A Physics Interactive MidTerm Exam page one

	\#	4	question	Answer	0	<--score
\#	1	40	meters is the height of a cliff. A ball dropped from this cliff would take how long to fall?		0	
\#	2	40	How fast would the ball be going by then?		0	
\#	3	40	m / s is the velocity of a car that hits a tree. If it takes 0.8 meters to stop, find acceleration in $\mathrm{m} / \mathrm{s} 2$		0	
\#	4	160	m / s is the muzzle velocity of a cannon that shoots at 30 degrees. Find the landing angle		0	
\#	5	160	find the range		0	
\#	6	4	kg is the mass of a fancart that accelerates at $0.5 \mathrm{~m} / \mathrm{ss}$. FInd the force from the fan		0	
\#	7	4	If a 200 gram mass were then added to the cart, fin the new acceleration		0	
\#	8	120	m / s is the velocity of your car as it hits a tree. Your 50 kg body is slowed to zero in 0.8 seconds by the seatbelts. Find the force.		0	
\#	9	400	m / s is the velocity of a 250 gram bullet fired from a gun. Find the momentum for one bullet.		0	
\#	10	12	m / s is the velocity of 100 kg Boris, running towards you. How many bullets (exactly) would it take to stop Boris?		0	

