. Using set-builder notation, we can
write

A > B 5 5x * x [ A and x [ B6
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Solve 22 , }
3x

2
1 2
} , 7.

Solution

22 , }
3x

2
1 2
} , 7

2(22) , 21}3x
2
1 2
}2 , 2(7) Multiply through by 2.

24 , 3x 1 2 , 14

26 , 3x , 12 Add 22 to all three quantities.

22 , x , 4 Multiply through by }
1
3

}.

The solution set is the interval (22, 4). n

The word and ties the concept of a conjunction to the set concept of intersec-
tion. In a like manner, the word or links the idea of a disjunction to the set concept of
union. We define the union of two sets as follows.

Graph the solution set for the disjunction x , 21 or x . 2, and express it using
interval notation.

Solution

The key word is or, so all numbers that satisfy either inequality (or both) are solu-
tions. Thus all numbers less than 21, along with all numbers greater than 2, are the
solutions. The graph of the solution set is shown in Figure 1.8.

F I G U R E  1 . 8

Using interval notation and the set concept of union, we can express the solution set
as (2∞, 21) < (2, ∞). n

0−2 2−4 4
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D E F I N I T I O N 1 . 2

The union of two sets A and B (written A < B) is the set of all ele-
ments that are in A or in B or in both. Using set-builder notation, we
can write 

A < B 5 5x * x [ A or x [ B6.

E X A M P L E  6
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Example 6 illustrates that in terms of set vocabulary, the solution set of a
disjunction is the union of the solution sets of the component parts of the disjunction.
Note that there is no compact form for writing x , 21 or x . 2 or for any disjunction.

The following agreements on the use of interval notation should be added to
the list on page 137.

Quadratic Inequalities

The equation ax 2 1 bx 1 c 5 0 has been referred to as the standard form of a qua-
dratic equation in one variable. Similarly, the form ax 2 1 bx 1 c , 0 is used to rep-
resent a quadratic inequality. (The symbol , can be replaced by ., # , or $ to
produce other forms of quadratic inequalities.)

The number line can be used to help solve quadratic inequalities where the
quadratic polynomial is factorable. Let’s consider two examples to illustrate this
procedure.

Solve x 2 1 x 2 6 , 0.

Solution

First, let’s factor the polynomial.

x 2 1 x 2 6 , 0

(x 1 3)(x 2 2) , 0

Second, let’s locate the values where the product (x 1 3)(x 2 2) is equal to zero.
The numbers 23 and 2 divide the number line into three intervals (see Figure 1.9):

the numbers less than 23

the numbers between 23 and 2

the numbers greater than 2

SET GRAPH INTERVAL NOTATION

5x * a , x , b6 ( ) (a, b)
a b

5x * a # x , b6 [ ) [a, b)
a b

5x * a , x # b6 ( ] (a, b]
a b

5x * a # x # b6 [ ] [a, b]
a b

5x * x is a real number6 (2∞, ∞)

E X A M P L E  7
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F I G U R E  1 . 9

We can choose a test number from each of these intervals and see how it affects the
signs of the factors x 1 3 and x 2 2 and, consequently, the sign of the product of
these factors. For example, if x , 23 (try x 5 24), then x 1 3 is negative, and x 2
2 is negative; thus their product is positive. If 2 3 , x , 2 (try x 5 0), then x 1 3 is
positive and x 2 2 is negative; thus their product is negative. If x . 2 (try x 5 3),
then x 1 3 is positive and x 2 2 is positive; thus their product is positive. This infor-
mation can be conveniently arranged by using a number line as in Figure 1.10.

F I G U R E  1 . 1 0

Therefore, the given inequality, x 2 1 x 2 6 , 0, is satisfied by the numbers
between 23 and 2. That is, the solution set is the open interval (23, 2). n

Numbers such as 23 and 2 in the preceding example, where the given polyno-
mial or algebraic expression equals zero or is undefined, are referred to as critical
numbers. Let’s consider some additional examples where we make use of critical
numbers and test numbers.

Solve 6x 2 1 17x 2 14 $ 0.

Solution

First, we factor the polynomial.

6x 2 1 17x 2 14 $ 0

(2x 1 7)(3x 2 2) $ 0

Second, we locate the values where the product (2x 1 7)(3x 2 2) equals zero. We 

suggest putting dots at 2}
7
2

} and }
2
3

} (see Figure 1.11) to remind ourselves that these

(x + 3)(x − 2) = 0 (x + 3)(x − 2) = 0

−4 3

x + 3 is negative.
x − 2 is negative.
Their product is

positive.

x + 3 is positive.
x − 2 is negative.
Their product is

negative.

x + 3 is positive.
x − 2 is positive.
Their product is

positive.

2−3

0

(x + 3)(x − 2) = 0 (x + 3)(x − 2) = 0

2−3
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F I G U R E  1 . 1 1

two numbers must be included in the solution set, because the given statement
includes equality. Now let’s choose a test number from each of the three intervals
and observe the sign behavior of the factors, as in Figure 1.12.

F I G U R E  1 . 1 2

Using the concept of set union, we can write the solution set 12∞, 2}
7
2

}4 < 3}
2
3

}, ∞2.

n

REMARK As you work with quadratic inequalities like those in Examples 7
and 8, you may be able to use a more abbreviated format than what we demon-
strated. Basically, it is necessary to keep track of the sign of each factor in
each of the intervals.

Let’s conclude this section by considering a word problem that involves an
inequality. All of the problem-solving techniques offered earlier continue to apply
except that now we look for a guideline that can be used to generate an inequality
rather than an equation.

Lance has $500 to invest. If he invests $300 at 9%, at what rate must he invest the
remaining $200 so that the total yearly interest from the two investments exceeds
$47?

Solution

Let r represent the unknown rate of interest. The following guideline can be used to
set up an inequality.

(2x + 7)(3x − 2) = 0 (2x + 7)(3x − 2) = 0

7
2

− 2
3

−4 2

2x + 7 is positive.
3x − 2 is negative.
Their product is

negative.

2x + 7 is positive.
3x − 2 is positive.
Their product is

positive.

−1

2x + 7 is negative.
3x − 2 is negative.
Their product is

positive.

(2x + 7)(3x − 2) = 0 (2x + 7)(3x − 2) = 0

7
2

− 2
3

P R O B L E M 1
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For Problems 1–12, express each solution set in interval
notation and graph each solution set.

1. x # 2 2 2. x . 21

3. 1 , x , 4 4. 21 , x # 2

5. 2 . x . 0 6. 23 $ x

7. 22 # x # 21 8. 1 # x

9. x , 1 or x . 3 10. x . 2 or x , 21

11. x . 22 or x . 2 12. x . 2 or x , 4

For Problems 13–20, solve each conjunction by using the
compact form and express the solution sets in interval
notation.

13. 217 # 3x 2 2 # 10 14. 225 # 4x 1 3 # 19

15. 2 . 2x 2 1 . 23 16. 4 . 3x 1 1 . 1

17. 24 , }
x 2

3
1

} , 4 18. 21 # }
x 1

4
2

} # 1

19. 23 , 2 2 x , 3 20. 24 , 3 2 x , 4

For Problems 21–62, solve each inequality and express the
solution sets in interval notation.

21. 22x 1 1 . 5 22. 6 2 3x , 12

23. 23n 1 5n 2 2 $ 8n 2 7 2 9n

24. 3n 2 5 . 8n 1 5

25. 6(2t 2 5) 2 2(4t 2 1) $ 0

26. 3(2x 1 1) 2 2(2x 1 5) , 5(3x 2 2)

27. }
2
3

}x 2 }
3
4

} # }
1
4

}x 1 }
2
3

} 28. }
3
5

} 2 }
2
x

} $ }
1
2

} 1 }
5
x

}

29. }
n 1

4
2

} 1 }
n 2

8
3

} , 1 30. }
2n

6
1 1
} 1 }

3n
5
2 1
} . }

1
2
5
}

31. }
2
x

} 2 }
x 2

5
1

} $ }
x

1
1

0
2

} 2 4

32. }
4x

6
2 3
} 2 }

2x
1
2

2
1

} , 22

33. 0.09x 1 0.1(x 1 200) . 77

34. 0.06x 1 0.08(250 2 x) $ 19

35. 0 , }
5x

3
2 1
} , 2 36. 23 # }

4x
2
1 3
} # 1

37. 3 $ }
7 2

2
x

} $ 1 38. 22 # }
5 2

4
3x

} # }
1
2

}

39. x 2 1 3x 2 4 , 0 40. x 2 2 4 , 0

41. x 2 2 2x 2 15 . 0 42. x 2 2 12x 1 32 $ 0

43. n 2 2 n # 2 44. n 2 1 5n # 6

45. 3t 2 1 11t 2 4 . 0 46. 2t 2 2 9t 2 5 . 0

47. 15x 2 2 26x 1 8 # 0 48. 6x 2 1 25x 1 14 # 0
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P R O B L E M  S E T  1 . 6

Interest from 9% investment 1 Interest from r percent investment . $47

(9%)($300) 1 r($200) . $47

We solve this inequality using methods we have already acquired.

(0.9)(300) 1 200r . 47

27 1 200r . 47

200r . 20

r . 0.1

The other $200 must be invested at a rate greater than 10%. n
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49. 4x 2 2 4x 1 1 . 0 50. 9x 2 1 6x 1 1 # 0

51. (x 1 1)(x 2 3) . (x 1 1)(2x 2 1)

52. (x 2 2)(2x 1 5) . (x 22)(x 2 3)

53. (x 1 1)(x 2 2) $ (x 2 4)(x 1 6)

54. (2x 2 1)(x 1 4) $ (2x 1 1)(x 2 3)

55. (x 2 1)(x 2 2)(x 1 4) . 0

56. (x 1 1)(x 2 3)(x 1 7) $ 0

57. (x 1 2)(2x 2 1)(x 2 5) # 0

58. (x 2 3)(3x 1 2)(x 1 4) , 0

59. x 3 2 2x 2 2 24x $ 0 60. x 3 1 2x 2 2 3x . 0

61. (x 2 2)2(x 1 3) . 0 62. (x 1 4)2(x 1 5) . 0

For Problems 63–72, use inequalities to help solve each
problem.

63. Felix has $1000 to invest. Suppose he invests $500 at 8%
interest. At what rate must he invest the other $500 so
that the two investments yield more than $100 of yearly
interest?

64. Suppose that Annette invests $700 at 9%. How much
must she invest at 11% so that the total yearly interest
from the two investments exceeds $162?

65. Rhonda had scores of 94, 84, 86, and 88 on her first four
history exams of the semester. What score must she
obtain on the fifth exam to have an average of 90 or
better for the five exams?

66. The average height of the two forwards and the center of
a basketball team is 6 feet 8 inches. What must the

average height of the two guards be so that the team
average is at least 6 feet 4 inches?

67. At the food booths at a festival, the area of a pizza must
be 150 square inches or more for the pizza to be
classified as large. What must the diameter be for a pizza
to be classified as large?

68. If the temperature for a 24-hour period ranged between
41°F and 59°F, inclusive, what was the range in Celsius 

degrees? (F 5 }
9
5

}C 1 32)

69. If the temperature for a 24-hour period ranged between
220°C and 25°C, inclusive, what was the range in 

Fahrenheit degrees? 1C 5 }
5
9

} (F 2 32)2
70. A person’s intelligence quotient (IQ) is found by dividing

mental age (M), as indicated by standard tests, by the
chronological age (C), and then multiplying this ratio by
100. The formula IQ 5 100M@C can be used. If the IQ
range of a group of 11-year-olds is given by 80 # IQ #
140, find the mental-age range of this group.

71. A car can be rented from agency A at $75 per day plus
$.10 a mile or from agency B at $50 a day plus $.20 a
mile. If the car is driven m miles, for what values of m
does it cost less to rent from agency A?

72. In statistics the formula for a z-score is z 5 }
x 2

s
xw}, where 

x is a score, xw is the mean, and s is the standard deviation.
To give credibility to our results in a statistical claim, we
want to determine the values of x that will produce a z-
score greater than 2.5 when xw 5 8.7 and s 5 1.2. Find
such values of x.

THOUGHTS INTO WORDS

THOUGHTS INTO WORDS

73. Explain the difference between a conjunction and a
disjunction. Give an example of each (outside the field of
mathematics).

74. How do you know by inspection that the solution set of
the inequality x 1 3 . x 1 2 is the entire set of real
numbers?

75. Give a step-by-step description of how you would solve
the inequality 24 , 2(x 2 1) 2 3(x 1 2).

76. Explain how you would solve the inequality 
(x 2 1)2(x 1 2)2 . 0.

77. Find the solution set for each of the following compound
statements and explain your reasoning in each case.

a. x , 3 and 5 . 2

b. x , 3 or 5 . 2

c. x , 3 and 6 , 4

d. x , 3 or 6 , 4
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Further Investigations

78. The product (x 2 2)(x 1 3) is positive if both factors are
negative or if both factors are positive. Therefore, we can
solve (x 2 2)(x 1 3) . 0 as follows.

(x 2 2 , 0 and x 1 3 , 0) or (x 2 2 . 0 and x 1 3 . 0)

(x , 2 and x , 23) or (x . 2 and x . 23)

x , 23 or x . 2

The solution set is (2∞, 23) < (2, ∞). Use this type of
analysis to solve each of the following.

a. (x 2 1)(x 1 5) . 0

b. (x 1 2)(x 2 4) $ 0

c. (x 1 4)(x 2 3) , 0

d. (2x 2 1)(x 1 5) # 0

e. (x 1 4)(x 1 1)(x 2 2) . 0

f. (x 1 2)(x 2 1)(x 2 3) , 0

79. If a . b . 0, verify that 1@a , 1@b.

80. If a . b, is it always true that 1@a , 1@b? Defend your
answer.

INEQUALITIES INVOLVING QUOTIENTS AND 

ABSOLUTE VALUE

The same type of number-line analysis that we did in the previous section can be
used for indicated quotients as well as for indicated products. In other words,
inequalities such as

}
x
x

2

1

2
3

} . 0

can be solved very efficiently using the same basic approach that we used with qua-
dratic inequalities in the previous section. Let’s illustrate this procedure.

Solve }
x
x

2

1

2
3

} . 0.

Solution

First we find that at x 5 2, the quotient }
x
x

2

1

2
3

} equals zero and that at x 5 23, the 

quotient is undefined. The critical numbers 23 and 2 divide the number line into
three intervals. Then, using a test number from each interval (such as 24, 1, and 3),
we can observe the sign behavior of the quotient, as in Figure 1.13.

1.7

E X A M P L E  1
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F I G U R E  1 . 1 3

Therefore, the solution set for }
x
x

2

1

2
3

} . 0 is (2∞, 23) < (2, ∞). n

Solve }
x
x

1

1

2
4

} # 3.

Solution

First, let’s change the form of the given inequality.

}
x
x

1

1

2
4

} # 3

}
x
x

1

1

2
4

} 2 3 # 0

}
x 1 2

x
2

1

3(
4
x 1 4)

}# 0

}
x 1 2

x
2

1

3
4
x 2 12
}# 0

}
22

x
x
1

2

4
10

} # 0

Now we can proceed as before. If x 5 25, then the quotient }
22

x
x
1

2

4
10

} equals zero, 

and if x 5 24, the quotient is undefined. Then, using test numbers such as 

26, 24}
1
2

}, and 23, we are able to study the sign behavior of the quotient, as in 

Figure 1.14.

x − 2
x + 3 is undefined

−4 3

2−3

1

x − 2
x + 3 = 0

x − 2 is negative.
x + 3 is negative.

The quotient

is positive.

x − 2
x + 3

x − 2 is negative.
x + 3 is positive.

The quotient

is negative.

x − 2
x + 3

x − 2 is positive.
x + 3 is positive.

The quotient

is positive.

x − 2
x + 3

E X A M P L E  2
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F I G U R E  1 . 1 4

Therefore, the solution set for }
x
x

1

1

2
4

} # 3 is (2∞, 25] < (24, ∞). n

Absolute Value

In Section 0.1 we defined the absolute value of a real number by

a, if a $ 0
* a * 5 52a, if a , 0

We also interpreted the absolute value of any real number to be the distance between
the number and zero on the real number line. For example, * 6 * 5 6 because the dis-
tance between 6 and 0 is six units. Likewise, * 2 8 * 5 8 because the distance
between 28 and 0 is eight units.

Both the definition and the number-line interpretation of absolute value pro-
vide ways of analyzing a variety of equations and inequalities involving absolute
value. For example, suppose that we need to solve the equation * x * 5 4. Thinking in
terms of distance on the number line, the equation * x * 5 4 means that we are looking
for numbers that are four units from zero. Thus x must be 4 or 24. From the defini-
tion viewpoint, we could proceed as follows.

If x $ 0, then * x * 5 x and the equation * x * 5 4 becomes x 5 4.

If x , 0, then * x * 5 2x and the equation * x * 5 4 becomes 2x 5 4, which is
equivalent to x 5 24.

Using either approach, we see that the solution set for * x * 5 4 is { 24, 4} .
The following property should seem reasonable from the distance interpreta-

tion and can be verified using the definition of absolute value.
P r o p e r t y  2 . 5

−5

−2x − 10
x + 4 = 0 is undefined−2x − 10

x + 4

−6

−2x − 10 is positive.
x + 4 is negative.

The quotient

is negative.

−2x − 10 is negative.
x + 4 is negative.

The quotient

is positive.

−2x − 10 is negative.
x + 4 is positive.

The quotient

is negative.

−2x − 10
x + 4

−2x − 10
x + 4

−2x − 10
x + 4

−4

−3
1
2

−4

P R O P E R T Y 1 . 5

For any real number k . 0,

if * x * 5 k, then x 5 k or x 5 2k
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To verify Property 1.5 using the definition of absolute value, we can reason as follows.

If x $ 0, then * x * 5 x and the equation * x * 5 k becomes x 5 k.

If x , 0, then * x * 5 2x and the equation * x * 5 k becomes 2x 5 k, which is
equivalent to x 5 2k.

Therefore, the equation * x * 5 k is equivalent to x 5 k or x 5 2k. Now let’s use
Property 1.5 to solve an equation of the form * ax 1 b * 5 k.

Solve * 3x 2 2 * 5 7.

Solution

* 3x 2 2 * 5 7

3x 2 2 5 7 or 3x 2 2 5 27

3x 5 9 or 3x 5 25

x 5 3 or x 5 2}
5
3

}

The solution set is 52}
5
3

}, 36. n

The distance interpretation for absolute value also provides a good basis for
solving some inequalities. For example, to solve * x * , 4, we know that the distance
between x and 0 must be less than four units. In other words, x is to be less than four
units away from zero. Thus * x * , 4 is equivalent to 24 , x , 4 and the solution set
is the interval (24, 4). We will have you use the definition of absolute value and
verify the following general property in the next set of exercises.

P r o p e r t y  2 . 6

Example 4 illustrates the use of Property 1.6.

Solve * 2x 1 1 * , 5.

Solution

* 2x 1 1 * , 5

25 , 2x 1 1 , 5

26 , 2x , 4

23 , x , 2

The solution set is the interval (23, 2). n

E X A M P L E  3

P R O P E R T Y 1 . 6

For any real number k . 0,

if * x * , k, then 2k , x , k

E X A M P L E  4
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Property 1.6 can also be expanded to include the # situation—that is, if * x * # k,
then 2k # x # k.

Solve * 2 3x 2 2 * # 6.

Solution

* 23x 2 2 * # 6

26 # 23x 2 2 # 6

24 # 23x # 8

}
4
3

} $ x $ 2}
8
3

} Note that multiplying through by 2}
1
3

}

reverses the inequalities

The statement }
4
3

} $ x $ 2}
8
3

} is equivalent to 2}
8
3

} # x # }
4
3

}. Therefore, the solution set 

is 32}
8
3

}, }
4
3

}4. n

Now suppose that we want to solve * x * . 4. The distance between x and 0
must be more than four units or, in other words, x is to be more than four units away
from zero. Therefore, * x * . 4 is equivalent to x , 24 or x . 4, and the solution set
is (2∞, 24) < (4, ∞). The following general property can be verified by using the
definition of absolute value.

Solve * 4x 2 3 * . 9.

Solution

* 4x 2 3 * . 9

4x 2 3 , 29 or 4x 2 3 . 9

4x , 26 or 4x . 12

x , 2}
6
4

} or x . 3

x , 2}
3
2

} or x . 3

The solution set is 12∞, 2}
3
2

}2 < (3, ∞). n

E X A M P L E  5

P R O P E R T Y 1 . 7

For any real number k . 0,

if * x * . k, then x , 2k or x . k

E X A M P L E  6
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Property 1.7 can also be expanded to include the $ situation—that is, if * x * $
k, then x # 2k or x $ k.

Solve * 22 2 x * $ 9.

Solution

* 22 2 x * $ 9

22 2 x # 29 or 22 2 x $ 9

2x # 27 or 2x $ 11

x $ 7 or x # 211

The solution set is (2∞, 211] < [7, ∞). n

Properties 1.5, 1.6, and 1.7 provide a sound basis for solving many equations
and inequalities involving absolute value. However, if at any time you become
doubtful about which property applies, don’t forget the definition and the distance
interpretation for absolute value. Furthermore, there are some equations and
inequalities where the properties do not apply. Let’s consider one such example.

Solve the equation * 3x 2 1 * 5 * x 1 4 *.

Solution

We could solve this equation by applying the definition of absolute value to both
expressions; however, let’s approach it in a less formal way. For the two numbers,
3x 2 1 and x 1 4, to have the same absolute value, they must either be equal or be
opposites of each other. Therefore, the equation * 3x 2 1 * 5 * x 1 4 * is equivalent to
3x 2 1 5 x 1 4 or 3x 2 1 5 2(x 1 4), which can be solved as follows.

3x 2 1 5 x 1 4 or 3x 2 1 5 2(x 1 4)

2x 5 5 or 3x 2 1 5 2x 2 4

x 5 }
5
2

} or 4x 5 23

x 5 }
5
2

} or x 5 2}
3
4

}

The solution set is 52}
3
4

}, }
5
2

}6. n

We should also note that in Properties 1.5 through 1.7, k is a positive number. This
is not a serious restriction because problems where k is nonpositive are easily solved
as follows.

E X A M P L E  7

E X A M P L E  8
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* x 2 2 * 5 0 The solution set is {2} because x 2 2 has to equal zero.
* 3x 2 7 * 5 24 The solution set is [. For any real number, the absolute

value of 3x 2 7 will always be nonnegative.
* 2x 2 1 * , 23 The solution set is [. For any real number, the absolute

value of 2x 2 1 will always be nonnegative.
* 5x 1 2 * . 24 The solution set is (2∞, ∞). The absolute value of 5x 1

2, regardless which real number is substituted for x, will
always be greater than 24.

The number-line approach used in Examples 1 and 2 of this section, along
with Properties 1.6 and 1.7, provide a systematic way of solving absolute value
inequalities that have the variable in the denominator of a fraction. Let’s analyze one
such problem.

Solve *}
x
x

1

2

3
2

} * , 4.

Solution

By Property 1.6, * }
x
x

2

1

2
3

}* , 4 becomes 24 , }
x
x

2

1

2
3

} , 4, which can be written

}
x
x

2

1

2
3

} . 24 and }
x
x

2

1

2
3

} , 4

Each part of this and statement can be solved as we handled Example 2 earlier.

(a) (b)

}
x
x

2

1

2
3

} . 24 and }
x
x

2

1

2
3

} , 4

}
x
x

2

1

2
3

} 1 4 . 0 and }
x
x

2

1

2
3

} 2 4 , 0

}
x 2 2

x
1

1

4(
3
x 1 3)

}. 0 and }
x 2 2

x
2

1

4(
3
x 1 3)

}, 0

}
x 2 2

x
1

1

4
3
x 1 12
}. 0 and }

x 2 2
x
2

1

4
3
x 2 12
}, 0

}
5x
x

1

1

1
3
0

} . 0 and }
23

x
x
1

2

3
14

} , 0

This solution set is This solution set is 
shown in Figure 1.15(a). shown in Figure 1.15(b).

F I G U R E  1 . 1 5

(a)
−3 −2

(b)
−314

3
−

E X A M P L E  9
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The intersection of the two solution sets pictured is the set shown in Figure 1.16.

F I G U R E  1 . 1 6

Therefore, the solution set of * }
x
x

2

1

2
3

} * , 4 is 12∞, 2}
1
3
4
}2 < (22, ∞). n

Yes, Example 9 is a little messy, but it does illustrate the weaving together of
previously used techniques to solve a more complicated problem. Don’t be in a
hurry when doing such problems. First analyze the general approach to be taken and
then carry out the details in a neatly organized format to minimize your chances of
making careless errors.

−214
3

−

For Problems 1–14, solve each inequality and express the
solution set in interval notation.

1. }
x
x

1

2

1
5

} . 0 2. }
x
x

1

1

2
4

} # 0

3. }
2
x
x
1

2

2
1

} , 0 4. }
3
x
x
2

1

1
2

} . 0

5. }
2

3x
x

2

1

1
3

} $ 0 6. }
2

n
n
1

2

4
2

} , 0

7. }
n 1

n
2

} $ 3 8. }
x 2

x
1

} . 2

9. }
x
x

2

1

1
2

} , 2 10. }
t
t

2

2

1
5

} # 2

11. }
t
t

2

1

3
5

} . 1 12. }
x
x

1

1

2
7

} , 1

13. }
x 2

1
2

} , }
x 1

1
3

} 14. }
x 1

2
1

} . }
x 2

3
4

}

For Problems 15–34, solve each equation.

15. * x 2 2 * 5 6 16. * x 1 3 * 5 4

17. * x 1 }
4
1

}* 5 }
2
5

} 18. * x 2 }
2
3

}* 5 }
3
4

}

19. * 2n 2 1 * 5 7 20. * 2n 1 1 * 5 11

21. * 3x 1 4 * 5 5 22. * 5x 2 3 * 5 10

23. * 7x 2 1 * 5 24 24. * 22x 2 1 * 5 6

25. * 23x 2 2 * 5 8 26. * 5x 2 4 * 5 23

27. * }
k 2

3
1

} * 5 4 28. * }
n
2

1

2
3

} * 5 5

29. * 3x 2 1 * 5 * 2x 1 3 * 30. * 2x 1 1 * 5 * 4x 2 3 *

31. * 22n 1 1 * 5 * 23n 2 1 * 32. * 24n 1 5 * 5 * 23n 2 5 *

33. * x 2 2 * 5 * x 1 4 * 34. * 2x 2 3 * 5 * 2x 1 5 *

For Problems 35–70, solve each inequality and express the
solution set in interval notation.

35. * x * , 6 36. * x * $ 4

37. * x * . 8 38. * x * # 1

39. * x * $ 24 40. * x * , 25

41. * t 2 3 * . 5 42. * n 1 2 * , 1

43. * 2x 2 1 * # 7 44. * 2x 1 1 * $ 3

45. * 3n 1 2 * . 9 46. * 5n 2 2 * , 2

P R O B L E M  S E T  1 . 7
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47. * 4x 2 3 * , 25 48. * 2 2 x * . 1

49. * 3 2 2x * , 4 50. * 4x 1 5 * . 23

51. * 7x 1 2 * $ 22 52. * 21 2 x * $ 8

53. * 22 2x * # 5 54. * x 2 1 * 1 2 , 4

55. * x 1 3 * 2 2 , 1 56. * x 2 5 * 1 4 # 2

57. * x 1 4 * 2 1 . 1 58. * x 2 2 * 1 3 . 6

59. 3 * x 2 2 * $ 6 60. 2 * x 1 1 * , 8

61. 22 * x 1 1 * . 210 62. 2* x 2 4 * # 24

63. * }
x
x

1

2

1
2

} * , 3 64. * }
x
x

2

2

1
4

} * , 2

65. * }
x
x

2

1

1
3

} *. 1 66. * }
x
x

1

2

4
5

} * $ 3

67. * }
n 1

n
2

} * $ 4 68. * }
t
t

1

2

6
2

}* , 1

69. *}
2k

k
2 1
} * # 2 70. * }

k 1

k
2

} * . 4

154 Chapter 1 Equations, Inequalities, and Problem Solving

71. Explain how you would solve the inequality

}
(x

x
1

2

1
2
)2} . 0.

72. Explain how you would solve the inequality 
* 3x 2 7 * . 22.

73. Why is 5}
3
2

}6 the solution set for * 2x 2 3 * # 0?

74. Consider the following approach for solving the
inequality in Example 2 of this section.

}
x
x

1

1

2
4

} # 3

(x 1 4)1}xx 1

1

2
4

}2 # 3(x 1 4) Multiply both
sides by 
x 1 4.

x 1 2 # 3x 1 12
22x # 10

x $ 25

Obviously, the solution set that we obtain using this
approach differs from what we obtained in the text. What
is wrong with this approach? Can we make any
adjustments so that this basic approach works?

THOUGHTS INTO WORDS

Further Investigations

75. Use the definition of absolute value and prove Property
1.6.

76. Use the definition of absolute value and prove Property
1.7.

77. Solve each of the following inequalities by using the
definition of absolute value. Do not use Properties 1.6
and 1.7.

a. * x 1 5 * , 11 b. * x 2 4 * # 10

c. * 2x 2 1 * . 7 d. * 3x 1 2 * $ 1

e. * 2 2 x * , 5 f. * 3 2 x * . 6
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This chapter covers three large topics: (1) solving equations, (2) solving inequali-
ties, and (3) problem solving.

Solving Equations

The following properties are used extensively in the equation-solving process.

1. a 5 b if and only if a 1 c 5 b 1 c. Addition property of equality

2. a 5 b if and only if ac 5 bc, c Þ 0.

3. If ab 5 0, then a 5 0 or b 5 0.

4. If a 5 b, then an 5 bn, where n is a positive integer.

Remember that applying the fourth property may result in some extraneous solu-
tions, so you must check all potential solutions.

The cross-multiplication property of proportions (if a@b 5 c@d then ad 5 bc) can be
used to solve some equations.

Quadratic equations can be solved by (1) factoring, (2) completing the square, or (3)
using the quadratic formula, which can be stated as

x 5}
2b 6 Ï

2a
bw2w2w 4wawcw
}

The discriminant of a quadratic equation, b 2 2 4ac, indicates the nature of the solu-
tions of the equation.

1. If b 2 2 4ac . 0, the equation has two unequal real solutions.

2. If b 2 2 4ac 5 0, the equation has one real solution.

3. If b 2 2 4ac , 0, the equation has two complex but nonreal solutions.

If x1 and x2 are the solutions of a quadratic equation ax 2 1 bx 1 c 5 0, then (1)
x1 1 x2 5 2b@a and (2) x1x2 5 c@a. These relationships can be used to check
potential solutions.

The property If * x * 5 k, then x 5 k or x 5 2k(k . 0) is often helpful for solving
equations that involve absolute value.

Solving Inequalities

The following properties form a basis for solving inequalities.

1. If a . b, then a 1 c . b 1 c.

2. If a . b and c . 0, then ac . bc.

3. If a . b and c , 0, then ac , bc.

C H A P T E R  1 S U M M A R Y

Multiplication property of
equality
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To solve compound statements that involve inequalities, we proceed as follows.

1. Solve separately each inequality in the compound statement.

2. If it is a conjunction, the solution set is the intersection of the solution sets
of the inequalities.

3. If it is a disjunction, the solution set is the union of the solution sets of the
inequalities.

Quadratic inequalities such as (x 1 3)(x 2 7) . 0 can be solved by considering the
sign behavior of the individual factors.

The following properties play an important role in solving inequalities that involve
absolute value.

1. If * x * , k, where k . 0, then 2k , x , k.

2. If * x * . k, where k . 0, then x . k or x , 2k.

Problem Solving

It would be helpful for you to reread the pages of this chapter that pertain to problem
solving. Some key problem-solving ideas are illustrated on these pages.

C H A P T E R  1  R E V I E W  P R O B L E M S E T

For Problems 1–22, solve each equation.

1. 2(3x 2 1) 2 3(x 2 2) 5 2(x 2 5)

2. }
n 2

4
1

} 2 }
2n

5
1 3
} 5 2

3. }
x 1

2
2

} 1 }
x 2

5
4

} 5 }
2x

7
2 8
}

4. 0.07x 1 0.12(550 2 x) 5 56

5. (3x 2 1)2 5 16 6. 4x 2 2 29x 1 30 5 0

7. x 2 2 6x 1 10 5 0 8. n 2 1 4n 5 396

9. 15x 3 1 x 2 2 2x 5 0

10. }
t
t

1

2

3
1

} 2 }
2
t
t
2

1

5
3

} 5 }
t 2 2

3 2

6t
t
1

2

5
}

11. }
5
2

2

2

x
x

} 2 }
3 2

2x
2x

} 5 1 12. x 4 1 4x 2 2 45 5 0

13. 2n24 2 11n22 1 5 5 0

14. 1x 2 }
2
x

}22
1 41x 2 }

2
x

}2 5 5

15. Ï5w 1w 2wxw 5 1 1 Ï2wxw

16. Ï3w 1w 2wnw 1 Ï2w 2w 2wnw 5 3

17. Ï3w 2w tw 2 Ï3w 1w tw 5 Ïtw

18. * 5x 2 1 * 5 7

19. * 2x 1 5 * 5 * 3x 2 7 * 20. * }
n
2

2

3
1

} * 5 4

21. x 3 1 x 2 2 2x 2 2 5 0

22. 2x 2@3 1 5x 1@3 2 12 5 0

For Problems 23–40, solve each inequality. Express the
solution sets using interval notation.

23. 3(2 2 x) 1 2(x 2 4) . 22(x 1 5)

24. }
3
5

}x 2 }
1
3

} # }
2
3

}x 1 }
3
4

}
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25. }
n 2

3
1

} 2 }
2n

4
1 1
} . }

1
6

}

26. 0.08x 1 0.09(700 2 x) $ 59

27. 216 # 7x 2 2 # 5 28. 5 . }
3y

2
1 4
} . 1

29. x 2 2 3x 2 18 , 0 30. n 2 2 5n $ 14

31. (x 2 1)(x 2 4)(x 1 2) , 0

32. }
2
x
x
1

2

4
3

} # 0

33. }
5
n
n
2

2

2
1

} . 0 34. }
x
x

2

1

1
3

} $ 2

35. }
t
t

1

2

5
4

} , 1 36. * 4x 2 3 * . 5

37. * 3x 1 5 * # 14 38. * 23 2 2x * , 6

39. * }
x 2

x
1

} * . 2 40. * }
n
n

1

1

1
2

} * , 1

For Problems 41–56, solve each problem.

41. The sum of three consecutive odd integers is 31 less than
four times the largest integer. Find the integers.

42. The sum of two numbers is 74. If the larger is divided by
the smaller, the quotient is 7 and the remainder is 2. Find
the numbers.

43. The perimeter of a rectangle is 38 centimeters and its area
is 84 square centimeters. Find the dimensions of the
rectangle.

44. A sum of money amounting to $13.55 consists of
nickels, dimes, and quarters. There are three times as
many dimes as nickels and three fewer quarters than
dimes. How many coins of each denomination are
there?

45. A retailer has some shirts that cost him $14 each. He
wants to sell them to make a profit of 30% of the
selling price. What price should he charge for the
shirts?

46. How many gallons of a solution of glycerine and
water containing 55% glycerine should be added to 15
gallons of a 20% solution to give a 40% solution?

47. The sum of the present ages of Rosie and her mother is
47 years. In 5 years, Rosie will be one-half as old as
her mother at that time. Find the present ages of both
Rosie and her mother.

48. Kelly invested $800, part of it at 9% and the remainder
at 12%. Her total yearly interest from the two invest-
ments was $85.50. How much did she invest at each
rate?

49. Regina has scores of 93, 88, 89, and 95 on her first
four math exams. What score must she get on the fifth
exam to have an average of 92 or better for the five
exams?

50. At how many minutes after 2 P.M. will the minute
hand of a clock overtake the hour hand?

51. Russ started to mow the lawn, a task that usually takes
him 40 minutes. After he had been working for 15
minutes, his friend Jay came along with his mower
and began to help Russ. Working together, they
finished the lawn in 10 minutes. How long would it
have taken Jay to mow the lawn by himself?

52. Barry bought a number of shares of stock for $600. A
week later the value of the stock increased $3 per
share, and he sold all but 10 shares and regained his
original investment of $600. How many shares did he
sell and at what price per share?

53. Larry drove 156 miles in one hour more than it took
Mike to drive 108 miles. Mike drove at an average rate
of 2 miles per hour faster than Larry. How fast did
each one travel?

54. It takes Bill 2 hours longer to do a certain job than it
takes Cindy. They worked together for 2 hours; then
Cindy left and Bill finished the job in 1 hour. How
long would it take each of them to do the job alone?

55. One leg of a right triangle is 5 centimeters longer than
the other leg. The hypotenuse is 25 centimeters long.
Find the length of each leg.

56. The area of a rectangle is 35 square inches. If both the
length and width are increased by 3 inches, the area is
increased by 45 square inches. Find the dimensions of
the original rectangle.
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For Problems 1–14, solve each equation.

1. 3(2x 2 1) 2 4(x 1 2) 5 27

2. 10x 2 1 13x 2 3 5 0

3. (5x 1 2)2 5 25

4. }
3n

4
1 4
} 2 }

2n
1
2

0
1

} 5 }
1
2
1
0
}

5. 2x 2 2 x 1 4 5 0

6. (n 2 2)(n 1 7) 5 218

7. 0.06x 1 0.08(1400 2 x) 5 100

8. * 3x 2 4 * 5 7

9. 3x 2 2 2x 2 2 5 0

10. 3x 3 1 21x 2 2 54x 5 0

11. }
2x

x
1 1
} 2 1 5 }

7(x
2

2

4
2)

}

12. Ï2wxw 5 x 2 4

13. Ïxw1w 1w 1 2 5 Ïxw

14. 2n22 1 5n21 2 12 5 0

For Problems 15–21, solve each inequality and express the solution set
using interval notation.

15. 2(x 2 1) 2 3(3x 1 1) $ 26(x 2 5)

16. }
x 2

6
2

} 2 }
x 1

9
3

} . 2}
1
2

}

17. * 6x 2 4 * , 10

18. * 4x 1 5 * $ 6

19. 2x 2 2 9x 2 5 # 0

20. }
3
x
x
1

2

2
1

} . 0

21. }
x
x

2

1

2
6

} $ 3

C H A P T E R  1 T E S T
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For Problems 22–25, solve each problem.

22. How many cups of grapefruit juice must be added to 30 cups of a punch that
contains 8% grapefruit juice to obtain a punch that is 10% grapefruit juice?

23. Lian can ride her bike 60 miles in one hour less time that it takes Tasya to
ride 60 miles. Lian’s rate is 3 miles per hour faster than Tasya’s rate. Find
Lian’s rate.

24. Abdul bought a number of shares of stock for a total of $3000. Three
months later the stock had increased in value by $5 per share, and he sold all
but 50 shares and regained his original investment of $3000. How many
shares did he sell?

25. The perimeter of a rectangle is 46 centimeters and its area is 126 square
centimeters. Find the dimensions of the rectangle.
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René Descartes, a French mathematician of the 17th century, was able to
transform geometric problems into an algebraic setting so that he could use
the tools of algebra to solve the problems. This merging of algebraic and
geometric ideas is the foundation of a branch of mathematics called analytic
geometry, today more commonly called coordinate geometry. Basically,
there are two kinds of problems in coordinate geometry: given an algebraic
equation, find its geometric graph; and given a set of conditions pertaining
to a geometric graph, find its algebraic equation. We will discuss problems
of both types in this chapter.

COORDINATE GEOMETRY

Recall that the real number line (Figure 2.1) exhibits a one-to-one correspondence
between the set of real numbers and the points on a line. That is, to each real number
there corresponds one and only one point on the line, and to each point on the line
there corresponds one and only one real number. The number that corresponds to a
particular point on the line is called the coordinate of that point.

F I G U R E  2 . 1

Suppose that on the number line we want to know the distance from 22 to 6.
The from–to vocabulary implies a directed distance, which is 6 2 (22) 5 8 units.
In other words, it is 8 units in a positive direction from 22 to 6. Likewise, the dis-
tance from 9 to 24 is 24 2 9 5 213; it is 13 units in a negative direction. In gen-
eral, if x1 and x2 are the coordinates of two points on the number line, then the
distance from x1 to x2 is given by x2 2 x1, and the distance from x2 to x1 is given by
x1 2 x2.

Now suppose that we want to find the distance between 22 and 6. The
between vocabulary implies distance without regard to direction. Thus the dis-
tance between 22 and 6 can be found by using either * 6 2 (22) * 5 8 or * 2 2 2
6 * 5 8. In general, if x1 and x2 are the coordinates of two points on the number line,
then the distance between x1 and x2 can be found by using either * x2 2 x1 * or 
* x1 2 x2 *.

Sometimes it is necessary to find the coordinate of a point located somewhere
between the two given points. For example, in Figure 2.2 suppose that we want to
find the coordinate (x ) of the point located two-thirds of the distance from 2 to 8.

543210−1−2−3−4−5

−π −√2
1
2

− 1
2 √2 π

2.1
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Because the total distance from 2 to 8 is 8 2 2 5 6 units, we can start at 2 and move

}
2
3

}(6) 5 4 units toward 8. Thus

x 5 2 1 }
2
3

}(6) 5 2 1 4 5 6

F I G U R E  2 . 2

The following examples further illustrate the process of finding the coordinate of a
point somewhere between two given points (Figure 2.3).

Problem

a. Three-fourths of the 
distance from 22 to 10

F I G U R E 2 . 3 a

b. Two-fifths of the 
distance from 21 to 7

F I G U R E 2 . 3 b

c. One-third of the 
distance from 9 to 1

F I G U R E 2 . 3 c

d. a@b of the distance 
from x1 to x2

F I G U R E 2 . 3 d

2 8x

162 Chapter 2 Coordinate Geometry and Graphing Techniques

10x−2

7x−1

9x1

xx1 x2

Solution

x 5 22 1 }
3
4

}[10 2 (22)]

5 22 1 }
3
4

}(12)

5 7

x 5 21 1 }
2
5

}[7 2 (21)]

5 21 1 }
2
5

}(8)

5 }
1
5
1
}

x 5 9 1 }
1
3

}(1 2 9)

5 9 1 }
1
3

}(28)

5 }
1
3
9
}

x 5 x1 1 }
a
b

}(x2 2 x1)
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2.1 Coordinate Geometry 163

Problem (d) indicates that a general formula can be developed for this type of prob-
lem. However, it may be easier to remember the basic approach than it is to memo-
rize the formula.

As we saw in Chapter 2, the real number line provides a geometric model for
graphing solutions of algebraic equations and inequalities involving one variable.
For example, the solutions of “x . 2 or x # 21” are graphed in Figure 2.4.

F I G U R E  2 . 4

Rectangular Coordinate System

To expand our work with coordinate geometry, we now consider two number lines,
one vertical and one horizontal, perpendicular to each other at the point associated
with zero on both lines (Figure 2.5). We refer to these number lines as the horizon-
tal and vertical axes and together as the coordinate axes. They partition the plane
into four regions called quadrants. The quadrants are numbered counterclockwise
from I through IV, as indicated in Figure 2.5. The point of intersection of the two
axes is called the origin.

F I G U R E  2 . 5

It is now possible to set up a one-to-one correspondence between ordered
pairs of real numbers and the points in a plane. To each ordered pair of real numbers

1 2 3 4 5−1−2−3−4−5

1
2
3
4
5

−1
−2
−3

−5
−4

0

III

III IV

43210−2 −1−3−4
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there corresponds a unique point in the plane, and to each point in the plane there
corresponds a unique ordered pair of real numbers. Figure 2.6 shows examples of
this correspondence. The ordered pair (3, 2) means that point A is located three units
to the right and two units up from the origin. The ordered pair (23, 25) means that
point D is located three units to the left and five units down from the origin. The
ordered pair (0, 0) is associated with the origin.

F I G U R E  2 . 6

REMARK We used the notation (22, 4) in Chapter 1 to indicate an interval
of the real number line. Now we are using the same notation to indicate an
ordered pair of real numbers. This double meaning should not be confusing,
because the context of the material will definitely indicate the meaning at a
particular time. Throughout this chapter we will be using the ordered-pair
interpretation.

In general, the real numbers a and b in the ordered pair (a, b ) are associated
with a point; they are referred to as the coordinates of the point. The first number,
a, is called the abscissa; it is the directed distance of the point from the vertical axis,
measured parallel to the horizontal axis. The second number, b, is called the ordi-
nate; it is the directed distance from the horizontal axis, measured parallel to the
vertical axis (Figure 2.7a). Thus, in the first quadrant, all points have a positive
abscissa and a positive ordinate. In the second quadrant, all points have a negative
abscissa and a positive ordinate. We have indicated the sign situations for all four
quadrants in Figure 2.7(b). This system of associating points in a plane with pairs of
real numbers is called the rectangular coordinate system or the Cartesian coordi-
nate system.

O(0, 0)

A(3, 2)

B(−2, 4)

C(−4, 0)

D(−3, −5)

E(5, −2)
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F I G U R E  2 . 7

Distance Between Two Points

As we work with the rectangular coordinate system, it is sometimes necessary to
express the length of certain line segments. In other words, we need to be able to
find the distance between two points. Let’s first consider two specific examples and
then develop a general distance formula.

Find the distance between the points A(2, 2) and B(5, 2) and also between the points
C(22, 5) and D(22, 24).

Solution

Let’s plot the points and draw AwBw and CwDw as in Figure 2.8. (The symbol AwBw denotes
the line segment with endpoints A and B.) Because AwBw is parallel to the horizontal

F I G U R E  2 . 8

A(2, 2) B(5, 2)

C(−2, 5)

D(−2, −4)

(a, b)a

b

(a) (b)

(+, +)(−, +)

(−, −) (+, −)

E X A M P L E  1
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axis, its length can be expressed as * 5 2 2 * or * 2 2 5 * . Thus the length of AwBw (we

shall use the notation AB to represent the length of AwBw) is AB 5 3 units. Likewise,
because CwDw is parallel to the vertical axis, we obtain CD 5 * 5 2 (24) * 5 9 units.

n

Find the distance between the points A(2, 3) and B(5, 7).

Solution

Let’s plot the points and form a right triangle using point D, as indicated in Figure
2.9. Note that the coordinates of point D are (5, 3). Because AwDw is parallel to the

F I G U R E  2 . 9

horizontal axis, as in Example 1, we have AD 5 * 5 2 2 * 5 3 units. Likewise, DwBw is
parallel to the vertical axis, and therefore DB 5 * 7 2 3 * 5 4 units. Applying the
Pythagorean theorem, we obtain

(AB)2 5 (AD)2 1 (DB )2

5 32 1 42

5 9 1 16

5 25

Thus

AB 5 Ï2w5w 5 5 units n

Before we use the approach in Example 2 to develop a general distance for-
mula, let’s make another notational agreement. For most problems in coordinate
geometry, it is customary to label the horizontal axis the x axis and the vertical axis
the y axis. Then ordered pairs representing points in the xy plane are of the form 
(x, y ); that is, x is the first coordinate and y is the second coordinate. Now let’s
develop a general distance formula.

A(2, 3)

B(5, 7)

D(5, 3)
3 units

4 units

(2, 0) (5, 0)

(0, 3)

(0, 7)
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2.1 Coordinate Geometry 167

Let P1(x1, y1) and P2(x2, y2) represent any two points in the xy plane. Form a
right triangle using point R, as indicated in Figure 2.10. The coordinates of the ver-
tex of the right angle, at point R, are (x2, y1). The length of Pw1wRw is * x2 2 x1 * and the
length of RwPw2w is * y2 2 y1 *. Let d represent the length of Pw1wPw2w and apply the
Pythagorean theorem to obtain

d 2 5 * x2 2 x1 * 2 1 * y2 2 y1 * 2

F I G U R E  2 . 1 0

Because * a * 2 5 a 2 for any real number a, the distance formula can be stated

It makes no difference which point you call P1 and which you call P2. Also, remem-
ber that if you forget the formula, there is no need to panic: Form a right triangle and
apply the Pythagorean theorem as we did in Example 2.

Let’s consider some examples that illustrate the use of the distance formula.

Find the distance between (22, 5) and (1, 21).

Solution

Let (22, 5) be P1 and (1, 21) be P2. Use the distance formula to obtain

d 5 Ï(xw2w2w xw1)w2w1w (wy2w 2w yw1)w2w

5 Ï[1w 2w (w2w2w)]w2w1w (w2w1w 2w 5w)2w

5 Ï3w2w1w (w2w6w)2w

5 Ï9w 1w 3w6w

5 Ï4w5w 5 3Ï5w

The distance between the two points is 3Ï5w units. n

d 5 Ï(xw2w2w xw1)w2w1w (wy2w 2w yw1)w2w

x1 x2

y1

y2

|x2 − x1|

P1(x1, y1) |y2 − y1|

P2(x2, y2)

R(x2, y1)

d

x

y

E X A M P L E  3
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In Example 3, note the simplicity of the approach when we use the distance
formula. No diagram was needed; we merely plugged in the values and did the com-
putation. However, many times a figure is helpful in the analysis of the problem, as
we will see in the next example.

Verify that the points (23, 6), (3, 4), and (1, 22) are vertices of an isosceles trian-
gle. (An isosceles triangle has two sides of the same length.)

Solution

Let’s plot the points and draw the triangle (Figure 2.11). The lengths d1, d2, and d3

can all be found by using the distance formula.

F I G U R E  2 . 1 1

d1 5 Ï(3w 2w 1w)2w 1w [w4w 2w (w2w2w)]w2w

5 Ï4w 1w 3w6w

5 Ï4w0w 5 2Ï1w0w

d2 5 Ï(2w3w 2w 3w)2w 1w (w6w 2w 4w)2w

5 Ï3w6w 1w 4w

5 Ï4w0w 5 2Ï1w0w

d3 5 Ï(2w3w 2w 1w)2w 1w [w6w 2w (w2w2w)]w2w

5 Ï1w6w 1w 6w4w

5 Ï8w0w 5 4Ï5w

Because d1 5 d2, it is an isosceles triangle. n

x

y

(1, −2)

(−3, 6)

(3, 4)

d1

d2

d3
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Points of Division of a Line Segment

Earlier in this section we discussed the process of finding the coordinate of a point
on a number line, given that it is located somewhere between two other points on the
line. This same type of problem can occur in the xy plane, and the approach we used
earlier can be extended to handle it. Let’s consider some examples.

Find the coordinates of the point P, which is two-thirds of the distance from A(1, 2)
to B(7, 5).

Solution

In Figure 2.12 we plotted the given points A and B and completed a figure to help us
analyze the problem. To find the coordinates of point P, we can proceed as follows.
Point D is two-thirds of the distance from A to C because parallel lines cut off 

F I G U R E  2 . 1 2

proportional segments on every transversal that intersects the lines. Therefore,
because AwCw is parallel to the x axis, it can be treated as a segment of the number line
(see Figure 2.13). Thus we have

x 5 1 1 }
2
3

}(7 2 1) 5 1 1 }
2
3

}(6) 5 5

Similarly, CwBw is parallel to the y axis, so it can also be treated as a segment of the
number line (see Figure 2.14). Thus we obtain

y 5 2 1 }
2
3

}(5 2 2)

5 2 1 }
2
3

}(3) 5 4

The point P has the coordinates (5, 4). n

A(1, 2)

B(7, 5)

x

y

P(x, y)

D(x, 2) C(7, 2)

E (7, y)

E X A M P L E  5

F I G U R E  2 . 1 3

A C

1 x

D

7

F I G U R E  2 . 1 4

C

y

2

E
B 5
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Find the coordinates of the midpoint of the line segment determined by the points
P1(x1, y1) and P2(x2, y2).

Solution

Figure 2.15 helps with the analysis of the problem. The line segment Pw1wRw is parallel
to the x axis, and S(x, y1) is the midpoint of Pw1wRw (see Figure 2.16). Thus we can
determine the x coordinate of S.

F I G U R E  2 . 1 5

x 5 x1 1 }
1
2

}(x2 2 x1)

5 x1 1 }
1
2

}x2 2 }
1
2

}x1

5 }
1
2

}x1 1 }
1
2

}x2 5 }
x1 1

2
x2}

Similarly, RwPw2w is parallel to the y axis, and T(x2, y ) is the midpoint of RwPw2w (see Fig-
ure 2.17). Therefore, we can calculate the y coordinate of T.

y 5 y1 1 }
1
2

}(y2 2 y1)

5 y1 1 }
1
2

}y2 2 }
1
2

}y1

5 }
1
2

}y1 1 }
1
2

}y2 5 }
y1 1

2
y2}

Thus the coordinates of the midpoint of a line segment determined by P1(x1, y1) and
P2(x2, y2) are

1}x1 1

2
x2},  }

y1 1

2
y2}2 n

x

y

M(x, y)

P1(x1, y1)

P2(x2, y2)

R(x2, y1)S(x, y1)

T(x2, y)
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S

x1

P1

x

R

x2

F I G U R E  2 . 1 7

R

yT

y2P2

y1

E X A M P L E  6
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Find the coordinates of the midpoint of the line segment determined by the points 
(22, 4) and (6, 21).

Solution

Using the midpoint formula, we obtain

1}x1 1

2
x2}, }

y1 1

2
y2}2 5 1}22

2
1 6
}, }

4 1

2
(21)
}2

5 1}
4
2

}, }
3
2

}2
5 12, }

3
2

}2 n

We want to emphasize two ideas that emerge from Examples 5, 6, and 7. If we
want to find a point of division of a line segment, then we use the same approach as
in Example 5. However, for the special case of the midpoint, the formula developed
in Example 6 is convenient to use.

E X A M P L E  7

For Problems 1–8, find the indicated distances on a number
line.

1. From 24 to 6 2. From 5 to 214

3. From 26 to 211 4. From 27 to 10

5. Between 22 and 4 6. Between 24 and 212

7. Between 5 and 210 8. Between 22 and 13

For Problems 9–14, find the coordinate of the indicated point
on a number line.

9. Two-thirds of the distance from 1 to 10

10. Three-fourths of the distance from 22 to 14

11. One-third of the distance from 23 to 7

12. Two-fifths of the distance from 25 to 6

13. Three-fifths of the distance from 21 to 211

14. Five-sixths of the distance from 3 to 27

For Problems 15–22, find the length of AwBw and the midpoint
of AwBw.

15. A(2, 1), B(10, 7) 16. A(22, 21), B(7, 11)

17. A(1, 21), B(3, 24) 18. A(25, 2), B(21, 6)

19. A(6, 24), B(9, 27) 20. A(23, 3), B(0, 23)

21. A1}
1
2

}, }
1
3

}2, B12}
1
3

}, }
3
2

}2 22. A12}
3
4

}, 22, B121, 2}
5
4

}2
For Problems 23–28, find the coordinates of the indicated
point in the xy plane.

23. One-third of the distance from (2, 3) to (5, 9)

24. Two-thirds of the distance from (1, 4) to (7, 13)

25. Two-fifths of the distance from (22, 1) to (8, 11)

26. Three-fifths of the distance from (2, 23) to (23, 8)

27. Five-eighths of the distance from (21, 22) to (4, 210)

28. Seven-eighths of the distance from (22, 3) to (21, 29)

For Problems 29–44, solve each of the problems.

29. Find the coordinates of the point that is one-fourth of the
distance from (2, 4) to (10, 13) by (a) using the midpoint
formula twice, and (b) using the same approach as for
Problems 23–28.

30. If one endpoint of a line segment is (26, 4) and the
midpoint of the segment is (22, 7), find the other
endpoint.

P R O B L E M  S E T  2 . 1
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31. Use the distance formula to verify that the points 
(22, 7), (2, 1), and (4, 22) lie on a straight line.

32. Use the distance formula to verify that the points 
(23, 8), (7, 4), and (5, 21) are vertices of a right
triangle.

33. Verify that the points (0, 3), (2, 23), and (24, 25) are
vertices of an isosceles triangle.

34. Verify that the points (7, 12) and (11, 18) divide the line
segment joining (3, 6) and (15, 24) into three segments of
equal length.

35. Find the perimeter of the triangle whose vertices are
(26, 24), (0, 8), and (6, 5).

36. Verify that (24, 9), (8, 4), (3, 28), and (29, 23) are
vertices of a square.

37. Verify that the points (4, 25), (6, 7), and (28, 23) lie on
a circle that has its center at (21, 2).

38. Suppose that (22, 5), (6, 3) and (24, 21) are three
vertices of a parallelogram. How many possibilities are
there for the fourth vertex? Find the coordinates of each
of these points. (Hint: The diagonals of a parallelogram
bisect each other.)

39. Find x such that the line segment determined by (x, 22)
and (22, 214) is 13 units long.

40. Consider the triangle whose vertices are (4, 26), (2, 8),
and (24, 2). Verify that the medians of this triangle
intersect at a point that is two-thirds of the distance from
a vertex to the midpoint of the opposite side. (A median
of the triangle is the line segment determined by a vertex
and the midpoint of the opposite side. Every triangle has
three medians.)

41. Consider the line segment determined by A(21, 2) and
B(5, 11). Find the coordinates of a point P such that
AP@PB 5 2@1.

42. Verify that the midpoint of the hypotenuse of the right
triangle formed by the points A(4, 0), B(0, 0), and 
C(0, 6) is the same distance from all three vertices.

43. Consider the parallelogram determined by the points
A(1, 1), B(5, 1), C(6, 4), and D(2, 4). Verify that the
diagonals of this parallelogram bisect each other.

44. Consider the quadrilateral determined by the points
A(5, 23), B(3, 4), C(22, 1), and D(21, 22). Verify that
the line segments joining the midpoints of the opposite
sides of this quadrilateral bisect each other.

172 Chapter 2 Coordinate Geometry and Graphing Techniques

47. The tools of coordinate geometry can be used to prove
various geometric properties. For example, consider the
following way of proving that the diagonals of a
rectangle are equal in length.

First we draw a rectangle and display it on
coordinate axes by using a convenient position for the
origin. Now we can use the distance formula to find the
lengths of the diagonals AwCw and BwDw. See Figure 2.18.

F I G U R E  2 . 1 8

x

y

A(0, 0) B( , 0)e

C( , w)eD(0, w)

THOUGHTS INTO WORDS

45. Consider the line segment determined by the two
endpoints A(2, 1) and B(5, 10). Describe how you would
find the coordinates of the point that is two-thirds of the
distance from A to B. Then describe how you would find
the point that is two-thirds of the distance from B to A.

46. How would you define the term coordinate geometry to a
group of elementary algebra students?

Further Investigations
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2.2 Graphing Techniques: Linear Equations and Inequalities 173

GRAPHING TECHNIQUES: LINEAR EQUATIONS

AND INEQUALITIES

As you continue to study mathematics, you will find that the ability to sketch the
graph of an equation quickly is important. Therefore, various curve-sketching tech-
niques are discussed through precalculus and calculus courses. We will use a good
portion of this chapter to expand your repertoire of graphing techniques.

First, let’s briefly review some basic ideas by considering the solutions for the
equation y 5 x 1 2. A solution of an equation in two variables is an ordered pair of
real numbers that satisfy the equation. When the variables are x and y, the ordered
pairs are of the form (x, y ). We see that (1, 3) is a solution for y 5 x 1 2 because
replacing x by 1 and y by 3 yields a true numerical statement: 3 5 1 1 2. Likewise,
(22, 0) is a solution because 0 5 22 1 2 is a true statement. An infinite number of
pairs of real numbers that satisfy y 5 x 1 2 can be found by arbitrarily choosing val-
ues for x and, for each value of x chosen, determining a corresponding value for y.
Let’s use a table to record some of the solutions for y 5 x 1 2.

2.2

DETERMINE y
CHOOSE x FROM y 5 x 1 2 SOLUTIONS FOR y 5 x 1 2

0 2 (0, 2)

1 3 (1, 3)

3 5 (3, 5)

5 7 (5, 7)

22 0 (22, 0)

24 22 (24, 22)

26 24 (26, 24)

AC 5 Ï(lw 2w 0w) 2w 1w (www 2w 0w) 2w 5 Ïl 2w 1w ww2w

BD 5 Ï(0w 2w lw) 2w 1w (www 2w 0w) 2w 5 Ïl 2w 1w ww2w

Thus AC 5 BD, and we have proved that the diagonals
are equal in length. Prove each of the following.

a. The diagonals of an isosceles trapezoid are equal in
length.

b. The line segment joining the midpoints of two sides
of a triangle is equal in length to one-half of the third
side.

c. The midpoint of the hypotenuse of a right triangle is
equally distant from all three vertices.

d. The diagonals of a parallelogram bisect each other.

e. The line segments joining the midpoints of the
opposite sides of a quadrilateral bisect each other.

f. The medians of a triangle intersect at a point that is
two-thirds of the distance from a vertex to the
midpoint of the opposite side. (See Problem 40.)
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Plotting the points associated with the ordered pairs from the table produces Figure
2.19(a). The straight line containing the points (Figure 2.19b) is called the graph of
the equation y 5 x 1 2.

F I G U R E  2 . 1 9

Graphing Linear Equations

Probably the most valuable graphing technique is the ability to recognize the kind
of graph that is produced by a particular type of equation. For example, from previ-
ous mathematics courses you may remember that any equation of the form Ax 1
By 5 C, where A, B, and C are constants (A and B not both zero) and x and y are
variables, is a linear equation and that its graph is a straight line. Two comments
about this description of a linear equation should be made. First, the choice of x and
y as variables is arbitrary; any two letters can be used to represent the variables. For
example, an equation such as 3r 1 2s 5 9 is also a linear equation in two variables.
In order to avoid constantly changing the labeling of the coordinate axes when
graphing equations, we will use the same two variables, x and y, in all equations.
Second, the statement any equation of the form Ax 1 By 5 C technically means any
equation of that form or equivalent to that form. For example, the equation y 5
2x 2 1 is equivalent to 22x 1 y 5 21 and therefore is linear and produces a
straight-line graph.

Before we graph some linear equations, let’s define in general the intercepts
of a graph.

(a) (b)

x

y

(−4, −2)

(−2, 0)

(0, 2)
(1, 3)

(3, 5)

x

y

y = x + 2

(−6, −4)

(5, 7)
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2.2 Graphing Techniques: Linear Equations and Inequalities 175

Once we know that any equation of the form Ax 1 By 5 C produces a
straight-line graph, along with the fact that two points determine a straight line,
graphing linear equations becomes a simple process. We can find two points on the
graph and draw the line determined by those two points. Usually the two points
involving the intercepts are easy to find, and generally it’s a good idea to plot a third
point to serve as a check.

Graph 3x22y 5 6.

Solution

First let’s find the intercepts. If x 5 0, then

3(0) 2 2y 5 6

22y 5 6

y 5 23

Therefore, the point (0, 23) is on the line. If y 5 0, then

3x 2 2(0) 5 6

3x 5 6

x 5 2

Thus the point (2, 0) is also on the line. Now let’s find a check point. If x 5 22, then

3(22) 2 2y 5 6

26 2 2y 5 6

22y 5 12

y 5 26

Thus the point (22, 26) is also on the line. In Figure 2.20, the three points are plot-
ted and the graph of 3x 2 2y 5 6 is drawn.

The x coordinates of the points that a graph has in common with the x

axis are called the x intercepts of the graph. (To compute the x

intercepts, let y 5 0 and solve for x.)

The y coordinates of the points that a graph has in common with the y

axis are called the y intercepts of the graph. (To compute the y

intercepts, let x 5 0 and solve for y.)

E X A M P L E  1
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Note in Example 1 that we did not solve the given equation for y in terms of x
or for x in terms of y. Because we know the graph is a straight line, there is no need
for an extensive table of values; thus there is no need to change the form of the orig-
inal equation. Furthermore, the point (22, 26) served as a check point. If it had not
been on the line determined by the two intercepts, then we would have known that
we had made an error in finding the intercepts.

Graph y 5 22x.

Solution

If x 5 0, then y 5 22(0) 5 0, so the origin (0, 0) is on the line. Because both inter-
cepts are determined by the point (0, 0), another point is necessary to determine the
line. Then a third point should be found as a check point. The graph of y 5 22x is
shown in Figure 2.21.

F I G U R E  2 . 2 1 n

x y
0
1

−1

0
−2

2
(−1, 2)

(0, 0)

(1, −2)

y = −2x

y

x

(−2, −6)

(0, −3)

(2, 0)

3x − 2y = 6

y

x
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2.2 Graphing Techniques: Linear Equations and Inequalities 177

Example 2 illustrates the general concept that for the form Ax 1 By 5 C, if 
C 5 0 then the line contains the origin. Stated another way, the graph of any equa-
tion of the form y 5 kx, where k is any real number, is a straight line containing
the origin.

Graph x 5 2.

Solution

Because we are considering linear equations in two variables, the equation x 5 2 is
equivalent to x 1 0(y) 5 2. Any value of y can be used, but the x value must always
be 2. Therefore, some of the solutions are (2, 0), (2, 1), (2, 2), (2, 21), and (2, 22).
The graph of x 5 2 is the vertical line shown in Figure 2.22.

F I G U R E  2 . 2 2 n

REMARK It is important to realize that we are presently graphing equa-
tions in two variables (graphing in two-dimensional space). Thus, as shown
in Example 3, the graph of x 5 2 is a line. If we were graphing equations in
one variable (graphing on a number line), then the graph of x 5 2 would be a
dot at 2. In subsequent mathematics courses, you may do some graphing of
equations in three variables (graphing in three-dimensional space). At that
time, the graph of x 5 2 will be a plane.

In general, the graph of any equation of the form Ax 1 By 5 C, where A 5 0
or B 5 0 (not both), is a line parallel to one of the axes. More specifically, any
equation of the form x 5 a, where a is any nonzero real number, is a line parallel
to the y axis having an x intercept of a. Any equation of the form y 5 b, where b is a
nonzero real number, is a line parallel to the x axis having a y intercept of b.

Graphing Linear Inequalities

Linear inequalities in two variables are of the form Ax 1 By . C or Ax 1 By , C,
where A, B, and C are real numbers. (Combined linear equality and inequality

x = 2

y

x

E X A M P L E  3
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statements are of the form Ax 1 By $ C or Ax 1 By # C.) Graphing linear
inequalities is almost as easy as graphing linear equations. The following discussion
will lead us to a simple, step-by-step process.

Let’s consider the following equation and related inequalities.

x 1 y 5 2 x 1 y . 2 x 1 y , 2

The straight line in Figure 2.23 is the graph of x 1 y 5 2. The line divides the plane
into two half-planes, one above the line and one below the line. For each point in the
half-plane above the line, the ordered pair (x, y ) associated with the point satisfies
the inequality x 1 y . 2. For example, the ordered pair (3, 4) produces the true
statement 3 1 4 . 2. Likewise, for each point in the half-plane below the line, the
ordered pair (x, y ) associated with the point satisfies the inequality x 1 y , 2. For
example, (23, 1) produces the true statement 23 1 1 , 2.

F I G U R E  2 . 2 3

Now let’s use these ideas from the previous discussion to help graph some
inequalities.

Graph x 2 2y . 4.

Solution

First, graph x 2 2y 5 4 as a dashed line because equality is not included in
x 2 2y . 4 (Figure 2.24). Second, because all of the points in a specific half-plane
satisfy either x 2 2y . 4 or x 2 2y , 4, try a test point. For example, try the origin.

x 2 2y . 4 becomes 0 2 2(0) . 4, which is a false statement.

Because the ordered pairs in the half-plane containing the origin do not satisfy x 2
2y . 4, the ordered pairs in the other half-plane must satisfy it. Therefore, the graph
of x 2 2y . 4 is the half-plane below the line, as indicated by the shaded portion in
Figure 2.25.

y

x

(3, 4)

(−3, 1)

x + y = 2
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2.2 Graphing Techniques: Linear Equations and Inequalities 179

F I G U R E  2 . 2 4 F I G U R E  2 . 2 5 n

To graph a linear inequality, we suggest the following steps.

1. Graph the corresponding equality. Use a solid line if equality is included in
the original statement and a dashed line if equality is not included.

2. Choose a test point not on the line and substitute its coordinates into the
inequality. (The origin is a convenient point if it is not on the line.)

3. The graph of the original inequality is

a. the half-plane containing the test point if the inequality is satisfied by
that point.

b. the half-plane not containing the test point if the inequality is not
satisfied by the point.

Graph 2x 1 3y $ 26.

Solution

STEP 1 Graph 2x 1 3y 5 26 as a solid line (Figure 2.26).

STEP 2 Choose the origin as a test point.

2x 1 3y $ 26 becomes 2(0) 1 3(0) $ 26

which is true.

STEP 3 The test point satisfies the given inequality, so all points in the
same half-plane as the test point satisfy it. The graph of 2x 1 3y $
26 is the line and the half-plane above the line (Figure 2.26).

n

Graphing Utilities

The term graphing utility is used in current literature to refer to either a graphing
calculator or a computer with a graphing software package. (We will frequently say,

y

x

y

x
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y

x

F I G U R E  2 . 2 6

   98  Coordinate Geometry and Graphing Techniques 



“Use a graphing calculator to . . .”  when we mean a graphing calculator or a com-
puter with an appropriate software package.) These devices have a wide range of
capabilities that enable the user not only to obtain a quick graph but also to study
various characteristics of it—for example, the x intercepts, y intercepts, and turning
points of a graph. We will introduce some of these features of graphing utilities as
we need them in the text. Because so many different types of graphing utilities are
available, we will use mostly generic terminology and let you consult your user’s
manual for specific key-punching instructions. We also suggest that you study the
graphing utility examples in this text even if you do not have access to a graphing
calculator or a computer. The examples were chosen to reinforce the concepts we
are discussing.

Use a graphing utility to obtain a graph of the line 2.1x 1 5.3y 5 7.9.

Solution

First, we need to solve the equation for y in terms of x. (If you are using a computer for
this problem, you may not need to change the form of the given equation. Some soft-
ware packages will allow you to graph two-variable equations without solving for y.)

2.1x 1 5.3y 5 7.9

5.3y 5 7.9 2 2.1x

y 5 }
7.9 2

5.3
2.1x
}

Now we can enter the expression }
7.9 2

5.3
2.1x
} for Y1 and obtain the graph as shown in

Figure 2.27.

F I G U R E  2 . 2 7 n

As indicated in Figure 2.27, the viewing rectangle of a graphing utility is a
portion of the xy plane shown on the display of the utility. In this display the bound-
aries were set so that 215 # x # 15 and 210 # y # 10. These boundaries were set
automatically; however, the fact that boundaries can be assigned as necessary is an
important feature of graphing utilities.

15215

10

210
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2.2 Graphing Techniques: Linear Equations and Inequalities 181

For Problems 1–16, graph each linear equation.

1. x 2 2y 5 4 2. 2x 1 y 5 24

3. 3x 1 2y 5 6 4. 2x 2 3y 5 6

5. 4x 2 5y 5 20 6. 5x 1 4y 5 20

7. x 2 y 5 3 8. 2x 1 y 5 4

9. y 5 3x 2 1 10. y 5 22x 1 3

11. y 5 2x 12. y 5 4x

13. x 5 0 14. y 5 21

15. y 5 }
2
3

}x 16. y 5 2}
1
2

}x

For Problems 17–30, graph each linear inequality.

17. x 1 2y . 4 18. 2x 2 y , 24

19. 3x 2 2y , 6 20. 2x 1 3y , 6

21. 2x 1 5y # 10 22. 4x 1 5y # 20

23. y . 2x 2 1 24. y , 3x 2 2

25. y # 2x 26. y $ x

27. x 1 2y , 0 28. 3x 2 y . 0

29. x . 21 30. y , 3

THOUGHTS INTO WORDS

P R O B L E M  S E T  2 . 2

31. Explain how you would graph the inequality
2x 1 2y . 24.

32. What is the graph of the disjunction x 5 0 or y 5 0?
What is the graph of the conjunction x 5 0 and y 5 0?
Explain your answers.

From our work with absolute value, we know that * x 1 y * 5 4
is equivalent to x 1 y 5 4 or x 1 y 5 24. Therefore, the
graph of * x 1 y * 5 4 is the two lines x 1 y 5 4 and x 1 y 5
24. For Problems 33–38, graph each equation.

33. * x 2 y * 5 2 34. * 2x 1 y * 5 1

35. * x 2 2y * # 4 36. * 3x 2 2y * $ 6

37. * 2x 1 3y * . 6 38. * 5x 1 2y * , 10

Using the definition of absolute value, the equation y 5 * x * 1
2 becomes y 5 x 1 2 for x $ 0 and y 5 2x 1 2 for x , 0.
Therefore, the graph of y 5 * x * 1 2 is as shown in Figure
2.28. For Problems 39–44, graph each equation.

39. y 5 * x *21 40. y 5 * x 2 2 *

41. * y * 5 x 42. * y * = * x *

43. y 5 2* x * 44. * x * 1 * y * 5 4

F I G U R E  2 . 2 8

y

x

Further Investigations

   100  Coordinate Geometry and Graphing Techniques 



This is the first of many appearances of a group of problems
called graphing calculator activities. These problems are
specifically designed for those of you who have access to a
graphing calculator or a computer with an appropriate
software graphing package. Within the framework of these
problems, you will be given the opportunity to reinforce
concepts discussed in the text, lay groundwork for concepts to
be introduced later in the text, predict shapes and locations of
graphs on the basis of previous graphing experiences, solve
problems that are unreasonable or perhaps impossible to solve
without a graphing utility, and in general become familiar with
the capabilities and limitations of your graphing utility.

The following problems are designed to get you started
using your graphing utility and lay some groundwork for
concepts we present in the next section. Set your boundaries
so that the distance between the tic marks is the same on both
axes.

45. a. Graph y 5 4x, y 5 4x 2 3, y 5 4x 1 2, and y 5
4x 1 5 on the same set of axes. Do they appear to be
parallel lines?

b. Graph y 5 22x 1 1, y 5 22x 1 4, y 5 22x 2 2,
and y 5 22x 2 5 on the same set of axes. Do they
appear to be parallel lines?

c. Graph y 5 2}
1
2

}x 1 3, y 5 2}
1
2

}x 1 1, y 5 2}
1
2

}x 2 1, and 

y 5 2}
1
2

}x 2 4 on the same set of axes. Do they appear 

to be parallel lines?

d. Graph 2x 1 5y 5 1, 2x 1 5y 5 23, 2x 1 5y 5 4,
and 2x 1 5y 5 25 on the same set of axes. Do they
appear to be parallel lines?

e. Graph 3x 2 4y 5 7, 23x 1 4y 5 8, 3x 2 4y 5 22,
and 4x 2 3y 5 6 on the same set of axes. Do they
appear to be parallel lines?

f. On the basis of your results in parts (a) through (e),
make a statement about how we can recognize
parallel lines from their equations.

46. a. Graph y 5 4x and y 5 2}
1
4

}x on the same set of axes.

Do they appear to be perpendicular lines?

b. Graph y 5 3x and y 5 }
1
3

}x on the same set of axes.

Do they appear to be perpendicular lines?

c. Graph y 5 }
2
5

}x 2 1 and y 5 2}
5
2

}x 1 2 on the same set

of axes. Do they appear to be perpendicular lines?

d. Graph y 5 }
3
4

}x 2 3, y 5 }
4
3

}x 1 2, and y 5 2}
4
3

}x 1 2 on

the same set of axes. Does there appear to be a pair
of perpendicular lines?

e. On the basis of your results in parts (a) through (d),
make a statement about how we can recognize
perpendicular lines from their equations.

47. For each of the following pairs of equations, (1) predict
whether they represent parallel lines, perpendicular lines,
or lines that intersect but are not perpendicular, and (2)
graph each pair of lines to check your prediction.

a. 5.2x 1 3.3y 5 9.4 and 5.2x 1 3.3y 5 12.6

b. 1.3x 2 4.7y 5 3.4 and 1.3x 2 4.7y 5 11.6

c. 2.7x 1 3.9y 5 1.4 and 2.7x 2 3.9y 5 8.2

d. 5x 2 7y 5 17 and 7x 1 5y 5 19

e. 9x 1 2y 5 14 and 2x 1 9y 5 17

f. 2.1x 1 3.4y 5 11.7 and 3.4x 2 2.1y 5 17.3

182 Chapter 2 Coordinate Geometry and Graphing Techniques

DETERMINING THE EQUATION OF A LINE

As we stated earlier, there are basically two types of problems in coordinate geome-
try: given an algebraic equation, find its geometric graph; and given a set of condi-
tions pertaining to a geometric figure, find its algebraic equation. In the previous
section, we considered some of the first type of problem; that is, we did some graph-

2.3
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2.3 Determining the Equation of a Line 183

ing. Now we want to consider some problems of the second type that deal specifi-
cally with straight lines; in other words, given certain facts about a line, we need to
be able to determine its algebraic equation.

As we work with straight lines, it is often helpful to be able to refer to the
steepness or slant of a particular line. The concept of slope is used as a measure of
the slant of a line. The slope of a line is the ratio of the vertical change of distance to
the horizontal change of distance as we move from one point on a line to another.
Consider the line in Figure 2.29. From point A to point B there is a vertical change of

two units and a horizontal change of three units; therefore, the slope of the line is }
2
3

}.

A precise definition for slope can be given by considering the coordinates of
the points P1, P2, and R in Figure 2.30. The horizontal change of distance as we
move from P1 to P2 is x2 2 x1, and the vertical change is y2 2 y1. Thus we have the
following definition.

F I G U R E  2 . 2 9 F I G U R E  2 . 3 0

Because

}
y
x

2

2

2

2

y
x

1

1
} 5 }

y
x

1

1

2

2

y
x

2

2
}

how we designate P1 and P2 is not important. Let’s use Definition 2.1 to find the
slopes of some lines.

D E F I N I T I O N  2 . 1

If P1 and P2 are any two different points on a line, P1 with
coordinates (x1, y1) and P2 with coordinates (x2, y2), then the slope
of the line (denoted by m) is

m 5 }
y
x

2

2

2

2

y
x

1

1
}, x2 Þ x1

y

x

P1(x1, y1)

P2(x2, y2)

R(x2, y1)

Vertical change
 y2 − y1

Horizontal
change
 x2 − x1

A(2, 1)
B(5, 3)

Vertical change
of 2 units

C(5, 1)

y

x
Horizontal change
of 3 units
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Find the slope of the line determined by each of the following pairs of points and
graph each line.

a. (21, 1) and (3, 2) b. (4, 22) and (21, 5) c. (2, 23) and (23, 23)

Solutions

a. Let (21, 1) be P1 and (3, 2) be P2 (Figure 2.31).

m 5 }
y
x

2

2

2

2

y
x

1

1
} 5 }

3
2
2

2

(2
1
1)

} 5 }
1
4

}

F I G U R E  2 . 3 1

b. Let (4, 22) be P1 and (21, 5) be P2 (Figure 2.32).

m 5 }
5
2

2

1
(
2

22
4
)

} 5 }
2

7
5
} 5 2}

7
5

}

F I G U R E  2 . 3 2 n

y

x

P2(−1, 5)

P1(4, −2)

x

y

P1(−1, 1)
P2(3, 2)
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2.3 Determining the Equation of a Line 185

c. Let (2, 23) be P1 and (23, 23) be P2 (Figure 2.33).

m 5 }
2

2

3
3
2

2

(2
2
3)

} 5 }
2

0
5
} 5 0

F I G U R E  2 . 3 3 n

The three parts of Example 1 illustrate the three basic possibilities for slope;
that is, the slope of a line can be positive, negative, or zero. A line that has a positive
slope rises as we move from left to right, as in Figure 2.31. A line that has a negative
slope falls as we move from left to right, as in Figure 2.32. A horizontal line, as in
Figure 2.33, has a slope of zero. Finally, we need to realize that the concept of slope
is undefined for vertical lines. This is due to the fact that for any vertical line, the
horizontal change is zero as we move from one point on the line to another. Thus the
ratio (y2 2 y1)@(x2 2 x1) will have a denominator of zero and be undefined. Hence
the restriction x2 Þ x1 is included in Definition 2.1.

Don’t forget that the slope of a line is a ratio, the ratio of vertical change to

horizontal change. For example, a slope of }
2
3

} means that for every two units of verti-

cal change, there must be a corresponding three units of horizontal change.

Applications of Slope

The concept of slope has many real-world applications even though the word slope
is often not used. Technically, the concept of slope applies in most situations where
the idea of an incline is used. Hospital beds are constructed so that both the head end
and the foot end can be raised or lowered; that is, the slope of either end of the bed
can be changed. Likewise, treadmills are designed so that the incline (slope) of the
platform can be adjusted. A roofer, when making an estimate to replace a roof, is
concerned not only about the total area to be covered but also about the pitch of the
roof. (Contractors do not define pitch exactly in accordance with the mathematical
definition of slope, but both concepts refer to “steepness.”) In Figure 2.34, the two
roofs might require the same amount of shingles, but the roof on the left will take
longer to complete because the pitch is so great that scaffolding will be required.

y

x

P1(2, −3)P2(−3, −3)
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The concept of slope is also used in the construction of stairways (Figure
2.35). The steepness (slope) of stairs can be expressed as the ratio of rise to run. In

Figure 2.35, the stairs on the left, which have a ratio of }
1
1
0
1
}, are steeper than the stairs

on the right, which have a ratio of }
1
7
1
}.

F I G U R E  2 . 3 5

In highway construction, the word grade is used to describe the slope. For
example, the highway in Figure 2.36 is said to have a grade of 17%. This means that
for every horizontal distance of 100 feet, the highway rises or drops 17 feet. In other

words, the slope of the highway is }
1
1
0
7
0

}.

F I G U R E  2 . 3 6

100 feet

17 feet

rise of
10 inches

run of
11 inches

run of
11 inches

rise of
7 inches
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A certain highway has a 3% grade. How many feet does it rise in a horizontal dis-
tance of 1 mile?

Solution

A 3% grade means a slope of }
1
3
00
}. Therefore, if we let y represent the unknown ver-

tical distance and use the fact that 1 mile 5 5280 feet, we can set up and solve the
following proportion.

}
1
3
00
} 5 }

52
y
80
}

100y 5 3(5280) 5 15,840

y 5 158.4

The highway rises 158.4 feet in a horizontal distance of 1 mile. n

Equations of Lines

Now let’s consider some techniques for determining the equation of a line when
given certain facts about the line.

Find the equation of the line that has a slope of }
2
5

} and contains the point (3, 1).

Solution

First, let’s draw the line and record the given information (Figure 2.37).

F I G U R E  2 . 3 7

x

y

(3, 1)
(x, y)

2
5

m =

E X A M P L E  2

E X A M P L E  3
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Then we choose a point (x, y ) that represents any point on the line other than the

given point (3, 1). The slope determined by (3, 1) and (x, y ) is to be }
2
5

}. Thus

}
y
x

2

2

1
3

} 5 }
2
5

}

2(x 2 3) 5 5(y 2 1)

2x 2 6 5 5y 2 5

2x 2 5y 5 1 n

Find the equation of the line determined by (1, 22) and (23, 4).

Solution

First, let’s draw the line determined by the two given points (Figure 2.38). These
two points determine the slope of the line.

F I G U R E  2 . 3 8

m 5 }
4
2

2

3
(
2

22
1
)

} 5 }
2

6
4
} 5 2}

3
2

}

Now we can use the same approach as in Example 3. Form an equation using one of

the two given points, a point (x, y ), and a slope of 2}
3
2

}.

}
y
x

1

2

2
1

} 5 }
2

3
2
}

3(x 2 1) 5 22(y 1 2)

3x 2 3 5 22y 2 4

3x 1 2y 5 21 n

y

x

(x, y)

(1, −2)

(−3, 4)
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2.3 Determining the Equation of a Line 189

Find the equation of the line that has a slope of }
1
4

} and a y intercept of 2.

Solution

A y intercept of 2 means that the point (0, 2) is on the line (Figure 2.39). Choosing a
point (x, y ), we can proceed as in the previous examples.

F I G U R E  2 . 3 9

}
y
x

2

2

2
0

} 5 }
1
4

}

1(x 2 0) 5 4(y 2 2)

x 5 4y 2 8

x 2 4y 5 28 n

At this point you might pause for a moment and look back over Examples 3, 4,
and 5. Note that we used the same basic approach in all three examples: We chose a
point (x, y ) and used it to determine the equation that satisfies the conditions stated
in the problem. We will use this same approach later with figures other than straight
lines. Furthermore, you should realize that this approach can be used to develop
some general forms of equations of straight lines.

Point–Slope Form

Find the equation of the line that has a slope of m and contains the point (x1, y1).

Solution

Choosing (x, y ) to represent another point on the line (Figure 2.40), the slope of the
line is given by

m 5 }
y
x

2

2

y
x

1

1
}, x Þ x1

x

y

(0, 2)

(x, y)

1
4

m =

E X A M P L E  5

E X A M P L E  6
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from which we obtain

y 2 y1 5 m(x 2 x1)

F I G U R E  2 . 4 0 n

We refer to the equation

as the point–slope form of the equation of a straight line. Therefore, instead of
using the approach of Example 3, we can substitute information into the point–slope
form to write the equation of a line with a given slope that contains a given point.

For example, the equation of the line that has a slope of }
3
5

} and contains the point 

(2, 4) can be determined this way. We substitute (2, 4) for (x1, y1) and }
3
5

} for m in the

point–slope equation.

y 2 4 5 }
3
5

}(x 2 2)

5(y 2 4) 5 3(x 2 2)

5y 2 20 5 3x 2 6

214 5 3x 2 5y

Slope–Intercept Form

Find the equation of the line that has a slope of m and a y intercept of b.

Solution

A y intercept of b means that (0, b ) is on the line (Figure 2.41). Therefore, using the
point–slope form with (x1, y1) 5 (0, b ), we obtain

y 2 y1 5 m(x 2 x1)

x

y

(x, y)

(x1, y1)
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y 2 y1 5 m(x 2 x1)

y 2 b 5 m(x 2 0)

y 2 b 5 mx

y 5 mx 1 b

F I G U R E  2 . 4 1 n

We refer to the equation

as the slope–intercept form of the equation of a straight line. It can be used for two
primary purposes, as the next two examples illustrate.

Find the equation of the line that has a slope of }
1
4

} and a y intercept of 2.

Solution

This is a restatement of Example 5, but this time we will use the slope–intercept

form (y 5 mx 1 b) of the equation of a line to write its equation. Because m 5 }
1
4

} and

b 5 2, we obtain

y 5 mx 1 b

y 5 }
1
4

}x 1 2

4y 5 x 1 8

28 5 x 2 4y Same result as in Example 5 n

y 5 mx 1b

x

y

(0, b)

E X A M P L E  8
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REMARK Sometimes we leave linear equations in slope–intercept form.
We did not do so in Example 8 because we wanted to show that it was the
same result as in Example 5.

Find the slope and y intercept of the line that has an equation 2x 2 3y 5 7.

Solution

We can solve the equation for y in terms of x and then compare the result to the gen-
eral slope–intercept form.

2x 2 3y 5 7

23y 5 22x 1 7

y 5 }
2
3

}x 2 }
7
3

} y 5 mx 1 b

The slope of the line is }
2
3

} and the y intercept is 2}
7
3

}. n

In general, if the equation of a nonvertical line is written in slope–intercept
form, the coefficient of x is the slope of the line and the constant term is the y
intercept.

Parallel and Perpendicular Lines

Because the concept of slope is used to indicate the slant of a line, it seems reason-
able to expect slope to be related to the concepts of parallelism and perpendicularity.
Such is the case, and the following two properties summarize this link.

We will test your ingenuity in devising proofs of these properties in the next prob-
lem set; here we will illustrate their use.

a. Verify that the graphs of 3x 1 2y 5 9 and 6x 1 4y 5 19 are parallel lines.

b. Verify that the graphs of 5x 2 3y 5 12 and 3x 1 5y 5 27 are perpendicular lines.

192 Chapter 2 Coordinate Geometry and Graphing Techniques
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P R O P E R T Y  2 . 1

If two nonvertical lines have slopes of m1 and m2, then

1. The two lines are parallel if and only if m1 5 m2.

2. The two lines are perpendicular if and only if m1m2 5 21.
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Solution

a. Let’s change each equation to slope–intercept form.

3x 1 2y 5 9 2y 5 23x 1 9

y 5 2}
3
2

}x 1 }
9
2

}

6x 1 4y 5 19 4y 5 26x 1 19

y 5 2}
6
4

}x 1 }
1
4
9
}

y 5 2}
3
2

}x 1 }
1
4
9
}

The two lines have the same slope but different y intercepts. Therefore, they 
are parallel.

b. Change each equation to slope–intercept form.

5x 2 3y 5 12 23y 5 25x 1 12

y 5 }
5
3

}x 2 4

3x 1 5y 5 27 5y 5 23x 1 27

y 5 2}
3
5

}x 1 }
2
5
7
}

Because 1}
5
3

}212}
3
5

}2 5 21, the product of the two slopes is 21 and the lines are 

perpendicular. n

REMARK The statement The product of two slopes is 21 is equivalent to
saying that the two slopes are negative reciprocals of each other—that is,
m1 5 21@m2.

Find the equation of the line that contains the point (21, 2) and is parallel to the line
with the equation 2x 2 y 5 4.

Solution

First, we draw a figure to help in our analysis of the problem (Figure 2.42). Because
the line through (21, 2) is to be parallel to the given line, it must have the same
slope. Let’s find the slope by changing 2x 2 y 5 4 to slope–intercept form.

2x 2 y 5 4

2y 5 22x 1 4

y 5 2x 2 4

The slope of both lines is 2. Now, using the point–slope form with (x1, y1) 5
(21, 2), we obtain the equation of the line.

E X A M P L E  1 1
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y 2 y1 5 m(x 2 x1)

y 2 2 5 2[x 2 (21)]

y 2 2 5 2(x 1 1)

y 2 2 5 2x 1 2

24 5 2x 2 y n

Find the equation of the line that contains the point (21, 23) and is perpendicular to
the line determined by 3x 1 4y 5 12.

Solution

Again let’s start by drawing a figure to help with our analysis (Figure 2.43). Because
the line through (21, 23) is to be perpendicular to the given line, its slope must be
the negative reciprocal of the slope of the line with the equation 3x 1 4y 5 12. Let’s
find the slope of 3x 1 4y 5 12 by changing to slope–intercept form.

F I G U R E  2 . 4 3

y

x

(−1, −3)

3x + 4y = 12

y

x

2x
 −

 y 
= 

4

(−1, 2)

(x, y)
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3x 1 4y 5 12

4y 5 23x 1 12

y 5 2}
3
4

}x 1 3

The slope of the desired line is }
4
3

} 1the negative reciprocal of 2}
3
4

}2, and we can pro-

ceed as before to obtain its equation.

y 2 y1 5 m(x 2 x1)

y 2 (23) 5 }
4
3

}[x 2 (21)]

y 1 3 5 }
4
3

}(x 1 1)

3y 1 9 5 4x 1 4

5 5 4x 2 3y n

Two forms of equations of straight lines are used extensively. They are the
standard form and the slope–intercept form.

Standard Form Ax 1 By 5 C, where B and C are integers and A is a nonnega-
tive integer (A and B are not both zero).

Slope–Intercept Form y 5 mx 1 b, where m is a real number representing the
slope of the line and b is a real number representing the y intercept.

P R O B L E M  S E T  2 . 3

For Problems 1–8, find the slope of the line determined by
each pair of points.

1. (3, 1) and (7, 4) 2. (21, 2) and (5, 23)

3. (22, 21) and (21, 26) 4. (22, 24) and (3, 7)

5. (24, 2) and (22, 2) 6. (4, 25) and (21, 25)

7. (a, 0) and (0, b ) 8. (a, b ) and (c, d )

9. Find x if the line through (22, 4) and (x, 6) has a slope

of }
2
9

}.

10. Find y if the line through (1, y) and (4, 2) has a slope of }
5
3

}.

11. Find x if the line through (x, 4) and (2, 25) has a slope

of 2}
9
4

}.

12. Find y if the line through (5, 2) and (23, y) has a slope

of 2}
7
8

}.

For each of the lines in Problems 13–18, you are given one
point and the slope of the line. Find the coordinates of three
other points on the line.

13. (3, 2); m 5 }
2
3

} 14. (24, 4); m 5 }
5
6

}

15. (21, 24); m 5 4 16. (25, 23); m 5 2

17. (2, 21); m 5 2}
3
5

} 18. (5, 21); m 5 2}
2
3

}
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For Problems 19–26, write the equation of the line that has
the indicated slope and contains the indicated point. Express
final equations in standard form.

19. m 5 }
1
3

}; (2, 4) 20. m 5 }
3
5

}; (21, 4)

21. m 5 2; (21, 22) 22. m 5 23; (2, 5)

23. m 5 2}
2
3

}; (4, 23) 24. m 5 2}
1
5

}; (23, 7)

25. m 5 0; (5, 22) 26. m 5 }
4
3

}; (24, 25)

For Problems 27–34, write the equation of each line that
contains the indicated pair of points. Express final equations
in standard form.

27. (2, 3) and (9, 8) 28. (1, 24) and (4, 4)

29. (21, 7) and (5, 2) 30. (23, 1) and (6, 22)

31. (4, 2) and (21, 3) 32. (2, 7) and (2, 5)

33. (4, 23) and (27, 23) 34. (24, 2) and (2, 23)

For Problems 35–42, write the equation of each line that has
the indicated slope (m ) and y-intercept (b ). Express final
equations in slope–intercept form.

35. m 5 }
1
2

}, b 5 3 36. m 5 }
5
3

}, b 5 21

37. m 5 2}
3
7

}, b 5 2 38. m 5 23, b 5 24

39. m 5 4, b 5 }
3
2

} 40. m 5 }
2
3

}, b 5 }
3
5

}

41. m 5 2}
5
6

}, b 5 }
1
4

} 42. m 5 2}
4
5

}, b 5 0

For Problems 43–50, write the equation of each line that
satisfies the given conditions. Express final equations in
standard form.

43. The x intercept is 4 and the y intercept is 25.

44. Contains the point (3, 21) and is parallel to the x axis

45. Contains the point (24, 3) and is parallel to the y axis

46. Contains the point (1, 2) and is parallel to the line 
3x 2 y 5 5

47. Contains the point (4, 23) and is parallel to the line 5x 1
2y 5 1

48. Contains the origin and is parallel to the line 
5x 2 2y 5 10

49. Contains the point (22, 6) and is perpendicular to the line
x 2 4y 5 7

50. Contains the point (23, 25) and is perpendicular to the
line 3x 1 7y 5 4

For each pair of lines in Problems 51–58, determine whether
they are parallel, perpendicular, or intersecting lines that are
not perpendicular.

51. y 5 }
5
6

}x 1 2 52. y 5 5x 2 1

y 5 }
5
6

}x 2 4 y 5 2}
1
5

}x 1 }
2
3

}

53. 5x 27y 5 14 54. 2x 2 y 5 4
7x 1 5y 5 12 4x 2 2y 5 17

55. 4x 1 9y 5 13 56. y 5 5x
24x 1 y 5 11 y 5 25x

57. x 1 y 5 0 58. 2x 2 y 5 14
x 2 y 5 0 3x 2 y 5 17

For Problems 59–66, find the slope and the y intercept of each
line.

59. 2x 2 3y 5 4 60. 3x 1 4y 5 7

61. x 2 2y 5 7 62. 2x 1 y 5 9

63. y 5 23x 64. x 2 5y 5 0

65. 7x 2 5y 5 12 66. 25x 1 6y 5 13

67. The slope–intercept form of a line can also be used for
graphing purposes. Suppose that we want to graph 

y 5 }
2
3

}x 1 1. Because the y intercept is 1, the point (0, 1)

is on the line. Furthermore, because the slope is }
2
3

},

another point can be found by moving two units up and
three units to the right. Thus the point (3, 3) is also on the
line. The two points (0, 1) and (3, 3) determine the line.

Use the slope–intercept form to help graph each of
the following lines.

a. y 5 }
3
4

}x 1 2 b. y 5 }
1
2

}x 2 4

c. y 5 2}
4
5

}x 1 1 d. y 5 2}
2
3

}x 2 6

e. y 5 22x 1 }
5
4

} f. y 5 x 2 }
3
2

}
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68. Use the concept of slope to verify that (24, 6), (6, 10),
(10, 0), and (0, 24) are the vertices of a square.

69. Use the concept of slope to verify that (6, 6), (2, 22),
(28, 25), and (24, 3) are vertices of a parallelogram.

70. Use the concept of slope to verify that the triangle
determined by (4, 3), (5, 1), and (3, 0) is a right triangle.

71. Use the concept of slope to verify that the quadrilateral
whose vertices are (0, 7), (22, 21), (2, 22), and (4, 6) is
a rectangle.

72. Use the concept of slope to verify that the points (8, 23),
(2, 1), and (24, 5) lie on a straight line.

For Problems 73–80, solve the problem.

73. The midpoints of the sides of a triangle are (23, 4), 
(1, 24), and (7, 2). Find the equations of the lines that
contain the sides of the triangle.

74. The vertices of a triangle are (2, 6), (5, 1), and (1,24).
Find the equations of the lines that contain the three
altitudes of the triangle. (An altitude of a triangle is the
perpendicular line segment from a vertex to the opposite
side.)

75. The vertices of a triangle are (1, 26), (3, 1), and (22, 2).
Find the equations of the lines that contain the three

medians of the triangle. (A median of a triangle is the
line segment from a vertex to the midpoint of the
opposite side.)

76. A certain highway has a 2% grade. How many feet does
it rise in a horizontal distance of 1 mile? (1 mile 5 5280
feet)

77. The grade of a highway up a hill is 30%. How much
change in horizontal distance is there if the vertical
height of the hill is 75 feet?

78. If the ratio of rise to run is to be }
3
5

} for some stairs and

the rise is 19 centimeters, find the measure of the run to
the nearest centimeter.

79. If the ratio of rise to run is to be }
2
3

} for some stairs and

the run is 28 centimeters, find the rise to the nearest
centimeter.

80. Suppose that a county ordinance requires a 2}
1
4

}% fall for

a sewage pipe from the house to the main pipe at the
street. How much vertical drop must there be for a
horizontal distance of 45 feet? Express the answer to the
nearest tenth of a foot.

81. How would you explain the concept of slope to someone
who was absent from class the day it was discussed?

82. If one line has a slope of }
2
5

} and another line has a slope

of }
3
7

}, which line is steeper? Explain your answer.

83. What does it mean to say that two points determine a
line? Do three points determine a line? Explain your
answers.

84. Explain how you would find the slope of the line y 5 2.

THOUGHTS INTO WORDS

85. The form

}
y
x

2

2

y
x

1

1
} 5 }

y
x

2

2

2

2

y
x

1

1
}

is called the two-point form of the equation of a straight
line. (1) Using points (x1, y1) and (x2, y2), develop the
two-point form for the equation of a line. (2) Use the

two-point form to write the equation of each of the
following lines, which contain the indicated pair of
points. Express the final equations in standard form.

a. (4, 3) and (5, 6) b. (23, 5) and (2, 21)

c. (0, 0) and (27, 2) d. (23, 24) and (5, 21)

Further Investigations
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86. The form (x@a) 1 (y@b) 5 1 is called the intercept
form of the equation of a straight line. (1) Using a to
represent the x intercept and b to represent the y intercept,
develop the intercept form. (2) Use the intercept form to
write the equation of each of the following lines. Express
the final equations in standard form.

a. a 5 2, b 5 5 b. a 5 23, b 5 1

c. a 5 6, b 5 24 d. a 5 21, b 5 22

87. Prove each of the following statements.

a. Two nonvertical parallel lines have the same slope.

b. Two lines with the same slope are parallel.

c. If two nonvertical lines are perpendicular, then their
slopes are negative reciprocals of each other.

d. If the slopes of two lines are negative reciprocals of
each other, then the lines are perpendicular.

88. Let Ax 1 By 5 C and A9x 1 B9y 5 C9 represent two
lines. Verify each of the following properties.

a. If (A@A9) 5 (B@B9) Þ (C@C9), then the lines are
parallel.

b. If AA9 5 2BB9, then the lines are perpendicular.

89. The properties in Problem 88 give us another way to
write the equation of a line parallel or perpendicular to a
given line through a point not on the given line. For
example, suppose that we want the equation of the line
perpendicular to 3x 1 4y 5 6 that contains the point 
(1, 2). The form 4x 2 3y 5 k, where k is a constant,
represents a family of lines perpendicular to 3x 1 4y 5 6
because we have satisfied the condition AA9 5 2BB9.
Therefore, to find the specific line of the family
containing (1, 2), we substitute 1 for x and 2 for y to
determine k.

4x 2 3y 5 k

4(1) 2 3(2) 5 k

22 5 k

Thus the equation of the desired line is 4x 2 3y 5 22.
Use the properties from Problem 88 to help write the
equation of each of the following lines.

a. Contains (5, 6) and is parallel to the line 2x 2 y 5 1

b. Contains (23, 4) and is parallel to the line 
3x 1 7y 5 2

c. Contains (2, 24) and is perpendicular to the line 2x 2
5y 5 9

d. Contains (23, 25) and is perpendicular to the line
4x 1 6y 5 7

90. Some real-world situations can be described by the use
of linear equations in two variables. If two pairs of
values are known, then the equation can be determined
by using the approach we used in Example 4 of this
section. For each of the following, assume that the
relationship can be expressed as a linear equation in two
variables, and use the given information to determine the
equation. Express the equation in standard form.

a. A company produces 10 fiberglass shower stalls for
$2015 and 15 stalls for $3015. Let y be the cost and x
the number of stalls.

b. A company can produce 6 boxes of candy for $8 and
10 boxes of candy for $13. Let y represent the cost
and x the number of boxes of candy.

c. Two banks on opposite corners of a town square have
signs displaying the up-to-date temperature. One bank
displays the temperature in Celsius degrees and the
other in Fahrenheit. A temperature of 10°C was
displayed at the same time as a temperature of 50°F.
On another day, a temperature of 25°C was displayed
at the same time as a temperature of 23°F. Let y
represent the temperature in Fahrenheit and x the
temperature in Celsius.

91. The relationships that tie slope to parallelism and
perpendicularity are powerful tools for constructing
coordinate geometry proofs. Prove each of the following
using a coordinate geometry approach.

a. The diagonals of a square are perpendicular.

b. The line segment joining the midpoints of two sides
of a triangle is parallel to the third side.

c. The line segments joining successive midpoints of the
sides of a quadrilateral form a parallelogram.

d. The line segments joining successive midpoints of the
sides of a rectangle form a rhombus. (A rhombus is a
parallelogram with all sides of the same length.)
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MORE ON  GRAPHING

As we stated earlier, it is very helpful to recognize that a certain type of equation
produces a particular kind of graph. In a later chapter, we will pursue that idea in
much more detail. However, we also need to develop some general graphing tech-
niques to use with equations where we do not recognize the graph. Let’s begin with
the following suggestions and then add to the list throughout the remainder of the
text. (You may recognize some of the graphs in this section from previous graphing
experiences, but keep in mind that the primary objective at this time is the develop-
ment of some additional graphing techniques.)

1. Find the intercepts.

2. Solve the equation for y in terms of x or for x in terms of y if it is not
already in such a form.

3. Set up a table of ordered pairs that satisfy the equation.

4. Plot the points associated with the ordered pairs and connect them with a
smooth curve.

Graph y 5 x 2 2 4.

Solution

First, let’s find the intercepts. If x 5 0, then

y 5 0224

y 5 24

This determines the point (0, 24). If y 5 0, then

0 5 x 2 2 4

4 5 x 2

6 2 5 x

Thus the points (2, 0) and (22, 0) are determined.
Second, because the given equation expresses y in terms of x, the form is con-

venient for setting up a table of ordered pairs. Plotting these points and connecting
them with a smooth curve produces Figure 2.44.

2.4

E X A M P L E  1

0
2

−2
1

−1
3

−3

−4
0
0

−3
−3

5
5

intercepts

other
points

x y
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The curve in Figure 2.44 is said to be symmetric with respect to the y axis.
Stated another way, each half of the curve is a mirror image of the other half through
the y axis. Note in the table of values that for each ordered pair (x, y), the ordered
pair (2x, y ) is also a solution. Thus a general test for y axis symmetry can be stated
as follows.

y Axis Symmetry The graph of an equation is symmetric with respect to the
y axis if replacing x with 2x results in an equivalent equation.

Thus the equation y 5 x 2 2 4 exhibits y axis symmetry because replacing x with 2x
produces y 5 (2x )2 2 4 5 x 2 2 4. Likewise, the equations y 5 x 2 1 6, y 5 x 4, and
y 5 x 4 1 2x 2 exhibit y axis symmetry.

Graph x 2 1 5 y 2.

Solution

If x 5 0, then

0 2 1 5 y 2

21 5 y 2

The equation y 2 5 21 has no real number solutions; therefore, this graph has no
points on the y axis. If y 5 0, then

x 2 1 5 0

x 5 1

Thus the point (1, 0) is determined.

y = x2 − 4

y

x
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Solving the original equation of x produces x 5 y 2 1 1, for which the table of
values is easily determined. Plotting these points and connecting them with a
smooth curve produces Figure 2.45.

F I G U R E  2 . 4 5 n

The curve in Figure 2.45 is said to be symmetric with respect to the x axis.
That is to say, each half of the curve is a mirror image of the other half through the 
x axis. Note in the table of values that for each ordered pair (x, y ), the ordered pair
(x, 2y ) is also a solution. The following general test of x axis symmetry can be
stated.

x Axis Symmetry The graph of an equation is symmetric with respect to
the x axis if replacing y with 2y results in an equivalent equation.

Thus the equation x 2 1 5 y 2 exhibits x axis symmetry because replacing y with 2y
produces x 2 1 5 (2y )2 5 y 2. Likewise, the equations x 5 y 2, x 5 y 4 1 2, and
x 3 5 y 2 exhibit x axis symmetry.

Graph y 5 x 3.

Solution

If x 5 0, then

y 5 03 5 0

Thus the origin (0, 0) is on the graph.
The table of values is easily determined from the equation. Plotting these

points and connecting them with a smooth curve produces Figure 2.46.

1
2
2
5
5

0
1

−1
2

−2

intercept x − 1 = y2

y

x

other
points

x y
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The curve in Figure 2.46 is said to be symmetric with respect to the origin.
Each half of the curve is a mirror image of the other half through the origin. In the
table of values, we see that for each ordered pair (x, y ), the ordered pair (2x, 2y) is
also a solution. The following general test for origin symmetry can be stated.

Origin Symmetry The graph of an equation is symmetric with respect to
the origin if replacing x with 2x and y with 2y results in an equivalent
equation.

The equation y 5 x 3 exhibits origin symmetry because replacing x with 2x and y
with 2y produces 2y 5 2x 3, which is equivalent to y 5 x 3. (Multiplying both sides
of 2y = 2x 3 by 21 produces y 5 x 3.) Likewise, the equations xy 5 4, x 2 1 y 2 5
10, and 4x 2 2 y 2 5 12 exhibit origin symmetry.

REMARK From the symmetry tests, we should observe that if a curve has
both x-axis and y-axis symmetry, then it must have origin symmetry. How-
ever, it is possible for a curve to have origin symmetry and not be symmetric
to either axis. Figure 2.46 is an example of such a curve.

Another graphing consideration is that of restricting a variable to ensure real
number solutions. The following example illustrates this point.

Graph y 5 Ïxw2w 1w.

y
0
1
2

−1
−2

0
1
8

−1
−8

intercept

other
points

y

x

y = x3

x y
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Solution

The radicand, x 2 1, must be nonnegative. Therefore,

x 2 1 $ 0

x $ 1

The restriction x $ 1 indicates that there is no y intercept. The x intercept can be
found as follows: If y 5 0, then

0 5 Ïxw2w 1w
0 5 x 2 1

1 5 x

The point (1, 0) is on the graph.
Now, keeping the restriction in mind, we can determine the table of values.

Plotting these points and connecting them with a smooth curve produces Figure 2.47.

F I G U R E  2 . 4 7 n

Now let’s restate and add the concepts of symmetry and restrictions to the list
of graphing suggestions. The order of the suggestions also indicates the order in
which we usually attack a graphing problem if it is a new graph—that is, one that we
do not recognize from its equation.

1. Determine what type of symmetry the equation exhibits.

2. Find the intercepts.

3. Solve the equation for y in terms of x or for x in terms of y, if it is not
already in such a form.

4. Determine the restrictions necessary to ensure real number solutions.

5. Set up a table of ordered pairs that satisfy the equation. The type of
symmetry and the restrictions will affect your choice of values in the table.

1
2
5

10

0
1
2
3

intercept

y

x

other
points y = √x − 1

x y
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6. Plot the points associated with the ordered pairs and connect them with a
smooth curve. Then, if appropriate, reflect this curve according to the
symmetry possessed by the graph.

The final two examples of this section should help you pull these ideas
together and demonstrate the power of having these techniques at your fingertips.

Graph x 5 2y 2 2 3.

Solution

Symmetry The graph is symmetric with respect to the x axis because replacing y
with 2y produces x 5 2(2y )2 2 3, which is equivalent to x 5 2y 2 2 3.

Intercepts If x 5 0, then

0 5 2y 2 2 3

y 2 5 23

Therefore, the graph contains no points on the y axis. If y 5 0, then

x 5 202 2 3

x 5 23

Thus the point (23, 0) is on the graph.

Restrictions Because x 5 2y 2 2 3, y can take on any real number value, and for
every value of y, x will be less than or equal to 23.

Table of Values Because of the x-axis symmetry, let’s choose only nonnegative
values for y.

Plotting the Graph Plotting the points determined by the table and connecting
them with a smooth curve produces Figure 2.48(a). Then reflecting that portion of
the curve across the x-axis produces the complete curve in Figure 2.48(b).

F I G U R E  2 . 4 8 n

x

y

−3 0

x

y

13
4

− 1
2

−4 1
21
4

− 3
2

−7 2

x y

(b)(a)

204 Chapter 2 Coordinate Geometry and Graphing Techniques

E X A M P L E  5

    Coordinate Geometry and Graphing Techniques 123



2.4 More on Graphing 205

Graph x 2 2 y 2 5 4.

Solution

Symmetry The graph is symmetric with respect to both axes and the origin
because replacing x with 2x and y with 2y produces (2x) 2 2 (2y) 2 5 4, which is
equivalent to x 2 2 y 2 5 4.

Intercepts If x 5 0, then

02 2 y 2 5 4

2y 2 5 4

y 2 5 24

Therefore, the graph contains no points on the y axis. If y 5 0, then

x 2 2 02 5 4

x 2 5 4

x 5 62

Thus the points (2, 0) and (22, 0) are on the graph.

Restrictions Solving the given equation for y produces

x 2 2 y 2 5 4

2y 2 5 4 2 x 2

y 2 5 x 2 2 4

y 5 6Ïxw2w2w 4w

Therefore, x 2 2 4 $ 0, which is equivalent to x $ 2 or x # 22.

Table of Values Because of the restrictions and symmetries, we need only
choose values corresponding to x $ 2.

Plotting the Graph Plotting the points in the table of values and connecting
them with a smooth curve produces Figure 2.49(a). Because of the symmetry with
respect to both axes and the origin, the portion of the curve in Figure 2.49(a) can be
reflected across both axes and through the origin to produce the complete curve
shown in Figure 2.49(b).

Even when you are using a graphing utility, it is often helpful to determine
symmetry, intercepts, and restrictions before graphing the equations. This can serve
as a partial check against using the utility incorrectly.

2
3
4
5
6

0
√5

2√3
√21
4√2

≈ 2.2
≈ 3.5
≈ 4.6
≈ 5.7

x y
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Use a graphing utility to obtain the graph of y 5 Ïxw2w2w 4w9w.

Solution

Symmetry The graph is symmetric with respect to the y axis because replacing x
with 2x produces the same equation.

Intercepts If x 5 0, then y 5 Ï2w4w9w; thus the graph has no points on the y axis.
If y 5 0, then x 5 67; thus the points (7, 0) and (27, 0) are on the graph.

Restrictions Because x 2 2 49 has to be nonnegative, we know that x # 27 or
x $ 7. Now let’s enter the expression Ïxw2w2w 4w9w for Y1 and obtain the graph in Fig-
ure 2.50. Note that the graph does exhibit the symmetry, intercepts, and restrictions
that we determined earlier.

F I G U R E  2 . 5 0 n

15215

10

210

(a) (b)

x2 − y2 = 4

y

x

y

x(2, 0)

(3, √5) (4, 2√3)

(5, √21)

(6, 4√2)
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For Problems 1–6, determine the points that are symmetric to
the given point with respect to the x axis, the y axis, and the
origin.

1. (4, 3) 2. (22, 5) 3. (26, 21)

4. (3, 27) 5. (0, 4) 6. (25, 0)

For Problems 7–20, determine the type of symmetry (x-axis,
y-axis, origin) possessed by each graph. Do not sketch the
graph.

7. y 5 x 2 2 6 8. x 5 y 2 1 1

9. x 3 5 y 2 10. x 2y 2 5 4

11. x 2 1 2y 2 5 6 12. 3x 2 2 y 2 1 4x 5 6

13. x 2 2 2x 1 y 2 2 3y 2 4 5 0

14. xy 5 4 15. y 5 x

16. 2x 2 3y 5 15 17. y 5 x 3 1 2

18. y 5 x 4 1 x 2

19. 5x 2 2 y 2 1 2y 2 1 5 0

20. x 2 1 y 2 2 2y 2 4 5 0

For Problems 21–48, use symmetry, intercepts, restrictions,
and point plotting to help graph each equation.

21. y 5 x 2 22. y 5 2x 2

23. y 5 x 2 1 2 24. y 5 2x 2 2 1

25. xy 5 4 26. xy 5 22

27. y 5 2x 3 28. y 5 x 3 1 2

29. y 2 5 x 3 30. y 3 5 x 2

31. y 2 2 x 2 5 4 32. x 2 2 2y 2 5 8

33. y 5 2Ïxw 34. y 5 Ïxw1w 1w

35. x 2y 5 4 36. xy 2 5 4

37. x 2 1 2y 2 5 8 38. 2x 2 1 y 2 5 4

39. y 5 }
x 2

4
1 1
} 40. y 5 }

x 2

2

1

2
1

}

41. y 5 Ïxw2w 2w 42. y 5 3 2 x

43. 2xy 5 3 44. 2x 2y 5 4

45. x 5 y 2 1 2 46. x 5 2y 2 1 4

47. x 5 2y 2 2 1 48. x 5 y 2 2 3

P R O B L E M  S E T  2 . 4

49. How does the concept of symmetry help when we are
graphing equations?

50. Explain how you would go about graphing x 2y 2 5 4.

THOUGHTS INTO WORDS

GRAPHING CALCULATOR ACTIVITIES

51. Graph y 5 }
x
4

2}, y 5 }
(x 2

4
2)2}, y 5 }

(x 2

4
4)2}, and y 5

}
(x 1

4
2)2} on the same set of axes. Now predict the 

graph for y 5 }
(x 2

4
6)2}. Check your prediction.

52. Graph y 5 Ïxw, y 5 Ïxw1w 1w, y 5 Ïxw2w 2w, and y 5

Ïxw2w 4w on the same set of axes. Now predict the graph
for y 5 Ïxw1w 3w. Check your prediction.

53. Graph y 5 Ïxw, y 5 2Ïxw, y 5 4Ïxw, and y 5 7Ïxw on
the same set of axes. How does the constant in front of
the radical seem to affect the graph?
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CIRCLES, ELLIPSES,AND HYPERBOLAS

When we apply the distance formula

d 5 Ï(xw2w2w xw1)w2w1w (wy2w 2w yw1)w2w

(developed in Section 2.1) to the definition of a circle, we get what is known as the
standard form of the equation of a circle. We start with a precise definition of a
circle.

Now let’s consider a circle that has a radius of length r and a center at (h, k )
on a coordinate system (Figure 2.51). For any point P on the circle with coordinates
(x, y ), the length of a radius, denoted by r, can be expressed as

r 5 Ï(xw 2w hw)2w 1w (wyw2w kw)2w

D E F I N I T I O N  2 . 2

A circle is the set of all points in a plane equidistant from a given
fixed point called the center. A line segment determined by the
center and any point on the circle is called a radius.

2.5

54. Graph y 5 }
x
8

2} and y52}
x
8

2} on the same set of axes. How

does the negative sign seem to affect the graph?

55. Graph y 5 Ïxw and y 5 2Ïxw on the same set of axes.
How does the negative sign seem to affect the graph?

56. Graph y 5 Ïxw, y 5 Ïxw 1 2, y 5 Ïxw 1 4, and 
y 5 Ïxw 2 3 on the same set of axes. How does the
constant term seem to affect the graph?

57. Graph y 5 Ïxw, y 5 Ïxw1w 3w, y 5 Ïxw2w 1w, and 
y 5 Ïxw2w 5w on the same set of axes. How are the graphs
related? Predict the location of y 5 Ïxw1w 5w. Check your
prediction.

58. To graph x 5 y 2 we need first to solve for y in terms of x.
This produces y 5 6 Ïxw. Now we can let Y1 5 Ïxw and
Y2 5 2Ïxw and graph the two equations on the same set
of axes. Then graph x 5 y 2 1 4 on this same set of axes.

How are the graphs related? Predict the location of the
graph of x 5 y 2 2 4. Check your prediction.

59. To graph x 5 y 2 1 2y we need first to solve for y in
terms of x. Let’s complete the square to do this.

y 2 1 2y 5 x

y 2 1 2y 1 1 5 x 1 1

(y 1 1)2 5 (Ïxw1w 1w) 2

y 1 1 5 Ïxw1w 1w or y 1 1 5 2Ïxw1w 1w
y 5 21 1 Ïxw1w 1w or y 5 21 2 Ïxw1w 1w

Thus let’s make the assignments Y1 5 21 1 Ïxw1w 1w
and Y2 5 21 2 Ïxw1w 1w and graph them on the same set
of axes to produce the graph of x 5 y 2 1 2y. Then graph
x 5 y 2 1 2y 2 4 on this same set of axes. Now predict
the location of the graph of x 5 y 2 1 2y 1 4. Check
your prediction.
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F I G U R E  2 . 5 1

Squaring both sides of this equation, we obtain the standard form of the equation of
a circle.

(x 2 h )2 1 (y 2 k )2 5 r 2

This form of the equation of a circle can be used to solve the two basic kinds
of problems: (1) given the coordinates of the center of a circle and the length of a
radius of a circle, find its equation; (2) given the equation of a circle, determine its
graph. Let’s illustrate each of these types of problems.

Find the equation of a circle that has its center at (23, 5) and has a radius of length
four units.

Solution

Substitute 23 for h, 5 for k, and 4 for r in the standard equation and simplify to give
us the equation of the circle.

(x 2 h )2 1 (y 2 k )2 5 r 2

[x 2 (23)]2 1 (y 2 5)2 5 42

(x 1 3)2 1 (y 2 5)2 5 42

x 2 1 6x 1 9 1 y 2 2 10y 1 25 5 16

x 2 1 y 2 16x 2 10y 1 18 5 0 n

Note that in Example 1 we simplified the equation to the form x 2 1 y 2 1
Dx 1 Ey 1 F 5 0, where D, E, and F are constants. This is another form that we
commonly use when working with circles.

x

y

C(h, k)

r

P(x, y)

E X A M P L E  1
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Graph x 2 1 y 2 2 6x 1 4y 1 9 5 0.

Solution

We can change the given equation into the standard form for a circle by completing
the square on x and on y.

x 2 1 y 2 2 6x 1 4y 1 9 5 0

(x 2 2 6x ) 1 (y 2 1 4y ) 5 29

(x 2 2 6x 1 9) 1 (y 2 1 4y 1 4) 5 29 1 9 1 4

(x 2 3)2 1 (y 1 2)2 5 22

(x 2 3)2 1 [y 2 (22)]2 5 22

h k r

The center is at (3, 22) and the length of a radius is two units. The circle is drawn in
Figure 2.52.

F I G U R E  2 . 5 2 n

Find the center and length of a radius of the circle

4x 2 1 4x 1 4y 2 2 12y 2 26 5 0

y

x

(3, −2)

x2 + y2 − 6x + 4y + 9 = 0

Add 9 and 4 to
compensate for the
4 and 9 added on
the left side.

Add 4 to 
complete the
square on y.

Add 9 to 
complete the
square on x.
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Solution

4x 2 1 4x 1 4y 2 2 12y 2 26 5 0

4(x 2 1 x 1 _) 1 4(y 2 2 3y 1 _) 5 26

41x 2 1 x 1 }
1
4

}2 1 41y 2 2 3y 1 }
9
4

}2 5 26 1 1 1 9

41x 1 }
1
2

}22
1 41y 2 }

3
2

}22
5 36

1x 1 }
1
2

}22
1 1y 2 }

3
2

}22
5 9

3x 2 1}
1
2

}242
1 1y 2 }

3
2

}22
5 32

h k r

Therefore, the center is at 12}
1
2

}, }
3
2

}2 and the length of a radius is 3 units. n

Now suppose that we substitute 0 for h and 0 for k in the standard form of the
equation of a circle.

(x 2 h )2 1 (y 2 k )2 5 r 2

(x 2 0)2 1 (y 2 0)2 5 r 2

x 2 1 y 2 5 r 2

The form x 2 1 y 2 5 r 2 is called the standard form of the equation of a circle that
has its center at the origin. For example, by inspection we can recognize that x 2 1
y 2 5 9 is a circle with its center at the origin and a radius of length three units. Like-
wise, the equation 5x 2 1 5y 2 5 10 is equivalent to x 2 1 y 2 5 2; therefore, its graph
is a circle with its center at the origin and a radius of length Ï2w units. Furthermore,
we can easily determine that the equation of the circle with its center at the origin
and a radius of 8 units is x 2 1 y 2 5 64.

Ellipses

Generally, it is true that any equation of the form Ax 2 1 By 2 5 F (where A 5 B and
A, B, and F are nonzero constants that have the same sign) is a circle with its center
at the origin. We can use the general equation Ax 2 1 By 2 5 F to describe other geo-
metric figures by changing the restrictions on A and B. For example, if A, B, and F
are of the same sign but A Þ B, then the graph of the equation Ax 2 1 By 2 5 F is an
ellipse. Let’s consider two examples.
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Graph 4x 2 1 9y 2 5 36.

Solution

Let’s find the intercepts. if x 5 0, then

4(0)2 1 9y 2 5 36

9y 2 5 36

y 2 5 4

y 5 62

Thus the points (0, 2) and (0, 22) are on the graph. If y 5 0, then

4x 2 1 9(0)2 5 36

4x 2 5 36

x 2 5 9

x 5 63

Thus the points (3, 0) and (23, 0) are on the graph.
Because we know that it is an ellipse, plotting the four points that we have

gives us a pretty good sketch of the figure (Figure 2.53).

F I G U R E  2 . 5 3 n

In Figure 2.53, the line segment with endpoints at (23, 0) and (3, 0) is called
the major axis of the ellipse. The shorter segment with endpoints at (0, 22) and 
(0, 2) is called the minor axis. Establishing the endpoints of the major and minor
axes provides a basis for sketching an ellipse. Also note that the equation 4x 2 1
9y 2 5 36 exhibits symmetry with respect to both axes and the origin, as we see in
Figure 2.53.

Graph 25x 2 1 y 2 5 25.

y

x

4x2 + 9y2 = 36
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Solution

The endpoints of the major and minor axes can be found by finding the intercepts. If
x 5 0, then

25(0)2 1 y 2 5 25

y2 5 25

y 5 65

The endpoints of the major axis are therefore at (0, 5) and (0, 25). If y 5 0, then

25x 2 1 (0)2 5 25

25x 2 5 25

x 2 5 1

x 5 61

The endpoints of the minor axis are at (1, 0) and (21, 0). The ellipse is sketched in
Figure 2.54.

F I G U R E  2 . 5 4 n

Hyperbolas

The graph of an equation of the form Ax 2 1 By 2 5 F, where A and B are of unlike
signs, is a hyperbola. The next two examples illustrate the graphing of hyperbolas.

Graph x 2 2 4y 2 5 4.

Solution

If we let y 5 0, then

x 2 2 4(0)2 5 4

x 2 5 4

x 5 62

25x2 + y2 = 25

y

x

E X A M P L E  6
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Thus the points (2, 0) and (22, 0) are on the graph. If we let x 5 0, then

02 2 4y 2 5 4

24y 2 5 4

y 2 5 21

Because y 2 5 21 has no real number solutions, there are no points of the graph on
the y axis.

Note that the equation x 2 2 4y 2 5 4 exhibits symmetry with respect to both
axes and the origin. Now let’s solve the given equation for y to get a more conve-
nient form for finding other solutions.

x 2 2 4y 2 5 4

24y 2 5 4 2 x 2

4y 2 5 x 2 2 4

y 2 5 }
x 2

4
2 4
}

y 5 }
6Ïxw

2

2w2w 4w
}

Because the radicand, x 2 2 4, must be nonnegative, the values chosen for x must be
such that x $ 2 or x # 22. Symmetry and the points determined by the table pro-
vide the basis for sketching Figure 2.55.

F I G U R E  2 . 5 5 n

x y
2

−2
0
0

intercepts

y

x

other
points

√5
2

±3

4

5

±√3

√21
2

±

x2 − 4y2 = 4
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Note the dashed lines in Figure 2.55; they are called asymptotes. Each
branch of the hyperbola approaches one of these lines but does not intersect it.
Therefore, being able to sketch the asymptotes of a hyperbola is very helpful for
graphing purposes. Fortunately, the equations of the asymptotes are easy to deter-
mine. They can be found by replacing the constant term in the given equation of the
hyperbola with zero and then solving for y. (The reason why this works will be dis-
cussed in a later chapter.) For the hyperbola in Example 6, we obtain

x 2 2 4y 2 5 0

24y 2 5 2x 2

y 2 5 }
1
4

}x 2

y 5 6}
1
2

}x

Thus the lines y 5 }
1
2

}x and y 5 2}
1
2

}x are the asymptotes indicated by the dashed lines

in Figure 2.55.

Graph 4y 2 2 9x 2 5 36.

Solution

If x 5 0, then

4y 2 2 9(0)2 5 36

4y 2 5 36

y 2 5 9

y 5 63

The points (0, 3) and (0, 23) are on the graph. If y 5 0, then

4(0)2 2 9x 2 5 36

29x 2 5 36

x 2 5 24

Because x 2 5 24 has no real number solutions, we know that this hyperbola does
not intersect the x axis. Solving the equation for y yields

4y 2 2 9x 2 5 36

4y 2 5 9x 2 1 36

y 2 5 }
9x 2

4
1 36
}

y 5 }
6Ï9wxw

2

2w1w 3w6w
} 5 }

6Ï9w(
2
xw2w1w 4w)w
} 5 6}

3Ïxw
2

2w1w 4w
}

The table shows some additional solutions. The equations of the asymptotes are
determined as follows.

E X A M P L E  7
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4y 2 2 9x 2 5 0

4y 2 5 9x 2

y 2 5 }
9
4

}x 2

y 5 6 }
3
2

}x

Sketching the asymptotes, plotting the points from the table, and using symmetry,
we determine the hyperbola in Figure 2.56.

F I G U R E  2 . 5 6 n

When using a graphing utility, we may find it necessary to change the bound-
aries on x or y (or both) to obtain a complete graph. Consider the following example.

Use a graphing utility to graph x 2 2 40x 1 y 2 1 351 5 0.

x y
0
0

3
−3

intercepts

y

x

other
points

1

2

3

4y2 − 9x2 = 36

± 3√5
2

±3√2

± 3√13
2
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Solution

First we need to solve for y in terms of x.

x 2 2 40x 1 y 2 1 351 5 0

y 2 5 2x 2 1 40x 2 351

y 5 6Ï2wx2w 1w 4w0wxw2w 3w5w1w

Now we can make the following assignments.

Y1 5 Ï2wxw2w1w 4w0wxw2w 3w5w1w
Y2 5 2Y1

(Note that we assigned Y2 in terms of Y1. By doing this, we avoid repetitive key
strokes and reduce the chance for errors. You may need to consult your user’s man-
ual for instructions on how to key-stroke 2Y1.) Figure 2.57 shows the graph.

F I G U R E  2 . 5 7

We know from the original equation that this graph should be a circle, so we need to
make some adjustments on the boundaries in order to get a complete graph. This can
be done by completing the square on the original equation to change its form to 
(x 2 20)2 1 y 2 5 49 or simply by a trial-and-error process. By changing the bound-
aries on x such that 215 # x # 30, we obtain Figure 2.58.

F I G U R E  2 . 5 8 n

30215

15

215

15215

10

210
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In summarizing this section, we do want you to be aware of the continuity pat-
tern used. We started by using the definition of a circle to generate the standard form
of the equation of a circle. Then we discussed ellipses and hyperbolas, not from a
definition viewpoint, but by considering variations of the general equation of a cir-
cle with its center at the origin (Ax 2 1 By 2 5 F, where A, B, and F are of the same
sign and A 5 B ). In Chapter 8, we will develop parabolas, ellipses, and hyperbolas
from a definition viewpoint. In other words, we first define each of the concepts and
then use those definitions to generate standard forms for their equations.

218 Chapter 2 Coordinate Geometry and Graphing Techniques
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For Problems 1–8, write the equation of each circle. Express
the final equations in the form x 2 1 y 2 1 Dx 1 Ey 1 F 5 0.

1. Center at (2, 3) and r 5 5.

2. Center at (23, 4) and r 5 2.

3. Center at (21, 25) and r 5 3.

4. Center at (4, 22) and r 5 1.

5. Center at (3, 0) and r 5 3.

6. Center at (0, 24) and r 5 6.

7. Center at the origin and r 5 7.

8. Center at the origin and r 5 1.

For Problems 9–18, find the center and length of a radius of
each circle.

9. x 2 1 y 2 2 6x 2 10y 1 30 5 0

10. x 2 1 y 2 1 8x 2 12y 1 43 5 0

11. x 2 1 y 2 1 10x 1 14y 1 73 5 0

12. x 2 1 y 2 1 6y 2 7 5 0

13. x 2 1 y 2 2 10x 5 0

14. x 2 1 y 2 2 4x 1 2y 5 0

15. x 2 1 y 2 5 8 16. 4x 2 1 4y 2 5 1

17. 4x 2 1 4y 2 2 4x 2 8y 2 11 5 0

18. 36x 2 1 36y 2 1 48x 2 36y 2 11 5 0

19. Find the equation of the circle where the line segment
determined by (24, 9) and (10, 23) is a diameter.

20. Find the equation of the circle that passes through the
origin and has its center at (23, 24).

21. Find the equation of the circle that is tangent to both
axes, has a radius of length seven units, and has its center
in the fourth quadrant.

22. Find the equation of the circle that passes through the
origin, has an x intercept of 26, and has a y intercept of
12. (The perpendicular bisector of a chord contains the
center of the circle.)

23. Find the equations of the circles that are tangent to the 
x axis and have a radius of length five units. In each case,
the abscissa of the center is 23. (There is more than one
circle that satisfies these conditions.)

For Problems 24–40, graph each equation.

24. 4x 2 1 25y 2 5 100 25. 9x 2 1 4y 2 5 36

26. x 2 2 y 2 5 4 27. y 2 2 x 2 5 9

28. x 2 1 y 2 2 4x 2 2y 2 4 5 0

29. x 2 1 y 2 2 4x 5 0

30. 4x 2 1 y 2 5 4 31. x 2 1 9y 2 5 36

32. x 2 1 y 2 1 2x 2 6y 2 6 5 0

33. y 2 2 3x 2 5 9 34. 4x 2 2 9y 2 5 16

35. x 2 1 y 2 1 4x 1 6y 2 12 5 0
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36. 2x 2 1 5y 2 5 50 37. 4x 2 1 3y 2 5 12

38. x 2 1 y 2 2 6x 1 8y 5 0

39. 3x 2 2 2y 2 5 3 40. y 2 2 8x 2 5 9

The graphs of equations of the form xy 5 k, where k is a
nonzero constant, are also hyperbolas, sometimes referred to

as rectangular hyperbolas. For Problems 41–44, graph each
rectangular hyperbola.

41. xy 5 2 42. xy 5 4

43. xy 5 23 44. xy 5 22

45. What is the graph of xy 5 0? Explain your answer.

46. We have graphed various equations of the form Ax 2 1
By 2 5 F, where F is a nonzero constant. Describe the
graph of each of the following and explain your answers.

a. x 2 1 y 2 5 0 b. 2x 2 1 3y 2 5 0

c. x 2 2 y 2 5 0 d. 4x 2 2 9y 2 5 0

THOUGHTS INTO WORDS

47. By expanding (x 2 h ) 2 1 (y 2 k ) 2 5 r 2, we obtain 
x 2 2 2hx 1 h 2 1 y 2 2 2ky 1 k 2 2 r 2 5 0. Comparing
this result to the form x 2 1 y 2 1 Dx 1 Ey 1 F 5 0, 
we see that D 5 22h, E 5 22k, and F 5 h 2 1 k 2 2 r 2.
Therefore, the center and the length of a radius of a circle
can be found by using h 5 D@22, k 5 E@22, 
and r 5 Ïhw2w1w kw2w2w Fw. Use these relationships to find
the center and the length of a radius of each of the
following circles.

a. x 2 1 y 2 2 2x 2 8y 1 8 5 0

b. x 2 1 y 2 1 4x 2 14y 1 49 5 0

c. x 2 1 y 2 1 12x 1 8y 2 12 5 0

d. x 2 1 y 2 2 16x 1 20y 1 115 5 0

e. x2 1 y 2 2 12y 2 45 5 0

f. x2 1 y 2 1 14x 5 0

48. Use a coordinate geometry approach to prove that an
angle inscribed in a semicircle is a right angle (see Figure
2.59).

F I G U R E  2 . 5 9

49. Use a coordinate geometry approach to prove that a line
segment from the center of a circle bisecting a chord is
perpendicular to the chord. [Hint: Let the ends of the
chord be (r, 0) and (a, b ).]

x

y

(x, y)

(r, 0)(−r, 0)

x2 + y2 = r2

Further Investigations
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50. For each of the following equations, (a) predict the type
and location of the graph, and (b) use your graphics
calculator to check your prediction.

a. x 2 1 y2 5 9 b. 2x 2 1 y 2 5 4

c. x 2 2 y 2 5 9 d. 4x 2 2 y 2 5 16

e. x 2 1 2x 1 y 2 2 4 5 0 f. x 2 1 y 2 2 4y 2 2 5 0

g. (x 2 2)2 1 (y 1 1)2 5 4

h. (x 1 3)2 2 (y 2 4)2 5 9

i. 9y 2 2 4x 2 5 36 j. 9y 2 1 4x 2 5 36

220 Chapter 2 Coordinate Geometry and Graphing Techniques

We emphasized throughout this chapter that coordinate geometry contains two basic
kinds of problems:

1. Given an algebraic equation, determine its geometric graph.

2. Given a set of conditions pertaining to a geometric figure, determine its
algebraic equation.

Let’s review this chapter in terms of those two kinds of problems.

Graphing

The following graphing techniques were discussed in this chapter.

1. Recognize the type of graph that a certain kind of equation produces.

a. Ax 1 By 5 C produces a straight line.

b. x 2 1 y 2 1 Dx 1 Ey 1 F 5 0 produces a circle. The center and the
length of a radius can be found by completing the square and
comparing to the standard form of the equation of a circle:

(x 2 h ) 2 1 (y 2 k ) 2 5 r 2

c. Ax 2 1 By 2 5 F, where A, B, and F have the same sign and A 5 B,
produces a circle with the center at the origin.

d. Ax 2 1 By 2 5 F, where A, B, and F are of the same sign but A Þ B,
produces an ellipse.

e. Ax 2 1 By 2 5 F, where A and B are of unlike signs, produces a
hyperbola.

2. Determine the symmetry that a graph possesses.

a. The graph of an equation is symmetric with respect to the y axis if
replacing x with 2x results in an equivalent equation.

C H A P T E R  2 S U M M A R Y

GRAPHING CALCULATOR ACTIVITIES
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b. The graph of an equation is symmetric with respect to the x axis if
replacing y with 2y results in an equivalent equation.

c. The graph of an equation is symmetric with respect to the origin if
replacing x with 2x and y with 2y results in an equivalent equation.

3. Find the intercepts. The x intercept is found by letting y 5 0 and solving
for x. The y intercept is found by letting x 5 0 and solving for y.

4. Determine the restrictions necessary to ensure real number solutions.

5. Set up a table of ordered pairs that satisfy the equation. The type of
symmetry and the restrictions will affect your choice of values in the table.
Furthermore, it may be convenient to change the form of the original
equation by solving for y in terms of x or for x in terms of y.

6. Plot the points associated with the ordered pairs in the table and connect
them with a smooth curve. Then, if appropriate, reflect the curve
according to any symmetries possessed by the graph.

Determining Equations When Given Certain 
Conditions

You should review Examples 3, 4, and 5 of Section 2.3 to be sure you are thor-
oughly familiar with the general approach of choosing a point (x, y) and using it to
determine the equation that satisfies the conditions stated in the problem.

We developed some special forms that can be used to determine equations.

Point–slope form of a straight line: y 2 y1 5 m(x 2 x1)

Slope–intercept form of a straight line: y 5 mx 1 b

Standard form of a circle: (x 2 h )2 1 (y 2 k )2 5 r 2

The following formulas were used in different parts of the chapter.

Distance formula: d 5 Ï(xw2w2w xw1)w2w1w (wy2w 2w yw1)w2w

Midpoint formula: The coordinates of the midpoint of a line segment
determined by (x1, y1) and (x2, y2) are

1}x1 1

2
x2}, }

y1 1

2
y2}2

Slope formula: m 5 }
y
x
2

2

2

2 x
y

1

1}, x1 Þ x2
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1. On a number line, find the coordinate of the point located
three-fifths of the distance from 24 to 11.

2. On a number line, find the coordinate of the point located
four-ninths of the distance from 3 to 215.

3. On the xy-plane, find the coordinates of the point located
five-sixths of the distance from (21, 23) to (11, 1).

4. If one endpoint of a line segment is at (8, 14) and the
midpoint of the segment is (3, 10), find the coordinates
of the other endpoint.

5. Verify that the points (2, 2), (6, 4), and (5, 6) are vertices
of a right triangle.

6. Verify that the points (23, 1), (1, 3), and (9, 7) lie in a
straight line.

For Problems 7–12, identify any symmetries (x-axis, y-axis,
origin) that the equation exhibits.

7. x 5 y 2 1 4 8. y 5 x 2 1 6x 2 1

9. 5x 2 2 y 2 5 4 10. x 2 1 y 2 2 2y 2 4 5 0

11. y 5 2x 12. y 5 }
x 2

6
1 4
}

For Problems 13–22, graph each of the following.

13. x 2 1 y 2 2 6x 1 4y 2 3 5 0

14. x 2 1 4y 2 5 16 15. x 2 2 4y 2 5 16

16. 22x 1 3y 5 6 17. 2x 2 y , 4

18. x 2y 2 5 4 19. 4y 2 2 3x 2 5 8

20. x 2 1 y 2 1 10y 5 0 21. 9x 2 1 2y 2 5 36

22. y # 22x 2 3

23. Find the slope of the line determined by (23, 24) and 
(25, 6).

24. Find the slope of the line with equation 5x 2 7y 5 12.

For Problems 25–28, write the equation of the line that
satisfies the stated conditions. Express final equations in
standard form (Ax 1 By 5 C).

25. Contains the point (7, 2) and has a slope of 2}
3
4

}

26. Contains the points (23, 22) and (1, 6)

27. Contains the point (2, 24) and is parallel to 4x 1
3y 5 17

28. Contains the point (25, 4) and is perpendicular to 2x 2
y 5 7

For Problems 29–32, write the equation of the circle that
satisfies the stated conditions. Express final equations in the
form x 2 1 y 2 1 Dx 1 Ey 1 F 5 0.

29. Center at (5, 26) and r 5 1

30. The endpoints of a diameter are (22, 4) and (6, 2).

31. Center at (25, 12) and passes through the origin

32. Tangent to both axes, r 5 4, and center in the third
quadrant

C H A P T E R  2 R E V I E W  P R O B L E M  S E T
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1. On a number line, find the coordinate of the point located two-thirds of the dis-
tance from 24 to 14.

2. On the xy plane, find the coordinates of the point located three-fourths of the
distance from (2, 23) to (26, 9).

3. If one endpoint of a line segment is at (22, 21) and the midpoint of the seg-

ment is at (2, 2}
5
2

}), find the coordinates of the other endpoint.

4. Find the slope of the line determined by (24, 22) and (5, 26).

5. Find the slope of the line determined by the equation 2x 2 7y 5 29.

For Problems 6–10, determine the equation of the line that satisfies the
stated conditions. Express final equations in standard form.

6. Has a slope of 2}
3
4

} and a y intercept of 23

7. Contains the points (1, 24) and (4, 7)

8. Contains the point (21, 4) and is parallel to x 2 5y 5 5

9. Contains the point (3, 5) and is perpendicular to 4x 1 7y 5 3

10. Contains the point (22, 24) and is perpendicular to the x axis

For Problems 11–13, determine the equations of the circle that satisfies
the stated conditions. Express final equations in the form x2 1 y2 1 Dx 1
Ey 1 F 5 0.

11. Center at (23, 26) and a radius of length 4 units

12. The endpoints of a diameter are at (21, 3) and (5, 5).

13. Center at (4, 23) and passes through the origin

14. Find the center and the length of a radius of the circle x 2 1 16x 1 y 2 2 10y 1
80 5 0.

15. Find the lengths of the three sides of the triangle determined by (3, 2), (5, 22),
and (21, 21). Express the lengths in simplest radical form.

16. Find the x intercepts of the graph of the equation x 2 2 6x 1 y 2 1 2y 1 5 5 0.

17. Find the y intercepts of the graph of the equation 5x 2 1 12y 2 5 36.

18. Find the length of the major axis of the ellipse 9x 2 1 2y 2 5 18.

Chapter 2 Test 223
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19. Find the equations of the asymptotes for the hyperbola 9x 2 2 16y 2 5 48.

20. Identify any symmetries (x-axis, y-axis, origin) that the equation exhibits.

a. x 2 1 2x 1 y 2 2 6 5 0 b. xy 5 24 c. y 5 }
x 2

4
1 1
} d. x 2y 2 5 5

21. Graph the inequality 3x 2 y # 6.

For Problems 22–25 graph the equation.

22. y 2 2 2x 2 5 9 23. x 5 y 2 2 4

24. 3x 2 1 5y 2 5 45 25. x 2 1 4x 1 y 2 2 12 5 0
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For Problems 1–6, evaluate each expression.

1. 323 2. 2422 3. 1}
2
3

}222

4. 2!3 }
2
8§7
}§ 5. 1}

2
1
7
}222@3

6.

For Problems 7–12, perform the indicated operations and
simplify. Express final answers using positive exponents
only.

7. (5x23 y22)(4xy21) 8. (27a23 b 2)(8a 4b23)

9. 1}
1
2

}x22y21222
10. }

80
1
x
6x

2

y

3y
2

2

6

4

}

11. 1}102
6
x
xy

2@

2

3y
1

3@4

}2 2 1

12. 1}174aa2

3

1

b
b

2

3

4

}22

For Problems 13–20, express each in simplest radical form.
All variables represent positive real numbers.

13. 25Ï7w2w 14. 2Ï2w7wxw3yw2w 15. Ï3 5w6wxw4yw7w

16. }
3

5

Ï
Ï

1w
1w
8w
2w

} 17. !}
3
7§
x
y
}§ 18. }

Ï2w
5

23
}

19. }
2Ï

3

2w
Ï
2

7w
Ï6w

} 20. }
Ïxw

4

1

Ï
3

xw
Ïyw

}

For Problems 21–26, perform the indicated operations
involving rational expressions. Express final answers in
simplest form.

21. }
1
1
2
8
x
x

2y
} ? }

1
9
6
x
x

3y
y

3

2} 22. }
2

1
1
4
5
a
a
3

b
b

2

} 4 }
2
7
0
b
a
2}

23. }
3x 2

x
1
2 2

5x
4
2 2

} ? }
5x 2

3
2

x 2

9
2

x
x
2 2

}

24. }
2x

4
2 1
} 1 }

3x
6
1 2
} 2 }

x 2

8
1

}

25. }
3
5
n 2} 2 }

2
n

} 1 }
2
3
n
} 26. }

x 2 1 6
5
x
x

2 27
} 1 }

x 2

3
2 9
}

For Problems 27–38, solve each equation.

27. 3(22x 2 1) 2 2(3x 1 4) 5 24(2x 2 3)

28. (2x 2 1)(3x 1 4) 5 (x 1 2)(6x 2 5)

29. }
3x

4
2 1
} 2 }

2x
5
2 1
} 5 }

1
1
0
} 30. 9x 2 2 4 5 0

31. 5x 3 1 10x 2240x 5 0 32. 7t 2 2 31t 1 12 5 0

33. x 4 1 15x 2 2 16 5 0 34. *5x 2 2 * 5 3

35. 2x 2 2 3x 2 1 5 0

36. (3x 2 2)(x 1 4) 5 (2x 2 1)(x 2 1)

37. Ï5w 2w tw 1 1 5 Ï7w 1w 2wtw 38. (2x 2 1)2 1 4 5 0

For Problems 39–48, solve each inequality. Express the
solution sets using interval notation.

39. 22(x 2 1) 1 (3 2 2x) . 4(x 1 1)

40. 2n 1 1 1 }
3n

4
2 1
} $ }

n 2

2
1

}

41. 0.09x 1 0.12(450 2 x) $ 46.5

42. n 2 1 5n . 24 43. 6x 2 1 7x 2 3 , 0

44. (2x 2 1)(x 1 3)(x 2 4) . 0

45. }
3
x
x
1

2

1
2

} # 0 46. }
x
x

1

2

5
1

} $ 2

47. *3x 2 1 * . 5 48. *5x 2 3 * , 12

For Problems 49–54, graph each equation.

49. x 2 1 4y 2 5 36 50. 4x 2 2 y 2 5 4

51. y 5 2x 3 2 1 52. y 5 2x 1 3

53. y 2 2 5x 2 5 9 54. y 5 2}
3
4

}x 2 1

For Problems 55–58, solve each problem.

55. Find the center and the length of a radius of the circle
with equation x 2 1 y 2 1 14x 2 8y 1 56 5 0.

56. Write the equation of the line that is parallel to 3x 2
4y 5 17 and contains the point (2, 8).

57. Find the coordinates of the point located one-fifth of the
distance from (23, 4) to (2, 14).

1
}

1}
3
4

}222

Cumulative Review Problem Set 225

   144  Coordinate Geometry and Graphing Techniques 



226 Chapter 2 Coordinate Geometry and Graphing Techniques

58. Write the equation of the perpendicular bisector of the
line segment determined by (23, 4) and (5, 10).

For Problems 59–65, set up an equation and solve the
problem.

59. A retailer has some shirts that cost $22 per shirt. At what
price should they be sold to obtain a profit of 30% of the
cost? At what price should they be sold to obtain a profit
of 30% of the selling price?

60. A total of $7500 was invested, part of it at 5% yearly
interest and the remainder at 6%. The total yearly interest
was $420. How much was invested at each rate?

61. The length of a rectangle is 1 inch less than twice the
width. The area of the rectangular region is 36 square
inches. Find the length and width of the rectangle.

62. The length of one side of a triangle is 4 centimeters less
than three times the length of the altitude to that side.
The area of the triangle is 80 square centimeters. Find the
length of the side and the length of the altitude to that
side.

63. How many milliliters of pure acid must be added to 40
milliliters of a 30% acid solution to obtain a 50% acid
solution?

64. Amanda rode her bicycle out into the country at a speed
of 15 miles per hour and returned along the same route at
10 miles per hour. The round trip took 5 hours. How far
out did she ride?

65. If two inlet pipes are both open, they can fill a pool in 1
hour and 12 minutes. One of the pipes can fill the pool by
itself in 2 hours. How long would it take the other pipe to
fill the pool by itself?
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FUNCTIONS

The volume of a right circular cylinder is a function of its height and the length of a radius of its
base.

Concept of a
Function

Linear and
Quadratic
Functions

3.3

3.1

3.2

Quadratic
Functions and
Problem Solving

3.4 Transformations
of Some Basic
Curves

3.5 Combining
Functions

3.6 Direct and
Inverse Variation

3          
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One of the fundamental concepts of mathematics is that of a function. Func-
tions are used to unify different areas of mathematics, and they also serve as
a meaningful way of applying mathematics to many real-world problems.
They provide a means of studying quantities that vary with one another—
that is, quantities such that a change in one produces a corresponding
change in another. In this chapter, we will (1) introduce the basic ideas per-
taining to functions, (2) use the idea of a function to unify some concepts
from Chapter 2, and (3) discuss some applications in which functions are
used.

CONCEPT OF A FUNCTION

The notion of correspondence is used in everyday situations and is central to the
concept of a function. Consider the following correspondences.

1. To each person in a class, there corresponds an assigned seat.

2. To each day of a year, there corresponds an assigned integer that represents
the average temperature for that day in a certain geographic location.

3. To each book in a library, there corresponds a whole number that repre-
sents the number of pages in the book.

Such correspondences can be depicted as in Figure 3.1. To each member in set A
there corresponds one and only one member in set B. For example, in correspon-
dence 1, set A would consist of the students in a class and set B would be the
assigned seats. In the second example, set A would consist of the days of a year and
set B would be a set of integers. Furthermore, the same integer might be assigned

F I G U R E  3 . 1

to more than one day of the year. (Different days might have the same average tem-
perature.) The key idea is that one and only one integer is assigned to each day of
the year. Likewise, in the third example, more than one book may have the same
number of pages, but to each book there is assigned one and only one number of
pages.

A B

3.1
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3.1 Concept of a Function 229

Mathematically, the general concept of a function can be defined as follows.

In Definition 3.1, the image y is usually denoted by f (x ). Thus the symbol
f (x), which is read f of x or the value of f at x, represents the element in the range
associated with the element x from the domain. Figure 3.2 depicts this situation.
Again, we emphasize that each member of the domain has precisely one image in
the range; however, different members in the domain, such as a and b in Figure 3.2,
may have the same image.

F I G U R E  3 . 2

In Definition 3.1 we named the function f. It is common to name functions by
means of a single letter, and the letters f, g, and h are often used. We would suggest
more meaningful choices when functions are used in real-world situations. For
example, if a problem involves a profit function, then naming the function p or even
P would seem natural. Be careful not to confuse f and f (x ). Remember that f is used
to name a function, whereas f (x) is an element of the range, namely the element
assigned to x by f.

The assignments made by a function are often expressed as ordered pairs. For
example, the assignments in Figure 3.2 could be expressed as (a, f (a)), (b, f (b)),
(c, f (c)), and (x, f (x)), where the first components are from the domain and the sec-
ond components are from the range. Thus a function can also be thought of as a set of
ordered pairs where no two of the ordered pairs have the same first component.

REMARK In some texts, the concept of a relation is introduced first, and
then functions are defined as special kinds of relations. A relation is defined as
a set of ordered pairs, and a function is defined as a relation in which no two
ordered pairs have the same first element.

X Y

a
b
c
x f(x)

f(c)
f(b)
f(a)

D E F I N I T I O N  3 . 1

A function f is a correspondence between two sets X and Y that
assigns to each element x of set X one and only one element y of set
Y. The element y being assigned is called the image of x. The set X is
called the domain of the function, and the set of all images is called
the range of the function.
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The ordered pairs representing a function can be generated by various means,
such as a graph or a chart. However, one of the most common ways of generating
ordered pairs is by using equations. For example, the equation f (x) 5 2x 1 3 indi-
cates that to each value of x in the domain, we assign 2x 1 3 from the range. For
example,

f (1) 5 2(1) 1 3 5 5 produces the ordered pair (1, 5)

f (4) 5 2(4) 1 3 5 11 produces the ordered pair (4, 11)

f (22) 5 2(22) 1 3 5 21 produces the ordered pair (22, 21)

It may be helpful for you to picture the concept of a function in terms of a function
machine, as illustrated in Figure 3.3. Each time that a value of x is put into the
machine, the equation f (x ) 5 2x 1 3 is used to generate one and only one value for
f (x) to be ejected from the machine.

F I G U R E  3 . 3

Using the ordered-pair interpretation of a function, we can define the graph of
a function f to be the set of all points in a plane of the form (x, f (x )), where x is from
the domain of f. In other words, the graph of f is the same as the graph of the equa-
tion y 5 f (x ). Furthermore, because f (x ), or y, takes on only one value for each
value of x, we can easily tell whether a given graph represents a function. For exam-
ple, in Figure 3.4(a), for any choice of x there is only one value for y. Geometrically,
this means that no vertical line intersects the curve in more than one point. On the
other hand, Figure 3.4(b) does not represent the graph of a function because certain
values of x (all positive values) produce more than one value for y. In other words,
some vertical lines intersect the curve in more than one point, as illustrated in Figure
3.4(b). A vertical line test for functions can be stated as follows. 

Vertical Line Test If each vertical line intersects a graph in no more than one
point, then the graph represents a function.

Let’s consider some examples to help pull together some of these ideas about
functions.

f(x)

Function machine
f(x) = 2x + 3

Output (range)

x
Input (domain)

2x + 3
2x + 3
2x + 3

230 Chapter 3 Functions
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(a)

(b)

x

y

x

y
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3.1 Concept of a Function 231

If f (x) 5 x 2 2 x 1 4 and g(x ) 5 x 3 2 x 2, find f (3), f (22), g(4), and g(23).

Solution

f (3) 5 32 2 3 1 4 5 10 f (22) 5 (22)2 2 (22) 1 4 5 10

g(4) 5 43 2 42 5 48 g(23) 5 (23)3 2 (23)2 5 236 n

Note that in Example 1, we were working with two different functions in the
same problem. That is why we used two different names, f and g. Sometimes the
rule of assignment for a function may consist of more than one part. We often refer
to such functions as piecewise-defined functions. Let’s consider an example of
such a function.

If f (x) 5
2x 1 1 for x $ 0

, find f (2), f (4), f (21), and f (23).53x 2 1 for x , 0

Solution

For x $ 0, we use the assignment f (x ) 5 2x 1 1.

f (2) 5 2(2) 1 1 5 5

f (4) 5 2(4) 1 1 5 9

For x , 0, we use the assignment f (x ) 5 3x 2 1.

f (21) 5 3(21) 2 1 5 24

f (23) 5 3(23) 2 1 5 210 n

The quotient }
.f (a 1 h

h
) 2 f (a )
} is often called a difference quotient. We use it

extensively with functions when studying the limit concept in calculus. The next
examples illustrate finding the difference quotient for specific functions.

