Top Tools for Admins

MacRetreats 2005

Scott M. Neal

Senseption




Goal of Session

® Empower non-programmers to utilize

developer tools to solve problems

® Develop a clear understanding of OS X’s
primary configuration file format: Property Lists

® Utilize existing command-line tools with a GUI
that YOU develop

® Automate repeated tasks that would normally
be boring and prone to error

® More spare time for you!
® This session is designed with walk-through

examples for you to follow

® Hopefully you've already installed the developer
tools!




Developer Tools will
Improve Our Lives

® Problems we will solve today with
Developer Tools
® Property Lists and User Defaults editing
® Creating Repeated tasks using 1aunchd

® Prettying-up shell scripts and commands by
adding a GUI

® Automating menial tasks




Daf .Oping on

-.0a
1terface Builder

irbon
nterface Builder

ebObjects
OModel-
‘ebO’ uilder

apliant UNIX code

line compilers




Developing on OS X:
Tools in this Session

® Applescript
® Script Editor

® Applescript Studio
® |nterface Builder

® Automator

® Automator (from the department of redundancy
department)




XCode

® Development environment provided with
OS X Developer Tools

® Provides templates for projects
® |nitial configuration files

® Organized structure that is project type-specific
® VERY configurable




Property Lists & Defaults

® Configuration information for processes
heeds to be stored somewhere

® Apple developed the Property List (aka
plist) Format to provide a consistent way to
store information

® NotALL configuration information is stored in
plist format

® Property Lists provide the backbone for
the Defaults Preference infrastructure




Property Lists & Defaults

® Keys are specific to each process and
define configuration options for that
process, such as
® Default new window location and size
® File location/path
® the sky is the limit...

® Modifying Property Lists and the Defaults
system gives YOU control over the
operation of processes

® Great for troubleshooting/debugging

® “Trashing the preferences” (which really should
be “Renaming the preferences’)




Property Lists

® Property Lists are Key-Value storage
mechanisms

® |f a process needs to store a value for a default,

it provides a key for identification and a value for
that key

® Values can belong to different Value Classes
String
Number
Boolean
Date
Array
Dictionary
Data




Property List Formats

® There are currently 3 Property List file
formats:
o XML
® ASCIl (NeXT-style)
® Binary

® Property Lists are stored with the file
extension .plist

® The Property list infrastructure can read/
write all 3 formats

® Humans can read/write the first 2 formats

® Binary format human-unreadable, but is parsed
MUCH faster by the OS
® faster booting
® faster application launching




Property List Formats:
XML

<?xml version="1.0" encoding="UTF-8"?>
%Apple Computer//DTD PLIST [.0//EN" "http://www.apple.com/

<IDOCTYPE Jc:>lisjc PUBLIC -
DTDs/PropertyList-1.0.dtd
<plist version="1.0">
<dict>
<key>AppendAMPM</key>
<true/>
<key>ClockDigital</key>
<integer>|</integer>
<key>ClockEnabled</key>
<true/>
<key>ClockLocation</key>
<integer>0</integer>
<key>DisplaySeconds</key>
<false/>
<key>FlashSeparators</key>
<false/>
<key>LastSavedGlobalTimeString</key>
<string>h:mm:ss a</string>
<key>PreferencesVersion</key>
<integer>2</integer>
<key>ShowDay</key>
<true/>
<key>Transparency</key>
<real>0.80000001192092896</real>
<key>Use24HourClock</key>
<false/>
</dict>
</plist>




Property List Formats:
ASCII/NeXT

CppendAMPl"I = |;

lockDigital = |;

CIockEnabIed = I

ClocklLocation = O
DisplaySeconds = 0;
FlashSeparators = 0;
LastSavedGIobaITlmeStrlng = "h:mm:ss a";
PreferencesVersion = 2;

ShowDay = [;

Transparency = 0.80000001 1920929;
Use24HourClock = 0;




Property List Formats:
Binary

bplist00?

FIashSeparators Preferen rsionYVShowDay\ClockDigitalZApp endAMPM\CIockEnabIed"
Yfgsm?r)\l sic:#%%l astS ave ITlmeStrlng]CIockLocatlon Transparency Use24HourClock




Editing Property Lists

® Jext Editor/command-line text editors

® Doesn’t work with Binary (unless converted,
which we will soon see how to do)

® Property List Editor

® | ocated in /Developer/Applications/Urtilities
® NOT installed by default on OS X or OS X
Server

® Really should be...
® Until it is, good thing we're here now!




Converting from one
plist format to another

® “Save To” option of Property List Editor
® command-line plutil tool




Property Lists:
Summary

® YOU are now empowered to edit property
list files directly

® double-edged sword: you can also SCREW UP a
process’ configuration, making your process (or
even entire machine) unusable

® Comes in handy for troubleshooting, especially
in single user mode

® Any Questions!?




Property Lists Locations

® OS X has a standard hierarchical resource
search policy (for Fonts, etc.):
~/Library/*
/Library/*
/Network/Library/* (if it exists)
/System/Library/*

® Property Lists are NOT searched
hierarchically and can be stored
ANYWHERE, including:
® /etc/*

® Application Bundles
® Preferences (but where?)




