Building enterprise-class and virtually fail-safe database services on the Mac

Session: IT864

Carlton Doe cdoe@us.ibm.com

- Definition of terms
- A deeper look and hands-on demonstrations
 - Data replication -- business continuity
 - Data distribution -- full or partial copies
- Review and Summary

Download Session Presentations

http://macpres09.shownets.net

- All registered conference attendees can go to to access the presentations for sessions they want to download. Each conference program will have a folder, with the corresponding presentations included that speakers have posted.
 - Please refer to the sign outside the conference room if you need information about the Conference Name & Session Number.

Q&A – MacIT® Conference

We are using Google Moderator to take questions for this session.

- Go to http://tinyurl.com/633v6e
- Pick the topic# IT864
- Sign in using a Google Account:
 - User Name: macworldexpo09
 - Password: macworld09
- Submit the questions you want to ask
- Vote on others' questions you want answered

- High availability computing aka HA
 - Online capability or availability of components in a computer system including
 - Hardware (CPU, memory, disk, backplane etc)
 - Software (O/S, utilities, applications)
- Is NOT a fault tolerant system (FT)
- Is NOT a continuous availability system (CA)

- A Continuous Availability (CA) system
 - A system that is rarely ever unavailable due to planned outages or other reasons
- Is built using high availability (HA) components
 - Specifically designed to protect against single-point-of-failure (SPoF) conditions
- Is NOT a fault tolerant (FT) system

- A Fault Tolerant system (FT) uses
 - Hot standby as well as near-line standby hardware duplicates
 - Software (to a degree)

to survive a component or service failure

 Result is a system that is highly available and should be continuously available

- A Disaster Recovery system (DR) uses
 - Warm standby hardware duplicates
 - Software

to survive a component or service failure

- Focus is preserving the ability to do business after some sort of a massive outage
 - Copies are usually NOT maintained in real-time
- Is NOT CA, HA or FT oriented

- The creation of HA, CA, DR or FT system is an exercise in risk vs reward
 - Focused on identifying and protecting against single-points-of-failure (SPoF)
 - Cost is often the major driving factor
 - To protect
 - Risk of not protecting

- Examples:
 - Disk
 - RAID
 - Disk to server connections
 - Enclosures

- Examples (cont):
 - Servers
 - Redundant internal (idle) components
 - Redundant copies

- Examples (cont):
 - Power
 - •UPS
 - Redundant internal circuits
 - Generator
 - •fuel??
 - Redundant external grid feeds

How does this apply to data services?

- No different than the hardware systems discussed so far
 - Focus in this case is in the database engine aka "data server"
 - Use its HA *and non-HA* technology to build a FT system than can become CA

How does this apply to data services?

- The key is the data server and the features, functionality, flexibility and ease of use it provides to build the HA/FT/CA system you want!
 - Does it provide:
 - Data distribution?
 - HA data replication?
 - Are they mutually exclusive?
 - Does it scale to handle total data size, transaction volume, transaction size?
 - How easy is it to design, instantiate, monitor and repair?
 - A "real" Enterprise-class system should be able to provide this functionality rather than requiring thirdparty components

A deeper look and hands-on demonstrations

In two parts

Data Replication --Continuous availability and business continuity

- Guiding principle: multiple copies of a whole single version of the truth
 - Maintained in real-time
 - Data server driven (no application code)
 - Is data server instance oriented
 - All databases, all objects
 - One to N levels of immediate and promotable fail-over protection
 - Can also provide other business value such as load balancing but not the primary objective

- Focuses on data server SPoF conditions to provide "always-on" capability
- One or more <u>full copies</u> of primary data server for transaction processing failover
 - Synchronous communication to immediate failover nodes
 - Asynchronous to promotable nodes with guaranteed data synch
- Flexible server types
 - Can provide protection against different SPoFs
 - Disk
 - Server
 - Network
 - Location

- Can support active/active updates
 - full application support anywhere in the cluster
 - no code changes required to deploy
- Integrated, not add-on
- Compatible and interoperable with data distribution technology
- Can provide secure data communication between servers

Disk Mirroring

- Technology: disk mirroring
- Data server can create and maintain mirrors of storage objects
 - Protects against the most common type of data server failure
 - Transaction committed after both writes occur
 - Data server can leverage both copies for split read / write operations
 - integrated, not add-on
- Is CA oriented

Continuous Log Restore

- Technology: Continuous Log Restore server (CLR)
- Is DR oriented
 - Primary replicates groups of transactions to one or more secondaries
 - Delayed capture and apply
- Secondary data server can be on or off-line
 - Use existing but less powerful hardware or servers primarily tasked to a different operation
 - If activated, WILL require recreating some processed data not captured from primary

- Technology: Continuous Log Restore server (CLR)
- Deployment scenario: intermittent network connection
 - Server locations lack a consistently available network
 - Business still wants a stand-by copy of transactions
- Transaction record blocks transmitted via FTP or other mechanism when connectivity exists
 - Can either be applied to secondary or stored