Find .}
f (a 1 h

h
) 2 f (a )
} for each of the following functions.

a. f (x ) 5 x 2 1 6 b. f (x ) 5 2x 2 1 3x 2 4 c. f (x ) 5 }
1
x

}

Solutions

a. f (a ) 5 a 2 1 6

f (a 1 h ) 5 (a 1 h )2 1 6 5 a 2 1 2ah 1 h 2 1 6

Therefore,

f (a 1 h ) 2 f (a ) 5 (a 2 1 2ah 1 h 2 1 6) 2 (a 2 1 6)

5 a 2 1 2ah 1 h 2 1 6 2 a 2 2 6

5 2ah 1 h 2

E X A M P L E  1

E X A M P L E  2

E X A M P L E  3
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and

.}
f (a 1 h

h
) 2 f (a )
}5 }

2ah
h
1 h 2

} 5 }
h (2a

h
1 h )
} 5 2a 1 h

b. f (a ) 5 2a 2 1 3a 2 4

f (a 1 h ) 5 2(a 1 h ) 2 1 3(a 1 h ) 2 4

5 2(a 2 1 2ha 1 h 2 ) 1 3a 1 3h 2 4

5 2a 2 1 4ha 1 2h 2 1 3a 1 3h 2 4

Therefore,

f (a 1 h ) 2 f (a ) 5 (2a 2 1 4ha 1 2h 2 1 3a 1 3h 2 4) 2 (2a 2 1 3a 2 4)

5 2a 2 1 4ha 1 2h 2 1 3a 1 3h 2 4 2 2a 2 2 3a 1 4

5 4ha 1 2h 2 1 3h

and

.}
f (a 1 h

h
) 2 f (a )
}5}

4ha 1 2
h
h 2 1 3h
}

5}
h(4a 1

h
2h 1 3)
}

5 4a 1 2h 1 3

c. f (a ) 5 }
1
a

}

f (a 1 h ) 5 }
a 1

1
h

}

Therefore,

f (a 1 h ) 2 f (a ) 5 }
a 1

1
h

} 2 }
1
a

}

5 }
a

a
2

(a
(a

1

1

h )
h )

}

5 }
a
a(

2

a
a
1

2

h )
h

}

5 }
a(a

2

1

h
h )

}, or 2}
a(a

h
1 h )
}

and

}
.f (a 1 h

h
) 2 f (a )
}5 2

5 2}
a(a

h
1 h )
} ? }

1
h

}

5 2}
a(a

1
1 h )
} n

h
}

}
a(a

h
1 h )
}

232 Chapter 3 Functions

   152  Functions 



3.1 Concept of a Function 233

For our purposes in this text, if the domain of a function is not specifically
indicated or determined by a real-world application, then we will assume the domain
to be all real number replacements for the variable, provided that they represent ele-
ments in the domain and produce real number functional values.

For the function f (x ) 5 Ïxw2w 1w, (a) specify the domain, (b) determine the range,
and (c) evaluate f (5), f(50), and f (25).

Solutions

a. The radicand must be nonnegative, so x 2 1 $ 0 and thus x $ 1. Therefore, the
domain (D ) is

D 5 { x * x $ 1}

b. The symbol Ïw indicates the nonnegative square root; thus the range (R ) is

R 5 { f (x ) * f (x ) $ 0}

c. f (5) 5 Ï4w 5 2

f (50) 5 Ï4w9w 5 7

f (25) 5 Ï2w4w 5 2Ï6w n

As we will see later, the range of a function is often easier to determine after
we have graphed the function. However, our equation- and inequality-solving
processes are frequently sufficient to determine the domain of a function. Let’s con-
sider some examples.

Determine the domain for each of the following functions.

a. f (x ) 5 }
2x

3
2 5
} b. g(x) 5 }

x 2

1
2 9
} c. f (x ) 5 Ïxw2w1w 4wxw2w 1w2w

Solutions

a. We can replace x with any real number except }
5
2

}, because }
5
2

} makes the denomina-

tor zero. Thus the domain is

D 5 5x * x Þ }
5
2

}6
b. We need to eliminate any values of x that will make the denominator zero. There-

fore, let’s solve the equation x 2 2 9 5 0.

x 2 2 9 5 0

x 2 5 9

x 5 63

The domain is thus the set

D 5 { x * x Þ 3 and x Þ 23}

E X A M P L E  4

E X A M P L E  5
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c. The radicand, x 2 1 4x 2 12, must be nonnegative. Therefore, let’s use a number
line approach as we did in Chapter 2, to solve the inequality x 2 1 4x 5 12 $ 0
(see Figure 3.5).

x 2 1 4x 2 12 $ 0

(x 1 6)(x 22) $ 0

F I G U R E  3 . 5

The product (x 1 6)(x 2 2) is nonnegative if x # 26 or x $ 2. Using interval nota-
tion, we can express the domain as (2∞, 26] < [2, ∞). n

Functions and function notation provide the basis for describing many real-
world relationships. The next example illustrates this point.

Suppose a factory determines that the overhead for producing a quantity of a certain
item is $500 and the cost for each item is $25. Express the total expenses as a func-
tion of the number of items produced and compute the expenses for producing 12,
25, 50, 75, and 100 items.

Solution

Let n represent the number of items produced. Then 25n 1 500 represents the total
expenses. Using E to represent the expense function, we have

E(n ) 5 25n 1 500, where n is a whole number

Therefore, we obtain

E(12) 5 25(12) 1 500 5 800

E(25) 5 25(25) 1 500 5 1125

E(50) 5 25(50) 1 500 5 1750

E(75) 5 25(75) 1 500 5 2375

E(100) 5 25(100) 1 500 5 3000

Thus the total expenses for producing 12, 25, 50, 75, and 100 items are $800, $1125,
$1750, $2375, and $3000, respectively. n

(x + 6)(x − 2) = 0 (x + 6)(x − 2) = 0

−7 3

x + 6 is negative.
x − 2 is negative.
Their product is

positive.

x + 6 is positive.
x − 2 is negative.
Their product is

negative.

x + 6 is positive.
x − 2 is positive.
Their product is

positive.

2−6

0

E X A M P L E  6
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3.1 Concept of a Function 235

As we stated before, an equation such as f (x ) 5 5x 2 7 that is used to deter-
mine a function can also be written y 5 5x 2 7. In either form, we refer to x as the
independent variable and to y (or f (x )) as the dependent variable. Many formulas
in mathematics and other related areas also determine functions. For example, the
area formula for a circular region, A 5 pr 2, assigns to each positive real value for r
a unique value for A. This formula determines a function f, where f (r ) 5 pr 2. The
variable r is the independent variable, and A [or f (r )] is the dependent variable.

Many functions that we will study throughout this text can be classified as
even or odd functions. A function f having the property that f (2x ) 5 f (x ) for every
x in the domain of f is called an even function. A function f having the property that
f (2x ) 5 2f (x ) for every x in the domain of f is called an odd function.

For each of the following, classify the function as even, odd, or neither even nor
odd.

a. f (x ) 5 2x 3 2 4x b. f (x ) 5 x 4 2 7x 2 c. f (x ) 5 x 2 1 2x 2 3

Solution

a. The function f (x ) 5 2x 3 2 4x is an odd function because f (2x ) 5 2(2x)3 2
4(2x) 5 22x 3 1 4x, which equals 2f (x ).

b. The function f (x ) 5 x 4 2 7x 2 is an even function because f (2x ) 5 (2x)4 2
7(2x)2 5 x 4 2 7x 2, which equals f (x ).

c. The function f (x ) 5 x 2 1 2x 23 is neither even nor odd because f (2x) 5
(2x)2 1 2(2x ) 23 5 x 2 2 2x 2 3, which does not equal either f (x ) or 2f (x ).

n

E X A M P L E  7

P R O B L E M  S E T  3 . 1

1. If f (x ) 5 22x 1 5, find f (3), f (5), and f (22).

2. If f (x ) 5 x 2 2 3x 2 4, find f (2), f (4), and f (23).

3. If g(x ) 5 22x 2 1 x 2 5, find g(3), g(21), and g(24).

4. If g(x ) 5 2x 2 2 4x 1 6, find g(0), g(5), and g(25).

5. If h(x ) 5 }
2
3

}x 2 }
3
4

}, find h(3), h(4), and h12}
1
2

}2.

6. If h(x ) 5 2}
1
2

}x 1 }
2
3

}, find h(22), h(6), and h12}
2
3

}2.

7. If f (x ) 5 Ï2wxw2w 1w, find f (5), f 1}
1
2

}2, and f (23).

8. If f (x ) 5 Ï3wxw1w 2w, find f 1}
1
3
4
}2, f(10), and f 12}

1
3

}2.

9. If f (x ) 5
x for x $ 0, find f (4), f (10), f (23), and5x 2 for x , 0

f (25).

10. If f (x ) 5
3x 1 2 for x $ 0, find f (2), f (6), f(21), 55x 2 1 for x , 0

and f (24).

11. If f (x ) 5
2x for x $ 0, find f (3), f (5), f (23), and 522x for x , 0

f (25).
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2 for x , 0
12. If f (x ) 5





x 2 1 1 for 0 # x # 4, find f (3), f (6), 
21 for x . 4

f (0), and f (23).

1 for x . 0
13. If f (x ) 5





0 for 21 , x # 0, find f (2), f (0),
21 for x # 21

f12}
1
2

}2, and f (24).

For Problems 14–25, find }
f (a 1 h

h
2 f (a )
}.

14. f (x) 5 4x 1 5 15. f (x) 5 27x 2 2

16. f (x) 5 x 2 2 3x 17. f (x) 5 2x 2 1 4x 2 2

18. f (x) 5 2x 2 1 7x 2 4 19. f (x) 5 3x 2 2 x 2 4

20. f (x) 5 x3 21. f (x) 5 x3 2 x2 1 2x 2 1

22. f (x) 5 }
x 1

1
1

} 23. f (x) 5 }
x 2

2
1

}

24. f (x) 5 }
x 1

x
1

} 25. f (x) 5 }
x
1

2}

For Problems 26–33 (Figures 3.6 through 3.13), determine
whether the indicated graph represents a function of x.

26. 27.

F I G U R E  3 . 6 F I G U R E  3 . 7

28. 29.

F I G U R E  3 . 8 F I G U R E  3 . 9

30. 31.

F I G U R E  3 . 1 0 F I G U R E  3 . 1 1

32. 33.

F I G U R E  3 . 1 2 F I G U R E  3 . 1 3

For Problems 34–41, determine the domain and the range of
the given function.

34. f (x) 5 Ïxw 35. f (x) 5 Ï3wxw2w 4w

36. f (x) 5 x 2 1 1 37. f (x) 5 x 2 2 2

38. f (x) 5 x 3 39. f (x) 5 * x *

40. f (x) 5 x 4 41. f (x) 5 2Ïxw

For Problems 42–51, determine the domain of the given
function.

42. f (x) 5 }
x 2

3
4

} 43. f (x) 5 }
x
2

1

4
2

}

44. f (x) 5}
(x 2 2

2
)(
x
x 1 3)
} 45. f (x) 5}

(2x 2 1
5
)(x 1 4)
}

46. f (x) 5 Ï5wxw1w 1w 47. f (x) 5 }
x 2

1
2 4
}

48. g(x ) 5 }
x 2 1 5

3
x 1 6
} 49. f (x) 5 }

x 2 2

4
x
x

212
}

50. g(x ) 5 }
x 2 1

5
4x

} 51. g(x ) 5 }
6x 2 1 1

x
3x 2 5
}

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y
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For Problems 52–59, express the domain of the given func-
tion using interval notation.

52. f (x) 5 Ïxw2w2w1w

53. f (x) 5 Ïxw2w2w 1w6w

54. f (x) 5 Ïxw2w1w 4w

55. f (x) 5 Ïxw2w1w 1w 2 4

56. f (x) 5 Ïxw2w2w2wxw2w 2w4w

57. f (x) 5 Ïxw2w2w 3wxw2w 4w0w

58. f (x) 5 Ï1w2wxw2w1w xw 2w 6w

59. f (x) 5 2Ï8wxw2w1w 6wxw2w 3w5w

For Problems 60–67, solve each problem.

60. Suppose that the profit function for selling n items is
given by

P(n ) 5 2n 2 1 500n 2 61500

Evaluate P(200), P(230), P(250), and P(260).

61. The equation A(r) 5 pr 2 expresses the area of a circular
region as a function of the length of a radius (r). Com-
pute A(2), A(3), A(12), and A(17) and express your
answers to the nearest hundredth.

62. In a physics experiment, it is found that the equation
V( t) 5 1667t 2 6940t 2 expresses the velocity of an
object as a function of time ( t). Compute V(0.1), V(0.15),
and V(0.2).

63. The height of a projectile fired vertically into the air
(neglecting air resistance) at an initial velocity of 64 feet
per second is a function of the time ( t ) and is given by
the equation h( t) 5 64t 2 16t 2. Compute h(1), h(2),
h(3), and h(4).

64. A car rental agency charges $50 per day plus $.32 a mile.
Therefore, the daily charge for renting a car is a function
of the number of miles traveled (m ) and can be
expressed as C(m) 5 50 1 0.32 m. Compute C(75),
C(150), C(225), and C(650).

65. The equation I(r) 5 500r expresses the amount of simple
interest earned by an investment of $500 for one year as a
function of the rate of interest (r). Compute I(0.11),
I(0.12), I(0.135), and I(0.15).

66. Suppose that the height of a semielliptical archway is
given by the function h(x) 5 Ï6w4w 2w 4wxw2w, where x is the
distance from the center line of the arch. Compute h(0),
h(2), and h(4).

67. The equation A(r) 5 2pr 2 1 16pr expresses the total
surface area of a right circular cylinder of height 8 cen-
timeters as a function of the length of a radius (r). Com-
pute A(2), A(4), and A(8) and express your answers to the
nearest hundredth.

For Problems 68–77, determine whether f is even, odd, or nei-
ther even nor odd.

68. f (x) 5 x 2 69. f (x) 5 x 3

70. f (x) 5 x 2 1 1 71. f (x) 5 3x 2 1

72. f (x) 5 x 2 1 x 73. f (x) 5 x 3 1 1

74. f (x) 5 x 5 75. f (x) 5 x 4 1 x 2 1 1

76. f (x) 5 2x 3 77. f (x) 5 x 5 1 x 3 1 x

78. Expand Definition 3.1 to include a definition for the con-
cept of a relation.

79. What does it mean to say that the domain of a function
may be restricted if the function represents a real-world
situation? Give three examples of such functions.

80. Does f (a 1 b ) 5 f (a ) 1 f (b ) for all functions? Defend
your answer.

81. Are there any functions for which f (a 1 b ) 5
f (a ) 1 f (b )? Defend your answer.

THOUGHTS INTO WORDS
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LINEAR AND QUADRATIC FUNCTIONS

As we use the function concept in our study of mathematics, it is helpful to classify
certain types of functions and become familiar with their equations, characteristics,
and graphs. In this section we will discuss two special types of functions: linear and
quadratic functions. These functions are a natural extension of our earlier study of
linear and quadratic equations.

Linear Functions

Any function that can be written in the form

f (x) 5 ax 1 b

where a and b are real numbers, is called a linear function. The following are exam-
ples of linear functions.

f (x) 5 22x 1 4 f (x ) 5 7x 2 9 f (x) 5 }
2
3

}x 1 }
5
6

}

The equation f (x ) 5 ax 1 b can also be written y 5 ax 1 b. From our work
with the slope–intercept form in Chapter 3, we know that y 5 ax 1 b is the equation
of a straight line having a slope of a and a y intercept of b. This information can be
used to graph linear functions, as illustrated by the following example.

Graph f (x) 5 22x 1 4.

Solution

Because the y intercept is 4, the point (0, 4) is on the line. Furthermore, because the
slope is 22, we can move two units down and one unit to the right of (0, 4) to deter-
mine the point (1, 2). The line determined by (0, 4) and (1, 2) is shown in Figure 3.14.

F I G U R E  3 . 1 4 n

(0, 4)

(1, 2)
f(x) = −2x + 4

x

f(x)

3.2

E X A M P L E  1
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3.2 Linear and Quadratic Functions 239

Note that in Figure 3.14 we labeled the vertical axis f (x ). It could also be
labeled y, because y 5 f (x). We will use the label f (x) for most of our work with
functions; however, we will continue to refer to y-axis symmetry instead of f (x )-
axis symmetry.

Recall from Chapter 3 that we often graphed linear equations by finding the
two intercepts. This same approach can be used with linear functions, as the next
example illustrates.

Graph f (x) 5 3x 2 6.

Solution

First, we see that f (0) 5 26; thus the point (0, 26) is on the graph. Second, by set-
ting 3x 2 6 equal to zero and solving for x, we obtain

3x 2 6 5 0

3x 5 6

x 5 2

Therefore, f (2) 5 3(2) 2 6 5 0 and the point (2, 0) is on the graph. The line deter-
mined by (0, 26) and (2, 0) is shown in Figure 3.15.

F I G U R E  3 . 1 5 n

As you graph functions by using function notation, it is often helpful to think
of the ordinate of every point on the graph as the value of the function at a specific
value of x. Geometrically, the functional value is the directed distance of the
point from the x axis. We have illustrated this idea in Figure 3.16 for the function
f (x) 5 x and in Figure 3.17 for the function f (x ) 5 2.

(2, 0)

f(x) = 3x − 6

x

(0, −6)

f(x)

E X A M P L E  2
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The linear function f (x ) 5 x is often called the identity function. Any linear
function of the form f (x ) 5 ax 1 b, where a 5 0, is called a constant function, and
its graph is a horizontal line.

Quadratic Functions

Any function that can be written in the form

f (x) 5 ax 2 1 bx 1 c

where a, b, and c are real numbers and a Þ 0, is called a quadratic function. Fur-
thermore, the graph of any quadratic function is a parabola. As we work with
parabolas, we will use the vocabulary indicated in Figure 3.18.

F I G U R E  3 . 1 8 F I G U R E  3 . 1 9

x

f(x) = x2

(−1, 1) (1, 1)

(0, 0)

(2, 4)(−2, 4)

f(x)

Axis of
symmetry

Vertex
(maximum value)

Opens upward

Opens downward

Vertex
(minimum value)

x

f(x) = 2

f(3) = 2

f(1) = 2

f(−2) = 2

f(x)

x

f(x) = x

f(−3) = −3

f(−1) = −1 f(2) = 2

f(x)
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3.2 Linear and Quadratic Functions 241

Graphing parabolas relies on finding the vertex, determining whether the
parabola opens upward or downward, and locating two points on opposite sides of
the axis of symmetry. It is also very helpful to compare the parabolas produced by
various types of equations, such as f (x ) 5 x 2 1 k, f (x ) 5 ax 2, f (x) 5 (x 2 h )2,
and f (x ) 5 a(x 2 h )2 1 k. We are especially interested in how they compare to the
basic parabola produced by the equation f (x ) 5 x 2. The graph of f (x ) 5 x 2 is
shown in Figure 3.19. Note that the graph of f(x ) 5 x 2 is symmetric with respect to
the y, or f (x ), axis. Remember that an equation exhibits y-axis symmetry if replac-
ing x with 2x produces an equivalent equation. Therefore, because f (2x) 5
(2x)2 5 x 2, the equation f (x ) 5 x 2 exhibits y-axis symmetry.

Now let’s consider an equation of the form f (x ) 5 x 2 1 k, where k is a con-
stant. (Keep in mind that all such equations exhibit y-axis symmetry.)

Graph f (x) 5 x 2 2 2.

Solution

It should be observed that functional values for f (x ) 5 x 2 2 2 are 2 less than corre-
sponding functional values for f (x ) 5 x 2. For example, f (1) 5 21 for f (x ) 5 x 2 2
2, but f (1) 5 1 for f (x ) 5 x 2. Thus the graph of f (x) 5 x 2 2 2 is the same as the
graph of f (x ) 5 x 2 except that it is moved down 2 units (Figure 3.20).

F I G U R E  3 . 2 0 n

In general, the graph of a quadratic function of the form f (x ) 5 x 2 1 k
is the same as the graph of f (x ) 5 x 2 except that it is moved up or
down *k * units, depending on whether k is positive or negative. We say
that the graph of f (x ) 5 x 2 1 k is a vertical translation of the graph
of f (x ) 5 x 2.

x

(0, −2)

(−1, −1) (1, −1)

f(x) = x2 − 2

f(x)

E X A M P L E  3
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Now let’s consider some quadratic functions of the form f (x ) 5 ax 2, where a
is a nonzero constant. (The graphs of these equations also have y-axis symmetry.)

Graph f (x) 5 2x 2.

Solution

Let’s set up a table to make some comparisons of functional values. Note that in the
table, the functional values for f (x) 5 2x2 are twice the corresponding functional val-
ues for f (x) 5 x2. Thus the parabola associated with f(x) 5 2x2 has the same vertex
(the origin) as the graph of f (x) 5 x2, but it is narrower, as shown in Figure 3.21.

F I G U R E  3 . 2 1 n

Graph f (x) 5 }
1
2

}x 2.

Solution

As we see from the table, the functional values for f (x ) 5 }
1
2

}x 2 are one-half of the 

corresponding functional values for f (x ) 5 x 2. Therefore, the parabola associated 

with f (x ) 5 }
1
2

}x 2 is wider than the basic parabola, as shown in Figure 3.22.

x

f(x) = 2x2

f(x)

f(x) = x2

x
0
1
2

−1
−2

f(x) = 2x2f(x) = x2

0
1
4
1
4

0
2
8
2
8

E X A M P L E  4
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F I G U R E  3 . 2 2 n

Graph f (x) 5 2x 2.

Solution

It should be evident that the functional values for f (x) 5 2x 2 are the opposites of
the corresponding functional values for f (x ) 5 x 2. Therefore, the graph of f (x) 5
2x 2 is a reflection across the x axis of the basic parabola (Figure 3.23).

F I G U R E  3 . 2 3 n

x

f(x)

f(x) = x2

f(x) = −x2

x

f(x)

f(x) = x2f(x) = x21
2

0

1

2

−1

−2

0

1

4

1

4

0

2

2

f(x) = x21
2

1
2

1
2

x f(x) = x2

E X A M P L E  6

    Functions 163



244 Chapter 3 Functions

Let’s continue our investigation of quadratic functions by considering those of
the form f (x) 5 (x 2 h ) 2, where h is a nonzero constant.

Graph f (x) 5 (x 2 3)2.

Solution

A fairly extensive table of values illustrates a pattern. Note that f (x ) 5 (x 2 3)2 and
f (x) 5 x 2 take on the same functional values, but for different values of x. More
specifically, if f (x ) 5 x 2 achieves a certain functional value at a specific value of x,
then f (x ) 5 (x 2 3)2 achieves that same functional value at x plus three. In other
words, the graph of f (x) 5 (x 2 3)2 is the graph of f (x ) 5 x 2 moved three units to
the right (Figure 3.24).

F I G U R E  3 . 2 4 n

In general, the graph of a quadratic function of the form f (x) 5 (x 2 h)2

is the same as the graph of f (x) 5 x2 except that it is moved to the right
h units if h is positive or moved to the left * h * units if h is negative. We
say that the graph of f (x) 5 (x 2 h)2 is a horizontal translation of the
graph of f (x) 5 x2.

x

f(x)

f(x) = x2

−1
0
1
2
3
4
5
6
7

f(x) = (x − 3)2

f(x) = (x – 3)2

1
0
1
4
9

16
25
36
49

16
9
4
1
0
1
4
9

16

x f(x) = x2

In general, the graph of a quadratic function of the form f (x ) 5 ax 2

has its vertex at the origin and opens upward if a is positive and
downward if a is negative. The parabola is narrower than the basic
parabola if * a * . 1 and wider if * a * , 1.

E X A M P L E  7
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The following diagram summarizes our work thus far for graphing quadratic
functions.

f (x) 5 x 2 1 k Moves the parabola up or down
f (x) 5 x 2

f (x) 5 a x 2 Affects the width and the way the
parabola opens

basic parabola

f (x) 5 (x 2 h )2 Moves the parabola right or left

Now let’s consider two examples that combine these ideas.

Graph f (x) 5 3(x 2 2)2 1 1.

Solution

f (x) 5 3(x 2 2)2 1 1

Narrows the Moves the Moves the 
parabola and parabola 2 units parabola 
opens it upward to the right 1 unit up

The vertex is (2, 1) and the line x 5 2 is the axis of symmetry. If x 5 1, then f (1) 5
3(1 2 2)2 1 1 5 4. Thus the point (1, 4) is on the graph, and so is its reflection,
(3, 4), across the line of symmetry. The parabola is shown in Figure 3.25.

F I G U R E  3 . 2 5 n

Graph f (x) 5 2}
1
2

} (x 1 1)2 2 3.

x

f(x)

(2, 1)

(3, 4)

(1, 4)

f(x) = 3(x − 2)2 + 1

E X A M P L E  8
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Solution

f (x) 5 2}
1
2

}[x 2 (21)]2 2 3

Widens the Moves the Moves the 
parabola and parabola parabola 
opens it 1 unit to 3 units down
downward the left

The vertex is at (21, 23) and the line x 5 21 is the axis of symmetry. If x 5 0, 

then f (0) 5 2}
1
2

}(0 1 1)2 2 3 5 2}
7
2

}. Thus the point 10, 2}
7
2

}2 is on the graph, and so

is its reflection, 122, 2}
7
2

}2, across the line of symmetry. The parabola is shown in

Figure 3.26.

F I G U R E  3 . 2 6 n

Quadratic Functions of the Form 
f (x) 5 ax2 1 bx 1 c

We are now ready to graph quadratic functions of the form f (x) 5 ax 2 1 bx 1 c.
The general approach is to change from the form f (x ) 5 ax 2 1 bx 1 c to the form
f (x) 5 a(x 2 h )2 1 k and then proceed as we did in Examples 8 and 9. The process
of completing the square serves as the basis for making the change in form. Let’s
consider two examples to illustrate the details.

x

f(x)

1
2

f(x) = − (x + 1)2 − 3

(−1, −3)

(−2, − )7
2

)7
2

(0, −
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Graph f (x) 5 x 2 2 4x 1 3.

Solution

f (x) 5 x 2 2 4x 1 3

5 (x 2 2 4x ) 1 3 Add 4, which is the square of one-half of
the coefficient of x.

5 (x 2 2 4x 1 4) 1 3 2 4 Subtract 4 to compensate for the 4 that
was added.

5 (x 2 2)2 2 1

The graph of f (x) 5 (x 2 2)2 2 1 is the basic parabola moved 2 units to the right
and 1 unit down (Figure 3.27).

F I G U R E  3 . 2 7 n

Graph f (x) 5 22x 2 2 4x 1 1.

Solution

f (x) 5 22x 2 2 4x 1 1

5 22(x 2 1 2x ) 1 1 Factor 22 from the first two terms.
5 22(x 2 1 2x 1 1) 11 1 2 Add 1 inside the parentheses to

complete the square.
5 22(x 1 1)2 1 3 Add 2 to compensate for the 1 inside

the parentheses times the factor 22.

The graph of f (x ) 5 22(x 1 1)2 1 3 is shown in Figure 3.28.

x

f(x)

(3, 0)

(2, −1)

f(x) = x2 − 4x + 3

(1, 0)

E X A M P L E  1 0

E X A M P L E  1 1
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Now let’s graph a piecewise-defined function that involves both linear and
quadratic rules of assignment.

Graph f (x) 5 2x for x $ 05x 2 1 1 for x , 0
.

Solution

If x $ 0, then f (x) 5 2x. Thus for nonnegative values of x, we graph the linear func-
tion f (x) 5 2x. If x , 0, then f (x) 5 x2 1 1. Thus for negative values of x, we graph
the quadratic function f (x) 5 x2 1 1. The complete graph is shown in Figure 3.29.

F I G U R E  3 . 2 9 n

What we know about parabolas and the process of completing the square can
be helpful when we are using a graphing utility to graph a quadratic function. Con-
sider the following example.

x

f(x)

(−2, 5)

(−1, 2) (1, 2)

x

f(x)

(−1, 3)

(−2, 1) (0, 1)

f(x) = −2x2 − 4x + 1

248 Chapter 3 Functions
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Use a graphing utility to obtain the graph of the quadratic function

f (x) 5 2x 2 1 37x 2 311

Solution

First, we know that the parabola opens downward and its width is the same as that of
the basic parabola f (x ) 5 x 2. Then we can start the process of completing the
square to determine an approximate location of the vertex.

f (x) 5 2x 2 1 37x 2 311

5 2(x 2 2 37x ) 2 311

5 21 x 2 2 37x 1 1}
3
2
7
}222 2 311 1 1}

3
2
7
}22

5 2(x 2 2 37x 1 (18.5)2) 2 311 1 342.25

Thus the vertex is near x 5 18 and y 5 31. Therefore, setting the boundaries of the
viewing rectangle so that 22 # x # 25 and 210 # y # 35, we obtain the graph
shown in Figure 3.30.

F I G U R E  3 . 3 0 n

REMARK The graph in Figure 3.30 is sufficient for most purposes because
it shows the vertex and the x intercepts of the parabola. Certainly, we could
use other boundaries that would also give this information.

2522

35

210

E X A M P L E  1 3

P R O B L E M  S E T  3 . 2

For Problems 1–10, graph each linear function.

1. f (x) 5 2x 2 4 2. f (x) 5 3x 1 6

3. f (x) 5 2x 1 1 4. f (x) 5 22x 2 4

5. f (x) 5 22x 6. f (x) 5 3x

7. f (x) 5 }
1
2

}x 2 }
3
4

} 8. f (x) 5 2}
2
3

}x 1 }
1
2

}
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46. Explain the concept of a piecewise-defined function.

47. Suppose that Julian walks at a constant rate of 3 miles per
hour. Explain what it means to say that the distance
Julian walks is a linear function of the time he walks.

48. Is f (x ) 5 (3x 2 2) 2 (2x 1 1) a linear function? Explain
your answer.

49. Give a step-by-step description of how you would use the
ideas presented in this section to graph f (x ) 5 5x 2 1
10x 1 4.

THOUGHTS INTO WORDS

9. f (x) 5 21 10. f (x) 5 23

For Problems 11–34, graph each quadratic function.

11. f (x) 5 x 2 1 1 12. f (x) 5 x 2 2 3

13. f (x) 5 3x 2 14. f (x) 5 22x 2

15. f (x) 5 2x 2 1 2 16. f (x) 5 23x 2 2 1

17. f (x) 5 (x 1 2)2 18. f (x) 5 (x 2 1)2

19. f (x) 5 22(x 1 1)2 20. f (x) 5 3(x 2 2)2

21. f (x) 5 (x 2 1)2 1 2 22. f (x) 5 2(x 1 2)2 1 3

23. f (x) 5 }
1
2

}(x 2 2)2 2 3 24. f (x) 5 2(x 2 3)2 2 1

25. f (x) 5 x 2 1 2x 1 4 26. f (x) 5 x 2 2 4x 1 2

27. f (x) 5 x 2 2 3x 1 1 28. f (x) 5 x 2 1 5x 1 5

29. f (x) 5 2x 2 1 12x 1 17

30. f (x) 5 3x 2 2 6x

31. f (x) 5 2x 2 2 2x 1 1

32. f (x) 5 22x 2 1 12x 2 16

33. f (x) 5 2x 2 2 2x 1 3

34. f (x) 5 2x 2 1 3x 2 1

35. f (x) 5 22x 2 2 5x 1 1

36. f (x) 5 23x 2 1 x 2 2

For Problems 37–44, graph each function.

37. f (x) 5
x for x $ 053x for x , 0

38. f (x) 5
2x for x $ 05 4x for x , 0

39. f (x) 5
2x 1 1 for x $ 05 x 2 for x , 0

40. f (x) 5
2x 2 for x $ 05 2x 2 for x , 0

41. f (x) 5
2 if x $ 0521 if x , 0

2 if x . 2
42. f (x) 5





1 if 0 , x # 2
21 if x # 0

1 if 0 # x , 1
43. f (x) 5





2 if 1 # x , 2
3 if 2 # x , 3
4 if 3 # x , 4

2x 1 3 if x , 0
44. f (x) 5







x 2 if 0 # x , 2
1 if x $ 2

45. The greatest integer function is defined by the equation
f (x) 5 [x], where [x] refers to the largest integer less 

than or equal to x. For example, [2.6] 5 2, 3Ï2w 4 5 1,
[4] 5 4, and [21.4] 5 22. Graph f (x) 5 [x] for 
24 # x , 4.
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50. This problem is designed to reinforce ideas presented in
this section. For each part, first predict the shapes and
locations of the parabolas, and then use your graphing
calculator to graph them on the same set of axes.

a. f (x) 5 x 2, f (x ) 5 x 2 2 4, f (x ) 5 x 2 1 1, f (x) 5
x 2 1 5

b. f (x) 5 x 2, f (x) 5 (x 2 5)2, f (x) 5 (x 1 5)2, f (x) 5
(x 2 3)2

c. f (x) 5 x 2, f (x ) 5 5x 2, f (x) 5 }
1
3

}x 2, f (x) 5 22x 2

d. f (x) 5 x 2, f (x ) 5 (x 2 7)2 2 3, f (x ) 5 2(x 1 8)2 1
4, f (x) 5 23x 2 2 4

e. f (x) 5 x 2 2 4x 2 2, f (x ) 5 2x 2 1 4x 1 2, f (x) 5
2x 2 2 16x 2 58, f (x ) 5 x 2 1 16x 1 58

51. a. Graph both f (x) 5 x 2 2 14x 1 51 and f (x ) 5 x 2 1
14x 1 51 on the same set of axes. What relationship
seems to exist between the two graphs?

b. Graph both f (x) 5 x 2 1 12x 1 34 and f (x ) 5 x 2 2
12x 1 34 on the same set of axes. What relationship
seems to exist between the two graphs?

c. Graph both f (x) 5 2x 2 1 8x 2 20 and f (x) 5
2x 2 2 8x 2 20 on the same set of axes. What rela-
tionship seems to exist between the two graphs?

d. Make a statement that generalizes your findings in
parts (a) through (c).

52. Use your graphing calculator to graph the piecewise-
defined functions in Problems 37–44. You may need to
consult your user’s manual for instructions on graphing
these functions.

GRAPHING CALCULATOR ACTIVITIES

QUADRATIC FUNCTIONS AND PROBLEM

SOLVING

In the previous section we used the process of completing the square to change a
quadratic function such as f (x ) 5 x 2 2 4x 1 3 to the form f (x ) 5 (x 2 2)2 2 1.
From the form f (x ) 5 (x 2 2)2 2 1, it is easy to identify the vertex (2, 21) and the
axis of symmetry x 5 2 of the parabola. In general, if we complete the square on

f (x) 5 ax 2 1 bx 1 c

we obtain

f (x) 5 a1x 2 1 }
b
a

}x2 1 c

5 a1x 2 1 }
b
a

}x 1 }
4
b
a

2

2}2 1 c 2 }
4
b
a

2

}

5 a1x 1 }
2
b
a
}22

1 }
4ac

4
2

a
b 2

}

3.3
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Therefore, the parabola associated with the function f (x) 5 ax 2 1 bx 1 c has its
vertex at 

12}
2
b
a
}, }

4ac
4
2

a
b 2

}2
and the equation of its axis of symmetry is x 5 2b@2a. These facts are illustrated in
Figure 3.31.

F I G U R E  3 . 3 1

By using the information from Figure 3.31, we now have another way of
graphing quadratic functions of the form f (x ) 5 ax 2 1 bx 1 c, as indicated by the
following steps.

1. Determine whether the parabola opens upward (if a . 0) or downward (if
a , 0).

2. Find 2b@2a, which is the x coordinate of the vertex.

3. Find f (2b@2a ), which is the y coordinate of the vertex, or find the y coor-
dinate by evaluating

}
4ac

4
2

a
b 2

}

4. Locate another point on the parabola and also locate its image across the
axis of symmetry, which is the line with equation x 5 2b@2a.

The three points found in steps 2, 3, and 4 should determine the general shape of the
parabola. Let’s illustrate this procedure with two examples.

Graph f (x) 5 3x 2 2 6x 1 5.

x

f(x)

Vertex:
b
2a

4ac − b2

4a
, )(−

Axis of symmetry

E X A M P L E  1
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Solution

STEP 1 Because a . 0, the parabola opens upward.

STEP 2 2}
2
b
a
} 5 2}

2

6
6
} 5 1

STEP 3 f 12}
2
b
a
}2 5 f (1) 5 3 2 6 1 5 5 2. Thus the vertex is at (1, 2).

STEP 4 Letting x 5 2, we obtain f (2) 5 12 2 12 1 5 5 5. Thus (2, 5) is
on the graph, and so is its reflection, (0, 5), across the line of
symmetry, x 5 1.

The three points (1, 2), (2, 5), and (0, 5) are used to graph the parabola in Figure 3.32.

F I G U R E  3 . 3 2 n

Graph f (x) 5 2x 2 2 4x 2 7.

Solution

STEP 1 Because a , 0, the parabola opens downward.

STEP 2 2}
2
b
a
} 5 2}

2

2

4
2
} 5 22

STEP 3 f 12}
2
b
a
}2 5 f (22) 5 2(22)2 2 4(22) 2 7 5 23. Thus the vertex 

is at (22, 23).

STEP 4 Letting x 5 0, we obtain f (0) 5 27. Thus (0, 27) is on the graph,
and so is its reflection, (24, 27), across the line of symmetry, 
x 5 22.

The three points (22, 23), (0, 27), and (24, 27) are used to draw the parabola in
Figure 3.33.

x

f(x)

(1, 2)

(2, 5)(0, 5)

f(x) = 3x2 − 6x + 5

E X A M P L E  2
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F I G U R E  3 . 3 3 n

In summary, we basically have two methods to graph a quadratic function.

1. We can express the function in the form f (x ) 5 a(x 2 h )2 1 k and use the
values of a, h, and k to determine the parabola.

2. We can express the function in the form f (x ) 5 ax 2 1 bx 1 c and use the
approach demonstrated in Examples 1 and 2.

Parabolas possess various properties that make them very useful. For exam-
ple, if a parabola is rotated about its axis, a parabolic surface is formed and such sur-
faces are used for light and sound reflectors. A projectile fired into the air will
follow the curvature of a parabola. The trend line of profit and cost functions some-
times follows a parabolic curve. In most applications of the parabola, we are primar-
ily interested in the x intercepts and the vertex. Let’s consider some examples of
finding the x intercepts and the vertex.

Find the x intercepts and the vertex for each of the following parabolas.

a. f (x) 5 2x 2 1 11x 2 18 b. f (x ) 5 x 2 2 8x 2 3

c. f (x) 5 2x 2 2 12x 1 23

Solutions

a. To find the x intercepts, let f (x ) 5 0 and solve the resulting equation.

2x 2 1 11x 2 18 5 0

x 2 2 11x 1 18 5 0

(x 2 2)(x 2 9) 5 0

x 2 2 5 0 or x 2 9 5 0

x 5 2 or x 5 9

x

f(x)

(−2, −3)

(−4, −7) (0, −7)

f(x) = −x2 − 4x − 7

E X A M P L E  3
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Therefore, the x intercepts are 2 and 9. To find the vertex, let’s determine the 

point 12}
2
b
a
}, f 12}

2
b
a
}22.

f (x ) 5 2x 2 1 11x 2 18

2}
2
b
a
} 5 2}

2(
1
2

1
1)

} 5 2}
2

11
2
} 5 }

1
2
1
}

f 1}
1
2
1
}2 5 21}

1
2
1
}22

1 111}
1
2
1
}2 2 18

5 2}
12
4
1

} 1 }
12
2
1

} 2 18

5}
2121 1

4
242 2 72
}

5 }
4
4
9
}

Therefore, the vertex is at 1}
1
2
1
}, }

4
4
9
}2.

b. The find the x intercepts, let f (x) 5 0, and solve the resulting equation.

x 2 2 8x 2 3 5 0

x 5

5 }
8 6

2
Ï7w6w
}

5 }
8 6 2

2
Ï1w9w
}

5 4 6 Ï1w9w

Therefore, the x intercepts are 4 1 Ï1w9w and 4 2 Ï1w9w. This time, to find the ver-
tex, let’s complete the square on x.

f (x) 5 x 2 2 8x 2 3

5 x 2 2 8x 1 16 2 3 2 16

5 (x 2 4)2 2 19

Therefore, the vertex is at (4, 219).

c. To find the x intercepts, let f (x ) 5 0 and solve the resulting equation.

2x 2 2 12x 1 23 5 0

x 5

5 }
12 6 Ï

4
2w4w0w

}

2(212) 6 Ï(2w1w2w)2w 2w 4w(2w)(w2w3w)w
}}}}

2(2)

2(28) 6 Ï(2w8w)2w 2w 4w(1w)(w2w3w)w
}}}}

2(1)
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Because these solutions are nonreal complex numbers, there are no x intercepts. 

To find the vertex, let’s determine the point 12}
2
b
a
}, f 12}

2
b
a
}22.

f (x ) 5 2x 2 2 12x 1 23

2}
2
b
a
} 5 2}

2

2(
1
2
2
)

}

5 3

f (3) 5 2(3)2 2 12(3) 1 23

5 18 2 36 1 23

5 5

Therefore, the vertex is at (3, 5). n

REMARK Note that in parts (a) and (c) we used the general point 

12}
2
b
a
}, f 12}

2
b
a
}22

to find the vertices. In part (b), however, we completed the square and used
that form to determine the vertex. Which approach you use is up to you. We
chose to complete the square in part (b) because the algebra involved was
quite easy.

In Problem 60 of Problem Set 1.3 you were asked to solve the quadratic equa-
tion 2x 2 1 11x 2 18 5 0. You should have obtained a solution set of { 2, 9} . Here,
in part (a) of Example 3, we solved the same equation to determine that the x inter-
cepts of the graph of the function f (x ) 5 2x 2 1 11x 2 18 are 2 and 9. The numbers
2 and 9 are also called the real number zeros of the function. In part (b), the real
numbers 4 1 Ï1w9w and 4 2 Ï1w9w are the x intercepts of the graph of the function
f (x) 5 x 2 2 8x 2 3 and are the real number zeros of the function. In part (c), the 

nonreal complex numbers }
12 6

4
Ï2w4w0w
}, which simplify to }

6 6

2
iÏ1w0w
}, indicate that 

the graph of the function f (x) 5 2x 2 2 12x 1 23 has no points on the x axis. The
complex numbers are zeros of the function, but they have no physical significance
for the graph other than indicating that the graph has no points on the x axis.

Figure 3.34 shows the result we got when we used a graphing calculator 
to graph the three functions of Example 3 on the same set of axes. This gives us 
a visual interpretation of the conclusions drawn regarding the x intercepts and 
vertices.
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F I G U R E  3 . 3 4

Back to Problem Solving

As we have seen, the vertex of the graph of a quadratic function is either the lowest
or the highest point on the graph. Thus we often speak of the minimum value or
maximum value of a function in applications of the parabola. The x value of the
vertex indicates where the minimum or maximum occurs, and f (x ) yields the mini-
mum or maximum value of the function. Let’s consider some examples that illus-
trate these ideas.

A farmer has 120 rods of fencing and wants to enclose a rectangular plot of land that
requires fencing on only three sides because it is bounded by a river on one side.
Find the length and width of the plot that will maximize the area.

Solution

Let x represent the width; then 120 2 2x represents the length, as indicated in Figure
3.35.

F I G U R E  3 . 3 5

River

Fence

x

x
120 − 2x

–10 15

30

–30

P R O B L E M 1
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The function A(x) 5 x(120 2 2x ) represents the area of the plot in terms of the
width x. Because

A(x) 5 x(120 2 2x )

5 120x 2 2x 2

5 22x 2 1 120x

we have a quadratic function with a 5 22, b 5 120, and c 5 0. Therefore, the max-
imum value (a , 0 so the parabola opens downward) of the function is obtained
where the x value is

2}
2
b
a
} 5 2}

2
1
(2
20

2)
} 5 30

If x 5 30, then 120 2 2x 5 120 2 2(30) 5 60. Thus the farmer should make the
plot 30 rods wide and 60 rods long to maximize the area at (30)(60) 5 1800 square
rods. n

Find two numbers whose sum is 30, such that the sum of their squares is a
minimum.

Solution

Let x represent one of the numbers; then 30 2 x represents the other number. By
expressing the sum of their squares as a function of x, we obtain

f (x) 5 x 2 1 (30 2 x ) 2

which can be simplified to

f (x) 5 x 2 1 900 2 60x 1 x 2

5 2x 2 2 60x 1 900

This is a quadratic function with a 5 2, b 5 260, and c 5 900. Therefore, the x
value where the minimum occurs is

2}
2
b
a
} 5 2}

2

4
60
}

5 15

If x 5 15, then 30 2 x 5 30 2 15 5 15. Thus the two numbers should both be 15.
n

A golf pro shop operator finds that she can sell 30 sets of golf clubs at $500 per set
in a year. Furthermore, she predicts that for each $25 decrease in price, she could
sell three extra sets of golf clubs. At what price should she sell the clubs to maxi-
mize gross income?

P R O B L E M 2

P R O B L E M 3
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Solution

In analyzing such a problem, it sometimes helps to start by setting up a table.

Let x represent the number of $25 decreases in price. Then the income can be
expressed as a function of x.

f (x) 5 (30 1 3x )(500 2 25x).

Number Price per 
of sets set

Simplifying this, we obtain

f (x) 5 15,000 2 750x 1 1500x 2 75x 2

5 275x 2 1 750x 1 15,000

We complete the square in order to analyze the parabola.

f (x) 5 275x 2 1 750x 1 15,000

5 275(x 2 2 10x) 1 15,000

5 275(x 2 2 10x 1 25) 1 15,000 1 1875

5 275(x 2 5)2 1 16,875

From this form we know that the vertex of the parabola is at (5, 16875), and because
a 5 275, we know that a maximum occurs at the vertex. Thus five decreases of
$25—that is, a $125 reduction in price—will give a maximum income of $16,875.
The golf clubs should be sold at $375 per set. n

We have determined that the vertex of a parabola associated with f (x) 5

ax 2 1 bx 1 c is located at 12}
2
b
a
}, f 12}

2
b
a
}22 and that the x intercepts of the graph can 

be found by solving the quadratic equation ax 2 1 bx 1 c 5 0. Therefore, a graphing
utility does not provide us with much extra power when we are working with qua-
dratic functions. However, as functions become more complex, a graphing utility
becomes more helpful. Let’s build our confidence in the use of a graphing utility at
this time, while we have a way of checking our results.

NUMBER OF SETS PRICE PER SET INCOME

Three additional sets 30 $500 $15,000

can be sold for 33 $475 $15,675

a $25 decrease
in price. 36 $450 $16,200
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Use a graphing utility to graph f (x ) 5 x 2 2 8x 2 3 and find the x intercepts of the
graph. [This is the parabola from part (b) of Example 3.]

Solution

A graph of the parabola is shown in Figure 3.36.

F I G U R E  3 . 3 6

One x intercept appears to be between 0 and 21 and the other between 8 and 9. Let’s
zoom in on the x intercept between 8 and 9. This produces a graph like Figure 3.37.

F I G U R E  3 . 3 7

Now we can use the trace function to determine that this x intercept is at approxi-
mately 8.4. (This agrees with the answer of 4 1 Ï1w9w that we got in Example 3.) In a
similar fashion, we can determine that the other x intercept is at 20.4.

12.14.6

3.8

23.8

15215

10

220

E X A M P L E  4
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For Problems 1–12, use the approach of Examples 1 and 2 of
this section to graph each quadratic function.

1. f (x) 5 x 2 2 8x 1 15 2. f (x) 5 x 2 1 6x 1 11

3. f (x) 5 2x 2 1 20x 1 52 4. f (x) 5 3x 2 2 6x 2 1

5. f (x) 5 2x 2 1 4x 2 7 6. f (x) 5 2x 2 2 6x 2 5

7. f (x) 5 23x 2 1 6x 2 5 8. f (x) 5 22x 2 2 4x 1 2

9. f (x) 5 x 2 1 3x 2 1

10. f (x) 5 x 2 1 5x 1 2

11. f (x) 5 22x 2 1 5x 1 1

12. f(x) 5 23x 2 1 2x 2 1

For Problems 13–20, use the approach that you think is the
most appropriate to graph each quadratic function.

13. f (x) 5 2x 2 1 3

14. f (x) 5 (x 1 1)2 1 1

15. f (x) 5 x 2 1 x 2 1

16. f (x) 5 2x 2 1 3x 2 4

17. f (x) 5 22x 2 1 4x 1 1

18. f (x) 5 4x 2 2 8x 1 5

19. f (x) 5 21x 1 }
5
2

}22
1 }

3
2

}

20. f (x) 5 x 2 2 4x

For Problems 21–32, find the x intercepts and the vertex of
each parabola.

21. f (x) 5 x 2 2 8x 1 15

22. f (x) 5 x 2 2 16x 1 63

23. f (x) 5 2x 2 2 28x 1 96

24. f (x) 5 3x 2 2 60x 1 297

25. f (x) 5 2x 2 1 10x 2 24

26. f (x) 5 22x 2 1 36x 2 160

27. f (x) 5 x 2 2 14x 1 44

28. f (x) 5 x 2 2 18x 1 68

29. f (x) 5 2x 2 1 9x 2 21

30. f (x) 5 2x 2 1 3x 1 3

31. f (x) 5 24x 2 1 4x 1 4

32. f (x) 5 22x 2 1 3x 1 7

For Problems 33–42, solve each problem.

33. Suppose that the equation p(x) 5 22x 2 1 280x 2 1000,
where x represents the number of items sold, describes
the profit function for a certain business. How many
items should be sold to maximize the profit?

34. Suppose that the cost function for the production of a par-
ticular item is given by the equation C(x ) 5 2x 2 2
320x 1 12,920, where x represents the number of items.
How many items should be produced to minimize the
cost?

35. The height of a projectile fired vertically into the air
(neglecting air resistance) at an initial velocity of 96 feet
per second is a function of time x and is given by the
equation f (x ) 5 96x 2 16x 2. Find the highest point
reached by the projectile.

36. Find two numbers whose sum is 30, such that the sum of
the square of one number plus ten times the other number
is a minimum.

37. Find two numbers whose sum is 50 and whose product is
a maximum.

38. Find two numbers whose difference is 40 and whose
product is a minimum.

39. Two hundred and forty meters of fencing is available to
enclose a rectangular playground. What should be the
dimensions of the playground to maximize the area?

P R O B L E M  S E T  3 . 3
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40. Motel managers advertise that they will provide dinner,
dancing, and drinks for $50 per couple for a New Year’s
Eve party. They must have a guarantee of 30 couples.
Furthermore, they will agree that for each couple in
excess of 30, they will reduce the price per couple for all
attending by $.50. How many couples will it take to max-
imize the motel’s revenue?

41. A cable TV company has 1000 subscribers, each of
whom pays $15 per month. On the basis of a survey, they

believe that for each decrease of $.25 in the monthly rate,
they could obtain 20 additional subscribers. At what rate
will maximum revenue be obtained and how many sub-
scribers will there be at that rate?

42. A manufacturer finds that for the first 500 units of its
product that are produced and sold, the profit is $50 per
unit. The profit on each of the units beyond 500 is
decreased by $.10 times the number of additional units
sold. What level of output will maximize profit?

46. Suppose that an arch is shaped like a parabola. It is 20
feet wide at the base and 100 feet high. How wide is the
arch 50 feet above the ground? (See Figure 3.38.)

F I G U R E  3 . 3 8

47. A parabolic arch 27 feet high spans a parkway. The cen-
ter section of the parkway is 50 feet wide. How wide is
the arch if it has a minimum clearance of 15 feet above
the center section?

48. A parabolic arch spans a stream 200 feet wide. How high
must the arch be above the stream to give a minimum
clearance of 40 feet over a 120-foot-wide channel in the
center?

20
feet

100
feet

50
feet

?

THOUGHTS INTO WORDS

43. Suppose your friend was absent the day this section was
discussed. How would you explain to her the ideas per-
taining to x intercepts of the graph of a function, zeros of
the function, and solutions of the equation f (x) 5 0.

44. Give a step-by-step explanation of how to find the x
intercepts of the graph of the function f (x ) 5 2x 2 1
7x 2 4.

45. Give a step-by-step explanation of how to find the vertex
of the parabola determined by the equation f (x) 5
2x 2 2 6x 2 5.

Further Investigations
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49. Suppose that the viewing window on your graphing cal-
culator is set so that 215 # x # 15 and 210 # y # 10.
Now try to graph the function f (x ) 5 x 2 2 8x 1 28.
Nothing appears on the screen, so the parabola must be
outside the viewing window. We could arbitrarily expand
the window until the parabola appeared. However, let’s 

be a little more systematic and use 12}
2
b
a
}, f 12}

2
b
a
}22 to 

find the vertex. We find the vertex is at (4, 12), so let’s
change the y values of the window so that 0 # y # 25.
Now we get a good picture of the parabola.

Graph each of the following parabolas, and keep in
mind that you may need to change the dimensions of the
viewing window to obtain a good picture.

a. f (x) 5 x 2 2 2x 1 12

b. f (x) 5 2x 2 2 4x 2 16

c. f (x) 5 x 2 1 12x 1 44

d. f (x ) 5 x 2 2 30x 1 229

e. f (x) 5 22x 2 1 8x 2 19

50. Use a graphing calculator to graph each of the following
parabolas, and then use the trace function to help estimate
the x intercepts and the vertex. Finally, use the approach
of Example 3 to find the x intercepts and the vertex.

a. f (x) 5 x 2 2 6x 1 3 b. f (x) 5 x 2 2 18x 1 66

c. f (x) 5 2x 2 1 8x 2 3

d. f (x) 5 2x 2 1 24x 2 129

e. f (x) 5 14x 2 2 7x 1 1 f. f (x) 5 2}
1
2

}x 2 1 5x 2 }
1
2
7
}

51. In Problems 21–32, you were asked to find the x inter-
cepts and the vertex of some parabolas. Now use a graph-
ing calculator to graph each parabola and visually justify
your answers.

GRAPHING CALCULATOR ACTIVITIES

TRANSFORMATIONS OF SOME BASIC CURVES

From our work in Section 3.2, we know that the graph of f (x ) 5 (x 2 5)2 is the
basic parabola f (x) 5 x 2 translated five units to the right. Likewise, we know that
the graph of f (x) 5 2x 2 2 2 is the basic parabola reflected across the x axis and
translated downward two units. Translations and reflections apply not only to
parabolas but to curves in general. Therefore, if we know the shapes of a few basic
curves, then it is easy to sketch numerous variations of these curves by using the
concepts of translation and reflection.

Let’s begin this section by establishing the graphs of four basic curves and
then apply some transformations to these curves. First let’s restate, in terms of func-
tion vocabulary, the graphing suggestions offered in Chapter 2. Pay special attention
to suggestions 2 and 3, where we restate the concepts of intercepts and symmetry
using function notation.

1. Determine the domain of the function.

2. Find the y intercept [we are labeling the y axis with f (x )] by evaluating
f (0). Find the x intercept by finding the value(s) of x such that f (x ) 5 0.

3.4
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3. Determine any types of symmetry that the equation possesses. If f (2x) 5
f (x), then the function exhibits y-axis symmetry. If f (2x ) 5 2f (x ), 
then the function exhibits origin symmetry. (Note that the definition of a
function rules out the possibility that the graph of a function has x-axis
symmetry.)

4. Set up a table of ordered pairs that satisfy the equation. The type of symme-
try and the domain will affect your choice of values of x in the table.

5. Plot the points associated with the ordered pairs and connect them with a
smooth curve. Then, if appropriate, reflect this part of the curve according
to any symmetries possessed by the graph.

Graph f (x) 5 x 3.

Solution

The domain is the set of real numbers. Because f (0) 5 0, the origin is on the graph.
Because f (2x) 5 (2x )3 5 2x 3 5 2f (x), the graph is symmetric with respect to
the origin. Therefore, we can concentrate our table on the positive values of x. By
connecting the points associated with the ordered pairs from the table with a smooth
curve, and then reflecting it through the origin, we get the graph in Figure 3.39.

F I G U R E  3 . 3 9 n

x

f(x)

(2, 8)

(1, 1)

1
2( )1

8
,

f(x) = x3

(0, 0)

x
0
1
2

0
1
8

1
2

1
8

f(x) = x3

E X A M P L E  1
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Graph f (x) 5 x 4.

Solution

The domain is the set of real numbers. Because f (0) 5 0, the origin is on the graph.
Because f (2x ) 5 (2x )4 5 x 4 5 f (x ), the graph has y-axis symmetry, and we can
concentrate our table of values on the positive values of x. If we connect the points
associated with the ordered pairs from the table with a smooth curve, and then
reflect across the vertical axis, we get the graph in Figure 3.40.

F I G U R E  3 . 4 0 n

REMARK The curve in Figure 3.40 is not a parabola, even though it resem-
bles one; this curve is flatter at the bottom and steeper.

Graph f (x) 5 Ïxw.

x
0
1
2

0
1

16
1
2

1
16

x

f(x)

(2, 16)

1
2( , 1

16)(0, 0)

(1, 1)
f(x) = x4

f(x) = x4

E X A M P L E  2

E X A M P L E  3
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Solution

The domain of the function is the set of nonnegative real numbers. Because f (0) 5
0, the origin is on the graph. Because f (2x) Þ f (x ) and f (2x ) Þ 2f (x ), there is no
symmetry, so let’s set up a table of values using nonnegative values for x. Plotting
the points determined by the table and connecting them with a smooth curve pro-
duces Figure 3.41.

F I G U R E  3 . 4 1 n

Sometimes a new function is defined in terms of old functions. In such cases,
the definition plays an important role in the study of the new function. Consider the
following example.

Graph f (x) 5 * x *.

Solution

The concept of absolute value is defined for all real numbers by 

* x * 5 x if x $ 0

* x * 5 2x if x , 0

Therefore, the absolute value function can be expressed as

f (x) 5 * x * 55 x if x $ 0

2x if x , 0

x
0
1
4
9

x

f(x)

f(x) = √x
0
1
2
3

f(x) = √x

E X A M P L E  4
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The graph of f (x ) 5 x for x $ 0 is the ray in the first quadrant, and the graph of
f (x) 5 2x for x , 0 is the half-line (not including the origin) in the second quad-
rant, as indicated in Figure 3.42. Note that the graph has y-axis symmetry.

F I G U R E  3 . 4 2 n

Translations of the Basic Curves

From our work in Section 3.2, we know that 

1. the graph of f (x ) 5 x 2 1 3 is the graph of f (x ) 5 x 2 moved up three
units. 

2. the graph of f (x ) 5 x 2 2 2 is the graph of f (x ) 5 x 2 moved down two
units.

Now let’s describe in general the concept of a vertical translation.

In Figure 3.43, the graph of f (x ) 5 * x * 1 2 is obtained by shifting the graph of
f (x) 5 * x * upward two units, and the graph of f (x ) 5 * x * 2 3 is obtained by shifting

Vertical Translation

The graph of y 5 f (x ) 1 k is the graph of y 5 f (x ) shifted k units
upward if k . 0 or shifted * k * units downward if k , 0.

x

f(x) = |x|

f(x)

(1, 1)(−1, 1)
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the graph of f (x) 5 * x * downward three units. [Remember that f (x ) 5 * x * 2 3 can
be written as f (x ) 5 * x * 1 (23).]

F I G U R E  3 . 4 3

We also graphed horizontal translations of the basic parabola in Section 3.2.
For example, 

1. the graph of f (x ) 5 (x 2 4)2 is the graph of f (x ) 5 x 2 shifted four units
to the right.

2. the graph of f (x ) 5 (x 1 5)2 is the graph of f (x ) 5 x 2 shifted five units
to the left.

The general concept of a horizontal translation can be described as follows.

In Figure 3.44, the graph of f (x ) 5 (x 2 3)3 is obtained by shifting the graph
of f (x ) 5 x 3 three units to the right. Likewise, the graph of f (x ) 5 (x 1 2)3 is
obtained by shifting the graph of f (x ) 5 x 3 two units to the left.

Horizontal Translation

The graph of y 5 f (x 2 h ) is the graph of y 5 f (x ) shifted h units to
the right if h . 0 or shifted * h * units to the left if h , 0.

x

f(x) = |x| + 2
f(x)

f(x) = |x|

f(x) = |x| − 3

268 Chapter 3 Functions
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F I G U R E  3 . 4 4

Reflections of the Basic Curves

From our work in Section 3.2, we know that the graph of f (x ) 5 2x 2 is the graph of
f (x) 5 x 2 reflected through the x axis. The general concept of an x-axis reflection
can be described as follows.

In Figure 3.45, the graph of f (x ) 5 2Ïxw is obtained by reflecting the graph 
of f (x ) 5 Ïxw through the x axis. Reflections are sometimes referred to as mirror
images. Thus if we think of the x axis in Figure 3.45 as a mirror, then the graphs of
f (x) 5 Ïxw and f (x ) 5 2Ïxw are mirror images of each other.

x-axis Reflection

The graph of y 5 2f (x) is the graph of y 5 f (x) reflected through
the x axis.

x

f(x) f(x) = x3

f(x) = (x − 3)3

f(x) = (x + 2)3
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In Section 3.2, we did not consider a y-axis reflection of the basic parabola
f (x) 5 x 2 because it is symmetric with respect to the y axis. In other words, a y-axis
reflection of f (x ) 5 x 2 produces the same figure. However, at this time let’s
describe the general concept of a y-axis reflection.

Now suppose that we want to do a y-axis reflection of f (x) 5 Ïxw. Because
f (x) 5 Ïxw is defined for x $ 0, the y-axis reflection f (x) 5 Ï2wxw is defined for 2x $
0, which is equivalent to x # 0. Figure 3.46 shows the y-axis reflection of f (x) 5 Ïxw.

F I G U R E  3 . 4 6

x

f(x)

f(x) = √xf(x) = √−x

y-axis Reflection

The graph of y 5 f (2x) is the graph of y 5 f (x) reflected through
the y axis.

x

f(x)

f(x) = √x

f(x) = −√x

270 Chapter 3 Functions
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Vertical Stretching and Shrinking

Translations and reflections are called rigid transformations because the basic
shape of the curve being transformed is not changed. In other words, only the posi-
tions of the graphs are changed. Now we want to consider some transformations that
distort the shape of the original figure somewhat.

In Section 3.2, we graphed the equation y 5 2x 2 by doubling the y coordinates
of the ordered pairs that satisfy the equation y 5 x 2. We obtained a parabola with its
vertex at the origin, symmetric to the y axis, but narrower than the basic parabola.

Likewise, we graphed the equation y 5 }
1
2

}x 2 by halving the y coordinates of the

ordered pairs that satisfy y 5 x 2. In this case, we obtained a parabola with its vertex
at the origin, symmetric to the y axis, but wider than the basic parabola.

The concepts of narrower and wider can be used to describe parabolas, but
they cannot be used to describe some other curves accurately. Instead, we use the
more general concepts of vertical stretching and shrinking.

In Figure 3.47, the graph of f (x) 5 2Ïxw is obtained by doubling the y coordi-
nates of points on the graph of f (x ) 5 Ïxw. Likewise, in Figure 3.47, the graph of 

f (x) 5 }
1
2

}Ïxw is obtained by halving the y coordinates of points on the graph of 

f (x) 5 Ïxw.

F I G U R E  3 . 4 7

x

f(x)

f(x) = 2√x

f(x) = √x

√xf(x) = 1
2

Vertical Stretching and Shrinking

The graph of y 5 cf (x) is obtained from the graph of y 5 f (x ) by
multiplying the y coordinates for y 5 f (x) by c. If c . 1, the graph is
said to be stretched by a factor of c, and if 0 , c , 1, the graph is
said to be shrunk by a factor of c.
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Successive Transformations

Some curves are the result of performing more than one transformation on a basic
curve. Let’s consider the graph of a function that involves a stretching, a reflection,
a horizontal translation, and a vertical translation of the basic absolute value
function.

Graph f (x) 5 22 * x 2 3 * 1 1.

Solution

This is the basic absolute value curve stretched by a factor of 2, reflected through the
x axis, shifted three units to the right, and shifted one unit upward. To sketch the
graph, we locate the point (3, 1) and then determine a point on each of the rays. The
graph is shown in Figure 3.48.

F I G U R E  3 . 4 8 n

REMARK Note that in Example 5 we did not sketch the original basic curve
f (x) 5  x or any of the intermediate transformations. However, it is helpful
to picture each transformation mentally. This locates the point (3, 1) and
establishes the fact that the two rays point downward. Then a point on each
ray determines the final graph.

We do need to realize that changing the order of doing the transformations
may produce an incorrect graph. In Example 5, performing the translations first, and
then performing the stretching and x-axis reflection would locate the vertex of the
graph at (3, 21) instead of (3, 1). Unless parentheses indicate otherwise, stretch-
ings, shrinkings, and reflections should be performed before translations.

Suppose that you need to graph the function f (x ) 5 Ï2w3w 2w xw. Furthermore,
suppose that you are not certain which transformations of the basic square root func-
tion will produce this function. By plotting a few points and using your knowledge

x

f(x) = −2|x − 3| + 1

f(x)

(3, 1)

(2, −1) (4, −1)

E X A M P L E  5
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of the general shape of a square root curve, you should be able to sketch the curve as
shown in Figure 3.49.

F I G U R E  3 . 4 9

Now suppose that we want to graph a function such as 

f (x) 5 }
x 2

2
1

x 2

4
}

Because this is neither a basic function that we recognize nor a transformation of a
basic function, we must revert to our previous graphing experiences. In other words,
we need to find the domain, find the intercepts, check for symmetry, check for any
restrictions, set up a table of values, plot the points, and sketch the curve. (If you
want to do this at this time, you can check your result on page 408.) Furthermore, if
the new function is defined in terms of an old function, we may be able to apply the
definition of the old function and thereby simplify the new function for graphing
purposes. For example, Problem 13 in Problem Set 3.4 asks you to graph the func-
tion f (x) 5 * x * 1 x. This function can be simplified by applying the definition of
absolute value. We will leave that for you to do later.

Finally, let’s use a graphing utility to give another illustration of the concept
of stretching and shrinking a curve.

If f (x) 5 Ï2w5w 2w xw2w, sketch a graph of y 5 2( f (x )) and y 5 }
1
2

}( f (x )).

Solution

If y 5 f (x ) 5 Ï2w5w 2w xw2w, then

y 5 2( f (x )) 5 2Ï2w5w 2w xw2w and y 5 }
1
2

}( f (x)) 5 }
1
2

}Ï2w5w 2w xw2w

Graphing all three of these functions on the same set of axes produces Figure 3.50.

x

f(x)

f(x) = √−3 − x

(−3, 0)

(−4, 1)

(−7, 2)

E X A M P L E  6

    Functions 193



274 Chapter 3 Functions

F I G U R E  3 . 5 0 n

y 5 qÏ25 2 x2{{{{{{{{{{
y 5 Ï25 2 x2{{{{{{{{{{

y 5 2Ï25 2 x2{{{{{{{{{{

15215

10

210

For Problems 1–30, graph each function.

1. f (x) 5 x 4 1 2 2. f (x) 5 2x 4 2 1

3. f (x) 5 (x 2 2)4 4. f (x) 5 (x 1 3)4 1 1

5. f (x) 5 2x 3 6. f (x) 5 x 3 2 2

7. f (x) 5 (x 1 2)3 8. f (x) 5 (x 2 3)3 2 1

9. f (x) 5 * x 2 1 * 1 2 10. f (x) 5 2* x 1 2 *

11. f (x) 5 * x 1 1 * 2 3 12. f (x) 5 2 * x *

13. f (x) 5 x 1 * x * 14. f (x) 5 }
* x
x

*
}

15. f (x) 5 2* x 2 2 * 2 1 16. f (x) 5 2 * x 1 1 * 2 4

17. f (x) 5 x 2 * x * 18. f (x) 5 * x * 2 x

19. f (x) 5 22Ïxw 20. f (x) 5 2Ïxw2w 1w

21. f (x) 5 Ïxw1w 2w 2 3 22. f (x) 5 2Ïxw1w 2w 1 2

23. f (x) 5 Ï2w 2w xw 24. f (x) 5 Ï2w1w 2w xw

25. f (x) 5 22x 4 1 1 26. f (x) 5 2(x 2 2)4 2 4

27. f (x) 5 22x 3 28. f (x) 5 2x 3 1 3

29. f (x) 5 3(x 2 2)3 2 1 30. f (x) 5 22(x 1 1)3 1 2

31. Suppose that the graph of y 5 f (x) with a domain of 
22 # x # 2 is shown in Figure 3.51.

F I G U R E  3 . 5 1

Sketch the graph of each of the following transformations
of y 5 f (x).

a. y 5 f (x ) 1 3 b. y 5 f (x 2 2)

c. y 5 2f (x) d. y 5 f (x 1 3) 2 4

y

x

P R O B L E M  S E T  3 . 4
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32. Are the graphs of the two functions f (x) 5 Ïxw 2w 2w and 

g(x ) 5 Ï2w 2w xw y-axis reflections of each other? Defend
your answer.

33. Are the graphs of f (x) 5 2Ïxw and g(x ) 5 Ï2wxw identi-
cal? Defend your answer.

34. Are the graphs of f (x ) 5 Ïxw 1w 4w and g(x) 5

Ï2wxw1w 4w y-axis reflections of each other? Defend your
answer.

THOUGHTS INTO WORDS

35. Use your graphing calculator to check your graphs for
Problems 13–30.

36. Graph f (x ) 5 Ïx2w 1w 8w, f(x ) 5 Ïxw2w1w 4w, and f (x ) 5
Ïxw2w1w 1w on the same set of axes. Look at these graphs 
and predict the graph of f (x ) 5 Ïx2w 2w 4w. Now graph it
with the calculator to test your prediction.

37. For each of the following, predict the general shape and
location of the graph, and then use your calculator to
graph the function to check your prediction.

a. f (x) 5 Ïxw2w b. f (x ) 5 Ïxw3w

c. f (x) 5 * x 2 * d. f (x ) 5 * x 3 *

38. Graph f (x ) 5 x 4 1 x 3. Now predict the graph for each of
the following and check each prediction with your graph-
ing calculator.

a. f (x) 5 x 4 1 x 3 2 4

b. f (x) 5 (x 2 3)4 1 (x 2 3)3

c. f (x) 5 2x 4 2 x 3 d. f (x ) 5 x 4 2 x 3

39. Graph f (x) 5 Ï
3

xw. Now predict the graph for each of the
following and check each prediction with your graphing
calculator.

a. f(x) 5 5 1 Ï3 xw b. f(x ) 5 Ï3 xw 1w 4w

c. f(x) 5 2Ï3 xw d. f(x ) 5 Ï3 xw 2w 3w 2 5

e. f(x) 5 Ï3
2wxw

GRAPHING CALCULATOR ACTIVITIES

COMBINING FUNCTIONS

In subsequent mathematics courses, it is common to encounter functions that are
defined in terms of sums, differences, products, and quotients of simpler functions.
For example, if h(x ) 5 x 2 1 Ïxw2w 1w, then we may consider the function h as the
sum of f and g, where f (x ) 5 x 2 and g(x ) 5 Ïxw2w 1w. In general, if f and g are func-
tions and D is the intersection of their domains, then the following definitions can
be made.

Sum ( f 1 g )(x ) 5 f (x ) 1 g(x )

Difference ( f 2 g )(x ) 5 f (x ) 2 g(x )

Product ( f ? g )(x ) 5 f (x ) ? g(x )

Quotient 1}
g
f

}2(x) 5 }
g
f (
(
x
x

)
)

}, g(x ) Þ 0

3.5
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E X A M P L E  1
If f (x ) 5 3x 2 1 and g(x ) 5 x 2 2 x 2 2, find (a) ( f 1 g )(x), (b) ( f 2 g )(x ), 
(c) ( f ? g )(x ), and (d) ( f@g )(x ). Determine the domain of each.

Solutions

a. ( f 1 g )(x) 5 f (x) 1 g(x) 5 (3x 2 1) 1 (x 2 2 x 2 2) 5 x 2 1 2x 2 3

b. ( f 2 g )(x ) 5 f (x ) 2 g(x )

5 (3x 2 1) 2 (x 2 2 x 2 2)

5 3x 2 1 2 x 2 1 x 1 2

5 2x 2 1 4x 1 1

c. ( f ? g )(x ) 5 f (x ) ? g(x )

5 (3x 2 1)(x 2 2 x 2 2)

5 3x 3 2 3x 2 2 6x 2 x 2 1 x 1 2

5 3x 3 2 4x 2 25x 1 2

d. 1}
g
f

}2(x ) 5 }
g
f (
(
x
x
)
)

} 5 }
x 2

3
2

x 2

x 2

1
2

}

The domain of both f and g is the set of all real numbers. Therefore, the domain of 
f 1 g, f 2 g, and f ? g is the set of all real numbers. For f@g , the denominator x 2 2
x 2 2 cannot equal zero. Solving x 2 2 x 2 2 5 0 produces

(x 2 2)(x 1 1) 5 0

x 2 2 5 0 or x 1 1 5 0

x 5 2 or x 5 21

Therefore, the domain for f@g is the set of all real numbers except 2 and 21. n

Composition of Functions

Besides adding, subtracting, multiplying, and dividing functions, there is another
important operation called composition. The composition of two functions can be
defined as follows.

D E F I N I T I O N  3 . 2

The composition of functions f and g is defined by

( f 8 g )(x ) 5 f (g(x ))

for all x in the domain of g such that g(x ) is in the domain of f.
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The left side, ( f 8 g )(x ), of the equation in Definition 3.2 is read the composition of f
and g, and the right side is read f of g of x. It may also be helpful for you to have a
mental picture of Definition 3.2 as two function machines hooked together to 
produce another function (called the composite function), as illustrated in Figure
3.52. Note that what comes out of the g function is substituted into the f function.
Thus composition is sometimes called the substitution of functions.

F I G U R E  3 . 5 2

Figure 3.52 also illustrates the fact that f 8 g is defined for all x in the domain
of g such that g(x) is in the domain of f. In other words, what comes out of g must be
capable of being fed into f. Let’s consider some examples.

If f (x) 5 x 2 and g(x ) 5 3x 2 4, find ( f 8 g )(x ) and determine its domain.

Solution

Apply Definition 3.2 to obtain

( f 8 g )(x ) 5 f (g(x))

5 f (3x 2 4)

5 (3x 2 4)2

5 9x 2 2 24x 1 16

Because g and f are both defined for all real numbers, so is f 8 g . n

x
Input for g

g function
g(x) Output of g and

input for f

f function
f(g(x))

Output of f

gg

ff

E X A M P L E  2
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Definition 3.2, with f and g interchanged, defines the composition of g and f as 
(g 8 f )(x ) 5 g( f (x )).

If f (x) 5 x 2 and g(x ) 5 3x 2 4, find (g 8 f )(x ) and determine its domain.

Solution

(g 8 f )(x ) 5 g( f (x ))

5 g(x 2 )

5 3x 2 2 4

Because f and g are defined for all real numbers, so is g 8 f. n

The results of Examples 2 and 3 demonstrate an important idea, that the com-
position of functions is not a commutative operation. In other words, f 8 g Þ g 8 f
for all functions f and g. However, as we will see in the next section, there is a spe-
cial class of functions for which f 8 g 5 g 8 f.

If f (x ) 5 Ïxw and g(x) 5 2x 2 1, find ( f 8 g )(x ) and (g 8 f )(x). Also determine the
domain of each composite function.

Solution

( f 8 g )(x ) 5 f (g(x))

5 f (2x 2 1)

5 Ï2wxw2w 1w

The domain and range of g are the set of all real numbers, but the domain of f is all
nonnegative real numbers. Therefore g(x ), which is 2x 2 1, must be nonnegative.

2x 2 1 $ 0

2x $ 1

x $ }
1
2

}

Thus the domain of f 8 g is D 5



x * x $ }

1
2

}



.

(g 8 f )(x ) 5 g( f (x ))

5 g1Ïxw2
5 2 Ïxw 2 1

The domain and range of f are the set of nonnegative real numbers. The domain of g
is the set of all real numbers. Therefore, the domain of g 8 f is D 5 { x * x $ 0} .

n

E X A M P L E  4

E X A M P L E  3
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If f (x ) 5 2@(x 2 1) and g(x) 5 1@x, find ( f 8 g )(x ) and (g 8 f )(x ). Determine the
domain for each composite function.

Solution

( f 8 g )(x ) 5 f (g(x))

5 f 1}
1
x

}2
5 5

5 }
1

2
2

x
x

}

The domain of g is all real numbers except 0, and the domain of f is all real numbers
except 1. Because g (x ), which is 1@x, cannot equal 1,

}
1
x

} Þ 1

x Þ 1

Therefore, the domain of f 8 g is D 5 { x * x Þ 0 and x Þ 1} .

(g 8 f )(x ) 5 g( f ( x ))

5 g1}x 2

2
1

}2
5

5 }
x 2

2
1

}

The domain of f is all real numbers except 1, and the domain of g is all real numbers
except 0. Because f (x ), which is 2@(x 2 1), will never equal 0, the domain of g 8 f is
D 5 { x * x Þ 1} . n

A graphing utility can be used to find the graph of a composite function with-
out actually forming the function algebraically. Let’s see how this works.

If f (x ) 5 x 3 and g(x ) 5 x 2 4, use a graphing utility to obtain the graph of y 5
( f 8 g)(x ) and of y 5 (g 8 f )(x ).

Solution

To find the graph of y 5 ( f 8 g)(x ), we can make the following assignments.

1
}

}
x 2

2
1

}

2
}

}
1 2

x
x

}

2
}

}
1
x

} 2 1

E X A M P L E  5

E X A M P L E  6
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Y1 5 x 2 4

Y2 5 (Y1)3

(Note that we have substituted Y1 for x in f (x ) and assigned this expression to Y2,
much the same way as we would do it algebraically.) The graph of y 5 ( f 8 g )(x ) is
shown in Figure 3.53.

F I G U R E  3 . 5 3

To find the graph of y 5 (g 8 f )(x ), we can make the following assignments.

Y1 5 x 3

Y2 5 Y1 2 4

The graph of y 5 (g 8 f )(x) is shown in Figure 3.54.

F I G U R E  3 . 5 4 n

Take another look at Figures 3.53 and 3.54. Note that in Figure 3.53, the graph
of y 5 ( f 8 g )(x ) is the basic cubic curve f (x ) 5 x 3 shifted four units to the right.
Likewise, in Figure 3.54, the graph of y 5 (g 8 f )(x ) is the basic cubic curve shifted
four units downward. These are examples of a more general concept of using com-
posite functions to represent various geometric transformations.

15215

10

210

15215

10

210
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For Problems 1–8, find f 1 g, f 2 g, f ? g, and }
g
f

}.

1. f (x) 5 3x 2 4, g(x ) 5 5x 1 2

2. f (x) 5 26x 2 1, g(x) 5 28x 1 7

3. f (x) 5 x 2 2 6x 1 4, g(x) 5 2x 2 1

4. f (x) 5 2x 2 2 3x 1 5, g(x) 5 x 2 2 4

5. f (x) 5 x 2 2 x 2 1, g(x) 5 x 2 1 4x 2 5

6. f (x) 5 x 2 2 2x 2 24, g(x) 5 x 2 2 x 2 30

7. f (x) 5 Ïxw2w 1w, g(x ) 5 Ïxw

8. f (x) 5 Ïxw1w 2w, g(x ) 5 Ï3wxw2w 1w

For Problems 9–26, find ( f 8 g )(x) and (g 8 f )(x ). Also spec-
ify the domain for each.

9. f (x) 5 2x, g(x) 5 3x 2 1

10. f (x) 5 4x 1 1, g(x ) 5 3x

11. f (x) 5 5x 2 3, g(x ) 5 2x 1 1

12. f (x) 5 3 2 2x, g(x ) 5 24x

13. f (x) 5 3x 1 4, g(x ) 5 x 2 1 1

14. f (x) 5 3, g(x ) 5 23x 2 2 1

15. f (x) 5 3x 2 4, g(x ) 5 x 2 1 3x 2 4

16. f (x) 5 2x 2 2 x 2 1, g(x) 5 x 1 4

17. f (x) 5 }
1
x

}, g(x ) 5 2x 1 7

18. f (x) 5 }
x
1

2}, g(x ) 5 x

19. f (x) 5 Ïxw2w 2w, g(x ) 5 3x 2 1

20. f (x) 5 }
1
x

}, g(x ) 5 }
x
1

2}

21. f (x) 5 }
x 2

1
1

}, g(x ) 5 }
2
x

}

22. f (x) 5 }
x 1

4
2

}, g(x ) 5 }
2
3
x
}

23. f (x) 5 2x 1 1, g(x ) 5 Ïxw2w 1w

24. f (x) 5 Ïxw1w 1w, g(x ) 5 5x 2 2

25. f (x) 5 }
x 2

1
1

}, g(x ) 5 }
x 1

x
1

}

26. f (x) 5 }
x
x

2

1

1
2

}, g(x ) 5 }
1
x

}

For Problems 27–32, solve each problem.

27. If f (x ) 5 3x 2 2 and g(x) 5 x 2 1 1, find ( f 8 g )(21)
and (g 8 f )(3).

28. If f (x) 5 x 2 2 2 and g(x) 5 x 1 4, find 
( f 8 g )(2) and (g 8 f )(24).

29. If f (x) 5 2x 2 3 and g(x ) 5 x 2 2 3x 2 4, find 
( f 8 g )(22) and (g 8 f )(1).

30. If f (x) 5 1@x and g(x ) 5 2x 1 1, find ( f 8 g )(1) and 
(g 8 f )(2).

31. If f (x ) 5 Ïxw and g(x ) 5 3x 2 1, find ( f 8 g )(4) and 
(g 8 f )(4).

32. If f (x) 5 x 1 5 and g(x ) = * x *, find ( f 8 g )(24) and 
(g 8 f )(24).

For Problems 33–38, show that ( f 8 g )(x ) 5 x and that 
(g 8 f )(x ) 5 x.

33. f (x) 5 2x, g(x) 5 }
1
2

}x

34. f (x) 5 }
3
4

}x, g(x) 5 }
4
3

}x

35. f (x) 5 x 2 2, g(x ) 5 x 1 2

36. f (x) 5 2x 1 1, g(x ) 5 }
x 2

2
1

}

37. f (x) 5 3x 1 4, g(x ) 5 }
x 2

3
4

}

38. f (x) 5 4x 2 3, g(x ) 5 }
x 1

4
3

}

P R O B L E M  S E T  3 . 5
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3.6

39. Discuss whether addition, subtraction, multiplication,
and division of functions are commutative operations.

40. Explain why the composition of two functions is not a
commutative operation.

41. Explain how to find the domain of

1 }
g
f
}2(x) if f (x ) 5 }

x
x

2

1

1
2

} and g(x ) 5 }
x
x

1

2

3
5

}.

46. For each of the following, predict the general shape and
location of the graph, and then use your calculator to
graph the function to check your prediction. (Your
knowledge of the graphs of the basic functions that are
being added or subtracted should be helpful when you are
making your predictions.)

a. f (x) 5 x 4 1 x 2 b. f (x) 5 x 3 1 x 2

c. f (x) 5 x 4 2 x 2 d. f (x) 5 x 2 2 x 4

e. f (x) 5 x 2 2 x 3 f. f (x) 5 x 3 2 x 2

g. f (x) 5 * x * 1 Ïxw h. f (x) 5 * x * 2 Ïxw

47. For each of the following, find the graph of y 5
( f 8 g )(x ) and of y 5 (g 8 f )(x ).

a. f (x) 5 x 2 and g(x) 5 x 1 5

b. f (x) 5 x 3 and g(x) 5 x 1 3

c. f (x) 5 x 2 6 and g(x) 5 2x 3

d. f (x) 5 x 2 2 4 and g(x ) 5 Ïxw

e. f (x) 5 Ïxw and g(x ) 5 x 2 1 4

f. f (x) 5 Ï
3

xw and g(x ) 5 x 3 2 5

42. If f (x ) 5 3x 2 4 and g(x ) 5 ax 1 b, find conditions on
a and b that will guarantee that f 8 g 5 g 8 f.

43. If f (x) 5 x2 and g(x) 5 Ïxw, with both having as domain
the set of nonnegative real numbers, then show that 
( f 8 g )(x ) 5 x and (g 8 f )(x) 5 x.

44. If f (x ) 5 3x 2 2 2x 2 1 and g(x ) 5 x, find f 8 g and g 8 f.
(Recall that we have previously named g(x ) 5 x the
identity function.)

45. In Section 3.1, we defined an even function to be a func-
tion such that f (2x) 5 f (x) and an odd function to be
one such that f (2x ) 5 2f (x). Verify that (a) the sum of
two even functions is an even function, and (b) the sum
of two odd functions is an odd function.

THOUGHTS INTO WORDS

GRAPHING CALCULATOR ACTIVITIES

DIRECT AND INVERSE VARIATION

The amount of simple interest earned by a fixed amount of money invested at
a certain rate varies directly as the time.

At a constant temperature, the volume of an enclosed gas varies inversely as
the pressure.

Further Investigations
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Such statements illustrate two basic types of functional relationships, direct
variation and inverse variation, that are widely used, especially in the physical sci-
ences. These relationships can be expressed by equations that determine functions.
The purpose of this section is to investigate these special functions.

Direct Variation

The statement y varies directly as x means

where k is a nonzero constant, called the constant of variation. The phrase y is
directly proportional to x is also used to indicate direct variation; k is then referred
to as the constant of proportionality.

REMARK Note that the equation y 5 kx defines a function and can be writ-
ten f (x ) 5 kx. However, in this section it is more convenient not to use func-
tion notation but instead to use variables that are meaningful in terms of the
physical entities involved in the particular problem.

Statements that indicate direct variation may also involve powers of a vari-
able. For example, y varies directly as the square of x can be written y 5 kx 2. In
general, y varies directly as the nth power of x (n . 0) means

There are basically three types of problems wherein we deal with direct varia-
tion: (1) translating an English statement into an equation expressing the direct vari-
ation, (2) finding the constant of variation from given values of the variables, and
(3) finding additional values of the variables once the constant of variation has been
determined. Let’s consider an example of each of these types of problems.

Translate the statement The tension on a spring varies directly as the distance it is
stretched into an equation, using k as the constant of variation.

Solution

Let t represent the tension and d the distance; the equation is 

t 5 kd n

y 5 kxn

y 5 kx

E X A M P L E  1
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If A varies directly as the square of e, and if A 5 96 when e 5 4, find the constant of
variation.

Solution

Because A varies directly as the square of e, we have

A 5 ke 2

Substitute 96 for A and 4 for e to obtain

96 5 k(4)2

96 5 16k

6 5 k

The constant of variation is 6. n

If y is directly proportional to x, and if y 5 6 when x 5 8, find the value of y when 
x 5 24.

Solution

The statement y is directly proportional to x translates into 

y 5 kx

Let y 5 6 and x 5 8; the constant of variation becomes

6 5 k(8)

}
6
8

} 5 k

}
3
4

} 5 k

Thus the specific equation is

y 5 }
3
4

}x

Now, let x 5 24 to obtain

y 5 }
3
4

}(24) 5 18 n

Inverse Variation

The second basic type of variation, inverse variation, is defined as follows. The
statement y varies inversely as x means

284 Chapter 3 Functions

E X A M P L E  2

E X A M P L E  3
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where k is a nonzero constant, which is again referred to as the constant of variation.
The phrase y is inversely proportional to x is also used to express inverse variation.
As with direct variation, statements indicating variation may involve powers of x.
For example, y varies inversely as the square of x can be written y 5 k@x 2. In gen-
eral, y varies inversely as the nth power of x (n . 0) means

The following examples illustrate the three basic kinds of problems that
involve inverse variation.

Translate the statement The length of a rectangle of fixed area varies inversely as
the width into an equation, using k as the constant of variation.

Solution

Let l represent the length and w the width; the equation is

l 5 }
w
k

} n

If y is inversely proportional to x, and if y 5 14 when x 5 4, find the constant of
variation.

Solution

Because y is inversely proportional to x, we have

y 5 }
k
x

}

Substitute 4 for x and 14 for y to obtain

14 5 }
4
k

}

Solving this equation yields

k 5 56

The constant of variation is 56. n

y 5 }
x
k

n}

y 5 }
k
x

}

E X A M P L E  4
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The time required for a car to travel a certain distance varies inversely as the rate at
which it travels. If it takes 4 hours at 50 miles per hour to travel the distance, how
long will it take at 40 miles per hour?

Solution

Let t represent time and r rate. The phrase time required . . . varies inversely as the
rate translates into 

t 5 }
k
r

}

Substitute 4 for t and 50 for r to find the constant of variation.

4 5 }
5
k
0
}

k 5 200

Thus the specific equation is

t 5 }
20

r
0

}

Now substitute 40 for r to produce

t 5 }
2
4
0
0
0

}

5 5

It will take 5 hours at 40 miles per hour. n

The terms direct and inverse, as applied to variation, refer to the relative
behavior of the variables involved in the equation. That is, in direct variation (y 5
kx), an assignment of increasing absolute values for x produces increasing
absolute values for y. However, in inverse variation (y 5 k@x ), an assignment of
increasing absolute values for x produces decreasing absolute values for y.

Joint Variation

Variation may involve more than two variables. The table on page 287 illustrates
some different types of variation statements and their equivalent algebraic equations
that use k as the constant of variation. Statements 1, 2, and 3 illustrate the concept of
joint variation. Statements 4 and 5 show that both direct and inverse variation 
may occur in the same problem. Statement 6 combines joint variation with inverse
variation.

The final two examples of this section illustrate different kinds of problems
involving some of these variation situations.

E X A M P L E  6
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The volume of a pyramid varies jointly as its altitude and the area of its base. If a
pyramid with an altitude of 9 feet and a base with an area of 17 square feet has a vol-
ume of 51 cubic feet, find the volume of a pyramid with an altitude of 14 feet and a
base with an area of 45 square feet.

Solution

Let’s use the following variables.

V 5 volume h 5 altitude

B 5 area of base k 5 constant of variation

The fact that the volume varies jointly as the altitude and the area of the base can be
represented by the equation

V 5 kBh

Substitute 51 for V, 17 for B, and 9 for h to obtain

51 5 k(17)(9)

51 5 153k

}
1
5
5
1
3

} 5 k

}
1
3

} 5 k

VARIATION STATEMENT ALGEBRAIC EQUATION

1. y varies jointly as x and z y 5 kxz

2. y varies jointly as x, z, and w y 5 kxzw

3. V varies jointly as h and the square of r V 5 khr 2

4. h varies directly as V and inversely as w h 5 }
k
w
V
}

5. y is directly proportional to x and y 5 }
k
z
x
2}

inversely proportional to the square 
of z

6. y varies jointly as w and z and inversely y 5 }
kw

x
z

}
as x

E X A M P L E  7
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P R O B L E M  S E T  3 . 6

Therefore, the specific equation is V 5 }
1
3

}Bh. Now substitute 45 for B and 14 for h to 

obtain

V 5 }
1
3

}(45)(14) 5 (15)(14) 5 210

The volume is 210 cubic feet. n

Suppose that y varies jointly as x and z and inversely as w. If y 5 154 when x 5 6,
z 5 11, and w 5 3, find y when x 5 8, z 5 9, and w 5 6.

Solution

The statement y varies jointly as x and z and inversely as w translates into the
equation

y 5 }
k
w
xz
}

Substitute 154 for y, 6 for x, 11 for z, and 3 for w to produce

154 5 }
(k)(6

3
)(11)
}

154 5 22k

7 5 k

Thus the specific equation is

y 5 }
7
w
xz
}

Now substitute 8 for x, 9 for z, and 6 for w to obtain

y 5 }
7(8

6
)(9)
} 5 84 n

E X A M P L E  8

For Problems 1–8, translate each statement of variation into
an equation; use k as the constant of variation.

1. y varies directly as the cube of x.

2. a varies inversely as the square of b.

3. A varies jointly as l and w.

4. s varies jointly as g and the square of t.

5. At a constant temperature, the volume (V ) of a gas varies
inversely as the pressure (P ).

6. y varies directly as the square of x and inversely as the
cube of w.

7. The volume (V ) of a cone varies jointly as its height (h )
and the square of a radius (r).

8. I is directly proportional to r and t.

For Problems 9–18, find the constant of variation for each
stated condition.

9. y varies directly as x, and y 5 72 when x 5 3.

10. y varies inversely as the square of x, and y 5 4 when x 5 2.
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11. A varies directly as the square of r, and A 5 154 when
r 5 7.

12. V varies jointly as B and h, and V 5 104 when B 5 24
and h 5 13.

13. A varies jointly as b and h, and A 5 81 when b 5 9 and
h 5 18.

14. s varies jointly as g and the square of t, and s 5 2108
when g 5 24 and t 5 3.

15. y varies jointly as x and z and inversely as w, and 
y 5 154 when x 5 6, z 5 11, and w 5 3.

16. V varies jointly as h and the square of r, and V 5 1100
when h 5 14 and r 5 5.

17. y is directly proportional to the square of x and inversely
proportional to the cube of w, and y 5 18 when x 5 9 and
w 5 3.

18. y is directly proportional to x and inversely proportional to

the square root of w, and y 5 }
1
5

} when x 5 9 and w 5 10.

For Problems 19–32, solve each problem.

19. If y is directly proportional to x, and y 5 5 when x 5
215, find the value of y when x 5 224.

20. If y is inversely proportional to the square of x, and y 5 }
1
8

}
when x 5 4, find y when x 5 8.

21. If V varies jointly as B and h, and V 5 96 when B 5 36
and h 5 8, find V when b 5 48 and h 5 6.

22. If A varies directly as the square of e, and A 5 150 when
e 5 5, find A when e 5 10.

23. The time required for a car to travel a certain distance
varies inversely as the rate at which it travels. If it takes 3
hours to travel the distance at 50 miles per hour, how
long will it take at 30 miles per hour?

24. The distance that a freely falling body falls varies directly
as the square of the time it falls. If a body falls 144 feet in
3 seconds, how far will it fall in 5 seconds?

25. The period (the time required for one complete oscillation)
of a simple pendulum varies directly as the square root of
its length. If a pendulum 12 feet long has a period of 4 sec-
onds, find the period of a pendulum of length 3 feet.

26. Suppose the number of days it takes to complete a con-
struction job varies inversely as the number of people
assigned to the job. If it takes 7 people 8 days to do the
job, how long will it take 10 people to complete the job?

27. The number of days needed to assemble some machines
varies directly as the number of machines and inversely
as the number of people working. If it takes 4 people 32
days to assemble 16 machines, how many days will it
take 8 people to assemble 24 machines?

28. The volume of a gas at a constant temperature varies
inversely as the pressure. What is the volume of a gas
under a pressure of 25 pounds if the gas occupies 15
cubic centimeters under a pressure of 20 pounds?

29. The volume (V) of a gas varies directly as the temperature
(T ) and inversely as the pressure (P). If V 5 48 when
T 5 320 and P 5 20, find V when T 5 280 and P 5 30.

30. The volume of a cylinder varies jointly as its altitude and
the square of the radius of its base. If the volume of 
a cylinder is 1386 cubic centimeters when the radius of
the base is 7 centimeters and its altitude is 9 centimeters, 
find the volume of a cylinder that has a base of radius 14
centimeters if the altitude of the cylinder is 5 centimeters.

31. The cost of labor varies jointly as the number of workers
and the number of days that they work. If it costs $900 to
have 15 people work for 5 days, how much will it cost to
have 20 people work for 10 days?

32. The cost of publishing pamphlets varies directly as the
number of pamphlets produced. If it costs $96 to publish
600 pamphlets, how much does it cost to publish 800
pamphlets?

33. How would you explain the difference between direct
variation and inverse variation?

34. Suppose that y varies directly as the square of x. Does
doubling the value of x also double the value of y?
Explain your answer.

35. Suppose that y varies inversely as x. Does doubling the
value of x also double the value of y? Explain your
answer.

THOUGHTS INTO WORDS

    Functions 209



290 Chapter 3 Functions

In the previous problems, we chose numbers to make
computations reasonable without the use of a calculator.
However, variation-type problems often involve messy

computations and the calculator becomes a very useful tool.
Use your calculator to help solve the following problems.

36. The simple interest earned by a certain amount of money
varies jointly as the rate of interest and the time (in years)
that the money is invested.

a. If some money invested at 11% for 2 years earns
$385, how much would the same amount earn at 12%
for 1 year?

b. If some money invested at 12% for 3 years earns
$819, how much would the same amount earn at 14%
for 2 years?

c. If some money invested at 14% for 4 years earns
$1960, how much would the same amount earn at
15% for 2 years?

37. The period (the time required for one complete oscilla-
tion) of a simple pendulum varies directly as the square
root of its length. If a pendulum 9 inches long has a
period of 2.4 seconds, find the period of a pendulum of
length 12 inches. Express the answer to the nearest tenth
of a second.

38. The volume of a cylinder varies jointly as its altitude and
the square of the radius of its base. If the volume of a
cylinder is 549.5 cubic meters when the radius of the base
is 5 meters and its altitude is 7 meters, find the volume of
a cylinder that has a base of radius 9 meters and an alti-
tude of 14 meters.

39. If y is directly proportional to x and inversely propor-
tional to the square of z, and if y 5 0.336 when 
x 5 6 and z 5 5, find the constant of variation.

40. If y is inversely proportional to the square root of x, and
y 5 0.08 when x 5 225, find y when x 5 625.

Further Investigations

C H A P T E R  3 S U M M A R Y

The function concept serves as a thread to tie this chapter together.

Function Concept

A function can also be thought of as a set of ordered pairs no two of which have the
same first component. If each vertical line intersects a graph in no more than one
point, then the graph represents a function.

D E F I N I T I O N 3 . 1

A function f is a correspondence between two sets X and Y that
assigns to each element x of set X one and only one element y of set
Y. The element y being assigned is called the image of x. The set X
is called the domain of the function, and the set of all images is
called the range of the function.

   210  Functions 



Chapter 3 Summary 291

Graphing Functions

Any function that can be written in the form

f (x) 5 ax 1 b

where a and b are real numbers, is a linear function. The graph of a linear function
is a straight line.

Any function that can be written in the form

f (x) 5 ax 2 1 bx 1 c

where a, b, and c are real numbers and a Þ 0, is a quadratic function. The graph of
any quadratic function is a parabola, which can be drawn using either one of the
following methods.

1. Express the function in the form f (x) 5 a(x 2 h )2 1 k and use the values
of a, h, and k to determine the parabola.

2. Express the function in the form f (x) 5 ax 2 1 bx 1 c and use the fact that
the vertex is at

12}
2
b
a
}, f 12}

2
b
a
}22

and the axis of symmetry is

x 5 2}
2
b
a
}

Another important skill in graphing is to be able to recognize equations of the trans-
formations of basic curves. We worked with the following transformations in this
chapter.

Vertical Translation The graph of y 5 f (x ) 1 k is the graph of y 5
f (x) shifted k units upward if k . 0 or shifted * k * units downward if k , 0.

Horizontal Translation The graph of y 5 f (x 2 h) is the graph of y 5
f (x) shifted h units to the right if h . 0 or shifted * h * units to the left if h , 0.

x-axis Reflection The graph of y 5 2f (x ) is the graph of y 5 f (x ) reflected
through the x axis.

y-axis Reflection The graph of y 5 f (2x ) is the graph of y 5 f (x ) reflected
through the y axis.

Vertical Stretching and Shrinking The graph of y 5 cf (x) is obtained from
the graph of y 5 f (x) by multiplying the y coordinates of y 5 f (x ) by c. If c . 1,
the graph is said to be stretched by a factor of c, and if 0 , c , 1, the graph is said
to be shrunk by a factor of c.
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The following suggestions are helpful for graphing functions that are unfamiliar.

1. Determine the domain of the function.

2. Find the intercepts.

3. Determine what type of symmetry the equation exhibits.

4. Set up a table of values that satisfy the equation. The type of symmetry and
the domain will affect your choice of values for x in the table.

5. Plot the points associated with the ordered pairs and connect them with a
smooth curve. Then, if appropriate, reflect this part of the curve according
to the symmetry possessed by the graph.

Operations on Functions

Sum of two functions ( f 1 g)(x) 5 f (x) 1 g(x)

Difference of two functions ( f 2 g )(x) 5 f (x) 2 g(x)

Product of two functions ( f ? g )(x) 5 f (x) ? g(x)

Quotient of two functions 1}
g
f

}2(x ) 5 }
g
f (
(
x
x

)
)

}, g(x ) Þ 0

Remember that the composition of functions is not a commutative operation.

Applications of Functions

Quadratic functions produce parabolas that have either a minimum or a maximum
value. Therefore, a real-world minimum- or maximum-value problem that can be
described by a quadratic function can be solved using the techniques of this chapter.

D E F I N I T I O N 3 . 2

The composition of functions f and g is defined by

( f 8 g )(x ) 5 f (g(x))

for all x in the domain of g such that g(x ) is in the domain of f.
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Relationships that involve direct and inverse variation can be expressed by equa-
tions that determine functions. The statement y varies directly as x means

y 5 kx

where k is the constant of variation. The statement y varies directly as the nth
power of x(n . 0) means.

y 5 kxn

The statement y varies inversely as x means y 5 }
k
x

}.

The statement y varies inversely as the nth power of x (n . 0) means y 5 }
x
k

n}.

The statement y varies jointly as x and w means y 5 kxw.

C H A P T E R  3 R E V I E W  P R O B L E M  S E T

1. If f (x ) is 3x 2 2 2x 2 1, find f (2), f (21), and f (23).

2. For each of the following functions, find

}
f(a 1 h

h
) 2 f(a )
}

a. f (x) 5 25x 1 4 b. f (x) 5 2x 2 2 x 1 4

c. f (x ) 5 23x 2 1 2x 2 5

3. Determine the domain and range of the function f (x) 5
x 2 1 5.

4. Determine the domain of the function f(x) 5

}
2x 2 1

2
7x 2 4
}.

5. Express the domain of f (x ) 5 Ïxw2w2w 7wxw1w 1w0w using
interval notation.

For Problems 6–15, graph each function.

6. f (x) 5 22x 1 2 7. f (x) 5 2x 2 2 1

8. f (x) 5 2Ïxw2w 2w 1 1 9. f (x) 5 x 2 2 8x 1 17

10. f (x) 5 2x 3 1 2 11. f (x) 5 2 * x 2 1 * 1 3

12. f (x) 5 22x 2 2 12x 2 19

13. f (x) 5 2}
1
3

}x 1 1 14. f (x) 5 2}
x
2

2}

15. f (x) 5 2 * x * 2 x

16. If f (x) 5 2x 1 3 and g(x) 5 x 2 2 4x 2 3, find f 1 g, 
f 2 g, f ? g, and f@g.

For Problems 17–20, find ( f 8 g )(x ) and (g 8 f )(x). Also
specify the domain for each.

17. f (x) 5 3x 2 9 and g(x ) 5 22x 1 7

18. f (x) 5 x 2 2 5 and g(x) 5 5x 2 4

19. f (x) 5 Ïxw2w 5w and g(x ) 5 x 1 2

20. f (x) 5 }
x 2

1
3

} and g(x ) 5 }
x 1

1
2

}

21. For each of the following, classify the function as even,
odd, or neither even nor odd.

a. f (x) 5 3x 2 2 4x 1 6 b. f (x ) 5 2x 3

c. f (x ) 5 24x 2 1 6 d. f (x ) 5 2x 3 1 x 2 2
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22. If f (x ) 5
x 2 2 2 for x $ 0

,523x 1 4 for x , 0

find f (5), f(0), and f (23).

23. If f (x ) 5 2x 2 2 x 1 4 and g(x ) 5 Ïxw2w 2w, find f (g(6))
and g( f (22)).

24. If f (x) 5 * x * and g(x) 5 x 2 2 x 2 1, find ( f 8 g )(1) and
(g 8 f )(23).

For Problems 25–30, solve each problem.

25. Find two numbers whose sum is 10, such that the sum of
the square of one number plus four times the other num-
ber is a minimum.

26. A group of students is arranging a chartered flight to
Europe. The charge per person is $496 if 100 students go
on the flight. If more than 100 students go, the charge per
student is reduced by an amount equal to $4 times the
number of students above 100. How many students should
the airline try to get in order to maximize its revenue?

27. If y varies directly as x and inversely as w, and if y 5 27
when x 5 18 and w 5 6, find the constant of variation.

28. If y varies jointly as x and the square root of w, and if y 5
140 when x 5 5 and w 5 16, find y when x 5 9 and w 5
49.

29. The weight of a body above the surface of the earth
varies inversely as the square of its distance from the cen-
ter of the earth. Assuming the radius of the earth to be
4000 miles, determine how much a man would weigh
1000 miles above the earth’s surface if he weighs 200
pounds on the surface.

30. The number of hours needed to assemble some furniture
varies directly as the number of pieces of furniture and
inversely as the number of people working. If it takes 3
people 10 hours to assemble 20 pieces of furniture, how
many hours will it take 4 people to assemble 40 pieces of
furniture?
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1. If f (x) 5 2}
1
2

}x 1 }
1
3

}, find f (23).

2. If f (x) 5 2x 2 2 6x 1 3, find f (22).

3. If f (x) 5 3x 2 1 2x 2 5, find }
f (a 1 h

h
) 2 f (a )
}.

4. Determine the domain of the function f (x ) 5 }
2x 2 1

2

7
3
x 2 4
}.

5. Determine the domain of the function f (x ) 5 Ï5w 2w 3wxw.

6. If f (x) 5 3x 2 1 and g(x ) 5 2x 2 2 x 2 5, find f 1 g, f 2 g, and f ? g.

7. If f (x) 5 23x 1 4 and g(x ) 5 7x 1 2, find ( f 8 g )(x ).

8. If f (x) 5 2x 1 5 and g(x ) 5 2x 2 2 x 1 3, find (g 8 f )(x ).

9. If f (x) 5 }
x 2

3
2

} and g(x ) 5 }
2
x

}, find ( f 8 g )(x ).

10. If f (x) 5 x 2 2 2x 2 3 and g(x ) 5 * x 2 3 *, find f (g(22)) and g( f (1)).

11. Classify each of the following functions as even, odd, or neither even nor odd.

a. f (x ) 5 3x 2 2 10 b. f (x ) 5 2x 5 1 x 3

c. f (x ) 5 2x 2 1 6x 2 4 d. f (x ) 5 2x 4 1 x 2

12. If f (x) 5 }
3
x

} and g(x) 5 }
x 2

2
1

}, determine the domain of 1}
g
f

}2(x ).

13. If f (x ) 5 2x 2 2 x 1 1 and g(x ) 5 x 2 1 3, find ( f 1 g )(22), ( f 2 g )(4), and
(g 2 f )(21).

14. If f (x) 5 x 2 1 5x 2 6 and g(x ) 5 x 2 1, find ( f ? g )(x ) and 1}
g
f

}2(x ).

For Problems 15–18, solve the problem.

15. Find two numbers whose sum is 60, such that the sum of the square of one num-
ber plus twelve times the other number is a minimum.

16. If y varies jointly as x and z, and if y 5 18 when x 5 8 and z 5 9, find y when
x 5 5 and z 5 12.

17. If y varies inversely as x, and if y 5 }
1
2

} when x 5 28, find the constant of
variation.

C H A P T E R  3  T E S T
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18. The simple interest earned by a certain amount of money varies jointly as the
rate of interest and the time (in years) that the money is invested. If $140 is
earned for the money invested at 7% for 5 years, how much is earned if the
same amount is invested at 8% for 3 years?

For Problems 19–21, use the concepts of translation and/or reflection to
describe how the second curve can be obtained from the first curve.

19. f (x) 5 x 3, g(x ) 5 (x 2 6)3 2 4

20. f (x) 5 * x *, g(x) 5 2 * x * 1 8

21. f (x) 5 Ïxw, g(x ) 5 2Ïxw1w 5w 1 7

For Problems 22–25, graph each function.

22. f (x) 5 22x 2 2 12x 2 14

23. f (x) 5 3* x 2 2* 2 1

24. f (x) 5 Ï2wxw1w 2w

25. f (x) 5 2x 2 1

296 Chapter 3 Functions
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In this chapter we will continue our study of exponents in several ways: 
(1) we will extend the meaning of an exponent; (2) we will work with some
exponential functions; (3) we will introduce the concept of a logarithm; (4)
we will work some logarithmic functions; and (5) we will use the concepts of
exponent and logarithm to develop more problem-solving skills. Your calcu-
lator will be a valuable tool throughout this chapter.

EXPONENTS AND EXPONENTIAL FUNCTIONS

In Chapter 0, the expression bn was defined to mean n factors of b, where n is any
positive integer and b is any real number. For example,

23 5 2 ? 2 ? 2 5 8 1}
1
3

}24
5 1}

1
3

}21}
1
3

}21}
1
3

}21}
1
3

}2 5 }
8
1
1
}

(24)2 5 (24)(24) 5 16 2(0.5)3 5 2[(0.5)(0.5)(0.5)] 5 20.125

Also in Chapter 0, by defining b 0 5 1 and b2 n 5 1@bn, where n is any positive inte-
ger and b is any nonzero real number, we extended the concept of an exponent to
include all integers. For example,

(0.76)0 5 1 22 3 5 }
2
1

3} 5 }
1
8

}

1}
2
3

}22 2
5 5 5 }

9
4

} (0.4)2 1 5 }
(0.

1
4)1} 5 }

0
1
.4
} 5 2.5

Finally, in Chapter 0 we provided for the use of any rational number as an exponent
by defining

bm@n 5 Ïn bwmw 5 1Ïn bw2m

where n is a positive integer greater than 1 and b is a real number such that Ïn bw
exists. For example,

272@3 5 1Ï3 2w7w22 5 9 161@4 5 Ï
4

1w6w1w 5 2

1}
1
9

}21@2
5 !}

1
9

}§ 5 }
1
3

} 3221@5 5 }
32

1
1@5} 5 }

Ï5

1

3w2w
} 5 }

1
2

}

If we were to make a formal extension of the concept of an exponent to include
the use of irrational numbers, we would require some ideas from calculus, which is
beyond the scope of this text. However, we can give you a brief glimpse at the gen-
eral idea involved. Consider the number 2 . By using the nonterminating and non-
repeating decimal representation 1.73205 . . . for Ï3w, we can form the sequence of
numbers 21, 21.7, 21.73, 21.732, 21.7320, 21.73205, . . . . It is a reasonable idea that each suc-

Ï3w

1
}

}}
4
9

}

1
}

1}
2
3

}22

4.1

   218  Exponential and Logarithmic Functions 



4.1 Exponents and Exponential Functions 299

cessive power gets closer to 2 . This is precisely what happens if n is irrational and
bn is properly defined by using the concept of a limit. Furthermore, this ensures that
an expression such as 2x will yield exactly one value for each value of x.

From now on, we can use any real number as an exponent, and the basic prop-
erties stated in Chapter 0 can be extended to include all real numbers as exponents.
Let’s restate those properties with the restriction that the bases a and b are to be pos-
itive numbers to avoid expressions such as (24)1@2, which do not represent real 
numbers.

Another property that can be used to solve certain types of equations involv-
ing exponents can be stated as follows.

The following examples illustrate the use of Property 4.2.

Solve 2x 5 32.

Solution

2x 5 32

2x 5 25 32 5 25

x 5 5 Apply Property 4.2.

The solution set is { 5} . n

P R O P E R T Y  4 . 2

If b . 0 but b Þ 1, and if m and n are real numbers, then

bn 5 bm if and only if n 5 m

P R O P E R T Y  4 . 1

If a and b are positive real numbers and m and n are any real
numbers, then the following properties hold.

1. bn ? bm 5 bn1m Product of two powers

2. (bn )m 5 bmn Power of a power

3. (ab ) n 5 anbn Power of a product

4. 1}
a
b

}2 n
5 }

a
b

n

n} Power of a quotient

5. }
b
b

m

n

} 5 bn2m Quotient of two powers

Ï3w

E X A M P L E  1
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Solve 23x 5 }
6
1
4
}.

Solution

23x 5 }
6
1
4
}

23x 5 }
2
1

6}

23x 5 22 6

3x 5 26 Apply Property 4.2.
x 5 22

The solution set is { 22} . n

Solve 1}
1
5

}2x24
5 }

1
1
25
}.

Solution

1}
1
5

}2x24
5 }

1
1
25
}

1}
1
5

}2x24
5 1}

1
5

}23

x 2 4 5 3 Apply Property 4.2.
x 5 7

The solution set is { 7} . n

Solve 9x 5 243.

Solution

9x 5 243

(32)x 5 35

32x 5 35

2x 5 5 Apply Property 4.2.

x 5 }
5
2

}

The solution set is 




}
5
2

}



. n

Solve (82x)(42x21) 5 16.

Solution

(82x )(42x21) 5 16

(23)2x(22)2x21 5 24

E X A M P L E  2

E X A M P L E  3

E X A M P L E  4

E X A M P L E  5
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(26x )(24x22) 5 24

26x 1 4x22 5 24

210x22 5 24

10x 2 2 5 4 Apply Property 4.2
10x 5 6

x 5 }
1
6
0
}

x 5 }
3
5

}

The solution set is 




}
3
5

}



. n

Exponential Functions

If b is any positive number, then the expression bx designates exactly one real num-
ber for every real value of x. Therefore, the equation f (x ) 5 bx defines a function
whose domain is the set of real numbers. Furthermore, if we add the restriction b Þ
1, then any equation of the form f (x ) 5 bx describes what we will call later a one-
to-one function and is called an exponential function. This leads to the following
definition.

REMARK The function f (x ) 5 1x is a constant function and therefore it is
not a one-to-one function. Remember from Chapter 3 that one-to-one func-
tions have inverses; this becomes a key issue in a later section.

Now let’s graph some exponential functions.

Graph the function f (x) 5 2 x.

Solution

Let’s set up a table of values. Keep in mind that the domain is the set of real num-
bers and the equation f (x ) 5 2x exhibits no symmetry. Plot these points and connect
them with a smooth curve to produce Figure 4.1.

D E F I N I T I O N  4 . 1

If b . 0 and b Þ 1, then the function f defined by

f (x) 5 bx

where x is any real number, is called the exponential function with
base b.

E X A M P L E  6
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F I G U R E  4 . 1 n

In the table for Example 6, we chose integral values for x to keep the computa-
tion simple. However, with a calculator, we could easily acquire functional values by
using nonintegral exponents. Consider the following additional values for f (x) 5 2x.

f (0.5) < 1.41 f (1.7) < 3.25

f (20.5) < 0.71 f (22.6) < 0.16

Use your calculator to check these results. Also note that the points generated by
these values fit the graph in Figure 4.1.

Graph f (x) 5 1}
1
2

}2x
.

Solution

Again, let’s set up a table of values, plot the points, and connect them with a smooth
curve. The graph is shown in Figure 4.2.

F I G U R E  4 . 2 n

x

f(x)x

−2
−1

0

1

2

3

1
2

4
2
1

1
4
1
8

1
2

f (x) = (   )x

1
2

( )
x

< means is approximately
equal to

x

f(x)

f(x) = 2x

x 2x

−2

−1
0
1
2
3

1
2
1
2
4
8

1
4

E X A M P L E  7

   222  Exponential and Logarithmic Functions 



4.1 Exponents and Exponential Functions 303

REMARK Because 1}
1
2

}2x
5 1@2x 5 22 x, the graphs of f (x ) 5 2x and f (x) 5

1}
1
2

}2x
are reflections of each other across the y axis. Therefore, Figure 4.2

could have been drawn by reflecting Figure 4.1 across the y axis.

The graphs in Figures 4.1 and 4.2 illustrate a general behavior pattern of expo-
nential functions. That is, if b . 1, then the graph of f (x ) 5 bx goes up to the right,
and the function is called an increasing function. If 0 , b , 1, then the graph of
f (x) 5 bx goes down to the right, and the function is called a decreasing function.
These facts are illustrated in Figure 4.3. Notice that b 0 5 1 for any b . 0; thus, all
graphs of f (x) 5 bx contain the point (0, 1).

F I G U R E  4 . 3

As you graph exponential functions, don’t forget to use your previous graph-
ing experience. For example, consider the following functions.

1. The graph of f (x) 5 2x 1 3 is the graph of f (x ) 5 2x moved up three units.

2. The graph of f (x ) 5 2x24 is the graph of f (x ) 5 2x moved to the right four
units.

3. The graph of f (x ) 5 22x is the graph of f (x ) 5 2x reflected across the x
axis.

4. The graph of f (x ) 5 2x 1 22 x is symmetric with respect to the y axis
because f (2x ) 5 22 x 1 2x 5 f (x ).

Furthermore, if you are faced with an exponential function that is not of the form
f (x) 5 bx or a variation thereof, don’t forget the graphing suggestions offered in
Chapter 2. Let’s consider one such example.

x

f(x)

(0, 1)

f(x) = bx

b > 1
f(x) = bx

0 < b < 1
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Graph f (x) 5 22 x 2
.

Solution

Because f (2x ) 5 22 ( 2 x )2 5 22x 2
5 f (x ), we know that this curve is symmetric

with respect to the y axis. Therefore, let’s set up a table of values using nonnegative
values for x. Plot these points, connect them with a smooth curve, and reflect this
portion of the curve across the y axis to produce the graph in Figure 4.4.

F I G U R E  4 . 4 n

Use a graphing utility to obtain a graph of f (x ) 5 50(2x) and find an approximate
value for x when f (x ) 5 15,000.

Solution

First, we must find an appropriate viewing rectangle. Because 50(210) 5 51,200,
let’s set the boundaries so that 0 # x # 10 and 0 # y # 50,000 with a scale of
10,000 on the y axis. (Certainly other boundaries could be used, but these will give
us a graph that we can work with for this problem.) The graph of f (x ) 5 50(2x) is
shown in Figure 4.5. Now we can use the trace and zoom-in features of the graphing
utility to find that x < 8.2 at y 5 15,000.

F I G U R E  4 . 5 n

100

50,000

0

x

f(x)x 2–x2

0
1
2

1
3
2

2

f(x) = 2−x2

1

 0.84

0.5  

0.21

0.06

E X A M P L E  8

E X A M P L E  9
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REMARK In Example 9 we used a graphical approach to solve the equation
50(2x) 5 15,000. In Section 4.5 we will use an algebraic approach to solve
that same kind of equation.

P R O B L E M  S E T  4 . 1

For Problems 1–20, solve each equation.

1. 3x 5 27 2. 2x 5 64

3. 1}
1
2

}2x
5 }

1
8

} 4. 1}
1
2

}2n
5 4

5. 32 x 5 }
8
1
1
} 6. 3 x11 5 9

7. 52n21 5 125 8. 232n 5 8

9. 1}
2
3

}2t
5 }

9
4

} 10. 1}
3
4

}2n
5 }

6
2
4
7
}

11. 43x21 5 256 12. 16 x 5 64

13. 4n 5 8 14. 274x 5 9x11

15. 32x 5 1612x 16. 1}
1
8

}22 2t
5 2t13

17. (22x21)(2x12) 5 32 18. (27)(3x) 5 9x

19. (3x)(35x) 5 81 20. (4x)(163x21) 5 8

For Problems 21–40, graph each function.

21. f (x) 5 3x 22. f (x) 5 1}
1
3

}2x

23. f (x) 5 4x 24. f (x) 5 1}
1
4

}2x

25. f (x) 5 1}
2
3

}2x
26. f (x) 5 1}

3
2

}2x

27. f (x) 5 2x 1 1 28. f (x) 5 2x 2 3

29. f (x) 5 2x21 30. f (x) 5 2x12

31. f (x) 5 23x 32. f (x) 5 22x

33. f (x) 5 22 x11 34. f (x) 5 22 x22

35. f (x) 5 2x 1 22 x 36. f (x) 5 2x 2

37. f (x) 5 312x 2
38. f (x) 5 2 * x *

39. f (x) 5 22 * x * 40. f (x) 5 2 x 2 22 x

41. Graph f (x) 5 21}
1
2

}2x
. Then, on the same set of axes,

graph f (x ) 5 21}
1
2

}2x
1 2, f (x) 5 21}

1
2

}2x13
, and 

f (x) 5 21}
1
2

}22 x
.

42. Why is the base of an exponential function restricted to
positive numbers not including 1?

43. How would you go about graphing the function f (x) 5

21}
1
3

}2x
?

44. Explain how you would solve the equation

(4x21)(82x13) 5 128

THOUGHTS INTO WORDS
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45. Use your graphing calculator to check your graphs for
Problems 36–40.

46. Graph f (x) 5 4x. Where should the graphs of f (x) 5
4x22, f (x) 5 4x24, and f (x) 5 4x13 be located? Graph all
three functions on the same set of axes with f (x ) 5 4x.

47. Graph f (x) 5 1}
1
4

}2x
. Where should the graphs of 

f (x) 5 1}
1
4

}2x
2 2, f (x) 5 1}

1
4

}2x
1 3, and f (x) 5 1}

1
4

}2x
2 4

be located? Graph all three functions on the same set of

axes with f (x) 5 1}
1
4

}2x
.

48. Graph f (x ) 5 1}
3
4

}2x
. Now predict the graphs for f (x) 5

21}
3
4

}2x
, f (x) 5 1}

3
4

}22x
, and f (x) 5 21}

3
4

}22 x
. Graph all

three functions on the same set of axes with f (x) 5 1}
3
4

}2x
.

49. Graph f (x) 5 (22)x. Explain your result.

50. What is the solution for 3x 5 5? Do you agree that it is
between 1 and 2 because 31 5 3 and 32 5 9? Now graph
f (x) 5 3x 2 5 and use the zoom-in and trace features of
your graphing calculator to find an approximation, to the
nearest hundredth, for the x intercept. You should get 
the answer 1.46. This should be an approximation for the
solution for 3x 5 5. Try it; raise 3 to the 1.46 power.

Find an approximate solution, to the nearest hun-
dredth, for each of the following equations by graphing
the appropriate function and finding the x intercept.

a. 2x 5 19 b. 3x 5 50 c. 4x 5 47

d. 5x 5 120 e. 2x 5 1500 f. 3x21 5 34

APPLICATIONS OF EXPONENTIAL FUNCTIONS

Many real-world situations that exhibit growth or decay can be represented by equa-
tions that describe exponential functions. For example, suppose that an economist
predicts an annual inflation rate of 5% per year for the next 10 years. This means
that an item that presently costs $8 will cost $8(105%) 5 $8(1.05) 5 $8.40 a year
from now. The same item will cost [$8(105%)] 3 (105%) 5 $8(1.05)2 5 $8.82 in 2
years. In general, the equation

P 5 P0(1.05)t

yields the predicted price P of an item in t years if the present cost is P0 and the
annual inflation rate is 5%. By using this equation, we can look at some future prices
based on the prediction of a 5% inflation rate.

A $0.79 jar of mustard will cost $0.79(1.05)3 5 $0.91 in 3 years.

A $2.69 bag of potato chips will cost $2.69(1.05)5 5 $3.43 in 5 years.

A $6.69 can of coffee will cost $6.69(1.05)7 5 $9.41 in 7 years.

Compound Interest

Compound interest provides another illustration of exponential growth. Suppose
that $500 (called the principal) is invested at an interest rate of 8% compounded

4.2

GRAPHING CALCULATOR ACTIVITIES
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4.2 Applications of Exponential Functions 307

annually. The interest earned the first year is $500(0.08) 5 $40, and this amount is
added to the original $500 to form a new principal of $540 for the second year. The
interest earned during the second year is $540(0.08) 5 $43.20, and this amount is
added to $540 to form a new principal of $583.20 for the third year. Each year a new
principal is formed by reinvesting the interest earned during that year.

In general, suppose that a sum of money P (called the principal) is invested at an
interest rate of r percent compounded annually. The interest earned the first year is Pr,
and the new principal for the second year is P 1 Pr or P(1 1 r). Note that the new
principal for the second year can be found by multiplying the original principal P by
(1 1 r). In like fashion, we can find the new principal for the third year by multiplying
the previous principal, P(1 1 r), by 1 1 r, thus obtaining P(1 1 r)2. If this process is
continued, then after t years the total amount of money accumulated, A, is given by

Consider the following examples of investments made at a certain rate of
interest compounded annually.

1. $750 invested for 5 years at 9% compounded annually produces

A 5 $750(1.09)5 5 $1153.97

2. $1000 invested for 10 years at 11% compounded annually produces

A 5 $1000(1.11)10 5 $2839.42

3. $5000 invested for 20 years at 12% compounded annually produces

A 5 $5000(1.12)20 5 $48,231.47

The compound interest formula can be used to determine what rate of interest
is needed to accumulate a certain amount of money based on a given initial invest-
ment. The next example illustrates this idea.

What rate of interest is needed for an investment of $1000 to yield $4000 in 10 years
if the interest is compounded annually?

Solution

Let’s substitute $1000 for P, $4000 for A, and 10 years for t in the compound inter-
est formula and solve for r.

A 5 P(1 1 r )t

4000 5 1000(1 1 r )10

4 5 (1 1 r )10

40.1 5 [(1 1 r )10]0.1 Raise both sides to the 0.1 power.
1.148698355 < 1 1 r

0.148698355 < r

r 5 14.9% to the nearest tenth of a percent

A 5 P(1 1 r )t

P R O B L E M  1
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Therefore, a rate of interest of approximately 14.9% is needed. (Perhaps you should
check this answer.) n

If money invested at a certain rate of interest is to be compounded more than
once a year, then the basic formula A 5 P(1 1 r )t can be adjusted according to the
number of compounding periods in a year. For example, for compounding semian-
nually, the formula becomes

A 5 P11 1 }
2
r

}22t

and for compounding quarterly, the formula becomes

A 5 P11 1 }
4
r

}24t

In general, if n represents the number of compounding periods in a year, then the
formula becomes

The following examples illustrate the use of the formula.

1. $750 invested for 5 years at 9% compounded semiannually produces

A 5 $75011 1 }
0.

2
09
}22(5)

5 $750(1.045)10 5 $1164.73

2. $1000 invested for 10 years at 11% compounded quarterly produces

A 5 $100011 1 }
0.

4
11
}24(10)

5 $1000(1.0275)40 5 $2959.87

3. $5000 invested for 20 years at 12% compounded monthly produces

A 5 $500011 1 }
0
1
.1
2
2

}212(20)
5 $5000(1.01)240 5 $54,462.77

You may find it interesting to compare these results with those obtained
earlier for compounding annually.

Exponential Decay

Suppose that it is estimated that the value of a car depreciates 15% per year for the
first 5 years. Therefore, a car that costs $9500 will be worth $9500 3 (100% 2
15%) 5 $9500(85%) 5 $9500(0.85) 5 $8075 in 1 year. In 2 years the value of the
car will have depreciated to 9500(0.85)2 5 $6864 (to the nearest dollar). The equation

V 5 V0(0.85)t

A 5 P11 1 }
n
r

}2nt
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4.2 Applications of Exponential Functions 309

yields the value V of a car in t years if the initial cost is V0 and it depreciates 15% per
year. Therefore, we can estimate some car values to the nearest dollar.

A $13,000 car will be worth $13,000(0.85)3 5 $7984 in 3 years.

A $17,000 car will be worth $17,000(0.85)5 5 $7543 in 5 years.

A $25,000 car will be worth $25,000(0.85)4 5 $13,050 in 4 years.

Another example of exponential decay is associated with radioactive substances.
The rate of decay can be described exponentially and is based on the half-life of a
substance. The half-life of a radioactive substance is the amount of time that it takes
for one-half of an initial amount of the substance to disappear as the result of decay.
For example, suppose that we have 200 grams of a certain substance that has a half-

life of 5 days. After 5 days, 2001}
1
2

}2 5 100 grams remain. After 10 days, 2001}
1
2

}22
5

50 grams remain. After 15 days, 2001}
1
2

}23
5 25 grams remain. In general, after t

days, 2001}
1
2

}2t@5
grams remain.

The previous discussion leads into the following half-life formula. Suppose
there is an initial amount, Q0, of a radioactive substance with a half-life of h. The
amount of substance remaining, Q, after a time period of t, is given by the formula

The units of measure for t and h must be the same.

Barium-140 has a half-life of 13 days. If there are 500 milligrams of barium ini-
tially, how many milligrams remain after 26 days? After 100 days?

Solution

Using Q0 5 500 and h 5 13, the half-life formula becomes

Q 5 5001}
1
2

}2t@13

If t 5 26, then

Q 5 5001}
1
2

}226@13

5 5001}
1
2

}22

5 5001}
1
4

}2
5 125

Q 5 Q01}
1
2

}2t@h

P R O B L E M  2
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Thus 125 milligrams remain after 26 days. If t 5 100, then

Q 5 5001}
1
2

}2100@13

5 500(0.5)100@13

5 2.4 to the nearest tenth of a milligram

Approximately 2.4 milligrams remain after 100 days. n

REMARK The solution to Example 2 clearly demonstrates one facet of the
role of the calculator in the application of mathematics. We solved the first
part of the problem easily without the calculator, but the calculator certainly
was helpful for the second part of the problem.

Number e

An interesting situation occurs if we consider the compound interest formula for

P 5 $1, r 5 100%, and t 5 1 year. The formula becomes A 5 111 1 }
1
n

}2n
. The fol-

lowing table shows some values, rounded to eight decimal places, of 11 1 }
1
n

}2n
for

different values of n.

The table suggests that as n increases, the value of 11 1 }
1
n

}2n
gets closer and 

closer to some fixed number. This does happen, and the fixed number is called e. To
five decimal places, e 5 2.71828.

The function defined by the equation f (x ) 5 ex is the natural exponential
function. It has a great many real-world applications, some of which we will look at

n 11 1 }
1
n

}2n

1 2.00000000

10 2.59374246

100 2.70481383

1000 2.71692393

10,000 2.71814593

100,000 2.71826824

1,000,000 2.71828047

10,000,000 2.71828169

100,000,000 2.71828181

1,000,000,000 2.71828183
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in a moment. First, however, let’s get a picture of the natural exponential function.
Because 2 , e , 3, the graph of f (x) 5 ex must fall between the graphs of f (x) 5
2x and f (x) 5 3x. To be more specific, let’s use our calculator to determine a table of
values. Use the ex key, and round the results to the nearest tenth to obtain the
table. Plot the points determined by this table and connect them with a smooth curve
to produce Figure 4.6.

F I G U R E  4 . 6

Back to Compound Interest

Let’s return to the concept of compound interest. If the number of compounding
periods in a year is increased indefinitely, we arrive at the concept of compounding
continuously. Mathematically, this can be accomplished by applying the limit con-
cept to the expression

P11 1 }
n
r

}2nt

We will not show the details here, but the following result is obtained. The formula

yields the accumulated value (A) of a sum of money (P) that has been invested for t
years at a rate of r percent compounded continuously. The following examples illus-
trate the use of this formula.

A 5 Pert

x

f(x)

f(x) = ex

x
0
1
2

−1
−2

1.0
2.7
7.4
0.4
0.1

f(x) = ex
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1. $750 invested for 5 years at 9% compounded continuously produces

A 5 750e (0.09)(5) 5 750e 0.45 5 $1176.23

2. $1000 invested for 10 years at 11% compounded continuously produces

A 5 1000e (0.11)(10) 5 1000e 1.1 5 $3004.17

3. $5000 invested for 20 years at 12% compounded continuously produces

A 5 5000e (0.12)(20) 5 5000e 2.4 5 $55,115.88

Again, you may find it interesting to compare these results with those you obtained
earlier using a different number of compounding periods.

Is it better to invest at 6% compounded quarterly or at 5.75% compounded
continuously? To answer such a question, we can use the concept of effective yield
(sometimes called effective annual rate of interest). The effective yield of an invest-
ment is the simple interest rate that would yield the same amount in 1 year. Thus, for
the 6% compounded quarterly investment, we can calculate the effective yield as
follows.

P(1 1 r ) 5 P11 1 }
0.

4
06
}24

1 1 r 5 11 1 }
0.

4
06
}24

Multiply both sides by }
1
P

}.

1 1 r 5 (1.015)4

r 5 (1.015)4 2 1

r < 0.0613635506

r 5 6.14% to the nearest hundredth of a percent

Likewise, for the 5.75% compounded continuously investment we can calculate the
effective yield as follows.

P(1 1 r ) 5 Pe 0.0575

1 1 r 5 e 0.0575

r 5 e 0.0575 2 1

r < 0.0591852707

r 5 5.92% to the nearest hundredth of a percent

Therefore, comparing the two effective yields, we see that it is better to invest at 6%
compounded quarterly than to invest at 5.75% compounded continuously.

Law of Exponential Growth

The ideas behind compounded continuously carry over to other growth situations.
The law of exponential growth,

Q(t) 5 Q0ekt
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is used as a mathematical model for numerous growth-and-decay applications. In
this equation, Q( t ) represents the quantity of a given substance at any time t; Q0 is
the initial amount of the substance (when t 5 0); and k is a constant that depends on
the particular application. If k , 0, then Q( t ) decreases as t increases, and we refer
to the model as the law of decay.

Let’s consider some growth-and-decay applications.

Suppose that in a certain culture, the equation Q( t ) 5 15000e 0.3t expresses the num-
ber of bacteria present as a function of the time t, where t is expressed in hours. Find
(a) the initial number of bacteria, and (b) the number of bacteria after 3 hours.

Solution

a. The initial number of bacteria is produced when t 5 0.

Q(0) 5 15000e 0.3(0)

5 15000e 0

5 15000 e0 5 1

b. Q(3) 5 15000e 0.3(3)

5 15000e 0.9 5 36894 to the nearest whole number

There should be approximately 36,894 bacteria present after 3 hours. n

Suppose the number of bacteria present in a certain culture after t minutes is given by
the equation Q( t) 5 Q0e0.05t, where Q0 represents the initial number of bacteria. If
5000 bacteria are present after 20 minutes, how many bacteria were present initially?

Solution

If 5000 bacteria are present after 20 minutes, then Q(20) 5 5000.

5000 5 Q0e 0.05(20)

5000 5 Q0e 1

}
50

e
00
} 5 Q0

1839 5 Q0 to the nearest whole number

Thus approximately 1839 bacteria were present initially. n

The number of grams of a certain radioactive substance present after t seconds is
given by the equation Q(t) 5 200e20.3t. How many grams remain after 7 seconds?

Solution

Use Q( t ) 5 200e20.3t to obtain

Q(7) 5 200e (20.3)(7)

5 200e22.1 5 24.5 to the nearest tenth

Thus approximately 24.5 grams remain after 7 seconds. n

P R O B L E M  3

P R O B L E M  4

P R O B L E M  5
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Finally, let’s use the graphical approach to solve two problems.

Suppose that $1000 is invested at 6.5% interest compounded continuously. How
long will it take for the money to double?

Solution

Substitute $1000 for P and 0.065 for r in the formula A 5 Pert to produce A 5
1000e 0.065t. If we let y 5 A and x 5 t, we can graph the equation y 5 1000e 0.065x. By
letting x 5 20, we obtain y 5 1000e 0.065(20) 5 1000e 1.3 < 3670. Therefore, let’s set
the boundaries of the viewing rectangle so that 0 # x # 20 and 0 # y # 3700 with a
y scale of 1000. Then we obtain the graph in Figure 4.7. Now we want to find the
value of x so that y 5 2000. (The money is to double.) Using the zoom and trace fea-
tures of the graphing utility, we can determine that an x value of approximately 10.7
will produce a y value of 2000. Thus it will take approximately 10.7 years for the
$1000 investment to double.

F I G U R E  4 . 7 n

Graph the function y 5 }
Ï

1
2wpw
} e2x2@2 and find its maximum value.

Solution

If x 5 0, then 

y 5 }
Ï

1
2wpw
} e 0 5 }

Ï
1
2wpw
} < 0.4.

Let’s set the boundaries of the viewing rectangle so that 25 # x # 5 and 0 # y # 1
with a y scale of 0.1; the graph of the function is shown in Figure 4.8. From the
graph, we see that the maximum value of the function occurs at x 5 0, which we
have already determined to be approximately 0.4.

200

3700

0

P R O B L E M  6

E X A M P L E  1
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F I G U R E  4 . 8 n

REMARK The curve in Figure 4.8 is called the normal distribution curve.
You may want to ask your instructor to explain what it means to assign grades
on the basis of the normal distribution curve.

1

0
525

P R O B L E M  S E T  4 . 2

1. Assuming that the rate of inflation is 7% per year, the
equation P 5 P0(1.07)t yields the predicted price P of an
item in t years if it presently costs P0. Find the predicted
price of each of the following items for the indicated
years ahead.

a. $.55 can of soup in 3 years

b. $3.43 container of cocoa mix in 5 years

c. $1.76 jar of coffee creamer in 4 years

d. $.44 can of beans and bacon in 10 years

e. $9000 car in 5 years (to the nearest dollar)

f. $50,000 house in 8 years (to the nearest dollar)

g. $500 TV set in 7 years (to the nearest dollar)

2. Suppose that it is estimated that the value of a car
declines, or the car depreciates, 20% per year for the first
5 years. The equation A 5 P0(0.8)t yields the value (A )
of a car after t years if the original price is P0. Find the
value (to the nearest dollar) of each of the following cars
after the indicated time.

a. $9000 car after 4 years

b. $14,000 car after 2 years

c. $18,000 car after 5 years

d. $25,000 car after 3 years

For Problems 3–14, use the formula

A 5 P11 1 }
n
r

}2nt

to find the total amount of money accumulated at the end of
the indicated time period for each of the following invest-
ments. Estimate to the nearest cent.

3. $250 for 5 years at 9% compounded annually

4. $350 for 7 years at 11% compounded annually

5. $300 for 6 years at 8% compounded semiannually

6. $450 for 10 years at 10% compounded semiannually

7. $600 for 12 years at 12% compounded quarterly

8. $750 for 15 years at 9% compounded quarterly

9. $1000 for 5 years at 12% compounded monthly

10. $1250 for 8 years at 9% compounded monthly

11. $600 for 10 years at 8}
1
2

}% compounded annually
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12. $1500 for 15 years at 9}
1
4

}% compounded semiannually

13. $8000 for 10 years at 10.5% compounded quarterly

14. $10,000 for 25 years at 9.25% compounded monthly

For Problems 15–23, use the formula A 5 Pert to find the
total amount of money accumulated at the end of the indi-
cated time period by continuous compounding.

15. $400 for 5 years at 7%

16. $500 for 7 years at 6%

17. $750 for 8 years at 8%

18. $1000 for 10 years at 9%

19. $2000 for 15 years at 10%

20. $5000 for 20 years at 11%

21. $7500 for 10 years at 8.5%

22. $10,000 for 25 years at 9.25%

23. $15,000 for 10 years at 7.75%

For Problems 24–39, solve the problem.

24. What rate of interest, to the nearest tenth of a percent,
compounded annually is needed for an investment of
$200 to grow to $350 in 5 years?

25. What rate of interest, to the nearest tenth of a percent,
compounded quarterly is needed for an investment of
$1500 to grow to $2700 in 10 years?

26. Find the effective yield, to the nearest tenth of a percent,
of an investment at 7.5% compounded monthly.

27. Find the effective yield, to the nearest hundredth of a
percent, of an investment at 7.75% compounded continu-
ously.

28. Which investment yields the greater return: 7% com-
pounded monthly or 6.85% compounded continuously?

29. Which investment yields the greater return: 8.25% com-
pounded quarterly or 8.3% compounded semiannually?

30. Suppose that a certain radioactive substance has a half-
life of 20 years. If there are presently 2500 milligrams of

the substance, how much, to the nearest milligram, will
remain after 40 years? After 50 years?

31. Strontium-90 has a half-life of 29 years. If there are 400
grams of strontium initially, how much, to the nearest
gram, will remain after 87 years? After 100 years?

32. The half-life of radium is approximately 1600 years. If
the present amount of radium in a certain location is 500
grams, how much will remain after 800 years? Express
your answer to the nearest gram.

33. Suppose that in a certain culture, the equation Q( t) 5
1000e 0.4t expresses the number of bacteria present as a
function of the time t, where t is expressed in hours. How
many bacteria are present at the end of 2 hours? 3 hours?
5 hours?

34. The number of bacteria present at a given time under cer-
tain conditions is given by the equation Q 5 5000e 0.05t,
where t is expressed in minutes. How many bacteria are
present at the end of 10 minutes? 30 minutes? 1 hour?

35. The number of bacteria present in a certain culture after t
hours is given by the equation Q 5 Q0e 0.3t, where Q0

represents the initial number of bacteria. If 6640 bacteria
are present after 4 hours, how many bacteria were pre-
sent initially?

36. The number of grams Q of a certain radioactive sub-
stance present after t seconds is given by the equation
Q 5 1500e20.4t. How many grams remain after 5 sec-
onds? 10 seconds? 20 seconds?

37. The atmospheric pressure, measured in pounds per
square inch, is a function of the altitude above sea level.
The equation P(a ) 5 14.7e20.21a, where a is the altitude
measured in miles, can be used to approximate atmos-
pheric pressure. Find the atmospheric pressure at each of
the following locations.

a. Mount McKinley in Alaska—altitude of 3.85 miles

b. Denver, Colorado—the mile-high city

c. Asheville, North Carolina—altitude of 1985 feet

d. Phoenix, Arizona—altitude of 1090 feet

38. Suppose that the present population of a city is 75,000.
Using the equation P( t) 5 75,000e 0.01t to estimate future
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growth, estimate the population (a) 10 years from now,
(b) 15 years from now, and (c) 25 years from now.

39. The brightness of a star viewed from Earth is measured
in magnitudes. A star of any given magnitude is 2.512
times as bright as a star of the next higher magnitude.
Therefore, to determine how many times brighter one
star is than another, we can use the exponential function
f (x) 5 2.512x, where x is the higher magnitude minus
the lower magnitude.

a. How many times brighter is a star of magnitude 1
than a star of magnitude 6?

b. The star Altair has a magnitude of 0.9, and the
Kapteyn’s star has a magnitude of 8.8. How many
times brighter than Kapteyn’s star is Altair?

c. The sun has a magnitude of 226.7, and Sirius has a
magnitude of 21.6. How many times brighter is the
sun than Sirius?

For Problems 40–45, graph each exponential function.

40. f (x) 5 ex 1 1 41. f (x ) 5 ex 2 2

42. f (x) 5 2ex 43. f (x ) 5 2ex

44. f (x) 5 e 2x 45. f (x ) 5 e2x

46. Explain the difference between simple interest and com-
pound interest.

47. How would you explain the concept of effective yield to
someone who missed class the day it was discussed?

48. How would you explain the half-life formula to someone
who missed class the day it was discussed?

49. Complete the following chart that illustrates what hap-
pens to $1000 invested at various rates of interest for 
different lengths of time but always compounded contin-
uously. Round your answers to the nearest dollar.

$1000 Compounded continuously
8% 10% 12% 14%

5 years
10 years
15 years
20 years
25 years

50. Complete the following chart that illustrates what hap-
pens to $1000 invested at 12% for different lengths of
time and different numbers of compounding periods.
Round all of your answers to the nearest dollar.

$1000 at 12%
1 5 10 20

year years years years

Compounded
annually
Compounded
semiannually
Compounded
quarterly
Compounded
monthly
Compounded
continuously

THOUGHTS INTO WORDS

Further Investigations
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51. Complete the following chart that illustrates what hap-
pens to $1000 in 10 years based on different rates of
interest and different numbers of compounding periods.
Round your answers to the nearest dollar.

$1000 for 10 years
8% 10% 12% 14%

Compounded
annually
Compounded
semiannually
Compounded
quarterly
Compounded
monthly
Compounded
continuously

For Problems 52–56, graph each function.

52. f (x) 5 x(2x) 53. f (x ) 5 }
ex 1

2
e2x

}

54. f (x) 5 }
ex 1

2
e2x} 55. f (x ) 5 }

ex 2

2
e2x

}

56. f (x) 5 }
ex 2

2
e2x}

57. Use your graphing calculator to check your graphs for
Problems 40–45 and 52–56.

58. How should the graphs of f (x ) 5 2 x, f (x) 5 ex, and
f (x) 5 3x compare? Graph them on the same set of axes.

59. Graph f (x) 5 ex. Where should the graphs of f (x) 5
ex22, f (x ) 5 ex14, and f (x) 5 ex26 be located? Graph all
three functions on the same set of axes.

60. Graph f (x ) 5 ex again. Now predict the graphs for
f (x) 5 2ex, f (x) 5 e2 x, and f (x) 5 2e2 x. Graph these
three functions on the same set of axes.

61. How do you think the graphs of f (x) 5 ex, f (x) 5 e 2x,
and f (x) 5 2ex will compare? Graph them on the same
set of axes to see whether you were right.

62. Find an approximate solution, to the nearest hundredth,
for each of the following equations by graphing the
appropriate function and finding the x intercept.

a. e x 5 7 b. ex 5 21 c. ex 5 53

d. 2ex 5 60 e. ex11 5 150 f. ex22 5 300

63. Use a graphing approach to argue that it is better to
invest money at 6% compounded quarterly than at 5.75%
compounded continuously.

64. How long will it take $500 to be worth $1500 if it is
invested at 7.5% interest compounded semiannually?

65. How long will it take $5000 to triple if it is invested at
6.75% interest compounded quarterly?

INVERSE FUNCTIONS

Recall the vertical line test: If each vertical line intersects a graph in no more than
one point, then the graph represents a function. There is also a useful distinction
between two basic types of functions. Consider the graphs of the two functions in
Figure 4.9: (a) f (x ) 5 2x 2 1 and (b) g(x ) 5 x 2. In part (a), any horizontal line will
intersect the graph in no more than one point. Therefore, every value of f (x ) has

4.3

GRAPHING CALCULATOR ACTIVITIES
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only one value of x associated with it. Any function that has this property of having
exactly one value of x associated with each value of f (x) is called a one-to-one
function. The function g (x ) 5 x 2 is not a one-to-one function because the horizon-
tal line in Figure 4.9(b) intersects the parabola in two points.

F I G U R E  4 . 9

Stated another way, a function f is said to be one-to-one if x1 Þ x2 implies that
f (x1) Þ f (x2). In other words, different values for x always result in different values
for f (x ). Thus, without a graph, we can show that f (x ) 5 2x 2 1 is a one-to-one
function as follows: If x1 Þ x2, then 2x1 Þ 2x2 and therefore 2x1 2 1 Þ 2x2 2 1.
Furthermore, we can show that f (x ) 5 x 2 is not a one-to-one function because
f (2) 5 4 and f (22) 5 4; that is, different values for x produce the same value for
f (x).

Now let’s consider a one-to-one function f that assigns the value f (x ) in its
range R to each x in its domain D (Figure 4.10a). We can define a new function g
that goes from R to D; it assigns f (x ) in R back to x in D, as indicated in Figure
4.10(b). The functions f and g are called inverse functions of one another. The fol-
lowing definition precisely states this concept.

F I G U R E  4 . 1 0

(b)

D

x

R

f(x)
g

(a)

D

x

R

f(x)
f

(a)  f (x) = 2x − 1 (b)  g(x) = x2

x

g(x)

x

f (x)
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In Definition 4.2, note that for f and g to be inverses of each other, the domain of f
must equal the range of g, and the range of f must equal the domain of g.
Furthermore, g must reverse the correspondences given by f, and f must reverse the
correspondences given by g. In other words, inverse functions undo each other. Let’s
use Definition 4.2 to verify that two specific functions are inverses of each other.

Verify that f (x ) 5 4x 2 5 and g(x ) 5 }
x 1

4
5

} are inverse functions.

Solution

Because the set of real numbers is the domain and range of both functions, we know
that the domain of f equals the range of g and that the range of f equals the domain of
g. Furthermore,

( f 8 g )(x ) 5 f (g (x))

5 f 1}x 1

4
5

}2
5 41}x 1

4
5

}2 2 5 5 x

and

(g 8 f )(x ) 5 g( f (x))

5 g(4x 2 5)

5 }
4x 2

4
5 1 5
} 5 x

Therefore, f and g are inverses of each other. n

D E F I N I T I O N  4 . 2

Let f be a one-to-one function with a domain of X and a range of Y. A
function g with a domain of Y and a range of X is called the inverse
function of f if

( f 8 g )(x ) 5 x for every x in Y

and

(g 8 f )(x ) 5 x for every x in X

E X A M P L E  1
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Verify that f (x) 5 x2 1 1 for x $ 0 and g(x) 5 Ïxw2w 1w for x $ 1 are inverse 
functions.

Solution

First, note that the domain of f equals the range of g—namely, the set of nonnegative
real numbers. Also, the range of f equals the domain of g—namely, the set of real
numbers greater than or equal to 1. Furthermore,

( f 8 g )(x ) 5 f (g(x))

5 f 1Ïx2w1w2

5 1Ïxw2w 1w22 1 1

5 x 2 1 1 1 5 x

and

(g 8 f )(x ) 5 g( f (x))

5 g(x 2 1 1)

5 Ïxw2w1w 1w 2w 1w 5 Ïxw2w 5 x Ïxw2w 5 x because x $ 1

Therefore, f and g are inverses of each other. n

The inverse of a function f is commonly denoted by f 21 (read f inverse or the
inverse of f ). Do not confuse the 21 in f 21 with a negative exponent. The symbol
f 21 does not mean 1@f 1 but refers to the inverse function of function f.

Remember that a function can also be thought of as a set of ordered pairs no
two of which have the same first element. Along those lines, a one-to-one function
further requires that no two of the ordered pairs have the same second element.
Then, if the components of each ordered pair of a given one-to-one function are
interchanged, the resulting function and the given function are inverses of each
other. Thus, if

f 5 { (1, 4), (2, 7), (5, 9)}

then

f 21 5 { (4, 1), (7, 2), (9, 5)}

Graphically, two functions that are inverses of each other are mirror images
with reference to the line y 5 x. This is due to the fact that ordered pairs (a, b ) and
(b, a ) are reflections of each other with respect to the line y 5 x, as illustrated in
Figure 4.11. (You will verify this in the next set of exercises.) Therefore, if the
graph of a function f is known, as in Figure 4.12(a), then the graph of f 21 can be
determined by reflecting f across the line y 5 x (Figure 4.12b).

E X A M P L E  2
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F I G U R E  4 . 1 1

F I G U R E  4 . 1 2

Finding Inverse Functions

The idea of inverse functions undoing each other provides the basis for an informal
approach to finding the inverse of a function. Consider the function

f (x) 5 2x 1 1

To each x this function assigns twice x plus 1. To undo this function, we can subtract
1 and divide by 2. Hence the inverse is

f 21(x ) 5 }
x 2

2
1

}

Now let’s verify that f and f 21 are indeed inverses of each other.

y = x

f −1

f

x

y = f(x)

(b)

f

x

y = f(x)

(a)

(b, a)

y = x

x

y = f (x)
(a, b)
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Thus the inverse of f (x ) 5 2x 1 1 is f 21(x) 5 }
x 2

2
1

}.

This informal approach may not work very well with more complex functions,
but it does emphasize how inverse functions are related to each other. A more for-
mal and systematic technique for finding the inverse of a function can be described
as follows.

1. Replace the symbol f (x) with y.

2. Interchange x and y.

3. Solve the equation for y in terms of x.

4. Replace y with the symbol f 21(x ).

The following examples illustrate this technique.

Find the inverse of f (x ) 5 }
2
3

}x 1 }
3
5

}.

Solution

When we replace f (x) with y, the equation becomes y 5 }
2
3

}x 1 }
3
5

}. Interchanging x

and y produces x 5 }
2
3

}y 1 }
3
5

}.

Now, solving for y, we obtain

x 5 }
2
3

}y 1 }
3
5

}

15(x ) 5 151}
2
3

}y 1 }
3
5

}2
15x 5 10y 1 9

15x 2 9 5 10y

}
15x

10
2 9
} 5 y

Finally, by replacing y with f 21(x ), we can express the inverse function as

f 21(x ) 5 }
15x

10
2 9
}

( f 8 f 21)(x ) 5 f ( f 21(x ))

5f 1}x 2

2
1

}2
5 21}x 2

2
1

}2 1 1

5 x 2 1 1 1 5 x

( f 21
8 f )(x) 5 f 21( f (x ))

5 f 21(2x 1 1)

5 }
2x 1

2
1 2 1
}

5 }
2
2
x
} 5 x

E X A M P L E  3
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The domain of f is equal to the range of f 21 (both are the set of real numbers) and the
range of f equals the domain of f 21 (both are the set of real numbers). Furthermore,
we could show that ( f 8 f 21)(x ) 5 x and ( f 21

8 f )(x ) 5 x. We leave this for you to
complete. n

Does f (x) 5 x 2 2 2 have an inverse function? Sometimes a graph of the func-
tion helps to answer such a question. In Figure 4.13(a), it should be evident that f is
not a one-to-one function and therefore cannot have an inverse. However, it should
also be apparent from the graph that if we restrict the domain of f to be the nonnega-
tive real numbers, then it is a one-to-one function and should have an inverse (Fig-
ure 4.13b). The next example illustrates how to find the inverse function.

F I G U R E  4 . 1 3

Find the inverse of f (x ) 5 x 2 2 2, where x $ 0.

Solution

When we replace f (x) with y, the equation becomes

y 5 x 2 2 2, x $ 0

Interchanging x and y produces

x 5 y 2 2 2, y $ 0

Now let’s solve for y; keep in mind that y is to be nonnegative.

x 5 y 2 2 2

x 1 2 5 y 2

Ïxw1w 2w 5 y, x $ 22

(b)

x

f(x)

(a)

x

f(x)

E X A M P L E  4
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Finally, by replacing y with f 21(x ), we can express the inverse function as

f 21(x ) 5 Ïxw1w 2w, x $ 22

The domain of f equals the range of f 21 (both are the nonnegative real numbers), and
the range of f equals the domain of f 21 (both are the real numbers greater than or
equal to 22). It can also be shown that ( f 8 f 21)(x ) 5 x and ( f 21

8 f )(x ) 5 x.
Again, we leave this for you to complete. n

Increasing and Decreasing Functions

Some general ideas can be formulated that were specifically illustrated in Example
4. In Figure 4.14 the function f is said to be increasing on the intervals (2∞, x1] and
[x2, ∞), and f is said to be decreasing on the interval [x1, x2].

F I G U R E  4 . 1 4

More specifically, increasing and decreasing functions are defined as follows.

Apply Definition 4.3 and you will see that the quadratic function f (x ) 5 x 2

shown in Figure 4.15 is decreasing on (2∞, 0] and increasing on [0, ∞). Likewise,
the linear function f (x ) 5 2x in Figure 4.16 is increasing throughout its domain of
real numbers, so we say it is increasing on (2∞, ∞). The function f (x ) 5 22x in
Figure 4.17 is decreasing on (2∞, ∞). For our purposes in this text, we will rely on
our knowledge of the graphs of the functions to determine where functions are
increasing and decreasing. More formal techniques for determining where functions
increase and decrease will be developed in calculus.

D E F I N I T I O N  4 . 3

Let f be a function, with the interval I a subset of the domain of f. Let
x1 and x2 be in I. Then

1. f is increasing on I if f (x1) , f (x2) whenever x1 , x2,

2. f is decreasing on I if f (x1) . f (x2) whenever x1 , x2, and

3. f is constant on I if f (x1) 5 f (x2) for every x1 and x2.

x1

f
x2

x

y
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F I G U R E  4 . 1 5

F I G U R E  4 . 1 6 F I G U R E  4 . 1 7

A function that is always increasing (or always decreasing) over its entire
domain is one-to-one and so has an inverse. Furthermore, as illustrated by Example
4, even if a function is not one-to-one over its entire domain, it may be so over some
subset of the domain. It then has an inverse over this restricted domain.

As functions become more complex, a graphing utility can be used to help
with the problems we have discussed in this section. For example, suppose that we

want to know whether the function f (x ) 5 }
3
x
x
2

1

4
1

} is a one-to-one function and

therefore has an inverse. Using a graphing utility, we can quickly get a sketch of the
graph (see Figure 4.18). Then, by applying the horizontal line test to the graph, we
can be fairly certain that the function is one-to-one. (Later we will develop some
concepts that will allow us to be absolutely certain of this conclusion.)

f (x) = 22x

x

f(x)

f (x) = 2x

x

f(x)

f (x) = x2

x

f(x)
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F I G U R E  4 . 1 8

A graphing utility can also be used to help determine intervals on which a
function is increasing or decreasing. For example, to determine such intervals for the

function f (x ) 5 Ïxw2w1w 4w, let’s use a graphing utility to get a sketch of the curve
(Figure 4.19). From this graph we see that the function is decreasing on the interval
(2∞, 0] and increasing on the interval [0, ∞).

F I G U R E  4 . 1 9

−15 15

10

−10

−15 15

10

−10

P R O B L E M  S E T  4 . 3

For Problems 1–6, determine whether the graph represents a
one-to-one function.

1. 2. 3. 4.

x

f(x)

x

f(x)

x

f(x)

x

f(x)
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5. 6.

For Problems 7–14, determine whether the function f is one-
to-one.