Preferences: Defaults
Infrastructure

® OS X has a mechanism called Defaults that
is a “portal” into the Preferences plist
system for processes

® |t does NOT incorporate EVERY plist on the
system (phew!), only the ones dedicated to
preferences

® Processes themselves don’t need to understand
how to read/write or find plist files, they use the
Defaults infrastructure

® Your scripts can leverage this infrastucture and
be able to save their own preferences!




Defaults Infrastructure

® | ocation of Preference files:
® ~/Library/Preferences
® /Library/Preferences
® /var/root/Library/Preferences
® Most files in these folders are in plist format

® Note that some files in */Preferences are NOT
plist format

® These will not be accessible through the
Defaults system, but are read directly by the
process that owns that preference




Defaults Domains

® Preferences in the Defaults system are
organized by domain (and, optionally, host)
® Typically correspond to individual applications/

pProcesses

® Nomenclature for these domains typically
(not always) follows Java reverse-FQDN
syntax WITHOUT the .plist extension
® Prevents namespace collisions

® Examples:
com.apple.menubar.clock
loginwindow




Accessing Defaults

® Defaults are accessed using the CLI tool
defaults

® When only a Domain is specified, defaults
searches ~/Library/Preferences for a plist file
matching the Domain argument with .plist
appended

® Example:
defaults read com.apple.menubar.clock
® Note that output from defauits is in ASCII/
NeXT format, independent of the plist
format itself (Binary, XML, or ASCII/NeXT)

® VERY useful in automation and scripting!




Reading/Writing Values
for Specific Keys

® A specific key can be read using the same
defaults tool

® Example:

defaults read com.apple.menubar.clock
ClockEnabled

® A key’s value can be modified:

® Example:

defaults write com.apple.menubar.clock
ClockEnabled 0




Other Defaults
Domains

® NSGlobalDomain

® Used for default shared key-value combos, not
process or domain-specific

® Can use -g instead of specifying
NSGlobalDomain

® Example:

defaults read NSGlobalDomain
AppleMiniaturizeOnDoubleClick

defaults read -g
AppleMiniaturizeOnDoubleClick




Other Defaults
Domains (cont.)

® A full path to a .plist file (minus the .plist
extension) can be specified as a domain

® Example:

defaults read /Library/Preferences/
.GlobalPreferences

® Take a look at the Domains available in
each of the Preference file locations:
® ~/Library/Preferences
® /Library/Preferences
® /var/root/Library/Preferences




Specifying a Host with
Defaults

® The ByHost folder seen in some of the
previous Preference locations stores host-
specific information

® Useful for processes that utilize more than one
host, and want to have host-specific preferences

® You may specify a hostname as either a
MAC (IP) address or -currentHost

® Examples:

defaults -currentHost read
com.apple.networkConnect

defaults -host 000a95a92943 read




Where is the .plist for
NSGlobalDomain!?

~/Library/Preferences/
ByHost.GlobalPreferences.MacAddr ess
.plist
® This is an FYI, since you really should be
using defaults to edit the global data (it’s
MUCH easier!)




Defaults (Summary)

® Preferences are managed through the
Defaults infrastructure, and stored in plist
files in specific Domains

® You can leverage the defaults command
to read/write pre-existing domains

® You can also use defaults to create/read/

write/delete preferences on-the-fly

® Even scripts you write or leverage can have
saved preferences--sure comes in handy for
automating workflows!

® Any questions!




launchd

® The launchd daemon process is new to
OS XTiger, and replaces MANY previous
processes and methods that controlled the
launch of processes:
e rc files
@ iniE
® inetd/xinetd
® SystemStarter

® launchd is controlled via Property Lists
and commands that load/unload those plists




launchd.plist

® The plist files that control launchd are

stored in one of the following places:

® ~/Library/Launch{Agents,Daemons}
® /Library/Launch{Agents,Daemons}
® /System/Library/Launch{Agents,Daemons}

® | ike any plist, the files consists of a set of
Keys-Values that define properties

® You set the right keys to the right values, and
YOU become the boss!




launchd.plist
Mandatory Keys

® Label
® A unique identifier for this process
® Program

® Absolute path to the executable file which
launches the process

® optional if ProgramArguments specifies launch
path

® ProgramArguments
® An array of arguments for the process




launchd.plist
Some Optional Keys

UserName

® The username under which the process should
run

RootDirectory

® A directory that will be the root directory for
the process (using chroot)

WatchPaths

® A list of paths that, when modified, will cause the
process to launch (if not already launched)

StartInterval

® An interval in seconds specifying how often the
process should be started

StandardCalendarInterval

® A specification of a repeated calendar interval




launchctl

® Used to load/unload launchd.plist files into
the launchd system
® Must be run as root (usually with sudo)

® Example:

sudo launchctl load ~/Library/
LaunchAgents/com.apple.TextEdit.plist

sudo launchctl unload ~/Library/
LaunchAgents/com.apple.TextEdit.plist




Walk-Through:
TextEdit

® We are going to create a simple plist file for
TextEdit to ensure that it is always running




launchd (Summary)

® We have only scratched the surface of
launchd here

® Please consult online documentation and the
man pages for launchd, launchd.plist,
launchctl, etc.

