
Top Tools for Admins

MacRetreats 2005

Scott M. Neal
Senseption

Goal of Session

• Empower non-programmers to utilize
developer tools to solve problems
• Develop a clear understanding of OS X’s

primary configuration file format: Property Lists
• Utilize existing command-line tools with a GUI

that YOU develop
• Automate repeated tasks that would normally

be boring and prone to error
• More spare time for you!

• This session is designed with walk-through
examples for you to follow
• Hopefully you’ve already installed the developer

tools!

Developer Tools will
Improve Our Lives

• Problems we will solve today with
Developer Tools
• Property Lists and User Defaults editing
• Creating Repeated tasks using launchd
• Prettying-up shell scripts and commands by

adding a GUI
• Automating menial tasks

Developing on OS X

• Cocoa
• Interface Builder

• Carbon
• Interface Builder

• WebObjects
• EOModeler
• WebObjectsBuilder

• Pure Java
• BSD-compliant UNIX code

• command-line compilers
• X11

Developing on OS X:
Tools in this Session

• Applescript
• Script Editor

• Applescript Studio
• Interface Builder

• Automator
• Automator (from the department of redundancy

department)

XCode

• Development environment provided with
OS X Developer Tools

• Provides templates for projects
• Initial configuration files
• Organized structure that is project type-specific
• VERY configurable

Property Lists & Defaults

• Configuration information for processes
needs to be stored somewhere

• Apple developed the Property List (aka
plist) Format to provide a consistent way to
store information
• Not ALL configuration information is stored in

plist format

• Property Lists provide the backbone for
the Defaults Preference infrastructure

Property Lists & Defaults

• Keys are specific to each process and
define configuration options for that
process, such as
• Default new window location and size
• File location/path
• the sky is the limit...

• Modifying Property Lists and the Defaults
system gives YOU control over the
operation of processes

• Great for troubleshooting/debugging
• “Trashing the preferences” (which really should

be “Renaming the preferences”)

Property Lists

• Property Lists are Key-Value storage
mechanisms
• If a process needs to store a value for a default,

it provides a key for identification and a value for
that key

• Values can belong to different Value Classes
• String
• Number
• Boolean
• Date
• Array
• Dictionary
• Data

Property List Formats
• There are currently 3 Property List file

formats:
• XML
• ASCII (NeXT-style)
• Binary

• Property Lists are stored with the file
extension .plist

• The Property list infrastructure can read/
write all 3 formats
• Humans can read/write the first 2 formats
• Binary format human-unreadable, but is parsed

MUCH faster by the OS
• faster booting
• faster application launching

Property List Formats:
XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>AppendAMPM</key>
 <true/>
 <key>ClockDigital</key>
 <integer>1</integer>
 <key>ClockEnabled</key>
 <true/>
 <key>ClockLocation</key>
 <integer>0</integer>
 <key>DisplaySeconds</key>
 <false/>
 <key>FlashSeparators</key>
 <false/>
 <key>LastSavedGlobalTimeString</key>
 <string>h:mm:ss a</string>
 <key>PreferencesVersion</key>
 <integer>2</integer>
 <key>ShowDay</key>
 <true/>
 <key>Transparency</key>
 <real>0.80000001192092896</real>
 <key>Use24HourClock</key>
 <false/>
</dict>
</plist>

Property List Formats:
ASCII/NeXT

{
 AppendAMPM = 1;
 ClockDigital = 1;
 ClockEnabled = 1;
 ClockLocation = 0;
 DisplaySeconds = 0;
 FlashSeparators = 0;
 LastSavedGlobalTimeString = "h:mm:ss a";
 PreferencesVersion = 2;
 ShowDay = 1;
 Transparency = 0.800000011920929;
 Use24HourClock = 0;
}

Property List Formats:
Binary

bplist00?

_FlashSeparators_PreferencesVersionWShowDay\ClockDigitalZAppendAMPM\ClockEnabled^
DisplaySeconds_LastSavedGlobalTimeString]ClockLocation\Transparency^Use24HourClock
Yh:mm:ss a#?陙1FN[fs????????????

Editing Property Lists

• Text Editor/command-line text editors
• Doesn’t work with Binary (unless converted,

which we will soon see how to do)

• Property List Editor
• Located in /Developer/Applications/Utilities
• NOT installed by default on OS X or OS X

Server
• Really should be...
• Until it is, good thing we’re here now!

Converting from one
plist format to another

• “Save To” option of Property List Editor
• command-line plutil tool

Property Lists:
Summary

• YOU are now empowered to edit property
list files directly
• double-edged sword: you can also SCREW UP a

process’ configuration, making your process (or
even entire machine) unusable

• Comes in handy for troubleshooting, especially
in single user mode

• Any Questions?

Property Lists Locations

• OS X has a standard hierarchical resource
search policy (for Fonts, etc.):
~/Library/*
/Library/*
/Network/Library/* (if it exists)
/System/Library/*

• Property Lists are NOT searched
hierarchically and can be stored
ANYWHERE, including:
• /etc/*
• Application Bundles
• Preferences (but where?)