7. f (x) 5 5x 1 4

8. f (x) 5 23x 1 4

9. f (x) 5 x 3

10. f (x) 5 x 5 1 1

11. f (x) 5 u x u 1 1

11. f (x) 5 2u x u 2 2

13. f (x) 5 2x 4

14. f (x) 5 x 4 1 1

For Problems 15–18, (a) list the domain and range of the
function, (b) form the inverse function f 21, and (c) list the
domain and range of f 21.

15. f 5 { (1, 5), (2, 9), (5, 21)}

16. f 5 { (1, 1), (4, 2), (9, 3), (16, 4)}

17. f 5 { (0, 0), (2, 8), (21, 21), (22, 28)}

18. f 5 { (21, 1), (22, 4), (23, 9), (24, 16)}

For Problems 19–26, verify that the two given functions are
inverses of each other.

19. f (x) 5 5x 2 9 and g(x ) 5 }
x 1

5
9

}

20. f (x) 5 23x 1 4 and g(x) 5 }
4 2

3
x

}

21. f (x) 5 2}
1
2

}x 1 }
5
6

} and g(x) 5 22x 1 }
5
3

}

22. f (x) 5 x 3 1 1 and g(x) 5 Ï3 xw2w 1w

23. f (x) 5 }
x 2

1
1

} for x . 1 and

g(x ) 5 }
x 1

x
1

} for x . 0

24. f (x) 5 x 2 1 2 for x $ 0 and

g(x ) 5 Ïxw2w 2w for x $ 2

25. f (x) 5 Ï2wxw2w 4w for x $ 2 and

g(x ) 5 }
x 2

2
1 4
} for x $ 0

26. f (x) 5 x 2 2 4 for x $ 0 and

g(x ) 5 Ïxw1w 4w for x $ 24

For Problems 27–36, determine whether f and g are inverse
functions.

27. f (x) 5 3x and g(x) 5 2}
1
3

}x

28. f (x) 5 }
3
4

}x 2 2 and g(x ) 5 }
4
3

}x 1 }
8
3

}

29. f (x) 5 x 3 and g(x ) 5 Ï3 xw

30. f (x) 5 }
x 1

1
1

} and g(x ) 5 }
1 2

x
x

}

31. f (x) 5 x and g(x) 5 }
1
x

}

32. f (x) 5 }
3
5

}x 1 }
1
3

} and g(x ) 5 }
5
3

}x 2 3

33. f (x) 5 x 2 2 3 for x $ 0 and

g(x ) 5 Ïxw1w 3w for x $ 23

34. f (x) 5 u x 2 1 u for x $ 1 and

g(x ) 5 u x 1 1 u for x $ 0

35. f (x) 5Ïxw1w 1w and g(x ) 5 x 2 2 1 for x $ 0

36. f (x) 5 Ï2wxw2w 2w and g(x ) 5 }
1
2

}x 2 1 1

For Problems 37–50, (a) find f 21 and (b) verify that 
( f 8 f 21)(x ) 5 x and ( f 21

8 f )(x ) 5 x.

37. f (x) 5 x 2 4

38. f (x) 5 2x 2 1

x

f(x)

x

f(x)
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39. f (x) 5 23x 2 4

40. f (x) 5 25x 1 6

41. f (x) 5 }
3
4

}x 2 }
5
6

}

42. f (x) 5 }
2
3

}x 2 }
1
4

}

43. f (x) 5 2 }
2
3

}x

44. f (x) 5 }
4
3

}x

45. f (x) 5Ïxw for x $ 0

46. f (x) 5}
1
x

} for x Þ 0

47. f (x) 5 x 2 1 4 for x $ 0

48. f (x) 5 x 2 1 1 for x # 0

49. f (x) 5 1 1 }
1
x

} for x . 0

50. f (x) 5 }
x 1

x
1

} for x . 21

For Problems 51–58, (a) find f 21 and (b) graph f and f 21 on
the same set of axes.

51. f (x) 5 3x

52. f (x) 5 2x

53. f (x) 5 2x 1 1

54. f (x) 5 23x 2 3

55. f (x) 5 }
x 2

2
1

} for x . 1

56. f (x) 5 }
x
2

2

1
2

} for x . 2

57. f (x) 5 x 2 2 4 for x $ 0

58. f (x) 5 Ïxw2w 3w for x $ 3

For Problems 59–66, find the intervals on which the given
function is increasing and the intervals on which it is decreas-
ing.

59. f (x) 5 x 2 1 1

60. f (x) 5 x 3

61. f (x) 5 23x 1 1

62. f (x) 5 (x 2 3)2 1 1

63. f (x) 5 2(x 1 2)2 2 1

64. f (x) 5 x 2 2 2x 1 6

65. f (x) 5 22x 2 2 16x 2 35

66. f (x) 5 x 2 1 3x 2 1

67. Does the function f (x) 5 4 have an inverse? Explain
your answer.

68. Explain why every nonconstant linear function has an
inverse.

69. Are the functions f (x) 5 x 4 and g(x ) 5 Ï
4

xw inverses of
each other? Explain your answer.

70. What does it mean to say that 2 and 22 are additive
inverses of each other? What does it mean to say that 2 

and }
1
2

} are multiplicative inverses of each other? What 

does it mean to say that the functions f (x ) 5 x 2 2 and
f (x) 5 x 1 2 are inverses of each other? Do you think
that the concept of “inverse” is being used in a consistent
manner? Explain your answer.

THOUGHTS INTO WORDS
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71. The function notation and the operation of composition
can be used to find inverses as follows: To find the
inverse of f (x) 5 5x 1 3, we know that f ( f 21(x )) must
produce x. Therefore,

f ( f 21(x)) 5 5[ f 21(x )] 1 3 5 x

5[ f 21(x)] 5 x 2 3

f 21(x ) 5 }
x 2

5
3

}

Use this approach to find the inverse of each of the fol-
lowing functions.

a. f (x ) 5 3x 2 9 b. f (x) 5 22x 1 6

c. f (x ) 5 2x 1 1 d. f (x) 5 2x

e. f (x ) 5 25x f. f (x) 5 x 2 1 6 for x $ 0

72. If f (x ) 5 2x 1 3 and g(x ) 5 3x 2 5, find

a. ( f 8 g )21(x) b. ( f 21
8 g21)(x )

c. (g2 1
8 f 21)(x )

GRAPHING CALCULATOR ACTIVITIES

73. For Problems 37–44, graph the given function, the
inverse function that you found, and f (x) 5 x on the
same set of axes. In each case, the given function and its
inverse should produce graphs that are reflections of
each other through the line f (x ) 5 x.

74. There is another way in which we can use the graphing
calculator to help show that two functions are inverses of
each other. Suppose we want to show that f (x ) 5 x 2 2 2
for x $ 0 and g(x ) 5 Ïxw1w 2w for x $ 22 are inverses
of each other. Let’s make the following assignments for
our graphing calculator.

f : Y1 5 x 2 2 2

g: Y2 5 Ïxw1w 2w
f 8 g: Y3 5 (Y2)2 2 2

g 8 f : Y4 5 ÏYw1w1w 2w

Now we can proceed as follows:

1. Graph Y1 5 x 2 2 2 and note that for x . 0, the range
is greater than or equal to 22.

2. Graph Y2 5 Ïxw1w 2w and note that for x $ 22, the
range is greater than or equal to 0.

Thus the domain of f equals the range of g 
and the range of f equals the domain of g.

3. Graph Y3 5 (Y2)2 2 2 for x $ 22 and observe the
line y 5 x for x $ 22.

4. Graph Y4 5 ÏYw1w1w 2w for x $ 0 and observe the line
y 5 x for x $ 0.

Thus ( f 8 g )(x ) 5 x and (g 8 f )(x ) 5 x, and
the two functions are inverses of each other.

Use this approach to check your answers for Problems
45–50.

75. Use the technique demonstrated in Problem 74 to show
that

f (x) 5 }
Ïxw2

x

w1w 1w
}

and

g(x ) 5 }
Ï1w

x

2w xw2w
} for 21 , x , 1 

are inverses of each other.

Further Investigations
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LOGARITHMS

In Sections 4.1 and 4.2, we gave meaning to exponential expressions of the form bn,
where b is any positive real number and n is any real number; we next used expo-
nential expressions of the form bn to define exponential functions; and then we used
exponential functions to help solve problems. In the next three sections, we will fol-
low the same basic pattern with respect to a new concept, that of a logarithm. Let’s
begin with the following definition.

According to Definition 4.4, the logarithm of 16 base 2 is the exponent t such that 
2t 5 16; thus we can write log2 16 5 4. Likewise, we can write log10 1000 5 3
because 103 5 1000. In general, Definition 4.4 can be remembered in terms of the
statement

logb r 5 t is equivalent to bt 5 r

Therefore, we can easily switch back and forth between exponential and logarithmic
forms of equations, as the next examples illustrate.

log2 8 5 3 is equivalent to 23 5 8

log10 100 5 2 is equivalent to 102 5 100

log3 81 5 4 is equivalent to 34 5 81

log10 0.001 5 23 is equivalent to 1023 5 0.001

27 5 128 is equivalent to log2 128 5 7

53 5 125 is equivalent to log5 125 5 3

1}
1
2

}24
5 }

1
1
6
} is equivalent to log1@2 }

1
1
6
} 5 4

1022 5 0.01 is equivalent to log10 0.01 5 22

Some logarithms can be determined by changing to exponential form and using the
properties of exponents, as in the next two examples.

D E F I N I T I O N  4 . 4

If r is any positive real number, then the unique exponent t such that
bt 5 r is called the logarithm of r with base b and is denoted by
logb r.

4.4
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Evaluate log10 0.0001.

Solution

Let log10 0.0001 5 x. Changing to exponential form yields 10x 5 0.0001, which can
be solved as follows.

10x 5 0.0001

10x 5 1024 0.0001 5 }
10,

1
000
} 5 }

1
1
04} 5 1024

x 5 24

Thus we have log10 0.0001 5 24. n

Evaluate log9 1Ï
5

2w7w@32.

Solution

Let log9 1Ï
5

2w7w@32 5 x. Changing to exponential form yields 9x 5 Ï
5

2w7w@3, which can
be solved as follows.

9x 5 }
(27

3
)1@5

}

(32)x 5 }
(33

3
)1@5

}

32x 5 }
3
3

3@5

}

32x 5 322@5

2x 5 2}
2
5

}

x 5 2}
1
5

}

Therefore, we have log9 }
Ï5

3
2w7w
} 5 2}

1
5

}. n

Some equations that involve logarithms can also be solved by changing to
exponential form and using our knowledge of exponents.

Solve log8 x 5 }
2
3

}.

Solution

Change log8 x 5 }
2
3

} to exponential form to obtain

82@3 5 x

E X A M P L E  3

E X A M P L E  1

E X A M P L E  2
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Therefore,

x 5 1Ï3
8w22 5 22 5 4

The solution set is { 4} . n

Solve logb }
2
6
7
4
} 5 3.

Solution

Change logb }
2
6
7
4
} 5 3 to exponential form to obtain

b 3 5 }
2
6

7
4
}

Therefore,

b 5 !3
}
2
6§7
4
}§ 5 }

3
4

}

The solution set is 5}
3
4

}6. n

Properties of Logarithms

There are some properties of logarithms that are a direct consequence of Definition
4.4 and the properties of exponents. For example, by writing the exponential equa-
tions b1 5 b and b0 5 1 in logarithmic form, we obtain the following property.

Therefore, according to Property 4.3, we can write

log10 10 5 1 log4 4 5 1

log10 1 5 0 log5 1 5 0

Also, from Definition 4.4 we know that logb r is the exponent t such that 
bt 5 r. Therefore, raising b to the logb r power must produce r. This fact is stated in
Property 4.4.

P R O P E R T Y  4 . 3

For b . 0 and b Þ 1,

logb b 5 1 and logb 1 5 0

E X A M P L E  4
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Therefore, according to Property 4.4, we can write

10log10 72 5 72 3log3 85 5 85 e loge 7 5 7

Because a logarithm is by definition an exponent, it is reasonable to predict
that logarithms will have some properties that correspond to the basic exponential
properties. This is an accurate prediction; these properties provide a basis for com-
putational work with logarithms. Let’s state the first of these properties and show
how we can verify it by using our knowledge of exponents.

To verify Property 4.5, we can proceed as follows. Let m 5 logb r and n 5 logb s.
Change each of these equations to exponential form.

m 5 logb r becomes r 5 bm

n 5 logb s becomes s 5 bn

Thus the product rs becomes

rs 5 bm ? bn 5 bm1n

Now, by changing rs 5 bm1n back to logarithmic form, we obtain

logb rs 5 m 1 n

Replacing m with logb r and n with logb s yields

logb rs 5 logb r 1 logb s

The following two examples demonstrate a use of Property 4.5.

If log2 5 5 2.3219 and log2 3 5 1.5850, evaluate log2 15.

Solution

Because 15 5 5 ? 3, we can apply Property 4.5 as follows.

P R O P E R T Y  4 . 5

For positive numbers b, r, and s, where b Þ 1,

logb rs 5 logb r 1 logb s

P R O P E R T Y  4 . 4

For b . 0, b Þ 1, and r . 0,

b logb r 5 r

E X A M P L E  5
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log2 15 5 log2(5 ? 3)

5 log2 5 1 log2 3

5 2.3219 1 1.5850 5 3.9069 n

If log10 178 5 2.2504 and log10 89 5 1.9494, evaluate log10(178 ? 89).

Solution

log10(178 ? 89) 5 log10 178 1 log10 89

5 2.2504 1 1.9494 5 4.1998 n

Because bm@bn 5 bm2n, we would expect a corresponding property that per-
tains to logarithms. Property 4.6 is that property. It can be verified by using an
approach similar to the one we used for Property 4.5. This verification is left for you
to do as an exercise in the next problem set.

Property 4.6 can be used to change a division problem into an equivalent subtraction
problem, as the next two examples illustrate.

If log5 36 5 2.2266 and log5 4 5 0.8614, evaluate log5 9.

Solution

Because 9 5 }
3
4
6
}, we can use Property 4.6 as follows.

log5 9 5 log5 1}
3
4
6
}2

5 log5 36 2 log5 4

5 2.2266 2 0.8614 5 1.3652 n

Evaluate log10 1}
3
8
7
6
9

}2, given that log10 379 5 2.5786 and log10 86 5 1.9345.

Solution

log10 1}
3
8
7
6
9

}2 5 log10 379 2 log10 86

5 2.5786 2 1.9345 5 0.6441 n

P R O P E R T Y  4 . 6

For positive numbers b, r, and s, where b Þ 1,

logb 1}
r
s

}2 5 logb r 2 logb s

E X A M P L E  6

E X A M P L E  8

E X A M P L E  7
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Another property of exponents states that (bn)m 5 bmn. The corresponding
property of logarithms is stated in Property 4.7. Again, we leave the verification of
this property as an exercise for you to do in the next set of problems.

The next two examples demonstrate a use of Property 4.7.

Evaluate log2 221@3, given that log2 22 5 4.4594.

Solution

log2 221@3 5 }
1
3

}log2 22 Property 4.7

5 }
1
3

}(4.4594) 5 1.4865 n

Evaluate log10(8540)3@5, given that log10 8540 5 3.9315.

Solution

log10(8540)3@5 5 }
3
5

}log10 8540

5 }
3
5

}(3.9315) 5 2.3589 n

The properties of logarithms can be used to change the forms of various loga-
rithmic expressions, as we will see in the next two examples.

Express logb Ïxyw@wzw in terms of the logarithms of x, y, and z.

Solution

logb !}
x
z
y
}§ 5 logb1}

x
z
y
}21@2

5 }
1
2

}logb1}
x
z
y
}2 Property 4.7

5 }
1
2

}(logb xy 2 logb z) Property 4.6

5 }
1
2

}(logb x 1 logb y 2 logb z) Property 4.5 n

P R O P E R T Y  4 . 7

If r is a positive real number, b is a positive real number other than 1,
and p is any real number, then

logb rp 5 p(logb r)

E X A M P L E  9

E X A M P L E  1 0

E X A M P L E  1 1
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Express 2 logb x 1 3 logb y 2 4 logb z as one logarithm.

Solution

2 logb x 1 3 logb y 2 4 logb z 5 logb x 2 1 logb y 3 2 logb z 4

5 logb x 2y 3 2 logb z 4

5 logb1}
x

z

2y
4

3

}2 n

Sometimes we need to change from an indicated sum or difference of logarith-
mic quantities to an indicated product or quotient. This is especially helpful when
we are solving certain kinds of equations that involve logarithms. Note in these next
two examples how we can use the properties, along with the process of changing
from logarithmic form to exponential form, to solve some equations.

Solve log10 x 1 log10(x 1 9) 5 1.

Solution

log10 x 1 log10(x 1 9) 5 1

log10[x(x 1 9)] 5 1 Property 4.5
x(x 1 9) 5 101 Change to exponential form.
x 2 1 9x 5 10

x 2 1 9x 2 10 5 0

(x 1 10)(x 2 1) 5 0

x 1 10 5 0 or x 2 1 5 0

x 5 210 or x 5 1

Because the left-hand side of the original equation is meaningful only if x . 0 and
x 1 9 . 0, the solution 210 must be discarded. Thus the solution set is { 1} . n

Solve log5(x 1 4) 2 log5 x 5 2.

Solution

log5(x 1 4) 2 log5 x 5 2

log51}x 1

x

4
}2 5 2 Property 4.6

52 5 }
x 1

x

4
} Change to exponential form.

25 5 }
x 1

x

4
}

25x 5 x 1 4

24x 5 4

x 5 }
2

4

4
} 5 }

1

6
} The solution set is 5}

1

6
}6. n

E X A M P L E  1 4

E X A M P L E  1 2

E X A M P L E  1 3
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For Problems 1–8, write each equation in logarithmic form.
For example, 24 5 16 becomes log2 16 5 4.

1. 32 5 9 2. 25 5 32

3. 53 5 125 4. 101 5 10

5. 224 5 }
1
1
6
} 6. 1}

2
3

}223
5 }

2
8
7
}

7. 1022 5 0.01 8. 105 5 100,000

For Problems 9–14, write each equation in exponential form.
For example, log2 8 5 3 becomes 23 5 8.

9. log2 64 5 6 10. log3 27 5 3

11. log10 0.1 5 21 12. log51}
2
1
5
}2 5 22

13. log21}
1
1
6
}2 5 24 14. log10 0.00001 5 25

For Problems 15–30, evaluate each expression.

15. log6 36 16. log3 243

17. log51}
1
5

}2 18. log41}
6
1
4
}2

19. log10 10 20. log10 1

21. log3 Ï3w 22. log5 Ï
3

2w5w

23. log3 1}
Ï

3

2w7w
}2 24. log1@2 1}

Ï4

2

8w
}2

25. log1@4 1}
Ï4

2

3w2w
}2 26. log2 1}

Ï3

4

1w6w
}2

27. 10log107 28. 5log513

29. log2(log5 5) 30. log6(log2 64)

For Problems 31–38, solve each equation.

31. log5 x 5 2 32. log10 x 5 3

33. log8 t 5 }
5
3

} 34. log4 m 5 }
3
2

}

35. logb 3 5 }
1
2

} 36. logb 2 5 }
1
2

}

37. log10 x 5 0 38. log10 x 5 1

For Problems 39–46, given that log2 5 5 2.3219 and log2 7 5
2.8074, evaluate each expression by using Properties 4.5–4.7.

39. log2 35 40. log21}
7
5

}2
41. log2 125 42. log2 49

43. log2 Ï7w 44. log2 Ï
3

5w

45. log2 175 46. log2 56

47. log2 80

For Problems 48–56, given that log8 5 5 0.7740 and 
log8 11 5 1.1531, evaluate each expression using Properties
4.5–4.7.

48. log8 55 49. log81}
1
5
1
}2

50. log8 25 51. log8 Ï1w1w

52. log8(5)2@3 53. log8 88

54. log8 320 55. log81}
2
1
5
1
}2

56. log81}
1
2
2
5
1

}2
For Problems 57–64, express each as the sum or difference of
simpler logarithmic quantities. (Assume that all variables rep-
resent positive real numbers.) For example,

logb1}
x
y

3

2}2 5 logb x 3 2 logb y 2

5 3 logb x 2 2 logb y

57. logb xyz 58. logb 1}
x
y

2

}2
59. logb x 2y 3 60. logb x 2@3y 3@4

61. logb Ïxyw 62. logb Ï3 xw2zw

63. logb !}
x
y

}§ 64. logb 3x1!}
x
y

}§24

P R O B L E M  S E T  4 . 4
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For Problems 65–72, express each as a single logarithm.
(Assume that all variables represent positive numbers.) For
example,

3 logb x 1 5 logb y 5 logb x 3y 5

65. logb x 1 logb y 2 logb z

66. 2 logb x 2 4 logb y

67. (logb x 2 logb y) 2 logb z

68. logb x 2 (logb y 2 logb z)

69. logb x 1 }
1
2

} logb y

70. 2 logb x 1 4 logb y 2 3 logb z

71. 2 logb x 1 }
1
2

} logb(x 2 1) 2 4 logb(2x 1 5)

72. }
1
2

} logb x 2 3 logb x 1 4 logb y

For Problems 73–84, solve each equation.

73. log3 x 1 log3 4 5 2 74. log7 5 1 log7 x 5 1

75. log10 x 1 log10(x 2 21) 5 2

76. log10 x 1 log10(x 2 3) 5 1

77. log2 x 1 log2(x 2 3) 5 2

78. log3 x 1 log3(x 2 2) 5 1

79. log10(2x 2 1) 2 log10(x 2 2) 5 1

80. log10(9x 2 2) 5 1 1 log10(x 2 4)

81. log5(3x 2 2) 5 1 1 log5(x 2 4)

82. log6 x 1 log6(x 1 5) 5 2

83. log8(x 1 7) 1 log8 x 5 1

84. log6(x 1 1) 1 log6(x 2 4) 5 2

85. Verify Property 4.6.

86. Verify Property 4.7.

THOUGHTS INTO WORDS

LOGARITHMIC FUNCTIONS

The concept of a logarithm can now be used to define a logarithmic function.

D E F I N I T I O N  4 . 5

If b . 0 and b Þ 1, then the function defined by

f (x) 5 logb x

where x is any positive real number, is called the logarithmic
function with base b.

4.5

87. How would you explain the concept of a logarithm to
someone who has never studied algebra?

88. Explain, without using Property 4.4, why 4log49 equals 9.

89. In the next section we are going to show that the logarith-
mic function f (x) 5 log2 x is the inverse of the exponen-
tial function f (x) 5 2x. From that information, how
could you sketch a graph of f (x) 5 log2 x?
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We can obtain the graph of a specific logarithmic function in various ways.
For example, we can change the equation y 5 log2 x to the exponential equation
2y 5 x, from which we can determine a table of values. We will instruct you to use
this approach to graph some logarithmic functions in the next set of exercises.

We can also obtain the graph of a logarithmic function by setting up a table of
values directly from the logarithmic equation. We will demonstrate this approach.

Graph f (x) 5 log2 x.

Solution

Let’s choose some values for x where the corresponding values for log2 x are easily
determined. (Remember that logarithms are defined only for the positive real num-
bers.) Plot the points determined by the table and connect them with a smooth curve
to produce Figure 4.20.

F I G U R E  4 . 2 0 n

Now suppose that we consider two functions f and g as follows.

f (x) 5 bx Domain: all real numbers
Range: positive real numbers

g(x ) 5 logb x Domain: positive real numbers
Range: all real numbers

Furthermore, suppose that we consider the composition of f and g and the composi-
tion of g and f.

( f 8 g )(x ) 5 f (g(x)) 5 f (logb x ) 5 b logbx 5 x

(g 8 f )(x ) 5 g( f (x)) 5 g(bx ) 5 logb bx 5 x logb b 5 x(1) 5 x

Therefore, because the domain of f is the range of g and the range of f is the domain
of g, and because f (g(x)) 5 x and g( f (x )) 5 x, the two functions f and g are
inverses of each other.

f (x) = log2x

x

f(x)x f(x)

}
1
8} 23 log2 }

1
8} 5 23 because 223 5 }

2
1

3} 5 }
1
8}

}
1
4} 22

}
1
2} 21
1 0 log2 1 5 0 because 20 5 1
2 1
4 2
8 3

E X A M P L E  1
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Remember that the graphs of a function and its inverse are reflections of each
other through the line y 5 x. Thus the graph of a logarithmic function can be deter-
mined by reflecting the graph of its inverse exponential function through the line
y 5 x. This idea is illustrated in Figure 4.21, where the graph of y 5 2x has been
reflected across the line y 5 x to produce the graph of y 5 log2 x.

F I G U R E  4 . 2 1

Figure 4.3 illustrated the general behavior patterns of exponential functions
with two graphs. We can now reflect each of these graphs through the line y 5 x and
observe the general behavior patterns of logarithmic functions, as shown in Figure
4.22.

F I G U R E  4 . 2 2

Finally, when graphing logarithmic functions, don’t forget about transforma-
tions of the basic curves.

f −1(x) = logbx

(1, 0)

(0, 1)

y = x

f(x) = bx

(b) b . 1

x

y

f −1(x) = logbx

(1, 0)

(0, 1)

y = x

f(x) = bx

(a) 0 , b , 1

x

y

y = log2x

(2, 4)

(4, 2)
(2, 1)

(1, 0)

(0, 1)

(1, 2)

y = x

(  , −1)1
2

(  , −2)1
4

(−2,   )1
4

(−1,   )1
2

x

y
y = 2x
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1. The graph of f (x ) 5 3 1 log2 x is the graph of f (x ) 5 log2 x moved up
three units. (Because log2 x 1 3 is apt to be confused with log2(x 1 3), we
commonly write 3 1 log2 x.)

2. The graph of f (x ) 5 log2(x 2 4) is the graph of f (x ) 5 log2 x moved four
units to the right.

3. The graph of f (x ) 5 2log2 x is the graph of f (x ) 5 log2 x reflected across
the x axis.

Common Logarithms: Base 10

The properties of logarithms that we discussed in Section 4.4 are true for any valid
base. However, because the Hindu–Arabic numeration system that we use is a base-
10 system, logarithms to base 10 have historically been used for computational pur-
poses. Base-10 logarithms are called common logarithms.

Originally, common logarithms were developed to aid in complicated numeri-
cal calculations that involve products, quotients, and powers of real numbers. Today
they are seldom used for that purpose because the calculator and computer can much
more effectively handle the messy computational problems. However, common log-
arithms do still occur in applications, so they deserve our attention.

REMARK In Appendix A we have included a short discussion about the
computational aspects of common logarithms. You may find it interesting to
browse through this material. It probably will enhance your appreciation of
the calculator.

As we know from earlier work, the definition of a logarithm allows us to eval-
uate log10 x for values of x that are integral powers of 10. Consider the following
examples.

log10 1000 5 3 because 103 5 1000

log10 100 5 2 because 102 5 100

log10 10 5 1 because 101 5 10

log 10 1 5 0 because 100 5 1

log10 0.1 5 21 because 1021 5 }
1
1
0
} 5 0.1

log`10 0.01 5 22 because 1022 5 }
1
1
02} 5 0.01

log10 0.001 5 23 because 1023 5 }
1
1
03} 5 0.001

When working exclusively with base-10 logarithms, it is customary to omit writing
the numeral 10 to designate the base. Thus the expression log10 x is written as log x,
and a statement such as log10 1000 5 3 becomes log 1000 5 3. We will follow this
practice from now on in this chapter, but don’t forget that the base is understood to
be 10.
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To find the common logarithm of a positive number that is not an integral
power of 10, we can use an appropriately equipped calculator or a table such as the
one that appears in Appendix A. We used a calculator equipped with a common log-
arithmic function (ordinarily a key labeled log is used) to obtain the following
results rounded to four decimal places.

log 1.75 5 0.2430

log 23.8 5 1.3766

log 134 5 2.1271

log 0.192 5 20.7167

log 0.0246 5 21.6091

In order to use logarithms to solve problems, we sometimes need to be able to
determine a number when the logarithm of the number is known. That is, we may
need to determine x when log x is known. Let’s consider an example.

Find x if log x 5 0.2430.

Solution

If log x 5 0.2430, then changing to exponential form yields 100.2430 5 x; use the 
10x key to find x.

x 5 100.2430 < 1.749846689

Therefore, x 5 1.7498 rounded to five significant digits. n

Be sure that you can use your calculator and obtain the following results. We have
rounded the values for x to five significant digits.

If log x 5 0.7629, then x 5 100.7629 5 5.7930.

If log x 5 1.4825, then x 5 101.4825 5 30.374.

If log x 5 4.0214, then x 5 104.0214 5 10505.

If log x 5 21.5162, then x 5 1021.5162 5 0.030465.

If log x 5 23.8921, then x 5 1023.8921 5 0.00012820.

The common logarithmic function is defined by the equation f (x) 5 log x. It
should now be a simple matter to set up a table of values and sketch the function.
You will do this in the next set of exercises. Remember that f (x ) 5 10x and g(x ) 5
log x are inverses of each other. Therefore, we could also get the graph of g(x) 5
log x by reflecting the exponential curve f (x) 5 10x across the line y 5 x.

Be sure that you can use a
calculator and obtain these results.

log10 x 5 log x

E X A M P L E  2
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Natural Logarithms—Base e

In many practical applications of logarithms, the number e (remember e < 2.71828)
is used as a base. Logarithms with a base of e are called natural logarithms and the
symbol ln x is commonly used instead of loge x.

Natural logarithms can be found with an appropriately equipped calculator or
with a table of natural logarithms. (A table of natural logarithms is provided in
Appendix B.) Use a calculator with a natural logarithm function (ordinarily a key
labeled  ln x ) to obtain the following results rounded to four decimal places.

ln 3.21 5 1.1663

ln 47.28 5 3.8561

ln 842 5 6.7358

ln 0.21 5 21.5606

ln 0.0046 5 25.3817

ln 10 5 2.3026

Be sure that you can use your calculator to obtain these results. Keep in mind the
significance of a statement such as ln 3.21 5 1.1663. By changing to exponential
form, we are claiming that e raised to the 1.1663 power is approximately 3.21.
Using a calculator, we obtain e1.1663 5 3.210093293.

Let’s do a few more problems to find x when given ln x. Be sure that you agree
with these results.

If ln x 5 2.4156, then x 5 e2.4156 5 11.196.

If ln x 5 0.9847, then x 5 e0.9847 5 2.6770.

If ln x 5 4.1482, then x 5 e4.1482 5 63.320.

If ln x 5 21.7654, then x 5 e21.7654 5 0.17112.

The natural logarithmic function is defined by the equation f (x) 5 ln x. It is the
inverse of the natural exponential function f(x) 5 ex. Thus one way to graph f (x) 5
ln x is to reflect the graph of f (x) 5 ex across the line y 5 x. We will ask you to do
this in the next set of problems.

In Figure 4.23 we have used a graphing utility to sketch the graph of f (x) 5 ex.
Now on the basis of our previous work with trnsformations, we should be able to
make the statements that follow.

loge x 5 ln x
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F I G U R E  4 . 2 3

1. The graph of f (x) 5 2ex is the graph of f (x) 5 ex reflected through the 
x axis.

2. The graph of f (x) 5 e2x is the graph of f (x) 5 ex reflected through the 
y axis.

3. The graph of f (x) 5 ex 1 4 is the graph of f (x) 5 ex shifted upward four
units.

4. The graph of f (x) 5 ex 1 2 is the graph of f (x) 5 ex shifted two units to the
left.

These statements are con-
firmed in Figure 4.24, which
shows the result of graphing
these four functions on the
same set of axes using a graph-
ing utility.

F I G U R E  4 . 2 4

REMARK So far, we have used a graphing utility to graph only common
logarithmic and natural logarithmic functions. In the next section, we will see
how logarithms with bases other than 10 or e are related to common and nat-
ural logarithms. This will provide a way of using a graphing utility to graph a
logarithmic function with any valid base.

−5 5

10

−10

f (x) 5 e−x

f (x) 5 ex 1 4

f (x) 5 ex12

f (x) = −ex  

10

−10

−5 5
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P R O B L E M  S E T  4 . 5

For Problems 1–10, use a calculator to find each common
logarithm. Express answers to four decimal places.

1. log 7.24 2. log 2.05 3. log 52.23

4. log 825.8 5. log 3214.1 6. log 14.189

7. log 0.729 8. log 0.04376 9. log 0.00034

10. log 0.000069

For Problems 11–20, use your calculator to find x when given
log x. Express answers to five significant digits.

11. log x 5 2.6143 12. log x 5 1.5263

13. log x 5 4.9547 14. log x 5 3.9335

15. log x 5 1.9006 16. log x 5 0.5517

17. log x 5 21.3148 18. log x 5 20.1452

19. log x 5 22.1928 20. log x 5 22.6542

For Problems 21–30, use your calculator to find each natural
logarithm. Express answers to four decimal places.

21. ln 5 22. ln 18 23. ln 32.6

24. ln 79.5 25. ln 430 26. ln 371.8

27. ln 0.46 28. ln 0.524 29. ln 0.0314

30. ln 0.008142

For Problems 31–40, use your calculator to find x when given
ln x. Express answers to five significant digits.

31. ln x 5 0.4721 32. ln x 5 0.9413

33. ln x 5 1.1425 34. ln x 5 2.7619

35. ln x 5 4.6873 36. ln x 5 3.0259

37. ln x 5 20.7284 38. ln x 5 21.6246

39. ln x 5 23.3244 40. ln x 5 22.3745

41. a. Complete the following table and then graph f (x) 5
log x. (Express the values for log x to the nearest
tenth.)

x 0.1 0.5 1 2 4 8 10

log x

b. Complete the following table and express values for
10x to the nearest tenth.

x 21 20.3 0 0.3 0.6 0.9 1

10x

Then graph f (x) 5 10x and reflect it across the line
y 5 x to produce the graph for f (x ) 5 log x.

42. a. Complete the following table and then graph  f (x) 5
ln x. (Express the values for ln x to the nearest tenth.)

x 0.1 0.5 1 2 4 8 10

ln x

b. Complete the following table and express values for
ex to the nearest tenth.

x 22.3 20.7 0 0.7 1.4 2.1 2.3

ex

Then graph  f (x ) 5 ex and reflect it across the line 
y 5 x to produce the graph for  f (x) 5 ln x.

43. Graph y 5 log1@2 x by graphing 1}
1
2

}2y
5 x.

44. Graph y 5 log2 x by graphing 2y 5 x.

45. Graph  f (x) 5 log3 x by reflecting the graph of g(x) 5
3x across the line y 5 x.

46. Graph  f (x) 5 log4 x by reflecting the graph of g(x) 5
4x across the line y 5 x.

For Problems 47–53, graph each function. Remember that the
graph of  f (x ) 5 log2 x is given in Figure 4.20.

47. f (x ) 5 3 1 log2 x 48. f (x) 5 22 1 log2 x

49. f (x ) 5 log2 (x 1 3) 50. f (x) 5 log2 (x 2 2)

51. f (x ) 5 log2 2x 52. f (x) 5 2log2 x

53. f (x ) 5 2 log2 x

54. In chemistry the term pH, meaning “hydrogen power,” is
defined as the negative base-10 logarithm of the concen-
tration, in moles per liter, of H+ ions. In other words, pH
is a function of the number of H+ ions and can be
expressed as
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GRAPHING CALCULATOR ACTIVITIES

EXPONENTIAL AND LOGARITHMIC EQUATIONS;

PROBLEM SOLVING

In Section 4.1 we solved exponential equations such as 3x 5 81 by expressing both
sides of the equation as a power of 3 and then applying the property If bn 5 bm, then
n 5 m. However, if we try this same approach with an equation such as 3x 5 5, we
face the difficulty of expressing 5 as a power of 3. We can solve this type of problem
by using the properties of logarithms and the following property of equality.

4.6

60. Graph f (x) 5 x, f (x) 5 ex, and f (x) 5 ln x on the same
set of axes.

61. Graph f (x ) 5 x, f (x ) 5 10x, and f (x) 5 log x on the
same set of axes.

62. Graph f (x) 5 ln x. How should the graphs of f (x) 5
2 ln x, f (x ) 5 4 ln x, and f (x ) 5 6 ln x compare to this
basic curve? Graph the three functions on the same set of
axes with the graph of f (x) 5 ln x.

63. Graph f (x) 5 log x. Now predict the graphs for f (x) 5
3 1 log x, f (x ) 5 22 1 log x, and f (x) 5 24 1 log x.
Graph them on the same set of axes with the graph of
f (x) 5 log x.

For each of the following, (a) predict the general shape
and location of the graph, and (b) use your graphing cal-
culator to graph the function to check your prediction.

a. f (x) 5 log x 1 ln x b. f (x ) 5 log x 2 ln x

c. f (x ) 5 ln x 2 log x d. f (x ) 5 ln x 2

57. Graph the function f (x) 5 log2 x 2.

58. Graph the function f (x) 5 2 log2 x.

59. According to Property 4.7, log2 x 2 5 2 log2 x. Why are
the graphs for Problems 57 and 58 different?

Further Investigations

THOUGHTS INTO WORDS

55. Describe three ways in which the graph of f (x ) 5 log3 x
can be obtained.

56. How do we know that log2 6 is between 2 and 3?

f (x ) 5 2log x

where x is the number of H+ ions in moles per liter of the
solution. A solution with a pH below 7 is called an acid
solution, and a solution with a pH above 7 is called a
basic solution.

Find, to the nearest tenth, the pH of each of the
following solutions with the given H+ concentrations and
identify each as an acid or basic solution.

a. 2(10)29 b. 7.1(10)24

c. 8(10)22 d. 6(10)27

e. 1.8(10)211
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Property 4.8 is stated in terms of any valid base b; however, for most applications we
use either common logarithms or natural logarithms. Let’s consider some examples.

Solve 3x 5 5 to the nearest hundredth.

Solution

By using common logarithms, we can proceed as follows.

3x 5 5

log 3x 5 log 5 Property 4.8
x log 3 5 log 5 log r p 5 p log r

x 5 }
l
l
o
o
g
g

5
3

}

x 5 1.46 nearest hundredth

Check Because 31.46 < 4.972754647, we say that, to the nearest hundredth, the
solution set for 3x 5 5 is { 1.46} . n

A WORD OF CAUTION! The expression }
l
l
o
o
g
g

5
3

} means that we must divide, 

not subtract, the logarithms. That is, }
l
}
l
l
o
o
g
g

5
3

} does not mean log 1}
5
3

}2. Remember 

that log 1}
5
3

}2 5 log 5 2 log 3.

Solve ex11 5 5 to the nearest hundredth.

Solution

Because base e is used in the exponential expression, let’s use natural logarithms to
help solve this equation.

ex11 5 5

ln ex11 5 ln 5 Property 4.8
(x 1 1) ln e 5 ln 5 ln r p 5 p ln r

(x 1 1)(1) 5 ln 5 ln e 5 1
x 5 ln 5 2 1

x 5 0.61 nearest hundredth

The solution set is { 0.61} . Check it! n

P R O P E R T Y  4 . 8

If x . 0, y . 0, b . 0, and b Þ 1, then

x 5 y if and only if logb x 5 logb y

E X A M P L E  2

E X A M P L E  1
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Solve 23x22 5 32x11 to the nearest hundredth.

Solution

23x22 5 32x11

log 23x22 5 log 32x11

(3x 2 2)log 2 5 (2x 1 1)log 3

3x log 2 2 2 log 2 5 2x log 3 1 log 3

3x log 2 2 2x log 3 5 log 3 1 2 log 2

x(3 log 2 2 2 log 3) 5 log 3 1 2 log 2

x 5}
3
lo
lo
g
g
3
2
1

2

2
2
lo
lo
g
g
2
3

}.

x 5 221.10 nearest hundredth

The solution set is { 221.10} . Check it! n

Logarithmic Equations

In Example 13 of Section 4.4, we solved the logarithmic equation

log10 x 1 log10(x 1 9) 5 1

by simplifying the left side of the equation to log10[x(x 1 9)] and then changing the
equation to exponential form to complete the solution. At this time, we can use
Property 4.8 to solve this type of logarithmic equation another way, and we can also
expand our equation-solving capabilities. Let’s consider some examples.

Solve log x 1 log(x 2 15) 5 2.

Solution

Because log 100 5 2, the given equation becomes

log x 1 log(x 2 15) 5 log 100

Now simplify the left side, apply Property 4.8, and proceed as follows.

log[(x )(x 2 15)] 5 log 100

x(x 2 15) 5 100

x 2 2 15x 2 100 5 0

(x 2 20)(x 1 5) 5 0

x 2 20 5 0 or x 1 5 5 0

x 5 20 or x 5 25

The domain of a logarithmic function must contain only positive numbers, so x and
x 2 15 must be positive in this problem. Therefore, we discard the solution of 25,
and the solution set is { 20} . n

E X A M P L E  4

E X A M P L E  3
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Solve ln(x 1 2) 5 ln(x 2 4) 1 ln 3.

Solution

ln(x 1 2) 5 ln(x 2 4) 1 ln 3

ln(x 1 2) 5 ln[3(x 2 4)]

x 1 2 5 3(x 2 4)

x 1 2 5 3x 2 12

14 5 2x

7 5 x

The solution set is { 7} . n

Solve logb(x 1 2) 1 logb(2x 2 1) 5 log b x.

Solution

logb(x 1 2) 1 logb(2x 2 1) 5 logb x

logb[(x 1 2)(2x 2 1)] 5 logb x

(x 1 2)(2x 2 1) 5 x

2x 2 1 3x 2 2 5 x

2x 2 1 2x 2 2 5 0

x 2 1 x 2 1 5 0

Use the quadratic formula to obtain

x 5 }
21 6 Ï

2
1w 1w 4w
}

5 }
21 6

2
Ï5w

}

Because x 1 2, 2x 2 1, and x all have to be positive, the solution of 121 2 Ï5w2@2
has to be discarded, and the solution set is




}
21 1

2
Ï5w

}




n

Problem Solving

In Section 4.2 we used the compound interest formula

A 5 P11 1 }
n
r

}2nt

to determine the amount of money (A ) accumulated at the end of t years if P dollars

E X A M P L E  6

E X A M P L E  5
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is invested at rate r of interest compounded n times per year. Now let’s use this for-
mula to solve other types of problems that deal with compound interest.

How long will it take $500 to double if it is invested at 12% compounded quarterly?

Solution

To double $500 means that the $500 will grow into $1000. We want to find out how
long it will take; that is, what is t? Thus

1000 5 50011 1 }
0.

4
12
}24t

5 500(1 1 0.03)4t

5 500(1.03)4t

Multiply both sides of 1000 5 500(1.03)4t by }
5
1
00
} to yield

2 5 (1.03)4t

Therefore,

log 2 5 log(1.03)4t Property 4.8
5 4t log 1.03 log r p 5 p log r

Now let’s solve for t.

4t log 1.03 5 log 2

t 5 }
4 l

l
o
o
g
g
1
2
.03

}

t 5 5.9 nearest tenth

Therefore, we are claiming that $500 invested at 12% interest compounded quar-
terly will double in approximately 5.9 years.

Check $500 invested at 12% compounded quarterly for 5.9 years will produce

A 5 $50011 1 }
0.

4
12
}24(5.9)

5 $500(1.03)23.6

5 $1004.45 n

Suppose that the number of bacteria present in a certain culture after t minutes is
given by the equation Q( t ) 5 Q0e 0.04t, where Q0 represents the initial number of
bacteria. How long would it take for the bacteria count to grow from 500 to 2000?

Solution

Substituting into Q( t ) 5 Q0e 0.04t and solving for t, we obtain

P R O B L E M  2

P R O B L E M  1
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2000 5 500e 0.04t

4 5 e 0.04t

ln 4 5 ln e 0.04t

ln 4 5 0.04t ln e

ln 4 5 0.04t ln e 5 1

}
0
ln
.0

4
4

} 5 t

34.7 5 t nearest tenth

It should take approximately 34.7 minutes. n

Richter Numbers

Seismologists use the Richter scale to measure and report the magnitude of earth-
quakes. The equation

R 5 log }
I
I

0
} R is called a Richter number.

compares the intensity I of an earthquake to a minimal or reference intensity I0. The
reference intensity is the smallest earth movement that can be recorded on a seismo-
graph. Suppose that the intensity of an earthquake was determined to be 50,000
times the reference intensity. In this case, I 5 50,000 I0 and the Richter number
would be calculated as follows.

R 5 log }
50,0

I
0

0

0 I0}

R 5 log 50,000

R < 4.698970004

Thus a Richter number of 4.7 would be reported. Let’s consider two more examples
that involve Richter numbers.

An earthquake that occurred in San Francisco in 1989 was reported to have a
Richter number of 6.9. How did its intensity compare to the reference intensity?

Solution

6.9 5 log }
I
I

0
}

106.9 5 }
I
I

0
}

I 5 (106.9)( I0)

I < 7,943,282 I0

Thus its intensity was a little less than 8 million times the reference intensity.
n

P R O B L E M  3
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An earthquake in Iran in 1990 had a Richter number of 7.7. Compare the intensity of
this earthquake to that of the one in San Francisco (Problem 3).

Solution

From Problem 3 we have I 5 (106.9)( I0) for the earthquake in San Francisco. Then,
using a Richter number of 7.7, we obtain I 5 (107.7)(I0) for the earthquake in Iran.
Therefore, by comparison,

}
(
(
1
1
0
0

7

6

.

.

7

9

)
)
(
(
I
I
0

0

)
)

} 5 107.726.9 5 100.8 < 6.3

The earthquake in Iran was about 6 times as intense as the one in San Francisco.
n

Logarithms with Base Other Than 10 or e

The basic approach of applying Property 4.8 and using either common or natural
logarithms can also be used to evaluate a logarithm to some base other than 10 or e.
The next example illustrates this idea.

Evaluate log3 41.

Solution

Let x 5 log3 41. Changing to exponential form, we obtain

3x 5 41

Now we can apply Property 4.8.

log 3x 5 log 41

x log 3 5 log 41

x 5 }
l
l
o
o
g
g
4
3
1

}

x 5 3.3802 rounded to four decimal places

Therefore, we are claiming that 3 raised to the 3.3802 power will produce approxi-
mately 41. Check it! n

Using the method of Example 7 to evaluate loga r produces the following for-
mula, which is often referred to as the change-of-base formula for logarithms.

P R O P E R T Y  4 . 9

If a, b, and r are positive numbers, with a Þ 1 and b Þ 1, then

loga r 5 }
l
l
o
o
g
g

b

b

a
r

}

E X A M P L E  7

P R O B L E M  4
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Property 4.9 provides us with a convenient way to express logarithms with
bases other than 10 or e in terms of common or natural logarithms. For example,
log3 41 is of the form loga r with r 5 41 and a 5 3. Therefore, in terms of common
logarithms (base 10), we have

log3 41 5 }
l
l
o
o
g
g
1

1

0

0

4
3
1

}

Using the abbreviated notation for base-10 logarithms, we have

log3 41 5 }
l
l
o
o
g
g
4
3
1

}

Thus the following format could be used to evaluate log3 41.

log3 41 5 }
l
l
o
o
g
g
4
3
1

}

5 3.3802 rounded to four decimal places

In a similar fashion, we can use natural logarithms to evaluate expressions such as
log3 41.

log3 41 5 }
l
l
n
n
4
3
1

}

5 3.3802 rounded to four decimal places

Property 4.9 also provides us with another way of solving equations such as 3x 5 5.

3x 5 5

x 5 log3 5 Changed to logarithmic form

x 5 }
l
l
o
o
g
g

5
3

} Applied Property 4.9

x 5 1.46 to the nearest hundredth

Finally, by using Property 4.9, we can obtain a relationship between common and
natural logarithms by letting a 5 10 and b 5 e. Then

loga r 5 }
l
l
o
o
g
g

b

b

a
r

}

becomes

log10 r 5 }
lo
lo
g
g

e

e

1
r
0

}

loge r 5 (loge 10)(log10 r )

loge r 5 (2.3026)(log10 r)

Thus the natural logarithm of any positive number is approximately equal to 2.3026
times the common logarithm of the number.
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Now we can use a graphing utility to graph logarithmic functions such as
f (x) 5 log2 x. Using the change-of-base formula, we can express this function as

f(x) 5 }
l
l
o
o
g
g

2
x

} or as f(x) 5 }
l
l
n
n

2
x

}. The graph of f (x ) 5 log2 x is shown in Figure 4.25.

F I G U R E  4 . 2 5 n

Finally, let’s use a graphical approach to solve an equation that is cumbersome
to solve with an algebraic approach.

Solve the equation (5x 2 52x)@2 5 3.

Solution

First, we need to recognize that the solutions for the equation (5x 2 52x)@2 5 3 are
the x intercepts of the graph of the equation y 5 (5x 2 52x)@2 2 3. Thus let’s use a
graphing utility to obtain the graph of this equation as shown in Figure 4.26. Use the
zoom and trace features to determine that the graph crosses the x axis at approxi-
mately 1.13. Thus the solution set of the original equation is { 1.13} .

F I G U R E  4 . 2 6 n

−5 5

10

−10

−15 15

10

−10

E X A M P L E  8
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For Problems 1–18, solve each exponential equation. Express
approximate solutions to the nearest hundredth.

1. 2x 5 9 2. 3x 5 20 3. 5t 5 123

4. 4t 5 12 5. 2x11 5 7 6. 3x22 5 11

7. 72t21 5 35 8. 53t11 5 9 9. ex 5 4.1

10. ex 5 30 11. ex21 5 8.2 12. ex22 5 13.1

13. 2ex 5 12.4 14. 3ex 2 1 5 17

15. 3x21 5 2x13 16. 52x11 5 7x13

17. 5x21 5 22x11 18. 32x11 5 23x12

For Problems 19–30, solve each logarithmic equation.
Express irrational solutions in simplest radical form.

19. log x 1 log(x 1 3) 5 1

20. log x 1 log(x 1 21) 5 2

21. log(2x 2 1) 2 log(x 2 3) 5 1

22. log(3x 2 1) 5 1 1 log(5x 2 2)

23. log(x 2 2) 5 1 2 log(x 1 3)

24. log(x 1 1) 5 log 3 2 log(2x 2 1)

25. log (x 1 1) 2 log(x 1 2) 5 log }
1
x

}

26. log(x 1 2) 2 log(2x 1 1) 5 log x

27. ln(3t 2 4) 2 ln( t 1 1) 5 ln 2

28. ln(2t 1 5) 5 ln 3 1 ln( t 2 1)

29. log(x 2) 5 (log x)2 30. log Ïxw 5 Ïlowgw xw

For Problems 31–38, evaluate each logarithm to three deci-
mal places.

31. log3 14 32. log4 94 33. log5 2.1

34. log6 0.345 35. log7 176 36. log8 296

37. log9 14.32 38. log7 0.024

For Problems 39–57, solve each problem.

39. How long will it take $1000 to double if it is invested at
9% interest compounded semiannually?

40. How long will it take $750 to be worth $1000 if it is
invested at 12% interest compounded quarterly?

41. How long will it take $500 to triple if it is invested at 9%
interest compounded continuously?

42. How long will it take $2000 to double if it is invested at
13% interest compounded continuously?

43. At what rate of interest (to the nearest tenth of a percent)
compounded annually will an investment of $200 grow
to $350 in 5 years?

44. At what rate of interest (to the nearest tenth of a percent)
compounded continuously will an investment of $500
grow to $900 in 10 years?

45. A piece of machinery valued at $30,000 depreciates at a
rate of 10% yearly. How long will it take until the
machinery has a value of $15,000?

46. For a certain strain of bacteria, the number present after t
hours is given by the equation Q 5 Q0e0.34t, where Q0

represents the initial number of bacteria. How long will it
take 400 bacteria to increase to 4000 bacteria?

47. The number of grams of a certain radioactive substance
present after t hours is given by the equation Q 5
Q0e20.45t, where Q0 represents the initial number of
grams. How long will it take 2500 grams to be reduced to
1250 grams?

48. The atmospheric pressure in pounds per square inch is
expressed by the equation P(a ) 5 14.7e20.21a, where a is
the altitude above sea level measured in miles. If the
atmospheric pressure in Cheyenne, Wyoming, is approx-
imately 11.53 pounds per square inch, find its altitude
above sea level. Express your answer to the nearest hun-
dred feet.

49. Suppose you are given the equation P( t) 5 P0e0.02t to
predict population growth, where P0 represents an initial
population and t is the time in years. How long does this
equation predict it will take a city of 50,000 to double in
population?

50. In a certain bacterial culture, the equation Q( t) 5 Q0e0.4t

yields the number of bacteria as a function of the time,
where Q0 is an initial number of bacteria and t is time
measured in hours. How long will it take 500 bacteria to
increase to 2000?

P R O B L E M  S E T  4 . 6
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58. Explain the concept of a Richter number.

59. Explain how you would solve the equation 7x 5 134.

60. Explain how you would evaluate log4 79.

61. How do logarithms with a base of 9 compare to loga-
rithms with a base of 3?

THOUGHTS INTO WORDS

62. Use the approach of Example 7 to develop Property 4.9.

63. Let r 5 b in Property 4.9 and verify that loga b 5

}
log

1

b a
}.

64. To solve the equation (5x 2 52x)@2 5 3, let’s begin as
follows.

}
5x 2

2
52x

} 5 3

5x 2 52x 5 6

5x(5x 2 52x ) 5 6(5x)

52x 2 1 5 6(5x)

52x 2 6(5x) 2 1 5 0

This final equation is of quadratic form. Finish the
solution and check your answer against the answer in
Example 8.

65. Solve the equation y 5 (10x 1 102x)@2 for x in terms of y.

66. Solve the equation y 5 (ex 2 e2 x)@2 for x in terms of y.

Multiply both
sides by 5x.

GRAPHING CALCULATOR ACTIVITIES

67. Check your answers for Problems 15–18 by graphing the
appropriate function and finding the x intercept.

68. Graph f (x) 5 log2 x. Then predict the graphs for f (x) 5
log3 x, f (x) 5 log4 x, and log8 x. Now graph these three
functions on the same set of axes with the graph of
f (x) 5 log2 x.

69. Graph f (x) 5 x, f (x ) 5 2x, and f (x ) 5 log2 x on the
same set of axes.

70. Graph f (x) 5 x, f (x ) 5 1}
1
2

}2x
, and f (x) 5 log1@2 x on

the same set of axes.

71. Use both a graphical and an algebraic approach to solve
the equation (2x 2 22x)@3 5 4.

Further Investigations

51. An earthquake in Los Angeles in 1971 had an intensity
of approximately five million times the reference inten-
sity. What was the Richter number associated with that
earthquake?

52. An earthquake in San Francisco in 1906 was reported to
have a Richter number of 8.3. How did its intensity com-
pare to the reference intensity?

53. Calculate how many times more intense an earthquake
with a Richter number of 7.3 is than an earthquake with a
Richter number of 6.4.

54. Calculate how many times more intense an earthquake
with a Richter number of 8.9 is than an earthquake with a
Richter number of 6.2.

55. In Problem 39 of Problem Set 4.2, we used the function
f (x) 5 2.512x, where x is the higher magnitude minus
the lower magnitude, to compare the relative brightness
of stars. Suppose star A is 212 times brighter than star B.
Find the difference, to the nearest tenth, of their magni-
tudes.

56. See Problem 55. If star C has a magnitude of 7 and is 100
times brighter than star D, find the magnitude of star D.
Express your answer to the nearest whole number.

57. See Problem 55. If star E is 10,000 times brighter than
star F, and if star F has a magnitude of 20, find the mag-
nitude of star E. Express your answer to the nearest
whole number.
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This chapter can be summarized in terms of four main topics: (1) exponents and
exponential functions, (2) inverse functions, (3) logarithms and logarithmic func-
tions, and (4) applications of exponential and logarithmic functions.

Exponents and Exponential Functions

If a and b are positive numbers, and m and n are real numbers, then the following
properties hold.

1. bn ? bm 5 bn1m Product of two powers

2. (bn )m 5 bmn Power of a power

3. (ab )n 5 anbn Power of a product

4. 1}
a
b

}2n
5 }

a
b

n

n} Power of a quotient

5. }
b
b

m

n

} 5 bn2m Quotient of two powers

A function defined by an equation of the form

f (x) 5 bx b . 0 and b Þ 1

is called an exponential function. Figure 4.27 illustrates the general behavior of the
graph of an exponential function of the form f (x ) 5 bx.

F I G U R E  4 . 2 7

f (x)

x

f (x) 5 bx

b . 1
f (x) 5 bx

0 , b , 1

(0,1)

C H A P T E R  4 S U M M A R Y
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Inverse Functions

The inverse of a function f is denoted by f 21. Graphically, two functions that are
inverses of each other are mirror images with reference to the line y 5 x.

A systematic technique for finding the inverse of a function can be described as 
follows.

1. Let y 5 f (x ).

2. Interchange x and y.

3. Solve the equation for y in terms of x.

4. The inverse function f 21(x) is determined by the equation in step 3.

Don’t forget that the domain of f must equal the range of f 21, and the domain of f 21

must equal the range of f.

Increasing and decreasing functions are defined as follows.

D E F I N I T I O N  4 . 3

Let f be a function, with the interval I a subset of the domain of f. Let
x1 and x2 be in I. Then

1. f is increasing on I if f (x1) , f (x2) whenever x1 , x2.

2. f is decreasing on I if f (x1) . f (x2) whenever x1 , x2, and

3. f is constant on I if f (x1) 5 f (x2) for every x1 and x2.

D E F I N I T I O N  4 . 2

Let f be a one-to-one function with a domain of X and a range of Y. A
function g, with a domain of Y and a range of X, is called the inverse
function of f if

( f 8 g )(x) 5 x for every x in Y

and

(g 8 f )(x) 5 x for every x in X
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A function that is always increasing or always decreasing over its entire domain is a
one-to-one function and therefore has an inverse.

Logarithms and Logarithmic Functions

If r is any positive real number, then the unique exponent t such that bt 5 r is called
the logarithm of r with base b; it is denoted by logb r.

The following properties of logarithms are used frequently.

1. logb b 5 1

2. logb 1 5 0

3. blogbr 5 r

4. logb rs 5 logb r 1 logb s

5. logb ( }
s
r

}) 5 logb r 2 logb s

6. logb(rp ) 5 p logb r

Logarithms with a base of 10 are called common logarithms. The expression 
log10 x is usually written log x.

Many calculators are equipped with a common logarithm function. Often a key
labeled  log is used to find common logarithms.

Natural logarithms are logarithms that have a base of e, where e is an irrational
number whose decimal approximation to eight digits is 2.7182818. Natural loga-
rithms are denoted by loge x or ln x.

Many calculators are also equipped with a natural logarithmic function. Often a key
labeled  ln x is used for this purpose.

A function defined by an equation of the form

f (x) 5 logb x b . 0 and b Þ 1

is called a logarithmic function.

The graph of a logarithmic function (such as y 5 log2 x ) can be determined by
changing the equation to exponential form (2y 5 x ) and plotting points, or by
reflecting the graph of the inverse function (y 5 2x ) across the line y 5 x. This last
approach is based on the fact that exponential and logarithmic functions are inverses
of each other.

Figure 4.28 illustrates the general behavior of the graph of a logarithmic function of
the form f (x) 5 logb x.
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F I G U R E  4 . 2 8

Applications

We use the following properties of equality frequently when solving exponential
and logarithmic equations.

1. If b . 0, b Þ 1, and m and n are real numbers, then

bn 5 bm if and only if n 5 m

2. If x . 0, y . 0, b . 0, and b Þ 1, then

x 5 y if and only if logb x 5 logb y

A general formula for any principal (P ) that is compounded n times per year for any
number ( t ) of years at a given rate (r ) is

A 5 P11 1 }
n
r

}2nt

where A represents the total amount of money accumulated at the end of the t years.

As n gets infinitely large, the value of [1 1 (1@n)]n approaches the number e, where
e equals 2.71828 to five decimal places.

The formula

A 5 Pert

yields the accumulated value (A) of a sum of money (P ) that has been invested for t
years at a rate of r percent compounded continuously.

The formula

Q 5 Q01}
1
2

}2t@h

f (x)

x(0,1)

f (x) 5 logbx
b . 1

f (x) 5 logbx
0 , b , 1
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is referred to as the half-life formula.

The equation

Q( t ) 5 Q0ekt

is used as a mathematical model for exponential growth and decay problems.

The formula

R 5 log }
I
I

0
}

yields the Richter number associated with an earthquake.

The formula

loga r 5 }
l
l
o
o
g
g

b

b

a
r

}

is often called the change-of-base formula.

C H A P T E R  4  R E V I E W  P R O B L E M  S E T

For Problems 1–10, evaluate each expression.

1. 85@3 2. 2253@2 3. (227)4@3

4. log6 216 5. log71}
4
1
9
}2 6. log2 Ï

3
2w

7. log21}
Ï4

2
3w2w
}2 8. log10 0.00001 9. ln e

10. 7log712

For Problems 11–24, solve each equation. Express approxi-
mate solutions to the nearest hundredth.

11. log10 2 1 log10 x 5 1 12. log3 x 5 22

13. 4x 5 128 14. 3t 5 42

15. log2 x 5 3 16. 1}
2
1
7
}23x

5 32x21

17. 2ex 5 14 18. 22x11 5 3x11

19. ln(x 1 4) 2 ln(x 1 2) 5 ln x

20. log x 1 log(x 2 15) 5 2

21. log(log x ) 5 2

22. log(7x 2 4) 2 log(x 2 1) 5 1

23. ln(2t 2 1) 5 ln 4 1 ln( t 2 3)

24. 642t11 5 82t12

For Problems 25–28, if log 3 5 0.4771 and log 7 5 0.8451,
evaluate each of the following.

25. log1}
7
3

}2 26. log 21

27. log 27 28. log 72@3

29. Express each of the following as the sum or difference of
simpler logarithmic quantities. Assume that all variables
represent positive real numbers.

a. logb1}
y
x
2}2 b. logb Ï

4
xyw2w

c. logb1}
Ï
y3

xw
}2
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30. Express each of the following as a single logarithm.
Assume that all variables represent positive real num-
bers.

a. 3 logb x 1 2 logb y b. }
1
2

} logb y 2 4 logb x

c. }
1
2

}(logb x 1 logb y) 2 2 logb z

For Problems 31–34, approximate each of the logarithms to
three decimal places.

31. log2 3 32. log3 2

33. log4 191 34. log2 0.23

For Problems 35–42, graph each function.

35. f (x) 5 1}
3
4

}2x
36. f (x) 5 2x12

37. f (x) 5 ex21 38. f (x) 5 21 1 log x

39. f (x) 5 3x 2 32x 40. f (x) 5 e2 x 2@2

41. f (x) 5 log2(x 2 3) 42. f (x) 5 3 log3 x

For Problems 43–45, use the compound interest formula

A 5 P11 1 }
n
r

}2nt

to find the total amount of money accumulated at the end of
the indicated time period for each of the investments.

43. $750 for 10 years at 11% compounded quarterly

44. $1250 for 15 years at 9% compounded monthly

45. $2500 for 20 years at 9.5% compounded semiannually

For Problems 46–49, determine whether f and g are inverse
functions.

46. f (x) 5 7x 2 1 and g(x ) 5 }
x 1

7
1

}

47. f (x) 5 2}
2
3

}x and g(x ) 5 }
3
2

}x

48. f (x) 5x 2 2 6 for x $ 0 and g(x) 5 Ïxw1w 6w
for x $ 26

49. f (x) 5 2 2 x 2 for x $ 0 and g(x) 5 Ï2w 2w xw
for x # 2

For Problems 50–53, (a) find f 21 and (b) verify that 
( f 8 f 21)(x ) 5 x and ( f 21

8 f )(x ) 5 x.

50. f (x) 5 4x 1 5 51. f (x) 5 23x 2 7

52. f (x) 5 }
5
6

}x 2 }
1
3

}

53. f (x) 5 22 2 x 2 for x $ 0

For Problems 54 and 55, find the intervals on which the func-
tion is increasing and the intervals on which it is decreasing.

54. f (x) 5 22x 2 1 16x 2 35

55. f (x) 5 2 Ïxw2w 3w

For Problems 56–62, solve each problem.

56. How long will it take $100 to double if it is invested at
14% interest compounded annually?

57. How long will it take $1000 to be worth $3500 if it is
invested at 10.5% interest compounded quarterly?

58. At what rate of interest (to the nearest tenth of a percent)
compounded continuously will an investment of $500
grow to $1000 in 8 years?

59. Suppose that the present population of a city is 50,000
and suppose that the equation P( t) 5 P0e 0.02t, where P0

represents an initial population, can be used to estimate
future populations. Estimate the population of that city in
10 years, 15 years, and 20 years.

60. The number of bacteria present in a certain culture after t
hours is given by the equation Q 5 Q0e 0.29t, where Q0

represents the initial number of bacteria. How long will it
take 500 bacteria to increase to 2000 bacteria?

61. Suppose that a certain radioactive substance has a half-
life of 40 days. If there are presently 750 grams of the
substance, how much, to the nearest gram, will remain
after 100 days?

62. An earthquake occurred in Mexico City in 1985 that had
an intensity level about 125,000,000 times the reference
intensity. Find the Richter number for that earthquake.
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C H A P T E R  4  T E S T

For Problems 1–4, evaluate each expression.

1. log3 Ï3w 2. log2 (log2 4) 3. 22 1 ln e 3 4. log2 (0.5)

For Problems 5–10, solve each equation.

5. 4x 5 }
6
1
4
} 6. 9x 5 }

2
1
7
} 7. 23x21 5 128 8. log9 x 5 }

5
2

}

9. log x 1 log (x 1 48) 5 2 10. ln x 5 ln 2 1 ln(3x 2 1)

For Problems 11–13, given that log3 4 5 1.2619 and log3 5 5 1.4650, eval-
uate each expression.

11. log3 100 12. log3 1.25 13. log3 Ï5w

14. Solve ex 5 176 to the nearest hundredth.

15. Solve 2x22 5 314 to the nearest hundredth.

16. Determine log5 632 to four decimal places.

17. Find the inverse of the function f (x ) 5 23x 2 6.

18. Find the inverse of the function f (x ) 5 }
2
3

}x 2 }
3
5

}.

19. Are f (x) 5 }
1
2

}x 1 3 and g(x ) 5 2x 2 6 inverses of each other?

For Problems 20–23, solve each problem.

20. If $3500 is invested at 7.5% interest compounded quarterly, how much money
has accumulated at the end of 8 years?

21. How long will it take $5000 to be worth $12,500 if it is invested at 7% com-
pounded annually? Express your answer to the nearest tenth of a year.

22. The number of bacteria present in a certain culture after t hours is given by
Q( t ) 5 Q0e0.23t, where Q0 represents the initial number of bacteria. How long
will it take 400 bacteria to increase to 2400 bacteria? Express your answer to the
nearest tenth of an hour.

23. Suppose that a certain radioactive substance has a half-life of 50 years. If there
are presently 7500 grams of the substance, how much will remain after 32
years? Express your answer to the nearest gram.

For Problems 24 and 25, graph each of the functions.

24. f (x) 5 ex 2 2 25. f (x ) 5 log2 (x 2 2)
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366 Chapter 5 Polynomial and Rational Functions

In earlier chapters we solved linear and quadratic equations and graphed
linear and quadratic functions. In this chapter we will expand our equation-
solving processes and graphing techniques to include more general polyno-
mial equations and functions. Our knowledge of polynomial functions will
then allow us to work with rational functions; the function concept will unify
the chapter. To facilitate our study in this chapter, we will first review the
concept of dividing polynomials; then we will introduce a special division
technique called synthetic division.

DIVIDING POLYNOMIALS

In Chapter 0 we used the properties

}
a 1

c
b

} 5 }
a
c

} 1 }
b
c

} and }
a 2

c
b

} 5 }
a
c

} 2 }
b
c

}

as a basis for dividing a polynomial by a monomial. For example,

}
18x3

6
1

x
24x2

} 5 }
1
6
8
x
x3

} 1 }
2
6
4
x
x2

} 5 3x 2 1 4x

and

}
35x2y3

5
2

xy2

55x3y4

}5 }
3
5
5
x
x
y

2y
2

3

} 2 }
5
5
5
x
x
y

3y
2

4

} 5 7xy 5 11x 2y 2

You may recall from a previous algebra course that the format used to divide a
polynomial by a binomial resembles the long-division format in arithmetic. Let’s
work through an example step by step.

STEP 1 3x 1 1q3wxw3w2w 5wxw2w1w 1w0wxw1w 1w

STEP 2
x 2

3x 1 1q3wxw3w2w 5wxw2w1w 1w0wxw1w 1w

5.1

Use the conventional long-
division format and arrange
both the dividend and the
divisor in descending pow-
ers of the variable.

Find the first term of the
quotient by dividing the
first term of the dividend by
the first term of the divisor.
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STEP 3

STEP 4 Subtract.

STEP 5

STEP 6

Therefore, 3x 3 2 5x 2 1 10x 1 1 5 (3x 1 1)(x 2 2 2x 1 4) 1 (23), which is of the
familiar form

Dividend 5 (divisor)(quotient) 1 remainder

This result is commonly called the division algorithm for polynomials, which can
be stated in general terms as follows.

Division Algorithm for Polynomials

If f (x) and g(x ) are polynomials and g(x) Þ 0, then unique
polynomials q(x ) and r(x ) exist such that

f (x) 5 g(x )q(x ) 1 r(x )

Dividend Divisor Quotient Remainder

where r(x) 5 0 or the degree of r(x) is less than the degree of g(x ).

x 2 2 2x 1 4
3x 1 1q3wxw3w2w 5wxw2w1w 1w0wxw1w 1w

3x 3 1 x 2

}}}}}}}}
26x 2 1 10x 1 1
26x 2 2 2x
}}}}}}

12x 1 1
12x 1 4
}}}

23

x 2 2 2x
3x 1 1q3wxw3w2w 5wxw2w1w 1w0wxw1w 1w

3x 3 1 x 2

}}}}}}}}
26x 2 1 10x 1 1
26x 2 2 2x
}}}}}}

12x 1 1

x 2

3x 1 1q3wxw3w2w 5wxw2w1w 1w0wxw1w 1w
3x 3 1 x 2

}}}}}}}}
26x 2 1 10x 1 1

x 2

3x 1 1q3wxw3w2w 5wxw2w1w 1w0wxw1w 1w
3x 3 1 x 2

}}}}}}}}

Multiply the entire divisor
by the quotient term in step
2 and place this product in
position to be subtracted
from the dividend.

Repeat steps 2, 3, and 4 and
use 26x 2 1 10x 1 1 as a
new dividend.

Repeat steps 2, 3, and 4 
and use 12x 1 1 as a new
dividend.
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Let’s consider one more example to illustrate this division process further.

Divide t 2 2 3t 1 2t 4 2 1 by t 2 1 4t.

Solution

Don’t forget to arrange both the dividend and the divisor in descending powers of
the variable.

Notice the insertion of a t 3 term
with a zero coefficient.

The division process is 
completed when the degree of
the remainder is less than the
degree of the divisor. n

Synthetic Division

If the divisor is of the form x 2 c, where c is a constant, then the typical long-
division algorithm can be simplified to a process called synthetic division. First,
let’s consider another division problem and use the regular-division algorithm.
Then, in a step-by-step fashion, we will demonstrate some shortcuts that will lead us
into the synthetic-division procedure. Consider the division problem (2x 4 1 x 3 2
17x 2 1 13x 1 2) 4 (x 2 2).

Because the dividend is written in descending powers of x, the quotient is produced
in descending powers of x. In other words, the numerical coefficients are the key
issues, so let’s rewrite the problem in terms of its coefficients.

2x 3 1 5x 2 2 7x 2 2 1

x 2 2q2wxw4w1wwxw3w2w 1w7wxw2w1w 1w3wxw1w 2w
2x 4 2 4x 3

}}}}}}}}}}}
5x 3 2 17x 2

5x 3 2 10x 2

}}}}}}}}
27x 2 1 13x

27x 2 1 14x
}}}}}}

2x 1 2

2x 1 2
}}}

2t 2 2 8t 1 33

t2 1 4tq2wt 4w 1w 0wt 3w 1wwwt 2w 2www3wtw2w 1w
2t 4 1 8t 3

}}}}}}}}}}}
28t 3 1 t 2 2 3t 2 1

28t 3 2 32t 2

}}}}}}}}}}
33t 2 2 3t 2 1

33t 2 1 132t
}}}}}}

2135t 2 1

E X A M P L E  1
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Now observe that the circled numbers are simply repetitions of the numbers directly
above them in the format. Thus the circled numbers can be omitted, and the format
will be as follows (disregard the arrows for the moment).

Next, by moving some numbers up (indicated by the arrows) and by not writing the 1
that is the coefficient of x in the divisor, we obtain the following more compact form.

Note that line 4 reveals all of the coefficients of the quotient (line 1) except for the
first coefficient, 2. Thus we can omit line 1, begin line 4 with the first coefficient,
and then use the following form.

Line 7 contains the coefficients of the quotient, where the zero indicates the remain-
der. Finally, by changing the constant in the divisor to 2 (instead of 22), which
changes the signs of the numbers in line 6, we can add the corresponding entries in

(5)
(6)
(7)

22 u 2 1 217 13 2

24 210 14 2
}}}}}}}}}}
2 5 27 21 0

(1)
(2)
(3)
(4)

2 5 27 21

22q2wwwww1wwww2w1w7wwww1w3www2w
24 210 14 2
}}}}}}}}

5 27 21

2 5 27 21

1 2 2q2wwwww1wwww2w1w7wwww1w3www2w
24
}}}}

5

210
}}}
27

14
}}}
21

2

2 5 27 21

1 2 2q2wwwww1wwww2w1w7wwww1w3www2w
2 24
}}}}}}}

5 217

5 210
}}}}}}}

27 13

27 14
}}}}}

21 2

21 2
}}
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lines 5 and 6 rather than subtract. Thus the final synthetic division form for this
problem is

Now we will consider another problem and indicate a step-by-step procedure
for setting up and carrying out the synthetic-division process. Suppose that we want
to do the following division problem.

x 1 4q2wx3w 1w 5wx2w 2w 1w3wxw2w 2w

STEP 1 Write the coefficients of the dividend as follows.

q2wwwww5wwww2w1w3wwww2w2w
STEP 2 In the divisor, use 24 instead of 4 so that later we can add rather

than subtract.

24q2wwwww5wwww2w1w3wwww2w2w
STEP 3 Bring down the first coefficient of the dividend.

STEP 4 Multiply that first coefficient times the divisor, which yields 
2(24) 5 28; add this result to the second coefficient of the
dividend.

STEP 5 Multiply (23)(24), which yields 12; add this result to the third
coefficient of the dividend.

STEP 6 Multiply (21)(24), which yields 4; add this result to the last term
of the dividend.

The last row indicates a quotient of 2x 2 2 3x 2 1 and a remainder
of 2.

24q2wwwww5wwww2w1w3wwww2w2w
28 12 4

}}}}}}}}}
2 23 21 2

24q2wwwww5wwww2w1w3wwww2w2w
28 12

}}}}}}}}}
2 23 21

24q2wwwww5www2w1w3wwww2w2w
2 28
}}}}}}}}
2 23

24q2wwwww5wwww2w1w3wwww2w2w

2

2 u 2 1 217 13 2

4 10 214 22
}}}}}}}}}}}}
2 5 27 21 0
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Now let’s consider some examples in which we show only the final compact
form of synthetic division.

Find the quotient and remainder for (x 3 1 8x 2 1 13x 2 6) 4 (x 1 3).

Solution

Thus the quotient is x 2 1 5x 2 2 and the remainder is zero. n

Find the quotient and the remainder for (3x 4 1 5x 3 2 29x 2 2 45x 1 14) 4 (x 2 3).

Solution

Thus the quotient is 3x 3 1 14x 2 1 13x 2 6 and the remainder is 24. n

Find the quotient and the remainder for (4x 4 2 2x 3 1 6x 2 1) 4 (x 2 1).

Solution

Thus the quotient is 4x 3 1 2x 2 1 2x 1 8 and the remainder is 7. n

Find the quotient and the remainder for (x 4 1 16) 4 (x 1 2).

Solution

Thus the quotient is x 3 2 2x 2 1 4x 2 8 and the remainder is 32. n

Note that zeros have been inserted as
coefficients of the missing terms in the
dividend.

22q1wwwww0wwwww0wwwww0www1w6w
22 4 28 16

}}}}}}}}}}
1 22 4 28 32

Note that a zero has been inserted as
the coefficient of the missing x 2 term.

1q4wwww2w2wwwww0wwwww6wwww2w1w
4 2 2 8

}}}}}}}}}}}
4 2 2 8 7

3q3wwwww5wwww2w2w9wwww2w4w5wwwww1w4w
9 42 39 218

}}}}}}}}}}}}}
3 14 13 26 24

23q1wwwww8wwwww1w3wwww2w6w
23 215 6

}}}}}}}}}
1 5 22 0
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For Problems 1–14, find the quotient and remainder for each
division problem.

1. (12x 2 1 7x 210) 4 (3x 2 2)

2. (20x 2 239x 1 18) 4 (5x 2 6)

3. (3t 3 1 7t 2 210t 2 4) 4 (3t 1 1)

4. (4t 3 2 17t 2 1 7t 1 10) 4 (4t 2 5)

5. (6x 2 1 19x 1 11) 4 (3x 1 2)

6. (20x 2 1 3x 2 1) 4 (5x 1 2)

7. (3x 3 1 2x 2 2 5x 2 1) 4 (x 2 1 2x )

8. (4x 3 2 5x 2 1 2x 2 6) 4 (x 2 2 3x )

9. (5y 3 2 6y 2 2 7y 2 2) 4 (y 2 2 y )

10. (8y 3 2 y 2 2 y 1 5) 4 (y 2 1 y )

11. (4a 3 2 2a 2 1 7a 2 1) 4 (a 2 2 2a 1 3)

12. (5a 3 1 7a 2 2 2a 29) 4 (a 2 1 3a 2 4)

13. (3x 2 2 2xy 2 8y 2 ) 4 (x 2 2y)

14. (4a 2 2 8ab 1 4b 2 ) 4 (a 2 b )

For Problems 15–38, use synthetic division to determine the
quotient and remainder for each division problem.

15. (3x 2 1 x 2 4) 4 (x 2 1)

16. (2x 2 2 5x 2 3) 4 (x 2 3)

17. (x 2 1 2x 210) 4 (x 2 4)

18. (x 2 2 10x 1 15) 4 (x 2 8)

19. (4x 2 1 5x 2 4) 4 (x 1 2)

20. (5x 2 1 18x 2 8) 4 (x 1 4)

21. (x 3 2 2x 2 2 x 1 2) 4 (x 2 2)

22. (x 3 2 5x 2 1 2x 1 8) 4 (x 1 1)

23. (3x 4 2 x 3 1 2x 2 2 7x 2 1) 4 (x 1 1)

24. (2x 3 2 5x 2 2 4x 1 6) 4 (x 2 2)

25. (x3 2 7x 2 6) 4 (x 1 2)

26. (x 3 1 6x 2 2 5x 2 1) 4 (x 2 1)

27. (x 4 1 4x 3 2 7x 2 1) 4 (x 2 3)

28. (2x 4 1 3x 2 1 3) 4 (x 1 2)

29. (x 3 1 6x 2 1 11x 1 6) 4 (x 1 3)

30. (x 3 2 4x 2 2 11x 1 30) 4 (x 2 5)

31. (x 5 2 1) 4 (x 2 1)

32. (x 5 2 1) 4 (x 1 1)

33. (x 5 1 1) 4 (x 2 1)

34. (x 5 1 1) 4 (x 1 1)

35. (2x 3 1 3x 2 2 2x 1 3) 4 1x 1 }
1
2

}2
36. (9x 3 2 6x 2 1 3x 2 4) 4 1x 2 }

1
3

}2
37. (4x4 2 5x 2 1 1) 4 1x 2 }

1
2

}2
38. (3x 4 2 2x 3 1 5x 2 2 x 2 1) 4 1x 1 }

1
3

}2

THOUGHTS INTO WORDS

39. How would you describe synthetic division to someone
who had just completed an elementary algebra course?

40. Why is synthetic division restricted to situations where
the divisor is of the form x 2 c?
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REMAINDER AND FACTOR THEOREMS

Let’s consider the division algorithm (stated in the previous section) when the divi-
dend, f (x ), is divided by a linear polynomial of the form x 2 c. Then the division
algorithm,

f (x) 5 g(x )q(x ) 1 r(x )

Dividend Divisor Quotient Remainder

becomes

f (x) 5 (x 2 c )q(x ) 1 r(x )

Because the degree of the remainder, r(x), must be less than the degree of the divi-
sor, x 2 c, the remainder is a constant. Therefore, letting R represent the remainder,
we have

f (x) 5 (x 2 c )q(x ) 1 R

If we evaluate f at c, we obtain

f (c) 5 (c 2 c )q(c ) 1 R

5 0 ? q(c ) 1 R

5 R

In other words, if a polynomial is divided by a linear polynomial of the form x 2 c,
then the remainder is the value of the polynomial at c. Let’s state this more formally
as the remainder theorem.

If f (x ) 5 x 3 1 2x 2 2 5x 2 1, find f (2) first (a) by using synthetic division and the
remainder theorem and then (b) by evaluating f (2) directly.

Solutions

a.

R 5 f (2)

b. f (2) 5 23 1 2(2)2 2 5(2) 2 1 5 8 1 8 2 10 2 1 5 5 n

2q1wwwww2wwww2w5wwww2w1w
2 8 6

}}}}}}}}}
1 4 3 5

P R O P E R T Y  5 . 1 Remainder Theorem

If a polynomial f (x) is divided by x 2 c, then the remainder is equal
to f (c ).

E X A M P L E  1
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If f (x ) 5 x 4 1 7x 3 1 8x 2 1 11x 1 5, find f (26) first (a) by using synthetic divi-
sion and the remainder theorem and then (b) by evaluating f (26) directly.

Solutions

a.

R 5 f (26)

b. f (26) 5 (26)4 1 7(26)3 1 8(26)2 1 11(26) 1 5

5 1296 21512 1 288 2 66 1 5 5 11 n

In Example 2, note that finding f (26) by synthetic division and the remainder
theorem involves easier computation than evaluating f (26) directly. This is often
the case.

Find the remainder when x 3 1 3x 2 2 13x 2 15 is divided by x 1 1.

Solution

Let f (x) 5 x 3 1 3x 2 2 13x 2 15 and write x 1 1 as x 2 (21) so that we can apply
the remainder theorem.

f (21) 5 (21)3 1 3(21)2 2 13(21) 2 15 5 0

Thus the remainder is zero. n

Example 3 illustrates an important special case of the remainder theorem in
which the remainder is zero. In this case, we say that x 1 1 is a factor of x 3 1 3x 2 2
13x 2 15.

Factor Theorem

A general factor theorem can be formulated by considering the equation

f (x) 5 (x 2 c )q(x ) 1 R

If x 2 c is a factor of f (x ), then the remainder R, which is also f (c ), must be zero.
Conversely, if R 5 f (c ) 5 0, then f (x) 5 (x 2 c )q(x ); in other words, x 2 c is a
factor of f (x ). The factor theorem can be stated as follows.

P R O P E R T Y  5 . 2 Factor Theorem

A polynomial f (x ) has a factor x 2 c if and only if f (c ) 5 0.

26q1wwwww7wwwww8wwwww1w1wwwww5w
26 26 212 6

}}}}}}}}}}}
1 1 2 21 11
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Is x 2 1 a factor of x 3 1 5x 2 1 2x 2 8?

Solution

Let f (x) 5 x 3 1 5x 2 1 2x 2 8 and compute f (1) to obtain

f (1) 5 13 1 5(1)2 1 2(1) 2 8 5 0

Therefore, by the factor theorem, x 2 1 is a factor of f (x ). n

Is x 1 3 a factor of 2x 3 1 5x 2 2 6x 2 7?

Solution

Using synthetic division, we obtain

R 5 f (23)

Because f (23) Þ 0, we know that x 1 3 is not a factor of the given polynomial.
n

In Examples 4 and 5, we were concerned only with determining whether a lin-
ear polynomial of the form x 2 c was a factor of another polynomial. For such prob-
lems, it is reasonable to compute f (c ) either directly or by synthetic division,
whichever way seems easier. However, if more information is required, such as
complete factorization of the given polynomial, then using synthetic division
becomes appropriate, as in the next two examples.

Show that x 2 1 is a factor of x 3 2 2x 2 2 11x 1 12 and find the other linear factors
of the polynomial.

Solution

Let’s use synthetic division to divide x 3 2 2x 2 2 11x 1 12 by x 2 1.

The last line indicates a quotient of x 2 2 x 2 12 and a remainder of zero. The zero
remainder means that x 2 1 is a factor. Furthermore, we can write

x 3 2 2x 2 2 11x 1 12 5 (x 2 1)(x 2 2 x 212)

We can factor the quadratic polynomial x 2 2 x 2 12 as (x 2 4)(x 1 3) by using our
conventional factoring techniques. Thus we obtain

x 3 2 2x 2 2 11x 1 12 5 (x 2 1)(x 2 4)(x 1 3) n

1q1wwww2w2www2w1w1wwwww1w2w
1 21 212

}}}}}}}}}
1 21 212 0

23q2wwwww5wwww2w6wwww2w7w
26 3 9

}}}}}}}}
2 21 23 2
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Show that x 1 4 is a factor of f (x) 5 x 3 2 5x 2 2 22x 1 56 and complete the factor-
ization of f (x).

Solution

We use synthetic division to divide x 3 2 5x 2 2 22x 1 56 by x 1 4.

The last line indicates a quotient of x 2 2 9x 1 14 and a remainder of zero. The zero
remainder means that x 1 4 is a factor. Furthermore, we can write

x 3 2 5x 2 2 22x 1 56 5 (x 1 4)(x 2 2 9x 1 14)

and then complete the factoring to obtain

f (x) 5 x 3 2 5x 2 2 22x 1 56 5 (x 1 4)(x 2 7)(x 2 2) n

The factor theorem also plays a significant role in determining some general
factorization ideas, such as the last example of this section illustrates.

Verify that x 1 1 is a factor of xn 1 1 whenever n is an odd positive integer.

Solution

Let f (x) 5 xn 1 1 and compute f (21) to obtain

f (21) 5 (21)n 1 1

5 21 1 1 Any odd power of 21 is 21.
5 0

Because  f (21) 5 0, we know that x 1 1 is a factor of f (x ). n

24q1wwww2w5wwww2w2w2wwwww5w6w
24 36 256

}}}}}}}}}
1 29 14 0

E X A M P L E  8

For Problems 1–10, find f (c ) (a) by using synthetic division
and the remainder theorem and (b) by evaluating f (c )
directly.

1. f (x) 5 x 2 1 x 2 8 and c 5 2

2. f (x) 5 x 3 1 x 2 2 2x 2 4 and c 5 21

3. f (x) 5 3x 3 1 4x 2 2 5x 1 3 and c 5 24

4. f (x) 5 2x 4 1 x 2 1 6 and c 5 1

5. f (x) 5 x 4 2 2x 3 2 3x 2 1 5x 2 1 and c 5 22

6. f (x) 5 2x 4 1 x 3 2 4x 2 2 x 1 1 and c 5 2

7. f ( t) 5 6t 3 2 35t 2 1 8t 2 10 and c 5 6

8. f ( t) 5 2t 5 2 1 and c 5 22

9. f (n ) 5 3n 4 2 2n 3 1 4n 2 1 and c 5 3

10. f (n ) 5 22n 4 1 4n 2 5 and c 5 23

P R O B L E M  S E T  5 . 2
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For Problems 11–18, find f (c ) either by using synthetic divi-
sion and the remainder theorem or by evaluating f (c )
directly.

11. f (x) 5 5x 6 2 x 3 2 1 and c 5 21

12. f (x) 5 2x 3 2 3x 2 2 5x 1 4 and c 5 4

13. f (x) 5 x 4 2 8x 3 1 9x 2 2 15x 1 2 and c 5 7

14. f ( t) 5 5t 3 2 8t 2 1 9t 2 4 and c 5 25

15. f (n ) 5 22n 4 1 2n 2 2 n 2 5 and c 5 22

16. f (x) 5 4x 7 1 3 and c 5 3

17. f (x) 5 2x 3 2 5x 2 1 4x 2 3 and c 5 }
1
2

}

18. f (x) 5 3x 3 1 4x 2 2 5x 2 7 and c 5 2}
1
3

}

For Problems 19–28, use the factor theorem to help answer
each question about factors.

19. Is x 2 2 a factor of 3x 2 2 4x 2 4?

20. Is x 1 3 a factor of 6x 2 1 13x 215?

21. Is x 1 2 a factor of x 3 1 x 2 2 7x 2 10?

22. Is x 2 3 a factor of 2x 3 2 3x 2 2 10x 1 3?

23. Is x 2 1 a factor of 3x 3 1 5x 2 2 x 2 2?

24. Is x 1 4 a factor of x 3 2 4x 2 1 2x 2 8?

25. Is x 2 2 a factor of x 3 2 8?

26. Is x 1 2 a factor of x 3 1 8?

27. Is x 2 3 a factor of x 4 2 81?

28. Is x 1 3 a factor of x 4 2 81?

For Problems 29–34, use synthetic division to show that g(x )
is a factor of f (x) and complete the factorization of f (x ).

29. g (x ) 5 x 1 2; f (x ) 5 x 3 1 7x 2 1 4x 2 12

30. g (x ) 5 x 2 1; f (x ) 5 3x 3 1 19x 2 2 38x 1 16

31. g (x ) 5 x 2 3; f (x ) 5 6x 3 2 17x 2 2 5x 1 6

32. g (x ) 5 x 1 2; f (x ) 5 12x 3 1 29x 2 1 8x 2 4

33. g (x ) 5 x 1 1; f (x ) 5 x 3 2 2x 2 2 7x 2 4

34. g (x ) 5 x 2 5; f (x ) 5 2x 3 1 x 2 2 61x 1 30

For Problems 35–38, find the value(s) of k that make(s) the
second polynomial a factor of the first.

35. x 3 2 kx 2 1 5x 1 k; x 2 2

36. k 2x 4 1 3kx 2 2 4; x 2 1

37. x 3 1 4x 2 2 11x 1 k; x 1 2

38. kx 3 1 19x 2 1 x 2 6; x 1 3

39. Show that x 1 2 is a factor of x 12 2 4096.

40. Argue that f (x) 5 2x 4 1 x 2 1 3 has no factor of the
form x 2 c, where c is a real number.

41. Verify that x 2 1 is a factor of xn 2 1 for all positive
integral values of n.

42. Verify that x 1 1 is a factor of xn 2 1 for all even posi-
tive integral values of n.

43. a. Verify that x 2 y is a factor of xn 2 yn whenever n is
a positive integer.

b. Verify that x 1 y is a factor of xn 2 yn whenever n is
an even positive integer.

c. Verify that x 1 y is a factor of xn 1 yn whenever n is
an odd positive integer.

44. In your own words, explain how the remainder theorem
is used to prove the factor theorem.

45. It is sometimes said that the factor theorem is a special
case of the remainder theorem. What does this statement
mean?

THOUGHTS INTO WORDS
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The remainder and factor theorems are true for any complex
value of c. Therefore, for Problems 46–48, find f (c ) (a) by
using synthetic division and the remainder theorem and (b) by
evaluating f (c) directly.

46. f (x) 5 x 3 2 5x 2 1 2x 1 1 and c 5 i

47. f (x) 5 x 2 1 4x 2 2 and c 5 1 1 i

48. f (x) 5 x 3 1 2x 2 1 x 2 2 and c 5 2 2 3i

For Problems 49 and 50, solve each problem.

49. Show that x 2 2i is a factor of f (x ) 5 x 4 1 6x 2 1 8.

50. Show that x 1 3i is a factor of f (x ) 5 x 4 1 14x 2 1 45.

51. Consider changing the form of the polynomial f (x) 5
x 3 1 4x 2 2 3x 1 2 as follows.

f (x) 5 x 3 1 4x 2 2 x 1 2

5 (x 2 1 4x 2 3)x 1 2

5 [x(x 1 4) 2 3]x 1 2

The final form, f (x) 5 [x(x 1 4) 2 3]x 1 2, is called
the nested form of the polynomial. It is particularly well
suited to evaluating functional values of f either by hand
or with a calculator.

For each of the following, find the indicated func-
tional values, using the nested form of the given polyno-
mial.

a. f (4), f (25), and f (7) for f (x) 5 x 3 1 5x 2 2
2x 1 1

b. f (3), f (6), and f (27) for f (x) 5 2x 3 2 4x 2 2
3x 1 2

c. f (4), f (5), and f (23) for f (x) 5 22x 3 1
5x 2 2 6x 2 7

d. f (5), f (6), and f (23) for f (x) 5 x 4 1 3x 3 2
2x 2 1 5x 21

Further Investigations

POLYNOMIAL EQUATIONS

In Chapter 1 we solved a large variety of linear equations of the form ax 1 b 5 0
and quadratic equations of the form ax 2 1 bx 1 c 5 0. Linear and quadratic equa-
tions are special cases of a general class of equations we refer to as polynomial
equations. The equation

anxn 1 an21xn21 1 . . . 1 a1x 1 a0 5 0

where the coefficients a0, a1, . . . an are real numbers and n is a positive integer, is
called a polynomial equation of degree n. The following are examples of polyno-
mial equations.

Ï2wx 2 6 5 0 Degree 1

}
3
4

}x 2 2 }
2
3

}x 1 5 5 0 Degree 2

4x 3 2 3x 2 2 7x 2 9 5 0 Degree 3

5x 4 2 x 1 6 5 0 Degree 4

REMARK The most general polynomial equation allows complex numbers
as coefficients. However, for our purposes in this text, we will restrict the
coefficients to real numbers. We refer to such equations as polynomial equa-
tions over the reals.

5.3
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In general, solving polynomial equations of degree greater than 2 can be very
difficult and often requires mathematics beyond the scope of this text. However,
there are some general methods for solving polynomial equations that you should
know, because there are certain types of polynomial equations that we can solve
with the techniques available to us at this time.

Let’s begin by listing some (previously encountered) polynomial equations
and their solution sets.

Equation Solution Set

3x 1 4 5 7 { 1}

x 2 1 x 2 6 5 0 { 23, 2}

2x 3 2 3x 2 2 2x 1 3 5 0



21, 1, }

3
2

}




x 4 2 16 5 0 { 22, 2, 22i, 2i}

Note that in each of these examples, the number of solutions corresponds to the
degree of the equation. The first-degree equation has one solution, the second-
degree equation has two solutions, the third-degree equation has three solutions, and
the fourth-degree equation has four solutions. Now consider the equation

(x 2 4)2(x 1 5)3 5 0

It can be written

(x 2 4)(x 2 4)(x 1 5)(x 1 5)(x 1 5) 5 0

which implies that

x 2 4 5 0 or x 2 4 5 0 or x 1 5 5 0 or

x 1 5 5 0 or x 1 5 5 0

Therefore,

x 5 4 or x 5 4 or x 5 25 or x 5 25 or

x 5 25

We say that the solution set of the original equation is { 25, 4} , but we also say that
the equation has a solution of 4 with a multiplicity of two and a solution of 25 with
a multiplicity of three. Furthermore, note that the sum of the multiplicities is 5,
which agrees with the degree of the equation.

We can state the following general property.

P R O P E R T Y  5 . 3

A polynomial equation of degree n has n solutions, where any
solution of multiplicity p is counted p times.
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Finding Rational Solutions

As we stated earlier, solving polynomial equations of degree greater than 2 can be
very difficult. However, rational solutions of polynomial equations with integral
coefficients can be found by using techniques from this chapter. The following
property restricts the possible rational solutions of such an equation.

The why behind the rational root theorem is based on some simple factoring ideas,
as indicated by the following outline of a proof for the theorem.

Outline of Proof

If c@d is to be a solution, then

an1}
d
c

}2n
1 an211}

d
c

}2n21
1 . . . 1 a11}

d
c

}2 1 a0 5 0

Multiply both sides of this equation by dn and then add 2a0dn to both sides.

ancn 1 an21cn21d 1 . . . 1 a1cdn21 5 2a0dn

Because c is a factor of the left side of this equation, c must also be a factor of 2a0dn.
Furthermore, because c@d is in reduced form, c and d have no common factors other
than 21 or 1. Thus c must be a factor of a0. In the same way, from the equation

an21cn21d 1 . . . 1 a1cdn21 1 a0dn 5 2ancn

we can conclude that d is a factor of the left side and that therefore d is also a factor
of an. n

The rational root theorem, synthetic division, the factor theorem, and some
previous knowledge about solving linear and quadratic equations all merge to form
a basis for finding rational solutions. Let’s consider some examples.

Find all rational solutions of 3x 3 1 8x 2 2 15x 1 4 5 0.

P R O P E R T Y  5 . 4 Rational Root Theorem

Consider the polynomial equation

anxn 1 an21xn21 1 . . . 1 a1x 1 a0 5 0

where the coefficients a0, a1, . . ., an are integers. If the rational
number c@d, reduced to lowest terms, is a solution of the equation,
then c is a factor of the constant term a0, and d is a factor of the
leading coefficient an.

E X A M P L E  1
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Solution

If c@d is a rational solution, then c must be a factor of 4 and d must be a factor of 3.
Therefore, the possible values for c and d are as follows.

For c 61, 62, 64

For d 61, 63

Thus the possible values for c@d are

61, 6}
1
3

}, 62, 6}
2
3

}, 64, 6}
4
3

}

By using synthetic division, we can test x 2 1.

This shows that x 2 1 is a factor of the given polynomial; therefore, 1 is a rational
solution of the equation. Furthermore, the synthetic-division result also indicates
how to factor the given polynomial.

3x 3 1 8x 2 2 15x 1 4 5 0

(x 2 1)(3x 2 1 11x 2 4) 5 0

The quadratic factor can be further factored by using techniques we are familiar with.

(x 2 1)(3x 2 1 11x 2 4) 5 0

(x 2 1)(3x 21)(x 1 4) 5 0

x 2 1 5 0 or 3x 2 1 5 0 or x 1 4 5 0

x 5 1 or x 5 }
1
3

} or x 5 24

Thus the entire solution set consists of rational numbers and can be listed as 



24, }

1
3

}, 1



. n

In Example 1, we were fortunate that the first time we used synthetic division,
we got a rational solution. But this often does not happen, and then we need to con-
duct a little organized search, as the next example illustrates.

Find all rational solutions of 3x3 1 7x 2 2 22x 2 8 5 0.

Solution

If c@d is a rational solution, then c must be a factor of 28 and d must be a factor of
3. Therefore, the possible values for c and d are as follows.

For c 61, 62, 64, 68

For d 61, 63

1q3wwwww8wwww2w1w5wwwww4w
3 11 24

}}}}}}}}}
3 11 24 0

E X A M P L E  2
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Thus the possible values for c@d are

61, 6}
1
3

}, 62, 6}
2
3

}, 64, 6}
4
3

}, 68, 6}
8
3

}

Let’s begin our search for rational solutions by trying the integers first.

This indicates that x 2 1 is not a factor and
thus 1 is not a solution.

This indicates that 21 is not a solution.

Now we know that x 2 2 is a factor, and we can proceed as follows.

3x 3 1 7x 2 222x 2 8 5 0

(x 2 2)(3x 2 1 13x 1 4) 5 0

(x 2 2)(3x 1 1)(x 1 4) 5 0

x 2 2 5 0 or 3x 1 1 5 0 or x 1 4 5 0

x 5 2 or 3x 5 21 or x 5 24

x 5 2 or x 5 2}
1
3

} or x 5 24

The solution set is 



24, 2}

1
3

}, 2



. n

In Examples 1 and 2, we were solving third-degree equations. Therefore, once
we found one linear factor by synthetic division, we were able to factor the remain-
ing quadratic factor in the usual way. However, if the given equation is of degree 4
or more, then we may need to find more than one linear factor by synthetic division,
as in the next example.

Solve x 4 2 6x 3 1 22x 2 2 30x 1 13 5 0.

Solution

The possible values for c@d are 61 and 613. By synthetic division we test 1.

1q1wwww2w6wwww2w2wwww2w3w0wwwww1w3w
1 25 17 213

}}}}}}}}}}}}
1 25 17 213 0

2q3wwwww7wwww2w2w2wwww 2w8w
6 26 8

}}}}}}}}}
3 13 4 0

21q3wwwww7wwww2w2w2wwww2w8w
23 24 26

}}}}}}}}}
3 4 226 18

1q3wwwww7wwww2w2w2www 2w8w
3 10 212

}}}}}}}}}
3 10 212 220
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This indicates that x 2 1 is a factor of the given polynomial. The bottom line of the
synthetic division indicates that the given polynomial can now be factored as 
follows.

x 4 2 6x 3 1 22x 2 2 30x 1 13 5 0

(x 2 1)(x 3 2 5x 2 1 17x 2 13) 5 0

Therefore,

x 2 1 5 0 or x 3 2 5x 2 1 17x 2 13 5 0

Now we can use the same approach to look for rational solutions of x 3 2 5x 2 1
17x 2 13 5 0. The possible values for c@d are, again, 61 and 613. By synthetic
division we test 1 again.

This indicates that x 2 1 is also a factor of x 3 2 5x 2 1 17x 213, and the other fac-
tor is x 2 2 4x 1 13. Now we can solve the original equation.

x 4 2 6x 3 1 22x 2 2 30x 1 13 5 0

(x 2 1)(x 3 2 5x 2 1 17x 2 13) 5 0

(x 2 1)(x 2 1)(x 2 2 4x 1 13) 5 0

x 2 1 5 0 or x 2 1 5 0 or x 2 2 4x 1 13 5 0

x 5 1 or x 5 1 or x 2 2 4x 1 13 5 0

Use the quadratic formula on x 2 2 4x 1 13 5 0 to produce

x 5}
4 6 Ï1w

2
6w 2w 5w2w
}5 }

4 6 Ï
2

2w3w6w
} 5 }

4 6

2
6i

} 5 2 6 3i

Thus the original equation has a rational solution of 1 with a multiplicity of two and
two complex solutions, 2 1 3i and 2 2 3i. We list the solution set as { 1, 2 6 3i} .

n

Example 3 illustrates two general properties. First, note that the coefficient of
x 4 is 1, which forces the possible rational solutions to be integers. In general, the
possible rational solutions of xn 1 an21xn21 1 . . . 1 a1x 1 a0 5 0 are the inte-
gral factors of a0. Second, note that the complex solutions of Example 3 are conju-
gates of each other. The following general property can be stated.

P R O P E R T Y  5 . 5

If a polynomial equation with real coefficients has any nonreal
complex solutions, they must occur in conjugate pairs.

1q1wwww2w5wwww 1w7wwww2w1w3w
1 24 13

}}}}}}}}}
1 24 13 0
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REMARK The justification for Property 5.5 is based on some properties of
conjugates that were presented in Problem 79 of Problem Set 0.8. We will not
show the details of such a proof at this time.

Each of Properties 5.3, 5.4, and 5.5 yields some information about the solu-
tions of a polynomial equation. Before we state one more property that will give us
some additional information, we need to illustrate two ideas.

In a polynomial that is arranged in descending powers of x, if two successive
terms differ in sign, we say that there is a variation in sign. Terms with zero coeffi-
cients are disregarded when counting sign variations. For example, the polynomial

13x 3 2 2x 2 1 4x 1 7

has two sign variations, whereas the polynomial

1x 5 2 4x 3 1 x 2 5

has three variations.
Another idea that we need to understand is the fact that the solutions of

an(2x)n 1 an21(2x )n21 1 . . . 1 a1(2x ) 1 a0 5 0

are the opposites of the solutions of

anxn 1 an21xn21 1 . . . 1 a1x 1 a0 5 0

In other words, if a new equation is formed by replacing x with 2x in a given equation,
then the solutions of the new equation are the opposites of the solutions of the original
equation. For example, the solution set of x2 1 7x 1 12 5 0 is { 24, 23} ; the solution
set of (2x)2 1 7(2x) 1 12 5 0, which simplifies to x2 2 7x 1 12 5 0, is { 3, 4} .

Now we can state a property that can help us to determine the nature of the
solutions of a polynomial equation without actually solving the equation.

P R O P E R T Y  5 . 6 Descartes’ Rule of Signs

Let anxn 1 an21xn21 1 . . . 1 a1x 1 a0 5 0 be a polynomial
equation with real coefficients.

1. The number of positive real solutions of the given equation
is either equal to the number of variations in sign of the
polynomial or less than that number of variations by a posi-
tive even integer.

2. The number of negative real solutions of the given equa-
tion is either equal to the number of variations in sign of the
polynomial an(2x )n 1 an21(2x )n21 1 . . . 1 a1(2x) 1 a0

or less than that number of variations by a positive even
integer.
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Property 5.6, along with Properties 5.3 and 5.5, allows us to acquire some
information about the solutions of a polynomial equation without actually solving
the equation. Let’s consider some equations and indicate how much we know about
their solutions without solving them.

1. No variations of sign in x 3 1 3x 2 1 5x 1 4 means that there are no posi-
tive solutions.

2. Replace x with 2x in the given polynomial to produce (2x )3 1 3(2x)2 1
5(2x) 1 4, which simplifies to 2x 3 1 3x 2 2 5x 1 4. This polynomial
contains three variations of sign; thus there are three or one negative solu-
tion(s).

Conclusion The given equation has either three negative real solutions or one
negative real solution and two nonreal complex solutions.

1. There is one variation of sign in the given polynomial; thus the equation
has one positive solution.

2. Replace x with 2x to produce 2(2x )4 1 3(2x )2 2 (2x ) 2 1, which sim-
plifies to 2x 4 1 3x 2 1 x 2 1 and contains one variation of sign. Thus the
given equation has one negative solution.

Conclusion The given equation has one positive, one negative, and two nonreal
complex solutions.

1. No variations of sign in the given polynomial means that there are no posi-
tive solutions.

2. Replace x with 2x to produce 3(2x )4 1 2(2x )2 1 5, which simplifies to
3x 4 1 2x 2 1 5 and still contains no variations of sign. Thus there are no
negative solutions.

Conclusion The given equation contains four nonreal complex solutions. We
also know that these solutions will appear in conjugate pairs.

2x 5 2 4x 3 1 2x 2 5 5 0

3x 4 1 2x 2 1 5 5 0

2x 4 1 3x 2 2 x 2 1 5 0

x 3 1 3x 2 1 5x 1 4 5 0
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1. Three variations of sign in the given polynomial imply that the number of
positive solutions is three or one.

2. Replace x with 2x to produce 2(2x )5 2 4(2x)3 1 2(2x) 2 5 5 22x 5 1
4x 3 2 2x 2 5, which contains two variations of sign. Thus the number of
negative solutions is two or zero.

Conclusion The given equation has

three positive and two negative solutions, or

three positive and two nonreal complex solutions, or

one positive, two negative, and two nonreal complex solutions, or

one positive and four nonreal complex solutions

It should be evident from the previous discussions that sometimes we can
truly pinpoint the nature of the solutions of a polynomial equation. However, for
some equations (such as the last example), if we use the properties discussed in this
section, the best that we can do is to restrict the nature of the solutions to a few 
possibilities.

Finally, we need to realize that some of the properties presented in these last
two sections help us to determine polynomial equations with specified roots. Let’s
consider some examples.

Find a polynomial equation with integral coefficients that has the given numbers as
solutions and the indicated degree.

a. 1, }
1
2

}, 22; degree 3 b. 2 of multiplicity four; degree 4

c. 1 1 i, 23i; degree 4

Solution

a. If 1, }
1
2

}, and 22 are solutions, then (x 2 1), 1x 2 }
1
2

}2, and (x 1 2) are factors of

the polynomial. Thus the following third-degree polynomial equation can be
formed.

(x 2 1)1x 2 }
1
2

}2(x 1 2) 5 0

(x 2 1)(2x 2 1)(x 1 2) 5 0

2x 3 1 x 2 2 5x 1 2 5 0

b. If 2 is to be a solution with multiplicity four, then the equation (x 2 2)4 5 0 can
be formed. Using the binomial expansion pattern, we can express the equation as
follows.

(x 2 2)4 5 0

x 4 2 8x 3 1 24x 2 2 32x 1 16 5 0

E X A M P L E  4
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c. By Property 5.5, if 1 1 i is a solution, then so is 1 2 i. Likewise, because 23i is
a solution, so is 3i. Therefore, we can form the following equation.

[x 2 (1 1 i )][x 2 (1 2 i )](x 1 3i )(x 2 3i ) 5 0

[(x 2 1) 2 i][(x 2 1) 1 i](x 2 1 9) 5 0

[(x 2 1)2 2 i 2](x 2 1 9) 5 0

(x 2 2 2x 1 1 1 1)(x 2 1 9) 5 0

x 4 2 2x 3 1 11x 2 2 18x 1 18 5 0 n

A graphing utility can be very helpful when solving polynomial equations,
especially if they are of degree greater than 2. Even the search for possible rational
solutions can be simplified by looking at a graph. To find the rational solutions of
3x 3 1 8x 2 2 15x 1 4 5 0 (Example 1), we could begin by graphing the equation
y 5 3x 3 1 8x 2 2 15x 1 4. This graph is shown in Figure 5.1. From the graph it
looks as if 1 and 24 are two of the x intercepts and therefore solutions of the origi-
nal equation. Let’s check them in the equation.

3(1)3 1 8(1)2 2 15(1) 1 4 5 3 1 8 2 15 1 4 5 0

3(24)3 1 8(24)2 2 15(24) 1 4 5 2192 1 128 1 60 1 4 5 0

F I G U R E  5 . 1

Thus x 2 1 and x 1 4 are factors of 3x 3 1 8x 2 2 15x 1 4 and the remaining factor
could be found by division. We could then determine the solution set as we did in
Example 1. Let’s consider an example where we use a graphing utility to approxi-
mate the real number solutions of a polynomial equation.

Find the real number solutions of the equation x 4 2 2x 3 2 5 5 0.

Solution

Let’s use a graphing utility to get a sketch of the graph of y 5 x 4 2 2x 3 2 5 (Figure
5.2). From this graph we see that one x intercept is between 21 and 22 and another
is between 2 and 3. We can use the zoom and trace features to approximate these 

525

50

210

E X A M P L E  5
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values at 21.2 and 2.4, to the nearest tenth. Thus the real solutions for the equation
x 4 2 2x 3 2 5 5 0 are approximately 21.2 and 2.4. (The other two solutions must
be conjugate complex numbers.)

F I G U R E  5 . 2 n

525

10

210

P R O B L E M  S E T  5 . 3

For Problems 1–20, use the rational root theorem and the fac-
tor theorem to help solve each equation. Be sure that the num-
ber of solutions for each equation agrees with Property 5.3;
take into account the multiplicity of solutions.

1. x 3 1 x 2 2 4x 2 4 5 0

2. x 3 2 2x 2 2 11x 1 12 5 0

3. 6x 3 1 x 2 2 10x 1 3 5 0

4. 8x 3 2 2x 2 2 41x 2 10 5 0

5. 3x 3 1 13x 2 2 52x 1 28 5 0

6. 15x 3 1 14x 2 2 3x 2 2 5 0

7. x 3 2 2x 2 2 7x 2 4 5 0

8. x 3 2 x 2 2 8x 1 12 5 0

9. x 4 2 4x 3 2 7x 2 1 34x 2 24 5 0

10. x 4 1 4x 3 2 x 2 2 16x 2 12 5 0

11. x 3 2 10x 2 12 5 0 12. x 3 2 4x 2 1 8 5 0

13. 3x 4 2 x 3 2 8x 2 1 2x 1 4 5 0

14. 2x 4 1 3x 3 2 11x 2 2 9x 1 15 5 0

15. 6x 4 2 13x 3 2 19x 2 1 12x 5 0

16. x 3 2 x 2 1 x 2 1 5 0

17. x 4 2 3x 3 1 2x 2 1 2x 2 4 5 0

18. x 4 1 x 3 2 3x 2 2 17x 2 30 5 0

19. 2x 5 2 5x 4 1 x 3 1 x 2 2 x 1 6 5 0

20. 4x 4 1 12x 3 1 x 2 2 12x 1 4 5 0

For Problems 21–26, verify that each equation has no rational
solutions.

21. x 4 2 x 3 2 8x 2 2 3x 1 1 5 0

22. x 4 1 3x 2 2 5 0

23. 2x 4 2 3x 3 1 6x 2 2 24x 1 5 5 0

24. 3x 4 2 4x 3 2 10x 2 1 3x 2 4 5 0

25. x 5 2 2x 4 1 3x 3 1 4x 2 1 7x 2 1 5 0

26. x 5 1 2x 4 2 2x 3 1 5x 2 2 2x 2 3 5 0
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27. The rational root theorem pertains to polynomial equa-
tions with integral coefficients. However, if the coeffi-
cients are nonintegral rational numbers, we can first
apply the multiplication property of equality to produce
an equivalent equation with integral coefficients. Use
this method to solve each of the following equations.

a. }
1
1
0
}x 3 1 }

1
2

}x 2 1 }
1
5

}x 2 }
4
5

} 5 0

b. }
1
1
0
}x 3 1 }

1
5

}x 2 2 }
1
2

}x 2 }
3
5

} 5 0

c. x 3 1 }
9
2

}x 2 2 x 2 12 5 0

d. x 3 2 }
5
6

}x 2 2 }
2
3
2
}x 1 }

5
2

} 5 0

For Problems 28–37, use Descartes’ rule of signs (Property
5.6) to determine the possibilities for the nature of the solu-
tions for each of the equations. Do not solve the equations.

28. 6x 2 1 7x 2 20 5 0 29. 8x 2 2 14x 1 3 5 0

30. 2x 3 1 x 2 3 5 0 31. 4x 3 1 3x 1 7 5 0

32. 3x 3 2 2x 2 1 6x 1 5 5 0

33. 4x 3 1 5x 2 2 6x 2 2 5 0

34. x 5 2 3x 4 1 5x 3 2 x 2 1 2x 2 1 5 0

35. 2x 5 1 3x 3 2 x 1 1 5 0

36. x 5 1 32 5 0

37. 2x 6 1 3x 4 2 2x 2 2 1 5 0

For Problems 38–47, find a polynomial equation with integral
coefficients that has the given numbers as solutions and the
indicated degree.

38. 2, 4, 23; degree 3 39. 1, 21, 2, 24; degree 4

40. 22, }
1
2

}, }
2
3

}; degree 3 41. 3, 2}
2
3

}, }
3
4

}; degree 3

42. 1 of multiplicity 5; degree 5

43. 23 of multiplicity 4; degree 4

44. 3, 2 1 3i; degree 3 45. 22, 1 2 4i; degree 3

46. 1 2 i, 2i; degree 4 47. 22 1 3i, 2i; degree 4

THOUGHTS INTO WORDS

48. Explain the concept of multiplicity of roots of an 
equation.

49. How would you defend the statement that the equation
2x 4 1 3x 3 1 x 2 1 5 5 0 has no positive solutions? Does
it have any negative solutions? Defend your answer.

50. How do we know by inspection that the equation 2x 4 1
3x 2 1 6 5 0 has no real number solutions?

Further Investigations

51. Use the rational root theorem to argue that Ï2w is not a
rational number. [Hint: The solutions of x 2 2 2 5 0 are
6 Ï2w.]

52. Use the rational root theorem to argue that Ï1w2w is not a
rational number.

53. Defend the following statement. Every polynomial equa-
tion of odd degree with real coefficients has at least one
real number solution.

54. The following synthetic division shows that 2 is a solu-
tion of x 4 1 x 3 1 x 2 2 9x 2 10 5 0.

Note that the new quotient row (indicated by the arrow)
consists entirely of nonnegative numbers. This indicates
that searching for solutions greater than 2 would be a

2q1wwwww1wwwww1wwww2w9wwww2w1w0w
2 6 14 10

}}}}}}}}}}}}
1 3 7 5 0
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waste of time, because larger divisors would continue to
increase each of the numbers (except the 1 on the far left)
in the new quotient row. (Try 3 as a divisor!) Thus we
say that 2 is an upper bound for the real number solu-
tions of the given equation.

Now consider the following synthetic division,
which shows that 21 is also a solution of x 4 1 x 3 1
x 2 2 9x 2 10 5 0.

The new quotient row (indicated by the arrow) shows
that there is no need to look for solutions less than 21,
because any divisor less than 21 would increase the size
(in absolute value) of each number in the new quotient
row (except the 1 on the far left). (Try 22 as a divisor!)
Thus we say that 21 is a lower bound for the real num-
ber solutions of the given equation.

The following general property can be stated: If
an 1 an21xn21 1 . . . 1 a1x 1 a0 5 0 is a polynomial
equation with real coefficients, where an . 0, and if the
polynomial is divided synthetically by x 2 c, then:

1. If c . 0 and all numbers in the new quotient
row of the synthetic division are nonnegative,
then c is an upper bound for the real number
solutions of the given equation.

2. If c , 0 and the numbers in the new quotient
row alternate in sign (with 0 considered either
positive or negative, as needed), then c is a
lower bound for the real number solutions of
the given equation.

Find the smallest positive integer and the largest
negative integer that are upper and lower bounds, respec-
tively, for the real number solutions of each of the fol-
lowing equations. Keep in mind that the integers that
serve as bounds do not necessarily have to be solutions
of the equation.

a. x 3 2 3x 2 1 25x 2 75 5 0

b. x 3 1 x 2 2 4x 2 4 5 0

c. x 4 1 4x 3 2 7x 2 2 22x 1 24 5 0

d. 3x 3 1 7x 2 2 22x 2 8 5 0

e. x 4 2 2x 3 2 9x 2 1 2x 1 8 5 0

21q1wwwww1wwwww1wwww2w9wwww2w1w0w
21 0 21 10

}}}}}}}}}}}}
1 0 1 210 0

GRAPHING CALCULATOR ACTIVITIES

55. Suppose that we want to solve the equation x 3 1 2x 2 2
14x 2 40 5 0. Let’s graph the function f (x ) 5 x 3 1
2x 2 2 14x 2 40. The graph has only one x intercept, so
the equation must have one real number solution and two
nonreal complex solutions. The graph also indicates that
the real solution is approximately 4. We can determine
that 4 is a solution, and then we can proceed to solve the
equation using the ideas of this section.

Solve each of the following equations, using a
graphing calculator whenever it seems to be helpful.
Express all irrational solutions in lowest radical form.

a. x 3 1 2x 2 2 14x 2 40 5 0

b. x 3 1 x 2 2 7x 1 65 5 0

c. x 4 2 6x 3 2 6x 2 1 32x 1 24 5 0

d. x 4 1 3x 3 2 39x 2 1 11x 1 24 5 0

e. x 3 2 14x 2 1 26x 2 24 5 0

f. x 4 1 2x 3 2 3x 2 2 4x 1 4 5 0

56. Use a graphing calculator to help determine the nature of
the solutions for each of the following equations. You
may also need to use the property stated in Problem 54.

a. 2x 3 2 3x 2 2 3x 1 2 5 0

b. 3x 3 1 7x 2 1 8x 1 2 5 0

c. 2x 4 1 3x 2 1 1 5 0

d. 4x 5 2 8x 4 2 5x 3 1 10x 2 1 x 2 2 5 0

e. x 4 2 x 3 1 2x 2 2 x 2 1 5 0

f. x 5 2 x 4 1 x 3 2 x 2 1 x 2 3 5 0

g. x 4 2 14x 3 1 23x 2 1 14x 2 24 5 0

h. x 3 1 13x 2 2 28x 1 30 5 0
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57. Find approximations, to the nearest hundredth, of the real
number solutions of each of the following equations.

a. x 2 2 4x 1 1 5 0

b. 3x 3 2 2x 2 1 12x 2 8 5 0

c. x 4 2 8x 3 1 14x 2 2 8x 1 13 5 0

d. x 4 1 6x 3 2 10x 2 2 22x 1 161 5 0

e. 7x 5 2 5x 4 1 35x 3 2 25x 2 1 28x 2 20 5 0

GRAPHING POLYNOMIAL FUNCTIONS

Just as we have a vocabulary to deal with linear, quadratic, and polynomial equa-
tions, we also have terms that classify functions. In Chapter 3 we defined a linear
function by means of the equation

f (x) 5 ax 1 b

and a quadratic function by means of the equation

f (x) 5 ax 2 1 bx 1 c

Both of these are special cases of a general class of functions called polynomial
functions. Any function of the form

f (x) 5 anxn 1 an21xn21 1 . . . 1 a1x 1 a0

is called a polynomial function of degree n, where an is a nonzero real number;
an21, . . . , a1, a0 are real numbers; and n is a nonnegative integer. The following are
examples of polynomial functions.

f (x) 5 5x 3 2 2x 2 1 x 24 Degree 3

f (x) 5 22x 4 2 5x 3 1 3x 2 1 4x 2 1 Degree 4

f (x) 5 3x 5 1 2x 2 2 3 Degree 5

REMARK Our previous work with polynomial equations is sometimes pre-
sented as finding zeros of polynomial functions. The solutions, or roots, of a
polynomial equation are also called the zeros of the polynomial function. For
example, 22 and 2 are solutions of x 2 2 4 5 0 and they are zeros of f (x) 5
x 2 2 4. That is, f (22) 5 0 and f (2) 5 0.

For a complete discussion of graphing polynomial functions, we would need
some tools from calculus. However, the graphing techniques that we have discussed
so far enable us to graph certain kinds of polynomial functions.  For example, poly-
nomial functions of the form

f (x) 5 axn

are quite easy to graph. We know from our previous work that if n 5 1, then

functions such as f (x) 5 2x, f (x ) 5 23x, and f (x ) 5 }
1
2

}x are lines through the

origin that have slopes 2, 23, and }
1
2

}, respectively.

5.4
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Furthermore, if n 5 2, then we know that the graphs of functions of the form
f (x) 5 ax 2 are parabolas that are symmetric with respect to the y axis and have ver-
tices at the origin.

We have also previously graphed the special case of f (x ) 5 axn, where a 5 1
and n 5 3—namely, the function f (x) 5 x 3. This graph is shown in Figure 5.3.

From our work with transformations of graphs in Section 3.4, we know that
the graphs of functions of the form f (x ) 5 ax 3, where a . 1, are vertical stretchings
of f (x ) 5 x 3 and can be easily determined by plotting a few points. Likewise, if 
0 , a , 1, the graph of f (x ) 5 ax 3 is a shrinking of f (x ) 5 x 3. Furthermore, we
know that f (x ) 5 2x 3 is an x-axis (and also a y-axis) reflection of f (x ) 5 x 3. Figure 

5.4 shows graphs of f (x) 5 }
1
2

}x 3 and f (x ) 5 2x 3.

F I G U R E  5 . 3

F I G U R E  5 . 4

Two general patterns emerge from studying functions of the form f (x ) 5 xn.
If n is odd and greater than 3, then the graph of f (x ) 5 xn closely resembles Figure
5.3. For example, the graph of f (x ) 5 x 5 is shown in Figure 5.5. Note that it flattens
out a little more rapidly around the origin than the graph of f (x) 5 x 3 and that it
increases and decreases more rapidly because of the larger exponent. If n is even and
greater than 2, then the graphs of f (x ) 5 xn are not parabolas; they resemble the
basic parabola, but they are flatter at the bottom and steeper. Figure 5.6 shows the
graph of f (x ) 5 x 4.

x

f (x) = x31
2

1
2

(−2, −4)

1,     1
2

(2, 4)

f (x)

x

f (x)

(−2, 8)

(−1, 1)

f(x) = −x3

(1, −1)

(2, −8)

(a) (b)

(           )−1, −

(       )

x

f (x)

(2, 8)

(1, 1)

f(x) = x3

(−1, −1)

(−2, −8)
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F I G U R E  5 . 5 F I G U R E  5 . 6

Graphs of functions of the form f (x ) 5 axn, where n is an integer greater than
2 and a Þ 1, are variations of those shown in Figures 5.3 and 5.6. If n is odd, the
curve is symmetric about the origin; if n is even, the graph is symmetric about the 
y axis.

Transformations of these basic curves are easy to sketch. For example, in Fig-
ure 5.7 we translated the graph of f (x) 5 x 3 upward two units to produce the graph
of f (x ) 5 x 3 1 2. In Figure 5.8 we obtained the graph of f (x ) 5 (x 2 1)5 by trans-
lating the graph of f (x ) 5 x 5 one unit to the right. In Figure 5.9 we sketched the
graph of f (x ) 5 2x 4 as the x-axis reflection of f (x) 5 x 4.

F I G U R E  5 . 7 F I G U R E  5 . 8 F I G U R E  5 . 9

Graphing Polynomial Functions in Factored Form

As we mentioned earlier, a complete discussion of graphing polynomials of degree
greater than 2 requires some tools from calculus. In fact, as the degree increases, the
graphs often become more complicated. We do know that polynomial functions pro-

x

f (x) = −x4

f (x)

(1, −1)(−1, −1)
x

f (x)

(2, 1)

(0, −1) (1, 0)

f (x) = (x − 1)5

x

f (x) = x 3 + 2

(1, 3)

(−1, 1)
(0, 2)

f (x)

x

f (x) = x 4

f (x)

(1, 1)

−   ,     1
2

1
16

  (   ,    )1
2

1
16

(−1, 1)

(         )x

f (x) = x5

−   , −  1
32

(−1, −1)

f (x)

1
2

1
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1
2

(1, 1)
              `

(   ,     )
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duce smooth continuous curves with a number of turning points, as illustrated in
Figures 5.10 and 5.11. Figure 5.10 shows some graphs of polynomial functions of
odd degree. As suggested by the graphs, every polynomial function of odd degree
has at least one real zero—that is, at least one real number c such that f (c ) 5 0.
Geometrically, the zeros of the function are the x intercepts of the graph. Figure 5.11
shows some graphs of polynomial functions of even degree.

F I G U R E  5 . 1 0

F I G U R E  5 . 1 1

As indicated by the graphs in Figures 5.10 and 5.11, polynomial functions
usually have turning points where the function either changes from increasing to
decreasing or from decreasing to increasing. In calculus we are able to verify that a
polynomial function of degree n has at most n 2 1 turning points. Now let’s illus-
trate how this information, along with some other techniques, can be used to graph
polynomial functions that are expressed in factored form.

Graph f (x) 5 (x 1 2)(x 2 1)(x 2 3).

x

f(x)

x

f(x)

x

f(x)

Degree 6
with two
real zeros

Degree 4
with four
real zeros

Degree 4
with no
real zeros

(a) (b) (c)

x

f(x)

x

f(x)

x

f(x)

Degree 5
with five
real zeros

Degree 3
with three
real zeros

Degree 3
with one
real zero

(a) (b) (c)
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Solution

First, let’s find the x intercepts (zeros of the function) by setting each factor equal to
zero and solving for x.

x 1 2 5 0 or x 2 1 5 0 or x 2 3 5 0

x 5 22 or x 5 1 or x 5 3

Thus the points (22, 0), (1, 0), and (3, 0) are on the graph. Second, the points associ-
ated with the x intercepts divide the x axis into four intervals, as we see in Figure
5.12.

F I G U R E  5 . 1 2

In each of these intervals, f (x ) is either always positive or always negative. That is,
the graph is either completely above or completely below the x axis. The sign can be
determined by selecting a test value for x in each of the intervals. Any additional
points that are easily obtained improve the accuracy of the graph. The following
table summarizes these results.

Making use of the x intercepts and the information in the table, we sketched the
graph in Figure 5.13. (The points (23, 224) and (4, 18) are not shown, but they are
used to indicate a rapid decrease and increase of the curve in those regions.)

REMARK In Figure 5.13, we indicated turning points of the graph at 
(2, 24) and (21, 8). Keep in mind that these are only approximations; again,
the tools of calculus are needed to find the exact turning points.

3

−2 < x < 1

−2 1

 1 < x < 3  x > 3x < −2

LOCATION
INTERVAL TEST VALUE SIGN OF f (x) OF GRAPH

x , 22 f (23) 5 224 Negative Below x axis

22 , x , 1 f (0) 5 6 Positive Above x axis

1 , x , 3 f (2) 5 24 Negative Below x axis

x . 3 f (4) 5 18 Positive Above x axis

Additional values: f (21) 5 8
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F I G U R E  5 . 1 3 n

Graph f (x) 5 2x 4 1 3x 3 2 2x 2.

Solution

The polynomial can be factored as follows.

f (x) 5 2x 4 1 3x 3 2 2x 2

5 2x 2(x 2 2 3x 1 2)

5 2x 2(x 2 1)(x 2 2)

Now we can find the x intercepts.

2x 2 5 0 or x 2 1 5 0 or x 2 2 5 0

x 5 0 or x 5 1 or x 5 2

Thus the points (0, 0), (1, 0), and (2, 0) are on the graph and divide the x axis into
four intervals (see Figure 5.14).

F I G U R E  5 . 1 4

The following table determines some points and summarizes the sign behavior of
f (x).

 0 < x < 1

20 1

1 < x < 2  x > 2x < 0

x
(1, 0)

f (x) = (x + 2)(x − 1)(x − 3)

(3, 0)

(0, 6)

(−1, 8)

(−2, 0)

(2, −4)

f (x)

E X A M P L E  2
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Make use of the table and the x intercepts to graph Figure 5.15.

F I G U R E  5 . 1 5 n

Graph f (x) 5 x 3 1 3x 2 2 4.

Solution

By using the rational root theorem, synthetic division, and the factor theorem, we
can factor the given polynomial as follows.

f (x) 5 x 3 1 3x 2 2 4

5(x 2 1)(x 2 1 4x 1 4)

5(x 2 1)(x 1 2)2

Now we can find the x intercepts.

x 2 1 5 0 or (x 1 2)2 5 0

x 5 1 or x 5 22

x

f (x)

(    ,    )3
2

9
16

     (   , −    )1
2

3
16

f (x) = −x4 + 3x3 − 2x2

(−1, −6)

LOCATION
INTERVAL TEST VALUE SIGN OF f (x) OF GRAPH

x , 0 f (21) 5 26 Negative Below x axis

0 , x , 1 f 1}
1
2

}2 5 2}
1
3
6
} Negative Below x axis

1 , x , 2 f 1}
3
2

}2 5 }
1
9
6
} Positive Above x axis

x . 2 f (3) 5 218 Negative Below x axis

E X A M P L E  3
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Thus the points (22, 0) and (1, 0) are on the graph and divide the x axis into three
intervals (see Figure 5.16).

F I G U R E  5 . 1 6

The following table determines some points and summarizes the sign behavior of
f (x).

With the results of the table and the x intercepts, we sketched the graph in Figure 5.17.

F I G U R E  5 . 1 7 n

Finally, let’s use a graphical approach to solve a problem involving a polyno-
mial function.

x

f (x)

(1, 0)

(0, −4)(−3, −4)

(−2, 0)

(−1, −2)

f (x) = x 3 + 3x2 − 4

1−2

−2 < x < 1  x > 1x < −2

LOCATION
INTERVAL TEST VALUE SIGN OF f (x) OF GRAPH

x , 22 f (23) 5 24 Negative Below x axis

22 , x , 1 f (0) 5 24 Negative Below x axis

x . 1 f (2) 5 16 Positive Above x axis

Additional values: f (21) 5 22; f (24) 5 220
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Suppose that we have a rectangular piece of cardboard that measures 20 inches by
14 inches. From each corner a square piece is cut out, and then the flaps are turned
up to form an open box (see Figure 5.18). Determine the length of a side of the
square pieces to be cut out so that the volume of the box is as large as possible.

F I G U R E  5 . 1 8

Solution

Let x represent the length of a side of the square to be cut from each corner. Then 
20 2 2x represents the length of the open box and 14 2 2x represents the width. The
volume of a rectangular box is given by the formula V 5 lwh, so the volume of this
box can be represented by V 5 x(20 2 2x )(14 2 2x ). Now let y 5 V and graph the
function y 5 x(20 2 2x )(14 2 2x ) as shown in Figure 5.19. For this problem we are
interested only in the part of the graph between x 5 0 and x 5 7, because the length
of a side of the square has to be less than 7 inches for a box to be formed. Figure
5.20 gives us a view of that part of the graph. Now we can use the zoom and trace
features to determine that as x equals approximately 2.7, the value of y is a maxi-
mum of approximately 339.0. Thus square pieces of length approximately 2.7
inches on a side should be cut from each corner of the rectangular piece of card-
board. The open box formed will have a volume of approximately 339.0 cubic
inches.

F I G U R E  5 . 1 9 F I G U R E  5 . 2 0 n

70

350

2350

1425

350

2350

(a) (b)

P R O B L E M  1
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For Problems 1–22, graph each polynomial function.

1. f (x) 5 x 3 2 3 2. f (x) 5 (x 1 1)3

3. f (x) 5 (x 2 2)3 1 1 4. f (x) 5 2(x 2 3)3

5. f (x) 5 x 4 2 2 6. f (x) 5 (x 1 3)4

7. f (x) 5 (x 1 1)4 1 3 8. f (x) 5 2x 5

9. f (x) 5 (x 2 1)5 1 2 10. f (x) 5 2(x 2 2)4

11. f (x) 5 (x 2 1)(x 1 1)(x 2 3)

12. f (x) 5 (x 2 2)(x 1 1)(x 1 3)

13. f (x) 5 (x 1 4)(x 1 1)(1 2 x)

14. f (x) 5 x(x 1 2)(2 2 x)

15. f (x) 5 2x(x 1 3)(x 2 2)

16. f (x) 5 2x 2(x 2 1)(x 1 1)

17. f (x) 5 (x 1 3)(x 1 1)(x 2 1)(x 2 2)

18. f (x) 5 (2x 2 1)(x 2 2)(x 2 3)

19. f (x) 5 (x 2 1)2(x 1 2)

20. f (x) 5 (x 1 2)3(x 2 4)

21. f (x) 5 (x 1 1)2(x 2 1)2

22. f (x) 5 x(x 2 2)2(x 1 1)

For Problems 23–34, graph each polynomial function by first
factoring the given polynomial. You may need to use some
factoring techniques from Chapter 0, as well as the rational
root theorem and the factor theorem.

23. f (x) 5 x 3 1 x 2 2 2x 24. f (x) 5 2x 3 2 x 2 1 6x

25. f (x) 5 2x 4 2 3x 3 2 2x 2

26. f (x) 5 x 4 2 6x 3 1 8x 2

27. f (x) 5 x 3 2 x 2 2 4x 1 4

28. f (x) 5 x 3 1 2x 2 2 x 2 2

29. f (x) 5 x 3 2 13x 1 12

30. f (x) 5 x 3 2 x 2 2 9x 1 9

31. f (x) 5 x 3 2 2x 2 211x 1 12

32. f (x) 5 2x 3 2 3x 2 2 3x 1 2

33. f (x) 5 2x 3 1 6x 2 2 11x 1 6

34. f (x) 5 x 4 2 5x 2 1 4

For Problems 35–41, find (a) the y intercepts, (b) the x inter-
cepts, and (c) the intervals of x where f (x ) . 0 and where
f (x) , 0. Do not sketch the graph.

35. f (x) 5 (x 2 5)(x 1 4)(x 2 3)

36. f (x) 5 (x 1 3)(x 2 6)(8 2 x)

37. f (x) 5 (x 2 4)2(x 1 3)3

38. f (x) 5 (x 1 3)4(x 2 1)3

39. f (x) 5 (x 1 2)2(x 2 1)3(x 2 2)

40. f (x) 5 x(x 2 6)2(x 1 4)

41. f (x) 5 (x 1 2)5(x 2 4)2

P R O B L E M  S E T  5 . 4

THOUGHTS INTO WORDS

42. The graph of f (x) 5 x 3 2 3 is the graph of f (x) 5 x 3

translated three units downward. Describe each of the
following as transformations of the basic cubic function
f (x) 5 x 3.

a. f (x) 5 (x 1 4)3 b. f (x ) 5 23x 3

c. f (x ) 5 (x 2 2)3 1 6

d. f (x ) 5 2(x 1 1)3 2 4

43. How would you go about graphing f (x) 5
2(x 2 1)(x 1 2)3?

44. Give a general description of how to graph polynomial
functions that are in factored form.
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45. A polynomial function with real coefficients is continu-
ous everywhere; that is, its graph has no holes or breaks.
This is the basis for the following property: If f (x ) is a
polynomial with real coefficients, and if f (a ) and f (b )
are of opposite sign, then there is at least one real zero
between a and b. This property, along with what we
already know about polynomial functions, provides the
basis for locating and approximating irrational solutions
of a polynomial equation.

Consider the equation x 3 1 2x 2 4 5 0. Apply
Descartes’ rule of signs to determine that this equation
has one positive real solution and two nonreal complex
solutions. (You may want to confirm this!) The rational
root theorem indicates that the only possible positive
rational solutions  are 1, 2, and 4. Use a little more com-
pact format for synthetic division to obtain the following
results when testing for 1 and 2 as possible solutions.

Because f (1) 5 21 (negative) and f (2) 5 8 (positive),
there must be an irrational solution between 1 and 2.
Furthermore, because 21 is closer to 0 than 8, our guess
is that the solution is closer to 1 than to 2. Let’s start
looking at 1.0, 1.1, 1.2, and so on, until we can clamp the
solution between two numbers.

}}}}}}}}}}}}}
1 0 2 24
}}}}}}}}}}}}}

1.0 1 1 3 21

1.1 1 1.1 3.21 20.469

1.2 1 1.2 3.44 0.128

Because f (1.1) 5 20.469 and f (1.2) 5 0.128, the irra-
tional solution must be between 1.1 and 1.2. Further-
more, because 0.128 is closer to 0 than 20.469, our
guess is that the solution is closer to 1.2 than to 1.1. Let’s
start looking at 1.15, 1.16, and so on.

}}}}}}}}}}}}}}}}
1 0 2 24

}}}}}}}}}}}}}}}}
1.15 1 1.15 3.3225 20.179

1.16 1 1.16 3.3456 20.119

1.17 1 1.17 3.3689 20.058

1.18 1 1.18 3.3924 0.003

Because f (1.17) 5 20.058 and f (1.18) 5 0.003, the
irrational solution must be between 1.17 and 1.18. There-
fore, we can use 1.2 as a rational approximation to the
nearest tenth.

For each of the following equations, verify that
the equation has exactly one irrational solution, and find
an approximation, to the nearest tenth, of that solution.

a. x 3 1 x 2 6 5 0

b. x 3 2 6x 2 4 5 0

c. x 3 2 27x 1 18 5 0

d. x 3 2 x 2 2 x 2 1 5 0

e. x 3 2 24x 2 32 5 0

f. x 3 2 5x 2 1 3 5 0

}}}}}}}}}
1 0 2 24
}}}}}}}}}

1 1 1 3 21

2 1 2 6 8

Further Investigations

GRAPHING CALCULATOR ACTIVITIES

46. Graph f (x ) 5 x 3. Now predict the graphs for f (x) 5
x 3 1 2, f (x) 5 2x 3 1 2, and f (x ) 5 2x 3 2 2. Graph
these three functions on the same set of axes with the
graph of f (x ) 5 x 3.

47. Draw a rough sketch of the graphs of the 
functions f (x ) 5 x 3 2 x 2, f (x ) 5 2x 3 1 x 2, and f (x) 5

2x 3 2 x 2. Now graph these three functions to check
your sketches.

48. Graph f (x) 5 x 4 1 x 3 1 x 2. What should the graphs of
f (x) 5 x 4 2 x 3 1 x 2 and f (x) 5 2x 4 2 x 3 2 x 2 look
like? Graph them to see whether you were right.

A calculator is
very helpful at
this time.
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49. How should the graphs of f (x) 5 x 3, f (x) 5 x 5, and
f (x) 5 x 7 compare? Graph these three functions on the
same set of axes.

50. How should the graphs of f (x) 5 x 2, f (x) 5 x 4, and
f (x) 5 x 6 compare? Graph these three functions on the
same set of axes.

51. For each of the following functions, find the x intercepts
and find the intervals of x where f (x ) . 0 and those
where f (x ) , 0.

a. f (x) 5 x 3 2 3x 2 2 6x 1 8

b. f (x) 5 x 3 2 8x 2 2x 1 8

c. f (x) 5 x 3 2 7x 2 1 16x 2 12

d. f (x) 5 x 3 2 19x 2 1 90x 2 72

e. f (x) 5 x 4 1 3x 3 2 3x 2 2 11x 2 6

f. f (x) 5 x 4 1 12x 2 2 64

52. Find the coordinates of the turning points of each of the
following graphs. Express x and y values to the nearest
integer.

a. f (x) 5 2x 3 2 3x 2 2 12x 1 40

b. f (x) 5 2x 3 2 33x 2 1 60x 11050

c. f (x) 5 22x 3 2 9x 2 1 24x 1 100

d. f (x) 5 x 4 2 4x 3 2 2x 2 1 12x 1 3

e. f (x) 5 x 3 2 30x 2 1 288x 2 900

f. f (x) 5 x 5 2 2x 4 2 3x 3 2 2x 2 1 x 2 1

53. For each of the following functions, find the x intercepts
and find the turning points. Express your answers to the
nearest tenth.

a. f (x) 5 x 3 1 2x 2 2 3x 1 4

b. f (x) 5 42x 3 2 x 2 2 246x 2 35

c. f (x) 5 x 4 2 4x 2 2 4

54. A rectangular piece of cardboard is 13 inches long and 9
inches wide. From each corner a square piece is cut out,
and then the flaps are turned up to form an open box.
Determine the length of a side of the square pieces so
that the volume of the box is as large as possible.

55. A company determines that its weekly profit from manu-
facturing and selling x units of a certain item is given by
P(x ) 5 2x 3 1 3x 2 1 2880x 2 500. What weekly pro-
duction rate will maximize the profit?

GRAPHING RATIONAL FUNCTIONS

A function of the form

f (x) 5 }
p
q
(
(
x
x
)
)

}, q(x ) Þ 0

where p(x ) and q(x ) are both polynomial functions, is called a rational function.
The following are examples of rational functions.

f (x) 5 }
x 2

2
1

} f (x) 5 }
x 2

x
2

}

f (x) 5 }
x 2 2

x
x

2

2 6
} f (x) 5 }

x
x

3

1

2

4
8

}

In each example, the domain of the rational function is the set of all real numbers
except those that make the denominator zero. For example, the domain of f (x ) 5

}
x 2

2
1

} is the set of all real numbers except 1. As you will see, these exclusions from

the domain are important numbers from a graphing standpoint. They represent
breaks in an otherwise continuous curve.

5.5
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Let’s set the stage for graphing rational functions by considering in detail the
function f (x ) 5 1@x. First, note that at x 5 0, the function is undefined. Second,
let’s consider an extensive table of values to show some number trends and to build
a basis for defining the concept of an asymptote.

F I G U R E  5 . 2 1

Using a few points from this table and the patterns we discussed, we have sketched
f (x) 5 1@x in Figure 5.21. Note that the graph approaches both axes but does not

x

f (x)

(0.5, 2)
(1, 1)

(2, 0.5)(−2, − 0.5)
(−0.5, − 2)

(−1, −1)

f (x) = 1
x

1
2

10
100

1000

1
0.5
0.1
0.01
0.001

These values indicate that the value of f (x) is
positive and approaches zero from above as x gets
larger and larger.

f(x) = 
1
x

0.5
0.1
0.01
0.001
0.0001

2
10

100
1000

10000
− 0.5
− 0.1
−0.01
−0.001
−0.0001

−2
−10

−100
−1000

−10000

− 1
− 2

−10
−100

−1000

− 1
− 0.5
−0.1
−0.01
−0.001

These values indicate that f (x) is positive and is
getting larger and larger as x approaches zero from
the right.

These values indicate that f (x) is negative and is
getting smaller and smaller as x approaches zero from
the left.

These values indicate that f (x) is negative and
approaches zero from below as x gets smaller and
smaller.

x
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touch either axis. We say that the y axis [or f (x ) axis] is a vertical asymptote and the
x axis is a horizontal asymptote. In general, the following definitions can be given.

REMARK Observe that the equation f (x ) 5 1@x exhibits origin symmetry
because f (2x) 5 2f (x ). Thus we could have drawn the graph in Figure 5.21
by first determining the part of the curve in the first quadrant and then reflect-
ing that through the origin.

Vertical Asymptote A line x 5 a is a vertical asymptote for the graph of a
function f if it satisfies either of the following two properties.

F I G U R E  5 . 2 2 F I G U R E  5 . 2 3

Horizontal Asymptote A line y 5 b [or f (x ) 5 b] is a horizontal asymptote
for the graph of a function f if it satisfies either of the following two properties.

F I G U R E  5 . 2 4 F I G U R E  5 . 2 5

x

f(x)

f(x) = b

x

f(x)

f(x) = b

1. f (x) approaches the number b
from above or below as x gets
infinitely small, as in Figure
5.24, or

2. f (x) approaches the number b
from above or below as x gets
infinitely large, as in Figure
5.25.

x

f(x) x = a

x

f(x) x = a

1. f (x) either increases or
decreases without bound as x
approaches the number a from
the right, as in Figure 5.22, or

2. f (x) either increases or
decreases without bound as x
approaches the number a from
the left, as in Figure 5.23.
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The following suggestions will help you graph rational functions of the type we are
considering in this section.

1. Check for y-axis symmetry and origin symmetry.

2. Find any vertical asymptote(s) by setting the denominator equal to zero and
solving for x.

3. Find any horizontal asymptote(s) by studying the behavior of f (x) as x gets
infinitely large or as x gets infinitely small.

4. Study the behavior of the graph when it is close to the asymptotes.

5. Plot as many points as necessary to determine the shape of the graph. This
may be affected by whether the graph has any symmetry.

Keep these suggestions in mind as you study the following examples.

Graph f (x) 5 }
x
2

2

2
1

}.

Solution

Because x 5 1 makes the denominator zero, the line x 5 1 is a vertical asymptote;
we have indicated this with a dashed line in Figure 5.26. Now let’s look for a hori-
zontal asymptote by checking some large and small values of x in the tables that
accompany Figure 5.26.

Therefore, the x axis is a horizontal asymptote. Finally, let’s check the behavior of
the graph near the vertical asymptote.

10

100

1000

This portion of the table shows that as x gets very large,
the value of f (x) approaches 0 from below.

x f(x)

This portion shows that as x gets very small, the value
of f (x) approaches 0 from above.

2
9

−

2
99

−

2
999

−

−10

−100

−1000
2

1001

2
11

2
101

E X A M P L E  1
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The graph of f (x ) 5 }
x
2

2

2
1

} is shown in Figure 5.26.

F I G U R E  5 . 2 6 n

Graph f (x) 5 }
x 1

x
2

}.

Solution

Because x 5 22 makes the denominator zero, the line x 5 22 is a vertical asymptote.
To study the behavior of f (x) as x gets very large or very small, let’s change the form
of the rational expression by dividing both the numerator and the denominator by x.

f (x) 5 }
x 1

x
2

} 5 5 5
1

}

1 1 }
2
x

}

1
}

}
x
x

} 1 }
2
x

}

}
x
x

}

}

}
x 1

x
2

}

x

(0.5, 4)

(0, 2)

(2, −2)

(1.5, −4)

f (x)

−2
x − 1f (x) = 

x = 1

2
1.5
1.1
1.01
1.001

As x approaches 1 from the right side, the value of f (x)
gets smaller and smaller.

x f(x)

0
0.5
0.9
0.99
0.999

2
4

20
200

2000

−2
−4

−20
−200

−2000

As x approaches 1 from the left side, the value of f (x)
gets larger and larger.

E X A M P L E  2
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Now we can see that (1) as x gets larger and larger, the value of f (x ) approaches 
1 from below, and (2) as x gets smaller and smaller, the value of f (x) approaches 1
from above. (Perhaps you should check these claims by plugging in some values for
x.) Thus the line f (x ) 5 1 is a horizontal asymptote. Drawing the asymptotes
(dashed lines) and plotting a few points enable us to complete the graph shown in
Figure 5.27.

F I G U R E  5 . 2 7 n

In the next two examples, pay special attention to the role of symmetry. It will
allow us to focus on the portion of a curve in quadrants I and IV and then to reflect
that portion of the curve across the vertical axis to complete the graph.

Graph f (x) 5 }
x 2

2
1

x 2

4
}.

Solution

First, note that f (2x) 5 f (x); therefore, this graph is symmetric with respect to the
y axis. Second, the denominator x 2 1 4 cannot equal zero for any real number x.
Thus there is no vertical asymptote. Third, dividing both the numerator and the
denominator of the rational expression by x 2 produces

f (x) 5 }
x 2

2
1

x 2

4
} 5 5 5

Now we can see that as x gets larger and larger, the value of f (x ) approaches 2 from
below. Therefore, the line f (x ) 5 2 is a horizontal asymptote. We can plot a few
points using positive values for x, sketch this part of the curve, and then reflect
across the f (x) axis to obtain the complete graph shown in Figure 5.28.

2
}

1 1 }
x
4

2}

2
}

}
x
x

2

2} 1 }
x
4

2}

}
2
x
x
2

2

}

}

}
x 2

x
1

2

4
}

x

f (x)

(−3, 3)
(−4, 2)

(−1, −1)

x = −2

( 2,    )1
2

x
x + 2f (x) = 

f (x) = 1

E X A M P L E  3
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F I G U R E  5 . 2 8 n

Graph f (x) 5 }
x 2

3
2 4
}.

Solution

First, note that f (2x ) 5 f (x ); therefore, this graph is symmetric about the f (x ) axis.
Second, by setting the denominator equal to zero and solving for x, we obtain

x 2 2 4 5 0

x 2 5 4

x 5 62

The lines x 5 2 and x 5 22 are vertical
asymptotes. Next, we can see that 

}
x 2

3
2 4
} approaches zero from above as 

x gets larger and larger. Finally, we can
plot a few points using positive values
for x (not 2), sketch this part of the
curve, and then reflect it across the f (x )
axis to obtain the complete graph shown
in Figure 5.29.

F I G U R E  5 . 2 9 n

x

f(x)

x = 2

(3,    )3
5

x = −2

(1, −1)

( ,    )4
3

5
2

(0, −   )3
4

3
x2 − 4

f (x) = 

x

f(x) = 2

(3,    )18
13

(2, 1)

(1,   )2
5

2x2

x2 + 4
f (x) = 

f (x)

E X A M P L E  4
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Now suppose that we are going to use a graphing utility to obtain a graph of 

the function f (x ) 5 }
x 4

4
2

x 2

16
}. Before we enter this function into a graphing utility,

let’s analyze what we know about the graph.

1. Because f (0) 5 0, the origin is a point on the graph.

2. Because f (2x ) 5 f (x ), the graph is symmetric with respect to the y axis.

3. By setting the denominator equal to zero and solving for x, we can deter-
mine the vertical asymptotes.

x 4 2 16 5 0

(x 2 1 4)(x 2 2 4) 5 0

x 2 1 4 5 0 or x 2 2 4 5 0

x 2 5 24 or x 2 5 4

x 5 62i or x 5 62

Remember that we are working with ordered pairs of real numbers. Thus
the lines x 5 22 and x 5 2 are vertical asymptotes.

4. Divide both the numerator and the denominator of the rational expression
by x 4 to produce

}
x 4

4
2

x 2

16
} 5 5

From the last expression, we see that as u x u gets larger and larger, the value
of f (x) approaches zero from above. Therefore, the x axis is a horizontal
asymptote.

Let’s enter the function in a graphing utility and obtain the graph shown in Figure
5.30. Note that the graph is consistent with all of the information we determined
before we used the graphing utility. In other words, our knowledge of graphing tech-
niques enhances our use of a graphing utility.

F I G U R E  5 . 3 0

323

3

23

}
x
4

2}

}

1 2 }
1
x
6
4}

}
4
x
x
4

2

}

}

}
x 4 2

x 4

16
}
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REMARK In Figure 5.30, the origin is a point of the graph that is on the hor-
izontal asymptote. More will be said about such situations in the next section.

Back in Problem Set 1.4, you were asked to solve the following problem: How
much pure alcohol should be added to 6 liters of a 40% alcohol solution to raise it to
a 60% alcohol solution? The answer of 3 liters can be found by solving the follow-
ing equation, where x represents the amount of pure alcohol to be added.

Pure alcohol Pure alcohol 
5

Pure alcohol in
to start with

1
added final solution

0.40(6) 1 x 5 0.60(6 1 x)

Now let’s consider this problem in a more general setting. Again, x represents the

amount of pure alcohol to be added, and the rational expression }
2
6
.4

1

1

x
x

} represents

the concentration of pure alcohol in the final solution. Let’s graph the rational 

function y 5 }
2
6
.4

1

1

x
x

} as shown in Figure 5.31. For this particular problem, x is non-

negative, so we are interested only in the part of the graph that is in the first quad-
rant. Change the boundaries of the viewing rectangle so that 0 # x # 15 and 0 #
y # 2 to obtain Figure 5.32. Now we are ready to answer questions about this 
situation.

F I G U R E  5 . 3 1

1. How much pure alcohol needs to be added to raise the 40% solution to a
60% alcohol solution? (Answer: Using the trace feature of the graphing
utility, we find that y 5 0.6 when x 5 3. Therefore, 3 liters of pure alcohol
must be added.)

15215

3

23
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F I G U R E  5 . 3 2

2. How much pure alcohol needs to be added to raise the 40% solution to a
70% alcohol solution? (Answer: Using the trace feature, we find that y 5
0.7 when x 5 6. Therefore, 6 liters of pure alcohol must be added.)

3. What percent of alcohol do we have if we add 9 liters of pure alcohol to the
6 liters of a 40% solution? (Answer: Using the trace feature, we find that
y 5 0.76 when x 5 9. Therefore, adding 9 liters of pure alcohol will give
us a 76% alcohol solution.)

150

2

0

1

P R O B L E M  S E T  5 . 5

For Problems 1–22, graph each rational function.

1. f (x) 5 }
2

x
1
} 2. f (x) 5 }

x
1

2}

3. f (x) 5 }
x 1

3
1

} 4. f (x) 5 }
x
2

2

1
3

}

5. f (x) 5 }
(x 2

2
1)2} 6. f (x) 5 }

(x
2

1

3
2)2}

7. f (x) 5 }
x 2

x
3

} 8. f (x) 5 }
x

2
2

x
1

}

9. f (x) 5 }
x
2

1

3x
2

} 10. f (x) 5 }
x
2

1

x
1

}

11. f (x) 5 }
x 2

1
2 1
} 12. f (x) 5 }

x 2

2

2

2
4

}

13. f (x) 5}
(x 1 1

2

)(
2
x 2 2)
} 14. f (x) 5}

(x 1 2)
3
(x 2 4)
}

15. f (x) 5 }
x 2 1

2
x 2 2
} 16. f (x) 5 }

x 2 1

2

x
1
2 6

}

17. f (x) 5 }
x 1

x
2

} 18. f (x) 5 }
2x

x
2 1
}

19. f (x) 5 }
x 2

4
1 2
} 20. f (x) 5 }

x 2

4
1

x 2

1
}

21. f (x) 5 }
x 4

2
1

x 4

1
} 22. f (x) 5 }

x 2

x
2

2

4
}
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23. How would you explain the concept of an asymptote to
an elementary algebra student?

24. Give a step-by-step description of how you would go

about graphing f (x) 5 }
x 2

2

2

2
9

}.

THOUGHTS INTO WORDS

25. The rational function f (x ) 5 }
(x 2

x
2
2

)(x
2
1 3)

} has a

domain of all the real numbers except 2 and can be sim-
plified to f (x ) 5 x 1 3. Thus its graph is a straight line
with a hole at (2, 5). Graph each of the following 
functions.

a. f (x) 5 }
(x 1

x
4
1

)(x
4
2 1)

} b. f (x) 5 }
x 2 2

x 2

5x
2
1 6

}

c. f (x) 5 }
x
x

2

2

2

1
1

} d. f (x) 5 }
x 2 1

x 1

6x
2
1 8

}

Further Investigations

26. Use a graphing calculator to check your graphs for Prob-
lem 25. What feature of the graph does not show up on
the calculator?

