
Client Management
Fundamentals

MacWorld SF 2007
Session IT851

1

Who?
• Administrative staff?

• Faculty?

• V.I.P.’s?

2

What?
• Applications?

• System settings?

• Look and feel?

3

Why?
• Efficiency?

• Lack of staff?

• Maximizing uptime?

4

Three types of managed environment
• Fully Managed (Kiosk)

– Users have little or no control of their environment
– Machine is always in a known state on reboot

• Mostly managed (Desktop/Laptop)
– Users do not run as administrators
– Users can control their environment
– Machine is in a fairly known state

• Mostly unmanaged (Student laptop,
– Users have full control of the box
– Box is always in an unknown state

5

Options for great flexibility

(Without Workgroup Manager)

6

/etc/authorization
• Allows equivalent of “power-user”

• Rights can be granted/denied based on group

• Fine grained control of some administrative rights

7

Example right
 <key>com.apple.activitymonitor.kill</key>
 <dict>
 <key>class</key>
 <string>user</string>
 <key>comment</key>
 <string>Used by Activity Monitor to authorize
killing processes not owned by the user</string>
 <key>group</key>
 <string>admin</string>
 <key>shared</key>
 <false/>
 <key>timeout</key>
 <integer>0</integer>
 </dict>

8

Example right
 <key>com.apple.activitymonitor.kill</key>
 <dict>
 <key>class</key>
 <string>user</string>
 <key>comment</key>
 <string>Used by Activity Monitor to authorize
killing processes not owned by the user</string>
 <key>group</key>
 <string>admin</string>
 <key>shared</key>
 <false/>
 <key>timeout</key>
 <integer>0</integer>
 </dict>

9

Example right
 <key>com.apple.activitymonitor.kill</key>
 <dict>
 <key>class</key>
 <string>user</string>
 <key>comment</key>
 <string>Used by Activity Monitor to authorize
killing processes not owned by the user</string>
 <key>group</key>
 <string>admin</string>
 <key>shared</key>
 <false/>
 <key>timeout</key>
 <integer>0</integer>
 </dict>

10

Example right
 <key>com.apple.activitymonitor.kill</key>
 <dict>
 <key>class</key>
 <string>user</string>
 <key>comment</key>
 <string>Used by Activity Monitor to authorize
killing processes not owned by the user</string>
 <key>group</key>
 <string>admin</string>
 <key>shared</key>
 <false/>
 <key>timeout</key>
 <integer>0</integer>
 </dict>

11

Another example
 <key>system.preferences</key>
 <dict>
 <key>allow-root</key>
 <true/>
 <key>class</key>
 <string>user</string>
 <key>comment</key>
 <string>This right is checked by the Admin
framework when making changes to the system preferences.</string>
 <key>group</key>
 <string>admin</string>
 <key>shared</key>
 <false/>
 </dict>

12

Another example
 <key>system.preferences</key>
 <dict>
 <key>allow-root</key>
 <true/>
 <key>class</key>
 <string>user</string>
 <key>comment</key>
 <string>This right is checked by the Admin
framework when making changes to the system preferences.</string>
 <key>group</key>
 <string>admin</string>
 <key>shared</key>
 <false/>
 </dict>

13

File authorization
 authopen provides authorization-based file opening services. In its sim-
 plest form, authopen verifies that it is allowed to open filename (using
 an appropriate sys.openfile.* authorization right) and then writes the
 file to stdout. If -w is specified, authopen will read from stdin and
 write to the file.

 authopen is designed to be used both from the command line and program-
 matically. The -stdoutpipe flag allows a parent process to receive an
 open file descriptor pointing to the file in question.

 Before opening filename, authopen will make an authorization request for
 a right of the form:

 sys.openfile.[readonly|readwrite|readwritecreate]./fully/qualified/path.
 `.readonly' rights only allow for read-only file descriptors.
 `.readwrite' rights allow for read/write file descriptors.
 `.readwritecreate' rights allow for read/write descriptors and the cre-
 ation of new files.