® Any Questions!




AppleScript

One of the (if not THE) easiest scripting
languages to learn

Syntax is flexible, and punctuation is not as
necessary (semi-colons and braces and

back ticks OH MY!)

AppleScript can easily call Unix scripts or
programs (this bullet is what your English
teacher would call “foreshadowing”)

Unix scripts and programs can easily call
AppleScripts through the Open Scripting
Architecture (OSA)




Apple Events

® Apple Events are commands that are sent
to an application

® MANY applications AppleScript-able
through Apple Events

® Apple Events are defined for each Apple
Event-compatible application
® Standard Suite
® Application-specific

® Use Script Editor to see what Apple Events
an application supports




AppleScript Example

tell application "Finder"
set finderWins to (every Finder window)
repeat with w in finderWins
set finderWindowName to name of w
display dialog finderWindowName
end repeat
end tell




ScriptEditor Record
Mode

® Will record your actions and create
AppleScript commands from them!

® Great for creating a template script that
you can modify/addend

® Limited by what events the application
provides for recording

® |t often seems like the ONE THING you need is
missing




Bringing Executables
into AppleScript

® So how can we incorporate programs that
don’t respond to Apple Events into our
flow?

® How can we make applications that only
run in the Terminal (referred to as Tools by
Apple, rather than Applications) be double-
clickable for neophyte, Terminal-phobic
users!?




AppleScript Example

property command : "ls "

set x to display dialog "Enter path to
show listing" default answer "" buttons

{"Cancel", "Show Me!"} default button
"Show Me!"

if button returned of x is "Show Me!" then
try
set filePath to text returned of X

set output to do shell script command
& filePath

display dialog output
end try
end if




Running AppleScripts
from Unix scripts

® Use osascript command

® OSA stands for Open Scripting

Architecture
® There is an OSA-compatible implementation of
JavaScript
http://www.latenightsw.com/freeware/JavaScriptOSA/
® So why is this cool...?
® Answer: UNIX scripts can now ALSO access
AppleEvent-supported applications
® Quicktime compression

® Adobe CS
® etc.




AppleScript Droplets

® AppleScripts can be written as Droplets,

which allow things to be “dropped” onto
them

® Dialogs can then be optional, and the script

will operate on all files/folders dropped
onto it

® Great for workflow automation




AppleScript Studio:
Adding a GUI

We have seen how to make AppleScripts
communicate with pre-existing programs

Wouldn'’t it be COOL if we could use
Apple Developer Tools to put a fancy GUI

in front of command-line tools?

We can leverage the same Interface Builder
that is used to develop Cocoa apps for
AppleScripts




AppleScript &
A.S. Studio Summary

® |ntuitive, syntax-friendly scripting language
® Part of DNA of OS X
® Apple Events

® Droplets

® AppleScript Studio bring power of full-
powered GUI to your scripts without ANY
programming (just connect-the-dots)

® Any Questions!




Automator

® Brand-new to Tiger

® Connects applications together in a
workflow without ANY scripting/
programming
® Notice the icon,and how it is “pipe-ing” :-)




Automator

® Automator Actions not directly correlated
with Apple Events

® Automator actions are added by “real”

programmers to the applications so that other
can use them (as are Apple Events, but in a
different way)

® Automator Actions can be written as Apple Scripts

Only a small subset of Apple Events have made it
to Automator Actions right now (but this will
change)

In Automator’s current defense, there are some

things in Automator that would be a pain to do
in AppleScript



Automator (summary)

® Automator is destined to be a VERY
important part of OS X
® Still in embryonic/newborn stage right now

® VERY good support infrastructure exists already
in the community

® |f you find Automator limiting riéht now, be
patient, this is going to be HUG

® Any Questions!




Synopsis

® Even non-programmers have the power to
harness developer tools

® You can use Property List Editor to
® Edit process’ properties

® Control the launching of applications with
launchd

® You can use the Preference Defaults system
for troubleshooting and control

® You can create scripts/programs (or get
them off the Internet!) and add fancy GUIs
to them with AppleScript Studio

® You can automate workflows with
Automator




Resources

® |nstall the Developer tools!
® Tiger DVD

® Download: http://developer.apple.com/
® Get ADC membership (Online membership is free)

® Property List Editor and the Defaults
Preferences System

® man pages
® |aunchd

AFP548: http://www.afp548.com/article.php?
story=2005062007 1558293

man pages
http://developer.apple.com/macosx/launchd.html

Peachpit Unix book: Unix for Mac OS X 10.4
Tiger:Visual QuickPro Guide, 2nd Edition




Resources

® Applescript and Applescript Studio

® /Developer/ADC Reference Library/
documentation/AppleScript/Conceptual/*

® http://www.apple.com/applescript/resources/
® http://www.apple.com/applescript/studio/
® O’Reilly Books
® Automator
® http://www.apple.com/automator

® http://www.automatorworld.com
® http://www.automator.us/resources.html




Thank You!
Top Tools for Admins

MacRetreats 2005

Scott M. Neal

Senseption