27. Each of the following graphs is a transformation of
f (x) 5 1@x. First predict the general shape and location
of the graph, and then check your prediction with a
graphing calculator.

a. f (x) 5 }
1
x

} 2 2 b. f (x) 5 }
x 1

1
3

}

c. f (x) 5 2}
1
x

} d. f (x) 5 }
x 2

1
2

} 1 3

e. f (x) 5 }
2x

x
1 1
}

28. Graph f (x) 5 }
x
1

2}. How should the graphs of f (x) 5

}
(x 2

1
4)2}, f (x) 5 }

1 1

x 2

3x 2

}, and f (x) 5 2}
x
1

2} compare to

the graph of f (x ) 5 }
x
1

2}? Graph the three functions on

the same set of axes with the graph of f (x) 5 }
x
1

2}.

29. Graph f (x) 5 }
x
1

3}. How should the graphs of f (x) 5

}
2x 3

x
1
3

1
}, f (x) 5 }

(x 1

1
2)3}, and f (x) 5 2}

x
1

3} compare to

the graph of f (x ) 5 }
x
1

3}? Graph the three functions on

the same set of axes with the graph of f (x) 5 }
x
1

3}.

30. Use a graphing calculator to check your graphs for Prob-
lems 19–22.

31. Graph each of the following functions. Be sure that you
get a complete graph for each one. Sketch each graph on
a sheet of paper and keep them all handy as you study the
next section.

a. f (x) 5 }
x 2 2

x
x

2

2 2
} b. f (x) 5 }

x 2

x
24
}

c. f (x) 5 }
x 2

3
1

x
1

} d. f (x) 5 }
x
x

2

2

2

2
1

}

32. Suppose that x ounces of pure acid has been added to 14
ounces of a 15% acid solution.

a. Set up the rational expression that represents the con-
centration of pure acid in the final solution.

b. Graph the rational function that displays the level of
concentration.

c. How many ounces of pure acid must be added to the
14 ounces of a 15% solution to raise it to a 40.5%
solution? Check your answer.

GRAPHING CALCULATOR ACTIVITIES
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5.6 More on Graphing Rational Functions 413

d. How many ounces of pure acid must be added to the
14 ounces of a 15% solution to raise it to a 50% solu-
tion? Check your answer.

e. What percent of acid do we obtain if we add 12
ounces of pure acid to the 14 ounces of a 15% solu-
tion? Check your answer.

33. Solve the following problem both algebraically and
graphically: One solution contains 50% alcohol, and
another solution contains 80% alcohol. How many liters
of each solution should be mixed to produce 10.5 liters
of a 70% alcohol solution? Check your answer.

MORE ON GRAPHING RATIONAL FUNCTIONS

The rational functions that we studied in the previous section “behaved rather well.”
In fact, once we established the vertical and horizontal asymptotes, a little bit of
point plotting usually determined the graph rather easily. Such is not always the case
with rational functions. In this section, we want to investigate some rational func-
tions that behave a little differently.

Vertical asymptotes occur at values of x where the denominator is zero, so
there can be no points of a graph on a vertical asymptote. However, recall that hori-
zontal asymptotes are created by the behavior of f (x) as x gets infinitely large or infi-
nitely small. This does not restrict the possibility that for some values of x, there will
be points of the graph on the horizontal asymptote. Let’s consider some examples.

Graph f (x) 5 }
x 2 2

x
x

2

2 2
}.

Solution

First, let’s identify the vertical asymptotes by setting the denominator equal to zero
and solving for x.

x 2 2 x 2 2 5 0

(x 2 2)(x 1 1) 5 0

x 2 2 5 0 or x 1 1 5 0

x 5 2 or x 5 21

Thus the lines x 5 2 and x 5 21 are vertical asymptotes. Next, we can divide both
the numerator and the denominator of the rational expression by x 2.

f (x) 5 }
x 2 2

x

x

2

2 2
} 5 5

Now we can see that as x gets larger and larger, the value of f (x ) approaches 1 from
above. Thus the line f (x ) 5 1 is a horizontal asymptote. To determine whether any
points of the graph are on the horizontal asymptote, we can see whether the equation

1
}}

1 2 }
1
x

} 2 }
x
2

2}

}
x

x

2

2
}

}}

}
x 2 2

x

x
2

2 2
}

5.6

E X A M P L E  1
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}
x 2 2

x
x

2

2 2
} 5 1

has any solutions.

}
x 2 2

x
x

2

2 2
} 5 1

x 2 5 x 2 2 x 2 2

0 5 2x 2 2

x 5 22

Therefore, the point (22, 1) is on the graph. Now, by drawing the asymptotes, plot-
ting a few points [including (22, 1)], and studying the behavior of the function close
to the asymptotes, we can sketch the curve shown in Figure 5.33.

F I G U R E  5 . 3 3 n

Graph f (x) 5 }
x 2 2

x
4

}.

Solution

First, note that f (2x) 5 2f (x ); therefore, this graph has origin symmetry. Second,
let’s identify the vertical asymptotes.

x 2 2 4 5 0

x 2 5 4

x 5 62

Thus the lines x 5 22 and x 5 2 are vertical asymptotes. Next, by dividing the
numerator and the denominator of the rational expression by x 2, we obtain

f (x) 5 }
x 2 2

x
4

} 5 5

}
1
x

}

}
1 2 }

x

4
2
}

}
x
x

2}

}

}
x 2

x
2

2

4
}

x

f (x)

(−2, 1)

(−3,    )9
10

( 3,    )9
4

(5,    )25
18

f(x) = 1

x2

x2 − x − 2
f (x) = 

E X A M P L E  2
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5.6 More on Graphing Rational Functions 415

From this form, we can see that as x gets larger and larger, the value of f (x )
approaches zero from above. Therefore, the x axis is a horizontal asymptote.
Because f (0) 5 0, we know that the origin is a point of the graph. Finally, by con-
centrating our point plotting on positive values of x, we can sketch the portion of the
curve to the right of the vertical axis and then use the fact that the graph is symmet-
ric with respect to the origin to complete the graph. Figure 5.34 shows the com-
pleted graph.

F I G U R E  5 . 3 4 n

Graph f (x) 5 }
x 2

3
1

x
1

}.

Solution

First, observe that f (2x ) 5 2f (x ); therefore, this graph is symmetric with respect
to the origin. Second, because x 2 1 1 is a positive number for all real number values
of x, there are no vertical asymptotes for this graph. Next, by dividing the numerator
and denominator of the rational expression by x 2, we obtain

f (x) 5 }
x 2

3
1

x
1

} 5 5

From this form, we see that as x gets larger and larger, the value of f (x ) approaches
zero from above. Thus the x axis is a horizontal asymptote. Because f (0) 5 0, the
origin is a point of the graph. Finally, by concentrating our point plotting on positive
values of x, we can sketch the portion of the curve to the right of the vertical axis and
then use origin symmetry to complete the graph, as shown in Figure 5.35.

}
3
x

}

}

1 1 }
x
1

2}

}
3
x
x
2}

}

}
x 2

x
1

2

1
}

x

f(x)

x = −2

(    , −      )190
39

19
10

  (1, −   )1
3

(3,    )3
5

(5,     )5
21

x
x2 − 4f (x) = 

x = 2

E X A M P L E  3
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F I G U R E  5 . 3 5 n

Oblique Asymptotes

Thus far we have restricted our study of rational functions to those where the degree
of the numerator is less than or equal to the degree of the denominator. As our final
examples of graphing rational functions, we will consider functions where the
degree of the numerator is one greater than the degree of the denominator.

Graph f (x) 5 }
x
x

2

2

2

2
1

}.

Solution

First, let’s observe that x 5 2 is a vertical asymptote. Second, because the degree of
the numerator is greater than the degree of the denominator, we can change the form
of the rational expression by division. We use synthetic division.

Therefore, the original function can be rewritten

f (x) 5 }
x
x

2

2

2

2
1

} 5 x 1 2 1 }
x 2

3
2

}

Now, for very large values of u x u, the fraction }
x 2

3
2

} is close to zero. Therefore, as 

u x u gets larger and larger, the graph of f (x ) 5 x 1 2 1 }
x 2

3
2

} gets closer and closer 

to the line f (x ) 5 x 1 2. We call this line an oblique asymptote and indicate it with
a dashed line in Figure 5.36. Finally, because this is a new situation, it may be nec-
essary to plot a large number of points on both sides of the vertical asymptote, so

2q1wwwww0www2w1w
2 4

}}}}
1 2 3

x

(2,    )6
5

(1,    )3
2

(  ,    )6
5

1
2

3x
x2 + 1

f (x) = 

f (x)

E X A M P L E  4
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5.6 More on Graphing Rational Functions 417

let’s make an extensive table of values. The graph of the function is shown in Figure
5.36.

F I G U R E  5 . 3 6 n

If the degree of the numerator of a rational function is exactly one more than
the degree of its denominator, then the graph of the function has an oblique

asymptote. (If the graph is a line, as is the case with f (x ) 5}
(x 2

x
2
2

)(x
2
1 1)

}, then

we consider it to be its own asymptote.) As in Example 4, we find the equation of
the oblique asymptote by changing the form of the function using long division.
Let’s consider another example.

x

f(x)

(5, 8)(4, 7.5)
(3, 8)

(6, 8.75)

 x = 2

(1.5, −2.5)

(−5, −3.4)

(−3, −1.6)

(0, 0.5)
(−1, 0)

y = x + 2

x2 − 1
x − 2

f (x) = 

  2.1
  2.5
  3
  4
  5
  6
10

These values indicate the behavior of f (x) to the
right of the vertical asymptote x = 2.

x

These values indicate the behavior of f (x) to the
left of the vertical asymptote x = 2.

34.1
10.5
  8
  7.5
  8
  8.75
12.375

x2 − 1
x − 2

f(x) = 

1.9
1.5
1   
0   

−1   
−3   
−5   

−10   

−26.1  
−2.5  

0     
0.5  
0     

−1.6  
−3.4  
−8.25
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Graph f (x) 5 }
x 2

x
2

2

x
1
2 2

}.

Solution

From the given form of the function, we see that x 5 1 is a vertical asymptote. Then,
by factoring the numerator, we can change the form to

f (x) 5}
(x 2

(x
2
2

)(x
1
1

)
1)

}

which indicates x intercepts of 2 and 21. Then, by long division, we can change the
original form of the function to

f (x) 5 x 2 }
x 2

2
1

}

which indicates an oblique asymptote f (x ) 5 x. Finally, by plotting a few additional
points, we can determine the graph as shown in Figure 5.37.

F I G U R E  5 . 3 7 n

Finally, let’s combine our knowledge of rational functions with the use of a
graphing utility to obtain the graph of a fairly complex rational function.

Graph the rational function f (x ) 5 }
x 3 2

x
2
2

x
2

2 2

36
x 21

}.

Solution

Before entering this function into a graphing utility, let’s analyze what we know
about the graph.

x

f (x)

(−3, −   )5
2

(−1, 0)

(0, 2)

(2, 0)

(4,     )10
3

x2 − x − 2
x − 1

f (x) = 

418 Chapter 5 Polynomial and Rational Functions

E X A M P L E  5

E X A M P L E  6
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1. Because f (0) 5 }
3
1
6
}, the point 10, }

3
1
6
}2 is on the graph.

2. Because f (2x ) Þ f (x ) and f (2x ) Þ 2f (x ), there is no symmetry with
respect to the origin or the y axis.

3. The denominator is zero at x 5 66. Thus the lines x 5 6 and x 5 26 are
vertical asymptotes.

4. Let’s change the form of the rational expression by division.

Thus the original function can be rewritten as

f (x) 5 x 2 2 1 }
3
x
5

2

x
2

2

3
7
6
3

}

Therefore, the line y 5 x 2 2 is an oblique asymptote. Now let Y1 5 x 2 2 and

Y2 5}
x 3 2

x
2

2

x
2

2 2

36
x 2 1

} and use a viewing rectangle where 215 # x # 15 and

230 # y # 30 (Figure 5.38).

F I G U R E  5 . 3 8 n

Note that the graph in Figure 5.38 is consistent with the information we had
before we used the graphing utility. (The graph may appear to have origin symme-

try, but remember that the point 10, }
3
1
6
}2 is on the graph whereas the point 10, 2}

3
1
6
}2

is not.) Also note that the curve does intersect the oblique asymptote. We can use the
zoom and trace features of the graphing utility to find that point of intersection, or

15215

30

230

x 2 2

x 2 2 36qxw3w2w 2wxw2w2wwwwxw2ww1w
x 3 2 36x
}}}}}}}}}

22x 2 1 35x 2 1

22x 2 1 72
}}}}}}}}}

35x 2 73
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21. Explain the concept of an oblique asymptote.

22. Explain why it is possible for curves to intersect horizon-
tal and oblique asymptotes but not to intersect vertical
asymptotes.

23. Give a step-by-step description of how you would go

about graphing f (x) 5 }
x 2 2

x 2

x 2

2
12

}.

24. Your friend is having difficulty finding the point of inter-
section of a curve and the oblique asymptote. How
would you help?

THOUGHTS INTO WORDS

we can do it algebraically as follows: Because y 5}
x 3 2

x
2

2

x
2

2 2

36
x 2 1

} and y 5

x 2 2, we can equate the two expressions for y and solve the resulting equation for x.

}
x 3 2

x
2

2

x
2

2 2

36
x 2 1

}5 x 2 2

x 3 2 2x 2 2 x 2 1 5 (x 2 2)(x 2 2 36)

x 3 2 2x 2 2 x 2 1 5 x 3 2 2x 2 2 36x 1 72

35x 5 73

x 5 }
7
3
3
5
}

If x 5 }
7
3
3
5
}, then y 5 x 2 2 5 }

7
3
3
5
} 2 2 5 }

3
3
5
}. The point of intersection of the 

curve and the oblique asymptote is 1 }
7
3
3
5
}, }

3
3
5
}2.

P R O B L E M  S E T  5 . 6

For Problems 1–20, graph each rational function. Check first
for symmetry and identify the asymptotes.

1. f (x) 5 }
x 2 1

x
x

2

2 2
} 2. f (x) 5 }

x 2 1

x
2

2

x 2 3
}

3. f (x) 5 }
x 2 2

2
2
x
x

2

2 8
} 4. f (x) 5 }

x 2 1

2

3
x
x

2

2 4
}

5. f (x) 5 }
x 2

2

2

x
1

} 6. f (x) 5 }
x 2

2
2

x
9

}

7. f (x) 5 }
x 2 1

x
x 2 6
} 8. f (x) 5 }

x 2 2

2

2
x
x 2 8
}

9. f (x) 5 }
x 2 2

x
4

2

x 1 3
} 10. f (x) 5 }

x 3 1 x
1
2 2 6x
}

11. f (x) 5 }
x 2 1

x
2

} 12. f (x) 5 }
x 2

6
1

x
1

}

13. f (x) 5 }
x
2
2 1

4x
1

} 14. f (x) 5 }
x
2
2 1

5x
2

}

15. f (x) 5 }
x
x

2

2

1

1
2

} 16. f (x) 5 }
x
x

2

1

2

1
3

}

17. f (x) 5 }
x 2

x
2

1

x
1
2 6

} 18. f (x) 5 }
x
x

2

1

1

2
4

}

19. f (x) 5 }
x
1

2

2

1

x
1

} 20. f (x) 5 }
x 3

x
1

2

8
}
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25. First check for symmetry and identify the asymptotes for
the graphs of the following rational functions. Then use
your graphing utility to graph each function.

a. f (x) 5 }
x 2 1

4x
x

2

2 2
} b. f (x) 5 }

x 2 2

2

5
2
x
x
2 6

}

c. f (x) 5 }
x 2

x
2

2

9
} d. f (x) 5 }

x
x

2

2 2

2

4
9

}

e. f (x) 5 }
x
x

2

2

2

2

9
4

} f. f (x) 5 }
x
x

2

2

1

2

2
5
x
x

1

1

1
6

}

26. For each of the following rational functions, first deter-
mine and graph any oblique asymptotes. Then, on the
same set of axes, graph the function.

a. f (x) 5 }
x
x

2

2

2

2
1

} b. f (x) 5 }
x
x

2

1

1

2
1

}

c. f (x) 5 }
2x 2

x
1

1

x
1
1 1

}

d. f (x) 5 }
x
x

2

2

1

3
4

}

e. f (x) 5 }
3x 2

x
2

2

x
2
2 2

}

f. f (x) 5 }
4x 2

x
1

1

x
1
1 1

}

g. f (x) 5}
x 3

x
1
2 1

x 2

2
2

x 1

x 2

3
1

}

h. f (x) 5 }
x 3 1 2

x
x
2

2

2

1

4
x 2 3

}

GRAPHING CALCULATOR ACTIVITIES

PARTIAL FRACTIONS

In Chapter 0 we reviewed the process of adding rational expressions. For example,

}
x 2

3
2

} 1 }
x 1

2
3

} 5 5}
3
(
x
x
1

2

9
2
1

)(x
2
1

x 2

3)
4

}5}
(x 2

5x
2)

1

(x
5
1 3)

}

Now suppose that we want to reverse the process. That is, suppose we are given the
rational expression

}
(x 2

5x
2)

1

(x
5
1 3)

}

and we want to express it as the sum of two simpler rational expressions called par-
tial fractions. This process, called partial fraction decomposition, has several
applications in calculus and differential equations. The following property provides
the basis for partial fraction decomposition.

P R O P E R T Y  5 . 7

Let f (x) and g (x )  be polynomials with real coefficients, such that
the degree of f (x ) is less than the degree of g (x ). The indicated
quotient f (x )@g (x ) can be decomposed into partial fractions as
follows.

3(x 1 3) 1 2(x 2 2)
}}}

(x 2 2)(x 1 3)

5.7
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Note that Property 5.7 applies only to proper fractions—that is, fractions where the
degree of the numerator is less than the degree of the denominator. If the numerator
is not of lower degree, we can divide and then apply Property 5.7 to the remainder,
which will be a proper fraction. For example,

}
x 3 2 3

x
x

2

2

2

2

4
3x 2 5

}5 x 2 3 1 }
x
x 2

2

2

1
4
7

}

and the proper fraction }
x
x 2

2

2

1
4
7

} can be decomposed into partial fractions by applying

Property 5.7. Now let’s consider some examples to illustrate the four cases in Prop-
erty 5.7.

1. If g (x )  has a linear factor of the form ax 1 b, then the par-
tial fraction decomposition will contain a term of the form

}
ax

A
1 b
}, where A is a constant

2. If g (x ) has a linear factor of the form ax 1 b raised to the
kth power, then the partial fraction decomposition will con-
tain terms of the form

}
ax

A
1
1

b
} 1 }

(ax
A
1

2

b)2} 1 . . . 1 }
(ax

A
1

k

b )k}

where A1, A2, . . . , Ak are constants.

3. If g (x ) has a quadratic factor of the form ax 2 1 bx 1 c,
where b 2 2 4ac , 0, then the partial fraction decomposi-
tion will contain a term of the form

}
ax 2

A
1

x 1

bx
B
1 c

}, where A and B are constants

4. If g (x ) has a quadratic factor of the form ax 2 1 bx 1 c
raised to the kth power, where b 2 2 4ac , 0, then the par-
tial fraction decomposition will contain terms of the form

}
ax

A
2

1

1

x 1

bx
B
1
1

c
} 1}

(ax
A
2

2

1

x 1

bx
B
1

2

c)2}1 . . . 1}
(ax

A
2
k

1

x 1

bx
B
1
kx

c)k}

where A1, A2, . . . , Ak, and B1, B2, . . . , Bk are constants.
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Find the partial fraction decomposition of }
2x

1
2

1
1

x 1

x 2

2
1

}.

Solution

The denominator can be expressed as (x 1 1)(2x 2 1). Therefore, according to part
1 of Property 5.7, each of the linear factors produces a partial fraction of the form
constant over linear factor. In other words, we can write

}
(x 1

11
1
x
)(

1

2x
2
2 1)

}5 }
x 1

A
1

} 1 }
2x

B
2 1
} (1)

for some constants A and B. To find A and B, we multiply both sides of equation (1)
by the least common denominator (x 1 1)(2x 21):

11x 1 2 5 A(2x 2 1) 1 B(x 1 1) (2)

Equation (2) is an identity: It is true for all values of x. Therefore, let’s choose some
convenient values for x that will determine the values for A and B. If we let x 5 21,
then equation (2) becomes an equation only in A.

11(21) 1 2 5 A[2(21) 2 1] 1 B(21 1 1)

29 5 23A

3 5 A

If we let x 5 }
1
2

}, then equation (2) becomes an equation only in B.

111}
1
2

}2 1 2 5 A321}
1
2

}2 2 14 1 B1}
1
2

} 1 12
}
1
2
5
} 5 }

3
2

}B

5 5 B

Therefore, the given rational expression can now be written

}
2x

1
2

1
1

x 1

x 2

2
1

} 5 }
x 1

3
1

} 1 }
2x

5
2 1
} n

The key idea in Example 1 is the statement that equation (2) is true for all val-
ues of x. If we had chosen any two values for x, we still would have been able to
determine the values for A and B. For example, letting x 5 1 and then x 5 2 pro-
duces the equations 13 5 A 1 2B and 24 5 3A 1 3B. Solving this system of two
equations in two unknowns produces A 5 3 and B 5 5. In Example 1, our choices 

of letting x 5 21 and then x 5 }
1
2

} simply eliminated the need for solving a system of

equations to find A and B.

E X A M P L E  1
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Find the partial fraction decomposition of

}
22

x
x
(

2

x
1

2

7
1
x
)
1
2

2
}

Solution

Apply part 1 of Property 5.7 to determine that there is a partial fraction of the form
A@x corresponding to the factor of x. Next, applying part 2 of Property 5.7 and the
squared factor (x 2 1)2 gives rise to a sum of partial fractions of the form

}
x 2

B
1

} 1 }
(x 2

C
1)2}

Therefore, the complete partial fraction decomposition is of the form

}
22

x
x
(

2

x
1

2

7
1
x
)
1
2

2
}5 }

A
x

} 1 }
x 2

B
1

} 1 }
(x 2

C
1)2} (1)

Multiply both sides of equation (1) by x(x 2 1)2 to produce

22x 2 1 7x 1 2 5 A(x 2 1)2 1 Bx(x 2 1) 1 Cx (2)

which is true for all values of x. If we let x 5 1, then equation (2) becomes an equa-
tion only in C.

22(1)2 1 7(1) 1 2 5 A(1 2 1)2 1 B(1)(1 2 1) 1 C(1)

7 5 C

If we let x 5 0, then equation (2) becomes an equation just in A.

22(0)2 1 7(0) 1 2 5 A(0 2 1)2 1 B(0)(0 2 1) 1 C(0)

2 5 A

If we let x 5 2, then equation (2) becomes an equation in A, B, and C.

22(2)2 1 7(2) 1 2 5 A(2 2 1)2 1 B(2)(2 2 1) 1 C(2)

8 5 A 1 2B 1 2C

But we already know that A 5 2 and C 5 7, so we can easily determine B.

8 5 2 1 2B 1 14

28 5 2B

24 5 B

Therefore, the original rational expression can be written

}
22

x
x
(

2

x
1

2

7
1
x
)
1
2

2
}5 }

2
x

} 2 }
x 2

4
1

} 1 }
(x 2

7
1)2} n

E X A M P L E  2
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Find the partial fraction decomposition of

Solution

Apply part 1 of Property 5.7 to determine that there is a partial fraction of the form
A@(x 1 3) that corresponds to the factor x 1 3. Apply part 3 of Property 5.7 to
determine that there is also a partial fraction of the form

}
x 2

B
1

x 1

x 1

C
2

}

Thus the complete partial fraction decomposition is of the form

5 }
x 1

A
3

} 1 }
x 2

B
1

x 1

x 1

C
2

} (1)

Multiply both sides of equation (1) by (x 1 3)(x 2 1 x 1 2) to produce

4x 2 1 6x 2 10 5 A(x 2 1 x 1 2) 1 (Bx 1 C )(x 1 3) (2)

which is true for all values of x. If we let x 5 23, then equation (2) becomes an
equation in A alone.

4(23)2 1 6(23) 2 10 5 A[(23)2 1 (23) 1 2] 1 [B(23) 1 C][(23) 1 3]

8 5 8A

1 5 A

If we let x 5 0, then equation (2) becomes an equation in A and C.

4(0)2 1 6(0) 2 10 5 A(02 1 0 1 2) 1 [B(0) 1 C](0 1 3)

210 5 2A 1 3C

Because A 5 1, we obtain the value of C.

210 5 2 1 3C

212 5 3C

24 5 C

If we let x 5 1, then equation (2) becomes an equation in A, B, and C.

4(1)2 1 6(1) 2 10 5 A(12 1 1 1 2) 1 [B(1) 1 C](1 1 3)

0 5 4A 1 4B 1 4C
0 5 A 1 B 1 C

But because A 5 1 and C 5 24, we obtain the value of B.

0 5 A 1 B 1 C

0 5 1 1 B 1 (24)

3 5 B

4x 2 1 6x 2 10
}}}
(x 1 3)(x 2 1 x 1 2)

4x 2 1 6x 2 10
}}}
(x 1 3)(x 2 1 x 1 2)

E X A M P L E  3
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Therefore, the original rational expression can now be written

5 }
x 1

1
3

} 1 }
x 2

3
1

x 2

x 1

4
2

} n

Find the partial fraction decomposition of

}
x 3 1

(x
x
2

2

1

1

1
x
)2

1 3
}

Solution

Apply part 4 of Property 5.7 to determine that the partial fraction decomposition of
this fraction is of the form

}
x 3 1

(x
x
2

2

1

1

1
x
)2

1 3
}5 }

A
x
x
2 1

1

1
B

} 1 }
(
C
x 2

x
1

1

1
D
)2} (1)

Multiply both sides of equation (1) by (x 2 1 1)2 to produce

x 3 1 x 2 1 x 1 3 5 (Ax 1 B )(x 2 1 1) 1 Cx 1 D (2)

which is true for all values of x. Equation (2) is an identity, so we know that the
coefficients of similar terms on both sides of the equation must be equal. Therefore,
let’s collect similar terms on the right side of equation (2).

x 3 1 x 2 1 x 1 3 5 Ax 3 1 Ax 1 Bx 2 1 B 1 Cx 1 D

5 Ax 3 1 Bx 2 1 (A 1 C )x 1 B 1 D

Now we can equate coefficients from both sides:

1 5 A 1 5 B 1 5 A 1 C and 3 5 B 1 D

From these equations we can determine that A 5 1, B 5 1, C 5 0, and D 5 2.
Therefore, the original rational expression can be written

}
x 3 1

(x
x
2

2

1

1

1
x
)2

1 3
}5 }

x
x

2

1

1

1
1

} 1 }
(x 2 1

2
1)2} n

4x 2 1 6x 2 10
}}}
(x 1 3)(x 2 1 x 1 2)

E X A M P L E  4

For Problems 1–22, find the partial fraction decomposition
for each rational expression.

1. }
(x 2

11x
2)

2

(x
1
1

0
1)

} 2. }
(x 1

11
3
x
)(
2

x 2

2
4)

}

3. }
2

x
2
2

x
2

2

1
8

} 4. }
2

x
2

2

x
2

1

4
32

}

5. }
6x 2

20
1

x
7
2

x
3
2 3

} 6. }
10

2

x 2

2
2

x 2

x 2

8
2

}

7. 8. }
2

x 3

9x
2

2

3
1

x 2

7x
2

2

4x
4

}

9. }
x(

2

2x
6x

2

2 1

1)(
7
4
x
x

1

1

1
1)

} 10.
15x 2 1 20x 1 30

}}}
(x 1 3)(3x 1 2)(2x 1 3)

x 2 2 18x 1 5
}}}
(x 2 1)(x 1 2)(x 2 3)

P R O B L E M  S E T  5 . 7
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11. }
(
2
x
x
2

1

2
1
)2} 12. }

2

(x
3
1

x 1

1)
1
2}

13. }
26x

x

2

2

1

(x
1
1

9x
3
1

)
21

} 14. }
10x 2

x
2

(x
7
2

3x
4
1

)2

144
}

15. }
2

(x
2
2

x
1

2 2

1)
3
(
x
x

1

2

1
4
0
)

} 16. }
(
8
x
x
2

2

1

1

4
1
)
5
(3
x
x
1

2

1
4
2
)

}

17. }
3x 2

(
1

x 1

10
2
x
)3

1 9
} 18.

19. }
x
5
(
x
x

2

2

1

2

3
x
x
1

1

3
6
)

} 20. }
x 3

(x
1

2 1

x 2

2
1

)2

2
}

21. }
2x

(x

3

2

1

1

x
1
1

)2

3
} 22. }

4x 2 1

x 3

3
2

x
8
1 14

}

2x 3 1 8x 2 1 2x 1 4
}}}

(x 1 1)2(x 2 1 3)

23. Give a general description of partial fraction decomposi-
tion for someone who missed class the day it was dis-
cussed.

24. Give a step-by-step explanation of how to find the 

partial fraction decomposition of }
2x 2

1
1

1x
5
1

x 2

5
3.

}

THOUGHTS INTO WORDS

Two themes unify this chapter: (1) solving polynomial equations and (2) graphing
polynomial and rational functions.

Solving Polynomial Equations

The following concepts and properties provide the basis for solving polynomial
equations.

1. Synthetic division.

2. The factor theorem: A polynomial f (x ) has a factor x 2 c if and only if
f (c) 5 0.

3. Property 5.3: A polynomial equation of degree n has n solutions, where any
solution of multiplicity p is counted p times.

4. The rational root theorem: Consider the polynomial equation

anxn 1 an21xn21 1 . . . 1 a1x 1 a0 5 0

where the coefficients are integers. If the rational number c@d, reduced to
lowest terms, is a solution of the equation, then c is a factor of the constant
term, a0, and d is a factor of the leading coefficient, an.

5. Property 5.5: If a polynomial equation with real coefficients has any non-
real complex solutions, they must occur in conjugate pairs.

C H A P T E R  5 S U M M A R Y
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6. Descartes’ rule of signs: Let anxn 1 an21xn21 1 . . . 1 a1x 1 a0 5 0 be a
polynomial equation with real coefficients.

a. The number of positive real solutions either is equal to the number of
sign variations in the given polynomial or is less than the number of
sign variations by a positive even integer.

b. The number of negative real solutions either is equal to the number of
sign variations in

an (2x)n 1 an21(2x )n21 1 . . . 1 a1(2x ) 1 a0

or is less than that number of sign variations by a positive even integer.

Graphing Polynomial and Rational Functions

Graphs of polynomial functions of the form f (x ) 5 axn, where n is an integer
greater than 2 and a Þ 1, are variations of the graphs shown in Figures 5.3 and 5.6.
If n is odd, the curve is symmetric about the origin, and if n is even, the graph is
symmetric about the vertical axis.

Graphs of polynomial functions of the form f (x) 5axn can be translated horizon-
tally and vertically and reflected across the x axis. For example:

1. The graph of f (x ) 5 2(x 2 4)3 is the graph of f (x) 5 2x 3 moved four
units to the right.

2. The graph of f (x ) 5 3x 4 1 4 is the graph of f (x ) 5 3x 4 moved up four
units.

3. The graph of f (x ) 5 2x 5 is the graph of f (x ) 5 x5 reflected across the x
axis.

To graph a polynomial function that is expressed in factored form, the following
steps are helpful.

1. Find the x intercepts, which are also called the zeros of the polynomial.

2. Use a test value in each of the intervals determined by the x intercepts to
find out whether the function is positive or negative over that interval.

3. Plot any additional points that are needed to determine the graph.

To graph a rational function, the following steps are useful.

1. Check for vertical-axis and origin symmetry.

2. Find any vertical asymptotes by setting the denominator equal to zero and
solving it for x.

3. Find any horizontal asymptotes by studying the behavior of f (x ) as x gets
very large or very small. This may require changing the form of the origi-
nal rational expression.

   348  Polynomial and Rational Functions 



Chapter 5 Summary 429

For Problems 1 and 2, find the quotient and remainder of each
division problem.

1. (6x 3 1 11x 2 2 27x 1 32) 4 (2x 1 7)

2. (2a 3 2 3a 2 1 13a 2 1) 4 (a 2 2 a 1 6)

For Problems 3–6, use synthetic division to determine the
quotient and remainder.

3. (3x 3 2 4x 2 1 6x 2 2) 4 (x 2 1)

4. (5x 3 1 7x 2 2 9x 1 10) 4 (x 1 2)

5. (22x 4 1 x 3 2 2x 2 2 x 2 1) 4 (x 1 4)

6. (23x 4 2 5x 2 1 9) 4 (x 1 3)

For Problems 7–10, find f (c) either by using synthetic divi-
sion and the remainder theorem or by evaluating f (c )
directly.

7. f (x) 5 4x 5 2 3x 3 1 x 2 2 1 and c 5 1

8. f (x) 5 4x 3 2 7x 2 1 6x 2 8 and c 5 23

9. f (x) 5 2x 4 1 9x 2 2 x 2 2 and c 5 22

10. f (x) 5 x 4 2 9x 3 1 9x 2 2 10x 1 16 and c 5 8

For Problems 11–14, use the factor theorem to help answer
some questions about factors.

11. Is x 1 2 a factor of 2x 3 1 x 2 2 7x 2 2?

12. Is x 2 3 a factor of x 4 1 5x 3 2 7x 2 2 x 1 3?

13. Is x 2 4 a factor of x 5 2 1024?

14. Is x 1 1 a factor of x 5 1 1?

For Problems 15–18, use the rational root theorem and the
factor theorem to help solve each equation.

15. x 3 2 3x 2 2 13x 1 15 5 0

16. 8x 3 1 26x 2 2 17x 2 35 5 0

17. x 4 2 5x 3 1 34x 2 2 82x 1 52 5 0

18. x 3 2 4x 2 2 10x 1 4 5 0

For Problems 19 and 20, use Descartes’ rule of signs (Prop-
erty 5.6) to list the possibilities for the nature of the solutions.
Do not solve the equations.

19. 4x 4 2 3x 3 1 2x 2 1 x 1 4 5 0

20. x 5 1 3x 3 1 x 1 7 5 0

For Problems 21–24, graph each polynomial function.

21. f (x) 5 2(x 2 2)3 1 3

22. f (x) 5 (x 1 3)(x 2 1)(3 2 x)

23. f (x) 5 x 4 2 4x 2

24. f (x) 5 x 3 2 4x 2 1 x 1 6

C H A P T E R 5  R E V I E W P R O B L E M  S E T

4. If the degree of the numerator is one larger than the degree of the denomi-
nator, determine the equation of the oblique asymptote.

5. Study the behavior of the graph when it is close to the asymptotic lines.

6. Plot as many points as necessary to determine the graph. This may be
affected by whether the graph has any symmetries.

Be sure that you understand the process of partial fraction decomposition outlined
in Property 5.7.
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For Problems 25–28, graph each rational function. Be sure to
identify the asymptotes.

25. f (x) 5 }
x

2
2

x
3

} 26. f (x) 5 }
x 2

2

1

3
1

}

27. f (x) 5 }
x 2 2

2

x
x 2

2 6
} 28. f (x) 5 }

x
x

2

1

1

1
3

}

For Problems 29 and 30, find the partial fraction decomposi-
tion.

29. }
x
5
2

x
(x

2 2

1

4
2)

} 30. }
(x

x
2

2

1

2

4)
x
(2
2

x
2
2

1
1)

}
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1. Find the quotient and remainder for the division problem (6x 3 2 19x 2 1 3x 1
20) 4 (3x 2 5).

2. Find the quotient and remainder for the division problem (3x 4 1 8x 3 2
5x 2 212x 2 15) 4 (x 1 3).

3. Find the quotient and remainder for the division problem (4x 4 2 7x 2 1 4) 4
(x 2 2).

4. If f (x) 5 x 5 2 8x 4 1 9x 3 2 13x 2 2 9x 2 10, find f (7).

5. If f (x) 5 3x 4 1 20x 3 2 6x 2 1 9x 1 19, find f (27).

6. If f (x) 5 x 5 2 35x 3 2 32x 1 15, find f (6).

7. Is x 2 5 a factor of 3x 3 2 11x 2 2 22x 2 20?

8. Is x 1 2 a factor of 5x 3 1 9x 2 2 9x 2 17?

9. Is x 1 3 a factor of x 4 2 16x 2 2 17x 1 12?

10. Is x 2 6 a factor of x 4 2 2x 2 1 3x 2 12?

11. Use Descartes’ rule of signs to determine the nature of the roots of 5x 4 1 3x 3 2
x 2 2 9 5 0.

12. Find the x intercepts of the graph of the function f (x ) 5 3x 3 1 19x 2 2 14x.

13. Find the equation of the vertical asymptote for the graph of the function 

f (x ) 5 }
x

5
1

x
3

}.

14. Find the equation of the horizontal asymptote for the graph of the function

f (x ) 5 }
x 2

5
2

x 2

4
}.

15. What type of symmetry does the equation f (x ) 5 }
x 2

x
1

2

2
} exhibit?

16. What type of symmetry does the equation f (x ) 5 }
x
2
2 1

3x
1

} exhibit?

17. Find the equation of the oblique asymptote for the graph of the function 

f (x ) 5 }
4x 2

x
1

1

x
1
1 1

}.

For Problems 18–20, find the partial fraction decomposition.

18. }
(2x

1
2

1x
1
2

)(x
2
2

2
6)

} 19. }
x 2

x(
2

x 1

2x
2
2

)2

4
} 20.

3x 2 2 x 1 1
}}}
(x 1 1)(x 2 2 x 1 3)
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For Problems 21–25, graph each of the functions. Be sure to identify the
asymptotes for the rational functions.

21. f (x) 5 (2 2 x )(x 2 1)(x 1 1) 22. f (x ) 5 }
x
2

2

x
3

}

23. f (x) 5 (x 1 2)2(x 2 1) 24. f (x ) 5}
x 2

2

2

2
4

}

25. f (x) 5 }
4x 2

x
1

1

x
1
1 1

}
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For Problems 1–10, evaluate each numerical expression.

1. 1}
3
4

}223
2. !3 2§}

2
8§7
}§ 3. 2522

4. 84@3 5. 92(3@2) 6. log4 64

7. log10 0.0001 8. log2 1}
3
1
2
}2 9. (264)2@3

10. ln e 3

For Problems 11–33, solve each problem.

11. Express the domain of the function f (x) 5

Ï2wxw2w1w 1w1wxw2w 6w using interval notation.

12. If f (x ) 5 3x 2 1 and g (x) 5 x 2 2 x 1 3, find 
( f 8 g )(22) and (g 8 f )(3).

13. If f (x) 5 2}
2
x

} and g (x ) 5 }
x 2

1
4

}, find ( f 8 g )(x) and 

(g 8 f )(x). Also indicate the domain of each composite
function.

14. If f (x ) 5 22x 1 7, find the inverse of f.

15. If f (x ) 5 x 2 1 7x 2 2, find }
f (a 1 h

h
) 2 f (a )
}.

16. If f (x ) 5 2x 4 2 17x 3 2 10x 2 1 11x 1 15, find f (9).

17. Find the quotient for (3x 5 2 25x 3 2 7x 2 1 x 1 6) 4
(x 2 3).

18. Is x 1 2 a factor of 2x 4 1 3x 3 1 x 2 1 2x 2 16?

19. Evaluate log2 50 to the nearest hundredth.

20. Find the center and the length of a radius of the circle
x 2 1 y 2 1 6x 2 4y 1 4 5 0.

21. Write the equation of the line that contains the points
(24, 2) and (5, 21).

22. Write the equation of the perpendicular bisector of the
line segment determined by (22, 24) and (6, 2).

23. Find the length of the major axis of the ellipse 16x 2 1
y 2 5 64.

24. Find the equations of the asymptotes of the hyperbola
x 2 2 9y 2 5 18.

25. If y varies directly as x, and if y 5 3 when x 5 4, find y
when x 5 16.

26. If y varies inversely as the square root of x, and if y 5 }
2
5

}

when x 5 25, find y when x 5 49.

27. Find the total amount of money accumulated at the end
of 8 years if $450 is invested at 7% compounded quar-
terly.

28. How long will it take $500 to double if it is invested at
8% interest compounded continuously?

29. Sandy has a collection of 57 coins worth $10. They con-
sist of nickels, dimes, and quarters, and the number of
quarters is 2 more than three times the number of nickels.
How many coins of each kind does she have?

30. A retailer bought a dress for $75 and wants to sell it at a
profit of 40% of the selling price. What price should she
ask for the dress?

31. A container has 8 quarts of a 30% alcohol solution. How
much pure alcohol should be added to raise it to a 40%
solution?

32. Claire rode her bicycle out into the country at a speed of
15 miles per hour and returned along the same route at

10 miles per hour. If the entire trip took 7 }
1
2

} hours, how

far out did she ride?

33. Adam can do a job in 2 hours less time than it takes Carl
to do the same job. Working together, they can do the job
in 2 hours and 24 minutes. How long would it take Adam
to do the job by himself?

For Problems 34–45, solve each equation.

34. (2x 2 5)(6x 1 1) 5 (3x 1 2)(4x 2 7)

35. (2x 1 1)(x 2 2) 5 (3x 2 2)(x 1 4)

36. 4x 3 1 20x 2 2 56x 5 0

37. 6x 3 1 17x 2 1 x 2 10 5 0

Cumulative Review Problem Set 433
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38. u 4x 2 3 u 5 7

39. }
2x

3
2 1
} 2 }

3x
4
1 2
} 5 2}

5
6

}

40. 3x22 5 27x

41. ln ( t 1 2) 5 ln t 1 ln 4

42. log 5 1 log (x 2 1) 5 1

43. x 4 1 3x 2 2 54 5 0

44. (2x 2 1)(x 1 3) 5 49

45. x 4 2 2x 3 1 2x 2 2 7x 1 6 5 0

For Problems 46–53, solve each inequality and express the
solution set using interval notation.

46. 3(x 2 1) 2 5(x 1 2) . 3(x 1 4)

47. }
x 2

2
1

} 1 }
2x

5
1 1
} $ }

x 2

3
2

}

48. x 2 2 3x , 18

49. (x 2 1)(x 1 3)(2 2 x) # 0

50. u 2x 2 1 u . 6

51. u 3x 1 2 u # 8 52. }
4
x
x
2

2

2
3

} $ 0

53. }
x
x

1

2

3
4

} , 3

For Problems 54–64, graph each function.

54. f (x) 5 22x 1 4 55. f (x) 5 2x 2 2 3

56. f (x) 5 2x 2 3 57. f (x) 5 log2 (x 2 1)

58. f (x) 5 }
x

2
1

x
1

} 59. f (x) 5 2u x 2 2 u 1 1

60. f (x) 5 2Ïxw 1 1 61. f (x) 5 3x 2 1 12x 1 9

62. f (x) 5 2(x 2 3)3 1 1

63. f (x) 5 (x 1 1)(x 2 2)(x 2 4)

64. f (x) 5 x 4 2 x 2
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SYSTEMS OF

EQUATIONS

A system of two linear equations in two variables can be used to approximate the effect of the jet
stream on airline schedules.

6.1 Systems of Two
Linear Equations
in Two Variables

6.2 Systems of Three
Linear Equations
in Three
Variables

6.3 Matrix Approach
to Solving
Systems

6.4 Determinants

6.5 Cramer’s Rule
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436 Chapter 6 Systems of Equations

In this chapter we will begin by reviewing some techniques for solving sys-
tems of linear equations that involve two or three variables. Then, because
many applications of mathematics require the use of large numbers of vari-
ables and equations, we will introduce some additional techniques for solv-
ing such extensive systems. These new techniques also form a basis for
solving systems by using a computer.

SYSTEMS OF TWO LINEAR EQUATIONS IN TWO

VARIABLES

In Chapter 2 we stated that any equation of the form Ax 1 By 5 C, where A, B, and
C are real numbers (A and B not both zero), is a linear equation in the two variables
x and y, and its graph is a straight line. Two linear equations in two variables consid-
ered together form a system of two linear equations in two variables, as illustrated
by the following examples.

x 1 y 5 6 3x 1 2y 5 1 4x 2 5y 5 211x 2 y 5 22 15x 2 2y 5 232 123x 1 y 5 272
To solve a system, (such as any of these three examples) means to find all of the
ordered pairs that simultaneously satisfy both equations in the system. For example,
if we graph the two equations x 1 y 5 6 and x 2 y 5 2 on the same set of axes, as in
Figure 6.1, then the ordered pair associated with the point of intersection of the two

F I G U R E  6 . 1

lines is the solution of the system. Thus we say that { (4, 2)} is the solution set of
the system

x

y

(4, 2)

x − y = 2

x + y = 6

6.1
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x 1 y 5 61x 2 y 5 22
To check the solution, we substitute 4 for x and 2 for y in the two equations.

x 1 y 5 6 becomes 4 1 2 5 6, a true statement

x 2 y 5 2 becomes 4 2 2 5 2, a true statement

Because the graph of a linear equation in two variables is a straight line, there
are three possible situations that can occur when we are solving a system of two lin-
ear equations in two variables. Each situation is shown in Figure 6.2.

F I G U R E  6 . 2

CASE 1 The graphs of the two equations are two lines intersecting in one
point. There is exactly one solution, and the system is called a con-
sistent system.

CASE 2 The graphs of the two equations are parallel lines. There is no
solution, and the system is called an inconsistent system.

CASE 3 The graphs of the two equations are the same line, and there are
infinitely many solutions of the system. Any pair of real numbers
that satisfies one of the equations also satisfies the other equation,
and we say that the equations are dependent.

Thus, as we solve a system of two linear equations in two variables, we can expect
one of three outcomes: The system will have no solutions, one ordered pair as a
solution, or infinitely many ordered pairs as solutions.

The Substitution Method

Solving specific systems of equations by graphing requires accurate graphs. How-
ever, unless the solutions are integers, it is difficult to obtain exact solutions from a
graph. Therefore, we will consider some other techniques for solving systems of
equations.

(a)

x

y

(c)

x

y

(b)

x

y

Case 1:
one solution

Case 2:
no solution

Case 3:
infinitely
many
solutions
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The substitution method, which works especially well with systems of two
equations in two unknowns, can be described as follows.

STEP 1 Solve one of the equations for one variable in terms of the other. (If
possible, make a choice that will avoid fractions.)

STEP 2 Substitute the expression obtained in step 1 into the other equation,
producing an equation in one variable.

STEP 3 Solve the equation obtained in step 2.

STEP 4 Use the solution obtained in step 3, along with the expression
obtained in step 1, to determine the solution of the system.

Solve the system x 2 3y 5 22514x 1 5y 5 19 2.

Solution

Solve the first equation for x in terms of y to produce

x 5 3y 2 25

Substitute 3y 2 25 for x in the second equation and solve for y.

4x 1 5y 5 19

4(3y 2 25) 1 5y 5 19

12y 2 100 1 5y 5 19

17y 5 119

y 5 7

Next, substitute 7 for y in the equation x 5 3y 2 25 to obtain

x 5 3(7) 2 25 5 24

The solution set of the given system is { (24, 7)} . (You should check this solution in
both of the original equations.) n

Solve the system 5x 1 9y 5 2212x 1 4y 5 212.

Solution

A glance at the system should tell us that solving either equation for either variable
will produce a fractional form, so let’s just use the first equation and solve for x in
terms of y.

5x 1 9y 5 22

5x 5 29y 2 2

x 5 }
29y

5
2 2
}

Now we can substitute this value for x into the second equation and solve for y.

E X A M P L E  1

E X A M P L E  2

   358  Systems of Equations 
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2x 1 4y 5 21

21}29y
5
2 2
}2 1 4y 5 21

2(29y 2 2) 1 20y 5 25 Multiplied both sides by 5.
218y 2 4 1 20y 5 25

2y 2 4 5 25

2y 5 21

y 5 2}
1
2

}

Now we can substitute 2}
1
2

} for y in x 5 }
29y

5
2 2
}.

x 5 5 5 }
1
2

}

The solution set is 


 1}

1
2

}, 2}
1
2

}2


. n

Solve the system

6x 2 4y 5 181y 5 }
3
2

}x 2 }
9
2

} 2
Solution

The second equation is given in appropriate form for us to begin the substitution

process. Substitute }
3
2

}x 2 }
9
2

} for y in the first equation to yield

6x 2 4y 5 18

6x 2 41}
3
2

}x 2 }
9
2

}2 5 18

6x 2 6x 1 18 5 18

18 5 18

Our obtaining a true numerical statement (18 5 18) indicates that the system has
infinitely many solutions. Any ordered pair that satisfies one of the equations 
will also satisfy the other equation. Thus, in the second equation of the original 

system, if we let x 5 k, then y 5 }
3
2

}k 2 }
9
2

}. Therefore, the solution set can be expressed



 1k, }

3
2

}k 2}
9
2

}2 u k is a real number



. If some specific solutions are needed, they can be

generated by the ordered pair 1k, }
3
2

}k 2 }
9
2

}2. For example, if we let k 5 1, then we get 

}
9
2

} 2 2
}

5

2912}
1
2

}2 2 2
}}

5

E X A M P L E  3

    Systems of Equations 359



440 Chapter 6 Systems of Equations

}
3
2

}(1) 2 }
9
2

} 5 2}
6
2

} 5 23. Thus the ordered pair (1, 23) is a member of the solution set 

of the given system. n

The Elimination-by-Addition Method

Now let’s consider the elimination-by-addition method for solving a system of equa-
tions. This is a very important method because it is the basis for developing other tech-
niques for solving systems that contain many equations and variables. The method
involves replacing systems of equations with simpler equivalent systems until we
obtain a system where the solutions are obvious. Equivalent systems of equations are
systems that have exactly the same solution set. The following operations or trans-
formations can be applied to a system of equations to produce an equivalent system.

1. Any two equations of the system can be interchanged.

2. Both sides of any equation of the system can be multiplied by any nonzero
real number.

3. Any equation of the system can be replaced by the sum of that equation and
a nonzero multiple of another equation.

Solve the system 3x 1 5y 5 29 (1)12x 2 3y 5 13 2.
(2)

Solution

We can replace the given system with an equivalent system by multiplying equation
(2) by 23.

3x 1 5y 5 29 (3)126x 1 9y 5 2392 (4)

Now let’s replace equation (4) with an equation formed by multiplying equation (3)
by 2 and adding this result to equation (4).

3x 1 5y 5 29 (5)1 19y 5 2572 (6)

From equation (6) we can easily determine that y 5 23. Then, substituting 23 for y
in equation (5) produces

3x 1 5(23) 5 29

3x 2 15 5 29

3x 5 6

x 5 2

The solution set for the given system is { (2, 23)} . n

REMARK We are using a format for the elimination-by-addition method
that highlights the use of equivalent systems. In Section 6.3, this format will

E X A M P L E  4
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lead naturally to an approach using matrices. Thus it is beneficial to stress the
use of equivalent systems at this time.

Solve the system

}
1
2

}x 1 }
2
3

}y 5 24 (7)1}
1
4

}x 2 }
3
2

}y 5 20 2 (8)

Solution

The given system can be replaced with an equivalent system by multiplying equa-
tion (7) by 6 and equation (8) by 4.

3x 1 4y 5 224 (9)1 x 2 6y 5 80 2 (10)

Now let’s exchange equations (9) and (10).

x 2 6y 5 80 (11)13x 1 4y 5 2242 (12)

We can replace equation (12) with an equation formed by multiplying equation (11)
by 23 and adding this result to equation (12).

x 2 6y 5 80 (13)1 22y 5 22642 (14)

From equation (14) we can determine that y 5 212. Then, substituting 212 for y in
equation (13) produces

x 2 6(212) 5 80

x 1 72 5 80

x 5 8

The solution set of the given system is { (8, 212)} . (Check this!) n

Solve the system x 2 4y 5 9 (15)1x 2 4y 5 32.
(16)

Solution

We can replace equation (16) with an equation formed by multiplying equation (15)
by 21 and adding this result to equation (16).

x 2 4y 5 9 (17)1 0 5 2 62 (18)

The statement 0 5 26 is a contradiction, and therefore the original system is incon-
sistent; it has no solution. The solution set is [. n

E X A M P L E  5

E X A M P L E  6
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Both the elimination-by-addition and substitution methods can be used to
obtain exact solutions for any system of two linear equations in two unknowns.
Sometimes the issue is one of deciding which method to use on a particular system.
Some systems lend themselves to one or the other of the methods by virtue of the
original format of the equations. We will illustrate this idea in a moment when we
solve some word problems.

Using Systems to Solve Problems

Many word problems that we solved earlier in this text with one variable and one
equation can also be solved by using a system of two linear equations in two vari-
ables. In fact, in many of these problems you may find it more natural to use two
variables and two equations.

The two-variable expression 10t 1 u can be used to represent any two-digit
whole number. The t represents the tens digit, and the u represents the units digit.
For example, if t 5 4 and u 5 8, then 10t 1 u becomes 10(4) 1 8 5 48. Now let’s
use this general representation for a two-digit number to help solve a problem.

The units digit of a two-digit number is one more than twice the tens digit. The number
with the digits reversed is 45 larger than the original number. Find the original number.

Solution

Let u represent the units digit of the original number, and let t represent the tens
digit. Then 10t 1 u represents the original number, and 10u 1 t represents the new
number with the digits reversed. The problem translates into the following system.

u 5 2t 1 1110u 1 t 5 10t 1 u 1 452

Simplify the second equation, and the system becomes

u 5 2t 1 11u 2 t 5 5 2
Because of the form of the first equation, this system lends itself to solution by the
substitution method. Substitute 2t 1 1 for u in the second equation to produce

(2t 1 1) 2 t 5 5

t 1 1 5 5

t 5 4

Now substitute 4 for t in the equation u 5 2t 1 1 to get

u 5 2(4) 1 1 5 9

The tens digit is 4 and the units digit is 9, so the number is 49. n

The units digit is one more
than twice the tens digit.
The number with the digits
reversed is 45 larger than
the original number.

P R O B L E M  1
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Lucinda invested $950, part of it at 11% interest and the remainder at 12%. Her total
yearly income from the two investments was $111.50. How much did she invest at
each rate?

Solution

Let x represent the amount invested at 11% and y the amount invested at 12%. The
problem translates into the following system.

x 1 y 5 95010.11x 1 0.12y 5 111.502
Multiply the second equation by 100 to produce an equivalent system.

x 1 y 5 950111x 1 12y 5 111502
Because neither equation is solved for one variable in terms of the other, let’s use
the elimination-by-addition method to solve the system. The second equation can be
replaced by an equation formed by multiplying the first equation by 211 and adding
this result to the second equation.

x 1 y 5 9501 y 5 7002
Now we substitute 700 for y in the equation x 1 y 5 950.

x 1 700 5 950

x 5 250

Therefore, Lucinda must have invested $250 at 11% and $700 at 12%. n

In our final example of this section, we will use a graphing utility to help solve
a system of equations.

Solve the system 1.14x 1 2.35y 5 27.1213.26x 2 5.05y 5 26.72 2
Solution

First, we need to solve each equation for y in terms of x. Thus the system becomes

y 5}
27.12

2.
2

35
1.14x

}1y 5 }
3.26x

5
2

.05
26.72
} 2

Now we can enter both of these equations into a graphing utility and obtain Figure
6.3. From this figure it appears that the point of intersection is at approximately  x 5
2 and y 5 24. By direct substitution into the given equations, we can verify that the
point of intersection is exactly (2, 24).

The two investments total $950.
The yearly interest from the two
investments totals $111.50.

P R O B L E M  2
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F I G U R E  6 . 3 n

15215

10

210

P R O B L E M  S E T  6 . 1

For Problems 1–18, solve each system by using the substitu-
tion method.

1. 1x 1 y 5 162 2. 12x 1 3y 5 252y 5 x 1 2 y 5 2x 1 9

3. 1x 5 3y 2 25 2 4. 13x 2 5y 5 2524x 1 5y 5 19 x 5 y 1 7

5. y 5 }
2
3

}x 2 1 6. y 5 }
3
4

}x 1 515x 2 7y 5 92 14x 2 3y 5 212
7. a 5 4b 1 13 8. 9a 2 2b 5 2813a 1 6b 5 2332 1b 5 23a 1 1 2
9.

2x 2 3y 5 4 10. t 1 u 5 11

1y 5 }
2
3

}x 2 }
4
3

} 2 1t 5 u 1 7 2

11. u 5 t 2 2 12. y 5 5x 2 91t 1 u 5 122 15x 2 y 5 92
13. 4x 1 3y 5 27 14. 5x 2 3y 5 23413x 2 2y 5 16 2 12x 1 7y 5 2302
15. 5x 2 y 5 4 16. 2x 1 3y 5 31y 5 5x 1 92 14x 2 9y 5 242
17. 4x 2 5y 5 3 18. 4x 1 y 5 918x 1 15y 5 2242 1y 5 15 2 4x2

For Problems 19–34, solve each system by using the elimina-
tion-by-addition method.

19. 3x 1 2y 5 1 20. 4x 1 3y 5 22215x 2 2y 5 232 14x 2 5y 5 26 2
21. x 2 3y 5 222 22. 6x 2 y 5 312x 1 7y 5 60 2 15x 1 3y 5 292
23. 4x 2 5y 5 21 24. 5x 2 3y 5 23413x 1 7y 5 2382 12x 1 7y 5 2302
25. 5x 2 2y 5 19 26. 3a 2 2b 5 515x 2 2y 5 7 2 12a 1 7b 5 92
27. 6a 2 3b 5 4 28. 7x 1 2y 5 1115a 1 2b 5 212 17x 1 2y 5 242

29.
}
2
3

}s 1 }
1
4

}t 5 21
30.

}
1
4

}s 2 }
2
3

}t 5 231}
1
2

}s 2 }
1
3

}t 5 272 1}
1
3

}s 1 }
1
3

}t 5 7 2
31.

}
2
x

} 2 }
2
5
y
} 5 }

2

6
2
0
3

}
32.

}
2
3
x
} 2 }

2
y

} 5 }
3
5

}1}
2
3
x
} 1 }

4
y

} 5 }
2

4
1

} 2 1 }
4
x

} 1 }
2
y

} 5 }
8
7
0
}2

33. }
4
5
x
} 2 }

3
2
y
} 5 }

1
5

} 34. }
3
2
x
} 2 }

2
7
y
} 5 21122x 1 y 5 212 1 4x 1 y 5 2 2
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For Problems 35–50, solve each system by either the substitu-
tion method or the elimination-by-addition method, which-
ever seems more appropriate.

35. 5x 2 y 5 222 36. 4x 1 5y 5 24112x 1 3y 5 22 2 13x 2 2y 5 21 2
37. x 5 3y 2 10 38. y 5 4x 2 241x 5 2 2y 1 152 17x 1 y 5 422

39. 3x 2 5y 5 9 40. y 5 }
2
5

}x 2 316x 2 10y 5 212 14x 2 7y 5 332
41.

}
1
2

} x 2 }
2
3

} y 5 22
42.

}
2
5

} x 2 }
1
3

} y 5 291 }
1
2

} x 1 }
1
4

} y 5 0 2 1 }
3
4

} x 1 }
1
3

} y 5 2142
43. t 5 2u 1 2 44. 9u 2 9t 5 3619u 2 9t 5 2452 1u 5 2t 1 1 2
45. x 1 y 5 1000 46. x 1 y 5 1010.12x 1 0.14y 5 136 2 10.3x 1 0.7y 5 4 2
47. y 5 2x 48. y 5 3x10.09x 1 0.12y 5 1322 10.1x 1 0.11y 5 64.52
49. x 1 y 5 10.5 50. 2x 1 y 5 7.7510.5x 1 0.8y 5 7.352 13x 1 2y 5 12.52
For Problems 51–70, solve each problem by using a system of
equations.

51. The sum of two numbers is 53 and their difference is 19.
Find the numbers.

52. The sum of two numbers is 23 and their difference is 25.
Find the numbers.

53. The measure of the larger of two complementary angles
is 15° more than four times the measure of the smaller
angle. Find the measures of both angles.

54. Assume that a plane is flying at a constant speed under
unvarying wind conditions. Traveling against a head
wind, it takes the plane 4 hours to travel 1540 miles.
Traveling with a tail wind, the plane flies 1365 miles in 3
hours. Find the speed of the plane and the speed of the
wind.

55. The tens digit of a two-digit number is 1 more than three
times the units digit. If the sum of the digits is 9, find the
number.

56. The units digit of a two-digit number is 1 less than twice
the tens digit. The sum of the digits is 8. Find the number.

57. The sum of the digits of a two-digit number is 7. If the
digits are reversed, the newly formed number is 9 larger
than the original number. Find the original number.

58. The units digit of a two-digit number is 1 less than twice
the tens digit. If the digits are reversed, the newly formed
number is 27 larger than the original number. Find the
original number.

59. A motel rents double rooms at $32 per day and single
rooms at $26 per day. If 23 rooms were rented one day
for a total of $688, how many rooms of each kind were
rented?

60. An apartment complex rents one-bedroom apartments
for $325 per month and two-bedroom apartments for
$375 per month. One month the number of one-bedroom
apartments was twice the number of two-bedroom apart-
ments. If the total income for that month was $12,300,
how many apartments of each kind were rented?

61. The income from a student production was $10,000. The
price of a student ticket was $3, and nonstudent tickets
were sold at $5 each. Three thousand tickets were sold.
How many tickets of each kind were sold?

62. Michelle can enter a small business as a full partner and
receive a salary of $10,000 a year and 15% of the year’s
profit, or she can be sales manager for a salary of
$25,000 plus 5% of the year’s profit. What must the
year’s profit be for her total earnings to be the same
whether she is a full partner or a sales manager?

63. Melinda invested three times as much money at 11%
yearly interest as she did at 9%. Her total yearly interest
from the two investments was $210. How much did she
invest at each rate?

64. Sam invested $1950, part of it at 10% and the rest at 12%
yearly interest. The yearly income on the 12% invest-
ment was $6 less than twice the income from the 10%
investment. How much did he invest at each rate?

65. One day last summer, Jim went kayaking on the Little
Susitna River in Alaska. Paddling upstream against the
current, he traveled 20 miles in 4 hours. Then he turned
around and paddled twice as fast downstream and, with
the help of the current, traveled 19 miles in 1 hour. Find
the rate of the current.
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66. One solution contains 30% alcohol and a second solution
contains 70% alcohol. How many liters of each solution
should be mixed to make 10 liters containing 40% 
alcohol?

67. Bill bought 4 tennis balls and 3 golf balls for a total of
$10.25. Bret went into the same store and bought 2 tennis
balls and 5 golf balls for $11.25. What was the price for a
tennis ball and the price for a golf ball?

68. Six cans of pop and 2 bags of potato chips cost $5.12. At
the same prices, 8 cans of pop and 5 bags of potato chips
cost $9.86. Find the price per can of pop and the price per
bag of potato chips.

69. A cash drawer contains only five- and ten-dollar bills.
There are 12 more five-dollar bills than ten-dollar bills.
If the drawer contains $330, find the number of each
kind of bill.

70. Brad has a collection of dimes and quarters totaling
$47.50. The number of quarters is ten more than twice
the number of dimes. How many coins of each kind does
he have?

71. Give a general description of how to use the substitution
method to solve a system of two linear equations in two
variables.

72. Give a general description of how to use the elimination-
by-addition method to solve a system of two linear equa-
tions in two variables.

73. Which method would you use to solve the system 
9x 1 4y 5 7  

? Why?13x 1 2y 5 62 
74. Which method would you use to solve the system

5x 1 3y 5 12  
? Why?13x 2 y 5 102 

THOUGHTS INTO WORDS

A system such a

}
2
x

} 1 }
3
y

} 5 }
1
1
9
5
}12}

2
x

} 1 }
1
y

} 5 2}
1
7
5
}2

is not a linear system, but it can be solved using the elimina-
tion-by-addition method as follows. Add the first equation to
the second to produce the equivalent system

}
2
x

} 1 }
3
y

} 5 }
1
1
9
5
}1 }

4
y

} 5 }
1
1
2
5
}2

Now solve }
4
y

} 5 }
1
1
2
5
} to produce y 5 5. Substitute 5 for y in the

first equation and solve for x to produce

}
2
x

} 1 }
3
5

} 5 }
1
1
9
5
}

}
2
x

} 5 }
1
1
0
5
}

10x 5 30

x 5 3

The solution set of the original system is { (3, 5)} .

For Problems 75–80, solve each system.

75.
}
1
x

} 1 }
2
y

} 5 }
1
7
2
}

76.
}
3
x

} 1 }
2
y

} 5 21 }
3
x

} 2 }
2
y

} 5 }
1

5

2
}2 1 }

2
x

} 2 }
3
y

} 5 }
1
4

}2

Further Investigations

   366  Systems of Equations 



6.2 Systems of Three Linear Equations in Three Variables 447

77.
}
3
x

} 2 }
2
y

} 5 }
1
6
3
}

78.
}
4
x

} 1 }
1
y

} 5 111 }
2
x

} 1 }
3
y

} 5 0  2 1 }
3
x

} 2 }
5
y

} 5 292
79.

}
5
x

} 2 }
2
y

} 5 23
80.

}
2
x

} 2 }
7
y

} 5 }
1
9
0
}1 }

4
x

} 1 }
3
y

} 5 }
2
2
3
}2 1 }

5
x

} 1 }
4
y

} 5 2}
4
2
1
0
}2

81. Consider the linear system
a1x 1 b1y 5 c11a2x 1 b2y 5 c2

2.

a. Prove that this system has exactly one solution if and

only if }
a
a

1

2
} Þ }

b
b

1

2
}.

b. Prove that this system has no solutions if and only if 

}
a
a

1

2
} 5 }

b
b

1

2
} Þ }

c
c

1

2
}.

c. Prove that this system has infinitely many solutions if

and only if }
a
a

1

2
} 5 }

b
b

1

2
} 5 }

c
c

1

2
}.

82. For each of the following systems, use the results from
Problem 81 to determine whether the system is consis-
tent or inconsistent or the equations are dependent.

a. 5x 1 y 5 9 b. 3x 2 2y 5 141x 2 5y 5 42 12x 1 3y 5 9 2
c. x 2 7y 5 4 d. 3x 2 5y 5 101x 2 7y 5 92 16x 2 10y 5 12

e.
3x 1 6y 5 2

f.
}
2
3

}x 2 }
3
4

}y 5 21}
3
5

}x 1 }
6
5

}y 5 }
2
5

}2 1 }
1
2

}x 1 }
2
5

}y 5 92
g. 7x 1 9y 5 14 h. 4x 2 5y 5 318x 2 3y 5 122 112x 2 15y 5 92

83. For each of the systems of equations in Problem 82, use
your graphing calculator to help determine whether the
system is consistent or inconsistent or the equations are
dependent.

84. Use your graphing calculator to help determine the solu-
tion set for each of the following systems. Be sure to
check your answers.

a.
y 5 3x 2 1

b.
5x 1 y 5 291y 5 9 2 2x2 13x 2 2y 5 5 2

c.
4x 2 3y 5 18

d.
2x 2 y 5 2015x 1 6y 5 3 2 17x 1 y 5 792

e.
13x 2 12y 5 37

f.
1.98x 1 2.49y 5 13.92115x 1 13y 5 2112 11.19x 1 3.45y 5 16.182

GRAPHING CALCULATOR ACTIVITIES

SYSTEMS OF THREE LINEAR EQUATIONS IN

THREE VARIABLES

Consider a linear equation in three variables x, y and z, such as 3x 2 2y 1 z 5 7.
Any ordered triple (x, y, z ) that makes the equation a true numerical statement 
is said to be a solution of the equation. For example, the ordered triple (2, 1, 3) is a
solution because 3(2) 2 2(1) 1 3 5 7. However, the ordered triple (5, 2, 4) is not 
a solution because 3(5) 2 2(2) 1 4 Þ 7. There are infinitely many solutions in the
solution set.

6.2
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REMARK The idea of a linear equation is generalized to include equations
of more than two variables. Thus an equation such as 5x 2 2y 1 9z 5 8 is
called a linear equation in three variables; the equation 5x 2 7y 1 2z 2
11w 5 1 is called a linear equation in four variables, and so on.

To solve a system of three linear equations in three variables, such as

3x 2 y 1 2z 5 13

4x 1 2y 1 5z 5 301 5x 2 3y 2 z 5 3 2
means to find all of the ordered triples that satisfy all three equaions. In other words,
the solution set of the system is the intersection of the solution sets of all three equa-
tions in the system.

The graph of a linear equation in three variables is a plane, not a line. In fact,
graphing equations in three variables requires the use of a three-dimensional coordi-
nate system. Thus using a graphing approach to solve systems of three linear equa-
tions in three variables is not at all practical. However, a simple graphical analysis
does provide us with some direction as to what we can expect as we begin solving
such systems.

In general, because each linear equation in three variables produces a plane, a
system of three such equations produces three planes. There are various ways in
which three planes can be related. For example, they may be mutually parallel, or
two of the planes may be parallel with the third intersecting the other two. (You
may want to analyze all of the other possibilities for the three planes!) However,
for our purposes at this time, we need to realize that from a solution set viewpoint,
a system of three linear equations in three variables produces one of the following
possibilities.

1. There is one ordered triple that
satisfies all three equations. The
three planes have a common point
of intersection, as indicated in 
Figure 6.4.

F I G U R E  6 . 4

2. There are infinitely many ordered triples in the solution set, all of which
are coordinates of points on a line common to the three planes. This can
happen if the three planes have a common line of intersection (Figure
6.5(a)), or if two of the planes coincide and the third plane intersects them
(Figure 6.5(b)).

448 Chapter 6 Systems of Equations
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F I G U R E  6 . 5

3. There are infinitely many ordered triples
in the solution set, all of which are
coordinates of points on a plane. This can 
happen if the three planes coincide, as
illustrated in Figure 6.6.

4. The solution set is empty; thus we write [. This can happen in various
ways, as illustrated in Figure 6.7. Notice that in each situation there are no
points common to all three planes.

F I G U R E  6 . 7

(a)  Three parallel planes (b) Two planes coincide
      and the third one is
      parallel to the
      coinciding planes.

(c)  Two planes are
       parallel and the third
       intersects them  in
       parallel lines.

(d)  No two planes are
       parallel, but two of
       them intersect in a
       line that is parallel
       to the third plane.

(b)(a)

F I G U R E  6 . 6
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450 Chapter 6 Systems of Equations

Now that we know what possibilities exist, let’s consider finding the solution
sets for some systems. Our approach will be the elimination-by-addition method,
whereby systems are replaced with equivalent systems until a system is obtained
where we can easily determine the solution set. The details of this approach will
become apparent as we work a few examples.

Solve the system

4x 2 3y 2 2z 5 5 (1)1 5y 1 z 5 2112 (2)
3z 5 12 (3)

Solution

The form of this system makes it easy to solve. From equation (3) we obtain z 5 4.
Then, substituting 4 for z in equation (2), we get

5y 1 4 5 211

5y 5 215

y 5 23

Finally, substituting 4 for z and 23 for y in equation (1) yields

4x 2 3(23) 2 2(4) 5 5

4x 1 1 5 5

4x 5 4

x 5 1

Thus the solution set of the given system is { (1, 23, 4)} . n

Solve the system

x 2 2y 1 3z 5 22 (4)12x 2 3y 2 z 5 5 2 (5)
3x 1 y 2 5z 5 232 (6)

Solution

Equation (5) can be replaced with the equation formed by multiplying equation (4)
by 22 and adding this result to equation (5). Equation (6) can be replaced with the
equation formed by multiplying equation (4) by 23 and adding this result to equa-
tion (6). The following equivalent system is produced, in which equations (8) and
(9) contain only the two variables y and z.

x 2 2y 1 3z 5 22 (7)1 y 2 7z 5 2392 (8)
7y 2 14z 5 298 (9)

E X A M P L E  1
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6.2 Systems of Three Linear Equations in Three Variables 451

Equation (9) can be replaced with the equation formed by multiplying equation (8)
by 27 and adding this result to equation (9). This produces the following equivalent
system.

x 2 2y 1 3z 5 22 (10)1 y 2 7z 5 2392 (11)

35z 5 175 (12)

From equation (12) we obtain z 5 5. Then, substituting 5 for z in equation (11), we
obtain

y 2 7(5) 5 239

y 2 35 5 239

y 5 24

Finally, substituting 24 for y and 5 for z in equation (10) produces

x 2 2(24) 1 3(5) 5 22

x 1 8 1 15 5 22

x 1 23 5 22

x 5 21

The solution set of the original system is { (21, 24, 5)} . (Perhaps you should check
this ordered triple in all three of the original equations.) n

Solve the system

3x 2 y 1 2z 5 13 (13)1 5x 2 3y 2 z 5 3 2 (14)
4x 1 2y 1 5z 5 30 (15)

Solution

Equation (14) can be replaced with the equation formed by multiplying equation
(13) by 23 and adding this result to equation (14). Equation (15) can be replaced
with the equation formed by multiplying equation (13) by 2 and adding this result to
equation (15). Thus we produce the following equivalent system, in which equations
(17) and (18) contain only the two variables x and z.

3x 2 y 1 2z 5 13 (16)1 24x 2 7z 5 2362 (17)
10x 1 9z 5 56 (18)

Now if we multiply equation (17) by 5 and equation (18) by 2, we get the following
equivalent system.

E X A M P L E  3
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3x 2 y 1 2z 5 13 (19)1220x 2 35z 5 21802 (20)
20x 1 18z 5 112 (21)

Equation (21) can be replaced with the equation formed by adding equation (20) to
equation (21).

3x 2 y 1 2z 5 13 (22)1220x 2 35z 5 21802 (23)
217z 5 268 (24)

From equation (24), we obtain z 5 4. Then we can substitute 4 for z in equation
(23).

220x 2 35(4) 5 2180

220x 2 140 5 2180

220x 5 240

x 5 2

Now we can substitute 2 for x and 4 for z in equation (22).

3(2) 2 y 1 2(4) 5 13

6 2 y 1 8 5 13

2y 1 14 5 13

2y 5 21

y 5 1

The solution set of the original system is { (2, 1, 4)} . n

Solve the system

2x 1 3y 1 z 5 14 (25)13x 2 4y 2 2z 5 2302 (26)
5x 1 7y 1 3z 5 32 (27)

Solution

Equation (26) can be replaced with the equation formed by multiplying equation
(25) by 2 and adding this result to equation (26). Equation (27) can be replaced with
the equation formed by multiplying equation (25) by 23 and adding this result to
equation (27). The following equivalent system is produced, in which equations (29)
and (30) contain only the two variables x and y.

2x 1 3y 1 z 5 14 (28)1 7x 1 2y 5 22  2 (29)
2x 2 2y 5 210 (30)

E X A M P L E  4
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Now equation (30) can be replaced with the equation formed by adding equation
(29) to equation (30).

2x 1 3y 1 z 5 14 (31)1 7x 1 2y 5 22 2 (32)
6x 5 212 (33)

From equation (33) we obtain x 5 22. Then, substituting 22 for x in equation (32),
we obtain

7(22) 1 2y 5 22

2y 5 12

y 5 6

Finally, substituting 6 for y and 22 for x in equation (31) yields

2(22) 1 3(6) 1 z 5 14

14 1 z 5 14

z 5 0

The solution set of the original system is {(22, 6, 0)}. n

The ability to solve systems of three linear equations in three unknowns
enhances our problem-solving capabilities. Let’s conclude this section with a prob-
lem that we can solve using such a system.

A small company that manufactures sporting equipment produces three different
styles of golf shirts. Each style of shirt requires the services of three departments, as
indicated by the following table.

The cutting, sewing, and packaging departments have available a maximum of 340,
580, and 255 work-hours per week, respectively. How many of each style of golf
shirt should be produced each week so that the company is operating at full capacity?

Solution

Let a represent the number of shirts of style A produced per week, b the number of
style B per week, and c the number of style C per week. Then the problem translates
into the following system of equations.

STYLE  A STYLE  B STYLE  C

Cutting department 0.1 hr 0.1 hr 0.3 hr

Sewing department 0.3 hr 0.2 hr 0.4 hr

Packaging department 0.1 hr 0.2 hr 0.1 hr

P R O B L E M  1
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0.1a 1 0.1b 1 0.3c 5 340 Cutting department10.3a 1 0.2b 1 0.4c 5 5802 Sewing department
0.1a 1 0.2b 1 0.1c 5 255 Packaging department

Solving this system (we will leave the details for you to carry out) produces a 5
500, b 5 650, and c 5 750. Thus the company should produce 500 golf shirts of
style A, 650 of style B, and 750 of style C per week. n

For Problems 1–20, solve each system.

1.
2x 2 3y 1 4z 5 10

2.
23x 1 2y 1 z 5 291 5y 2 2z 5 2162 14x 23z 5 18 23z 5 9 4z 5 28

3.
x 1 2y 2 3z 5 2

4.
2x 1 3y 2 4z 5 2101 3y 2 z 5 132 1 2y 1 3z 5 1623y 1 5z 5 25 2y 2 5z 5 216

5.
3x 1 2y 2 2z 5 14

6.
3x 1 2y 2 z 5 2111 x 2 6z 5 162 1 2x 2 3y 5 2122x 1 5z 5 22 4x 1 5y 5 213

x 2 2y 1 3z 5 7 x 2 2y 1 z 5 24
7. 1 2x 1 y 1 5z 5 172 8. 1 2x 1 4y 2 3z 5 2123x 2 4y 2 2z 5 1 23x 2 6y 1 7z 5 4

2x 2 y 1 z 5 0 2x 2 y 1 3z 5 214
9. 13x 2 2y 1 4z 5 11 2 10. 1 4x 1 2y 2 z 5 12 25x 1 y 2 6z 5 232 6x 2 3y 1 4z 5 222

3x 1 2y 2 z 5 211 9x 1 4y 2 z 5 0
11. 12x 2 3y 1 4z 5 11 2 12. 13x 2 2y 1 4z 5 625x 1 y 2 2z 5 217 6x 2 8y 2 3z 5 3

2x 1 3y 2 4z 5 210 x 1 2y 2 3z 5 2
13. 14x 2 5y 1 3z 5 2 2 14. 1 3x 2 z 5 2822y 1 z 5 8 2x 2 3y 1 5z 5 29

3x 1 2y 2 2z 5 14 4x 1 3y 2 2z 5 211
15. 12x 2 5y 1 3z 5 7 2 16. 13x 2 7y 1 3z 5 10 24x 2 3y 1 7z 5 5 9x 2 8y 1 5z 5 9

2x 2 3y 1 4z 5 212 3x 1 5y 2 2z 5 227
17. 14x 1 2y 2 3z 5 2132 18. 15x 2 2y 1 4z 5 27 26x 2 5y 1 7z 5 231 7x 1 3y 2 6z 5 255

5x 2 3y 2 6z 5 22 4x 1 3y 2 5z 5 229
19. 1 x 2 y 1 z 5 232 20. 1 3x 2 7y 2 z 5 219223x 1 7y 2 5z 5 23 2x 1 5y 1 2z 5 210

For Problems 21–31, solve each problem by setting up and
solving a system of three linear equations in three variables.

21. A gift store is making a mixture of almonds, pecans, and
peanuts, which cost $3.50 per pound, $4 per pound, and
$2 per pound, respectively. The storekeeper wants to
make 20 pounds of the mix to sell at $2.70 per pound.
The number of pounds of peanuts is to be three times the
number of pounds of pecans. Find the number of pounds
of each to be used in the mixture.

22. The organizer for a church picnic ordered coleslaw,
potato salad, and beans amounting to 50 pounds. There
was to be three times as much potato salad as coleslaw.
The number of pounds of beans was to be six less than
the number of pounds of potato salad. Find the number
of pounds of each.

23. A box contains $7.15 in nickels, dimes, and quarters.
There are 42 coins in all, and the sum of the numbers of
nickels and dimes is two less than the number of quar-
ters. How many coins of each kind are there?

24. A handful of 65 coins consists of pennies, nickels, and
dimes. The number of nickels is four less than twice the
number of pennies, and there are 13 more dimes than
nickels. How many coins of each kind are there?

25. The measure of the largest angle of a triangle is twice the
smallest angle. The sum of the smallest angle and the
largest angle is twice the other angle. Find the measure
of each angle.

P R O B L E M  S E T  6 . 2
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26. The perimeter of a triangle is 45 centimeters. The longest
side is 4 centimeters less than twice the shortest side. The
sum of the lengths of the shortest and longest sides is 7
centimeters less than three times the length of the
remaining side. Find the lengths of all three sides of the
triangle.

27. Part of $3000 is invested at 12%, another part at 13%, and
the remainder at 14% yearly interest. The total yearly
income from the three investments is $400. The sum of
the amounts invested at 12% and 13% equals the amount
invested at 14%. How much is invested at each rate?

28. Different amounts are invested at 10%, 11%, and 12%
yearly interest. The amount invested at 11% is $300
more than what is invested at 10%, and the total yearly
income from all three investments is $324. A total of
$2900 is invested. Find the amount invested at each rate.

29. A small company makes three different types of bird
houses. Each type requires the services of three different
departments, as indicated by the following table.

The cutting, finishing, and assembly departments have
available a maximum of 35, 95, and 62.5 work-hours per
week, respectively. How many bird houses of each type
should be made per week so that the company is operat-
ing at full capacity?

30. A certain diet consists of dishes A, B, and C. Each serv-
ing of A has 1 gram of fat, 2 grams of carbohydrate, and
4 grams of protein. Each serving of B has 2 grams of fat,
1 gram of carbohydrate, and 3 grams of protein. Each
serving of C has 2 grams of fat, 4 grams of carbohydrate,
and 3 grams of protein. The diet allows 15 grams of fat,
24 grams of carbohydrate, and 30 grams of protein. How
many servings of each dish can be eaten?

31. Recall that one form of the equation of a circle is 
x 2 1 y 2 1 Dx 1 Ey 1 F 5 0. Find the equation of the
circle that passes through the points (23, 1), (7, 1), and
(27, 5).

TYPE A TYPE B TYPE C

Cutting 0.1 hr 0.2 hr 0.1 hr
department

Finishing 0.4 hr 0.4 hr 0.3 hr
department

Assembly 0.2 hr 0.1 hr 0.3 hr
department

32. Give a general description of how to solve a system of
three linear equations in three variables.

33. Give a step-by-step description of how to solve the 
system

x 2 2y 1 3z 5 2231 5y 2 2z 5 32 24z 5 224

34. Give a step-by-step description of how to solve the 
system

3x 2 2y 1 7z 5 91 x 2 3z 5 422x 1 z 5 9

THOUGHTS INTO WORDS
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MATRIX APPROACH TO SOLVING SYSTEMS

In the first two sections of this chapter, we found that the techniques of substitution
and elimination-by-addition worked effectively with two equations and two
unknowns, but they started to get a bit cumbersome with three equations and three
unknowns. Therefore, we shall now begin to analyze some techniques that lend
themselves to use with larger systems of equations. Furthermore, some of these
techniques form the basis for using a computer to solve systems. Even though these
techniques are primarily designed for large systems of equations, we shall study
them in the context of small systems so that we won’t get bogged down with the
computational aspects of the techniques.

Matrices

A matrix is an array of numbers arranged in horizontal rows and vertical columns
and enclosed in brackets. For example, the matrix

2 rows

3 columns

has 2 rows and 3 columns and is called a 2 3 3 (read two by three) matrix. Each
number in a matrix is called an element of the matrix. Some additional examples of
matrices (matrices is the plural of matrix) follow.

3 3 2 2 3 2 1 3 2 4 3 1

3 4 3 4 [7 14]

3 4
In general, a matrix of m rows and n columns is called a matrix of dimension m 3 n
or order m 3 n.

With every system of linear equations we can associate a matrix that consists
of the coefficients and constant terms. For example, with the system

a1x 1 b1y 1 c1z 5 d11a2x 1 b2y 1 c2z 5 d22a3x 1 b3y 1 c3z 5 d3

we can associate the matrix

3 4
d1

d2

d3

c1

c2

c3

b1

b2

b3

a1

a2

a3

3

22

1

19

18

16

17

214

1

24

}
2
3

}

2

1

}
1
2

}

3 2 3 21424 7 12

6.3
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6.3 Matrix Approach to Solving Systems 457

which is commonly called the augmented matrix of the system of equations. The
dashed line simply separates the coefficients from the constant terms and reminds us
that we are working with an augmented matrix.

On page 440 we listed the operations or transformations that can be applied to
a system of equations to produce an equivalent system. Because augmented matrices
are essentially abbreviated forms of systems of linear equations, there are analogous
transformations that can be applied to augmented matrices. These transformations
are usually referred to as elementary row operations and can be stated as follows.

Let’s illustrate the use of augmented matrices and elementary row operations
to solve a system of two linear equations in two variables.

Solve the system

x 2 3y 5 21712x 1 7y 5 31 2
Solution

The augmented matrix of the system is

3 4
We would like to change this matrix to one of the form

3 4
where we can easily determine that the solution is x 5 a and y 5 b. Let’s begin by
adding 22 times row 1 to row 2 to produce a new row 2.

3 4
Now we can multiply row 2 by }

1
1
3
}.

217

65

23

13

1

0

a

b

0

1

1

0

217

31

23

7

1

2

For any augmented matrix of a system of linear equations, the follow-
ing elementary row operations will produce a matrix of an equivalent
system.

1. Any two rows of the matrix can be interchanged.

2. Any row of the matrix can be multiplied by a nonzero real
number.

3. Any row of the matrix can be replaced by the sum of a nonzero
multiple of another row plus that row.

E X A M P L E  1
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3 4
Finally, we can add 3 times row 2 to row 1 to produce a new row 1.

3 4
From this last matrix we see that x 5 22 and y 5 5. In other words, the solution set
of the original system is { (22, 5)} . n

It may seem that the matrix approach does not provide us with much extra
power for solving systems of two linear equations in two unknowns. However, as
the systems get larger, the compactness of the matrix approach becomes more con-
venient. Let’s consider a system of three equations in three variables.

Solve the system

x 1 2y 2 3z 5 15122x 2 3y 1 z 5 2152
4x 1 9y 2 4z 5 49

Solution

The augmented matrix of this system is

3 4
If the system has a unique solution, then we will be able to change the augmented
matrix to the form

3 4
where we will be able to read the solution x 5 a, y 5 b, and z 5 c.

Add 2 times row 1 to row 2 to produce a new row 2. Likewise, add 24 times
row 1 to row 3 to produce a new row 3.

3 4
Now add 22 times row 2 to row 1 to produce a new row 1. Also, add 21 times row
2 to row 3 to produce a new row 3.

15

15

211

23

25

8

2

1

1

1

0

0

a

b

c

0

0

1

0

1

0

1

0

0

15

215

49

23

1

24

2

23

9

1

22

4

22

5

0

1

1

0

217

5

23

1

1

0
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3 4
Now let’s multiply row 3 by }

1
1
3
}.

3 4
Finally, we can add 27 times row 3 to row 1 to produce a new row 1, and we can
add 5 times row 3 to row 2 for a new row 2.

3 4
From this last matrix, we can see that the solution set of the original system is 
{ (21, 5, 22)} . n

The final matrices of Examples 1 and 2,

3 4 and 3 4
are said to be in reduced echelon form. In general a matrix is in reduced echelon
form if the following conditions are satisfied.

1. Reading from left to right, the first nonzero entry of each row is 1.

2. In the column containing the leftmost 1 of a row, all the remaining entries
are zeros.

3. The leftmost 1 of any row is to the right of the leftmost 1 of the preceding
row.

4. Rows containing only zeros are below all the rows containing nonzero
entries.

Like the final matrices of Examples 1 and 2, the following are in reduced echelon
form.

3 4 3 4 3 4
8

29

22

12

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

5

7

0

22

4

0

0

1

0

1

0

0

23

0

2

0

1

0

21

5

22

0

0

1

0

1

0

1

0

0

22

5

0

1

1

0

21

5

22

0

0

1

0

1

0

1

0

0

215

15

22

7

25

1

0

1

0

1

0

0

215

15

226

7

25

13

0

1

0

1

0

0
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In contrast, the following matrices are not in reduced echelon form for the reason

indicated below each matrix.

3 4 3 4
Violates conditon 1 Violates conditon 2

3 4 3 4
Violates conditon 3

Violates conditon 4

Once we have an augmented matrix in reduced echelon form, it is easy to determine
the solution set of the system. Furthermore, the procedure for changing a given aug-
mented matrix to reduced echelon form can be described in a very systematic way.
For example, if an augmented matrix of a system of three linear equations in three
unknowns has a unique solution, then it can be changed to reduced echelon form as
follows.

Get a one in upper
Augmented matrix left-hand corner.

3 4 3 4
Get zeros in first Get a one in the second row/
column beneath the one. second column position.

3 4 3 4
Get zeros above and below Get a one in the third row/
the one in the second column. third column position.

3 4 3 4
Get zeros above the one
in the third column.

3 4
*

*

*

0

0

1

0

1

0

1

0

0

*

*

*

*

*

1

0

1

0

1

0

0

*

*

*

*

*

*

0

1

0

1

0

0

*

*

*

*

*

*

*

1

*

1

0

0

*

*

*

*

*

*

*

*

*

1

0

0

*

*

*

*

*

*

*

*

*

1

*

*

*

*

*

*

*

*

*

*

*

*

*

*

21

0

7

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

7

28

14

0

1

0

0

0

1

1

0

0

5

9

26

23

7

1

2

1

0

1

0

0

11

21

22

0

0

1

0

3

0

1

0

0
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We can identify inconsistent and dependent systems while we are changing a matrix
to reduced echelon form. We will show some examples of such cases in a moment,
but first let’s consider another example of a system of three linear equations in three
unknowns where there is a unique solution.

Solve the system

2x 1 4y 2 5z 5 371 x 1 3y 2 4z 5 29 2
5x 2 y 1 3z 5 220

Solution
The augmented matrix

3 4
does not have a one in the upper left-hand corner, but this can be remedied by
exchanging rows 1 and 2.

3 4
Now we can get zeros in the first column beneath the one by adding 22 times row 1
to row 2 and by adding 25 times row 1 to row 3.

3 4
Next, we can get a one for the first nonzero entry of the second row by multiplying

the second row by 2}
1
2

}.

3 4
Now we can get zeros above and below the one in the second column by adding 23
times row 2 to row 1 and by adding 16 times row 2 to row 3.

3 42}
5
2

}

}
2
2
1
}

3

}
1
2

}

2}
3
2

}

21

0

1

0

1

0

0

29

}
2
2
1
}

2165

24

2}
3
2

}

23

3

1

216

1

0

0

29

221

2165

24

3

23

3

22

216

1

0

0

29

37

220

24

25

3

3

4

21

1

2

5

37

29

220

25

24

3

4

3

21

2

1

5
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Next, we can get a one in the first nonzero entry of the third row by multiplying the
third row by 21.

Finally, we can get zeros above the one in the third colum by adding 2}
1
2

} times row 3

to row 1 and by adding }
3
2

} times row 3 to row 2.

3 4
From this last matrix, we see that the solution set of the original system is 
{ (21, 6, 23)} . n

Example 3 illustrates that even though the process of changing to reduced ech-
elon form can be systematically described, it can involve some rather messy calcula-
tions. However, with the aid of a computer, such calculations are not troublesome.
For our purposes in this text, the examples and problems involve systems that mini-
mize messy calculations. This will allow us to concentrate on the procedures.

We want to call your attention to another issue in the solution of Example 3.
Consider the matrix

3 4
which is obtained about halfway through the solution. At this step it seems evident
that the calculations are getting a little messy. Therefore, instead of continuing toward
the reduced echelon form, let’s add 16 times row 2 to row 3 to produce a new row 3.

3 4
The system represented by this matrix is

x 1 3y 2 4z 5 29

1 y 2 }
3
2

}z 5 }
2
2
1
}2

2z 5 3

29

}
2
2
1
}

3

24

2}
3
2

}

21

3

1

0

1

0

0

29

}
2
2
1
}

2165

24

2}
3
2

}

23

3

1

216

1

0

0

21

6

23

0

0

1

0

1

0

1

0

0

3 42}
5
2

}

}
2
2
1
}

23

}
1
2

}

2}
3
2

}

1

0

1

0

1

0

0
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and it is said to be in triangular form. The last equation determines the value for z;
then we can use the process of back-substitution to determine the values for y and x.

Finally, let’s consider two examples to illustrate what happens when we use
the matrix approach on inconsistent and dependent systems.

Solve the sytem

x 2 2y 1 3z 5 315x 2 9y 1 4z 5 2 2
2x 2 4y 1 6z 5 21

Solution

The augmented matrix of the system is

3 4
We can get zeros below the one in the first column by adding 25 times row 1 to row
2 and by adding 22 times row 1 to row 3.

3 4
At this step we can stop, because the bottom row of the matrix represents the state-
ment 0(x ) 1 0(y) 1 0(z) 5 27, which is obviously false for all values of x, y, and
z. Thus the original system is inconsistent; its solution set is [. n

Solve the system

x 1 2y 1 2z 5 91 x 1 3y 2 4z 5 5 2
2x 1 5y 2 2z 5 14

Solution

The augmented matrix of the system is

3 4
We can get zeros in the first column below the one in the upper left-hand corner by
adding 21 times row 1 to row 2 and adding 22 times row 1 to row 3.

3 4
9

24

24

2

26

26

2

1

1

1

0

0

9

5

14

2

24

22

2

3

5

1

1

2

3

213

27

3

211

0

22

1

0

1

0

0

3

2

21

3

4

6

22

29

24

1

5

2
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P R O B L E M  S E T  6 . 3

Now we can get zeros in the second column above and below the one in the second
row by adding 22 times row 2 to row 1 and adding 21 times row 2 to row 3.

3 4
The bottom row of zeros represents the statement 0(x) 1 0(y ) 1 0(z ) 5 0, which is
true for all values of x, y, and z. The second row represents the statement y 2 6z 5
24, which can be rewritten y 5 6z 2 4. The top row represents the statement x 1
14z 5 17, which can be rewritten x 5 214z 1 17. Therefore, if we let z 5 k, where
k is any real number, the solution set of infinitely many ordered triples can be repre-
sented by { (214k 1 17, 6k 2 4, k) u k is a real number} . Specific solutions can be
generated by letting k take on a value. For example, if k 5 2, then 6k 2 4 becomes
6(2) 2 4 5 8 and 214k 1 17 becomes 214(2) 1 17 5 211. Thus the ordered
triple (211, 8, 2) is a member of the solution set. n

17

24

0

14

26

0

0

1

0

1

0

0

For Problems 1–10, indicate whether each matrix is in
reduced echelon form.

1. 3 4 2. 3 4

3. 3 4 4. 3 4
5. 3 4 6. 3 4
7. 3 4 8. 3 4
9. 3 4

10. 3 4

For Problems 11–30, use a matrix approach to solve each 
system.

11. x 2 3y 5 14 12. x 1 5y 5 21813x 1 2y 5 2132 122x 1 3y 5 2162
13. 3x 2 4y 5 33 14. 2x 1 7y 5 2551 x 1 7y 5 2392 1 x 2 4y 5 25 2
15. x 2 6y 5 22 16. 2x 2 3y 5 21212x 2 12y 5 5 2 13x 1 2y 5 8 2
17. 3x 2 5y 5 39 18. 3x 1 9y 5 2112x 1 7y 5 2672 1 x 1 3y 5 10 2

x 2 2y 2 3z 5 26
19. 13x 2 5y 2 z 5 4 2

2x 1 y 1 2z 5 2

x 1 3y 2 4z 5 13
20. 12x 1 7y 2 3z 5 112

22x 2 y 1 2z 5 28

22x 2 5y 1 3z 5 11
21. 1 x 1 3y 2 3z 5 2122

3x 2 2y 1 5z 5 31

2
4

23
9

0
0
0
1

0
1
0
0

0
0
1
0

1
0
0
0

4
23

7
0

3
5

21
0

0
0
1
0

0
1
0
0

1
0
0
0

8
26

0

3
2
0

0
1
0

1
0
0

23
5
7

0
2
1

1
1
0

1
0
0

27
0
9

0
0
1

0
1
0

1
0
0

17
0

214

0
0
0

0
0
1

1
0
0

5
8

211

0
0
1

0
3
0

1
0
0

5
7
0

2
3
0

0
1
0

1
0
0

8
0

2
0

1
0

24
14

0
1

1
0
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23x 1 2y 1 z 5 17
22. 1 x 2 y 1 5z 5 22 2

4x 2 5y 2 3z 5 236

x 2 3y 2 z 5 2
23. 1 3x 1 y 2 4z 5 2182

22x 1 5y 1 3z 5 2

x 2 4y 1 3z 5 16
24. 1 2x 1 3y 2 4z 5 2222

23x 1 11y 2 z 5 236

x 2 y 1 2z 5 1 x 1 2y 2 5z 5 21
25. 123x 1 4y 2 z 5 42 26. 12x 1 3y 2 2z 5 2 2

2x 1 2y 1 3z 5 6 3x 1 5y 2 7z 5 4

22x 1 y 1 5z 5 25
27. 1 3x 1 8y 2 z 5 2342

x 1 2y 1 z 5 212

4x 2 10y 1 3z 5 219
28. 1 2x 1 5y 2 z 5 27 2

x 2 3y 2 2z 5 22

2x 1 3y 2 z 5 7 4x 1 3y 2 z 5 0
29. 13x 1 4y 1 5z 5 222 30. 13x 1 2y 1 5z 5 62

5x 1 y 1 3z 5 13 5x 2 y 2 3z 5 3

Subscript notation is frequently used for working with larger
systems of equations. For Problems 31–34, use a matrix
approach to solve each system. Express the solutions as 
4-tuples of the form (x1, x2, x3, x4).

x1 2 3x2 2 2x3 1 x4 5 23
22x1 1 7x2 1 x3 2 2x4 5 2131. 13x1 2 7x2 2 3x3 1 3x4 5 252

5x1 1 x2 1 4x3 22x4 5 18

x1 2 2x2 1 2x3 2 x4 5 22
23x1 1 5x2 2 x3 2 3x4 5 232. 12x1 1 3x2 1 3x3 1 5x4 5 292

4x1 2 x2 2 x3 2 2x4 5 8

x1 1 3x2 2 x3 1 2x4 5 22
2x1 1 7x2 1 2x3 2 x4 5 1933. 123x1 2 8x2 1 3x3 1 x4 5 272

4x1 1 11x2 2 2x3 2 3x4 5 19

x1 1 2x2 2 3x3 1 x4 5 22
22x1 2 3x2 1 x3 2 x4 5 534. 1 4x1 1 9x2 2 2x3 2 2x4 5 2282

25x1 2 9x2 1 2x3 2 3x4 5 14

In Problems 35–42, each matrix is the reduced echelon matrix
for a system with variables x1, x2, x3 and x4. Find the solution
set of each system.

35. 3 4
36. 3 4
37. 3 4
38. 3 4
39. 3 4
40. 3 4
41. 3 4
42. 3 4

7
23

5
0

0
0

22
0

0
0
1
0

0
1
0
0

1
0
0
0

9
2

23
0

0
0
1
0

0
1
0
0

3
0
0
0

1
0
0
0

0
0
1
0

0
1
0
0

3
0
0
0

1
0
0
0

5
21

2
0

3
0
4
0

0
0
1
0

0
1
0
0

1
0
0
0

2
23

4
0

0
2
3
0

0
0
1
0

0
1
0
0

1
0
0
0

28
5

22
1

0
0
0
0

0
0
1
0

0
1
0
0

1
0
0
0

0
25

0
4

0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0

22
4

23
0

0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0
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51. If your graphing calculator has the capability of manipu-
lating matrices, this is a good time to become familiar
with those operations. You may need to refer to your
user’s manual for the key-punching instructions. To

begin the familiarization process, load your calculator
with the three augmented matrices in Examples 1, 2, and
3. Then, for each one, carry out the row operations as
described in the text.

GRAPHING CALCULATOR ACTIVITIES

43. What is a matrix? What is an augmented matrix of a sys-
tem of linear equations?

44. Describe how to use matrices to solve the system 
x 2 2y 5 512x 1 7y 5 92.

THOUGHTS INTO WORDS

For Problems 45–50, change each augmented matrix of the
system to reduced echelon form and then indicate the solu-
tions of the system.

45. x 2 2y 1 3z 5 4 46. x 1 3y 2 2z 5 2113x 2 5y 2 z 5 72 12x 2 5y 1 7z 5 4 2
47. 2x 2 4y 1 3z 5 8 48. 3x 1 6y 2 z 5 91 3x 1 5y 2 z 5 72 12x 2 3y 1 4z 5 12

49. x 2 2y 1 4z 5 912x 2 4y 1 8z 5 32
50. x 1 y 2 2z 5 2113x 1 3y 2 6z 5 232

Further Investigations

DETERMINANTS

Before we introduce the concept of a determinant, let’s agree on some convenient
new notation. A general m 3 n (m-by-n) matrix can be represented by

A 5 3 4
where the double subscripts are used to identify the number of the row and the num-
ber of the column, in that order. For example, a23 is the entry at the intersection of
the second row and the third column. In general, the entry at the intersection of row i
and column j is denoted by aij.

A square matrix is one that has the same number of rows as columns. Each
square matrix A with real number entries can be associated with a real number called
the determinant of the matrix, denoted by u A u. We will first define u A u for a 2 3 2
matrix.

a1n

a2n

.

.

.

amn

. . .

. . .

. . .

a13

a23

.

.

.

am3

a12

a22

.

.

.

am2

a11

a21

.

.

.

am1

6.4
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6.4 Determinants 467

If A 5 3 4, find u A u.

Solution

Use Definition 6.1 to obtain

u A u 5 * * 5 3(8) 2 (22)(5)

5 24 1 10

5 34 n

Finding the determinant of a square matrix is commonly called evaluating the
determinant, and the matrix notation is often omitted.

Evaluate * *.
Solution

* * 5 (23)(8) 2 (6)(2)

5 224 2 12

5 236 n

To find the determinants of 3 3 3 and larger square matrices, it is convenient
to introduce some additional terminology.

D E F I N I T I O N  6 . 2

If A is a 3 3 3 matrix, then the minor (denoted by Mij ) of the aij

element is the determinant of the 2 3 2 matrix obtained by deleting
row i and column j of A.

6

8

23

2

6
8

23
2

22

8

3

5

22
8

3
5

D E F I N I T I O N  6 . 1

If A 5 3 4, then

u A u 5 * * 5 a11a22 2 a12a21
a12

a22

a11

a21

a12

a22

a11

a21

E X A M P L E  1
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If A 5 3 4, find (a) M11 and b) M23.

Solution

a. To find M11 we first delete row 1 and column 1 of matrix A.

3 4
Thus

M11 5 * * 5 3(5) 2 (22)(2) 5 19

b. To find M23 we first delete row 2 and column 3 of matrix A.

3 4
Thus

M23 5 3 4 5 2(2) 2 (1)(4) 5 0 n

The following definition will also be used.

According to Definition 6.3, to find the cofactor of any element aij of a square
matrix A, we find the minor of aij and multiply it by 1 if i 1 j is even, or multiply it
by 21 if i 1 j is odd.

If A 5 * *, find C32.

Solution

First, let’s find M32 by deleting row 3 and column 2 of matrix A.

24
4
1

2
5

23

3
1
2

D E F I N I T I O N  6 . 3

If A is a 3 3 3 matrix, then the cofactor (denoted by Cij) of the
element aij is defined by

Cij 5 (21) i1j Mij

1

2

2

4

4

22

5

1

3

2

2

26

4

22

5

3

2

4

22

5

1

3

2

2

26

4

4
22

5

1
3
2

2
26

4
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6.4 Determinants 469

3 4
Thus

M32 5 * * 5 3(4) 2 (24)(1) 5 16

Therefore,

C32 5 (21)312M32 5 (21)5(16) 5 216 n

The concept of a cofactor can be used to define the determinant of a 3 3 3
matrix as follows.

Definition 6.4 simply states that the determinant of a 3 3 3 matrix can be found by
multiplying each element of the first column by its corresponding cofactor and then
adding the three results. Let’s illustrate this procedure.

Find u A u if A 5 3 4.

Solution

u A u 5 a11C11 1 a21C21 1 a31C31

5(22)(21)111 * * 1 (3)(21)211 * * 1 (1)(21)311 * *
5 (22)(1)(20) 1 (3)(21)(10) 1 (1)(1)(5)

5240 2 30 1 5

5265 n

When we use Definition 6.4, we often say that the determinant is being
expanded about the first column. It can also be shown that any row or column can
be used to expand a determinant. For example, for matrix A in Example 5, the
expansion of the determinant about the second row is as follows.

4

5

1

0

4

26

1

24

5

26

0

24

4
5

26

1
0

24

22
3
1

24

4

3

1

24

4

1

2

5

23

3

1

2

D E F I N I T I O N  6 . 4

If A 5 3 4, then

u A u 5 a11C11 1 a21C21 1 a31C31

a13

a23

a33

a12

a22

a32

a11

a21

a31
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* * 5 (3)(21)211 * * 1 (0)(21)212 * * 1 (5)(21)213 * *
5 (3)(21)(10) 1 (0)(1)(8) 1 (5)(21)(7)

5 230 1 0 2 35

5 265

Note that when we expanded about the second row, the computation was simplified
by the presence of a zero. In general, it is helpful to expand about the row or column
that contains the most zeros.

The concepts of minor and cofactor have been defined in terms of 3 3 3
matrices. Analogous definitions can be given for any square matrix (that is, any 
n 3 n matrix with n $ 2), and the determinant can then be expanded about any row
or column. Certainly as the matrices become larger than 3 3 3, the computations get
more tedious. We will concentrate most of our efforts in this text on 2 3 2 and 
3 3 3 matrices.

Properties of Determinants

Determinants have several interesting properties, some of which are important pri-
marily from a theoretical standpoint. But some of the properties are also very useful
when evaluating determinants. We will state these properties for square matrices in
general, but we will use 2 3 2 or 3 3 3 matrices as examples. We can demonstrate
some of the proofs of these properties by evaluating the determinants involved, and
some of the proofs for 3 3 3 matrices will be left for you to verify in the next prob-
lem set.

If every element of a row (or column) of a square matrix A is 0, then it should be evi-
dent that expanding the determinant about that row (or column) of zeros will pro-
duce 0.

P R O P E R T Y  6 . 2

If square matrix B is obtained from square matrix A by interchanging
two rows (or two columns), then u B u 5 2u A u.

P R O P E R T Y  6 . 1

If any row (or column) of a square matrix A contains only zeros, then
u A u 5 0.

1

24

22

1

4

26

22

1

4

26

1

24

4

5

26

1

0

24

22

3

1
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Property 6.2 states that interchanging two rows (or columns) changes the sign of
the determinant. As an example of this property, suppose that

A5 3 4
and that rows 1 and 2 are interchanged to form

B 5 3 4
Calculating u A u and u B u yields

u A u 5 * * 5 2(6) 2 (5)(21) 5 17

and

u Bu 5 * * 5 (21)(5) 2 (6)(2) 5 217

Property 6.3 states that multiplying any row (or column) by a factor of k affects
the value of the determinant by a factor of k. As an example of this property, sup-
pose that

A 5 3 4
and that B is formed by multiplying each element of the third column by }

1
4

}.

B 5 3 4
Now let’s calculate u A u and u B u by expanding about the third column in each case.

u A u 5 * *5 (8)(21)113 * * 1 (12)(21)213 * * 1 (216)(21)313 * *
5 (8)(1)(1) 1 (12)(21)(8) 1 (216)(1)(5)

5 2168

22

1

1

2

22

2

1

3

1

2

2

3

8

12

216

22

1

2

1

2

3

2

3

24

22

1

2

1

2

3

8

12

216

22

1

2

1

2

3

P R O P E R T Y  6 . 3

If square matrix B is obtained from square matrix A by multiplying
each element of any row (or column) of A by some real number k,
then u B u 5 k u A u.

6

5

21

2

5

6

2

21

6

5

21

2

5

6

2

21
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u B u 5 * * 5 (2)(21)113 * * 1 (3)(21)213 * * 1 (24)(21)313 * *
5 (2)(1)(1) 1 (3)(21)(8) 1 (24)(1)(5)

5 242

We see that u B u 5 }
1
4

} u A u . This example also illustrates the usual computational use

of Property 6.3: We can factor out a common factor from a row or column and then
adjust the value of the determinant by that factor. For example,

* * 5 2* *
Factor a 2 from 
the top row.

Property 6.4 states that adding the product of k times a row (or column) to
another row (or column) does not affect the value of the determinant. As an
example of this property, suppose that

A 5 3 4
Now let’s form B by replacing row 2 with the result of adding 22 times row 1 to
row 2.

B 5 3 4
Next, let’s evaluate u A u and u B u by expanding about the second row in each case.

u A u 5 * * 5 (2)(21)211 * * 1 (4)(21)212 * * 1 (7)(21)213 * *
5 2(21)(22) 1 (4)(1)(9) 1 (7)(21)(5)

5 5

2

3
1

21

4

5
1

21

4

5

2

3

4

7

5

2

4

3

1

2

21

4

21

5

2

0

3

1

0

21

4

7

5

2

4

3

1

2

21

P R O P E R T Y  6 . 4

If square matrix B is obtained from square matrix A by adding k
times a row (or column) of A to another row (or column) of A, then
u B u 5 u A u.

4

7

1

3

2

2

1

21

5

8

7

1

6

2

2

2

21

5

22

1

1

2

22

2

1

3

1

2

2

3

2

3

4

22

1

2

1

2

3
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u B u 5 * * 5 (0)(21)211 * * 1 (0)(21)212 * * 1 (21)(21)213 * *
5 0 1 0 1 (21)(21)(5)

5 5

Note that u B u 5 u A u. Furthermore, note that because of the zeros in the second row,
evaluating u B u is much easier than evaluating u A u. Property 6.4 can often be used to
obtain some zeros before evaluating a determinant.

A word of caution is in order at this time. Be careful not to confuse Properties
6.2, 6.3, and 6.4 with the three elementary row transformations of augmented matri-
ces that were used in Section 6.3. The statements of the two sets of properties do
resemble each other, but the properties pertain to two different concepts, so be sure
you understand the distinction between them.

One final property of determinants should be mentioned.

Property 6.5 is a direct consequence of Property 6.2. Suppose that A is a square
matrix (any size) with two identical rows. Square matrix B can be formed from A by
interchanging the two identical rows. Because identical rows were interchanged,
u B u 5 u A u. But by Property 6.2, u B u 5 2u A u. For both of these statements to hold,
u A u 5 0.

Let’s conclude this section by evaluating a 4 3 4 determinant, using Proper-
ties 6.3 and 6.4 to facilitate the computation.

Evaluate * *.
Solution

First, let’s add 23 times the fourth column to the third column.

* *
Now if we expand about the fourth row, we get only one nonzero product.

22

1

21

3

7

1

6

0

2

21

22

0

6

9

12

0

22
1

21
3

1
4
3
9

2
21
22

0

6
9

12
0

P R O P E R T Y  6 . 5

If two rows (or columns) of a square matrix A are identical, then 
u A u 5 0.

2

3
1

21

4

5
1

21

4

5

2

3

4

21

5

2

0

3

1

0

21

E X A M P L E  6
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P R O B L E M  S E T  6 . 4

(3)(21)414* *
Factoring a 3 out of the first column of the 3 3 3 determinant, we obtain

(3)(21)8(3)* *
Now, working with the 3 3 3 determinant, we can first add column 3 to column 2
and then add 23 times column 3 to column 1.

(3)(21)8(3)* *
Finally, by expanding this 3 3 3 determinant about the second row, we obtain

(3)(21)8(3)(1)(21)213 * *
Our final result is

(3)(21)8(3)(1)(21)5(50) 5 2450 n

9

4

219

214

7

1

6

9

0

4

219

0

214

7

1

6

2

21

22

2

3

4

7

1

6

2

21

22

6

9

12

For Problems 1–12, evaluate each 2 3 2 determinant by using
Definition 6.1.

1. * * 2. * * 3. * *
4. * * 5. * * 6. * *

7. * * 8. * * 9. * *

10. * * 11. * * 12. * *

For Problems 13–28, evaluate each 3 3 3 determinant. Use
the properties of determinants to your advantage.

13. * * 14. * *
15. * * 16. * *
17. * * 18. * *
19. * * 20. * *3

1
21

217
5

23

2
0
1

3
1

21

21
3

22

2
0
1

5
1
2

35
25
15

2
1

24

3
1
2

12
5
6

6
21
23

1
4
5

22
1
3

3
2

21

1
21

4

24
5
3

1
2
3

1
21

4

22
1
2

1
2
3

21
2
3

2
1
4

1
3
2

}
1
5

}

}
3
2

}

}
2
3

}

2}
1
4

}

}
2
3

}

2}
1
3

}

}
1
2

}

}
3
4

}

}
3
4

}

6

}
2
3

}

8

}
1
3

}

26

}
1
2

}

23

23
27

24
25

23
24

22
21

5
2

25
26

23
22

2
8

3
21

5
6

2
5

23
7

5
4

3
6

3
7

4
2
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21. * * 22. * *
23. * * 24. * *
25. * * 26. * *
27. * * 28. * *
For Problems 29–32, evaluate each 4 3 4 determinant. Use
the properties of determinants to your advantage.

29. * *
30. * *
31. * * 32. * *
For Problems 33–42, use the appropriate property of determi-
nants from this section to justify each true statement. Do not
evaluate the determinants.

33. (24)* *5 * *

34. * * 5 (22) * *
35. * * 5 2* *
36. * * 5 0

37. * * 5 * *
38. * * 5 * *
39. * * 5 6 * * 5 18 * *
40. * * 5 2* *
41. * * 5 0

42. * * 5 * *
0

211
0

1
5

22

3
24

2

2
21
24

1
5

22

3
24

2

2
1
7

23
24

8

2
1
7

23
3

24

1
1
2

2
25

0

23
24

3

1
2
1

2
0

25

1
2
1

2
21
21

2
1
1

1
2
3

2
21
23

2
1
3

2
4
6

2
21
23

6
3
9

23
0
6

2
4
9

3
1

24

0
1
2

2
4
9

3
1

24

4
7

14

3
5
8

1
22

0

4
7
2

3
5

21

1
22
23

4
7
4

21
2

21

3
5
3

7
28

3

9
2

21

4
6
4

9
2

21

7
28

3

4
6
4

3
4
7

22
3
2

1
22

0

3
28

7

22
26

2

1
4
0

21
1
3

24
28
24

2
3
2

21
1
3

1
2
1

2
3
2

0
5
6

23

0
4
1

22

2
21

4
21

1
3

22
2

3
1
1

25

2
2
0
4

21
0
3
2

3
1
2
5

7
9
7
3

5
0
2
4

2
3
5
1

1
26
23

2

2
4

22
5

3
0
0
1

22
21

4
1

1
2

23
21

23
1
4

2
21

5

1
23

4

24
21
22

3
6
1

2
4

26

3
1

24

21
3

28

2
0
4

4
0
0

21
2
6

24
40

216

3
21

7

5
0
0

26
2
4

22
1
0

24
22

0

3
5
1

21
2

23

1
4
2

25
3
0

1
6

24

22
0
1

23
5
2

THOUGHTS INTO WORDS

43. Explain the difference between a matrix and a determi-
nant.

44. Explain the concept of a cofactor and how it is used to
help expand a determinant.

45. What does it mean to say that any row or column can be
used to expand a determinant?

46. Give a step-by-step explanation of how to evaluate the
determinant

* *2
5
9

0
22

0

3
1
6
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51. Use a calculator to check your answers for Problems
29–32.

52. Consider the following matrix.

A 5 3 4
Form matrix B by interchanging rows 1 and 3 of matrix
A. Now use your calculator to show that uB u 5 2uA u.

53. Consider the following matrix.

A 5 3 4

Form matrix B by multiplying each element of the sec-
ond row of matrix A by 3. Now use your calculator to
show that uB u 5 3u A u.

54. Consider the following matrix.

A 5 3 4
Use your calculator to show that u A u 5 0.

23

3

2

23

9

21

5

6

7

5

11

2

1

8

4

1

12

23

2

7

1

2

7

6

3

2

9

3

26

8

4

5

0

4

24

5

8

21

13

1

17

6

5

12

2

14

7

4

9

6

12

1

22

7

27

8

2

3

6

24

9

9

4

3

8

7

2

12

22

5

6

9

4

2

24

6

5

GRAPHING CALCULATOR ACTIVITIES

6.5

Further Investigations

For Problems 47–50, use

A 5 3 4
as a general representation for any 3 3 3 matrix.

47. Verify Property 6.2 for 3 3 3 matrices.

48. Verify Property 6.3 for 3 3 3 matrices.

49. Verify Property 6.4 for 3 3 3 matrices.

50. Show that u A u 5 a11a22a33a44 if

A 5 3 4
a14

a24

a34

a44

a13

a23

a33

0

a12

a22

0
0

a11

0
0
0

a13

a23

a33

a12

a22

a32

a11

a21

a31

CRAMER’S RULE

Determinants provide the basis for another method of solving linear systems. Con-
sider the following linear system of two equations and two unknowns.

a1x 1 b1y 5 c11a2x 1 b2y 5 c2
2

The augmented matrix of this system is

   396  Systems of Equations 



6.5 Cramer’s Rule 477

3 4
Using the elementary row transformations of augmented matrices, we can change
this matrix to the following reduced echelon form. (The details of this are left for
you to do as an exercise.)

3 4 , a1b2 2 a2b1 Þ 0

The solution for x and y can be expressed in determinant form as follows.

x 5 }
a
c1

1

b
b

2

2

2

2

c
a

2

2

b
b

1

1
} 5 * *

y 5 }
a
a

1

1

b
c2

2

2

2

a
a

2

2

c
b

1

1
} 5 * *

This method of using determinants to solve a system of two linear equations in
two variables is called Cramer’s rule and can be stated as follows.

c1

c2

b1

b2

a1

a2

a1

a2

b1

b2

b1

b2

c1

c2

a1

a2

}
a

c1

1

b

b
2

2

2

2

c

a
2

2

b

b
1

1

}

}
a

a

1

1

b

c2

2

2

2

a

a
2

2

c

b
1

1

}

0

1

1

0

c1

c2

b1

b2

a1

a2

Cramer’s Rule (2 3 2 case)

Given the system

a1x 1 b1y 5 c11a2x 1 b2y 5 c2
2

with

D 5 * * Þ 0

Dx 5 * * and Dy 5 * *
then the solution for this system is given by

x 5 }
D
D

x} and y 5 }
D

D
y

}

c1

c2

a1

a2

b1

b2

c1

c2

b1

b2

a1

a2
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Note that the elements of D are the coefficients of the variables in the given system.
In Dx the coefficients of x are replaced by the corresponding constants, and in Dy the
coefficients of y are replaced by the corresponding constants. Let’s illustrate the use
of Cramer’s rule to solve some systems.

Solve the system 6x 1 3y 5 213x 1 2y 5 242.

Solution

The system is in the proper form for us to apply Cramer’s rule, so let’s determine D,
Dx, and Dy.

D 5 * * 5 12 2 9 5 3

Dx 5 * * 5 4 1 12 5 16

Dy 5 * * 5 224 2 6 5 230

Therefore,

x 5 }
D
D

x} 5 }
1
3
6
}

and

y 5 }
D

D
y

} 5 }
2

3

30
} 5 210

The solution set is 


 1}

1
3
6
}, 2102



. n

Solve the system y 5 22x 2 214x 2 5y 5 172.

Solution

To begin, we must change the form of the first equation so that the system fits 
the form given in Cramer’s rule. The equation y 5 22x 2 2 can be rewritten 
2x 1 y 5 22. The system now becomes

2x 1 y 5 2214x 2 5y 5 17 2
and we can proceed to determine D, Dx, and Dy.

D 5 * * 5 210 2 4 5 214
1

25

2

4

2

24

6

3

3

2

2

24

3

2

6

3

E X A M P L E  1

E X A M P L E  2
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Dx 5 * * 5 10 2 17 5 27

Dy 5 * * 5 34 2 (28) 5 42

Thus

x 5 }
D
D

x} 5 }
2

2

1
7
4

} 5 }
1
2

} and y 5 }
D

D
y

} 5 }
2

4
1
2
4

} 5 23

The solution set is 51}
1
2

}, 2326, which can be verified, as always, by substituting back

into the original equations. n

Solve the system

}
1
2

}x 1 }
2
3

}y 5 241}
1
4

}x 2 }
3
2

}y 5 20 2
Solution

With such a system, either we can first produce an equivalent system with integral
coefficients and then apply Cramer’s rule, or we can apply the rule immediately.
Let’s avoid some work with fractions by multiplying the first equation by 6 and the
second equation by 4 to produce the following equivalent system.

3x 1 4y 5 2241 x 2 6y 5 80 2
Now we can proceed as before.

D 5 * * 5 218 2 4 5 222

Dx 5 * * 5 144 2 320 5 2176

Dy 5 * * 5 240 2 (224) 5 264

Therefore,

x 5 }
D
D

x} 5 }
2

2

1
2
7
2
6

} 5 8 and y 5 }
D

D
y

} 5 }
2

26
2
4
2

} 5 212

The solution set is {(8, 212)}. n

224

80

3

1

4

26

224

80

4

26

3

1

22

17

2

4

1

25

22

17

E X A M P L E  3
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In the statement of Cramer’s rule, the condition that D Þ 0 was imposed. If
D 5 0 and either Dx or Dy (or both) is nonzero, then the system is inconsistent and
has no solution. If D 5 0, Dx 5 0, and Dy 5 0, then the equations are dependent and
there are infinitely many solutions.

Cramer’s Rule Extended

Without showing the details, we will simply state that Cramer’s rule also applies 
to solving systems of three linear equations in three variables. It can be stated as 
follows.

Again, note the restriction that D Þ 0. If D 5 0 and at least one of Dx, Dy, and Dz is
not zero, then the system is inconsistent. If D, Dx, Dy, and Dz are all zero, then the
equations are dependent and there are infinitely many solutions.

Solve the system

x 2 2y 1 z 5 241 2x 1 y 2 z 5 5 2
3x 1 2y 1 4z 5 3

Cramer’s Rule (3 3 3 case)

Given the system

a1x 1 b1y 1 c1z 5 d11a2x 1 b2y 1 c2z 5 d22
a3x 1 b3y 1 c3z 5 d3

with

D 5 * * Þ 0 Dx 5 * *
Dy 5 * * Dz 5 * *

then

x 5 }
D

D
x

} y 5 }
D

D
y

} and z 5 }
D

D
z

}

d1

d2

d3

b1

b2

b3

a1

a2

a3

c1

c2

c3

d1

d2

d3

a1

a2

a3

c1

c2

c3

b1

b2

b3

d1

d2

d3

c1

c2

c3

b1

b2

b3

a1

a2

a3

E X A M P L E  4
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6.5 Cramer’s Rule 481

Solution

We will simply indicate the values of D, Dx, Dy, and Dz and leave the computations
for you to check.

D 5 * *5 29 Dx 5 * *5 29

Dy 5 * *5 58 Dz 5 * *5 229

Therefore,

x 5 }
D

D
x

} 5 }
2
2
9
9
} 5 1

y 5 }
D

D
y

} 5 }
5
2
8
9
} 5 2

and

z 5 }
D

D
z

} 5 }
2

2
2
9
9

} 5 21

The solution set is {(1, 2, 21)}. (Be sure to check it!) n

Solve the system

x 1 3y 2 z 5 41 3x 2 2y 1 z 5 72
2x 1 6y 2 2z 5 1

Solution

D 5 * *5 2 * *5 2(0) 5 0

Dx 5 * *5 27

Therefore, because D 5 0 and at least one of Dx, Dy, and Dz is not zero, the system
is inconsistent. The solution set is [. n

21

1

22

3

22

6

4

7

1

21

1

21

3

22

3

1

3

1

21

1

22

3

22

6

1

3

2

24

5

3

22

1

2

1

2

3

1

21

4

24

5

3

1

2

3

1

21

4

22

1

2

24

5

3

1

21

4

22

1

2

1

2

3

E X A M P L E  5
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For Problems 1–32, use Cramer’s rule to find the solution set
for each system. If the equations are dependent, simply indi-
cate that there are infinitely many solutions.

1. 2x 2 y 5 22 2. 3x 1 y 5 2913x 1 2y 5 11 2 14x 2 3y 5 1 2
3. 5x 1 2y 5 5 4. 4x 2 7y 5 22313x 2 4y 5 292 12x 1 5y 5 23 2
5. 5x 2 4y 5 14 6. 2x 1 2y 5 1012x 1 2y 5 242 1 3x 2 y 5 2102
7. y 5 2x 2 4 8. 23x 2 4y 5 1416x 2 3y 5 12 122x 1 3y 5 2192
9. 24x 1 3y 5 3 10. x 5 4y 2 11 4x 2 6y 5 252 12x 2 8y 5 222

11. 9x 2 y 5 22 12. 6x 2 5y 5 118x 1 y 5 4 2 14x 2 7y 5 22

13.
2}

2
3

}x 1 }
1
2

}y 5 27
14.

}
1
2

}x 1 }
2
3

}y 5 261 }
1
3

}x 2 }
3
2

}y 5 6 2 1}
1
4

}x 2 }
1
3

}y 5 212
15. 2x 1 7y 5 211 x 5 2 2
16. 1 2

x 2 y 1 2z 5 28
17. 12x 1 3y 2 4z 5 182

2x 1 2y 2 z 5 7

x 2 2y 1 z 5 3
18. 1 3x 1 2y 1 z 5 2322x 2 3y 2 3z 5 25

2x 2 3y 1 z 5 27
19. 123x 1 y 2 z 5 27  2

x 2 2y 2 5z 5 245

3x 2 y 2 z 5 18
20. 1 4x 1 3y 2 2z 5 10 2

25x 2 2y 1 3z 5 222

4x 1 5y 2 2z 5 214
21. 1 7x 2 y 1 2z 5 42 2

3x 1 y 1 4z 5 28

25x 1 6y 1 4z 5 24
22. 127x 2 8y 1 2z 5 222

2x 1 9y 2 z 5 1

2x 2 y 1 3z 5 217
23. 1 3y 1 z 5 5 2

x 2 2y 2 z 5 23

2x 2 y 1 3z 5 25
24. 13x 1 4y 2 2z 5 2252

2x 1 z 5 6

x 1 3y 2 4z 5 21
25. 1 2x 2 y 1 z 5 2 2

4x 1 5y 2 7z 5 0

x 2 2y 1 z 5 1
26. 1 3x 1 y 2 z 5 2 2

2x 2 4y 1 2z 5 21

3x 2 2y 2 3z 5 25
27. 1 x 1 2y 1 3z 5 232

2x 1 4y 2 6z 5 8

3x 2 2y 1 z 5 11
28. 1 5x 1 3y 5 172

x 1 y 2 2z 5 6

5x 2 3y 5 2
y 5 4

P R O B L E M  S E T  6 . 5

Example 5 illustrates why D should be determined first. Once we found that
D 5 0 and Dx Þ 0, we knew that the system was inconsistent and there was no need
to find Dy and Dz.

Finally, it should be noted that Cramer’s rule can be extended to systems of n
linear equations in n variables; however, that method is not considered to be a very
efficient way of solving a large system of linear equations.
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x 2 2y 1 3z 5 1
29. 122x 1 4y 2 3z 5 232

5x 2 6y 1 6z 5 10

2x 2 y 1 2z 5 21
30. 14x 1 3y 2 4z 5 2 2

x 1 5y 2 z 5 9

2x 2 y 1 3z 5 22
31. 122x 1 y 1 7z 5 14 2

3x 1 4y 2 5z 5 12

22x 1 y 2 3z 5 24
32. 1 x 1 5y 2 4z 5 13 2

7x 2 2y 2 z 5 37

33. Give a step-by-step description of how you would solve
the system

2x 2 y 1 3z 5 311 x 2 2y 2 z 5 8 2
3x 1 5y 1 8z 5 35

34. Give a step-by-step description of how you would find
the value of x in the solution for the system

x 1 5y 2 z 5 291 2x 2 y 1 z 5 11 2
23x 2 2y 1 4z 5 20

THOUGHTS INTO WORDS

35. A linear system in which the constant terms are all zero
is called a homogeneous system.

a. Verify that for a 3 3 3 homogeneous system, if D Þ
0, then (0, 0, 0) is the only solution for the system.

b. Verify that for a 3 3 3 homogeneous system, if D 5
0, then the equations are dependent.

For Problems 36–39, solve each of the homogeneous systems
(see problem 35). If the equations are dependent, indicate that
the system has infinitely many solutions.

x 2 2y 1 5z 5 0 2x 2 y 1 z 5 0
36. 13x 1 y 2 2z 5 02 37. 13x 1 2y 1 5z 5 02

4x 2 y 1 3z 5 0 4x 2 7y 1 z 5 0

3x 1 y 2 z 5 0 2x 2 y 1 2z 5 0
38. 1 x 2 y 1 2z 5 02 39. 1 x 1 2y 1 z 5 02

4x 2 5y 2 2z 5 0 x 2 3y 1 z 5 0

40. Use determinants and your calculator to solve each of the
following systems.

4x 2 3y 1 z 5 10
a. 1 8x 1 5y 2 2z 5 262

212x 2 2y 1 3z 5 22

2x 1 y 2 z 1 w 5 24

b. 1x 1 2y 1 2z 2 3w 5 6 23x 2 y 2 z 1 2w 5 0
2x 1 3y 1 z 1 4w 5 25

x 2 2y 1 z 2 3w 5 4

c. 1 2x 1 3y 2 z 2 2w 5 2423x 2 4y 1 2z 2 4w 5 12
2x 2 y 2 3z 1 2w 5 22

1.98x 1 2.49y 1 3.45z 5 80.10
d. 12.15x 1 3.20y 1 4.19z 5 97.162

1.49x 1 4.49y 1 2.79z 5 83.92

GRAPHING CALCULATOR ACTIVITIES

Further Investigations
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The primary focus of this entire chapter is the development of different techniques
for solving systems of linear equations.

Substitution Method

With the aid of an example, we can describe the substitution method as follows.
Suppose we want to solve the system

x 2 2y 5 2213x 1 4y 5 2242
STEP 1 Solve the first equation for x in terms of y.

x 2 2y 5 22

x 5 2y 1 22

STEP 2 Substitute 2y 1 22 for x in the second equation.

3(2y 1 22) 1 4y 5 224

STEP 3 Solve the equation obtained in step 2.

6y 1 66 1 4y 5 224

10y 1 66 5 224

10y 5 290

y 5 29

STEP 4 Substitute 29 for y in the equation of step 1.

x 5 2(29) 1 22 5 4

The solution set is { (4, 29)} .

Elimination-by-Addition Method

This method allows us to replace systems of equations with simpler equivalent sys-
tems until we obtain a system where we can easily determine the solution. The fol-
lowing operations produce equivalent systems.

1. Any two equations of a system can be interchanged.

2. Both sides of any equation of the system can be multiplied by any nonzero
real number.

3. Any equation of the system can be replaced by the sum of a nonzero multi-
ple of another equation plus that equation.

C H A P T E R  6 S U M M A R Y

   404  Systems of Equations 
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For example, through a sequence of operations, we can transform the system

5x 1 3y 5 2281 }
1
2

}x 2 y 5 28  2
to the equivalent system

x 2 2y 5 2161 13y 5 52 2
where we can easily determine the solution set { (28, 4)} .

Matrix Approach

We can change the augmented matrix of a system to reduced echelon form by
applying the following elementary row operations.

1. Any two rows of the matrix can be interchanged.

2. Any row of the matrix can be multiplied by a nonzero real number.

3. Any row of the matrix can be replaced by the sum of a nonzero multiple of
another row plus that row.

For example, the augmented matrix of the system

x 2 2y 1 3z 5 41 2x 1 y 2 4z 5 3 2
23x 1 4y 2z 5 22

is

3 4
We can change this matrix to the reduced echelon form

3 4
where the solution set { (4, 3, 2)} is obvious.

Cramer’s Rule

Cramer’s rule for solving systems of linear equations involves the use of determi-
nants. It is stated for the 2 3 2 case on page 477 and for the 3 3 3 case on page
480. For example the solution set of the system

4

3

2

0

0

1

0

1

0

1

0

0

4

3

22

3

24

21

22

1

4

1

2

23
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3x 2 y 2 z 5 2

1 2x 1 y 1 3z 5 9 2
2x 1 5y 2 6z 5 229

is determined by

x 5 5 }
2

2

8
8
3
3

} 5 1

y 5 5 }
2

16
8
6
3

} 5 22

and

z 5 5 }
2

2

2
8
4
3
9

} 5 3

2

9

229

21

3

26

21

1

5

21

1

5

3

2

21

3

2

21

21

3

26

21

3

26

2

9

229

21

1

5

3

2

21

3

2

21

21

3

26

21

3

26

21

1

5

21

1

5

2

9

229

3

2

21*
**
*

*
**
*

*
**
*

C H A P T E R 6  R E V I E W P R O B L E M  S E T

For Problems 1–4, solve each system by using the substitu-
tion method.

1. 3x 2 y 5 16 2. 6x 1 5y 5 22115x 1 7y 5 2342 1 x 2 4y 5 11 2
3. 2x 2 3y 5 12 4. 5x 1 8y 5 113x 1 5y 5 2202 14x 1 7y 5 222

For Problems 5–8, solve each system by using the elimina-
tion-by-addition method.

5. 4x 2 3y 5 34
}
1
2

}x 2 }
2
3

}y 5 1

13x 1 2y 5 0 2 6. 1}
3
4

}x 1 }
1
6

}y 5 212
2x 2 y 1 3z 5 219 3x 1 2y 2 4z 5 4

7. 13x 1 2y 2 4z 5 21 2 8. 1 5x 1 3y 2 z 5 2 2
5x 2 4y 2 z 5 28 4x 2 2y 1 3z 5 11
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For Problems 9–12, solve each system by changing the aug-
mented matrix to reduced echelon form.

9. x 2 3y 5 17123x 1 2y 5 2232
10. 1 2

x 2 2y 1 z 5 27
11. 1 2x 2 3y 1 4z 5 2142

23x 1 y 2 2z 5 10

22x 2 7y 1 z 5 9
12. 1 x 1 3y 2 4z 5 2112

4x 1 5y 2 3z 5 211

For Problems 13–16, solve each system by using Cramer’s
rule.

13. 5x 1 3y 5 21814x 2 9y 5 23 2
14. 1 2

2x 2 3y 2 3z 5 25
15. 1 3x 1 y 1 2z 5 2525x 2 2y 2 4z 5 32

16. 1 2
For Problems 17–24, solve each system by using the method
you think is most appropriate.

17. 4x 1 7y 5 21513x 2 2y 5 25 2
}
3
4

}x 2 }
1
2

}y 5 215
18.1}

2
3

}x 1 }
1
4

}y 5 25 2
19.

x 1 4y 5 313x 2 2y 5 1 2
7x 2 3y 5 249

20. 1y 5 }
3
5

}x 2 1 2

x 2 y 2 z 5 4
21. 123x 1 2y 1 5z 5 2212

5x 2 3y 2 7z 5 30

2x 2 y 1 z 5 27
22. 125x 1 2y 2 3z 5 17 2

3x 1 y 1 7z 5 25

3x 2 2y 2 5z 5 2
23. 124x 1 3y 1 11z 5 3 2

2x 2 y 1 z 5 21

7x 2 y 1 z 524
24. 122x 1 9y 2 3z 5 2502

x 2 5y 1 4z 5 42

Problems 25–30, evaluate each determinant.

25. * * 26. * *

27. * * 28. * *
29. * * 30. * *
For Problems 31–34, solve each problem by setting up and
solving a system of linear equations.

31. The sum of the digits of a two-digit number is 9. If the
digits are reversed, the newly formed number is 45 less
than the original number. Find the original number.

32. Sara invested $2500, part of it at 10% and the rest at 12%
yearly interest. The yearly income on the 12% invest-
ment was $102 more than the income on the 10% invest-
ment. How much money did she invest at each rate?

33. A box contains $17.70 in nickels, dimes, and quarters.
The number of dimes is eight less than twice the number
of nickels. The number of quarters is two more than the
sum of the numbers of nickels and dimes. How many
coins of each kind are there in the box?

34. The measure of the largest angle of a triangle is 10° more
than four times the smallest angle. The sum of the smallest
and largest angles is three times the measure of the other
angle. Find the measure of each angle of the triangle.

1
22

0
0

2
6

25
4

24
7
1

22

5
3
2
3

3
0
0

4
27
22

5
2
3

4
6
5

22
0

23

3
1
3

21
25

2

3
4
4

2
3
6

24
23

5
7

6
8

22
3

3x 2 y 1 z 5 210
6x 22y 1 5z 5 235
7x 1 3y 2 4z 5 19

0.2x 1 0.3y 5 2.6
0.5x 2 0.1y 5 1.4

2x 1 3y 5 25
3x 2 5y 5 229
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C H A P T E R  6  T E S T

For Problems 1–4, refer to the following systems of equations.

I. 3x 2 2y 5 4 II. 5x 2 y 5 4 III. 2x 2 y 5 419x 2 6y 5 122 13x 1 7y 5 92 12x 2 y 5 262
1. For which system are the graphs parallel lines?

2. For which system are the equations dependent?

3. For which system is the solution set [ ?

4. Which system is consistent?

For Problems 5–8, evaluate each determinant.

5. * * 6. * * 7. * * 8. * *
9. How many ordered pairs of real numbers are in the solution set for the system 

y 5 3x 2 419x 2 3y 5 12 2?

10. Solve the system 3x 2 2y 5 21417x 1 2y 5 26 2.

11. Solve the system 4x 2 5y 5 171 y 5 23x 1 8 2.

12. Find the value of x in the solution for the system

}
3
4

}x 2 }
1
2

}y 5 2211 }
2
3

}x 1 }
1
6

}y 5 24 2
13. Find the value of y in the solution for the system 4x 2 y 5 713x 1 2y 5 22.

14. Is (1, 21, 4) a solution of the following system?

2x 2 y 1 z 5 713x 2 2y 1 2z 5 132
x 2 4y 1 5z 5 17

25
0
1

4
3
6

2
24
22

1
22

1

2
1

21

21
3
2

}
1
3

}

2}
2
3

}

}
1
2

}

}
3
4

}

4
6

22
25
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15. Suppose that the augmented matrix of a system of three linear equations in the
three variables x, y, and z can be changed to the matrix

3 4
Find the value of x in the solution for the system.

16. Suppose that the augmented matrix of a system of three linear equations in the
three variables x, y, and z can be changed to the matrix

3 4
Find the value of y in the solution for the system.

17. How many ordered triples are there in the solution set for the following system?

x 1 3y 2 z 5 51 2x 2 y 2 z 5 7 2
5x 1 8y 2 4z 5 22

18. How many ordered triples are there in the solution set for the following system?

3x 2 y 2 2z 5 11 4x 1 2y 1 z 5 52
6x 2 2y 2 4z 5 9

19. Solve the following system.

5x 2 3y 2 2z 5 211 4y 1 7z 5 3 2
4z 5 212

20. Solve the following system.

x 2 2y 1 z 5 01 y 2 3z 5 212
2y 1 5z 5 22

21. Find the value of x in the solution for the system

x 2 4y 1 z 5 12122x 1 3y 2 z 5 2112
5x 2 3y 1 2z 5 17

22. Find the value of y in the solution for the system

x 2 3y 1 z 5 2131 3x 1 5y 2 z 5 17 2
5x 2 2y 1 2z 5 213

4

5

28

23

2

2

2

1

0

1

0

0

3

5

6

24

4

3

1

1

0

1

0

0
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23. The tens digit of a two-digit number is 1 more than twice the units digit. The
number formed by reversing the digits is 27 times smaller than the original
number. Find the original number.

24. One solution is 30% alcohol and another solution is 70% alcohol. Some of each
of the two solutions is mixed to produce 8 liters of a 40% solution. How many
liters of the 70% solution should be used?

25. A box contains $7.25 in nickels, dimes, and quarters. There are 43 coins, and
the number of quarters is 1 more than three times the number of nickels. Find
the number of quarters in the box.

490 Chapter 6 Systems of Equations
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492 Chapter 7 Algebra of Matrices

In Section 6.3, we used matrices strictly as a device to help solve systems of
linear equations. Our primary objective was the development of techniques
for solving systems of equations, not the study of matrices. However, matri-
ces can be studied from an algebraic viewpoint, much as we study the set of
real numbers. That is, we can define certain operations on matrices and ver-
ify properties of those operations. This algebraic approach to matrices is the
focal point of this chapter. In order to get a simplified view of the algebra of
matrices, we will begin by studying 2 3 2 matrices, and then later we will
enlarge our discussion to include m 3 n matrices. As a bonus, another tech-
nique for solving systems of equations will emerge from our study.

ALGEBRA OF 2 3 2 MATRICES

Throughout these next two sections, we will be working primarily with 2 3 2 matri-
ces; therefore, any reference to matrices means 2 3 2 matrices unless stated other-
wise. The following 2 3 2 matrix notation will be used frequently.

A 5 3 4 B 5 3 4 C 5 3 4
Two matrices are equal if and only if all elements in corresponding positions

are equal. Thus A 5 B if and only if a11 5 b11, a12 5 b12, a21 5 b21, and a22 5 b22.

Addition of Matrices

To add two matrices, we add the elements that appear in corresponding positions.
Therefore, the sum of matrix A and matrix B is defined as follows.

For example,

3 4 1 3 4 5 3 43

11

23

24

4

7

25

21

21

4

2

23

c12

c22

c11

c21

b12

b22

b11

b21

a12

a22

a11

a21

7.1

D E F I N I T I O N  7 . 1

A 1 B 5 3 4 1 3 4
5 3 4a12 1 b12

a22 1 b22

a11 1 b11

a21 1 b21

b12

b22

b11

b21

a12

a22

a11

a21
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7.1 Algebra of 2 3 2 Matrices 493

It is not difficult to show that the commutative and associative properties
are valid for the addition of matrices. Thus we can state that

Because

3 4 1 3 4 5 3 4
we see that 3 4, which is called the zero matrix and represented by O, is the

additive identity element. Thus we can state that

Because every real number has an additive inverse, it follows that any matrix
A has an additive inverse, 2A, that is formed by taking the additive inverse of each
element of A. For example, if

A 5 3 4 then 2A 5 3 4
and

A 1 (2A ) 5 3 4 1 3 4 5 3 4
In general, we can state that every matrix A has an additive inverse 2A such that

Subtraction of Matrices

Again, paralleling the algebra of real numbers, subtraction of matrices can be
defined in terms of adding the additive inverse. Therefore, we can define subtraction
as follows.

D E F I N I T I O N  7 . 2

A 2 B 5 A 1 (2B)

A 1 (2A) 5 (2A) 1 A 5 O

0

0

0

0

2

0

24

1

22

0

4

21

2

0

24

1

22

0

4

21

A 1 O 5 O 1 A 5 A

0
0

0
0

a12

a22

a11

a21

0

0

0

0

a12

a22

a11

a21

A 1 B 5 B 1 A and (A 1 B ) 1 C 5 A 1 (B 1 C )
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For example,

3 4 2 3 4 5 3 4 1 3 4
5 3 4

Scalar Multiplication

When we work with matrices, we commonly refer to a single real number as a
scalar to distinguish it from a matrix. Then taking the product of a scalar and a
matrix (often referred to as a scalar multiplication) can be accomplished by multi-
plying each element of the matrix by the scalar. For example,

33 4 5 3 4 5 3 4
In general, scalar multiplication can be defined as follows.

If A 5 3 4 and B 5 3 4, find

a. 22A b. 3A 1 2B c. A 2 4B

Solutions

a. 22A 5 223 4 5 3 4
b. 3A 1 2B 5 33 4 1 23 4

5 3 4 1 3 4
5 3 43

227

28

20

26

212

4

14

9

215

212

6

23

26

2

7

3

25

24

2

26

10

8

24

3

25

24

2

23
26

2
7

3
25

24
2

218

26

212

3

3(26)

3(22)

3(24)

3(1)

26

22

24

1

211

6

21

24

24

1

23

2

27

5

2

26

4

21

3

22

27

5

2

26

D E F I N I T I O N  7 . 3

kA 5 k3 4 5 3 4
where k is any real number.

ka12

ka32

ka11

ka21

a12

a22

a11

a21

E X A M P L E  1

   414  Algebra of Matrices 



7.1 Algebra of 2 3 2 Matrices 495

c. A 2 4B 5 3 4 2 43 4
5 3 4 2 3 4
5 3 4 1 3 4
5 3 4 n

The following properties, which are easy to check, pertain to scalar multipli-
cation and matrix addition (where k and l represent any real numbers).

Multiplication of Matrices

At this time, it probably would seem quite natural to define matrix multiplication by
multiplying corresponding elements of two matrices. However, it turns out that such
a definition does not have many worthwhile applications. Therefore, we use a spe-
cial type of matrix multiplication, sometimes referred to as a row-by-column mul-
tiplication. We will state the definition, paraphrase what it says, and then give some
examples.

Notice the row-by-column pattern of Definition 7.4. We multiply the rows of A
times the columns of B in a pairwise entry fashion, adding the results. For example,
the element in the first row and second column of the product is obtained by multi-
plying the elements of the first row of A times the elements of the second column of
B and adding the results.

k(A 1 B ) 5 kA 1 kB

(k 1 l)A 5 kA 1 lA

(kl)A 5 k( lA)

15

19

212

226

12

24

28

228

3

25

24

2

212

224

8

28

3

25

24

2

23

26

2

7

3

25

24

2

D E F I N I T I O N  7 . 4

AB 5 3 4 3 4
5 3 4a11b12 1 a12b22

a21b12 1 a22b22

a11b11 1 a12b21

a21b11 1 a22b21

b12

b22

b11

b21

a12

a22

a11

a21
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3 4 3 4 5 3 a11b12 1 a12b224
Now let’s look at some specific examples.

If A 5 3 4 and B 5 3 4, find (a) AB and (b) BA.

Solutions

a. AB 5 3 4 3 4
5 3 4
5 3 4

b. BA 5 3 4 3 4
5 3 4 5 3 4 n

Example 2 makes it immediately apparent that matrix multiplication is not a com-
mutative operation.

If A 5 3 4 and B 5 3 4, find AB.

Solution

Once you feel comfortable with Definition 7.4, you can do the addition mentally.

AB 5 3 4 3 4 5 3 4 n

Example 3 illustrates that the product of two matrices can be the zero matrix
even though neither of the two matrices is the zero matrix. This is different from the
property of real numbers that states ab 5 0 if and only if a 5 0 or b 5 0.

As we illustrated and stated earlier, matrix multiplication is not a commutative
operation. However, it is an associative operation and it does abide by two distrib-
utive properties. These properties can be stated as follows.

0

0

0

0

6

2

23

21

26

9
2

23

6
2

23
21

26
9

2
23

27
34

214
30

(3)(1) 1 (22)(5)
(21)(1) 1 (7)(5)

(3)(22) 1 (22)(4)
(21)(22) 1 (7)(4)

1
5

22
4

22
7

3
21

11
27

27
7

(22)(22) 1 (1)(7)

(4)(22) 1 (5)(7)

(22)(3) 1 (1)(21)

(4)(3) 1 (5)(21)

22

7

3

21

1

5
22

4

22
7

3
21

1
5

22
4

b12

b22

b11

b21

a12

a22

a11

a21

496 Chapter 7 Algebra of Matrices

E X A M P L E  3

E X A M P L E  2
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For Problems 1–12, compute the indicated matrix by using
the following matrices:

A 5 3 4 B 5 3 4
C 5 3 4 D 5 3 4
E 5 3 4

1. A 1 B 2. B 2 C

3. 3C 1 D 4. 2D 2 E

5. 4A 2 3B 6. 2B 1 3D

7. (A 2 B) 2 C 8. B 2 (D 2 E )

9. 2D 2 4E 10. 3A 2 4E

11. B 2 (D 1 E ) 12. A 2 (B 1 C)

For Problems 13–26, compute AB and BA.

13. A 5 3 4, B 5 3 4
14. A 5 3 4, B 5 3 4
15. A 5 3 4, B 5 3 4
16. A 5 3 4, B 5 3 4
17. A 5 3 4, B 5 3 4

18. A 5 3 4, B 5 3 4
19. A 5 3 4, B 5 3 4
20. A 5 3 4, B 5 3 4
21. A 5 3 4, B 5 3 4
22. A 5 3 4, B 5 3 4

23. A 5 3 4, B 5 3 4

24. A 5 3 4, B 5 3 4

25. A 5 3 4, B 5 3 4
26. A 5 3 4, B 5 3 42}

5
2

}

}
3
2

}

22

1

25
4

23
2

22

}
5
3

}

1

2}
2
3

}

6
3

5
2

218
212

26
12

2}
1
2

}

2}
2
3

}

}
1
3

}

}
3
2

}

26
24

4
6

2}
1
3

}

}
1
4

}

}
1
2

}

}
1
3

}

25
8

22
3

25
2

28
3

1
2

3
5

21
3

2
25

23
27

21
25

3
7

22
21

21
5

2
4

22
21

23
24

2
21

2
21

2
2

1
1

22
6

1
23

24
22

2
1

6
1

23
4

0
3

5
22

23
5

7
4

23
6

1
24

5
21

22
6

4
1

23
2

24
2

3
21

21
22

1
2

5
3

2
7

3
24

22
5

6
2

0
24

23
21

2
5

22
4

1
3

P R O B L E M  S E T  7 . 1

We will ask you to verify these properties in the next set of problems.

(AB )C 5 A(BC )

A(B 1 C) 5 AB 1 AC

(B 1 C )A 5 BA 1 CA
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For Problems 27–30, use the following matrices.

A 5 3 4 B 5 3 4
C 5 3 4 D 5 3 4
I 5 3 4

27. Compute AB and BA. 28. Compute AC and CA.

29. Compute AD and DA. 30. Compute AI and IA.

For Problems 31–34, use the following matrices.

A 5 3 4 B 5 3 4
C 5 3 4

31. Show that (AB )C 5 A(BC ).

32. Show that A(B 1 C) 5 AB 1 AC.

33. Show that (A 1 B )C 5 AC 1 BC.

34. Show that (3 1 2)A 5 3A 1 2A.

For Problems 35–43, use the following matrices.

A 5 3 4 B 5 3 4
C 5 3 4 O 5 3 4

35. Show that A 1 B 5 B 1 A.

36. Show that (A 1 B ) 1 C 5 A 1 (B 1 C ).

37. Show that A 1 (2A ) 5 O.

38. Show that k(A 1 B ) 5 kA 1 kB for any real number k.

39. Show that (k 1 l)A 5 kA 1 lA for any real numbers k
and l.

40. Show that (kl )A 5 k( lA) for any real numbers k and l.

41. Show that (AB )C 5 A(BC ).

42. Show that A(B 1 C) 5 AB 1 AC.

43. Show that (A 1 B )C 5 AC 1 BC.

0
0

0
0

c12

c22

c11

c21

b12

b22

b11

b21

a12

a22

a11

a21

1
7

2
3

3
2

22
21

4
23

2
5

0
1

1
0

1
1

1
1

0
0

1
1

1
0

0
1

3
4

22
5

THOUGHTS INTO WORDS

44. How would you show that addition of 2 3 2 matrices is a
commutative operation?

45. How would you show that subtraction of 2 3 2 matrices
is not a commutative operation?

46. How would you explain matrix multiplication to some-
one who missed class the day it was discussed?

47. Your friend says that because multiplication of real num-
bers is a commutative operation, it seems reasonable that
multiplication of matrices should also be a commutative
operation. How would you react to that statement?

Further Investigations

48. If A 5 3 4, calculate A 2 and A 3, where A 2 means 

AA and A 3 means AAA.

49. If A 5 3 4, calculate A2 and A 3.

50. Does (A 1 B )(A 2 B ) 5 A 2 2 B 2 for all 2 3 2 matri-
ces? Defend your answer.

21
3

1
2

0
3

2
0
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7.2 Multiplicative Inverses 499

MULTIPLICATIVE INVERSES

We know that 1 is a multiplicative identity element for the set of real numbers. That
is, a(1) 5 1(a ) 5 a for any real number a. Is there a multiplicative identity element
for 2 3 2 matrices? Yes. The matrix

I 5 3 4
is the multiplicative identity element, because

3 4 3 4 5 3 4
and

3 4 3 4 5 3 4
Therefore, we can state that

AI 5 IA 5 A

for all 2 3 2 matrices.
Again, refer to the real numbers, where every nonzero real number a has a

multiplicative inverse 1@a such that a(1@a) 5 (1@a )a 5 1. Does every 2 3 2 matrix
have a multiplicative inverse? To help answer this question, let’s think about finding
the multiplicative inverse (if one exists) for a specific matrix. This should give us
some clues about a general approach.

a12

a22

a11

a21

0

1

1

0

a12

a22

a11

a21

a12

a22

a11

a21

a12

a22

a11

a21

0

1

1

0

0

1

1

0

7.2

GRAPHING CALCULATOR ACTIVITIES

51. Use your calculator to check the answers to all three
parts of Example 1.

52. Use a calculator to check your answers for Problems
21–26.

53. Use the following matrices.

A 5 3 4 B 5 3 4
C 5 3 4

a. Show that (AB)C 5 A(BC).

b. Show that A(B 1 C) 5 AB 1 AC.

c. Show that (B 1 C)A 5 BA 1 CA.

22
27

8
4

8
7

23
25

24
9

7
6
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Find the multiplicative inverse of A 5 3 4.

Solution

We are looking for a matrix A21 such that AA21 5 A21A 5 I. In other words, we
want to solve the following matrix equation

3 4 3 4 5 3 4
We need to multiply the two matrices on the left side of this equation and then set
the elements of the product matrix equal to the corresponding elements of the iden-
tity matrix. We obtain the following system of equations.

3x 1 5z 5 1 (1)
3y 1 5w 5 0 (2)1 2x 1 4z 5 02 (3)
2y 1 4w 5 1 (4)

Solving equations (1) and (3) simultaneously produces values for x and z as follows.

x 5 * * 5 }
1
3
(
(
4
4
)
)

2

2

5
5
(
(
0
2
)
)

} 5 }
4
2

} 5 2

z 5 * * 5 }
3
3
(
(
0
4
)
)

2

2

1
5
(
(
2
2
)
)

} 5 }
2

2
2
} 5 21

Likewise, solving equations (2) and (4) simultaneously produces values for y and w.

y 5 * * 5 }
0
3
(
(
4
4
)
)

2

2

5
5
(
(
1
2
)
)

} 5 }
2

2
5
} 5 2}

5
2

}

w 5 * * 5 }
3
3
(
(
1
4
)
)

2

2

0
5
(
(
2
2
)
)

} 5 }
3
2

}

Therefore,

0

1

5

4

3

2

3

2

5

4

5

4

0

1

3

2

1

0

5

4

3

2

3

2

5

4

5

4

1

0

3

2

0

1

1

0

y

w

x

z

5

4

3

2

5
4

3
2E X A M P L E  1
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7.2 Multiplicative Inverses 501

A21 5 3 4 5 3 4
To check this, we perform the following multiplication.