- Technology: Continuous Log Restore server (CLR)
- Deployment scenario: lack of hardware for dedicated HA/CA server
 - Business can not afford to buy separate servers / disk for secondary server(s)
 - Business still wants a stand-by copy of transactions
- Can install / configure data server on existing hardware
 - Data Server is not turned on
 - Blocks of transaction records transmitted from primary and stored on secondary
 - In a failure condition, secondary is activated, transaction blocks applied and limited data services is available
 - Better than nothing at all

HA Server

- Technology: HA server
- Is HA oriented
 - Primary replicated to a single secondary
 - Secondary can be read-only mode OR read/ write
- Transaction not committed until change is on the secondary as well
- Secondary could automatically assume primary responsibilities if a failure occurred
- Requires uninterrupted, low latency network connection

Secondary server e.g. Nivelles, Belgium

- Technology: HA server
- Deployment scenario: protection against disk or server failure
 - Secondary must be relatively close to primary
- Secondary use -- separation of applications
 - separate read intensive from write-oriented

- Technology: HA server
- Deployment scenario: protection against disk or server failure
 - Secondary must be relatively close to primary
- Secondary use -- separation of applications
 - separate read intensive from write-oriented

Remote Standalone Server

- Technology: Remote Standalone Server (RSS)
- Similar to HA server :
 - Maintains a full disk copy of the database
 - Can be used for report processing OR full application load
 - depends on data currency needs
- Distinct from HA server:
 - Uses full duplex communication better throughput over slower lines or over longer distances
 - Can not be directly 'promoted' to primary but can be promoted to HA server – FOR DISASTER RECOVERY (DR), not HA
 - There can be any number of RSS instances
- RSS can be used in combination with HA server
 - RSS can be promoted into HA server
 - HA server can be demoted into RSS

- Technology: Remote Standalone Server (RSS)
- Deployment scenario: bunker backup
 - Using HA server but want an additional backup in case both the primary and the secondary are lost
 - Located in a CA site

- Technology: Remote Standalone Server (RSS)
- Deployment scenario: poor network latency
 - Throughput tests indicate excessive transport times for an HA server
 - Asynch communication eliminates performance impact on the primary

- Technology: Remote Standalone Server (RSS)
- Deployment scenario: backup to the backup (1:N)
 - Automatic (or manual) promotion so there is always an HA server protecting the primary

- Technology: Remote Standalone Server (RSS)
- Deployment scenario: backup to the backup (1:N)
 - Automatic (or manual) promotion so there is always an HA server protecting the primary

- Technology: Remote Standalone Server (RSS)
- Deployment scenario: disaster recovery (DR) protection
 - Geographically distributed servers to protect against site or system failure
 - Secondary use -- application load balancing

Shared Disk Secondary

- Technology -- Shared Disk Server (SDS)
- •HA server built using single set of shared disk
 - CA and HA oriented
 - Can act as an immediate fail-over

- Technology -- Shared Disk Server (SDS)
- Deployment scenario -- HA protection against server failure
 - Doesn't require an equivalent investment in storage

- Technology -- Shared Disk Server (SDS)
- Deployment scenario -- HA protection against server failure
 - Doesn't require an equivalent investment in storage

- Technology -- Shared Disk Server (SDS)
- Deployment scenario -- compute intensive application balancing
 - Distribute low to average read/write activity but heavy calculation overhead

Location A fails

Location B fails

Location C fails

Location C fails

Boston

Austin

Plano

End of part 1, data replication

Data Distribution --Full or selective copies over one or more topologies

- Guiding principle is data distribution throughout the company or enterprise. Will call it Enterprise
 Replication (ER)
 - Data server driven (no application code)
 - Is <u>data object</u> driven
 - Defined via SQL at the column, row, table or database level
 - Can be selective within
 - Can mix and match as needed

- Enterprise data distribution
 - Designed for active/active use
 - Very low latency
 - Synchronize regional and enterprise data
- Flexible scalability
 - Subset of data
 - Local data design
- Integrated, not add-on
- Compatible with other data server availability solutions
- Can provide secure data communication between servers

The three "Ws" - What? Where? When?