Preferences: Defaults
Infrastructure

• OS X has a mechanism called Defaults that
is a “portal” into the Preferences plist
system for processes
• It does NOT incorporate EVERY plist on the

system (phew!), only the ones dedicated to
preferences

• Processes themselves don’t need to understand
how to read/write or find plist files, they use the
Defaults infrastructure

• Your scripts can leverage this infrastucture and
be able to save their own preferences!

Defaults Infrastructure

• Location of Preference files:
• ~/Library/Preferences
• /Library/Preferences
• /var/root/Library/Preferences

• Most files in these folders are in plist format
• Note that some files in */Preferences are NOT

plist format
• These will not be accessible through the

Defaults system, but are read directly by the
process that owns that preference

Defaults Domains

• Preferences in the Defaults system are
organized by domain (and, optionally, host)
• Typically correspond to individual applications/

processes

• Nomenclature for these domains typically
(not always) follows Java reverse-FQDN
syntax WITHOUT the .plist extension
• Prevents namespace collisions
• Examples:

com.apple.menubar.clock
loginwindow

Accessing Defaults

• Defaults are accessed using the CLI tool
defaults
• When only a Domain is specified, defaults

searches ~/Library/Preferences for a plist file
matching the Domain argument with .plist
appended

• Example:
defaults read com.apple.menubar.clock

• Note that output from defaults is in ASCII/
NeXT format, independent of the plist
format itself (Binary, XML, or ASCII/NeXT)

• VERY useful in automation and scripting!

Reading/Writing Values
for Specific Keys

• A specific key can be read using the same
defaults tool
• Example:
defaults read com.apple.menubar.clock
ClockEnabled

• A key’s value can be modified:
• Example:
defaults write com.apple.menubar.clock
ClockEnabled 0

Other Defaults
Domains

• NSGlobalDomain
• Used for default shared key-value combos, not

process or domain-specific
• Can use -g instead of specifying

NSGlobalDomain
• Example:
defaults read NSGlobalDomain
AppleMiniaturizeOnDoubleClick
defaults read -g
AppleMiniaturizeOnDoubleClick

Other Defaults
Domains (cont.)

• A full path to a .plist file (minus the .plist
extension) can be specified as a domain
• Example:
defaults read /Library/Preferences/
.GlobalPreferences

• Take a look at the Domains available in
each of the Preference file locations:
• ~/Library/Preferences
• /Library/Preferences
• /var/root/Library/Preferences

Specifying a Host with
Defaults

• The ByHost folder seen in some of the
previous Preference locations stores host-
specific information
• Useful for processes that utilize more than one

host, and want to have host-specific preferences

• You may specify a hostname as either a
MAC (IP) address or -currentHost

• Examples:
defaults -currentHost read
com.apple.networkConnect

defaults -host 000a95a92943 read

Where is the .plist for
NSGlobalDomain?

~/Library/Preferences/
ByHost.GlobalPreferences.MacAddress
.plist
• This is an FYI, since you really should be

using defaults to edit the global data (it’s
MUCH easier!)

Defaults (Summary)

• Preferences are managed through the
Defaults infrastructure, and stored in plist
files in specific Domains

• You can leverage the defaults command
to read/write pre-existing domains

• You can also use defaults to create/read/
write/delete preferences on-the-fly
• Even scripts you write or leverage can have

saved preferences--sure comes in handy for
automating workflows!

• Any questions?

launchd

• The launchd daemon process is new to
OS X Tiger, and replaces MANY previous
processes and methods that controlled the
launch of processes:
• rc files
• init
• inetd/xinetd
• SystemStarter

• launchd is controlled via Property Lists
and commands that load/unload those plists

launchd.plist

• The plist files that control launchd are
stored in one of the following places:
• ~/Library/Launch{Agents,Daemons}
• /Library/Launch{Agents,Daemons}
• /System/Library/Launch{Agents,Daemons}

• Like any plist, the files consists of a set of
Keys-Values that define properties
• You set the right keys to the right values, and

YOU become the boss!

launchd.plist
Mandatory Keys

• Label
• A unique identifier for this process

• Program
• Absolute path to the executable file which

launches the process
• optional if ProgramArguments specifies launch

path
• ProgramArguments

• An array of arguments for the process

launchd.plist
Some Optional Keys

• UserName
• The username under which the process should

run
• RootDirectory

• A directory that will be the root directory for
the process (using chroot)

• WatchPaths
• A list of paths that, when modified, will cause the

process to launch (if not already launched)
• StartInterval

• An interval in seconds specifying how often the
process should be started

• StandardCalendarInterval
• A specification of a repeated calendar interval

launchctl

• Used to load/unload launchd.plist files into
the launchd system

• Must be run as root (usually with sudo)
• Example:

sudo launchctl load ~/Library/
LaunchAgents/com.apple.TextEdit.plist

sudo launchctl unload ~/Library/
LaunchAgents/com.apple.TextEdit.plist

Walk-Through:
TextEdit

• We are going to create a simple plist file for
TextEdit to ensure that it is always running

launchd (Summary)

• We have only scratched the surface of
launchd here
• Please consult online documentation and the

man pages for launchd, launchd.plist,
launchctl, etc.