3 4 3 4 5 3 43 4 5 3 4 n

Now let’s use the approach in Example 1 on the general matrix

A 5 3 4
We want to find

A21 5 3 4
such that AA21 5 I. Therefore, we need to solve the matrix equation

3 4 3 4 5 3 4
for x, y, z, and w. Once again, we multiply the two matrices on the left side of the
equation and set the elements of this product matrix equal to the corresponding ele-
ments of the identity matrix. We then obtain the following system of equations.

a11x 1 a12z 5 1

a11y 1 a12w 5 01 a21x 1 a22z 5 02
a21y 1 a22w 5 1

Solving this system produces

x 5}
a11a22

a
2
22

a12a21
} y 5}

a11a2

2

2 2

a12

a12a21
}

z 5}
a11a2

2

2 2

a21

a12a21
} w 5}

a11a22

a
2
11

a12a21
}

Note that the number in each denominator, a11a22 2 a12a21, is the determinant of
the matrix A. Thus, if u A u Þ 0, then

0
1

1
0

y
w

x
z

a12

a22

a11

a21

y
w

x
z

a12

a22

a11

a21

0
1

1
0

5
4

3
2

2}
5
2

}

}
3
2

}

2

21

2}
5
2

}

}
3
2

}

2

21

5
4

3
2

2}
5
2

}

}
3
2

}

2

21

y
w

x
z
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Matrix multiplication will show that AA21 5 A21A 5 I. If u A u 5 0, then the matrix
A has no multiplicative inverse.

Find A21 if A 5 3 4.

Solution

First, let’s find u A u.

u A u 5 (3)(24) 2 (5)(22) 5 22

Therefore,

A21 5 }
2

1
2

}3 4 5 2}
1
2

}3 4 5 3 4
It is easy to check that AA21 5 A21A 5 I. n

Find A21 if A 5 3 4.

Solution

u A u 5 (8)(3) 2 (22)(212) 5 0

Therefore, A has no multiplicative inverse. n

More About Multiplication of Matrices

Thus far we have found the product only of 2 3 2 matrices. The row-by-column
multiplication pattern can be applied to many different kinds of matrices, which we
shall see in the next section. For now let’s find the product of a 2 3 2 matrix and a
2 3 1 matrix, with the 2 3 2 matrix on the left, as follows.

3 4 3 4 5 3 4
Note that the product matrix is a 2 3 1 matrix. The following example illustrates
this pattern.

3 4 3 4 5 3 4 5 3 411

223

(22)(5) 1 (3)(7)

(1)(5) 1 (24)(7)

5

7

3

24

22

1

a11b11 1 a12b21

a21b11 1 a22b21

b11

b21

a12

a22

a11

a21

22
3

8
212

}
5
2

}

2}
3
2

}

2

21

25
3

24
2

25
3

24
2

5
24

3
22

E X A M P L E  3

A21 5 }
u A
1

u
} 3 42a12

a11

a22

2a21

E X A M P L E  2
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Back to Solving Systems of Equations

The linear system of equations

a11x 1 a12y 5 d11a21x 1 a22y 5 d2
2

can be represented by the matrix equation

3 4 3 4 5 3 4
If we let

A 5 3 4 X 5 3 4 and B 5 3 4
then the previous matrix equation can be written AX 5 B.

If A21 exists, then we can multiply both sides of AX 5 B by A2 1 (on the left)
and simplify as follows.

AX 5 B

A21(AX ) 5 A21(B)

(A21A)X 5 A21B

IX 5 A21B

X 5 A21B

Therefore, the product A21B is the solution of the system.

Solve the system 1 2.

Solution

If we let

A 5 3 4 X 5 3 4 and B 5 3 4
then the given system can be represented by the matrix equation AX 5 B. From our
previous discussion, we know that the solution of this equation is X 5 A21B, so we
need to find A21 and the product A21B.

A21 5 }
u A
1

u
} 3 4 5 }

1
1

} 3 4 5 3 4
Therefore,

A21B 5 3 4 3 4 5 3 4
The solution set of the given system is { (22. 5)} . n

22

5

10

13

24

5

5

26

24

5

5

26

24

5

5

26

24

5

5

26

10
13

x
y

4
5

5
6

5x 1 4y 5 10
6x 1 5y 5 13

d1

d2

x

y

a12

a22

a11

a21

d1

d2

x

y

a12

a22

a11

a21

E X A M P L E  4
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Solve the system 1 2.

Solution

If we let

A 5 3 4 X 5 3 4 and B 5 3 4
then the system is represented by AX 5 B, where X 5 A21B and

A21 5 }
u A
1

u
} 3 4 5 }

2
1
9
} 3 4 5 3 4

Therefore,

A21B 5 3 4 3 4 5 3 4

The solution set of the given system is { (1, 23)} . n

This technique of using matrix inverses to solve systems of linear equations is
especially useful when there are many systems to be solved that have the same coef-
ficients but different constant terms.

1

23

9

217

}
2
2
9
}

}
2
3
9
}

}
2
7
9
}

2}
2
4
9
}

}
2
2
9
}

}
2
3
9
}

}
2
7
9
}

2}
2
4
9
}

2

3

7

24

2

3

7

24

9

217

x

y

22

7

3

4

3x 2 2y 5 9
4x 1 7y 5 217

P R O B L E M  S E T  7 . 2

For Problems 1–18, find the multiplicative inverse (if one
exists) of each matrix.

1. 3 4 2. 3 4
3. 3 4 4. 3 4
5. 3 4 6. 3 4
7. 3 4 8. 3 4

9. 3 4 10. 3 4
11. 3 4 12. 3 4
13. 3 4 14. 3 4
15. 3 4 16. 3 4
17. 3 4 18. 3 421

1
1
1

1
21

1
1

4
22

23
1

5
6

22
23

25
26

22
23

23
24

22
21

0
5

22
23

1
3

0
5

24
28

3
6

2
5

23
24

21
4

5
3

23
6

22
4

22
23

1
4

2
4

21
3

9
13

2
3

8
5

3
2

4
3

3
2

7
3

5
2

E X A M P L E  5
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7.2 Multiplicative Inverses 505

For Problems 19–26, compute AB.

19. A 5 3 4, B 5 3 4
20. A 5 3 4, B 5 3 4
21. A 5 3 4, B 5 3 4
22. A 5 3 4, B 5 3 4
23. A 5 3 4, B 5 3 4
24. A 5 3 4, B 5 3 4
25. A 5 3 4, B 5 3 4
26. A 5 3 4, B 5 3 4

For Problems 27–40, use the method of matrix inverses to
solve each system.

27. 1 2 28. 1 2
29. 1 2 30. 1 2
31. 1 2 32. 1 2
33. 1 2 34. 1 2
35. 1 2 36. 1 2
37. 1 2 38. 1 2

39. 1 2 40. 1 2}
3
2

}x 1 }
1
6

}y 5 11

}
2
3

}x 2 }
1
4

}y 5 1

}
1
3

}x 1 }
3
4

}y 5 218

}
2
3

}x 1 }
1
5

}y 5 22

12x 1 30y 5 23
12x 2 24y 5 213

3x 1 2y 5 0
30x 2 18y 5 219

4x 1 3y 5 31
x 5 5y 1 2

y 5 19 2 3x
9x 2 5y 5 1

5x 2 2y 5 6
7x 2 3y 5 8

3x 2 5y 5 2
4x 2 3y 5 21

x 1 9y 5 25
4x 2 7y 5 220

x 2 7y 5 7
6x 1 5y 5 25

6x 2 y 5 214
3x 1 2y 5 217

4x 2 3y 5 223
23x 1 2y 5 16

3x 1 2y 5 10
7x 1 5y 5 23

2x 1 3y 5 13
x 1 2y 5 8

23
210

25
27

23
4

5
22

23
26

22
25

23
26

23
9

0
2

21
24

2
25

24
7

3
25

2
23

5
21

4
23

24
1

23
2

5
8

22
1

5
3

3
6

3
5

4
2

THOUGHTS INTO WORDS

42. Use your calculator to find the multiplicative inverse (if
it exists) of each of the following matrices. Be sure to
check your answers by showing that A21A 5 I.

a. 3 4 b. 3 4
c. 3 4 d. 3 4
e. 3 4 f. 3 4

g. 3 4 h. 3 4
43. Use your calculator to find the multiplicative inverse of 

3 4. What difficulty did you encounter?
}
2
5

}

}
1
4

}

}
1
2

}

}
3
4

}

1.5
4.5

1.2
7.6

36
12

9
3

28
5

15
29

12
4

13
4

211
28

26
24

9
28

27
6

5
8

212
219

6
7

7
8

GRAPHING CALCULATOR ACTIVITIES

41. Describe how to solve the system 1 2
using each of the following techniques.

a. substitution method

b. elimination-by-addition method

c. reduced echelon form of the augmented matrix

d. determinants

e. the method of matrix inverses

x 2 2y 5 210
3x 1 5y 5 14
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44. Use your calculator and the method of matrix inverses to
solve each of the following systems. Be sure to check
your solutions.

a. 1 2 b. 1 2
d. 1 2 d. 1 2

e. 1 2 f. 1 2
g. 1 2 h. 1 2}

2
x

} 1 }
2
5
y
} 5 14

}
3
4
x
} 1 }

4
y

} 5 14
114x 1 129y 5 2832
127x 1 214y 5 4139

}
3
2
x
} 1 }

6
y

} 5 11

}
2
3
x
} 2 }

4
y

} 5 1

12x 2 7y 5 234.5
8x 1 9y 5 79.5

1.2x 1 1.5y 5 5.85
7.6x 1 4.5y 5 19.55

15x 2 8y 5 215
29x 1 5y 5 12

9x 2 8y 5 2150
210x 1 9y 5 168

5x 1 7y 5 82
7x 1 10y 5 116

506 Chapter 7 Algebra of Matrices

m 3 n MATRICES

Now let’s see how much of the algebra of 2 3 2 matrices extends to m 3 n matrices,
that is, to matrices of any dimension. In Section 7.4 we represented a general m 3 n
matrix by

A 5 3 4
We denote the element at the intersection of row i and column j by aij. It is also cus-
tomary to denote a matrix A with the abbreviated notation (aij).

Addition of matrices can be extended to matrices of any dimensions by the
following definition.

Definition 7.5 states that to add two matrices, we add the elements that appear in
corresponding positions in the matrices. For this to work, the matrices must be of the
same dimension. An example of the sum of two 3 3 2 matrices is

D E F I N I T I O N  7 . 5

Let A 5 (aij) and B 5 (bij ) be two matrices of the same dimension.
Then

A 1 B 5 (aij ) 1 (bij ) 5 (aij 1 bij)

a1n

a2n

.

.

.

amn

. . .

. . .

. . .

a13

a23

.

.

.

am3

a12

a22

.

.

.

am2

a11

a21

.

.

.

am1

7.3
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7.3 m 3 n Matrices 507

3 41 3 45 3 4
The commutative and associative properties hold for any matrices that can be
added. The m 3 n zero matrix, denoted by O, is the matrix that contains all zeros. It
is the identity element for addition. For example,

3 4 1 3 4 5 3 4
Every matrix A has an additive inverse, 2A, that can be found by changing the sign
of each element of A. For example, if

A 5 [2 23 0 4 27]

then

2A 5 [22 3 0 24 7]

Furthermore, A 1 (2A ) 5 O for all matrices.
The definition we gave earlier for subtraction, A 2 B 5 A 1 (2B), can be

extended to any two matrices of the same dimension. For example,

[24 3 25] 2 [7 24 21] 5 [24 3 25] 1 [27 4 1]

5 [211 7 24]

The scalar product of any real number k and any m 3 n matrix A 5 (aij) is defined
by

In other words, to find kA, we simply multiply each element of A by k. For example,

(24) 3 4 5 3 4
The properties k(A 1 B) 5 kA 1 kB, (k 1 l )A 5 kA 1 lA, and (kl)A 5 k( lA) hold
for all matrices. The matrices A and B must be of the same dimension to be added.

The row-by-column definition for multiplying two matrices can be extended,
but we must take care. In order for us to define the product AB of two matrices A and
B, the number of columns of A must equal the number of rows of B. Therefore,
suppose A 5 (aij) is m 3 n and B 5 (bij) is n 3 p. Then

4

212

220

32

24

8

216

0

21

3

5

28

1

22

4

0

kA 5 (kaij )

25
8

21
2

3
6

2
27

0
0

0
0

0
0

0
0

25
8

21
2

3
6

2
27

3

28

17

1

1

2

1

27

9

22

23

5

2

21

8

3

4

23
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AB 5 3 4 3 4 5 C

The product matrix C is of dimension m 3 p, and the general element, cij, is deter-
mined as follows.

A specific element of the product matrix, such as c23, is the result of multiplying the
elements in row 2 of matrix A times the elements in column 3 of matrix B and
adding the results. Therefore,

c23 5 a21b13 1 a22b23 1 . . . 1 a2nbn3

The following example illustrates the product of a 2 3 3 matrix and a 3 3 2
matrix.

A B A B C

m 3 n n 3 p

3 4 3 45 3 4

c11 5 (2)(21) 1 (23)(4) 1 (1)(6) 5 28

c12 5 (2)(25) 1 (23)(22) 1 (1)(1) 5 23

c21 5 (24)(21) 1 (0)(4) 1 (5)(6) 5 34

c22 5 (24)(25) 1 (0)(22) 1 (5)(1) 5 25

Recall that matrix multiplication is not commutative. In fact, it may be 
that AB is defined and BA is not defined. For example, if A is a 2 3 3 matrix and 
B is a 3 3 4 matrix, then the product AB is a 2 3 4 matrix, but the product BA is 
not defined because the number of columns of B does not equal the number of rows
of A.

Number of columns
of A must equal
the number or rows
of B

Dimension of
product is m 3 p

23
25

28
34

25

22

1

21

4

6

1
5

23
0

2
24

cij 5 ai1bij 1 ai2b2j 1 . . . 1 ainbnj

b1p

b2p

.

.

.

bnp

. . .

. . .

. . .

b1j

b2j

.

.

.

bnj

. . .

. . .

. . .

b11

b21

.

.

.

bn1

a1n

.

.

.

ain

.

.

.

amn

. . .

. . .

. . .

a12

.

.

.

ai2

.

.

.

am2

a11

.

.

.

ai1

.

.

.

am1
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The associative property for multiplication and the two distributive prop-
erties hold if the matrices have the proper number of rows and columns for the oper-
ations to be defined. In that case, we have (AB )C 5 A(BC ), A(B 1 C ) 5 AB 1 AC,
and (A 1 B )C 5 AC 1 BC.

Square Matrices

Now let’s extend some of the algebra of 2 3 2 matrices to all square matrices (where
the number of rows equals the number of columns). For example, the general multi-
plicative identity element for square matrices contains 1’s in the main diagonal from
the upper left-hand corner to the lower right-hand corner and 0s elsewhere. Therefore,
for 3 3 3 and 4 3 4 matrices, the multiplicative identity elements are as follows.

I3 5 3 4 I4 5 3 4
We saw in Section 7.2 that some, but not all, 2 3 2 matrices have multiplica-

tive inverses. In general, some, but not all, square matrices of a particular dimension
have multiplicative inverses. If an n 3 n square matrix A does have a multiplicative
inverse A21, then

AA21 5 A21A 5 In

The technique used in Section 7.2 for finding multiplicative inverses of 2 3 2
matrices does generalize, but it becomes quite complicated. Therefore, we shall now
describe another technique that works for all square matrices. Given an n 3 n matrix
A, we begin by forming the n 3 2n matrix

3 4
where the identity matrix In appears to the right of A. Now we apply a succession of
elementary row transformations to this double matrix until we obtain a matrix of the
form

3 4
b1n

b2n

.

.

.

bnn

. . .

. . .

. . .

b12

b22

.

.

.

bn2

b11

b21

.

.

.

bn1

0

0

.

.

.

1

. . .

. . .

. . .

0

0

.

.

.

0

0

1

.

.

.

0

1

0

.

.

.

0

0

0

.

.

.

1

. . .

. . .

. . .

0

0

.

.

.

0

0

1

.

.

.

0

1

0

.

.

.

0

a1n

a2n

.

.

.

ann

. . .

. . .

. . .

a12

a22

.

.

.

an2

a11

a21

.

.

.

an1

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

0

0

1

0

1

0

1

0

0
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The B matrix in this matrix is the desired inverse A21. If A does not have an inverse,
then it is impossible to change the original matrix to this final form.

Find A21 if A 5 3 4.

Solution

First, form the matrix

3 4
Now multiply row 1 by }

1
2

}.

3 4
Next, add 23 times row 1 to row 2 to form a new row 2.

3 4
Then multiply row 2 by 21.

3 4
Finally, add 22 times row 2 to row 1 to form a new row 1.

3 4
The matrix inside the box is A21; that is,

A21 5 3 4
This can be checked, as always, by showing that AA21 5 A21A 5 I2. n

2

21

2}
5
2

}

}
3
2

}

2

21

2}
5
2

}

}
3
2

}

0

1

1

0

0

21

}
1
2

}

}
3
2

}

2

1

1

0

0

1

}
1
2

}

2}
3
2

}

2

21

1

0

0

1

}
1
2

}

0

2

5

1

3

0
1

1
0

4
5

2
3

4
5

2
3E X A M P L E  1
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Find A21 if A 5 3 4.

Solution

Form the matrix 3 4.

Add 22 times row 1 to row 2, and add 3 times row 1 to row 3.

3 4
Add 21 times row 2 to row 1, and add 24 times row 2 to row 3.

3 4
Multiply row 3 by }

2
1
4
}.

3 4
Add 27 times row 3 to row 1, and add 5 times row 3 to row 2.

3 4
Therefore,

A21 53 4 Be sure to check this! n

2}
2
7
4
}

}
2
5
4
}

}
2
1
4
}

}
1
6

}

}
1
6

}

2}
1
6

}

2}
2
5
4
}

}
2
7
4
}

}
1
2
1
4
}

2}
2
7
4
}

}
2
5
4
}

}
2
1
4
}

}
1
6

}

}
1
6

}

2}
1
6

}

2}
2
5
4
}

}
2
7
4
}

}
1
2
1
4
}

0

0

1

0

1

0

1

0

0

0

0

}
2
1
4
}

21

1

2}
1
6

}

3

22

}
1
2
1
4
}

7

25

1

0

1

0

1

0

0

0

0

1

21

1

24

3

22

11

7

25

24

0

1

0

1

0

0

0

0

1

0

1

0

1

22

3

2

25

4

1

1

4

1

0

0

0

0

1

0

1

0

1

0

0

2

21

22

1

3

1

1

2

23

2
21
22

1
3
1

1
2

23
E X A M P L E  2
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Systems of Equations

In Section 7.2 we used the concept of the multiplicative inverse to solve systems of
two linear equations in two variables. This same technique can be applied to general
systems of n linear equations in n variables. Let’s consider one such example
involving three equations in three variables.

Solve the system

1 2
Solution

If we let

A 5 3 4 X 5 3 4 and B 5 3 4
then the given system can be represented by the matrix equation AX 5 B. Therefore,
we know that X 5 A21B, so we need to find A21 and the product A21B. The matrix
A21 was found in Example 2, so let’s use that result and find A21B.

X 5 A21B 5 3 4 3 45 3 4
The solution set of the given system is { (1, 21, 24)} . n

1

21

24

28

3

4

2}
2
7
4
}

}
2
5
4
}

}
2
1
4
}

}
1
6

}

}
1
6

}

2}
1
6

}

2}
2
5
4
}

}
2
7
4
}

}
1
2
1
4
}

28

3

4

x

y

z

2

21

22

1

3

1

1

2

23

x 1 y 1 2z 5 28

2x 1 3y 2 z 5 3

23x 1 y 2 2z 5 4

For Problems 1–8, find A 1 B, A 2 B, 2A 1 3B, and 
4A 2 2B.

1. A 5 3 4, B 5 3 4

2. A 5 3 4, B 5 3 4
3. A 5 [2 21 4 12],

B 5 [23 26 9 25]

4. A 5 3 4, B 5 3 4
5. A 5 3 4, B 5 3 4
6. A 5 3 4, B 5 3 4324

7

12
22
26

24
9
2

7
25
21

23
4

12

21
22

0

5
10
7

1
27

9

22
4
5

3
21

0

26
12
9

3
29

7

0
27

9

1
5

26

26
21

5

3
2

24

27
2

4
26

21
5

4
5

21
0

2
22

P R O B L E M  S E T  7 . 3

E X A M P L E  3
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7. A 5 3 4, B 5 3 4
8. A 5 3 4, B 5 3 4

For Problems 9–20, find AB and BA, whenever they exist.

9. A 5 3 4, B 5 3 4

10. A 5 3 4, B 5 3 4
11. A 5 3 4, B 5 3 4
12. A 5 3 4, B 5 3 4

13. A 5 3 4, B 5 3 4
14. A 5 3 4, B 5 3 4
15. A 5 [2 21 3 4], B 5 3 4
16. A 5 3 4, B 5 [3 24 25]

17. A 5 3 4, B 5 3 4
18. A 5 3 4, B 5 3 4

19. A 5 3 4, B 5 [3 24]

20. A 5 [3 27], B 5 3 4
For Problems 21–36, use the technique discussed in this sec-
tion to find the multiplicative inverse (if it exists) of each
matrix.

21. 3 4 22. 3 4
23. 3 4 24. 3 4
25. 3 4 26. 3 4

27. 3 4 28. 3 4
29. 3 4 30. 3 4
31. 3 4 32. 3 4
33. 3 4 34. 3 4
35. 3 4 36. 3 4
For Problems 37–46, use the method of matrix inverses to
solve each system. The required multiplicative inverses were
found in Problems 21–36.

37. 1 2 38. 1 2
39. 1 2 40. 1 2

41. 1 2x 1 2y 1 3z 5 22
x 1 3y 1 4z 5 23
x 1 4y 1 3z 5 26

23x 1 y 5 218
3x 2 2y 5 15

22x 1 y 5 1
3x 2 4y 5 214

3x 1 7y 5 238
2x 1 5y 5 227

2x 1 y 5 24
7x 1 4y 5 213

5
2
1

23
1
0

1
0
0

0
0

10

0
4
0

2
0
0

3
22

1

22
3
6

1
21
22

3
3

21

2
24

4

1
23

2

3
0
4

2
21

1

22
1
0

24
22

2

3
21
24

2
3
1

22
1
3

4
211

7

1
23

2

1
3
7

22
5

25

1
22

3

22
21

5

3
4

27

1
1

22

3
4
3

2
3
4

1
1
1

1
22

23
3

1
24

22
3

7
5

3
2

1
4

2
7

2
23

1
2

3
2

1
4

8
29

3
24

2

1
4
0

22

22
1
2

21

3
23

5
24

24
2

2
21

22
0

3
1

22
0
4

3
1

21

2
27

22
3

25

21
23

2
24

1
0
1

21
1

23

21
0
2

1
1
3

0
1
2

1
0

21

21
2

21

3
0
1

2
4

25

2
22

4

21
1
1

1
0
3

22
21

3
24

24
2

21
2

3
25

4
5
0

21
3

22

1
22

4

2
0

26

23
7

21
24

2
0

21
3

26

1
22
25

21
5

3
24

22
7

6
22

22
4

5
21

21
24

3

2
0

25

27
5

21

1
4

22

2
26

3

22
6

29

21
24

4

0
3
5

2
7

25
22

1
23

6
9

0
3

24
11

21
2

25
27
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42. 1 2
43. 1 2
44. 1 2
45. 1 2
46. 1 2

47. We can generate five systems of linear equations from
the system

1 2
by letting a, b, and c assume five different sets of values.
Solve the system for each set of values. The inverse of
the coefficient matrix of these systems is given in Exam-
ple 2 of this section.

a. a 5 7, b 5 1, and c 5 21

b. a 5 27, b 5 5, and c 5 1

c. a 5 29, b 5 28, and c 5 19

d. a 5 21, b 5 213, and c 5 217

e. a 5 22, b 5 0, and c 5 22

x 1 y 1 2z 5 a
2x 1 3y 2 z 5 b

23x 1 y 22z 5 c

x 2 2y 1 3z 5 239
2x1 3y 2 2z 5 40

22x 1 6y 1 z 5 45

x 1 2y 1 3z 5 2
23x 2 4y 1 3z 5 0

2x 1 4y 2 z 5 4

x 1 4y 2 2z 5 2
23x 2 11y 1 z 5 22

2x 1 7y 1 3z 5 22

x 2 2y 1 z 5 23
22x 1 5y 1 3z 5 34

3x 2 5y 1 7z 5 14

x 1 3y 2 2z 5 5
x 1 4y 2 z 5 3

22x 2 7y 1 5z 5 212

514 Chapter 7 Algebra of Matrices

48. How would you describe row-by-column multiplication
of matrices?

49. Give a step-by-step explanation of how to find the

multiplicative inverse of the matrix 3 4 by using

the technique of Section 7.3.

50. Explain how to find the multiplicative inverse of the
matrix in Problem 49 by using the technique discussed in
Section 7.2.

3
4

1
22

THOUGHTS INTO WORDS

51. Matrices can be used to code and decode messages. For
example, suppose that we set up a one-to-one correspon-
dence between the letters of the alphabet and the first 26
counting numbers, as follows.

. . . 

Now suppose that we want to code the message PLAY
IT BY EAR. We can partition the letters of the message
into groups of two. Because the last group will contain
only one letter, let’s arbitrarily stick in a Z to form a
group of two. Let’s also assign a number to each letter on
the basis of the letter/number association we exhibited.

Each pair of numbers can be recorded as columns in a
2 3 6 matrix B.

B 5 3 4
Now let’s choose a 2 3 2 matrix such that the matrix
contains only integers and its inverse also contains only

integers. For example, we can use A 5 3 4; then

A21 5 3 4.21
3

2
25

1
2

3
5

18
26

5
1

2
25

9
20

1
25

16
12

Z

26

R

18

A

1

E

5

Y

25

B

2

T

20

I

9

Y

25

A

1

L

12

P

16

Z

26

C

3

B

2

A

1

Further Investigations
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GRAPHING CALCULATOR ACTIVITIES

Next, let’s find the product AB.

AB 5 3 4 3 4
5 3 4

Now we have our coded message:

60 104 28 55 47 85 31 60 16 27 80 142

A person decoding the message would put the numbers
back into a 2 3 6 matrix, multiply it on the left by A21,
and convert the numbers back to letters.

Each of the following coded messages was

formed by using the matrix A 5 3 4. Decode each

of the messages.

a. 68 40 77 51 78 49 23 15 29 19 85
52 41 27

b. 62 40 78 47 64 36 19 11 93 57 93
56 88 57

c. 64 36 58 37 63 36 21 13 75 47 63
36 38 23 118 72

d. 61 38 115 69 93 57 36 20 78 49 68
40 77 51 60 37 47 26 84 51 21 11

52. Suppose that the ordered pair (x, y) of a rectangular
coordinate system is recorded as a 2 3 1 matrix and then

multiplied on the left by the matrix 3 4. We would

obtain

3 4 3 4 5 3 4
The point (x, 2y ) is an x-axis reflection of the point (x, y).

Therefore, the matrix 3 4 performs an x-axis reflection.

What type of geometric transformation is performed by each
of the following matrices?

a. 3 4 b. 3 4
c. 3 4
d. 3 4

[Hint: Check the slopes of lines
through the origin.]

1
0

0
21

21
0

0
1

0
21

21
0

0
1

21
0

0
21

1
0

x
2y

x
y

0
21

1
0

0
21

1
0

3
2

2
1

80
142

16
27

31
60

47
85

28
55

60
104

18
26

5
1

2
25

9
20

1
25

16
12

1
2

3
5

53. Use your calculator to check your answers for Problems
14, 18, 28, 30, 32, 34, 36, 42, 44, 46, and 47.

54. Use your calculator and the method of matrix inverses to
solve each of the following systems. Be sure to check
your solutions.

a. 1 2
b. 1 2
c. 1 2

d. 1 2
e. 1 2

2x1 2 x2 1 3x3 2 4x4 1 12x5 5 98

x1 1 2x2 2 x3 2 7x4 1 5x5 5 41

3x1 1 4x2 2 7x3 1 6x4 2 9x5 5 241

4x1 2 3x2 1 x3 2 x4 1 x5 5 4

7x1 1 8x2 2 4x3 2 6x4 2 6x5 5 12

x1 1 2x2 2 4x3 1 7x4 5 223

2x1 2 3x2 1 5x3 2 x4 5 222

5x1 1 4x2 2 2x3 2 8x4 5 59

3x1 2 7x2 1 8x3 1 9x4 5 2103

1.98x 1 2.49y 1 3.15z 5 45.72

2.29x 1 1.95y 1 2.75z 5 42.05

3.15x 1 3.20y 1 1.85z 5 42

17x 1 15y 2 19z 5 10

18x 2 14y 1 16z 5 94

13x 1 19y 2 14z 5 223

2x 2 3y 1 4z 5 54

3x 1 y 2 z 5 32

5x 2 4y 1 3z 5 58
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SYSTEMS INVOLVING LINEAR INEQUALITIES;

LINEAR PROGRAMMING

Finding solution sets for systems of linear inequalities relies heavily on the graph-
ing approach. (Recall that we discussed graphing of linear inequalities in Section
2.3.) The solution set of the system

1 2
is the intersection of the solution sets of the individual inequalities. In Figure 7.1(a)
we indicate the solution set for x 1 y . 2, and in Figure 7.1(b) we indicate the solu-
tion set for x 2 y , 2. The shaded region in Figure 7.1(c) represents the intersection
of the two solution sets; therefore, it is the graph of the system. Remember that
dashed lines are used to indicate that the points on the lines are not included in the
solution set. In the following examples, we indicate only the final solution set for the
system.

F I G U R E  7 . 1

Solve the following system by graphing.

1 2
Solution

The graph of 2x 2 y $ 4 consists of all points on or below the line 2x 2 y 5 4. The
graph of x 1 2y , 2 consists of all points below the line x 1 2y 5 2. The graph of
the system is indicated by the shaded region in Figure 7.2. Note that all points in the
shaded region are on or below the line 2x 2 y 5 4 and below the line x 1 2y 5 2.

2x 2 y $ 4
x 1 2y , 2

y

x

(a) (b)

x − y = 2 x + y = 2

y

x

(c)

y

x

x 1 y . 2
x 2 y , 2

516 Chapter 7 Algebra of Matrices

E X A M P L E  1

7.4
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F I G U R E  7 . 2 n

Solve the following system by graphing.

1 2
Solution

Remember that even though each inequality contains only one variable, we are
working in a rectangular coordinate system involving ordered pairs. That is, the sys-
tem could also be written

1 2

F I G U R E  7 . 3

The graph of this system is the shaded region in Figure 7.3. Note that all points in
the shaded region are on or to the left of the line x 5 2 and on or above the line 
y 5 21. n

x

y

 y = −1

x = 2

x 1 0(y) # 2

0(x ) 1 y $ 21

x # 2

y $ 21

y

x

2x − y = 4

x + 2y = 2

E X A M P L E  2

    Algebra of Matrices 437



518 Chapter 7 Algebra of Matrices

A system may contain more than two inequalities, as the next example 
illustrates.

Solve the following system by graphing.

1 2
Solution

The solution set for the system is the intersection of the solution sets of the four
inequalities. The shaded region in Figure 7.4 indicates the solution set for the sys-
tem. Note that all points in the shaded region are on or to the right of the y axis, on
or above the x axis, on or below the line 2x 1 3y 5 12, and on or below the line
3x 1 y 5 6.

F I G U R E  7 . 4 n

Linear Programming: Another Look at Problem
Solving

Throughout this text, problem solving is a unifying theme. Therefore, it seems
appropriate at this time to give you a brief glimpse of an area of mathematics that
was developed in the 1940s specifically as a problem-solving tool. Many applied
problems involve the idea of maximizing or minimizing a certain function that is
subject to various constraints; these can be expressed as linear inequalities. Linear
programming was developed as one method for solving such problems.

REMARK The term programming refers to the distribution of limited
resources in order to maximize or minimize a certain function, such as cost,

x

y

2x + 3y = 12

3x + y = 6

x $ 0

y $ 0

2x 1 3y # 12

3x 1 y # 6

E X A M P L E  3
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7.4 Systems Involving Linear Inequalities; Linear Programming 519

profit, distance, and so on. Thus it does not mean the same thing it means in
computer programming. The constraints that govern the distribution of
resources determine the linear inequalities and equations; thus the term linear
programming is used.

Before we introduce a linear programming type of problem, we need to extend
one mathematical concept a bit. A linear function in two variables x and y is a
function of the form f (x, y ) 5 ax 1 by 1 c, where a, b, and c are real numbers. In
other words, with each ordered pair (x, y ) we associate a third number by the rule
ax 1 by 1 c. For example, suppose the function f is described by f (x, y ) 5 4x 1
3y 1 5. Then f (2, 1) 5 4(2) 1 3(1) 1 5 5 16.

First, let’s take a look at some mathematical ideas that form the basis for solv-
ing a linear programming problem. Consider the shaded region in Figure 7.5 and the
following linear functions in two variables.

f (x, y ) 5 4x 1 3y 1 5

f (x, y ) 5 2x 1 7y 2 1

f (x, y ) 5 x 2 2y

F I G U R E  7 . 5

Suppose that we need to find the maximum value and the minimum value achieved
by each of the functions in the indicated region. The following chart summarizes the
values for the ordered pairs indicated in Figure 7.5. Note that for each function, the
maximum and minimum values are obtained at vertices of the region.

We claim that for linear functions, maximum and minimum functional values
are always obtained at vertices of the region. To substantiate this, let’s consider the
family of lines x 2 2y 5 k, where k is an arbitrary constant. (We are now working
only with the function f (x, y ) 5 x 2 2y ). In slope–intercept form, x 2 2y 5 k

becomes y 5 }
1
2

}x 2 }
1
2

}k; so we have a family of parallel lines each having a slope of

}
1
2

}. In Figure 7.6 we sketched some of these lines, so that each line has at least one

point in common with the given region. Note that x 2 2y reaches a minimum value
of 210 at the vertex (6, 8) and a maximum value of 5 at the vertex (9, 2).

x

y

(2, 1)

(1, 3)

(6, 8)

(8, 4)

(9, 2)
(3, 2)

(4, 4)
(6, 5)

(5, 6)

(7, 3)
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In general, suppose that f is a linear function in two variables x and y and
that S is a region of the xy plane. If f attains a maximum (minimum) value in S,
then that maximum (minimum) value is obtained at a vertex of S.

REMARK A subset of the xy plane is said to be bounded if there is a circle
that contains all of its points; otherwise the subset is said to be unbounded. A
bounded set will contain maximum and minimum values for a function, but an
unbounded set may not contain such values.

Now we will consider two examples that illustrate a general graphing
approach to solving a linear programming problem in two variables. The first exam-
ple gives us the general makeup of such a problem; the second example will illus-
trate the type of setting from which the function and inequalities evolve.

x
(2, 1) (9, 2)

(6, 8)

(1, 3)

k = −10
k = −6
k = −2
k = 0
k = 3
k = 5

y

520 Chapter 7 Algebra of Matrices

ORDERED VALUE OF VALUE OF VALUE OF
PAIRS f (x, y) 5 4x 1 3y 1 5 f (x, y) 5 2x 1 7y 2 1 f (x, y) 5 x 2 2y 

Vertex (2, 1) 16 (minimum) 10 (minimum) 0

(3, 2) 23 19 21

Vertex (9, 2) 47 31 5 (maximum)

Vertex (1, 3) 18 22 25

(7, 3) 42 34 1

(4, 4) 33 35 24

(8, 4) 49 43 0

(6, 5) 44 46 24

(5, 6) 43 51 27

Vertex (6, 8) 53 (maximum) 67 (maximum) 210 (minimum)
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Find the maximum value and the minimum value of the function f (x, y ) 5 9x 1 13y
in the region determined by the following system of inequalities.

1 2
Solution

First, let’s graph the inequalities to determine the region, as indicated in Figure 7.7.
(Such a region is called the set of feasible solutions, and the inequalities are
referred to as constraints.) The point (3, 4) is determined by solving the system

1 2

F I G U R E  7 . 7

Next we can determine the values of the given function at the vertices of the region.
(Such a function to be maximized or minimized is called the objective function.)

A minimum value of 0 is obtained at (0, 0), and a maximum value of 79 is obtained
at (3, 4). n

x

y

(3, 4)

(0, 6)

2x + y = 10

2x + 3y = 18

(0, 0) (5, 0)

2x 1 3y 5 18

2x 1 y 5 10

x $ 0

y $ 0

2x 1 3y # 18

2x 1 y # 10

VERTICES VALUE OF f (x, y) 5 9x 1 13y

(0, 0) 0 (minimum)

(5, 0) 45

(3, 0) 79 (maximum)

(0, 6) 18

E X A M P L E  4
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A company that manufactures gidgets and gadgets has the following production
information available.

1. To produce a gidget requires 3 hours of working time on machine A and 1
hour on machine B.

2. To produce a gadget requires 2 hours on machine A and 1 hour on machine
B.

3. Machine A is available for no more than 120 hours per week, and machine
B is available for no more than 50 hours per week.

4. Gidgets can be sold at a profit of $3.75 each, and a profit of $3 can be real-
ized on a gadget.

How many gidgets and how many gadgets should the company produce each week
to maximize its profit? What would the maximum profit be?

Solution

Let x be the number of gidgets and y be the number of gadgets. Thus the profit func-
tion is P(x, y ) 5 3.75x 1 3y. The constraints for the problem can be represented by
the following inequalities.

3x 1 2y # 120 Machine A is available for no more than 120 hours.

x 1 y # 50 Machine B is available for no more than 50 hours.

x $ 0 The number of gidgets and gadgets must be

y $ 0 represented by a nonnegative number.

When we graph these inequalities, we obtain the set of feasible solutions indicated
by the shaded region in Figure 7.8. Next we find the value of the profit function at
the vertices; this produces the chart that follows.

F I G U R E  7 . 8

y

(0, 60)

(0, 0)

(50, 0)

(0, 50)

(20, 30)

(40, 0)

This point is found by
solving the system

x

3x + 2y = 120
    x + y = 50( (

P R O B L E M  1
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Thus a maximum profit of $165 is realized by producing 20 gidgets and 30 gadgets.
n

VERTICES VALUE OF P(x, y) 5 3.75x 1 3y

(0, 0) 0

(40, 0) 150

(20, 30) 165 (maximum)

(0, 50) 150

For Problems 1–24, indicate the solution set for each system
of inequalities by graphing the system and shading the appro-
priate region.

1. 1 2 2. 1 2
3. 1 2 4. 1 2
5. 1 2 6. 1 2
7. 1 2 8. 1 2
9. 1 2 10. 1 2

11. 1 2 12. 1 2
13. 1 2 14. 1 2
15. 1 2 16. 1 2
17. 1 2 18. 1 2
19. 1 2 20. 1 2

21. 1 2 22. 1 2
23. 1 2 24. 1 2
For Problems 25–28 (Figures 7.9 through 7.12), find the max-
imum value and the minimum value of the given function in
the indicated region.

25. f (x, y) 5 3x 1 5y

F I G U R E  7 . 9

x

y

(2, 4)

(4, 8)

(1, 1)

(5, 2)

x $ 0
y $ 0

3x 1 5y $ 15
5x 1 3y $ 15

x $ 0
y $ 0

2x 1 y # 4
2x 2 3y # 6

x $ 0
y $ 0

x 2 y # 5
4x 1 7y # 28

x $ 0
y $ 0

x 1 y # 4
2x 1 y # 6

x 1 2y . 4
x 1 2y , 2

y . 22
x . 1

x # 3
y # 21

y , x
y . x 1 3

y , x
y # 2

y $ x
x . 21

x 1 y . 1
x 1 y . 3

x 2 y . 2
x 2 y . 21

y # x 1 2
y $ x

y . x 2 4
y , x

x 2 3y , 23
2x 2 3y . 26

x 1 2y . 22
x 2 y , 23

3x 2 y , 3
x 1 y $ 1

2x 2 y $ 4
x 1 3y , 3

4x 1 3y $ 12
3x 2 4y $ 12

2x 1 3y # 6
3x 2 2y # 6

3x 2 y . 6
2x 1 y # 4

x 2 2y # 4
x 1 2y . 4

x 2 y , 2
x 1 y , 1

x 1 y . 3
x 2 y . 1

P R O B L E M  S E T  7 . 4
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26. f (x, y) 5 8x 1 3y

F I G U R E  7 . 1 0

27. f (x, y) 5 x 1 4y

F I G U R E  7 . 1 1

28. f (x, y) 5 2.5x 1 3.5y

F I G U R E  7 . 1 2

29. Maximze the function f (x, y) 5 3x 1 7y in the region
determined by the following constraints.

3x 1 2y # 18

3x 1 4y $ 12

x $ 0

y $ 0

30. Maximize the function f (x, y ) 5 1.5x 1 2y in the region
determined by the following constraints.

3x 1 2y # 36

3x 1 10y # 60

x $ 0

y $ 0

31. Maximize the function f (x, y) 5 40x 1 55y in the region
determined by the following constraints.

2x 1 y # 10

x 1 y # 7

2x 1 3y # 18

x $ 0

y $ 0

x

y

(8, 6)

(4, 10)

(7, 4)

(5, 12)

(3, 2)

y

(0, 0)

(5, 4)

(0, 7)

(6, 2)

x

x

y
(2, 10)

(8, 3)

(7, 5)

(1, 2)
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32. Maximize the function f (x, y) 5 0.08x 1 0.09y in the
region determined by the following constraints.

x 1 y # 8000

y # }
1
3

}x

y $ 500

x # 7000

x $ 0

33. Minimize the function f (x, y) 5 0.2x 1 0.5y in the
region determined by the following constraints.

2x 1 y $ 12

2x 1 5y $ 20

x $ 0

y $ 0

34. Minimize the function f (x, y ) 5 3x 1 7y in the region
determined by the following constraints.

x 1 y $ 9

6x 1 11y $ 84

x $ 0

y $ 0

35. Maximize the function f (x, y) 5 9x 1 2y in the region
determined by the following constraints.

5y 2 4x # 20

4x 1 5y # 60

x $ 0

x # 10

y $ 0

36. Maximize the function f (x, y) 5 3x 1 4y in the region
determined by the following constraints.

2y 2 x # 6

x 1 y # 12

x $ 2

x # 8

y $ 0

For Problems 37–42, solve each linear programming problem
by using the graphing method illustrated in Problem 1 on
page 522.

37. Suppose that an investor wants to invest up to $10,000.
She plans to buy one speculative type of stock and one
conservative type. The speculative stock is paying a 12%
return, and the conservative stock is paying a 9% return.
She has decided to invest at least $2000 in the conserva-
tive stock and no more than $6000 in the speculative
stock. Furthermore, she does not want the speculative
investment to exceed the conservative one. How much
should she invest at each rate to maximize her return?

38. A manufacturer of golf clubs makes a profit of $50 per
set on a model A set and $45 per set on a model B set.
Daily production of the model A clubs is between 30 and
50 sets, inclusive, and that of the model B clubs is
between 10 and 20 sets, inclusive. The total daily pro-
duction is not to exceed 50 sets. How many sets of each
model should be manufactured per day to maximize the
profit?

39. A company makes two types of calculators. Type A sells
for $12, and type B sells for $10. It costs the company $9
to produce one type A calculator and $8 to produce one
type B calculator. In one month, the company is
equipped to produce between 200 and 300, inclusive, of
the type A calculator and between 100 and 250, inclu-
sive, of the type B calculator, but not more than 300 alto-
gether. How many calculators of each type should be
produced per month to maximize the difference between
the total selling price and the total cost of production?

40. A manufacturer of small copiers makes a profit of $200
on a deluxe model and $250 on a standard model. The
company wants to produce at least 50 deluxe models per
week and at least 75 standard models per week. How-
ever, the weekly production is not to exceed 150 copiers.
How many copiers of each kind should be produced in
order to maximize the profit?

41. Products A and B are produced by a company according
to the following production information.

a. To produce one unit of product A requires 1 hour of
working time on machine I, 2 hours on machine II,
and 1 hour on machine III.

b. To produce one unit of product B requires 1 hour of
working time on machine I, one hour on machine II,
and 3 hours on machine III.

c. Machine I is available for no more than 40 hours per
week, machine II is available for no more than 40
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hours per week, and machine III for no more than 60
hours per week.

d. Product A can be sold at a profit of $2.75 per unit and
product B at a profit of $3.50 per unit.

How many units each of product A and product B should
be produced per week to maximize profit?

42. Suppose that the company we refer to in Problem 1 also
manufactures widgets and wadgets and has the following
production information available.

a. To produce a widget requires 4 hours of working time
on machine A and 2 hours on machine B.

b. To produce a wadget requires 5 hours of working
time on machine A and 5 hours on machine B.

c. Machine A is available for no more than 200 hours
per month, and machine B is available for no more
than 150 hours per month.

d. Widgets can be sold at a profit of $7 each and wad-
gets at a profit of $8 each.

How many widgets and how many wadgets should be
produced per month in order to maximize profit?

43. Describe in your own words the process of solving a sys-
tem of inequalities.

44. What is linear programming? Write a paragraph or two
answering this question in a way that elementary algebra
students could understand.

THOUGHTS INTO WORDS

Be sure that you understand the following ideas pertaining to the algebra of matrices.

1. Matrices of the same dimension are added by adding elements in corre-
sponding positions.

2. Matrix addition is a commutative and an associative operation.

3. Matrices of any specific dimension have an additive identity element,
which is the matrix of that same dimension containing all zeros.

4. Every matrix A has an additive inverse, 2A, which can be found by
changing the sign of each element of A.

5. Matrices of the same dimension can be subtracted by the definition A 2
B 5 A 1 (2B ).

6. The scalar product of a real number k and a matrix A can be found by mul-
tiplying each element of A by k.

7. The following properties hold for scalar multiplication and matrix addi-
tion.

k(A 1 B ) 5 kA 1 kB

(k 1 l)A 5 kA 1 lA

(kl)A 5 k( lA )

C H A P T E R  7 S U M M A R Y
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Chapter 7 Summary 527

8. If A is an m 3 n matrix and B is an n 3 p matrix, then the product AB is
an m 3 p matrix. The general term, cij, of the product matrix C 5 AB
is determined by the equation

cij 5 ai1b1j 1 ai2b2j 1 . . . 1ainbnj

9. Matrix multiplication is not a commutative operation, but it is an associa-
tive operation.

10. Matrix multiplication has two distributive properties:

A(B 1 C ) 5 AB 1 AC and (A 1 B )C 5 AC 1 BC

11. The general multiplicative identity element, In, for square n 3 n matrices
contains only 1s in the main diagonal and 0s elsewhere. For example,

I2 5 3 4 and I3 5 3 4
12. If a square matrix A has a multiplicative inverse A21, then 

AA21 5 A21A 5 In.

13. The multiplicative inverse of the 2 3 2 matrix

A 5 3 4
is

A21 2 }
u A
1

u
} 3 4

for u A u Þ 0. If u A u 5 0, then the matrix A has no inverse.

14. A general technique for finding the inverse of a square matrix, when it
exists, is described on page 510.

15. The solution set of a system of n linear equations in n variables can be
found by multiplying the inverse of the coefficient matrix times the col-
umn matrix consisting of the constant terms. For example, the solution
set of the system

1 2
can be found by the product

3 4
21

3 4
4

5

21

21

2

24

3

21

27

2

3

5

2x 1 3y 2 z 5 4

3x 2 y 1 2z 5 5

5x 2 7y 2 4z 5 21

2a12

a11

a22

2a21

a12

a22

a11

a21

0

0

1

0

1

0

1

0

0

0
1

1
0
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The solution set of a system of linear inequalities is the intersection of the solution
sets of the individual inequalities. Such solution sets are easily determined by the
graphing approach.

Linear programming problems deal with the idea of maximizing or minimizing a
certain linear function that is subject to various constraints. The constraints are
expressed as linear inequalities. Example 4 and Problem 1 (page 522) of Section
7.4 are a good summary of the general approach to linear programming problems in
this chapter.

C H A P T E R 7  R E V I E W P R O B L E M  S E T

For Problems 1–10, compute the indicated matrix, if it exists,
using the following matrices.

A 5 3 4 B 5 3 4

C 5 3 4 D 5 3 4,

E 5 3 4 F 5 3 4
1. A 1 B 2. B 2 A 3. C 2 F

4. 2A 1 3B 5. 3C 2 2F 6. CD

7. DC 8. DC 1 AB 9. DE

10. EF

11. Use A and B from the preceding problems and show that
AB Þ BA.

12. Use C, D, and F from the preceding problems and show
that D(C 1 F ) 5 DC 1 DF.

13. Use C, D, and F from the preceding problems and show
that (C 1 F)D 5 CD 1 FD.

For each matrix in Problems 14–23, find the multiplicative
inverse, if it exists.

14. 3 4 15. 3 4

16. 3 4 17. 3 4
18. 3 4 19. 3 4

20. 3 4 21. 3 4
22. 3 4 23. 3 4

For Problems 24–28, use the multiplicative inverse matrix
approach to solve each system. The required inverses were
found in Problems 14–23.

24. 1 2 25. 1 2

26. 1 2
27. 1 2
28. 1 22x 1 2y 1 3z 5 22

2x 2 5y 2 7z 5 251
23x 1 5y 1 11z 5 71

x 1 3y 2 2z 5 27
4x 1 13y 2 7z 5 221
5x 1 16y 2 8z 5 223

x 2 2y 1 z 5 7
2x 2 5y 1 2z 5 17

23x 1 7y 1 5z 5 232

22x 1 y 5 29
2x 1 3y 5 5

9x 1 5y 5 12
7x 1 4y 5 10

3
27
11

2
25

5

21
2

23

7
5

22

4
23
25

22
1
1

22
27
28

3
13
16

1
4
5

1
2
5

22
25

7

1
2

23

23
6

0
7

23
25

21
24

26
23

4
2

1
3

22
2

4
3

9
7

5
4

9
7

22
24
28

1
4
7

1
23
27

4
23

21
0

22
5

21
4

26

3
22

5

21
2

5
0

24
8

2
23
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Chapter 7 Review Problem Set 529

For Problems 29–32, indicate the solution set for each system
of linear inequalities by graphing the system and shading the
appropriate region.

29. 1 2 30. 1 2

31. 1 2 32. 1 2
33. Maximize the function f (x, y) 5 8x 1 5y in the region

determined by the following constraints.

y # 4x

x 1 y # 5

x $ 0

y $ 0

x # 4

34. Maximize the function f (x, y) 5 2x 1 7y in the region
determined by the following constraints.

x $ 0

y $ 0

x 1 2y # 16

x 1 y # 9

3x 1 2y # 24

35. Maximize the function f (x, y) 5 7x 1 5y in the region
determined by the constraints of Problem 34.

36. Maximize the function f (x, y) 5 150x 1 200y in the
region determined by the constraints of Problem 34.

37. A manufacturer of electric ice cream freezers makes a
profit of $4.50 on a one-gallon freezer and a profit of
$5.25 on a two-gallon freezer. The company wants to
produce at least 75 one-gallon and at least 100 two-gal-
lon freezers per week. However, the weekly production
is not to exceed a total of 250 freezers. How many freez-
ers of each type should be produced per week in order to
maximize the profit?

x $ 0
y $ 0

x 1 2y # 4
2x 2 y # 4

x 2 4y , 4
2x 1 y $ 2

3x 2 2y , 6
2x 2 3y , 6

3x 2 4y $ 0
2x 1 3y # 0
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For Problems 1–10, compute the indicated matrix, if it exists, using the
following matrices.

A 5 3 4 B 5 3 4 C 5 3 4
D 5 3 4 E 5 3 4 F 5 3 4

1. AB 2. BA 3. DE 4. BC 5. EC

6. 2A 2 B 7. 3D 1 2F 8. 23A 2 2B 9. EF 10. AB 2 EF

For Problems 11–16, find the multiplicative inverse, if it exists.

11. 3 4 12. 3 4 13. 3 4
14. 3 4 15. 3 4 16. 3 4
For Problems 17–19, use the multiplicative inverse matrix approach to
solve each system.

17. 1 2 18. 1 2 19. 1 2
20. Solve the system

1 2
where the inverse of the coefficient matrix is

3 4
2}

5
9

}

}
2
9

}

2}
1
9
1
}

}
7
9

}

2}
1
9

}

}
1
9
0
}

2}
1
9
0
}

}
4
9

}

2}
1
9
3
}

2x 1 3y 1 z 5 1

2x 1 5y 5 3

3x 1 y 2 2z 5 22

3x 1 5y 5 92
x 1 4y 5 61

x 2 3y 5 36
22x 1 8y 5 2100

3x 2 2y 5 48
5x 2 3y 5 76

4
3
1

22
1
0

1
0
0

3
0
4

2
21

1

22
1
0

5
4

3
1

23
8

1
22

5
27

22
3

22
23

3
5

6
25

4

21
2
3

4
23

21
1

2
5

21
22

5

2
3
6

23
5

26

22
21

3
4

3
22

21
4

C H A P T E R  7  T E S T

   450  Algebra of Matrices 



Chapter 7 Test 531

21. Solve the system

1 2
where the inverse of the coefficient matrix is

3 4
For Problems 22–24, indicate the solution set for each system of inequal-
ities by graphing the system and shading the appropriate region.

22. 1 2 23. 1 2 24. 1 2
25. Maximize the function f (x, y ) 5 500x 1 350y in the region determined by the

following constraints.

3x 1 2y # 24

x 1 2y # 16

x 1 y # 9

x $ 0

y $ 0

y # 2x 2 2
y $ x 1 1

2x 2 3y # 6
x 1 4y . 4

2x 2 y . 4
x 1 3y , 3

2}
2
7
4
}

}
2
5
4
}

}
2
1
4
}

}
1
6

}

}
1
6

}

2}
1
6

}

2}
2
5
4
}

}
2
7
4
}

}
1
2
1
4
}

x 1 y 1 2z 5 3

2x 1 3y 2 z 5 3

23x 1 y 2 2z 5 3
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CONIC SECTIONS

Parabolic surfaces are used in the construction of satellite dishes.

8.1 Parabolas

8.2 Ellipses

8.3 Hyperbolas

8.4 Systems
Involving
Nonlinear
Equations

8

532

          

453

8



Parabolas, circles, ellipses, and hyperbolas can be formed by causing a
right circular conical surface and a plane to intersect, as shown in Figure
8.1; these figures are often referred to as conic sections. The conic sections
are not new to you. You did some graphing of circles, parabolas, ellipses,
and hyperbolas in Chapters 2 and 3. At that time, however, except for the
circle, we did not present any formal definitions or standard forms of equa-
tions. In Chapter 2 we developed the standard form for the equation of a cir-
cle, (x 2 h)2 1 (y 2 k)2 5 r2. We used this equation to solve a variety of
problems that pertain to circles. It is now time to study the other conic sec-
tions in the same manner. We will define each conic section and derive the
standard form of an equation. Then we will use the standard forms to study
specific conic sections.

F I G U R E  8 . 1

PARABOLAS

We discussed parabolas as the graphs of quadratic functions in Sections 3.2 and 3.3.
All parabolas in those sections had vertical lines as axes of symmetry. Furthermore,
we did not state the definition for a parabola at that time. We shall now define a
parabola and derive standard forms of equations for those that have either vertical or
horizontal axes of symmetry.

D E F I N I T I O N  8 . 1

A parabola is the set of all points in a plane such that the distance of
each point from a fixed point F (the focus) is equal to its distance
from a fixed line d (the directrix) in the plane.

Circle Ellipse Parabola Hyperbola

8.1

8.1 Parabolas 533
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Using Definition 8.1, we can sketch a parabola by starting with a fixed line d
and a fixed point F, not on d. Then a point P is on the parabola if and only if PF 5

PP9, where PwPw9 is perpendicular to the directrix d (Figure 8.2). The dashed curved
line in Figure 8.2 indicates the possible positions of P; it is the parabola. The line l,
through F and perpendicular to the directrix d, is called the axis of symmetry. The
point V, on the axis of symmetry halfway from F to the directrix d, is the vertex of
the parabola.

We can derive a standard form for the equation of a parabola by superimpos-
ing coordinates on the plane such that the origin is at the vertex of the parabola and
the y axis is the axis of symmetry (Figure 8.3). If the focus is at (0, p), where p Þ 0,

F I G U R E  8 . 3

then the equation of the directrix is y 5 2p. Therefore, for any point P on the
parabola, PF 5 PP9, and using the distance formula yields

Ï(xw 2w 0w)2w 1w (wyw2w pw)2w 5 Ï(xw 2w xw)2w 1w (wyw1w pw)2w

Squaring both sides and simplifying, we obtain

(x 2 0)2 1 (y 2 p )2 5 (x 2 x )2 1 (y 1 p )2

x 2 1 y 2 2 2py 1 p 2 5 y 2 1 2py 1 p 2

x 2 5 4py

Thus the standard form for the equation of a parabola, with its vertex at the ori-
gin and the y axis as its axis of symmetry, is

If p . 0, the parabola opens upward; if p , 0, the parabola opens downward.
In Figure 8.4 the line segment QwPw is called the latus rectum. It contains the

focus and is parallel to the directrix. Because FP 5 PP9 5 u 2p u, the entire length of
the latus rectum is u 4p u units. You will see in a moment how we can use this fact
when graphing parabolas.

x 2 5 4py

x

y  = −p

P(x, y)

P'(x, −p)

F(0, p)

y

534 Chapter 8 Conic Sections

d

P

V
FP'

e
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8.1 Parabolas 535

F I G U R E  8 . 4
F I G U R E  8 . 5

In a similar fashion, we can develop the standard form for the equation of a
parabola with its vertex at the origin and the x axis as its axis of symmetry. By
choosing a focus at F(p, 0) and a directrix with an equation of x 5 2p (see Figure
8.5), and by applying the definition of a parabola, we obtain the standard form for
the equation:

If p . 0, the parabola opens to the right, as in Figure 8.5; if p , 0, it opens to the
left.

The concept of symmetry can be used to decide which of the two equations,
x 2 5 4py or y 2 5 4px, is to be used. The graph of x 2 5 4py is symmetric with
respect to the y axis because replacing x with 2x does not change the equation.
Likewise, the graph of y2 5 4px is symmetric with respect to the x axis because
replacing y with 2y leaves the equation unchanged. The following property summa-
rizes our previous discussion.

Now let’s illustrate some uses of the equations x 2 5 4py and y 2 5 4px.

P R O P E R T Y  8 . 1

The graph of each of the following equations is a parabola that has
its vertex at the origin and has the indicated focus, directrix, and
symmetry.

1. x 2 5 4py focus (0, p ), directrix y 5 2p, y-axis 
symmetry

2. y 2 5 4px focus (p, 0), directrix x 5 2p, x-axis 
symmetry

y2 5 4px

x

x  = −p

P(x, y)P'(−p, y)

F(p, 0)

y

x

P(x, p)

P'(x, −p)

F(0, p)

y

Q
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Find the focus and directrix of the parabola x 2 5 28y and sketch its graph.

Solution

Compare x 2 5 28y to the standard form x 2 5 4py and we have 4p 5 28. There-
fore, p 5 22 and the parabola opens downward. The focus is at (0, 22) and the
equation of the directrix is y 5 2(22) 5 2. The latus rectum is u 4p u 5 u28 u 5 8
units long. Therefore, the endpoints of the latus rectum are at (4, 22) and (24, 22).
The graph is sketched in Figure 8.6.

F I G U R E  8 . 6 n

Write the equation of the parabola that is symmetric with respect to the y axis, has its
vertex at the origin, and contains the point P(6, 3).

Solution

The standard form of the parabola is x 2 5 4py. Because P is on the parabola, the
ordered pair (6, 3) must satisfy the equation. Therefore,

62 5 4p(3)

36 5 12p

3 5 p

If p 5 3, the equation becomes

x 2 5 4(3)y

x 2 5 12y n

Find the focus and directrix of the parabola y 2 5 6x and sketch its graph.

Solution

Compare y 2 5 6x to the standard form y 2 5 4px; we see that 4p 5 6 and therefore

p 5 }
3
2

}. Thus the focus is at 1}
3
2

}, 02 and the equation of the directrix is x 5 2}
3
2

}.

x

y

y = 2

(−4, −2) (4, −2)

F(0, −2)

x2 = −8y

536 Chapter 8 Conic Sections
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8.1 Parabolas 537

The parabola opens to the right. The latus rectum is u 4p u 5 u 6 u 5 6 units long.

Therefore the endpoints of the latus rectum are at 1}
3
2

}, 32 and 1}
3
2

}, 232. The graph is

sketched in Figure 8.7.

F I G U R E  8 . 7 n

Other Parabolas

In much the same way, we can develop the standard form for an equation of a
parabola that is symmetric with respect to a line parallel to a coordinate axis. In Fig-
ure 8.8 we have taken the vertex V at (h, k ) and the focus F at (h, k 1 p ); the equa-
tion of the directrix is y 5 k 2 p. By the definition of a parabola, we know that
FP 5 PP9. Therefore, applying the distance formula, we obtain

Ï(xw 2w hw)2w 1w (wyw2w (wkw1w pw))w2w 5 Ï(xw 2w xw)2w 1w [wyw2w (wkw2w pw)]w2w

F I G U R E  8 . 8

We leave it to the reader to show that this equation simplifies to

x

y

P(x, y)

y = k − p

P'(x, k − p)

x = h

V(h, k)

F (h, k + p)

F(   , 0)3
2

3
2

(   ,  3)

3
2

x = −          

y

x

y2 = 6 x

3
2

(   ,  −3)
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which is called the standard form for the equation of a parabola that has its vertex at
(h, k ) and is symmetric with respect to the line x 5 h. If p . 0, the parabola opens
upward; if p , 0, the parabola opens downward.

In a similar fashion, we can show that the standard form for the equation of
a parabola that has its vertex at (h, k ) and is symmetric with respect to the line
y 5 k is

If p . 0, the parabola opens to the right; if p , 0, it opens to the left.
Let’s summarize our discussion of parabolas that have lines of symmetry par-

allel to the x axis or y axis by stating the following property.

Find the vertex, focus, and directrix of the parabola y 2 1 4y 2 4x 1 16 5 0 and
sketch its graph.

Solution

Write the given equation as y 2 1 4y 5 4x 2 16 and we can complete the square on
the left side by adding 4 to both sides.

y 2 1 4y 1 4 5 4x 2 16 1 4

(y 1 2)2 5 4x 2 12

(y 1 2)2 5 4(x 2 3)

Now let’s compare this final equation to the form (y 2 k )2 5 4p(x 2 h ).

P R O P E R T Y  8 . 2

The graph of each of the following equations is a parabola that has
its vertex at (h, k ) and has the indicated focus, directrix, and
symmetry.

1. (x 2 h )2 5 4p(y 2 k ) focus (h, k 1 p ), directrix y 5
k 2 p, line of symmetry x 5 h

2. (y 2 k )2 5 4p(x 2 h ) focus (h 1 p, k ), directrix x 5
h 2 p, line of symmetry y 5 k

(y 2 k)2 5 4p(x 2 h)

(x 2 h )2 5 4p(y 2 k )

538 Chapter 8 Conic Sections
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8.1 Parabolas 539

(y 2 (22))2 5 4(x 2 3).

k 5 22 4p 5 4 h 5 3
p 5 1

The vertex is at (3, 22) and because p . 0, the parabola opens to the right and the
focus is at (4, 22). The equation of the directrix is x 5 2. The latus rectum is u 4p u 5
u 4 u 5 4 units long and its endpoints are at (4, 0) and (4, 24). The graph is sketched
in Figure 8.9.

F I G U R E  8 . 9 n

REMARK If we were using a graphing calculator to graph the parabola in
Example 4, then after the step (y 1 2)2 5 4x 2 12, we would solve for y to
obtain y 5 22 6 Ï4wxw2w 1w2w. Then we could enter the two functions Y1 5
22 1 Ï4wxw2w 1w2w and Y2 5 22 2 Ï4wxw2w 1w2w and obtain a figure that closely
resembles Figure 8.9. (You are asked to do this in the Graphing Calculator
Activities.) Some computer programs can graph the equation in Example 4
without changing its form.

Write the equation of the parabola if its focus is at (24, 1) and the equation of its
directrix is y 5 5.

Solution

Because the directrix is a horizontal line, we know that the equation of the parabola
is of the form (x 2 h )2 5 4p(y 2 k ). The vertex is halfway between the focus and
the directrix, so the vertex is at (24, 3). This means that h 5 24 and k 5 3. The
parabola opens downward because the focus is below the directrix, and the distance
between the focus and the vertex is 2 units; thus p 5 22. Substitute 24 for h, 3 for
k, and 22 for p in the equation (x 2 h )2 5 4p(y 2 k ) to obtain

(x 2 (24))2 5 4(22)(y 2 3)

x 

x = 2

F(4, −2)

(4, −4)
(3, −2)  

(4, 0)

y

y2 + 4y- 4x + 16 = 0

E X A M P L E  5
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which simplifies to

(x 1 4)2 5 28(y 2 3)

x 2 1 8x 1 16 5 28y 1 24

x 2 1 8x 1 8y 2 8 5 0 n

REMARK For a problem such as Example 5, you may find it helpful to put
the given information on a set of axes and draw a rough sketch of the parabola
to help you with the analysis of the problem.

Parabolas possess various properties that make them very useful. For exam-
ple, if a parabola is rotated about its axis, a parabolic surface is formed. The rays
from a source of light placed at the focus of this surface reflect from the surface par-
allel to the axis. It is for this reason that parabolic reflectors are used on searchlights
as in Figure 8.10. Likewise, rays of light coming into a parabolic surface parallel to
the axis are reflected through the focus. This property of parabolas is useful in the
design of mirrors for telescopes (see Figure 8.11) and in the construction of radar
antennas.

F I G U R E  8 . 1 0

F I G U R E  8 . 1 1

A bullet fired into the air follows the curvature of a parabola if air resistance
and other outside factors are ignored—in other words, if only the force of gravity is
considered. (See Figure 8.12.)

540 Chapter 8 Conic Sections
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8.1 Parabolas 541

F I G U R E  8 . 1 2

P R O B L E M  S E T  8 . 1

For Problems 1–22, find the vertex, focus, and directrix of the
given parabola and sketch its graph.

1. y 2 5 8x 2. y 2 5 24x

3. x 2 5 212y 4. x 2 5 8y

5. y 2 5 22x 6. y 2 5 6x

7. x 2 5 6y 8. x 2 5 27y

9. x 2 2 4y 1 8 5 0 10. x 2 2 8y 2 24 5 0

11. x 2 1 8y 1 16 5 0 12. x 2 1 4y 2 4 5 0

13. y 2 2 12x 1 24 5 0 14. y 2 1 8x 2 24 5 0

15. x 2 2 2x 2 4y 1 9 5 0 16. x 2 1 4x 2 8y 2 4 5 0

17. x 2 1 6x 1 8y 1 1 5 0

18. x 2 2 4x 1 4y 2 4 5 0

19. y 2 2 2y 1 12x 2 35 5 0

20. y 2 1 4y 1 8x 2 4 5 0

21. y 2 1 6y 2 4x 1 1 5 0

22. y 2 2 6y 2 12x 1 21 5 0

For Problems 23–42, find an equation of the parabola that sat-
isfies the given conditions.

23. Focus (0, 3), directrix y 5 23

24. Focus 10, 2}
1
2

}2, directrix y 5 }
1
2

}

25. Focus (21, 0), directrix x 5 1

26. Focus (5, 0), directrix x 5 1

27. Focus (0, 1), directrix y 5 7

28. Focus (0, 22), directrix y 5 210

29. Focus (3, 4), directrix y 5 22

30. Focus (23, 21), directrix y 5 7

31. Focus (24, 5), directrix x 5 0

32. Focus (5, 22), directrix x 5 21

33. Vertex (0, 0), symmetric with respect to the x axis, and
contains the point (23, 5)

34. Vertex (0, 0), symmetric with respect to the y axis, and
contains the point (22, 24)

35. Vertex (0, 0), focus 1}
5
2

}, 02
36. Vertex (0, 0), focus 10, 2}

7
2

}2
37. Vertex (7, 3), focus (7, 5), and symmetric with respect to

the line x 5 7

38. Vertex (24, 26), focus (27, 26), and symmetric with
respect to the line y 5 26

39. Vertex (8, 23), focus (11, 23), and symmetric with
respect to the line y 5 23

40. Vertex (22, 9), focus (22, 5), and symmetric with
respect to the line x 5 22
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41. Vertex (29, 1), symmetric with respect to the line x 5
29, and contains the point (28, 0)

42. Vertex (6, 24), symmetric with respect to the line y 5
24, and contains the point (8, 23)

For Problems 43–47, solve each problem.

43. One section of a suspension bridge hangs between two
towers that are 40 feet above the surface and 300 feet

F I G U R E  8 . 1 3

apart as in Figure 8.13. A cable strung between the tops
of the two towers is in the shape of a parabola with its
vertex 10 feet above the surface. With axes drawn as
indicated in the figure, find the equation of the parabola.

44. Suppose that five equally spaced vertical cables are used
to support the bridge in Figure 8.13. Find the total length
of these supports.

45. Suppose that an arch is shaped like a parabola. It is 20
feet wide at the base and 100 feet high. How wide is the
arch 50 feet above the ground?

46. A parabolic arch 27 feet high spans a parkway. How
wide is the arch if the center section of the parkway, a
section that is 50 feet wide, has a minimum clearance of
15 feet?

47. A parabolic arch spans a stream 200 feet wide. How high
must the arch be above the stream to give a minimum
clearance of 40 feet over a channel in the center that is
120 feet wide?

40
 f

t

10 ft

300 ft

40
 f

t

y

x
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48. Give a step-by-step description of how you would go
about graphing the parabola x 2 2 2x 2 4y 2 7 5 0.

49. Suppose that someone graphed the equation y 2 2 6y 2
2x 1 11 5 0 and obtained the graph in Figure 8.14. How
do you know by looking at the equation that this graph is
incorrect?

F I G U R E  8 . 1 4

y

x

50. The parabola determined by the equation x2 1 4x 2 8y 2
4 5 0 (Problem 16) is easy to graph using a graphing cal-
culator because it can be expressed as a function of x
without much computation. Let’s solve the equation for y.

8y 5 x 2 1 4x 2 4

y 5 }
x 2 1 4

8
x 2 4
}

Use your graphing calculator to graph this function.
As noted in the Remark following Example 

4, solving the equation y 2 1 4y 2 4x 1 16 5 0 for 
y produces two functions—namely, Y1 5 22 1
Ï4wxw2w 1w2w and Y2 5 22 2 Ï4wxw2w 1w2w. Graph these two
functions on the same set of axes. Your result should
resemble Figure 8.9.

Use your graphing calculator to check your graphs
for Problems 1–22.

GRAPHING CALCULATOR ACTIVITIES
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ELLIPSES

Let’s begin by defining the concept of an ellipse.

Using two thumbtacks, a piece of string, and a pencil, it is easy to draw an ellipse
by satisfying the conditions of Definition 8.2. First, insert two thumbtacks in a piece of
cardboard at points F and F9 and fasten the ends of the piece of string to the thumb-
tacks, as in Figure 8.15. Then loop the string around the point of a pencil and hold the
pencil so that the string is taut. Finally, move the pencil around the tacks, always keep-
ing the string taut: You will draw an ellipse. The two points F and F9 are the foci
referred to in Definition 8.2, and the sum of the distances FP and F9P is constant,
because it represents the length of the piece of string. With the same piece of string, you
can vary the shape of the ellipse by changing the positions of the foci. Moving F and F9
farther apart will make the ellipse flatter. Likewise, moving F and F9 closer together
will cause the ellipse to resemble a circle. In fact, if F 5 F9, you will obtain a circle.

We can derive a standard form for the equation of an ellipse by superimposing
coordinates on the plane such that the foci are on the x axis, equidistant from the ori-
gin (Figure 8.16). If F has coordinates (c, 0), where c . 0, then F9 has coordinates

F I G U R E  8 . 1 6

(2c, 0), and the distance between F and F9 is 2c units. We will let 2a represent the
constant sum of FP 1 F9P. Note that 2a . 2c and therefore a . c. For any point P
on the ellipse,

FP 1 F9P 5 2a

y

x

P(x, y)

F'(−c, 0) F(c, 0)

D E F I N I T I O N  8 . 2

An ellipse is the set of all points in a plane such that the sum of the
distances of each point from two fixed points F and F9 (the foci) in
the plane is constant.

8.2

F' F

P

F I G U R E  8 . 1 5
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Use the distance formula to write this as

Ï(xw 2w cw)2w 1w (wyw2w 0w)2w 1 Ï(xw 1w cw)2w 1w (wyw2w 0w)2w 5 2a

Let’s change the form of this equation to

Ï(xw 2w cw)2w 1w yw2w 5 2a 2 Ï(xw 1w cw)2w 1w yw2w

and square both sides:

(x 2 c )2 1 y 2 5 4a 2 2 4aÏ(xw 1w cw)2w 1w yw2w 1 (x 1 c )2 1 y 2

This can be simplified to

a 2 1 cx 5 aÏ(xw 1w cw)2w 1w yw2w

Again square both sides to produce

a 4 1 2a 2cx 1 c 2x 2 5 a 2[(x 1 c )2 1 y 2]

which can be written in the form

x 2(a 2 2 c 2) 1 a 2y 2 5 a 2(a 2 2 c 2)

Divide both sides by a 2(a 2 2 c 2), which leads to the form

}
a
x 2

2} 1 }
a 2

y
2

2

c2} 5 1

Letting b 2 5 a 2 2 c 2, where b . 0, produces the equation

}
a
x 2

2} 1 }
b
y 2

2} 5 1 (1)

Because c . 0, a . c, and b 2 5 a 2 2 c 2, it follows that a 2 . b 2 and hence a . b.
This equation that we have derived is called the standard form for the equation of
an ellipse with its foci on the x axis and its center at the origin.

The x intercepts of equation (1) can be found by letting y 5 0. Doing this pro-
duces x 2@a 2 5 1, or x 2 5 a 2; consequently, the x intercepts are a and 2a. The corre-
sponding points on the graph (see Figure 8.17) are A(a, 0) and A9(2a, 0), and the
line segment Aw9wAw, which is of length 2a, is called the major axis of the ellipse. The
endpoints of the major axis are also referred to as the vertices of the ellipse.

F I G U R E  8 . 1 7

x

y
B(0, b)

(−c, 0) (c, 0)

A'(−a, 0) A(a, 0)

B'(0, −b)
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8.2 Ellipses 545

Similarly, letting x 5 0 produces y 2@b 2 5 1 or y 2 5 b 2; consequently, the y inter-
cepts are b and 2b. The corresponding points on the graph are B(0, b ) and
B9(0, 2b ), and the line segment BwBw9w, which is of length 2b, is called the minor axis.
Because a . b, the major axis is always longer than the minor axis. The point of
intersection of the major and minor axes is called the center of the ellipse.

Let’s summarize this discussion by stating the following property.

Note that replacing y with 2y, or x with 2x, or both x and y with 2x and 2y, leaves
the equation unchanged. Thus the graph of

}
a
x 2

2} 1 }
b
y 2

2} 5 1

is symmetric with respect to the x axis, the y axis, and the origin.

Find the vertices, the endpoints of the minor axis, and the foci of the ellipse 4x 2 1
9y 2 5 36, and sketch the ellipse.

Solution

The given equation can be changed to standard form by dividing both sides by 36.

}
4
3
x
6

2

} 1 }
9
3
y
6

2

} 5 }
3
3
6
6
}

}
x
9

2

} 1 }
y
4

2

} 5 1

Therefore, a 2 5 9 and b 2 5 4; hence the vertices are at (3, 0) and (23, 0), and the
endpoints of the minor axis are at (0, 2) and (0, 22). Because c 2 5 a 2 2 b 2, we have

c 2 5 9 2 4 5 5

P R O P E R T Y  8 . 3

The graph of the equation

}
a
x 2

2} 1 }
b
y 2

2} 5 1

for a 2 . b 2, is an ellipse with the endpoints of its major axis (the ver-
tices) at (a, 0) and (2a, 0) and the endpoints of its minor axis at 
(0, b ) and (0, 2b ). The foci are at (c, 0) and (2c, 0), where c 2 5
a 2 2 b 2.

E X A M P L E  1
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Thus the foci are at 1Ï5w, 02 and 1Ï2w5w, 02. The ellipse is sketched in Figure 8.18.

F I G U R E  8 . 1 8 n

REMARK For a problem such as Example 1, it is not necessary to change to
standard form to find the values for a and b. After all, 6a are the x intercepts
and 6b are the y intercepts. These values can be found quite easily from the
given form of the equation.

Find the equation of the ellipse with vertices at (66, 0) and foci at (64, 0).

Solution

From the given information, we know that a 5 6 and c 5 4. Therefore,

b 2 5 a 2 2 c 2 5 36 2 16 5 20

Substitute 36 for a 2 and 20 for b 2 in the standard form to produce

}
3
x
6

2

} 1 }
2
y
0

2

} 5 1

Multiply both sides by 180 to get

5x 2 1 9y 2 5 180 n

Ellipses with Foci on the y Axis

We can develop a standard form for the equation of an ellipse with foci on the y axis
in a similar fashion. The following property summarizes the results of such a devel-
opment with the foci at (0, c ) and (0, 2c), where c . 0.

x

y

(0, 2)

(0, −2)

(3, 0)(−3, 0)

F'(−√5, 0) F(√5, 0)

4x2 + 9y2 = 36

546 Chapter 8 Conic Sections
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From Properties 8.3 and 8.4 it is evident that an equation of an ellipse with its center
at the origin and foci on a coordinate axis can be written in the form

}
x
p

2

} 1 }
y
q

2

} 5 1 or qx 2 1 py 2 5 pq

where p and q are positive. If p . q, the major axis lies on the x axis, and if q . p,
the major axis is on the y axis. It is not necessary to memorize these facts, because
for any specific problem the endpoints of the major and minor axes are determined
by the x and y intercepts. However, it is necessary to remember the relationship 
c 2 5 a 2 2 b 2.

Find the vertices, the endpoints of the minor axis, and the foci of the ellipse 18x 2 1
4y 2 5 36, and sketch the ellipse.

Solution

To find the x intercepts, we let y 5 0 and we obtain

18x 2 5 36

x 2 5 2

x 5 6Ï2w

Similarly, to find the y intercepts, we let x 5 0 and we obtain

4y 2 5 36

y 2 5 9

y 5 63

Because 3 . Ï2w, we know that a 5 3 and b 5 Ï2w. Therefore, the vertices are at 
(0, 3) and (0, 23), and the endpoints of the minor axes are at (Ï2w, 0) and (2Ï2w, 0).
From the relationship c 2 5 a 2 2 b 2, we get

c 2 5 9 2 2 5 7

P R O P E R T Y  8 . 4

The graph of the equation

}
b
x 2

2} 1 }
a
y 2

2} 5 1

where a 2 . b 2, is an ellipse with the endpoints of its major axis 
(vertices) at (0, a ) and (0, 2a ) and the endpoints of its minor axis at
(b, 0) and (2b, 0). The foci are at (0, c ) and (0, 2c ), where c 2 5
a 2 2 b 2.

E X A M P L E  3
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Thus the foci are at 10, Ï7w2 and 10, 2Ï7w2. The ellipse is sketched in Figure 8.19.

F I G U R E  8 . 1 9 n

Other Ellipses

In the same way, we can develop the standard form for an equation of an ellipse that
is symmetric with respect to a line parallel to a coordinate axis. We will not show
such developments in this text, but Figures 8.20 and 8.21 indicate the basic facts we
need in order to develop and use the resulting equations. Note that in each case, the
center of the ellipse is at a point (h, k ). Furthermore, the physical significance of a,
b, and c is the same as before. However, these values are used relative to the center
(h, k ) to find the endpoints of the major and minor axes and to find the foci. Let’s
see how this works in a specific example.

F I G U R E  8 . 2 0 F I G U R E  8 . 2 1

x

y

(h, k + a)

(h, k)

(h + b, k)

(h, k − a)

(h − b, k)

(h, k + c)

(h, k − c)

 + (x − h)2

b2
(y − k)2

a2
 = 1 

x

y

(h + a, k)(h, k)

(h, k + b)

(h + c, k)(h − c, k)

(h, k − b)

(h − a, k)

 + (x − h)2

a2
(y − k)2

b2
 = 1 

x

y

(0, 3)

(−√2, 0)

F(0, −√7)
18x2 + 4y2 = 36

(0, −3)

(√2, 0)

F(0, √7)
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Find the vertices, the endpoints of the minor axis, and the foci of the ellipse 9x 2 1
54x 1 4y 2 2 8y 1 49 5 0, and sketch the ellipse.

Solution

First, we need to change to standard form by completing the square on both x and y.

9(x 2 1 6x 1 ooo) 1 4(y 2 2 2y 1 ooo) 5 249

9(x 2 1 6x 1 9) 1 4(y 2 2 2y 1 1) 5 249 1 81 1 4

9(x 1 3)2 1 4(y 2 1)2 5 36

}
(x 1

4
3)2

} 1 }
(y 2

9
1)2

} 5 1

Because a . b, this last equation is of the form

}
(x 2

b 2

h )2

} 1 }
(y 2

a 2

k )2

} 5 1

where h 5 23, k 5 1, a 5 3, and b 5 2. Thus the endpoints of the major axis (ver-
tices) are up three units and down three units from the center, (23, 1), so they are at
(23, 4) and (23, 22). Likewise, the endpoints of the minor axis are two units to the
right and two units to the left of the center. Thus they are at (21, 1) and (25, 1).
From the relationship c 2 5 a 2 2 b 2, we get

c 2 5 9 2 4 5 5

Thus the foci are at 123, 1 1 Ï5w2 and 123, 1 2 Ï5w2. The ellipse is sketched in 
Figure 8.22.

F I G U R E  8 . 2 2 n

x

y

(−3, 4)

(−3, −2)(−5, 1)

(−3, 1)

(−1, 1)

9x2 + 54x + 4y2 − 8y + 49 = 0

E X A M P L E  4
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Write the equation of the ellipse that has vertices at (23, 25) and (7, 25) and foci at
(21, 25) and (5, 25).

Solution

Because the vertices and foci are on the same horizontal line (y 5 25), this ellipse
has an equation of the form

}
(x 2

a 2

h )2

} 1 }
(y 2

b 2

k )2

} 5 1

The center of the ellipse is at the midpoint of the major axis. Therefore,

h 5 }
23

2
1 7
} 5 2 and k 5 }

25 1

2
(25)
} 5 25

The distance between the center (2, 25) and a vertex (7, 25) is 5 units; thus a 5 5.
The distance between the center (2, 25) and a focus (5, 25) is 3 units; thus c 5 3.
Using the relationship c 2 5 a 2 2 b 2, we obtain

b 2 5 a 2 2 c 2 5 25 2 9 5 16

Now let’s substitute 2 for h, 25 for k, 25 for a 2, and 16 for b 2 in the general form,
and then we can simplify.

}
(x 2

25
2)2

} 1 }
(y 1

16
5)2

} 5 1

16(x 2 2)2 1 25(y 1 5)2 5 400

16(x 2 2 4x 1 4) 1 25(y 2 1 10y 1 25) 5 400

16x 2 2 64x 1 64 1 25y 2 1 250y 1 625 5 400

16x 2 2 64x 1 25y 2 1 250y 1 289 5 0 n

REMARK Again, for a problem such as Example 5, it might be helpful to
start by recording the given information on a set of axes and drawing a rough
sketch of the figure.

Like parabolas, ellipses possess properties that make them very useful. For
example, the elliptical surface formed by rotating an ellipse about its major axis has
the following property: Light or sound waves emitted at one focus reflect off the
surface and converge at the other focus. This is the principle behind “whispering
galleries,” such as the Rotunda of the Capitol Building in Washington, D.C. In such
buildings, two people standing at two specific spots that are the foci of the elliptical
ceiling can whisper and yet hear each other clearly, even though they may be quite
far apart.

Ellipses also play an important role in astronomy. Johannes Kepler
(1571–1630) showed that the orbit of a planet is an ellipse with the sun at one focus.
For example, the orbit of the earth is elliptical but nearly circular; at the same time,
the moon moves about the earth in an elliptical path (see Figure 8.23).

550 Chapter 8 Conic Sections
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F I G U R E  8 . 2 3

The arches for concrete bridges are sometimes elliptical. (One example is
shown in Figure 8.25 in the next set of problems.) Also, elliptical gears are used in
certain kinds of machinery that require a slow but powerful force at impact, such as
a heavy-duty punch (see Figure 8.24).

F I G U R E  8 . 2 4

Sun

Earth

Moon

For Problems 1–22, find the vertices, the endpoints of the
minor axis, and the foci of the given ellipse, and sketch its
graph.

1. }
x
4

2

} 1 }
y
1

2

} 5 1 2. }
1
x
6

2

} 1 }
y
1

2

} 5 1

3. }
x
4

2

} 1 }
y
9

2

} 5 1 4. }
x
4

2

} 1 }
1
y
6

2

} 5 1

5. 9x 2 1 3y 2 5 27 6. 4x 2 1 3y 2 5 36

7. 2x 2 1 5y 2 5 50 8. 5x 2 1 36y 2 5 180

9. 12x 2 1 y 2 5 36 10. 8x 2 1 y 2 5 16

11. 7x 2 1 11y 2 5 77 12. 4x 2 1 y 2 5 12

13. 4x 2 2 8x 1 9y 2 2 36y 1 4 5 0

14. x 2 1 6x 1 9y 2 2 36y 1 36 5 0

15. 4x 2 1 16x 1 y 2 1 2y 1 1 5 0

16. 9x 2 2 36x 1 4y 2 1 16y 1 16 5 0

17. x 2 2 6x 1 4y 2 1 5 5 0

18. 16x 2 1 9y 2 1 36y 2 108 5 0

19. 9x 2 2 72x 1 2y 2 1 4y 1 128 5 0

20. 5x 2 1 10x 1 16y 2 1 160y 1 325 5 0

21. 2x 2 1 12x 1 11y 2 2 88y 1 172 5 0

22. 9x 2 1 72x 1 y 2 1 6y 1 135 5 0

P R O B L E M  S E T  8 . 2
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For Problems 23–36, find an equation of the ellipse that satis-
fies the given conditions.

23. Vertices (65, 0), foci (63, 0)

24. Vertices (64, 0), foci (62, 0)

25. Vertices (0, 66), foci (0, 65)

26. Vertices (0, 63, foci (0, 62)

27. Vertices (63, 0), length of minor axis is 2

28. Vertices (0, 65), length of minor axis is 4

29. Foci (0, 62), length of minor axis is 3

30. Foci (61, 0), length of minor axis is 2

31. Vertices (0, 65), contains the point (3, 2)

32. Vertices (66, 0), contains the point (5, 1)

33. Vertices (5, 1) and (23, 1), foci (3, 1) and (21, 1)

34. Vertices (2, 4) and (2, 26), foci (2, 3) and (2, 25)

35. Center (0, 1) one focus at (24, 1), length of minor axis 
is 6

36. Center (3, 0), one focus at (3, 2), length of minor axis 
is 4

For Problems 37–40, solve each problem.

37. Find an equation of the set of points in a plane such that
the sum of the distances between each point of the set
and the points (2, 0) and (22, 0) is 8 units.

38. Find an equation of the set of points in a plane such that
the sum of the distances between each point of the set
and the points (0, 3) and (0, 23) is 10 units.

39. An arch of the bridge shown in Figure 8.25 is semiellipti-
cal and the major axis is horizontal. The arch is 30 feet
wide and 10 feet high. Find the height of the arch 10 feet
from the center of the base.

F I G U R E  8 . 2 5

40. In Figure 8.25, how much clearance is there 10 feet from
the bank?

10 ft

10 ft

30 ft

?

552 Chapter 8 Conic Sections

THOUGHTS INTO WORDS

41. What type of figure is the graph of the equation x 2 1
6x 1 2y 2 2 20y 1 59 5 0? Explain your answer.

42. Suppose that someone graphed the equation 4x 2 2
16x 1 9y 2 1 18y 2 11 5 0 and obtained the graph
shown in Figure 8.26. How do you know by looking at
the equation that this is an incorrect graph?

F I G U R E  8 . 2 6

y

x
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43. Use your graphing calculator to check your graphs for
Problems 13–22.

44. Use your graphing calculator to graph each of the follow-
ing ellipses.

a. 2x 2 2 40x 1 y 2 1 2y 1 185 5 0

b. x 2 2 4x 1 2y 2 2 48y 1 272 5 0

c. 4x 2 2 8x 1 y 2 2 4y 2 136 5 0

d. x 2 1 6x 1 2y 2 1 56y 1 301 5 0

GRAPHING CALCULATOR ACTIVITIES

HYPERBOLAS

A hyperbola and an ellipse are similar by definition; however, an ellipse involves
the sum of distances and a hyperbola involves the difference of distances.

Using Definition 8.3, we can sketch a hyperbola by starting with two fixed
points F and F9 as shown in Figure 8.27. Then we locate all points P such that
PF9 2 PF is a positive constant. Likewise, as shown in Figure 8.27, all points Q are
located such that QF 2 QF9 is the same positive constant. The two dashed curved
lines in Figure 8.27 make up the hyperbola. The two curves are sometimes referred
to as the branches of the hyperbola.

F I G U R E  8 . 2 7

F

P

F'

Q

D E F I N I T I O N  8 . 3

A hyperbola is the set of all points in a plane such that the
difference of the distances of each point from two fixed points F and
F9 (the foci) in the plane is a positive constant.

8.3
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To develop a standard form for the equation of a hyperbola, let’s superimpose
coordinates on the plane such that the foci are located at F(c, 0) and F9(2c, 0), as
indicated in Figure 8.28. Using the distance formula and setting 2a equal to the dif-
ference of the distances from any point P on the hyperbola to the foci, we have the
following equation.

uÏ(xw 2w cw)2w 1w (wyw2w 0w)2w 2 Ï(xw 1w cw)2w 1w (wyw2w 0w)2wu 5 2a

F I G U R E  8 . 2 8

(The absolute value sign is used to allow the point P to be on either branch of
the hyperbola.) Using the same type of simplification procedure that we used for
deriving the standard form for the equation of an ellipse, we find that this equation
simplifies to

}
a
x 2

2} 2 }
c 2 2

y 2

a 2} 5 1

Letting b 2 5 c 2 2 a 2, where b . 0, we obtain the standard form

}
a
x 2

2} 2 }
b
y 2

2} 5 1 (1)

Equation (1) indicates that this hyperbola is symmetric with respect to both axes and
the origin. Furthermore, by letting y 5 0, we obtain x 2@a 2 5 1, or x 2 5 a 2, so the x
intercepts are a and 2a. The corresponding points A(a, 0) and A9(2a, 0) are the
vertices of the hyperbola, and the line segment AA9 is called the transverse axis; it
is of length 2a (see Figure 8.29). The midpoint of the transverse axis is called the
center of the hyperbola; it is located at the origin. By letting x 5 0 in equation (1),
we obtain 2y 2@b 2 5 1, or y 2 5 2b 2. This implies that there are no y intercepts, as
indicated in Figure 8.29.

y

P(x, y)

F'(−c, 0) F(c, 0) x
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The following property summarizes the previous discussion.

In conjunction with every hyperbola there are two intersecting lines that pass
through the center of the hyperbola. These lines, referred to as asymptotes, are very
helpful when we are sketching a hyperbola. Their equations are easily determined
by using the following type of reasoning. Solving the equation

}
a
x 2

2} 2 }
b
y 2

2} 5 1

for y produces y 5 6}
b
a

}Ïxw2w2w aw2w. From this form, it is evident that there are no

points on the graph for x 2 2 a 2 , 0—that is, if 2a , x , a. However, there are

points on the graph if x $ a or x # 2a. If x $ a, then y 5 6}
b
a

}Ïxw2w2w aw2w can be 

written

P R O P E R T Y  8 . 5

The graph of the equation

}
a
x 2

2} 2 }
b
y 2

2} 5 1

is a hyperbola with vertices at (a, 0) and (2a, 0). The foci are at 
(c, 0) and (2c, 0), where c 2 5 a 2 1 b 2.

y

F'(−c, 0) F(c, 0) x

A(a, 0)A'(−a, 0)
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y 5 6}
b
a

}!x2§11§ 2§ }
a
x§2

2

}2§
5 6}

b
a

}Ïxw2w !1§ 2§ }
a
x§2

2

}§
5 6}

b
a

}x !1§ 2§ }
a
x§2

2

}§
Now suppose that we are going to determine some y values for very large values of
x. (Remember that a and b are arbitrary constants; they have specific values for a
particular hyperbola.) When x is very large, a 2@x 2 will be close to zero, so the radi-
cand will be close to 1. Therefore, the y value will be close to either (b@a )x or
2(b@a )x. In other words, as x becomes larger and larger, the point P(x, y ) gets
closer and closer to either the line y 5 (b@a )x or the line y 5 2(b@a )x. A corre-
sponding situation occurs when x # a. The lines with equations

y 5 6}
b
a

}x

are called the asymptotes of the hyperbola.
As we mentioned earlier, the asymptotes are very helpful for sketching hyper-

bolas. An easy way to sketch the asymptotes is first to plot the vertices A(a, 0) and
A9 (2a, 0), and the points B(0, b ) and B9(0, 2b ), as in Figure 8.30. The line segment
BwBw9w is of length 2b and is called the conjugate axis of the hyperbola. The horizontal
line segments drawn through B and B9, together with the vertical line segments
drawn through A and A9, form a rectangle. The diagonals of this rectangle have
slopes b@a and 2(b@a ). Therefore, by extending the diagonals, we obtain the
asymptotes y 5 (b@a )x and y 5 2(b@a )x. The two branches of the hyperbola can
be sketched by using the asymptotes as guidelines, as shown in Figure 8.30.

F I G U R E  8 . 3 0

y

xA'(−a, 0) A(a, 0)

B(0, b)

B'(0, −b)

y = −  bx
a y =   bx

a

556 Chapter 8 Conic Sections

    Conic Sections 477



8.3 Hyperbolas 557

Find the vertices, the foci, and the equations of the asymptotes of the hyperbola
9x 2 2 4y 2 5 36, and sketch the hyperbola.

Solution

Dividing both sides of the given equation by 36 and simplifying, we change the
equation to the standard form.

}
x
4

2

} 2 }
y
9

2

} 5 1

where a 2 5 4 and b 2 5 9. Hence a 5 2 and b 5 3. The vertices are (62, 0) and the
endpoints of the conjugate axis are (0, 63); these points determine the rectangle
whose diagonals extend to become the asymptotes. Using a 5 2 and b 5 3, the

equations of the asymptotes are y 5 }
3
2

}x and y 5 2}
3
2

}x. Then, using the relationship

c 2 5 a 2 1 b 2, we obtain c 2 5 4 1 9 5
13. Thus the foci are at (Ï1w3w, 0) and
(2Ï1w3w, 0). Using the vertices and the
asymptotes, we have sketched the hyper-
bola in Figure 8.31.

F I G U R E  8 . 3 1 n

Find the equation of the hyperbola with vertices at (64, 0) and foci at 162Ï5w, 02.

Solution

From the given information, we know that a 5 4 and c 5 2Ï5w. Then using the rela-
tionship b 2 5 c 2 2 a 2, we obtain

b 2 5 12Ï5w22
2 42 5 20 2 16 5 4

Substituting 16 for a 2 and 4 for b 2 in the standard form produces

}
1
x
6

2

} 2 }
y
4

2

} 5 1

Multiplying both sides of this equation by 16 yields

x 2 2 4y 2 5 16 n

E X A M P L E  1

E X A M P L E  2

9x2 − 4y2 = 36

y

x
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Hyperbolas with Foci on the y Axis

In a similar fashion, we can develop a standard form for the equation of a hyperbola
with foci on the y axis. The following property summarizes the results of such a
development, where the foci are at (0, c ) and (0, 2c ).

For this type of hyperbola, the endpoints of the conjugate axis are at (b, 0) and 
(2b, 0). In this case we can find the asymptotes by extending the diagonals of the
rectangle determined by the horizontal lines through the vertices and the vertical
lines through the endpoints of the conjugate axis. The slopes of these diagonals are
a@b and 2a@b; thus the equations of these asymptotes are

y 5 }
a
b

}x and y 5 2}
a
b

}x

Find the vertices, the foci, and the equations of the asymptotes of the hyperbola 
4y 2 2 x 2 5 12, and sketch the hyperbola.

Solution

Divide both sides of the given equation by 12 to change the equation to the standard
form.

}
y
3

2

} 2 }
1
x
2

2

} 5 1

where a 2 5 3 and b 2 5 12. Hence a 5 Ï3w and b 5 2Ï3w. The vertices, 10, 6Ï3w2,
and the endpoints of the conjugate axis, 162Ï3w, 02, determine the rectangle whose
diagonals extend to become the asymptotes. Using a 5 3 and b 5 2Ï3w, the 

equations of the asymptotes are y 5 1Ï3w@2Ï3w2x 5 }
1
2

}x and y 5 2}
1
2

}x. Then, using

the relationship c 2 5 a 2 1 b 2, we obtain c 2 5 3 1 12 5 15. So the foci are at 
10, Ï1w5w2 and 10, 2Ï1w5w2. The hyperbola is sketched in Figure 8.32.

P R O P E R T Y  8 . 6

The graph of the equation

}
a
y 2

2} 2 }
b
x 2

2} 5 1

is a hyperbola with vertices at (0, a ) and (0, 2a ). The foci are at 
(0, c ) and (0, 2c ), where c 2 5 a 2 1 b 2.

558 Chapter 8 Conic Sections
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8.3 Hyperbolas 559

F I G U R E  8 . 3 2 n

Other Hyperbolas

In the same way, we can develop the standard form for an equation of a hyperbola
that is symmetric with respect to a line parallel to a coordinate axis. We will not
show such developments in this text but will simply state and use the results.

}
(x 2

a 2

h )2

} 2 }
(y 2

b 2

k )2

} 5 1

}
(y 2

a 2

k )2

} 2 }
(x 2

b 2

h )2

} 5 1

The relationship c 2 5 a 2 1 b 2 still holds, and the physical significance of a, b, and c
remains the same. However, these values are used relative to the center (h, k) to find
the endpoints of the transverse and conjugate axes and to find the foci. Furthermore,
the slopes of the asymptotes are as before, but these lines now contain the new cen-
ter, (h, k ). Let’s see how all of this works in a specific example.

Find the vertices, the foci, and the equations of the asymptotes of the hyperbola
9x 2 2 36x 2 16y 2 1 96y 2 252 5 0, and sketch the hyperbola.

Solution

First, we need to change to a standard form by completing the square on both x
and y.

9(x 2 2 4x 1 ooo) 2 16(y 2 2 6y 1 ooo) 5 252

9(x 2 2 4x 1 4) 2 16(y 2 2 6y 1 9) 5 252 1 36 2 144

9(x 2 2)2 2 16(y 2 3)2 5 144

}
(x 2

16
2)2

} 2 }
(y 2

9
3)2

} 5 1

A hyperbola with center at (h, k ) and
transverse axis on the horizontal line y 5 k

A hyperbola with center at (h, k ) and
transverse axis on the vertical line x 5 h

x

y

4y2 − x2 = 12

E X A M P L E  4

   480  Conic Sections 



The center is at (2, 3) and the transverse axis is on the line y 5 3. Because a 2 5 16,
we know that a 5 4. Therefore, the vertices are four units to the right and four units
to the left of the center, (2, 3), so they are at (6, 3) and (22, 3). Likewise, because
b 2 5 9, or b 5 3, the endpoints of the conjugate axis are three units up and three
units down from the center, so they are at (2, 6) and (2, 0). Using a 5 4 and b 53,

the slopes of the asymptotes are }
3
4

} and 2}
3
4

}. Then, using the slopes, the center (2, 3),

and the point–slope form for writing the equation of a line, we can determine the
equations of the asymptotes to be 3x 2 4y 5 26 and 3x 1 4y 5 18. From the rela-
tionship c 2 5 a 2 1 b 2 we obtain c 2 5 16 1 9 5 25. Thus the foci are at (7, 3) and
(23, 3). The hyperbola is sketched in Figure 8.33.

F I G U R E  8 . 3 3 n

Find the equation of the hyperbola with vertices at (24, 2) and (24, 24) and with
foci at (24, 3) and (24, 25).

Solution

Because the vertices and foci are on the same vertical line (x 5 24), this hyperbola
has an equation of the form

}
(y 2

a 2

k )2

} 2 }
(x 2

b 2

h )2

} 5 1

The center of the hyperbola is at the midpoint of the transverse axis. Therefore,

h 5 }
24 1

2
(24)
} 5 24 and k 5 }

2 1

2
(24)
} 5 21

The distance between the center, (24, 21) and a vertex, (24, 2) is three units, so 
a 5 3. The distance between the center, (24, 21), and a focus, (24, 3), is four
units, so c 5 4. Then, using the relationship c 2 5 a 2 1 b 2, we obtain

b 2 5 c 2 2 a 2 5 16 2 9 5 7

x

y

9x2 − 36x − 16y2 + 96y − 252 = 0

560 Chapter 8 Conic Sections
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8.3 Hyperbolas 561

Now we can substitute 24 for h, 21 for k, 9 for a 2, and 7 for b 2 in the general form
and simplify.

}
(y 1

9
1)2

} 2 }
(x 1

7
4)2

} 5 1

7(y 1 1)2 2 9(x 1 4)2 5 63

7(y 2 1 2y 1 1) 2 9(x 2 1 8x 1 16) 5 63

7y 2 1 14y 1 7 2 9x 2 2 72x 2 144 5 63

7y 2 1 14y 2 9x 2 2 72x 2 200 5 0 n

The hyperbola also has numerous applications, including many you may not
be aware of. For example, one method of artillery range-finding is based on the con-
cept of a hyperbola. If each of two listening posts, P1 and P2 in Figure 8.34 records
the time that an artillery blast is heard, then the difference between the times multi-
plied by the speed of sound gives the difference of the distances of the gun from the
two fixed points. Thus the gun is located somewhere on the hyperbola whose foci
are the two listening posts. By bringing in a third listening post, P3, we can form
another hyperbola with foci at P2 and P3. Then the location of the gun must be at
one of the intersections of the two hyperbolas.

F I G U R E  8 . 3 4

This same principle of intersecting hyperbolas is used in a long-range naviga-
tion system known as LORAN. Radar stations serve as the foci of the hyperbolas,
and of course computers are used for the many calculations that are necessary to fix
the location of a plane or ship. At the present time, LORAN is probably used mostly
for coastal navigation in connection with small pleasure boats.

P2

P3

P1

   482  Conic Sections 



Some rather unique architectural creations have used the concept of a hyper-
bolic paraboloid, pictured in Figure 8.35. For example, the TWA building at
Kennedy Airport is so designed. Some comets, upon entering the sun’s gravitational
field, follow a hyperbolic path, with the sun as one of the foci (see Figure 8.36).

F I G U R E  8 . 3 5

F I G U R E  8 . 3 6

Sun

Comet

562 Chapter 8 Conic Sections

For Problems 1–22, find the vertices, the foci, and the equa-
tions of the asymptotes, and sketch each hyperbola.

1. }
x
9

2

} 2 }
y
4

2

} 5 1 2. }
x
4

2

} 2 }
1
y
6

2

} 5 1

3. }
y
4

2

} 2 }
x
9

2

} 5 1 4. }
1
y
6

2

} 2 }
x
4

2

} 5 1

5. 9y 2 2 16x 2 5 144 6. 4y 2 2 x 2 5 4

7. x 2 2 y 2 5 9

8. x 2 2 y 2 5 1

9. 5y 2 2 x 2 5 25

10. y 2 2 2x 2 5 8

11. y 2 2 9x 2 5 29

12. 16y 2 2 x 2 5 216

13. 4x 2 2 24x 2 9y 2 2 18y 2 9 5 0

14. 9x 2 1 72x 2 4y 2 2 16y 1 92 5 0

15. y 2 2 4y 2 4x 2 2 24x 2 36 5 0

16. 9y 2 1 54y 2 x 2 1 6x 1 63 5 0

17. 2x 2 2 8x 2 y 2 1 4 5 0

18. x 2 1 6x 2 3y 2 5 0

19. y 2 1 10y 2 9x 2 1 16 5 0

20. 4y 2 216y 2 x 2 1 12 5 0

21. x 2 1 4x 2 y 2 2 4y 2 1 5 0

22. y 2 1 8y 2 x 2 1 2x 1 14 5 0

For Problems 23–38, find an equation of the hyperbola that
satisfies the given conditions.

23. Vertices (62, 0), foci (63, 0)

24. Vertices (61, 0), foci (64, 0)

25. Vertices (0, 63), foci (0, 65)

26. Vertices (0, 62), foci (0, 66)

27. Vertices (61, 0), contains the point (2, 3)

28. Vertices (0, 61), contains the point (23, 5)

29. Vertices 10, 6Ï3w2, length of conjugate axis is 4

30. Vertices 16Ï5w, 02, length of conjugate axis is 6

P R O B L E M  S E T  8 . 3
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8.4 Systems Involving Nonlinear Equations 563

31. Foci 16Ï2w3w, 02, length of transverse axis is 8

32. Foci 10, 63Ï2w2, length of conjugate axis is 4

33. Vertices (6, 23) and (2, 23), foci (7, 23) and (1, 23)

34. Vertices (27, 24) and (25, 24), foci (28, 24) and
(24, 24)

35. Vertices (23, 7) and (23, 3), foci (23, 9) and (23, 1)

36. Vertices (7, 5) and (7, 21), foci (7, 7) and (7, 23)

37. Vertices (0, 0) and (4, 0), foci (5, 0) and (21, 0)

38. Vertices (0, 0) and (0, 26), foci (0, 2) and (0, 28)

For Problems 39–48, identify the graph of each of the equa-
tions as a straight line, a circle, a parabola, an ellipse, or a
hyperbola. Do not sketch the graphs.

39. x 2 2 7x 1 y 2 1 8y 2 2 5 0

40. x2 2 7x 2 y 2 1 8y 2 2 5 0

41. 5x 2 7y 5 9

42. 4x 2 2 x 1 y 2 1 2y 2 3 5 0

43. 10x 2 1 y 2 5 8

44. 23x 2 2y 5 9

45. 5x 2 1 3x 2 2y 2 2 3y 2 1 5 0

46. x 2 1 y 2 2 3y 2 6 5 0

47. x 2 2 3x 1 y 2 4 5 0

48. 5x 1 y 2 2 2y 2 1 5 0

49. What is the difference between the graphs of the equa-
tions x 2 1 y 2 5 0 and x 2 2 y 2 5 0?

50. What is the difference between the graphs of the equa-
tions 4x 2 1 9y 2 5 0 and 9x 2 1 4y 2 5 0?

51. A flashlight produces a “cone of light” that can be cut by
the plane of a wall to illustrate the conic sections. Try

shining a flashlight against a wall (stand within a couple
of feet of the wall) at different angles to produce a circle,
an ellipse, a parabola, and one branch of a hyperbola.
(You may find it difficult to distinguish between a
parabola and a branch of a hyperbola.) Write a paragraph
explaining this experiment to someone else.

THOUGHTS INTO WORDS

52. Use a graphing calculator to check your graphs for Prob-
lems 13–22. Be sure to graph the asymptotes for each
hyperbola.

53. Use a graphing calculator to check your answers for
Problems 39–48.

GRAPHING CALCULATOR ACTIVITIES

SYSTEMS INVOLVING NONLINEAR EQUATIONS

In Chapters 6 and 7, we used several techniques to solve systems of linear equations.
We will use two of those techniques in this section to solve some systems that con-
tain at least one nonlinear equation. Furthermore, we will use our knowledge of
graphing lines, circles, parabolas, ellipses, and hyperbolas to get a pictorial view of
the systems. That will give us a basis for predicting approximate real number solu-
tions if there are any. In other words, we have once again arrived at a topic that

8.4
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vividly illustrates the merging of mathematical ideas. Let’s begin by considering a
system that contains one linear and one nonlinear equation.

Solve the system 1 2.

Solution

From our previous graphing experiences, we should recognize that x 2 1 y 2 5 13 is
a circle and 3x 1 2y 5 0 is a straight line. Thus the system can be pictured as in Fig-
ure 8.37. The graph indicates that the solution set of this system should consist of
two ordered pairs of real numbers, which represent the points of intersection in the
second and fourth quadrants.

F I G U R E  8 . 3 7

Now let’s solve the system analytically by using the substitution method.
Change the form of 3x 1 2y 5 0 to y 5 23x@2 and then substitute 23x@2 for y in
the other equation to produce

x 2 1 12}
3
2
x
}22

5 13

This equation can now be solved for x.

x 2 1 }
9
4
x 2

} 5 13

4x 2 1 9x 2 5 52

13x 2 5 52

x 2 5 4

x 5 62

Substitute 2 for x and then 22 for x in the second equation of the system to produce
two values for y.

y

x

x 2 1 y 2 5 13
3x 1 2y 5 0

564 Chapter 8 Conic Sections
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8.4 Systems Involving Nonlinear Equations 565

3x 1 2y 5 0 3x 1 2y 5 0

3(2) 1 2y 5 0 3(22) 1 2y 5 0

2y 5 26 2y 5 6

y 5 23 y 5 3

Therefore, the solution set of the system is { (2, 23), (22, 3)} . n

REMARK Don’t forget that, as always, you can check the solutions by sub-
stituting them back into the original equations. Graphing the system permits
you to approximate any possible real number solutions before solving the sys-
tem. Then, after solving the system, you can use the graph again to check that
the answers are reasonable.

Solve the system 1 2.

Solution

Graphing the system produces Figure 8.38. This figure indicates that there should be

F I G U R E  8 . 3 8

four ordered pairs of real numbers in the solution set of the system. Solving the sys-
tem by using the elimination method works nicely. We can simply add the two equa-
tions, which eliminates the x’s.

Substituting Ï1w0w for y in the first equation yields

x 2 1 y 2 5 16

2x 2 1 y 2 5 4
}}}}}}}

2y 2 5 20

y 2 5 10

y 5 6Ï1w0w

y

x

y2 − x2  = 4

y2 + x2  = 16

x 2 1 y 2 5 16
y 2 2 x 2 5 4E X A M P L E  2
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x 2 1 y 2 5 16

x 2 1 1Ï1w0w22 5 16

x 2 1 10 5 16

x 2 5 6

x 5 6Ï6w

Thus 1Ï6w, Ï1w0w2 and 12Ï6w, Ï1w0w2 are solutions. Substituting 2Ï1w0w for y in the
first equation yields

x 2 1 y 2 5 16

x 2 1 12Ï1w0w22 5 16

x 2 1 10 5 16

x 2 5 6

x 5 6Ï6w

Thus 1Ï6w, 2Ï1w0w2 and 12Ï6w, 2Ï1w0w2 are also solutions. The solution set is



12Ï6w, Ï1w0w2, 12Ï6w, 2Ï1w0w2, 1Ï6w, Ï1w0w2, 1Ï6w, 2Ï1w0w2


 . n

Sometimes a sketch of the graph of a system may not clearly indicate whether
the system contains any real number solutions. The next example illustrates such a
situation.

Solve the system 1 2.

Solution

From previous graphing experiences, we recognize that y 5 x 2 1 2 is the basic
parabola shifted upward two units and 6x 2 4y 5 25 is a straight line (see Figure
8.39). Because of the close proximity of the curves, it is difficult to tell whether they
intersect. In other words, the graph does not definitely indicate any real number
solutions for the system.

F I G U R E  8 . 3 9

y

x

y 5 x 2 1 2
6x 2 4y 5 25

566 Chapter 8 Conic Sections
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Let’s solve the system by using the substitution method. We can substitute 
x 2 1 2 for y in the second equation, which produces two values for x.

6x 2 4(x 2 1 2) 5 25

6x 2 4x 2 2 8 5 25

24x 2 1 6x 2 3 5 0

4x 2 2 6x 1 3 5 0

x 5}
6 6 Ï3w

8
6w 2w 4w8w
}

x 5 }
6 6 Ï

8
2w1w2w
}

x 5 }
6 6

8
2iÏ3w
}

x 5 }
3 6

4
iÏ3w
}

It is now obvious that the system has no real number solutions. That is, the line and
the parabola do not intersect in the real number plane. However, there will be two
pairs of complex numbers in the solution set. We can substitute (3 1 iÏ3w)@4 for x
in the first equation.

y 5 1}3 1

4
iÏ3w
}22

1 2

5 }
6 1

1
6
6
iÏ3w
} 1 2

5}
6 1 6iÏ

16
3w 1 32
}

5 }
38 1

16
6iÏ3w
} 5 }

19 1

8
3iÏ3w
}

Likewise, we can substitute 13 2 iÏ3w2@4 for x in the first equation.

y 5 1}3 2

4
iÏ3w
}22

1 2

5 }
6 2

1
6
6
iÏ3w
} 1 2

5}
6 2 6iÏ

16
3w 1 32
}

5 }
38 2

16
6iÏ3w
} 5 }

19 2

8
3iÏ3w
}

The solution set is 


 1}3 1

4
iÏ3w
}, }

19 1

8
3iÏ3w
}2, 1}3 2

4
iÏ3w
}, }

19 2

8
3iÏ3w
}2



. n
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In Example 3 the use of a graphing utility may not, at first, indicate whether
the system has any real number solutions. Suppose that we graph the system using a
viewing rectangle such that 215 # x # 15 and 210 # y # 10. As shown in the dis-
play in Figure 8.40, we cannot tell whether the line and the parabola intersect. 

F I G U R E  8 . 4 0

However, if we change the viewing rectangle so that 0 # x # 2 and 0 # y # 4, as
shown in Figure 8.41, then it becomes apparent that the two graphs do not intersect.

F I G U R E  8 . 4 1

Find the real number solutions for the system

1 2
Solution

First, let’s use a graphing calculator to obtain a graph of the system as shown in Fig-
ure 8.42. The two curves appear to intersect at approximately x 5 4 and y 5 22. To

y 5 log2(x 2 3) 2 2
y 5 2log2x

20

4

0

15215

10

210

568 Chapter 8 Conic Sections
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solve the system algebraically, we can equate the two expressions for y and solve the
resulting equation for x.

F I G U R E  8 . 4 2

log2(x 2 3) 2 2 5 2log2 x

log2 x 1 log2(x 2 3) 5 2

log2 x(x 2 3) 5 2

At this step we can either change to exponential form or rewrite 2 as log2 4.

log2 x(x 2 3) 5 log24

x(x 2 3) 5 4

x 2 2 3x 2 4 5 0

(x 2 4)(x 1 1) 5 0

x 2 4 5 0 or x 1 1 5 0

x 5 4 or x 5 21

Because logarithms are not defined for negative numbers, 21 is discarded. There-
fore, if x 5 4, then

y 5 2log2 x

becomes

y 5 2log2 4

5 22

Therefore, the solution set is { (4, 22)} . n

15215

10

210
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For Problems 1–30, (a) graph the system so that approximate
real number solutions (if there are any) can be predicted, and
(b) solve the system by the substitution or elimination method.

1. 1 2 2. 1 2
3. 1 2 4. 1 2
5. 1 2 6. 1 2
7. 1 2 8. 1 2
9. 1 2 10. 1 2

11. 1 2 12. 1 2
13. 1 2 14. 1 2
15. 1 2
16. 1 2 17. 1 2
18. 1 2 19. 1 2

20. 1 2 21. 1 2
22. 1 2 23. 1 2
24. 1 2 25. 1 2
26. 1 2 27. 1 2
28. 1 2 29. 1 2
30. 1 2
For Problems 31–36, solve each system for all real number
solutions.

31. 1 2 32. 1 2
33. 1 2 34. 1 2
35. 1 2 36. 1 2y 5 3(4x) 2 8

y 5 42x 2 2(4x) 2 4
y 5 x 3

y 5 x 3 1 2x 2 1 5x 2 3

y 5 28 2 11ex

y 5 2e 2x
y 5 ex 2 1
y 5 2e2 x

y 5 log10(x 2 9) 2 1
y 5 2 log10 x

y 5 log3(x 2 6) 2 3
y 5 2log3 x

x 2 1 4y 2 5 25
xy 5 6

xy 5 3
2x 1 2y 5 7

4x 2 1 3y 2 5 9
y 2 2 4x 2 5 7

2x 2 2 3y 2 5 21
2x 2 1 3y 2 5 5

2x 2 1 y 2 5 11
x 2 2 y 2 5 4

8y 2 2 9x 2 5 6
8x 2 2 3y 2 5 7

2x 2 1 y 2 5 8
x 2 1 y 2 5 4

x 2 2 y 2 5 4
x 2 1 y 2 5 4

y 5 2x 2 1 1
y 5 x 2 2 2

y 5 x 2 1 2x 2 1
y 5 x 2 1 4x 1 5

y 5 x 2

y 5 x 2 2 4x 1 4

y 5 2x 2 1 3
y 5 x 2 1 1

x 2 2 4y 2 5 16
2y 2 x 5 2

x 2 y 5 2
x 2 2 y 2 5 16

4x 2 1 9y 2 5 25
2x 1 3y 5 7

x 1 y 5 23
x 2 1 2y 2 2 12y 2 18 5 0

2x 2 y 5 7
3x 2 1 y 2 5 21

x 2 1 2y 2 5 9
x 2 4y 5 29

y 5 2x 2 1 1
x 1 y 5 2

y 5 x 2 2 3
x 1 y 5 24

2x 1 y 5 0
y 5 2x 2 1 2x 2 4

2x 1 y 5 22
y 5 x 2 1 4x 1 7

y 5 x 2 2 4x 1 5
y 2 x 5 1

y 5 x 2 1 6x 1 7
2x 1 y 5 25

x 2 1 y 2 5 3
x 2 y 5 25

x 2 1 y 2 5 2
x 2 y 5 4

x 2 1 y 2 5 10
x 1 y 5 22

x 2 1 y 2 5 26
x 1 y 5 24

x 2 1 y 2 5 13
2x 1 3y 5 13

x 2 1 y 2 5 5
x 1 2y 5 5

570 Chapter 8 Conic Sections
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37. What happens if you try to graph the system 

1 2?

38. For what value(s) of k will the line x 1 y 5 k touch the
ellipse x 2 1 2y 2 5 6 in one and only one point? Defend
your answer.

39. The system

1 2

represents two circles that intersect in two points. An
equivalent system can be formed by replacing the second
equation with the result of adding 21 times the first equa-
tion to the second equation. Thus we obtain the system

1 2
Explain why the linear equation in this system is the
equation of the common chord of the original two inter-
secting circles.

x 2 2 6x 1 y 2 2 4y 1 4 5 0

2x 1 12y 2 9 5 0

x 2 2 6x 1 y 2 2 4y 1 4 5 0

x 2 2 4x 1 y 2 1 8y 2 5 5 0

7x 2 1 8y 2 5 36
11x 2 1 5y 2 5 24

THOUGHTS INTO WORDS
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40. Graph the system of equations 1 2 and use

the trace and zoom features of your calculator to show
that this system has no real number solutions.

41. Use a graphing calculator to graph the systems in Prob-
lems 31–36 and check the reasonableness of your
answers to those problems.

For Problems 42–47, use a graphing calculator to approxi-
mate, to the nearest tenth, the real number solutions for each
system of equations.

42. 1 2
43. 1 2
44. 1 2 45. 1 2
46. 1 2 47. 1 2y 2 2 x 2 5 16

2y 2 2 x 2 5 8
x 5 y 2 2 2y 1 3
x 2 1 y 2 5 25

y 5 ln (x 2 1)
y 5 x 2 2 16x 1 64

y 5 2x 1 1
y 5 22x 1 2

y 5 x 3 1 2x 2 2 3x 1 2
y 5 2x 3 2 x 2 1 1

y 5 ex 1 1
y 5 x 3 1 x 2 2 2x 2 1

y 5 x 2 1 2
6x 2 4y 5 25

GRAPHING CALCULATOR ACTIVITIES

The following standard forms for the equations of conic sections were developed in
this chapter.

Parabolas

x 2 5 4py focus (0, p ), directrix y 5 2p, y-axis symmetry

y 2 5 4px focus (p, 0), directrix x 5 2p, x-axis symmetry

(x 2 h )2 5 4p(y 2 k ) focus (h, k 1 p ), directrix y 5 k 2 p, symmetric
with respect to the line x 5 h

(y 2 k )2 5 4p(x 2 h ) focus (h 1 p, k ), directrix x 5 h 2 p, symmetric
with respect to the line y 5 k

Ellipses

}
a
x2

2} 1 }
b
y 2

2} 5 1
center (0, 0), vertices (6a, 0), endpoints of
minor axis (0, 6b ), foci (6c, 0), c 2 5 a 2 2
b 2, a 2 . b 2

}
b
x 2

2} 1 }
a
y 2

2} 5 1
center (0, 0), vertices (0, 6a ), endpoints of
minor axis (6b, 0), foci (0, 6c ), c 2 5 a 2 2
b 2, a 2 . b 2

}
(x 2

a 2

h )2

} 1 }
(y 2

b 2

k )2

} 5 1
center (h, k ), vertices (h 6 a, k ), endpoints of
minor axis (h, k 6 b ), foci (h 6 c , k), 
c 2 5 a 2 2 b 2, a 2 . b 2

C H A P T E R  8 S U M M A R Y
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}
(x 2

b 2

h )2

} 1 }
(y 2

a 2

k )2

} 51
center (h, k ), vertices (h, k 6 a ), endpoints of
minor axis (h 6 b, k ), foci (h, k 6 c ), 
c 2 5 a 2 2 b 2, a 2 . b 2

Hyperbolas

}
a
x 2

2} 2 }
b
y 2

2} 5 1
center (0, 0), vertices (6a, 0), endpoints of
conjugate axis (0, 6 b ), foci (6c, 0), 

c 2 5 a 2 1 b 2, asymptotes y 5 6}
b
a

}x

}
a
y 2

2} 2 }
b
x 2

2} 5 1
center (0, 0), vertices (0, 6a ), endpoints of
conjugate axis (6b, 0), foci (0, 6c ), c 2 5

a 2 1 b 2, asymptotes y 5 6}
a
b

}x

}
(x 2

a 2

h )2

} 2 }
(y 2

b 2

k )2

} 5 1
center (h, k ), vertices (h 6 a, k ), endpoints of
conjugate axis (h, k 6 b ), foci (h 6 c, k ),

c2 5 a2 1 b2, asymptotes y 2 k 5 6}
b
a

}(x 2 h)

}
(y 2

a 2

k )2

} 2 }
(x 2

b 2

h )2

} 5 1
center (h, k ), vertices (h, k 6 a ), endpoints of
conjugate axis (h 6 b, k ), foci (h, k 6 c ),

c2 5 a2 1 b2, asymptotes y 2 k 5 6}
a
b

}(x 2 h)

Systems that contain at least one nonlinear equation can often be solved by substi-
tution or by the elimination method. Graphing the system will often provide a basis
for predicting approximate real number solutions if there are any.

C H A P T E R  8  R E V I E W  P R O B L E M  S E T

For Problems 1–12, (a) identify the conic section as a
parabola, an ellipse, or a hyperbola, (b) if it is a parabola, find
its vertex, focus, and directrix; if it is an ellipse, find its ver-
tices, the endpoints of its minor axis, and its foci; if it is a
hyperbola, find its vertices, the endpoints of its conjugate axis,
its foci, and its asymptotes, and (c) sketch each of the curves.

1. x 2 1 2y 2 5 32 2. y 2 5 212x

3. 3y 2 2 x 2 5 9 4. 2x 2 2 3y 2 5 18

5. 5x 2 1 2y 2 5 20 6. x 2 5 2y

7. x 2 2 8x 2 2y 2 1 4y 1 10 5 0

8. 9x 2 2 54x 1 2y 2 1 8y 1 71 5 0

9. y 2 2 2y 1 4x 1 9 5 0

10. x 2 1 2x 1 8y 1 25 5 0

11. x 2 1 10x 1 4y 2 2 16y 1 25 5 0

12. 3y 2 1 12y 2 2x 2 2 8x 2 8 5 0
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For Problems 13–24, find the equation of the indicated conic
section that satisfies the given conditions.

13. Parabola with vertex (0, 0), focus (25, 0), directrix x 5 5

14. Ellipse with vertices (0, 64), foci 10, 6Ï1w5w2

15. Hyperbola with  vertices 16Ï2w, 02, length of conjugate
axis 10

16. Ellipse with vertices (62, 0), contains the point (1, 22)

17. Parabola with vertex (0, 0), symmetric with respect to the
y axis, contains the point (2, 6)

18. Hyperbola with vertices (0, 61), foci 10, 6Ï1w0w2

19. Ellipse with vertices (6, 1), and (6, 7), length of minor
axis 2 units

20. Parabola with vertex (4, 22), focus (6, 22)

21. Hyperbola with vertices (25, 23) and (25, 25), foci
(25, 22) and (25, 26)

22. Parabola with vertex (26, 23), symmetric with respect
to the line x 5 26, contains the point (25, 22)

23. Ellipse with endpoints of minor axis (25, 2) and
(25, 22), length of major axis 10 units

24. Hyperbola with vertices (2, 0) and (6, 0), length of conju-
gate axis 8 units

For Problems 25–30, (a) graph the system, and (b) solve the
system by using the substitution or elimination method.

25. 1 2 26. 1 2
27. 1 2 28. 1 2
29. 1 2 30. 1 2y 2 2 x 2 5 1

4x 2 1 y 2 5 4
x 2 1 2y 2 5 8

2x 2 1 3y 2 5 12

4x 2 2 y 2 5 16
9x 2 1 9y 2 5 16

x 2 y 5 1
y 5 x 2 1 4x 1 1

x 2 2 y 2 5 8
3x 2 y 5 8

x 2 1 y 2 5 17
x 2 4y 5 217
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1. Find the focus of the parabola x 2 5 220y.

2. Find the vertex of the parabola y 2 2 4y 2 8x 2 20 5 0.

3. Find the equation of the directrix for the parabola 2y 2 5 24x.

4. Find the focus of the parabola y 2 5 24x.

5. Find the vertex of the parabola x 2 1 4x 2 12y 2 8 5 0.

6. Find the equation of the directrix for the parabola x 2 5 216y.

7. Find the equation of the parabola that has its vertex at the origin, is symmetric
with respect to the x axis, and contains the point (22, 4).

8. Find the equation of the parabola that has its vertex at (3, 4) and its focus at 
(3, 1).

9. Find the endpoints of the major axis of the ellipse 4x 2 1 y 2 5 36.

10. Find the length of the major axis of the ellipse x 2 2 4x 1 9y 2 2 18y 1 4 5 0.

11. Find the endpoints of the minor axis of the ellipse 9x 2 1 90x 1 4y 2 2 8y 1
193 5 0.

12. Find the foci of the ellipse x 2 1 4y 2 5 16.

13. Find the center of the ellipse 3x 2 1 30x 1 y 2 2 16y 1 79 5 0.

14. Find the equation of the ellipse that has the endpoints of its major axis at 
(0, 610) and its foci at (0, 68).

15. Find the equation of the ellipse that has the endpoints of its major axis at
(2, 22) and (10, 22) and the endpoints of its minor axis at (6, 0) and (6, 24).

16. Find the equations of the asymptotes of the hyperbola 4y 2 2 9x 2 5 32.

17. Find the vertices of the hyperbola y 2 2 6y 2 3x 2 2 6x 2 3 5 0.

18. Find the foci of the hyperbola 5x 2 2 4y 2 5 20.

19. Find the equation of the hyperbola that has its vertices at (66, 0) and its foci at
(64Ï3w, 0).

20. Find the equation of the hyperbola that has its vertices at (0, 4) and (22, 4) and
its foci at (2, 4) and (24, 4).

21. How many real number solutions are there for the system 1 2?

22. Solve the system 1 2.
x 2 1 4y 2 5 25

xy 5 6

x 2 1 y 2 5 16
x 2 2 4y 5 8

574 Chapter 8 Conic Sections
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For Problems 23–25, graph each conic section.

23. y 2 1 4y 1 8x 2 4 5 0

24. 9x 2 2 36x 1 4y 2 116y 1 16 5 0

25. x 2 1 6x 2 3y 2 5 0
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SEQUENCES AND

MATHEMATICAL

INDUCTION

If you could get a job that pays only a penny the first day of your employment, but then doubles
each succeeding day, by the 31st working day your salary would be $10,737,418.24.

9.1 Arithmetic
Sequences

9.2 Geometric
Sequences

9.3 Another Look at
Problem Solving

9.4 Mathematical
Induction

9

576

          

497
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Suppose that an auditorium has 35 seats in the first row, 40 seats in the sec-
ond row, 45 seats in the third row, and so on for ten rows. The numbers 35,
40, 45, 50, . . . , 80 represent the number of seats per row from row 1 through
row 10. This list of numbers has a constant difference of 5 between any two
successive numbers in the list; such a list is called an arithmetic sequence.
(Used in this sense, the word arithmetic is pronounced with the accent on the
syllable met.)

Suppose that a fungus culture growing under controlled conditions
doubles in size each day. If today the size of the culture is 6 units, then the
numbers 12, 24, 48, 96, 192 represent the size of the culture for the next 5
days. In this list of numbers, each number after the first is twice the previous
number; such a list is called a geometric sequence. Arithmetic sequences
and geometric sequences will be the center of our attention in this chapter.

ARITHMETIC SEQUENCES

An infinite sequence is a function whose domain is the set of positive integers. For
example, consider the function defined by the equation

f (n ) 5 5n 1 1

where the domain is the set of positive integers. If we substitute the numbers of the
domain in order, starting with 1, we can list the resulting ordered pairs:

(1, 6) (2, 11) (3, 16) (4, 21) (5, 26)

and so on. However, because we know we are using the domain of positive integers
in order, starting with 1, there is no need to use ordered pairs. We can simply
express the infinite sequence as

6, 11, 16, 21, 26, . . .

Often the letter a is used to represent sequential functions, and the functional
value of a at n is written an (this is read “a sub n”) instead of a(n). The sequence is
then expressed

a1, a2, a3, a4, . . .

where a1 is the first term, a2 is the second term, a3 is the third term, and so on.
The expression an, which defines the sequence, is called the general term of the
sequence. Knowing the general term of a sequence enables us to find as many terms
of the sequence as needed and also to find any specific terms. Consider the follow-
ing example.

9.1

9.1 Arithmetic Sequences 577
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Find the first five terms of the sequence where an 5 2n2 2 3; find the 20th term.

Solution

The first five terms are generated by replacing n with 1, 2, 3, 4, and 5.

a1 5 2(1)2 2 3 5 21 a2 5 2(2)2 2 3 5 5

a3 5 2(3)2 2 3 5 15 a4 5 2(4)2 2 3 5 29

a5 5 2(5)2 2 3 5 47

The first five terms are thus 21, 5, 15, 29, and 47. The 20th term is

a20 5 2(20)2 2 3 5 797 n

Arithmetic Sequences

An arithmetic sequence (also called an arithmetic progression) is a sequence that
has a common difference between successive terms. The following are examples of
arithmetic sequences.

1, 8, 15, 22, 29, . . .

4, 7, 10, 13, 16, . . .

4, 1, 22, 25, 28, . . .

21, 26, 211, 216, 221, . . .

The common difference in the first sequence is 7. That is, 8 2 1 5 7, 15 2 8 5 7,
22 2 15 5 7, 29 2 22 5 7, and so on. The common differences for the next three
sequences are 3, 23, and 25, respectively.

In a more general setting, we say that the sequence

a1, a2, a3, a4, . . . , an, . . .

is an arithmetic sequence if and only if there is a real number d such that

ak11 2 ak 5 d

for every positive integer k. The number d is called the common difference.
From the definition we see that ak11 5 ak 1 d. In other words, we can gener-

ate an arithmetic sequence that has a common difference of d by starting with a first
term a1 and then simply adding d to each successive term.

First term: a1

Second term: a1 1 d

Third term: a1 1 2d (a1 1 d ) 1 d 5 a1 1 2d
Fourth term: a1 1 3d

.

.

.

nth term: a1 1 (n 2 1)d

578 Chapter 9 Sequences and Mathematical Induction
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9.1 Arithmetic Sequences 579

Thus the general term of an arithmetic sequence is given by

where a1 is the first term and d is the common difference. This formula for the gen-
eral term can be used to solve a variety of problems involving arithmetic sequences.

Find the general-term expression for the arithmetic sequence 6, 2, 22, 26, . . . .

Solution

The common difference, d, is 2 2 6 5 24, and the first term, a1, is 6. Substitute
these values into an 5 a1 1 (n 2 1)d and simplify to obtain

an 5 a1 1 (n 2 1)d

5 6 1 (n 2 1)(24)

5 6 2 4n 1 4

5 24n 1 10 n

Find the 40th term of the arithmetic sequence 1, 5, 9, 13, . . . .

Solution

Using an 5 a1 1 (n 2 1)d, we obtain

a40 5 1 1 (40 2 1)4

5 1 1 (39)(4)

5 157 n

Find the first term of the arithmetic sequence where the fourth term is 26 and the
ninth term is 61.

Solution

Using an 5 a1 1 (n 21)d with a4 5 26 (the fourth term is 26) and a9 5 61 (the
ninth term is 61), we have

26 5 a1 1 (4 2 1)d 5 a1 1 3d

61 5 a1 1 (9 2 1)d 5 a1 1 8d

Solving the system of equations

1 2
yields a1 5 5 and d 5 7. Thus the first term is 5. n

a1 1 3d 5 26

a1 1 8d 5 61

an 5 a1 1 (n 2 1)d

E X A M P L E  2

E X A M P L E  4
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Sums of Arithmetic Sequences

We often use sequences to solve problems, so we need to be able to find the sum of a
certain number of terms of the sequence. Before we develop a general-sum formula
for arithmetic sequences, let’s consider an approach to a specific problem that we
can then use in a general setting.

Find the sum of the first 100 positive integers.

Solution

We are being asked to find the sum of 1 1 2 1 3 1 4 1 . . . 1 100. Rather than
adding in the usual way, lets find the sum in the following manner.

50

}
100(

2
101)
} 5 5050

Note that we simply wrote the indicated sum forward and backward, and then we
added the results. In so doing, we produced 100 sums of 101, but half of them are
repeats. For example, 100 1 1 and 1 1 100 are both counted in this process. Thus
we divide the product (100)(101) by 2, which yields the final result of 5050. n

The forward–backward approach we used in Example 5 can be used to
develop a formula for finding the sum of the first n terms of any arithmetic
sequence. Consider an arithmetic sequence a1, a2, a3, a4, . . . , an with a common
difference of d. Use Sn to represent the sum of the first n terms and proceed as 
follows.

Sn 5 a1 1 (a1 1 d ) 1 (a1 1 2d ) 1 . . . 1 (an 2 2d ) 1 (an 2 d ) 1 an

Now write this sum in reverse.

Sn 5 an 1 (an 2 d ) 1 (an 2 2d ) 1 . . . 1 (a1 1 2d ) 1 (a1 1 d ) 1 a1

Add the two equations to produce

2Sn 5 (a1 1 an) 1 (a1 1 an) 1 (a1 1 an) 1 . . . 1 (a1 1 an) 1 (a1 1 an) 1 (a1 1 an)

That is, we have n sums a1 1 an, so

2Sn 5 n(a1 1 an)

from which we obtain a sum formula:

1 1 2 1 3 1 4 1 . . . 1 100

100 1 99 1 98 1 97 1 . . . 1 1
}}}}}}}}}}}}}}}
101 1 101 1 101 1 101 1 . . . 1 101

580 Chapter 9 Sequences and Mathematical Induction
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Using the nth-term formula and/or the sum formula, we can solve a variety of
problems involving arithmetic sequences.

Find the sum of the first 30 terms of the arithmetic sequence 3, 7, 11, 15, . . . .

Solution

Using an 5 a1 1 (n 2 1)d, we can find the 30th term.

a30 5 3 1 (30 2 1)4 5 3 1 29(4) 5 119

Now we can use the sum formula.

S30 5 }
30(3 1

2
119)

} 5 1830 n

Find the sum 7 1 10 1 13 1 . . . 1 157.

Solution

To use the sum formula, we need to know the number of terms. The nth-term for-
mula will do that for us.

an 5 a1 1 (n 2 1)d

157 5 7 1 (n 2 1)3

157 5 7 1 3n 2 3

157 5 3n 1 4

153 5 3n

51 5 n

Now we can use the sum formula.

S51 5 }
51(7 1

2
157)

} 5 4182 n

Keep in mind that we developed the sum formula for an arithmetic sequence
by using the forward–backward technique, which we had previously used on a spe-
cific problem. Now that we have the sum formula, we have two choices when solv-
ing problems. We can either memorize the formula and use it or simply use the
forward–backward technique. If you choose to use the formula and some day you
forget it, don’t panic. Just use the forward–backward technique. In other words,
understanding the development of a formula often enables you to do problems even
when you forget the formula itself.

Sn 5 }
n(a1

2
1 an)
}

E X A M P L E  6
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Summation Notation

Sometimes a special notation is used to indicate the sum of a certain number of
terms of a sequence. The capital Greek letter sigma, S, is used as a summation
symbol. For example,

Σ
5

i51
ai

represents the sum a1 1 a2 1 a3 1 a4 1 a5. The letter i is frequently used as the
index of summation; the letter i takes on all integer values from the lower limit to
the upper limit, inclusive. Thus

Σ
4

i51
bi 5 b1 1 b2 1 b3 1 b4

Σ
7

i53
ai 5 a3 1 a4 1 a5 1 a6 1 a7

Σ
15

i51
i2 5 12 1 22 1 32 1 . . . 1 152

Σ
n

i51
ai 5 a1 1 a2 1 a3 1 . . . 1 an

If a1, a2, a3, . . . represents an arithmetic sequence, we can now write the sum
formula

Σ
n

i51
ai 5 }

n
2

}(a1 1 an)

Find the sum Σ
50

i51
(3i 1 4).

Solution

This indicated sum means

Σ
50

i51
(3i 1 4) 5 [3(1) 1 4] 1 [3(2) 1 4] 1 [3(3) 1 4] 1 . . . 1 [3(50) 1 4]

5 7 1 10 1 13 1 . . . 1 154

Because this is an indicated sum of an arithmetic sequence, we can use our sum 
formula.

S50 5 }
5
2
0
}(7 1 154) 5 4025 n

582 Chapter 9 Sequences and Mathematical Induction
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Find the sum Σ
7

i52
2i2.

Solution

This indicated sum means

Σ
7

i52
2i2 5 2(2)2 1 2(3)2 1 2(4)2 1 2(5)2 1 2(6)2 1 2(7)2

5 8 1 18 1 32 1 50 1 72 1 98

This is not the indicated sum of an arithmetic sequence; therefore, let’s simply add
the numbers in the usual way. The sum is 278. n

Example 9 suggests a word of caution. Be sure to analyze the sequence of
numbers that is represented by the summation symbol. You may or may not be able
to use a formula for adding the numbers.

E X A M P L E  9

For Problems 1–10, write the first five terms of the sequence
that has the indicated general term.

1. an 5 3n 2 7 2. an 5 5n 2 2

3. an 5 22n 1 4 4. an 5 24n 1 7

5. an 5 3n2 2 1 6. an 5 2n2 2 6

7. an 5 n(n 2 1) 8. an 5 (n 1 1)(n 1 2)

9. an 5 2n11 10. an 5 3n 2 1

11. Find the 15th and 30th terms of the sequence where an 5
25n 2 4.

12. Find the 20th and 50th terms of the sequence where an 5
2n 2 3.

13. Find the 25th and 50th terms of the sequence where an 5
(21)n11.

14. Find the 10th and 15th terms of the sequence where an 5
2n2 2 10.

For Problems 15–24, find the general term (the nth term) for
each arithmetic sequence.

15. 11, 13, 15, 17, 19, . . . 16. 7, 10, 13, 16, 19, . . .

17. 2, 21, 24, 27, 210, . . .

18. 4, 2, 0, 22, 24, . . .

19. }
3
2

}, 2, }
5
2

}, 3, }
7
2

}, . . . 20. 0, }
1
2

}, 1, }
3
2

}, 2, . . .

21. 2, 6, 10, 14, 18, . . . 22. 2, 7, 12, 17, 22, . . .

23. 23, 26, 29, 212, 215, . . .

24. 24, 28, 212, 216, 220, . . .

For Problems 25–30, find the required term for each arith-
metic sequence.

25. The 15th term of 3, 8, 13, 18, . . .

26. The 20th term of 4, 11, 18, 25, . . .

27. The 30th term of 15, 26, 37, 48, . . .

28. The 35th term of 9, 17, 25, 33, . . .

29. The 52nd term of 1, }
5
3

}, }
7
3

}, 3, . . .

30. The 47th term of }
1
2

}, }
5
4

}, 2, }
1
4
1
}, . . .

P R O B L E M  S E T  9 . 1
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For Problems 31–42, solve each problem.

31. If the 6th term of an arithmetic sequence is 12 and the
10th term is 16, find the first term.

32. If the 5th term of an arithmetic sequence is 14 and the
12th term is 42, find the first term.

33. If the 3rd term of an arithmetic sequence is 20 and the
7th term is 32, find the 25th term.

34. If the 5th term of an arithmetic sequence is 25 and the
15th term is 225, find the 50th term.

35. Find the sum of the first 50 terms of the arithmetic
sequence 5, 7, 9, 11, 13, . . . .

36. Find the sum of the first 30 terms of the arithmetic
sequence 0, 2, 4, 6, 8, . . . .

37. Find the sum of the first 40 terms of the arithmetic
sequence 2, 6, 10, 14, 18, . . . .

38. Find the sum of the first 60 terms of the arithmetic
sequence 22, 3, 8, 13, 18, . . . .

39. Find the sum of the first 75 terms of the arithmetic
sequence 5, 2, 21, 24, 27, . . . .

40. Find the sum of the first 80 terms of the arithmetic
sequence 7, 3, 21, 25, 29, . . . .

41. Find the sum of the first 50 terms of the arithmetic

sequence }
1
2

}, 1, }
3
2

}, 2, }
5
2

}, . . . .

42. Find the sum of the first 100 terms of the arithmetic

sequence 2}
1
3

}, }
1
3

}, 1, }
5
3

}, }
7
3

}, . . . .

For Problems 43–50, find the indicated sum.

43. 1 1 5 1 9 1 13 1 . . . 1 197

44. 3 1 8 1 13 1 18 1 . . . 1 398

45. 2 1 8 1 14 1 20 1 . . . 1 146

46. 6 1 9 1 12 1 15 1 . . . 1 93

47. (27) 1 (210) 1 (213) 1 (216) 1 . . . 1 (2109)

48. (25) 1 (29) 1 (213) 1 (217) 1 . . . 1 (2169)

49. (25) 1 (23) 1 (21) 1 1 1 . . . 1 119

50. (27) 1 (24) 1 (21) 1 2 1 . . . 1 131

For Problems 51–58, solve each problem.

51. Find the sum of the first 200 odd whole numbers.

52. Find the sum of the first 175 positive even whole numbers.

53. Find the sum of all even numbers between 18 and 482,
inclusive.

54. Find the sum of all odd numbers between 17 and 379,
inclusive.

55. Find the sum of the first 30 terms of the arithmetic
sequence with the general term an 5 5n 2 4.

56. Find the sum of the first 40 terms of the arithmetic
sequence with the general term an 5 4n 2 7.

57. Find the sum of the first 25 terms of the arithmetic
sequence with the general term an 5 24n 2 1.

58. Find the sum of the first 35 terms of the arithmetic
sequence with the general term an 5 25n 2 3.

For Problems 59–70, find each sum.

59. Σ
45

i51
(5i 1 2) 60. Σ

38

i51
(3i 1 6)

61. Σ
30

i51
(22i 1 4) 62. Σ

40

i51
(23i 1 3)

63. Σ
32

i54
(3i 2 10) 64. Σ

47

i56
(4i 2 9)

65. Σ
20

i510
4i 66. Σ

30

i515
(25i)

67. Σ
5

i51
i2 68. Σ

6

i51
(i 2 1 1)

69. Σ
8

i53
(2i 2 1 i) 70. Σ

7

i54
(3i 2 2 2)
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9.1 Arithmetic Sequences 585

71. Before developing the formula an 5 a1 1 (n 2 1)d, we
stated the equation ak11 2 ak 5 d. In your own words,
explain what this equation says.

72. Explain how to find the sum 1 1 2 1 3 1 4 1 . . . 1
175 without using the sum formula.

73. Explain in words how to find the sum of the first n terms
of an arithmetic sequence.

74. Explain how one can tell that a particular sequence is an
arithmetic sequence.

THOUGHTS INTO WORDS

The general term of a sequence can consist of one expression
for certain values of n and another expression (or expressions)
for other values of n. That is, a multiple description of the
sequence can be given. For example,

an 5




2n 1 3 for n odd

3n 2 2 for n even

means that we use an 5 2n 1 3 for n 5 1, 3, 5, 7, . . . and we
use an 5 3n 2 2 for n 5 2, 4, 6, 8, . . . . The first six terms of
this sequence are 5, 4, 9, 10, 13, and 16.

For Problems 75–78, write the first six terms of each
sequence.

75. an 5




2n 1 1 for n odd
2n 2 1 for n even

76. an 5




}
1
n

} for n odd

n 2 for n even

77. an 5




3n 1 1 for n # 3
4n 2 3 for n . 3

78. an 5




5n 2 1 for n a multiple of 3
2n otherwise

The multiple-description approach can also be used to give a
recursive description for a sequence. A sequence is said to
be described recursively if the first n terms are stated and
then each succeeding term is defined as a function of one or
more of the preceding terms. For example,





a1 5 2

an 5 2an21 for n $ 2

means that the first term, a1 is 2 and each succeeding term is 2
times the previous term. Thus the first six terms are 2, 4, 8,
16, 32, and 64.

For Problems 79–84, write the first six terms of each
sequence.

79.


 for n $ 2

80.


 for n $ 2

81.


 for n $ 3

82.


 for n $ 3

83.


 for n $ 3

84.


 for n $ 4

a1 5 1
a2 5 2
a3 5 3
an 5 an21 1 an22 1 an23

a1 5 3
a2 5 1
an 5 (an21 2 an22)2

a1 5 2
a2 5 3
an 5 2an22 1 3an21

a1 5 1
a2 5 1
an 5 an22 1 an21

a1 5 3
an 5 an21 1 2

a1 5 4
an 5 3an21

Further Investigations
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GEOMETRIC SEQUENCES

A geometric sequence or geometric progression is a sequence in which we obtain
each term after the first by multiplying the preceding term by a common multiplier,
called the common ratio of the sequence. We can find the common ratio of a geo-
metric sequence by dividing any term (other than the first) by the preceding term.

The following geometric sequences have common ratios of 3, 2, }
1
2

}, and 24, 

respectively.

1, 3, 9, 27, 81, . . .

3, 6, 12, 24, 48, . . . 

16, 8, 4, 2, 1, . . .

21, 4, 216, 64, 2256, . . .

In a more general setting, we say that the sequence a1, a2, a3, . . . , an, . . . is a geo-
metric sequence if and only if there is a nonzero real number r such that

ak11 5 rak

for every positive integer k. The nonzero real number r is called the common ratio of
the sequence.

The previous equation can be used to generate a general geometric sequence
that has a1 as a first term and r as a common ratio. We can proceed as follows.

First term: a1

Second term: a1r

Third term: a1r 2 (a1r )( r ) 5 a1r 2

Fourth term: a1r 3

.

.

.

.

nth term: a1rn21

Thus the general term of a geometric sequence is given by

where a1 is the first term and r is the common ratio.

Find the general term for the geometric sequence 8, 16, 32, 64, . . . .

Solution

Using an 5 a1rn21, we obtain

an 5 8(2)n21 5 (23)(2)n21 5 2n12
n

an 5 a1rn21

9.2
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9.2 Geometric Sequences 587

Find the ninth term of the geometric sequence 27, 9, 3, 1, . . . .

Solution

Using an 5 a1rn21, we can find the ninth term as follows.

a9 5 271}
1
3

}2921
5 271}

1
3

}28
5 }

3
3

3

8} 5 }
3
1

5} 5 }
2
1
43
} n

Sums of Geometric Sequences

As with arithmetic sequences, we often need to find the sum of a certain number of
terms of a geometric sequence. Before we develop a general-sum formula for geo-
metric sequences, let’s consider an approach to a specific problem that we can then
use in a general setting.

Find the sum 1 1 3 1 9 1 27 1 . . . 1 6561.

Solution

Let S represent the sum and proceed as follows.

S 5 1 1 3 1 9 1 27 1 . . . 1 6561 (1)
3S 5 3 1 9 1 27 1 . . . 1 6561 1 19683 (2)

Equation (2) is the result of multiplying equation (1) by the common ratio, 3. Sub-
tracting equation (1) from equation (2) produces

2S 5 19683 2 1 5 19682

S 5 9841 n

Now let’s consider a general geometric sequence a1, a1r, a1r 2, . . . , a1rn21. By
applying a procedure similar to the one we used in Example 3, we can develop a for-
mula for finding the sum of the first n terms of any geometric sequence. We let Sn

represent the sum of the first n terms.

Sn 5 a1 1 a1r 1 a1r 2 1 . . . 1 a1rn21 (3)

Next we multiply both sides of equation (3) by the common ratio r.

rSn 5 a1r 1 a1r 2 1 a1r 3 1 . . . 1 a1rn (4)

We then subtract equation (3) from equation (4).

rSn 2 Sn 5 a1rn 2 a1

When we apply the distributive property to the left side and then solve for Sn, we
obtain

Sn(r 2 1) 5 a1rn 2 a1

Sn 5 }
a1

r
rn

2

2

1
a1}, r Þ 1

E X A M P L E  3
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Therefore, the sum of the first n terms of a geometric sequence with a first term a1

and a common ratio r is given by

Find the sum of the first eight terms of the geometric sequence 1, 2, 4, 8, . . . .

Solution

Use the sum formula to obtain

S8 5 }
1(

2
2)

2

8 2

1
1

} 5 }
28 2

1
1

} 5 255 n

If the common ratio of a geometric sequence is less than 1, it may be more
convenient to change the form of the sum formula. That is, the fraction

}
a1

r
rn

2

2

1
a1}

can be changed to

}
a1

1
2

2

a
r
1rn

}

by multiplying both the numerator and the denominator by 21. Thus, by using

Sn 5 }
a1

1
2

2

a
r
1rn

}

we can sometimes avoid unnecessary work with negative numbers when r , 1, as
the next example illustrates.

Find the sum 1 1 }
1
2

} 1 }
1
4

} 1 . . . 1 }
2
1
56
}.

Solution A

To use the sum formula, we need to know the number of terms, which can be found
by counting them or by applying the nth-term formula, as follows.

an 5 a1rn21

}
2
1
56
} 5 11}

1
2

}2n21

1}
1
2

}28
5 1}

1
2

}2n21

8 5 n 2 1 If bn 5 bm, then n 5 m.
9 5 n

Sn 5 }
a1

r
rn

2

2

1
a1}, r Þ 1
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9.2 Geometric Sequences 589

Now we use n 5 9, a1 5 1, and r 5 }
1
2

} in the sum formula of the form

Sn 5 }
a1

1
2

2

a
r
1rn

}

S9 5 5 5 5 1}
2
2
5
5
5
6

} n

We can also do a problem like Example 5 without finding the number of
terms; we use the general approach illustrated in Example 3. Solution B demon-
strates this idea.

Solution B

Let S represent the desired sum.

S 5 1 1 }
1
2

} 1 }
1
4

} 1 . . . 1 }
2
1
56
}

Multiply both sides by the common ratio, }
1
2

}.

}
1
2

} S 5 }
1
2

} 1 }
1
4

} 1 }
1
8

} 1 . . . 1 }
2
1
56
} 1 }

5
1
12
}

Subtract the second equation from the first and solve for S.

}
1
2

}S 5 1 2 }
5
1
12
} 5 }

5
5
1
1
1
2

}

S 5 }
5
2

1
5
1
6

} 5 1}
2
2
5
5
5
6

} n

Summation notation can also be used to indicate the sum of a certain number
of terms of a geometric sequence.

Find the sum Σ
10

i51
2i.

Solution

This indicated sum means

Σ
10

i51
2i 5 21 1 22 1 23 1 . . . 1 210

5 2 1 4 1 8 1 . . . 1 1024

}
5
5
1
1
1
2

}

}
}
1
2

}

1 2 }
5
1
12
}

}
}
1
2

}

1 2 11}
1
2

}29

}}
1 2 }

1
2

}

E X A M P L E  6
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This is the indicated sum of a geometric sequence, so we can use the sum formula,
with a1 5 2, r 5 2, and n 5 10.

S10 5 }
2(2

2
)
2

10 2

1
2

} 5 }
2(210

1
2 1)
} 5 2046 n

The Sum of an Infinite Geometric Sequence

Let’s take the formula

Sn 5 }
a1

1
2

2

a
r
1rn

}

and rewrite the right side by applying the property

}
a 2

c
b

} 5 }
a
c

} 2 }
b
c

}

Thus we obtain

Sn 5 }
1

a
2

1

r
} 2 }

1
a
2
1rn

r
} (1)

Now let’s examine the behavior of rn for u r u , 1—that is, for 21 , r , 1. For

example, suppose that r 5 }
1
2

}, then

r 2 5 1}
1
2

}22
5 }

1
4

} r 3 5 1}
1
2

}23
5 }

1
8

}

r 4 5 1}
1
2

}24
5 }

1
1
6
} r 4 5 1}

1
2

}25
5 }

3
1
2
}

and so on. We can make 1}
1
2

}2n
as close to zero as we please by choosing sufficiently

large values for n. In general, for values of r such that u r u , 1, the expression rn

approaches zero as n gets larger and larger. Therefore, the fraction a1rn@(1 2 r) in
equation (1) approaches zero as n increases. We say that the sum of the infinite
geometric sequence is given by

Find the sum of the infinite geometric sequence

1, }
1
2

}, }
1
4

}, }
1
8

}, . . .

S∞ 5 }
1

a
2

1

r
}, u r u , 1

590 Chapter 9 Sequences and Mathematical Induction
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9.2 Geometric Sequences 591

Solution

Because a1 5 1 and r 5 }
1
2

}, we obtain

S∞ 5 5 5 2 n

When we state that S∞ 5 2 in Example 7, we mean that as we add more and more
terms, the sum approaches 2. Observe what happens when we calculate the sum up
to five terms.

First term: 1

Sum of first two terms: 1 1 }
1
2

} 5 1}
1
2

}

Sum of first three terms: 1 1 }
1
2

} 1 }
1
4

} 5 1}
3
4

}

Sum of first four terms: 1 1 }
1
2

} 1 }
1
4

} 1 }
1
8

} 5 1}
7
8

}

Sum of first five terms: 1 1 }
1
2

} 1 }
1
4

} 1 }
1
8

} 1 }
1
1
6
} 5 1}

1
1
5
6
}

If u r u . 1, the absolute value of rn increases without bound as n increases. Consider
the following two examples and note the unbounded growth of the absolute value of
rn.

Let r 5 3. Let r 5 22.

r 2 5 32 5 9 r 2 5 (22)2 5 4

r 3 5 33 5 27 r 3 5 (22)3 5 28 u 2 8 u 5 8

r 4 5 34 5 81 r 4 5 (22)4 5 16

r 5 5 35 5 243 r 5 5 (22)5 5 232 u 2 32 u 5 32

If r 5 1, then Sn 5 na1, and as n increases without bound, u Sn u also increases with-
out bound. If r 5 21, then Sn will either be a1 or 0. Therefore, we say that the sum
of any infinite geometric sequence where u r u $ 1 does not exist.

Repeating Decimals as Sums of Infinite Geometric
Sequences

In Section 1.1, we defined rational numbers to be numbers that have either a termi-
nating or a repeating decimal representation. For example,

2.23 0.147 0.3w 0.1w4w and 0.56w

are rational numbers. (Remember that 0.3w means 0.3333. . . .) Place value provides

1
}
}
1
2

}

1
}
12 }

1
2

}
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the basis for changing terminating decimals such as 2.23 and 0.147 to a@b form,
where a and b are integers and b Þ 0.

2.23 5 }
2
1
2
0
3
0

} and 0.147 5 }
1
1
0
4
0
7
0

}

However, changing repeating decimals to a@b form requires a different technique,
and our work with sums of infinite geometric sequences provides the basis for one
such approach. Consider the following examples.

