
Creating Installation
Packages

MacWorld SF 2009
Session IT813

Creating Installation Packages
Presentation Logistics

Q&A managed with Google Moderator
http://tinyurl.com/633v6e

Sign in using your personal Google account

Find session matching IT813

Submit or vote on questions for this session

Download PDF of this presentation
Join Wireless MW09_PRESENTATION_DOWNLOAD

Open web browser for automatic redirect

Who are these guys?
About the Presenters

Dave Pooser
Alford Media Services:
Manager of Information Services

Kevin M. White
Owner: Macjutsu, Inc.

Author:
Apple Certified Training - Mac OS X Support Essentials
Apple Certified Training - Mac OS X Deployment

Creating Installation Packages
Agenda

Why Installation Packages?

General Installation Overview

Creating Basic Installation Packages

Using Automation in Installation Packages

Snapshot Installation Packages

Deploying Installation Packages

Understanding the Installation Process

Why Installation
Packages?

The future of system image creation

Building blocks for your deployment
Why Installation Packages?

Simplifies complex item deployments
for end users

Guarantees consistent deployment of
items every time

Extra-handy with open source apps
across multiple computers

Easy to track and audit after
installation

Building blocks for your deployment
Why Installation Packages?

Repackage odd-ball installers to a
consistent format

Installation is easily automated

Works with many administration tools

Cornerstone to the modular system
image creation workflow

Super easy to create with Mac OS X
10.5 PackageMaker (part of Xcode)

General Installation
Overview

Time for some definitions...

What does it all mean?
Installation Definitions

Installation Package - “single” file containing
your installation items

Installation Metapackage - contains multiple
packages, sometimes allowing the user to
choose which items are installed

PackageMaker Project - document that
describes the configuration of an installer
before it’s built

Payload - the collection of items that will be
installed by your installer package

Nothing is as it seems
Bundle-Based Packages

For systems prior to Mac OS X 10.5

Packages actually folders (bundles)

Easy to view contents from the Finder

Adds layer of complexity to
deployment because you have to place
installer package in archive container

Receipts after installation are also
bundles... more on this later

Flat is the new package
Flat Installation Packages

Only supports Mac OS X 10.5

Packages flattened to a single monolithic file
(as far as the file system knows)

Contents can be viewed with Flat Package
Editor (also part of Xcode)

Much easier to deploy when using non-
Apple storage and transfer mechanisms

Receipts after installation saved to new
receipts database... more on this later

Creating Basic
Installation Packages

Let’s build something!

Almost as easy as an “i” app
Creating Basic Installers

Organization is used to identify your
specific installation packages

Minimum Target will determine type
Mac OS X 10.5 will create flat installation package

Mac OS X 10.4 or older will create bundle-based

Simply drag-and-drop components
into the PackageMaker interface

Click Build to create your installation

Layers, like an onion
Settings Live at Each Layer

Be sure to explore settings at each
“layer” in the PackageMaker interface

“Installation Product Package” defines
settings for the installer whole

“Installation Choice” defines settings
for a specific installation payload

“Installation Component” defines
settings for a specific set of items

Make the installer your own
Important Customizations

Check Requirements to ensure the
payload items are appropriate

Check Choice States if you want to
manage what the user can choose

Check Contents for proper permissions

Use the WYSIWYG interface editor to
customize the user’s experience

Using Automation in
Installer Packages

Power to the packages!

Creating Installation Packages
Automation Basics

Basic pre and post install Actions are
defined similar to Automator Actions

Any scripts can be defined at:
PreInstall and PostInstall

Preflight and Postflight (bundle only)

Preupgrade and Postupgrade (bundle only)

Per individual component (Flat only)

“Payload-free” installers are possible

Script it... script it good
Scripting Details

Use any shell scripting language you prefer
just avoid dependencies

Always use absolute paths and/or variables:
$1 - The full path to the installation package being
installed; /Volumes/Projects/Testing/PackageName.pkg

$2 - The full path to the installation target destination;
/Applications/Utilities

$3 - The mount point of the destination volume; / or
/Volumes/External_Disk

$4 - The root folder for the current system, that is, /

Snapshot Installation
Packages

Making packages for the lazy

Some third-party software required
“Snapshots” in Tiger

logGen (Thanks, U of Michigan!)
Run before install to create a baseline image

Run after install to find differences

Output to a text file - will need some cleanup

PackageDitto
Simple shell script that creates a PackageRoot
from text file

PackageMaker - use PackageRoot

Insert “Apple Magic” here
PackageMaker Snapshots

Mac OS X 10.5 PackageMaker can
automatically create packages based on
changes to the file system

Leverages fsevents framework so no
laborious pre-scanning required

Incredibly useful for repackaging those
nasty third-party installers

Aside: Check out fseventer and fslogger

Understanding the
Installation Process

Don’t take candy from a stranger’s installer

What’s in there anyhow
How to Inspect an Installer

The Installer application will show the
content for most installations

Manually explore the contents
Bill of Materials (.bom) file contains payload list
$ lsbom –p UGMsF path_to_archive.bom

Payload can be decompressed in the Finder

Scripts live in the Resources folder

Expand any flat packages with
$ pkgutil --expand name.pkg destination

Use the fabulous Pacifist utility

Every installer leaves a trail
Installation Receipts

Bundle-based installation packages
Receipt in /Library/Receipts

.bom files stored within the receipt .pkg

Other resources stored within the receipt .pkg

Flat installation packages
Receipt data stored in receipt database

List receipts with $ pkgutil --pkgs

.bom files also stored in /Libary/Receipts/boms

$ lsbom –p UGMsF path_to_archive.bom

How to really “reinstall”
Installation Mainteneance

Remove the receipt to reinstall!

Bundle-based installation packages: simply
delete the receipt package

Flat installation packages:
$ sudo pkgutil --forget package-id

Repair Permissions ONLY WORKS with
certain Apple items... don’t believe me?

$ diskutil repairPermissions /

$ /usr/libexec/repair_packages --list-standard-pkgs

Deploying Installation
Packages

This is the whole point, after all

This is the whole point, after all
Deploying Install Packages

A primary reason to create an
installation package is to facilitate
user-based deployment

Apple Remote Desktop 3 is a great
package deployment tool, especially
when using a Task Server

Caches installation packages to be deployed

Automatically installs when client available

This is the whole point, after all
Deploying Install Packages

As part of your System Image... IT823

Third-party System Management suites
JAMF Casper

FileWave

LANrev

LANDesk

PUPPET

Creating Installation Packages
Presentation Logistics

Q&A managed with Google Moderator
http://tinyurl.com/633v6e

Sign in using your personal Google account

Find session matching IT813

Submit or vote on questions for this session

Download PDF of this presentation
Join Wireless MW09_PRESENTATION_DOWNLOAD

Open web browser for automatic redirect

Creating Installation
Packages

MacWorld SF 2009
Session IT813