14

Let’s dig in!

15

Sudo!

16

Granularity in sudo: aliases
 User_Alias FULLTIMERS = millert, mikef, dowdy
 User_Alias PARTTIMERS = bostley, jwfox, crawl
 User_Alias WEBMASTERS = will, wendy, wim
 Runas_Alias OP = root, operator
 Runas_Alias DB = oracle, sybase
 Host_Alias SPARC = bigtime, eclipse, moet, anchor :\
 SGI = grolsch, dandelion, black :\
 ALPHA = widget, thalamus, foobar :\
 HPPA = boa, nag, python
 Host_Alias CUNETS = 128.138.0.0/255.255.0.0
 Host_Alias CSNETS = 128.138.243.0, 128.138.204.0/24, 128.138.242.0
 Host_Alias SERVERS = master, mail, www, ns
 Host_Alias CDROM = orion, perseus, hercules
 Cmnd_Alias DUMPS = /usr/bin/mt, /usr/sbin/dump, /usr/sbin/rdump,\
 /usr/sbin/restore, /usr/sbin/rrestore
 Cmnd_Alias KILL = /usr/bin/kill
 Cmnd_Alias PRINTING = /usr/sbin/lpc, /usr/bin/lprm
 Cmnd_Alias SHUTDOWN = /usr/sbin/shutdown
 Cmnd_Alias HALT = /usr/sbin/halt
 Cmnd_Alias REBOOT = /usr/sbin/reboot
 Cmnd_Alias SHELLS = /usr/bin/sh, /usr/bin/csh, /usr/bin/ksh, \
 /usr/local/bin/tcsh, /usr/bin/rsh, \
 /usr/local/bin/zsh
 Cmnd_Alias SU = /usr/bin/su

17

Granularity in sudo: defaults
 Defaults syslog=auth
 Defaults>root !set_logname
 Defaults:FULLTIMERS !lecture
 Defaults:millert !authenticate
 Defaults@SERVERS log_year, logfile=/var/log/sudo.log

18

Examples:
operator ALL = DUMPS, KILL, SHUTDOWN, HALT, REBOOT, PRINTING,\
 sudoedit /etc/printcap, /usr/oper/bin/

joe ALL = /usr/bin/su operator

pete HPPA = /usr/bin/passwd [A-z]*, !/usr/bin/passwd root

aaron shanty = NOEXEC: /usr/bin/more, /usr/bin/vi

19

Stock sudo on Macintosh OS X
root ALL=(ALL) ALL
%admin ALL=(ALL) ALL

20

Refining sudo permissions
root ALL=(ALL) ALL
singleuser ALL=(ALL) ALL

21

Managed Preferences

22

Three types of management
• Users

– Applications, Dock, Login
• Groups

– Same as Users
• Computers

– Ability to manage Energy Saver is added
– Login scripts are added as well
– Ability to restrict machine to specific set of groups

23

How?
• Open Directory Server for authentication and management

• “Triangle” method

• Local management

24

Open Directory Server

25

26

One example

27

Access

28

Cache settings

29

The “Triangle”

30

Active
Directory

Open
Directory

31

Active
Directory

Open
Directory

Authentication

32

Active
Directory

Open
Directory

Authentication Management

33

Caveats
• Standard behavior is to have Active Directory first in

Authentication path in Directory Services

• DNS resolution is important and can cause managed
preferences oddities

• Need to remove or disable OD kerberos config to prevent
conflicting authentication information
– Alter Kerberos attribute
– Remove kdc

34

Applying mcx locally

35

What?
• No need for OS X server

• Management is “point-in-time”

• User and group settings work, computer settings may not

36

How?