Change 0.1w4w to a@b form, where a and b are integers and b Þ 0.

Solution

The repeating decimal 0.1w4w can be written as the indicated sum of an infinite geo-
metric sequence with first term 0.14 and common ratio 0.01.

0.14 1 0.0014 1 0.000014 1 . . .

Using S∞ 5 a1@(1 2 r ), we obtain

S∞ 5 }
1 2

0.1
0
4
.01

} 5 }
0
0
.
.
1
9
4
9

} 5 }
1
9
4
9
}

Thus 0.1w4w 5 }
1
9

4
9
}. n

If the repeating block of digits does not begin immediately after the decimal
point, as in 0.56w we can make an adjustment in the technique we used in Example 8.

Change 0.56w to a@b form, where a and b are integers and b Þ 0.

Solution

The repeating decimal 0.56w can be written

(0.5) 1 (0.06 1 0.006 1 0.0006 1 . . .)

where

0.06 1 0.006 1 0.0006 1 . . .

is the indicated sum of the infinite geometric sequence with a1 5 0.06 and r 5 0.1.
Therefore,

S∞ 5 }
1

0
2

.0
0
6
.1

} 5 }
0
0
.0
.9
6

} 5 }
9
6
0
} 5 }

1
1
5
}

Now we can add 0.5 and }
1
1
5
}.

0.56w 5 0.5 1 }
1
1
5
} 5 }

1
2

} 1 }
1
1
5
} 5 }

1
3
5
0
} 1 }

3
2
0
} 5 }

1
3
7
0
} n
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9.2 Geometric Sequences 593

For Problems 1–12, find the general term (the nth term) for
each geometric sequence.

1. 3, 6, 12, 24, . . . 2. 2, 6, 18, 54, . . .

3. 3, 9, 27, 81, . . . 4. 2, 4, 8, 16, . . .

5. }
1
4

}, }
1
8

}, }
1
1
6
}, }

3
1
2
}, . . . 6. 8, 4, 2, 1, . . .

7. 4, 16, 64, 256, . . . 8. 6, 2, }
2
3

}, }
2
9

}, . . .

9. 1, 0.3, 0.09, 0.027, . . .

10. 0.2, 0.04, 0.008, 0.0016, . . .

11. 1, 22, 4, 28, . . . 12. 23, 9, 227, 81, . . .

For Problems 13–20, find the required term for each geomet-
ric sequence.

13. The 8th term of }
1
2

}, 1, 2, 4, . . .

14. The 7th term of 2, 6, 18, 54, . . .

15. The 9th term of 729, 243, 81, 27, . . .

16. The 11th term of 768, 384, 192, 96, . . .

17. The 10th term of 1, 22, 4, 28, . . .

18. The 8th term of 21, 2}
3
2

}, 2}
9
4

}, 2}
2
8
7
}, . . .

19. The 8th term of }
1
2

}, }
1
6

}, }
1
1
8
}, }

5
1
4
}, . . .

20. The 9th term of }
1
8
6
1
}, }

2
8
7
}, }

4
9

}, }
2
3

}, . . .

For Problems 21–32, solve each problem.

21. Find the first term of the geometric sequence with 5th

term }
3
3
2
} and common ratio 2.

22. Find the first term of the geometric sequence with 4th

term }
1
2
2
7
8

} and common ratio }
3
4

}.

23. Find the common ratio of the geometric sequence with
3rd term 12 and 6th term 96.

24. Find the common ratio of the geometric sequence with

2nd term }
8
3

} and 5th term }
6
8
4
1
}.

25. Find the sum of the first ten terms of the geometric
sequence 1, 2, 4, 8, . . . .

26. Find the sum of the first seven terms of the geometric
sequence 3, 9, 27, 81, . . . .

27. Find the sum of the first nine terms of the geometric
sequence 2, 6, 18, 54, . . . .

28. Find the sum of the first ten terms of the geometric
sequence 5, 10, 20, 40, . . . .

29. Find the sum of the first eight terms of the geometric
sequence 8, 12, 18, 27, . . . .

30. Find the sum of the first eight terms of the geometric

sequence 9, 12, 16, }
6
3
4
}, . . . .

31. Find the sum of the first ten terms of the geometric
sequence 24, 8, 216, 32, . . . .

32. Find the sum of the first nine terms of the geometric
sequence 22, 6, 218, 54, . . .

For Problems 33–38, find each indicated sum.

33. 9 1 27 1 81 1 . . . 1 729

34. 2 1 8 1 32 1 . . . 1 8192

35. 4 1 2 1 1 1 . . . 1 }
5
1
12
}

36. 1 1 (22) 1 4 1 . . . 1 256

37. (21) 1 3 1 (29) 1 . . . 1 (2729)

38. 16 1 8 1 4 1 . . . 1 }
3
1
2
}

For Problems 39–44, find each indicated sum.

39. Σ
9

i51
2i23 40. Σ

6

i51
3i 41. Σ

5

i52
(23)i11

P R O B L E M  S E T  9 . 2
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42. Σ
8

i53
(22)i21 43. Σ

6

i51
31}

1
2

}2i
44. Σ

5

i51
21}

1
3

}2i

For Problems 45–56, find the sum of each infinite geometric
sequence. If the sequence has no sum, so state.

45. 2, 1, }
1
2

}, }
1
4

}, . . . 46. 9, 3, 1, }
1
3

}, . . .

47. 1, }
2
3

}, }
4
9

}, }
2
8
7
}, . . . 48. 5, 3, }

9
5

}, }
2
2
7
5
}, . . .

49. 4, 8, 16, 32, . . . 50. 32, 16, 8, 4, . . .

51. 9, 23, 1, 2}
1
3

}, . . . 52. 2, 26, 18, 254, . . .

53. }
1
2

}, }
3
8

}, }
3
9
2
}, }

1
2
2
7
8

}, . . . 54. 4, 2}
4
3

}, }
4
9

}, 2}
2
4
7
}, . . .

55. 8, 24, 2, 21, . . . 56. 7, }
1
5
4
}, }

2
2
8
5
}, }

1
5
2
6
5

}, . . .

For Problems 57–68, change each repeating decimal to a@b
form, where a and b are integers and b Þ 0. Express a@b in
reduced form.

57. 0.3w 58. 0.4w 59. 0.2w6w

60. 0.1w8w 61. 0.1w2w3w 62. 0.2w7w3w

63. 0.26w 64. 0.43w 65. 0.21w4w

66. 0.37w1w 67. 2.3w 68. 3.7w

594 Chapter 9 Sequences and Mathematical Induction

69. Explain the difference between an arithmetic sequence
and a geometric sequence.

70. What does it mean to say that the sum of the infinite 

geometric sequence 1, }
1
2

}, }
1
4

}, }
1
8

}, . . . is 2?

71. What do we mean when we say that the infinite geomet-
ric sequence 1, 2, 4, 8, . . . has no sum?

72. Why don’t we discuss the sum of an infinite arithmetic
sequence?

THOUGHTS INTO WORDS

ANOTHER LOOK AT PROBLEM SOLVING

In the previous two sections, many of the exercises fell into one of the following
four categories.

1. Find the nth term of an arithmetic sequence

an 5 a1 1 (n 2 1)d

2. Find the sum of the first n terms of an arithmetic sequence

Sn 5 }
n(a1

2
1 an)
}

3. Find the nth term of a geometric sequence

an 5 a1rn21

4. Find the sum of the first n terms of a geometric sequence

Sn 5 }
a1

r
rn

2

2

1
a1}

9.3
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9.3 Another Look at Problem Solving 595

In this section we want to use this knowledge of arithmetic sequences and geo-
metric sequences to expand our problem-solving capabilities. Let’s begin by restating
some old problem-solving suggestions that continue to apply here; we will also con-
sider some other suggestions that are directly related to problems that involve
sequences of numbers. (We will indicate the new suggestions with an asterisk.)

As we solve some problems, these suggestions will become more meaningful.

Domenica started to work in 1975 at an annual salary of $14,500. She received a
$1050 raise each year. What was her annual salary in 1984?

Solution

The following sequence represents her annual salary beginning in 1975.

14,500, 15,550, 16,600, 17,650, . . .

This is an arithmetic sequence, with a1 5 14500 and d 5 1050. Because each term
of the sequence represents her annual salary, we are looking for the tenth term.

a10 5 14,500 1 (10 2 1)1050 5 14,500 1 9(1050) 5 23,950

Her annual salary in 1984 was $23,950. n

Suggestions for Solving Word Problems

1. Read the problem carefully and make certain that you understand
the meanings of all the words. Be especially alert for any technical
terms used in the statement of the problem.

2. Read the problem a second time (perhaps even a third time) to get
an overview of the situation being described and to determine the
known facts, as well as what you are to find.

3. Sketch a figure, diagram, or chart that might be helpful in analyzing
the problem.

*4. Write down the first few terms of the sequence to describe what is
taking place in the problem. Be sure that you understand, term by
term, what the sequence represents in the problem.

*5. Determine whether the sequence is arithmetic or geometric.

*6. Determine whether the problem is asking for a specific term of the
sequence or for the sum of a certain number of terms.

*7. Carry out the necessary calculations and check your answer for 
reasonableness.

P R O B L E M  1
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An auditorium has 20 seats in the front row, 24 seats in the second row, 28 seats in
the third row, and so on, for 15 rows. How many seats are there in the auditorium?

Solution

The following sequence represents the number of seats per row starting with the first
row.

20, 24, 28, 32, . . .

This is an arithmetic sequence, with a1 5 20 and d 5 4. Therefore, the 15th term,
which represents the number of seats in the 15th row, is given by

a15 5 20 1 (15 2 1)4 5 20 1 14(4) 5 76

The total number of seats in the auditorium is represented by

20 1 24 1 28 1 . . . 1 76

Use the sum formula for an arithmetic sequence to obtain

S15 5 }
1
2
5
}(20 1 76) 5 720

There are 720 seats in the auditorium. n

Suppose that you save 25 cents the first day of a week, 50 cents the second day, and
one dollar the third day and that you continue to double your savings each day. How
much will you save on the seventh day? What will be your total savings for the
week?

Solution

The following sequence represents your savings per day, expressed in cents.

25, 50, 100, . . .

This is a geometric sequence, with a1 5 25 and r 5 2. Your savings on the seventh
day is the seventh term of this sequence. Therefore, using an 5 a1rn21, we obtain

a7 5 25(2)6 5 1600

So you will save $16 on the seventh day. Your total savings for the 7 days is given
by

25 1 50 1 100 1 . . . 1 1600

Use the sum formula for a geometric sequence to obtain

S7 5 }
25(

2
2)

2

7 2

1
25

} 5 }
25(27

1
2 1)
} 5 3175

Thus your savings for the entire week is $31.75. n
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A pump is attached to a container for the purpose of creating a vacuum. For each

stroke of the pump, }
1
4

} of the air that remains in the container is removed. To the

nearest tenth of a percent, how much of the air remains in the container after six
strokes?

Solution

Let’s draw a diagram to help with the analysis of this problem.

First stroke: }
1
4

} of the 1 2 }
1
4

} 5 }
3
4

}

air is of the air
removed remains

Second stroke: }
1
4

}1}
3
4

}2 5 }
1
3
6
} }

3
4

} 2 }
1
3
6
} 5 }

1
9
6
}

of the air of the air
is removed remains

Third stroke: }
1
4

}1}
1
9
6
}2 5 }

6
9
4
} }

1
9
6
} 2 }

6
9
4
} 5 }

2
6
7
4
}

of the air of the air
is removed remains

The diagram suggests two approaches to the problem.

Approach A The sequence }
1
4

}, }
1
3
6
}, }

6
9
4
}, . . . represents, term by term, the fractional

amount of air that is removed with each successive stroke. Therefore, we can find
the total amount removed and subtract it from 100%. The sequence is geometric

with a1 5 }
1
4

} and r 5 }
3
4

}.

S6 5 5

51 2 }
4
7
0
2
9
9
6

} 5 }
3
4
3
0
6
9
7
6

} 5 82.2%

Therefore, 100% 2 82.2% 5 17.8% of the air remains after six strokes.

Approach B The sequence

}
3
4

}, }
1
9
6
}, }

2
6
7
4
}, . . .

represents, term by term, the amount of air that remains in the container after each
stroke. Therefore, when we find the sixth term of this geometric sequence, we will

}
1
4

}31 2 1}
3
4

}264
}}

}
1
4

}

}
1
4

} 2 }
1
4

}1}
3
4

}26

}}
1 2 }

3
4

}
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have the answer to the problem. Because a1 5 }
3
4

} and r 5 }
3
4

}, we obtain

a6 5 }
3
4

}1}
3
4

}25
5 1}

3
4

}26
5 }

4
7
0
2
9
9
6

} 5 17.8%

Therefore, 17.8% of the air remains after six strokes. n

It will be helpful for you to take another look at the two approaches we used to
solve Problem 4. Note in Approach B that finding the sixth term of the sequence
produced the answer to the problem without any further calculations. In Approach
A, we had to find the sum of six terms of the sequence and then subtract that amount
from 100%. As we solve problems that involve sequences, we must understand what
each particular sequence represents on a term-by-term basis.

598 Chapter 9 Sequences and Mathematical Induction

P R O B L E M  S E T  9 . 3

Use your knowledge of arithmetic sequences and geometric
sequences to help solve Problems 1–28.

1. A man started to work in 1960 at an annual salary of
$9500. He received a $700 raise each year. How much
was his annual salary in 1981?

2. A woman started to work in 1970 at an annual salary of
$13,400. She received a $900 raise per year. How much
was her annual salary in 1985?

3. State University had an enrollment of 9600 students in
1960. Each year the enrollment increased by 150 stu-
dents. What was the enrollment in 1973?

4. Math University had an enrollment of 12,800 students in
1977. Each year the enrollment decreased by 75 students.
What was the enrollment in 1984?

5. The enrollment at University X is predicted to increase at
the rate of 10% per year. If the enrollment for 1982 was
5000 students, find the predicted enrollment for 1986.
Express your answer to the nearest whole number.

6. If you pay $12,000 for a car and it depreciates 20% per
year, how much will it be worth in 5 years? Express your
answer to the nearest dollar.

7. A tank contains 16,000 liters of water. Each day one-half
of the water in the tank is removed and not replaced.
How much water remains in the tank at the end of 7 days?

8. If the price of a pound of coffee is $3.20 and the pro-
jected rate of inflation is 5% per year, how much per

pound should we expect coffee to cost in 5 years?
Express your answer to the nearest cent.

9. A tank contains 5832 gallons of water. Each day one-
third of the water in the tank is removed and not replaced.
How much water remains in the tank at the end of 6 days?

10. A fungus culture growing under controlled conditions
doubles in size each day. How many units will the cul-
ture contain after 7 days if it originally contains 4 units?

11. Sue is saving quarters. She saves 1 quarter the first day, 2
quarters the second day, 3 quarters the third day, and so
on for 30 days. How much money will she have saved in
30 days?

12. Suppose you save a penny the first day of a month, 2
cents the second day, 3 cents the third day, and so on for
31 days. What will be your total savings for the 31 days?

13. Suppose you save a penny the first day of a month, 2
cents the second day, 4 cents the third day, and continue
to double your savings each day. How much will you
save on the 15th day of the month? How much will your
total savings be for the 15 days?

14. Eric saved a nickel the first day of a month, a dime the
second day, and 20 cents the third day and then contin-
ued to double this daily savings each day for 14 days.
What was his daily savings on the 14th day? What was
his total savings for the 14 days?

15. Ms. Bryan invested $1500 at 12% simple interest at the
beginning of each year for a period of 10 years. Find the
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total accumulated value of all the investments at the end
of the 10-year period.

16. Mr. Woodley invested $1200 at 11% simple interest at
the beginning of each year for a period of 8 years. Find
the total accumulated value of all the investments at the
end of the 8-year period.

17. An object falling from rest in a vacuum falls approxi-
mately 16 feet the first second, 48 feet the second sec-
ond, 80 feet the third second, 112 feet the fourth second,
and so on. How far will it fall in 11 seconds?

18. A raffle is organized so that the amount paid for each
ticket is determined by the number on the ticket. The
tickets are numbered with the consecutive odd whole
numbers 1, 3, 5, 7, . . . . Each contestant pays as many
cents as the number on the ticket drawn. How much
money will the raffle take in if 1000 tickets are sold?

19. Suppose an element has a half-life of 4 hours. This
means that if n grams of it exist at a specific time, then

only }
1
2

}n grams remain 4 hours later. If at a particular

moment we have 60 grams of the element, how many
grams of it will remain 24 hours later?

20. Suppose an element has a half-life of 3 hours. (See Prob-
lem 19 for a definition of half-life.) If at a particular
moment we have 768 grams of the element, how many
grams of it will remain 24 hours later?

21. A rubber ball is dropped from a height of 1458 feet, and
at each bounce it rebounds one-third of the height from
which it last fell. How far has the ball traveled by the
time it strikes the ground for the sixth time?

22. A rubber ball is dropped from a height of 100 feet, and at
each bounce it rebounds one-half of the height from
which it last fell. What distance has the ball traveled up
to the instant it hits the ground for the eighth time?

23. A pile of logs has 25 logs in the bottom layer, 24 logs in
the next layer, 23 logs in the next layer, and so on, until
the top layer has 1 log. How many logs are in the pile?

24. A well driller charges $9.00 per foot for the first 10 feet,
$9.10 per foot for the next 10 feet, $9.20 per foot for the
next 10 feet, and so on, at a price increase of $.10 per
foot for succeeding intervals of 10 feet. How much does
it cost to drill a well to a depth of 150 feet?

25. A pump is attached to a container for the purpose of cre-

ating a vacuum. For each stroke of the pump, }
1
3

} of the air

remaining in the container is removed. To the nearest
tenth of a percent, how much of the air remains in the
container after seven strokes?

26. Suppose that in Problem 25, each stroke of the pump

removes }
1
2

} of the air remaining in the container. What

fractional part of the air has been removed after six
strokes?

27. A tank contains 20 gallons of water. One-half of the
water is removed and replaced with antifreeze. Then
one-half of this mixture is removed and replaced with
antifreeze. This process is continued eight times. How
much water remains in the tank after the eighth replace-
ment process?

28. The radiator of a truck contains 10 gallons of water. Sup-
pose we remove 1 gallon of water and replace it with
antifreeze. Then we remove 1 gallon of this mixture and
replace it with antifreeze. This process is continued
seven times. To the nearest tenth of a gallon, how much
antifreeze is in the final mixture?

29. Your friend solves Problem 6 as follows: If the car depre-
ciates 20% per year, then at the end of 5 years it will have
depreciated 100% and be worth zero dollars. How would
you convince him that his reasoning is incorrect?

30. A contractor wants you to clear some land for a housing
project. He anticipates that it will take 20 working days

to do the job. He offers to pay you one of two ways: (1) a
fixed amount of $3000 or (2) a penny the first day, 2
cents the second day, 4 cents the third day, and so on,
doubling your daily wages for the 20 days. Which offer
should you take and why?

THOUGHTS INTO WORDS
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MATHEMATICAL INDUCTION

Is 2n . n for all positive integer values of n? In an attempt to answer this question
we might proceed as follows.

If n 5 1, then 2n . n becomes 21 . 1, a true statement.

If n 5 2, then 2n . n becomes 22 . 2, a true statement.

If n 5 3, then 2n . n becomes 23 . 3, a true statement.

We can continue in this way as long as we want, but obviously we can never show in
this manner that 2n . n for every positive integer n. However, we do have a form of
proof, called proof by mathematical induction, that can be used to verify the truth
of many mathematical statements involving positive integers. This form of proof is
based on the following principle.

The principle of mathematical induction, a proof that some statement is true
for all positive integers, consists of two parts. First, we must show that the statement
is true for the positive integer 1. Then we must show that if the statement is true for
some positive integer, then it follows that it is also true for the next positive integer.
Let’s illustrate what this means.

Prove that 2n . n for all positive integer values of n.

Proof

PART 1 If n 5 1, then 2n . n becomes 21 . 1, which is a true statement.

PART 2 We must prove that if 2k . k, then 2k11 . k 1 1 for all positive
integer values of k. In other words, we should be able to start with
2k . k and from that deduce 2k11 . k 1 1. This can be done as 
follows.

2k . k

2(2k) . 2(k) Multiply both sides by 2.
2k11 . 2k

Principle of Mathematical Induction

Let Pn be a statement in terms of n, where n is a positive integer. If

1. P1 is true, and

2. the truth of Pk implies the truth of Pk11 for every positive
integer k

then Pn is true for every positive integer n.

9.4

E X A M P L E  1
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We know that k $ 1 because we are working with positive inte-
gers. Therefore,

k 1 k $ k 1 1 Add k to both sides
2k $ k 1 1

Because 2k11 . 2k and 2k $ k 1 1, by the transitive property we
conclude that

2k11 . k 1 1

Therefore, using part 1 and part 2, we have proved that 2n . n for all positive
integers. n

It will be helpful for you to look back over the proof in Example 1. Note that in part
1 we established that 2n . n is true for n 5 1. Then in part 2 we established that if
2n . n is true for any positive integer, then it must be true for the next consecutive
positive integer. Therefore, because 2n . n is true for n 5 1, it must be true for n 5
2. Likewise, if 2n . n is true for n 5 2, then it must be true for n 5 3, and so on, for
all positive integers.

We can depict proof by mathematical induction with dominoes. Suppose that
in Figure 9.1 we have infinitely many dominoes lined up. If we can push the first

F I G U R E  9 . 1

domino over (part 1 of a mathematical induction proof) and if the dominoes are
spaced so that each time one falls over, it causes the next one to fall over (part 2 of a
mathematical induction proof), then by pushing the first one over we will cause a
chain reaction that will topple all of the dominoes (Figure 9.2).

F I G U R E  9 . 2

Recall that in the first three sections of this chapter, we used an to represent
the nth term of a sequence and Sn to represent the sum of the first n terms of a
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sequence. For example, if an 5 2n, then the first three terms of the sequence are
a1 5 2(1) 5 2, a2 5 2(2) 5 4, and a3 5 2(3) 5 6. Furthermore, the kth term is ak 5
2(k ) 5 2k and the (k 1 1)st term is ak11 5 2(k 1 1) 5 2k 1 2. Relative to this
same sequence, we can state that S1 5 2, S2 5 2 1 4 5 6 and S3 5 2 1 4 1 6 5 12.

There are numerous sum formulas for sequences that can be verified by math-
ematical induction. For such proofs, the following property of sequences is used.

Sk11 5 Sk 1 ak11

This property states that the sum of the first k 1 1 terms is equal to the sum of
the first k terms plus the (k 1 1)st term. Let’s see how this can be used in a spe-
cific example.

Prove that Sn 5 n(n 1 1) for the sequence an 5 2n, where n is any positive integer.

Proof

PART 1 If n 5 1, then 1(1 1 1) 5 2, and 2 is the first term of the sequence
an 5 2n, so S1 5 a1 5 2.

PART 2 Now we need to prove that if Sk 5 k(k 1 1), then Sk11 5
(k 1 1)(k 1 2). Using the property Sk11 5 Sk 1 ak11, we can pro-
ceed as follows.

Sk11 5 Sk 1 ak11

5 k(k 1 1) 1 2(k 1 1)

5 (k 1 1)(k 1 2)

Therefore, using part 1 and part 2, we have proved that Sn 5
n(n 1 1) will yield the correct sum for any number of terms of the
sequence an 5 2n. n

Prove that Sn 5 5n(n 1 1)@2 for the sequence an 5 5n, where n is any positive 
integer.

Proof

PART 1 Because 5(1) (1 1 1)@2 5 5, and 5 is the first term of the sequence
an 5 5n, we have S1 5 a1 5 5.

PART 2 We need to prove that if Sk 5 5k(k 1 1)@2, then Sk11 5

}
5(k 1 1

2
)(k 1 2)
}.

Sk11 5 Sk 1 ak11

5 }
5k(k

2
1 1)
} 1 5(k 1 1)

5 }
5k(k

2
1 1)
} 1 5k 1 5

E X A M P L E  2
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5

5 

5 }
5k2 1 15

2
k 1 10
}

5 }
5(k 2 1

2
3k 1 2)
}

5 }
5(k 1 1

2
)(k 1 2)
}

Therefore, using part 1 and part 2, we have proved that Sn 5
5n(n 1 1)@2 yields the correct sum for any number of terms of the
sequence an 5 5n. n

Prove that Sn 5 (4n 2 1)@3 for the sequence an 5 4n21, where n is any positive 
integer.

Proof

PART 1 Because (41 2 1)@3 5 1, and 1 is the first term of the sequence
an 5 4n21, we have S1 5 a1 5 1.

PART 2 We need to prove that if Sk 5 (4k 2 1)@3, then Sk11 5
(4k11 2 1)@3.

Sk11 5 Sk 1 ak11

5 }
4k 2

3
1

} 1 4k

5}
4k 2 1

3
1 3(4k)
}

5 }
4k 1 3(

3
4k) 2 1
}

5 }
4k(1 1

3
3) 2 1
}

5 }
4k(4)

3
2 1
}

5 }
4k11

3
2 1
}

Therefore, using part 1 and part 2, we have proved that Sn 5
(4n 2 1)@3 yields the correct sum for any number of terms of the
sequence an 5 4n21. n

5k 2 1 5k 1 10k 1 10
}}}

2

5k(k 1 1) 1 2(5k 1 5)
}}}

2

E X A M P L E  4
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As our final example of this section, let’s consider a proof by mathematical induc-
tion involving the concept of divisibility.

Prove that for all positive integers n, the number 32n 2 1 is divisible by 8.

Proof

PART 1 If n 5 1, then 32n 2 1 becomes 32(1) 2 1 5 32 2 1 5 8, and of
course 8 is divisible by 8.

PART 2 We need to prove that if 32k 2 1 is divisible by 8, then 32k12 2 1 is
divisible by 8 for all integer values of k. This can be verified as fol-
lows. If 32k 2 1 is divisible by 8, then for some integer x, we have
32k 2 1 5 8x. Therefore,

32k 2 1 5 8x

32k 5 1 1 8x

32(32k) 5 32(1 1 8x ) Multiply both sides by 32.
32k12 5 9(1 1 8x )

32k12 5 9 1 9(8x )

32k12 5 1 1 8 1 9(8x ) 9 5 1 1 8
32k12 5 1 1 8(1 1 9x ) Apply distributive 

32k12 2 1 5 8(1 1 9x ) property to 8 1 9(8x )

Therefore, 32k12 2 1 is divisible by 8.
Thus, using part 1 and part 2, we have proved that 32n 2 1 is

divisible by 8 for all positive integers n. n

We conclude this section with a few final comments about proof by mathe-
matical induction. Every mathematical induction proof is a two-part proof, and both
parts are absolutely necessary. There can be mathematical statements that hold for
one or the other of the two parts but not for both. For example, (a 1 b )n 5 an 1 bn

is true for n 5 1, but it is false for every positive integer greater than 1. Therefore, if
we were to attempt a mathematical induction proof for (a 1 b )n 5 an 1 bn, we
could establish part 1 but not part 2. Another example of this type is the statement
that n 2 2 n 1 41 produces a prime number for all positive integer values of n. This
statement is true for n 5 1, 2, 3, 4, . . . , 40, but it is false when n 5 41 (because
412 2 41 1 41 5 412, which is not a prime number).

It is also possible that part 2 of a mathematical induction proof can be estab-
lished but not part 1. For example, consider the sequence an 5 n and the sum for-
mula Sn 5 (n 1 3)(n 2 2)@2. If n 5 1, then a1 5 1 but S1 5 (4)(21)@2 5 22, so
part 1 does not hold. However, it is possible to show that Sk 5 (k 1 3)(k 2 2)@2
implies Sk11 5 (k 1 4)(k 2 1)@2. We will leave the details of this for you to do.

E X A M P L E  5
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Finally, it is important to realize that some mathematical statements are true
for all positive integers greater than some fixed positive integer other than 1. (Back
in Figure 9.1, perhaps we cannot knock down the first four dominoes, whereas we
can knock down the fifth domino and every one thereafter.) For example, we can
prove by mathematical induction that 2n . n 2 for all positive integers n . 4. It
requires a slight variation in the statement of the principle of mathematical induc-
tion. We will not concern ourselves with such problems in this text, but we want you
to be aware of their existence.

P R O B L E M  S E T  9 . 4

For Problems 1–10, use mathematical induction to prove each
of the sum formulas for the indicated sequences. They are to
hold for all positive integers n.

1. Sn 5 }
n(n

2
1 1)
} for an 5 n

2. Sn 5 n 2 for an 5 2n 2 1

3. Sn 5 }
n(3n

2
1 1)
} for an 5 3n 2 1

4. Sn 5 }
n(5n

2
1 9)
} for an 5 5n 1 2

5. Sn 5 2(2n 2 1) for an 5 2n

6. Sn 5 }
3(3n

2
2 1)
} for an 5 3n

7. Sn 5}
n(n 1 1

6
)(2n 1 1)
} for an 5 n 2

8. Sn 5 }
n 2(n

4
1 1)2

} for an 5 n 3

9. Sn 5 }
n 1

n
1

} for an 5 }
n(n

1
1 1)
}

10. Sn 5}
n(n 1 1

3
)(n 1 2)
} for an 5 n(n 1 1)

In Problems 11–20, use mathematical induction to prove that
each statement is true for all positive integers n.

11. 3n $ 2n 1 1

12. 4n $ 4n

13. n 2 $ n

14. 2n $ n 1 1

15. 4n 2 1 is divisible by 3

16. 5n 2 1 is divisible by 4

17. 6n 2 1 is divisible by 5

18. 9n 2 1 is divisible by 4

19. n 2 1 n is divisible by 2

20. n 2 2 n is divisible by 2

21. How would you describe proof by mathematical 
induction?

22. Compare inductive reasoning to proof by mathematical
induction.

THOUGHTS INTO WORDS
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There are four main topics in this chapter: arithmetic sequences, geometric
sequences, problem solving, and mathematical induction.

Arithmetic Sequences

The sequence a1, a2, a3, a4, . . . is called arithmetic if and only if

ak11 2 ak 5 d

for every positive integer k. In other words, there is a common difference, d,
between successive terms.

The general term of an arithmetic sequence is given by the formula

an 5 a1 1 (n 2 1)d

where a1 is the first term, n is the number of terms, and d is the common difference.

The sum of the first n terms of an arithmetic sequence is given by the formula

Sn 5 }
n(a1

2
1 an)
}

Summation notation can be used to indicate the sum of a certain number of terms
of a sequence. For example,

Σ
5

i51
4i 5 41 1 42 1 43 1 44 1 45

Geometric Sequences

The sequence a1, a2, a3, a4, . . . is called geometric if and only if

ak11 5 rak

for every positive integer k. There is a common ratio, r, between successive terms.

The general term of a geometric sequence is given by the formula

an 5 a1rn21

where a1 is the first term, n is the number of terms, and r is the common ratio.

The sum of the first n terms of a geometric sequence is given by the formula

Sn 5 }
a1

r
rn

2

2

1
a1} r Þ 1

The sum of an infinite geometric sequence is given by the formula

C H A P T E R  9 S U M M A R Y
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S∞ 5 }
1

a
2

1

r
} for u r u , 1

If u r u $ 1, the sequence has no sum.

Repeating decimals (such as 0.4w) can be changed to a@b form, where a and b are
integers and b Þ 0, by treating them as the sum of an infinite geometric sequence.
For example, the repeating decimal 0.4w can be written 0.4 1 0.04 1 0.004 1
0.0004 1 . . . .

Problem Solving

Many of the problem-solving suggestions offered earlier in this text are still appro-
priate when we are solving problems that deal with sequences. However, there are
also some special suggestions pertaining to sequence problems.

1. Write down the first few terms of the sequence to describe what is taking
place in the problem. Drawing a picture or diagram may help with this
step.

2. Be sure that you understand, term by term, what the sequence represents
in the problem.

3. Determine whether the sequence is arithmetic or geometric. (Those are the
only kinds of sequences we are working with in this text.)

4. Determine whether the problem is asking for a specific term or for the sum
of a certain number of terms.

Mathematical Induction

Proof by mathematical induction relies on the following principle of induction.

Let Pn be a statement in terms of n, where n is a positive integer. If

1. P1 is true, and

2. The truth of Pk implies the truth of Pk11, for every positive integer k

then Pn is true for every positive integer n.
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For Problems 1–10, find the general term (the nth term) for
each sequence. These problems include both arithmetic
sequences and geometric sequences.

1. 3, 9, 15, 21, . . . 2. }
1
3

}, 1, 3, 9, . . .

3. 10, 20, 40, 80, . . . 4. 5, 2, 21, 24, . . .

5. 25, 23, 21, 1, . . . 6. 9, 3, 1, }
1
3

}, . . .

7. 21, 2, 24, 8, . . . 8. 12, 15, 18, 21, . . .

9. }
2
3

}, 1, }
4
3

}, }
5
3

}, . . . 10. 1, 4, 16, 64, . . .

For Problems 11–16, find the required term of each of the
sequences.

11. The 19th term of 1, 5, 9, 13, . . .

12. The 28th term of 22, 2, 6, 10, . . .

13. The 9th term of 8, 4, 2, 1, . . .

14. The 8th term of }
2
3
4
2
3

}, }
8
1
1
6
}, }

2
8
7
}, }

9
4

}, . . .

15. The 34th term of 7, 4, 1, 22, . . .

16. The 10th term of 232, 16, 28, 4, . . .

For Problems 17–29, solve each problem.

17. If the 5th term of an arithmetic sequence is 219 and the
8th term is 234, find the common difference of the
sequence.

18. If the 8th term of an arithmetic sequence is 37 and the
13th term is 57, find the 20th term.

19. Find the first term of a geometric sequence if the third
term is 5 and the sixth term is 135.

20. Find the common ratio of a geometric sequence if the

second term is }
1
2

} and the sixth term is 8.

21. Find the sum of the first nine terms of the sequence 81,
27, 9, 3, . . . .

22. Find the sum of the first 70 terms of the sequence 23, 0,
3, 6, . . . .

23. Find the sum of the first 75 terms of the sequence 5, 1,
23, 27, . . . .

24. Find the sum of the first ten terms of the sequence where
an 5 252n.

25. Find the sum of the first 95 terms of the sequence where
an 5 7n 1 1.

26. Find the sum 5 1 7 1 9 1 . . . 1 137.

27. Find the sum 64 1 16 1 4 1 . . . 1 }
6
1
4
}.

28. Find the sum of all even numbers between 8 and 384,
inclusive.

29. Find the sum of all multiples of 3 between 27 and 276,
inclusive.

For Problems 30–33, find each indicated sum.

30. Σ
45

i51
(22i 1 5) 31. Σ

5

i51
i 3

32. Σ
8

i51
282i 33. Σ

75

i54
(3i 2 4)

For Problems 34–36, solve each problem.

34. Find the sum of the infinite geometric sequence 64, 16,
4, 1, . . . .

35. Change 0.3w6w to reduced a@b form, where a and b are
integers and b Þ 0.

36. Change 0.45w to reduced a@b form, where a and b are
integers and b Þ 0.

Solve each of Problems 37–40 by using your knowledge of
arithmetic sequences and geometric sequences.

37. Suppose that your savings account contains $3750 at the
beginning of a year. If you withdrew $250 per month
from the account, how much will it contain at the end of
the year?

C H A P T E R 9  R E V I E W P R O B L E M  S E T
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38. Sonya decides to start saving dimes. She plans to save 1
dime the first day of April, 2 dimes the second day, 3
dimes the third day, 4 dimes the fourth day, and so on for
the 30 days of April. How much money will she save in
April?

39. Nancy decides to start saving dimes. She plans to save 1
dime the first day of April, 2 dimes the second day, 4
dimes the third day, 8 dimes the fourth day, and so on for
the first 15 days of April. How much will she save in 15
days?

40. A tank contains 61,440 gallons of water. Each day one-
fourth of the water is drained out. How much water
remains in the tank at the end of 6 days?

For Problems 41–43, show a mathematical induction proof.

41. Prove that 5n . 5n 2 1 for all positive integer values of n.

42. Prove that n 3 2 n 1 3 is divisible by 3 for all positive
integer values of n.

43. Prove that

Sn 5}
4(n

n
1

(n
1
1

)(n
3
1

)
2)

}

is the sum formula for the sequence 

an 5}
n(n 1 1

1
)(n 1 2)
}

where n is any positive integer.
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1. Find the 15th term of the sequence for which an 5 2n 2 2 1.

2. Find the fifth term of the sequence for which an 5 3(2)n21.

3. Find the general term of the sequence 23, 28, 213, 218, . . . .

4. Find the general term of the sequence 5, }
5
2

}, }
5
4

}, }
5
8

}, . . . .

5. Find the general term of the sequence 10, 16, 22, 28, . . . .

6. Find the 7th term of the sequence 8, 12, 18, 27, . . . .

7. Find the 75th term of the sequence 1, 4, 7, 10, . . . .

8. Find the number of terms in the sequence 7, 11, 15, . . . , 243.

9. Find the sum of the first 40 terms of the sequence 1, 4, 7, 10, . . . .

10. Find the sum of the first eight terms of the sequence 3, 6, 12, 24, . . . .

11. Find the sum of the first 45 terms of the sequence for which an 5 7n 2 2.

12. Find the sum of the first ten terms of the sequence for which an 5 3(2)n.

13. Find the sum of the first 150 positive even whole numbers.

14. Find the sum of the odd whole numbers between 11 and 193, inclusive.

15. Find the indicated sum Σ
50

i51
(3i 1 5).

16. Find the indicated sum Σ
10

i51
(22)i21.

17. Find the sum of the infinite geometric sequence 3, }
3
2

}, }
3
4

}, }
3
8

}, . . . .

18. Find the sum of the infinite geometric sequence for which an 5 21}
1
3

}2n11
.

19. Change 0.1w8w to reduced }
a
b

} form, where a and b are integers and b Þ 0.

20. Change 0.26w to reduced }
a
b

} form, where a and b are integers and b Þ 0.

For Problems 21–23, solve each problem.

21. A tank contains 49,152 liters of gasoline. Each day three-fourths of the gasoline
remaining in the tank is pumped out and not replaced. How much gasoline
remains in the tank at the end of 7 days?
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22. Suppose that you save a dime the first day of a month, $.20 the second day, and
$.40 the third day and that you continue to double your savings per day for 15
days. Find the total amount that you will save at the end of 15 days.

23. A woman invests $350 at 12% simple interest at the beginning of each year for
a period of 10 years. Find the total accumulated value of all the investments at
the end of the 10-year period.

For Problems 24 and 25, show a mathematical induction proof.

24. Sn 5 }
n(3n

2
2 1)
} for an 5 3n 2 2.

25. 9n 2 1 is divisible by 8 for all positive integer values for n.
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BINOMIAL THEOREM

In a group of thirty people, there is approximately a 70% chance that at least two of them will have
the same birthday (same month and same day of the month). In a group of 60 people, there is
approximately a 99% chance that at least two of them will have the same birthday.
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With an ordinary deck of 52 playing cards, there is 1 chance out of 54,145
that you will be dealt four aces in a five-card hand. The radio is predicting a
40% chance of locally severe thunderstorms by late afternoon. The odds in
favor of the Cubs winning the pennant are 2 to 3. Suppose that in a box con-
taining 50 light bulbs, 45 are good ones and 5 are burned out. If two bulbs
are chosen at random, the probability of getting at least one good bulb is

}
2
2
4
4
3
5

}. Historically, many basic probability concepts have been developed as a

result of studying various games of chance. However, in recent years, proba-
bility applications have been surfacing at a phenomenal rate in a large vari-
ety of fields, such as physics, biology, psychology, economics, insurance,
military science, manufacturing, and politics. It is our purpose in this chap-
ter first to introduce some counting techniques and then to use those tech-
niques to introduce some basic concepts of probability. The last section of
the chapter will be devoted to the binomial theorem.

FUNDAMENTAL PRINCIPLE OF COUNTING

One very useful counting principle is referred to as the fundamental principle of
counting. We will offer some examples, state the property, and then use it to solve a
variety of counting problems. Let’s consider two examples to lead up to the state-
ment of the property.

A woman has four skirts and five blouses. Assuming that each blouse can be worn
with each skirt, how many different skirt–blouse outfits does she have?

Solution

For each of the four skirts she has a choice of five blouses. Therefore, she has
4(5) 5 20 different skirt–blouse outfits from which to choose. n

Eric is shopping for a new bicycle and has two different models (5-speed or 10-
speed) and four different colors (red, white, blue, or silver) from which to choose.
How many different choices does he have?

Solution

His different choices can be counted with the help of a tree diagram.

10.1

10.1 Fundamental Principle of Counting 613
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Models Colors Choices

red 5-speed red

5-speed • white 5-speed white
blue 5-speed blue
silver 5-speed silver

red 10-speed red

10-speed • white 10-speed white
blue 10-speed blue
silver 10-speed silver

For each of the two model choices, there are four choices of color. Altogether, then,
Eric has 2(4) 5 8 choices. n

These two problems exemplify the following general principle.

As you apply the fundamental principle of counting, it is often helpful to ana-
lyze a problem systematically in terms of the tasks to be accomplished. Let’s con-
sider some examples.

How many numbers of three different digits each can be formed by choosing from
the digits 1, 2, 3, 4, 5 and 6?

Solution

Let’s analyze this problem in terms of three tasks.

TASK 1 Choose the hundreds digit, for which there are six choices.

TASK 2 Now choose the tens digit, for which there are only five choices,
because one digit was used in the hundreds place.

TASK 3 Now choose the units digit, for which there are only four choices,
because two digits have been used for the other places.

Therefore, task 1 followed by task 2 followed by task 3 can be accomplished in
(6)(5)(4) 5 120 ways. In other words, there are 120 numbers of three different digits
that can be formed by choosing from the six given digits. n

Fundamental Principle of Counting

If one task can be accomplished in x different ways and, following
this task, a second task can be accomplished in y different ways, then
the first task followed by the second task can be accomplished in 
x ? y different ways. (This counting principle can be extended to any
finite number of tasks.)

614 Chapter 10 Counting Techniques, Probability, and the Binomial Theorem
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Now look back over the solution for Problem 3 and think about each of the fol-
lowing questions.

1. Can we solve the problem by choosing the units digit first, then the tens
digit, and finally the hundreds digit?

2. How many three-digit numbers can be formed from 1, 2, 3, 4, 5, and 6 if
we do not require each number to have three different digits? (Your answer
should be 216.)

3. Suppose that the digits from which to choose are 0, 1, 2, 3, 4, and 5. Now
how many numbers of three different digits each can be formed, assuming
that we do not want zero in the hundreds place? (Your answer should be
100.)

4. Suppose that we want to know the number of even numbers with three dif-
ferent digits each that can be formed by choosing from 1, 2, 3, 4, 5, and 6.
How many are there? (Your answer should be 60.)

Employee ID numbers at a certain factory consist of one capital letter followed by a
three-digit number that contains no repeated digits. For example, A-014 is an ID
number. How many such ID numbers can be formed? How many can be formed if
repeated digits are allowed?

Solution

Again, let’s analyze in terms of tasks to be completed.

TASK 1 Choose the letter part of the ID number: there are 26 choices.

TASK 2 Choose the first digit of the three-digit number: there are ten
choices.

TASK 3 Choose the second digit: there are nine choices.

TASK 4 Choose the third digit: there are eight choices.

Therefore, applying the fundamental principle, we obtain (26)(10)(9)(8) 5 18,720
possible ID numbers.

If repeat digits were allowed, then there would be (26)(10)(10)(10) 5 26,000
possible ID numbers. n

In how many ways can Al, Barb, Chad Dan, and Edna be seated in a row of five
seats so that Al and Barb are seated side by side?

Solution

This problem can be analyzed in terms of three tasks.

TASK 1 Choose the two adjacent seats to be occupied by Al and Barb. An
illustration such as Figure 10.1 helps us to see that there are four
choices for the two adjacent seats.

P R O B L E M  4

P R O B L E M  5
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TASK 2 Determine the number of ways in which Al and Barb can be
seated. Because Al can be seated on the left and Barb on the right,
or vice versa, there are two ways to seat Al and Barb for each pair
of adjacent seats.

TASK 3 The remaining three people must be seated in the remaining three
seats. This can be done in (3)(2)(1) 5 6 different ways.

Therefore, by the fundamental principle, task 1 followed by task 2 followed by task
3 can be done in (4)(2)(6) 5 48 ways. n

Suppose that in Problem 5, we wanted instead the number of ways in which the five
people can sit so that Al and Barb are not side by side. We can determine this num-
ber by using either of two basically different techniques: (1) analyze and count the
number of nonadjacent positions for Al and Barb, or (2) subtract the number of seat-
ing arrangements determined in Problem 5 from the total number of ways in which
five people can be seated in five seats. Try doing this problem both ways and see
whether you agree with the answer of 72 ways.

As you apply the fundamental principle of counting, you may find that for cer-
tain problems, simply thinking about an appropriate tree diagram is helpful, even
though the size of the problem may make it inappropriate to write out the diagram in
detail. Consider the following problem.

Suppose that the undergraduate students in three departments—geography, history,
and psychology—are to be classified according to sex and year in school. How
many categories are needed?

Solution

Let’s represent the various classifications symbolically as follows.

M: Male 1. Freshman G: Geography

F: Female 2. Sophomore H: History

3. Junior P: Psychology

4. Senior

We can mentally picture a tree diagram such that each of the two sex classifications
branches into four school-year classifications, which in turn branch into three
department classifications. Thus we have (2)(4)(3) 5 24 different categories. n

616 Chapter 10 Counting Techniques, Probability, and the Binomial Theorem
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Another technique that works on certain problems involves what some people
call the back door approach. For example, suppose we know that the classroom con-
tains 50 seats. On some days, it may be easier to determine the number of students
present by counting the number of empty seats and subtracting from 50 than by
counting the number of students in attendance. (We suggested this back door
approach as one way to count the nonadjacent seating arrangements in the discus-
sion following Problem 5.) The next example further illustrates this approach.

When rolling a pair of dice, in how many ways can we obtain a sum greater than 4?

Solution

For clarification purposes, let’s use a red die and a white die. (It is not necessary to
use different-colored dice, but it does help us analyze the different possible out-
comes.) With a moment of thought, you will see that there are more ways to get a
sum greater than 4 than there are ways to get a sum of 4 or less. Therefore, let’s deter-
mine the number of possibilities for getting a sum of 4 or less; then we’ll subtract that
number from the total number of possible outcomes when rolling a pair of dice.

First, we can simply list and count the ways of getting a sum of 4 or less.

Red Die White Die

1 1
1 2
1 3
2 1
2 2
3 1

There are six ways of getting a sum of 4 or less.
Second, because there are six possible outcomes on the red die and six possi-

ble outcomes on the white die, there is a total of (6)(6) 5 36 possible outcomes
when rolling a pair of dice.

Therefore, subtracting the number of ways of getting 4 or less from the total
number of possible outcomes, we obtain 36 2 6 5 30 ways of getting a sum greater
than 4. n

P R O B L E M  7
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Solve Problems 1–37.

1. If a woman has two skirts and ten blouses, how many
different skirt–blouse combinations does she have?

2. If a man has eight shirts, five pairs of slacks, and three
pairs of shoes, how many different shirt–slack–shoe
combinations does he have?

3. In how many ways can four people be seated in a row of
four seats?

4. How many numbers of two different digits can be
formed by choosing from the digits 1, 2, 3, 4, 5, 6, and 7?

5. How many even numbers of three different digits can be
formed by choosing from the digits 2, 3, 4, 5, 6, 7, 8, and 9?
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6. How many odd numbers of four different digits can be
formed by choosing from the digits 1, 2, 3, 4, 5, 6, 7, and 8?

7. Suppose that the students at a certain university are to be
classified according to their college (College of Applied
Science, College of Arts and Sciences, College of Busi-
ness, College of Education, College of Fine Arts, Col-
lege of Health and Physical Education), sex (female,
male), and year in school (1, 2, 3, 4). How many cate-
gories are possible?

8. A medical researcher classifies subjects according to sex
(female, male), smoking habits (smoker, nonsmoker),
and weight (below average, average, above average).
How many different combined classifications are used?

9. A pollster classifies voters according to sex (female,
male), party affiliation (Democrat, Republican, Inde-
pendent), and family income (below $10,000,
$10,000–$19,999, $20,000–$29,999, $30,000–$39,999,
$40,000–$49,999, $50,000 and above). How many com-
bined classifications does the pollster use?

10. A couple is planning to have four children. How many
ways can this happen in terms of boy–girl classification?
(For example, BBBG indicates that the first three chil-
dren are boys and the last is a girl.)

11. In how many ways can three officers—president, secre-
tary, and treasurer—be selected from a club that has 20
members?

12. In how many ways can three officers—president, secre-
tary, and treasurer—be selected from a club with 15
female and 10 male members, so that the president is
female and the secretary and treasurer are male?

13. A disc jockey wants to play six songs once each in a half-
hour program. How many different ways can he order
these songs?

14. A state has agreed to have its automobile license plates
consist of two letters followed by four digits. State offi-
cials do not want to repeat any letters or digits in any
license numbers. How many different license plates will
be available?

15. In how many ways can six people be seated in a row of
six seats?

16. In how many ways can Al, Bob, Carl, Don, Ed, and Fern
be seated in a row of six seats if Al and Bob want to sit
side by side?

17. In how many ways can Amy, Bob, Cindy, Dan, and
Elmer be seated in a row of five seats so that neither
Amy nor Bob occupies an end seat?

18. In how many ways can Al, Bob, Carl, Don, Ed, and Fern
be seated in a row of six seats if Al and Bob are not to be
seated side by side? [Hint: Either Al and Bob will be
seated side by side or they will not be seated side by
side.]

19. In how many ways can Al, Bob, Carol, Dawn, and Ed be
seated in a row of five chairs if Al is to be seated in the
middle chair?

20. In how many ways can three letters be dropped in five
mailboxes?

21. In how many ways can five letters be dropped in three
mailboxes?

22. In how many ways can four letters be dropped in six
mailboxes so that no two letters go in the same box?

23. In how many ways can six letters be dropped in four
mailboxes so that no two letters go in the same box?

24. If five coins are tossed, in how many ways can they fall?

25. If three dice are tossed, in how many ways can they fall?

26. In how many ways can a sum less than ten be obtained
when tossing a pair of dice?

27. In how many ways can a sum greater than five be
obtained when tossing a pair of dice?

28. In how many ways can a sum greater than four be
obtained when tossing three dice?

29. If no number contains repeated digits, how many num-
bers greater than 400 can be formed by choosing from
the digits 2, 3, 4, and 5? [Hint: Consider both three-digit
and four-digit numbers.]

30. If no number contains repeated digits, how many num-
bers greater than 5000 can be formed by choosing from
the digits 1, 2, 3, 4, 5, and 6?

31. In how many ways can four boys and three girls be
seated in a row of seven seats so that boys and girls
occupy alternate seats?

32. In how many ways can three different mathematics books
and four different history books be exhibited on a shelf so
that all of the books in a subject area are side by side?

618 Chapter 10 Counting Techniques, Probability, and the Binomial Theorem
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33. In how many ways can a true–false test of ten questions
be answered?

34. If no number contains repeated digits, how many even
numbers greater than 3000 can be formed by choosing
from the digits 1, 2, 3, and 4?

35. If no number contains repeated digits, how many odd
numbers greater than 40,000 can be formed by choosing
from the digits 1, 2, 3, 4, and 5?

36. In how many ways can Al, Bob, Carol, Don, Ed, Faye,
and George be seated in a row of seven seats so that Al,
Bob, and Carol occupy consecutive seats in some order?

37. The license plates for a certain state consist of two letters
followed by a four-digit number such that the first digit
of the number is not zero. An example would be PK-
2446.

a. How many different license plates can be produced?

b. How many different plates do not have a repeated 
letter?

c. How many plates do not have any repeated digits in
the number part of the plate?

d. How many plates do not have a repeated letter and
also do not have any repeated digits?

38. How would you explain the fundamental principle of
counting to a friend who missed class the day it was 
discussed?

39. Give two or three simple illustrations of the fundamental
principle of counting.

40. Explain how you solved Problem 29.

THOUGHTS INTO WORDS

PERMUTATIONS AND COMBINATIONS

As we develop the material in this section, factorial notation becomes very useful.
The notation n! (which is read n factorial) is used with positive integers as follows.

1! 5 1

2! 5 2 ? 1 5 2

3! 5 3 ? 2 ? 1 5 6

4! 5 4 ? 3 ? 2 ? 1 5 24

Note that the factorial notation refers to an indicated product. In general, we write

n! 5 n(n 2 1)(n 2 2) . . . 3 ? 2 ? 1

We also define 0! 5 1 so that certain formulas will be true for all nonnegative 
integers.

Now, as an introduction to the first concept of this section, let’s consider a
counting problem that closely resembles problems from the previous section.

In how many ways can the three letters A, B, and C be arranged in a row?

Solution A 

Certainly one approach to the problem is simply to list and count the arrangements.

10.2
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ABC ACB BAC BCA CAB CBA

There are six arrangements of the three letters.

Solution B

Another approach, one that can be generalized for more difficult problems, uses the
fundamental principle of counting. Because there are three choices for the first letter
of an arrangement, two choices for the second letter, and one choice for the third let-
ter, there are (3)(2)(1) 5 6 arrangements. n

Ordered arrangements are called permutations. In general, a permutation of a
set of n elements is an ordered arrangement of the n elements; we will use the sym-
bol P(n, n ) to denote the number of such permutations. For example, from Problem
1 we know that P(3, 3) 5 6. Furthermore, by using the same basic approach as in
Solution B of Problem 1, we can obtain 

P(1, 1) 5 1 5 1!

P(2, 2) 5 2 ? 1 5 2!

P(4, 4) 5 4 ? 3 ? 2 ? 1 5 4!

P(5, 5) 5 5 ? 4 ? 3 ? 2 ? 1 5 5!

In general, the following formula becomes evident.

Now suppose that we are interested in the number of two-letter permutations
that can be formed by choosing from the four letters A, B, C, and D. (Some exam-
ples of such permutations are AB, BA, AC, BC, and CB.) In other words, we want
to find the number of two-element permutations that can be formed from a set of
four elements. We denote this number by P(4, 2). To find P(4, 2), we can reason as
follows. First, we can choose any one of the four letters to occupy the first position
in the permutation, and then we can choose any one of the three remaining letters for
the second position. Therefore, by the fundamental principle of counting, we have
(4)(3) 5 12 different two-letter permutations; that is, P(4, 2) 5 12. By using a simi-
lar line of reasoning, we can determine the following numbers. (Make sure that you
agree with each of these.)

P(4, 3) 5 4 ? 3 ? 2 5 24

P(5, 2) 5 5 ? 4 5 20

P(6, 4) 5 6 ? 5 ? 4 ? 3 5 360

P(7, 3) 5 7 ? 6 ? 5 5 210

In general, we say that the number of r-element permutations that can be
formed from a set of n elements is given by

P(n, n) 5 n!
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Note that the indicated product for P(n, r ) begins with n. Thereafter each factor is 1
less than the previous one and there is a total of r factors. For example,

P(6, 2) 5 6 ? 5 5 30

P(8, 3) 5 8 ? 7 ? 6 5 336

P(9, 4) 5 9 ? 8 ? 7 ? 6 5 3024

Let’s consider two problems that illustrate the use of P(n, n ) and P(n, r ).

In how many ways can five students be seated in a row of five seats?

Solution

The problem is asking for the number of five-element permutations that can be
formed from a set of five elements. Thus we can apply P(n, n ) 5 n!.

P(5, 5) 5 5! 5 5 ? 4 ? 3 ? 2 ? 1 5 120 n

Suppose that seven people enter a swimming race. In how many ways can first, sec-
ond, and third prizes be awarded?

Solution

This problem is asking for the number of three-element permutations that can be
formed from a set of seven elements. Therefore, using the formula for P(n, r ), we
obtain

P(7, 3) 5 7 ? 6 ? 5 5 210 n

It should be evident that both Problem 2 and Problem 3 could have been
solved by applying the fundamental principle of counting. In fact, the formulas for
P(n, n ) and P(n, r ) do not really give us much additional problem-solving power.
However, as we will see in a moment, they do provide the basis for developing a
formula that is very useful as a problem-solving tool.

Permutations Involving Nondistinguishable
Objects 

Suppose we have two identical H’s and one T in an arrangement such as HTH. If we
switch the two identical H’s, the newly formed arrangement, HTH, will not be dis-
tinguishable from the original. In other words, there are fewer distinguishable per-
mutations of n elements when some of those elements are identical than when the n
elements are distinctly different.

P(n, r ) 5 n(n 2 1)(n 2 2) . . .

r factors


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To see the effect of identical elements on the number of distinguishable per-
mutations, let’s look at some specific examples.

2 identical H’s 1 permutation (HH)

2 different letters 2! permutations (HT, TH)

Therefore, having two different letters affects the number of permutations by a
factor of 2!.

3 identical H’s 1 permutation (HHH)

3 different letters 3! permutations 

Therefore, having three different letters affects the number of permutations by
a factor of 3!.

4 identical H’s 1 permutation (HHHH)

4 different letters 4! permutations

Therefore, having four different letters affects the number of permutations by
a factor of 4!.

Now let’s solve a specific problem.

How many distinguishable permutations can be formed from three identical H’s and
two identical T’s?

Solution

If we had five distinctly different letters, we could form 5! permutations. But the
three identical H’s affect the number of distinguishable permutations by a factor of
3!, and the two identical T’s affect the number of permutations by a factor of 2!.
Therefore, we must divide 5! by 3! and 2!. Thus we obtain

2

}
(3!

5
)(
!
2!)
} 5}

5
3

?

?

4
2

?

?

3
1

?

?

2
2

?

?

1
1

}5 10

distinguishable permutations of three H’s and two T’s. n

The type of reasoning used in Problem 4 leads us to the following general
counting technique. If there are n elements to be arranged, where there are r1 of one
kind, r2 of another kind, r3 of another kind, . . . , rk of a kth kind, then the total num-
ber of distinguishable permutations is given by the expression
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How many different 11-letter permutations can be formed from the 11 letters of the
word MISSISSIPPI?

Solution

Because there ar 4 I’s, 4 S’s, and 2 P’s, we can form

}
(4!)(

1
4
1
!
!
)(2!)
} 5 5 34, 650

distinguishable permutations. n

Combinations (Subsets)

Permutations are ordered arrangements; however, order is often not a consideration.
For example, suppose that we want to determine the number of three-person com-
mittees that can be formed from the five people: Al, Barb, Carol, Dawn, and Eric.
Certainly the committee consisting of Al, Barb, and Eric is the same as the commit-
tee consisting of Barb, Eric, and Al. In other words, the order in which we choose or
list the members is not important. Therefore, we are really dealing with subsets; that
is, we are looking for the number of three-element subsets that can be formed from a
set of five elements. Traditionally in this context, subsets have been called combi-
nations. Stated another way, then, we are looking for the number of combinations 
of five things taken three at a time. In general, r-element subsets taken from a set of
n elements are called combinations of n things taken r at a time. The symbol 
C(n, r ) denotes the number of these combinations.

Now let’s restate that committee problem and show a detailed solution that
can be generalized to handle a variety of problems dealing with combinations.

How many three-person committees can be formed from the five people: Al, Barb,
Carol, Dawn, and Eric?

Solution

Let’s use the set { A, B, C, D, E} to represent the five people. Consider one possible
three-person committee (subset), such as { A, B, C} ; there are 3! permutations of
these three letters. Now take another committee, such as { A, B, D} ; there are also 3!
permutations of these three letters. If we were to continue this process with all of the
three-letter subsets that can be formed from the five letters, we would be counting all
possible three-letter permutations of the five letters. That is, we would obtain P(5, 3).
Therefore, if we let C(5, 3) represent the number of three-element subsets, then

(3!) ? C(5, 3) 5 P(5, 3)

Solving this equation for C(5, 3) yields

C(5, 3) 5 }
P(5

3
,
!
3)

} 5 }
5
3

?

?

4
2

?

?

3
1

} 5 10

So there are ten three-person committees that can be formed from the five people.
n

11 ? 10 ? 9 ? 8 ? 7 ? 6 ? 5 ? 4 ? 3 ? 2 ? 1
}}}}

4 ? 3 ? 2 ? 1 ? 4 ? 3 ? 2 ? 1 ? 2 ? 1

P R O B L E M  6

P R O B L E M  5
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In general, C(n, r ) times r! yields P(n, r ). Thus

(r!) ? C(n, r ) 5 P(n, r )

and solving this equation for C(n, r ) produces

In other words, we can find the number of combinations of n things taken r at a time
by dividing by r! the number of permutations of n things taken r at a time. The fol-
lowing examples illustrate this idea.

C(2, 3) 5 }
P(7

3
,
!
3)

} 5 }
7
3

?

?

6
2

?

?

5
1

} 5 35

C(9, 2) 5 }
P(9

2
,
!
2)

} 5 }
9
2

?

?

8
1

} 5 36

C(10, 4) 5 }
P(1

4
0
!
, 4)
} 5 }

1
4
0
?

?

3
9
?

?

2
8
?

?

1
7

} 5 210

How many different five-card hands can be dealt from a deck of 52 playing cards?

Solution

Because the order in which the cards are dealt is not an issue, we are working with a
combination (subset) problem. Thus, using the formula for C(n, r ), we obtain

C(52, 5) 5 }
P(5

5
2
!
, 5)
} 5 5 2,598,960

There are 2,598,960 different five-card hands that can be dealt from a deck of 52
playing cards. n

Some counting problems, such as Problem 8, can be solved by using the fun-
damental principle of counting along with the combination formula.

How many committees that consist of three women and two men can be formed
from a group of five women and four men?

Solution 

Let’s think of this problem in terms of two tasks.

TASK 1 Choose a subset of three women from the five women. This can be
done in

52 ? 51 ? 50 ? 49 ? 48
}}}

5 ? 4 ? 3 ? 2 ? 1

C(n, r ) 5 }
P(n

r!
, r )
}
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C(5, 3) 5 }
P(5

3
,
!
3)

} 5 }
5
3

?

?

4
2

?

?

3
1

} 5 10 ways

TASK 2 Choose a subset of two men from the four men. This can be done
in

C(4, 2) 5 }
P(4

2
,
!
2)

} 5 }
4
2

?

?

3
1

} 5 6 ways

Task 1 followed by task 2 can be done in (10)(6) 5 60 ways. Therefore, there are 60
committees consisting of three women and two men that can be formed. n

Sometimes it takes a little thought to decide whether permutations or combinations
should be used. Remember that if order is to be considered, permutations should
be used, but if order does not matter, then use combinations. It is helpful to think
of combinations as subsets.

A small accounting firm has 12 computer programmers. Three of these people are to
be promoted to systems analysts. In how many ways can the firm select the three
people to be promoted?

Solution

Let’s call the people A, B, C, D, E, F, G, H, I, J, K, and L. Suppose A, B, and C are
chosen for promotion. Is this any different from choosing B, C, and A? Obviously
not, so order does not matter and we are being asked a question about combinations.
More specifically, we need to find the number of combinations of 12 people taken
three at a time. Thus there are

C(12, 3) 5 }
P(1

3
2
!
, 3)
} 5 }

12
3
?

?

1
2
1
?

?

1
10

} 5 220

different ways to choose the three people to be promoted. n

A club is to elect three officers—president, secretary, and treasurer—from a group
of six people, all of whom are willing to serve in any office. How many different
ways can the officers be chosen?

Solution

Let’s call the candidates A, B, C, D, E, and F. Is electing A as president, B as secre-
tary, and C as treasurer different from electing B as president, C as secretary, and A
as treasurer? Obviously it is, and therefore we are working with permutations. Thus
there are

P(6, 3) 5 6 ? 5 ? 4 5 120

different ways of filling the offices. n
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In Problems 1–12, evaluate each.

1. P(5, 3) 2. P(8, 2)

3. P(6, 4) 4. P(9, 3)

5. C(7, 2) 6. C(8, 5)

7. C(10, 5) 8. C(12, 4)

9. C(15, 2) 10. P(5, 5)

11. C(5, 5) 12. C(11, 1)

For Problems 13–44, solve each problem.

13. How many permutations of the four letters A, B, C, 
and D can be formed by using all the letters in each 
permutation?

14. In how many ways can six students be seated in a row of
six seats?

15. How many three-person committees can be formed from
a group of nine people?

16. How many two-card hands can be dealt from a deck of
52 playing cards?

17. How many three-letter permutations can be formed from
the first eight letters of the alphabet (a) if repetitions are
not allowed? (b) if repetitions are allowed?

18. In a seven-team baseball league, in how many ways can
the top three positions in the final standings be filled?

19. In how many ways can the manager of a baseball team
arrange his batting order of nine starters if he wants his
best hitters in the top four positions?

20. In a baseball league of nine teams, how many games are
needed to complete the schedule if each team plays 12
games with each other team?

21. How many committees consisting of four women and
four men can be chosen from a group of seven women
and eight men?

22. How many three-element subsets containing one vowel
and two consonants can be formed from the set {a, b, c,
d, e, f, g, h, i}?

23. Five associate professors are being considered for pro-
motion to the rank of full professor, but only three will
be promoted. How many different combinations of three
could be promoted?

24. How many numbers of four different digits can be
formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, and 9 if each
number must consist of two odd and two even digits?

25. How many three-element subsets containing the letter A
can be formed from the set {A, B, C, D, E, F}?

26. How many four-person committees can be chosen from
five women and three men if each committee must con-
tain at least one man?

27. How many different seven-letter permutations can be
formed from four identical H’s and three identical T’s?

28. How many different eight-letter permutations can be
formed from six identical H’s and two identical T’s?

29. How many different nine-letter permutations can be
formed from three identical A’s, four identical B’s, and
two identical C’s?

30. How many different ten-letter permutations can be
formed from five identical A’s, four identical B’s, and
one C?

31. How many different seven-letter permutations can be
formed from the seven letters of the word ALGEBRA?

32. How many different 11-letter permutations can be
formed from the 11 letters of the word MATHEMAT-
ICS?

33. In how many ways can x 4y 2 be written without using
exponents? [Hint: One way is xxxxyy.]

34. In how many ways can x 3y 4z 3 be written without using
exponents?

35. Ten basketball players are going to be divided into two
teams of five players each for a game. In how many ways
can this be done?

36. Ten basketball players are going to be divided into two
teams of five in such a way that the two best players are
on opposite teams. In how many ways can this be done?

626 Chapter 10 Counting Techniques, Probability, and the Binomial Theorem

P R O B L E M  S E T  1 0 . 2

    Counting Techniques, Probability, and The Binomial Theorem 547



10.2 Permutations and Combinations 627

37. A box contains nine good light bulbs and four defective
bulbs. How many samples of three bulbs contain one
defective bulb? How many samples of three bulbs con-
tain at least one defective bulb?

38. How many five-person committees consisting of two
juniors and three seniors can be formed from a group of
six juniors and eight seniors?

39. In how many ways can six people be divided into two
groups so that there are four in one group and two in the
other? In how many ways can six people be divided into
two groups of three each?

40. How many five-element subsets containing A and B can
be formed from the set {A, B, C, D, E, F, G, H}?

41. How many four-element subsets containing A or B but
not both A and B can be formed from the set {A, B, C, D,
E, F, G}?

42. How many different five-person committees can be
selected from nine people if two of those people refuse to
serve together on a committee?

43. How many different line segments are determined by
five points? By six points? By seven points? By n points?

44. a. How many five-card hands consisting of two kings
and three aces can be dealt from a deck of 52 playing
cards?

b. How many five-card hands consisting of three kings
and two aces can be dealt from a deck of 52 playing
cards?

c. How many five-card hands consisting of three cards
of one face value and two cards of another face value
can be dealt from a deck of 52 playing cards?

45. Explain the difference between a permutation and a com-
bination. Give an example of each one to illustrate your
explanation.

46. Your friend is having difficulty distinguishing between
permutations and combinations in problem-solving situa-
tions. What might you do to help her?

THOUGHTS INTO WORDS

47. In how many ways can six people be seated at a circular
table? [Hint: Moving each person one place to the right
(or left) does not create a new seating.]

48. The quantity P(8, 3) can be expressed completely in fac-
torial notation as follows.

P(8, 3) 5 }
P(8,

5
3
!
) ? 5!
} 5 5 }

8
5
!
!
}

Express each of the following in terms of factorial 
notation.

a. P(7, 3)

b. P(9, 2)

c. P(10, 7)

d. P(n, r), r # n and 0! is defined to be 1

49. Sometimes the formula

C(n, r) 5 }
r!(n

n
2

!
r)!

}

is used to find the number of combinations of n things
taken r at a time. Use the result from part (d) of Problem
48 and develop this formula.

50. Compute C(7, 3) and C(7, 4). Compute C(8, 2) and 
C(8, 6). Compute C(9, 8) and C(9, 1). Now argue that
C(n, r) 5 C(n, n 2 r) for r # n.

(8 ? 7 ? 6)(5 ? 4 ? 3 ? 2 ? 1)
}}}

5!

Further Investigations
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Before doing Problems 51–56 be sure that you can use your
calculator to compute the number of permutations and combi-
nations. Your calculator may possess a special sequence of
keys for such computations. You may need to refer to your
user’s manual for this information.

51. Use your calculator to check your answers for Problems
1–12.

52. How many different five-card hands can be dealt from a
deck of 52 playing cards?

53. How many different seven-card hands can be dealt from
a deck of 52 playing cards?

54. How many different five-person committees can be
formed from a group of 50 people?

55. How many different juries consisting of 11 people can be
chosen from a group of 30 people?

56. How many seven-person committees consisting of three
juniors and four seniors can be formed from 45 juniors
and 53 seniors?

628 Chapter 10 Counting Techniques, Probability, and the Binomial Theorem

GRAPHING CALCULATOR ACTIVITIES

PROBABILITY

In order to introduce some terminology and notation, let’s consider a simple experi-
ment of tossing a regular six-sided die. There are six possible outcomes to this
experiment: the 1, the 2, the 3, the 4, the 5, or the 6 will land up. This set of possible
outcomes is called a sample space, and the individual elements of the sample space
are called sample points. We will use S (sometimes with subscripts for identification
purposes) to refer to a particular sample space of an experiment; then we will denote
the number of sample points by n(S ). Thus, for the experiment of tossing a die, S 5
{ 1, 2, 3, 4, 5, 6} and n(S ) 5 6

In general, the set of all possible outcomes of a given experiment is called the
sample space, and the individual elements of the sample space are called sample
points. (In this text we will be working only with sample spaces that are finite.)

Now suppose we are interested in some of the various possible outcomes in
the die-tossing experiment. For example, we might be interested in the event An
even number comes up. In this case we are satisfied if a 2, 4, or 6 appears on the top
face of the die, and therefore the event An even number comes up is the subset E 5
{ 2, 4, 6} , where n(E ) 5 3. Perhaps, instead, we might be interested in the event A
multiple of 3 comes up. This event determines the subset F 5 { 3, 6} , where n(F) 5
2.

In general, any subset of a sample space is called an event or an event space.
If the event consists of exactly one element of the sample space, then it is called a
simple event. Any nonempty event that is not simple is called a compound event.
A compound event can be represented as the union of simple events.

It is now possible to give a very simple definition for probability as we want
to use the term in this text.

10.3
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Many probability problems can be solved by applying Definition 10.1. Such
an approach requires that we be able to determine the number of elements in the
sample space and the number of elements in the event space. For example, returning
to the die-tossing experiment, the probability of getting an even number with one
toss of the die is given by

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

3
6

} 5 }
1
2

}

Let’s consider two examples where the number of elements in both the sample
space and the event space are quite easy to determine.

A coin is tossed. Find the probability that a head turns up.

Solution

Let the sample space be S 5 { H, T} ; then n(S ) 5 2. The event of a head turning up
is the subset E 5 { H} , so n(E ) 5 1. Therefore, the probability of getting a head with
one flip of a coin is given by

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

1
2

} n

Two coins are tossed. What is the probability that at least one head will turn up?

Solution

For clarification purposes, let the coins be a penny and a nickel. The possible out-
comes of this experiment are (1) a head on both coins (2) a head on the penny and a
tail on the nickel (3) a tail on the penny and a head on the nickel, and (4) a tail on
both coins. Using ordered-pair notation, where the first entry of a pair represents the
penny and the second entry the nickel, we can write the sample space

S 5 { (H, H), (H, T), (T, H), (T, T)}

and n(S ) 5 4.

D E F I N I T I O N  1 0 . 1

In an experiment where all possible outcomes in the sample space S
are equally likely to occur, the probability of an event E is defined by

P(E) 5 }
n
n
(
(
E
S )

)
}

where n(E ) denotes the number of elements in the event E and n(S )
denotes the number of elements in the sample space S.
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Let E be the event of getting at least one head. Thus E 5 { (H, H), (H, T), 
(T, H)} and n(E ) 5 3. Therefore, the probability of getting at least one head with
one toss of two coins is 

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

3
4

} n

As you might expect, the counting techniques discussed in the first two sec-
tions of this chapter can frequently be used to solve probability problems.

Four coins are tossed. Find the probability of getting three heads and one tail.

Solution

The sample space consists of the possible outcomes for tossing four coins. Because
there are two things that can happen on each coin, by the fundamental principle of
counting there are 2 ? 2 ? 2 ? 2 5 16 possible outcomes for tossing four coins. Thus
we know that n(S ) 5 16 without taking the time to list all of the elements. The event
of getting three heads and one tail is the subset E 5 { (H, H, H, T), (H, H, T, H), 
(H, T, H, H), (T, H, H, H)} , where n(E ) 5 4. Therefore, the requested probability is

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

1
4
6
} 5 }

1
4

} n

Al, Bob, Chad, Dawn, Eve, and Francis are randomly seated in a row of six chairs.
What is the probability that Al and Bob are seated in the end seats?

Solution

The sample space consists of all possible ways of seating six people in six chairs, or,
in other words, the permutations of six things taken six at a time. Thus n(S ) 5
P(6, 6) 5 6! 5 6 ? 5 ? 4 ? 3 ? 2 ? 1 5 720.

The event space consists of all possible ways of seating the six people so that
Al and Bob both occupy end seats. The number of these possibilities can be deter-
mined as follows.

TASK 1 Put Al and Bob in the end seats. This can be done in two ways
because Al can be on the left end and Bob on the right end, or vice
versa.

TASK 2 Put the other four people in the remaining four seats. This can be
done in 4! 5 4 ? 3 ? 2 ? 1 5 24 different ways.

Therefore, task 1 followed by task 2 can be done in (2)(24) 5 48 different ways, so
n(E ) 5 48. Thus the requested probability is

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

7
4
2
8
0

} 5 }
1
1
5
} n
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Note that in Problem 3, by using the fundamental principle of counting to
determine the number of elements in the sample space, we did not actually have to
list all of the elements. For the event space, we listed the elements and counted them
in the usual way. In Problem 4 we used the permutation formula P(n, n ) 5 n! to
determine the number of elements in the sample space, and then we used the funda-
mental principle to determine the number of elements in the event space. There are
no definite rules about when to list the elements and when to apply some sort of
counting technique. In general, we suggest that if you do not immediately see a
counting pattern for a particular problem, you should begin the listing process. If a
counting pattern then emerges as you are listing the elements, use the pattern at that
time.

The combination (subset) formula we developed in Section 10.2, C(n, r) 5
P(n, r)@r!, is also a very useful tool for solving certain kinds of probability prob-
lems. The next three examples illustrate some problems of this type.

A committee of three people is randomly selected from Alice, Barb, Chad, Dee, and
Eric. What is the probability that Alice is on the committee?

Solution

The sample space, S, consists of all possible three-person committees that can be
formed from the five people. Therefore,

n(S ) 5 C(5, 3) 5 }
P(5

3
,
!
3)

} 5 }
5
3

?

?

4
2

?

?

3
1

} 5 10

The event space, E, consists of all the three-person committees that have Alice as a
member. Each of those committees contains Alice and two other people chosen
from the four remaining people. Thus the number of such committees is C(4, 2), so
we obtain

n(E ) 5 C(4, 2) 5 }
P(4

2
,
!
2)

} 5 }
4
2

?

?

3
1

} 5 6

The requested probability is

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

1
6
0
} 5 }

3
5

} n

A committee of four is chosen at random from a group of five seniors and four juniors.
Find the probability that the committee will contain two seniors and two juniors.

Solution

The sample space, S, consists of all possible four-person committees that can be
formed from the nine people. Thus

n(S ) 5 C(9, 4) 5 }
P(9

4
,
!
4)

} 5 }
9
4

?

?

8
3

?

?

7
2

?

?

6
1

} 5 126
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The event space, E, consists of all four-person committees that contain two seniors
and two juniors. They can be counted as follows.

TASK 1 Choose two seniors from the five available seniors in C(5, 2) 5 10
ways.

TASK 2 Choose two juniors from the four available juniors in C(4, 2) 5 6
ways.

Therefore, there are 10 ? 6 5 60 committees consisting of two seniors and two
juniors. The requested probability is

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

1
6
2
0
6

} 5 }
1
2
0
1
} n

Eight coins are tossed. Find the probability of getting two heads and six tails.

Solution

Because either of two things can happen on each coin, the total number of possible
outcomes, n(S ), is 28 5 256.

We can select two coins, which are to fall heads, in C(8,2) 5 28 ways. For
each of these ways, there is only one way to select the other six coins that are to fall
tails. Therefore, there are 28 ? 1 5 28 ways of getting two heads and six tails, so 
n(E ) 5 28. The requested probability is 

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

2
2
5
8
6

} 5 }
6
7
4
} n
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For Problems 1–4, two coins are tossed. Find the probability
of tossing each of the following events.

1. One head and one tail 2. Two tails

3. At least one tail 4. No tails

For Problems 5–8, three coins are tossed. Find the probability
of tossing each of the following events.

5. Three heads 6. Two heads and a tail

7. At least one head 8. Exactly one tail

For Problems 9–12, four coins are tossed. Find the probability
of tossing each of the following events.

9. Four heads 10. Three heads and a tail

11. Two heads and two tails 12. At least one head

For Problems 13–16, one die is tossed. Find the probability of
rolling each of the following events.

13. A multiple of 3 14. A prime number

15. An even number 16. A multiple of 7

For Problems 17–22, two dice are tossed. Find the probability
of rolling each of the following events.

17. A sum of 6 18. A sum of 11

19. A sum less than 5 20. A 5 on exactly one die

21. A 4 on at least one die 22. A sum greater than 4

For Problems 23–26, one card is drawn from a standard deck
of 52 playing cards. Find the probability of each of the fol-
lowing events.

23. A heart is drawn. 24. A king is drawn.
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25. A spade or a diamond is drawn.

26. A red jack is drawn.

For Problems 27–30, suppose that 25 slips of paper numbered
1 to 25, inclusive, are put in a hat and then one is drawn out at
random. Find the probability of each of the following events.

27. The slip with the 5 on it is drawn.

28. A slip with an even number on it is drawn.

29. A slip with a prime number on it is drawn.

30. A slip with a multiple of 6 on it is drawn.

For Problems 31–34, suppose that a committee of two boys is
to be chosen at random from the five boys, Al, Bill, Carl,
Dan, and Elmer. Find the probability of each of the following
events.

31. Dan is on the committee.

32. Dan and Elmer are both on the committee.

33. Bill and Carl are not both on the committee.

34. Dan or Elmer, but not both of them, is on the committee.

For Problems 35–38, suppose that a five-person committee is
selected at random from the eight people Al, Barb, Chad,
Dominique, Eric, Fern, George, and Harriet. Find the proba-
bility of each of the following events.

35. Al and Barb are both on the committee.

36. George is not on the committee.

37. Either Chad or Dominique, but not both, is on the 
committee.

38. Neither Al nor Barb is on the committee.

For Problems 39–41, suppose that a box of ten items from a
manufacturing company is known to contain two defective
and eight nondefective items. A sample of three items is
selected at random. Find the probability of each of the follow-
ing events.

39. The sample contains all nondefective items.

40. The sample contains one defective and two nondefective
items.

41. The sample contains two defective and one nondefective
item.

For Problem 42–60, solve each problem.

42. A building has five doors. Find the probability that two
people, entering the building at random, will choose the
same door. 

43. Bill, Carol, and Alice are to be seated at random in a row
of three seats. Find the probability that Bill and Carol
will be seated side by side.

44. April, Bill, Carl, and Denise are to be seated at random in
a row of four chairs. What is the probability that April
and Bill will occupy the end seats?

45. A committee of four girls is to be chosen at random from
the five girls Alice, Becky, Candy, Dee, and Elaine. Find
the probability that Elaine is not on the committee.

46. Three boys and two girls are to be seated at random in a
row of five seats. What is the probability that the boys
and girls will be in alternate seats?

47. Four different mathematics books and five different his-
tory books are randomly placed on a shelf. What is the
probability that all of the books on a subject are side by
side?

48. Each of three letters is to be mailed in any one of five dif-
ferent mailboxes. What is the probability that all will be
mailed in the same mailbox?

49. Randomly form a four-digit number by using the digits
2, 3, 4, and 6 once each. What is the probability that the
number formed is greater than 4000?

50. Randomly select one of the 120 permutations of the let-
ters a, b, c, d, and e. Find the probability that in the cho-
sen permutation, the letter a precedes the b (the a is to
the left of the b).

51. A committee of four is chosen at random from a group of
six women and five men. Find the probability that the
committee contains two women and two men.

52. A committee of three is chosen at random from a group
of four women and five men. Find the probability that
the committee contains at least one man.

53. Ahmed, Bob, Carl, Dan, Ed, Frank, Gino, Harry, Julio,
and Mike are randomly divided into two five-man teams
for a basketball game. What is the probability that
Ahmed, Bob, and Carl are on the same team?
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54. Seven coins are tossed. Find the probability of getting
four heads and three tails.

55. Nine coins are tossed. Find the probability of getting
three heads and six tails.

56. Six coins are tossed. Find the probability of getting at
least four heads.

57. Five coins are tossed. Find the probability of getting no
more than three heads.

58. Each arrangement of the 11 letters of the word MISSIS-
SIPPI is put on a slip of paper and placed in a hat. One
slip is drawn at random from the hat. Find the probability

that the slip contains an arrangement of the letters with
the four S’s at the beginning.

59. Each arrangement of the seven letters of the word
OSMOSIS is put on a slip of paper and placed in a hat.
One slip is drawn at random from the hat. Find the prob-
ability that the slip contains an arrangement of the letters
with an O at the beginning and an O at the end.

60. Consider all possible arrangements of three identical H’s
and three identical T’s. Suppose that one of these
arrangements is selected at random. What is the proba-
bility that the selected arrangement has the three H’s in
consecutive positions?
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THOUGHTS INTO WORDS

61. Explain the concepts of sample space and event space.

62. Why must probability answers fall between 0 and 1,
inclusive? Give an example of a situation for which the

probability is zero. Also give an example for which the
probability is one.

In Problem 7 of Section 10.2, we found that there are
2,598,960 different five-card hands that can be dealt from a
hand of 52 playing cards. Therefore, probabilities for certain
kinds of five-card poker hands can be calculated by using
2,598,960 as the number of elements in the sample space. For
Problems 63–71, determine the number of different five-card
poker hands of the indicated type that can be obtained.

63. A straight flush (five cards in sequence and of the same
suit; aces are both low and high, so A2345 and 10JQKA
are both acceptable)

64. Four of a kind (four of the same face value, such as four
kings)

65. A full house (three cards of one face value and two cards
of another face value)

66. A flush (five cards of the same suit but not in sequence)

67. A straight (five cards in sequence but not all of the same
suit)

68. Three of a kind (three cards of one face value and two
cards of two different face values)

69. Two pairs

70. Exactly one pair

71. No pairs

SOME PROPERTIES OF PROBABILITY; EXPECTED

VALUES

There are several basic properties that are useful in the study of probability from
both a theoretical and a computational viewpoint. We will discuss two of these prop-
erties at this time and some additional ones in the next section. The first property
may seem to state the obvious, but still needs to be mentioned.

10.4

Further Investigations
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Property 10.1 simply states that probabilities must fall in the range from 0 to 1,
inclusive. This seems reasonable because P(E ) 5 n(E )@n(S ), and E is a subset of S.
The next two examples illustrate circumstances where P(E) 5 0 and P(E ) 5 1.

Toss a regular six-sided die. What is the probability of getting a 7?

Solution

The sample space is S 5 { 1, 2, 3, 4, 5, 6} , when n(S ) 5 6. The event space is E 5
[, so n(E ) 5 0. Therefore, the probability of getting a 7 is

P(E) 5 }
n
n
(
(
E
S)

)
} 5 }

0
6

} 5 0 n

What is the probability of getting a head or a tail with one flip of a coin?

Solution

The sample space is S 5 { H, T} and the event space is E 5 { H, T} . Therefore, 
n(S ) 5 n(E ) 5 2 and

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

2
2

} 5 1 n

An event that has a probability of 1 is sometimes called certain success, and
an event with a probability of zero is called a certain failure.

It should also be mentioned that Property 10.1 serves as a check for reason-
ableness of answers. In other words, when computing probabilities, we know that
our answer must fall between 0 and 1, inclusive. Any other probability answer is
simply not reasonable.

Complementary Events

Complementary events are complementary sets such that S, the sample space,
serves as the universal set. The following examples illustrate this idea.

Complement of 
Sample Space Event Space Event Space

S 5 { 1, 2, 3, 4, 5, 6} E 5 { 1, 2} E9 5 { 3, 4, 5, 6}
S 5 { H, T} E 5 { T} E9 5 { H}
S 5 { 2, 3, 4, . . . , 12} E 5 { 2, 3, 4} E9 5 { 5, 6, 7, . . . , 12}
S 5 { 1, 2, 3, . . . , 25} E 5 { 3, 4, 5, . . . , 25} E9 5 { 1, 2}

P R O P E R T Y  1 0 . 1

For all events E,

0 # P(E ) # 1

P R O B L E M  1

P R O B L E M  2
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In each case, note that E9 (the complement of E ) consists of all elements of S that are
not in E. Thus E and E9 are called complementary events. Also note that for each
example, P(E ) 1 P(E 9) 5 1. We can state the following general property.

From a computational viewpoint, Property 10.2 provides us with a double bar-
reled attack on some probability problems. That is, once we compute either P(E) or
P(E9), then we can determine the other one simply by subtracting from 1. For exam-

ple, suppose that for a particular problem we can determine that P(E ) 5 }
1
3
3
}. Then

we immediately know that P(E9) 5 1 2 P(E) 5 1 2 }
1
3
3
} 5 }

1
1
0
3
}. The following exam-

ples further illustrate the usefulness of Property 10.2.

Two dice are tossed. Find the probability of getting a sum greater than 3.

Solution

Let S be the familiar sample space of ordered pairs for this problem, where n(S) 5
36. Let E be the event of obtaining a sum greater than 3. Then E9 is the event of
obtaining a sum less than or equal to 3; that is, E9 5 { (1, 1), (1, 2), (2, 1)} . Thus

P(E9) 5 }
n
n
(
(
E
S
9
)
)

} 5 }
3
3
6
} 5 }

1
1
2
}

From this, we conclude that

P(E) 5 1 2 P(E9) 5 1 2 }
1
1
2
} 5 }

1
1
1
2
} n

Toss three coins and find the probability of getting at least one head.

Solution

The sample space, S, consists of all possible outcomes for tossing three coins. Using
the fundamental principle of counting, we know that there are (2)(2)(2) 5 8 
outcomes, so n(S ) 5 8. Let E be the event of getting at least one head. Then E9 is 

P R O P E R T Y  1 0 . 2

If E is any event of a sample space S, and E9 is the complementary
event, then

P(E) 1 P(E9) 5 1

636 Chapter 10 Counting Techniques, Probability, and the Binomial Theorem

P R O B L E M  3

P R O B L E M  4
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the complementary event of not getting any heads. The set E9 is easy to list: E9 5

{ (T, T, T)} . Thus n(E9) 5 1 and P(E9) 5 }
1
8

}. From this, P(E) can be determined to be

P(E) 5 1 2 P(E9) 5 1 2 }
1
8

} 5 }
7
8

} n

A three-person committee is chosen at random from a group of five women and four
men. Find the probability that the committee contains at least one woman.

Solution

Let the sample space, S, be the set of all possible three-person committees that can
be formed from nine people. There are C(9, 3) 5 84 such committees; therefore,
n(S ) 5 84.

Let E be the event The committee contains at least one woman. Then E9 is the
complementary event, The committee contains all men. Thus E9 consists of all three-
man committees that can be formed from four men. There are C(4, 3) 5 4 such com-
mittees; thus n(E9) 5 4. Therefore, we have

P(E9) 5 }
n
n
(
(
E
S
9
)
)

} 5 }
8
4
4
} 5 }

2
1
1
}

which determines P(E ) to be

P(E) 5 1 2 P(E9) 5 1 2 }
2
1
1
} 5 }

2
2
0
1
} n

The concepts of set intersection and set union play an important role in the
study of probability. If E and F are two events in a sample space S, then E > F is
the event consisting of all sample points of S that are in both E and F as indicated in
Figure 10.2. Likewise, E < F is the event consisting of all sample points of S that
are in E or F, or both, as shown in Figure 10.3.

In Figure 10.4 there are 47 sample points in E, 38 sample points in F, and 15
sample points in E > F. How many sample points are there in E < F? Simply

F I G U R E  1 0 . 4

adding the number of points in E and F would result in counting the 15 points in 
E > F twice. Therefore, 15 must be subtracted from the total number of points in E

n(E ∩ F) = 15

n(E) = 47
n(F) = 38

E F

47 15 38

P R O B L E M  5

E

E ∩ F

F

F I G U R E  1 0 . 2

E

E ∪ F

F

F I G U R E  1 0 . 3
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and F, yielding 47 1 38 2 15 5 70 points in E < F. We can state the following
general counting property:

n(E < F ) 5 n(E ) 1 n(F ) 2 n(E > F )

If we divide both sides of this equation by n(S ), we obtain the following probability
property.

What is the probability of getting an odd number or a prime number with one toss of
a die?

Solution

Let S 5 { 1, 2, 3, 4, 5, 6} be the sample space, E 5 { 1, 3, 5} the event of getting an
odd number, and F 5 { 2, 3, 5} the event of getting a prime number. Then E > F 5
{ 3, 5} , and using Property 11.3, we obtain

P(E < F ) 5 }
3
6

} 1 }
3
6

} 2 }
2
6

} 5 }
4
6

} 5 }
2
3

} n

Toss three coins. What is the probability of getting at least two heads or exactly one
tail?

Solution

Using the fundamental principle of counting, we know that there are 2 ? 2 ? 2 5 8
possible outcomes of tossing three coins; thus n(S ) 5 8. Let

E 5 { (H, H, H), (H, H, T), (H, T, H), (T, H, H)}

be the event of getting at least two heads, and let

F 5 { (H, H, T), (H, T, H), (T, H, H)}

be the event of getting exactly one tail. Then

E > F 5 { (H, H, T), (H, T, H), (T, H, H)}

and we can compute P(E < F ) as follows.

P R O P E R T Y  1 0 . 3

For events E and F of a sample space S,

P(E < F ) 5 P(E ) 1 P(F) 2 P(E > F )
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P R O B L E M  6

P R O B L E M  7
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P(E < F ) 5 P(E ) 1 P(F ) 2 P(E > F ) 

5 }
4
8

} 1 }
3
8

} 2 }
3
8

}

5 }
4
8

} 5 }
1
2

} n

In Property 10.3, if E > F 5 [, then the events E and F are said to be mutu-
ally exclusive. In other words, mutually exclusive events are events that cannot
occur at the same time. For example, when we roll a die, the event of getting a 4 and
the event of getting a 5 are mutually exclusive; they cannot both happen on the same
roll. If E > F 5 [, then P(E > F ) 5 0 and Property 11.3 becomes P(E < F ) 5
P(E ) 1 P(F ) for mutually exclusive events.

Suppose we have a jar that contains five white, seven green, and nine red marbles. If
one marble is drawn at random from the jar, find the probability that it is white or green.

Solution

The events of drawing a white marble and drawing a green marble are mutually
exclusive. Therefore, the probability of drawing a white or a green marble is

}
1
5
2
} 1 }

2
7
1
} 5 }

1
2
2
1
} 5 }

4
7

} n

Note that in the solution for Problem 8 we did not explicitly name and list the
elements of the sample space or event spaces. It was obvious that the sample space
contained 21 elements (21 marbles in the jar) and the event spaces contained five
elements (five white marbles) and seven elements (seven green marbles). Thus it
was unnecessary to name and list the sample space and event spaces.

Suppose that the data in the following table represent the results of a survey of 1000
drivers after a holiday weekend.

If a person is selected at random, what is the probability that the person was in an
accident or that it rained?

P R O B L E M  8

RAIN (R) NO RAIN (R9) TOTAL

ACCIDENT (A) 35 10 45

NO ACCIDENT (A9) 450 505 955

TOTAL 485 515 1000

P R O B L E M  9
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Solution

First, let’s form a probability table by dividing each entry by 1000, the total num-
ber surveyed.

Now we can use Property 10.3 and compute P(A < R).

P(A < R ) 5 P(A ) 1 P(R ) 2 P(A > R )

5 0.045 1 0.485 2 0.035

5 0.495 n

Expected Value

Suppose we toss a coin 500 times. We would expect to get approximately 250
heads. In other words, because the probability of getting a head with one toss of a

coin is }
1
2

}, then in 500 tosses we should get approximately 5001}
1
2

}2 5 250 heads. The

word approximately conveys a key idea. As we know from experience, it is possible
to toss a coin several times and get all heads. However, with a large number of tosses,
things should average out so that we get about an equal number of heads and tails.

As another example, consider the fact that the probability of getting a sum of 6

with one toss of a pair of dice is }
3
5
6
}. Therefore, if a pair of dice is tossed 360 times,

we should expect to get a sum of 6 approximately 3601}
3
5
6
}2 5 50 times.

Let us now define the concept of expected value.

D E F I N I T I O N  1 0 . 2

If the k possible outcomes of an experiment are assigned the values x1,
x2, x3, . . . , xk, and if they occur with probabilities of p1, p2, p3, . . . , 
pk, respectively, then the expected value of the experiment (Ev) is
given by

Ev 5 x1p1 1 x2p2 1 x3p3 1 . . . 1 xk pk
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RAIN (R) NO RAIN (R9) TOTAL

ACCIDENT (A) 0.035 0.010 0.045

NO ACCIDENT (A9) 0.450 0.505 0.955

TOTAL 0.485 0.515 1.000
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The concept of expected value (also called mathematical expectation) is
used in a variety of probability situations that deal with such things as fairness of
games and decision making in business ventures. Let’s consider some examples.

Suppose that you buy one ticket in a lottery where 1000 tickets are sold. Further-
more, suppose that three prizes are awarded: one of $500, one of $300, and one of
$100. What is your mathematical expectation?

Solution

Because you bought one ticket, the probability of your winning $500 is }
10

1
00
}, that of

your winning $300 is }
10

1
00
}, and that of your winning $100 is }

10
1
00
}. Multiplying each

of these probabilities times the corresponding prize money and then adding the
results yields your mathematical expectation.

Ev 5 $5001}
10

1
00
}2 1 $3001}

10
1
00
}2 1 $1001}

10
1
00
}2

5 $.50 1 $.30 1 $.10

5 $.90 n

In Problem 10, if you pay more than $.90 for a ticket, then it is not a fair game
from your standpoint. If the price of the game is included in the calculation of the
expected value, then a fair game is defined to be one where the expected value is
zero.

A player pays $5 to play a game where the probability of winning is }
1
5

} and the proba-

bility of losing is }
4
5

}. If the player wins the game, he receives $25. Is this a fair game

for the player?

Solution

Using Definition 10.2, let x1 5 $20, which represents the $25 won minus the $5
paid to play, and let x2 5 2$5, the amount paid to play the game. We are also given

that p1 5 }
1
5

} and p2 5 }
4
5

}. Thus the expected value is

Ev 5 $201}
1
5

}2 1 (2$5)1}
4
5

}2
5 $4 2 $4

5 0

Because the expected value is zero, it is a fair game. n

P R O B L E M  1 0

P R O B L E M  1 1
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Suppose you are interested in insuring a diamond ring for $2000 against theft. An
insurance company charges a premium of $25 per year, claiming that there is a prob-
ability of 0.01 that the ring will be stolen during the year. What is your expected
gain or loss if you take out the insurance?

Solution

Using Definition 10.2, let x1 5 $1975, which represents the $2000 minus the cost of
the premium, $25, and let x2 5 2$25. We also are given that p1 5 0.1, so p2 5 1 2
0.01 5 0.99. Thus the expected value is

Ev 5 $1975(0.01) 1 (2$25)(0.99)

5 $19.75 2 $24.75

5 2$5.00

This means that if you insure with this company over many years and the circum-
stances remain the same, you will have an average net loss of $5 per year. n
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For Problems 1–4, two dice are tossed. Find the probability of
rolling each of the following events.

1. A sum of 6

2. A sum greater than 2

3. A sum less than 8

4. A sum greater than 1

For Problems 5–8, three dice are tossed. Find the probability
of rolling each of the following events.

5. A sum of 3

6. A sum greater than 4

7. A sum less than 17

8. A sum greater than 18

For Problems 9–12, four coins are tossed. Find the probability
of getting each of the following events.

9. Four heads

10. Three heads and a tail

11. At least one tail

12. At least one head

For Problems 13–16, five coins are tossed. Find the probabil-
ity of getting each of the following events.

13. Five tails

14. Four heads and a tail

15. At least one tail

16. At least two heads

For Problems 17–23, solve each problem.

17. Toss a pair of dice. What is the probability of not getting
a double?

18. The probability that a certain horse will win the Ken-

tucky Derby is }
2
1
0
}. What is the probability that it will lose

the race?

19. One card is randomly drawn from a deck of 52 playing
cards. What is the probability that it is not an ace?

P R O B L E M  S E T  1 0 . 4

P R O B L E M  1 2
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20. Six coins are tossed. Find the probability of getting at
least two heads.

21. A subset of two letters is chosen at random from the set
{a, b, c, d, e, f, g, h, i}. Find the probability that the sub-
set contains at least one vowel.

22. A two-person committee is chosen at random from a
group of four men and three women. Find the probability
that the committee contains at least one man.

23. A three-person committee is chosen at random from a
group of seven women and five men. Find the probabil-
ity that the committee contains at least one man.

For Problems 24–27, one die is tossed. Find the probability of
rolling each of the following events.

24. A 3 or an odd number

25. A 2 or an odd number

26. An even number or a prime number

27. An odd number or a multiple of 3

For Problems 28–31, two dice are tossed. Find the probability
of rolling each of the following events.

28. A double or a sum of 6

29. A sum of 10 or a sum greater than 8

30. A sum of 5 or a sum greater than 10

31. A double or a sum of 7

For Problems 32–56, solve each problem.

32. Two coins are tossed. Find the probability of getting
exactly one head or at least one tail.

33. Three coins are tossed. Find the probability of getting at
least two heads or exactly one tail.

34. A jar contains seven white, six blue, and ten red marbles.
If one marble is drawn at random from the jar, find the
probability that (a) the marble is white or blue; (b) the
marble is white or red; (c) the marble is blue or red.

35. A coin and a die are tossed. Find the probability of get-
ting a head on the coin or a 2 on the die.

36. A card is randomly drawn from a deck of 52 playing
cards. Find the probability that it is a red card or a face
card. (Jacks, queens, and kings are the face cards.)

37. The data in the following table represents the results of a
survey of 1000 drivers after a holiday weekend.

If a person is selected at random from those surveyed,
find the probability of each of the following events.
(Express the probabilities in decimal form.)

a. The person was in an accident or it rained.

b. The person was not in an accident or it rained.

c. The person was not in an accident or it did not rain.

38. One hundred people were surveyed, and one question
pertained to their educational background. The results of
this question are given in the following table.

If a person is selected at random from those surveyed,
find the probability of each of the following events.
Express the probabilities in decimal form.

a. The person is female or has a college degree.

b. The person is male or does not have a college degree.

c. The person is female or does not have a college
degree.

FEMALE (F) MALE (F9) TOTAL

COLLEGE
DEGREE (D) 30 20 50

NO COLLEGE
DEGREE (D9) 15 35 50

TOTAL 45 55 100

RAIN NO RAIN
(R) (R9) TOTAL

ACCIDENT
(A) 45 15 60

NO ACCI-
DENT (A9) 350 590 940

TOTAL 395 605 1000
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39. In a recent election there were 1000 eligible voters. They
were asked to vote on two issues, A and B. The results
were as follows: 300 people voted for A, 400 people
voted for B, and 175 voted for both A and B. If one per-
son is chosen at random from the 1000 eligible voters,
find the probability that the person voted for A or B.

40. A company has 500 employees among whom 200 are
females, 15 are high-level executives, and 7 of the high-
level executives are females. If one of the 500 employees
is chosen at random, find the probability that the person
chosen is female or a high-level executive.

41. A die is tossed 360 times. How many times would you
expect to get a 6?

42. Two dice are tossed 360 times. How many times would
you expect to get a sum of 5?

43. Two dice are tossed 720 times. How many times would
you expect to get a sum greater than 9?

44. Four coins are tossed 80 times. How many times would
you expect to get one head and three tails?

45. Four coins are tossed 144 times. How many times would
you expect to get four tails?

46. Two dice are tossed 300 times. How many times would
you expect to get a double?

47. Three coins are tossed 448 times. How many times
would you expect to get three heads?

48. Suppose 5000 tickets are sold in a lottery. There are three
prizes: The first is $1000, the second is $500, and the
third is $100. What is the mathematical expectation of
winning?

49. Your friend challenges you with the following game:
You are to roll a pair of dice, and he will give you $5 if
you roll a sum of 2 or 12, $2 if you roll a sum of 3 or 11,
$1 if you roll a sum of 4 or 10. Otherwise you are to pay
him $1. Should you play the game?

50. A contractor bids on a building project. There is a proba-
bility of 0.8 that he can show a profit of $30,000 and a
probability of 0.2 that he will have to absorb a loss of
$10,000. What is his mathematical expectation?

51. Suppose a person tosses two coins and receives $5 if 2
heads come up, receives $2 if 1 head and 1 tail come up,

and has to pay $2 if 2 tails come up. Is it a fair game for
him?

52. A “wheel of fortune” is divided into four colors: red,
white, blue, and yellow. The probability of the spinner
landing on each of the colors and the money received is
given by the following chart. The price to spin the wheel
is $1.50. Is it a fair game?

53. A contractor estimates a probability of 0.7 of making
$20,000 on a building project and a probability of 0.3 of
losing $10,000 on the project. What is his mathematical
expectation?

54. A farmer estimates his corn crop at 30,000 bushels. On
the basis of past experience, he also estimates a prob-

ability of }
3
5

} that he will make a profit of $.50 per bushel

and a probability of }
1
5

} of losing $.30 per bushel. What is 

his expected income from the corn crop?

55. Bill finds that the annual premium for insuring a stereo
system for $2500 against theft is $75. If the probability
that the set will be stolen during the year is 0.02, what is
Bill’s expected gain or loss by taking out the insurance?

56. Sandra finds that the annual premium for a $2000 insur-
ance policy against the theft of a painting is $100. If the
probability that the painting will be stolen during the
year is 0.01, what is Sandra’s expected gain or loss by
taking out the insurance?
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PROBABILITY MONEY RECEIVED
OF LANDING FOR LANDING

ON THE ON THE
COLOR COLOR COLOR

red }
1
4
0
} $.50

white }
1
3
0
} 1.00

blue }
1
2
0
} 2.00

yellow }
1
1
0
} 5.00
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57. If the probability of some event happening is 0.4, what is
the probability of the event not happening? Explain your
answer.

58. Explain each of the following concepts to a friend who
missed class the day this section was discussed: using

complementary events to determine probabilities, using
union and intersection of sets to determine probabilities,
and using expected value to determine the fairness of a
game.

THOUGHTS INTO WORDS

The term odds is sometimes used to express a probability
statement. For example, we might say, “The odds in favor of
the Cubs winning the pennant are 5 to 1,” or “The odds
against the Mets winning the pennant are 50 to 1.” Odds in
favor and odds against for equally likely outcomes can be
defined as follows.

Odds in favor 5

Odds against 5

We have used the fractional form to define odds; however, in
practice, the to vocabulary is commonly used. Thus the odds
in favor of rolling a 4 with one roll of a die are usually stated

as 1 to 5 instead of }
1
5

}. The odds against rolling a 4 are stated

as 5 to 1.
The odds in favor of statement about the Cubs means

that there are 5 favorable outcomes compared to 1 unfavor-
able, or a total of 6 possible outcomes. So the 5 to 1 in favor
of statement also means that the probability of the Cubs win-

ning the pennant is }
5
6

}. Likewise, the 50 to 1 against statement

about the Mets means that the probability that the Mets will

not win the pennant is }
5
5
0
1
}.

Odds are usually stated in reduced form. For example,
odds of 6 to 4 are usually stated as 3 to 2. Likewise, a fraction
representing probability is reduced before being changed to a
statement about odds.

59. What are the odds in favor of getting three heads with a
toss of three coins?

60. What are the odds against getting four tails with a toss of
four coins?

61. What are the odds against getting three heads and two
tails with a toss of five coins?

62. What are the odds in favor of getting four heads and two
tails with a toss of six coins?

63. What are the odds in favor of getting a sum of 5 with one
toss of a pair of dice?

64. What are the odds against getting a sum greater than 5
with one toss of a pair of dice?

65. Suppose that one card is drawn at random from a deck of
52 playing cards. Find the odds against drawing a red
card.

66. Suppose that one card is drawn at random from a deck of
52 playing cards. Find the odds in favor of drawing an
ace or a king.

67. If P(E ) 5 }
4
7

} for some event E, find the odds in favor of E

happening.

68. If P(E) 5 }
5
9

} for some event E, find the odds against E

happening.

69. Suppose that there is a predicted 40% chance of freezing
rain. State the prediction in terms of the odds against get-
ting freezing rain.

70. Suppose that there is a predicted 20% chance of thunder-
storms. State the prediction in terms of the odds in favor
of getting thunderstorms.

71. If the odds against an event happening are 5 to 2, find the
probability that the event will occur.

number of unfavorable outcomes
}}}}
number of favorable outcomes

number of favorable outcomes
}}}}
number of unfavorable outcomes

Further Investigations
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72. The odds against Belly Dancer winning the fifth race are
20 to 9. What is the probability of Belly Dancer winning
the fifth race?

73. The odds in favor of the Mets winning the pennant are
stated as 7 to 5. What is the probability of the Mets win-
ning the pennant?

74. The following chart contains some poker-hand probabili-
ties. Complete the center column Odds Against Being
Dealt This Hand. Note that fractions are reduced before
being changed to odds.
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PROBABILITY ODDS AGAINST
OF BEING BEING

5-CARD DEALT THIS DEALT THIS
HAND HAND HAND

straight
flush

four
of a kind

full house

flush

straight

three
of a kind

two pairs

one pair

no pairs

}
2,59

4
8
0
,960
} 5 }

64,
1
974
} 64,973 to 1

}
2,5

6
9
2
8
4
,960
} 5

}
2,5

3
9
7
8
4
,
4
960
} 5

}
2,5

5
9
1
8
0
,
8
960
} 5

}
2,

1
5
0
9
,
8
2
,
0
9
0
60

} 5

}
2,

5
5
4
9
,
8
9
,
1
9
2
60

} 5

}
2
1
,5
2
9
3
8
,5
,9
5
6
2
0

} 5

}
1
2
,
,
0
5
9
9
8
8
,
,
2
9
4
6
0
0

} 5

}
1
2
,
,
3
5
0
9
2
8
,
,
5
9
4
6
0
0

} 5

CONDITIONAL PROBABILITY; DEPENDENT AND

INDEPENDENT EVENTS

Two events are often related in such a way that the probability of one of them may
vary depending upon whether the other event has occurred. For example, the proba-
bility of rain may change drastically if additional information is obtained indicating
a front moving through the area. Mathematically, the additional information about
the front changes the sample space for the probability of rain.

In general, the probability of the occurence of an event E, given the occur-
rence of another event F, is called a conditional probability and is denoted
P(E u F ). Let’s look at a simple example and use it to motivate a definition for condi-
tional probability.

What is the probability of rolling a prime number in one roll of a die? Let S 5
{1, 2, 3, 4, 5, 6} , so n(S ) 5 6; and let E 5 { 2, 3, 5} , so n(E ) 5 3. Therefore,

P(E) 5 }
n
n
(
(
E
S )

)
} 5 }

3
6

} 5 }
1
2

}

10.5
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Next, what is the probability of rolling a prime number in one roll of a die,
given that an odd number has turned up? Let F 5 { 1, 3, 5} be the new sample space
of odd numbers. Then n(F ) 5 3. We are now interested in only that part of E
(rolling a prime number) that is also in F, in other words, E > F. Therefore, because
E > F 5 { 3, 5} , the probability of E given F is

P(E u F ) 5 }
n(

n
E
(
>

F )
F)

} 5 }
2
3

}

When we divide both the numerator and the denominator of n(E > F )@n(F) by
n(S ), we obtain

5 }
P(

P
E
(
>

F )
F )

}

Therefore, we can state the following general definition of the conditional probabil-
ity of E given F for arbitrary events E and F.

In a problem in the previous section, the following probability table was
formed relative to car accidents and weather conditions on a holiday weekend.

Some conditional probabilities that can be calculated from the table follow.

P(A u R ) 5 }
P(

P
A

(
>

R )
R )

} 5 }
0
0
.
.
0
4
3
8
5
5

} 5 }
4
3
8
5
5

} 5 }
9
7
7
}

P(A9 u R ) 5 }
P(A

P
9
(R
>

)
R)

} 5 }
0
0
.
.
4
4
5
8
0
5

} 5 }
4
4
5
8
0
5

} 5 }
9
9
0
7
}

P(A u R9 ) 5 }
P(

P
A

(
>

R9
R
)
9 )

} 5 }
0
0
.
.
0
5
1
1
0
5

} 5 }
5
1
1
0
5

} 5 }
1
2
03
}

D E F I N I T I O N  1 0 . 3 Conditional Probability

P(E u F ) 5 }
P(

P

E

(

>

F)

F )
}, P(F ) Þ 0

}
n(E

n(
>

S )
F )

}

}

}
n
n
(
(
F
S )

)
}

RAIN (R) NO RAIN (R9) TOTAL

ACCIDENT (A) 0.035 0.010 0.045

NO ACCIDENT (A9) 0.450 0.505 0.955

TOTAL 0.485 0.515 1.000

   568  Counting Techniques, Probability, and The Binomial Theorem 



Note that the probability of an accident given that it was raining, P(A u R ), is greater
than the probability of an accident given that it was not raining, P(A u R9 ). This
seems reasonable.

A die is tossed. Find the probability that a 4 came up if it is known that an even num-
ber turned up.

Solution

Let E be the event of rolling a 4, and let F be the event of rolling an even number.
Therefore, E 5 { 4} and F 5 { 2, 4, 6} , from which we obtain E > F 5 { 4} . Using
Definition 10.3, we obtain

P(E u F) 5 }
P(E

P(
>

F)
F)

} 5 5 }
1
3

} n

Suppose the probability that a student will enroll in a mathematics course is 0.45,
the probability that he or she will enroll in a science course is 0.38, and the probabil-
ity that he or she will enroll in both courses is 0.26. Find the probability that a stu-
dent will enroll in a mathematics course, given that he or she is also enrolled in a
science course. Also, find the probability that a student will enroll in a science
course given that he or she is enrolled in mathematics.

Solution

Let M be the event Will enroll in mathematics, and let S be the event Will enroll in
science. Therefore, using Definition 10.3, we obtain

P(M u S ) 5 }
P(M

P(
>

S )
S )

} 5 }
0
0
.
.
2
3
6
8

} 5 }
2
3
6
8
} 5 }

1
1
3
9
}

and

P(S u M) 5 }
P(

P
S
(
>

M
M
)

)
} 5 }

0
0
.
.
2
4
6
5

} 5 }
2
4
6
5
} n

Independent and Dependent Events

Suppose that, when computing a conditional probability, we find that

P(E u F ) 5 P(E )

This means that the probability of E is not affected by the occurrence or nonoc-
curence of F. In such a situation, we say that event E is independent of event F. It can
be shown that if event E is independent of event F, then F is also independent of E;
thus E and F are referred to as independent events. Furthermore, from the equations

}
1
6

}

}

}
3
6

}
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P(E u F ) 5 }
P(E

P(

>

F)

F)
} and P(E u F ) 5 P(E )

we see that

}
P(E

P(

>

F)

F)
} 5 P(E )

which can be written

P(E > F) 5 P(E)P(F)

Therefore, we state the following general definition.

In the probability table preceding Problem 1, we see that P(A) 5 0.045,
P(R) 5 0.485, and P(A > R ) 5 0.035. Because

P(A)P(R ) 5 (0.045)(0.485) 5 0.021825

and this does not equal P(A > R ), the events A (have a car accident) and R (rainy
conditions) are not independent. This is not too surprising; we would certainly
expect rainy conditions and automobile accidents to be related.

Suppose we roll a white die and a red die. If we let E be the event We roll a 4 on the
white die and we let F be the event We roll a 6 on the red die, are E and F indepen-
dent events?

Solution

The sample space for rolling a pair of dice has (6)(6) 5 36 elements. Using ordered
pair notation, where the first entry represents the white die and the second entry the
red die, we can list events E and F as follows.

E 5 { (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}
F 5 { (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)}

Therefore, E > F 5 {( 4, 6)} . Because P(F) 5 }
1
6

}, P(E ) 5 }
1
6

}, and P(E > F ) 5 }
3
1
6
}, 

we see that P(E > F) 5 P(E)P(F ), and the events E and F are independent. n

D E F I N I T I O N  1 0 . 4

Two events E and F are said to be independent if and only if

P(E > F) 5 P(E)P(F)

Two events that are not independent are called dependent events.

P R O B L E M  3
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Two coins are tossed. Let E be the event Toss not more than one head, and let F be
the event Toss at least one of each face. Are these events independent?

Solution

The sample space has (2)(2) 5 4 elements. The events E and F can be listed as 
follows.

E 5 { (H, T), (T, H), (T, T)}

F 5 { (H, T), (T, H)}

Therefore, E > F 5 { (H, T), (T, H)} . Because P(E ) 5 }
3
4

}, P(F ) 5 }
1
2

}, and 

P(E > F) 5 }
1
2

}, we see that P(E > F ) Þ P(E )P(F ), so the events E and F are

dependent. n

Sometimes the independence issue can be decided by the physical nature of
the events in the problem. For instance, in Problem 3 it should seem evident that
rolling a 4 on the white die is not affected by rolling a 6 on the red die. However, as
in Problem 4, the description of the events may not clearly indicate whether the
events are dependent.

From a problem-solving viewpoint, the following two statements are very
helpful.

1. If E and F are independent events, then

P(E > F ) 5 P(E )P(F )

(This property generalizes to any finite number of independent events.)

2. If E and F are dependent events, then

P(E > F ) 5 P(E )P(F u E )

Let’s analyze some problems using these ideas.

A die is rolled three times. (This is equivalent to rolling three dice once each.) What
is the probability of getting a 6 all three times?

Solution

The events of a 6 on the first roll, a 6 on the second roll, and a 6 on the third roll are
independent events. Therefore, the probability of getting three 6’s is

1}
1
6

}21}
1
6

}21}
1
6

}2 5 }
2
1
16
} n
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10.5 Conditional Probability; Dependent and Independent Events 651

A jar contains five white, seven green, and nine red marbles. If two marbles are
drawn in succession without replacement, find the probability that both marbles are
white.

Solution

Let E be the event of drawing a white marble on the first draw, and let F be the event
of drawing a white marble on the second draw. Because the marble drawn first is 
not to be replaced before the second marble is drawn, we have dependent events.
Therefore,

P(E > F ) 5 P(E )P(F u E )

5 1}
2
5
1
}21}

2
4
0
}2 5 }

4
2
2
0
0

} 5 }
2
1
1
}

P(F uE ) means the probability of drawing a white marble on the
second draw, given that a white marble was obtained on the first
draw. n

The concept of mutually exclusive events may also enter the picture when we
are working with independent or dependent events. Our final problems of this sec-
tion illustrate this idea.

A coin is tossed three times. Find the probability of getting two heads and one tail.

Solution

Two heads and one tail can be obtained in three different ways: (1) HHT (head on
first toss, head on second toss, and tail on third toss), (2) HTH, and (3) THH. Thus
we have three mutually exclusive events, each of which can be broken into indepen-
dent events: first toss, second toss, and third toss. Therefore, the probability can be
computed as follows

1}
1
2

}21}
1
2

}21}
1
2

}2 1 1}
1
2

}21}
1
2

}21}
1
2

}2 1 1}
1
2

}21}
1
2

}21}
1
2

}2 5 }
3
8

} n

A jar contains five white, seven green, and nine red marbles. If two marbles are
drawn in succession without replacement, find the probability that one of them is
white and the other is green.

Solution

The drawing of a white marble and a green marble can occur in two different ways:
(1) by drawing a white first and then a green, and (2) by drawing a green first and
then a white. Thus we have two mutually exclusive events, each of which is broken
into two dependent events: first draw and second draw. Therefore, the probability
can be computed as follows.

P R O B L E M  7

P R O B L E M  8

P R O B L E M  6
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1}
2
5
1
}21}

2
7
0
}2 1 1}

2
7
1
}21}

2
5
0
}2 5 }

4
7
2
0
0

} 5 }
1
6

}

White on Green on Green on White on
first draw second draw first draw second draw n

Two cards are drawn in succession with replacement from a deck of 52 playing
cards. Find the probability of drawing a jack and a queen.

Solution

Drawing a jack and a queen can occur two different ways: (1) a jack on the first
draw and a queen on the second, and (2) a queen on the first draw and a jack on the
second. Thus (1) and (2) are mutually exclusive events, and each is broken into the
independent events of first draw and second draw with replacement. Therefore, the
probability can be computed as follows.

1}
5
4
2
}21}

5
4
2
}2 1 1}

5
4
2
}21}

5
4
2
}2 5 }

2
3
7
2
04
} 5 }

1
2
69
}

Jack on Queen on Queen on Jack on
first draw second draw first draw second draw n
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For Problems 1–22, solve each problem.

1. A die is tossed. Find the probability that a 5 came up if it
is known that an odd number came up.

2. A die is tossed. Find the probability that a prime number
was obtained, given that an even number came up. Also
find the probability that an even number came up, given
that a prime number was obtained.

3. Two dice are rolled and someone indicates that the two
numbers that come up are different. Find the probability
that the sum of the two numbers is 6.

4. Two dice are rolled and someone indicates that the two
numbers that come up are identical. Find the probability
that the sum of the two numbers is 8.

5. One card is randomly drawn from a deck of 52 playing
cards. Find the probability that it is a jack, given that the

card is a face card. (We are considering jacks, queens,
and kings as face cards.)

6. One card is randomly drawn from a deck of 52 playing
cards. Find the probability that it is a spade, given the
fact that it is a black card.

7. A coin and a die are tossed. Find the probability of get-
ting a 5 on the die, given that a head comes up on the
coin.

8. A family has three children. Assume that each child is as
likely to be a boy as it is a girl. Find the probability that
the family has three girls if it is known that the family
has at least one girl.

9. The probability that a student will enroll in a mathematics
course is 0.7, the probability that he or she will enroll in a
history course is 0.3, and the probability that he or she
will enroll in both mathematics and history is 0.2. Find

P R O B L E M  S E T  1 0 . 5
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the probability that a student will enroll in mathematics,
given that he or she is also enrolled in history. Also find
the probability that a student will enroll in history, given
that he or she is also enrolled in mathematics.

10. The following probability table contains data relative 
to car accidents and weather conditions on a holiday
weekend.

Find the probability that a person chosen at random from
the survey was in an accident, given that it was raining.
Also find the probability that a person was not in an acci-
dent, given that it was not raining.

11. One hundred people were surveyed, and one question
pertained to their educational background. The responses
to this question are given in the following table.

Find the probability that a person chosen at random from
the survey has a college degree, given that the person is
female. Also find the probability that a person chosen is
male, given that the person has a college degree.

12. In a recent election there were 1000 eligible voters. They
were asked to vote on two issues, A and B. The results
were as follows: 200 people voted for A, 400 people
voted for B, and 50 people voted for both A and B. If one
person is chosen at random from the 100 eligible voters,
find the probability that the person voted for A, given
that he or she voted for B. Also find the probability that
the person voted for B, given that he or she voted for A.

13. A small company has 100 employees among whom 75
are males, 7 are administrators, and 5 of the administra-
tors are males. If a person is chosen at random from the
employees, find the probability that the person is an
administrator, given that he is a male. Also find the prob-
ability that the person chosen is female, given that she is
an administrator.

14. A survey claims that 80% of the households in a certain
town have a color TV, 10% have a microwave oven, and
2% have both a color TV and a microwave oven. Find
the probability that a randomly selected household will
have a microwave oven, given that it has a color TV.

15. Consider a family of three children. Let E be the event
The first child is a boy, and let F be the event The family
has exactly one boy. Are events E and F dependent or
independent?

16. Roll a white die and a green die. Let E be the event Roll a
2 on the white die, and let F be the event Roll a 4 on the
green die. Are E and F dependent or independent events?

17. Toss 3 coins. Let E be the event Toss not more that one
head, and let F be the event Toss at least one of each
face. Are E and F dependent or independent events?

18. A card is drawn at random from a standard deck of 52
playing cards. Let E be the event The card is a 2, and let
F be the event The card is a 2 or a 3. Are the events E
and F dependent or independent?

19. A coin is tossed four times. Find the probability of get-
ting three heads and one tail.

20. A coin is tossed five times. Find the probability of get-
ting four heads and one tail.

21. Toss a pair of dice three times. Find the probability that a
double is obtained on all three tosses.

22. Toss a pair of dice three times. Find the probability that
each toss will produce a sum of 4.

FEMALE (F) MALE (F9) TOTAL

COLLEGE
DEGREE (D) 30 20 50

NO COLLEGE
DEGREE (D9) 15 35 50

TOTAL 45 55 100

RAIN NO RAIN
(R) (R9) TOTAL

ACCIDENT
(A) 0.025 0.015 0.040

NO ACCI-
DENT (A9) 0.400 0.560 0.960

TOTAL 0.425 0.575 1.000
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For Problems 23–26, suppose that two cards are drawn in suc-
cession without replacement from a deck of 52 playing cards.
Find the probability of each of the following events.

23. Both cards are 4’s.

24. One card is an ace and one card is a king.

25. One card is a spade and one card is a diamond.

26. Both cards are black.

For Problems 27–30, suppose that two cards are drawn in suc-
cession with replacement from a deck of 52 playing cards.
Find the probability of each of the following events.

27. Both cards are spades.

28. One card is an ace and one card is a king.

29. One card is the ace of spades and one card is the king of
spades.

30. Both cards are red.

For Problems 31 and 32, solve each problem.

31. A person holds three kings from a deck of 52 playing
cards. If the person draws two cards without replacement
from the 49 cards remaining in the deck, find the proba-
bility of drawing the fourth king.

32. A person removes two aces and a king from a deck of 52
playing cards and draws, without replacement, two more
cards from the deck. Find the probability that the person
will draw two aces, or two kings, or an ace and a king.

For Problems 33–36, a bag contains five red and four white
marbles. Two marbles are drawn in succession with replace-
ment. Find the probability of each of the following events.

33. Both marbles drawn are red.

34. Both marbles drawn are white.

35. The first marble is red and the second marble is white.

36. At least one marble is red.

For Problems 37–40, a bag contains five white, four red, and
four blue marbles. Two marbles are drawn in succession with
replacement. Find the probability of each of the following
events.

37. Both marbles drawn are white.

38. Both marbles drawn are red.

39. One red and one blue marble are drawn.

40. One white and one blue marble are drawn.

For Problems 41–44, a bag contains one red and two white
marbles. Two marbles are drawn in succession without
replacement. Find the probability of each of the following
events.

41. One marble drawn is red and one marble drawn is white.

42. The first marble drawn is red and the second is white.

43. Both marbles drawn are white.

44. Both marbles drawn are red.

For Problems 45–48, a bag contains five red and 12 white
marbles. Two marbles are drawn in succession without
replacement. Find the probability of each of the following
events.

45. Both marbles drawn are red.

46. Both marbles drawn are white.

47. One red and one white marble are drawn.

48. At least one marble drawn is red.

For Problems 49–52, a bag contains two red, three white, and
four blue marbles. Two marbles are drawn in succession with-
out replacement. Find the probability of each of the following
events.

49. Both marbles drawn are white.

50. One marble drawn is white and one is blue.

51. Both marbles drawn are blue.

52. At least one red marble is drawn.

For Problems 53–56, a bag contains five white, one blue, and
three red marbles. Three marbles are drawn in succession
with replacement. Find the probability of each of the follow-
ing events.

53. All three marbles drawn are blue.

54. One marble of each color is drawn.

55. One white and two red marbles are drawn.

56. One blue and two white marbles are drawn.
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For Problems 57–60, a bag contains four white, one red, and
two blue marbles, Three marbles are drawn in succession
without replacement. Find the probability of each of the fol-
lowing events.

57. All three marbles drawn are white.

58. One red and two blue marbles are drawn.

59. One marble of each color is drawn.

60. One white and two red marbles are drawn.

For Problems 61 and 62, solve each problem.

61. Two boxes with red and white marbles are shown here.
A marble is drawn at random from Box 1, and then a sec-
ond marble is drawn from Box 2. Find the probability
that both marbles drawn are white. Find the probability

that both marbles drawn are red. Find the probability that
one red and one white marble are drawn.

3 red 2 red
4 white 1 white

Box 1 Box 2

62. Three boxes containing red and white marbles are shown
here. Randomly draw a marble from Box 1 and put it in
Box 2. Then draw a marble from Box 2 and put it in Box
3. Then draw a marble from Box 3. What is the probabil-
ity that the last marble drawn, from Box 3, is red? What
is the probability that it is white?

2 red 3 red
2 white 1 white 3 white

Box 1 Box 2 Box 3

63. How would you explain the concept of conditional prob-
ability to a classmate who missed the discussion of this
section?

64. How would you give a nontechnical description of con-
ditional probability to an elementary algebra student?

65. Explain in your own words the concept of independent
events.

66. Suppose that a bag contains two red and three white mar-
bles. Furthermore, suppose that two marbles are drawn
from the bag in succession with replacement. Explain
how the following tree diagram can be used to determine

that the probability of drawing two white marbles is }
2
9
5
}.

First Draw Second Draw Outcomes

RR

RW

WR

WW

67. Explain how a tree diagram can be used to determine the
probabilities for Problems 41–44.

THOUGHTS INTO WORDS

R

W

R

W

R

W

}
2
5

}

}
3
5

}

}
2
5

}

}
3
5

}

}
2
5

}

}
3
5

}

BINOMIAL THEOREM

In Chapter 0 we developed a pattern for expanding binomials, using Pascal’s triangle
to determine the coefficients of each term. Now we will be more precise and develop
a general formula, called the binomial formula. In other words, we want to develop a
formula that will allow us to expand (x 1 y)n, where n is any positive integer.

Let’s begin, as we did in Chapter 0, by looking at some specific expansions,
which can be verified by direct multiplication.

10.6
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(x 1 y )0 5 1

(x 1 y )1 5 x 1 y

(x 1 y )2 5 x 2 1 2xy 1 y 2

(x 1 y )3 5 x 3 1 3x 2y 1 3xy 2 1 y 3

(x 1 y )4 5 x 4 1 4x 3y 1 6x 2y 2 1 4xy 3 1 y 4

(x 1 y )5 5 x 5 1 5x 4y 1 10x 3y 2 1 10x 2y 3 1 5xy 4 1 y 5

First, note the pattern of the exponents for x and y on a term-by-term basis. The expo-
nents of x begin with the exponent of the binomial and decrease by 1, term by term,
until the last term has x0, which is 1. The exponents of y begin with zero (y0 5 1) and
increase by 1, term by term, until the last term contains y to the power of the binomial.
In other words, the variables in the expansion of (x 1 y)n have the following pattern.

xn, xn21y, xn22y 2, xn23y 3, . . . . , xyn21, yn

Note that for each term, the sum of the exponents of x and y is n.
Now let’s look for a pattern for the coefficients by examining specifically the

expansion of (x 1 y)5.

(x 1 y )5 5 x 5 1 5x 4y1 1 10x 3y 2 1 10x 2y 3 1 5x1y 4 1 1y 5

C(5, 1) C(5, 2) C(5, 3) C(5, 4) C(5, 5)

As indicated by the arrows, the coefficients are numbers that arise as different-sized
combinations of five things. To see why this happens, consider the coefficient 
for the term containing x 3y 2. The two y’s (for y 2) come from two of the factors of
(x 1 y ), and therefore the three x’s (for x 3) must come from the other three factors
of (x 1 y). In other words, the coefficient is C(5, 2).

We can now state a general expansion formula for (x 1 y)n; this formula is
often called the binomial theorem. But before stating it, let’s make a small switch 

in notation. Instead of C(n, r), we shall write 1 2, which will prove to be a little 

more convenient at this time. The symbol 1 2 still refers to the number of combina-

tions of n things taken r at a time, but in this context it is often called a binomial
coefficient.

n
r

n
r
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Binomial Theorem

For any binomial (x 1 y) and any natural number n,

(x 1 y )n 5 xn 1 1 2x n21y 1 1 2x n22y 2 1 . . . 11 2ynn
n

n
2

n
1
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The binomial theorem can be proven by mathematical induction, but we will not do
that in this text. Instead, we’ll consider a few examples that put the binomial theo-
rem to work.

Expand (x 1 y)7.

Solution

(x 1 y )7 5 x 7 1 1 2x 6y 1 1 2x 5y 2 1 1 2x 4y 3 1 1 2x 3y 4 1 1 2x 2y 5 1 1 2xy 6 1 1 2y 7

5x 7 1 7x 6y 1 21x 5y 2 1 35x 4y 3 1 35x 3y 4 1 21x 2y 5 1 7xy 6 1 y 7
n

Expand (x 2 y)5.

Solution

We shall treat (x 2 y )5 as [x 1 (2y )]5

[x 1 (2y)]5 5 x 5 1 1 2x 4(2y ) 1 1 2x 3(2y)2 1 1 2x 2(2y )3 1 1 2x(2y )4 1 1 2(2y )5

5 x 5 2 5x 4y 1 10x 3y 2 2 10x 2y 3 1 5xy 4 2 y 5
n

Expand (2a 1 3b )4.

Solution

Let x 5 2a and y 5 3b in the binomial theorem.

(2a 1 3b )4 5 (2a )4 1 1 2 (2a )3(3b ) 1 1 2 (2a )2(3b )2 1 1 2 (2a )(3b )3 1 1 2 (3b )4

516a 4 1 96a 3b 1 216a 2b 2 1 216ab 3 1 81b 4
n

Expand 1a 1 }
1
n

}25
.

Solution

1a 1 }
1
n

}25
5 a 5 1 1 2a 41}

1
n

}2 1 1 2a 31}
1
n

}22
1 1 2a 21}

1
n

}23
1 1 2a1}

1
n

}24
1 1 21}

1
n

}25

5 a 5 1 }
5
n
a 4

} 1 }
10
n
a
2

3

} 1 }
10
n
a
3

2

} 1 }
5
n
a
4} 1 }

n
1

5} n

5

5

5

4

5

3

5

2

5

1

4

4

4

3

4

2

4

1

5

5

5

4

5

3

5

2

5

1

7

7

7

6

7

5

7

4

7

3

7

2

7

1

E X A M P L E  1

E X A M P L E  2

E X A M P L E  3

E X A M P L E  4
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Expand (x 2 2 2y 3)6.

Solution

[x 2 1 (22y 3)]6 5 (x 2)6 1 1 2 (x 2)5(22y 3) 1 1 2 (x 2)4(22y 3)2

1 1 2 (x 2)3(22y 3)3 1 1 2 (x 2)2(22y 3)4

1 1 2 (x 2)(22y 3)5 1 1 2 (22y 3)6

5 x 12 2 12x 10y 3 1 60x 8y 6 2 160x 6y 9 1 240x4y 12 2 192x 2y 15 1 64y 18

n

Finding Specific Terms

Sometimes it is convenient to be able to write down the specific term of a binomial
expansion without writing out the entire expansion. For example, suppose that we
want the sixth term of the expansion (x 1 y)12. We can proceed as follows: The
sixth term will contain y 5. (Note in the binomial theorem that the exponent of y is
always one less than the number of the term.) Because the sum of the exponents
for x and y must be 12 (the exponent of the binomial), the sixth term will also con-

tain x 7. The coefficient is 11522 , where the 5 agrees with the exponent of y 5. There-

fore, the sixth term of (x 1 y)12 is

1 2x 7y 5 5 792x 7y 5

Find the fourth term of (3a 1 2b )7.

Solution

The fourth term will contain (2b )3, and therefore it will also contain (3a )4. The coef-

ficient is 1 2. Thus the fourth term is

1 2 (3a )4(2b )3 5 (35)(81a 4)(8b 3) 5 22,680a 4b 3
n

Find the sixth term of (4x 2 y )9.

Solution

The sixth term will contain (2y)5, and therefore it will also contain (4x )4. The 

coefficient is 1 2. Thus the sixth term is
9
5

7
3

7
3

12
5

6

6

6

5

6

4

6

3

6

2

6

1
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E X A M P L E  5

E X A M P L E  6

E X A M P L E  7
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1 2 (4x )4(2y )5 5 (126)(256x 4)(2y 5)

5 232256x 4y 5
n

9

5

P R O B L E M  S E T  1 0 . 6

For Problems 1–26, expand and simplify each binomial.

1. (x 1 y )8 2. (x 1 y )9

3. (x 2 y )6 4. (x 2 y )4

5. (a 1 2b )4 6. (3a 1 b )4

7. (x 2 3y )5 8. (2x 2 y )6

9. (2a 2 3b )4 10. (3a 2 2b )5

11. (x 2 1 y)5 12. (x 1 y 3)6

13. (2x 2 2 y 2)4 14. (3x 2 2 2y 2)5

15. (x 1 3)6 16. (x 1 2)7

17. (x 2 1)9 18. (x 2 3)4

19. 11 1 }
1
n

}24
20. 12 1 }

1
n

}25

21. 1a 2 }
1
n

}26
22. 12a 2 }

1
n

}25

23. 11 1 Ï2w24 24. 12 1 Ï3w23

25. 13 2 Ï2w25 26. 11 2 Ï3w24

For Problems 27–36, write the first four terms of each 
expansion.

27. (x 1 y )12 28. (x 1 y )15

29. (x 2 y )20 30. (a 2 2b )13

31. (x 2 2 2y 3)14 32. (x 3 2 3y 2)11

33. 1a 1 }
1
n

}29
34. 12 2 }

1
n

}26

35. (2x 1 2y)10 36. (2a 2 b )14

For Problems 37–46, find the specified term for each bino-
mial expansion.

37. The fourth term of (x 1 y )8

38. The seventh term of (x 1 y )11

39. The fifth term of (x 2 y )9

40. The fourth term of (x 2 2y )6

41. The sixth term of (3a 1 b)7

42. The third term of (2x 2 5y)5

43. The eighth term of (x 2 1 y 3)10

44. The ninth term of (a 1 b 3)12

45. The seventh term of 11 2 }
1
n

}215

46. The eighth term of 11 2 }
1
n

}213

47. How would you explain binomial expansions to an ele-
mentary algebra student?

48. Explain how to find the fifth term of the expansion of
(2x 1 3y )9 without writing out the entire expansion.

49. Is the tenth term of the expansion (1 2 2)15 positive or
negative? Explain how you determined the answer to this
question.

THOUGHTS INTO WORDS
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For Problems 50–53, expand and simplify each complex
number.

50. (1 1 2i)5 51. (2 1 i)6

52. (2 2 i)6 53. (3 2 2i)5

We can summarize this chapter with three main topics: counting techniques, proba-
bility, and the binomial theorem.

Counting Techniques

The fundamental principle of counting states that if a first task can be accom-
plished in x ways and, following this task, a second task can be accomplished in y
ways, then task 1 followed by task 2 can be accomplished in x ? y ways. The princi-
ple extends to any finite number of tasks. As you solve problems involving the fun-
damental principle of counting, it is often helpful to analyze the problem in terms of
the tasks to be completed.

Ordered arrangements are called permutations. The number of permutations of n
things taken n at a time is given by

P(n, n ) 5 n!

The number of r-element permutations that can be formed from a set of n elements
is given by

P(n, r ) 5 n(n 2 1)(n 2 2) . . .

r factors

If there are n elements to be arranged, where there are r1 of one kind, r2 of another
kind, r3 of another kind, . . . rk of a kth kind, then the number of distinguishable per-
mutations is given by

Combinations are subsets; the order in which the elements appear does not make a
difference. The number of r-element combinations (subsets) that can be formed
from a set of n elements is given by

C(n, r ) 5 }
P(n

r!
, r )
}

n!
}}}
(r1!)(r2!)(r3!) . . . (rk!)

C H A P T E R  1 0 S U M M A R Y



Further Investigations
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Chapter 10 Summary 661

Does the order in which the elements appear make any difference? This is a key
question to consider when trying to decide whether a particular problem involves
permutations or combinations. If the answer to the question is yes, then it is a per-
mutation problem; if the answer is no, then it is a combination problem. Don’t for-
get that combinations are subsets.

Probability

In an experiment where all possible outcomes in the sample space S are equally
likely to occur, the probability of an event E is defined by

P(E) 5 }
n
n
(
(
E
S )

)
}

where n(E ) denotes the number of elements in the event E and n(S ) denotes the
number of elements in the sample space S. The numbers n(E ) and n(S ) can often be
determined by using one or more of the previously listed counting techniques. For
all events E, it is always true that 0 # P(E ) # 1. That is, all probabilities fall in the
range from 0 to 1, inclusive.

If E and E9 are complementary events, then P(E) 1 P(E9) 5 1. Therefore, if we can
calculate either P(E) or P(E9), then we can find the other one by subtracting from 1.

For two events E and F, the probability of E or F is given by

P(E < F ) 5 P(E ) 1 P(F ) 2 P(E > F )

If E > F 5 [, then E and F are mutually exclusive events.

The probability that an event E occurs, given that another event F has already
occurred, is called conditional probability, and it is given by the equation

P(E u F ) 5 }
P(

P
E

(
>

F)
F )

}

Two events E and F are said to be independent if and only if

P(E > F ) 5 P(E )P(F )

Two events that are not independent are called dependent events, and the probabil-
ity of two dependent events is given by

P(E > F ) 5 P(E )P(F u E )

The Binomial Theorem

For any binomial (x 1 y) and any natural number n,

(x 1 y)n 5 xn 1 1 2xn21y 1 1 2xn22y 2 1 . . . 1 1 2ynn

n

n

2

n

1
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Note the following patterns in a binomial expansion.

1. In each term, the sum of the exponents of x and y is n.

2. The exponents of x begin with the exponent of the binomial and decrease
by 1, term by term, until the last term has x 0, which is 1. The exponents of
y begin with zero (y 0 5 1) and increase by 1, term by term, until the last
term contains y to the power of the binomial.

3. The coefficient of any term is given by 1 2, where the value of r agrees

with the exponent of y for that term. For example, if the term contains y 3,

then the coefficient of that term is 1 2.

4. The expansion of (x 1 y )n contains n 1 1 terms.

n
3

n
r

Problems 1–14 are counting type problems.

1. How many different arrangements of the letters A, B, C,
D, E, and F can be made?

2. How many different nine-letter arrangements can be
formed from the nine letters of the word APPARATUS?

3. How many odd numbers of three different digits each
can be formed by choosing from the digits 1, 2, 3, 5, 7, 8,
and 9?

4. In how many ways can Arlene, Brent, Carlos, Dave,
Ernie, Frank, and Gladys be seated in a row of seven
seats so that Arlene and Carlos are side by side?

5. In how many ways can a committee of three people be
chosen from six people?

6. How many committees consisting of three men and two
women can be formed from seven men and six women?

7. How many different five-card hands consisting of all
hearts can be formed from a deck of 52 playing cards?

8. If no number contains repeated digits, how many num-
bers greater than 500 can be formed by choosing from
the digits 2, 3, 4, 5, and 6?

9. How many three-person committees can be formed from
four men and five women so that each committee con-
tains at least one man?

10. How many different four-person committees can be
formed from eight people if two particular people refuse
to serve together on a committee?

11. How many four-element subsets containing A or B but
not both A and B can be formed from the set {A, B, C, D,
E, F, G, H}?

12. How many different six-letter permutations can be
formed from four identical H’s and two identical T’s?

13. How many four-person committees consisting of two
seniors, one sophomore, and one junior can be formed
from three seniors, four juniors, and five sophomores?

C H A P T E R  1 0  R E V I E W  P R O B L E M  S E T
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14. In a baseball league of six teams, how many games are
needed to complete a schedule if each team plays eight
games with each other team?

Problems 15–35 pose some probability questions.

15. If three coins are tossed, find the probability of getting
two heads and one tail.

16. If five coins are tossed, find the probability of getting
three heads and two tails.

17. What is the probability of getting a sum of 8 with one roll
of a pair of dice?

18. What is the probability of getting a sum more than 5 with
one roll of a pair of dice?

19. Aimée, Brenda, Chuck, Dave and Eli are randomly
seated in a row of five seats. Find the probability that
Aimée and Chuck are not seated side by side.

20. Four girls and three boys are to be randomly seated in a
row of seven seats. Find the probability that the girls and
boys will be seated in alternate seats.

21. Six coins are tossed. Find the probability of getting at
least two heads.

22. Two cards are randomly chosen from a deck of 52 playing
cards. What is the probability that two jacks are drawn?

23. Each arrangement of the six letters of the word CYCLIC
is put on a slip of paper and placed in a hat. One slip is
drawn at random. Find the probability that the slip con-
tains an arrangement with the Y at the beginning.

24. A committee of three is randomly chosen from one man
and six women. What is the probability that the man is
not on the committee?

25. A four-person committee is selected at random from the
eight people Alice, Bob, Carl, Dee, Edna, Fred, Gina,
and Hilda. Find the probability that Alice or Bob, but not
both, is on the committee.

26. A committee of three is chosen at random from a group
of five men and four women. Find the probability that
the committee contains two men and one woman.

27. A committee of four is chosen at random from a group of
six men and seven women. Find the probability that the
committee contains at least one woman.

28. A bag contains five red and eight white marbles. Two
marbles are drawn in succession with replacement. What
is the probability that at least one red marble is drawn?

29. A bag contains four red, five white, and three blue mar-
bles. Two marbles are drawn in succession with replace-
ment. Find the probability that one red and one blue
marble are drawn.

30. A bag contains four red and seven blue marbles. Two mar-
bles are drawn in succession without replacement. Find
the probability of drawing one red and one blue marble.

31. A bag contains three red, two white, and two blue mar-
bles. Two marbles are drawn in succession without
replacement. Find the probability of drawing at least one
red marble.

32. Each of three letters is to be mailed in any one of four
different mailboxes. What is the probability that all three
letters will be mailed in the same mailbox?

33. The probability that a customer in a department store will
buy a blouse is 0.15, the probability that she will buy a
pair of shoes is 0.10, and the probability that she will buy
both a blouse and a pair of shoes is 0.05. Find the proba-
bility that the customer will buy a blouse, given that she
has already purchased a pair of shoes. Also find the prob-
ability that she will buy a pair of shoes, given that she
has already purchased a blouse.

34. A survey of 500 employees of a company produced the
following information.

Find the probability that an employee chosen at random
(a) is working in a managerial position, given that he or
she has a college degree; and (b) has a college degree,
given that he or she is working in a managerial position.

EMPLOYMENT COLLEGE NO COLLEGE
LEVEL DEGREE DEGREE

Managerial 45 5

Nonmanagerial 50 400
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35. From a survey of 1000 college students, it was found that
450 of them owned cars, 700 of them owned stereos, and
200 of them owned both a car and a stereo. If a student is
chosen at random from the 1000 students, find the proba-
bility that the student (a) owns a car, given the fact that
he or she owns a stereo, and (b) owns a stereo, given the
fact that he or she owns a car.

For Problems 36–41, expand each binomial and simplify.

36. (x 1 2y )5 37. (x 2 y )8 38. (a 2 2 3b 3)4

39. 1x 1 }
1
n

}26
40. 11 2 Ï2w25 41. (2a 1 b )3

42. Find the fourth term of the expansion of (x 2 2y)12.

43. Find the tenth term of the expansion of (3a 1 b 2)13.

664 Chapter 10 Counting Techniques, Probability, and the Binomial Theorem

    Counting Techniques, Probability, and The Binomial Theorem 585
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For Problems 1–21, solve each problem.

1. In how many ways can Abdul, Barb, Corazon and Doug be seated in a row of 4
seats so that Abdul occupies an end seat?

2. How many even numbers of four different digits each can be formed by choos-
ing from the digits 1, 2, 3, 5, 7, 8, and 9?

3. In how many ways can three letters be mailed in six mailboxes?

4. In a baseball league of ten teams, how many games are needed to complete the
schedule if each team plays six games against each other team?

5. In how many ways can a sum greater than 5 be obtained when tossing a pair of
dice?

6. In how many ways can six different mathematics books and three different biol-
ogy books be placed on a shelf so that all of the books in a subject area are side
by side?

7. How many four-element subsets containing A or B, but not both A and B, can
be formed from the set {A, B, C, D, E, F, G}?

8. How many five-card hands consisting of two aces, two kings, and one queen
can be dealt from a deck of 52 playing cards?

9. How many different nine-letter arrangements can be formed from the nine let-
ters of the word SASSAFRAS?

10. How many committees consisting of four men and three women can be formed
from a group of seven men and five women?

11. What is the probability of rolling a sum less than 9 with a pair of dice?

12. Six coins are tossed. Find the probability of getting three heads and three tails.

13. All possible numbers of three different digits each are formed from the digits 1,
2, 3, 4, 5, and 6. If one number is then chosen at random, find the probability
that it is greater than 200.

14. A four-person committee is selected at random from Anwar, Barb, Chad, Dick,
Edna, Fern, and Giraldo. What is the probability that neither Anwar nor Barb is
on the committee?

15. From a group of three men and five women, a three-person committee is
selected at random. Find the probability that the committee contains at least one
man.

C H A P T E R  1 0  T E S T
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16. A box of 12 items is known to contain one defective and 11 nondefective items.
If a sample of three items is selected at random, what is the probability that all
three items are nondefective?

17. Five coins are tossed 80 times. How many times should you expect to get three
heads and two tails?

18. Suppose 3000 tickets are sold in a lottery. There are three prizes: The first prize
is $500, the second is $300, and the third is $100. What is the mathematical
expectation of winning?

19. A bag contains seven white and 12 green marbles. Two marbles are drawn in
succession, with replacement. Find the probability that one marble of each color
is drawn.

20. A bag contains three white, five green, and seven blue marbles. Two marbles
are drawn, without replacement. Find the probability that two green marbles are
drawn.

21. In an election there were 2000 eligible voters. They were asked to vote on two
issues, A and B. The results were as follows: 500 people voted for A, 800 peo-
ple voted for B, and 250 people voted for both A and B. If one person is chosen
at random from the 2000 eligible voters, find the probability that this person
voted for A, given that he or she voted for B.

22. Expand and simplify 12 2 }
1
n

}26

23. Expand and simplify (3x 1 2y)5.

24. Find the ninth term of the expansion of 1 x 2 }
1
2

}212
.

25. Find the fifth term of the expansion of (x 1 3y )7.
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2 Chapter 0 Some Basic Concepts of Algebra: A Review

Algebra is often described as generalized arithmetic. That description may
not tell the whole story, but it does indicate an important idea—namely, that
a good understanding of arithmetic provides a sound basis for the study of
algebra. Furthermore, a good understanding of some basic algebra con-
cepts provides an even better basis for the study of more advanced algebraic
ideas. Be sure that you can work effectively with the algebraic concepts we
review in this first chapter.

SOME BASIC IDEAS

Let’s begin by pulling together the basic tools we need for the study of algebra. In

arithmetic, symbols such as 6, }
2
3

}, 0.27, and p are used to represent numbers. The

operations of addition, subtraction, multiplication, and division are commonly indi-
cated by the symbols 1, 2, 3, and 4, respectively. These symbols enable us to
form specific numerical expressions. For example, the indicated sum of 6 and 8
can be written 6 1 8.

In algebra, we use variables to generalize arithmetic ideas. For example, by
using x and y to represent any two numbers, we can use the expression x 1 y to rep-
resent the indicated sum of any two numbers. The x and y in such an expression are
called variables, and the phrase x 1 y is called an algebraic expression.

Many of the notational agreements we make in arithmetic can be extended to
algebra, with a few modifications. The following chart summarizes those notational
agreements regarding the four basic operations.

Note the different ways of indicating a product, including the use of parentheses.
The ab form is the simplest and probably the most widely used form. Expressions
such as abc, 6xy, and 14xyz all indicate multiplication. Notice the various forms

0.1

OPERATION ARITHMETIC ALGEBRA VOCABULARY

Addition 4 1 6 x 1 y The sum of x and y

Subtraction 14 2 10 a 2 b The difference of a
and b

Multiplication 7 3 5 or 7 ? 5 a ? b, a(b ), (a )b, The product of a
(a )(b ), or ab and b

Division 8 4 4, }
8
4

}, 8@4, x 4 y, x@y, }
x
y}, The quotient of x

or 4q8w or yqxw (y Þ 0) divided by y
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0.1 Some Basic Ideas 3

used to indicate division. In algebra, the fraction forms }
x
y} and x@y are generally used, 

although the other forms do serve a purpose at times.

The Use of Sets

Some of the vocabulary and symbolism associated with the concept of sets can be
effectively used in the study of algebra. A set is a collection of objects; the objects
are called elements or members of the set. The use of capital letters to name sets
and the use of set braces, { } , to enclose the elements or a description of the ele-
ments provide a convenient way to communicate about sets. For example, a set A
that consists of the vowels of the alphabet can be represented as follows.

A 5 { vowels of the alphabet} Word description

or A 5 { a, e, i, o, u} List or roster description

or A 5 { x * x is a vowel} Set-builder notation

A set consisting of no elements is called the null set or empty set and is written [.
Set-builder notation combines the use of braces and the concept of a vari-

able. For example, { x * x is a vowel} is read The set of all x such that x is a vowel.
Note that the vertical line is read such that.

Two sets are said to be equal if they contain exactly the same elements. For
example, {1, 2, 3} 5 { 2, 1, 3} because both sets contain exactly the same elements;
the order in which the elements are listed does not matter. A slash mark through an
equality symbol denotes not equal to. Thus if A 5 { 1, 2, 3} and B 5 { 3, 6} , we can
write A Þ B, which is read Set A is not equal to set B.

Real Numbers

The following terminology is commonly used to classify different types of 
numbers.

{ 1, 2, 3 4, . . .} Natural numbers, counting numbers,
positive integers

{ 0, 1, 2, 3, . . .} Whole numbers, nonnegative integers

{ . . . , 23, 22, 21} Negative integers

{ . . . , 23, 22, 21, 0} Nonpositive integers

{ . . . , 22, 21, 0, 1, 2, . . .} Integers

A rational number is defined as any number that can be expressed in the
form a@b, where a and b are integers and b is not zero. The following are examples
of rational numbers.

}
2
3

} 2 }
3
4

} 6 }
1
2

} because 6 }
1
2

} 5 }
1
2
3
}
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6 because 6 5 }
6
1

} 24 because 24 5 }
2

1
4
} 5 }

2

4
1

}

0 because 0 5 }
0
1

} 5 }
0
2

} 5 }
0
3

}, etc. 0.3 because 0.3 5 }
1
3
0
}

A rational number can also be defined in terms of a decimal representation. Before
doing so, let’s briefly review the different possibilities for decimal representations.
Decimals can be classified as terminating, repeating, or nonrepeating. Here are
some examples of each.

0.3

0.46 Terminating decimals
0.7891
0.2143

2
0.3333 . . .

0.141414 . . .

0.712712712 . . . Repeating decimals
0.24171717 . . .1
0.9675283283283 . . .

2
0.472195631 . . .

0.21411711191111 . . . Nonrepeating decimals1 0.752389433215333 . . . 2
A repeating decimal has a block of digits that repeats indefinitely. This repeating
block of digits may be of any size and may or may not begin immediately after the
decimal point. A small horizontal bar is commonly used to indicate the repeating 
block. Thus 0.3333 . . . can be expressed as 0.3w and 0.24171717 . . . as 0.241w7w.

In terms of decimals, a rational number is defined as a number with either a
terminating or a repeating decimal representation. The following examples illustrate 

some rational numbers written in }
a
b} form and in the equivalent decimal form.

}
3
4

} 5 0.75 }
1
3
1
} 5 0.2w7w }

1
8

} 5 0.125 }
1
7

} 5 0.1w4w2w8w5w7w }
1
3

} 5 0.3w

We define an irrational number as a number that cannot be expressed in }
a
b

}

form, where a and b are integers and b is not zero. Furthermore, an irrational number
has a nonrepeating, nonterminating decimal representation. Following are some
examples of irrational numbers. A partial decimal representation is given for each.

Ï2w 5 1.414213562373095 . . .

Ï3w 5 1.73205080756887 . . .

p 5 3.14159265358979 . . .

4 Chapter 0 Some Basic Concepts of Algebra: A Review
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The entire set of real numbers is composed of the rational numbers along
with the irrationals. The following tree diagram can be used to summarize the vari-
ous classifications of the real number system.

Any real number can be traced down through the tree. Here are some examples:

7 is real, rational, an integer, and positive.

2 }
2
3

} is real, rational, a noninteger, and negative.

Ï7w is real, irrational, and positive.

0.59 is real, rational, a noninteger, and positive.

The concept of a subset is convenient to use at this time. A set A is a subset of
another set B if and only if every element of A is also an element of B. For example,
if A 5 { 1, 2} and B 5 { 1, 2, 3} , then A is a subset of B. This is written A # B and is
read A is a subset of B. The slash mark can also be used here to denote negation. If
A 5 { 1, 2, 4, 6} and B 5 { 2, 3, 7} , we can say A is not a subset of B by writing 
A Ü B. The following statements use the subset vocabulary and symbolism; they are
represented in Figure 0.1.

F I G U R E  0 . 1

Reals
Rationals
Integers
Whole numbers

Real numbers

Rational Irrational

2 1

Integers

2 0 1

Nonintegers

2 1
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1. The set of whole numbers is a subset of the set of integers.

{ 0, 1, 2, 3, . . .} # { . . . , 22, 21, 0, 1, 2, . . .}

2. The set of integers is a subset of the set of rational numbers.

{ . . . , 22, 21, 0, 1, 2, . . .} # { x * x is a rational number}

3. The set of rational numbers is a subset of the set of real numbers.

{ x * x is a rational number} # { y * y is a real number}

Real Number Line and Absolute Value

It is often helpful to have a geometric representation of the set of real numbers in
front of us, as indicated in Figure 0.2. Such a representation, called the real 
number line, indicates a one-to-one correspondence between the set of real 
numbers and the points on a line. In other words, to each real number there corre-
sponds one and only one point on the line, and to each point on the line there corre-
sponds one and only one real number. The number that corresponds to a particular
point on the line is called the coordinate of that point.

F I G U R E  0 . 2

Many operations, relations, properties, and concepts pertaining to real 
numbers can be given a geometric interpretation on the number line. For example,
the addition problem (21) 1 (22) can be interpreted on the number line as in 
Figure 0.3.

F I G U R E  0 . 3

The inequality relations also have a geometric interpretation. The statement
a . b (read a is greater than b) means that a is to the right of b, and the statement
c , d (read c is less than d) means that c is to the left of d (see Figure 0.4).

