
Course W5:
Automation and Synchronization of

Disks and Images

Dave Pooser

geekboy@pooserville.com

What this course isn’t about:

• Lab environments where machines are
regularly wiped and re-imaged

• Thin-client models where Netbooting and
network home directories make desktops
interchangeable

• Using rsyncx or similar to automatically
revert images on a nightly basis

Designing Initial Images

Plan, plan, plan!

“Organizing is what you do before you do
something, so that when you do it, it is not
all mixed up.”

—A. A. Milne

Questions to ask

• What are the core apps everyone uses?
• Don’t forget UNIX commands!

• (Why CpMac is only in Xcode I’ll never know…)

• Is localization going to be an issue in your
environment?

More questions to ask

• How is your software licensed?
• You don’t want to manage different serial

numbers for every user
• You can’t afford to risk having unlicensed

software
• Volume licenses schemes like Office v.X or

Adobe Acrobat can be a huge help
• Keyserver http://www.sassafras.com may

improve your life dramatically.

The Great Debate

Should users be local administrators?

“What I do say is that no man is good enough
to govern another man without that other's
consent.”

—Abraham Lincoln

Should users be local admins?

• YES
• Political reasons

• Laptop users

• Remote users

• Flexibility

• NO
• Ease of management

• Standard configuration

• ARD/ Timbuktu/
NetOctopus for remote
support

• One word: sudo!

Probable outcome:

• Some local admins
• Road warriors
• Power users
• Management

• Most users not administrators

All this depends on organizational culture!
(and whether the IT person before you was a jerk)

Creating universal administrators

• At least one on every machine
• More than one allows different capabilities for

different individuals/departments

• Same password makes administration easier
• Guard that password with your LIFE!

• Making them invisible improves security
marginally, reduces login clutter
• To make them invisible, just give them UID

<500 and hide their home directory

Creating your master

“One lesson we learn early, that in spite of
seeming difference, men are all of one
pattern.”

—Ralph Waldo Emerson

One master, or more?

• Why would you create multiple masters?
• Software: Fundamentally different applications

• Hardware:
• Portable vs Desktop

• New models running non-standard OS
• Think of the early G5s before Panther

• Generally takes Apple 1-2 revs to “un-fork” software

Tune your master

Delocalization if appropriate

• Tweak preferences as needed
• /System/Library/User Template/English.lproj

• Configure network settings
• Master hardware should have as many interfaces as the

most flexible client
• Ethernet

• Airport

• Modem

Test, test, TEST!

• Install on multiple hardware types

• Test applications extensively
• Launch every app as an administrator and a user

• Some problems will only affect a user

• For example: Acrobat registration database could only be read
by an admin; users had to enter the serial on every launch

• If everyone is an admin, skip the user test, and have a drink
instead. You’ll need it.

• Once you think it’s perfect, beta test it with a few
power users

Creating and deploying images

Creating your image

• Three primary tools
• Carbon Copy Cloner http://www.bombich.com

• The first OS X GUI imaging tool; still very popular

• Disk Utility (Panther only)
• Seems improved in later revisions of 10.3.x

• Network Image Utility— for NetInstall

Deploying your image

“Real artists ship.”

—Steve Jobs

Deployment techniques

• Local boot, local image

• Local boot, network image

• Network boot, network image

Local boot, local image

• CCCloner or Disk Utility

• FireWire hard drive (iPod cool, but slow)

• Doesn’t scale well

• So why do it this way?
• Minimizes stress on slower networks

• Politics may prevent using a Mac server

• Offers a chance for some basic user training

Local boot, network image

• Boot from FireWire (including iPod)
• CCCloner and Disk Utility can restore from .dmg

files on mounted server
• Disk utility can also restore from Web server
• Still labor- (and walking-) intensive
• So what advantages?

• Mac server not required
• Network image means all you need is a bootable drive
• You may be able to expense an iPod!

Network boot, network install

• Least labor-intensive
• Most network-intensive
• Requires Mac OS X server
• Two options

• NetInstall— file-level copy
• NetRestore— block-level copy

• Faster than NetInstall
• Current version also be used to create image
• http://www.bombich.com

Using Apple Remote Desktop

Client administration using ARD

“Progress is made by lazy men looking for
easier ways to do things.”

— Robert Heinlein

ARD overview

• Remember Network Assistant?

• Setup
• Configure clients to allow ARD access

• This should be part of your master image

• 10.3 uses the Sharing preference pane

• 10.2.x and 10.1.5 use Remote Desktop pane

• Nobody cares about OS 9.x and earlier, right?