37

38

Preference management

39

Light touch

40

Energy Saver

41

System Preferences

42

Loginwindow

43

Software updates

44

Middle ground

45

Printers

46

Heavy

47

Application management

48

Manifest inspector

49

An example

50

Possible candidates
com.apple.desktop.plist

com.apple.iWork.plist

com.apple.screensaver.*

51

Login scripts

52

Possible login items to script?
• Microsoft Word settings?

• Printers?

• Dock specific settings?

• IMPORTANT: Must set key on client workstation

53

Network Directories

a.k.a. Portable Home Directories

54

Advantages
• Preferences are consistent across multiple machines

– Language settings
– Printers
– System Preferences

• Central backup of user data can be done at the server level

• Machines become expendable (labs, offices)

55

Disadvantages
• Some applications are not ‘network-friendly’

– Office, Adobe CS Suite, etc.
• Disk intensive applications will not perform well

– iMovie, Final Cut Pro, et al.

• Requires a fairly robust hardware/network combination

• No quota reporting

56

Troubleshooting

57

MCX diagram

58

MCXCacher
/System/Library/CoreServices/mcxd.app/Contents/Resources/MCXCacher

MCXCacher -U usershortname [-h homepath]
Creates (or overwrites an existing) mobile account on the current
machine for user "usershortname" with optional home path "homepath"

MCXCacher
Performs the pre-login checks and refreshes cache if required.

MCXCacher -u usershortname
Performs the post login checks and refreshes caches -- does
everything that "MCXCacher" does plus caches the current user's
mcx_settings

MCXCacher -f
Flushes the cache (Mobile accounts not removed; but system is unmanaged)

MCXCacher -d
Dirties the cache so that it will be refreshes at the next login
("MCXCacher" call by mcxd)

MCXCacher -f will put the machine into an unmanaged state until the
next time it reconnects to the management server, so it's a rather
drastic thing to do. From memory, if you run this command, Mobile
Users won't be able to login at the loginwindow unless the machine
can connect to the management server at that time.

MCXCacher -d does the right thing in the vast majority of cases, and
as John DeTroye just pointed out to me, runs at login/logout and
restart.

59

Compositor.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist SYSTEM "file://localhost/System/Library/DTDs/
PropertyList.dtd">
<plist version="0.9">
<dict>
 <key>PreLoginAllowBundles</key>
 <array>
 <string>com.apple.loginwindow</string>
 <string>com.apple.MCX</string>
 <string>com.apple.mcxloginscripts</string>
 <string>com.apple.SoftwareUpdate</string>
 </array>
</dict>
</plist>

60

CinchDefaults.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>excludedAlways</key>
 <array>
 <dict>
 <key>comparison</key>
 <string>fullPath</string>
 <key>value</key>
 <string>~/Library/Mirrors</string>
 </dict>
....

61

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

Debugging
• Two caches

– computer
– user

• Turning on debugging
– defaults write /Library/Preferences/com.apple.MCXDebug debugOutput 3

62

Real World:

Ventura County Star

63

Before:
• Mac OS 9
• MacAdministrator

• User folder of files preserved and copied
• No preferences copied
• All control panels locked

• AppleShare IP 6.3
• Windows NT 4.0 (some 2000)

64

After:
• Mac OS X
• AD-OD Integration (golden triangle)
• Mobile accounts with portable home directories

• Entire user environment preserved and moved
• But with exceptions (cache, etc.)
• Limited access to system preferences

• XServe G5 Open Directory Master
• Bound to AD for authentication

65

What Happened:
• First time system was loaded:

• 15-20 minute boot times
• Random syncing errors:

• “Your AFP home cannot be synchronized right now
because it is on an SMB or AFP home.” Pardon?

• Additional load placed on system:
• Network failed (lesson: make sure your infrastructure is

sound, ahead of time)

66

67

Lessons Learned
• Take your time
• Don’t lose your notes
• ARD is your friend
• Scour the Library for cache files to exclude

68

To do:
• Manage Network views

– What it looks like now

• Creating a view in WGM

69

To do:
• Migrate OD Master to Intel XServe

• Move!

70

