APES Energy lab-solar thermal panel

Here's our solar thermal panel setup:

Lab process:

- Cool water enters the bottom right, control the flow with the valve
- Hot water (CAUTION!) comes out the upper left
- Temperature is measured (in °F, so you will have to calculate °C) by the meter under the upper left corner, unless you use the

- neato infrared thermometer (small yellow unit)
- Flow will be calculated by recording the time needed to fill a 1 liter container
- Turn on the hose under the stairs to begin, and do this when the sun is shining (boring otherwise, but not hopeless)
- Things to measure:
 - temp in (convert to °C if needed)
 - temp out (convert to °C if needed)
 - time to fill container (seconds)
 - capacity of container (liters)
 - Area of the panel in m2 (length x width, using a meter stick NOT A YARDSTICK)
 - solar radiation in Watts/m2 during your test (look on the weather station or 10.14.58.3)
- Make sure you are not covering the panel with your shadow, be like a ninja (invisible)
- Make two runs: one with the water slow, one with the water faster, recording everything both times

Metrima temperature meter:

- hold the grey button for 5 seconds
- push until you see "20" in the window
- push again to get 22 (hot temp in °F)
- push again to get 23 (cool temp in °F)
- You may also use an infrared camera or sensor to verify these

Your Calculations:

We want power in Watts from this panel, and panel efficiency If we know the area of the panel, and the solar insolation (note spelling):

area x solar insolation = ideal power in Watts
length in meters:m
width in meters: m
area in m^2:m^2
solar insolation:W/m2
ideal power:Watts
Efficiency:%
Cloudy day option:
length in meters:1.2m
width in meters:2.2 m
area in m^2:m^2
solar insolation:800W/m2
ideal power:Watts
Calculating Power:
Power collected from the panel is more complex:
Q = mc∆t
Q is in calories
m is in grams
c is 1.00 (water)
Δt is change in temp in °C
==============
mass of water1000 grams
cool temp (°F)68
cool temp (°C)
hot temp (°F)98
hot temp (°C) change in temp °C
change in temp °C
Calories x 4.18 = Joules Joules
Time to collect this water37seconds
joules/seconds = Watts:Watts
=======================================

Divide actual power by ideal power x100 to get panel efficiency:

W
W
%

Questions:

- 1. What was the highest efficiency of the solar thermal panel and at what flow rate?
- 2. How could you optimize this automatically?
- 3. What do you think orientation has to do with this?
- 4. If this panel cost you \$1000 and lasted for 30 years producing this amount of energy each day, how much money would it make you total? (use \$0.42/kWh)
- 5. How long would it take to pay it off?