• Create lists of clients on the admin station(s)

• UDP multicast— scales well, doesn’t stress network

Configuring clients

• Nicely granular access
privileges

• Pane will show all users
>500

• Command-line nerds can
also use kickstart

• Information fields won’t
autopopulate
• But kickstart can be used

with a shell script…

Configuring admin stations

• Automatically finds clients on same subnet
• Add remote clients by name or search IP range
• Sort clients into 20 lists; one client can be in multiple lists

ARD interactive features

• Not really relevant to this session…
• Control/Observe client machine

• Share/lock screen

• Text chat with user

ARD Reporting features

• Reports
• System Information for hardware and OS settings
• Software Versions for installed software
• Software Difference compares client(s) to admin station
• Software search searches for any file on the client(s)
• Delete and Open Selected for files found using other

reports
• Network Performance— test net between you & client

ARD Management features

• All sorts of cool capabilities, especially
• Install Package— this is the essence of this session
• Copy items— for pushing single files/folders
• Open item— great for running AppleScripts on multiple remote

machines simultaneously

• Management tasks happen behind the scenes
• Target multiple machines simultaneously

• You should hear angels singing at this point!

PackageMaker essentials

Why use PackageMaker?

• Install multiple items to multiple locations

• Install items that require special privileges

• The ability to do pre-install or post-install
tuning via scripts

• Create metapackages to simplify updating

PackageMaker preparation

• If you don’t have Xcode installed (why on
earth not?) install it

• Create a standard folder structure to hold
source and completed projects

Creating a simple package

• Create a package-specific folder structure
• ~/Packages/Source/Foo/

• ~/Packages/Source/Foo/PackageRoot/

• ~/Packages/Source/Foo/Resources/

Add files to Resources
• Installer options

• Welcome.txt (or .rtf, or .html)
• License.txt
• ReadMe.txt
• background.jpg (optional)

• If you want a cool background to the installer
• Can also be .tiff, .gif, .pict, .eps, or .pdf file

• Scripts— may include any/all of:
• InstallationCheck
• VolumeCheck
• preflight
• preinstall/preupgrade
• postinstall/postupgrade
• postflight

Add structure to PackageRoot

• PackageRoot should simulate “lowest common directory”
— that is, lowest in the directory tree that contains
everything being installed
• Example: if all files go into /Applications then PackageRoot is

simulating /Applications
• Example2: if files go into /Applications and /Library then

PackageRoot is simulating / and must contain Library and
Applications subdirectories

• WARNING: The installer will overwrite symlinks with
directories. If PackageRoot is simulating / and you need to
put files in /etc, remember it is really /private/etc —
overwriting the /etc -> /private/etc symlink will ruin
your day!

Prepare the files

• Put files in PackageRoot and subdirectories
• Be aware of resource forks
• Copy files using the Finder or use
 ditto -rsrc or CpMac to preserve resource forks if

necessary

• Run SplitForks from /Developer/Tools on the
PackageRoot directory

• Delete any .DS_Store files (Finder droppings) using
Terminal

• Double-check permissions; make sure scripts are executable

Running PackageMaker

• Found in /Developer/Applications/Utilities

• Description tab— pretty straightforward. The
“Delete Warning” is not currently implemented

• Files tab— Root is full path to PackageRoot.
Compress Archive saves space, takes more time to
create and install

• Resources tab— wants path to Resources folder
[continued]

Running PackageMaker [continued]

• Info tab — where most of the settings go
• Default location: directory simulated by PackageRoot

• Probably / or /Applications

• Restart Action— No Restart Required, Required
Restart, Shutdown Required

• Also Recommended Restart, but that doesn’t work
• Why Shutdown? Think hardware drivers…
• You shouldn’t have to restart under most circumstances

• Authorization Action— determines install permissions,
ownership of files

• Admin for installing to /Applications, /Library
• Root for installing to /System, /private/var, and so on

Running PackageMaker [continued]

• Info tab— Flags
• Most of these should be left unchecked

• Relocatable— only for self-contained apps
• Even then, do you want to wonder where’s Waldo.app every time you

update a machine?

• Required— BAD idea in a single package

• Root Volume Only— only relevant if Relocatable checked

• Update Installed Languages Only— handy if you run some
multilingual systems

• Overwrite permissions— normally not needed

Running PackageMaker [continued]

• Version tab
• Display name is what will show in the Finder

• Other Display Information contents should match the
Info.plist settings in the application package’s Contents
subdirectory

• “Get Info string” = CFBundleGetInfoString

• “Identifier” = CFBundleIdentifier

• “Short version” = CFBundleShortVersionString

• Version— Major is portion left of the first decimal
point

• Example: Version 6.5.9 is Major 6, Minor 59

Create the package!

• Select Create Package under File menu
• Save package into ~/Packages/Compiled

• If PackageMaker offers to split forks, choose
“Don’t Split”
• Some users have found the command-line
SplitForks more reliable

• Save PackageMaker document for future
updates

Metapackage creation

What is a metapackage?

• Just a list of packages (possibly including
other metapackages) and the info needed to
install them

• Packages, like batteries, are not included

Why make a metapackage?