Nodes share more with closest nodes, less with nodes farther away

Hierarchical - Push down, consolidate up

- Scenario: Point-to-Point
- Is a DR, NOT an HA solution
 - It replicates data AFTER it's been committed, not as part of the transaction
 - Can be configured to be a "close enough" option though
 - All work replicated
 - Target instance acts as a "very, very warm" stand by
 - Less than 1 minute latency depending on transaction volume, size and network considerations
 - Target available for reporting

- Scenario: Share Everything for Application Load-Balancing
- E-commerce site
 - Need to distribute data services load
 - Servers are located throughout the geographic service area
 - Customers can connect anywhere and complete transactions
 - Identical and <u>independent</u> data model and data across all data servers
- Is a "Close enough" solution
 - Data replicated after transaction
 - variability in moment-in-time absolute counts
 - Different sites would have different order number sequences
- Easily set up and administered
 - Check and/or resync data with one command

- Scenario: Fan-out Distribution
- Financial Institution
 - Using large Operational Data Store
 - Collects transactional information
 - Common data from disparate systems
 - High volume of small transactions
- ER used to extract data from ODS
 - SQL based selection of data for replication
- One or many targets
 - Other operational systems
 - Mart sized databases for BI queries
 - Geographical and business divisions defined by use cases
- Easily administered

- Scenario: Fan-in for Consolidation
- World-wide drug testing company
 - Running clinical trials for different universities, pharmaceutical companies, researchers
- Conducting tests in remote areas, in areas where diseases occur – result in limited hardware and connectivity
- Data collected and aggregated into a composite view of testing, results
- Information obscured to protect identities of patients / participants to meet legal requirements
- Data-based research is conducted on complete, worldwide view of results

Repository

- Scenario: Fan-out and Fan-out (once the trial information is gathered)
- Data is disseminated in controlled fashion to
 - Doctors
 - Hospitals
 - Pharmaceutical Companies
 - Federal Reporting NIH and FDA
- Data is further refined to remove location, participants, and affiliate specific information
- Dissemination tends to be aggregated
- Grouping by affiliation becomes more important than time

<u>Different targets can require different</u> <u>columns be included and removed</u>

You can combine Enterprise Replication and HA/DR technologies together

 You can combine Enterprise Replication and HA/DR technologies together

 You can combine Enterprise Replication and HA/DR technologies together

Review and Summary

Review - Data Replication Characteristics

- Focuses on data server SPoF conditions to provide "always-on" capability
- One or more <u>full copies</u> of primary data server for transaction processing failover
 - Synchronous communication to immediate failover nodes
 - Asynchronous to promotable nodes with guaranteed data synch
- Flexible server types
 - Can provide protection against different SPoFs
 - Disk
 - Server
 - Network
 - Location

Review - Data Replication Characteristics

- Can support active/active updates
 - full application support anywhere in the cluster
 - no code changes required to deploy
- Integrated, not add-on
- Compatible and interoperable with data distribution technology
- Can provide secure data communication between servers

Review - Data Distribution Characteristics

- Asynchronous data replication
 - You define the interval when data is place on the outbound queues
 - Does not require specialized hardware or networking infrastructure
- Provides transaction consistency
 - Data to be replicated is stored in stable queues for transfer to defined targets
- Uses transaction log discovery for data to be transferred
 - Eliminates conflict with transaction processing

Review - Data Distribution Characteristics

- Flexible
 - You can define the granularity of data to be replicated
 - You can define the sources and targets of replication
 - Is heterogeneous in terms of platform and data server version support within a cluster
 - All supported O/S ports can replicate to each other
 - All current versions of the data server can replicate to / from each other
- Easy to administer
 - Centralized administration through Master Replicates, templates, remote connections and more

Review - Data Distribution Characteristics

- Allows for minimal downtime in critical applications
 - Uptime of Overall system is in 99.999%
- Provides for rolling upgrades
 - Updates to application performed on target
 - Access redirected to target, becomes new source
 - Initial source is updated and synched with new source
 - Source / target either reversed or left as is
- Complies with stringent Service Level Agreements
 - Definition dependent
 - If the local server is unavailable, a replicated copy of the data may be accessed through a remote server.

Summary

• What's the right answer for you and your environment?

Summary

- What's the right answer for you and your environment?
 - It depends!!!
 - What is/are your most important business needs?
 - How much time are you prepared to invest in identifying potential SPoFs?
 - How much time and money are you willing to invest to mitigate against those SPoFs vs the risk of not taking any action?

Summary

- Enterprise Replication gives you
 - Flexibility and options
 - Support for multiple O/S's within the cluster
 - Different data distribution topologies
 - Support for multiple data server versions
 - Downside
 - More complicated to set up and administer
- Data Replication server gives you
 - Simplicity
 - Complete copy in one operation
 - Better transactional security
 - Simpler administration and maintenance
 - Downside
 - No options, it's all or nothing but can provide multiple layers
 - Homogeneous

Where can you get more information?

• The software:

- http://www-01.ibm.com/software/data/informix/mac/ OR
- http://www.apple.com/downloads/macosx/development_tools/ ibminformixdynamicserverdeveloperedition.html

• Quick start guide:

http://www.xmission.com/~dbaresrc/Intro_IDS_on_Mac_v3.pdf

• Application development talk:

http://www.ibm.com/developerworks/db2/events/macosx.html

• Excellent book on using the data server:

Administering Informix Dynamic Server, Building the Foundation
ISBN-10: 158347076X ISBN-13: 978-1583470763

Questions??

Thank you!

Session: IT864 Carlton Doe cdoe@us.ibm.com

http://macpres09.shownets.net