The property 2(2x ) 5 x can be pictured on the number line in a sequence of
steps. See Figure 0.5.

210−1−2−3−4

−1
−2

(−1) + (−2) = −3

543210−1−2−3−4−5

−π −√2
1
2

− 1
2 √2 π

b a c d

F I G U R E  0 . 4

   594  Some Basic Concepts of Algebra: A Review 



0.1 Some Basic Ideas 7

1. Choose a point having a coordinate
of x.

2. Locate its opposite (written as 2x )
on the other side of zero.

3. Locate the opposite of 2x [written
as 2(2x )] on the other\ side of
zero.

F I G U R E  0 . 5

Therefore, we conclude that the opposite of the opposite of any real number is
the number itself, and we symbolically express this by 2(2x ) 5 x.

REMARK The symbol 21 can be read negative one, the negative of one,
the opposite of one, or the additive inverse of one. The opposite-of and 
additive-inverse-of terminology is especially meaningful when working with
variables. For example, the symbol 2x, read the opposite of x or the additive
inverse of x, emphasizes an important issue. Because x can be any real num-
ber, 2x (opposite of x) can be zero, positive, or negative. If x is positive, 
then 2x is negative. If x is negative, then 2x is positive. If x is zero, then 2x
is zero.

The concept of absolute value can be interpreted on the number line. Geomet-
rically, the absolute value of any real number is the distance between that number
and zero on the number line. For example, the absolute value of 2 is 2, the absolute
value of 23 is 3, and the absolute value of zero is zero (see Figure 0.6). Symboli-
cally, absolute value is denoted with vertical bars. Thus we write * 2 * 5 2, 
* 23 * 5 3, and * 0 * 5 0. More formally, the concept of absolute value is defined as
follows.

F I G U R E  0 . 6

D E F I N I T I O N  0 . 1

For all real numbers a,

1. If a $ 0, then * a * 5 a.

2. If a , 0, then * a * 5 2a.

210−1−2−3 3
|0 | = 0

|−3 | = 3 |2 | = 2

x 0
(a)

x 0
(b)

−x

0 −x
(c)

−(−x)
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According to Definition 0.1, we obtain

* 6 * 5 6 by applying part 1

* 0 * 5 0 by applying part 1

*27 * 5 2(27) 5 7 by applying part 2

Notice that the absolute value of a positive number is the number itself, but the
absolute value of a negative number is its opposite. Thus the absolute value of any
number except zero is positive, and the absolute value of zero is zero. Together,
these facts indicate that the absolute value of any real number is equal to the
absolute value of its opposite. All of these ideas are summarized in the following
properties.

In Figure 0.7 we located points A and B at 22 and 4, respectively. The dis-
tance between A and B is 6 units and can be calculated by using either *22 2 4 * or
* 4 2 (22) *. In general, if two points have coordinates x1 and x2, the distance between
the two points is determined by using either * x2 2 x1 * or * x1 2 x2 *, because by the
third property, they are the same quantity.

Properties of Real Numbers

As you work with the set of real numbers, the basic operations, and the relations of
equality and inequality, the following properties will guide your study. Be sure that
you understand these properties, for they not only facilitate manipulations with real
numbers but also serve as a basis for many algebraic computations. The variables 
a, b, and c represent real numbers.

Let’s make a few comments about the properties of real numbers. The set of
real numbers is said to be closed with respect to addition and multiplication. That is,
the sum of two real numbers is a real number and the product of two real numbers is
a real number. Closure plays an important role when we are proving additional
properties that pertain to real numbers.

Addition and multiplication are said to be commutative operations. This
means that the order in which you add or multiply two real numbers does not affect
the result. For example, 6 1 (28) 5 28 1 6 and (24)(23) 5 (23)(24). It is
important to realize that subtraction and division are not commutative operations;

Properties of Absolute Value

The variables a and b represent any real number.

1. * a * $ 0
2. * a * 5 *2a *
3. * a 2 b * 5 * b 2 a * a 2 b and b 2 a are

opposites of each other.

A B

210−1−2 3 4

F I G U R E  0 . 7
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Closure properties a 1 b is a unique real number.
ab is a unique real number.

Commutative properties a 1 b 5 b 1 a

ab 5 ba

Associative properties (a 1 b ) 1 c 5 a 1 (b 1 c)

(ab )c 5 a(bc)

Identity properties There exists a real number 0 such that 
a 1 0 5 0 1 a 5 a.

There exists a real number 1 such that
a(1) 5 1(a ) 5 a.

Inverse properties For every real number a, there exists a
unique real number 2a such that
a 1 (2 a ) 5 (2a ) 1 a 5 0.

For every nonzero real number a,
there exists a unique real number

}
1
a} such that

a1}
1
a

}2 5 }
1
a

} (a ) 5 1.

Multiplication property a (0) 5 (0)(a ) 5 0
of zero

Multiplication property a (21) 5 21(a ) 5 2a
of negative one

Distributive property a (b 1 c ) 5 ab 1 ac

order does make a difference. For example, 3 2 4 5 21, but 4 2 3 5 1. Likewise, 

2 4 1 5 2, but 1 4 2 5 }
1
2

}.

Addition and multiplication are associative operations. The associative prop-
erties are grouping properties. For example, (28 1 9) 1 6 5 28 1 (9 1 6); chang-
ing the grouping of the numbers does not affect the final sum. Likewise, for
multiplication, [(24)(23)](2) 5 (24)[(23)(2)]. Subtraction and division are not
associative operations. For example, (8 2 6) 2 10 5 28, but 8 2 (6 2 10) 5 12.
An example showing that division is not associative is (8 4 4) 4 2 5 1, but
8 4 (4 4 2) 5 4.

Properties of Real Numbers
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Zero is the identity element for addition. This means that the sum of any real
number and zero is identically the same real number. For example, 287 1 0 5 0 1
(287) 5 287. One is the identity element for multiplication. The product of any
real number and 1 is identically the same real number. For example, (2119)(1) 5
(1)(2119) 5 2119.

The real number 2a is called the additive inverse of a or the opposite of a.
The sum of a number and its additive inverse is the identity element for addition. For
example, 16 and 216 are additive inverses, and their sum is zero. The additive
inverse of zero is zero.

The real number 1/a is called the multiplicative inverse or reciprocal of a.
The product of a number and its multiplicative inverse is the identity element for 

multiplication. For example, the reciprocal of 2 is }
1
2

}, and 21}
1
2

}2 5 }
1
2

}(2) 5 1.

The product of any real number and zero is zero. For example, (217)(0) 5
(0)(217) 5 0. The product of any real number and 21 is the opposite of the real
number. For example, (21)(52) 5 (52)(21) 5 252.

The distributive property ties together the operations of addition and multipli-
cation. We say that multiplication distributes over addition. For example, 
7(3 1 8) 5 7(3) 1 7(8). Furthermore, because b 2 c 5 b 1 (2c), it follows that
multiplication also distributes over subtraction. This can be symbolically expressed
as a (b 2 c ) 5 ab 2 ac. For example, 6(8 2 10) 5 6(8) 2 6(10).

Algebraic Expressions

Algebraic expressions such as

2x 8xy 23xy 24abc z

are called terms. A term is an indicated product and may have any number of 
factors. The variables of a term are called literal factors and the numerical factor is
called the numerical coefficient. Thus in 8xy, the x and y are literal factors and 8 is
the numerical coefficient. Because 1(z ) 5 z, the numerical coefficient of the term z
is understood to be 1. Terms that have the same literal factors are called similar
terms or like terms. The distributive property in the form ba 1 ca 5 (b 1 c)a pro-
vides the basis for simplifying algebraic expressions by combining similar terms, as
illustrated in the following examples.

3x 1 5x 5 (3 1 5)x 26xy 1 4xy 5 (26 1 4)xy 4x 2 x 5 4x 2 1x

5 8x 5 22xy 5 (4 2 1)x

5 3x

Sometimes an algebraic expression can be simplified by applying the distribu-
tive property to remove parentheses and combine similar terms, as the next exam-
ples illustrate.
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4(x 1 2) 1 3(x 1 6) 5 4(x) 1 4(2) 1 3(x ) 1 3(6)

5 4x 1 8 1 3x 1 18

5 7x 1 26

25(y 1 3) 22(y 2 8) 5 25(y) 2 5(3) 2 2(y ) 2 2(28)

5 25y 2 15 2 2y 1 16

5 27y 1 1

An algebraic expression takes on a numerical value whenever each variable in
the expression is replaced by a real number. For example, when x is replaced by 5
and y by 9, the algebraic expression x 1 y becomes the numerical expression 5 1 9,
which is equal to 14. We say that x 1 y has a value of 14 when x 5 5 and y 5 9.

Consider the following examples, which illustrate the process of finding a
value of an algebraic expression. The process is commonly referred to as evaluating
an algebraic expression.

Find the value of 3xy 2 4z when x 5 2, y 5 24, and z 5 25.

Solution

3xy 2 4z 5 3(2)(24) 2 4(25) when x 5 2, y 5 24, and z 5 25

5 224 1 20

5 24 n

Find the value of a 2 [4b 2 (2c 1 1)] when a 5 28, b 5 27, and c 5 14.

Solution

a 2 [4b 2 (2c 1 1)] 5 28 2 [4(27) 2 (2(14) 1 1)]

5 28 2 [228 2 29]

5 28 2 [257]

5 49 n

Evaluate }
3
a
c
2

1

2
5
b
d

} when a 5 14, b 5 212, c 5 23, and d 5 22.

Solution

}
3
a
c
2

1

2
5
b
d

} 5}
3
1
(2
4

3
2

) 1

2(2
5(

1
2

2
2
)
)

}

5 }
2

14
9

1

2

2
1
4
0

}

5 }
2

3
1
8
9

} 5 22 n

E X A M P L E  2

E X A M P L E  3

E X A M P L E  1
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Look back at Examples 1–3 and note that we use the following order of 
operations when simplifying numerical expressions.

You should also realize that first simplifying by combining similar terms can
sometimes aid in the process of evaluating algebraic expressions. The last example
of this section illustrates this idea.

Evaluate 2(3x 1 1) 2 3(4x 2 3) when x 5 25.

Solution

2(3x 1 1) 2 3(4x 2 3) 5 2(3x) 1 2(1) 2 3(4x ) 2 3(23)

5 6x 1 2 2 12x 1 9

5 26x 1 11

Now substituting 25 for x, we obtain

26x 1 11 5 26(25) 1 11

5 30 1 11

5 41 n

1. Perform the operations inside the symbols of inclusion (parentheses,
brackets, and braces) and above and below each fraction bar. Start
with the innermost inclusion symbol.

2. Perform all multiplications and divisions in the order in which they
appear, from left to right.

3. Perform all additions and subtractions in the order in which they
appear, from left to right.

E X A M P L E  4

P R O B L E M  S E T  0 . 1

For Problems 1–10, identify each statement as true or false.

1. Every rational number is a real number.

2. Every irrational number is a real number.

3. Every real number is a rational number.

4. If a number is real, then it is irrational.

5. Some irrational numbers are also rational numbers.

6. All integers are rational numbers.

7. The number zero is a rational number.

8. Zero is a positive integer.

9. Zero is a negative number.

10. All whole numbers are integers.

For Problems 11–18, list those elements of the set of numbers 

30, Ï5w, 2 Ï2w, }
7
8

}, 2}
1
1
0
3
}, 7}

1
8

}, 0.279, 0.46w7w, 2p, 214, 46, 

6.75 4 that belong to each of the following sets.

11. The natural numbers

12. The whole numbers
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13. The integers

14. The rational numbers

15. The irrational numbers

16. The nonnegative integers

17. The nonpositive integers

18. The real numbers

For Problems 19–32, use the following set designations.

N 5 { x * x is a natural number}
W 5 { x * x is a whole number}
I 5 { x * x is an integer}
Q 5 { x * x is a rational number}
H 5 { x * x is an irrational number}
R 5 { x * x is a real number}

Place # or Ü in each blank to make a true statement.

19. N ________ R 20. R ________ N

21. N ________ I 22. I ________ Q

23. H ________ Q 24. Q ________ H

25. W ________ I 26. N ________ W

27. I ________ W 28. I ________ N

29. { 0, 2, 4, . . .} ________ W

30. { 1, 3, 5, 7, . . .} ________ I

31. { 22, 21, 0, 1, 2} ________ W

32. { 0, 3, 6, 9, . . .} ________ N

For Problems 33–42, list the elements of each set. For
example, the elements of { x * x is a natural number less than
4} can be listed { 1, 2, 3} .

33. { x * x is a natural number less than 2}

34. { x * x is a natural number greater than 5}

35. { n * n is a whole number less than 4}

36. { y * y is an integer greater than 23}

37. { y * y is an integer less than 2}

38. { n * n is a positive integer greater than 24}

39. { x * x is a whole number less than 0}

40. { x * x is a negative integer greater than 25}

41. { n * n is a nonnegative integer less than 3}

42. { n * n is a nonpositive integer greater than 1}

43. Find the distance on the real number line between two
points whose coordinates are as follows.

a. 17 and 35 b. 214 and 12

c. 18 and 221 d. 217 and 242

e. 256 and 221 f. 0 and 237

44. Evaluate each of the following if x is a nonzero real 
number.

a. }
 x

x

} b. }


x
x
}

c. }
 2

2

x
x


} d.  x 2  2x

In Problems 45–58, state the property that justifies each of the
statements. For example, 3 1 (24) 5 (24) 1 3 because of
the commutative property of addition.

45. x (2) 5 2(x)

46. (7 1 4) 1 6 5 7 1 (4 1 6)

47. 1(x) 5 x

48. 43 1 (218) 5 (218) 1 43

49. (21)(93) 5 293

50. 109 1 (2109) 5 0

51. 5(4 1 7) 5 5(4) 1 5(7)

52. 21(x 1 y ) 5 2(x 1 y)

53. 7yx 5 7xy

54. (x 1 2) 1 (22) 5 x 1 [2 1 (22)]

55. 6(4) 1 7(4) 5 (6 1 7)(4)

56. 1}
2
3

}2 1}
3
2

}2 5 1

57. 4(5x) 5 (4 ? 5)x

58. [ (17)(8)](25) 5 (17)[(8)(25)]
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81. Do you think 3Ï2w is a rational or an irrational number?
Defend your answer.

82. Explain why }
0
8

} 5 0 but }
8
0

} is undefined.

83. The “solution” of the following simplification problem is
incorrect. The answer should be 211. Find and correct
the error.

8 4 (24)(2) 2 3(4) 4 2 1 (21) 5 (22)(2) 2 12 4 1

5 24 2 12

5 216

84. Explain the difference between “simplifying a numerical
expression” and “evaluating an algebraic expression.”

THOUGHTS INTO WORDS

For Problems 59–79, evaluate each of the algebraic
expressions for the given values of the variables.

59. 5x 1 3y; x 5 22 and y 5 24

60. 7x 2 4y; x 5 21 and y 5 6

61. 23ab 2 2c; a 5 24, b 5 7, and c 5 28

62. x 2 (2y 1 3z); x 5 23, y 5 24, and z 5 9

63. (a 2 2b ) 1 (3c 24); a 5 6, b 5 25, and c 5 211

64. 3a 2 [2b 2 (4c 1 1)]; a 5 4, b 5 6, and c 5 28

65. }
22

x
x
2

1

y
7y

}; x 5 23 and y 5 22

66. }
x 2

2x
3y

2

1

y
2z

}; x 5 4, y 5 9, z 5 212

67. (5x 2 2y)(23x 1 4y); x 5 23 and y 5 27

68. (2a 2 7b )(4a 1 3b ); a 5 6 and b 5 23

69. 5x 1 4y 2 9y 2 2y; x 5 2 and y 5 28

70. 5a 1 7b 2 9a 2 6b; a 5 27 and b 5 8

71. 25x 1 8y 1 7y 1 8x; x 5 5 and y 5 26

72. *x 2 y * 2 *x 1 y *; x 5 24 and y 5 27

73. *3x 1 y * 1 *2x 2 4y *; x 5 5 and y 5 23

74. *}
x
y

2

2

y
x

}*; x 5 26 and y 5 13

75. *}23
a
b

2

2

3
2
b
a

}*; a 5 24 and b 5 28

76. 5(x 2 1) 1 7(x 1 4); x 5 3

77. 2(3x 1 4) 2 3(2x 2 1); x 5 22

78. 24(2x 2 1) 2 5(3x 1 7); x 5 21

79. 5(a 2 3) 2 4(2a 1 1) 2 2(a 2 4); a 5 23

80. You should be able to do calculations like those in
Problems 59–79 with and without a calculator. Different
types of calculators handle the priority-of-operations
issue in different ways. Be sure you can do Problems
59–79 with your calculator.

EXPONENTS

Positive integers are used as exponents to indicate repeated multiplication. For
example, 4 ? 4 ? 4 can be written 43, where the raised 3 indicates that 4 is to be used
as a factor three times. The following general definition is helpful.

0.2
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The number b is referred to as the base and n is called the exponent. The expression
bn can be read b to the nth power. The terms squared and cubed are commonly
associated with exponents of 2 and 3, respectively. For example, b 2 is read b
squared and b 3 as b cubed. An exponent of 1 is usually not written, so b 1 is simply
written b. The following examples illustrate Definition 0.2.

23 5 2 ? 2 ? 2 5 8 1}
1
2

}25
5 }

1
2

} ? }
1
2

} ? }
1
2

} ? }
1
2

} ? }
1
2

} 5 }
3
1
2
}

34 5 3 ? 3 ? 3 ? 3 5 81 (0.7)2 5 (0.7)(0.7) 5 0.49

(25)2 5 (25)(25) 5 25 252 5 2(5 ? 5) 5 225

We especially want to call your attention to the last two examples. Note that (25)2

means that 25 is the base used as a factor twice. However, 252 means that 5 is the
base and that after it is squared, we take the opposite of the result.

Properties of Exponents

In a previous algebra course, you may have seen some properties pertaining to the use
of positive integers as exponents. Those properties can be summarized as follows.

P R O P E R T Y  0 . 1 Properties of Exponents

If a and b are real numbers and m and n are positive integers, then

1. bn ? bm 5 bn1m

2. (bn )m 5 bmn

3. (ab ) n 5 anbn

4. 1}
a
b

}2n
5 }

a
b

n

n} b Þ 0

5. }
b
b

m

n

} 5 bn2m when n . m, b Þ 0

}
b
b

m

n

} 5 1 when n 5 m, b Þ 0

}
b
b

m

n

} 5 }
bm

1
2n} when n , m, b Þ 0

D E F I N I T I O N  0 . 2

If n is a positive integer and b is any real number, then

bn 5 bbb . . . b

n factors of b
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16 Chapter 0 Some Basic Concepts of Algebra: A Review

Each part of Property 0.1 can be justified by using Definition 0.2. For example, to
justify part 1, we can reason as follows.

bn ? bm 5 (bbb . . . b ) ? (bbb . . . b )

n factors m factors
of b of b

5 bbb . . . b

n 1 m factors
of b

5 bn1m

Similar reasoning can be used to verify the other parts of Property 0.1. The follow-
ing examples illustrate the use of Property 0.1 along with the commutative and asso-
ciative properties of the real numbers. The steps enclosed in the dashed boxes can be
performed mentally.

(3x 2y)(4x 3y 2 ) 5 3 ? 4 ? x 2 ? x 3 ? y ? y 2

5 12x 213y 112 bn ? bm 5 bn1m

5 12x 5y 3
n

(22y 3 )5 5 (22)5(y 3 )5 (ab) n 5 anbn

5 232y 15 (bn )m 5 bmn
n

1}
a
b

2

4}27
5 }

(
(
a
b

2

4

)
)

7

7} 1}
a
b

}2n
5 }

a
b

n

n}

5 }
a
b

1

2

4

8} (bn )m 5 bmn
n

}
2

7
5
x
6

4

x 9

} 5 28x 924 }
b
b

m

n

} 5 bn2m when n . m

5 28x 5
n

Zero and Negative Integers as Exponents

Now we can extend the concept of an exponent to include the use of zero and nega-
tive integers. First let’s consider the use of zero as an exponent. We want to use zero
in a way that Property 0.1 will continue to hold. For example, if bn ? bm 5 bn1m is to
hold, then x 4 ? x 0 should equal x 410, which equals x 4. In other words, x 0 acts like 1
because x 4 ? x 0 5 x 4. Look at the following definition.

E X A M P L E  1

E X A M P L E  2

E X A M P L E  3

E X A M P L E  4
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0.2 Exponents 17

Therefore, according to Definition 0.3, the following statements are all true.

50 5 1 (2413)0 5 1

1}
1
3
1
}20

5 1 (x 3y 4)0 5 1 if x Þ 0 and y Þ 0

A similar line of reasoning can be used to motivate a definition for the use of
negative integers as exponents. Consider the example x 4 ? x24. If bn ? bm 5 bn1m is
to hold, then x 4 ? x24 should equal x 41(24), which equals x0 5 1. Therefore, x24 must
be the reciprocal of x 4, because their product is 1. That is, x24 5 1@x 4. This suggests
the following definition.

According to Definition 0.4, the following statements are true.

x25 5 }
x
1

5} 224 5 }
2
1

4} 5 }
1
1
6
}

1}
3
4

}222
5 5 5 }

1
9
6
} }

x
2
23} 5 5 2x 3

The first four parts of Property 0.1 hold true for all integers. Furthermore, we
do not need all three equations in part 5 of Property 0.1. The first equation,

}
b
b

m

n

} 5 bn2m

can be used for all integral exponents. Let’s restate Property 0.1 as it pertains to
integers. We will include name tags for easy reference.

2
}

}
x
1

3}

1
}

}
1
9
6
}

1
}

1}
3
4

}22

D E F I N I T I O N  0 . 4

If n is a positive integer and b is a nonzero real number, then

b2n 5 }
b
1

n}

D E F I N I T I O N  0 . 3

If b is a nonzero real number, then

b 0 5 1

    Some Basic Concepts of Algebra: A Review 605
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Having the use of all integers as exponents allows us to work with a large vari-
ety of numerical and algebraic expressions. Let’s consider some examples that illus-
trate the various parts of Property 0.2.

Evaluate each of the following numerical expressions.

a. (221 ? 32)21 b. 1}
2
3

2

2

3

2}222

Solutions

a. (221 ? 32)21 5 (221 )21(32)21 Power of a product
5 (21)(322 ) Power of a power

5 (2)1}
3
1

2}2
5 21}

1
9

}2 5 }
2
9

}

b. 1}
2
3

2

2

3

2}222
5 }

(
(
2
3

2

2

3

2

)
)

2

2

2

2} Power of a quotient

5 }
2
3

6

4} Power of a power

5 }
6
8
4
1
} n

P R O P E R T Y  0 . 2

If m and n are integers and a and b are real numbers, with b Þ 0
whenever it appears in a denominator, then

1. bn ? bm 5 bn1m Product of two powers

2. (bn )m 5 bmn Power of a power

3. (ab ) n 5 anbn Power of a product

4. 1}
a
b

}2n
5 }

a
b

n

n} Power of a quotient

5. }
b
b

m

n

} 5 bn2m Quotient of two powers

E X A M P L E  5
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0.2 Exponents 19

Find the indicated products and quotients and express the final results with positive
integral exponents only.

a. (3x 2y24 )(4x23y ) b. }
2

1
3
2
a
a

2

3b
1b

2

5} c. 1}15
5
x
x
y

2

2

1y
4

2

}221

Solutions

a. (3x 2y24)(4x23y ) 5 12x 21(23)y2411 Product of powers
5 12x21y23

5 }
x
1
y
2

3}

b. }
2

1
3
2
a
a

2

3b
1b

2

5} 5 24a 32(21)b 225 Quotient of powers

5 24a 4b23

5 2}
4
b
a

3

4

}

c. 1}15
5
x
x
y

2

2

1y
4

2

}221
5 (3x2121y 22(24 ) )21 First simplify inside parentheses

5 (3x22y 6 )21

5 321x 2y26 Power of a product

5 }
3
x
y

2

6} n

The next three examples illustrate the simplification of numerical and alge-
braic expressions involving sums and differences. In such cases, Definition 0.4 can
be used to change from negative to positive exponents so that we can proceed in the
usual ways.

Simplify 223 1 321.

Solution

223 1 321 5 }
2
1

3} 1 }
3
1

1}

5 }
1
8

} 1 }
1
3

}

5 }
2
3
4
} 1 }

2
8
4
}

5 }
1
2
1
4
} n

E X A M P L E  7

E X A M P L E  6
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20 Chapter 0 Some Basic Concepts of Algebra: A Review

Simplify (421 2 322 )21.

Solution

(421 2 322 )21 5 1}
4
1

1} 2 }
3
1

2}221

5 1}
1
4

} 2 }
1
9

}221

5 1}
3
9
6
} 2 }

3
4
6
}221

5 1}
3
5
6
}221

5 5 }
3
5
6
} n

Express a21 1 b22 as a single fraction involving positive exponents only.

Solution

a21 1 b22 5 }
a
1

1} 1 }
b
1

2}

5 1}
1
a

}21}
b
b

2

2}2 1 1}
b
1

2}21}
a
a

}2
5 }

a
b
b

2

2} 1 }
a
a
b 2}

5 }
b 2

ab
1

2

a
} n

Scientific Notation

The expression (n)(10)k (where n is a number greater than or equal to 1 and less than
10, written in decimal form, and k is any integer) is commonly called scientific
notation or the scientific form of a number. The following are examples of num-
bers expressed in scientific form.

(4.23)(10)4 (8.176)(10)12 (5.02)(10)23 (1)(10)25

Very large and very small numbers can be conveniently expressed in scientific
notation. For example, a light year (the distance that a ray of light travels in one year)
is approximately 5,900,000,000,000 miles, and this can be written as (5.9)(10)12. The
weight of an oxygen molecule is approximately 0.000000000000000000000053 of a
gram, and this can be expressed as (5.3)(10)223.

To change from ordinary decimal notation to scientific notation, the following
procedure can be used.

1
}

1}
3
5
6
}21

E X A M P L E  9

E X A M P L E  8

   608  Some Basic Concepts of Algebra: A Review 



0.2 Exponents 21

Thus we can write

0.00092 5 (9.2)(10)24

872,000,000 5 (8.72)(10)8

5.1217 5 (5.1217)(10)0

To change from scientific notation to ordinary decimal notation, the following pro-
cedure can be used.

Thus we can write

(3.14)(10)7 5 31,400,000

(7.8)(10)2 6 5 0.0000078

Scientific notation can be used to simplify numerical calculations. We merely
change the numbers to scientific notation and use the appropriate properties of expo-
nents. Consider the following examples.

Perform the indicated operations.

a. }
(
(
0
3
.
2
0
0
0
0
0
)
6
(
3
0
)
.0
(9
0
6
0
0
0
,
0
0
2
0
1
0
)
)

} b. Ï9w0w,0w0w0w

Solution

a. }
(
(
0
3
.
2
0
0
0
0
0
)
6
(
3
0
)
.0
(9
0
6
0
0
0
,
0
0
2
0
1
0
)
)

}5

5}
(
(
3
6
.2
.3
)
)
(
(
2
9
.1
.6
)
)
(
(
1
1
0
0
2

)
3

1

)
}

5 (9)(10)4

5 90,000

(6.3)(10)24(9.6)(10)5

}}}
(3.2)(10)3(2.1)(10)26

Move the decimal point the number of places indicated by the exponent
of 10. Move the decimal point to the right if the exponent is positive.
Move it to the left if the exponent is negative.

Write the given number as the product of a number greater than or
equal to 1 and less than 10, and a power of 10. The exponent of 10 is
determined by counting the number of places that the decimal point was
moved when going from the original number to the number greater than
or equal to 1 and less than 10. This exponent is (a) negative if the origi-
nal number is less than 1, (b) positive if the original number is greater
than 10, and (c) 0 if the original number itself is between 1 
and 10.

E X A M P L E  1 0
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b. Ï9w0w,0w0w0w 5 Ï(9w)(w1w0w)4w
5 Ï9wÏ1w0w4w
5 (3)(10)2

5 3(100)

5 300 n

Many calculators are equipped to display numbers in scientific notation. The
display panel shows the number between 1 and 10 and the appropriate exponent of
10. For example, evaluating (3,800,000)2 yields

1.44E13

Thus (3,800,000)2 5 (1.444)(10)13 5 14,440,000,000,000. Similarly, the answer for
(0.000168)2 is displayed as

2.8224E28

Thus (0.000168)2 5 (2.8224)(10)28 5 0.000000028224.
Calculators vary in the number of digits they display between 1 and 10 when

they represent a number in scientific notation. For example, we used two different
calculators to estimate (6729)6 and obtained the following results.

9.283316768E22

9.28331676776E22

Obviously, you need to know the capabilities of your calculator when working with
problems in scientific notation.

Many calculators also allow the entry of a number in scientific notation. Such

calculators are equipped with an enter-the-exponent key often labeled EE . Thus a

number such as (3.14)(10)8 might be entered as follows.

A MODE key often appears on calculators; it enables you to choose the type
of notation. Be sure you understand how to express numbers in scientific notation on
your calculator.

ENTER PRESS DISPLAY

3.14 EE 3.14E

8 3.14E8

   610  Some Basic Concepts of Algebra: A Review 



0.2 Exponents 23

For Problems 1–42, evaluate each numerical expression.

1. 223 2. 322

3. 21023 4. 1024

5. }
3
1
23} 6. }

2
1
25}

7. 1}
1
2

}222
8. 21}

1
3

}222

9. 12}
2
3

}223
10. 1}

5
6

}222

11. 12}
1
5

}20
12.

13. 14. 1}
4
5

}20

15. 25 ? 223 16. 322 ? 35

17. 1026 ? 104 18. 106 ? 1029

19. 1022 ? 1023 20. 1021 ? 1025

21. (322 )22 22. ((22)21 )23

23. (42)21 24. (321 )3

25. (321 ? 22)21 26. (23 ? 322 )22

27. (42 ? 521 )2 28. (222 ? 421 )3

29. 1}
2
5

2

2

2

1}222
30. 1}

3
2

2

2

1

3}222

31. 1}
3
8

2

2

2

1}22
32. 1}

5
4

2

2

1}221

33. }
2
2

2

3

3} 34. }
2
2

2

3

3

}

35. }
1
1
0
0

2

4

1

} 36. }
1
1
0
0

2

2

3

7}

37. 322 1 223 38. 223 1 521

39. 1}
2
3

}221
2 1}

3
4

}221
40. 322 2 23

41. (224 1 321)21 42. (322 2 521)21

Simplify Problems 43–62; express final results without using
zero or negative integers as exponents.

43. x 3 ? x27 44. x22 ? x23

45. a 2 ? a23 ? a21 46. b23 ? b 5 ? b24

47. (a23) 2 48. (b 5 )22

49. (x 3y24 )21 50. (x 4y22 )22

51. (ab 2c21 )23 52. (a 2b21c22 )24

53. (2x 2y21 )22 54. (3x 4y22 )21

55. 1}
x
y

2

2

2

3}222
56. 1}

x
y
2

4

1}223

57. 1}
2
3
a
b

2

2

1

2}222
58. 1}4a

3
2

x
1

2

b
y

23}221

59. }
x
x

2

2

5

2} 60. }
a
a

2

5

3

}

61. }
a
a

2

2

1

b
b

2

2

3

2} 62. }
x
x

2

3

1

y
y
2

2

1

2

}

For Problems 63–70, find the indicated products, quotients,
and powers; express answers without using zero or negative
integers as exponents.

63. (4x 3y 2 )(25xy 3 ) 64. (26xy )(3x 2y 4 )

65. (23xy 3 )3 66. (22x 2y 4 )4

67. 1}
2
3
x
y

2

3
}23

68. 1}
5
4
y
x

2
}23

69. }
2

72
9
x
x

8

2
} 70. }

2

10
1
8
2
x
x

6

2
}

For Problems 71–80, find the indicated products and quotients;
express results using positive integral exponents only.

71. (2x21y 2 )(3x22y23 ) 72. (4x22y 3 )(25x 3y24 )

73. (26a 5y24 )(2a27y) 74. (28a24b25)(26a21b 8 )

1
}

1}
4
5

}222

1
}

1}
3
5

}222

P R O B L E M  S E T  0 . 2
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75. }
24

6
x
x

2

2

1

4

y
y

2

3

2

} 76. }
5
8
6
x
x

2

y
y

2

2

3

}

77. }
2

7
3
a
5

5

a
b

3

2

b
1

22

} 78. }
2

27
3
a
a

2

2

4

2

b
b

2

2

5

4}

79. 1}174xx2

2

3

2

y
y
2

2

6

4

}222
80. 1}224

8
x
x

5

6

y
y

2

2

3

1}223

For Problems 81–88, express each as a single fraction
involving positive exponents only.

81. x21 1 x22 82. x22 1 x24

83. x2 2 2 y2 1 84. 2x2 1 2 3y2 3

85. 3a2 2 1 2b2 3 86. a2 2 1 a2 1b2 2

87. x2 1y 2 xy2 1 88. x 2y2 1 2 x2 3y 2

For Problems 89–98, find the following products and
quotients. Assume that all variables appearing as exponents
represent integers. For example,

(x 2b )(x2b11 ) 5 x 2b1(2b11) 5 xb11

89. (3xa)(4x 2a11 ) 90. (5x2a )(26x 3a21 )

91. (xa)(x2a ) 92. (22y 3b)(24yb11 )

93. }
x
x

3

a

a

} 94. }
4
2
x
x

2

a

a

2

1

2

1

}

95. }
2

6
2
y
4
2

y
b

5

2

b

1

11

} 96. (xa) 2b(xb) a

97. }
(x

y
y
b

)b

} 98. }
(2x 2b

8
)
x
(
2

2
b1

4x
2

b11)
}

For Problems 99–102, express each number in scientific
notation.

99. 62,000,000 100. 17,000,000,000

101. 0.000412 102. 0.000000078

For Problems 103–106, change each number from scientific
notation to ordinary decimal form.

103. (1.8)(10)5 104. (5.41)(10)7

105. (2.3)(10)26 106. (4.13)(10)29

For Problems 107–112, use scientific notation and the
properties of exponents to help perform the indicated
operations.

107. 108.

109. Ï9w0w0w,0w0w0w,0w0w0w 110. Ï0w.0w0w0w0w0w4w

111. Ï0w.0w0w0w9w 112. (0.00069)(0.0034)
}}
(0.0000017)(0.023)

(0.000075)(4,800,000)
}}}

(15,000)(0.0012)
0.00052
}
0.013

THOUGHTS INTO WORDS

POLYNOMIALS

Recall that algebraic expressions such as 5x, 26y 2, 2x21y22, 14a 2b, 5x24, and
217ab 2c 3 are called terms. Terms that contain variables with only nonnegative
integers as exponents are called monomials. Of the previously listed terms, 5x,
26y 2, 14a 2b, and 217ab 2c 3 are monomials. The degree of a monomial is the sum
of the exponents of the literal factors. For example, 7xy is of degree 2, whereas
14a 2b is of degree 3, and 217ab 2c 3 is of degree 6. If the monomial contains only
one variable, then the exponent of that variable is the degree of the monomial. For
example, 5x 3 is of degree 3 and 28y 4 is of degree 4. Any nonzero constant term,
such as 8, is of degree zero.

0.3

113. Explain how you would simplify (321 ? 222 )21 and also
how you would simplify (321 1 222 )21.

114. How would you explain why the product of x 2 and x 4 is
x 6 and not x 8?
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0.3 Polynomials 25

A polynomial is a monomial or a finite sum of monomials. Thus all of the fol-
lowing are examples of polynomials.

4x 2 3x 2 2 2x 2 4 7x 4 2 6x 3 1 5x 2 2 2x 2 1

3x 2y 1 2y }
1
5

}a 2 2 }
2
3

}b 2 14

In addition to calling a polynomial with one term a monomial, we also classify poly-
nomials with two terms as binomials and those with three terms as trinomials. The
degree of a polynomial is the degree of the term with the highest degree in the
polynomial. The following examples illustrate some of this terminology.

The polynomial 4x 3y 4 is a monomial in two variables of degree 7.

The polynomial 4x 2y 2 2xy is a binomial in two variables of degree 3.

The polynomial 9x 2 2 7x 2 1 is a trinomial in one variable of degree 2.

Addition and Subtraction of Polynomials

Both adding polynomials and subtracting them rely on basically the same ideas. The
commutative, associative, and distributive properties provide the basis for rearrang-
ing, regrouping, and combining similar terms. Consider the following addition 
problems.

(4x 2 1 5x 1 1) 1 (7x 2 2 9x 1 4) 5 (4x 2 1 7x 2 ) 1 (5x 2 9x) 1 (1 1 4)

5 11x 2 2 4x 1 5

(5x 2 3) 1 (3x 1 2) 1 (8x 1 6) 5 (5x 1 3x 1 8x) 1 ( 23 1 2 1 6)

5 16x 1 5

The definition of subtraction as adding the opposite [a 2 b 5 a 1 (2b)]
extends to polynomials in general. The opposite of a polynomial can be formed by
taking the opposite of each term. For example, the opposite of 3x 2 2 7x 1 1 is
23x 2 1 7x 2 1. Symbolically, this is expressed as

2(3x 2 2 7x 1 1) 5 23x 2 1 7x 2 1

You can also think in terms of the property 2x 5 21(x) and the distributive prop-
erty. Therefore,

2(3x 2 2 7x 1 1) 5 21(3x 2 2 7x 1 1) 5 23x 2 1 7x 2 1

Now consider the following subtraction problems.

(7x 2 2 2x 2 4) 2 (3x 2 1 7x 2 1) 5 (7x 2 2 2x 2 4) 1 (23x 2 2 7x 1 1)

5 (7x 2 2 3x 2 ) 1 (22x 2 7x) 1 (24 1 1)

5 4x 2 2 9x 2 3

(4y 2 1 7) 2 (23y 2 1 y 2 2) 5 (4y 2 1 7) 1 (3y 2 2 y 1 2)

5 (4y 2 1 3y 2 ) 1 (2y) 1 (7 1 2)

5 7y 2 2 y 1 9
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Multiplying Polynomials

The distributive property is usually stated as a(b 1 c ) 5 ab 1 ac, but it can be
extended as follows.

a(b 1 c 1 d ) 5 ab 1 ac 1 ad

a(b 1 c 1 d 1 e ) 5 ab 1 ac 1 ad 1 ae etc.

The commutative and associative properties, the properties of exponents, and
the distributive property work together to form a basis for finding the product of a
monomial and a polynomial. The following example illustrates this idea.

3x 2(2x 2 1 5x 1 3) 5 3x 2(2x 2 ) 1 3x 2(5x ) 1 3x 2(3)

5 6x 4 1 15x 3 1 9x 2

Extending the method of finding the product of a monomial and a polynomial
to finding the product of two polynomials is again based on the distributive 
property.

(x 1 2) (y 1 5) 5 x(y 1 5) 1 2(y 1 5)

5 x(y ) 1 x(5) 1 2(y ) 1 2(5)

5 xy 1 5x 1 2y 1 10

Notice that each term of the first polynomial multiplies each term of the second
polynomial.

(x 2 3)(y 1 z 1 3) 5 x(y 1 z 1 3) 2 3(y 1 z 1 3)

5 xy 1 xz 1 3x 2 3y 2 3z 2 9

Frequently, multiplying polynomials produces similar terms that can be combined,
which simplifies the resulting polynomial.

(x 1 5)(x 1 7) 5 x(x17) 1 5(x 1 7)

5 x 2 1 7x 1 5x 1 35

5 x 2 1 12x 1 35

(x 2 2)(x 2 2 3x 1 4) 5 x(x 2 2 3x 1 4) 2 2(x 2 2 3x 1 4)

5 x 3 2 3x 2 1 4x 2 2x 2 1 6x 2 8

5 x 3 2 5x 2 1 10x 2 8

In a previous algebra course, you may have developed a shortcut for multiply-
ing binomials, as illustrated by Figure 0.8.

STEP l1 Multiply (2x )(3x ).

STEP l2 Multiply (5)(3x ) and (2x ) (22) and combine.

STEP l3 Multiply (5)(22).

REMARK Shortcuts can be very helpful for certain manipulations in mathe-
matics. But a word of caution: Do not lose the understanding of what you are
doing. Make sure that you are able to do the manipulation without the shortcut.

(2x + 5)(3x − 2) = 6x2 + 11x − 10

2

1
3

F I G U R E  0 . 8
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Exponents can also be used to indicate repeated multiplication of polyno-
mials. For example, (3x 2 4y )2 means (3x 2 4y)(3x 2 4y), and (x 1 4)3 means 
(x 1 4)(x 1 4)(x 1 4). Therefore, raising a polynomial to a power is merely
another multiplication problem.

(3x 2 4y )2 5 (3x 2 4y )(3x 2 4y )

5 9x 2 2 24xy 1 16y 2

[Hint: When squaring a binomial, be careful not to forget the middle term. That is,
(x 1 5)2 Þ x 2 1 25; instead, (x 1 5)2 5 x 2 1 10x 1 25.]

(x 1 4)3 5 (x 1 4)(x 1 4)(x 1 4)

5 (x 1 4)(x 2 1 8x 1 16)

5 x (x 2 1 8x 1 16) 1 4(x 2 1 8x 1 16)

5 x 3 1 8x 2 1 16x 1 4x 2 1 32x 1 64

5 x 3 1 12x 2 1 48x 1 64

Special Patterns

In multiplying binomials, some special patterns occur that you should learn to rec-
ognize. These patterns can be used to find products, and some of them will be help-
ful later when you are factoring polynomials.

The three following examples illustrate the first three patterns, respectively.

(2x 1 3)2 5 (2x )2 1 2(2x )(3) 1 (3)2

5 4x 2 1 12x 1 9

(5x 2 2)2 5 (5x ) 2 2 2(5x )(2) 1 (2)2

5 25x 2 2 20x 1 4

(3x 1 2y )(3x 2 2y ) 5 (3x )2 2 (2y)2 5 9x 2 2 4y 2

In the first two examples, the resulting trinomial is called a perfect-square trino-
mial; it is the result of squaring a binomial. In the third example, the resulting bino-
mial is called the difference of two squares. Later, we will use both of these
patterns extensively when factoring polynomials.

The cubing-of-a-binomial patterns are helpful primarily when you are multi-
plying. These patterns can shorten the work of cubing a binomial, as the next two
examples illustrate.

(a 1 b )2 5 a 2 1 2ab 1 b 2

(a 2 b )2 5 a 2 2 2ab 1 b 2

(a 1 b )(a 2 b ) 5 a 2 2 b 2

(a 1 b ) 3 5 a 3 1 3a 2b 1 3ab 2 1 b 3

(a 2 b ) 3 5 a 3 2 3a 2b 1 3ab 2 2 b 3
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(3x 1 2)3 5 (3x )3 1 3(3x )2(2) 1 3(3x )(2)2 1 (2)3

5 27x 3 1 54x 2 1 36x 1 8

(5x 2 2y)3 5 (5x)3 2 3(5x)2(2y ) 1 3(5x )(2y)2 2 (2y )3

5 125x 3 2 150x 2y 1 60xy 2 2 8y 3

Keep in mind that these multiplying patterns are useful shortcuts, but if you forget
them, simply revert to applying the distributive property.

Binomial Expansion Pattern

It is possible to write the expansion of (a 1 b )n, where n is any positive integer,
without showing all of the intermediate steps of multiplying and combining similar
terms. To do this, let’s observe some patterns in the following examples; each one
can be verified by direct multiplication.

(a 1 b )1 5 a 1 b

(a 1 b )2 5 a 2 1 2ab 1 b 2

(a 1 b )3 5 a 3 1 3a 2b 1 3ab 2 1 b 3

(a 1 b )4 5 a 4 1 4a 3b 1 6a 2b 2 1 4ab 3 1 b 4

(a 1 b )5 5 a 5 1 5a 4b 1 10a 3b 2 1 10a 2b 3 15ab 4 1 b 5

First, note the patterns of the exponents for a and b on a term-by-term basis. The
exponents of a begin with the exponent of the binomial and decrease by 1, term by
term, until the last term, which has a 0 5 1. The exponents of b begin with zero 
(b 0 5 1) and increase by 1, term-by-term, until the last term, which contains b to the
power of the original binomial. In other words, the variables in the expansion of
(a 1 b ) n have the pattern

an, an21b, an22b 2, . . . , abn21, bn

where for each term, the sum of the exponents of a and b is n.
Next, let’s arrange the coefficients in a triangular formation; this yields an

easy-to-remember pattern.

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Row number n in the formation contains the coefficients of the expansion of 
(a 1 b) n. For example, the fifth row contains 1 5 10 10 5 1, and these
numbers are the coefficients of the terms in the expansion of (a 1 b )5. Furthermore,
each can be formed from the previous row as follows.
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1. Start and end each row with 1.

2. All other entries result from adding the two numbers in the row immedi-
ately above, one number to the left and one number to the right.

Thus from row 5, we can form row 6.

Row 5: 1 5 10 10 5 1

Add Add Add Add Add

Row 6: 1 6 15 20 15 6 1

Now we can use these seven coefficients and our discussion about the exponents to
write out the expansion for (a1 b )6.

(a 1 b )6 5 a 6 1 6a 5b 1 15a 4b 2 1 20a 3b 3 1 15a 2b 4 1 6ab 5 1 b 6

REMARK The triangular formation of numbers that we have been dis-
cussing is often referred to as Pascal’s triangle. This is in honor of Blaise Pas-
cal, a seventeenth-century mathematician, to whom the discovery of this
pattern is attributed.

Let’s consider two more examples using Pascal’s triangle and the exponent
relationships.

Expand (a 2 b )4.

Solution

We can treat a 2 b as a 1 (2b ) and use the fourth row of Pascal’s triangle to obtain
the coefficients.

[a 1 (2b)]4 5 a 4 1 4a 3(2b ) 1 6a 2(2b )2 1 4a(2b )3 1 (2b )4

5 a 4 2 4a 3b 1 6a 2b 2 2 4ab 3 1 b 4
n

Expand (2x 1 3y)5.

Solution

Let 2x 5 a and 3y 5 b. The coefficients come from the fifth row of Pascal’s triangle.

(2x 1 3y)5 5 (2x )5 1 5(2x )4(3y ) 1 10(2x )3(3y )2 1 10(2x )2(3y )3 1 5(2x )(3y )4 1 (3y )5

5 32x 5 1 240x 4y 1 720x 3y 2 1 1080x 2y 3 1 810xy 4 1 243y 5
n

Dividing Polynomials by Monomials

In Section 0.5 we will review the addition and subtraction of rational expressions
using the properties

}
a
b

} 1 }
b
c

} 5 }
a 1

b
c

} and }
a
b

} 2 }
b
c

} 5 }
a 2

b
c

}

E X A M P L E  1

E X A M P L E  2
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These properties can also be viewed as

}
a 1

b
c

} 5 }
a
b

} 1 }
b
c

} and }
a 2

b
c

} 5 }
a
b

} 2 }
b
c

}

Together with our knowledge of dividing monomials, these properties provide the
basis for dividing polynomials by monomials. Consider the following examples.

}
18x 3

6
1

x
24x 2

} 5 }
1
6
8
x
x 3

} 1 }
2
6
4
x
x 2

} 5 3x 2 1 4x

}
35x 2y 3

5
2

xy 2

55x 3y 4

}5 }
3
5
5
x
x
y

2y
2

3

} 2 }
5
5
5
x
x
y

3y
2

4

} 5 7xy 2 11x 2y 2

Therefore, to divide a polynomial by a monomial, we divide each term of the poly-
nomial by the monomial. As with many skills, once you feel comfortable with the
process, you may then choose to perform some of the steps mentally. Your work
could take the following format.

}
40x 4y 5

8
1

x 2y
72x 5y 7

}5 5x 2y 4 1 9x 3y 6

5 29ab 2 1 12ab 2 16b 336a 3b 4 2 48a 3b 3 1 64a 2b 5

}}}
24a 2b 2

P R O B L E M  S E T  0 . 3

In Problems 1–10, perform the indicated operations.

1. (5x 2 2 7x 2 2) 1 (9x 2 1 8x 2 4)

2. (29x 2 1 8x 1 4) 1 (7x 2 2 5x 2 3)

3. (14x 2 2 x 2 1) 2 (15x 2 1 3x 1 8)

4. (23x 2 1 2x 1 4) 2 (4x 2 1 6x 2 5)

5. (3x 2 4) 2 (6x 1 3) 1 (9x 2 4)

6. (7a 2 2) 2 (8a 2 1) 2 (10a 2 2)

7. (8x 2 2 6x 2 2) 1 (x 2 2 x 2 1) 2 (3x 2 2 2x 1 4)

8. (12x 2 1 7x 2 2) 2 (3x 2 1 4x 1 5) 1 (24x 2 2 7x 2 2)

9. 5(x 2 2) 2 4(x 1 3) 2 2(x 1 6)

10. 3(2x 2 1) 2 2(3x 1 4) 2 4(5x 2 1)

In Problems 11–54, find the indicated products. Remember
the special patterns that we discussed in this section.

11. 3xy(4x 2y 1 5xy 2 )

12. 22ab 2(3a 2b 2 4ab 3 )

13. 6a 3b 2(5ab 2 4a 2b 1 3ab 2 )

14. 2xy 4(5x 2y 2 4xy 2 1 3x 2y 2 )

15. (x 1 8)(x 1 12) 16. (x 2 9)(x 1 6)

17. (n 2 4)(n 2 12) 18. (n 1 6)(n 2 10)

19. (s 2 t)(x 1 y) 20. (a 1 b )(c 1 d )

21. (3x 2 1)(2x 1 3) 22. (5x 1 2)(3x 1 4)

23. (4x 2 3)(3x 2 7) 24. (4n 1 3)(6n 2 1)
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25. (x 1 4)2 26. (x 2 6)2

27. (2n 1 3)2 28. (3n 2 5)2

29. (x 1 2)(x 2 4)(x 1 3)

30. (x 2 1)(x 1 6)(x 2 5)

31. (x 2 1)(2x 1 3)(3x 2 2)

32. (2x 1 5)(x 2 4)(3x 1 1)

33. (x 2 1)(x 2 1 3x 2 4)

34. ( t 1 1)( t 2 2 2t 2 4)

35. ( t 2 1)( t 2 1 t 1 1)

36. (2x 2 1)(x 2 1 4x 1 3)

37. (3x 1 2)(2x 2 2 x 2 1)

38. (3x 2 2)(2x 2 1 3x 1 4)

39. (x 2 1 2x 2 1)(x 2 1 6x 1 4)

40. (x 2 2 x 1 4)(2x 2 2 3x 2 1)

41. (5x 2 2)(5x 1 2) 42. (3x 2 4)(3x 1 4)

43. (x 2 2 5x 2 2)2 44. (2x 2 1 x 2 1)2

45. (2x 1 3y )(2x 2 3y) 46. (9x 1 y )(9x 2 y)

47. (x 1 5)3 48. (x 2 6)3

49. (2x 1 1)3 50. (3x 1 4)3

51. (4x 2 3)3 52. (2x 2 5)3

53. (5x 2 2y )3 54. (x 1 3y )3

For Problems 55–66, use Pascal’s triangle to help expand
each of the following.

55. (a1b )7 56. (a 1 b )8

57. (x 2 y )5 58. (x 2 y )6

59. (x 1 2y )4 60. (2x 1 y )5

61. (2a 2 b )6 62. (3a 2 b )4

63. (x 2 1 y)7 64. (x 1 2y 2 )7

65. (2a 2 3b )5 66. (4a 2 3b )3

In Problems 67–72, perform the indicated divisions.

67. }
15x 4

5
2

x 2

25x 3

} 68. }
248x

2

8

8
2

x 4

72x 6

}

69. 70. }
18x 3y 2

3
1

xy
27x 2y 3

}

71.

72.

In Problems 73–82, find the indicated products. Assume all
variables that appear as exponents represent integers.

73. (xa 1 yb)(xa 2 yb) 74. (x 2a 1 1)(x 2a 2 3)

75. (xb 1 4)(xb 2 7) 76. (3xa 2 2)(xa 1 5)

77. (2xb 2 1)(3xb 1 2) 78. (2xa 2 3)(2xa 1 3)

79. (x 2a 2 1)2 80. (x 3b 1 2)2

81. (xa 2 2)3 82. (xb 1 3)3

21x 5y 6128x 4y 3 2 35x 5y 4

}}}
7x 2y 3

220a 3b 2 2 44a 4b 5

}}
24a 2b

30a 5 2 24a 3 1 54a 2

}}}
26a

FACTORING POLYNOMIALS

If a polynomial is equal to the product of other polynomials, then each polynomial
in the product is called a factor of the original polynomial. For example, because

83. Describe how to multiply two binomials.

84. Describe how to multiply a binomial and a trinomial.

85. Determine the number of terms in the product of (x 1 y )
and (a 1 b 1 c 1 d ) without doing the multiplication.
Explain how you arrived at your answer.

THOUGHTS INTO WORDS

0.4
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x 2 2 4 can be expressed as (x 1 2)(x 2 2), we say that x 1 2 and x 2 2 are factors
of x 2 2 4. The process of expressing a polynomial as a product of polynomials is
called factoring. In this section we will consider methods of factoring polynomials
with integer coefficients.

In general, factoring is the reverse of multiplication, so we can use our knowl-
edge of multiplication to help develop factoring techniques. For example, we previ-
ously used the distributive property to find the product of a monomial and a
polynomial, as the next examples illustrate.

3(x 1 2) 5 3(x ) 1 3(2) 5 3x 1 6

3x(x 1 4) 5 3x(x ) 1 3x(4) 5 3x 2 1 12x

For factoring purposes, the distributive property (now in the form ab 1 ac 5
a(b 1 c)) can be used to reverse the process. (The steps indicated in the dashed
boxes can be done mentally.)

3x 1 6 5 3(x ) 1 3(2) 5 3(x 1 2)

3x 2 1 12x 5 3x(x) 1 3x(4) 5 3x(x 1 4)

Polynomials can be factored in a variety of ways. Consider some factoriza-
tions of 3x 2 1 12x.

3x 2 1 12x 5 3x(x 1 4) or 3x 2 1 12x 5 3(x 2 1 4x) or

3x 2 1 12x 5 x(3x 1 12) or 3x 2 1 12x 5 }
1
2

}(6x 2 1 24x)

We are, however, primarily interested in the first of these factorization forms; we
shall refer to it as the completely factored form. A polynomial with integral coeffi-
cients is in completely factored form if:

1. it is expressed as a product of polynomials with integral coefficients, and

2. no polynomial, other than a monomial, within the factored form can be fur-
ther factored into polynomials with integral coefficients.

Do you see why only the first of the factored forms of 3x 2 1 12x is said to be in
completely factored form? In each of the other three forms, the polynomial inside

the parentheses can be factored further. Moreover, in the last form, }
1
2

}(6x 2 1 24x ),

the condition of using only integers is violated.
This application of the distributive property is often referred to as factoring

out the highest common monomial factor. The following examples further illus-
trate the process.

12x 3 1 16x 2 5 4x 2(3x 1 4)

8ab 2 18b 5 2b(4a 2 9)

6x 2y 3 1 27xy 4 5 3xy 3(2x 1 9y)

30x 3 1 42x 4 2 24x 5 5 6x 3(5 1 7x 2 4x 2 )
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Sometimes there may be a common binomial factor rather than a com-
mon monomial factor. For example, each of the two terms in the expression 
x (y 1 2) 1 z (y 1 2) has a binomial factor of y 1 2. Thus we can factor y 1 2 from
each term and obtain the following result.

x (y 1 2) 1 z (y 1 2) 5 (y 1 2)(x 1z )

Consider a few more examples involving a common binomial factor.

a 2(b 1 1) 1 2(b 1 1) 5 (b 1 1)(a 2 1 2)

x (2y 2 1) 2 y (2y 2 1) 5 (2y 2 1)(x 2 y )

x (x 1 2) 1 3(x 1 2) 5 (x 12)(x 1 3)

It may seem that a given polynomial exhibits no apparent common monomial
or binomial factor. Such is the case with ab 1 3c 1 bc 1 3a. However, by using the
commutative property to rearrange the terms, we can factor it as follows.

ab 1 3c 1 bc 1 3a 5 ab 1 3a 1 bc 1 3c

5 a(b 1 3) 1 c(b 1 3) Factor a from the first two 
terms and c from the last 
two terms.

5 (b 1 3)(a 1 c) Factor b 1 3 from both 
terms.

This factoring process is referred to as factoring by grouping. Let’s consider
another example of this type.

ab 2 2 4b 2 1 3a 2 12 5 b 2(a 2 4) 1 3(a 2 4) Factor b 2 from the first two 
terms, 3 from the last two.

5 (a 2 4)(b2 1 3) Factor the common 
binomial from both 
terms.

Difference of Two Squares

In Section 0.3 we called your attention to some special multiplication patterns. One
of these patterns was

(a 1 b )(a 2 b ) 5 a 2 2 b 2

This same pattern, viewed as a factoring pattern,

is referred to as the difference of two squares. Applying the pattern is a fairly sim-
ple process, as these next examples illustrate. Again, the steps we have included in
dashed boxes are usually performed mentally.

a 2 2 b 2 5 (a 1 b )(a 2 b )
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x 2 2 16 5 (x )2 2 (4)2  5 (x 1 4)(x 2 4)

4x 2 2 25 5 (2x 2 ) 2 (5)2 5 (2x 1 5)(2x 2 5)

Because multiplication is commutative, the order in which we write the factors is
not important. For example, (x 1 4)(x 2 4) can also be written (x 2 4)(x 1 4).

You must be careful not to assume an analogous factoring pattern for the sum
of two squares; it does not exist. For example, x 2 1 4 Þ (x 1 2)(x 1 2) because
(x 1 2)(x 1 2) 5 x 2 1 4x 1 4. We say that a polynomial such as x 2 1 4 is not 
factorable using integers.

Sometimes the difference-of-two-squares pattern can be applied more than
once, as the next example illustrates.

16x 4 2 81y 4 5 (4x 2 1 9y 2 )(4x 2 2 9y 2 ) 5 (4x 2 1 9y 2 )(2x 1 3y )(2x 2 3y )

It may also happen that the squares are not just simple monomial squares.
These next three examples illustrate such polynomials.

(x 1 3)2 2 y 2 5 [(x 1 3) 1 y][(x 1 3) 2 y] 5 (x 1 3 1 y )(x 1 3 2 y )

4x 2 2 (2y 1 1)2 5 [2x 1 (2y 1 1)][2x 2 (2y 1 1)]

5 (2x 1 2y 1 1)(2x 2 2y 2 1)

(x 2 1)2 2 (x 1 4)2 5 [(x 2 1) 1 (x 1 4)][(x 2 1) 2 (x 1 4)]

5 (x 2 1 1 x 1 4)(x 2 1 2 x 2 4)

5 (2x 1 3)(25)

It is possible that both the technique of factoring out a common monomial fac-
tor and the pattern of the difference of two squares can be applied to the same prob-
lem. In general, it is best to look first for a common monomial factor. Consider the
following examples.

2x 2 2 50 5 2(x 2 2 25)

5 2(x 1 5)(x 2 5)

48y 3 2 27y 5 3y (16y 2 2 9)

5 3y (4y 1 3)(4y 2 3)

9x 2 2 36 5 9(x 2 2 4)

5 9(x 1 2)(x 2 2)

Factoring Trinomials

Expressing a trinomial as the product of two binomials is one of the most common
factoring techniques used in algebra. As before, to develop a factoring technique we
first look at some multiplication ideas. Let’s consider the product (x 1 a )(x 1 b ),
using the distributive property to show how each term of the resulting trinomial is
formed.
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(x 1 a )(x 1 b ) 5 x (x 1 b ) 1 a (x 1 b )

5 x (x ) 1 x (b ) 1 a (x) 1 a (b )

5 x 2 1 (a 1 b )x 1 ab

Notice that the coefficient of the middle term is the sum of a and b and that the last
term is the product of a and b. These two relationships can be used to factor trinomi-
als. Let’s consider some examples.

Factor x 2 1 12x 1 20.

Solution

We need two integers whose sum is 12 and whose product is 20. The numbers are 2
and 10, and we can complete the factoring as follows.

x 2 1 12x 1 20 5 (x 1 2)(x 1 10) n

Factor x 2 2 3x 2 54.

Solution

We need two integers whose sum is 23 and whose product is 254. The integers are
29 and 6, and we can factor as follows.

x 2 2 3x 2 54 5 (x 2 9)(x 1 6) n

Factor x 2 1 7x 5 16.

Solution

We need two integers whose sum is 7 and whose product is 16. The only possible
pairs of factors of 16 are 1 ? 16, 2 ? 8, and 4 ? 4. A sum of 7 is not produced by any
of these pairs, so the polynomial x 2 1 7x 1 16 is not factorable using integers.

n

Trinomials of the Form ax2 1 bx 1 c

Now let’s consider factoring trinomials where the coefficient of the squared term is
not one. First, let’s illustrate an informal trial-and-error technique that works quite
well for certain types of trinomials. This technique is based on our knowledge of
multiplication of binomials.

Factor 3x 2 1 5x 1 2.

Solution

By looking at the first term, 3x 2, and the positive signs of the other two terms, we
know that the binomials are of the form

(x 1 __)(3x 1 __)

E X A M P L E  1

E X A M P L E  2

E X A M P L E  3

E X A M P L E  4
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Because the factors of the last term, 2, are 1 and 2, we have only the following two
possibilities to try.

(x 1 2)(3x 1 1) or (x 1 1)(3x 1 2),

By checking the middle term formed in each of these products, we find that the sec-
ond possibility yields the desired middle term of 5x. Therefore,

3x 2 1 5x 1 2 5 (x 1 1)(3x 1 2) n

Factor 8x 2 2 30x 1 7.

Solution

First, observe that the first term, 8x 2, can be written as 2x ? 4x or x ? 8x. Second,
because the middle term is negative and the last term is positive, we know that the
binomials are of the form

(2x 2 __)(4x 2 __) or (x 2 __)(8x 2 __)

Third, because the factors of the last term, 7, are 1 and 7, the following possibilities
exist.

(2x 2 1)(4x 2 7) (2x 2 7)(4x 2 1)

(x 2 1)(8x 2 7) (x 2 7)(8x 21)

By checking the middle term formed in each of these products, we find that 
(2x 2 7)(4x 2 1) produces the desired middle term of 230x. Therefore,

8x 2 2 30x 1 7 5 (2x 2 7)(4x 2 1) n

Factor 5x 2 2 18x 2 8.

Solution

The first term, 5x 2, can be written as x ? 5x. The last term, 28, can be written as
(22)(4), (2)(24), (21)(8), or (1)(28). Therefore, we have the following possibili-
ties to try.

(x 2 2)(5x 1 4) (x 1 4)(5x 2 2)

(x 1 2)(5x 2 4) (x 2 4)(5x 1 2)

(x 2 1)(5x 1 8) (x 1 8)(5x 2 1)

(x 1 1)(5x 2 8) (x 2 8)(5x 1 1)

By checking the middle terms, we find that (x 2 4)(5x 1 2) yields the desired mid-
dle term of 218x. Thus

5x 2 2 18x 2 8 5 (x 2 4)(5x 1 2) n

E X A M P L E  5

E X A M P L E  6
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Factor 4x 2 1 6x 1 9.

Solution

The first term, 4x 2, and the positive signs of the middle and last terms indicate that
the binomials are of the form

(x 1 __ )(4x 1 __ ) or (2x 1 __ )(2x 1 __ )

Because the factors of the last term, 9, are 1 and 9 or 3 and 3, we have the following
possibilities to try.

(x 1 1)(4x 1 9) (x 1 9)(4x 1 1)

(x 1 3)(4x 1 3) (2x 1 1)(2x 1 9)

(2x 1 3)(2x 13)

None of these possibilities yields a middle term of 6x. Therefore, 4x 2 1 6x 1 9 is
not factorable using integers. n

Certainly, as the number of possibilities increases, this trial-and-error tech-
nique for factoring becomes more tedious. The key idea is to organize your work so
that all possibilities are considered. We have suggested one possible format in the
previous examples. However, as you practice such problems, you may devise a for-
mat that works better for you. Whatever works best for you is the right approach.

There is another, more systematic technique that you may wish to use with
some trinomials. It is an extension of the technique we used earlier with trinomials
where the coefficient of the squared term was one. To see the basis of this technique,
consider the following general product.

(px 1 r )(qx 1 s ) 5 px (qx ) 1 px (s ) 1 r (qx) 1 r (s )

5 (pq )x 2 1 ps (x) 1 rq (x) 1 rs

5 (pq )x 2 1 (ps 1 rq )x 1 rs

Notice that the product of the coefficient of x 2 and the constant term is pqrs. Like-
wise, the product of the two coefficients of x (ps and rq ) is also pqrs. Therefore, the
coefficient of x must be a sum of the form ps 1 rq, such that the product of the coef-
ficient of x 2 and the constant term is pqrs. Now let’s see how this works in some 
specific examples.

Factor 6x 2 1 17x 1 5.

Solution

6x 2 1 17x 1 5 Sum of 17

Product of 6 ? 5 5 30

E X A M P L E  8

E X A M P L E  7
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We need two integers whose sum is 17 and whose product is 30. The integers 2 and
15 satisfy these conditions. Therefore, the middle term, 17x, of the given trinomial
can be expressed as 2x 1 15x, and we can proceed as follows.

6x 2 1 17x 1 5 5 6x 2 1 2x 1 15x 1 5

5 2x(3x 1 1) 1 5(3x 1 1)

5 (3x 1 1)(2x 1 5) n

Factor 5x 2 2 18x 2 8.

Solution

5x 2 2 18x 2 8 Sum of 218

Product of 5(28) 5 240

We need two integers whose sum is 218 and whose product is 240. The integers
220 and 2 satisfy these conditions. Therefore the middle term, 218x, of the trino-
mial can be written 220x + 2x, and we can factor as follows.

5x 2 2 18x 2 8 5 5x 2 2 20x 1 2x 2 8

5 5x (x 2 4) 1 2(x 2 4)

5 (x 2 4)(5x 1 2) n

Factor 24x 2 1 2x 2 15.

Solution

24x 2 1 2x 2 15 Sum of 2

Product of 24(215) 5 2360

We need two integers whose sum is 2 and whose product is 2360. To help find
these integers, let’s factor 360 into primes.

360 5 2 ? 2 ? 2 ? 3 ? 3 ? 5

Now by grouping these factors in various ways, we find that 2 ? 2 ? 5 5 20 and 
2 ? 3 ? 3 5 18, so we can use the integers 20 and 218 to produce a sum of 2 and a
product of 2360. Therefore, the middle term, 2x, of the trinomial can be expressed
as 20x 2 18x, and we can proceed as follows.

24x 2 1 2x 2 15 5 24x 2 1 20x 2 18x 2 15

5 4x (6x 1 5) 2 3(6x 1 5)

5 (6x 1 5)(4x 23 ) n

E X A M P L E  9

E X A M P L E  1 0
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Sum and Difference of Two Cubes

Earlier in this section we discussed the difference-of-squares factoring pattern. We
pointed out that no analogous sum-of-squares pattern exists; that is, a polynomial
such as x 2 1 9 is not factorable using integers. However, there do exist patterns for
both the sum and the difference of two cubes. These patterns come from the follow-
ing special products.

(x 1 y )(x 2 2 xy 1 y 2 ) 5 x (x 2 2 xy 1 y 2 ) 1 y (x 2 2 xy 1 y2 )

5 x 3 2 x 2y 1 xy 2 1 x 2y 2 xy 2 1 y 3

5 x 3 1 y 3

(x 2 y )(x 2 1 xy 1 y 2 ) 5 x (x 2 1 xy 1 y 2 ) 2 y (x 2 1 xy 1 y 2 )

5 x 3 1 x 2y 1 xy 2 2 x 2y 2 xy 2 2 y 3

5 x 3 2 y 3

Thus we can state the following factoring patterns.

Note how these patterns are used in the next three examples.

x 3 1 8 5 x 3 1 23 5 (x 1 2)(x 2 2 2x 1 4)

8x 3 2 27y 3 5 (2x )3 2 (3y )3 5 (2x 2 3y )(4x 2 1 6xy 1 9y 2 )

8a 6 1 125b 3 5 (2a 2 )3 1 (5b )3 5 (2a 2 1 5b)(4a 4 2 10a 2b 1 25b 2 )

We do want to leave you with one final word of caution. Be sure to factor
completely. Sometimes more than one technique needs to be applied, or perhaps the
same technique can be applied more than once. Study the following examples very
carefully.

2x 2 2 8 5 2(x 2 2 4) 5 2(x 1 2)(x 2 2)

3x 2 1 18x 1 24 5 3(x 2 1 6x 1 8) 5 3(x 1 4)(x 1 2)

3x 3 2 3y 3 5 3(x 3 2 y 3 ) 5 3(x 2 y )(x 2 1 xy 1 y 2 )

a 4 2 b 4 5 (a 2 1 b 2 )(a 2 2 b 2 ) 5 (a 2 1 b 2 )(a 1 b )(a 2 b )

x 4 2 6x 2 2 27 5 (x 2 2 9)(x 2 1 3) 5 (x 1 3)(x 2 3)(x 2 1 3)

3x 4y 1 9x 2y 2 84y 5 3y(x 4 1 3x 2 2 28)

5 3y (x 2 1 7)(x 2 2 4)

5 3y (x 2 1 7)(x 1 2)(x 2 2)

x 2 2 y 2 1 8y 2 16 5 x 2 2 (y 2 2 8y 1 16)

5 x 2 2 (y 2 4)2

5 (x 2 (y 2 4))(x 1 (y 2 4))

5 (x 2 y 1 4)(x 1 y 2 4)

x 3 1 y 3 5 (x 1 y)(x 2 2 xy 1 y 2 )

x 3 2 y 3 5 (x 2 y)(x 2 1 xy 1 y 2 )
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P R O B L E M  S E T  0 . 4

Factor each polynomial completely. Indicate any that are not
factorable using integers.

1. 6xy 2 8xy 2 2. 4a 2b 2 1 12ab 3

3. x(z 1 3) 1 y(z 1 3) 4. 5(x 1 y ) 1 a(x 1 y )

5. 3x 1 3y 1 ax 1 ay 6. ac 1 bc 1 a 1 b

7. ax 2 ay 2 bx 1 by 8. 2a 2 2 3bc 2 2ab 1 3ac

9. 9x 2 2 25 10. 4x 2 1 9

11. 1 2 81n 2 12. 9x 2y 2 2 64

13. (x 1 4)2 2 y 2 14. x 2 2 (y 2 1)2

15. 9s 2 2 (2t 2 1)2 16. 4a 2 2 (3b 1 1)2

17. x 2 2 5x 2 14 18. a 2 1 5a 2 24

19. 15 2 2x 2 x 2 20. 40 2 6x 2 x 2

21. x 2 1 7x 2 36 22. x 2 2 4xy 2 5y 2

23. 3x 2 2 11x 1 10 24. 2x 2 2 7x 2 30

25. 10x 2 2 33x 2 7 26. 8y 2 1 22y 2 21

27. x 3 2 8 28. x 3 1 64

29. 64x 3 1 27y 3 30. 27x 3 2 8y 3

31. 4x 2 1 16 32. n 3 2 49n

33. x 3 2 9x 34. 12n 2 1 59n 1 72

35. 9a 2 2 42a 1 49 36. 1 2 16x 4

37. 2n 3 1 6n 2 1 10n 38. x 2 2 (y 2 7)2

39. 10x 2 1 39x 2 27 40. 3x 2 1 x 2 5

41. 36a 2 2 12a 1 1 42. 18n 3 1 39n 2 2 15n

43. 8x 2 1 2xy 2 y 2 44. 12x 2 1 7xy 2 10y 2

45. 2n 2 2 n 2 5 46. 25t 2 2 100

47. 2n 3 1 14n 2 2 20n 48. 25n 2 1 64

49. 4x 3 1 32 50. 2x 3 2 54

51. x 4 2 4x 2 2 45 52. x 4 2 x 2 2 12

53. 2x 4y 2 26x 2y 2 96y 54. 3x 4y 2 15x 2y 2 108y

55. (a 1 b )2 2 (c 1 d )2 56. (a 2 b ) 2 2 (c 2 d )2

57. x 2 1 8x 1 16 2 y 2 58. 4x 2 1 12x 1 9 2 y 2

59. x 2 2 y 2 2 10y 2 25 60. y 2 2 x 2 1 16x 2 64

61. 60x 2 2 32x 2 15 62. 40x 2 1 37x 2 63

63. 84x 3 1 57x 2 2 60x 64. 210x 3 2 102x 2 2180x

For Problems 65–74, factor each of the following, and
assume that all variables appearing as exponents represent
integers.

65. x 2a 2 16 66. x 4n 2 9

67. x 3n 2 y 3n 68. x 3a 1 y 6a

69. x 2a 2 3xa 2 28 70. x 2a 1 10xa 1 21

71. 2x 2n 1 7xn 230 72. 3x 2n 2 16xn 2 12

73. x 4n 2 y 4n 74. 16x 2a 1 24xa 1 9

75. Suppose that we want to factor x 2 1 34x 1 288. We
need to complete the following with two numbers whose
sum is 34 and whose product is 288.

x 2 1 34x 1 288 5 (x 1 __ )(x 1 __ )

These numbers can be found as follows: Because we
need a product of 288, let’s consider the prime
factorization of 288.

288 5 25 ? 32

Now we need to use five 2s and two 3s in the statement

( ) 1 ( ) 5 34

Because 34 is divisible by 2 but not by 4, four factors of
2 must be in one number and one factor of 2 in the other
number. Also, because 34 is not divisible by 3, both
factors of 3 must be in the same number. These facts aid
us in determining that

(2 ? 2 ? 2 ? 2) 1 (2 ? 3 ? 3) 5 34

or

16 1 18 5 34

Thus we can complete the original factoring problem.
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x 2 1 34x 1 288 5 (x 1 16)(x 1 18)

Use this approach to factor each of the following
expressions.

a. x 2 1 35x 1 96 b. x 2 1 27x 1 176

c. x 2 2 45x 1 504 d. x 2 2 26x 1 168

e. x 2 1 60x 1 896 f. x 2 2 84x 1 1728

THOUGHTS INTO WORDS

76. Describe, in words, the pattern for factoring the sum of
two cubes.

77. What does it mean to say that the polynomial x 2 1 5x 1
7 is not factorable using integers?

78. What role does the distributive property play in the
factoring of polynomials?

79. Explain your thought process when factoring 30x 2 1
13x 2 56.

80. Consider the following approach to factoring 12x 2 1
54x 1 60.

12x 2 1 54x 1 60 5 (3x 1 6)(4x 1 10)

5 3(x 1 2)(2)(2x 1 5)

5 6(x 1 2)(2x 1 5)

Is this factoring process correct? What can you suggest to
the person who used this approach?

RATIONAL EXPRESSIONS

Indicated quotients of algebraic expressions are called algebraic fractions or frac-
tional expressions. The indicated quotient of two polynomials is called a rational
expression. (This is analogous to defining a rational number as the indicated quo-
tient of two integers.) The following are examples of rational expressions.

}
3
5
x 2

} }
x
x 2

1

2
3

} }
x 2 1

x 2

5
2

x
9
2 1

} }
xy 2 1

xy
x 2 y

} }
a3 2

a4

3
1

a2

a
2

3 1

5a
6
2 1

}

Because division by zero must be avoided, no values can be assigned to variables 

that will create a denominator of zero. Thus the rational expression }
x
x

2

1

2
3

} is 

meaningful for all real number values of x except x 5 23. Rather than making
restrictions for each individual expression, we will merely assume that all denomi-
nators represent nonzero real numbers.

The basic properties of the real numbers can be used for working with rational
expressions. For example, the property

}
a
b

?

?

k
k

} 5 }
a
b

}

which is used to reduce rational numbers, is also used to simplify rational expres-
sions. Consider the following examples.

0.5
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}
1
2
5
5
x
y
y

} 5 }
3

5
? 5

? 5
? x

? y
? y

} 5 }
3
5
x
}

1

}
1
2

8x
9
2y

} 5 2}
18

9
x 2y
} 5 2 }

2x
1

2y
}

2

Note that slightly different formats were used in these two examples. In the first one
we factored the coefficients into primes and then proceeded to simplify; however, in
the second problem we simply divided a common factor of 9 out of both the numer-
ator and denominator. This is basically a format issue and depends upon your per-
sonal preference. Also notice that in the second example, we applied the property 

}
2

b
a

} 5 2}
a
b

}. This is part of the general property that states

}
2

b
a

} 5 }
2

a
b
} 5 2}

a
b

}

The factoring techniques discussed in the previous section can be used to fac-
tor numerators and denominators so that the property (a ? k )@(b ? k ) 5 a@b can be
applied. Consider the following examples.

}
x
x

2

2

2

1

1
4
6
x

} 5}
(x 2

x(
4
x
)
1

(x
4
1

)
4)

}5 }
x 2

x
4

}

}
1
5
0
n
n

2

2

1

2

6
3
n
n

2

2

8
4

}5}
(
(
5
5
n
n

2

2

4
4
)
)
(
(
2
n
n

1

1

2
1
)
)

}5 }
2
n
n
1

1

2
1

}

}
x 2 1 x

x
y

3

1

1

2
y
x

3

1 2y
}5

5 5 }
x 2 2

x 1

xy
2
1 y 2

}

}
x 3

6
1

x 3y
5x

2
2

6
1

xy
4x

} 5}
x (

6
x
x

2

y
1

(x 2

5x
2

1

1)
4)

}5}
6
x
xy

(x
(x

1

1

1
1
)(
)
x
(x

1

2

4
1
)
)

}5 }
6y

x
(x

1

2

4
1)

}

Note that in the last example we left the numerator of the final fraction in fac-
tored form. This is often done if expressions other than monomials are involved.
Either

}
6y

x
(x

1

2

4
1)

} or }
6x

x
y
1

2

4
6y

}

is an acceptable answer.

(x 1 y )(x 2 2 xy 1 y 2 )
}}}

(x 1 y)(x 1 2)

(x 1 y)(x 2 2 xy 1 y 2 )
}}}
x (x 1 y ) 1 2(x 1 y )
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Remember that the quotient of any nonzero real number and its opposite is
21. For example, 6@26 5 21 and 28@8 5 21. Likewise, the indicated quotient of
any polynomial and its opposite is equal to 21. For example,

}
2

a
a
} 5 21 because a and 2a are opposites

}
a
b

2

2 a
b

} 5 21 because a 2 b and b 2 a are opposites

}
x
4

2

2

2

x
4
2} 5 21 because x 2 2 4 and 4 2 x 2 are opposites

The next example illustrates how we use this idea when simplifying rational 
expressions.

}
x 2

4
1

2

x
x
2

2

6
} 5 }

(
(
2
x

1

1

x
3
)
)

} }
(
(
2
x

2

2

x
2
)
)

}

5 (21) 1}xx 1

1

2
3

}2 }
2
x 2

2

2
x

} 5 21

5 2}
x
x

1

1

2
3

} or }
2

x
x
1

2

3
2

}

Multiplying and Dividing Rational Expressions

Multiplication of rational expressions is based on the following property.

}
a
b

} ? }
d
c

} 5 }
b
a
d
c
}

In other words, we multiply numerators and we multiply denominators and express
the final product in simplified form. Study the following examples carefully and pay
special attention to the formats used to organize the computational work.

2 y

}
3
4
x
y
} ? }

8
9
y
x

2

} 5 }
3
4

?

?

8
9

?

?

x
x

?

?

y
y

2

} 5 }
2
3
y
}

3

2 8 x2

}
2

12
1
x
8

2

x
y
y

} ? }
2

5
2
6
4
y
x

3

y 2

} 5}
1
1
2
8

?

?

2
5
4
6

?

?

x
x

3

?

?

y
y

4

3

}5 }
2
7
x
y

2

} }
2

12
1
x
8

2

x
y
y

} 5 2}
1
1
2
8
x
x

2

y
y

} and }
2

5
2
6
4
y
x
3
y2

} 5 2}
2
5
4
6
x
y
y
3

2

}

3 7 y so the product is positive.

}
x 2 2

y
4

} ? }
x 1

y 2

2
} 5}

y 2(x
y
1

(x
2
1

)(x
2)

2 2)
}5 }

y(x
1
2 2)
}

y

}
x
x

2

1

2

5
x

} ? }
x 2

x
1

4 2

5x
x
1
2

4
} 5 5 }

x (
x
x
1

1

4
5)

}

x

x (x 2 1)(x 1 1)(x 1 4)
}}}
(x 1 5)(x 2 )(x 1 1)(x 2 1)
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To divide rational expressions, we merely apply the following property.

}
a
b

} 4 }
d
c

} 5 }
a
b

} ? }
d
c

} 5 }
a
b
d
c
}

That is, the quotient of two rational expressions is the product of the first expression
times the reciprocal of the second. Consider the following examples.

x 2

}
1
2
6
4
x
xy

2y
3} 4 }

8
9
x
x
2

y
y 2} 5 }

1
2
6
4
x
xy

2y
3} ? }

8
9
x
x

2y
y

2

} 5 }
1
2
6
4

?

?

8
9

?

?

x
x

4

2

?

?

y
y

3

4} 5 }
1
2
6
7
x
y

2

}

3 y

}
3
3
a
a

2

2

2

1

1
1
5
2
a

} 4 }
a 2

a
2

4

3
2

a
1
2

6
10

} 5 }
3
3
a
a

2

2

2

1

1
1
5
2
a

} ? }
a 2 2

a 4

3
2

a
1
2

6
10

}

5

5 }
a(a

1
2 2)
}

Adding and Subtracting Rational Expressions

The following two properties provide the basis for adding and subtracting rational
expressions.

}
a
b

} 1 }
b
c

} 5 }
a 1

b
c

}

}
a
b

} 2 }
b
c

} 5 }
a 2

b
c

}

These properties state that rational expressions with a common denominator can be
added (or subtracted) by adding (or subtracting) the numerators and placing the
result over the common denominator. Let’s illustrate this idea.

}
x 2

8
2

} 1 }
x 2

3
2

} 5 }
8
x 2

1

2
3

} 5 }
x

1
2

1
2

}

}
4
9
y
} 2 }

4
7
y
} 5 }

9
4
2

y
7

} 5 }
4
2
y
} 5 }

2
1
y
}

Don’t forget to simplify the final result.

}
n

n
2

2

1
} 2 }

n 2

1
1

} 5 }
n
n

2

2

2

1
1

} 5}
(n 1

n
1
2

)(n
1

2 1)
}5 n 1 1

If we need to add or subtract rational expressions that do not have a common
denominator, then we apply the property a@b 5 (a ? k)@(b ? k) to obtain equivalent
fractions with a common denominator. Study the next examples and again pay spe-
cial attention to the format we used to organize our work.

3(a 2 1 4)(a 2 5)(a 1 2)
}}}}
3a(a 2 5)(a 2 1 4)(a 1 2)(a 2 2)
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REMARK Remember that the least common multiple of a set of whole
numbers is the smallest nonzero whole number divisible by each of the num-
bers in the set. When we add or subtract rational numbers, the least common
multiple of the denominators of those numbers is the least common denomi-
nator (LCD). This concept of a least common denominator can be extended
to include polynomials.

Add }
x 1

4
2

} 1 }
3x

3
1 1
}.

Solution

By inspection we see that the LCD is 12.

}
x 1

4
2

} 1 }
3x

3
1 1
} 5 1}x 1

4
2

}21}
3
3

}2 1 1}3x
3
1 1
}21}

4
4

}2
5 }

3(x
1
1

2
2)

} 1 }
4(3x

12
1 1)
}

5}
3x 1 6 1

12
12x 1 4
}

5 }
15x

1
1

2
10

} n

Perform the indicated operations.

}
x

1
1

0
3

} 1 }
2x

1
1

5
1

} 2 }
x

1
2

8
2

}

Solution

If you cannot determine the LCD by inspection, then use the prime-factored forms
of the denominators.

10 5 2 ? 5 15 5 3 ? 5 18 5 2 ? 3 ? 3

The LCD must contain one factor of 2, two factors of 3, and one factor of 5. Thus
the LCD is 2 ? 3 ? 3 ? 5 5 90.

}
x

1
1

0
3

} 1 }
2x

1
1

5
1

} 2 }
x

1
2

8
2

} 5 1}x 1
1

0
3

}21}
9
9

}2 1 1}2x
1
1

5
1

}2 1}
6
6

}2 2 1}x 1
2

8
2

}21}
5
5

}2
5 }

9(x
9
1

0
3)

} 1 }
6(2x

90
1 1)
} 2 }

5(x
9
2

0
2)

}

5

5 }
16x

9
1

0
43

} n

9x 1 27 1 12x 1 6 2 5x 1 10
}}}}

90

E X A M P L E  1

E X A M P L E  2
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The presence of variables in the denominators does not create any serious dif-
ficulty; our approach remains the same. Study the following examples very care-
fully. For each problem we use the same basic procedure: (1) Find the LCD. 
(2) Change each fraction to an equivalent fraction having the LCD as its denomina-
tor. (3) Add or subtract numerators and place this result over the LCD. (4) Look for
possibilities to simplify the resulting fraction.

Add }
2
3
x
} 1 }

3
5
y
}.

Solution

Using an LCD of 6xy, we can proceed as follows.

}
2
3
x
} 1 }

3
5
y
} 5 1}

2
3
x
}21}

3
3
y
y
}2 1 1}

3
5
y
}21}

2
2
x
x
}2

5 }
6
9
x
y
y

} 1 }
1
6
0
xy
x

}

5 }
9y

6
1

xy
10x
} n

Subtract }
12

7
ab
} 2 }

1
1
5
1
a 2}.

Solution

We can factor the numerical coefficients of the denominators into primes to help
find the LCD.

12ab 5 2 ? 2 ? 3 ? a ? b

15a 2 5 3 ? 5 ? a 2 6 LCD 5 2 ? 2 ? 3 ? 5 ? a 2 ? b 5 60a 2b

}
12

7
ab
} 2 }

1
1
5
1
a 2} 5 1}

12
7
ab
}21}

5
5
a
a
}2 2 1}

1
1
5
1
a 2}21}

4
4
b
b
}2

5 }
6
3
0
5
a
a
2b

} 2 }
6
4
0
4
a
b
2b

}

5 }
35

6
a
0
2

a 2

4
b
4b

} n

E X A M P L E  3
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Add }
x 2 2

8
4x

} 1 }
2
x

}.

Solution

x 2 2 4x 5 x (x 2 4)

x 5 x 6 LCD 5 x (x 2 4)

}
x(x

8
2 4)
} 1 }

2
x

} 5 }
x(x

8
2 4)
} 1 1}

2
x

}21}xx 2

2

4
4

}2
5 }

x(x
8
2 4)
} 1 }

2
x(
(
x
x

2

2

4
4
)
)

}

5 }
8

x
1

(x
2
2

x 2

4)
8

}

5 }
x (x

2
2

x
4)

}

5 }
x 2

2
4

} n

Add }
n 2 1

3
6
n
n 1 5
} 1 }

n 2 2 7
4
n 2 8
}.

Solution

n 2 1 6n 1 5 5 (n 1 5)(n 1 1)

n 2 2 7n 2 8 5 (n 2 8)(n 1 1) 6 LCD 5 (n 1 1)(n 1 5)(n 2 8)

}
n2 1

3
6
n
n 1 5
} 1 }

n 2 2 7
4
n 2 8
} 5 3}(n 1 5

3
)
n
(n 1 1)
}41}nn 2

2

8
8

}2 1 3}(n 2 8)
4
(n 1 1)
}41}nn 1

1

5
5

}2
5 1

5

5 n

Simplifying Complex Fractions

Fractional forms that contain rational expressions in the numerator and/or denomi-
nator are called complex fractions. The following examples illustrate some
approaches to simplifying complex fractions.

3n 2 2 20n 1 20
}}}
(n 1 5)(n 1 1)(n 2 8)

3n 2 2 24n 1 4n 1 20
}}}
(n 1 5)(n 1 1)(n 2 8)

4(n 1 5)
}}}
(n 1 5)(n 1 1)(n 2 8)

3n(n 2 8)
}}}
(n 1 5)(n 1 1)(n 2 8)

E X A M P L E  6
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Simplify .

Solution A

Treating the numerator as the sum of two rational expressions and the denominator
as the difference of two rational expressions, we can proceed as follows.

5

5 5

y

5 }
3y

x
1

y
2x

} ? }
5y 2

xy

2

2

6x
}

5 }
y

5

(3

y

y
2

1

2

2

6

x

x

)
}

Solution B

The LCD of all four denominators (x, y, x, and y 2 ) is xy 2. Let’s multiply the entire
complex fraction by a form of 1—namely, (xy 2 )@(xy 2 ).

5 1 21}
x
x
y
y

2

2}2

5

5 }
3
5
y
y

2

2

1

2

2
6
x
x
y

} or }
y
5
(3
y
y
2 2

1

6
2
x
x )

} n

Certainly either approach (Solution A or Solution B) will work with a problem
such as Example 7. We suggest that you study Solution B very carefully. 
This approach works effectively with complex fractions when the LCD of all the

(xy 2)1}
3
x

}2 1 (xy 2)1}
2
y

}2
}}}

(xy 2)1}
5
x

}2 2 (xy 2)1}
y
6

2}2

}
3

x
} 1 }

2

y
}

}

}
5

x
} 2 }

y

6
2

}

}
3

x
} 1 }

2

y
}

}

}
5

x
} 2 }

y

6
2

}

}
3y

x
1

y
2x

}

}

}
5y 2

xy

2
2

6x
}

}
3
x
y
y
} 1 }

2
x
x
y
}

}}

}
5
xy
y

2

2

} 2 }
x
6
y
x
2}

1}
3
x

}21}
y
y

}2 1 1}
2
y

}21}
x
x

}2
}}

1}
5
x

}21}
y
y

2

2}2 2 1}
y
6

2}21}
x
x

}2
}
3
x

} 1 }
2
y

}

}

}
5
x

} 2 }
y
6

2}

}
3
x

} 1 }
2
y

}

}

}
5
x

} 2 }
y
6

2}
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denominators is easy to find. Let’s look at a type of complex fraction used in certain 
calculus problems.

Simplify .

Solution

5 3}xx(
(
x
x

1

1

h
h

)
)

}43 4
5

5 }
x
h
2

x(
(
x
x
1

1

h
h
)
)

} 5 }
h
x
x
2

(x
x
1

2

h
h
)

}

5 }
hx(

2

x 1

h
h )

} 5 2}
x(x

1
1 h )
} n

Example 9 illustrates another way to simplify complex fractions.

Simplify 1 2 .

Solution

We first simplify the complex fraction by multiplying by n/n.

1 21}
n
n

}2 5 }
n

n
2

2

1
}

Now we can perform the subtraction.

1 2 }
n 2

n2

1
} 5 1}nn 2

2

1
1

}21}
1
1

}2 2 }
n

n
2

2

1
} 5 }

n
n

2

2

1
1

} 2 }
n

n
2

2

1
}

5 }
n 2

n
1
2

2

1
n 2

} or }
2n 2

n
1

2

n
1
2 1

} n

Finally, we need to recognize that complex fractions are sometimes the result 

of applying the definition b2n 5 }
b
1

n}. Our final example illustrates this idea.

n
}

1 2 }
1
n

}

n
}

1 2 }
1
n

}

x(x 1 h )1}x 1

1
h

}2 2 x (x 1 h )1}
1
x

}2
}}}}

x (x 1 h )(h )

}
x 1

1
h

} 2 }
1
x

}

}}

}
h
1

}

}
x 1

1
h

} 2 }
1
x

}

}}

}
h
1

}

}
x 1

1
h

} 2 }
1
x

}

}}
h
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Simplify }
2
x
x2

2

1 1

3y
y
2

2

2

1

}.

Solution

First, let’s apply b2n 5 }
b
1

n}.

}
2
x
x2

2

1 1

3y
y
2

2

2

1

} 5

Now we can proceed as in the previous examples.

1 21}
x
x
y
y

2

2}2 5

5 }
x
2

2

y
y

2

2

1

2

x
3
y
x

} n

}
2
x

}(xy 2 ) 1 }
1
y

}(xy 2 )
}}

x(xy 2 ) 2 }
y

3
2
}(xy 2 )

}
2
x

} 1 }
1
y

}

}

x 2 }
y
3

2}

}
2
x

} 1 }
1
y

}

}

x 2 }
y
3

2}
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For Problems 1–12, simplify each rational expression.

1. }
1
2
4
1
x
x

2

y
y

} 2. }
22

6
6
5
x
y
y 2

}

3. }
2

2

6
8
3
1
x
x
y
2y

4

} 4. }
x
x

2

2

1

2

x
y
y

2

}

5. }
a
a

2

2

1

2

7
6
a
a

1

2

1
2

2
7

} 6. }
8
6
x
x
2

2

2

1

1
x
0
2

x 2

15
3

}

7. }
x
2x

2y

3 1

1

3
7
x
xy

2 2

2

1
1
4
8
x
y

} 8. }
3
x
x
2

2

2

x
9

2

}

9. }
x 2 1

x 3

x
2

y 2

y 3

2y 2} 10.

11. }
2
x
y
2

2

y 2

2x
y
y

} 12.

For Problems 13–56, perform the indicated operations
involving rational expressions. Express final answers in
simplest form.

13. }
4
5
x
y

2

2} ? }
2
1
4
5
x
x
2

y
y 2} 14. }

5
8
x
y
y
2} ? }

18
1
x
5

2y
}

15. }
2

1
1
8
4
y
x

2

y 4

} ? }
2
3
4
5
x
y

2y
2

3

} 16. }
6
9
x
y
y
4} ? }

3
2

0
4
x
8

3

x
y

}

17. }
7
9
a
ab

2b
3} 4 }

2
3
a
a
2b

4

2} 18. }
1
9
2
a
b

2

c
c

2} 4 }
2
1
1
4
a
c
b
3}

19. }
x
5
1

xy
6

} ? }
x
x

2

2

2

2

3
6
6
x

} 20. }
2
a
a

2

2

2

1

a
6

} ? }
a
8

3

a
2

2

a
4

2

}

21. }
5
a
a

3

2

2

1

2
2
a
0

2

a
} ? }

a 2

a
2

2 2

a 2

16
12

}

22. }
t 2

t
2

4 2

6t
8
1

1
9

} ?}
6
5
t
t

2

2

2

1

1
8
1
t
t
2

2

2
2
1
1

}

23. }
x 2 1

xy
5
2

x
2

y 2

y 3

6y 2

}?}
2x 2 1

xy
15

1

xy
4y

1
2

18y 2

}

24. }
1
5
0
n
n

2

2

1

1

3
2
3
1
n
n
2

2

1
1
4
0

}?}
2
2
n
n

2

2

1

2

6
3
n
n

2

22
5
0
6

}

25. }
x 2 1 1

9
2
y
x

2

1 36
} 4 }

x 2

1
1

2y
6x

}

26. }
x 2 2 4

7
x
x
y
y 2

1 4y 2

}4}
4x

2

2

0
2

x 2y
3x

1

y
2
2

5x
1
y
0

2

y 2

}

16x 3y 1 24x 2y 2 2 16xy 3

}}}
24x 2y 1 12xy 2 2 12y 3

ax 2 3x 1 2ay 2 6y
}}}
2ax 2 6x 1 ay 2 3y
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27. }
2
2
x
x
3

2

2

1

1
3
0
x
x 2} ? }

x 2

3
2

x 3

8
2

x
2
1

7x
15

} 4 }
x 2

1
2

4x
6
1

x 2

21
27

}

28. }
a 2

6
2

a 2

4a
2

b
4
1

ab
4b 2

}?}
3a
6a

2

2

1

1

5a
a
b
b

2

2

2
b
b
2

2

}4 }
a
8

2

a
2

1

4
4
b
b

2

}

29. }
x 1

6
4

} 1 }
2x

4
2 1
} 30. }

3n
9
2 1
} 2 }

n
1
1

2
2

}

31. }
x 1

4
1

} 1 }
x 2

6
3

} 2 }
x 2

8
2

}

32. }
x 2

5
2

} 2 }
x 1

6
3

} 1 }
x

1
1

5
1

}

33. }
16

7
a 2b
} 1 }

2
3
0
a
b 2} 34. }

2
5
4
b
a 2} 2 }

1
3
1
2
a
b

}

35. }
n
1

2} 1 }
4
3
n
} 2 }

5
6

} 36. }
n
3

2} 2 }
5
2
n
} 1 }

4
3

}

37. }
4
3
x
} 1 }

3
2
y
} 2 1 38. }

6
5
x
} 2 }

4
3
y
} 1 2

39. }
2x

3
1 1
} 1 }

3x
2
1 4
} 40. }

x 2

5
1

} 2 }
2x

3
2 3
}

41. }
x 2

4
1

x
7x

} 1 }
3
x

} 42. }
x 2 1

6
8x

} 2 }
3
x

}

43. }
4
a
a
2 2

2

4
4

} 2 }
a 1

3
2

} 44. }
6
a
a
2 2

1

1
4

} 2 }
a 2

5
1

}

45. }
x 1

3
1

} 1 }
x
x

2

1

2

5
1

} 2 }
x 2

3
1

}

46. }
5
x

} 2 }
5
x
x
2 1

2

6
3
x
0

} 1 }
x 1

x
6

}

47. }
x 2 1 10

5
x 1 21
} 1 }

x 2 1 12
4
x 1 27
}

48. }
a 2 2 3

8
a 2 18
} 2 }

a 2 2 7
1
a
0

2 30
}

49. }
x 2

5
2 1
} 2 }

x 2 1 6
2
x 2 16
}

50. }
x 2

4
1 2
} 2 }

x 2 1 x
7

2 12
}

51. x 2 }
x 2

x 2

1
} 1 }

x 2

1
21
}

52. x 2 }
x 1

x 2

7
} 2 }

x 2 2

x
49

}

53. }
n 4

2
2

n 2

16
} 2 }

n 2

n
2 4
} 1 }

n 1

1
2

}

54. }
n 2

n
1 1
} 1 }

n
n

2

4

1

2

3
1
n

} 2 }
n 2

1
1

}

55. }
x 2

2
2

x
3
1

x
1
2 4

} 1 }
x 2 1

3x
3
2

x 2

2
28

}

56. }
2x 2

3
2

x 2

9x
4
2 5

} 2}
3x 2 2

2x
1
2

1x
1
2 20

}

57. Consider the addition problem }
x 2

8
2

} 1 }
2 2

5
x

}. Note that 

the denominators are opposites of each other. If the

property }
2

a
b

} 5 2}
a
b

} is applied to the second fraction, we 

obtain }
2 2

5
x

} 5 2}
x 2

5
2

}. Thus we can proceed as follows.

}
x 2

8
2

} 1 }
2 2

5
x

} 5 }
x 2

8
2

} 2 }
x 2

5
2

}

5 }
8
x 2

2

2
5

} 5 }
x 2

3
2

}

Use this approach to do the following problems.

a. }
x 2

7
1

} 1 }
1 2

2
x

} b. }
2x

5
2 1
} 1 }

1 2

8
2x

}

c. }
a 2

4
3

} 2 }
3 2

1
a

} d. }
a

1
2

0
9

} 2 }
9 2

5
a

}

e. }
x 2

x 2

1
} 2 }

2
1
x

2

2

x
3

} f. }
x 2

x 2

4
} 2 }

3x
4

2

2

2
x
8

}

For Problems 58–80; simplify each complex fraction.

58. 59.

60. 61.
1 1 }

1
x

}

}

1 2 }
1
x

}

}
1
x

} 1 3
}

}
2
y

} 1 4

}
x
5

2} 2 }
3
x

}

}
}
1
y

} 1 }
y
2

2}

}
2
x

} 1 }
7
y

}

}

}
3
x

} 2 }
1
y
0
}
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62. 63.

64. 65.

66. 67. 1 1

68. 2 2 69. 1 1

70. 2 1 71.

72. 73.

74. 75.

76.

77. }
x2

x

1 1

2

y
y

21

} 78. }
x2

x
1

1

1

y
y21}

79. }
x
x
1
21

x
2

21

y
y
2

2

2

2

} 80. }
x
3x

2

2

2

1

2

1

2y
y

2

2

1

2}

}
4x 1 4

3
h 1 5
} 2 }

4x
3
1 5
}

}}}
h

}
2x 1 2

2
h 2 1
}2}

2x
2
2 1
}

}}}
h

}
x 1

3
h

} 2 }
3
x

}

}}
h

}
x 1 h

1
1 1
} 2 }

x 1

1
1

}

}}
h

}
(x 1

1
h )3} 2 }

x
1

3}

}}
h

}
(x 1

1
h)2}

2
}
x
1

2}

}}
h

3a
}

2 2 }
1
a

}

a
}

}
1
a

} 1 4

x
}

3 2 }
2
x

}

x
}

1 1 }
1
x

}

}
y
2

2

1
2

} 1 }
5
x

}

}}

}
3
x

} 2 }
xy 2

4
2x

}

}
2

x
2
} 2 }

x 1

4
2

}

}}

}
x 2 1

3
2x

} 1 }
3
x

}

}
x 2

2
3

} 2 }
x 1

3
3

}

}}

}
x 2

5
2 9
} 2 }

x 2

2
3

}

1 2 }
n 1

1
1

}

}}

1 1 }
n 2

1
1

}

3 2 }
n 2

2
4

}

}}

5 1 }
n 2

4
4

}

THOUGHTS INTO WORDS

RADICALS

Recall from our work with exponents that to square a number means to raise it to
the second power—that is, to use the number as a factor twice. For example, 42 5
4 ? 4 5 16 and (24)2 5 (24)(24) 5 16. A square root of a number is one of its
two equal factors. Thus 4 and 24 are both square roots of 16. In general, a is a
square root of b if a 2 5 b. The following statements generalize these ideas.

0.6

81. What role does factoring play in the simplifying of
rational expressions?

82. Explain in your own words how to multiply two rational
expressions.

83. Give a step-by-step description of how to add }
2x

4
2 1
} 1

}
3x

1
1

4
5

}.

84. Look back at the two approaches shown in Example 7.

Which approach would you use to simplify ?

Which approach would you use to simplify ?

Explain the reason for your choice of approach for each
problem.

}
5
8

} 1 }
4
9

}

}
}
1
5
4
} 2 }

2
2
1
}

}
1
4

} 1 }
1
6

}

}
}
1
2

} 2 }
3
4

}
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1. Every positive real number has two square roots; one is positive and the
other is negative. They are opposites of each other.

2. Negative real numbers have no real number square roots because the
square of any nonzero real number is positive.

3. The square root of zero is zero.

The symbol Ï0w0w, called a radical sign, is used to designate the nonnegative square
root, which is called the principal square root. The number under the radical sign
is called the radicand, and the entire expression, such as Ï1w6w, is referred to as a
radical.

The following examples demonstrate the use of the square root notation.

Ï1w6w 5 4 Ï1w6w indicates the nonnegative or principal square root
of 16.

2Ï1w6w 5 24 2Ï1w6w indicates the negative square root of 16.

Ï0w 5 0 Zero has only one square root. Technically, we could
also write 2Ï0w 5 20 5 0.

Ï2w4w Not a real number

2Ï2w4w Not a real number

To cube a number means to raise it to the third power—that is, to use the
number as a factor three times. For example, 23 5 2 ? 2 ? 2 5 8 and (22)3 5
(22)(22)(22) 5 28. A cube root of a number is one of its three equal factors.
Thus 2 is a cube root of 8, and as we will discuss later, it is the only real number that
is a cube root of 8. Furthermore, 22 is the only real number that is a cube root of
28. In general, a is a cube root of b if a 3 5 b. The following statements generalize
these ideas.

1. Every positive real number has one positive real number cube root.

2. Every negative real number has one negative real number cube root.

3. The cube root of zero is zero.

REMARK Every nonzero real number has three cube roots, but only one of
them is a real number. The other roots are complex numbers, which we will
discuss in Section 0.8.

The symbol Ï3 0w0w is used to designate the cube root of a number. Thus we can
write

Ï3 8w 5 2 Ï3
2w8w 5 22 !3 }

2
1§7
}§ 5 }

1
3

} and !3 2§}
2
1§7
}§ 5 2}

1
3

}

The concept of root can be extended to fourth roots, fifth roots, sixth roots,
and in general, nth roots. If n is an even positive integer, then the following state-
ments are true.
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1. Every positive real number has exactly two real nth roots, one positive and
one negative. For example, the real fourth roots of 16 are 2 and 22.

2. Negative real numbers do not have real nth roots. For example, there are no
real fourth roots of 216.

If n is an odd positive integer greater than 1, then the following statements 
are true.

1. Every real number has exactly one real nth root.

2. The real nth root of a positive number is positive. For example, the fifth
root of 32 is 2.

3. The real nth root of a negative number is negative. For example, the fifth
root of 232 is 22.

In general, the following definition is useful.

In Definition 0.5, if n is an even positive integer, then a and b are both nonnegative.
If n is an odd positive integer greater than 1, then a and b are both nonnegative or

both negative. The symbol Ïn 0w0w designates the principal root.
The following examples are applications of Definition 0.5.

Ï4 8w1w 5 3 because 34 5 81
Ï5 3w2w 5 2 because 25 5 32

Ï5
2w3w2w 5 22 because (22)5 5 232

To complete our terminology, the n in the radical Ïn bw is called the index of the
radical. If n 5 2, we commonly write Ïbw instead of Ï2 bw. In this text, when we use
symbols such as Ïn bw, Ïm yw, and Ïr xw, we will assume the previous agreements relative
to the existence of real roots without listing the various restrictions, unless a special
restriction is needed.

From Definition 0.5 we see that if n is any positive integer greater than 1 and
Ïn bw exists, then

1Ïn bw2n 5 b

For example, 1Ï4w22 5 4, 1Ï3
2w8w23 5 28, and 1Ï4 8w1w24 5 81. Furthermore, if b $ 0

and n is any positive integer greater than 1 or if b , 0 and n is an odd positive inte-
ger greater than 1, then

Ïn bwnw 5 b

D E F I N I T I O N  0 . 5

Ïn bw 5 a if and only if an 5 b
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For example, Ï4w2w 5 4, Ï3 (2w2w)3w 5 22, and Ï5 6w5w 5 6. But we must be careful,
because

Ï(2w2w)2w Þ 22 and Ï4 (2w2w)4w Þ 22

Simplest Radical Form

Let’s use some examples to motivate another useful property of radicals.

Ï1w6w ?w 2w5w 5 Ï4w0w0w 5 20 and Ï1w6w ? Ï2w5w 5 4 ? 5 5 20

Ï3 8w ?w 2w7w 5 Ï3 2w1w6w 5 6 and Ï3 8w ? Ï3 2w7w 5 2 ? 3 5 6

Ï3
2w8w ?w 6w4w 5 Ï3

2w5w1w2w 5 28 and Ï3
2w8w ? Ï3 6w4w 5 22 ? 4 5 28

In general, the following property can be stated.

Property 0.3 states that the nth root of a product is equal to the product of
the nth roots.

The definition of nth root, along with Property 0.3, provides the basis for
changing radicals to simplest radical form. The concept of simplest radical form
takes on additional meaning as we encounter more complicated expressions, but for
now it simply means that the radicand does not contain any perfect powers of the
index. Consider the following examples of reductions to simplest radical form.

Ï4w5w 5 Ï9w ?w 5w 5 Ï9w Ï5w 5 3Ï5w
Ï5w2w 5 Ï4w ?w 1w3w 5 Ï4wÏ1w3w 5 2Ï1w3w
Ï3 2w4w 5 Ï3 8w ?w 3w 5 Ï3 8wÏ3 3w 5 2Ï3 3w

A variation of the technique for changing radicals with index n to simplest
form is to factor the radicand into primes and then to look for the perfect nth powers
in exponential form, as in the following examples.

Ï8w0w 5 Ï2w4w?w5w 5 Ï2w4wÏ5w 5 22Ï5w 5 4Ï5w
Ï3 1w0w8w 5 Ï3 2w2w?w3w3w 5 Ï3 3w3wÏ3 2w2w 5 3Ï3 4w

The distributive property can be used to combine radicals that have the same
index and the same radicand.

3Ï2w 1 5Ï2w 5 (3 1 5)Ï2w 5 8Ï2w
7Ï3 5w 2 3Ï3 5w 5 (7 2 3)Ï3 5w 5 4Ï3 5w

Sometimes it is necessary to simplify the radicals first and then to combine them by
applying the distributive property.

P R O P E R T Y  0 . 3

Ïn bwcw 5 Ïn bw Ïn cw if Ïn bw and Ïn cw are real numbers.
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3Ï8w 1 2Ï1w8w 2 4Ï2w 5 3Ï4wÏ2w 1 2Ï9wÏ2w 2 4Ï2w
5 6Ï2w 1 6Ï2w 2 4Ï2w
5 (6 1 6 2 4)Ï2w
5 8Ï2w

Property 0.3 can also be viewed as Ïn bwÏn cw 5 Ïn bcw. Then, along with the com-
mutative and associative properties of the real numbers, it provides the basis for mul-
tiplying radicals that have the same index. Consider the following two examples.

17Ï6w2 13Ï8w2 5 7 ? 3 ? Ï6w ? Ï8w
5 21Ï4w8w
5 21Ï1w6wÏ3w
5 21 ? 4 ? Ï3w
5 84Ï3w

12Ï3 6w2 15Ï3 4w2 5 2 ? 5 ? Ï3 6w ? Ï3 4w
5 10Ï3 2w4w
5 10Ï3 8wÏ3 3w
5 10 ? 2 ? Ï3 3w
5 20Ï3 3w

The distributive property, along with Property 0.3, provides a way of handling
special products involving radicals, as the next examples illustrate.

2Ï2w14Ï3w 2 5Ï6w2 5 12Ï2w2 14Ï3w2 2 12Ï2w2 15Ï6w2
5 8Ï6w 2 10Ï1w2w
5 8Ï6w 2 10Ï4wÏ3w
5 8Ï6w 2 20Ï3w

12Ï2w 2 Ï7w213Ï2w 1 5Ï7w2 5 2Ï2w13Ï2w 1 5Ï7w2 2 Ï7w13Ï2w 1 5Ï7w2
5 (2Ï2w)(3Ï2w) 1 (2Ï2w)(5Ï7w) 2 1Ï7w2 13Ï2w2 2 1Ï7w2 15Ï7w2
5 6 ? 2 1 10Ï1w4w 2 3Ï1w4w 2 5 ? 7

5 223 1 7Ï1w4w

1Ï5w 1 Ï2w2 1Ï5w 2 Ï2w2 5 Ï5w1Ï5w 2 Ï2w2 1 Ï2w1Ï5w 2 Ï2w2
5 1Ï5w2 1Ï5w2 2 1Ï5w2 1Ï2w2 1 1Ï2w2 1Ï5w2 2 1Ï2w2 1Ï2w2
5 5 2 Ï1w0w 1 Ï1w0w 2 2

5 3

Pay special attention to the last example. It fits the special-product pattern
(a 1 b )(a 2 b ) 5 a 2 2 b 2. We will use that idea in a moment.
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More About Simplest Radical Form

Another property of nth roots is motivated by the following examples.

!}
3
9§6
}§ 5 Ï4w 5 2 and }

Ï
Ï

3w
9w
6w

}5 }
6
3

} 5 2

!3 }
6
8§4
}§ 5 Ï3 8w 5 2 and }

Ï
Ï

3

3
6w
8w
4w

}5 }
4
2

} 5 2

In general, the following property can be stated.

Property 0.4 states that the nth root of a quotient is equal to the quotient of the
nth roots.

To evaluate radicals such as !}
2
4§5
}§ and !3 }

2
8§7
}§, where the numerator and the

denominator of the fractional radicands are perfect nth powers, we can either use
Property 0.4 or rely on the definition of nth root.

!}
2
4§5
}§ 5 }

Ï
Ï

2w
4w
5w

} 5 }
2
5

} or !}
2
4§5
}§ 5 }

2
5

} because }
2
5

} ? }
2
5

} 5 }
2
4
5
}

!3 }
2
8§7
}§ 5 }

Ï
Ï

3

3
2w
8w
7w

} 5 }
3
2

} or !3 }
2
8§7
}§ 5 }

3
2

} because }
3
2

} ? }
3
2

} ? }
3
2

} 5 }
2
8
7
}

Radicals such as !}
2
9§8
}§ and !3 }

2
2§
4
7
}§, where only the denominators of the radicand

are perfect nth powers, can be simplified as follows.

!}
2
9§8
}§ 5 }

Ï
Ï

2w
9w
8w

} 5 }
Ï4w

3
Ï7w
} 5 }

2Ï
3

7w
}

!3 }
2
2§
4
7
}§ 5 }

Ï
Ï

3

3
2w
2w
4w
7w

} 5 }
Ï3 8w

3
Ï3 3w
} 5 }

2Ï
3

3 3w
}

Before we consider more examples, let’s summarize some ideas about simpli-
fying radicals. A radical is said to be in simplest radical form if the following con-
ditions are satisfied.

P R O P E R T Y  0 . 4

5 }
Ï
Ï

n

n
bw
cw

} if Ïn bw and Ïn cw are real numbers and c Þ 0.!n }
b
c

}§
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Now let’s consider an example in which neither the numerator nor the denominator
of the radicand is a perfect nth power.

!}
2
3

}§ 5 }
Ï
Ï

2w
3w

} 5 }
Ï
Ï

2w
3w

} ? }
Ï
Ï

3w
3w

} 5 }
Ï
3
6w

}

Form of 1

The process used to simplify the radical in the previous example is referred to as
rationalizing the denominator. There is more than one way to rationalize the
denominator, as illustrated by the next example.

Simplify }
Ï
Ï

5w
8w

}.

Solution A

}
Ï
Ï

5w
8w

} 5 }
Ï
Ï

5w
8w

} ? }
Ï
Ï

8w
8w

} 5 }
Ï

8
4w0w
} 5 }

Ï4wÏ
8

1w0w
} 5 }

2Ï
8
1w0w
} 5 }

Ï
4
1w0w
}

Solution B

}
Ï
Ï

5w
8w

} 5 }
Ï
Ï

5w
8w

} ? }
Ï
Ï

2w
2w

} 5 }
Ï
Ï

1w
1w
0w
6w

} 5 }
Ï

4
1w0w
}

Solution C

}
Ï
Ï

5w
8w

} 5 }
Ï

Ï
4wÏ

5w
2w

} 5 }
2
Ï
Ï

5w
2w

} 5 }
2
Ï
Ï

5w
2w

} ? }
Ï
Ï

2w
2w

} 5 }
Ï

4
1w0w
} n

The three approaches to Example 1 again illustrate the need to think first and then
push the pencil. You may find one approach easier than another.

1. No fraction appears within a
radical sign.

2. No radical appears in the
denominator.

3. No radicand contains a perfect
power of the index.

Thus !}
3
4

}§ violates this condition.

Thus }
Ï
Ï

2w
3w

} violates this condition.

Thus Ï7w2w?w5w violates this
condition.

E X A M P L E  1
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Simplify }
Ï
Ï

6w
8w

}.

Solution

}
Ï
Ï

6w
8w

} 5 !}
6
8

}§ Remember that }
Ï
Ï

aw
bw

} 5 !}
a
b

}§.

5 !}
3
4

}§ Reduce the fraction.

5 }
Ï
Ï

3w
4w

}

5}
Ï
2
3w

} n

Simplify }
Ï
Ï

3

3
5w
9w

} .

Solution

}
Ï
Ï

3

3
5w
9w

} 5 }
Ï
Ï

3

3
5w
9w

} ? }
Ï
Ï

3

3
3w
3w

}

5 }
Ï
Ï

3

3
1w
2w
5w
7w

} 

5 }
Ï3

3
1w5w
} n

Now let’s consider an example in which the denominator is of binomial form.

Simplify }
Ï5w 1

4
Ï2w

} by rationalizing the denominator.

Solution

Remember that a moment ago we found that 1Ï5w 1 Ï2w 21Ï5w 2 Ï2w 2 5 3. Let’s
use that idea here.

}
Ï5w 1

4
Ï2w

} 5 1}Ï5w 1

4
Ï2w

}2 1}ÏÏ
5w
5w

2

2

Ï
Ï

2w
2w

}2
5 5}

41Ï5w 2

3
Ï2w2

} n

The process of rationalizing the denominator does agree with the previously
listed conditions. However, for certain problems in calculus, it is necessary to 

rationalize the numerator. Again, the fact that 1Ïaw 1 Ïbw2 1Ïaw 2 Ïbw2 5 a 2 b
can be used.

41Ï5w 2 Ï2w 2
}}}
1Ï5w 1 Ï2w 2 1Ï5w 2 Ï2w2

E X A M P L E  3

E X A M P L E  4

E X A M P L E  2
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Change the form of }
Ïxw1w hw

h
2 Ïxw
} by rationalizing the numerator.

Solution

}
Ïxw1w hw

h
2 Ïxw
}5 1}Ïxw1w

h
hw 2Ïxw
} 21 2

5}
h1Ï

(x
x
1

w1w
h
hw
)
1

2

Ï
x

xw2
}

5}
h1Ïxw1w

h
hw 1 Ïxw2
}

5}
Ïxw1w

1
hw 1 Ïxw
} n

Radicals Containing Variables

Before we illustrate how to simplify radicals that contain variables, there is one
important point we should call to your attention. Let’s look at some examples to
illustrate the idea.

Consider the radical Ïxw2w for different values of x.

Let x 5 3; then Ïxw2w 5 Ï3w2w 5 Ï9w 5 3.

Let x 5 23; then Ïxw2w 5 Ï(2w3w)2w 5 Ï9w 5 3.

Thus if x $ 0 then Ïxw2w 5 x, but if x , 0 then Ïxw2w 5 2x. Using the concept of
absolute value, we can state that for all real numbers, Ïxw2w 5 * x * .

Now consider the radical Ïxw3w. Because x 3 is negative when x is negative, we

need to restrict x to the nonnegative real numbers when working with Ïxw3w. Thus we
can write

if x $ 0, then Ïxw3w 5 Ïxw2wÏxw 5 xÏxw

and no absolute value sign is needed.
Finally, let’s consider the radical Ï3 xw3w.

Let x 5 2; then Ï3 xw3w 5 Ï3 2w3w 5 Ï3 8w 5 2.

Let x 5 22; then Ï3 xw3w 5 Ï3 (2w2w)3w 5 Ï3
2w8w 5 22.

Thus it is correct to write,

Ï3 xw3w 5 x for all real numbers

and again, no absolute value sign is needed.
The previous discussion indicates that, technically, every radical expression

with variables in the radicand needs to be analyzed individually to determine the
necessary restrictions on the variables. However, to avoid having to do this on a
problem-by-problem basis, we shall merely assume that all variables represent
positive real numbers.

Ïxw1w hw 1 Ïxw
}}
Ïxw1w hw 1 Ïxw

E X A M P L E  5
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For Problems 1–8, evaluate.

1. Ï8w1w 2. 2Ï4w9w 3. Ï3 1w2w5w

4. Ï4 8w1w 5. !}
3
4§
6
9
}§ 6. !}

2
6§5
4§6
}§

7. !3 2§}
2
8§7
}§ 8. !3 }

6
2§
4
7
}§

For Problems 9–44, express each in simplest radical form. All
variables represent positive real numbers.

9. Ï2w4w 10. Ï5w4w 11. Ï1w1w2w

12. 6Ï2w8w 13. 23Ï4w4w 14. 25Ï6w8w

15. }
3
4

}Ï2w0w 16. }
3
8

}Ï7w2w 17. Ï1w2wx2w

18. Ï4w5wxyw2w 19. Ï6w4wxw4yw7w 20. 3Ï3w2waw3w

21. }
3
7

}Ï4w5wxyw6w 22. Ï3 3w2w 23. Ï3 1w2w8w

24. Ï3 5w4wxw3w 25. Ï3 1w6wxw4w 26. Ï3 8w1wxw5yw6w

27. Ï4 4w8wxw5w 28. Ï4 1w6w2wxw6yw7w 29. !}
1
2§
2
5
}§

30. !}
7
8§
5
1
}§ 31. !}

7
8

}§ 32. }
Ï
Ï

3w
7w
5w

}

33. }
4

Ï
Ï

5w
3w

} 34. }
Ï
Ï

2w
1w
7w
8w

} 35. }
6

7

Ï
Ï

3w
6w

}

36. !}
3
2§
x
y
}§ 37. }

Ï
Ï
1w2w

5w
xw4w

} 38. }
Ï
Ï

1w
5w
8w
yw
xw3w

}

39. }
Ï
Ï

1w
5w
2w
aw
aw
3bw

2bw
3w

} 40. }
Ï3

5

3w
} 41. }

Ï
Ï

3

3

2w
4w
7w

}

42. !3 }
2
5§x

}§ 43. }
Ï
Ï

3

3

2w
3w
yw
xw

} 44. }
Ï
Ï
3

3

3w
1w
xw
2w

2

x

yw
yw
5w

}

For Problems 45–52, use the distributive property to help
simplify each. For example,

3Ï8w 1 5Ï2w 5 3Ï4wÏ2w 1 5Ï2w
5 6Ï2w 1 5Ï2w
5 (6 1 5)Ï2w
5 11Ï2w

45. 5Ï1w2w 1 2Ï3w 46. 4Ï5w0w 2 9Ï3w2w

47. 2Ï2w8w 2 3Ï6w3w 1 8Ï7w 48. 4Ï3 2w 1 2Ï3 1w6w 2 Ï3 5w4w

49. }
5
6

}Ï4w8w 2 }
3
4

}Ï1w2w 50. }
2
5

}Ï4w0w 1 }
1
6

}Ï9w0w

51. }
2Ï

3
8w

} 2 }
3Ï

5
1w8w
} 2 }

Ï
2
5w0w
} 52. }

3Ï3

2
5w4w
} 1 }

5Ï3

3
1w6w
}

For Problems 53–68, multiply and express the results in
simplest radical form. All variables represent nonnegative
real numbers.

53. 14Ï3w2 16Ï8w2 54. 15Ï8w2 13Ï7w2

55. 2Ï3w15Ï2w 1 4Ï1w0w2 56. 3Ï6w12Ï8w 2 3Ï1w2w2

P R O B L E M  S E T  0 . 6

Let’s conclude this section by simplifying some radical expressions that con-
tain variables.

Ï7w2wxw3yw7w 5 Ï3w6wxw2yw6wÏ2wxyw 5 6xy 3Ï2wxyw

Ï3 4w0wxw4yw8w 5 Ï3 8wxw3yw6w Ï3 5wxyw2w 5 2xy 2 Ï3 5wxyw2w

}
Ï

Ï
1w2w

5w
aw3w

} 5 }
Ï

Ï
1w2w

5w
aw3w

} ? }
Ï
Ï

3w
3w
aw
aw

} 5 }
Ï
Ï

3w
1w
6w
5w
aw
aw

4w
} 5 }

Ï
6a

1w5w
2

aw
}

}
Ï3

3

4wxw
} 5 }

Ï3

3

4wxw
} ? }

Ï
Ï

3

3

2w
2w
xw
xw

2w
2w

} 5 }
3

Ï
Ï
3

3

8w
2w
xw
xw
3w

2w
} 5 }

3Ï3

2x

2wxw2w
}
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57. 3Ïxw1Ï6wxyw 2 Ï8wyw2 58. Ï6wyw1Ï8wxw 1 Ï1w0wyw2w2

59. 1Ï3w 1 22 1Ï3w 1 52 60. 1Ï2w 2 32 1Ï2w 1 42

61. 14Ï2w 1 Ï3w2 13Ï2w 1 2Ï3w2

62. 12Ï6w 1 3Ï5w213Ï6w 1 4Ï5w2

63. 16 1 2Ï5w2 16 2 2Ï5w2 64. 17 2 3Ï2w2 17 1 3Ï2w2

65. 1Ïxw 1 Ïyw22
66. 12Ïxw 2 3Ïyw22

67. 1Ïaw 1 Ïbw2 1Ïaw 2 Ïbw2

68. 13Ïxw 1 5Ïyw2 13Ïxw 2 5Ïyw2

For Problems 69–80, rationalize the denominator and
simplify. All variables represent positive real numbers.

69. }
Ï5w

3
1 2
} 70. }

Ï1w0w
7

2 3
}

71. }
Ï7w 2

4
Ï3w

} 72. }
Ï5w 1

2
Ï3w

}

73. }
2Ï5w

Ï
1

2w
3Ï7w
} 74. }

5Ï2w 2

5
3Ï5w
}

75. }
Ï

Ï
xw 2

xw
1

} 76. }
Ï

Ï
xw 1

xw
2

}

77. }
Ïxw

Ï
1

xw
Ïyw

} 78. }
Ïxw

2Ï
2

xw
Ïyw

}

79. }
3
2
Ï
Ï

xw
xw
2

1

2
Ï
Ï

yw
yw

} 80. }
3
2
Ï
Ï

xw
xw

2

1

2
5
Ï
Ï

yw
yw

}

For Problems 81–84, rationalize the numerator. All variables
represent positive real numbers.

81. }
Ï2wxw1w 2w

h
hw 2 Ï2wxw
}

82.

83.

84. }
2Ïx1whw

h
2 2Ïxw
}

Ïxw1w hw 2w 3w 2 Ïxw2w 3w
}}}

h

Ïxw1w hw 1w 1w 2 Ïxw1w 1w
}}}

h

THOUGHTS INTO WORDS

85. Is the equation Ïxw2yw 5 xÏyw true for all real number
values for x and y? Defend your answer.

86. Is the equation Ïxw2yw2w 5 xy true for all real number
values for x and y? Defend your answer.

87. Give a step-by-step description of how you would

change Ï2w5w2w to simplest radical form.

88. Why is Ï2w9w not a real number?

89. How could you find a whole number approximation 
for Ï2w7w5w0w if you did not have a calculator or table
available?

RELATIONSHIP BETWEEN EXPONENTS

AND ROOTS

Recall that we used the basic properties of positive integral exponents to motivate a
definition of negative integers as exponents. In this section, we shall use the proper-
ties of integral exponents to motivate definitions for rational numbers as exponents.
These definitions will tie together the concepts of exponent and root. Let’s consider
the following comparisons.

0.7
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From our study of If (bm)n 5 bnm is to hold when m is a rational
radicals we know number of the form 1@p, where p is a positive
that integer greater than 1 and n 5 p, then
1Ï5w22 5 5 (51@2 )2 5 52(1@2) 5 51 5 5
1Ï3 8w23 5 8 (81@3 )3 5 83(1@3) 5 81 5 8
1Ï4 2w1w24 5 21 (211@4 )4 5 214(1@4) 5 211 5 21

Such examples motivate the following definition.

Definition 0.6 states that b 1@n means the nth root of b. We shall assume that b
and n are chosen so that Ïn bw exists in the real number system. For example, (225)1@2

is not meaningful at this time because Ï2w2w5w is not a real number. The following
examples illustrate the use of Definition 0.6.

251@2 5 Ï2w5w 5 5 161@4 5 Ï4 1w6w 52

81@3 5 Ï3 8w 5 2 (227)1@3 5 Ï3
2w2w7w 5 23

Now the following definition provides the basis for the use of all rational
numbers as exponents.

In Definition 0.7, whether we use the form Ïn bwmw or 1Ïn bw2m for computational pur-
poses depends somewhat on the magnitude of the problem. Let’s use both forms on
the following two problems.

82@3 5 Ï3 8w2w 5 Ï3 6w4w 5 4 or 82@3 5 1Ï3 8w22 5 (2)2 5 4

272@3 5 Ï3 2w7w2w 5 Ï3 7w2w9w 5 9 or 272@3 5 1Ï3 2w7w22 5 (3)2 5 9

D E F I N I T I O N  0 . 7

If m/n is a rational number expressed in lowest terms, where n is a
positive integer greater than one, and m is any integer, and if b is a

real number such that Ïn bw exists, then

bm@n 5 Ïn bwmw 5 1Ïn bw2m

D E F I N I T I O N  0 . 6

If b is a real number, n is a positive integer greater than 1, and Ïn bw
exists, then

b1@n 5 Ïn bw
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To compute 82@3, both forms work equally well. However, to compute 272@3, the 
form 1Ï3 2w7w22 is much easier to handle. The following examples further illustrate 
Definition 0.7.

253@2 5 1Ï2w5w23
5 53 5 125

(32)22@5 5 }
(32

1
)2@5
} 5 }

1Ï5

1

3w2w22
} 5 }

2
1

2
} 5 }

1
4

}

(264)2@3 5 1Ï3
2w6w4w22

5 (24)2 5 16

284@3 5 1Ï3 8w24
5 2(2)4 5 216

It can be shown that all of the results pertaining to integral exponents listed in
Property 0.2 (on page 18) also hold for all rational exponents. Let’s consider some
examples to illustrate each of those results.

x 1@2 ? x 2@3 5 x 1@212@3 bn ? bm 5 bn1m

5 x 3@614@6

5 x 7@6

(a 2@3 )3@2 5 a (3@2)(2@3) (bn)m 5 bnm

5 a 1 5 a

(16y 2@3 )1@2 5 (16)1@2(y 2@3)1/2 (ab)n 5 anbn

5 4y 1@3

}
y
y

3

1

@

@

4

2} 5 y 3@421@2 }
b
b

m

n

} 5 bn2m

5 y 3@422@4

5 y 1@4

1}
x
y

1

1

@

@

2

3}26
5 }

(
(
x
y

1

1

@

@

2

3

)
)

6

6} 1}
a
b

}2n
5 }

a
b

n

n}

5 }
x
y

3

2}

The link between exponents and roots provides a basis for multiplying and dividing
some radicals even if they have different indexes. The general procedure is one of
changing from radical to exponential form, applying the properties of exponents,
and then changing back to radical form. Let’s apply these procedures in the next
three examples.

Ï2wÏ3 2w 5 21@2 ? 21@3 5 21@211@3 5 25@6 5 Ï6 2w5w 5 Ï6 3w2w

ÏxywÏ5 xw2yw 5 (xy )1@2(x 2y )1@5

5 x 1@2y 1@2x 2@5y 1@5

5 x 1@212@5y 1@211@5

5 x 9@10y 7@10

5 (x 9y 7 )1@10 5 Ï10
xw9yw7w
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}
Ï
Ï3

5w
5w

} 5 }
5
5

1

1

@

@

2

3} 5 51@221@3 5 51@6 5 Ï6 5w

Earlier we agreed that a radical such as Ï3 xw4w is not in simplest form because
the radicand contains a perfect power of the index. Thus we simplified Ï3 xw4w by
expressing it as Ï3 xw3wÏ3 xw, which in turn can be written xÏ3 xw. Such simplification can
also be done in exponential form, as follows.

Ï3 xw4w 5 x 4@3 5 x 3@3 ? x 1@3 5 x ? x 1@3 5 xÏ3 xw

Note the use of this type of simplification in the following examples.

Perform the indicated operations and express the answers in simplest radical form.

a. Ï3 xw2wÏ4 xw3w b. Ï2wÏ3 4w c. }
Ï
Ï3

2w
3w
7w

}

Solutions

a. Ï3 xw2w Ï4 xw3w 5 x 2@3 ? x 3@4 5 x 2@313@4 5 x 17@12 5 x 12@12 ? x 5@12 5 xÏ
12

x5w

b. Ï2w Ï3 4w 5 21@2 ? 41@3 5 21@2(22)1@3 5 21@2 ? 22@3

5 21@212@3 5 27@6 5 26@6 ? 21@6 5 2Ï6 2w

c. }
Ï
Ï3

2w
3w
7w

} 5 }
2
3
7
1

1

@

@

3

2

} 5 }
(3
3

3

1

)
@

1

3

@2

} 5 }
3
3

3

1

@

@

2

3} 5 33@221@3 5 37@6

5 36@6 ? 31@6 5 3Ï6 3w n

The process of rationalizing the denominator can sometimes be handled more
easily in exponential form. Consider the following examples, which illustrate this
procedure.

Rationalize the denominator and express the answer in simplest radical form.

a. }
Ï3
2

xw
} b. }

Ï
Ï

3 xw
yw

}

Solutions

a. }
Ï3

2

xw
} 5 }

x
2
1@3} 5 }

x
2
1@3} ? }

x
x

2

2

@

@

3

3} 5 }
2x

x

2@3

} 5 }
2Ï3

x

xw2w
}

b. }
Ï
Ï

3

yw
xw

} 5 }
x
y

1

1

@

@

3

2} 5 }
x
y

1

1

@

@

3

2} ? }
y
y

1

1

@

@

2

2} 5 }
x1@3

y
? y1@2

} 5 }
x 2@6

y
? y 3@6

} 5 }
Ï6 xw

y

2yw3w
} n

Note in part (b) that if we had changed back to radical form at the step }
x 1@3

y
y 1@2

},

E X A M P L E  1

E X A M P L E  2
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For Problems 1–16, evaluate.

1. 491@2 2. 641@3 3. 323@5

4. (28)1@3 5. 282@3 6. 6421@2

7. 1}
1
4

}221@2
8. 12 }

2
8
7
}221@3

9. 163@2

10. (0.008)1@3 11. (0.01)3@2 12. 1}
2
1
7
}222@3

13. 6425@6 14. 2165@4 15. 1}
1
8

}221@3

16. 12 }
1
8

}22@3

For Problems 17–32, perform the indicated operations and
simplify. Express final answers using positive exponents
only.

17. (3x 1@4 )(5x1@3 ) 18. (2x 2@5 )(6x 1@4 )

19. ( y 2@3 )( y21@4 ) 20. (2x 1@3 )(x21@2 )

21. (4x 1@4y 1@2 )3 22. (5x 1@2y )2

23. }
2
6
4
x
x
1

3

@

@

3

5

} 24. }
1
9
8
x
x
1

1

@

@

3

2

}

25. }
5
8
6
a
a

1

1

@

@

4

6

} 26. }
4
1
8
2
b
b

1

3

@

@

3

4}

27. 1}
2
3
x
y

1

1

@

@

3

4}24
28. 1}

6
7
x
y

2

2

@

@

5

3}22

29. 1}
x
y

2

3}221@2
30. 1}

b
a
2

3

2}221@3

31. 1}2a
4
1

a
@2

2

x
x

1@3}23
32. 1}a31

a
@2

x
x

2

2

1

2}22

For Problems 33–48, perform the indicated operations and
express the answer in simplest radical form.

33. Ï2wÏ4 2w 34. Ï3 3wÏ3w

35. Ï3 xwÏ4 xw 36. Ï3 xw2wÏ5 xw3w

37. Ïxyw Ï4 xw3yw5w 38. Ï3 xw2yw4wÏ4 xw3yw

39. Ï3 aw2bw2wÏ4 aw3bw 40. Ïawbw Ï3 aw4bw5w

41. Ï3 4wÏ8w 42. Ï3 9wÏ2w7w

43. }
Ï
Ï3 2w

2w
} 44. }

Ï
Ï3 3w

9w
}

45. }
Ï
Ï

3

4

8w
4w

} 46. }
Ï
Ï

3

6

1w
4w
6w

}

47. }
Ï
Ï

4

3

xw
xw

9w
2w

} 48. }
Ï
Ï

5

3

xw
xw

7w
}

For Problems 49–57, rationalize the denominator and express
the final answer in simplest radical form.

49. }
Ï3

5

xw
} 50. }

Ï3

3

xw2w
} 51. }

Ï
Ï3 yw

xw
}

P R O B L E M  S E T  0 . 7

we would have obtained the product of two radicals, Ï3 xwÏyw, in the numerator.
Instead we used the exponential form to find this product and express the final result
with a single radical in the numerator. Finally, let’s consider an example involving
the root of a root.

Simplify Ï3 Ïw2ww.

Solution

Ï3 Ïw2ww 5 (21@2 )1@3 5 21@6 5 Ï6 2w n

E X A M P L E  3
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THOUGHTS INTO WORDS

52. }
Ï
Ï

4 xw
yw

} 53. }
Ï
Ï

4

5

xw
yw

3w
3w

} 54. }
2

3

Ï
Ï3 yw

xw
}

55. }
5

4

Ï
Ï

3

4

yw
xw

2w
} 56. }

Ï
Ï
3 aw

x
2

yw
bw

}

57. Simplify each of the following, expressing the final result
as one radical. For example,

ÏÏw3ww 5 (31@2 )1@2 5 31@4 5 Ï4 3w

a. Ï3 Ïw2ww b. Ï3 Ï4w3ww
c. Ï3 Ïwxww3ww d. ÏÏ3wxww4ww

58. Your friend keeps getting an error message when
evaluating 245/2 on his calculator. What error is he
probably making?

59. Explain how you would evaluate 272@3 without a
calculator.

Further Investigations

60. Use your calculator to evaluate each of the following.

a. Ï3 1w7w2w8w b. Ï3 5w8w3w2w

c. Ï4 2w4w0w1w d. Ï4 6w5w5w3w6w

e. Ï5 1w6w1w0w5w1w f. Ï5 6w4w3w6w3w4w3w

61. In Definition 0.7 we stated that bm/n 5 Ïn bwmw 5 1Ïn bw2m.
Use your calculator to verify each of the following.

a. Ï3 2w7w2w 5 1Ï3 2w7w22 b. Ï3 8w5w 5 1Ï3 8w25

c. Ï4 1w6w3w 5 1Ï4 1w6w23 d. Ï3 1w6w2w 5 1Ï3 1w6w22

e. Ï5 9w4w 5 1Ï5 9w24 f. Ï3 1w2w4w 5 1Ï3 1w2w24

62. Use your calculator to evaluate each of the following.

a. 165@2 b. 257@2 c. 169@4

d. 275@3 e. 3432@3 f. 5124@3

63. Use your calculator to estimate each of the following to
the nearest thousandth.

a. 74@3 b. 104@5 c. 122@5

d. 192@5 e. 73@4 f. 105@4

Sometimes we meet the following type of simplification
problem in calculus.

5 1 2 ? 1}((x
x

2

2

1
1
)
)

1

1

@

@

2

2}2
5}

x 2

(
1
x
2

2

x
1
(
)
x
3@
2
2

1)0

}

5 }
x
(x

2

2

1
1
2

)3@
x
2} (x 2 1)0 5 1

5 }
(x 2

21
1)3@2} or 2}

(x 2

1
1)3@2}

For Problems 64–69, simplify each expression as we did in
the previous example.

64.

65.

66.

67.

68. 69.
3(2x )1@3 2 2x(2x )2(2@3)

}}}
[(2x)1@3] 2

(3x)1@3 2 x(3x)2(2@3)

}}}
[(3x )1@3]2

(x 2 1 2x )1@2 2 x(x 1 1)(x 2 1 2x)2(1@2)

}}}}
[(x 2 1 2x )1@2] 2

2x(4x 1 1)1@2 2 2x 2(4x 1 1)2(1@2)

}}}}
[(4x 1 1)1@2] 2

2(2x 2 1)1@2 2 2x(2x 2 1)2(1@2)

}}}}
[(2x 2 1)1@2] 2

2(x 1 1)1@2 2 x(x 1 1)2(1@2)

}}}
[(x 1 1)1@2] 2

(x 2 1)1@2 2 x(x 2 1)2(1@2)

}}}
(x 2 1)2@2

(x 2 1)1@2 2 x(x 2 1)2(1@2)

}}}
[(x 2 1)1@2]2
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COMPLEX NUMBERS

So far we have dealt only with real numbers. However, as we get ready to solve
equations in the next chapter, there is a need for more numbers. There are some very
simple equations that do not have solutions if we restrict ourselves to the set of real
numbers. For example, the equation x 2 1 1 5 0 has no solutions among the real
numbers. To solve such equations, we need to extend the real number system. In this
section we will introduce a set of numbers that contains some numbers whose
squares are negative real numbers. Then, in the next chapter and in Chapter 5, we
will see that this set of numbers, called the complex numbers, provides solutions 
not only for equations such as x 2 1 1 5 0 but also for any polynomial equation in 
general.

Let’s begin by defining a number i such that

i 2 5 21

The number i is not a real number and is often called the imaginary unit, but the
number i 2 is the real number 21. The imaginary unit i is used to define a complex
number as follows.

The form a 1 bi is called the standard form of a complex number. The real number
a is called the real part of the complex number, and b is called the imaginary part.
(Note that b is a real number even though it is called the imaginary part.) Each of the
following represents a complex number.

6 1 2i is already expressed in the form a 1 bi. Traditionally,
complex numbers for which a Þ 0 and b Þ 0 have been
called imaginary numbers.

5 2 3i can be written 5 1 (23i) even though the form 5 2 3i is
often used.

2 8 1 i Ï2w can be written 28 1 Ï2wi. It is easy to mistake Ï2wiw for
Ï2wi. Thus we commonly write i Ï2w instead of Ï2wi to
avoid any difficulties with the radical sign.

D E F I N I T I O N  0 . 8

A complex number is any number that can be expressed in the form

a 1 bi

where a and b are real numbers.

0.8
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29i can be written 0 1 (29i). Complex numbers such as 29i,
for which a = 0 and b Þ 0, traditionally have been called
pure imaginary numbers.

5 can be written 5 1 0i.

The set of real numbers is a subset of the set of complex numbers. The follow-
ing diagram indicates the organizational format of the complex number system.

Two complex numbers a 1 bi and c 1 di are said to be equal if and only if 
a 5 c and b 5 d. In other words, two complex numbers are equal if and only if their
real parts are equal and their imaginary parts are equal.

Adding and Subtracting Complex Numbers

The following definition provides the basis for adding complex numbers.

(a 1 bi) 1 (c 1 di ) 5 (a 1 c ) 1 (b 1 d )i

We can use this definition to find the sum of two complex numbers.

(4 1 3i) 1 (5 1 9i ) 5 (4 1 5) 1 (3 1 9)i 5 9 1 12i

(26 1 4i ) 1 (8 2 7i ) 5 (26 1 8) 1 (4 2 7)i 5 2 2 3i

1}
1
2

} 1 }
3
4

} i2 1 1}
2
3

} 1 }
1
5

} i2 5 1}
1
2

} 1 }
2
3

}2 1 1}
3
4

} 1 }
1
5

}2 i

5 1}
3
6

} 1 }
4
6

}2 1 1}
1
2
5
0
} 1 }

2
4
0
}2 i 5 }

7
6

} 1 }
1
2
9
0
} i

13 1 iÏ2w2 1 124 1 iÏ2w2 5 [3 1 (24)] 1 1Ï2w 1 Ï2w2i 5 21 1 2iÏ2w

Note the form for writing 2Ï2wi.

The set of complex numbers is closed with respect to addition; that is, the
sum of two complex numbers is a complex number. Furthermore, the commutative
and associative properties of addition hold for all complex numbers. The additive
identity element is 0 1 0i, or simply the real number 0. The additive inverse of 
a 1 bi is 2a 2 bi because

(a 1 bi) 1 (2a 2 bi ) 5 [a 1 (2a )] 1 [b 1 (2b)]i 5 0

Complex numbers

a 1 bi, where a and b
are real numbers

Real numbers Imaginary numbers

a 1 bi, where b 5 0 a 1 bi, where b Þ 0

Pure imaginary numbers

a 1 bi, where a 5 0 and b Þ 0
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Therefore, to subtract c 1 di from a 1 bi, we add the additive inverse of c 1 di.

(a 1 bi) 2 (c 1 di ) 5 (a 1 bi ) 1 (2c 2 di)

5 (a 2 c ) 1 (b 2 d )i

The following examples illustrate the subtraction of complex numbers.

(9 1 8i) 2 (5 1 3i ) 5 (9 25) 1 (8 2 3)i 5 4 1 5i

(3 2 2i) 2 (4 2 10i ) 5 (3 2 4) 1 [22 2 (210)]i 5 21 1 8i

12 }
1
2

} 1 }
1
3

} i2 2 1}
3
4

} 1 }
1
2

} i2 5 12 }
1
2

} 2 }
3
4

}2 1 1}
1
3

} 2 }
1
2

}2i 5 2 }
5
4

} 2 }
1
6

} i

Multiplying and Dividing Complex Numbers

Because i 2 5 21, the number i is a square root of 21, so we write i 5 Ï2w1w. It
should also be evident that 2i is a square root of 21 because

(2i)2 5 (2i )(2i) 5 i 2 5 21

Therefore, in the set of complex numbers, 21 has two square roots—namely, i and
2i. This is symbolically expressed as

i 5 Ï2w1w and 2i 5 2Ï2w1w

Let’s extend the definition so that in the set of complex numbers, every negative real
number has two square roots. For any positive real number b,

1 iÏbw22 5 i 2(b ) 5 21(b ) 5 2b

Therefore, let’s denote the principal square root of 2b by Ï2wbw and define it to be

Ï2wbw 5 iÏbw

where b is any positive real number. In other words, the principal square root of any
negative real number can be represented as the product of a real number and the
imaginary unit i. Consider the following examples.

Ï2w4w 5 iÏ4w 5 2i

Ï2w1w7w 5 iÏ1w7w

Ï2w2w4w 5 iÏ2w4w 5 iÏ4wÏ6w 5 2iÏ6w Note that we simplified the 
radical Ï2w4w to 2Ï6w.

We should also observe that 2Ï2wbw, where b . 0, is a square root of 2b
because

12Ï2wbw22 5 12iÏbw22 5 i2(b) 5 (21)b 5 2b

Thus, in the set of complex numbers, 2b (where b . 0) has two square roots: iÏbw
and 2iÏbw. These are expressed as

Ï2wbw 5 iÏbw and 2Ï2wbw 5 2iÏbw
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We must be careful with the use of the symbol Ï2wbw, where b . 0. Some
properties that are true in the set of real numbers involving the square root symbol
do not hold if the square root symbol does not represent a real number. For example, 
Ïaw Ïbw 5 Ïawbw does not hold if a and b are both negative numbers.

Correct Ï2w4wÏ2w9w 5 (2i )(3i ) 5 6i 2 5 6(21) 5 26

Incorrect Ï2w4wÏ2w9w 5 Ï(2w4w)(w2w9w)w 5 Ï3w6w 5 6

To avoid difficulty with this idea, you should rewrite all expressions of the form
Ï2wbw, where b . 0 in the form iÏbw before doing any computations. The following
examples further illustrate this point.

Ï2w5wÏ2w7w 5 1iÏ5w21iÏ7w2 5 i 2Ï3w5w 5 (21)Ï3w5w 5 2Ï3w5w

Ï2w2wÏ2w8w 5 1iÏ2w21iÏ8w2 5 i 2Ï1w6w 5 (21)(4) 5 24

Ï2w2wÏ8w 5 1iÏ2w21Ï8w2 5 iÏ1w6w 5 4i

Ï2w6wÏ2w8w 5 1iÏ6w21iÏ8w2 5 i 2Ï4w8w 5 i 2Ï1w6wÏ3w 5 4i 2Ï3w 5 24Ï3w

}
Ï
Ï

2w
3w
2w

} 5 }
i
Ï
Ï

3w
2w

} 5 }
i
Ï
Ï

3w
2w

} ? }
Ï
Ï

3w
3w

} 5 }
iÏ

3
6w

}

}
Ï
Ï

2w
1w
4w
2w
8w

} 5 }
i
Ï
Ï

1w
4w
2w
8w

} 5 i!}
4
1§
8
2
}§ 5 iÏ4w 5 2i

Because complex numbers have a binomial form, we can find the product of
two complex numbers in the same way that we find the product of two binomials.
Then, by replacing i 2 with 21 we can simplify and express the final product in the
standard form of a complex number. Consider the following examples.

(2 1 3i)(4 1 5i) 5 2(4 1 5i) 1 3i(4 1 5i )

5 8 1 10i 1 12i 1 15i 2

5 8 1 22i 1 15(21)

5 8 1 22i 2 15

5 27 1 22i

(1 2 7i)2 5 (1 2 7i )(1 2 7i)

5 1(1 2 7i ) 2 7i(1 2 7i )

5 1 2 7i 2 7i 1 49i 2

5 1 2 14i 1 49(21)

5 1 2 14i 2 49

5 248 2 14i
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(2 1 3i)(2 2 3i) 5 2(2 2 3i) 1 3i(2 2 3i )

5 4 2 6i 1 6i 2 9i 2

5 4 2 9(21)

5 4 1 9

5 13

REMARK Don’t forget that when multiplying complex numbers, we can
also use the multiplication patterns

(a 1 b )2 5 a 2 1 2ab 1 b 2

(a 2 b )2 5 a 2 2 2ab 1 b 2

(a 1 b )(a 2 b ) 5 a 2 2 b 2

The last example illustrates an important idea. The complex numbers 2 1 3i
and 2 2 3i are called conjugates of each other. In general, the two complex numbers
a 1 bi and a 2 bi are called conjugates of each other and the product of a com-
plex number and its conjugate is a real number. This can be shown as follows.

(a 1 bi)(a 2 bi) 5 a(a 2 bi) 1 bi(a 2 bi )

5 a 2 2 abi 1 abi 2 b 2i 2

5 a 2 2 b 2(21)

5 a 2 1 b 2

Conjugates are used to simplify an expression such as 3i@(5 1 2i), which indi-
cates the quotient of two complex numbers. To eliminate i in the denominator and to
change the indicated quotient to the standard form of a complex number, we can
multiply both the numerator and denominator by the conjugate of the denominator.

}
5 1

3i
2i

} 5 }
5 1

3i
2i

} ? }
5
5

2

2

2
2
i
i

}

5}
(5 1

3i(
2
5
i)
2

(5
2
2

i)
2i)

}

5 }
1
2
5
5
i
2

2

4
6
i
i
2

2

}

5 }
1
2
5
5
i
2

2

4
6
(
(
2

2

1
1
)
)

}

5 }
6 1

29
15i
}

5 }
2
6
9
} 1 }

1
2
5
9
}i
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The following examples further illustrate the process of dividing complex numbers.

}
2
4

2

2

3
7
i
i

} 5 }
2
4

2

2

3
7
i
i

} ? }
4
4

1

1

7
7
i
i

}

5}
(
(
2
4

2

2

3
7
i
i
)
)
(
(
4
4

1

1

7
7
i
i
)
)

}

5

5}
8 1

16
2
2

i 2

49
2
(
1
2

(2
1)

1)
}

5 }
29

6
1

5
2i

} 5 }
2
6
9
5
} 1 }

6
2
5
} i

}
4 2

2i
5i

} 5 }
42

2i
5i

} ? }
2

2

2
2
i
i

}

5 }
(4

(
2

2i )
5
(
i
2

)(
2
2

i )
2i )

}

5 }
28

2

i 1

4i
1
2

0i 2

}

5 }
28

2

i 1

4(
1
2

0
1
(2
)

1)
}

5 }
210

4
28i
} 5 2}

5
2

} 2 2i

For a problem such as the last one, in which the denominator is a pure imaginary
number, we can change to standard form by choosing a multiplier other than the
conjugate of the denominator. Consider the following alternative approach.

}
4 2

2i
5i

} 5 }
4 2

2i
5i

} ? }
i
i

}

5 }
(4

(
2

2i )
5
(
i
i
)
)
(i)

}

5 }
4i 2

2i 2

5i 2

}

5 }
4i 2

2(2
5(

1
2

)
1)

}

5 }
5

2

1

2
4i

}

5 2}
5
2

} 2 2i

8 1 14i 2 12i 2 21i 2

}}}
16 2 49i 2
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For Problems 1–14, add or subtract as indicated.

1. (5 1 2i) 1 (8 1 6i) 2. (29 1 3i ) 1 (4 1 5i )

3. (8 1 6i) 2 (5 1 2i) 4. (26 1 4i ) 2 (4 1 6i )

5. (27 2 3i ) 1 (24 1 4i) 6. (6 2 7i) 2 (7 2 6i)

7. (22 2 3i ) 2 (21 2 i) 8. 1}
1
3

} 1 }
2
5

}i2 1 1}
1
2

} 1 }
1
4

}i2
9. 12 }

3
4

} 2 }
1
4

}i2 1 1}
3
5

} 1 }
2
3

}i2
10. 1}

5
8

} 1 }
1
2

}i2 2 1}
7
8

} 1 }
1
5

}i2
11. 1}

1
3
0
} 2 }

3
4

}i2 2 12 }
2
5

} 1 }
1
6

}i2
12. 14 1 i Ï3w2 1 126 2 2i Ï3w2

13. (5 1 3i) 1 (7 2 2i) 1 (28 2 i )

14. (5 2 7i) 2 (6 2 2i) 2 (21 2 2i )

For Problems 15–30, write each in terms of i and simplify.
For example,

Ï2w2w0w 5 iÏ2w0w 5 iÏ4wÏ5w 5 2iÏ5w

15. Ï2w9w 16. Ï2w4w9w 17. Ï2w1w9w

18. Ï2w3w1w 19. !2§}
4
9

}§ 20. !2§}
2
3§
5
6
}§

21. Ï2w8w 22. Ï2w1w8w 23. Ï2w2w7w

24. Ï2w3w2w 25. Ï2w5w4w 26. Ï2w4w0w

27. 3Ï2w3w6w 28. 5Ï2w6w4w 29. 4Ï2w1w8w

30. 6Ï2w8w

For Problems 31–44, write each in terms of i, perform the
indicated operations, and simplify. For example, 

Ï2w9wÏ2w1w6w 5 1i Ï9w21i Ï1w6w2 5 (3i)(4i)

5 12i 2 5 12(21) 5 212

31. Ï2w4wÏ2w1w6w 32. Ï2w2w5wÏ2w9w

33. Ï2w2wÏ2w3w 34. Ï2w3wÏ2w7w

35. Ï2w5wÏ2w4w 36. Ï2w7wÏ2w9w

37. Ï2w6wÏ2w1w0w 38. Ï2w2wÏ2w1w2w

39. Ï2w8wÏ2w7w 40. Ï2w1w2wÏ2w5w

41. }
Ï
Ï

2w
2w

3w
4w
6w

} 42. }
Ï
Ï

2w
2w

6w
1w
4w
6w

}

43. }
Ï
Ï

2w
2w

5w
9w
4w

} 44. }
Ï
Ï

2w
2w

1w
3w
8w

}

For Problems 45–64, find each product, expressing the
answers in standard form.

45. (3i )(7i) 46. (25i)(8i)

47. (4i )(3 2 2i) 48. (5i )(2 1 6i)

49. (3 1 2i)(4 1 6i ) 50. (7 1 3i)(8 1 4i )

51. (4 1 5i)(2 29i ) 52. (1 1 i)(2 2 i )

53. (22 2 3i )(4 1 6i) 54. (23 2 7i )(2 1 10i)

55. (6 2 4i)(21 2 2i) 56. (7 2 3i)(22 2 8i)

57. (3 1 4i)2 58. (4 2 2i)2

59. (21 2 2i )2 60. (22 1 5i )2

61. (8 2 7i)(8 1 7i ) 62. (5 1 3i)(5 2 3i )

63. (22 1 3i )(22 2 3i ) 64. (26 2 7i )(26 1 7i )

For Problems 65–78, find each quotient, expressing the
answers in standard form.

65. }
3 2

4i
2i

} 66. }
6 1

3i
2i

} 67. }
2 1

3i
3i

}

68. }
3 2

4i
5i

} 69. }
2
3
i

} 70. }
4
7
i

}

71. }
3
4

1

1

2
5
i
i

} 72. }
2
3

1

1

5
7
i
i

} 73. }
4
2

1

2

7
3
i
i

}

74. }
3
4
1

2

9
i
i

} 75. }
2

3
2
2

1

7
4
i
i

} 76. }
2

4
3
2

1

10
7
i
i

}

77. }
2

2

2
1
2

2

3
i
i

} 78. }
2

2

4
3

1

2

9
6
i
i

}
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0.8 Complex Numbers 75

79. Using a 1 bi and c 1 di to represent two complex
numbers, verify the following properties.

a. The conjugate of the sum of two complex numbers 
is equal to the sum of the conjugates of the two
numbers.

b. The conjugate of the product of two complex numbers
is equal to the product of the conjugates of the
numbers.