• For interactive installs
• Allows more modular software installation

• Enables “Customize” button in installer
• Some components may be required and others optional, such

as fonts or clip art

• Avoids multiple restarts
• Install a Security Update and a new version of QuickTime

without rebooting between them

• For remote installs
• Avoids multiple restarts
• Easier to update metapackage when one component

changes

Preparing a metapackage

• Create package-specific folder structure
• ~/Packages/Source/MetaFoo/

• ~/Packages/Source/MetaFoo/Resources/

• Add files to resources
• Installer will NOT show Welcome, License or

ReadMe files from component packages

Assembling a metapackage

• Launch PackageMaker and go to File:New —>
Metapackage

• PackageMaker opens a new window with an
empty package list

• Drag one or more packages to the list
• Installation order is determined by position in the list

(top goes first)

• Each package can be set to Required, Selected (by
default) or Unselected (by default)

Metapackage package list

Creating a metapackage

• Fill out Description, Version and Resources tabs
as usual

• Select Create package under File menu
• Save package into ~/Packages/Compiled
• Move component packages into

~/Packages/Compiled
• Or edit IFPkgFlagComponentDirectory in the

metapackage Info.plist (found in Contents)
• (Info.plist will need to be made writeable for this to work)

• By default, the metapackage expects its components in
its own directory

Converting other installers

Converting installers— overview

• Start with a clean system— OS + Xcode

• Get a baseline list of all files on the system
• Install the software, launch, and enter

license information
• Get an update list of all files on the system
• Generate a list of changed files
• Create a package from the list of changes

Converting installers— detail

• Start with a clean system
• Install OS with all the bells and whistles and all

software updates
• This should include every language you support

• Add Xcode and updates as required

• Clone this system— you should plan on erasing
it after every installation

Get a baseline list of every file

• Download and install logGen
http://www.lsa.umich.edu/lsait/AdminTools
/osx/software/
• Requires 10.3 (or 10.2 + Digest and

File::Spec Perl modules)
• At the command line type sudo
/usr/local/sbin/logGen
basefiles.log

Install the software

• Install the software with every option any user
might need
• Remember it’s easier to remove than add components

at the packaging stage!

• Launch the software and enter generic licensing
information
• Quit and relaunch the software to make sure the

licensing information took
• Log in as a user and make sure everything still works as

expected

Generate a list of changed files

• logGen to the rescue again!
• sudo ./logGen current.log
basefiles.log > Acrobat6.log

• Acrobat6.log (in this example) is now a
blueprint for creating a package

• logGen will list every file that has been
added, changed or deleted, or the parent
directory if every file has been affected

Create a package from the list

• Manually copy each file or directory to its
appropriate location under PackageRoot

• Or, use a shell script to parse the logGen output
and automatically copy files to their proper
locations
• Remember to use CpMac or ditto -rsrc to preserve

resource forks
• Some paths may have spaces and will need to be quoted

• Consider creating a metapackage, with separate
packages for optional installs

Distributing configuration files

Two main OS X config methods

• Traditional Unix— text configuration files
• Lives on in .plists, which are just XML files

• Editable directly with shell and Perl scripts

• Traditional Mac— binary preference files
• Still common in many Carbon apps

• Editable only through creating application,
which may or may not be AppleScriptable

The good news— we can handle both!

• Shell scripts can execute AppleScripts

• AppleScripts can call shell scripts

• Packages can replace configuration files

• As administrators, we get our duct tape and
our power tools too!

Why not use ARD Copy item?

• Copy Item is simpler for single files

• Packages give you more flexibility
• Pre-flight script can back up existing

configuration

• Packages can place several items in different
locations

• Post-flight script can force a daemon to reload
its .conf file to apply changes without a reboot

Example: Pushing out a new printer

• Preflight script backs up
/private/etc/cups/printers.conf

• Package places new PPD in
/private/etc/cups/ppd/ and new partial .conf
file in /private/tmp/newprinter.conf

• Postflight script adds the partial .conf file to
/private/etc/cups/printers.conf and
deletes /private/tmp/newprinter.conf before
sending a kill -1 to cupsd

More fun with scripts

Six kinds of scripts

• InstallationCheck checks for system characteristics
and can permit or deny installation

• VolumeCheck checks for volume characteristics and can
permit or deny installation on a specific disk

• preflight runs before any files are copied

• preinstall/preupgrade runs before any files are copied,
depending on whether the package is an upgrade

• postinstall/postupgrade runs after all files are copied,
depending on whether the package is an upgrade

• postflight runs last of all

When are they used?

• InstallationCheck, VolumeCheck
• These scripts are most often used as a failsafe,

to make sure you don’t try an install while
missing prerequisite hardware or software

• preflight
• Used for any operation that needs to take place

prior to both installs or upgrades— for instance,
stopping any running SMTP servers before
installing a new one

When are they used? [continued]

• preupgrade, postupgrade
• Handy for backing up files that might be

overwritten, and then for moving them back
once the upgrade is complete

• preinstall, postinstall
• Useful for configuring default settings for a

new application
• postflight

• All sorts of things from cleaning up temp files
to launching a newly-installed app

Running shell scripts via ARD

Creating a script-only .pkg

• Only requirement is a postflight script in
Resources and an empty PackageRoor

• Set authentication in PackageMaker to
desired level, either admin or root

• Like any package, the script can be run on
multiple clients simultaneously

• SSH access doesn’t have to be turned on