• Any Questions?

AppleScript

• One of the (if not THE) easiest scripting
languages to learn

• Syntax is flexible, and punctuation is not as
necessary (semi-colons and braces and
back ticks OH MY!)

• AppleScript can easily call Unix scripts or
programs (this bullet is what your English
teacher would call “foreshadowing”)

• Unix scripts and programs can easily call
AppleScripts through the Open Scripting
Architecture (OSA)

Apple Events

• Apple Events are commands that are sent
to an application

• MANY applications AppleScript-able
through Apple Events

• Apple Events are defined for each Apple
Event-compatible application
• Standard Suite
• Application-specific

• Use Script Editor to see what Apple Events
an application supports

AppleScript Example

tell application "Finder"
set finderWins to (every Finder window)
repeat with w in finderWins
set finderWindowName to name of w
display dialog finderWindowName

end repeat
end tell

ScriptEditor Record
Mode

• Will record your actions and create
AppleScript commands from them!

• Great for creating a template script that
you can modify/addend

• Limited by what events the application
provides for recording
• It often seems like the ONE THING you need is

missing

Bringing Executables
into AppleScript

• So how can we incorporate programs that
don’t respond to Apple Events into our
flow?

• How can we make applications that only
run in the Terminal (referred to as Tools by
Apple, rather than Applications) be double-
clickable for neophyte, Terminal-phobic
users?

AppleScript Example

property command : "ls "

set x to display dialog "Enter path to
show listing" default answer "" buttons
{"Cancel", "Show Me!"} default button
"Show Me!"
if button returned of x is "Show Me!" then

try
set filePath to text returned of x
set output to do shell script command
& filePath
display dialog output

end try
end if

Running AppleScripts
from Unix scripts

• Use osascript command
• OSA stands for Open Scripting

Architecture
• There is an OSA-compatible implementation of

JavaScript
http://www.latenightsw.com/freeware/JavaScriptOSA/

• So why is this cool...?
• Answer: UNIX scripts can now ALSO access

AppleEvent-supported applications
• Quicktime compression
• Adobe CS
• etc.

AppleScript Droplets

• AppleScripts can be written as Droplets,
which allow things to be “dropped” onto
them

• Dialogs can then be optional, and the script
will operate on all files/folders dropped
onto it

• Great for workflow automation

AppleScript Studio:
Adding a GUI

• We have seen how to make AppleScripts
communicate with pre-existing programs

• Wouldn’t it be COOL if we could use
Apple Developer Tools to put a fancy GUI
in front of command-line tools?

• We can leverage the same Interface Builder
that is used to develop Cocoa apps for
AppleScripts

AppleScript &
A.S. Studio Summary

• Intuitive, syntax-friendly scripting language
• Part of DNA of OS X

• Apple Events
• Droplets

• AppleScript Studio bring power of full-
powered GUI to your scripts without ANY
programming (just connect-the-dots)

• Any Questions?

Automator

• Brand-new to Tiger
• Connects applications together in a

workflow without ANY scripting/
programming
• Notice the icon, and how it is “pipe-ing” :-)

Automator

• Automator Actions not directly correlated
with Apple Events
• Automator actions are added by “real”

programmers to the applications so that other
can use them (as are Apple Events, but in a
different way)
• Automator Actions can be written as Apple Scripts

• Only a small subset of Apple Events have made it
to Automator Actions right now (but this will
change)

• In Automator’s current defense, there are some
things in Automator that would be a pain to do
in AppleScript

Automator (summary)

• Automator is destined to be a VERY
important part of OS X
• Still in embryonic/newborn stage right now
• VERY good support infrastructure exists already

in the community
• If you find Automator limiting right now, be

patient, this is going to be HUGE

• Any Questions?

Synopsis
• Even non-programmers have the power to

harness developer tools
• You can use Property List Editor to

• Edit process’ properties
• Control the launching of applications with

launchd

• You can use the Preference Defaults system
for troubleshooting and control

• You can create scripts/programs (or get
them off the Internet!) and add fancy GUIs
to them with AppleScript Studio

• You can automate workflows with
Automator

Resources
• Install the Developer tools!

• Tiger DVD
• Download: http://developer.apple.com/

• Get ADC membership (Online membership is free)

• Property List Editor and the Defaults
Preferences System
• man pages

• launchd
• AFP548: http://www.afp548.com/article.php?

story=20050620071558293
• man pages
• http://developer.apple.com/macosx/launchd.html
• Peachpit Unix book: Unix for Mac OS X 10.4

Tiger: Visual QuickPro Guide, 2nd Edition

Resources

• Applescript and Applescript Studio
• /Developer/ADC Reference Library/

documentation/AppleScript/Conceptual/*
• http://www.apple.com/applescript/resources/
• http://www.apple.com/applescript/studio/
• O’Reilly Books

• Automator
• http://www.apple.com/automator
• http://www.automatorworld.com
• http://www.automator.us/resources.html

Top Tools for Admins

Thank You!

Scott M. Neal
Senseption

MacRetreats 2005