80. Is every real number also a complex number? Explain
your answer.

81. Can the product of two nonreal complex numbers be a
real number? Explain your answer.

82. Observe the following powers of i.

i 5 Ï2w1w
i 2 5 21

i 3 5 i 2 ? i 5 21( i) 5 2i

i 4 5 i 2 ? i 2 5 (21)(21) 5 1

Any power of i greater than 4 can be simplified to i, 21,
2i, or 1 as follows.

i 9 5 ( i 4 )2 ( i) 5 (1)( i) 5 i

i 14 5 ( i 4 )3 ( i 2 ) 5 (1)(21) 5 21

i 19 5 ( i 4 )4 ( i 3 ) 5 (1)(2i) 5 2i

i 28 5 ( i 4 )7 5 (1)7 5 1

Express each of the following as i, 21, 2i, or 1.

a. i 5 b. i 6 c. i 11 d. i 12

e. i 16 f. i 22 g. i 33 h. i 63

83. We can use the information from Problem 82 and the
binomial expansion patterns to find powers of complex
numbers as follows.

(3 1 2i)3 5 (3)3 1 3(3)2(2i) 1 3(3)(2i)2 1 (2i)3

5 27 1 54i 1 36i 2 1 8i 3

5 27 1 54i 1 36(21) 1 8(2i) 5 29 1 46i

Find the indicated power of each of the following.

a. (2 1 i)3 b. (1 2 i)3 c. (1 2 2i)3

d. (1 1 i)4 e. (2 2 i)4 f. (21 1 i)5

Further Investigations

THOUGHTS INTO WORDS
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Be sure of the following key concepts from this chapter: set, null set,
equal sets, subset, natural numbers, whole numbers, integers, rational
numbers, irrational numbers, real numbers, complex numbers, absolute
value, similar terms, exponent, monomial, binomial, polynomial, degree
of a polynomial, perfect-square trinomial, factoring polynomials, rational
expression, least common denominator, radical, simplest radical form,
root, and conjugate of a complex number.

The following properties of the real numbers provide a basis for arith-
metic and algebraic computation: closure for addition and multiplication,
commutativity for addition and multiplication, associativity for addition
and multiplication, identity properties for addition and multiplication,
inverse properties for addition and multiplication, multiplication property
of zero, multiplication property of 21, and distributive property.

The following properties of absolute value are useful.

1. * a * $ 0
2. * a * 5 *2a * a and b are real numbers

3. * a 2 b * 5 * b 2 a *

The following properties of exponents provide the basis for much of our
computational work with polynomials.

1. bn ? bm 5 bn1m

2. (bn )m 5 bmn

3. (ab )n 5 anbn

4. 1}
a
b

}2
n

5 }
a
b

n

n}

5. }
b
b

m

n

} 5 bn2m

The following product patterns are helpful to recognize when multiplying 
polynomials.

1. (a 1 b )2 5 a 2 1 2ab 1 b 2

2. (a 2 b )2 5 a 2 2 2ab 1 b 2

3. (a 1 b )(a 2 b ) 5 a 2 2 b 2

4. (a 1 b )3 5 a 3 1 3a 2b 1 3ab 2 1 b 3

5. (a 2 b)3 5 a3 2 3a 2b 1 3ab 2 2 b 3

C H A P T E R  0 S U M M A R Y

m and n are rational numbers and a and b are
real numbers, except b Þ 0 whenever it
appears in the denominator.
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Be sure you know how to do the following.

1. Factor out the highest common monomial factor.

2. Factor by grouping.

3. Factor a trinomial into the product of two binomials.

4. Recognize some basic factoring patterns:

a 2 1 2ab 1 b 2 5 (a 1 b )2;

a 2 2 2ab 1 b 2 5 (a 2 b )2;

a 2 2 b 2 5 (a 1 b )(a 2 b );

a 3 1 b 3 5 (a 1 b )(a 2 2 ab 1 b 2 );

a 3 2 b 3 5 (a 2 b )(a 2 1 ab 1 b 2 ).

Be sure that you can simplify, add, subtract, multiply, and divide rational expres-
sions using the following properties and definitions.

1. }
a
b

?

?

k
k

} 5 }
a
b

}

2. }
2

b
a

} 5 }
2

a
b
} 5 2}

a
b

}

3. }
a
b

} ? }
d
c

} 5 }
b
a
d
c
}

4. }
a
b

} 4 }
d
c

} 5 }
a
b

} ? }
d
c

} 5 }
a
b
d
c
}

5. }
a
c

} 1 }
b
c

} 5 }
a 1

c
b

}

6. }
a
c

} 2 }
b
c

} 5 }
a 2

c
b

}

Be sure that you can simplify, add, subtract, multiply, and divide radicals using the
following definitions and properties.

1. Ïn bw 5 a if and only if an 5 b

2. Ïn bwcw 5 Ïn bwÏn cw

3. !n }
b
c

}§ 5

The following definition provides the link between exponents and roots.

bm/n 5 Ïn
bwmw 5 1Ïn

bw2m

This link, along with the properties of exponents, allows us (1) to multiply and
divide some radicals with different indices, (2) to change to simplest radical form
while in exponential form, and (3) to simplify expressions that are roots of roots.

Ïn bw
}
Ïn cw
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A complex number is any number that can be expressed in the form a 1 bi, where a
and b are real numbers and i is the imaginary unit such that i 2 5 21.

Addition and subtraction of complex numbers are defined as follows.

(a 1 bi) 1 (c 1 di ) 5 (a 1 c ) 1 (b 1 d ) i

(a 1 bi) 2 (c 1 di ) 5 (a 2 c ) 1 (b 2 d ) i

Because complex numbers have a binomial form, we can multiply two complex
numbers in the same way that we multiply two binomials. Thus i 2 can be replaced
with 21, and the final result can be expressed in the standard form of a complex
number. For example,

(3 1 2i) (4 2 3i) 5 12 2 i 2 6i 2

5 12 2 i 2 6(21)

5 18 2 i

The two complex numbers a 1 bi and a 2 bi are called conjugates of each other.
The product (a 2 bi )(a 1 bi ) equals the real number a 2 1 b 2, and this property is
used to help with dividing complex numbers.

For Problems 1–10, evaluate.

1. 523 2. 2324 3. 1}
3
4}222

4. 5. 2Ï6w4w 6. !3 }
2
8§7
}§

7. !5 2§}3
1§2}§ 8. 3621@2 9. 1}

1
8}222@3

10. 2323@5

For Problems 11–18, perform the indicated operations and
simplify. Express the final answers using positive exponents
only.

11. (3x22y21 )(4x 4y 2 ) 12. (5x 2@3 )(26x 1@2 )

13. (28a21@2 )(26a 1@3 ) 14. (3x22@3y 1@5 )3

15. }
6
1
4
6
x
x

2

3y

2y
2

3

2} 16. }
5
7
6
x
x
1

2

@4

1

y

@3

2

y
3

2

@

@

5

5

}

17. 1}22
8
x
x
2

2

1

y
y

2

2

1

}22
18. 1}2

36
1
a
2

2

a

1

2

b
b

4

5}221

For Problems 19–34, perform the indicated operations.

19. (27x 2 3) 1 (5x 2 2) 1 (6x 1 4)

20. (12x 1 5) 2 (7x 2 4) 2 (8x 1 1)

21. 3(a 2 2) 2 2(3a 1 5) 1 3(5a 2 1)

22. (4x 2 7)(5x 1 6)

23. (23x 1 2)(4x 2 3)

24. (7x 2 3)(25x 1 1)

25. (x 1 4)(x 2 2 3x 2 7)

26. (2x 1 1)(3x 2 2 2x 1 6)

27. (5x 2 3)2 28. (3x 1 7)2

29. (2x 2 1)3 30. (3x 1 5)3

31. (x 2 2 2x 2 3)(x 2 1 4x 1 5)

32. (2x 2 2 x 2 2)(x 2 1 6x 2 4)

33. }
24x 3y

2

4 2

6x
4
y
8x 2y 3

} 34. }
256x 2y

8
1

x 2

72x 3y 2

}

1
}

1}
1
3

}222

C H A P T E R 0  R E V I E W P R O B L E M  S E T
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For Problems 35–46, factor each polynomial completely.
Indicate any that are not factorable using integers.

35. 9x 2 2 4y 2 36. 3x 3 2 9x 2 2 120x

37. 4x 2 1 20x 1 25 38. (x 2 y )2 2 9

39. x 2 2 2x 2 xy 1 2y 40. 64x 3 2 27y 3

41. 15x 2 2 14x 2 8 42. 3x 3 1 36

43. 2x 2 2 x 2 8 44. 3x 3 1 24

45. x 4 2 13x 2 1 36 46. 4x 2 2 4x 1 1 2 y 2

For Problems 47–56, perform the indicated operations
involving rational expressions. Express final answers in
simplest form.

47. }
1
8
8
x
x
y
2y

} ? }
2
1
4
6
x
y
y
3

2

} 48. }
21

6
4
b
a

3

2b 2

} 4 }
1
2
5
1
a
a
b

}

49. }
x 2 1

x 2

3
2

x
1
2 4

} ? }
3x 2

x
1
2 1

8x
4x

1 5
}

50. }
9x 2

2
2

x 2

6
1

x
8
1 1

} ? }
6x 2

8
1

x 1

13
2
x
0
2 5

}

51. }
3x

4
2 2
} 1 }

5x
3
2 1
} 52. }

2x
5
2 6
} 2 }

x 1

3
4

}

53. }
n
3

2} 1 }
5
4
n
} 2 }

2
n

} 54. }
x 2 1

5
7x

} 2 }
3
x

}

55. }
x 2 2 6

3
x
x

2 40
} 1 }

x 2 2

4
16

}

56. }
x 2

2
2

} 2 }
x 1

2
2

} 2 }
x 3 2

4
4x

}

For Problems 57– 59, simplify each complex fraction.

57. 58.

59.

60. Simplify the expression

For Problems 61–68, express each in simplest radical form.
All variables represent positive real numbers.

61. 5Ï4w8w 62. 3Ï2w4wx3w 63. Ï3 3w2wxw4yw5w

64. }
3
2
Ï
Ï

8w
6w

} 65. !}
2
5§y
x§2}§ 66. }

Ï2w
3
1 5
}

67. }
3Ï

4
2w
Ï
1

2w
Ï3w

} 68. }
Ïxw

3
2

Ï
2
xw
Ïyw

}

For Problems 69–74, perform the indicated operations and
express the answers in simplest radical form.

69. Ï5wÏ3 5w 70. Ï3 xw2wÏ4 xw 71. Ïxw3wÏ3 xw4w

72. ÏxywÏ5 xw3yw2w 73. }
Ï
Ï3

5w
5w

} 74. }
Ï
Ï

3

4

xw
xw

2w
3w

}

For Problems 75–86, perform the indicated operations and
express the resulting complex number in standard form.

75. (27 1 3i ) 1 (24 2 9i)

76. (2 2 10i) 2 (3 2 8i)

77. (21 1 4i ) 2 (22 1 6i)

78. (3i )(27i)

79. (2 2 5i)(3 1 4i ) 80. (23 2 i)(6 2 7i)

81. (4 1 2i)(24 2 i) 82. (5 2 2i)(5 1 2i)

83. }
3
5
i

} 84. }
2
3

1

2

3
4
i
i

}

85. }
2

2

1
2
2

1

2
i
i

} 86. }
5
2

1

6i
2i

}

For Problems 87–92, write each in terms of i and simplify.

87. Ï2w1w0w0w 88. Ï2w4w0w

89. 4Ï2w8w0w 90. 1Ï2w9w21Ï2w1w6w2

91. 1Ï2w6w21Ï2w8w2 92. }
Ï
Ï

2w
2w

2w
3w
4w

}

For Problems 93 and 94, use scientific notation and the
properties of exponents to help with the computations.

93. }
(
(
0
0
.
.
0
0
0
0
6
0
4
1
)
4
(
)
4
(
2
0
0
.0
0
3
0
2
0
)
)

} 94. }
(
(
0
8
.
6
0
0
0
0
1
)
6
(
)
0
(
.
0
0
.
0
0
0
0
0
0
0
0
6
4
4
3
)
)

}6(x 2 1 2)1@2 2 6x 2(x 2 1 2)21@2

}}}}
[(x 2 1 2)1@2]2

}
(x 1

3
h )2} 2 }

x
3

2}
}}

h

3 2 }
2
x

}

}

4 1 }
3
x

}

}
3
x

} 2 }
2
y

}

}

}
x
5

2} 1 }
7
y

}
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1. Evaluate each of the following.

a. 2722 b. 1}
3
2

}223
c. 1}

4
9

}2}32} d. !3 }
2
6§
7
4
}§

2. Find the product (23x21 y 2 )(5x23 y24 ) and express the result using positive
exponents only.

For Problems 3–7, perform the indicated operations.

3. (23x 2 4) 2 (7x 2 5) 1 (22x 2 9) 4. (5x 2 2)(26x 1 4)

5. (x 1 2)(3x 2 2 2x 2 7) 6. (4x 2 1)3

7.

For Problems 8–11, factor each polynomial completely.

8. 18x 3 2 15x 2 2 12x 9. 30x 2 2 13x 2 10

10. 8x 3 1 64 11. x 2 1 xy 2 2y 2 2x

For Problems 12–16, perform the indicated operations involving rational
expressions. Express final answers in simplest form.

12. }
6
5
x
x

3

y
y 2

} 4 }
7
8
x
y

3} 13. }
2x 2

x

1

2 2

5x

4

1 2
} ? }

2x 2

x

1
3 2

7x

8

1 3
}

14. }
3n

4
2 2
} 2 }

4n
6
1 1
} 15. }

2x 2

5
2 6x
} 1 }

3x 2

4
1 6x
}

16. }
n
4

2} 2 }
2
3
n
} 2 }

5
n

}

17. Simplify the complex fraction .

For Problems 18–21, express each radical expression in simplest radical
form. All variables represent positive real numbers.

18. 6Ï2w8wx5w 19. }
3
5
Ï
Ï

1w
6w
2w

} 20. }
2Ï2w

Ï
2

6w
Ï3w

} 21. Ï3 4w8wx4wy5w

}
2
x

} 2 }
5
y

}

}

}
3
x

} 1 }
y
4

2}

218x 4y 3 2 24x 5y 4

}}
22xy 2
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For Problems 22–25, perform the indicated operations and express the
resulting complex numbers in standard form.

22. (22 2 4i ) 2 (21 1 6i ) 1 (23 1 7i) 23. (5 2 7i )(4 1 2i )

24. (7 2 6i)(7 1 6i) 25. }
1

3

1

2

2

i

i
}
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A P P E N D I X

A

COMMON LOGARITHMS
Table of Common Logarithms

N 0 1 2 3 4 5 6 7 8 9

1.0 .0000 .0043 .0086 .0128 .0170 .0212 .0253 .0294 .0334 .0374
1.1 .0414 .0453 .0492 .0531 .0569 .0607 .0645 .0682 .0719 .0755
1.2 .0792 .0828 .0864 .0899 .0934 .0969 .1004 .1038 .1072 .1106
1.3 .1139 .1173 .1206 .1239 .1271 .1303 .1335 .1367 .1399 .1430
1.4 .1461 .1492 .1523 .1553 .1584 .1614 .1644 .1673 .1703 .1732

1.5 .1761 .1790 .1818 .1847 .1875 .1903 .1931 .1959 .1987 .2014
1.6 .2041 .2068 .2095 .2122 .2148 .2175 .2201 .2227 .2253 .2279
1.7 .2304 .2330 .2355 .2380 .2405 .2430 .2455 .2480 .2504 .2529
1.8 .2553 .2577 .2601 .2625 .2648 .2672 .2695 .2718 .2742 .2765
1.9 .2788 .2810 .2833 .2856 .2878 .2900 .2923 .2945 .2967 .2989

2.0 .3010 .3032 .3054 .3075 .3096 .3118 .3139 .3160 .3181 .3201
2.1 .3222 .3243 .3263 .3284 .3304 .3324 .3345 .3365 .3385 .3404
2.2 .3424 .3444 .3464 .3483 .3502 .3522 .3541 .3560 .3579 .3598
2.3 .3617 .3636 .3655 .3674 .3692 .3711 .3729 .3747 .3766 .3784
2.4 .3802 .3820 .3838 .3856 .3874 .3892 .3909 .3927 .3945 .3962

2.5 .3979 .3997 .4014 .4031 .4048 .4065 .4082 .4099 .4116 .4133
2.6 .4150 .4166 .4183 .4200 .4216 .4232 .4249 .4265 .4281 .4298
2.7 .4314 .4330 .4346 .4362 .4378 .4393 .4409 .4425 .4440 .4456
2.8 .4472 .4487 .4502 .4518 .4533 .4548 .4564 .4579 .4594 .4609
2.9 .4624 .4639 .4654 .4669 .4683 .4698 .4713 .4728 .4742 .4757

3.0 .4771 .4786 .4800 .4814 .4829 .4843 .4857 .4871 .4886 .4900
3.1 .4914 .4928 .4942 .4955 .4969 .4983 .4997 .5011 .5024 .5038
3.2 .5051 .5065 .5079 .5092 .5105 .5119 .5132 .5145 .5159 .5172
3.3 .5185 .5198 .5211 .5224 .5237 .5250 .5263 .5276 .5289 .5302
3.4 .5315 .5328 .5340 .5353 .5366 .5378 .5391 .5403 .5416 .5428



Table of Common Logarithms (continued)

668 Appendix A Common Logarithms

N 0 1 2 3 4 5 6 7 8 9

3.5 .5441 .5453 .5465 .5478 .5490 .5502 .5514 .5527 .5539 .5551
3.6 .5563 .5575 .5587 .5599 .5611 .5623 .5635 .5647 .5658 .5670
3.7 .5682 .5694 .5705 .5717 .5729 .5740 .5752 .5763 .5775 .5786
3.8 .5798 .5809 .5821 .5832 .5843 .5855 .5866 .5877 .5888 .5899
3.9 .5911 .5922 .5933 .5944 .5955 .5966 .5977 .5988 .5999 .6010

4.0 .6021 .6031 .6042 .6053 .6064 .6075 .6085 .6096 .6107 .6117
4.1 .6128 .6138 .6149 .6160 .6170 .6180 .6191 .6201 .6212 .6222
4.2 .6232 .6243 .6253 .6263 .6274 .6284 .6294 .6304 .6314 .6325
4.3 .6335 .6345 .6355 .6365 .6375 .6385 .6395 .6405 .6415 .6425
4.4 .6435 .6444 .6454 .6464 .6474 .6484 .6493 .6503 .6513 .6522

4.5 .6532 .6542 .6551 .6561 .6571 .6580 .6590 .6599 .6609 .6618
4.6 .6628 .6637 .6646 .6656 .6665 .6675 .6684 .6693 .6702 .6712
4.7 .6721 .6730 .6739 .6749 .6758 .6767 .6776 .6785 .6794 .6803
4.8 .6812 .6821 .6830 .6839 .6848 .6857 .6866 .6875 .6884 .6893
4.9 .6902 .6911 .6920 .6928 .6937 .6946 .6955 .6964 .6972 .6981

5.0 .6990 .6998 .7007 .7016 .7024 .7033 .7042 .7050 .7059 .7067
5.1 .7076 .7084 .7093 .7101 .7110 .7118 .7126 .7135 .7143 .7152
5.2 .7160 .7168 .7177 .7185 .7193 .7202 .7210 .7218 .7226 .7235
5.3 .7243 .7251 .7259 .7267 .7275 .7284 .7292 .7300 .7308 .7316
5.4 .7324 .7332 .7340 .7348 .7356 .7364 .7372 .7380 .7388 .7396

5.5 .7404 .7412 .7419 .7427 .7435 .7443 .7451 .7459 .7466 .7474
5.6 .7482 .7490 .7497 .7505 .7513 .7520 .7528 .7536 .7543 .7551
5.7 .7559 .7566 .7574 .7582 .7589 .7597 .7604 .7612 .7619 .7627
5.8 .7634 .7642 .7649 .7657 .7664 .7672 .7679 .7686 .7694 .7701
5.9 .7709 .7716 .7723 .7731 .7738 .7745 .7752 .7760 .7767 .7774

6.0 .7782 .7789 .7796 .7803 .7810 .7818 .7825 .7832 .7839 .7846
6.1 .7853 .7860 .7868 .7875 .7882 .7889 .7896 .7903 .7910 .7917
6.2 .7924 .7931 .7938 .7945 .7952 .7959 .7966 .7973 .7980 .7987
6.3 .7993 .8000 .8007 .8014 .8021 .8028 .8035 .8041 .8048 .8055
6.4 .8062 .8069 .8075 .8082 .8089 .8096 .8102 .8109 .8116 .8122

6.5 .8129 .8136 .8142 .8149 .8156 .8162 .8169 .8176 .8182 .8189
6.6 .8195 .8202 .8209 .8215 .8222 .8228 .8235 .8241 .8248 .8254
6.7 .8261 .8267 .8274 .8280 .8287 .8293 .8299 .8306 .8312 .8319
6.8 .8325 .8331 .8338 .8344 .8351 .8357 .8363 .8370 .8376 .8382
6.9 .8388 .8395 .8401 .8407 .8414 .8420 .8426 .8432 .8439 .8445

7.0 .8451 .8457 .8463 .8470 .8476 .8482 .8488 .8494 .8500 .8506
7.1 .8513 .8519 .8525 .8531 .8537 .8543 .8549 .8555 .8561 .8567
7.2 .8573 .8579 .8585 .8591 .8597 .8603 .8609 .8615 .8621 .8627
7.3 .8633 .8639 .8645 .8651 .8657 .8663 .8669 .8675 .8681 .8686
7.4 .8692 .8698 .8704 .8710 .8716 .8722 .8727 .8733 .8739 .8745
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Table of Common Logarithms (continued)

N 0 1 2 3 4 5 6 7 8 9

7.5 .8751 .8756 .8762 .8768 .8774 .8779 .8785 .8791 .8797 .8802
7.6 .8808 .8814 .8820 .8825 .8831 .8837 .8842 .8848 .8854 .8859
7.7 .8865 .8871 .8876 .8882 .8887 .8893 .8899 .8904 .8910 .8915
7.8 .8921 .8927 .8932 .8938 .8943 .8949 .8954 .8960 .8965 .8971
7.9 .8976 .8982 .8987 .8993 .8998 .9004 .9009 .9015 .9020 .9025

8.0 .9031 .9036 .9042 .9047 .9053 .9058 .9063 .9069 .9074 .9079
8.1 .9085 .9090 .9096 .9101 .9106 .9112 .9117 .9122 .9128 .9133
8.2 .9138 .9143 .9149 .9154 .9159 .9165 .9170 .9175 .9180 .9186
8.3 .9191 .9196 .9201 .9206 .9212 .9217 .9222 .9227 .9232 .9238
8.4 .9243 .9248 .9253 .9258 .9263 .9269 .9274 .9279 .9284 .9289

8.5 .9294 .9299 .9304 .9309 .9315 .9320 .9325 .9330 .9335 .9340
8.6 .9345 .9350 .9355 .9360 .9365 .9370 .9375 .9380 .9385 .9390
8.7 .9395 .9400 .9405 .9410 .9415 .9420 .9425 .9430 .9435 .9440
8.8 .9445 .9450 .9455 .9460 .9465 .9469 .9474 .9479 .9484 .9489
8.9 .9494 .9499 .9504 .9509 .9513 .9518 .9523 .9528 .9533 .9538

9.0 .9542 .9547 .9552 .9557 .9562 .9566 .9571 .9576 .9581 .9586
9.1 .9590 .9595 .9600 .9605 .9609 .9614 .9619 .9624 .9628 .9633
9.2 .9638 .9643 .9647 .9652 .9657 .9661 .9666 .9671 .9675 .9680
9.3 .9685 .9689 .9694 .9699 .9703 .9708 .9713 .9717 .9722 .9727
9.4 .9731 .9736 .9741 .9745 .9750 .9754 .9759 .9763 .9768 .9773

9.5 .9777 .9782 .9786 .9791 .9795 .9800 .9805 .9809 .9814 .9818
9.6 .9823 .9827 .9832 .9836 .9841 .9845 .9850 .9854 .9859 .9863
9.7 .9868 .9872 .9877 .9881 .9886 .9890 .9894 .9899 .9903 .9908
9.8 .9912 .9917 .9921 .9926 .9930 .9934 .9939 .9943 .9948 .9952
9.9 .9956 .9961 .9965 .9969 .9974 .9978 .9983 .9987 .9991 .9996

Using a table to find a common logarithm is relatively easy, but it does require a little
more effort than pushing a key on a calculator. Each number in the column headed n repre-
sents the first two significant digits of a number between 1 and 10, and each of the column
headings 0 through 9 represents the third significant digit. To find the logarithm of a number
such as 1.75, we look at the intersection of the row that contains 1.7 and the column headed 5.
Thus we obtain

log 1.75 5 0.2430

Similarly, we can find that

log 2.09 5 0.3201 and log 2.40 5 0.3802

Keep in mind that these values are also rounded to four decimal places.
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Now suppose that we want to use the table to find the logarithm of a positive number
greater than 10 or less than 1. To accomplish this, we represent the number in scientific 
notation and then apply the property log rs 5 log r 1 log s. For example, to find log 134, we
can proceed as follows.

log 134 5 log(1.34 ? 102)

5 log 1.34 1 log 102

5 0.1271 1 2 5 2.1271

The decimal part (0.1271) of the logarithm 2.1271 is called the mantissa, and the
integral part (2) is called the characteristic. Thus we can find the characteristic of a com-
mon logarithm by inspection (because it is the exponent of 10 when the number is written in
scientific notation), and we can get the mantissa from a table. Let’s consider two more
examples.

log 23.8 5 log (2.38 ? 101)

5 log 2.38 1 log 101

5 0.3766 1 1

From the Exponent of 10
table

5 1.3766

log 0.192 5 log(1.92 ? 1021)

5 log 1.92 1 log 1021

5 0.2833 1 (21)

From the Exponent of 10
table

5 0.2833 1 (21)

Note that in the last example, we expressed the logarithm of 0.192 as 0.2833 1 (21); we did
not add 0.2833 and 21. This is normal procedure when using a table of common logarithms,
because the mantissas given in the table are positive numbers. However, you should recog-
nize that adding 0.2833 and 21 produces 20.7167, which agrees with the result obtained ear-
lier with a calculator.

We can also use the table to find a number when given the common logarithm of the
number. That is, given log x, we can determine x from the table. Traditionally, x is referred to
as the antilogarithm (abbreviated antilog) of log x. Let’s consider some examples.

Determine antilog 1.3365.

By inspection, we know that the common
logarithm of 102 is 2 (the exponent), and
the common logarithm of 1.34 can be
found in the table.
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Solution

To find an antilogarithm, we simply reverse the process used before for finding a logarithm.
Thus antilog 1.3365 means that 1 is the characteristic and 0.3365 the mantissa. We look for
0.3365 in the body of the common logarithm table, and we find that it is located at the inter-
section of the 2.1 row and the 7 column. Therefore, the antilogarithm is

2.17 ? 101 5 21.7 n

Determine antilog [0.1523 1 (22)].

Solution

The mantissa, 0.1523, is located at the intersection of the 1.4 row and the 2 column. The char-
acteristic is 22, so the antilogarithm is

1.42 ? 1022 5 0.0142 n

Determine antilog 22.6038.

Solution

The mantissas given in a table are positive numbers. Thus we need to express 22.6038 in
terms of a positive mantissa, and this can be done by adding and subtracting 3 as follows.

(22.6038 1 3) 2 3 5 0.3962 1 (23)

Now we can look for 0.3962 and find it at the intersection of the 2.4 row and the 9 column.
Therefore, the antilogarithm is

2.49 ? 1023 5 0.00249 n

Linear Interpolation

Now suppose that we want to determine log 2.774 from the table. Because the table contains
only logarithms of numbers with, at most, three significant digits, we have a problem. How-
ever, by a process called linear interpolation, we can extend the capabilities of the table to
include numbers with four significant digits.

First, let’s consider a geometric basis of linear interpolation. Then we will use a sys-
tematic procedure for carrying out the necessary calculations. A portion of the graph of y 5
log x, with the curvature exaggerated to help illustrate the principle involved, is shown in Fig-
ure A.1. The line segment that joins points P and Q is used to approximate the curve from P to
Q. The actual value of log 2.744 is the ordinate of point C—that is, the length of AwCw. This
cannot be determined from the table. Instead we will use the ordinate of point B (the length of
AwBw) as an approximation for log 2.744.

Consider Figure A.2, where line segments DwBw and EwQw are drawn perpendicular to PwEw.
The right triangles formed, nPDB and nPEQ, are similar, and therefore the lengths of their
corresponding sides are proportional. Thus we can write

}
P
P

D
E
} 5 }

D
EQ

B
} (1)

E X A M P L E  2
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F I G U R E  A . 1 F I G U R E  A . 2

From Figure A.2 we see that

PD 5 2.744 2 2.74 5 0.004

PE 5 2.75 2 2.74 5 0.01

EQ 5 0.4393 2 0.4378 5 0.0015

Therefore, proportion (1) becomes

}
0
0
.0
.0
0
1
4

} 5 }
0.

D
00

B
15

}

Solving this proportion for DB yields

DB 5 0.0006

Because AB 5 AD 1 DB, we have

AB 5 0.4378 1 0.0006 5 0.4384

Thus we obtain log 2.744 5 0.4384.
Now let’s suggest an abbreviated format for carrying out the calculations necessary to

find log 2.744.

x Log x

4 




k 






10



 

0.0015

2.750 0.4393

Note that we have used 4 and 10 for the differences for values of x instead of 0.004 and 0.01,

because the ratio }
0
0
.0
.0
0
1
4

} equals }
1
4
0
}. Setting up a proportion and solving for k yields

0.4378
?

2.740
2.744

D

Log 2.744 = ?

E

x

y

Log 2.75 = 0.4393

Log 2.74 = 0.4378

C

P

A

B

Q

2.74 2.744 2.75x

y

Log 2.75 = 0.4393

Log 2.74 = 0.4378

C

P

A

B

Q

2.74 2.744 2.75
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}
1
4
0
} 5 }

0.0
k
015
}

10k 5 4(0.0015) 5 0.0060

k 5 0.0006

Thus log 2.744 5 0.4378 1 0.0006 5 0.4384.
Let’s do another example to make sure the process is clear.

Find log 617.6

Solution

log 617.6 5 log(6.176 ? 102)

5 log 6.176 1 log 102

Thus the characteristic is 2, and we can approximate the mantissa by using interpolation from
the table as follows.

x Log x

6







10 k









0.007

}
1
6
0
} 5 }

0.0
k
007
}

10k 5 6(0.0007) 5 0.0042

k 5 0.00042 < 0.0004

Therefore, log 6.176 5 0.7903 1 0.0004 5 0.7907, and we can complete the solution for log
617.6 as follows.

log 617.6 5 log(6.176 ? 102)

5 log 6.176 1 log 102

5 0.7907 1 2

5 2.7907 n

The process of linear interpolation can also be used to approximate an antilogarithm
when the mantissa is between two values in the table. The following example illustrates this
procedure.

Find antilog 1.6157.

Solution

From the table we see that the mantissa, 0.6157, is between 0.6149 and 0.6160. We can carry
out the interpolation as follows.

0.7903

?
0.7910

6.170

6.176
6.180

E X A M P L E  4
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h






 

0.0101 8








11 }
0
0
.
.
0
0
0
0
0
1
8
1

} 5 }
1
8
1
}

}
0.0

h
10
} 5 }

1
8
1
}

h 5 8(0.010) 5 0.080

h 5 }
1
1
1
}(0.080) 5 0.007 to the nearest thousandth

Thus antilog 0.6157 5 4.120 1 0.007 5 4.127. Therefore,

antilog 1.6157 5 antilog(0.6157 1 1)

5 4.127 ? 101

5 41.27 n

Computation with Common Logarithms

Let’s first restate the basic properties of logarithms in terms of common logarithms.
(Remember that we are writing log x instead of log10 x.)

If x and y are positive real numbers, then

1. log xy 5 log x 1 log y

2. log }
x
y

} 5 log x 2 log y

3. log xp 5 p log x p is any real number.

The following two properties of equality that pertain to logarithms will also be used.

4. If x 5 y (x and y are positive), then log x 5 log y.

5. If log x 5 log y, then x 5 y.

Find the product (49.1)(876).

Solution

Let N 5 (49.1)(876). By Property 4,

log N 5 log(49.1)(876)

By Property 1,

log N 5 log 49.1 1 log 876

From the table, we find that log 49.1 5 1.6911 and that log 876 5 2.9425. Thus

log N 5 1.6911 1 2.9425

5 4.6336

0.6149

0.6157
0.6160

4.120

?
4.130
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Therefore,

N 5 antilog 4.6336

By using linear interpolation, we can determine antilog 0.6336 to four significant digits. We
obtain

N 5 antilog (0.6336 1 4)

5 4.301 ? 104

5 43,010

Check Using a calculator, we get

N 5 (49.1)(876) 5 43011.6 n

Find the quotient }
6
9
4
4
.
2
8

}.

Solution

Let N 5 }
9
6
4
4
.
.
2
8

}. Therefore,

log N 5 log }
6
9
4
4
.
2
8

}

5 log 942 2 log 64.8 log }
x
y

} 5 log x 2 log y

5 2.9741 2 1.8116 from the table
5 1.1625

Therefore,

N 5 antilog 1.1625

5 antilog(0.01625 1 1)

5 1.454 ? 101

5 14.54

Check Using a calculator, we get

N 5 }
6
9
4
4
.
2
8

} 5 14.537037 n

Evaluate }
(571

7
.4
1
)
.
(
6
8
8
.236)

}.

Solution

Let N 5 }
(571

7
.4
1
)
.
(
6
8
8
.236)

}. Therefore,

E X A M P L E  7
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log N 5 log }
(571

7
.4
1
)
.
(
6
8
8
.236)

}

5 log 571.4 1 log 8.236 2 log 71.68

5 2.7569 1 0.9157 2 1.8554 5 1.8172

Therefore,

N 5 antilog 1.8172

5 antilog(0.8172 1 1)

5 6.564 ? 101 5 65.64

Check Using a calculator, we get

N 5 }
(571

7
.4
1
)
.
(
6
8
8
.236)

} 5 65.653605 n

Evaluate Ï3 3w7w7w0w.

Solution

Let N 5 Ï3 3w7w7w0w 5 (3770)1@3. Therefore,

log N 5 log(3770)1@3

5}
1
3

}log 3770 log xp 5 p log x

5 }
1
3

}(3.5763)

5 1.1921

Therefore,

N 5 antilog 1.1921

5 antilog (0.1921 1 1)

5 1.556 ? 101 5 15.56

Check Using a calculator, we get

N 5 Ï3 3w3w7w0w 5 15.563733 n

When using tables of logarithms, we sometimes must change the form of writing a loga-
rithm so that the decimal part (mantissa) is positive. The next example illustrates this idea.

Find the quotient }
1
5
.
.
7
0
3
8

}.

Solution

Let N 5 }
1
5
.
.
7
0
3
8

}. Therefore,
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log N 5 log }
1
5
.
.
7
0
3
8

}

5 log 1.73 2 log 5.08

5 0.2380 2 0.7059 5 20.4679

Now by adding 1 and subtracting 1, which changes the form but not the value, we obtain

log N 5 20.4679 1 1 2 1

5 0.5321 2 1

5 0.5321 1 (21)

Therefore,

N 5 antilog(0.5321 1 (21))

5 3.405 ? 101 5 0.3405

Check Using a calculator, we get

N 5 }
1
5
.
.
7
0
3
8

} 5 0.34055118 n

Sometimes it is also necessary to change the form of a logarithm so that a subsequent calcula-
tion will produce an integer for the characteristic part of the logarithm. Let’s consider an
example to illustrate this idea.

Evaluate Ï4 0w.0w7w6w7w.

Solution

Let N 5 Ï4 0w.0w7w6w7w 5 (0.0767)1@4. Therefore,

log N 5 log(0.0767)1@4 5 }
1
4

}log 0.0767

5 }
1
4

}(0.8848 1 (22))

5 }
1
4

}(22 1 0.8848)

At this stage we recognize that applying the distributive property will produce a nonintegral 

characteristic, 2 }
1

2
}. Therefore, let’s add 4 and subtract 4 inside the parentheses, which will 

change the form as follows.

log N 5 }
1
4

}(22 1 0.8848 1 4 2 4)

5 }
1
4

}(4 2 2 1 0.8848 2 4)

5 }
1
4

}(2.8848 2 4)

E X A M P L E  1 1
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For Problems 1–8, use the table of common logarithms and
linear interpolation to find each common logarithm.

1. log 4.327 2. log 27.43

3. log 128.9 4. log 3526

5. log 0.8761 6. log 0.07692

7. log 0.005186 8. log 0.0002558

For Problems 9–14, use the table of common logarithms and
linear interpolation to find each antilogarithm to four signifi-
cant digits.

9. antilog 0.4690 10. antilog 1.7971

11. antilog 2.1925 12. antilog 3.7225

13. antilog(0.5026 1 (21))

14. antilog(0.9397 1 (22))

For Problems 15–28, use common logarithms and linear
interpolation to help evaluate each. Express your answers 
to four significant digits. Check your answers by using a 
calculator.

15. (294)(71.2) 16. (192.6)(4.017)

17. }
2
4
3
.0
.4
7

} 18. }
7
8
1
.2
8
4
.5
8

}

19. (17.3)5 20. (48.02)3

21. }
(108

1
)
3
(
.
7
4
6.2)

} 22. }
(126

8
.3
.0
)(
1
2
9
4.32)

}

23. Ï5 0w.8w2w1w 24. Ï4 6w4w5w.3w

25. (79.3)3@5 26. (176.8)3@4

27. !}
(7§.0

0§5
.5§)(

2§1
1§8§.7§)

}§ 28. !3 }(4§1§.3
8§)
.
(
0§0
5§.2§7§1§)
}§
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Now, applying the distributive property, we obtain

log N 5 }
1
4

}(2.8848) 2 }
1
4

}(4)

5 0.7212 2 1 5 0.7212 1 (21)

Therefore,

N 5 antilog[(0.7212 1 (21)]

5 5.262 ? 1021 5 0.5262

Check Using a calculator, we get

N 5 Ï4 0w.0w7w6w7w 5 0.5262816 n
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NATURAL LOGARITHMS
The following table contains the natural logarithms for numbers between 0.1 and 10, inclu-
sive, at intervals of 0.1. Be sure that you agree with the following values taken directly from
the table.

ln 1.6 5 0.4700

ln 0.5 5 20.6931

ln 4.8 5 1.5686

ln 9.2 5 2.2192

Table of Natural Logarithms

n ln n n ln n n ln n n ln n

0.1 22.3026 2.6 0.9555 5.1 1.6292 7.6 2.0281
0.2 21.6094 2.7 0.9933 5.2 1.6487 7.7 2.0412
0.3 21.2040 2.8 1.0296 5.3 1.6677 7.8 2.0541
0.4 20.9163 2.9 1.0647 5.4 1.6864 7.9 2.0669
0.5 20.6931 3.0 1.0986 5.5 1.7047 8.0 2.0794

0.6 20.5108 3.1 1.1314 5.6 1.7228 8.1 2.0919
0.7 20.3567 3.2 1.1632 5.7 1.7405 8.2 2.1041
0.8 20.2231 3.3 1.1939 5.8 1.7579 8.3 2.1163
0.9 20.1054 3.4 1.2238 5.9 1.7750 8.4 2.1282
1.0 0.0000 3.5 1.2528 6.0 1.7918 8.5 2.1401

1.1 0.0953 3.6 1.2809 6.1 1.8083 8.6 2.1518
1.2 0.1823 3.7 1.3083 6.2 1.8245 8.7 2.1633
1.3 0.2624 3.8 1.3350 6.3 1.8405 8.8 2.1748
1.4 0.3365 3.9 1.3610 6.4 1.8563 8.9 2.1861
1.5 0.4055 4.0 1.3863 6.5 1.8718 9.0 2.1972



Table of Natural Logarithms (continued)

When using a table, we can approximate the natural logarithm of a positive number
less than 0.1 or greater than 10 by using the property ln rs 5 ln r 1 ln s as follows.

ln 190 5 ln(1.9 ? 102)

5 ln 1.9 1 ln 102

5 ln 1.9 1 2 ln 10

5 0.6419 1 2(2.3026)

From the From the
table table

5 5.2471

ln 0.0084 5 ln(8.4 ? 1023)

5 ln 8.4 1 ln 1023

5 ln 8.4 1 (23)(ln 10)

5 2.1282 2 3(2.3026)

From the From the
table table

5 2.1282 2 6.9078 5 24.7796

680 Appendix B Natural Logarithms

n ln n n ln n n ln n n ln n

1.6 0.4700 4.1 1.4110 6.6 1.8871 9.1 2.2083
1.7 0.5306 4.2 1.4351 6.7 1.9021 9.2 2.2192
1.8 0.5878 4.3 1.4586 6.8 1.9169 9.3 2.2300
1.9 0.6419 4.4 1.4816 6.9 1.9315 9.4 2.2407
2.0 0.6931 4.5 1.5041 7.0 1.9459 9.5 2.2513

2.1 0.7419 4.6 1.5261 7.1 1.9601 9.6 2.2618
2.2 0.7885 4.7 1.5476 7.2 1.9741 9.7 2.2721
2.3 0.8329 4.8 1.5686 7.3 1.9879 9.8 2.2824
2.4 0.8755 4.9 1.5892 7.4 2.0015 9.9 2.2925
2.5 0.9163 5.0 1.6094 7.5 2.0149 10.00 2.3026
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ANSWERS TO ODD-
NUMBERED PROBLEMS AND
ALL REVIEW PROBLEMS
CHAPTER 0

Problem Set 0.1 (page 12)
1. True 3. False 5. False 7. True
9. False 11. { 46} 13. { 0, 214, 46}

15.


 Ï5w, 2Ï2w,w 2p



 17. { 0, 214} 19. #

21. # 23. Ü 25. # 27. Ü 29. #
31. ÷ 33. { 1} 35. { 0, 1, 2, 3}
37. { . . . 22, 21, 0, 1} 39. [ 41. { 0, 1, 2}
43. (a) 18 (b) 26 (c) 39 (d) 25
(e) 35 (f) 37
45. Commutative property of multiplication
47. Identity property of multiplication
49. Multiplication property of negative one
51. Distributive property
53. Commutative property of multiplication
55. Distributive property
57. Associative property of multiplication 59. 222
61. 100 63. 221 65. 8 67. 19
69. 66 71. 275 73. 34 75. 1
77. 11 79. 4

Problem Set 0.2 (page 23)

1. }
1
8

} 3. 2}
10

1
00
} 5. 27 7. 4

9. 2}
2
8
7
} 11. 1 13. }

1
2
6
5
} 15. 4

17. }
1
1
00
} or 0.01 19. }

100
1
,000
} or 0.00001

21. 81 23. }
1
1
6
} 25. }

3
4

} 27. }
2
2
5
5
6

}

29. }
1
2
6
5
} 31. }

6
8
4
1
} 33. 64

35. }
100

1
,000
} or 0.00001 37. }

1
7
7
2
} 39. }

1
6

}

41. }
4
1
8
9
} 43. }

x
1

4} 45. }
a
1

2} 47. }
a
1

6} 49. }
y
x

4

3}

51. }
a

c
3b

3

6} 53. }
4
y
x

4

4} 55. }
x
y

4

6} 57. }
9
4
a
b

2

4}

59. }
x
1

3} 61. }
a
b

3

} 63. 220x4y5 65. 227x3y9

67. }
2
8
7
x
y

6

9} 69. 28x 6 71. }
x
6
3y
} 73. }

a 2

6
y 3}

75. }
4
y
x
5

3

} 77. 2}
a
5
2b
} 79. }

4x
1
2y 4} 81. }

x 1

x 2

1
}

83. }
y

x
2

2y
x 2

} 85. }
3b 3

a
1
2b 3

2a 2

} 87. }
y 2

x
2

y
x 2

}

89. 12x 3a11 91. 1 93. x 2a 95. 24y 6b12

97. xb 99. (6.2)(10)7 101. (4.12)(10)24

103. 180,000 105. 0.0000023 107. 0.04
109. 30,000 111. 0.03

Problem Set 0.3 (page 30)
1. 14x 2 1 x 2 6 3. 2x 2 2 4x 2 9
5. 6x 2 11 7. 6x 2 2 5x 2 7 9. 2x 2 34

11. 12x 3y 2 1 15x 2y 3 13. 30a 4b 3 2 24a 5b 3 1 18a 4b 4

15. x 2 1 20x 1 96 17. n 2 2 16n 1 48
19. sx 1 sy 2 tx 2 ty 21. 6x 2 1 7x 2 3
23. 12x 2 2 37x 1 21 25. x 2 1 8x 1 16
27. 4n 2 1 12n 1 9 29. x 3 1 x 2 2 14x 2 24
31. 6x 3 2 x 2 2 11x 1 6 33. x 3 1 2x 2 2 7x 1 4
35. t 3 2 1 37. 6x 3 1 x 2 2 5x 2 2
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39. x 4 1 8x 3 1 15x 2 1 2x 2 4 41. 25x 2 2 4
43. x 4 2 10x 3 1 21x 2 1 20x 1 4 45. 4x 2 2 9y 2

47. x 3 1 15x 2 1 75x 1 125
49. 8x 3 1 12x 2 1 6x 1 1
51. 64x 3 2 144x 2 1 108x 2 27
53. 125x 3 2 150x 2y 1 60xy 2 2 8y 3

55. a 7 1 7a 6b 1 21a 5b 2 1 35a 4b 3 1 35a 3b 4 1 21a 2b 5 1
7ab 6 1 b 7

57. x 5 2 5x 4y 1 10x 3y 2 2 10x 2y 3 1 5xy 4 2 y 5

59. x 4 1 8x 3y 1 24x 2y 2 1 32xy 3 1 16y 4

61. 64a 6 2 192a 5b 1 240a 4b 2 2 160a 3b 3 1 60a 2b 4 2
12ab 5 1 b 6

63. x 14 1 7x 12y 1 21x 10y 2 1 35x 8y 3 1 35x 6y 4 1 21x 4y 5 1
7x 2y 6 1 y 7

65. 32a 5 2 240a 4b 1 720a 3b 2 2 1080a 2b 3 1 810ab 4 2
243b 5 67. 3x 2 2 5x

69. 25a 4 1 4a 2 2 9a 71. 5ab 1 11a 2b 4

73. x 2a 2 y 2b 75. x 2b 2 3xb 2 28
77. 6x 2b 1 xb 2 2 79. x 4a 2 2x 2a 1 1
81. x 3a 2 6x 2a 112xa 2 8

Problem Set 0.4 (page 40)
1. 2xy(3 2 4y) 3. (z 1 3)(x 1 y)
5. (x 1 y )(3 1 a ) 7. (x 2 y )(a 2 b )
9. (3x 1 5)(3x 2 5) 11. (1 1 9n )(1 2 9n )

13. (x 1 4 1 y)(x 1 4 2 y)
15. (3s 1 2t 2 1)(3s 2 2t 1 1) 17. (x 2 7)(x 1 2)
19. (5 1 x)(3 2 x) 21. Not factorable
23. (3x 2 5)(x 2 2) 25. (5x 1 1)(2x 2 7)
27. (x 2 2)(x 2 1 2x 1 4)
29. (4x 1 3y )(16x 2 2 12xy 1 9y 2) 31. 4(x 2 1 4)
33. x(x 1 3)(x 2 3) 35. (3a 2 7)2

37. 2n(n 2 1 3n 1 5) 39. (5x 2 3)(2x 1 9)
41. (6a 2 1)2 43. (4x 2 y )(2x 1 y)
45. Not factorable 47. 2n(n 2 1 7n 2 10)
49. 4(x 1 2)(x 2 2 2x 1 4)
51. (x 1 3)(x 2 3)(x 2 1 5)
53. 2y(x 1 4)(x 2 4)(x 2 1 3)
55. (a 1 b 1 c 1 d )(a 1 b 2 c 2 d )
57. (x 1 4 1 y)(x 1 4 2 y)
59. (x 1 y 1 5)(x 2 y 2 5) 61. (10x 1 3)(6x 2 5)
63. 3x(7x 2 4)(4x 1 5) 65. (xa 1 4)(xa 2 4)
67. (xn 2 yn )(x 2n 1 xnyn 1 y 2n )
69. (xa 1 4)(xa 2 7) 71. (2xn 2 5)(xn 1 6)
73. (x 2n 1 y 2n )(xn 1 yn)(xn 2 yn )
75. (a) (x 1 32)(x 1 3) (c) (x 2 21)(x 2 24)

(e) (x 1 28)(x 1 32)

Problem Set 0.5 (page 50)

1. }
2
3
x
} 3. }

7
9
y
x

3

} 5. }
a
a

1

2

4
9

} 7. }
x
y
(
(
2
x
x
1

1

9
7
)
)

}

9. }
x 2 1

x 1

xy
2
1

y
y 2

} 11. 2}
x 1

2
1

} 13. }
2
x
y 3}

15. 2}
8x

1

3

5
y 3

} 17. }
2
1
7
4
a

} 19. 5y

21. }
5
a
(
(
a
a

1

2

3
2
)
)

} 23. }
(x 1

y
6
3(
y
x
)2

1

(2x
4y

1

)
3y)

}

25. }
4(x

3x
1

y
6)

} 27. }
x
4
2

2x 2

9
} 29. }

8x
1
1

2
5

}

31. }
2
7
4
x
} 33. }

35
8
b
0
1

a 2

1
b
2
2

a 3

} 35. }
12 1 9

1
n
2n

2
2

10n 2

}

37. }
9y 1 8

1
x
2x

2

y
12xy

} 39. }
(2x 1

13x
1)

1

(3x
14

1 4)
}

41. }
x
7
(
x
x
1

1

2
7
1
)

} 43. }
a 2

1
2

} 45. }
x 1

1
1

}

47.

49.

51. }
(
2

x 1

x 2

1
2

)(
x
x

1

2

1
1)

} 53.

55. 57. (a) }
x 2

5
1

}

(c) }
a 2

5
3

} (e) x 1 3 59. }
5
x
y
2

2

y
2

1

3
2
x
x
y
2

2

}

61. }
x
x

1

2

1
1

} 63. }
n
n

2

1

1
1

} 65. }
2

3
6
x
x
1

2

9
4

}

67. }
x 2

x
1

1

x
1
1 1

} 69. }
a 2

4
1

a
4
1

a
1
1 1

}

71. 2}
x 2

2
(
x
x

1

1

h
h )2} 73. 2}

(x 1 1)(x
1
1 h 1 1)
}

75. 2 77. }
x 2

y
y

1

2

x
xy 2}

79. }
x
y

2y
2

2

2

1

x
1

}

Problem Set 0.6 (page 61)

1. 9 3. 5 5. }
6
7

} 7. 2}
3
2

} 9. 2Ï6w

11. 4Ï7w 13. 26Ï1w1w 15. }
3Ï

2
5w

}

17. 2xÏ3w 19. 8x 2y 3Ïyw 21. }
9y 3Ï

7
5wxw

}

23. 4Ï3 2w 25. 2xÏ3 2wxw 27. 2xÏ4 3wxw

4
}}}
(2x 2 1)(2x 1 2h 2 1)

5x 2 1 16x 1 5
}}}
(x 1 1)(x 2 4)(x 1 7)

28
}}}
(n2 1 4)(n 1 2)(n 2 2)

3x 2 1 30x 2 78
}}}}
(x 1 1)(x 2 1)(x 1 8)(x 2 2)

9x 1 73
}}}
(x 1 3)(x 1 7)(x 1 9)
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29. }
2Ï

5
3w

} 31. }
Ï

4
1w4w
} 33. }

4Ï
5
1w5w
} 35. }

3Ï
7

2w
}

37. }
Ï
6x

1w
2

5w
} 39. }

2Ï
5a

1w
b
5waw

} 41. }
3Ï

2

3 2w
}

43. }
Ï3 1w

3
8w
x
xw2yw
} 45. 12Ï3w 47. 3Ï7w

49. }
11Ï

6
3w

} 51. 2}
89

3
Ï
0

2w
} 53. 48Ï6w

55. 10Ï6w 1 8Ï3w0w 57. 3xÏ6wyw 2 6Ï2wxyw
59. 13 1 7Ï3w 61. 30 1 11Ï6w 63. 16

65. x 1 2Ïxyw 1 y 67. a 2 b 69. 3Ï5w 2 6

71. Ï7w 1 Ï3w 73. }
22Ï1w0w

4
1

3
3Ï1w4w

}

75. }
x
x
1

2

Ï
1

xw
} 77. }

x 2

x 2

Ï
y
xyw

}

79. }
6x 1

9
7
x
Ï
2

x
4
yw
y
1 2y

} 81. }
Ï2wxw1w 2w

2

hw 1 Ï2wxw
}

83.

Problem Set 0.7 (page 66)
1. 7 3. 8 5. 24 7. 2 9. 64

11. 0.001 13. }
3
1
2
} 15. 2 17. 15x 7@12

19. y 5@12 21. 64x 3@4y 3@2 23. 4x 4@15

25. }
a1

7
@12} 27. }

16
8
x
1y

4@3

} 29. }
y

x

3/2

} 31. 8a 9@2x 2

33. Ï4 8w 35. Ï
12

xw7w 37. xyÏ4 xyw3w
39. aÏ12

aw5bw11w 41. 4Ï6 2w 43. Ï6 2w 45. Ï2w

47. xÏ
12

xw7w 49. }
5Ï3

x
xw2w

} 51. }
Ï6 xw

y

3yw4w
}

53. }
Ï
20

xw
y

15wyw8w
} 55. }

5Ï
12

4
xw
x

9yw8w
}

57. (a) Ï6 2w (c) Ïxw
63. (a) 13.391 (c) 2.702 (e) 4.304

65. }
(2

2
x
x
2

2

1
2
)3@2} 67. }

(x 2 1

x
2x)3@2} 69. }

(2
4
x)
x
4@3}

Problem Set 0.8 (page 74)
1. 13 1 8i 3. 3 1 4i 5. 211 1 i

7. 21 2 2i 9. 2}
2
3
0
} 1 }

1
5
2
}i 11. }

1
7
0
} 2 }

1
1
1
2
}i

13. 4 1 0i 15. 3i 17. iÏ1w9w 19. }
2
3

}i

21. 2iÏ2w 23. 3iÏ3w 25. 3iÏ6w 27. 18i
29. 12iÏ2w 31. 28 33. 2Ï6w

35. 22Ï5w 37. 22Ï1w5w 39. 22Ï1w4w
41. 3 43. Ï6w 45. 221 47. 8 1 12i
49. 0 1 26i 51. 53 2 26i 53. 10 2 24i
55. 214 2 8i 57. 27 1 24i 59. 23 1 4i

61. 113 1 0i 63. 13 1 0i 65. 2}
1
8
3
} 1 }

1
1
2
3
}i

67. 1 2 }
2
3

}i 69. 0 2 }
3
2

}i 71. }
2
4
2
1
} 2 }

4
7
1
}i

73. 21 1 2i 75. 2}
1
1
7
0
} 1 }

1
1
0
}i 77. }

1
5
3
} 2 }

1
1
3
}i

83. (a) 2 1 11i (c) 211 1 2i (e) 27 2 24i

Chapter 0 Review Problem Set (page 78)

1. }
1
1
25
} 2. 2}

8
1
1
} 3. }

1
9
6
} 4. }

1
9

} 5. 28

6. }
3
2

} 7. 2}
1
2

} 8. }
1
6

} 9. 4 10. 28

11. 12x 2y 12. 230x 7@6 13. }
a
4
1

8
@6}

14. }
27

x
y
2

3@5

} 15. }
4
x
y
5

5

} 16. }
x
8
7@
y
12} 17. }

16
y
x
6

6

}

18. 2}
a 3

3
b 1

} 19. 4x 2 1 20. 23x 1 8

21. 12a 2 19 22. 20x 2 2 11x 2 42
23. 212x 2 1 17x 2 6 24. 235x 2 1 22x 2 3
25. x 3 1 x 2 2 19x 2 28 26. 2x 3 2 x 2 1 10x 1 6
27. 25x 2 2 30x 1 9 28. 9x 2 1 42x 1 49
29. 8x 3 2 12x 2 1 6x 2 1
30. 27x 3 1 135x 2 1 225x 1 125
31. x 4 1 2x 3 2 6x 2 2 22x 2 15
32. 2x 4 1 11x 3 2 16x 2 2 8x 1 8
33. 24x 2y 3 1 8xy 2 34. 27y 1 9xy 2

35. (3x 1 2y)(3x 2 2y) 36. 3x(x 1 5)(x 2 8)
37. (2x 1 5)2 38. (x 2 y 1 3)(x 2 y 2 3)
39. (x 2 2)(x 2 y )
40. (4x 2 3y)(16x 2 1 12xy 1 9y 2)
41. (3x 2 4)(5x 1 2) 42. 3(x 3 1 12)
43. Not factorable 44. 3(x 1 2)(x 2 2 2x 1 4)
45. (x 1 3)(x 2 3)(x 1 2)(x 2 2)

46. (2x 2 1 2 y)(2x 2 1 1 y) 47. }
3
2
y
}

48. }
25

3
a 2

} 49. }
3x

x
1 5
} 50. }

2(
x
3

2

x
1

2

4
1)

}

51. }
29x

1
2

2
10

} 52. }
x 2

15
38

} 53. }
26n

5n
1

2

15
}

54. }
2

x(
3
x
x

1

2

7
1
)
6

} 55.
3x 2 2 8x 2 40

}}}
(x 1 4)(x 2 4)(x 2 10)

1
}}}
Ïxw1w hw 2w 3w 1 Ïxw2w 3w
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56. }
x(x 1

8x
2
2

)(x
4
2 2)

} 57. }
3
5
x
y
y
1

2

7
2
x
x
2

2

}

58. }
3
4
x
x

2

1

2
3

} 59. 2}
x

6
2(
x
x
1

1

3
h
h
)2} 60. }

(x 2 1

12
2)3@2}

61. 20Ï3w 62. 6xÏ6wxw 63. 2xyÏ3 4wxyw2w

64. Ï3w 65. }
Ï

2
1w
y
0wxw
} 66. }

152

2
3
3
Ï2w
}

67. }
24 2

15
4Ï6w
} 68. }

3x
x
1

2

6
4
Ï
y

xyw
} 69. Ï6 5w5w

70. Ï
12

x1w1w 71. x2Ï6 xw5w 72. xÏ
10

xyw9w 73. Ï6 5w

74. }
Ï
12

x
x1w1w
} 75. 211 2 6i 76. 21 2 2i

77. 1 2 2 i 78. 21 1 0i 79. 26 2 7i
80. 225 1 15i 81. 214 2 12i 82. 29 1 0i

83. 0 2 }
5
3

}i 84. 2}
2
6
5
} 1 }

1
2
7
5
}i 85. 0 1 i

86. 2}
1
2
2
9
} 2 }

3
2
0
9
}i 87. 10i 88. 2iÏ1w0w

89. 16iÏ5w 90. 212 91. 24Ï3w
92. 2Ï2w 93. 600,000,000 94. 800,000

Chapter 0 Test (page 80)

1. (a) 2}
4
1
9
} (b) }

2
8
7
} (c) }

2
8
7
} (d) }

3
4

}

2. 2}
x
1
4

5
y 2} 3. 212x 2 8 4. 230x 2 1 32x 2 8

5. 3x 3 2 4x 2 2 11x 2 14
6. 64x 3 2 48x 2 1 12x 2 1 7. 9x 3y 1 12x 4y 2

8. 3x(2x 1 1)(3x 2 4) 9. (x 1 2)(6x 2 5)
10. 8(x 1 2)(x 2 2 2x 1 4)

11. (x 2 2)(x 1 y ) 12. }
2
2
1
0
x 5

} 13. }
x 2 1

x 1

2x
3
1 4

}

14. }
n

1
2

2
8

} 15. }
6x(x

2
2

3x
3
1

)(x
6
1 2)

} 16. }
8 2

2n
1
2

3n
}

17. }
2
3
y
y

2

2

2

1

5
4
x
x
y

} 18. 12x 2Ï7wxw 19. }
5Ï

6
2w

}

20. }
4Ï3w 1

5
3Ï2w
} 21. 2xyÏ3 6wxyw2w 22. 24 2 3i

23. 34 2 18i 24. 85 1 0i 25. }
1
1
0
} 1 }

1
7
0
}i

CHAPTER 1

Problem Set 1.1 (page 90)

1. { 22} 3.



2}

1
2

}




5. { 7} 7.



2}

3
2

}




9.



2}

1
3
0
}




11. { 210} 13. { 217}

15.



2}

2
1
1
6
}




17.




}
3
5

}




19. { 214}

21. { 9} 23.




}
1
7
0
}




25. { 210}

27. { 1} 29. { 212} 31. { 27}

33.




}
15
5
9

}




35. { 3} 37. { 0}

39.



2}

2
3

}




41.




}
1
2

}




43. 14 and 9

45. 14, 16, and 18 47. 18 and 9
49. 10, 11, 12, and 13
51. 30°, 40°, and 110°
53. $24,000 for Renee, $20,000 for Kelly, $16,000 for Nina
55. 48 pennies, 21 nickels, and 11 dimes
57. 17 females and 26 males 59. 13 years old
61. Brad is 29 and Pedro is 23.

Problem Set 1.2 (page 101)

1. { 1} 3. { 9} 5.




}
1
3
0
}




7. { 4}

9. { 14} 11. { 9} 13.




}
1
2

}




15.




}
1
4

}




17.




}
2
3

}




19. { 28} 21. [ 23. { 12}

25. { 300} 27. { 275} 29.



2}

6
3
6
7
}




31. { 6}

33. w 5 }
P 2

2
21

} 35. h 5 }
A 2

2p

2
r
pr 2

}

37. F 5 }
9C 1

5
160
} or F 5 }

9
5

}C 1 32

39. T 5 }
NC 2

C
NV

} 41. T 5 }
I 1

kl
klt

}

43. Rn 5 }
R1

R
1
1R2

R2
} 45. 17 and 81 47. $1050

49. $900 and $1350 51. 37 teachers and 740 students
53. $65 55. $950 per month 57. $32.20
59. $75 61. $30 63. 14 nickels and 29 dimes
65. 15 dimes, 45 quarters, and 10 half-dollars
67. $2000 at 9% and $3500 at 10% 69. $3500
71. 6 centimeters by 10 centimeters

Problem Set 1.3 (page 112)

1. { 24, 7} 3.



23, }

4
3

}




5.



0, }

3
2

}




7.




6 }
2Ï

3
3w

}




9.



}
21 6

2
2Ï5w
}





11.



2}

5
3

}, }
2
5

}



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13. { 2 6 2i} 15.



2}

7
2

}, }
1
5

}




17. { 4, 6}

19.



25 6 3Ï3w





21.



}
3 6

2
Ï5w
}





23.



22 6 iÏ2w





25.



}
26 6

2
Ï4w6w
}





27. { 216, 18} 29.



}
25 6

6
Ï3w7w
}





31. { 26. 9}

33.



25, 2}

1
3

}




35.



1 6 Ï5w





37.



}
3 6

2
Ï7w
}





39.



}
3 6

2
iÏ1w9w
}





41.



4 6 2Ï3w





43.




}
1
2

}




45.



2}

3
2

}, }
1
4

}




47. { 214, 12} 49.



}
3 6

4
iÏ4w7w
}





51.



21, }

5
3

}




53.



}
21 6

2
Ï2w

}




55.



8 6 5Ï2w





57.



210 6 5Ï5w





59.



}
1 6

5
Ï6w
}





61. (a) One real solution (c) One real solution
(e) Two complex but nonreal solutions
(g) Two unequal real solutions

63. 11 and 12 65. 12 feet
67. 10 meters and 24 meters
69. 8 inches by 14 inches
71. 7 meters wide and 18 meters long 73. 1 meter
75. 7 inches by 3 inches 77. 8 units

83. (a) n 5 }
Ï

p

Awpw
} (c) t 5 }

Ï
g
2wgwsw
}

(e) y 5 }
bÏxw

a

2w2w aw2w
}

85. k 5 64
87. (a) { 21.359, 7.359}

(c) { 210.280, 4.280}
(e) { 20.259, 27.742}
(g) { 0.191, 1.309}
(i) { 20.422, 5.922}

Problem Set 1.4 (page 125)

1. { 212} 3.




}
3
1
7
5
}




5. { 22} 7. { 28, 1}

9.




}
2
6
9
}




11.



n u n Þ }

3
2

} and n Þ 3




13.



24, }

4
3

}




15.



2}

1
4

}




17. [ 19. { 21}

21. 9 rows and 14 trees per row 23. 4}
1
2

} hours

25. 50 miles

27. 50 mph for the freight and 70 mph for the express
29. 3 liters
31. 3.5 liters of the 50% solution and 7 liters of the 80%

solution

33. 5 quarts 35. 2}
2
5

} hours 37. 60 minutes

39. 9 minutes for Pat and 18 minutes for Mike
41. 8 hours 43. 7 golf balls
45. 60 hours

Problem Set 1.5 (page 133)

1. { 22, 21, 2} 3.




6i, }
3
2

}




5.



2}

5
4

}, 0, 6}
Ï
2
2w

}




7. { 0, 16} 9. { 1}

11. { 6} 13. { 3} 15. [ 17. { 215}

19. { 9} 21.




}
2
3

}, 1




23. { 5} 25. { 7}

27. { 22, 21} 29. { 0} 31. { 6} 33. { 0, 4}

35. { 61, 62} 37.




6}
Ï
2
2w

}, 62




39.



6 iÏ5w, 6Ï7w





41.



6Ï2w 1w Ïw3ww, 6Ï2w 2w Ïw3ww 




43. { 2125, 8}

45.



2}

2
8
7
}, }

2
8
7
}




47.



2}

1
6

}, }
1
2

}




49. { 25, 36}

51. { 4}
53. 12 inches 55. 320 feet
61. (a) { 6 1.62, 6.62}

(c) { 61.78, 6.56}
(e) { 68.00, 66.00}

Problem Set 1.6 (page 144)

1. (2∞, 22]

3. (1, 4)

5. (0, 2)

7. [22, 21]

9. (2∞, 1) < (3, ∞)

11. (22, ∞)

13. [25, 4] 15. 121, }
3
2

}2 17. (211, 13)

19. (21, 5)

(
−2

(
3

)
1

Answers to Odd-Numbered Problems and All Review Problems 685

    Answers To Odd-Numbered Problems and all Review Problems 689



21. (2∞, 22) 23. 32}
5
3

}, ∞2 25. [7, ∞)

27. 12∞, }
1
5
7
}4 29. 12∞, }

7
3

}2 31. [220, ∞)

33. (300, ∞) 35. 1}
1
5

}, }
7
5

}2 37. [1, 5]

39. (24, 1) 41. (2∞, 23) < (5, ∞)

43. [21, 2] 45. (2∞, 24) < 1}
1
3

}, ∞2
47. 3}

2
5

}, }
4
3

}4 49. 12∞, }
1
2

}2 < 1}
1
2

}, ∞2
51. (22, 21) 53. 12∞, }

2
3
2
}4

55. (24, 1) < (2, ∞) 57. (2∞, 22] < 3}
1
2

}, 54
59. [24, 0] < [6, ∞) 61. (23, 2) < (2, ∞)
63. Greater than 12% 65. 98 or better
67. Greater than or equal to 13.8 inches
69. Between 24° and 23°, inclusive
71. More than 250 miles

Problem Set 1.7 (page 153)

1. (2∞, 21) < (5, ∞) 3. 122, }
1
2

}2 5. 1}
1
3

}, 34
7. [23, 22) 9. (2∞, 25) < (22, ∞)

11. (2∞, 25) 13. (23, 2) 15. {24, 8}

17.



2}

1
2
3
0
}, }

2
3
0
}




19. { 23, 4} 21.



23, }

1
3

}




23. [ 25.



2}

1
3
0
}, 2





27.




}
1
4

}, }
7
4

}




29.



2}

2
5

}, 4




31. { 22, 0} 33. { 21}

35. (26, 6) 37. (2∞, 28) < (8, ∞)
39. (2∞, ∞) 41. (2∞, 22) < (8, ∞)

43. [23, 4] 45. 12∞, 2}
1
3
1
}2 < 1}

7
3

}, ∞2 47. [

49. 12}
1
2

}, }
7
2

}2 51. (2∞, ∞) 53. [27, 3]

55. (26, 0) 57. (2∞, 26) < (22, ∞)
59. (2∞, 0] < [4, ∞) 61. (26, 4)

63. 12∞, }
5
4

}2 < 1}
7
2

}, ∞2 65. (2∞, 23) < (23, 21)

67. 32}
2
5

}, 02 < 10, }
2
3

}4 69. 12∞, }
2
5

}4 < 3}
2
3

}, ∞2
77. (a) (216, 6) (c) (2∞, 23) < (4, ∞)

(e) (23, 7)

Chapter 1 Review Problem Set (page 156)

1. { 214} 2. { 219} 3.




}
1
7
0
}




4. { 200}

5.



21, }

5
3

}




6.




}
5
4

}, 6




7. (3 6 i}

8. { 222, 18} 9.



2}

2
5

}, 0, }
1
3

}




10. { 25}

11.




}
1
2

}, 6




12. 563i, 6Ï5w6

13.



6}

Ï
5
5w

}, 6Ï2w




14.



21, 2, }

25 6

2
Ï3w3w
}





15. { 2} 16.



21, }

1
2

}




17. { 0}

18.



2}

6
5

}, }
8
5

}




19.




}
2
5

}, 12




20.




}
1
4

}, }
7
4

}




21. 


2Ï2w, 21, Ï2w 




22.



264, }

2
8
7
}




23. (28, ∞) 24. 32}
6
4
5
}, ∞2 25. 12∞, 2}

9
2

}2
26. (2∞, 400] 27. [22, 1] 28. 12}

2
3

}, 22
29. (23, 6) 30. (2∞, 22] < [7, ∞)

31. (2∞, 22) < (1, 4) 32. 324, }
3
2

}2
33. 12∞, }

1
5

}2 < (2, ∞) 34. [27, 23)

35. (2∞, 4) 36. 12∞, 2}
1
2

}2 < (2, ∞)

37. 32}
1
3
9
}, 34 38. 12}

9
2

}, }
3
2

}2
39. (21, 0) < 10, }

1
3

}2 40. 12}
3
2

}, ∞2
41. 21, 23, and 25 42. 9 and 65
43. 7 centimeters by 12 centimeters
44. 13 nickels, 39 dimes, and 36 quarters 45. $20
46. 20 gallons
47. Rosie is 14 years old and her mother is 33 years old.
48. $350 at 9% and 450 at 12% 49. 95 or better

50. 10}
1
1
0
1
} minutes 51. 26}

2
3

} minutes

52. 40 shares at $15/share
53. 54 mph for Mike and 52 mph for Larry
54. Cindy 4 hours and Bill 6 hours
55. 15 centimeters and 20 centimeters
56. 5 inches by 7 inches
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Chapter 1 Test (page 158)

1. { 2} 2.



2}

3
2

}, }
1
5

}




3.



2}

7
5

}, }
3
5

}




4. { 21}

5.



}
1 1

4
iÏ3w1w
}





6. { 24, 21} 7. { 600}

8.



21, }

1
3
1
}




9.



}
1 6

3
Ï7w
}





10. { 29, 0, 2}

11.



2}

6
7

}, 3




12. { 8} 13. [

14.



2}

1
4

}, }
2
3

}




15. (2∞, 235] 16. (3, ∞)

17. 121, }
7
3

}2 18. 12∞, 2}
1
4
1
}4 < 3}

1
4

}, ∞2
19. 32}

1
2

}, 54 20. (2∞, 22) < 1}
1
3

}, ∞2
21. [210, 26) 22. }

2
3

} of a cup

23. 15 miles per hour 24. 150 shares
25. 9 centimeters by 14 centimeters

CHAPTER 2

Problem Set 2.1 (page 171)
1. 10 3. 25 5. 6 7. 15 9. 7

11. }
1
3

} 13. 27 15. 10; (6, 4)

17. Ï1w3w; 12, 2}
5
2

}2 19. 3Ï2w; 1}
1
2
5
}, 2}

1
2
1
}2

21. }
Ï

6
7w4w
} ; 1}

1
1
2
}, }

1
1
1
2
}2 23. (3, 5) 25. (2, 5)

27. 1}
1
8
7
}, 272 29. 14, }

2
4
5
}2 35. 15 1 9Ï5w

39. 3 or 27 41. (3, 8)

43. Both midpoints are at 1}
7
2

}, }
5
2

}2.

Problem Set 2.2 (page 181)
1. 3.

5. 7.

9. 11.

13. 15.

The graph is the y-axis.

17. 19.

21. 23.
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25. 27.

29. 33.

35. 37.

39. 41.

43.

Problem Set 2.3 (page 195)

1. }
3
4

} 3. 25 5. 0 7. 2}
b
a

} 9. x 5 7

11. x 5 22 13.–17. Answers will vary.
19. x 2 3y 5 210 21. 2x 2 y 5 0

23. 2x 1 3y 5 21 25. y 5 22
27. 5x 2 7y 5 211 29. 5x 1 6y 5 37

31. x 1 5y 5 14 33. y 5 23 35. y 5 }
1
2

}x 1 3

37. y 5 2}
3
7

}x 1 2 39. y 5 4x 1 }
3
2

}

41. y 5 2}
5
6

}x 1 }
1
4

} 43. 5x 2 4y 5 20

45. x 5 24 47. 5x 1 2y 5 14
49. 4x 1 y 5 22 51. Parallel
53. Perpendicular
55. Intersecting lines that are not perpendicular

57. Perpendicular 59. m 5 }
2
3

}, b 5 2}
4
3

}

61. m 5 }
1
2

}, b 5 2}
7
2

} 63. m 5 23, b 5 0

65. m 5 }
7
5

}, b 5 2}
1
5
2
}

67. (a) (c)

(e)

73. x 2 y 5 27, x 1 5y 5 219, 2x 1 y 5 16
75. 9x 1 8y 5 22, 6x 2 7y 5 11, 15x 1 y 5 9
77. 250 feet 79. 19 centimeters
85. (a) 3x 2 y 5 9 (c) 2x 1 7y 5 0
89. (a) 2x 2 y 5 4 (c) 5x 1 2y 5 2

Problem Set 2.4 (page 207)
1. (4, 23); (24, 3); (24, 23)
3. (26, 1); (6, 21); (6, 1)
5. (0, 24); (0, 4); (0, 24) 7. y-axis
9. x axis 11. x axis, y axis, and origin

13. None 15. Origin 17. None 19. y axis

x

y

(−5, 5)

(0, 1)
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21. 23.

25. 27.

29. 31.

33. 35.

37. 39.

41. 43.

45. 47.

Problem Set 2.5 (page 218)
1. x 2 1 y 2 2 4x 2 6y 2 12 5 0
3. x 2 1 y 2 1 2x 1 10y 1 17 5 0
5. x 2 1 y 2 2 6x 5 0 7. x 2 1 y 2 2 49 5 0
9. (3, 5), r 5 2 11. (25, 27), r 5 1

13. (5, 0), r 5 5 15. (0, 0), r 5 2Ï2w

17. 1}
1
2

}, 12, r 5 2

19. x 2 1 y 2 2 6x 2 6y 2 67 5 0
21. x 2 1 y 2 2 14x 1 14y 1 49 5 0
23. x 2 1 y 2 1 6x 2 10y 1 9 5 0 and x 2 1 y 2 1 6x 1

10y 1 9 5 0

25. 27.

29. 31.

x

y

(3, −1)

(−3, 1)

(−1, 3)

(1, −3)

x

y

(2, 0)

(6, 2)

x

y

(2, 1)

(1, 4)

(−2, 1)

(−1, 4)

x

y

(4, −2)

(0, 0) (1, −1)

x

y

(2, −2√
—
2)

(0, 2)
(2, 2√

—
2)

(0, −2)

(−2, −2√
—
2)

(−2, 2√
—
2)

x

y

(2, −2√
—
2)

(0, 0)

(2, 2√
—
2)

x

y

(1, −1)(0, 0)

(−1, 1)

x

y

(−4, −1)

(4, 1)

(1, 4)

(−1, −4)

x

y

(−1, 3) (1, 3)
(0, 2)

x

y

(−2, 4) (2, 4)
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33. 35.

37. 39.

41. 43.

47. (a) (1, 4), r 5 3 (c) (26, 24), r 5 8
(e) (0, 6), r 5 9

Chapter 2 Review Problem Set (page 222)

1. 5 2. 25 3. 19, }
1
3

}2 4. (22, 6)

7. x axis 8. None 9. x axis, y axis, and origin
10. y axis 11. Origin 12. y axis

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 25 24. }
5
7

} 25. 3x 1 4y 5 29

26. 2x 2 y 5 24 27. 4x 1 3y 5 24
28. x 1 2y 5 3
29. x 2 1 y 2 2 10x 1 12y 1 60 5 0
30. x 2 1 y 2 2 4x 2 6y 2 4 5 0
31. x 2 1 y 2 1 10x 2 24y 5 0
32. x 2 1 y 2 1 8x 1 8y 1 16 5 0

y

x

x

y

(2, 1)
(1, 2)
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Chapter 2 Test (page 223)

1. 8 2. (24, 6) 3. (6, 24) 4. 2}
4
9

}

5. }
2
7

} 6. 3x 1 4y 5 212

7. 11x 2 3y 5 23 8. x 2 5y 5 221
9. 7x 2 4y 5 1 10. x 1 0y 5 22

11. x 2 1 6x 1 y 2 1 12y 1 29 5 0
12. x 2 2 4x 1 y 2 2 8y 2 20 5 0
13. x 2 2 8x 1 y 2 1 6y 5 0
14. Center at (28, 5) and a radius of length 3 units
15. 5, Ï3w7w, and 2Ï5w units 16. 1 and 5

17. 6Ï3w 18. 6 units 19. y 5 6}
3
4

}x

20. (a) x axis (b) origin (c) y axis
(d) x axis, y axis, and origin

21.

22.

23.

24.

25.

Chapters 0, 1, and 2 Cumulative Review 
Problem Set (page 225)

1. }
2
1
7
} 2. 2}

1
1
6
} 3. }

9
4

} 4. 2}
2
3

} 5. 9

6. }
1
9
6
} 7. }

x
2
2

0
y 3} 8. 2}

56
b
a

} 9. 4x 4y 2

10. }
5
x
y
4

2

} 11. }
17

x1

y

@

7

3

@4} 12. }
4
b
a
14

8

} 13. 230Ï2w

14. 6xyÏ3wxw 15. 2xy 2Ï3 7wxyw 16. }
3Ï
10

6w
}

17. }
Ï

7
2w
y
1wxyw
} 18. 2}

51Ï2w
7

1 32
}

19. }
6Ï1w4w 1

2
3Ï4w2w
} 20. }

4x 2

x 2

12
9
Ï
y

xyw
}

21. }
3x

8

3y 2

} 22. 2}
3
8
b
a

3

3} 23. }
5x

x
1 1
}

24. }
21x

24
1 5
} 25. }

10
6
2

n 2

3n
}

26. 27.



2}

2
4
3
}




28. { 3}

29.




}
3
7

}




30.




6}
2
3

}




31. { 24, 0, 2}

32.




}
3
7

}, 4




33. { 64i, 61} 34.



2}

1
5

}, 1




5x 2 1 18x 1 27
}}}
(x 1 9)(x 2 3)(x 1 3)

(−2, −4)

(2, 0)(−6, 0)

(−2, 4)

x

y

−2

2

6

−6

−2−4 4 6

x

y

(0, −3)

(0, 3)(−√
—
15, 0) (√—

15, 0)

−2

2

4

6

−4

−6

2−2−6 4 6

x

y

(−4, 0)

(0, −2)

(0, 2)4

6

−4

−6

2−4−6 4 6

x

y

2

4

6

−4

−6

2−2−4−6 4 6

x

y

(0, −6)

(2, 0)

−2

2

4

6

−4

−6

2−2−4−6 4 6
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35.



}
3 6

4
Ï1w7w
}





36.



}
213 6

2
Ï2w0w5w
}





37. { 1}

38.



}
1 6

2
2i

}




39. 12∞, }
1
8

}2 40. 32}
5
9

}, ∞2
41. (2∞, 250] 42. (2∞, 28) < (3, ∞)

43. 12}
3
2

}, }
1
3

}2 44. 123, }
1
2

}2 < (4, ∞)

45. 121, }
2
3

}4 46. (1, 7]

47. 12∞, 2}
4
3

}2 < (2, ∞) 48. 12}
9
5

}, 32

49. 50.

51. 52.

53. 54.

55. (27, 4); r 5 3 56. 3x 2 4y 5 226
57. (22, 6) 58. 4x 1 3y 5 25
59. $28.60; $31.43
60. $3000 at 5% and $4500 at 6%
61. Length of 8 inches and width of 4.5 inches

62. The side is 20 centimeters long and the altitude is 8 cen-
timeters long. 63. 16 milliliters

64. 30 miles 65. 3 hours

CHAPTER 3

Problem Set 3.1 (page 235)
1. f (3) 5 21; f (5) 5 25; f (22) 5 9
3. g(3) 5 220; g (21) 5 28; g (24) 5 241

5. h(3) 5 }
5
4

}; h(4) 5 }
2
1
3
2
}; h12}

1
2

}2 5 2}
1
1
3
2
}

7. f (5) 5 3; f 1}
1
2

}2 5 0; f (23) 5 3Ï5w

9. f (4) 5 4; f (10) 5 10; f (23) 5 9; f (25) 5 25
11. f (3) 5 6; f (5) 5 10; f (23) 5 6; f (25) 5 10

13. f (2) 5 1; f (0) 5 0; f 12}
1
2

}2 5 0; f (24) 5 21

15. 27 17. 22a 2 h 1 4 19. 6a 1 3h 2 1
21. 3a 2 1 3ah 1 h2 2 2a 2 h 1 2

23. 2 25. 2}
a 2

2
(
a
a

1

1

h
h )2}

27. Yes 29. No 31. Yes 33. Yes

35. D 5



x ux $ }

4
3

}




R 5 { f (x) u f (x) $ 0}
37. D 5 { x ux is any real number}

R 5 { f (x) u f (x) $ 22}
39. D 5 { x ux is any real number}

R 5 { f (x) u f (x) is any nonnegative real number}
41. D 5 { x ux is any nonnegative real number}

R 5 { f (x) u f (x) is any nonpositive real number}
43. D 5 { x ux Þ 22}

45. D 5



x ux Þ }

1
2

} and x Þ 24




47. D 5 { x ux Þ 2 and x Þ 22}
49. D 5 { x ux Þ 23 and x Þ 4}

51. D 5



x ux Þ 2}

5
2

} and x Þ }
1
3

}




53. (2∞, 24] < [4, ∞) 55. (2∞, ∞)

57. (2∞, 25] < [8, ∞) 59. 12∞, 2}
5
2

}4 < 3}
7
4

}, ∞2
61. 12.57; 28.27; 452.39; 907.92 63. 48; 64; 48; 0
65. $55; $60; $67.50; $75
67. 125.66; 301.59; 804.25 69. Odd
71. Neither 73. Neither 75. Even
77. Odd

2
}}}
(a 2 1)(a 1 h 2 1)
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Problem Set 3.2 (page 249)
1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. 35.

37. 39.
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41. 43.

45.

Problem Set 3.3 (page 261)

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 3 and 5; (4, 21) 23. 6 and 8; (7, 22)
25. 4 and 6; (5, 1)
27. 7 1 Ï5w and 7 2 Ï5w; (7, 5)

29. No x intercepts; 1}
9
2

}, 2}
3
4

}2
31. }

1 1

2
Ï5w
} and }

1 2

2
Ï5w
}; 1}

1
2

}, 52
33. 70
35. 144
37. 25 and 25
39. 60 meters by 60 meters
41. 1100 subscribers at $13.75 per month
47. 75 feet

Problem Set 3.4 (page 274)
1. 3.
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5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29.

31. (a) (c)

Problem Set 3.5 (page 281)

1. 8x 2 2; 22x 2 6; 15x 2 2 14x 2 8; }
3
5
x
x

2

1

4
2

}

3. x 2 2 7x 1 3; x 2 2 5x 1 5; 2x 3 1 5x 2 1 2x 24; 

}
x 2

2

2

x
6
2

x 1

1
4

}

5. 2x 2 1 3x 2 6; 25x 1 4; x 4 1 3x 3 2 10x 2 1 x 1 5;

}
x
x
2

2

1

2

4
x
x
2

2

1
5

}

7. Ïxw2w 1w 1 Ïxw; Ïxw2w 1w 2 Ïxw; Ïxw2w2w xw;

}
Ïx(wx

x
w2w 1w)w
}

9. ( f ° g )(x ) 5 6x 2 2, D 5 { all reals}
(g ° f )(x ) 5 6x 2 1, D 5 { all reals}

11. ( f ° g )(x ) 5 10x 1 2, D 5 { all reals}
(g ° f )(x ) 5 10x 2 5, D 5 { all reals}

13. ( f ° g )(x ) 5 3x 2 1 7, D 5 { all reals}
(g ° f )(x ) 5 9x 2 1 24x 1 17, D 5 { all reals}
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15. ( f ° g )(x ) 5 3x 2 1 9x 2 16, D 5 { all reals}
(g ° f )(x ) 5 9x 2 2 15x, D 5 { all reals}

17. ( f ° g )(x ) 5 }
2x

1
1 7
}, D 5




x u x Þ 2}

7
2

}




(g ° f )(x ) 5 }
7x

x
1 2
}, D 5 { x u x Þ 0}

19. ( f ° g )(x ) 5 Ï3wxw2w 3w, D 5 { x u x $ 1}
(g ° f )(x ) 5 3Ïxw2w 2w 2 1, D 5 { x u x $ 2}

21. ( f ° g )(x ) 5 }
2 2

x
x

}, D 5 { x u x Þ 0 and x Þ 2}

(g ° f )(x ) 5 2x 2 2, D 5 { x u x Þ 1}
23. ( f ° g )(x ) 5 2Ïxw2w 1w 1 1, D 5 { x u x $ 1}

(g ° f )(x ) 5 Ï2wxw, D 5 { x u x $ 0}
25. ( f ° g )(x ) 5 x, D 5 { x u x Þ 0}

(g ° f )(x ) 5 x, D 5 { x u x Þ 1}
27. 4; 50 29. 9; 0 31. Ï1w1w; 5

Problem Set 3.6 (page 288)

1. y 5 kx 2 3. A 5 klw 5. V 5 }
p
k

}

7. V 2 khr 2 9. 24 11. }
2
7
2
} 13. }

1
2

}

15. 7 17. 6 19. 8 21. 96
23. 5 hours 25. 2 seconds 27. 24 days
29. 28 31. $2400
37. 2.8 seconds
39. 1.4

Chapter 3 Review Problem Set (page 293)
1. 7; 4; 32 2. (a) 25 (b) 4a 1 2h 2 1

(c) 26a 2 3h 1 2
3. The domain is the set of all real numbers, and the range

is the set of all real numbers greater than or equal to 5.

4. The domain is the set of all real numbers except }
1
2

}

and 24.
5. (2∞, 2] < [5, ∞)
6. 7.

8. 9.

10. 11.

12. 13.

14. 15.

16. x 2 2 2x; 2x 2 1 6x 1 6; 2x 3 2 5x 2 2 18x 2 9; 

}
x 2

2
2

x
4
1

x
3
2 3

}

17. ( f ° g )(x ) 5 26x 1 12; D 5 { all reals}
(g ° f )(x ) 5 26x 1 25; D 5 { all reals}

18. ( f ° g )(x ) 5 25x 2 2 40x 1 11; D 5 { all reals}
(g ° f )(x ) 5 5x 2 2 29; D 5 { all reals}

x

y

(1, −2)

1
2(2, −   )
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19. ( f ° g )(x ) 5 Ïxw2w 3w; D 5 { x u x $ 3}
(g ° f )(x ) 5 Ïxw2w 5w 1 2; D 5 { x u x $ 5}

20. ( f ° g )(x ) 5 }
2

x
3x

1

2

2
5

} ; D 5



x u x Þ 22 and x Þ 2}

5
3

}




(g ° f )(x ) 5 }
2
x
x
2

2

3
5

}; D 5



x u x Þ 3 and x Þ }

5
2

}




21. (a) Neither (b) Odd
(c) Even (d) Neither

22. f (5) 5 23; f (0) 5 22; f (23) 5 13
23. f (g (6)) 5 22; g( f (22)) 5 0
24. ( f ° g )(1) 5 1; (g ° f )(23) 5 5
25. 2 and 8
26. 112 students
27. 9
28. 441
29. 128 pounds
30. 15 hours

Chapter 3 Test (page 295)

1. }
1
6
1
} 2. 11 3. 6a 1 3h 1 2

4.



x u x Þ 24 and x Þ }

1
2

}




5.



x u x # }

5
3

}




6. ( f 1 g)(x) 5 2x2 1 2x 2 6; ( f 2 g)(x) 5 22x2 1
4x 1 4; ( f •g)(x) 5 6x3 2 5x2 2 14x 1 5

7. ( f ° g )(x ) 5 221x 2 2 8. (g ° f )(x) 5 8x 2 1
38x 1 48

9. ( f ° g )(x ) 5 }
2 2

3x
2x

}

10. 12; 7 11. a. Even b. Odd c. Neither
d. Even

12. { x u x Þ 0 and x Þ 1} 13. 18; 10; 0

14. ( f •g )(x ) 5 x 3 1 4x 2 2 11x 1 6; 1}
g
f

}2(x) 5 x 1 6

15. 6 and 54 16. 15 17. 24 18. $96
19. The graph of g(x ) 5 (x 2 6)3 2 4 is the graph of 

f (x) 5 x 3 translated six units to the right and four units
downward.

20. The graph of g(x ) 5 2u x u 1 8 is the graph of f (x) 5
u x u reflected across the x axis and then translated eight
units upward.

21. The graph of g(x ) 5 2Ïxw1w 5w 1 7 is the graph of
f (x) 5 Ïxw reflected across the x axis and then trans-
lated five units to the left and seven units upward.

22.

23.

24.

25.

CHAPTER 4

Problem Set 4.1 (page 305)

1. { 3} 3. { 3} 5. { 4} 7. { 2}

9. { 22} 11.




}
5
3

}




13.




}
3
2

}




15.




}
4
9

}




17.




}
4
3

}




19.




}
2
3

}




(−1, 0) (0, −1) x

f(x)

(2, 0)

(0, √
—
2)

x

f(x)

(2, −1)

(3, 2)
(1, 2)

x

f(x)

(−5, −4)

(−1, −4)

(−3, 4)

x

f(x)
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21. 23.

25. 27.

29. 31.

33. 35.

37. 39.

41.

Problem Set 4.2 (page 315)
1. (a) $.67 (c) $2.31 (e) $12,623

(g) $803 3. $384.66 5. $480.31
7. $2479.35 9. $1816.70 11. $1356.59

13. $22,553.65 15. $567.63 17. $1422.36
19. $8963.38 21. $17,547.35 23. $23,558.88
25. 5.9% 27. 8.06%
29. 8.25% compounded quarterly
31. 50 grams; 37 grams 33. 2226; 3320; 7389
35. 2000
37. (a) 6.5 pounds per square inch

(c) 13.6 pounds per square inch
39. (a) Approximately 100 times brighter

(c) Approximately 10 billion times brighter

41. 43.

45.

49. 8% 10% 12% 14%

5 years $1492 1649 1822 2014
10 years 2226 2718 3320 4055
15 years 3320 4482 6050 8166
20 years 4953 7389 11,023 16,445
25 years 7389 12,182 20,086 33,115

x

f(x)

(1, 0.7)

(0, −1)

(−1, −1.6)

x

f(x)

(0, 2)
(1, 3)3

2(−1,   )
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51. 8% 10% 12% 14%

Compounded
annually $2159 2594 3106 3707

Compounded
semiannually 2191 2653 3207 3870

Compounded
quarterly 2208 2685 3262 3959

Compounded
monthly 2220 2707 3300 4022

Compounded
continuously 2226 2718 3320 4055

53. 55.

Problem Set 4.3 (page 327)
1. Yes 3. No 5. Yes 7. Yes
9. Yes 11. No 13. No

15. Domain of f : { 1, 2, 5}
Range of f : { 5, 9, 21}
f 2 1 5 { (5, 1), (9, 2), (21, 5)}
Domain of f 2 1: { 5, 9, 21}
Range of f 2 1: { 1, 2, 5}

17. Domain of f : { 0, 2, 21, 22}
Range of f : { 0, 8, 21, 28}
f 2 1: { (0, 0), (8, 2), (21, 21), (28, 22)}
Domain of f 2 1: { 0, 8, 21, 28}
Range of f 2 1: { 0, 2, 21, 22}

27. No 29. Yes 31. No 33. Yes
35. Yes 37. f 2 1(x ) 5 x 1 4

39. f 2 1(x ) 5 }
2x

3
2 4
} 41. f 2 1(x ) 5 }

12x
9
1 10
}

43. f 2 1(x ) 5 2}
3
2

}x 45. f 2 1(x) 5 x 2 for x $ 0

47. f 2 1(x ) 5 Ïxw2w 4w for x $ 4

49. f 2 1(x ) 5 }
x 2

1
1

} for x . 1

51. f 2 1(x ) 5 }
1
3

}x 53. f 2 1(x ) 5 }
x 2

2
1

}

55. f 2 1(x ) 5 }
x 1

x
2

}
for x . 0

57. f 2 1(x ) 5 Ïxw1w 4w
for x $ 24

59. Increasing on [0, ∞) and decreasing on (2∞, 0]
61. Decreasing on (2∞, ∞)
63. Increasing on (2∞, 22] and decreasing on [22, ∞)
65. Increasing on (2∞, 24] and increasing on [24, ∞)

71. (a) f 2 1(x ) 5 }
x 1

3
9

}

(c) f 2 1(x) 5 2x 1 1

(e) f 2 1(x) 5 2}
1
5

}x

Problem Set 4.4 (page 338)

1. log3 9 5 2 3. log5 125 5 3

5. log21}
1
1
6
}2 5 24 7. log10 0.01 5 22

9. 26 5 64 11. 1021 5 .1 13. 224 5 }
1
1
6
}

x

f(x)

(0, 0)

(−2, −3.6)

(2, 3.6)

x

f(x)

(0, 1)

(−2, 3.8) (2, 3.8)
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15. 2 17. 21 19. 1 21. }
1
2

} 23. }
1
2

}

25. 2 }
1
8

} 27. 7 29. 0 31. { 25}

33. { 32} 35. { 9} 37. { 1} 39. 5.1293
41. 6.9657 43. 1.4037 45. 7.4512
47. 6.3219 49. 20.3791 51. 0.5766
53. 2.1531 55. 0.3949

57. logb x 1 logb y 1 logb z 59. 2 logb x 1 3 logb y

61. }
1
2

} logb x 1 }
1
2

} logb y 63. }
1
2

} log b x 2 }
1
2

} logb y

65. logb1}
x
z
y
}2 67. logb1}

y
x
z
}2 69. logb1xÏyw2

71. logb1}x(2
2Ï
x 1

xw2w
5)4

1w
}2 73.





}
9
4

}




75. { 25}

77. { 4} 79.




}
1
8
9
}




81. { 9} 83. { 1}

Problem Set 4.5 (page 346)
1. 0.8597 3. 1.7179 5. 3.5071
7. 20.1373 9. 23.4685 11. 411.43

13. 90095 15. 79.543 17. 0.048440
19. 0.0064150 21. 1.6094 23. 3.4843
25. 6.0638 27. 20.7765 29. 23.4609
31. 1.6034 33. 3.1346 35. 108.56
37. 0.48268 39. 0.035994

41. 43.

45. 47.

49. 51.

53.

Problem Set 4.6 (page 356)
1. {3.17} 3. {2.99} 5. {1.81} 7. {1.41}
9. {1.41} 11. {3.10} 13. {1.82}

15. {7.84} 17. {10.32} 19. {2} 21.




}
2
8
9
}




23.



}
21 1

2
Ï6w5w
}





25. 


Ï2w 




27. {6}

29. {1, 100} 31. 2.402 33. 0.461
35. 2.657 37. 1.211 39. 7.9 years
41. 12.2 years 43. 11.8% 45. 6.6 years
47. 1.5 hours 49. 34.7 years 51. 6.7
53. Approximately 8 times 55. 5.8 57. 10

65. x 5 log1y 6 Ïy2w 2w 1w2

Chapter 4 Review Problem Set (page 362)
1. 32 2. 2125 3. 81 4. 3 5. 22

6. }
1
3

} 7. }
1
4

} 8. 25 9. 1 10. 12

11. { 5} 12.




}
1
9

}




13.




}
7
2

}




14. { 3.40}

15. { 8} 16.




}
1
1
1
}




17. { 1.95} 18. { 1.41}

19. { 1.56} 20. { 20} 21. { 10100} 22. { 2}

23.




}
1
2
1
}




24. { 0} 25. 0.3680 26. 1.3222

27. 1.4313 28. 0.5634
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29. (a) logb x 2 2 logb y (b) }
1
4

} logb x 1 }
1
2

} logb y

(c) }
1
2

} logb x 2 3 logb y

30. (a) logb x 3y 2 (b) logb1}
Ï
x 4

yw
}2

(c) logb1}
Ï

z
x
2

yw
}2 31. 1.58 32. 0.63

33. 3.79 34. 22.12

35. 36.

37. 38.

39. 40.

41. 42.

43. $2219.91 44. $4797.55 45. $15,999.31
46. Yes 47. No 48. Yes 49. Yes

50. f 2 1(x ) 5 }
x 2

4
5

} 51. f 2 1(x) 5 }
2x

3
2 7
}

52. f 2 1(x ) 5 }
6x

5
1 2
} 53. f 2 1(x) 5 Ï2w2w 2w xw

54. Increasing on (2∞, 4] and decreasing on [4, ∞)
55. Increasing on [3, ∞)
56. Approximately 5.3 years
57. Approximately 12.1 years
58. Approximately 8.7% 59. 61,070; 67,493; 74,591
60. Approximately 4.8 hours 61. 133 grams
62. 8.1

Chapter 4 Test (page 364)

1. }
1
2

} 2. 1 3. 1 4. 21 5. { 23}

6.



2}

3
2

}




7.




}
8
3

}




8. { 243} 9. { 2}

10.




}
2
5

}




11. 4.1919 12. 0.2031

13. 0.7325 14. { 5.17} 15. { 10.29}

16. 4.0069 17. f 2 1(x ) 5 2}
1
3

}x 2 2

18. f 2 1(x ) 5 }
3
2

}x 1 }
1
9
0
} 19. Yes 20. $6342.08

21. 13.5 years 22. 7.8 hours 23. 4813 grams
24. 25.

CHAPTER 5

Problem Set 5.1 (page 372)
1. Q: 4x 1 5 3. Q: t 2 1 2t 2 4

R: 0 R: 0
5. Q: 2x 1 5 7. Q: 3x 2 4

R: 1 R: 3x 2 1
9. Q: 5y 2 1 11. Q: 4a 1 6

R: 28y 2 2 R: 7a 2 19
13. Q: 3x 1 4y 15. Q: 3x 1 4

R: 0 R: 0
17. Q: x 1 6 19. Q: 4x 2 3

R: 14 R: 2

(3, 0)

(6, 2)
(10, 3)

x

f(x)

(0, −1)

x

f(x)
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21. Q: x 221
R: 0

23. Q: 3x 3 2 4x 2 1 6x 2 13
R: 12

25. Q: x 2 2 2x 2 3
R: 0

27. Q: x 3 1 7x 2 1 21x 1 56
R: 167

29. Q: x 2 1 3x 1 2
R: 0

31. Q: x 4 1 x 3 1 x 2 1 x 1 1
R: 0

33. Q: x 4 1 x 3 1 x 2 1 x 1 1
R: 2

35. Q: 2x 2 1 2x 2 3

R: }
9
2

}

37. Q: 4x 3 1 2x 2 2 4x 2 2
R: 0

Problem Set 5.2 (page 376)
1. f (2) 5 22 3. f (24) 5 2105
5. f (22) 5 9 7. f (6) 5 74 9. f (3) 5 200

11. f (21) 5 5 13. f (7) 5 25

15. f (22) 5 227 17. f 1}
1
2

}2 5 22 19. Yes

21. Yes 23. No 25. Yes 27. Yes
29. (x 1 2)(x 1 6)(x 2 1)
31. (x 2 3)(2x 2 1)(3x 1 2) 33. (x 1 1)2(x 2 4)
35. k 5 6 37. k 5 230
39. Let f (x) 5 x 12 2 4096; then f (22) 5 0; therefore, x 1

2 is a factor of f (x ).
41. Let f (x) 5 xn 2 1. Because 1n 5 1 for all positive inte-

gral values of n, then f (1) 5 0 and x 2 1 is a factor.
43. (a) Let f (x ) 5 xn 2 yn. Therefore, f (y) 5 yn 2 yn 5 0

and x 2 y is a factor of f (x ).
(c) Let f (x) 5 xn 1 yn. Therefore, f (2y) 5 (2y)n 1

yn 5 2yn 1 yn 5 0 when n is odd, and x 2 (2y) 5
x 1 y is a factor of f (x).

47. f (1 1 i) 5 2 1 6i
51. (a) f (4) 5 137; f (25) 5 11; f (7) 5 575

(c) f (4) 5 279; f (5) 5 2162; f (23) 5 110

Problem Set 5.3 (page 388)

1. { 22, 21, 2} 3.



2}

3
2

}, }
1
3

}, 1




5.



27, }

2
3

}, 2




7. { 21, 4} 9. { 23, 1, 2, 4}

11. 


22, 1 6 Ï7w 




13.



2}

2
3

}, 1, 6Ï2w




15.



2}

4
3

}, 0, }
1
2

}, 3




17. { 21, 2, 1 6 i}

19.



21, }

3
2

}, 2, 6i




27. (a) { 24, 22, 1} (c) 



24, 22, }

3
2

}




29. Two positive or two nonreal complex solutions
31. One negative and two nonreal complex solutions
33. One positive and two negative or one positive and two

nonreal complex solutions
35. One negative and two positive and two nonreal complex

solutions or one negative and four nonreal complex
solutions

37. One positive and one negative and four nonreal complex
solutions

39. x 4 1 2x 3 2 9x 2 2 2x 1 8 5 0
41. 12x 3 2 37x 2 2 3x 1 18 5 0
43. x 4 1 12x 3 1 54x 2 1 108x 1 81 5 0
45. x 3 1 13x 1 34 5 0
47. x 4 1 4x 3 1 14x 2 1 4x 1 13 5 0

Problem Set 5.4 (page 400)
1. 3.

5. 7.

9. 11.
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13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33.

35. (a) 60 (c) f (x) . 0 for (24, 3) < (5, ∞)
f (x) , 0 for (2∞, 24) < (3, 5)

37. (a) 432 (c) f (x) . 0 for (23, 4) < (4, ∞)
f (x) , 0 for (2∞, 23)

39. (a) 8
(c) f (x) . 0 for (2∞, 22) < (22, 1) < (2, ∞)

f (x) , 0 for (1, 2)
41. (a) 512 (c) f (x) . 0 for (22, 4) < (4, ∞)

f (x) , 0 for (2∞, 22)
45. (a) 1.6 (c) 4.4 (e) 21.4
51. (a) 22, 1, and 4; f (x) . 0 for (22, 1) < (4, ∞) and

f (x) , 0 for (2∞, 22) < (1, 4)
(c) 2 and 3; f (x ) . 0 for (3, ∞) and f (x) , 0 for (2, 3)

< (2∞, 2)
(e) 23, 21, and 2; f (x ) . 0 for (2∞, 23) < (2, ∞) and

f (x) , 0 for (23, 21) < (21, 2)
53. (a) 23, 3; (0.5, 3.1), (21.8, 10.1)

(c) 22.2, 2.2; (21.4, 28.0), (0.0, 24.0), (1.4, 8.0)
55. 32 units

Problem Set 5.5 (page 411)
1. 3.

5. 7.

x(0, 0)

f(x)

(2, −2)

(4, 4)

(6, 2)(2, 2)(0, 2)

1
2(−1,   ) 1

2(3,   )

x

f(x)

x

(0, 3)

f(x)

3
2(1,   )

(−4, −1)

(−2, −3)

x

(−1, 1)

f(x)

1
3(−3,   )

1
3(3, −   )

(1, −1)
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9. 11.

13. 15.

17. 19.

21.

25. (a) (c)

Problem Set 5.6 (page 420)
1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

x

f(x)

(0, 1)

(2, −5)

(5, −   )13
2

(−3,   )5
2

(−5,    )13
3

x

f(x)

(3, 0)

(5,   )7
3

(0, −6)
(−5, −6)

(−2, 0)

x

f(x)

(2, 6)

(0, −2)

(−2, −2)

(4,    )18
3

x

f(x)

(0, 0) (2, −  )8
5

(1, −2)

x

f(x)

(0, 0)

(−1, −  )1
3

(−3, −   )3
11

(2,   )1
3

(4,   )2
9

x

f(x)

(0, 0)

(4,    )16
3

(6,    )12
5

(2, −4)

(−2,    )4
15

x

f(x)

(0, 0)

2
3(−4, −  )

(−6, −  )1
4

(1, −  )1
4

(−1,   )1
6

(−2,   )1
2

(3,   )1
2

x

f(x)

(0, 0) 2
3(2, −  )

2
3

1
2(  ,   )

(0, 0)

9
5(−6,   )

x

f(x)

2
5(−1, −  )

(5, 7)
16
5(8,    )

18
5(3, −   )

(2, −1)

2
9(1, −  )

(−3, 3)

(0, 0)

9
4(−3,   )

9
7(−6,   )

x

f(x)

1
2(−1, −  )

8
9(4,   )

(−2, −1)

1
3(2,   )

x

f(x)

(0, 1)

1
3(−4,−   )

1
2(−   , 2) (1,   )1

2

x

f(x)

(1, 0)

(0, −1)

(−4, −5)

(1, 1)

32
17(2,    )

x

f(x)

(0, 0)

2
3(2,   )

x

f(x)

(0, 2)

(−1, −1)

5
3(3,   )

x

f(x)

(1, 3)
1
3(−3,   )

(0, −1)

1
2(−3,   )

x

f(x)

1
9(4,   )

(−1, −1)

1
2(2,   )

1
9(−5,   )(0, 1) 8

9
1
2(  ,   )

1
2(3, −  )

x

f(x)

1
9(−4, −   ) (4, −  )1

5

(1, 1)

1
2(−2, −  )

(0, −1) 4
3

1
2(  , −   )

4
5

3
2(  ,   )

1
3(2,   )

x

f(x) 16
9

5
4(  ,   )

(0, 0)

x

f(x)

(4, −2)

(−3, −9)

(−5, −5)
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Problem Set 5.7 (page 426)

1. }
x 2

4
2

} 1 }
x 1

7
1

} 3. }
x 1

3
1

} 2 }
x 2

5
1

}

5. }
3x

1
2 1
} 1 }

2x
6
1 3
} 7. }

x 2

2
1

} 1 }
x 1

3
2

} 2 }
x 2

4
3

}

9. }
2

x
1
} 1 }

2x
2
2 1
} 2 }

4x
3
1 1
} 11. }

x 2

2
2

} 1 }
(x 2

5
2)2}

13. }
4
x

} 1 }
x
7

2} 2 }
x

1
1

0
3

} 15. }
x 2

2

1

3
1

} 2 }
x 2

2
4

}

17. }
x 1

3
2

} 2 }
(x 1

2
2)2} 1 }

(x 1

1
2)3}

19. }
2
x

} 1 }
x 2

3
2

x 1

x 1

5
3

} 21. }
x 2

2
1

x
1

} 1 }
(x

3
2

2

1

x
1)2}

Chapter 5 Review Problem Set (page 429)
1. Q: 3x 2 2 5x 1 4 2. Q: 2a 2 1

R: 4 R: 5
3. Q: 3x 2 2 x 1 5 4. Q: 5x 2 2 3x 2 3

R: 3 R: 16
5. Q: 22x 3 1 9x 2 2 38x 1 151

R: 2605
6. Q: 23x 3 1 9x 2 2 32x 1 96 7. f (1) 5 1

R: 2279
8. f (23) 5 2197 9. f (22) 5 20

10. f (8) 5 0 11. Yes 12. No 13. Yes

14. Yes 15. { 23, 1, 5} 16.



2}

7
2

}, 21, }
5
4

}




17. { 1, 2, 1 6 5i} 18. 


22, 3 6 Ï7w




19. Two positive and two negative solutions or two positive
and two nonreal complex solutions or two negative and
two nonreal complex solutions or four nonreal complex
solutions. 

20. One negative and four nonreal complex solutions

21. 22.

23. 24.

25. 26.

27. 28.

29. }
1
x

} 2 }
x
2

2} 1 }
x 1

4
2

} 30. }
3
x
x
2 1

1

4
1

} 2 }
2x

5
2 1
}

Chapter 5 Test (page 431)
1. Q: 2x 2 2 3x 2 4 2. Q: 3x 3 2 x 2 2 2x 2 6

R: 0 R: 3
3. Q: 4x 3 1 8x 2 1 9x 1 17

R: 38
4. 224 5. 5 6. 39 7. No 8. No
9. Yes 10. No

11. One positive, one negative, and two nonreal complex
solutions

12. 27, 0, and }
2
3

} 13. x 5 23 14. f (x) 5 5

15. y axis 16. Origin 17. f (x) 5 4x 2 3

x

f(x)

(−2, −7)
(−6, −   )39

5

(2,   )7
3(0, 3)

(1, 2)

(−3, −6)

x

f(x)

(0, 0)

(2, 1)

(−1,   )1
6

(−3, −  )3
2 (4, −  )8

3

(1,   )1
6

(−5, −  )25
24 (6, −  )3

2

x

f(x)

(0, −3)
(2, −  )3

5

(1, −  )3
2

(4, −   )3
17

x

f(x)

(4, 8)

(1, −1)

(8,    )16
5

(−2,   )4
5

(−4,   )8
7

(6, 4)

(0, 0)

(2, −4)
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18. }
2x

3
21
} 1 }

x 2

4
6

} 19. 2}
1
x

} 1 }
x 1

2
2

} 2 }
(x 1

2
2)2}

20. }
x 1

1
1

} 1 }
x 2

2
2

x 2

x 1

2
3

}

21.

22.

23.

24.

25.

Chapters 0–5 Cumulative Review Problem Set
(page 433)

1. }
6
2
4
7
} 2. 2}

2
3

} 3. 2}
2
1
5
} 4. 16 5. }

2
1
7
}

6. 3 7. 24 8. 25 9. 16 10. 3

11. (2∞, 26] < 3}
1
2

}, ∞2
12. ( f ° g )(22) 5 26 and (g ° f )(3) 5 59
13. ( f ° g )(x ) 5 22x 1 8 and D 5 { x ux Þ 4}

(g ° f )(x ) 5 2}
4x

x
1 2
} and

D 5



x u x Þ 0 and x Þ 2}

1
2

}




14. f 2 1(x ) 5 }
2x

2
1 7
} 15. 2a 1 h 1 7

16. f (9) 5 33 17. 3x 4 1 9x 3 1 2x 2 2 x 2 2
18. No 19. 5.64 20. (23, 2) and r 5 3
21. x 1 3y 5 2 22. 4x 1 3y 5 5 23. 16 units

24. y 5 6}
1
3

}x 25. 12 26. }
2
7

} 27. $784

28. 8.7 years
29. 10 nickels, 15 dimes, and 32 quarters 30. $125

31. 1}
1
3

} quarts 32. 45 miles 33. 4 hours

34.




}
3
5

}




35.



}
213 6

2
Ï1w9w3w
}





36. { 27, 0, 2}

37.



2}

5
2

}, 21, }
2
3

}




38.



21, }

5
2

}




39. { 0}

40. { 21} 41.




}
2
3

}




42. { 3}

43. 


63i, 6Ï6w 




44.



2}

1
2
3
}, 4





45.



1, 2, }

21 6

2
iÏ1w1w
}





46. (2∞, 25)

47. 32}
1
1
1
7
}, ∞2 48. (23, 6)

49. [23, 1] < [2, ∞) 50. 12∞, 2}
5
2

}2 < 1}
7
2

}, ∞2
51. 32}

1
3
0
}, 24 52. 12∞, }

3
4

}4 < (2, ∞)

53. (2∞, 4) < 1}
1
2
5
}, ∞2

x

−4

−8

−12

−16

−2−3−4 1 2 3 4

f(x)

(−2, −15)

(1, 3)

(0, 1)
1
2(−   , 3)

x

f(x)

(1,   )2
3(−1,   )2

3

(3, −  )2
5(−3, −  )2

5

(0,   )1
2

x

f(x)

(1, 0)(−2, 0)

(0, −4)

(−1, −2)

(−3, −4)

x

f(x)

(2, 2)

(6, −2)

(1,   )1
2

(4, −4)

x

f(x)

(1, 0)

(2, 0)(−1, 0)

5
8

3
2(  ,   )
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54. 55.

56. 57.

58. 59.

60. 61.

62. 63.

64.

CHAPTER 6

Problem Set 6.1 (page 444)
1. { (7, 9)} 3. { (24, 7)} 5. { (6, 3)}
7. a 5 23 and b 5 24

9.


 1k, }

2
3

} k 2 }
4
3

}2 , a dependent system

11. u 5 5 and t 5 7 13. { (2, 25)}

15. [, an inconsistent system 17.


 12}

3
4

}, 2}
6
5

}2
a19. { (3, 24)} 21. { (2, 8)} 23. { (21, 25)}
25. [, an inconsistent system

27. a 5 }
2
5
7
} and b 5 2}

2
2
6
7
} 29. x 5 26 and t 5 12

31.


 12}

1
2

}, }
1
3

}2 33.


 1}

1
2
3
2
}, }

1
2
1
}2 35. { (24, 2)}

37. { (5, 5)} 39. [, an inconsistent system
41. { (12, 224)} 43. t 5 8 and u 5 3
45. { (200, 800)} 47. { (400, 800)} 49. { (3.5, 7)}
51. 17 and 36 53. 15°, 75° 55. 72
57. 34 59. 8 single rooms and 15 double rooms
61. 2500 student tickets and 500 nonstudent tickets
63. $500 at 9% and $1500 at 11%
65. 3 miles per hour
67. $1.25 per tennis ball and $1.75 per golf ball
69. 30 five-dollar bills and 18 ten-dollar bills

75. { (4, 6)} 77. { (2, 23)} 79.


 1}

1
4

}, 2}
2
3

}2

Problem Set 6.2 (page 454)
1. { (24, 22, 3)} 3. { (22, 5, 2)}
5. { (4, 21, 22)} 7. { (3, 1, 2)}
9. { (21, 3, 5)} 11. { (22, 21, 3)}

x

f(x)

(2, 0)

(   , −2)5
4

(3, 1)
(5, 2)

x

f(x)

(1, −1)

(−1, −  )5
2

(0, −2)
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13. { (0, 2, 4)} 15. { (4, 21, 22)}
17. { (24, 0, 21)} 19. { (2, 2, 23)}
21. 4 pounds of pecans, 4 pounds of almonds, and 12 pounds

of peanuts
23. 7 nickels, 13 dimes, and 22 quarters
25. 40°, 60°, and 80°
27. $500 at 12%, $1000 at 13%, and $1500 at 14%
29. 50 of type A, 75 of type B, and 150 of type C
31. x 2 1 y 2 2 4x 2 20y 2 2 5 0

Problem Set 6.3 (page 464)
1. Yes 3. Yes 5. No 7. No
9. Yes 11. { (21, 25)} 13. { (3, 26)}

15. [ 17. { (22, 29)} 19. { (21, 22, 3)}
21. { (3, 21, 4)} 23. { (0, 22, 4)}
25. { (27k 1 8, 25k 1 7, k )} 27. { (24, 23, 22)}
29. { (4, 21, 22)} 31. { (1, 21, 2, 23)}
33. { (2, 1, 3, 22)} 35. { (22, 4, 23, 0)}
37. [ 39. { (23k 1 5, 21, 24k 1 2, k )}
41. { (23k 1 9, k, 2, 23)}
45. { (17k 2 6, 10k 2 5, k)}

47.


 12}

1
2

}k 1 }
3
1
4
1
}, }

1
2

}k 2 }
1
5
1
}, k2 




49. [

Problem Set 6.4 (page 474)
1. 22 3. 229 5. 20 7. 5 9. 22

11. 2}
2
3

} 13. 225 15. 58 17. 39

19. 212 21. 241 23. 28 25. 1088
27. 2140 29. 81 31. 146
33. Property 6.3 35. Property 6.2
37. Property 6.4 39. Property 6.3
41. Property 6.5

Problem Set 6.5 (page 482)
1. { (1, 4)} 3. { (3, 25)} 5. { (2, 21)}

7. [ 9.


 12}

1
4

}, }
2
3

}2 11.


 1}

1
2
7
}, }

5
1
2
7
}2

13. { (9, 22)} 15.



(2, 2}

5
7

})




17. { (0, 2, 23)}

19. { (2, 6, 7)} 21. { (4, 24, 5)}
23. { (21, 3, 24)} 25. Infinitely many solutions

27.


 122, }

1
2

}, 2}
2
3

}2 29.


 13, }

1
2

}, 2}
1
3

}2

31. (24, 6, 0) 37. (0, 0, 0)
39. Infinitely many solutions

Chapter 6 Review Problem Set (page 486)
1. { (3, 27)} 2. { (21, 23)} 3. { (0, 24)}

4.


 1}

2
3
3
}, 2}

1
3
4
}2 5. { (4, 26)}

6.


 12}

6
7

}, 2}
1
7
5
}2 7. { (21, 2, 25)}

8. { (2, 23, 21)} 9. { (5, 24)} 10. { (2, 7)}
11. { (22, 2, 21)} 12. { (0, 21, 2)}
13. { (23, 21)} 14. { (4, 6)} 15. { (2, 23, 24)}
16. { (21, 2, 25)} 17. { (5, 25)}

18. { (212, 12)} 19.


 1}

5
7

}, }
4
7

}2
20. { (210, 27)} 21. { (1, 1, 24)}
22. { (24, 0, 1)} 23. [ 24. { (22, 24, 6)}
25. 234 26. 13 27. 240 28. 16
29. 51 30. 125 31. 72
32. $900 at 10% and $1600 at 12%
33. 20 nickels, 32 dimes, and 54 quarters
34. 25°, 45°, and 110°

Chapter 6 Test (page 488)
1. III 2. I 3. III 4. II

5. 8 6. 2}
1
7
2
} 7. 218 8. 112

9. Infinitely many 10. { (22, 4)}

11. { (3, 21)} 12. x 5 212 13. y 5 2}
1
1
3
1
}

14. No 15. x 5 14 16. y 5 13
17. Infinitely many 18. None

19.


 1}

1
5
1
}, 6, 232 20. { (22, 21, 0)}

21. x 5 1 22. y 5 4 23. 52
24. 2 liters 25. 22 quarters

CHAPTER 7

Problem Set 7.1 (page 497)

1. 3 4 3. 3 4 5. 3 4
7. 3 4 9. 3 4214

220
212
218

25
3

21
2

1
19

22
23

21
2

22
27

25
3

3
8
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11. 3 4
13. AB 5 3 4, BA 5 3 4
15. AB 5 3 4, BA 5 3 4
17. AB 5 3 4, BA 5 3 4
19. AB 5 3 4, BA 5 3 4
21. AB 5 3 4, BA 5 3 4
23. AB 5 3 4, BA 5 3 4
25. AB 5 3 4, BA 5 3 4
27. AB 5 3 4, BA 5 3 4
29. AD 5 3 4, DA 5 3 4
49. A 2 5 3 4, A 3 5 3 4

Problem Set 7.2 (page 504)

1. 3 4 3. 3 4 5. 3 4
7. Does not exist 9. 3 4

11. 3 4 13. 3 4 15. 3 4
17. 3 4 19. 3 4 21. 3 4

23. 3 4 25. 3 4 27. { (2, 3)}

29. { (22, 5)} 31. { (0, 21)} 33. { (21, 21)}

35. { (4, 7)} 37.


 12}

1
3

}, }
1
2

}2 39. { (29, 20)}

Problem Set 7.3 (page 512)

1. 3 4; 3 4; 3 4;
3 4

3. [21 27 13 7]; [5 5 25 17];
[25 220 35 9]; [14 8 22 58]

5. 3 4; 3 4; 3 4;

3 4
7. 3 4; 3 4; 3 4; 3 4
9. AB 5 3 4; BA 5 3 4

11. AB 5 3 4; BA does not exist

13. AB 5 3 4; BA 5 3 4
15. AB 5 [29]; BA 5 3 4
17. AB does not exist; BA 5 3 4
19. AB 5 3 4; BA does not exist.

212
16

28

9
212

6

20
2

230

24
212

8
216

23
29

6
212

1
3

22
4

22
26

4
28

26
16

216

0
22

5

21
10

28

25
4

25

5
22
13

212
14

210

3
220

1
226

28
36

22
242

21
221

220
8

14
8

236

28
216

22

11
4

228

24
22
26
48

26
14

232
246

6
27

223
16

1
25

8
13

22
24

1
13

22
5

211
216

2
10

29
9

0
21

1
2

10
236

12

26
20
20

2
224
214

27
2

54

27
2

10

21
28
21

4
211
23

21
6
5

22
211
27

22
23
21

23
2
5

8
9
7

30
16

212
12

10
218

213
16

10
218

1
11

11
3

25
6

3
27

23
7

3
26

1
3

24
213

24
13

0
5

30
36

}
1
2

}

2}
1
2

}

}
1
2

}

}
1
2

}

2}
5
3

}

2}
2
3

}

2

1

}
3
5

}

2}
2
5

}

2}
4
5

}

}
1
5

}

}
1
5

}

0

2}
3
5

}

1

}
2
7

}

}
3
7

}

2}
5
7

}

2}
4
7

}

}
1
5

}

}
1
1
0
}

2}
2
5

}

}
1
3
0
}

8
23

25
2

27
5

3
22

211
13

29
22

24
7

21
8

7
7

3
3

1
9

1
9

4
3

5
22

22
5

3
4

0
1

1
0

0
1

1
0

2}
1
6
7
}

23

0

}
5
3

}

2}
5
3

}

23

0

}
1
6
7
}

0
1

1
0

0
1

1
0

23
213

22
232

27
21

214
212

0
0

0
0

228
214

14
7

239
18

19
216

218
42

25
24

5
23

25
3

26
212

4
8

211
0

2
27
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21. 3 4 23. 3 4

25. 3 4 27. 3 4
29. 3 4 31. Does not exist

33. 3 4 35. 3 4
37. { (23, 2)} 39. { (2, 5)} 41. { (21, 22, 1)}
43. { (22, 3, 5)} 45. { (24, 3, 0)}
47. (a) { (21, 2, 3)} (c) { (25, 0, 22)}

(e) { (1, 21, 21)}
49. (a) y-axis reflection

(c) 90° counterclockwise rotation

Problem Set 7.4 (page 523)

1. 3.

5. 7.

9. 11.

13. 15.

17. [ 19.

21. 23.

25. Minimum of 8 and maximum of 52
27. Minimum of 0 and maximum of 28 29. 63
31. 340 33. 2 35. 98
37. $5000 at 9% and $5000 at 12%
39. 300 of type A and 200 of type B
41. 12 units of A and 16 units of B

x

y

x

y

x

f(x)

0

0

}
1
1
0
}

0

}
1
4

}

0

}
1
2

}

0

0

2}
9
7

}

}
6
7

}

2}
1
7

}

21

}
1
2

}

0

}
4
7

}

2}
1
3
4
}

}
2
7

}

11
5

21

29
24

1

250
223

5

}
1
2

}

}
1
2

}

2}
1
2

}

23

0

1

}
7
2

}

2}
1
2

}

2}
1
2

}

2}
1
5

}

2}
2
5

}

2}
4
5

}

2}
3
5

}

21
2

4
27

}
1
3
0
}

2}
1
1
0
}

2}
1
5

}

}
2
5

}
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Chapter 7 Review Problem Set (page 528)

1. 3 4 2. 3 4 3. 3 4
4. 3 4 5. 3 4
6. 3 4 7. 3 4

8. 3 4 9. 3 4
10. EF does not exist.

14. 3 4

15. 3 4 16. 3 4
17. Inverse does not exist. 18. 3 4
19. 3 4 20. 3 4
21. 3 4 22. Inverse does not exist.

23. 3 4 24. { (22, 6)}

25. { (4, 21)} 26. { (2, 23, 21)}
27. { (23, 2, 5)} 28. { (24, 3, 4)}

29. 30.

31. 32.

33. 37 34. 56 35. 57 36. 1700
37. 75 one-gallon and 175 two-gallon freezers

Chapter 7 Test (page 530)

1. 3 4 2. 3 4 3. 3 4
4. Does not exist 5. 3 4 6. 3 4
7. 3 4 8. 3 4 9. 3 4

10. 3 4 11. 3 4 12. 3 4

13. 3 4 14. 3 4
15. 3 4 16. 3 4
17. { (8, 212)}
18. { (26, 214)} 19. ({ 9, 13)}

20.


 1}

7
3

}, 2}
1
3

}, }
1
3
3
}2 21. { (21, 2, 1)}

210
23

1

2
1
0

1
0
0

1

1

0

2}
5
3

}

2}
8
3

}

}
2
3

}

2}
4
3

}

2}
4
3

}

}
1
3

}

2}
5
7

}

}
3
7

}

}
4
7

}

2}
1
7

}

}
3
2

}

}
1
2

}

4

1

5
2

7
3

2
3

23
25

234
219

1
16

33
13

8
212

25
8

23
220

9
216

23

4
13
24

8
23

25
4

235
8

11
18
9

23
25
21

21
24
37

13
14

211
28

21
26

9
4

}
1
3

}

2}
1
3

}

}
1
3

}

2}
7
3

}

2}
2
3

}

2}
1
3

}

2}
2
3
0
}

2}
1
3

}

2}
5
3

}

5
21

1

28
2

21

8
23
21

2}
1
8

}

0

}
1
8

}

2}
1
8
7
}

21

}
1
8

}

}
3
8
9
}

2

}
1
8

}

}
1
7

}

0

}
2
7

}

2}
1
3

}

2}
3
7

}

}
1
7

}

}
5
7

}

2}
4
7

}

}
1
8

}

}
1
4

}

2}
3
8

}

}
1
4

}

4
29

23
7

25
9

4
27

227
26

236
32

26
215

226
13

16
0

15
220

38

23
2

25

211
24

240

1
20

22

7
214

1

211
22

19
26

1
8
2

2
26
22

3
26

3
3

25
10

7
23
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22.

23.

24.

25. 4050

CHAPTER 8

Problem Set 8.1 (page 541)
1. V(0, 0), F(2, 0), 3. V(0, 0), F(0, 23),

x 5 22 y 5 3

5. V(0, 0), F12}
1
2

}, 02, 7. V(0, 0), F10, }
3
2

}2,

x 5 }
1
2

} y 5 2}
3
2

}

9. V(0, 2), F(0, 3), 11. V(0, 22),
y 5 1 F(0, 24),

y 5 0

13. V(2, 0), F(5, 0), 15. V(1, 2), F(1, 3),
x 5 21 y 5 1

17. V(23, 1), 19. V(3, 1), F(0, 1),
F(23, 21), x 5 6
y 5 3

x

y

x

y

x

y
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21. V(22, 23),
F(21, 23),
x 5 23

23. x 2 5 12y 25. y 2 5 24x
27. x 2 1 12y 2 48 5 0
29. x 2 2 6x 2 12y 1 21 5 0
31. y 2 2 10y 1 8x 1 41 5 0 33. 3y 2 5 225x
35. y 2 5 10x 37. x 2 2 14x 2 8y 1 73 5 0
39. y 2 1 6y 2 12x 1 105 5 0
41. x 2 1 18x 1 y 1 80 5 0
43. x 2 5 750(y 2 10) 45. 10Ï2w feet
47. 62.5 feet

Problem Set 8.2 (page 551)
For Problems 1–22, the foci are indicated above the graph
and the vertices and endpoints of the minor axes are indicated
on the graph.

1. F 1Ï3w, 02, 3. F 10, Ï5w2,
F912Ï3w, 02 F910, 2Ï5w2

5. F 10, Ï6w2, 7. F 1Ï1w5w, 02,
F910, 2Ï6w2 F912Ï1w5w, 02

9. F 10, Ï3w3w2, 11. F(2, 0),

F910, 2Ï3w3w2 F9(22, 0)

13. F 11 1 Ï5w, 22, 15. F 122, 21 1 2Ï3w2,
F911 2 Ï5w, 22 F9122, 21 2 2Ï3w2

17. F 13 1 Ï3w, 02, 19. F 14, 21 1 Ï7w2,
F913 2 Ï3w, 02 F914, 21 2 Ï7w2

21. F(0, 4), F9(26, 4)

23. 16x 2 1 25y 2 5 400 25. 36x 2 1 11y 2 5 396
27. x 2 1 9y 2 5 9 29. 100x 2 1 36y 2 5 225
31. 7x 2 1 3y 2 5 75
33. 3x 2 2 6x 1 4y 2 2 8y 2 41 5 0
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35. 9x 2 1 25y 2 2 50y 2 200 5 0

37. 3x 2 1 4y 2 5 48 39. }
10Ï

3
5w

} feet

Problem Set 8.3 (page 562)
For Problems 1–22, the foci and equations of the asymptotes
are indicated above the graphs. The vertices are given on the
graphs.

1. F 1Ï1w3w, 02, 3. F 10, Ï1w3w2,
F912Ï1w3w, 02, F910, 2Ï1w3w2,
y 5 6}

2
3

}x y 5 6}
2
3

}x

5. F (0, 5), 7. F 13Ï2w, 02,
F9(0, 25), F9123Ï2w, 02,
y 5 6}

4
3

}x y 5 6x

9. F 10, Ï3w0w2, 11. F 1Ï1w0w, 02,
F910, 2Ï3w0w2, F912Ï1w0w, 02,
y 5 6}

Ï
5
5w

}x y 5 63x

13. F 13 1 Ï1w3w, 212, 15. F 123, 2 1 Ï5w2,
F913 2 Ï1w3w, 212 F9123, 2 2 Ï5w2
2x 2 3y 5 9 and 2x 2 y 5 28 and
2x 1 3y 5 3 2x 1 y 5 24

17. F 12 1 Ï6w, 02, 19. F 10, 25 1 Ï1w0w2,
F912 2 Ï6w, 02 F910, 25 2 Ï1w0w2
Ï2wx 2 y 5 2Ï2w and 3x 2 y 5 5 and
Ï2wx 1 y 5 2Ï2w 3x 1 y 5 25

21. F 122 1 Ï2w, 222,
F9122 2 Ï2w, 222
x 2 y 5 0 and
x 1 y 5 24

23. 5x 2 2 4y 2 5 20 25. 16y 2 2 9x 2 5 144
27. 3x 2 2 y 2 5 3 29. 4y 2 2 3x 2 5 12
31. 7x 2 2 16y 2 5 112
33. 5x 2 2 40x 2 4y 2 2 24y 1 24 5 0
35. 3y 2 2 30y 2 x 2 2 6x 1 54 5 0
37. 5x 2 2 20x 2 4y 2 5 0 39. Circle
41. Straight line 43. Ellipse 45. Hyperbola
47. Parabola

x

y

(−3, −2) (−1, −2)

x

y

(0, −2)

(0, −8)

x

y

(6, −1)(0, −1)

x

y

(0, −√
—
5)

(0, √
—
5)
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Problem Set 8.4 (page 570)
1. { (1, 2)} 3. { (1, 25), (25, 1)}
5.



 12 1 iÏ3w, 22 1 iÏ3w2, 12 2 iÏ3w, 22 2 iÏ3w2 




7. { (26, 7), (22, 21)} 9. { (23, 4)}

11.


 1}21 1

2
iÏ3w
}, }

27 2

2
iÏ3w
}2,

1}21 2

2
iÏ3w
}, }

27 1

2
iÏ3w
}2

13. { (21, 2)} 15. { (26, 3), (22, 21)}
17. { (5, 3)} 19. { (1, 2), (21, 2)} 21. { (23, 2)}
23. { (2, 0), (22, 0)}
25.



 1Ï2w, Ï3w2, 1Ï2w, 2Ï3w2, 12Ï2w, Ï3w2,
12Ï2w, 2Ï3w2 




27. { (1, 1), (1, 21), (21, 1), (21, 21)}

29.


 12, }

3
2

}2, 1}
3
2

}, 22 31. { (9, 22)}

33. { (ln 2, 1)} 35.


 1}

1
2

}, }
1
8

}2, (23, 227)




43. { (22.3, 7.4)} 45. { (6.7, 1.7), (9.5, 2.1)}
47. None

Chapter 8 Review Problem Set (page 572)

1. F(4, 0), F9(24, 0) 2. F(23, 0)

3. F 10, 2Ï3w2, 4. F 1Ï1w5w, 02,
F910, 22Ï3w2 F912Ï1w5w, 02
y 5 6}

Ï
3
3w

}x y 5 6}
Ï
3
6w

}x

5. F 10, Ï6w2, 6. F10, }
1
2

}2
F910, 2Ï6w2

7. F 14 1 Ï6w, 12, F914 2 Ï6w, 12
Ï2wx 2 2y 5 4Ï2w 2 2 and Ï2wx 1 2y 5 4Ï2w 1 2

8. F 13, 22 1 Ï7w2, F913, 22 2 Ï7w2

9. F(23, 1), x 5 21 10. F(21, 25), y 5 21

x

y

(6, 1)(2, 1)

(4, 1 − √
—
2)

(4, 1 + √
—
2)

x

y

(−3, −6)

(−3, 6)

x = 3
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11. F 125 1 2Ï3w, 22, F9125 2 2Ï3w, 22

12. F 122, 22 1 Ï1w0w2, F9122, 22 2 Ï1w0w2
Ï6wx 2 3y 5 6 2 2Ï6w and Ï6wx 1 3y 5 26 2 2Ï6w

13. y 2 5 220x 14. y 2 1 16x 2 5 16
15. 25x 2 2 2y 2 5 50 16. 4x 2 1 3y 2 5 16
17. 3x 2 5 2y 18. 9y 2 2 x 2 5 9
19. 9x 2 2 108x 1 y 2 2 8y 1 331 5 0
20. y 2 1 4y 2 8x 1 36 5 0
21. 3y 2 1 24y 2 x 2 2 10x 1 20 5 0
22. x 2 1 12x 2 y 1 33 5 0
23. 4x 2 1 40x 1 25y 2 5 0
24. 4x 2 2 32x 2 y 2 1 48 5 0 25. { (21, 4)}
26. { (3, 1)} 27. { (21, 22), (22, 23)}

28.


 1}

4Ï
3

2w
}, }

4
3

}i2, 1}
4Ï

3
2w

}, 2}
4
3

}i2, 12}
4Ï

3
2w

}, }
4
3

}i2,

12}
4Ï

3
2w

}, 2}
4
3

}i2 29. { (0, 2), (0, 22)}

30.


 1}

Ï
5
1w5w
}, }

2Ï
5
1w0w
}2, 1}

Ï
5
1w5w
}, 2}

2Ï
5
1w0w
}2,

12}
Ï

5
1w5w
}, }

2Ï
5
1w0w
}2, 12}

Ï
5
1w5w
}, 2}

2Ï
5
1w0w
}2

Chapter 8 Test (page 574)
1. (0, 25) 2. (23, 2) 3. x 5 23
4. (6, 0) 5. (22, 21) 6. y 5 4
7. y 2 1 8x 5 0 8. x 2 2 6x 1 12y 2 39 5 0
9. (0, 6) and (0, 26) 10. six units

11. (27, 1) and (23, 1) 12. 122Ï3w, 02 and 12Ï3w, 02

13. (25, 2) 14. 25x 2 1 9y 2 5 900

15. x 2 2 12x 1 4y 2 1 8y 1 36 5 0 16. y 5 6}
3
2

}x

17. (21, 6) and (21, 0) 18. (63, 0)
19. x 2 2 3y 2 5 36
20. 8x 2 1 16x 2 y 2 1 8y 2 16 5 0

21. 3 22.



(3, 2), (23, 22), 14, }

3
2

}2, 124, 2}
3
2

}2
23. 24.

25.

CHAPTER 9

Problem Set 9.1 (page 583)
1. 24, 21, 2, 5, 8 3. 2, 0, 22, 24, 26
5. 2, 11, 26, 47, 74 7. 0, 2, 6, 12, 20
9. 4, 8, 16, 32, 64 11. a15 5 279; a30 5 2154

13. a25 5 1; a50 5 21 15. an 5 2n 1 9

17. an 5 23n 1 5 19. an 5 }
n 1

2
2

}

21. an 5 4n 2 2 23. an 5 23n 25. 73
27. 334 29. 35 31. 7 33. 86
35. 2700 37. 3200 39. 27950 41. 637.5
43. 4950 45. 1850 47. 22030 49. 3591
51. 40,000 53. 58,250 55. 2205
57. 21325 59. 5265 61. 2810 63. 1276
65. 660 67. 55 69. 431
75. 3, 3, 7, 7, 11, 11 77. 4, 7, 10, 13, 17, 21
79. 4, 12, 36, 108, 324, 972 81. 1, 1, 2, 3, 5, 8
83. 3, 1, 4, 9, 25, 256

x

y

(−6, 0) (0, 0)

(0, 2)

(0, −2)

x

y

(0, −2)
(4, −2)

(2, −5)

(2, 1)
x

y

(−1, 2)

(−1, −6)

(1, −2)

x

y

(−5, 4)

(−5, 0)

(−9, 2) (−1, 2)
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Problem Set 9.2 (page 593)

1. an 5 3(2)n21 3. an 5 3n 5. an 5 1}
1
2

}2n11

7. an 5 4n 9. an 5 (0.3)n21

11. an 5 (22)n21 13. 64 15. }
1
9

}

17. 2512 19. }
43

1
74
} 21. }

2
3

} 23. 2

25. 1023 27. 19,682 29. 394}
1
1
6
}

31. 1364 33. 1089 35. 7}
5
5
1
1
1
2

} 37. 2547

39. 127}
3
4

} 41. 540 43. 2}
6
6
1
4
} 45. 4

47. 3 49. No sum 51. }
2
4
7
} 53. 2

55. }
1
3
6
} 57. }

1
3

} 59. }
2
9
6
9
} 61. }

3
4
3
1
3

}

63. }
1
4
5
} 65. }

1
4
0
9
6
5

} 67. }
7
3

}

Problem Set 9.3 (page 598)
1. $24,200 3. 11,550 5. 7320
7. 125 liters 9. 512 gallons 11. $116.25

13. $163.84; $327.67 15. $24,900

17. 1936 feet 19. }
1
1
5
6
} of a gram 21. 2910 feet

23. 325 logs 25. 5.9% 27. }
6
5
4
} of a gallon

Problem Set 9.4 (page 605)
These problems are proofs by mathematical induction and
require class discussion.

Chapter 9 Review Problem Set (page 608)
1. an 5 6n 2 3 2. an 5 3n22 3. an 5 5 ? 2n

4. an 5 23n 1 8 5. an 5 2n 2 7
6. an 5 332n 7. an 5 2(22)n21

8. an 5 3n 1 9 9. an 5 }
n 1

3
1

}

10. an 5 4n21 11. 73 12. 106 13. }
3
1
2
}

14. }
4
9

} 15. 292 16. }
1
1
6
} 17. 25

18. 85 19. }
5
9

} 20. 2 or 22 21. 121}
4
8
0
1
}

22. 7035 23. 210,725 24. 31}
3
3
1
2
}

25. 32,015 26. 4757 27. 85 }
2
6
1
4
}

28. 37,044 29. 12,726 30. 21845

31. 225 32. 255 33. 8244 34. 85}
1
3

}

35. }
1
4
1
} 36. }

4
9
1
0
} 37. $750 38. $46.50

39. $3276.70 40. 10,935 gallons

Chapter 9 Test (page 610)
1. 2226 2. 48 3. an 5 25n 1 2

4. an 5 5(2)12n 5. an 5 6n 1 4 6. }
72
8
9

}, or 91}
1
8

}

7. 223 8. 60 terms 9. 2380 10. 765
11. 7155 12. 6138 13. 22,650 14. 9384

15. 4075 16. 2341 17. 6 18. }
1
3

}

19. }
1
2
1
} 20. }

1
4
5
} 21. 3 liters 22. $3276.70

23. $5810 24. and 25. Instructor supplies proof.

CHAPTER 10

Problem Set 10.1 (page 617)
1. 20 3. 24 5. 168 7. 48 9. 36

11. 6840 13. 720 15. 720 17. 36
19. 24 21. 243 23. Impossible 25. 216
27. 26 29. 36 31. 144 33. 1024
35. 30 37. (a) 6,084,000 (c) 3,066,336

Problem Set 10.2 (page 626)
1. 60 3. 360 5. 21 7. 252 9. 105

11. 1 13. 24 15. 84 17. (a) 336
19. 2880 21. 2450 23. 10 25. 10
27. 35 29. 1260 31. 2520 33. 15
35. 126 37. 144; 202 39. 15; 10 41. 20

43. 10; 15; 21; }
n(n

2
2 1)
} 47. 120

53. 133,784,560 55. 54,627,300

Problem Set 10.3 (page 632)

1. }
1
2

} 3. }
3
4

} 5. }
1
8

} 7. }
7
8

} 9. }
1
1
6
}

11. }
3
8

} 13. }
1
3

} 15. }
1
2

} 17. }
3
5
6
} 19. }

1
6

}
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21. }
1
3
1
6
} 23. }

1
4

} 25. }
1
2

} 27. }
2
1
5
} 29. }

2
9
5
}

31. }
2
5

} 33. }
1
9
0
} 35. }

1
5
4
} 37. }

1
2
5
8
} 39. }

1
7
5
}

41. }
1
1
5
} 43. }

2
3

} 45. }
1
5

} 47. }
6
1
3
} 49. }

1
2

}

51. }
1
5
1
} 53. }

1
6

} 55. }
1
2
2
1
8

} 57. }
1
1
3
6
}

59. }
2
1
1
} 63. 40 65. 3744 67. 10,200

69. 123,552 71. 1,302,540

Problem Set 10.4 (page 642)

1. }
3
5
6
} 3. }

1
7
2
} 5. }

2
1
16
} 7. }

5
5
3
4
} 9. }

1
1
6
}

11. }
1
1
5
6
} 13. }

3
1
2
} 15. }

3
3
1
2
} 17. }

5
6

} 19. }
1
1
2
3
}

21. }
1
7
2
} 23. }

3
4
7
4
} 25. }

2
3

} 27. }
2
3

} 29. }
1
5
8
}

31. }
1
3

} 33. }
1
2

} 35. }
1
7
2
}

37. (a) 0.410 (c) 0.955 39. 0.525
41. 60 43. 120 45. 9 47. 56
49. It is a fair game. 51. Yes 53. $11,000
55. 2$25 59. 1 to 7 61. 11 to 5
63. 1 to 8 65. 1 to 1 67. 4 to 3

69. 3 to 2 71. }
2
7

} 73. }
1
7
2
}

Problem Set 10.5 (page 652)

1. }
1
3

} 3. }
1
2
5
} 5. }

1
3

} 7. }
1
6

} 9. }
2
3

}; }
2
7

}

11. }
2
3

}; }
2
5

} 13. }
1
5

}; }
2
7

} 15. Dependent

17. Independent 19. }
1
4

} 21. }
2
1
16
} 23. }

2
1
21
}

25. }
1
1
0
3
2

} 27. }
1
1
6
} 29. }

13
1
52
} 31. }

4
2
9
}

33. }
2
8
5
1
} 35. }

2
8
0
1
} 37. }

1
2
6
5
9

} 39. }
1
3
6
2
9

}

41. }
2
3

} 43. }
1
3

} 45. }
6
5
8
} 47. }

1
3
5
4
} 49. }

1
1
2
}

51. }
1
6

} 53. }
7
1
29
} 55. }

2
5
7
} 57. }

3
4
5
}

59. }
3
8
5
} 61. }

2
4
1
}; }

2
7

}; }
1
2
1
1
}

Problem Set 10.6 (page 659)
1. x 8 1 8x 7y 1 28x 6y 2 1 56x 5y 3 1 70x 4y 4 1 56x 3y 5 1

28x 2y 6 1 8xy 7 1 y 8

3. x 6 2 6x 5y 1 15x 4y 2 2 20x 3y 3 1 15x 2y 4 2 6xy 5 1 y 6

5. a 4 1 8a 3b 1 24a 2b 2 1 32ab 3 1 16b 4

7. x 5 2 15x 4y 1 90x 3y 2 2 270x 2y 3 1 405xy 4 2 243y 5

9. 16a 4 2 96a 3b 1 216a 2b 2 2 216ab 3 1 81b 4

11. x 10 1 5x 8y 1 10x 6y 2 1 10x 4y 3 1 5x 2y 4 1 y 5

13. 16x 8 2 32x 6y 2 1 24x 4y 4 2 8x 2y 6 1 y 8

15. x 6 1 18x 5 1 135x 4 1 540x 3 1 1215x 2 1 1458x 1 729
17. x 9 2 9x 8 1 36x 7 2 84x 6 1 126x 5 2 126x 4 1 84x 3 2

36x 2 1 9x 2 1

19. 1 1 }
4
n

} 1 }
n
6

2} 1 }
n
4

3} 1 }
n
1

4}

21. a 6 2 }
6
n
a 5

} 1 }
15
n
a
2

4

} 2 }
20
n
a
3

3

} 1 }
15
n
a
4

2

} 2 }
6
n
a
5} 1 }

n
1

6}

23. 17 1 12Ï2w 25. 843 2 589Ï2w
27. x 12 1 12x 11y 1 66x 10y 2 1 220x 9y 3

29. x 20 2 20x 19y 1 190x 18y 2 2 1140x 17y 3

31. x 28 2 28x 26y 3 1 364x 24y 6 2 2912x 22y 9

33. a 9 1 }
9
n
a 8

} 1 }
36
n
a
2

7

} 1 }
84
n
a
3

6

}

35. x 10 2 20x 9y 1 180x 8y 2 2 960x 7y 3 37. 56x 5y 3

39. 126x 5y 4 41. 189a 2b 5 43. 120x 6y 21

45. }
50

n
0
6

5
} 51. 2117 1 44i 53. 2597 2 122i

Chapter 10 Review Problem Set (page 662)
1. 720 2. 30,240 3. 150 4. 1440
5. 20 6. 525 7. 1287 8. 264
9. 74 10. 55 11. 40 12. 15

13. 60 14. 120 15. }
3
8

} 16. }
1
5
6
}

17. }
3
5
6
} 18. }

1
1
3
8
} 19. }

3
5

} 20. }
3
1
5
} 21. }

5
6
7
4
}

22. }
2
1
21
} 23. }

1
6

} 24. }
4
7

} 25. }
4
7

} 26. }
1
2
0
1
}

27. }
1
1
4
4
0
3

} 28. }
1
1
0
6
5
9

} 29. }
1
6

} 30. }
2
5
8
5
}

31. }
5
7

} 32. }
1
1
6
} 33. }

1
2

}; }
1
3

}

34. (a) }
1
9
9
} (b) }

1
9
0
} 35. (a) }

2
7

} (b) }
4
9

}

36. x 5 1 10x 4y 1 40x 3y 2 1 80x 2y 3 1 80xy 4 1 32y 5

37. x 8 2 8x 7y 1 28x 6y 2 2 56x 5y 3 1 70x 4y 4 2 56x 3y 5 1
28x 2y 6 2 8xy 7 1 y 8

38. a 8 2 12a 6b 3 1 54a 4b 6 2 108a 2b 9 1 81b 12
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39. x 6 1 }
6
n
x 5

} 1 }
1
n
5x

2

4

} 1 }
2
n
0x

3

3

} 1 }
1
n
5x

4

2

} 1 }
6
n
x
5} 1 }

n
1

6}

40. 41 2 29Ï2w 41. 2a 3 1 3a 2b 2 3ab 2 1 b 3

42. 21760x 9y 3 43. 57915a 4b 18

Chapter 10 Test (page 665)
1. 12 2. 240 3. 216 4. 270
5. 26 6. 8640 7. 20 8. 144

9. 2520 10. 350 11. }
1
1
3
8
} 12. }

1
5
6
}

13. }
5
6

} 14. }
1
7

} 15. }
2
2
3
8
} 16. }

3
4

}

17. 25 times 18. $.30 19. }
1
3
6
6
8
1

}

20. }
2
2
1
} 21. }

1
5
6
}

22. 64 2 }
19
n
2

} 1 }
2
n
4

2

0
} 2 }

1
n
6

3

0
} 1 }

6
n
0
4} 2 }

1
n
2
5} 1 }

n
1

6}

23. 243x 5 1 810x 4y 1 1080x 3y 2 1 720x 2y 3 1 240xy 4 1
32y 5

24. }
4
2
9
5
5
6

}x 4 25. 2835x 3y 4
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area A
perimeter P
length l

width w
surface area S
altitude (height) h

base b
circumference C
radius r

volume V
area of base B
slant height s

Rectangle

A 5 lw P 5 2l 1 2w

Parallelogram

A 5 bh

30°–60° Right Triangle

Right Circular Cylinder

V 5 pr2h S 5 2pr2 1 2prh

Triangle

A 5 }
1
2

}bh

Trapezoid

A 5 }
1
2

}h(b1 1 b 2)

Right Triangle

a 2 1 b 2 5 c 2

Sphere

S 5 4pr 2 V 5 }
4
3

}pr3

Square

A 5 s 2 P 5 4s

Circle

A 5 pr 2 C 5 2pr

Isosceles Right Triangle

Right Circular Cone

V 5 }
1
3

}pr 2h S 5 pr 2 1 prs

h

r

s

x

x

x√2

r

s

s
ss

r

c
b

a

h
b1

b2

h

b

r

2x
x

x√3

60°

30°

h

b

w
e

Pyramid

V 5 }
1
3

}Bh

Prism

V 5 Bh

h

BaseBase

h



Formulas

Quadratic formula: The roots of ax 2 1 bx 1 c 5 0, where a Þ 0, are 

}
2b 6 Ï

2
bw
a

2w2w 4wawcw
}.

Distance formula for 2-space: d 5 Ï(xw2w2w xw1)w2w1w (wy2w 2w yw1)w2w

Slope of a line: m 5 }
y
x

2

2

2

2

y
x

1

1
}

Midpoint of a line segment: 1}x1 1

2
x2

}, }
y1 1

2
y2

}2
Simple interest: i 5 Prt and A 5 P 1 Prt

Compound interest: A 5 P11 1 }
n
r

}2nt
and A 5 Pert

nth term of an arithmetic sequence: an 5 a1 1 (n 2 1)d

Sum of n terms of an arithmetic
sequence: Sn 5 }

n (a1

2
1 an)
}

nth term of a greometric 
sequence: an 5 a1rn21

Sum of n terms of geometric sequence: Sn 5 }
a1

r
rn

2

2

1
a1

}

Sum of infinite geometric sequence: S 5 }
1

a
2

1

r
}

Number of permutations of n things: P(n, n) 5 n!

Number of r-element permutations 
taken from a set of n elements: P(n, r) 5 n(n 2 1)(n 2 2) . . .

r factors

Number of r-element combinations 
taken from a set of n elements: C(n, r) 5 }

P(n
r!
, r)
}



    

Symbols

5 Is equal to

Þ Is not equal to

< Is approximately equal to

. Is greater than 

$ Is greater than or equal to

, Is less than

# Is less than or equal to

a , x , b a is less than x and x is less than b

0.3w4w The repeating decimal 0.343434. . .

LCD Least common denominator

{a, b} The set whose elements are a and b

{x x $ 2} The set of all x such that x is greater than

or equal to 2

[ Null set

a [ B a is an element of set B

a Ó B a is not an element of set B

A # B Set A is a subset of set B

A Ü B Set A is not a subset of set B

A > B Set intersection

A < B Set union

 x The absolute value of x

bn nth power of b

Ï
n

aw nth root of a

Ïaw Square root of a

i Imaginary unit

a 1 bi Complex number

6 Plus or minus

(a, b) Ordered pair; first component is a
and second component is b

f, g, h, etc. Names of functions

f (x) Functional value at x

f ° g The composition of functions f and g

f 21 The inverse of the function f

logb x Logarithm, to the base b, of x

ln x Natural logarithm (base e)

log x Common logarithm (base 10)

F G Two-by-three matrix

  Determinant

an nth term of a sequence

Sn Sum of n terms of a sequence

Σ
n

i51

Summation from i 5 1 to i 5 n

S∞ Infinite sum

n! n factorial

P(n, n) Permutations of n things taken n at a
time

P(n, r) Permutations of n things taken r at a
time

C(n, r) Combinations of n things taken r at a
time or r-element subsets taken from a
set of n elements

P(E) Probability of an event E

n(E) Number of elements in the 
event space E

n(S) Number of elements in the
sample space S

E´ The complement of set E

Ev Expected value

P(E F) Conditional probability of E given F

a1 b1

a2 b2

a1 b1 c1

a2 b2 c2



Equations Determining Functions

Linear function: f (x) 5 ax 1 b

Quadratic function: f (x) 5 ax 2 1 bx 1 c

Polynomial function: f (x) 5 anxn 1 an21xn21 1 . . . 1 a1x 1 a 0

Rational function: f (x) 5 }
g
h
(
(
x
x
)
)

}, where g and h are polynomial functions

Exponential function: f (x) 5 bx, where b . 0 and b Þ 1

Logarithmic function: f (x) 5 logbx, where b . 0 and b Þ 1

Multiplication Patterns

(a 1 b)2 5 a 2 1 2ab 1 b 2

(a 2 b)2 5 a 2 2 2ab 1 b 2

(a 1 b)(a 2 b) 5 a 2 2 b 2

(a 1 b)3 5 a 3 1 3a 2b 1 3ab 2 1 b 3

(a 2 b)3 5 a 3 2 3a 2b 1 3ab 2 2 b 3

(a 1 b)n 5 1}
n
0

}2an 1 1}
n
1

}2an21b 1 1}
n
2

}2an22b 2 1 . . . 1 1}
n
n

}2bn

Properties of Exponents and Radicals

bn ? bm 5 bn1m

(bn)m 5 bmn

(ab)n 5 anbn

1}
a
b

}2
n

5 }
a
b

n

n}

}
b
b

m

n

} 5 bn2m

Ïn awbw 5 Ïn awÏn bw

!n }
a
b

}§ 5

Properties of Absolute Value

 a $ 0

 a 5  2a

 a 2 b 5  b 2 a

 a 2 5  a 2 5 a 2

Properties of Logarithms

logb b 5 1

logb 1 5 0

logb rs 5 logb r 1 logb s

logb 1}
r
s

}2 5 logb r 2 logb s

logb rp 5 p(logb r)

Factoring Patterns

a 2 2 b 2 5 (a 1 b)(a 2 b)

a 3 2 b 3 5 (a 2 b)(a 2 1 ab 1 b 2)

a 3 1 b 3 5 (a 1 b)(a 2 2 ab 1 b 2)

Set Notation

5x x . a6
5x x , b6
5x a , x , b6
5x x $ a6
5x x # b6
5x a , x # b6
5x a # x , b6
5x a # x # b6

Interval Notation

(a, ∞)

(2∞, b)

(a, b)

[a, ∞)

(2∞, b]

(a, b]

[a, b)

[a, b]

Ïn aw
}
Ïn bw
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